
Integration Tools for Design and Process
Control of Filament Winding

Inger Skjærholt

Master of Science in Product Design and Manufacturing

Supervisor: Nils Petter Vedvik, IPM

Department of Engineering Design and Materials

Submission date: June 2012

Norwegian University of Science and Technology

i

Abstract

Filament winding is a fabrication method for composite material structures, in which fibres

are wound around a rotating mandrel. It is a versatile and dexterous process especially well-

suited for creating and optimizing parts with a linear rotational axis. Products like pressure

tanks, golf clubs or violin bows are commonly created using this technique. The winding

itself is done through software solutions that generate a CNC program for the part in

question. There are several such software solutions commercially available, all with different

modes of operation and functionalities. However, they are also proprietary and offer little to

no access into their inner logic.

To optimise a part before production Finite Element Analysis software is often used. The

part in question is modelled; material, forces and constraints are applied; and an analysis is

run. Currently (June 2012), there are few options available for analysing filament wound

products. Modelling a part with accurate filament winding layup generally has to be done

manually, in a very time-consuming process.

In this thesis, the author has performed a pilot study into the development of filament

winding software. Software has been developed, capable of integrating both with a filament

winding machine and with Finite Element Analysis software, and operating as a link between

the two. The software has functionalities to extract geometrical variables from an Abaqus

mandrel model; to write G codes and create a CNC program file; simulate a filament winding

process in the Abaqus viewport; and, using a CNC program file, add accurate and

corresponding layup to an Abaqus part.

The main goal of this thesis, however, has been to create something that will serve as a

basis from which others can continue development. The intention being that the software

will be open source, so that anyone and everyone using it may change, improve and add on

to it.

ii

iii

Sammendrag

Fibervikling er en produksjonsprosess for komposittstrukturer, der fibre vikles rundt en

roterende mandrel. Det er en allsidig og fleksibel prosess som egnes spesielt godt til å

optimere og fremstille produkter med en lineær rotasjonsakse. Produkter som trykktanker,

golfklubber og fiolinbuer produseres ofte ved hjelp av denne teknikken. Viklingen i seg selv

gjøres ved hjelp av programmvare, som genererer et CNC program for den aktuelle delen.

Det finnes flere typer slik programvare tilgjengelig, alle med forskjellige virkemåter og

funksjonaliteter. Imidlertid er de også patentbeskyttet og tillater lite eller intet innsyn i

hvordan de virker.

For å optimere et produkt før vikling anvendes programvare for Finite Element Analysis.

Produktet modelleres; materiale, krefter og grensebetingelser legges til; og en analyse blir

utført. Per i dag (juni 2012) finnes det få muligheter for analyse av fiberviklede produkter.

For å modellere en del med en realistisk vikle-layup, må det vanligvis gjøres manuelt i en

svært tidkrevende prosess.

I denne oppgaven, har forfatteren gjennomført en pilotstudie om utvikling av programvare

for fibervikling. Programvare har blitt utviklet, som er i stand til å integrere med både en

fiberviklemaskin og Finite Element Analysis programvare, og som kan fungere som en link

mellom de to. Programvaren har funksjonaliteter for å trekke ut geometrivariabler fra en

Abaqus mandrel-modell; skrive G koder og generere en CNC programfil; simulere en

vikleprosess i et Abaqus-vindu; og, ved hjelp av en CNC programfil, legge til korrekt og

tilsvarende layup i en Abaqus mandrel modell.

Hovedmålet i denne oppgaven har, imidlertid, vært å skape noe som kan tjene som et

grunnlag som andre kan fortsette på. Hensikten er at programvaren skal ha åpen kildekode,

slik at alle og enhver som bruker det kan endre, forbedre og tilføye til programvaren.

iv

v

vi

vii

Acknowledgements

First, thanks to my supervisor Nils Petter Vedvik who helped me all throughout the

semester.

I have a lot of good friends and family who deserve special thanks for giving me their

invaluable help and support throughout this thesis work. My brother Arne, mother Randi

and father Dag have all been there whenever I needed to do some Rubber Ducking or just

needed some words of encouragement.

Thanks to Gia for proofreading this humongous thesis about something she knows

absolutely nothing about.

And, thanks to Åsmund for his invaluable help and encouragement every step of the way.

Working thorough problems and answering any and all stupid, and not so stupid, questions.

viii

ix

Nomenclature

a - Linear equation slope variable

b - Linear equation constant

c - Constant

cylinderLength - Length of cylinder model (half of mandrel cylinder length)

H - Horizontal axis

legH - Coordinate value of P2 on horizontal axis

legV - Coordinate value of P2 on vertical axis

mandrelLength - Total length of mandrel

P1H - Coordinate value of P1 on the horizontal axis

P1V - Coordinate value of P1 on the vertical axis

R - Cylindrical radius

r - Dome opening radius

s - Circle section

signH - Sign of P2 horizontal coordinate value

signV - Sign of P2 vertical coordinate value

t - Parametric variable

U - Angle between P1 and horizontal axis

V - Vertical axis

W - Angle between P2 and horizontal axis

X
- Rotation of mandrel

- Angle between two points on a cylinder

x(t), y(t), z(t) - Points on geodesic curve

x(y) - Point on straight line between P1 and P2

x2 - Coordinate value of P2 on second axis

x2 - Coordinate value of P1 on second axis

Y - Lateral movement along the mandrel

x, y, z - Coordinates of point on spherical surface

y(x) - Point on straight line between P1 and P2

y1 - Coordinate value of P1 on axis of rotation

y2 - Coordinate value of P2 on axis of rotation

α - Filament winding angle

x

xi

Abbreviations

CNC – Computerised Numerical Control

NC – Numerical Control

FEA – Finite Element Analysis

GUI – Graphical User Interface

CLI – Command Line Interface

PDE – Python Development Environment

AWI – Abaqus Winding Integration

NTNU – Norwegian University of Science and Technology

xii

xiii

Table of Contents

1. Introduction .. - 1 -

1.1 Outline ... - 2 -

2. Background ... - 3 -

2.1 Filament Winding ... - 3 -

2.2 Abaqus FEA ...- 11 -

2.3 Scripting and Integration ...- 13 -

2.4 CNC Programming ...- 20 -

3. Foundation ... - 24 -

3.1 Motivation ..- 24 -

3.2 The Overall Approach ..- 26 -

3.3 The Kinematics of Filament Winding ..- 27 -

3.4 Software Development ..- 31 -

4. Abaqus Winding Integration Tools .. - 32 -

4.1 Introduction ..- 32 -

4.2 General Notes ...- 33 -

4.3 Classes.py ...- 36 -

4.4 MandrelProperties.py ...- 44 -

4.5 GCode.py ..- 52 -

4.6 layup.py ..- 53 -

4.7 visualCrashTest.py...- 69 -

4.8 main.py...- 72 -

5. Evaluation .. - 74 -

5.1 General Notes ...- 74 -

5.2 Remarks on Existing Functions ...- 74 -

5.3 Further Expansions ..- 83 -

6. Conclusion .. - 84 -

6.1 Further Work ..- 85 -

Bibliography .. - 86 -

Appendix A – List of Figures .. A-1

Appendix B – Research History ... B-1

xiv

Appendix C – Evaluation of Equations ... C-2

Appendix D – Derivation of Equations ... D-1

Appendix E – Integration Tools .. E-1

Appendix F – AWI Variable Reference List ... F-1

- 1 -

1. Introduction

Filament winding is a fabrication method for creating composite material structures. Fibres,

which have been either pre-impregnated or are dipped in a resin bath immediately before

winding, are wound around a rotating mandrel. The shape of the mandrel corresponds to

the inner geometry of the part to be produced. Depending on the choice of fibre, resin, fibre

tension and the angle with which the fibres are wound around the mandrel the mechanical

characteristics of the finished product will change. Filament winding is therefore a quite

flexible and dexterous production process. The filament winding procedure is especially well

suited for making parts with a linear rotational axis like pressure tanks, tubes, golf clubs,

missile castings and the likes. These are all articles which have been produced using this

process for quite some time. Filament winding is, however, not limited to parts with a linear

rotational axis, but can also be used to make things like t-joints, bends or other non-

symmetrical shapes.

To produce a part using filament winding, a CNC program is generated by one of the

available filament winding software and exported to the filament winding machine. There

are several such software solutions commercially available today. They all have the same

basic features, and varying degrees of additional functionalities. As with most

commercialised software these are proprietary and offer few or no options for control

beyond the Graphical User Interface (GUI). In some cases this poses a problem for the

industrial companies using the software, amongst others if the part to be wound does not fit

the standard shapes and profiles embedded in the software solution exactly. It is a common

approach to use the software only as a basis for the winding program, then hard code to fit a

specific part for mass production.

Another challenge of filament winding is 3D modelling and analysis. Modelling an accurate

part with a filament winding layup is very difficult and time consuming. Without specialised

software some of the assumptions necessary to make the modelling process manageable

also lead to the result being a poor approximation. As a result, in such cases when it is

acceptable to use an approximation of a filament wound part it is very impractical to do

manually.

Chapter

- 2 -

These issues formed the basis for the motivation behind this thesis and its objectives. It

was decided to do a pilot study developing software able to integrate with the finite element

analysis (FEA) software “Abaqus” and a filament winding machine. Such software would not

only make it possible to model an acceptable approximation of a filament wound part, but

also to create a model that is a close replica of the physical part. The main goal, however,

has been to create something open source. Software to serve as a basis from which other

scientist can continue development; hopefully resulting in open source software that is more

flexible than what is available today.

1.1 Outline
In chapter 2, a presentation of the necessary background information is given. A short

introduction to filament winding, filament winding software and CNC programming has been

compiled. Also, the subjects of the FEA software Abaqus and its scripting interface have been

covered.

In chapter 3, the motivation behind the thesis has been covered along with the initial plans

of an overall approach. The search for the kinematic equations of a filament winding

machine has been described and discussed, and the strategy for software development

detailed.

In chapter 4, the development of the Abaqus Winding Integration software package, the

design choices discussed, and the mode of operation documented.

In chapter 5, the Abaqus Winding Integration Tools have been evaluated. Fields with

improvement potential have been remarked, and suggestions on further development and

expansion given.

Finally, in chapter 6, the conclusions and a summary of suggestions for further work have

been presented.

- 3 -

2. Background

The following chapter will give the necessary theoretical background for the main subjects

of this thesis. The basics of filament winding (mandrel properties, fibre types and winding

patterns) have been covered. Different choices for winding software have been discussed. A

summary of Abaqus FEA compiled, and an introduction into scripting and CNC programming

given.

2.1 Filament Winding
Filament winding is a manufacturing method used for creating composite material

structures. Following is a brief introduction into the key concepts in filament winding

extracted from [5-9] .

Filament winding is a fully automated process that involves winding continuous fibres onto

a rotating mandrel. During the winding process the fibres are placed on the mandrel in a

repeating pattern, forming several layers. As a fully automated process filament winding is

very well suited to high-precision work. By controlling the choice of fibre and resin, fibre

tension and the fibre path on the mandrel the mechanical properties of a finished part can

be influenced, controlled and produced with high accuracy.

Figure 1 - Filament winding of cylindrical mandrel with domes

Chapter

- 4 -

2.1.1 Mandrel

The mandrel is a mould that corresponds to the inner geometry of the part. Changing the

mandrel parameters will affect the inner properties of the part accordingly. This is true for

parameters like inner surface roughness, as well as the geometrical values. If it is necessary

to alter the outer parameters of a part it has to be done by additional machining after the

winding process is completed. Post-machining is performed, for example, on aero dynamical

parts like airplane components.

After the winding process has been completed the mandrel must, in most cases, be

removed from the finished composite; unless it is meant to be a part of the end product.

Depending on the situation, geometry of the part, heat tolerances and similar factors, the of

mandrel is chosen. Some options for the mandrel composition include water soluble or

fusible salts and plasters or by using collapsible metal designs. It can be inflatable, made

from alloys with a low melting point, or any of several other existing designs. The best type

of mandrel for any given part depends on the different characteristics and requirements of

the winding process and the part itself.

The most straightforward parts to wind are those with a linear rotational axis and a smooth

surface, like pressure tanks and other cylinder formed parts like the one in Figure 1. It is,

however, also possible to wind non-axisymmetric shapes like elbows or t-joints, as the part

in Figure 2 and Figure 3. Although filament winding is very flexible the production technique

also has limitations. For example it is generally not possible to wind a surface which has

concave geometry features (with the exception of saddle shapes). One way to achieve such

curvature on a filament wound part it would be to wind fibres bridging the concave area.

Then, apply external pressure to push the fibres into place during curing.

Figure 2 - Simulated elbow winding pattern [1] Figure 3 - Geodesic t-shape winding pattern [6]

- 5 -

2.1.2 Fibres

The fibres wound onto the mandrel are continuous, except for the very rare occasion when

it is necessary to change a spool during winding. This is not a frequent occurrence, and

therefore does not affect the mechanical properties of the part in any adverse way. The

most common filament winding materials are carbon or glass fibres that have been either

pre-impregnated, wet rolled or are wet wound.

Pre-impregnated fibres (also known as prepregs) have very good characteristics in the

areas of quality control and reproducibility of resin content, uniformity and band width

control. As some resins require special equipment to impregnate the fibres, they can be

rendered too impractical or too expensive to produce locally. Alternatively they can be

bought as a finished product from a distributor. Most of these prepregs, not produced

locally, have solvents or preservatives added in the resin mixture to extend shelf life, These

additives also affect the tack of the fibres, which, in turn, can lead to problems during

winding.

Wet rolled fibres are impregnated locally and then re-rolled and tested before they are

used for winding. This technique allows for the opportunity to perform quality control of the

fibres before they are wound around the mandrel. After testing the fibres can be stored in a

freezer, or used almost immediately after impregnation. Consequently the need for solvents

or preservatives in the resin is eliminated. However, the negative effects of prepregs do not

always warrant the investment of a freezer unit.

Wet winding is when the fibres are impregnated with resin immediately before winding.

This is done by either pulling the fibres through a resin bath or over a resin covered roller

directly before they are wound around the mandrel. This system is very cost effective, but is

less reliable in terms of quality than both prepregs and wet rolled fibres. The resin content in

the fibres is affected by parameters such as the viscosity of the resin, interface pressure at

the mandrel surface, winding tension, numbers of layers per inch and the mandrel diameter.

These are all parameters that are likely to change during the winding process, thereby

increasing the inaccuracies and tolerances of the finished product.

A table comparing the positives and negatives of the three forms of impregnation can be

found in [6] , page (3-26).

- 6 -

2.1.3 Winding Patterns

There are three basic winding patterns in filament winding; helical, hoop and polar winding

Figure 4. The most important element in all of these patterns is the winding angle, α, which

is the equivalent of the ply angle in other composite structures.

In helical winding the winding pattern is a multi-circuit pattern consisting of fibres with a

winding angle approximately between 5° and 80°. Depending on this angle the mandrel

might rotate several times before the fibres have traversed the whole circumference of the

mandrel, and start laying adjacent to the previous windings. The resulting pattern is one of

alternating positive and negative winding angles, each layer forming a two-ply layup of [α/-

α].

The polar winding pattern is characterised by the fibres passing tangentially to the polar

opening at the opposite end of the mandrel. The resulting layup has fibres angled from

approximately 0° to 5°. As one pattern traverses the whole circumference of the mandrel the

fibres will advance one band width for each pattern.

A hoop pattern consists of circumferential winding, and is also commonly referred to as a

radial winding pattern. It is a term for winding where the winding angle approaches 90°. For

each rotation of the mandrel the fibres advance one bandwidth, lying directly adjacent to

one another along the mandrel axis of rotation. This winding pattern is most commonly used

to produce a balanced-stress structure in combination with other types of winding. It should

be noted that hoop winding can only be applied to the cylindrical part of a mandrel.

Figure 4 – Polar and helical winding patterns [5]

- 7 -

2.1.4 Winding Parameters

The geodesic path is one of the main principles in filament winding. In a dictionary it is

defined as “designating the shortest surface line between two points on a surface” [5]. In

filament winding it means that the fibres follow the shortest path on the mandrel surface

between the two points. Logically, the geodesic path is also a stable path, as the fibres would

have to stretch to deviate from the set pathway.

The geodesic path on a cylinder is a helical path with a constant winding angle, α. This

means that to wind the end points of a cylinder the geodesic path cannot be followed

completely. In so doing it is possible to change the winding direction and generate a

complete layer. In deviating from the geodesic part the friction between the fibres and the

mandrel surface is utilised, ensuring that the fibres stay in place. On a completely spherical

part, on the other hand, every pathway is geodesic. Therefore, to wind on a spherical

mandrel, additional parameters would have to be in place (starting point, winding vector,

etc.) to determine the appropriate winding path.

It is known that for any point on the geodesic part on an axisymmetric mandrel the

following equation holds.

 r sin constant (1)

Equation (1) is called Clairaut’s relation. It is a key concept of filament winding in

determining winding path and winding angles. On a cylinder, as mentioned, the geodesic

path follows a constant winding angle. Across a dome shape, however, the angle of the

geodesic curve increases as the dome radius decreases. At the dome opening the winding

angle will have increased to 90°. Consequently for a cylindrical mandrel with domes the

complete path can be determined by Clairaut’s equation.

2.1.5 Winding Software

Filament winding has been used as a production process for more than 50 years [10]. As

such there are several types of software for filament winding commercially available. A

selection of these is presented in the following section.

Software Distributor Key Functionalities

CADWIND MATERIAL
Integration with FEA software, pre-winding
simulation options

Winding Expert Mikrosam
Possibilities for extra module to integrate with FEA
software

ComposicaD
Seifert & Skinner
& Associates

Graph winding path before winding, take thickness
build-up into account

- 8 -

CADWIND is considered one of the leading software solutions available on the market

today. According to the developers it has been the standard program used in filament

winding for more than 20 years [11]. It is developed and distributed by a company called

MATERIAL based in Aachen, Germany.

The CADWIND software is capable of calculating a winding path for any kind of shape, be it

an axisymmetric or a non-axisymmetric part, based on a specific set of mandrel and machine

variables. It is also capable of handling variations in the winding angle, both along the length

of the part and in different layers, consequently adding several degrees of freedom to the

software. A part may consist of one long part with different winding angles along its length, a

part with different kinds of winding layered on top of each other, or both. There are also

several possibilities as to which kind of machine is to be used. Whether it has two degrees of

freedom, six degrees of freedom or is a specialised machine, CADWIND is able to integrate

with any machine capable of interpreting common G-codes.

The CADWIND user interface allows for several types of pre-winding interaction. A winding

process can be simulated, complete with machine parameters (carriage position, winding

angle, time, cycle etc.) displayed on the computer screen during the process. Post-simulation

the software can be used to generate graphs depicting machine dynamics like speed-time or

acceleration-time.

CADWIND is also said to be able to integrate with any FEA program. The necessary data can

be exported from CADWIND to the FEA program in question so that the part can be analysed

[1, 12].

Figure 5 – Cadwind [1]

- 9 -

Winding Expert is the filament winding software from Mikrosam, a company based in

Prilep, Macedonia, that makes modern machines for the composite industry. According to

the information on their web pages “Winding Expert is a user friendly program which allows

the composite designer flexibility to create winding programs that will completely fulfil the

product requirements” [13].

Winding Expert is capable of generating machine code for both radial and helical winding.

It handles the transitions between different types of winding, and custom winding patterns.

In the case of a non-symmetric mandrel with a more complicated geometry, a part can be

imported from one of the more commonly used CAD software and used as a mandrel. With

an extra module the software also has the possibility of exporting data to an FEA program

and perform an analysis of the finished part [2].

ComposicaD is filament winding software created by ComposicaD and distributed by Seifert

& Skinner & Associates, a consulting firm based in Belgium and the United States. According

to their webpages ComposicaD is “the ultimate software for filament winding pattern

generation”.

The software has a structure with several different levels of access to different ranges of

functions. The levels range from the most advanced, which can make winding patterns for

several different shapes, to the lowest level for companies who only have need of winding

pipes. ComposicaD also has a special series available which allows for generation of patters

for non-symmetric parts like elbows and t-shapes as well [14].

As with most winding software ComposicaD is capable of calculating both radial and helical

winding paths using either geodesic or non-geodesic path algorithms. It can be used to

generate CNC codes for machines with up to six degrees of freedom, and includes the option

of graphing winding parameters prior to winding. In addition it has a functionality of

generating helical winding patterns for symmetrical parts by re-making the mandrel for each

layer, thereby taking the thickness build-up into account. Lastly the software has two

different ways of creating the layup, from pre-defined mandrel geometry or with a

Figure 6 - Winding Expert [2]

- 10 -

composite layup table. With the latter option it is possible to make winding patterns for

several parts of varying lengths and diameters much quicker than with similar software

where it is required to re-make the layup structure for every single part [3, 15].

Figure 7 – ComposicaD [3]

- 11 -

2.2 Abaqus FEA
Abaqus is a suite of software applications for Finite Element Analysis (FEA) and is a branch

of Dessault Systèmes [16]. With Abaqus it is possible to model complex assemblies and

refine them, use custom designed materials and to model discrete manufacturing processes.

It is a versatile modelling program that enables the user to perform complex analyses of

parts and systems.

The Abaqus FEA Suite consists of several different analysis environments, and is continually

expanding. There are environments for modelling, meshing and visualizing mechanical parts,

for performing drop tests, crushing and manufacturing processes, as well as for heat

transfer, and turbulence modelling. There are also several different add-on tools for more

specialised applications [17].

2.2.1 Abaqus/CAE

Abaqus/CAE is the environment for finite element modelling, visualisation and process

automation. It is the part of the Abaqus FEA suite that has been used in this thesis. With this

environment it is possible to both create 3D-models from scratch by sketching, or import a

model from other modelling programs like Catia or NX. Once the part is finished a mesh is

applied, dividing the part into a series of elements. Lastly forces and constraints are added to

the model so that it can be analysed and refined to fit the specific needs of a case [18].

The process of modelling a part with layup properties resembling the layup formed by a

winding process is extremely time-consuming. The applied layup would have to be an

approximation, and a separate composite layup added to each element of an orphan mesh

part (see chapter 4.2.2). As every single layer, and combination of layers, is unique there

would be a lot of work involved. Not only in the modelling process itself, but with the

extensive preparations necessary the task of calculating the winding angle for each ply of

every layup. In addition the calculations would have to be related to a specific element and

its placement and rotation on the model.

Figure 8 - Abaqus user interface

- 12 -

2.2.2 Wound Composite Modeler for Abaqus

One of the extensions for Abaqus FEA enables the creation, running and post processing of

a finite element model with a filament winding layup [19]. As described in the previous

section is performing this task without the plug-in is very time-consuming, and not really a

viable option. The Wound Composite Modeler has tools to generate a winding layup,

enabling the software to create the part geometry and mesh. The winding layup can be

generated with an existing part as mandrel or by choosing the appropriate elliptical,

spherical or geodesic shapes available. When necessary it is also possible to add a table of

individual points from which Abaqus can create a shape to act as a mandrel.

Although the Wound Composite Modeler seems to include all thinkable options for

creation and analysis of a part, it does not have any way of generating a corresponding CNC

program. This means that, regardless of its intentions, the use of the plug-in is limited.

Except for the case of simple winding patterns it is highly unlikely that the winding pattern

generated by a different software will be identical to the layup generated by the Wound

Composite Modeler [4].

Figure 9 - Wound Composite Modeler [4]

- 13 -

2.3 Scripting and Integration
One of the main foci of this thesis has been integration with Abaqus, therefore scripting in

the Abaqus environment is important. The following section provides a short introduction to

the Python programming language, and an extensive explanation of Abaqus and its scripting

interfaces.

2.3.1 The Python Programming Language

According to the Python web pages Python is a programming language that lets you work

more quickly and integrate your systems more effectively. Learning to use Python will result

in almost immediate gains in productivity and lower maintenance costs [20].

Python is created with an open source license, meaning that it is free to use even in

proprietary software solutions. As a programming language it is often compared to TCL, Perl,

Ruby, Scheme or Java. There are several advantages to using Python; amongst others the

syntax is very clear and readable, the object orientation intuitive and it includes extensive

standard libraries and third party modules for virtually every task. Also, importantly, it

includes an extensive newsgroup with tutorials (both for beginners and more advanced

users) and a wiki-page. It is a flexible and fast language that can integrate with several types

of objects, and can easily be expanded should the need arise.

More information about Python and its functionalities can be found in [21].

2.3.2 Abaqus Scripting Interfaces

Abaqus is a complete FEA solution which includes a scripting interface, allowing for the

creation of one’s own features and routines. This is a supplement to the Graphical User

Interface (GUI), and provides added flexibility for more advanced users. The Abaqus Scripting

Interface can be considered an extension of the Python object-oriented programming

language [22], meaning it uses the Python structure in conjunction with additional Abaqus-

specific classes. Using scripts it is possible to perform any task without the use of the GUI as

long as the appropriate commands are known. An overview of all the Abaqus commands can

be found in the “Abaqus Scripter’s Reference Manual” [22]

The Abaqus GUI serves as an interface for the Abaqus kernel. Clicking a button in the GUI

sends a Python command to the kernel, which executes the command. Scripting is a way of

maintaining control of exactly which tasks are performed by the Abaqus kernel. For the more

experienced user some tasks are easier to perform by scripting, than with the GUI. Scripting

can be done by recording a macro through the Abaqus GUI or by creating a script file. Short

commands can be executed using the embedded Command Line Interface (CLI) is used. A

flowchart depicting the command structure in Abaqus is given in Figure 10.

- 14 -

There are several reasons, besides increased control, to use the Abaqus Scripting Interface.

Macros are a powerful tool while performing repetitive tasks; either if there is an operation

that is performed often (opening a specific model database, adding a certain material or a

standard part that is created frequently), or for performing parametric studies without

having to manually change each parameter between analyses. Scripting is also used to

create and modify model databases or access data in an output database. If necessary or

practical a script can communicate with the Abaqus kernel, completely circumventing the

GUI. This, however, has not been investigated further in this thesis and more on the subject

can be read on page (2-3) – (2-4) in [22].

