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Summary

This thesis consist of seven papers and an introduction describing the ongoing
development and applications of multilevel coupled cluster theory. Coupled clus-
ter theory is one of the most accurate, but also one of the most computationally
demanding methods currently available in electronic structure theory. Multilevel
coupled cluster theory can greatly reduce the cost by treating only a part of the
molecule with a high level theory and the rest more approximately.

X-ray spectroscopy involving core excitations is becoming increasingly important
in chemical investigations. Modelling core excitations is challenging and require
high level methods. This thesis demonstrates how coupled cluster models can be
combined with novel experimental techniques to follow the evolution of excited
states in thymine.

Core excitations are highly local, being dominated by a single core electron. This
makes them well suited for the multilevel coupled cluster approach. The method
can be combined with a new type of orbitals, generated specifically for the excitation
being investigated. We achieved almost two orders of magnitude reductions in
computational cost with this approach.
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to thank James P. Cryan, Markus Gühr, Ida-Marie Høyvik, Alfredo M. J. Sanchéz
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Chapter 1

Introduction

Coupled cluster (CC) theory is one of the most, if not the most, accurate method
regularly employed in electronic structure theory. Unlike configuration interaction
(CI), CC has a straightforward interpretation with electron interactions modelled
as simultaneous excitations of two or more electrons from the reference state. An
important property of CC is that it is size extensive, so the energy of two noninter-
acting molecules is equal to the sum of the energy of the two molecules. Another
property of CC theory is that excitation energies and oscillator strengths are size
intensive in the CC linear response (CCLR) formalism. When such properties are
calculated for two identical molecules infinitely far apart, the results are identical
to those of one molecule. In addition, CC methods form a hierarchy of increasingly
accurate methods. This makes it possible to systematically improve the accuracy
of calculations.

As always, there is no such thing as a free lunch. In the case of CC methods,
the computational cost increases rapidly with system size and level of theory. For
example, CC singles and double (CCSD) scales as N6, where N is a measure of
system size, while CCSD with perturbative triples (CC3) scales as N7. For this
reason, CCSD has been limited to medium size molecules, while CC3 has been
mostly used for benchmarking.

X-ray spectroscopy is a rapidly developing spectroscopic method and new facilities
with MHz repetition frequency are under construction at the European XFEL in
Hamburg and SLAC National Accelerator Facility in California. In X-ray absorp-
tion spectroscopy (XAS) core electrons are excited, making it possible to target
specific atoms in a molecule and obtain information about their local environ-
ment. From a theoretical perspective, core excitations bring new challenges not
encountered when describing valence electron processes. In particular, the core
hole created in core excitation processes results in a large charge transfer from the
core to valence region. This again leads to large relaxation effects. Consequently,
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2 Introduction

high level methods and large basis sets are often required in order to reproduce
experimental results quantitatively.

For small molecules it is possible to use CC3 and large basis sets to simulate ac-
curate near edge X-ray fine structure (NEXAFS) spectra. However, this is too
expensive for larger systems, requiring techniques to reduce the cost while main-
taining the accuracy. This thesis will outline the development and implementation
of multilevel coupled cluster theory (MLCC). By combining a high level and a
less expensive CC method and restricting the high level method to a small part
of the system, large savings in computational cost can be achieved. In this work,
reductions up to two orders of magnitude are demonstrated.

1.1 Outline

Seven publications are included in this work labelled A to G. The first three papers,
referred to as A, B, and C, describe the development and implementation of MLCC
theory. The next paper, D, reports the application of multilevel CCSD (MLCCSD)
to X-ray spectroscopy. In Papers E and F the accuracy of CC3 is assessed against
experimental spectra. Finally, G describes the results of a time resolved NEXAFS
experiment conducted at SLAC.

Chapter 2 briefly presents general electronic structure theory with an extra focus
on CC theory. This chapter also presents the notation used in the rest of the thesis.
Note that some of the naming conventions changed during the project, so it will
not be consistent in all the papers. In particular, MLCCSD was initially referred
to as ECC2.

The development of MLCC is discussed in Chapter 3, corresponding to Papers A,
B and C. There is a particular focus on the treatment of excited states, as MLCC
is best suited for size intensive properties like excitation energies. This chapter will
also discuss how to generate an active space and the implementation of multilevel
CC3 (MLCC3) in Dalton.

The next chapter, Chapter 4, describes the use of MLCC to simulate X-ray spectra,
corresponding to Paper D. Example calculations using the newly developed auto-
mated molecular orbitals (AMOs) are also presented. These orbitals show great
potential in combination with MLCC3.

Papers E and F assess the accuracy of CC theory, particularly CC3, for core exci-
tations and will be discussed in Chapter 5. This chapter also deals with basis set
requirements when calculating core excitations.