2.3.2.1 Recording a Macro

The ‘Record Macro’ button in the GUI registers and records a sequence of commands

actions are performed. When the ‘Stop Recording’ button is pushed the commands are

automatically converted to a macro that performs the exact same actions as recorded. Using

this function to create a macro requires no previous programming knowledge of the user,

but is also limited by the GUI. It is important to know exactly what to do and how it is done.

Figure 10 - Abaqus scripting interface commands and Abaqus /CAE

- 15 -

Depending on what tasks are performed, using this function might result in a macro that

includes unnecessary steps; for example creating a macro to move a part into a certain

perspective. Adjusting the view manually one would normally have to rotate the model

several times before being completely satisfied. If the ‘Record Macro’ function is active every

step of the way is recorded, not just the end result, as can be seen below. Thus every time

the macro is run the perspective is not moved to the end position immediately, but will go

through all the same adjustments as when the macro was created.

 session.viewports['Viewport: 1'].view.setValues(

 nearPlane=265.212, farPlane=448.192, width=118.596,

 height=51.4552, viewOffsetX=26.5073,

 viewOffsetY=-22.0573)

 session.viewports['Viewport: 1'].view.setValues(

 nearPlane=243.599, farPlane=437.46, width=108.931,

 height=47.262,

 cameraPosition=(-19.4574, 301.964, 183.445),

 cameraUpVector=(0.458362, 0.217248, -0.861805),

 cameraTarget=(6.46227, -18.0045, -33.2302),

 viewOffsetX=24.3471, viewOffsetY=-20.2598)

 session.viewports['Viewport: 1'].view.setValues(

 nearPlane=244.522,farPlane=436.538, width=109.344,

 height=47.4411, viewOffsetX=27.4739,

 viewOffsetY=-36.6223)

 session.viewports['Viewport: 1'].view.setValues(

 nearPlane=233.493, farPlane=391.867, width=104.412,

 height=45.3012,

 cameraPosition=(23.5205, 317.481, -54.5409),

 cameraUpVector=(0.465033, -0.442465,-0.766791),

 cameraTarget=(4.46965, -67.064, -12.5626),

 viewOffsetX=26.2347, viewOffsetY=-34.9704)

2.3.2.2 Command Line Interface (CLI)

The Abaqus CLI is located in a section of the Abaqus window beneath the Abaqus Viewport

and is easily accessed. The CLI can be compared to the windows command prompt as it

works the same way. Abaqus commands are entered in the command line and executed by

pushing ‘enter’. The only prerequisites to use the CLI are a basic knowledge of Python

syntax and the relevant Abaqus commands for the tasks to be performed. It is, however,

easiest to perform simple single line commands in this fashion. Most programmers will agree

that it is very limiting being unable to use, for example, for-loops and if-statements. The CLI

is therefore best suited for quick commands performed while creating or analysing a part,

and not for repetitive tasks or more complex code.

- 16 -

2.3.2.3 Creating a Script

Creating a script can be done using a standard text editor, like TextPad, or using the

embedded Abaqus Python Development Environment (PDE). The Abaqus PDE is an

application made for creating, editing, testing and debugging of Python scripts. It is a matter

of opinion whether it is preferable to use the PDE or code in TextPad using Python syntax

highlighting.

Although the Abaqus Python interpreter can be used to execute pure Python scripts if

desired, one would normally not use Abaqus for this purpose. Therefore it is assumed all

scripts are created to interact with Abaqus objects. A script should include the import

statements ‘from abaqus import * ’ and ’from abaqusConstants import * ‘ to gain access to

the Abaqus modules. These enable the use of Abaqus-specific commands within the script. It

should be noted that Python supports inheritance, meaning that if a script imports functions

from a secondary file, this primary file does not necessarily have to include these to import

statements.

The Abaqus structure is comprehensive. Although complete documentation is available it

can be challenging to find the appropriate commands within. As such, it can be a useful tool

to use a generated macro as a basis for a script, or to discover the proper commands for

performing certain actions. All Abaqus macros are stored in an easily accessible file called

‘abaqusMacros’ in the Abaqus work directory. With access to this file and a basic

understanding of programming it is possible to take advantage of the ‘Record Macro’-

function more extensively.

2.3.3 Abaqus Structure

Abaqus extends Python with approximately 500 additional objects, and can therefore not

be illustrated with a single figure. It is, however, quite helpful to view some relevant parts of

the Abaqus structure symbolically. This eases the understanding of the program structure,

and simplifies the scripting process. Figure 11 shows the model and element structure in

Abaqus.

Figure 11 - Abaqus structure

- 17 -

2.3.3.1 Containers and Objects

In Figure 11 containers are marked in pink and singular objects are marked in blue. A

container is an object that contains objects of a similar type, either as a repository or a

sequence. An example of a container is the ‘elements’ container that contains all the

elements on a model. The singular objects contain no other objects of a similar type; they

are unique to the specific session. As an example of a singular object an Abaqus session only

contains one model database and every model and part within has a unique part name. For

simplicity the rest of this section refers to the structure depicted in Figure 12.

Each separate element in the ‘elements’ container is also in and of itself a container. It is

created with a ‘connectivity’ container, an ‘instanceName’, a ‘label’ and a ‘type’. Each

element corner is a node container and is initiated with a ‘coordinates’ container, an

‘instanceName’ and a ‘label’. As with the ‘elements’ container, there is a ‘nodes’ container

with all the nodes of a part. The element ‘connectivity’ list contains the indexes of each node

on the element, and the nodal ‘coordinates’ container contains a list of the global coordinate

values for the node. Figure 13 shows an element marked in red, with four blue nodes on a

part.

Figure 12 - 'models' object

Figure 13 - Elements and nodes

- 18 -

To access a specific container or object in the Abaqus interface, either using the CLI or a

script, the following command structure is used. The example accesses the ‘nodes’ container

of a part.

mdb.models[‘modelName’].parts[‘partName’].nodes

The correspondence between Figure 12 and the command can easily be seen. ‘Mdb’ is an

abbreviation of ‘model data base’, ‘models’ is the keyword for the model container, ‘parts’

for the part container and ‘nodes’ accesses the nodes container. To discover what a

container or object contains one can consult the Abaqus Scripter’s Reference Manual [23], or

use the Python print function as shown in Figure 14.

Another fact worth mentioning about the Abaqus structure is that the containers are

stored as lists. For example the nodes container consists of a list of ‘node’ objects. A ‘node’

object consists of a list of several objects; amongst others the coordinates-object which

contains a list of the node coordinates [X, Y, Z]. As an example the appropriate command to

access the x-coordinate of a specific node (in this case node 24) would be:

mdb.models[‘modelName’].parts[‘partName’].nodes[23].coordinates[0]

Note that using Python all list indexes begin with 0, hence the index for node number 24 is

23.

2.3.4 Scripting in Practice

Scripting is quite straightforward with Abaqus. Except for the two aforementioned import

statements there are no restrictions or requirements of a script. However, there are some

practical advice that comes from experience.

To execute a script in Abaqus one can use the ‘run script’ button in the file menu, or create

a macro. During a development process most programmers prefer a written macro as this

requires less key strokes in the long run; they add up over time. Technically the script file can

be located anywhere on the disk, but for simplicity it is strongly recommended to have all

script files located in the Abaqus work directory. This is due to Abaqus’ way of searching for

Figure 14 - Python print function

- 19 -

the files. Unless all the necessary files (scripts and models) are located in the work directory

the scripts will not work directly.

Lastly, when developing scripts it is important to note that when Abaqus imports a script it

is temporarily stored somewhere for easy access until Abaqus is closed. Consequently the

changes made to a script will not be registered unless reloaded first. The two main ways to

reload a script is by using the ‘reload(...)’ in the Abaqus CLI, or at the top of the primary

script file, as shown below.

 # necessary lines to use the abaqus functions

 from abaqus import *

 from abaqusConstants import *

 import __main__

 # import and reload the tools

 import mandrelProperties

 reload (mandrelProperties)

- 20 -

2.4 CNC Programming
CNC is an abbreviation of Computerised Numerical Control, a term often used in

automation. Numerical Control (NC) is an expression that can be traced back at least as far

as 1952, the U.S. Air Force, John Parsons and MIT in Cambridge. In the early 1960’s it was

slowly starting to be used in production manufacturing, and with the arrival of CNC in 1972 it

really began taking off. The real boost, however, came with the arrival of affordable

microchips ten years later.

According to [24], where this theory has been extracted from, “Numerical Control can be

defined as an operation of machine tools by the means of specifically coded instruction to

the machine control system”. This is a good definition for both NC and CNC, the difference

between the two being the computer. A production line with NC has automation, but little

room for change. The programs are hardwired into the machines making it quite difficult to

change after manufacturing of the system. With CNC the programs are stored in a computer,

which in turn controls the machines. This enables one machine to execute several different

programs, and for a programmer to change the program after implementation along with

changes to the part or the production line.

2.4.1 The CNC Programming Language

The CNC programming language is a language built from sequential blocks following a

certain set of rules. A complete CNC program is defined as a collection of all the blocks giving

a machine the necessary instructions for its production process. The program block consists

of one or more programming words, which are a combination of characters. A character can

be a letter, a symbol or a number, and is the smallest unit of a CNC program. Creating a

programming word is done by combining a letter with one, or more, digits and symbols. The

programming words in the CNC programming language are equivalents to mathematical or

programming functions. The letter (also called the word address) is the function call and the

digit(s) the function argument. All the letters of the English alphabet defines a function

category with its own set of functions. A description of all the categories can be found in

[24], p. 43-45. The most commonly used programming words are N (block number or

sequence number), G (preparatory commands), X, Y, Z (coordinate value designations) and F

(feedrate function). With the exception of the preparatory commands there can only be one

(Example Code)

N10 G01 G21 G91 G94 F50000

N20 X20 Y10 Z30

N30 X30 Y50 Z35

N40 X-35 Y5 Z4

Figure 15 - CNC example

- 21 -

function per word in a sequence block; for example there can only be one M addressed word

or one word with an X coordinate command. Figure 15 shows an example of some CNC code.

Note that the first line is enclosed in parenthesis, which is the proper way to add comments

in CNC programming.

2.4.2 The Most Common Addresses

2.4.2.1 Sequence Number (N)

In a CNC program the order of the programming words within a sequence block is almost

inconsequential. There are some exceptions, but they will not be discussed further in this

thesis. This fact is, however, dependent on the sequence number being the first word of a

program block. The N address designates the beginning of a block and is the programmers’

way of orienting inside the program.

When numbering a block there are some rules that have to be followed. One cannot use

the sequence number ‘0’, insert negative sequence numbers or use decimal points. As to the

spacing of the numbers there are no set rules, it is a matter of preference. Generally there is

a set increment, of for example 10, between the blocks in a new program. This increment

facilitates the adding of lines in case of revision.

2.4.2.2 Preparatory Commands (G)

The preparatory commands are most commonly referred to as G codes. It is a command

meant to prepare the control system for the desired action. The G codes are usually the

beginning of a program, and at the beginning of the block directly following the sequence

number.

As can be seen in Figure 15 there is nothing preventing a program block from containing

more than one G code; as long as they are not conflicting commands. In other words it is, for

example, not possible to use both ‘G00’, rapid positioning, and ‘G01’, linear interpolation, in

the same block. This would be telling the machine to use two different modes of

displacement at the same time. Using ‘G91’ and ‘G01’ (incremental dimensioning and linear

interpolation respectively) in the same block presents no problem however. Incremental

dimensioning is illustrated in Figure 17, linear interpolation means that the machine moves

in a straight line when moving from point A to point B. Should a mistake be made such that a

program block contains two conflicting G codes the one furthest to the right in the program

block will be used.

The majority of the G codes are modal functions, meaning that they remain active after

first appearing in the program. This renders it unnecessary to repeat most G codes more

than once per program, the exception being if they have been cancelled by a conflicting

command and need to be re-activated. A list of groups of G codes can be found in [24], p. 52.

Except for group 00 (unmodal G codes) the G codes will stay active until cancelled out by

another G code from the same group. Although G codes are mostly standard this is not

always the case, there are different types of control systems with some differing commands.

- 22 -

To ensure that the program will be universal one should therefore use the most common

groups of G codes. A list of these G codes can be found on page 49 in [24].

2.4.2.3 Coordinate Functions (X, Y, Z)

The coordinate functions are the commands for motion along the axes. It should be noted

that the coordinate functions are not limited to X, Y, Z, and can vary between different

machines. It depends on the number of degrees for freedom of the machine and the

designations of the axes.

A coordinate command can be interpreted in several different ways, depending on the G

code(s) preceding it. A ‘G90’ code indicates absolute dimensioning, meaning all

measurements (X, Y, Z, or whichever coordinates apply to the machine for which the

program is made) are measured from a pre-defined reference point. This reference point

might be a point on the part, the point of origin for the machine or anywhere in between.

Using the ‘G91’ code in the program means incremental dimensioning. An incremental

command uses the previous position of the machine as a reference point, moving from

there. The concepts of absolute and incremental positioning are illustrated in Figure 16 and

Figure 17.

Two other important preparatory commands related to coordinate functions are ‘G20’ and

‘G21’. These are the commands for English and metric units respectively. Depending on

where the machine is manufactured and the control system the standard will vary. To ensure

the code works in the intended fashion it should always be specified at the beginning of a

program what type of units are used.

Figure 17 - Incremental dimensioning Figure 16 – Absolute dimensioning

- 23 -

2.4.2.4 Feedrate Function (F)

This function controls the speed of the machine and can have a great influence on the

machined part, but also be of little consequence. In filament winding the speed refers to

both the rotational speed of the mandrel and the speed of the feed carriage, which means it

is relative.

 As with the coordinate commands the feedrate can be measured in two different kinds of

units, one of which is usually pre-defined within the control system automatically. To make a

program as versatile as possible, or if the standard machine setting is unknown, it should

also be specified within the program itself. To have the feedrate in inches/minute the modal

preparatory command ‘G98’ is used, or to use millimetres/minute ‘G94’ is added.

- 24 -

3. Foundation

As discussed briefly in chapter 1 this thesis has been a pilot study into the development of

filament winding software. This chapter discusses the motivation behind the study and

details some of the key difficulties encountered and the decisions made.

3.1 Motivation
Filament winding is a very complex process. There are numerous different ways to wind

each shape, and an almost infinite number of windable shapes. A seemingly insignificant

adjustment in the part geometry can cause the entire machine routine to change

considerably, and even small numerical errors in the input parameters of software might

result in complete failure of the winding process. This means that good filament winding

software needs to be flexible and comprehensive, both in analysis and generation of CNC

program, as well as intuitive and easy to understand. Logically a simple user interface able to

handle complex cases is fairly difficult to achieve. Accounting for every possible shape and

form, generating accurate layup, and still creating something that is intuitive and easy to

understand is a big challenge.

3.1.1.1 Commercial Software

Although the commercial winding software currently available works, it is proprietary and

offers little to no control outside of the GUI. This results in a certain lack of flexibility, which

has turned out to be a challenge in the filament winding industry. To create accurate

composites it is important that the CNC program is tailored to fit the part in question every

step of the way. There should be as few approximations as possible, and a minimum of

accumulated numerical errors. Control over all the various minute details that affect the

material properties of the finished product, like crossover points, winding speed, mandrel

shape, etc., is highly useful. Currently it has become common among companies working in

mass production to use the software-output only as a basis for the winding program. After

the CNC-program has been generated by the software it is manually tweaked and changed

to fit the specific part. Although hard coding is unnecessary in theory, it is considered the

best approach by some.

For the companies creating and distributing the software it is important to keep their

patents and ensure that their software remains unique. The companies utilizing the

software, on the other hand, would prefer access to the mode of operation enabling them to

optimise the software to fit their specific needs. There is no way to satisfy both parties, and

the software distributors have the power to suit their own needs.

Chapter

- 25 -

From a user point of view, this is a problem. Although hard coding with a software-

generated CNC-program as a basis is more efficient than creating something from scratch, it

is far from ideal. The optimal solution would be to have access to software so flexible that it

could be used by anyone, to wind anything. As long as the software remains closed source

this is very difficult to achieve. However, if software existed that was completely open

source it is conceivable that those using it could contribute by improving and adding

functionalities as the need arises. This is an approach that has proven successful in other

cases with similar software challenges; for example resulting in the popular computer

operating system Linux.

Open source software has the advantage that it can be tweaked to fit every unique case. It

is not limited by a single generalised user interface, but can be moulded to capture and

process nuances as well. Such software also has the advantage of the user being able to

trace the logic and the programming. If any errors or faulty logic is discovered it can easily be

repaired, which will not only benefit the current user, but improve the software

permanently and benefit others as well.

3.1.1.2 Integration with FEA Software

There are numerous variables affecting the material properties of a filament wound

composite, which means that there are no simple ways of determining its behaviour. To be

able to perform an accurate analysis of the mechanical properties of such a component

would therefore be very valuable in an optimisation process. Currently the only option for

this process known to the author is the ‘Wound Composite Modeler’ extension for Abaqus

discussed in 2.2.2 . The extension does enable analysis of a part with a filament winding

layup, but it does in no way ensure that the analysed part corresponds to a physical part. In

other words: the actual wound composite part might have completely different mechanical

properties than the analysed part. Software capable of taking all of the different variables of

a filament winding (crossover points, thickness build-up, continuation of fibres, etc.) into

account would be an achievement. Although it is not expected that this goal is reached with

this thesis, it is hoped that it will form the basis of what is to be such software.

- 26 -

3.2 The Overall Approach
During the initial phase of the thesis work some fundamental principles were laid down to

guide the development.

The first decision made was that of using Python as the development language. It was

predetermined to integrate with Abaqus FEA software, which limited the choice of

programming languages to either Python or C++. Although the author was more familiar

with C++ than with Python the choice fell on Python. This was due to the fact that the

Abaqus documentation was much more extensive for Python than for C++. As the two

languages are fairly similar it was determined that more time would be wasted by searching

for the C++ Abaqus commands than by learning the Python syntax.

Secondly, it was decided that thorough documentation should be a key factor of the

finished product. As a pilot project intended for others to continue on, focus on the

importance of thorough documentation ensures ease of understanding and future

reference. It benefits the continued development of the software if the groundwork has

been meticulously done and well documented.

Finally, it was decided to begin development with the simple shape of a pressure tank with

cylindrical domes and equal dome openings. Although spherical domes are not very common

on real parts, the geometry is simple, which aids the initial development process. The logic

being that it is better to begin with simple shapes focusing on sound logic throughout the

process, than to immediately start with a complex case. With the latter chances are that the

end result will only work for that specific case and include faulty and hard-to-follow logic.

This in turn would lead to someone else having to start the work anew sometime in the

future.

- 27 -

3.3 The Kinematics of Filament Winding
The generation of a CNC program for a part is done by investigating the kinematics of a

filament winding machine. Consequently the mathematical equations expressing the

movement along the axes are a key part of the winding process.

Although filament winding as a production process has been used for many years, and

there is a lot of existing literature, some of the fundamentals are not as well documented as

one would expect. There are plenty of books and papers documenting both geodesic and

non-geodesic winding, determination of mandrel shape and optimal design of filament

wound parts, but documentation of the automation process is surprisingly scarce. The

reason for the lack of articles on the subject is difficult to determine. One theory is that all

the research has resulted in proprietary software, and therefore has not been published.

By the means described in Appendix B five articles were found on the subject of kinematics

of filament winding. These articles have been investigated and evaluated in the sections

below.

Filament Winding of Revolution Structures, [25], by Faissal Abdel-Hady, was published in

the “Journal of Reinforced Plastics and Composites” in May 2005. The article gives a short

and concise introduction to filament winding and the kinematics of a filament winding

machine, before going on to show examples of implementation with simple software.

At first glance the article seems to include all the necessary elements to understand the

automation process behind a filament winding machine. Equations (2) through (5) are the

final equations describing the machine path during winding, as they are given in the paper.

0

'

0

2'

0

sin
tan

R cos
R

1 R

(2)

'

0

'

0

0 0
2

R cos cos
x R sin sin

1 R

 (3)

0

0
' 2

cos
z z

1 R

 (4)

 ' '

0 0

2

cos
tan

R sin sin 1 R cos sin

(5)

However, upon closer inspection of the derivation of the equations themselves

inconsistencies become apparent. While equation (2) seems sound, equations (3), (4) and (5)

contain more or less obvious mathematical errors and, what is assumed to be, typing errors.

- 28 -

This has been detailed further in Appendix C. Unfortunately efforts to contact the author

regarding this issue have been unsuccessful, and the article was deemed unreliable.

Kinematic Analysis of Trajectory Generation Algorithms for Filament Winding Machines,

[26], written by Dejan Trajkovski, was presented on the 11th World Congress in Mechanism

and Machine Science in August 2003. It gives a brief introduction into filament winding and

then proceeds to derive equations for the movements of a filament winding machine using a

conical cylinder as a basis. In conclusion, the results of the winding equations used for a

cylinder with elliptical domes and un-equal dome openings are shown graphically.

f

f

R r sin cos
arctan

r sin

 (6)

 22

E f fY r sin R r sin cos

(7)

E EZ z (8)

Although the mathematics behind the kinematic trajectory equations (6), (7) and (8)

appear sound, the rotation of the feed-eye is not taken into account. The rotation of the

feed-eye during winding ensures that the fibres are placed flatly on the mandrel and do not

twist or bundle during the winding process. This is not something that would make the

equations unusable, but neither is it ideal. Winding great composites require control of

every aspect of the winding process, something which this paper does not offer.

In addition, the article assumes the lateral feed-eye position to be directly across from the

locus on which the winding occurs, as shown in Figure 18. Once again, this fact does not

render the equations useless, but neither is it conducive to optimal winding. Logic dictates

that if the feed-eye is directly across from the locus, the fibres will slide in place along the

geodesic curve in the course of the winding process. Such an approach might cause bunching

of the fibres, and unintentional deviations from the geodesic path caused by the friction

between the fibres and the mandrel. As the intention of this thesis has been to do sound and

thorough ground work, this article was also dismissed.

Natural fibre path

Fibre path directly

across locus

Figure 18 - Fibre paths

- 29 -

 “Filament Winding, Part 1 & 2” and “Filament Winding: A Unified Approach” [27-29] are all

titles written by Sotiris Koussios from TU Delft. “Filament Winding. Part 1: determination of

the wound body related parameters” and “Filament Winding. Part 2: generic kinematic

model and its solutions” are both articles that were published in “Composites. Part A:

applied science and manufacturing” in October 2003. “Filament Winding: A Unified

Approach” is a book of approximately 350 pages published in January 2004, based on the

doctorate of Sotiris Koussios. These three titles all detail the same approach to the

kinematics of filament winding. The physics and mathematics behind the approach appear

sound and sufficiently comprehensive, and being based on analytical geometry, one would

assume sufficiently versatile.

In short, equations (9) through (12) describe the movements of a filament winding

machine.

22 2

sin
C

sin cos sin

 (9)

22 2X sin cos sin

(10)

 Y cos cos
(11)

 cos
A arctan

 sin cos cos sin sin

C

where

and

(12)

To solve these equations it is necessary to solve a set of equations for the variables φ and

β, which in turn lead to the necessity of solving equation (13).

G(t)
L(i) 1

cos (t)

i

up

dt i p

(13)

At this point, however, ambiguities preventing the continuation of this approach were

discovered. It proved possible to solve the integral for ‘L’ using the trapezoidal rule in an

Excel spread sheet, but solving the same integral using Maple (a powerful mathematical

computation engine with an intuitive, “clickable” user interface [30]) provided contradictory

results. The Maple solution had one imaginary and one real part, which for a real length

along a cylinder does not hold. It was decided to abandon this approach as well.

- 30 -

3.3.1.1 In conclusion

After the evaluation of the found articles the author, in agreement with her advisor,

determined that further work into the problem would be useless in the remaining time

frame of the thesis work. A broader understanding and knowledge of automation, as well as

the kinematics of filament winding would be necessary. It was decided that the focus for the

rest of the thesis should be kept on the development of the software.

- 31 -

3.4 Software Development
One of the key factors of the developed software is its functionality of integrating with

Abaqus. As such the first thing done was to get familiar with the Abaqus interfaces, both GUI

and the scripting interface, to provide a solid basis for the development process. The

development process itself was done as a stepwise process towards the goal of fully

functional software; Software capable of integrating with both a filament winding machine

and FEA software.

The first step was to develop a module with the ability to determine mandrel properties of

an Abaqus model automatically. This is a principal function for both the generation of a CNC

program and addition of a composite layup to the part. With this functionality in place it was

possible to progress to more filament winding specific modules.

As it was determined to temporarily exclude the kinematics of filament winding from the

software development a set of functions on which to focus were thought of. These were:

1. A visual crash test where an assembly is created with a feed-eye. The feed-eye should

be moved in accordance with a CNC program; in such a way that it is possible to

visually verify that there will be no collision during the winding process.

2. The addition of a filament winding composite layup to an Abaqus mandrel part. The

main concern should be basic assumptions and approximations, so as to ensure an

accurate result.

3. Creation of a class based structure for ease of further development and

functionalities.

Throughout the development process emphasis was made on structure, readability,

flexibility and simplicity of the software.

3.4.1.1 In Conclusion

The goal of this development process has been to create the basis for open source filament

winding software capable of integrating with FEA software.

The concept of filament winding software is not new, there are several such software

solutions in existence already; but none of them are considered ideal. They are proprietary

and offer little to no control outside of the GUI. In addition, a certain lack in the market has

been discovered. There is, as far as the author knows, no software available that is capable

of modelling a filament wound part with layup that corresponds to that of a physical part.

With these principal facts in mind the thesis work was started. Initially it was focused on

generating a CNC program based on an Abaqus model and integration with Abaqus/CAE.

Then, the focus was switched to include specific functionalities of the software. The end

result was the “Abaqus Winding Integration Tools”, the documentation for which can be

found in the following chapter.

- 32 -

4. Abaqus Winding Integration Tools

This chapter contains a description of the Abaqus Winding Integration Tools and

discussions of the choices that have been made throughout the development process.

4.1 Introduction
The Abaqus Winding Integration (AWI) software package is an open source solution

intended to bridge the gap between the FEA software Abaqus and a filament winding

machine. It contains a set of scripts, or modules, executable through the Abaqus interface.

The tool-set is intended for use in the filament winding process. Ultimately it should result in

software including functionalities like creating a CNC program based on an Abaqus model,

and adding the corresponding winding layup to an existing model.

The AWI software package is meant to serve as a basis for further expansion and

development of a more complete and dexterous set of tools. In time, it is the intention that

the software shall be capable of handling any windable shape or form. When the package is

put in use, as it is open source, others will be able to implement their own functionalities,

correct mistakes and in general improve the software according to their own specific needs.

Hopefully, the effect over will be an improved and continually expanding software solution

more versatile and comprehensive than proprietary software available today.

The AWI software package has been developed at the Norwegian University of Science and

Technology (NTNU) in Trondheim and can be viewed in its entirety in Appendix E. The

software has been created with a class based structure, as this facilitates understanding,

readability and future expansion. Classes enable variables to be changed and used in several

different functions without them having to be stored in an outside script or sent into and

returned from functions repeatedly. This makes for a clearer structure where additions can

easily be built in without drastically changing anything. As an added effort to make reading

of the tools intuitive the variable names have been carefully chosen to, as accurately as

possible, describe the information they contain.

In using the tools it is important to note that all measurements should be in millimetres.

This is the standard unit for most filament winding machines and therefore the standard unit

for AWI.

Chapter

- 33 -

4.2 General Notes
The following section includes some generalities for the AWI tools. Topics discussed include

choice of variable names, model specifications, general approach based on nodes and

elements and the overall software structure. For reference there is an alphabetical list of all

the AWI variables in Appendix F.

4.2.1 Variables

All of the AWI tools contain a header including the title of the tool, a short description of

what it does, import statements for the necessary files and Python and Abaqus libraries and

three global constants.

global constants. Do. NOT. Change. These!

X_AXIS = 0

Y_AXIS = 1

Z_AXIS = 2

These constants could easily have been avoided, but it was decide that the code becomes

much more intuitive with them in place. The following piece of code is an abbreviated

version of what is used to determine the rotational axis of a part. It is clear that the first

version, with the global constants, is easier to follow than the second one utilising the ‘0’,

‘1’, and ‘2’ terms.

code with global constants

 if round(currentNode.Radii[Y_AXIS], 5) ==

 round(nextNode.Radii[Y_AXIS], 5):

 mandrel.rotationalAxis = Y_AXIS

 mandrel.H = X_AXIS

 mandrel.V = Z_AXIS

code using numerical values

 if round(currentNode.Radii[1], 5)==round(nextNode.Radii[1], 5):

 mandrel.rotationalAxis = 1

 mandrel.H = 0

 mandrel.V = 2

It is the intention that several different people, not necessarily in contact with one another,

should be able to understand and continue development of the software. In an effort to

achieve this the choice was made to rather use longer, more descriptive, variable names

such as ‘rotationalAxis’. The fewer ‘temp’, ‘var’ and ‘foo’ variables there are the simpler and

more intuitive the tools will be. However, long variable names have not been used

indiscriminately. A balance was found between longer and more descriptive variable names

and those that were too long, making the code more difficult to read. Examples of the latter

type of variable are the ‘CylindricalMandrel’ variables ‘H’ and ‘V’, which represent the

horizontal and vertical axes of a coordinate system. These variables could easily have been

called ‘horizontalAxis’ and ‘verticalAxis’ instead, but given that they are often used to call list

variables it was determined that the longer versions would render the code less legible. As

- 34 -

the ‘rotationalAxis’ variable, although technically the same type of variable as ‘H’ and ‘V’, is

a key variable it was determined that it should retain its descriptive name.

4.2.2 Model Specifications

Currently there are several restrictions as to what type of Abaqus model can be used as a

mandrel. The most important of these, which is also not likely to change during

development, is that the model must be an ‘Orphan Mesh Part’. An ‘Orphan Mesh Part’ is a

part that has been created from the mesh of another part and consists of a shell of elements

identical to the mesh. Figure 19 shows a modelled mandrel part and its ‘Orphan Mesh Part’.

To create a mesh part one simply uses ‘Mesh’-menu on the menu bar in the mesh

environment and clicks the ‘Create Mesh Part…’-button. A second option is to use the

following command in the CLI or a script:

mdb.models[‘modelName’].parts[‘partName’]

 .partFromMesh(name=’meshedPartName’)

For the time being there are also some geometrical limitations of the mandrel model. The

mandrel must be a cylindrical mandrel with spherical domes (a ‘pressure tank’ – shape), and

the dome openings in each end must be of equal size. The mandrel should be modelled as a

generic shell of revolution, with the rotational axis along one of the global coordinate axes.

As the mandrel is axisymmetric it is not necessary to model the complete mandrel. For

example ¼ of a cylinder is sufficient, the degrees of revolution are unimportant. However,

for the function calculating the cylinder length to function correctly the length of the

modelled cylinder must be half of the actual cylinder length.

Figure 19 - Mandrel and 'Orphan Mesh Part'

- 35 -

4.2.3 Elements and Nodes

Several of the tool procedures are based on the nodes and elements of the ‘Orphan Mesh

Part’. On such a part the elements and nodes are created with no obvious logical correlation

between the node/element id and placement on the model. There is a definite logic behind

this process, but not one that can easily be used in a script. For a part with an unstructured

mesh there is also the added challenge that the elements do not have the same amount of

nodes. However, it is still considered a good method for integration. The method enables the

discovery of all of the model parameters without any additional information about the

model, like orientation and size. The only required information is the model name of the

relevant Abaqus mandrel model, and its associated ‘Orphan Mesh Part’.

4.2.4 Miscellaneous

All the AWI tools have been tested on a set of models and part with different types of mesh

and spatial orientation. It has been verified that they work for models with any axis of

rotation and both structured and unstructured meshes. Two examples of test models are

shown in Figure 20 and Figure 21. The test models can be downloaded along with the master

thesis.

The AWI software package has been created with a class based, module based structure.

All the functions belonging together are placed together in a single module for clarity. At the

bottom of each module there is an execution function that utilises the modular function to

perform the specified task for which the module is intended.

Figure 20 - Structured mesh Figure 21 - Unstructured mesh

- 36 -

4.3 Classes.py
This module contains all the AWI class definitions. Classes are a practical tool when

programming that helps create more readable and manageable code.

4.3.1 MachineParameters

The ‘MachineParameters’ class includes variables containing all the physical limitations of a

specific filament winding machine; such as maximum mandrel radius and length. These are

used to verify that the mandrel does not exceed the limitations of the filament winding

machine, and that a generated CNC-program does not dictate movement outside any of the

axis-ranges. The class contains only the ‘__init__(…)’ function, which sets all the relevant

parameters. It is important to ensure that the parameters sent into the function are the

correct ones in accordance with the winding machine that is to be used, and that they are in

the right order.

As the class has no class functions, but only stores the values for each variable which are

accessed by other tools, it is technically unit-neutral. However, as the rest of the tools

assume millimetres, the input for this class presumes millimetres as well.

4.3.2 CylindricalMandrel

This class includes all the mandrel properties for a cylindrical mandrel with spherical end

domes and equal dome openings.

4.3.2.1 Model Variables

This first section of variables contains information about the Abaqus model that describes

the mandrel, like the model name and part name, and some of its containers that are

accessed often. Examples of containers are the ‘nodes’- and ‘elements’- variables which

point to the model containers with the same name as shown below.

 self.nodes = mdb.models[modelName].parts[partName].nodes

 self.elements = mdb.models[modelName].parts[partName].elements

4.3.2.2 Geometrical Variables

The second variable section of the class contains all the geometrical mandrel properties,

like radii and lengths. Upon initiation all of these, with the exception of ‘rotational axis’, are

set to ‘None’.

The ‘rotational axis’ variable is set to ‘undetermined’ and not ‘None’ because of how axes

are assigned. Even though the global variables ensures the readability by allowing the axes

to be set to and called by ‘X_AXIS’, ‘Y_AXIS’ and ‘Z_AXIS’ they are still read by Python as ‘0’,

‘1’ and ‘2’ respectively. A consequence of this is that if ‘rotational axis’ is set to ‘0’ a logical

test will return a false negative. For example, the following segment of pseudo code would

result in an infinite loop even if the if-statement should be true and the ‘rotational axis’ set

to ‘0’.

- 37 -

 mandrel.rotationalAxis == None

 while not mandrel.rotationalAxis:

 if radius(YZ_coordinates) == radius2(YZ_coordinates):

 mandrel.rotationalAxis = 0

To take advantage of the numerical assignment of the axes the two remaining axes are also

determined, ‘V’ represents the vertical axis and ‘H’ the horizontal axis. It was determined to

use a coordinate system with the current rotational axis pointing inwards in the plane and

the two remaining axes pointing to the right and upwards as shown in Figure 22. Having a

consistent assignment of the axes allows for practical use of lists instead of if-statements in

the code.

Figure 22 - Axis configurations

Most of the following variables are quite self-explanatory, ‘radius’ being the cylinder radius

and ‘domeOpening’ the radius of the dome opening. The ‘minLength’ and ‘maxLength’

variables represent the smallest and greatest value on the rotational axis of the cylinder and

are used, amongst others, to calculate the length of the cylinder. There are two separate

length variables; the ‘mandrelLength’, which is the calculated total length of the cylinder

including the domes, and the ‘cylinderLength’ variable which is the cylinder length of the

Abaqus model.

The last geometrical variable, ‘pointOfOrigin’ is set as the coordinate on the axis of rotation

of the dome opening as indicated in Figure 23. This serves to determine the starting point for

winding and determining the dome variable.

x
y

z

y
z

x

z
x

y

Figure 23 – Mandrel properties

- 38 -

4.3.2.3 G Code Variables

The G code variables are used when writing or reading G codes.

One of the G code variables is a list of lines called ‘lines’. Lines of CNC code are added to it

as they are created for the current Abaqus model. ‘domeVariable’ is a variable set to either ‘-

1’ or ‘1’, depending on the placement of the dome on the model. If the maximum value of

the model on the rotational axis is on the dome it is set to ‘1’, if the minimum value is on the

dome it is set to ‘-1’. The dome variable of the mandrel in Figure 23 is equal to ‘1’.

‘windingDirection’ is a variable that changes depending on the direction of the winding. It is

equal to ‘-1’ if the winding is happening in the negative direction on the rotational axis of the

Abaqus model, as shown in Figure 23.

4.3.2.4 Class Functions

The class functions of the cylindrical mandrel class are ‘setLength’, ‘calculateTotalLength’,

‘setDomeVariable’, ‘verifyMandrel’ and ‘printProperties’.

‘setLength’ is a function that sets the three length variables appertaining to the Abaqus

mandrel model (‘minLength’, ‘maxLength’ and ‘cylinderLength’) and calls the functions

‘calculateTotalLength’ and ‘setDomeVariable’.

The ‘setDomeVariable’ function simply compares the ‘pointOfOrigin’ variable to the

‘minLength’ variable and determines the placement of the dome in reference to the cylinder

and the global coordinate axes.

‘calculateTotalLength’ is a function that determines the length of the mandrel. There were

two choices of how to calculate the mandrel length; to calculate an approximation of the

length or to derive an equation for the true length of the mandrel.

An approximation of the mandrel length would have been calculated assuming that the

spherical domes are complete. Or, in other words, that the length of the dome along the

mandrel axis of rotation would equal the dome radius as in equation (14).

 mandrelLength 2 R cylinderLength

(14)

This approximation would, in most cases, be sufficient as it is only used to determine

whether the mandrel is within the machine parameters or not. However, it was decided that

an equation for the true mandrel length was to be derived. Although not a frequent

occurrence, the instances when the mandrel does just fit within the machine parameters it

would be very frustrating if one would have to “fool” the software into thinking that the

mandrel fits by inserting a greater value for the appropriate machine parameter. Also, if the

use of the parameter were to change in the future it would cause errors if it is not exact.

The true cylinder length is calculated using equation (15), the derivation of which can be

found in appendix D.1

- 39 -

 2 2mandrelLength 2 R - r cylinderLength (15)

‘printProperties’ prints a summary of all the relevant mandrel properties in the Abaqus

Message Area, while simultaneously calling the ‘verifyMandrel’ function to determine

whether the mandrel is within the mandrel properties.

The ‘verifyMandrel’ function checks the mandrel properties against the machine

parameters to ascertain whether the mandrel is within the machine parameters. If the

mandrel exceeds any of the parameters a statement is printed, including what part of the

mandrel that does not meet the requirements of the filament winding machine. As shown

below the name of the filament winding machine whose parameters are not met is also

printed. This is a precaution to ensure that the mandrel is tested against the right

requirements, in case the machine parameters have not been set properly.

 if (self.radius > settings.maxMandrelRadius):

 print "The mandrel radius is too great for the ",

 settings.Name, " machine"

4.3.3 Material

The ‘material’ class is created to contain several materials commonly used in filament

winding. Each material should include all the relevant material properties and a string

specifying the name of the material. Currently it only contains the ‘carbon_epoxy’ material

with approximate values for the material properties.

4.3.4 CustomNode

A ‘CustomNode’ object is initiated using a mandrel object, an element on the Abaqus

model and a numerical value ‘node’. It contains a list of nodal coordinates (‘XYZ’) and a list of

radii (‘radii’) calculated using different coordinate combinations.

4.3.4.1 Class Variables

The ‘XYZ’ list is first created containing only zeroes and then filled with the appropriate

coordinate values. An introduction to scripting with Abaqus and explanation of the nodes

and elements structure can be found in section 2.3.2 2.3.3 . Node coordinates are accessed

and set using the following command structure, which extracts the x-coordinate value for

the relevant node:

self.XYZ[X_AXIS] = mandrel.nodes[element.connectivity[node]]

 .coordinates[X_AXIS]

To easier understand the command it can be shortened thusly:

nodeID = element.connectivity[node]

self.XYZ[X_AXIS] = mandrel.nodes[nodeID].coordinates[X_AXIS]

‘element’ is an element from the model elements list and ‘node’ is a numerical value for

the node’s position in the connectivity list.

- 40 -

As with the ‘XYZ’ list the ‘radii’ list is created containing only zeroes and then filled with the

appropriate values. Technically they could both have been tuples, as they are not to be

changed after the values are set, but that would have resulted in long and unnecessarily

complicated commands.

The values in the ‘radii’ list are the three radii calculated on the assumption that the x-axis,

y-axis and z-axis respectively are the axis of rotation. This method is possible as one of the

model requirements is that it is created with its rotational axis as one of the global axes,

meaning that the nodal coordinates also can be interpreted as the legs of a right triangle as

shown in Figure 24. The picture shows the node, marked in red, and its three corresponding

radii.

Using lists to store these values instead of separate variables is a very deliberate move to

take advantage of the numerical assignment of the axes. Logically the rotational axis

determines what values are relevant for calculations. As several of the AWI tools use

iteration through elements and nodes as a tool failure to take advantage of this could result

in a lot of over-complex code filled with if-statements.

4.3.4.2 Class Functions

The ‘calculateRadius’ function employs the Pythagorean Theorem to determine the

hypotenuse of a triangle, and is used to determine the node values in the ‘radii’ list.

‘returnRadius’ and ‘returnAxisCoordinate’ are functions that return the node radius and

coordinate on the axis of rotation, respectively. They are both functions that are greatly

simplified by the use of lists and numerical axis coordinate values. Both of the functions take

the rotational axis for the mandrel as input and use it to determine which of the coordinate

Figure 24 - Different radii for a node

- 41 -

values or radii to return. If the values had not been set in lists these functions would have

had to consist of several if-statements testing for the rotational axis, as shown below:

 def returnAxisCoordinate(self, rotationalAxis):

 if mandrel.rotationalAxis == X_AXIS:

 return self.X

 if mandrel.rotationalAxis == Y_AXIS:

 return self.Y

 if mandrel.rotationalAxis == Z_AXIS:

 return self.Z

Instead the function looks much simpler:

 def returnAxisCoordinate(self, rotationalAxis):

 return self.XYZ[rotationalAxis]

The last ‘customNode’ function is ‘printProperties’, which prints the values in the two class

variables. This function serves no purpose in the use of the tools, but is quite practical when

debugging or adding to the software.

4.3.5 CNCLine

‘CNCLine’ is a class for tool generated G code lines.

A ‘CNCLine’ object is initiated with all the relevant line variables, rounds them down to five

digits, and formats them into a string, ‘string’, which is then entered into the text file for the

CNC program. Each ‘CNCLine’ object is added to the mandrel variable ‘lines’ where it can be

easily extracted later. The object also has variables for each of the line variables ‘N’, ‘X’, ‘Y’,

‘Z’ and ‘W’. These separate line variables serve two purposes. They ensure easy access

without having to search through the string, and they store the accurate value, not the

rounded one.

Rounding the variables is not ideal, but practical all the same. Numerical errors will forever

be an issue, whether it is a computational error or a human error. To avoid the issue of

accumulated numerical errors as much as possible it is preferable to round any and all

numerical values at the last possible moment. For this reason the rounding of the machine

variables is done at this step, and only in the ‘string’ variable.

4.3.6 GCode

This class includes all the relevant G Code variables, like the sequence number, the

sequence incremental value and variables for the total movement in each axis direction.

Upon initiation the ‘GCode’ class opens or creates the appropriate text file and adds

several opening lines and comments to the top of the file. Lastly the first program line,

containing the proper preparatory commands, is inserted with the sequence number ‘10’.

The result is shown in Figure 25.

- 42 -

The class also contains a function that adds a program block to the text file while

simultaneously checking whether the movement along any of the axes exceeds the machine

limits. If the physical machine boundaries are overstepped the function will print statements

of in which direction the error occurred. In the common case, when the boundaries are not

exceeded, the function adds the program block to the list of program blocks and the writes

the block into the text file.

4.3.7 LayupConstruction

‘LayupConstruction’ is a class used while adding layup to an Abaqus model.

4.3.7.1 General variables

Currently the only general variable is the ‘material’ variables, which stores the material

used for the winding layup.

4.3.7.2 Movement Variables

These variables track the movement of the mandrel during the winding process.

‘P1’ stores the coordinate value of the current position on the mandrel. Before winding has

begun it is assumed to begin at the dome tip on the rotational axis and ‘0’ on the two

remaining axes. The variable ‘P2’ is the next position on the mandrel determined by the

rotation of the mandrel and the movement along the rotational axis.

Considering the plane created by the horizontal and vertical mandrel axes ‘P1’ and ‘P2’

becomes points on a circle. The ‘crossesHorizontal’ and ‘crossesVertical’ variables (initially

set as ‘False’) describe whether the two points are located in the same quadrant or if ‘P2’ is

on the other side of one of one of the axes. Figure 26 shows the two different possibilities

for placement of ‘P2’. For the red instance of ‘P2’, located in quadrant II, the vertical axis, ‘V’

has been crossed and ‘crossesVertical’ set to ‘True’.

Figure 25 - GCode opening lines

- 43 -

4.3.8 Assembly

The ‘assembly’ class is used to perform a visual crash test for a CNC program. It includes a

function that creates a part called ‘feedEye’, which is to be placed in an assembly together

with the mandrel part. In the assembly the ‘move’ function is used to move the feed-eye in

relation to the mandrel according to the CNC codes. The ‘move’ function translates the feed-

eye incrementally using the Abaqus ‘translate’ command, then immediately redraws the

feed-eye in the new position, as shown below:

 self.assemblyDir.translate((self.feedEye,), newCoords)

 session.viewports['Viewport: 1']

 .view.setValues(drawImmediately = True)

P2

P2
V

H

IV III

I
II

P1

Figure 26 - Placement of P2

- 44 -

4.4 MandrelProperties.py
This module contains functions that determine the mandrel properties for the relevant

Abaqus model and adds them to the ‘CylindricalMandrel’ object ‘mandrel’.

Determining the geometrical properties of a part is, in most cases, quite easy by visual

inspection. It is, however, not as simple to accomplish by scripting, especially when the goal

is to create a versatile script. Consequently some of the functions might appear inefficient,

but the procedures have been specifically chosen to promote flexibility.

4.4.1 determineRotationalAxis

The ‘determineRotationalAxis’ function discerns the rotational axis of an axisymmetric

mandrel by comparing the different nodal radii.

4.4.1.1 Approach

The mandrel is axisymmetric, and it was resolved that the best way to determine its axis of

rotation would be to somehow compare radii in different directions for a locus on the

mandrel. As the element nodes are already pre-defined loci with global coordinate values,

the logical step was to use these in this function. To calculate the radii in different directions

the best approach would be using the Pythagorean Theorem for each global coordinate

plane, which resulted in the ‘CustomNode’ class, its ‘radii’ variable and its ‘calculateRadius’

function.

The choice was made to design a function that iterates through the ‘elements’ list of a

‘CylindricalMandrel’ object comparing nodal variables until the rotational axis of the model

has been found.

4.4.1.2 Design Choices

To iterate through the ‘elements’ list of a ‘CylindricalMandrel’ object there were two

choices considered; a while loop or a for loop. Normally, when iterating through a list, a for

loop is the obvious choice. However, in this instance, it is not necessary to iterate through

the complete list and a while loop was considered as well. There are no great differences

between the two choices, except that in a for loop it would be necessary to utilise the break

statement and in a while loop utilise a counter to iterate through the list. Ultimately the

choice fell on the while loop, simply because it makes the code more intuitive to read.

while mandrel.rotationalAxis == 'undetermined':

For the choice of what nodes to compare, it was decided that, to avoid a for loop within

the while loop, the first node in the ‘connectivity’ list of two elements should be compared.

Alternatively one could iterate through the nodes on an element instead, but as there is no

real difference between the two in terms of result the idea of a for loop was rejected to keep

the code as structured as possible. A consequence of this choice, combined with the desire

to make flexible software capable of handling any type of mesh, is that the two nodes

compared might actually be the same node. If the mesh is unstructured, or a triangular

- 45 -

mesh, the elements do not necessarily have the same amount of nodes and are not oriented

identically. In some cases the first node in the ‘connectivity’ list of two elements will be the

same node; therefore a test comparing the coordinates of the two nodes was implemented.

As a precaution, both during development and later, it was decided to insert an option for

manual input of the rotational axis. If ever the function should fail to determine the

rotational axis of the relevant mandrel model it does not necessarily cause the software to

crash.

During the testing of the function on different types of meshes it was discovered that in

some, very rare, cases it was impossible to determine the rotational axis of the model

because of very small differences in the calculated radii (for example: 125,00001468 !=

124,999998575). An educated guess is that this is caused by slight inaccuracies in the nodal

placement, a phenomenon the author has also observed in other 3D modelling software.

With such high accuracy in the calculation of the radii the small inaccuracies in nodal

placement cause false negatives. To compensate for this it was decided to round the values

down to five decimals as they are compared.

Normally rounding variables is frowned upon as it causes numerical errors that stack.

However, in this instance it has no effect on any actual values and does therefore not pose a

problem. As the variables are only rounded when they are compared, but keep their original

exact value in the node object, and the rounded value is not used for any form of calculation

this approach has no negative effect on the rest of the tools.

In comparing the radii there is a slight chance of the test returning a false positive. This

happens if the nodal coordinates are both too close to the point of origin for the model, the

global (0, 0, 0). In such a case the ‘radii’ value for the nodes could be zero (and thereby

equal) in a different direction than the one indicating the correct rotational axis. To avoid

this issue it was determined that a fail-safe variable should be used to check that the

rotational axis determined is indeed the right one. Before finally setting the axis of rotation

this fail-safe variable should be set to equal an axis for which the nodal ‘radii’ value has been

determined equal and then compared to the relevant axis when the nodal values are again

equal. This means that the function must register the same axis as the rotational axis twice

before it sets the ‘rotationalAxis’ variable of a ‘cylindricalMandrel’ object and exits the loop.

In other words two sets of elements must to have the same ‘radii’ value for the rotational

axis to be set and the function completed.

4.4.1.3 Mode of Operation

A while loop is utilised to iterate through all the elements in the model ‘elements’ list until

the rotational axis has been found. Moving through the list, nodal ‘radii’ values for the first

node (‘currentNode’) in the connectivity list of each element is compared to those of the

next element in the list (‘nextNode’).

- 46 -

At the top of the function a variable ‘counter’ is set equal to zero, and for each run through

the loop incremented by one. ‘counter’ is used to move through the ‘elements’ list so that in

turn a ‘customNode’ object can be initiated.

 element = mandrel.elements[counter]

 currentNode = classes.CustomNode(mandrel, element, 0)

If ‘counter’ has reached the end of the ‘elements’ list without being able to determine the

rotational axis, the function prompts for manual input through the Abaqus GUI.

 if counter >= len(mandrel.elements):

 print "it was not possible to determine the rotational

 axis"

 #ask for manual input through GUI

 rotationalAxis = getInput(

 'Enter the numerical value for the rotational Axis:

 \n(X-Axis = 0, Y-Axis = 1, Z-Axis = 2)')

 mandrel.rotationalAxis = int(rotationalAxis)

Whenever the ‘counter’ has still not reached the end of the ‘elements’ list the ‘nextNode’

object is created and the two nodes ‘currentNode’ and ‘nextNode’ compared.

To ensure that the two nodes compared are not in reality the same node, the function

compares their coordinate values. If they are equal, they are the same node and the loop is

continued.

For each of the axes (X, Y, Z) the nodal ‘radii’ values are rounded down to five decimals and

compared; are the nodal values identical in any direction a variable, ‘test’, is checked. If ‘test’

is not equal to the axis in question it is either the first instance of nodal equality, or a

previous comparison has returned a different axis. Regardless, the ‘test’ variable is set to the

current axis and the loop continued. If ‘test’ is equal to the rotational axis in question, the

rotational axis of the mandrel is set, and the loop is exited.

if round(currentNode.Radii[X_AXIS],5) ==

 round(nextNode.Radii[X_AXIS], 5):

 # if the fail-safe variable is 'None' or another axis

 if test != X_AXIS:

 test = X_AXIS

 # if the previous comparison also returned this axis, the

 rotational axis is set

 elif test == X_AXIS:

 mandrel.rotationalAxis = X_AXIS

 mandrel.H = Z_AXIS

 mandrel.V = Y_AXIS

As can be seen from the code segment above, the ‘determineRotationalAxis’ function

simultaneously sets the horizontal and vertical axis for the mandrel when the rotational axis

of the mandrel has been found.