Chapter 6 presents the experiment described in Paper G with a focus on the theo-
retical methods. Calculating high level time dependent spectra of thymine required
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development of new theory and considerable computational effort. This project is
by far the largest of those presented in this thesis.

Finally, Chapter 7 contains the conclusion and plans for future work.

1.2 Publications

R. H. Myhre, Alfredo M. J. Sánchez de Merás and H. Koch
The extended CC2 model, ECC2
Mol. Phys. 111, 1109 (2013)

R. H. Myhre, Alfredo M. J. Sánchez de Merás and H. Koch
Multi-level coupled cluster theory
J. Chem. Phys. 141, 224105 (2014)

R. H. Myhre and H. Koch
The multilevel CC3 coupled cluster model
J. Chem. Phys. 145, 044111 (2016)

R. H. Myhre, S. Coriani and H. Koch
Near-Edge X-ray Absorption Fine Structure within
Multilevel Coupled Cluster Theory
J. Chem. Theory Comput. 12, 2633 (2016)

R. H. Myhre, S. Coriani and H. Koch
An X-ray absorption study of glycine within Coupled Cluster
Linear Response theory
Manuscript

R. H. Myhre, T. J. A. Wolf, S. Coriani, M. Gühr and H. Koch
A theoretical and experimental benchmark study of core excited states in N2

Manuscript

T. J. A. Wolf, R. H. Myhre, J. P. Cryan, S. Coriani, R. Squibb, A. Battistoni,
N. Berrah, C. Bostedt, P. Bucksbaum, R. Coffee, G. Coslovich, R. Feifel,
K. Gaffney, J. Grilj, T. J. Mart́ınez, S. Miyabe, S. P. Moeller, M. Mucke, A. Natan,
R. Obaid, T. Osipov, O. Plekan, S. Wang, H. Koch and M. Gühr
Probing ultrafast ππ∗/nπ∗ internal conversion in organic chromophores via K-edge
resonant absorption
Manuscript





Chapter 2

General theory

2.1 The Schrödinger equation

The goal in almost all electronic structure calculations is solving the Schrödinger
equation [2].

HΨ = i�
∂

∂t
Ψ (2.1)

HΨ = EΨ (2.2)

Equation (2.1) is the time dependent version of the equation and describes the time
evolution of the system with wave function Ψ. � is the reduced Planck constant,
which is 1 in atomic units and usually omitted in derivations. The other equation,
Eq. (2.2), is the time independent version and describes a system in a stationary
state where Ψ is an eigenfunction of the Hamiltonian, H, with eigenvalue E, the
energy. In principle, the Schrödinger equation can describe all spin- 12 particles, i. e.
fermions, relativistically by inserting the Dirac Hamiltonian [3]. However, the size
of relativistic effects on molecular properties typically scales with atom number as

δP ∼
(

Z

137

)2

(2.3)

and are usually neglected for light elements [4, 5]. The exception is processes
involving core electrons because their high kinetic energy can give considerable
relativistic effects. This will be discussed further in Section 5.3. For the rest of
this thesis, the Hamiltonian refers to the non-relativistic version unless explicitly
stated otherwise.

When neglecting relativistic effects, the Hamiltonian operator can conveniently be
divided into five separate parts.

H = Te + Tn + Vee + Ven + Vnn (2.4)

5



6 General theory

In Eq. (2.4), T refers to kinetic and V refers to potential energy terms, e refers
to electrons and n refers to atomic cores. The term Vnn should be interpreted
as the interaction between the cores, Vee interactions between electrons and Ven

interactions between electrons and cores. Atomic units are used in the following
equations and capital indices refer to atomic cores while lower case indices refer to
electrons.

Te = −1

2

∑
i

∇2
i (2.5)

Tn = −
∑
I

1

2MI
∇2

I (2.6)

Vee =
1

2

∑
i �=j

1

rij
(2.7)

Vee = −
∑
i

∑
I

ZI

RiI
(2.8)

Vee =
1

2

∑
I �=J

ZIZJ

RIj
(2.9)

Protons in the core are more than 1800 times more massive than electrons. This
justifies the Born-Oppenheimer approximation [6], where the electron distribution
is assumed to instantly adapt to changes in the atomic positions. This greatly
simplifies the calculations because Tn and Vnn are reduced to constants while Ven

becomes a simple one-electron operator. This assumption is usually valid, but there
are exceptions such as conical intersections.

The hydrogen atom, H, and the dihydrogen cation, H+
2 , are the only chemical sys-

tems for which the non-relativistic Schrödinger equation can be solved analytically.
For larger systems, the wave function must be parametrised in a finite dimensional
basis set. In most models, this is done by expressing the wave function as a Slater
determinant or a linear combination of them [7]. A Slater determinant is a deter-
minant of N molecular spin orbitals, φp(x) where N is the number of electrons and
x is a compound index with a spin and a spatial part.

|φp1φp2 . . . φpN
| = 1√

N

∣∣∣∣∣∣∣∣∣

φp1
(x1) φp2

(x1) · · · φpN
(x1)

φp1
(x2) φp2

(x2) · · · φpN
(x2)

...
...