- 47 -

4.4.2 determineRadii

The ‘determineRadii’ function determines the radius of the cylinder and the dome opening

radius of an Abaqus mandrel model.

4.4.2.1 Approach

The cylindrical radius and the radius of the dome opening are the greatest and smallest

radii respectively on the Abaqus mandrel model.

It was determined that the best way to discover the two radii would be to iterate through

all the elements of a model and compare the different radii. Normally it is not considered

ideal to iterate through a list such as this, especially as it is likely to be quite large as the

elements on a model is shrunk for accuracy of analysis. Nevertheless, it was deemed the

best solution.

4.4.2.2 Design Choices

One of the solutions considered to avoid an iteration loop was to somehow sort the

elements into two separate lists; one containing all the cylindrical elements, and one

containing the elements of the dome. This would have required iteration through all of the

elements to first determine the cylindrical radius, and then another iteration to sort the

elements. As such sorting of the elements would only be useful for this specific task, and it

would require more iterations than simply comparing all the radii it was rejected. It was

concluded that, as the only known variable is the rotational axis of the model, an iteration

loop would be the best choice.

As the orientation of the elements is unknown it was deemed necessary to iterate through

all of the nodes of an element and not just pick one at random as is done in

‘determineRotationalAxis’. For the cylindrical part of the model it would most likely not have

posed a problem, but for the dome opening it is imperative that each node is inspected to

ensure that the correct value for the minimum radius is found. Figure 27 illustrates a case

where a random node would not return the correct radial value.

Figure 27 - Node returning wrong radius

- 48 -

To iterate through all of the element nodes a variable ‘nodesOnElemen’ is utilised. This was

done to compensate for the fact that the function is intended to work for any type of mesh;

unstructured as well as structured.

There is no knowledge of the size of the model, and therefore it is impossible to set

arbitrary values for comparison. The ‘maxRadius’ could have been set to equal zero, but for

the ‘minRadius’ variable there is no value that will always be bigger than the minimum

radius of an actual Abaqus model. One solution would be to assume a value of, for example,

100 000, but it is still not completely certain that the minimum radius will always be smaller

than this value. It could happen that the units are set in micro metres, or that the mandrel to

be wound is humongous.

The simple, and obvious, solution that was decided upon is that of initiating ‘maxRadius’

and ‘minRadius’ as ‘None’ and then set them to equal the radius of the first node of the first

elements to serve as points of comparison. This way the initial values for ‘maxRadius’ and

‘minRadius’ will always be lesser than, greater than or equal to the following nodal radii.

During the development process of the AWI Tools the ‘pointOfOrigin’ value of the

‘CylindricalMandrel’ class was created. As this value, by definition, is located at the tip of the

mandrel (or in other words at the same locus as the minimum radius) it was decided that the

logical way to set this variable would be along with the minimum radius. In most cases an

effort has been made to keep functions separate and simple, not performing too many tasks

at once. However, it was determined that such a simple task as setting this variable did not

warrant an additional function with an iteration loop.

4.4.2.3 Mode of Operation

A double for loop is utilised to iterate through all the nodes on all the elements in the

‘elements’ list of an Abaqus model comparing the radii. For each node the local radius is

compared to the function variables ‘minRadius’ and ‘maxRadius’.

For each element the number of nodes is determined (‘nodesOnElement’), and the nodal

properties for each node investigated.

for element in mandrel.elements:

 nodesOnElement = len(element.connectivity)

 # iterate through the nodes

 for i in range(nodesOnElement):

 currentNode = classes.CustomNode(mandrel, element, i)

 tempRadius =

 currentNode.returnRadius(mandrel.rotationalAxis)

For the first node on the first element the ‘minRadius’ and ‘maxRadius’ variables are set to

equal the nodal ‘tempRadius’. This then serves as the point of comparison for the rest of the

nodes. The ‘tempRadius’ value of each following node is compared to the function variables

- 49 -

‘minRadius’ and ‘maxRadius’. If the local radius is less than ‘minRadius’ or greater than

‘maxRadius’ the appropriate value is replaced by the local ‘tempRadius’.

 # set point of comparison on the first iteration

 if minRadius == None:

 minRadius = tempRadius

 maxRadius = tempRadius

 # in case the first node is on the dome opening

 mandrel.pointOfOrigin =

currentNode.returnAxisCoordinate(mandrel.rotationalAxis)

 elif tempRadius < minRadius:

 minRadius = tempRadius

 mandrel.pointOfOrigin =

 currentNode.returnAxisCoordinate(mandrel.rotationalAxis)

 elif tempRadius > maxRadius:

 maxRadius = tempRadius

Simultaneously as the nodal radii are compared, the ‘pointOfOrigin’ value of the ‘mandrel’

object is set whenever the ‘minRadius’ value is replaced.

4.4.3 determineLength

The ‘determineLength’ function calculates the length of the cylindrical part of an Abaqus

mandrel model.

4.4.3.1 Approach

To determine the length of the cylindrical part of a mandrel it is necessary to determine the

extreme points of the cylinder along the axis of rotation.

The choice was made to accomplish this in the same way as with the model radii. By means

of iterating through all of the elements comparing nodal attributes. The difference being

that in this case it is the nodal coordinate on the axis of rotation that is compared, and not

radii.

4.4.3.2 Design Choices

As with the ‘determineRadii’ function a double for loop was deemed necessary, including

the ‘nodesOnElement’ set to the number of nodes for each element. See section 4.4.2.2 for

a closer explanation of the reasons behind this decision.

To distinguish between the elements on the cylindrical part of the mandrel and the

elements on the dome the nodal radius was compared to the radius of the

‘CylindricalMandrel’ object ‘mandrel’. It was considered whether this task would be simpler,

and require fewer actions, if the elements were sorted as explained in section 4.4.2.2 .

However, it was determined that it would most likely not result in more efficient code and

was therefore not worthwhile.

- 50 -

4.4.3.3 Mode of Operation

A double for loop iterated through the elements in a ‘CylindricalMandrel’ object ‘elements’

list. When appropriate the nodal coordinate on the rotational axis for all the element nodes

are compared to the function variables ‘minLength’ and ‘maxLength’ to determine the

extreme points of a cylinder.

For each element the number of nodes is determined (‘nodesOnElement’), and the nodal

properties for each node investigated. If the local node radius is not equal to the radius of

the ‘mandrel’ object, the current element is not located on the cylinder and the for loop is

continued.

 if round(tempRadius, 5) != round(mandrel.radius, 5):

 break

For the first node on the first element on the cylindrical part of the mandrel the

‘minLength’ and ‘maxLength’ variables are set to equal the nodal position on the rotational

axis of the ‘mandrel’ object. This then serves as the point of comparison for the rest of the

nodes. A variable, ‘rotAxCoordinate’, is compared to the function variables ‘minLength’ and

‘maxLength’ for each of the following nodes on the cylinder. If the local ‘rotAxCoordinate’ is

less than ‘minLength’ or greater than ‘maxLength’, the appropriate value is replaced.

 if minLength == None:

 minLength = rotAxCoordinate

 maxLength = rotAxCoordinate

 elif rotAxCoordinate < minLength:

 minLength = rotAxCoordinate

 elif rotAxCoordinate > maxLength:

 maxLength = rotAxCoordinate

Once the for loop has finished iterating through the elements the ‘CylindricalMandrel’ class

function ‘setLength’ is called and the ‘minLength’ and ‘maxLength’ variables are used to

calculate the length of the cylindrical part of the model.

 mandrel.setLength(minLength, maxLength)

4.4.4 setProperties

‘setProperties’ is the execution function of the ‘mandrelProperties’ module. The function

executes the ‘determineRotationalAxis’ function, ‘determineRadii’ function and the

‘determineLength’ function, one after the other, to determine and calculate the mandrel

properties.

Lastly, the ‘printProperties’ function of the ‘CylindricalMandrel’ object ‘mandrel’ is

executed and the properties of the Abaqus mandrel model printed.

 print 'Mandrel Properties: '

 print '---'

 mandrel.printProperties(settings)

- 51 -

4.4.4.1 Flowchart of Execution Function

settings

mandrel
determineRotationalAxis

determineRadii

determineLength

Mandrel.printProperties

- 52 -

4.5 GCode.py
The ‘GCode.py’ module is intended to include all the functions necessary to generate a CNC

program based on the mandrel properties of an Abaqus model.

Initially it was the intention that this module should include functions for the kinematic

equations for a filament winding machine, but due to the unforeseen circumstances

described in chapter 3.3 the module is currently incomplete.

4.5.1 createCNCprogram

The ‘createCNCprogram’ function generates a CNC program for the relevant Abaqus

mandrel model.

4.5.1.1 Approach

This function will most likely be the execution file of the ‘GCode’ module. It is created as a

means of collecting the variables for blocks of CNC code and writing it to a file and the

‘mandrel’ object ‘lines’ variable.

4.5.1.2 Design Choices

It was determined that the filename of the CNC program should be unique and descriptive

to make it easily identifiable. Consequently it was decided that the filename should include

the Abaqus model name and the model part name.

Also, for clarity, it was decided to include a print statement after the completion of the CNC

program to inform that the program has been generated, and for which Abaqus mandrel

model.

4.5.1.3 Mode of Operation

First, the filename of the CNC program is set.

 fileName= "{0}_{1}".format(mandrel.modelName, mandrel.partName)

Secondly, a ‘GCode’ class object is initiated with the filename, creating the CNC program

file and writing the topmost comment lines. Then the lines (currently a set of lines with

random values for the variables) are added to both the CNC program file and the ‘lines’

variable of the ‘CylindricalMandrel’ object ‘mandrel’.

Once the CNC program has been generated a statement is printed in the Abaqus Message

Area, including the ‘printProperties’ function of the ‘mandrel’ object.

 print "a CNC-program has been created for: "

 mandrel.printProperties(settings)

As the function is run through Abaqus, the text file will be located in the Abaqus work

directory.

- 53 -

4.6 layup.py
The ‘layup.py’ module contains the functions necessary to add the approximation of a

filament winding layup to an Abaqus mandrel model based on blocks of CNC code.

Adding layup to an Abaqus mandrel model is a challenge, and its solution involves

approximations and assumptions. Two different solutions were considered to solve the

problem, and the decision of which to choose was done based on its determined accuracy.

Solution 1:

As long as the geodesic winding technique used the winding angle for a point on the

mandrel can easily be calculated by means of Clairaut’s equation (1). If one assumes a known

number of complete layers of winding on the mandrel a layup of [α/-α] can be added to the

elements for each layer. It should be noted that this assumption disregards the crossover

points of a winding layup. Also, depending on the shape and size of the elements further

assumptions and approximations would have had to be made in regards to, for example, the

winding angle across the dome. On the cylindrical part of the mandrel the winding angle

would remain constant, but crossing the dome it changes rapidly to the required angle of 90°

at the dome opening. Accounting for this fact could, amongst others, be done by calculating

the mean winding value for each element or by choosing the middle point of the element to

calculate the winding angle.

In addition to the approximation being a poor one, this solution lacks flexibility. There is no

accounting for the different layers that form in the winding process, and having been

modelled as a uniform layer it does not actually correspond to any actual physical part. It

does, however, suit a preliminary model where no CNC program has been created yet. It is,

most likely, possible to analyse a model with such a layup and use the results as a rough

draft of the capabilities of the finished part. This should, however, be investigated more fully

before a hypothetical implementation.

Solution 2:

In geodesic winding the fibres are placed on the shortest possible path between two points

on the mandrel, a fact that can be taken advantage of when creating an approximate

winding layup on an Abaqus model. If the path between the two points ‘P1’ and ‘P2’ is

projected into a two-dimensional plane it can be approximated to a straight linear line under

certain conditions. This approach has been detailed in appendix D.3

Under the conditions that P1x or P2x cannot be too close to the radial value, and that they

must be located in the same or adjoining quadrants, the path can be considered linear

between two points. The linear equation for this straight line can easily be derived from the

coordinates of those two points. With this line in place the elements can be projected into

the same plane and it can be determined whether each element lies on the winding path or

not.

- 54 -

Using this approach with ‘P1’ and ‘P2’ as the starting and ending points of a CNC program

block each element will end up with a unique combination of plies as a layup. Although an

approximation, this results in a layup whose plies will correspond directly to a part wound

with the relevant CNC program. As far as this author knows there are no other software

solutions that include this functionality of using FEA software to create a model that directly

corresponds to a real part. It was decided, therefore, to start developing this solution, as it is

more advanced.

4.6.1 addMaterial

The ‘addMaterial’ function adds a carbon/epoxy material to the ‘LayupConstruction’ object

‘layup’ and adds the material to the relevant Abaqus mandrel model.

4.6.1.1 Approach

The choice to create this function was made for structure. The material needed to be

added to the Abaqus mandrel model, and the name of the material accessed for each layup

to be added.

4.6.1.2 Design Choices

It was decided to keep the Abaqus commands that add a material to an Abaqus model

separate as they are long and appear unstructured at first glance. Having them collected in a

function has the added bonus of adding readability to the code as well.

To avoid having to send the ‘Name’ variable of the ‘material’ object back and forth

between functions it was decided to connect the material to the ‘layup’.

4.6.1.3 Mode of Operation

The ‘carbon_epoxy’ material is set as the layup material.

 layup.material.carbon_epoxy()

A material with the same name as the layup material is added to the Abaqus part.

 mdb.models[mandrel.modelName]

 .Material(name = layup.material.Name)

Then the material properties are set using the Abaqus material commands (the complete

commands can be viewed in E.4

 mdb.models[mandrel.modelName]

 .materials[layup.material.Name].Elastic(…)

 mdb.models[mandrel.modelName]

 .materials[layup.material.Name].Density(…)

- 55 -

4.6.2 readGCodes

The ‘readGCodes’ function reads a CNC program block and extracts from it the rotation of

the mandrel and the lateral movement of the carriage along the rotational axis of the

mandrel.

4.6.2.1 Approach

A CNC program block read from a file is read as a string. It was decided that the most

practical approach to search through a string for matches of the relevant parameters would

be to use the built-in Python regular expressions. An introduction to these can be found

in[31] or [32].

4.6.2.2 Design Choices

During the development, it was determined to start by assuming the same axis notations

for the filament winding machine as the “MAW 20 LS 4/1” from Mikrosam. The relevant axes

for this function would then be the rotation of the mandrel, ‘X’, and the lateral movement of

the carriage, ‘Y’.

To account for the comment lines and the first line of modal commands in the CNC

program the Python exception handling interface is used. If the ‘X’ and ‘Y’ values are not

found in the string, the ‘AttributeError’ is raised. In this case the lack of the ‘X’ and ‘Y’ values

in the string only means that the line is one of the top lines of comments or modal

commands.

It was observed that a CNC program can be written with either points or commas. As

Abaqus only accepts floats using points it was determined to utilise the Python ‘replace’

function to ensure that the float values will be in the correct format.

4.6.2.3 Mode of Operation

A variable, ‘line’, from a CNC program is sent to the function, and matches for the ‘X’ and

‘Y’ values searched for.

 matches = re.search(

 r'\A N(\d+) \s+ X(\d+(,\d+)?) \s+ Y(\d+(,\d+)?)',

 line, flags=re.M | re.S | re.X)

If matches are found, a tuple ‘(X, Y)’ is retuned, but if an exception is raised the function

simply returns nothing.

4.6.3 Sign

‘Sign’ is a simple function that determines the sign of a numerical variable. It was

implemented to increase readability of the code as it negates the need for several identical if

statements.

If the value is negative it returns ‘-1’ and if it is positive it returns ‘1’.

- 56 -

4.6.4 calculateP2

‘calculateP2’ is a function that, based on the rotation of the mandrel, calculates the end

point of a CNC program block, ‘P2’.

4.6.4.1 Approach

As the lateral movement along the axis of rotation can be extracted directly from the CNC

program block, the position of ‘P2’ on the axis of rotation can easily be calculated.

Determining the two remaining coordinate values of ‘P2’, however, is not as simple.

The rotation of the mandrel, ‘X’, translates as an angle in the plane formed by the

horizontal and vertical axes of the mandrel. Therefore it was decided that the best way to

determine the coordinates of ‘P2’ would be to use basic trigonometry. The mathematics

behind the approach have been detailed in appendix D.2

4.6.4.2 Design Choices

The choice of using trigonometry was made because the lateral movement along the axis

of rotation is so easily calculable. With this coordinate determined the two others can be

considered independently of the third one, and the problem is somewhat simplified. With

only two axes to consider the problem is transformed into a unit circle of radius ‘R’ passing

through the two points ‘P1’ and ‘P2’, as shown in Figure 28. As the coordinates of ‘P1’ and

the angle, ‘X’, between the two points is known the coordinates of ‘P2’ can be calculated.

To simplify the problem further an assumption was made that the rotation of the mandrel

will be small enough that ‘P1’ and ‘P2’ will always be located in either the same quadrant or

adjoining quadrants of the unit circle. This decision limits the problem to eight different

permutations of placement. This approach, and pictures of all placements of ‘P2’, has been

further detailed in D.2

P2

V

H

IV III

I II
P1

Figure 28 – Simplified problem

X

- 57 -

Due to the fact that the coordinate values will vary in sign the mode of calculating the

coordinates of ‘P2’ will vary depending on the quadrantic placement of the two points. An

effort was made to find an approach that was as uniform as possible. The result was a

method based on the rotation of the mandrel, ‘X’, the angle between ‘P1’ and the horizontal

axis, ‘U’, and the angle between ‘P2’ and the horizontal axis, ‘W’. Using this method the

approach to calculating ‘W’ is the same for quadrants I and III and quadrants II and IV.

The angle ‘U’ is calculated using equation (16), where ‘P1V‘ is the coordinate value of ‘P1’

on the vertical axis, and ‘P1H‘ the coordinate value on the horizontal axis.

V

H

1
P1

U tan
P1

 (16)

For quadrants I and III the calculation of ‘W’ is as follows:

If the added value of the angles ‘U’ and ‘X’ is less than 90° the two points are located in the

same quadrant (I and III respectively), and the angle ‘W’ is calculated using equation (17).

 W U X (17)

Are ‘P1’ and ‘P2’ located in adjoining quadrants (II and IV respectively) the angle, ‘W’, is

calculated using equation (18).

 W U X (18)

For quadrants II and IV the calculation of ‘W’ is as follows:

If the added value of the angles ‘U’ and ‘X’ are less than 90° the two points are located in

the same quadrant (II and IV respectively) the angle, ‘W’, is calculated using equation (19).

 W U X (19)

Are ‘P1’ and ‘P2’ located in adjoining quadrants (III and I respectively) the angle, ‘W’, is

calculated using equation (20).

 W X U (20)

To account for the change of sign between ‘P1’ and ‘P2’ the ‘sign’ variable for the

appropriate axis is changed whenever the two points are not located in the same quadrant.

In addition one of the variables of the ‘layupConstruction’ object ‘layup’ is changed. If ‘P1’ is

located in quadrant I and ‘P2’ in quadrant II ‘crossesVertical’ is set to ‘True’ and if ‘P1’ is

located in quadrant II and ‘P2’ in quadrant III ‘crossesHorizontal’ is set to ‘True’ and so

forth.

Once the angle ‘W’ has been determined the leg lengths of a triangle formed by ‘P2’ and

the horizontal axis is calculated using equations (21) and (22).

- 58 -

 legH signH R cos W

(21)

 legV signV R sin W

(22)

Without the ‘sign’ variable these calculations would have resulted in the absolute leg

lengths of ‘P2’, meaning its coordinates had it been located in quadrant I. With the use of

the ‘sign’ variables this problem is avoided.

It should be noted that these calculations assume ‘X’ to be set in radians. This might not be

the case and should be checked to ensure that the function works, but a hypothetical

conversion from radians to degrees will not pose a problem.

To calculate the lateral movement along the axis of rotation it was decided to implement a

‘cylindricalMandrel’ class variable ‘windingDirection’. The coordinate system assumed when

deriving the equations was set with the rotational axis in the opposite direction of that of

the filament winding machine coordinate system. This means that it is necessary to reverse

the sign of the ‘Y’ movement variable before it is employed.

4.6.4.3 Mode of Operation

‘P1’, the rotation of the mandrel, ‘X’, and the lateral feed-eye movement, ‘Y’ are used to

calculate the coordinate values of the end point of a CNC program block, ‘P2’.

A variable for the point ‘P1’ is created and the signs for its horizontal and vertical

coordinate values, ‘signH’ and ‘signV’, are determined. Then the angle, ‘U’ between ‘P1’ and

the horizontal axis is calculated.

 P1 = layup.P1

 # determine what quadrant P1 is located in

 signH = sign(P1[mandrel.H])

 signV = sign(P1[mandrel.V])

 # calculate the angle between P1 and the horizontal axis

 U = math.atan2(abs(P1[mandrel.V]),abs(P1[mandrel.H]))

These values are then used to determine the quadrantic placements of ‘P1’ and ‘P2’. If the

two ‘sign’ values are equal (both either positive or negative) ‘P1’ is located in quadrant I or

quadrant III.

if the coordinates of P1 are in quadrant I or III

 if (signH == signV):

 # if P1 and P2 are in the same quadrant

 if (U+X) < (math.pi/2):

 W = U+X

 else:

 W = math.pi - (U+X)

 signH *= -1

 layup.crossesVertical = True

- 59 -

If the ‘sign’ values are not equal, ‘P1’ is located in quadrant II or IV.

 # if the coordinates of P1 are in quadrant II or IV

 else:

 # if P1 and P2 are in the same quadrant

 if (X < U):

 W = U-X

 else:

 W = X-U

 signV *= -1

 layup.crossesHorizontal = True

For each case the angle between ‘P2’ and the horizontal axis, ‘W’, is calculated. When the

two points ‘P1’ and ‘P2’ are not located in the same quadrant two additional variables are

changed. Depending on which axis has been crossed the ‘signH’ and ‘crossesHorizontal’ or

the ‘signV’ and ‘crossesVertical’ are altered. The ‘sign’ value is multiplied by ‘-1’ to change its

sign, and the second variable is set to ‘True’.

Lastly, the coordinates of ‘P2’ are calculated using the cosine and sine of the angle ‘W’.

 legH = signH * (mandrel.radius * math.cos(W)) #horizontal

leg

 legV = signV * (mandrel.radius * math.sin(W)) #vertical leg

 legLateral = P1[mandrel.rotationalAxis] +

 mandrel.windingDirection * Y

The ‘P2’ list of the ‘layupConstruction’ object ‘layup’ is filled.

 ### set values for P2

 layup.P2[mandrel.rotationalAxis] = legLateral

 layup.P2[mandrel.V] = legV

 layup.P2[mandrel.H] = legH

4.6.5 collectBoxElements

The ‘collectBoxElements’ function collects a set of elements between the points ‘P1’ and

‘P2’ in a list using the Abaqus ‘getByBoundingBox(…)’ command.

4.6.5.1 Approach

With the point of origin and the end point of a CNC program block in place, it is possible to

iterate through all of the elements on a model to determine which ones cross the winding

path. However, to avoid iteration through the complete model it was decided to take

advantage of the Abaqus ‘getByBoundingBox(…)’ command. As the coordinates of the two

points, ‘P1’ and ‘P2’, are known this function is ideally suited for this purpose.

4.6.5.2 Design Choices

The ‘getByBoundingBox(…)’ requires the maximum and minimum coordinate values of the

bounding box as arguments. Consequently the coordinate values of ‘P1’ and ‘P2’ need to be

- 60 -

sorted for each axis. As the two points are not necessarily located in the same quadrant, it is

impossible to know which one of the points has the smaller or greater coordinate value in a

specific direction. To circumvent this problem it was decided to sort the coordinate positions

of ‘P1’ and ‘P2’ into two lists, ‘minCoords’ and ‘maxCoords’, independently of which point

the value originates from. These lists will then be used as arguments for the

‘getByBoundingbox(…)’ command.

In the cases where the points are not located in the same quadrant it is not sufficient to

use only the coordinate values of the points as arguments for ‘getByBoundingBox(…)’. It is

clear from Figure 29 that if the points are in separate quadrants, using only the maximum

and minimum coordinate values will result in a bounding box that does not encompass all

the relevant elements. The red box illustrates the correct bounding box, whereas the brown

stippled line illustrated where the topmost boundary of the box would have been with only

the coordinate values as boundary conditions. Therefore the ‘crossesHorizontal’ and

‘crossesVertical’ variables of the ‘layupConstruction’ class were created. If any of these

variables are ‘True’, an axis has been crossed and the minimum/maximum value in the

appropriate direction must be set to equal the mandrel radius, or the negative mandrel

radius, depending on the quadrants in question.

4.6.5.3 Mode of Operation

The Abaqus ‘getByBoundingBox(…)’ command is utilised to collect the elements between

two points, ‘P1’ and ‘P2’. Based on the coordinate values of ‘P1’ and ‘P2’ and their quadrant

on the unit circle, the maximum and minimum coordinates of the bounding box are

determined.

Two lists, ‘minCoords’ and ‘maxCoords’, are created and initially filled with zeroes, before

the ‘P1’ and ‘P2’ variables of the ‘layupConstruction’ object ‘layup’ are copied to the function

variables ‘P1’ and ‘P2’.

Figure 29 - Bounding box between P1 and P2

P

2

P1

- 61 -

The coordinate values for each list index in the ‘P1’ and ‘P2’ lists are compared and sorted.

The greater of the two values is placed in the ‘maxCoords’ list, and the smaller of the two in

the ‘minCoords’ list.

 for i in range(3):

 if (P1[i] < P2[i]):

 minCoords[i] = P1[i]

 maxCoords[i] = P2[i]

 else:

 minCoords[i] = P2[i]

 maxCoords[i] = P1[i]

A test is run to check whether the ‘crossesHorizontal’ or ‘crossesVertical’ variables of the

‘layup’ object are set to ‘True’. If either one is ‘True’, depending on the quadrant placement

of ‘P1’, the ‘minCoords’ or ‘maxCoords’ list is changed in the appropriate direction to

encompass all the relevant elements.

 # if an axis has been crossed the max/min variable

 # must be mandrel radius to collect all elements

 if layup.crossesHorizontal:

 if sign(P1[mandrel.V]) > 0:

 minCoords[mandrel.H] = -1* mandrel.radius

 else:

 maxCoords[mandrel.H] = mandrel.radius

 if layup.crossesVertical:

 if sign(P1[mandrel.H]) > 0:

 maxCoords[mandrel.V] = mandrel.radius

 else:

 minCoords[mandrel.V] = -1*mandrel.radius

The Abaqus ‘getByBoundingBox(…)’ command is used, with the values of ‘minCoords’ and

‘maxCoords’ as arguments, to collect all the elements between ‘P1’ and ‘P2’ in a list.

4.6.6 collectLayupElements

The ‘collectLayupElements’ function iterates through the elements collected in the

‘collectBoxElements’ function and determines whether each element is located in the

winding fibre path or not.

4.6.6.1 Approach

To determine which elements are located in the winding path, the pathway is projected

into the plane formed by the rotational axis and either the horizontal or vertical mandrel

axis. For each element, its nodal coordinates are projected into the same plane and a check

is performed to ascertain whether the winding path crosses the element or not.

- 62 -

4.6.6.2 Design Choices

It was determined to use basic math to determine the linear equation, (23) and (24), for

the line between ‘P1’ and ‘P2’. The derivation of equations (25) and (26) can be found in D.3

 y(x) xa b (23)

 y
x(y)

b

a

 (24)

2 1

2 1

y y

x x
a

 (25)

1 1y xb a (26)

To cope with the restriction of the points not being too close to the mandrel radius in the

plane, it was determined to use the location of ‘P1’ and ‘P2’ in the unit circle to define the

projection plane. As shown in Figure 30, if ‘P1’ is located in quadrant I or III the logical

projection plane is the plane formed by the rotational axis and the horizontal axis (shown by

the vertical stippled lines). Is P1 located in quadrant II or IV the logical projection plane will

be the plane formed by the rotational axis and the vertical axis (shown by the red stippled

vertical lines being very close together, whereas the black horizontal ones are further apart).

To ascertain whether an element is located on the fibre path, its nodal coordinate values in

the projection plane are gathered and sorted. Subsequently the value of the linear equation

for each of these values is calculated using equations (23) and (24). It is then determined

whether the line passes through the element or outside of it. This approach has been

detailed in D.3

Figure 30 - Projection of elements

- 63 -

4.6.6.3 Mode of Operation

The variables ‘P1’ and ‘P2’ of the ‘layupConstruction’ object ‘layup’ are copied to the

function variables, ‘P1’ and ‘P2’.

Based on the quadrant placements of ‘P1’ and ‘P2’ and their coordinate values, the

constants ‘a’ and ‘b’ of a linear equation between the two points are determined.

 if sign(P1[mandrel.H]) == sign(P1[mandrel.V]):

 a = ((P2[mandrel.rotationalAxis]-P1[mandrel.rotationalAxis])

 /(P2[mandrel.H] - P1[mandrel.H]))

 b = P1[mandrel.rotationalAxis] - P1[mandrel.H]*a

 # if P1 is in quadrant II or IV

 else:

 a = ((P2[mandrel.rotationalAxis]-P1[mandrel.rotationalAxis])

 /(P2[mandrel.V] - P1[mandrel.V]))

 b = P1[mandrel.rotationalAxis] - P1[mandrel.V]*a

A for loop is utilised to iterate through all of the elements. For each element the maximum

and minimum nodal coordinate values in the appropriate directions are determined. For the

first node the ‘minY’, ‘maxY’, ‘minX’ and ‘maxX’ values are all set to the coordinate values of

the current node, to serve as points of comparison for the following element nodes.

When the minimum and maximum values for the element have been determined, the

corresponding points on the line between ‘P1’ and ‘P2’ are calculated.

 Y_min = a*minX + b

 Y_max = a*maxX + b

 X_min = (minY - b)/a

 X_max = (maxY - b)/a

If one or more of the points on the line are between the minimum and maximum variables

in the appropriate direction, the element is in the winding path and is appended to the

‘sectionElements’ variables; unless it has already been appended.

When the linear equation has been established, the maximum and minimum values in the

appropriate plane for the elements are found by iterating through the nodes on the

element. If a point on the line is located between the maximum and minimum value as

P1

Element in winding path:

P2

Figure 31 - Straight line crossing element

- 64 -

shown in Figure 31, the element is appended into a list of elements called ‘sectionElements’

where all the elements in the fibre path are collected.

 appended = False #variable ensures an element is only

 appended once

 if (((minY < Y_min) and (Y_min < maxY)) or

 ((minY < Y_max) and (Y_max < maxY))):

 appended = True

 sectionElements.append(element)

 if (((minX < X_min) and (X_min < maxX)) or

 ((minX < X_max) and (X_max < maxX))):

 if appended == False:

 sectionElements.append(element)

After iterating through all the elements in the ‘boxElements’ variable the function returns

the ‘sectionElements’ list containing all the elements in the fibre winding path.

4.6.7 addPly

The ‘addPly’ function adds a single ply to the layup of each of the elements in the

‘sectionElements’ list.

4.6.7.1 Approach

The function calculates the winding angle based on the rotation of the mandrel, ‘X’, and

the movement along the axis of rotation, ‘Y’. A for loop then iterates through all the

elements of the ‘sectionElements’ list and adds an additional ply with the calculated angle to

its composite layup.

4.6.7.2 Design Choices

It was decided that instead of calculating the winding angle of each element based on the

elements relative location on the model, an approximation based on ‘X’ and ‘Y’ would be

used. This decision was made to avoid having to calculate the placement of the element on

the model, which is not necessarily equal to its coordinate values.

Based on the movement of the mandrel the winding angle for the element is calculated

using equation (27). This equation, whose derivation can be found in D.4 assumes a

cylindrical shape, which across the dome is only an approximation assuming small

movements along the axis of rotation. It is unknown to what degree this will affect the

analysis of the part, and this should be investigated further.

1 Y

tan
RX

 (27)

Each composite layup is given a unique name, ‘layupName’, based on the element label,

which makes it easy to determine whether there is a ‘compositeLayup’ object already

connected to the element.

- 65 -

4.6.7.3 Mode of Operation

Based on the rotation of the mandrel, ‘X’, the lateral movement along the axis of rotation,

‘Y’, and the radius of the mandrel the winding angle for the layup is calculated.

 alpha = math.degrees(math.atan(Y/mandrel.radius/X))

A for loop iterates through all the elements in the ‘sectionElements’ list adding a ply with

the winding angle to the composite layup of the element.

For each element the variable ‘layupName’ is set based on the element label.

 layupName = 'layup e[%r]' %element.label

The function then tries to access the composite layup of the current element. If it fails, an

exception is raised and a composite layup created for the element. A pointer to the

composite layup, ‘compositeLayup’ is set and the rotation of the layup set to follow the

global coordinate system of the model. Simultaneously the ‘plyName’ variable is set to ‘Ply

1’.

 # if not: create composite layup for the element

 except KeyError:

 # create composite layup

 compositeLayup = mandrel.part.CompositeLayup(

 name = layupName,

 offsetType = TOP_SURFACE,

 symmetric = False,

 thicknessAssignment = FROM_SECTION)

 plyName = 'Ply 1'

 # set rotation to be relative to the global coordinate system

 compositeLayup.orientation.setValues(

 orientationType = GLOBAL,

 localCsys = None,

 additionalRotationType = ROTATION_NONE,

 angle = 0.0)

If a composite layup already exists for the element ‘compositeLayup’ is set to point to the

existing composite layup for the element. The appropriate ‘plyName’ is found and set based

on the existing number of plies in the composite layup.

 #check if the current element already has a composite layup

 try:

 compositeLayup = mandrel.part.compositeLayups[layupName]

 numPlies = len(compositeLayup.plies)+1

 plyName = 'Ply %r' %numPlies

- 66 -

When the ‘compositeLayup’ variable and the ‘plyName’ have been set, the ply is added to

the element using the Abaqus ‘CompositePly(…)’ command. The thickness is specified

according to the material of the ‘layupConstruction’ object ‘layup’ and the orientation set to

the winding angle in relation to the rotational axis of the mandrel.

 # add ply to element

 compositeLayup.CompositePly(

 suppressed = False,

 plyName = plyName,

 thicknessType = SPECIFY_THICKNESS,

 thickness = layup.material.thickness,

 region = region1,

 material = layup.material.Name,

 orientationType = SPECIFY_ORIENT,

 orientationValue = alpha,

 axis = rotAxes[mandrel.rotationalAxis])

4.6.8 addLayup

 ‘addLayup’ is the execution function of the ‘layup’ module. Depending on the mode with

which it is initiated, it adds layup to the model. The function creates a ‘layupConstruction’

object ‘layup’ and adds the material to the model using the ‘addMaterial’ function. The

‘calculateP2’, ‘boxElements’, ‘sectionElements’ and ‘addPly’ functions are then, in turn, used

to add plies.

There are three different modes for the function:

o Input from File, ‘f’

o Generated CNC Program, ‘g’

o Manual Input, ‘m’

4.6.8.1 Input from File, ‘f’

This method, initiated with an ‘f’, reads the lines of a CNC program from a specified file and

adds a layup accordingly.

A window prompting for input is opened in the Abaqus GUI. The input needed is the file

name of the file containing the CNC program on which the layup will be based. For the

software to find the file and open it for reading it has to be located in the Abaqus work

directory. For each program block in the file the ‘X’ and ‘Y’ values are extracted. If they are

not present, the loop continues to the next program block, and a section of layup is added to

the model. To continue the movement along the model the ‘P1’ variable is set to equal the

calculated ‘P2’. The finished layup will be continuous, and a very close approximation of a

real part wound with the same CNC program.

4.6.8.2 Generated CNC Program, ‘g’

To add a winding layup based on a CNC program generated for the specific model this

method, ‘g’, is used.

- 67 -

Technically this method could have been omitted and the ‘f’ method could have been used

instead. When a CNC program is generated for an Abaqus model it is written in a file that can

be used as input. However, using this method is simpler as it negates the need to search

through each program block for the ‘X’ and ‘Y’ values. To add layup to the model the

mandrel variable ‘lines’ is iterated through and the ‘X’ and ‘Y’ values for each ‘CNCLine’

object used to determine the section of layup.

4.6.8.3 Manual Input, ‘m’

This method, initiated with an ‘m’, is used for debugging. Normally it is not necessary to

run a complete program to see if the code works, it is more convenient to just add layup for

a few points.

Currently the method contains four points, one in each quadrant of the unit circle,

corresponding to the test part ‘part-1-mesh-1’ of ‘Model-9’.

4.6.8.4 Remarks

When all of the CNC program blocks have been added to the layup the Abaqus model will

have a layup directly corresponding to the real part wound with the same CNC program,

including cross-over points. The accuracy of the layup will depend upon how fine the mesh

is. For a fine mesh the approximations done will cause smaller errors and the

‘sectionElements’ list for each program block will correspond more closely to the actual

winding path.

- 68 -

4.6.8.5 Flowchart Execution Function

Mandrel, method

‘f’: ‘g’: ‘m’:

getInput(fileName)

Set(P1)

layup

addMaterial()

Set(P1)

layup

addMaterial()

layup

addMaterial()

for line in file: for i in lines: For i in range(len(list)):

P1 = P2

addPly

collectLayupElements

collectBoxElements

calculateP2

Set(windingDirection)

P1

- 69 -

4.7 visualCrashTest.py
The ‘VisualCrashTest’ module is designed to perform a visual crash test of a CNC program in

the Abaqus GUI.

4.7.1 createTestSetUp

‘createTestSetUp’ creates an assembly with a constructed feed-eye and the relevant

Abaqus mandrel model.

4.7.1.1 Approach

To create a test set up it is necessary to create a part to serve as the feed-eye of the

filament winding machine. The feed-eye part and the mandrel part is the put together in an

assembly and oriented correctly in relation to each other.

4.7.1.2 Design Choices

It was decided that the feed-eye part should be rotated to have its flat surface facing the

mandrel part as shown in Figure 32. Also, for the starting point of the crash test it was

assumed that the CNC program originate at the tip of the mandrel dome. This is not true for

all CNC winding programs, but was used to have a basis from which to operate.

For convenience, the view in the viewport is set as shown in Figure 32 and fit to the screen.

This makes it easier for the observer to see what is happening during the simulation.

Figure 32 - Mandrel and feed-eye assembly

H

V

- 70 -

4.7.1.3 Mode of Operation

First, the ‘assemblyDir’ variable of an ‘Assembly’ object ‘assembly’ is set to the

‘rootAssembly’ of the relevant Abaqus mandrel model. The viewport is changed to display

the assembly and the ‘feedEye’ part of ‘assembly’ and the mandrel part are added to the

assembly.

 #adding the two parts to the assembly

 assembly.assemblyDir.Instance (

 assembly.feedEye, part = feedEyePart, dependent = ON)

 assembly.assemblyDir.Instance (

 'Mandrel', part = mandrelPart, dependent = ON)

Based on the axis of rotation for the mandrel part, the ‘feedEye’ part is rotated, and the

‘setView’ variable created.

 # define practical view based on rotational axis

 # and rotate feed-eye according to model

 if mandrel.rotationalAxis == X_AXIS:

 assembly.assemblyDir

 .rotate((assembly.feedEye,), (0,0,0), (0,0,-5), 90)

 setView = (45, 45, 0)

 if mandrel.rotationalAxis == Y_AXIS:

 assembly.assemblyDir

 .rotate((assembly.feedEye,), (0,0,0), (0,-5,0), 90)

 setView = (-45, 0, -45)

 if mandrel.rotationalAxis == Z_AXIS:

 assembly.assemblyDir

 .rotate((assembly.feedEye,), (0,0,0), (-5,0,0), 90)

 setView = (45, 135, 90)

The feed-eye is moved a distance away from the mandrel and to the tip of the mandrel

dome, which is assumed to be the starting position of the CNC program.

 ### move the feed-eye to an initial position

 offset = [0, 0, 0]

 offset[mandrel.H] = mandrel.radius + mandrel.radius/4

 assembly.assemblyDir.translate((assembly.feedEye,), offset)

Lastly, the view in the viewport is set and fit to screen.

 # set appropriate view and fit to screen

 session.viewports['Viewport: 1'].view.rotate(

 xAngle=setView[0], yAngle=setView[1],

 zAngle=setView[2], mode=TOTAL)

 session.viewports['Viewport: 1'].view.fitView()

- 71 -

4.7.2 runTest

‘runTest’ is the execution function of the ‘visualCrashTest’ module. It initialises the

‘Assembly’ object ‘assembly and runs the ‘createTestSetUp’ function.

Running the visual crash test is done by way of the ‘lines’ variable of the

‘CylindricalMandrel’ object ‘mandrel’. For each CNC program block the feed-eye is moved

within the assembly and then paused there for one second with the Python ‘sleep’ function.

 for i in range(len(mandrel.lines)):

 assembly.move(

 mandrel, mandrel.lines[i].Y, mandrel.lines[i].Z)

 time.sleep(1)

- 72 -

4.8 main.py
The ‘main’ module utilises all the other modules in turn. It can be said to be the “key”

module. It has no functions of its own, but is the only one connecting all of the other AWI

modules. Many of the modules interconnect (for example by class objects being utilised in

several modules) resulting in the necessity of this module.

In ‘main.py’ all of the other modules are imported and reloaded, a ‘modelName’ and

‘partName’ set for the Abaqus mandrel model to be analysed and all of the functions run.

mandrelProperties

Main

GCode

visualCrashTest

layup

Classes

- 73 -

- 74 -

5. Evaluation

This thesis has been a pilot study and the modules developed are intended to serve as a

basis for further development. The contents of this chapter are intended to aid whoever will

continue the work in the future. It poses questions regarding the current modules and

suggests opportunities for further work that might be beneficial in a start-up process.

5.1 General Notes
The modules have all been tested on Abaqus mandrel models with different types of mesh

and spatial orientations. However, all of these models are quite small and, with one

exception, have fairly large elements. As a precaution a test model should be created with a

large cylinder radius and very small elements. This will ensure that there are no problems

with the functions when the elements grow smaller.

It should also be investigated whether it is possible to have the module files located in a

different directory than the Abaqus work directory. As the AWI software grows it will

become impractical to have all the files in the Abaqus work directory instead of in a separate

AWI directory.

5.2 Remarks on Existing Functions
This section discusses possibilities of improvement and expansion of the current AWI

modules.

5.2.1 Classes.py

5.2.1.1 MachineParameters

This class currently only allows for the parameter composition of the filament winding

machine at NTNU, which is a five-axis machine. It might be beneficial to expand the class, to

create functions for other types of machines as well, with different number of axes.

Another practical functionality, would be the possibility to store a set of machine

parameters or a ‘machineParameters’ object. Such a function would negate the need to

insert the same machine parameters every time the software is used. This functionality

would be especially beneficial if the software is used to generate CNC programs for more

than one filament winding machine.

Chapter

- 75 -

Lastly, a function for converting units from inches to millimetres would increase the

flexibility of the software even more. This is no difficult task to do by hand, but it is an added

luxury for whoever is using the software if the manual conversion is rendered unnecessary.

5.2.1.2 CylindricalMandrel

The mandrel is currently one of the most restricting factors of the AWI software, and one

of the key variables in filament winding. It is, therefore, an aspect of the software that

should be made more flexible.

There are numerous possibilities for how additional mandrel shapes could be

implemented. Additional mandrel classes could be created, or the current mandrel class

could be changed to allow for different types of mandrels. Possibly, the mandrel class could

be changed to contain shapes that can be combined (cylinder, cone, elliptical dome,

spherical dome etc.), instead of predefined mandrel compositions. No matter the mode,

there should be options for any type of mandrels; Both cylindrical and conical mandrel, with

elliptical, spherical or parabolic dome shapes should be possible.

Furthermore, it could be beneficial to implement a function that can create a standard

Abaqus mandrel model based on manual input parameters from the GUI. With such a

function the user would be given the opportunity to choose between a custom mandrel

created in Abaqus or one of several standard mandrels already stored in the software. A

simple GUI could be created for input of geometrical variables, with several standard profiles

available. Depending on the needs of the user, the appropriate combination of cylinder

shapes, dome shapes and radii would be chosen.

Currently the ‘verifyMandrel’ function only prints a statement in the Abaqus Message Area

if the mandrel exceeds the limitations of the filament winding machine. It does not in any

way disrupt the running of the modules. A possible way to deal with this would be to create

an exception class for mandrel values that are too great, and then interrupt the modules.

5.2.1.3 Material

The material class could easily be expanded by adding further standard materials. In

addition it should contain a function to create a custom material with unique material

properties in case this should be needed.

5.2.1.4 CNCLine

In this class the rounding of the CNC block variables is performed. To minimise the

numerical errors caused by this procedure an additional variable for the machine tolerance

could be added. This way there would be no additional numerical errors caused by the

function, outside of those already present.

The class could also be made to include additional types of CNC blocks; like modal

command lines or comments. This would create added flexibility to the software, making it

able to, for example, choose the modal commands to be included.

- 76 -

5.2.1.5 GCode

This function adds the topmost lines to a generated CNC program, but does not include any

kind of calculation of the point of origin for the winding in relation to the filament winding

machine. In other words: it assumes the feed-eye of the filament winding machine to be

located at the tip of the mandrel. There should be an additional parameter (for example in

this class or the ‘machineParameters’ class), that includes the distance from the winding

machine point of origin to a point on the mandrel. This distance should then be taken into

account when generating the CNC program.

Aside from these small facts, the main thing that needs to be done about this function is to

implement the kinematic equations for a filament winding machine. This is one of the key

concepts of the software, and should be prioritised. One possible approach to the problem

could be to form a collaborative group, including someone with a deeper understanding of

automation in the filament winding process.

5.2.2 MandrelProperties.py

5.2.2.1 determineRotationalAxis

In this function it was deemed necessary to round the radii variables to make the function

work. Although, as previously mentioned, this has no adverse effects on any calculations, the

necessity of the ‘round(…)’ function should be investigated. If the hypothesis posed in

chapter 4.4.2.2 is correct, it should not pose a problem. However, as the issue could be

caused by other factors, it might affect the software in unknown ways. This is especially true

as so many of the modules rely heavily on nodes and nodal coordinates.

With a fail-safe in place it is highly unlikely that this ‘round’ function will cause a false

positive. This has, however, not been tested for extremely small meshes. A test model

should be created, and the effects of a small mesh size investigated. It might be that this,

combined with the ‘round’ function, will result in false positives despite the fail-safe.

The ‘determineRotationalAxis’ function should also be expanded to include functionalities

for different types of mandrel shapes. Currently, it is based on a cylindrical mandrel with

spherical domes, and requires that a part of the mandrel is cylindrical to work. If the mandrel

shape is conical, the two elements compared must be located next to each other around the

circumference of the mandrel for the function to work. The mesh elements might be placed

randomly, and there is therefore no guarantee that this function will work for such a

mandrel. There is, of course, a small chance that it will work, but leaving it up to chance

whether a function works or not is far from ideal.

As the software is developed and expanded to include different types of mandrels (not only

conical, but also elliptical or square are possibilities) it should be investigated whether this

approach is the best one, or if an alternative approach ought to be found. It might be that

the best way to determine the rotational axis is to tailor functions to each mandrel type, or

some other way as of yet conceived.

- 77 -

5.2.2.2 determineRadii

The efficiency of this approach should be investigated. There are grounds for debating

whether the ‘determineRadii’ function is as efficient as it could be. The function iterates

through all of the nodes of every element. This means that in reality, depending on mesh

type, each node is investigated three or four times. If one wishes to keep the tools functional

for every type of mesh, this might prove a challenge. With no way to predict the element

and node placements it is not possible to, for example, exclude a certain set of nodes off

hand. One possible solution could be to register the investigated nodes in a list or a class and

then check whether the current node has already been used. It is, however, unlikely that this

will actually be more efficient than the current solution.

One viable solution would be to use the ‘getByBoundingBox(…)’ command to collect a

selection of elements along the axis of rotation. The command has no required arguments,

which means that if no boundaries are given in any one direction the bounding box will be

infinite in that direction. Knowing the rotational axis, this can be utilised by creating a box

that is infinite along the axis of rotation. The rest of the variables need to be determined

somehow, as the spatial orientation, except for the rotational axis, is unknown. It is

important that they are chosen in such a way that elements on all parts of the mandrel are

included. Figure 33 shows black bounding boxes encompassing elements of all radii, while

the red bounding box does not.

Figure 33 - Bounding box on mandrel

- 78 -

One suggestion on how to do this is written using pseudo code below.

 #choosing the proper limits for the boundingBox

 if (mandrel.rotationalAxis == X_AXIS):

 boxY = boxZ = maxBox = None

 numVar = 0

 while not maxBox:

 numVar += 10

 boxY = mandrel.elements.getByBoundingBox(

 yMin = -1*numVar

 yMax = numVar)

 boxZ = mandrel.elements.getByBoundingBox(

 zMin = -1*numVar

 zMax = numVar)

 if (len(boxZ) > len(boxY)):

 maxBox = boxZ

 else:

 maxBox = boxY

After the elements have been properly chosen, the current ‘determineRadii’ function can

be used. There will still be unnecessary iterations, but not nearly as many as in the present

version. the number of elements will have been greatly reduced, thereby greatly increasing

the efficiency of the function.

This method is based on the premise that the part sketch is done in a plane of the global

coordinate system. Seeing as how the rotational axis has to correspond to one of the global

axes it is considered implausible that this is the case. Should it be a cause for worry a

solution should not prove too challenging to implement. Using trigonometry it should prove

simple to write a function incrementally rotates the bounding box until elements have been

gathered. In addition, the current function, iterating through all of the elements, could be

used as a fail-safe.

5.2.2.3 determineLength

This function works in the exact same way as the ‘determineRadii’ function, and, as such,

has the same weaknesses. Most of the nodes are investigated several times, but the

problem can be solved in the same way as for the above-mentioned function.

For a cylindrical mandrel it will not always be considered necessary to model the entire

length of the mandrel. The dome and its shape are more important factors, and the proper

cylinder length can easily be simulated for analysis. For such cases it might be convenient to

implement an option for manual input of the true cylinder length.

- 79 -

5.2.3 GCode.py

5.2.3.1 createCNCProgram

The initial lines of the CNC program are set upon initiation of the ‘GCode’ class. It should be

considered, however, whether to include an additional line that moves the feed-eye to the

start position, and then stops, so that the fibres can be attached to the mandrel. If there is

no such function in the CNC program the fibres must be attached before the program is run.

As the feed-eye might have to move far before the winding can start it might cause problems

during wet winding. Fibres, already impregnated, are likely to cause a mess in such

situations.

It has been observed that at least some CNC programs are written with ‘,’ as the decimal

point, in Abaqus floats use ‘.’ as their decimal points. It should be investigated what the

standard is and how it can be determined, then a function written accordingly.

5.2.4 layup.py

5.2.4.1 collectLayupElements

The assumption for this function is that the geodesic curve on a cylinder projected onto a

plane can be approximated to a straight line. As shown in D.3 this is only true under

certain conditions. It should therefore be investigated whether it is possible to use the

parametric functions of a helix more directly to determine the winding path in the plane.

This would, most likely, result in a more flexible function capable of handling several

different shapes.

In addition, there are currently conditions for the points, ‘P1’ and ‘P2’, of the CNC program

block. They should located in the same quadrant or adjoining quadrants, and the two points

cannot be too close to the relevant axes (horizontal axis for ‘P1’ in quadrants I and III, and

vertical axis for ‘P1’ in quadrants II and IV). These conditions are, however, not enforced.