. . .
...

φp1(xN ) φp2(xN ) · · · φpN
(xN )

∣∣∣∣∣∣∣∣∣
(2.10)

These determinants span a Hilbert space, called the Fock space, that contains the
exact solution of the Schrödinger equation within the given basis set. By writing
the basis vectors as determinants, we ensure that the wave function has the correct
antisymmetry of fermions. Another advantage of formulating a Fock space is that
its components, i.e. the determinants, can be expressed as strings of creation
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operators, a†p, operating on an empty vacuum state, similar to a Clifford algebra

[8, 9]. The creation operator, a†p can be viewed as placing an electron in molecular
spin orbital p. Correspondingly, the destruction operator, aq, removes an electron
from spin orbital q. The antisymmetry of the fermions are now preserved through
anticommutation relations:

{a†p, a†q} = 0 {ap, aq} = 0 {a†p, aq} = δpq (2.11)

In this formalism and the spin orbital basis, the electronic Hamiltonian is written
as

H =
∑
pq

hpqa
†
paq +

1

2

∑
pqrs

(pq|rs)a†pa†rasaq (2.12)

The first term in Eq 2.12 is a one-electron operator term with the scalars hpq given
by

hpq =

∫
φ∗
p(x)

(
−1

2
∇2 −

∑
I

ZI

rI

)
φq(x)dx (2.13)

The second term is a two-electron operator term and is needed to describe electron
interactions. The repulsion integrals are given by

(pq|rs) =
∫ ∫

φ∗
p(x1)φ

∗
r(x2)φq(x1)φs(x2)

r12
dx1dx2 (2.14)

2.2 Hartree-Fock theory

Hartree-Fock (HF) theory [10, 11] is probably the most important method in elec-
tronic structure theory. Alone, it provides qualitative descriptions of ground state
properties such as molecular geometries and can be extended with the random
phase approximation [12] to describe excited state properties. It also serves as the
starting point and reference for many higher level methods, including CC theory.

In HF theory, the single electron configuration that best approximates the wave
function is determined. A physical interpretation is to view each electron as a
particle moving in the potential of the nuclei and the average potential of the
other electrons, but neglecting the instantaneous interactions between electrons.
To achieve this, the Hamiltonian is divided into the Fock operator, F , and the
fluctuation potential, U .

H = F + U (2.15)

The Fock operator is an effective one-electron operator. It contains hpq from Eq.
2.12 and the effective one-electron terms from the two-electron operator.

Fpq =

(
hpq +

∑
i

((pq|ii)− (pi|iq))
)
a†paq (2.16)
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Here, i refers to an occupied spin orbital and in this thesis the standard notation is
used where i, j, k, . . . refer to occupied orbitals, a, b, c, . . . refer to virtual orbitals
and p, q, r, . . . refer to general orbitals. The two terms in Eq. (2.16) correspond to
Coulomb repulsion and exchange, respectively.

In practice, the HF equations are solved by minimising the energy. This corre-
sponds to orbital rotations, creating a set of orthogonal molecular orbitals (MOs).
The orbitals appear in the equation, so they have to be solved iteratively and the
procedure is known as self-consistent field (SCF). The basis of MOs obtained from
SCF are referred to as the canonical basis and the fact that the Fock matrix is di-
agonal simplifies the derivation of many methods, particularly perturbative models
like CC3. However, the canonical solution is not a unique and the HF wave func-
tion is invariant to any orbital rotation as long as the occupied and virtual blocks
of the Fock matrix remain noninteracting. The choice of orbital will be discussed
further in Chapter 3. For closed shell systems, the spin symmetry of the solution
is usually enforced. This is known as restricted HF. For open shell systems this is
not possible and unrestricted HF is necessary. This carries the risk of obtaining a
lower energy solution with wrong spin symmetry.

2.3 Configuration interaction

The difference between the HF energy and the exact solution within the basis
set is referred to as the correlation energy. In order to calculate this, electronic
exchange must be accounted for and several configuration vectors must be included
in the wave function. The most straightforward procedure is to add all possible
configurations and minimise the energy, known as full configuration interaction
(FCI). This correspond to finding the eigenvalues of the Hamiltonian matrix. The
drawback of this approach is that the number of Slater determinants that must be
included scales combinatorially.

Ndet =

(
n

Nα

)(
n

Nβ

)
(2.17)

Above, n is the number of orbitals and Nα and Nβ are the numbers of α- and
β-electrons, respectively.