There is no test verifying that the conditions are actually fulfilled. Such a test should be

implemented, including measures to take if the test fails. For example, the movement could

be split into two smaller portions if the angle between the points is too great, or if one or

both are located too close to the horizontal or vertical axis.

Lastly, it should be investigated whether this approach is sound across the mandrel dome.

Currently, the assumption is that the movements along the axis of rotation across the dome

are small. With small movements it is possible to approximate the dome segment to a

cylinder with a certain numerical error. It is unlikely that this holds, especially towards the

tip of the dome, and an alternative solution should be found.

- 80 -

5.2.4.2 addLayup

For the ‘input from file’ mode of operation for this function it is most likely possible to

insert the complete file path for the CNC program file. This would negate the need of

copying the file into the Abaqus work directory. This has, as of yet, not been tested, but

should not prove too challenging to determine and implement.

An interesting extension for this module would be to include the fibre bandwidth in the

calculations. It should be investigated whether it is possible to include this parameter into

the mathematical method determining the elements on which to add layup. Instead of just

investigating whether the line between ‘P1’ and ‘P2’ crosses an element, one could include a

distance +/- half the bandwidth as well.

Another possibility for creating an accurate winding layup would be to section the actual

part instead of an ‘Orphan Mesh Part’. This would be more accurate in terms of shape and

path, but also more complex in its approach. Amongst others, the location of the pathway

on the model would need to be determined and a generic way of sectioning the part

according to the pathway, winding angle and bandwidth created to use in a script.

Challenges with this module include some of the assumptions made about the filament

winding machine. It assumes that any and all winding programs originate at the tip of the

mandrel dome. This is something that must be investigated further. There is no set standard

for this variable, and it might change depending on the software used to generate the

winding program. It should be determined whether there is any kind of set standard or

norm, what is the most typical starting point for winding software and if there is any way to

know this by checking the code or some kind of software manual.

Also, the axis designations are assumed to correspond to the filament winding machine at

NTNU, which might not always be the case. As the AWI software is expanded, a way needs to

be found to account for possible differences in axis designations of the winding machine and

the CNC program. A verification script needs to be written, ensuring that the values

extracted and set are indeed the values they are assumed to be; for example that the ‘X’

value does in fact describe the rotation of the mandrel.

Currently the tool assumes incremental movement of the filament winding machine. This is

the most common setting, but there is no guarantee that a CNC program is not written using

absolute dimensioning. It would be fairly simple to check this variable using Python regular

expressions on the program block containing modal commands.

- 81 -

This module relies heavily on the Abaqus ‘getByBoundingBox’ command. In using this

command it is important to note that the bounding box must envelop complete elements for

them to be collected. Figure 34 shows a mandrel part with a bounding box in red, and four

shaded elements that are collected in the box. If the mandrel elements are too great, or the

steps of the CNC block too small, no elements will be collected. This has the potential to

greatly affect the accuracy of the resulting winding layup.

Some kind of functionality should be implemented to handle such cases, when the

‘collectBoxElements’ function returns an empty list. One possibility, would be to store the

‘minCoords’ and ‘maxCoords’ lists in-between steps, for example in the ‘ConstructionLayup’

object. ‘minCoords’ and ‘maxCoords’ for the two steps could then be compared and a bigger

bounding box generated. Should the ‘collectBoxElements’, once again, return an empty list,

the process can be repeated and the second set of ‘minCoords’ and ‘maxCoords’

overwritten.

This module adds a unique composite layup, with a unique set of plies, to each element.

Due to the way the function collects the layup elements, and the approximations, there is

currently no guaranteeing that the elements have the same number of plies. Also, the angle

on each ply might not correspond the way they are supposed to, for example if there is a

“missing” ply. It has not been investigated how Abaqus calculates stresses in a composite

layup during analysis. Therefore, documentation should be found on this subject, and the

function changed, to ensure that it will truly render the desired result of an accurate

filament winding layup. The fibres used in filament winding are continuous, and the finished

Abaqus mandrel model should reflect that fact before it is analysed.

Although the approximation is a very good one it has not been investigated whether it does

actually correspond to the physical attributes of a real part. It should be checked whether

only a part of the mandrel being model has any bearing on the results. As the winding layups

are unique for each element the part cannot be said to be symmetrical, but it might prove to

Figure 34 - collecting elements by bounding box

- 82 -

be close enough to symmetrical to be acceptable. If this turns out not to be the case one

solution would be to automatically model a part with the same parameters as the partial

model, or to complete the partial model by revolving and mirroring the existing part.

Currently, the module has only been tested for arbitrary P1 values on different mandrel

models, and not for a complete CNC program. It is possible that using a proper CNC program

will result in unforeseen problems that need to be dealt with.

5.2.5 visualCrashTest.py

At the moment this module only supports movement extracted from the ‘lines’ variable of

a ‘CylindricalMandrel’ object. Using the same approach as the ‘layup’ module this script

could probably be updated to include functionality to run a visual crash test based on a CNC

program file, as well as the generated CNC program.

- 83 -

5.3 Further Expansions
In this section suggestions are made for some additional modules and their hypothetical

properties.

5.3.1 Graphical User Interface (GUI)

As the software grows it will also become more complex and unmanageable. It will be

difficult to keep track of all of the functionalities, variations and permutations embedded in

the software. The code structure is likely to become less structured and more confusing for

those not intimately familiar with it. The simple solution is to create a software GUI from

which operations and functionalities are run. A GUI helps section functions into a more

apparent structure. It will make it easier to get started for new users, as well as eliminate the

need to be familiar with Python and programming to use the software.

Lastly, a GUI might also help spreading the software. As the intention is for the modules to

be universal, flexible and that those using them should continue the development, it is

imperative that they are considered worthwhile to learn and improve. With a GUI it is more

likely that new users, unfamiliar with the software, will take the time to familiarise

themselves with it.

5.3.2 Winding Parameters

As briefly mentioned in chapter 2.1 there are numerous parameters that affect the

mechanical properties of a filament wound part. Cross-over points, feed-rate, thickness

build-up and fibre tension are just some of these. An investigative study should be done,

defining and sorting these parameters, and determining how they can be implemented in

the software. This should be done, not only in terms of generating a CNC program, but also

in terms of modelling in Abaqus. Studying how Abaqus models and analyses composite layup

should be an important part of optimising the AWI software.

5.3.3 Circumventing the Abaqus GUI

Currently this software works though the Abaqus GUI. However, for some of the modules

this is not technically necessary. For example, there is no need for the GUI when determining

the mandrel properties. As long as the model name and part name are known, the module

can be run without the need for a viewport. As mentioned in chapter 2.3.2 there is a way of

communicating with the Abaqus kernel, without the use of the GUI. It might be beneficial to

investigate how this is done, and whether it would be practical to implement such

functionality. Most likely, as the software expands, there will be more modules not

dependent on the Abaqus GUI, and as an AWI GUI is created it might be considered

impractical to have both GUIs running at once.

- 84 -

6. Conclusion

This thesis has been a pilot study into the development of filament winding software

capable of integrating with FEA software. The goal was to create the basis for highly flexible,

open source software from which development might be continued. Key functionalities of

the software were to be generation of a CNC program for a part modelled in Abaqus, and the

addition of a corresponding, accurate composite layup to the modelled part.

Much to the surprise of this author and her supervisor both, the documentation of the

kinematics of filament winding were not as thorough and easily accessible as initially

presumed. After an extensive literature study only five papers were found on the subject, all

of which, for various reasons, were dismissed. What was to be a big part of the thesis

groundwork was therefore determined to be outside of the thesis scope. Instead, focus was

shifted entirely to the software development.

To produce software adequately flexible and comprehensive it was decided that attention

must be paid to the structure, readability, and simplicity of the code, and to generally sound

and thorough reasoning when creating the framework. The intention being that others can

continue the development process independently of the author, without aid. As the

software is completely open source, the aim is that anyone and everyone using the software

solution can add on to, change and optimise the functionalities according to their specific

needs. Such continuous expansion and bettering of the software would ensure it being up to

date, always improving.

The primary result of this thesis is the “Abaqus Winding Integration” (AWI) software

solution. It is a set of modules with several different functionalities related to filament

winding. Those functionalities include extracting mandrel properties from an Abaqus

mandrel model of a cylindrical part with spherical domes, and a framework for the

generation of a CNC program for that same model. The AWI software includes functionalities

for performing a visual simulation of the winding process in the Abaqus GUI based on a

generated CNC program. Finally, it also includes a module for adding a composite layup to an

Abaqus mandrel model. The layup will correspond directly to a CNC program generated

using the AWI software, or to a CNC program imported from an external file; it generates an

accurate model for the filament wound part on which analysis can be performed.

Chapter

- 85 -

6.1 Further Work
The following is a summary of the discussion in chapter 0 – Evaluation. Recommendations

are made for those who are to continue the development to investigate the following areas:

o The kinematics of filament winding need to be investigated and understood.

o The AWI software should be expanded to include several additional types of mandrel

and dome combinations.

o A GUI should be developed and implemented.

o The layup module should be expanded and the mathematical method perfected.

o The winding parameters influencing filament winding should be mapped and a plan

of implementation made

In addition to the abovementioned main areas sever smaller suggestions were made

(function converting from millimetres to inches, additional choices for type of filament

winding machine, reading and adding modular G codes, a more effective ‘determineRadii’

and ‘determineLength’ functions, etc.)

- 86 -

Bibliography
1. Cadwind Features. Material; Available from:

http://www.material.be/cadwind/features/index.html.
2. Winding Expert. Mikrosam; Available from:

http://www.mikrosam.com/new/article/en/winding-expert/.
3. Press Release from Seifert & Skinner. ComposicaD; Available from:

http://www.seifert-skinner.com/Other/PressReleaseJuly2010.pdf.
4. Abaqus Extension for Filament Wound Composite Structures, Capability Brief. Simulia;

Available from: http://www.simulia.com/products/extensions/AppBrief_COPV.pdf.
5. Peters, S.T., Composite filament winding2011, Materials Park, Ohio: ASM

International. VI, 167 s.
6. Seereeram, S. and J.T.Y. Wen, An all-geodesic algorithm for filament winding of a T-

shaped form. Industrial Electronics, IEEE Transactions on, 1991. 38(6): p. 484-490.
7. Peters, S.T., W.D. Humphrey, and R.F. Foral, Filament winding composite structure

fabrication1999, Covina, Calif.: SAMPE International Business Office. Div. pag.
8. Lubin, G., Handbook of fiberglass and advanced plastics composites1969, New York:

Van Nostrand Reinhold. XVIII, 894 s.
9. Eckold, G., Design and manufacture of composite structures1994, Cambridge:

Woodhead. VIII, 397 s.
10. Shen, F.C., A filament-wound structure technology overview. Materials Chemistry and

Physics, 1995. 42(2): p. 96-100.
11. Green, J.E., Overview of filament winding. SAMPE Journal, 2001. 37(1): p. 7-11.
12. Company. Material; Available from: http://www.material.be/company/index.html.
13. Cadwind Demo and tutorial downloads. Material; Available from:

http://www.material.be/cadwind/download/index.html.
14. Mikrosam history. Mikrosam; Available from:

http://www.mikrosam.com/new/article/en/history/.
15. About ComposicaD. ComposicaD; Available from:

http://www.composicad.com/about.php.
16. ComposicaD flyer. ComposicaD; Available from:

http://www.composicad.com/ComposiCAD_Flyer1.pdf.
17. About SIMULIA. Simulia; Available from: http://www.abacom.de/about/about.html.
18. Abaqus FEA. Simulia; Available from:

http://www.abacom.de/products/abaqus_fea.html.
19. Abaqus/CAE. Simulia; Available from:

http://www.abacom.de/products/abaqus_cae.html.
20. Composite Filament Winding, Abaqus. Simulia; Available from:

http://www.simulia.com/products/wound_composites.html.
21. Python. Available from: www.python.org.
22. Python Standard Libraries
23. Simulia, Abaqus Scripting User's Manual. Abaqus Documentation, 2010.
24. Simulia, Abaqus Scripting Reference Manual, 2010.
25. Smid, P., CNC programming handbook: a comprehensive guide to practical CNC

programming2003, New York: Industrial Press. XX, 508 s.
26. Abdel-Hady, F., Filament winding of revolution structures. Journal of Reinforced

Plastics and Composites, 2005. 24(8): p. 855-868.

- 87 -

27. Trajkovski, D., Kinematic Analysis of Trajectory Generation Algorithms for Filament
Winding Machines. Proceedings of the 11th World Congress in Mechanism and
Machine Science, 2003.

28. Koussios, S., Filament Winding a Unified Approach, 2004, Delft University of
Technology.

29. Koussios, S., O.K. Bergsma, and A. Beukers, Filament winding. Part 2: generic
kinematic model and its solutions. Composites Part A: Applied Science and
Manufacturing, 2004. 35(2): p. 197-212.

30. Koussios, S., O.K. Bergsma, and A. Beukers, Filament winding. Part 1: determination
of the wound body related parameters. Composites Part A: Applied Science and
Manufacturing, 2004. 35(2): p. 181-195.

31. Maple webpages. MapleSoft; Available from:
http://www.maplesoft.com/products/maple/index.aspx.

32. Python Regular Expressions1. Python; Available from:
http://docs.python.org/library/re.html.

33. Python Regular Expressions2. Python; Available from:
http://docs.python.org/howto/regex.html.

34. Helix. Wolfram Alpha; Available from: http://www.wolframalpha.com/input/?i=helix.
35. Cutting Helix. Wolfram Alpha; Available from:

http://mathworld.wolfram.com/Helix.html.

A-1

Appendix A – List of Figures

Figure 1 - Filament winding of cylindrical mandrel with domes ... - 3 -

Figure 2 - Simulated elbow winding pattern [1] .. - 4 -

Figure 3 - Geodesic t-shape winding pattern [6] ... - 4 -

Figure 4 – Polar and helical winding patterns [5] .. - 6 -

Figure 5 – Cadwind [1] ... - 8 -

Figure 6 - Winding Expert [2] ... - 9 -

Figure 7 – ComposicaD [3] ... - 10 -

Figure 8 - Abaqus user interface .. - 11 -

Figure 9 - Wound Composite Modeler [4] ... - 12 -

Figure 10 - Abaqus scripting interface commands and Abaqus /CAE - 14 -

Figure 11 - Abaqus structure.. - 16 -

Figure 12 - 'models' object ... - 17 -

Figure 13 - Elements and nodes ... - 17 -

Figure 14 - Python print function ... - 18 -

Figure 15 - CNC example .. - 20 -

Figure 16 – Absolute dimensioning ... - 22 -

Figure 17 - Incremental dimensioning ... - 22 -

Figure 18 - Fibre paths ... - 28 -

Figure 19 - Mandrel and 'Orphan Mesh Part' .. - 34 -

Figure 20 - Structured mesh .. - 35 -

Figure 21 - Unstructured mesh .. - 35 -

Figure 22 - Axis configurations ... - 37 -

Figure 23 – Mandrel properties ... - 37 -

Figure 24 - Different radii for a node ... - 40 -

Figure 25 - GCode opening lines .. - 42 -

Figure 26 - Placement of P2 ... - 43 -

Figure 27 - Node returning wrong radius .. - 47 -

Figure 28 – Simplified problem .. - 56 -

Figure 29 - Bounding box between P1 and P2 ... - 60 -

Figure 30 - Projection of elements ... - 62 -

Figure 31 - Straight line crossing element ... - 63 -

Figure 32 - Mandrel and feed-eye assembly ... - 69 -

Figure 33 - Bounding box on mandrel ... - 77 -

Figure 34 - collecting elements by bounding box .. - 81 -

Figure 35 - Sphere .. D-1

Figure 36 - P1 in quadrant I .. D-2

Figure 37 - P1 in quadrant II ... D-2

Figure 38 - P1 in quadrant III .. D-2

file:///C:/Users/Klorfrosken/Dropbox/Master/Innleveringer/Rapport_endelig.docx%23_Toc327190048
file:///C:/Users/Klorfrosken/Dropbox/Master/Innleveringer/Rapport_endelig.docx%23_Toc327190049
file:///C:/Users/Klorfrosken/Dropbox/Master/Innleveringer/Rapport_endelig.docx%23_Toc327190050
file:///C:/Users/Klorfrosken/Dropbox/Master/Innleveringer/Rapport_endelig.docx%23_Toc327190051
file:///C:/Users/Klorfrosken/Dropbox/Master/Innleveringer/Rapport_endelig.docx%23_Toc327190052
file:///C:/Users/Klorfrosken/Dropbox/Master/Innleveringer/Rapport_endelig.docx%23_Toc327190053
file:///C:/Users/Klorfrosken/Dropbox/Master/Innleveringer/Rapport_endelig.docx%23_Toc327190054
file:///C:/Users/Klorfrosken/Dropbox/Master/Innleveringer/Rapport_endelig.docx%23_Toc327190055
file:///C:/Users/Klorfrosken/Dropbox/Master/Innleveringer/Rapport_endelig.docx%23_Toc327190056
file:///C:/Users/Klorfrosken/Dropbox/Master/Innleveringer/Rapport_endelig.docx%23_Toc327190057
file:///C:/Users/Klorfrosken/Dropbox/Master/Innleveringer/Rapport_endelig.docx%23_Toc327190058
file:///C:/Users/Klorfrosken/Dropbox/Master/Innleveringer/Rapport_endelig.docx%23_Toc327190059
file:///C:/Users/Klorfrosken/Dropbox/Master/Innleveringer/Rapport_endelig.docx%23_Toc327190060
file:///C:/Users/Klorfrosken/Dropbox/Master/Innleveringer/Rapport_endelig.docx%23_Toc327190061
file:///C:/Users/Klorfrosken/Dropbox/Master/Innleveringer/Rapport_endelig.docx%23_Toc327190062
file:///C:/Users/Klorfrosken/Dropbox/Master/Innleveringer/Rapport_endelig.docx%23_Toc327190063
file:///C:/Users/Klorfrosken/Dropbox/Master/Innleveringer/Rapport_endelig.docx%23_Toc327190064
file:///C:/Users/Klorfrosken/Dropbox/Master/Innleveringer/Rapport_endelig.docx%23_Toc327190065
file:///C:/Users/Klorfrosken/Dropbox/Master/Innleveringer/Rapport_endelig.docx%23_Toc327190066
file:///C:/Users/Klorfrosken/Dropbox/Master/Innleveringer/Rapport_endelig.docx%23_Toc327190067
file:///C:/Users/Klorfrosken/Dropbox/Master/Innleveringer/Rapport_endelig.docx%23_Toc327190068
file:///C:/Users/Klorfrosken/Dropbox/Master/Innleveringer/Rapport_endelig.docx%23_Toc327190070
file:///C:/Users/Klorfrosken/Dropbox/Master/Innleveringer/Rapport_endelig.docx%23_Toc327190071
file:///C:/Users/Klorfrosken/Dropbox/Master/Innleveringer/Rapport_endelig.docx%23_Toc327190072
file:///C:/Users/Klorfrosken/Dropbox/Master/Innleveringer/Rapport_endelig.docx%23_Toc327190073
file:///C:/Users/Klorfrosken/Dropbox/Master/Innleveringer/Rapport_endelig.docx%23_Toc327190074
file:///C:/Users/Klorfrosken/Dropbox/Master/Innleveringer/Rapport_endelig.docx%23_Toc327190075
file:///C:/Users/Klorfrosken/Dropbox/Master/Innleveringer/Rapport_endelig.docx%23_Toc327190076
file:///C:/Users/Klorfrosken/Dropbox/Master/Innleveringer/Rapport_endelig.docx%23_Toc327190077
file:///C:/Users/Klorfrosken/Dropbox/Master/Innleveringer/Rapport_endelig.docx%23_Toc327190078
file:///C:/Users/Klorfrosken/Dropbox/Master/Innleveringer/Rapport_endelig.docx%23_Toc327190079
file:///C:/Users/Klorfrosken/Dropbox/Master/Innleveringer/Rapport_endelig.docx%23_Toc327190080
file:///C:/Users/Klorfrosken/Dropbox/Master/Innleveringer/Rapport_endelig.docx%23_Toc327190081
file:///C:/Users/Klorfrosken/Dropbox/Master/Innleveringer/Rapport_endelig.docx%23_Toc327190083
file:///C:/Users/Klorfrosken/Dropbox/Master/Innleveringer/Rapport_endelig.docx%23_Toc327190084
file:///C:/Users/Klorfrosken/Dropbox/Master/Innleveringer/Rapport_endelig.docx%23_Toc327190085

A-2

Figure 39 - P1 in quadrant IV ... D-2

Figure 40 - plot of x(t), z(t) for R = 20, c = 1 ... D-4

Figure 41 - Projected element and winding path .. D-5

Figure 42 - Helical path on cylinder ... D-6

Figure 43 - Circle segment on cylinder .. D-6

file:///C:/Users/Klorfrosken/Dropbox/Master/Innleveringer/Rapport_endelig.docx%23_Toc327190086
file:///C:/Users/Klorfrosken/Dropbox/Master/Innleveringer/Rapport_endelig.docx%23_Toc327190087
file:///C:/Users/Klorfrosken/Dropbox/Master/Innleveringer/Rapport_endelig.docx%23_Toc327190090

B-1

Appendix B – Research History
During the literature study the scientific article databases Scopus, Elsevier, EI Village and

google scholar were used.

As a point of origin for the literature study the paper “Filament Winding of Revolution

Structures” by Faissal Abdel-Hady was used [25]. This paper was used as a main source in a

previous project, but was shown to contain several mistakes and therefore considered

unreliable. With one exception it proved almost impossible to find the sources cited in the

abovementioned article. Instead it was decided to use the articles citing this one instead, a

functionality which can be found in most of the article databases. There were five such

articles. From this point of origin a thorough investigation of these articles, their sources,

their sources’ sources and so on was done.

In addition a search using the following search words was conducted.

- “Filament Winding” automation

- Geodesic path algorithm

- Determination of Feed-eye Position

- Algorithm “filament winding”

- Machine Control “filament Winding”

- (feed-eye pay-out eye) (movement algorithm)

At one point there were no new articles, books or related books. The decision was made

that, although scarce, the documentation found should suffice.

C-2

Appendix C – Evaluation of Equations
This appendix details the mathematical inconsistencies of “Filament Winding of Revolution

Structures”, by Faissal Abdel-Hady [25].

The equations given in the paper are as follows:

0

'

0

2'

0

sin
tan

R cos
R

1 R

(2)

'

0

'

0

0 0
2

R cos cos
x R sin sin

1 R

(3)

0

0
' 2

cos
z z

1 R

(4)

 ' '

0 0

2

cos
tan

R sin sin 1 R cos sin

(5)

In the derivation of equations (2) through (4) the two following equations are utilised:

'

0

'

0

'

0

'

0

'

2

2

2

0

R cos cos
sin sin

1 R

R sin sin
T cos sin

1 R

cos

1 R

(28)

0 0

0

0

R cos x

T R sin

z z

 (29)

Following the logical steps in combining equations (28) and (29) equation (2) remains the

same, but equations (3) and (4) suffer minor changes. In equation (3) the first term of the

equation r should be r cos , and the sign of the last term of equation (4) should be the

opposite.

C-3

In the derivation of equation (5) three equations are utilised:

 n T xf x (30)

 x x i (31)

'

0

'

0

'

0

'

0

'

2

2

2

0

R cos cos
sin sin

1 R

R sin sin
T cos cos

1 R

cos

1 R

(32)

Combining equations (30), (31) and (32), supposedly result in equation (33)

'

0

'

0

'

0

f
2

2

0

cos
n

1 R

R sin sin
cos cos

1 R

(33)

Upon close inspection, however, it can be seen that the two equations (28) and (32),

although expressions for the same variable, are not identical. Regardless of which of the two

are used to derive equation (33), it is not correct. Looking at equation (5) it is assumed that

equation (28) is the correct one. Accurately making use of the vector product of (28) and

(31) equation (33) should be:

'

0

'

0

'

2

2

0

f

0

cos
n

1 R

R sin sin
cos sin

1 R

(34)

C-4

Accordingly equation (5) should read:

2

2

2

'

f j 0

'
f k 0

'

0

' '

0 0

cos

n 1 R
tan

n R sin sin
cos sin

1 R

cos

R sin sin 1 R cos sin

 (35)

D-1

Appendix D – Derivation of Equations
This appendix contains derivation of formulae used in the Abaqus Winding Integration

tools.

D.1 Mandrel Length
Equation (36) describes any point on the surface of a sphere in Cartesian coordinates.

 2 2 2 2R x y z (36)

Any cross-section in the xz-plane (marked in red on Figure 35) will be a circle for which the

following holds:

 2

d

2 2r x z (37)

Combining equations (36) and (37) yields equation for the y coordinate of the point ‘P’ in

terms of the radius of the sphere, ‘R’, and the radius at point ‘P’, ‘r’.

 2 2y R r (38)

Figure 35 - Sphere

Equation (38) describes the length of a mandrel dome in terms of the dome radius, ‘r’, and

the cylinder radius, ‘R’. Adding up with the length of half a cylinder this yields the equation

for the true length of a cylindrical mandrel with spherical domes:

 2 2mandrelLength 2 R r cylinderLength

(15)

P

Y

X

Origin (0, 0, 0)
rd

Z

D-2

D.2 Coordinates of P2
This approach is based on ‘P1’ being located in one of the quadrants of the unit circle, and

‘P2’ being located in the same, or adjoining, quadrant. Figure 36 through Figure 39 show ‘P1’

in different quadrants and the respective possible locations of ‘P2’.

P2

P2
V

H

IV III

I II

X

W W

X

U

P1

P2

P2

V

H

IV III

I II

X
W

W

X

U

P1

Figure 36 - P1 in quadrant I Figure 37 - P1 in quadrant II

P2
P2

V

H

IV III

I II

X

W W

X

U

P1

P2

P2

V

H

IV
III

I II

X

W

W

X U

P1

Figure 39 - P1 in quadrant IV Figure 38 - P1 in quadrant III

D-3

From the figures above the needed equations to determine the leg lengths of the triangle

formed by ‘P2’ can be determined.

Equation (16) holds for P1 in all quadrants.

V1

H

P1
U tan

P1

 (16)

To calculate the angle ‘W’ it is necessary to determine the location of ‘P2’ this is achieved

using the rotation of the mandrel, ‘X’. Equation (39) applies to ‘P1’ in quadrant I or III, and

equation (40) for ‘P1’ in quadrant II or IV.

 V X (39)
 X V (40)

Once the location of ‘P2’ has been determined the following table can be utilised to

determine the angle ‘W’.

P1 P2 Equation

I [III] I [III] W U X (17)

I [III] II [IV] W U X (18)

II [IV] II [IV] W U X (19)

II [IV] III [I] W X U (20)

Equations (21) and (22) are then used to determine the coordinates of the point ‘P2’,

yielding the coordinate value on the horizontal axis, and vertical axis respectively.

 legH signH R cos W (21)

 legV signV R sin W (22)

D-4

D.3 Linear Equations
The parametric equations for a geodesic curve around a cylinder are as follows [33].

 z(t) R cos(t) (41)

 x(t) Rsin(t) (42)

 y(t) ct (43)

Projecting the curve into the plane yields the curve depicted in Figure 40 for R = 20 and c =

1. Plotting in the yz-plane would result in the cosine curve.

From Figure 40 it is clear that as long as P1x and P2x are not too close to the radial value,

and they are located in adjoining quadrants, the path can be considered linear between two

points. The linear equation for such a line can easily be derived from the coordinates of

those two points. With this line in place the elements can be projected into the same plane

and it can be determined whether each element lies in the winding path or not.

Equations (23) and (24) are expressions for the straight line between two points.

 y(x) xa b (23)

 y
x(y)

b

a

 (24)

Figure 40 - plot of x(t), z(t) for R = 20, c = 1

D-5

With two known points P1(x1, y1) and P2(x2, y2) the slope variable, ‘a’, and constant, ‘b’,

can be calculated using equations (25) and (26).

2 1

2 1

y y

x x
a

(25)

1 1y xb a (26)

Knowing the nodal coordinates of an element it can easily be projected onto the same

plane as the line between ‘P1’ and ‘P2’. To ascertain whether the element is in the winding

path it must be determined if a point of the line lies between the boundary values of the

element. This has been illustrated in Figure 41.

Figure 41 - Projected element and winding path

The right square in Figure 41 shows an element in the winding path. Inserting the element

‘minX’ value in equation (23) yields the cross-over point between the winding path and the

left hand vertical element boundary. The element ‘maxY’ value in equation (24) yields the

cross-over point between the winding path and the topmost horizontal element boundary.

The cross-over values will be between the minimum and maximum values of their respective

axes. If the values are not between the minimum and maximum values the element is not in

the winding path.

y

x

Projected element:

maxY

minY

m
in

X

m
axX

Element not in winding path:

P1

P2

P2

Element in winding path:

P1

D-6

D.4 Winding Angle, α

Figure 42 - Helical path on cylinder

If a cylinder with a helical pattern is cut and unfolded the resulting path on the resulting

rectangle is a straight line [34]. From Figure 42 it is clear that equation (44) must be true.

Y
tan

s
 (44)

From Figure 43, and using the rules of ratio,

equation (45) is derived.

X 2 1

s 2 R R

 (45)

Combining equations (44) and (45) results in equation (27); an expression for the winding

angle on a cylindrical mandrel in terms of the rotation of the mandrel, ‘X’, the lateral

movement along the axis of rotation, ‘Y’, and the radius of the cylinder, ‘R’.

Y
tan

RX
 (27)

α

s

Y

X

s

P1 P2

Figure 43 - Circle segment on cylinder

E-1

Appendix E – Integration Tools
Following are the Abaqus Winding Integration Tools in their entirety.

Note that the line numbers will not be identical to those in the *.py files as they have been

formatted slightly for this appendix.

E.1 classes.py
1
2
CLASSSES # 3
4
5
 6
''' 7
This file contains all the classes used in 8
the Abaqus Winding Integration Tools 9
 10
For more information about the functions, how they work and why 11
the procedures have been chosen see 12
"Integration Tools for Design and Process Control of Filament 13
Winding" 14
by Inger Skjaerholt 15
''' 16
 17
necessary Python and Abaqus libraries and files 18
from abaqus import * 19
from abaqusConstants import * 20
 21
import math 22
 23
global constants. Do. NOT. Change. These! 24
X_AXIS = 0 25
Y_AXIS = 1 26
Z_AXIS = 2 27
 28
BODY ### 29
Filament winding machine limits 30
class MachineParameters: 31
 def __init__(self, string, maxMandrelRadius, maxWindingLength, 32
 maxMandrelLength, maxZStroke, maxWStroke): 33
 self.Name = string 34
 ### machine parameters in mm 35
 # parameters on X-axis 36
 self.maxMandrelRadius = maxMandrelRadius 37
 self.maxWindingLength = maxWindingLength #max length to wind 38
 39
 # parameters on Y-axis 40
 self.maxMandrelLength = maxMandrelLength 41
 #max length including shafts 42

 43
 self.maxZStroke = maxZStroke 44
 self.maxWStroke = maxWStroke 45
 46
 47

E-2

cylindrical mandrel with spherical end domes and with identical 48
dome openings 49
class CylindricalMandrel: 50
 def __init__(self, modelName, partName): 51
 # Model variables 52
 self.modelName = modelName 53
 self.partName = partName 54
 self.model = mdb.models[modelName] 55
 self.part = mdb.models[modelName].parts[partName] 56
 self.nodes = mdb.models[modelName].parts[partName].nodes 57
 self.elements = mdb.models[modelName] 58
 .parts[partName].elements 59
 60
 # Geometrical variables 61
 self.rotationalAxis = 'undetermined' 62
 self.H = None #horizontal axis 63
 self.V = None #vertical axis 64
 self.radius = None 65
 self.domeOpening = None 66
 self.minLength = None 67
 self.maxLength = None 68
 self.mandrelLength = None #total length including domes 69
 self.cylinderLength = None 70
 self.pointOfOrigin = None 71
 72
 # G Code variables 73
 self.lines = list() 74
 self.domeVariable = 1 75
 self.windingDirection = -1 76
 77
 ### Class functions 78
 def setLength (self, minLength, maxLength): 79
 self.minLength = minLength 80
 self.maxLength = maxLength 81
 self.cylinderLength = (maxLength - minLength) 82
 83
 self.calculateTotalLength() 84
 self.setDomeVariable() 85
 86
 def calculateTotalLength(self): 87
 self.mandrelLength = 2* (88
 math.sqrt(self.radius**2 - self.domeOpening**2) 89
 + 2*self.cylinderLength) 90
 91
 def setDomeVariable(self): 92
 if (self.pointOfOrigin < self.minLength): 93
 self.domeVariable = -1 94
 95
 # verifying that the mandrel does not exceed the capabilities of 96
 the winding machine 97
 def verifyMandrel (self, settings): 98
 99
 if (self.radius > settings.maxMandrelRadius): 100
 print "The mandrel radius is too great for the ", 101
 settings.Name, " machine" 102
 103

E-3

 if (self.mandrelLength > settings.maxWindingLength): 104
 print "The mandrel length is too great for the ", 105
 settings.Name, " machine" 106
 107
 else: 108
 print "The mandrel is within the parameters of the ", 109
 settings.Name, " machine" 110
 111
 def printProperties (self, settings): 112
 self.verifyMandrel(settings) 113
 print "Model: ", self.modelName, ", Part: ", self.partName 114
 print "Rotational Axis: ", self.rotationalAxis 115
 print "Radius: ", self.radius 116
 print "Dome Opening: ", self.domeOpening 117
 print "Length: ", self.cylinderLength 118
 119
 120
common winding materials 121
class Material: 122
 def __init__(self): 123
 self.Name = None 124
 self.E_1 = None 125
 self.E_2 = None 126
 self.E_3 = None 127
 self.nu_12 = None 128
 self.nu_13 = None 129
 self.nu_23 = None 130
 self.G_12 = None 131
 self.G_13 = None 132
 self.G_23 = None 133
 self.rho = None 134
 self.thickness = None 135
 136
 def carbon_epoxy(self): 137
 self.Name = 'Carbon_Epoxy' 138
 self.E_1 = 14000 139
 self.E_2 = 8000 140
 self.E_3 = 8000 141
 self.nu_12 = 0.3 142
 self.nu_13 = 0.3 143
 self.nu_23 = 0.55 144
 self.G_12 = 4000 145
 self.G_13 = 4000 146
 self.G_23 = 2581 147
 self.rho = 1600 148
 self.thickness = 0.15 149
 150
 151
 152

E-4

often used node variables 153
class CustomNode: 154
 def __init__(self, mandrel, element, node): 155
 # nodal coordinate values 156
 self.XYZ = [0, 0, 0] 157
 self.XYZ[X_AXIS] = mandrel 158
 .nodes[element.connectivity[node]].coordinates[X_AXIS] 159
 self.XYZ[Y_AXIS] = mandrel 160
 .nodes[element.connectivity[node]].coordinates[Y_AXIS] 161
 self.XYZ[Z_AXIS] = mandrel 162
 .nodes[element.connectivity[node]].coordinates[Z_AXIS] 163
 164
 # Radii calculated using different coordinate combinations 165
 self.radii = [0, 0, 0] 166
 self.radii[X_AXIS] = self.calculateRadius(167
 self.XYZ[Y_AXIS], self.XYZ[Z_AXIS]) 168
 self.radii[Y_AXIS] = self.calculateRadius(169
 self.XYZ[X_AXIS], self.XYZ[Z_AXIS]) 170
 self.radii[Z_AXIS] = self.calculateRadius(171
 self.XYZ[X_AXIS], self.XYZ[Y_AXIS]) 172
 173
 # calculate a radius using pythagoras 174
 def calculateRadius (self, leg1, leg2): 175
 return math.sqrt(leg1**2 + leg2**2) 176
 177
 # get the node radius 178
 def returnRadius (self, rotationalAxis): 179
 return self.radii[rotationalAxis] 180
 181
 # get the node coordinate ON the rotational axis 182
 def returnAxisCoordinate(self, rotationalAxis): 183
 return self.XYZ[rotationalAxis] 184
 185
 def printProperties (self, nodeName): 186
 print nodeName, ':' 187
 print 'XYZ = (', 188
 self.XYZ[0], ' , ', self.XYZ[1], ', ', self.XYZ[2], ')' 189
 print 'Radii = (', 190
 self.radii[0], ' , ', self.radii[1], ', ', self.radii[2], ')' 191
 192
CNC code line to be put in the mandrel variable 'lines' 193
class CNCLine: 194
 def __init__(self, N, X, Y, Z, W): 195
 self.N = N 196
 self.X = X 197
 self.Y = Y 198
 self.Z = Z 199
 self.W = W 200
 201
 self.string = "N{0} X{1} Y{2} Z{3} W{4}\n".format(202
 str(round(N, 5)), str(round(X, 5)), str(round(Y, 5)), 203
str(round(Z, 5)), str(round(W, 5))) 204
 205
 206
 207

E-5

G code variables 208
class GCode: 209
 def __init__(self, filename, mandrel): 210
 211
 # increment variables 212
 self.N = 10 #variable for the sequence number 213
 self.increment = 10 #sequence number incremental value 214
 215
 # movement variables 216
 self.totalX = 0 217
 self.totalY = 0 218
 self.totalZ = 0 219
 self.totalW = 0 220
 221
 self.writeOpeningLines(filename, mandrel) 222
 223
 def writeOpeningLines(self, filename, mandrel): 224
 self.GCodeFile = open(filename, 'w') 225
 226
 ### as the G-code file is created the topmost lines in the 227
 program are written 228
 # comment lines to explain for what type of mandrel the 229
 program has been written 230
 self.GCodeFile.write (231
 '(This CNC program has been created using)\n') 232
 self.GCodeFile.write (233
 '(The Abaqus Winding Integration Tools)\n') 234
 self.GCodeFile.write ('for a mandrel of:)\n') 235
 self.GCodeFile.write (236
 '(\tCylinder Radius: ' + 237
 str(round(mandrel.radius, 2)) + ')\n') 238
 self.GCodeFile.write (239
 '(\tDome Opening: ' + 240
 str(round(mandrel.domeOpening, 2)) + ')\n') 241
 self.GCodeFile.write (242
 '(\tCylinder Length: ' + 243
 str(round(mandrel.cylinderLength, 2)) + ')\n') 244
 self.GCodeFile.write ('\n\n\n') 245
 246
 # first block of the program with preparatory commands etc. 247
 self.GCodeFile.write ('N10 G01 G21 G91 G94 F50000\n') 248
 249
 250

E-6

 def addLine (self, settings, mandrel, X, Y, Z, W): 251
 252
 ### adding the movement to the total movement along the axes 253
 self.totalX += X 254
 self.totalY += Y 255
 self.totalZ += Z 256
 self.totalW += W 257
 258
 ### ensuring that the limits of the machine 259
 have not been exceeded 260
 if (self.totalY > settings.maxMandrelLength): 261
 print "error! The maximum movement along the X-axis 262
 has been exceeded" 263
 264
 if (self.totalZ > settings.maxZStroke): 265
 print "error! The maximum movement along the Z-axis 266
 has been exceeded" 267
 268
 if (self.totalW > settings.maxWStroke): 269
 print "error! The maximum rotation around the W-axis 270
 has been exceeded" 271
 272
 else: 273
 # constructing the next line 274
 self.N += self.increment 275
 line = CNCLine (self.N, X, Y, Z, W) 276
 277
 # adding the line to the list of program lines 278
 mandrel.lines.append(line) 279
 280
 # writing the line into the program file 281
 self.GCodeFile.write(line.string) 282
 return 283
 284
 # the limits of the machine have been exceeded 285
 # the process is stopped 286
 return "something to stop the loop" 287
 288
 289
 290

E-7

variables used while adding layup to a model 291
class LayupConstruction: 292
 def __init__(self, P1): 293
 # general variables 294
 self.material = Material() 295
 296
 # movement variables 297
 self.P1 = P1 #starting point for CNC block 298
 self.P2 = [0, 0, 0] #ending point for CNC block 299
 self.crossesHorizontal = False 300
 self.crossesVertical = False 301
 302
 def printPoints(self): 303
 print 'P1: (', 304
 self.P1[0], ', ', self.P1[1], ', ', self.P1[2], ')' 305
 print 'P2: (', 306
 self.P2[0], ', ', self.P2[1], ', ', self.P2[2], ')' 307
 308
 309
Assembly with feed-eye 310
class Assembly: 311
 def __init__(self, mandrel): 312
 self.feedEye = 'Feed-Eye' 313
 self.mandrelName = mandrel.modelName 314
 self.assemblyDir = None 315
 316
 self.createFeedEye(mandrel) 317
 318
 def createFeedEye(self, mandrel): 319
 # base sketch 320
 sketch = mandrel.model.ConstrainedSketch (321
 name = 'Section Sketch', sheetSize = 200.0) 322
 323
 sketch.CircleByCenterPerimeter((0.0, 0.0), (0.0, 5.0)) 324
 325
 # creating the part 326
 part = mandrel.model.Part(name = self.feedEye) 327
 part.BaseSolidExtrude (sketch = sketch, depth = 5.0) 328
 329
 def move (self, mandrel, Y, Z): 330
 #using the axes of the FW machine at NTNU as a standard 331
 # X = rotation of mandrel 332
 # Y = movement along the rotational axis 333
 # Z = movement perpendicular to the mandrel 334
 # W = rotation of the feed-eye 335
 336
 # currently W and X are not relevant, 337
 # but they will probably be in the future 338
 339
 newCoords = [0, 0, 0] 340
 newCoords[mandrel.rotationalAxis] = Y 341
 newCoords[mandrel.V] = -1*Z 342
 343
 self.assemblyDir.translate((self.feedEye,), newCoords) 344
 session.viewports['Viewport: 1'] 345
 .view.setValues(drawImmediately = True)346

E-8

E.2 mandrelProperties.py
1
2
FUNCTIONS TO DETERMINE MANDREL PROPERTIES # 3
4
5
 6
''' 7
This file contains functions to gather and set mandrel properties 8
based on a model from Abaqus/CAE 9
 10
For more information about the functions, how they work and why 11
the procedures have been chosen see 12
"Integration Tools for Design and Process Control of Filament 13
Winding" 14
by Inger Skjaerholt 15
 16
''' 17
 18
necessary Python, Abaqus libraries and files 19
from abaqus import * 20
 21
import classes 22
reload (classes) 23
 24
global constants. Do. NOT. Change. These! 25
X_AXIS = 0 26
Y_AXIS = 1 27
Z_AXIS = 2 28
 29
BODY ### 30
''' 31
This function iterates through the list of mandrel elements 32
comparing radii in different directions to determine Rotational Axis 33
''' 34
def determineRotationalAxis (mandrel): 35
 counter = 0 36
 element = mandrel.elements[counter] #first element in 37
 the elements list 38
 test = None #fail-safe test variable 39
 40
 currentNode = classes.CustomNode(mandrel, element, 0) 41
 42
 while mandrel.rotationalAxis == 'undetermined': 43
 counter += 1 44
 45
 # if the counter has moved to the end of the elements list 46
 # it was not possible to determine the rotational axis 47
 if counter >= len(mandrel.elements): 48
 print "it was not possible 49
 to determine the rotational axis" 50
 51
 52

E-9

 #ask for manual input through GUI 53
 rotationalAxis = getInput(54
 'Enter the numerical value for the rotational Axis: 55
 \n(X-Axis = 0, Y-Axis = 1, Z-Axis = 2)') 56
 mandrel.rotationalAxis = int(rotationalAxis) 57
 break 58
 59
 element = mandrel.elements[counter] #next element 60
 nextNode = classes.CustomNode(mandrel, element, 0) 61
 62
 # if the coordinates are identical it is unnecessary to 63
 compare them 64
 if (currentNode.XYZ == nextNode.XYZ): 65
 currentNode = nextNode 66
 continue 67
 68
 ### comparing to see if the different radii are equal, 69
 determining the rotational axis 70
 if round(currentNode.radii[X_AXIS],5) == 71
 round(nextNode.radii[X_AXIS], 5): 72
 # if the fail-safe variable is 'None' or another axis 73
 if test != X_AXIS: 74
 test = X_AXIS 75
 76
 # if the previous comparison also returned this axis, 77
 the rotational axis is set 78
 elif test == X_AXIS: 79
 mandrel.rotationalAxis = X_AXIS 80
 mandrel.H = Z_AXIS 81
 mandrel.V = Y_AXIS 82
 83
 if round(currentNode.radii[Y_AXIS], 5) == 84
 round(nextNode.radii[Y_AXIS], 5): 85
 if test != Y_AXIS: 86
 test = Y_AXIS 87
 88
 elif test == Y_AXIS: 89
 mandrel.rotationalAxis = Y_AXIS 90
 mandrel.H = X_AXIS 91
 mandrel.V = Z_AXIS 92
 93
 if round(currentNode.radii[Z_AXIS], 5) == 94
 round(nextNode.radii[Z_AXIS], 5): 95
 if test != Z_AXIS: 96
 test = Z_AXIS 97
 98
 elif test == Z_AXIS: 99
 mandrel.rotationalAxis = Z_AXIS 100
 mandrel.H = Y_AXIS 101
 mandrel.V = X_AXIS 102
 103
 104
 # if the rotational axis has not been determined 105
 move one element further 106
 currentNode = nextNode 107
 108

E-10

 109
''' 110
This function iterates through all the nodes on all the elements in 111
the elements list 112
determining the smallest and greatest radius along the axis of 113
rotation. 114
''' 115
def determineRadii (mandrel): 116
 minRadius = None 117
 maxRadius = None 118
 119
 for element in mandrel.elements: 120
 #number of nodes on an element. 121
 Will vary depending on element type 122
 nodesOnElement = len(element.connectivity) 123
 124
 # iterate through the nodes 125
 for i in range(nodesOnElement): 126
 currentNode = classes.CustomNode(mandrel, element, i) 127
 128
 # radius given by node j on element i 129
 tempRadius = currentNode 130
 .returnRadius(mandrel.rotationalAxis) 131
 132
 # set point of comparison on the first iteration 133
 if minRadius == None: 134
 minRadius = tempRadius 135
 maxRadius = tempRadius 136
 137
 # in case the first node is on the dome opening 138
 mandrel.pointOfOrigin = currentNode 139
 .returnAxisCoordinate(mandrel.rotationalAxis) 140
 141
 elif tempRadius < minRadius: 142
 minRadius = tempRadius 143
 mandrel.pointOfOrigin = currentNode 144
 .returnAxisCoordinate(mandrel.rotationalAxis) 145
 146
 147
 elif tempRadius > maxRadius: 148
 maxRadius = tempRadius 149
 150
 mandrel.radius = maxRadius 151
 mandrel.domeOpening = minRadius 152
 153
 154
 155

E-11

''' 156
This function iterates through all the elements in the elements list 157
determining the outer extreme coordinates on the rotational axis for 158
the cylinder 159
''' 160
def determineLength (mandrel): 161
 minLength = None#minimum coordinate value on the rotational axis 162
 maxLength = None#maximum coordinate value on the rotational axis 163
 164
 for element in mandrel.elements: 165
 # variable for the number of nodes on an element. 166
 Will vary depending on element type 167
 nodesOnElement = len(element.connectivity) 168
 169
 # iterate through the nodes 170
 for i in range(nodesOnElement): 171
 currentNode = classes.CustomNode(mandrel, element, i) 172
 rotAxCoordinate = currentNode 173
 .returnAxisCoordinate(mandrel.rotationalAxis) 174
 tempRadius = currentNode 175
 .returnRadius(mandrel.rotationalAxis) 176
 177
 # tempRadius is not equal to the cylinder radius 178
 and therefore on the dome 179
 if round(tempRadius, 5) != round(mandrel.radius, 5): 180
 break 181
 182
 # set points of comparison on the first iteration 183
 if minLength == None: 184
 minLength = rotAxCoordinate 185
 maxLength = rotAxCoordinate 186
 187
 elif rotAxCoordinate < minLength: 188
 minLength = rotAxCoordinate 189
 190
 elif rotAxCoordinate > maxLength: 191
 maxLength = rotAxCoordinate 192
 193
 mandrel.setLength(minLength, maxLength) 194
 195
 196
''' 197
This function gathers and determines the mandrel properties 198
based on a specific model in Abaqus/CAE 199
''' 200
def setProperties(settings, mandrel): 201
 determineRotationalAxis(mandrel) 202
 determineRadii(mandrel) 203
 determineLength(mandrel) 204
 205
 print 'Mandrel Properties: ' 206
 print '---' 207
 mandrel.printProperties(settings)208

E-12

E.3 GCode.py
1
2
FUNCTIONS TO WRITE G CODE # 3
4
5
 6
''' 7
This file contains all the custom made functions necessary to create 8
G codes based on an Abaqus model 9
 10
For more information about the functions, how they work and why 11
the procedures have been chosen see 12
"Integration Tools for Design and Process Control of Filament 13
Winding" 14
by Inger Skjaerholt 15
''' 16
 17
necessary Python, Abaqus libraries and files 18
from abaqus import * 19
 20
import classes 21
reload (classes) 22
 23
global constants. Do. NOT. Change. These! 24
(global constants added for readability) 25
X_AXIS = 0 26
Y_AXIS = 1 27
Z_AXIS = 2 28
 29
BODY ### 30
''' 31
This function creates a CNC program based on an Abaqus model 32
''' 33
def createCNCprogram (settings, mandrel): 34
 #set file name for the CNC program 35
 fileName = "{0}_{1}".format(mandrel.modelName, mandrel.partName) 36
 37
 code = classes.GCode(fileName, mandrel) 38
 39
 ''' 40
 mathematics of winding 41
 code.addLine(settings, X, Y, Z, W) 42
 43
 ''' 44
 ### random points for testing 45
 code.addLine(settings, mandrel, 10, 20, -5, 20) 46
 code.addLine(settings, mandrel, 15, -8, 13, 5) 47
 code.addLine(settings, mandrel, 30, 50, 9, 30) 48
 49
 50
 print "a CNC-program has been created for: " 51
 mandrel.printProperties(settings)52

E-13

E.4 layup.py
1
2
FUNCTIONS TO ADD LAYUP # 3
4
5
 6
''' 7
This file contains all the custom made functions necessary to 8
add layup on an Abaqus model 9
 10
For more information about the functions, how they work and why 11
the procedures have been chosen see 12
"Integration Tools for Design and Process Control of Filament 13
Winding" 14
by Inger Skjaerholt 15
 16
''' 17
 18
necessary Python, Abaqus libraries and files 19
from abaqus import * 20
from abaqusConstants import * 21
import __main__ 22
import regionToolset 23
 24
import re #necessary library to search through a string 25
import math 26
 27
import classes 28
reload (classes) 29
 30
global constants. Do. NOT. Change. These! 31
(global constants added for readability) 32
X_AXIS = 0 33
Y_AXIS = 1 34
Z_AXIS = 2 35
 36
BODY ### 37
''' 38
This function adds the carbon_epoxy material to the model 39
''' 40
def addMaterial(mandrel, layup): 41
 layup.material.carbon_epoxy() 42
 43
 # add material to the Abaqus model 44
 mdb.models[mandrel.modelName].Material(45
 name = layup.material.Name) 46
 47
 48
 49

E-14

 # set material properties 50
 mdb.models[mandrel.modelName] 51
 .materials[layup.material.Name].Elastic(52
 type = ENGINEERING_CONSTANTS, 53
 table = ((layup.material.E_1, layup.material.E_2, 54
 layup.material.E_3, layup.material.nu_12, 55
 layup.material.nu_13, layup.material.nu_23, 56
 layup.material.G_12, layup.material.G_13, 57
 layup.material.G_23),)) 58
 59
 # set material density 60
 mdb.models[mandrel.modelName] 61
 .materials[layup.material.Name] 62
 .Density(table=((layup.material.rho,),)) 63
 64
 65
''' 66
This function extracts the relevant values from a line of G code 67
''' 68
def readGCodes(line): 69
 try: 70
 matches = re.search(71
 r'\A N(\d+) \s+ X(\d+(,\d+)?) \s+ Y(\d+(,\d+)?)', 72
 line, flags=re.M | re.S | re.X) 73
 74
 X = float(matches.group(2).replace(",", ".")) 75
 Y = float(matches.group(4).replace(",", ".")) 76
 77
 return (X, Y) 78
 79
 except AttributeError: 80
 return 81
 82
 83
''' 84
This function to determine if a variable is positive or negative 85
''' 86
def sign(var): 87
 if var < 0: 88
 return -1 89
 return 1 90
 91
 92
 93

E-15

''' 94
This function determines the coordinate values for P2 95
based on P1, rotation of mandrel and movement along the Y-axis 96
''' 97
def calculateP2(mandrel, layup, X, Y): 98
 P1 = layup.P1 99
 100
 # determine what quadrant P1 is located in 101
 signH = sign(P1[mandrel.H]) 102
 signV = sign(P1[mandrel.V]) 103
 104
 # calculate the angle between P1 and the horizontal axis 105
 U = math.atan2(abs(P1[mandrel.V]),abs(P1[mandrel.H])) 106
 107
 # if the coordinates of P1 are in quadrant I or III 108
 if (signH == signV): 109
 # if P1 and P2 are in the same quadrant 110
 if (U+X) < (math.pi/2): 111
 W = U+X 112
 113
 else: 114
 W = math.pi - (U+X) 115
 signH *= -1 116
 layup.crossesVertical = True 117
 118
 # if the coordinates of P1 are in quadrant II or IV 119
 else: 120
 # if P1 and P2 are in the same quadrant 121
 if (X < U): 122
 W = U-X 123
 124
 else: 125
 W = X-U 126
 signV *= -1 127
 layup.crossesHorizontal = True 128
 129
 legH = signH * (mandrel.radius * math.cos(W)) #horizontal leg 130
 legV = signV * (mandrel.radius * math.sin(W)) #vertical leg 131
 legLateral = P1[mandrel.rotationalAxis] + 132
 mandrel.windingDirection * Y 133
 134
 ### set values for P2 135
 layup.P2[mandrel.rotationalAxis] = legLateral 136
 layup.P2[mandrel.V] = legV 137
 layup.P2[mandrel.H] = legH 138
 139
 140
 141

E-16

''' 142
This function collects the elements between P1 and P2 143
''' 144
def collectBoxElements(mandrel, layup): 145
 minCoords = [0, 0, 0] #minimum coordinates 146
 maxCoords = [0, 0, 0] #maximum coordinates 147
 P1 = layup.P1 148
 P2 = layup.P2 149
 150
 # sort maximum and minimum coordinates 151
 for i in range(3): 152
 if (P1[i] < P2[i]): 153
 minCoords[i] = P1[i] 154
 maxCoords[i] = P2[i] 155
 else: 156
 minCoords[i] = P2[i] 157
 maxCoords[i] = P1[i] 158
 159
 # if an axis has been crossed the max/min variable 160
 # must be mandrel radius to collect all elements 161
 if layup.crossesHorizontal: 162
 if sign(P1[mandrel.V]) > 0: 163
 minCoords[mandrel.H] = -1* mandrel.radius 164
 else: 165
 maxCoords[mandrel.H] = mandrel.radius 166
 167
 if layup.crossesVertical: 168
 if sign(P1[mandrel.H]) > 0: 169
 maxCoords[mandrel.V] = mandrel.radius 170
 else: 171
 minCoords[mandrel.V] = -1*mandrel.radius 172
 173
 boxElements = mandrel.elements.getByBoundingBox(174
 xMin = minCoords[X_AXIS], 175
 yMin = minCoords[Y_AXIS], 176
 zMin = minCoords[Z_AXIS], 177
 xMax = maxCoords[X_AXIS], 178
 yMax = maxCoords[Y_AXIS], 179
 zMax = maxCoords[Z_AXIS]) 180
 181
 return boxElements 182
 183
 184
 185

E-17

''' 186
This function determines which elements are crossed by the line 187
between P1 and P2 188
''' 189
def collectLayupElements(mandrel, layup, boxElements): 190
 P1 = layup.P1 191
 P2 = layup.P2 192
 193
 ### determine the line equation for the line between P1 and P2 194
 # if P1 is in quadrant I or III 195
 if sign(P1[mandrel.H]) == sign(P1[mandrel.V]): 196
 a = (197
 (P2[mandrel.rotationalAxis] - P1[mandrel.rotationalAxis]) 198
 /(P2[mandrel.H] - P1[mandrel.H])) 199
 b = P1[mandrel.rotationalAxis] - P1[mandrel.H]*a 200
 201
 # if P1 is in quadrant II or IV 202
 elif sign(P1[mandrel.H]) != sign(P1[mandrel.V]): 203
 a = (204
 (P2[mandrel.rotationalAxis] - P1[mandrel.rotationalAxis]) 205
 /(P2[mandrel.V] - P1[mandrel.V])) 206
 b = P1[mandrel.rotationalAxis] - P1[mandrel.V]*a 207
 208
 sectionElements = [] 209
 210
 for element in boxElements: 211
 numberOfNodes = len(element.connectivity) 212
 213
 # iterate through the nodes 214
 for i in range(numberOfNodes): 215
 currentNode = classes.CustomNode(mandrel, element, i) 216
 217
 # set points of comparison 218
 if i == 0: 219
 minY = maxY =currentNode.XYZ[mandrel.rotationalAxis] 220
 minX = maxX =currentNode.XYZ[mandrel.H] 221
 222
 # for quadrant II and IV use vertical axis 223
 if sign(P1[mandrel.H]) != sign(P1[mandrel.V]): 224
 minX = maxX = currentNode.XYZ[mandrel.V] 225
 226
 227

E-18

 # for quadrant I and III use horizontal axis 228
 else: 229
 if (minY > currentNode.XYZ[mandrel.rotationalAxis]): 230
 minY = currentNode.XYZ[mandrel.rotationalAxis] 231
 232
 if (maxY < currentNode.XYZ[mandrel.rotationalAxis]): 233
 maxY = currentNode.XYZ[mandrel.rotationalAxis] 234
 235
 # for quadrant II and IV use vertical axis 236
 if sign(P1[mandrel.H]) != sign(P1[mandrel.V]): 237
 if (minX > currentNode.XYZ[mandrel.V]): 238
 minX = currentNode.XYZ[mandrel.V] 239
 240
 if (maxX < currentNode.XYZ[mandrel.V]): 241
 maxX = currentNode.XYZ[mandrel.V] 242
 243
 else: 244
 if (minX > currentNode.XYZ[mandrel.H]): 245
 minX = currentNode.XYZ[mandrel.H] 246
 247
 if (maxX < currentNode.XYZ[mandrel.H]): 248
 maxX = currentNode.XYZ[mandrel.H] 249
 250
 ### calculating coordinates for a point on the line 251
 # corresponding to the min/max values of the element 252
 Y_min = a*minX + b 253
 Y_max = a*maxX + b 254
 X_min = (minY - b)/a 255
 X_max = (maxY - b)/a 256
 257
 ### checking if the element is crossed 258
 by the line between P1 and P2 259
 appended = False #variable ensures an element 260
 is only appended once 261
 if (((minY < Y_min) and (Y_min < maxY)) or 262
 ((minY < Y_max) and (Y_max < maxY))): 263
 appended = True 264
 sectionElements.append(element) 265
 266
 if (((minX < X_min) and (X_min < maxX)) or 267
 ((minX < X_max) and (X_max < maxX))): 268
 if appended == False: 269
 sectionElements.append(element) 270
 271
 return sectionElements 272
 273
 274
 275

E-19

''' 276
This function adds ply to the layup of each relevant element 277
''' 278
def addPly (mandrel, layup, sectionElements): 279
 rotAxes = (AXIS_1, AXIS_2, AXIS_3) 280
 #winding angle based on machine movement 281
 alpha = math.degrees(math.atan(Y/mandrel.radius/X)) 282
 283
 for element in sectionElements: 284
 layupName = 'layup e[%r]' %element.label 285
 286
 #check if the current element already has a composite layup 287
 try: 288
 compositeLayup = mandrel.part.compositeLayups[layupName] 289
 290
 numPlies = len(compositeLayup.plies)+1 291
 plyName = 'Ply %r' %numPlies 292
 293
 # if not: create composite layup for the element 294
 except KeyError: 295
 # create composite layup 296
 compositeLayup = mandrel.part.CompositeLayup(297
 name = layupName, 298
 offsetType = TOP_SURFACE, 299
 symmetric = False, 300
 thicknessAssignment = FROM_SECTION) 301
 302
 plyName = 'Ply 1' 303
 304
 # set rotation relative to the global coordinate system 305
 compositeLayup.orientation.setValues(306
 orientationType = GLOBAL, 307
 localCsys = None, 308
 additionalRotationType = ROTATION_NONE, 309
 angle = 0.0) 310
 311
 # format the element to be put into the region 312
 temp = mandrel.elements.sequenceFromLabels([element.label]) 313
 314
 region1 = regionToolset.Region(elements = temp) 315
 316
 # add ply to element 317
 compositeLayup.CompositePly(318
 suppressed = False, 319
 plyName = plyName, 320
 thicknessType = SPECIFY_THICKNESS, 321
 thickness = layup.material.thickness, 322
 region = region1, 323
 material = layup.material.Name, 324
 orientationType = SPECIFY_ORIENT, 325
 orientationValue = alpha, 326
 axis = rotAxes[mandrel.rotationalAxis]) 327
 328
 329
 330

E-20

''' 331
This function adds layup to a mandrel model based on: 332
 - CNC program from file 'f' 333
 - Abaqus model that has generated its own CNC program 'g' 334
 - manual input 'm' 335
''' 336
def addLayup (mandrel, method): 337
 # CNC program from file 338
 if method == 'f': 339
 fileName = getInput(340
 'Enter the file name of the CNC-program:') 341
 str(fileName) 342
 343
 file = open(fileName, 'r') 344
 345
 ### set P1 as tip of dome 346
 P1 = [0, 0, 0] 347
 P1[mandrel.rotationalAxis] = mandrel.pointOfOrigin 348
 349
 # create layup variables 350
 layup = classes.LayupConstruction(P1) 351
 addMaterial(mandrel,layup) 352
 353
 for line in file: 354
 XY = readGCodes(line) 355
 # if XY is empty the current line contains 356
 comments or modal commands 357
 if not XY: 358
 continue 359
 360
 # change winding direction if appropriate 361
 if (XY[1] < 0): 362
 mandrel.windingDirection = 1 363
 364
 ### add layup based on variables from file 365
 calculateP2(mandrel, layup, XY[0], XY[1]) 366
 boxElements = collectBoxElements(mandrel, layup) 367
 sectionElements = collectLayupElements(368
 mandrel, layup, boxElements) 369
 addPly(mandrel, layup, sectionElements) 370
 371
 P1 = P2 372
 373
 374

E-21

 # layup created based on relevant abaqus model 375
 elif method == 'g': 376
 ### set P1 as dome tip 377
 P1 = [0, 0, 0] 378
 P1[mandrel.rotationalAxis] = mandrel.pointOfOrigin 379
 380
 # create layup variables 381
 layup = classes.LayupConstruction(P1) 382
 addMaterial(mandrel,layup) 383
 384
 for i in mandrel.lines: 385
 line = mandrel.lines[i] 386
 X = line.X 387
 Y = line.Y 388
 389
 #change winding direction if appropriate 390
 if (Y < 0): 391
 mandrel.windingDirection = 1 392
 393
 ### add layup based on variable from 394
 the 'lines' list of the mandrel 395
 calculateP2(mandrel, layup, X, Y) 396
 boxElements = collectBoxElements(mandrel, layup) 397
 sectionElements = collectLayupElements(398
 mandrel, layup, boxElements) 399
 addPly(mandrel, layup, sectionElements) 400
 401
 P1 = P2 402
 403
 # manual input, mostly used for testing and debugging 404
 elif method == 'm': 405
 startingPoints = (406
 [25, 20, 15], 407
 [25, 20, -15], 408
 [25, -20, -15], 409
 [25, -20, 15]) 410
 411
 XY = (3, 40) 412
 413
 for i in range(len(startingPoints)): 414
 layup = classes.LayupConstruction(startingPoints[i]) 415
 addMaterial(mandrel,layup) 416
 417
 calculateP2(mandrel, layup, XY[0], XY[1]) 418
 boxElements = collectBoxElements(mandrel, layup) 419
 sectionElements = collectLayupElements(420
 mandrel, layup, boxElements) 421
 addPly(mandrel, layup, sectionElements) 422

E-22

E.5 visualCrashTest.py
1
2
FUNCTIONS TO RUN A VISUAL CRASH TEST # 3
4
5
 6
''' 7
This file contains all the custom made functions necessary to run a 8
visual crash test using the Abaqus model. 9
 10
For more information about the functions, how they work and why 11
the procedures have been chosen see 12
"Integration Tools for Design and Process Control of Filament 13
Winding" 14
by Inger Skjaerholt 15
''' 16
 17
necessary Python, Abaqus libraries and files 18
from abaqus import * 19
from abaqusConstants import * 20
import __main__ 21
 22
import sketch 23
import part 24
 25
import time 26
 27
import classes 28
reload (classes) 29
 30
global constants. Do. NOT. Change. These! 31
constants representing coordinate system values (either axes or 32
coordinates): 33
X_AXIS = 0 34
Y_AXIS = 1 35
Z_AXIS = 2 36
 37
BODY ### 38
''' 39
This function creates an assembly with a constructed feed-eye and 40
the relevant part 41
''' 42
def createTestSetUp (mandrel, assembly): 43
 # creating assembly 44
 assembly.assemblyDir = mandrel.model.rootAssembly 45
 46
 # display the assembly in the viewport 47
 session.viewports['Viewport: 1'].setValues(48
 displayedObject=assembly.assemblyDir) 49
 50
 feedEyePart = mandrel.model.parts[assembly.feedEye] 51
 mandrelPart = mandrel.model.parts[mandrel.partName] 52
 53
 54

E-23

 #adding the two parts to the assembly 55
 assembly.assemblyDir.Instance (56
 assembly.feedEye, part = feedEyePart, dependent = ON) 57
 assembly.assemblyDir.Instance (58
 'Mandrel', part = mandrelPart, dependent = ON) 59
 60
 # define practical view based on rotational axis 61
 # and rotate feed-eye according to model 62
 if mandrel.rotationalAxis == X_AXIS: 63
 assembly.assemblyDir.rotate(64
 (assembly.feedEye,), (0,0,0), (0,0,-5), 90) 65
 setView = (45, 45, 0) 66
 67
 if mandrel.rotationalAxis == Y_AXIS: 68
 assembly.assemblyDir.rotate(69
 (assembly.feedEye,), (0,0,0), (0,-5,0), 90) 70
 setView = (-45, 0, -45) 71
 72
 if mandrel.rotationalAxis == Z_AXIS: 73
 assembly.assemblyDir.rotate(74
 (assembly.feedEye,), (0,0,0), (-5,0,0), 90) 75
 setView = (45, 135, 90) 76
 77
 ### move the feed-eye to an initial position 78
 offset = [0, 0, 0] 79
 offset[mandrel.H] = mandrel.radius + mandrel.radius/4 80
 offset[mandrel.rotationalAxis] = mandrel.pointOfOrigin 81
 assembly.assemblyDir.translate((assembly.feedEye,), offset) 82
 83
 # set appropriate view and fit to screen 84
 session.viewports['Viewport: 1'].view.rotate(85
 xAngle=setView[0], 86
 yAngle=setView[1], 87
 zAngle=setView[2], 88
 mode=TOTAL) 89
 session.viewports['Viewport: 1'].view.fitView() 90
 91
 92
''' 93
This function runs a visual crash test based on generated CNC 94
program for the model 95
''' 96
def runTest (mandrel): 97
 assembly = classes.Assembly(mandrel) 98
 createTestSetUp(mandrel, assembly) 99
 100
 for i in range(len(mandrel.lines)): 101
 assembly.move(102
 mandrel, mandrel.lines[i].Y, mandrel.lines[i].Z) 103
 time.sleep(1) 104

E-24

E.6 main.py
1
2
MAIN FUNCTION # 3
4
5
''' 6
This is a main function that should be run thorugh Abaqus/CAE 7
It utilises all the Abaqus Winding Integration Tools in order 8
 9
For more information about the functions, how they work and why 10
the procedures have been chosen see 11
"Integration Tools for Design and Process Control of Filament 12
Winding" 13
by Inger Skjaerholt 14
''' 15
necessary lines to use the abaqus functions 16
from abaqus import * 17
from abaqusConstants import * 18
import __main__ 19
 20
import and reload the tools 21
import mandrelProperties 22
reload (mandrelProperties) 23
import GCode 24
reload (GCode) 25
import classes 26
reload (classes) 27
import visualCrashTest 28
reload (visualCrashTest) 29
import layup 30
reload (layup) 31
 32
INPUT ### 33
Specific model data from the Abaqus model 34
modelName = 'Model-9' 35
partName = 'Part-1-mesh-1' 36
 37
alternatively the user can be prompted for the input 38
this is, however, impractical during development and as comments 39
''' 40
modelName, partName = getInputs(41
 (('insert modelName: ', 'modelName'), 42
 ('insert partName', 'partName')), 43
 dialogTitle = 'Input') 44
''' 45
 46
settings = classes.MachineParameters('NTNU', 400.0, 4000.0, 4500.0, 47
400.0, 2*3.14) 48
mandrel = classes.CylindricalMandrel(modelName, partName) 49
mandrelProperties.setProperties(settings, mandrel) 50
layup.addLayup(mandrel, 'm') 51
GCode.createCNCprogram(settings, mandrel) 52
visualCrashTest.runTest(mandrel)53

F-1

Appendix F – AWI Variable Reference List

Variable Description Used In
Value
Type

Type

a slope variable of linear equation collectLayupElements num f

alpha winding angle addPly num f

Appended
True' if element is already in
'sectionElements'

collectLayupElements bool f

assembly 'Assembly' class object runTest obj f

assemblyDir
pointer to the visual crash test root
assembly

Assembly pointer c

b constant variable of linear equation collectLayupElements num f

boxElements
list of elements inside a bounding box
created by P1 and P2

collectBoxElements list f

Code GCode object GCode obj f

compositeLayup
pointer to Abaqus composite layup
object

addPly pointer f

counter
counts number of elements
investigated

determineRotationalAxis num f

crossesHorizontal
whether P1 and P2 are on separate
sides of the horizontal axis

LayupConstruction bool c

crossesVertical
whether P1 and P2 are on separate
sides of the vertical axis

LayupConstruction bool c

currentNode 'node' object determineRotationalAxis obj f

cylinderLength
length of the cylindrical part of the
mandrel

CylindricalMandrel num c

domeOpening radius of mandrel dome opening CylindricalMandrel num c

domeVariable
variable dependent on the spatial
placement of the mandrel dome along
the axis of rotation

CylindricalMandrel -1/1 c

E_1, E_2, E_3 tensile moduli for material Material num c

element element object from the 'elements' list determineRotationalAxis pointer f

elements
pointer to the elements list of an
Abaqus model

CylindricalMandrel pointer c

feedEye name of feed-eye part Assembly str c

feedEyePart pointer to Abaqus feed-eye part createTestSetUp pointer f

fileName

name of file from which CNC program
blocks are read

addLayup str f

name of file to which CNC program
blocks are written

GCode str f

f – Function Variable g – Global Variable c – Class Variable

F-2

Variable Description Used In
Value
Type

Type

G_12, G_13, G_23 shear moduli for material Material num c

GCodeFile
File object to which CNC program
blocks are written

GCode str c

H horizontal axis of the mandrel CylindricalMandrel 0/1/2 c

Increment
incremental value for the sequence
number

GCode num c

layup layupConstruction' object addLayup obj f

layupName name of composite layup for element addPly str f

legH
P2 distance from origin along horizontal
axis

calculateP2 num f

legV
P2 distance from origin along vertical
axis

calculateP2 num f

lines
list of CNC program blocs for the
mandrel

CylindricalMandrel list c

mandrel 'CylindricalMandrel' object main obj f

mandrelLength total length of mandrel CylindricalMandrel num c

mandrelName name of part in Abaqus model Assembly str c

mandrelPart pointer to Abaqus mandrel part createTestSetUp pointer f

Matches
groups of python regular expression
matches

readGCodes - f

Material winding material LayupConstruction - c

maxCoords list of maximum coordinates collectBoxElements list f

maxLength
maximum coordinate value on the
mandrel model cylinder

CylindricalMandrel num c

maxLength greatest current length value determineLength list f

maxMandrelLength
maximum length of mandrel including
shafts

MachineParameters num c

maxMandrelRadius
maximum mandrel radius for the
winding machine

MachineParameters num c

maxRadius greatest current radius value determineRadii list f

maxWindingLength maximum length of part to be wound MachineParameters num c

maxWStroke
maximum rotation of the winding
machine feed-eye

MachineParameters num c

f – Function Variable g – Global Variable c – Class Variable

F-3

Variable Description Used In
Value
Type

Type

maxX
maximum nodal coordinate value on
second axis

collectLayupElements num f

maxY
maximum nodal coordinate value on
rotational axis

collectLayupElements num f

maxZStroke
arm length of winding machine
perpendicular to the mandrel

MachineParameters num c

minCoords list of minimum coordinates collectBoxElements list f

minLength
minimum coordinate value on the
mandrel model cylinder

CylindricalMandrel num c

minLength smallest current length value determineLength list f

minRadius smallest current radius value determineRadii list f

minX
minimum nodal coordinate value on
second axis

collectLayupElements num f

minY
minimum nodal coordinate value on
rotational axis

collectLayupElements num f

model pointer to Abaqus model CylindricalMandrel pointer c

modelName name of Abaqus model
CylindricalMandrel str c

main str g

N sequence number for CNC block

CNCLine num c

GCode num c

Name name of filament winding machine, MachineParameters str c

Name name of material Material str c

newCoords
new coordinates for the movement of
the feed-eye part in visual crash test
assembly

Assembly list c

nextNode 'node' object determineRotationalAxis obj f

nodes
pointer to the nodes list of an Abaqus
model

CylindricalMandrel pointer c

nodesOnElement number of nodes on an element
collectLayupElements num f

determineRadii num f

nu_12, nu_13,
nu_23

Poisson's ratio for material Material num c

numPlies
number of plies already in composite
layup

addPly num f

f – Function Variable g – Global Variable c – Class Variable

F-4

Variable Description Used In
Value
Type

Type

offset
feed-eye distance from mandrel
upon start-up

createTestSetUp list f

P1
starting point of a CNC program
block

LayupConstruction list c

addPly list f

collectLayupElements list f

collectBoxElements list f

calculateP2 list f

P2 ending point of a CNC program block

LayupConstruction list c

collectLayupElements list f

collectBoxElements list f

calculateP2 list f

part
pointer to Abaqus part CylindricalMandrel pointer c

pointer to the feed-eye part Assembly pointer c

partName name of part in Abaqus model
CylindricalMandrel str c

main str g

plyName name of next composite ply addPly str f

pointOfOrigin
coordinate value on the axis of
rotation for the mandrel dome
opening

CylindricalMandrel num c

radii radii in different planes for a node CustomNode list c

radius radius of mandrel CylindricalMandrel num c

region1 region (element) on which to add ply addPly - f

Rho density of material Material num c

rotationalAxis rotational axis of the mandrel CylindricalMandrel 0/1/2 c

rotAxCoordinate node coordinate on axis of rotation determineLength num f

rotAxes
tuple of Abaqus rotational axes
definitions

addPly list f

sectionElements list of elements in winding path collectLayupElements list f

settings 'MachineParameters' object main obj f

signH
sign of coordinate value on
horizontal axis

calculateP2 -1/1 f

signV
sign of coordinate value on vertical
axis

calculateP2 -1/1 f

sketch
pointer to the sketch for the feed-
eye part

Assembly pointer c

startingPoints list of manual P1 addLayup list f

string string of a CNC program block CNCLine str c

temp element formatted to fit in region addPly - f

tempRadius
temporary variable for the radius on
a node

determineRadii num f

f – Function Variable g – Global Variable c – Class Variable

F-5

Variable Description Used In
Value
Type

Type

test
fail-safe variable storing an axis
variable

determineRotationalAxis 0/1/2 f

thickness material thickness Material num c

totalW total rotation of the feed-eye GCode num c

totalX
total rotation of mandrel for the CNC
program

GCode num c

totalY
total lateral movement along the
mandrel axis of rotation for the CNC
program

GCode num c

totalZ
total movement perpendicular to the
mandrel

GCode num c

U angle between P1 and horizontal axis calculateP2 num f

V vertical axis of the mandrel CylindricalMandrel 0/1/2 c

W
rotation of the feed-eye CNCLine num c

angle between P2 and horizontal axis calculateP2 num f

windingDirection
variable describing whether the
winding is done in the positive or
negative direction

CylindricalMandrel 1/-1 c

X rotation of mandrel

CNCLine num c

readGCodes num f

calculateP2 num f

addLayup num f

X_AXIS denotes x-axis All 0 g

X_max maximum line value on second axis collectLayupElements num f

X_min minimum line value on second axis collectLayupElements num f

XY manual input for 'X' and 'Y' addLayup list f

XYZ coordinate values for the node CustomNode list c

Y
lateral movement along the mandrel
rotational axis

CNCLine num c

readGCodes num f

calculateP2 num f

addLayup num f

Y_AXIS denotes y-axis All 1 g

Y_max
maximum line value on rotational
axis

collectLayupElements num f

Y_min
minimum line value on rotational
axis

collectLayupElements num f

Z
movement perpendicular to the
mandrel

CNCLine num c

Z_AXIS denotes z-axis All 2 g

f – Function Variable g – Global Variable c – Class Variable

	Title Page
	masteroppgave.pdf