Clearly, such steep scaling limits the FCI approach to very small systems and
approximations are required if we want to do more than benchmarking. There is
little point in having the exact solution within the basis set if the basis set is too
small. The Fock term usually dominates the other terms in the Hamiltonian. It is
therefore a reasonable assumption that the HF wave function is a good reference
that can be used as a starting point and reference for more accurate methods.
Note that there are important cases, such as stretched geometries, where several
configurations are required to describe the ground state. In such cases, the HF
wave function is not a good reference.
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Truncated configuration interaction (CI) is one such method. The starting point
is to write the FCI wave function as an expansion from the HF wave function.

|FCI〉 =

⎛
⎝1 +

∑
ai

Y a
i +

∑
a>b,i>j

Y ab
ij + . . .

⎞
⎠ |HF〉 (2.18)

The operators Y a
i and Y ab

ij excite one and two electrons respectively from occupied
to virtual orbitals and have an associated scalar weight, C.

Y a
i |HF〉 = Ca

i a
†
aai |HF〉 (2.19)

Y ab
ij |HF〉 = Cab

ij a
†
aa

†
baiaj |HF〉 (2.20)

The number of determinants that has to be included is greatly reduced by trun-
cating the expansion in Eq. (2.18) after some excitation level. For example, CI
singles and doubles (CISD) is truncated after the double excitations and scales as
N6. This means that a doubling of system size will increase the computational cost
64 times, but CISD is much cheaper than FCI and, importantly, it scales polyno-
mially. After the introduction of CCSD, CISD has become less popular because
CCSD is more accurate and has the same scaling.

2.4 Coupled cluster theory

Coupled cluster theory was originally formulated in nuclear physics in the 1950s
[13, 14], but was later adapted for quantum chemistry where it enjoyed greater
success [15, 16]. Here we only discuss closed shell CC models.

In CC theory, the wave function is parametrised as the nonlinear product of ex-
citation operators, τμ, acting on the HF reference state. Excitation operators are
defined as the operators that excites the reference state to an excited state |μ〉.

τμ |HF〉 = |μ〉 (2.21)

The cluster operator, X, is constructed by taking the sum of all excitation operators
multiplied by their amplitudes, xμ.

X = X1 +X2 +X3 + . . .

=
∑
μ1

xμ1
τμ1

+
∑
μ2

xμ2
τμ2

+
∑
μ3

xμ3
τμ3

+ . . . (2.22)

The compound indices μ1, μ2 and μ3 run over single, double and triple excited
states, respectively, and in exact theory the cluster operator includes all excitations.
While the Brillouin theorem ensures that the single excitations do not have a direct
effect on the ground state energy, they act as orbital relaxation parameters and are



10 General theory

included in the standard CC formulation. In formulations with explicit orbital
relaxation such as Brueckner CC theory [17, 18] or orbital adaptive CC [19], the
single excitation amplitudes are zero and not included.

The coupled cluster wave function is obtained by letting the exponential of the
cluster operator act on the HF reference state.

|CC〉 = exp(X) |HF〉 (2.23)

Note that the exponential in Eq. (2.23) has a finite expansion when acting on the
reference state because there is a finite number of electrons to excite. Writing the
wave function as an exponential is known as the exponential ansatz.

Including products of the excitation operators ensures that contributions from
higher excited states are included that would be discarded in the truncated CI
expansion in Eq. (2.18). The downside is that energy minimisation leads to a set
of complicated nonlinear equations that are very difficult to solve [20]. Instead, the
CC amplitudes and energy is determined using projection.

〈HF| exp(−X)H exp(X) |HF〉 = E (2.24)

〈μ| exp(−X)H exp(X) |HF〉 = 0 (2.25)

The untruncated CC wave function is equivalent to FCI up to a normalisation con-
stant. To make the CC approach usable, the cluster operator must be truncated.
The most common approach is to keep single and double excitations, resulting in
the CCSD model [21]. When solving for a truncated cluster operator, the projec-
tion manifold is restricted to the same states as the excitations. For CCSD, the
equations are only projected against the manifold of the singly and doubly excited
states, resulting in amplitude equations that scale as N6.

Ωμ1 = 〈μ1| Ĥ + [Ĥ,X2] |HF〉 = 0 (2.26)

Ωμ2
= 〈μ2| Ĥ + [Ĥ,X2] +

1

2
[[Ĥ,X2], X2] |HF〉 = 0 (2.27)

In Eqs. (2.26) and (2.27), the X1-transformed Hamilton operator,

Ĥ = exp(−X1)H exp(X1) (2.28)

is employed for simplicity. Note that the overlap between the CC and HF wave
functions is always 1 and the cluster operator does not commute with its complex
conjugate, so calculating the norm of the wave function, 〈CC|CC〉, scales as FCI.

Truncating the cluster operator at different levels results in a natural hierarchy of
increasingly accurate and expensive models, starting with CC singles (CCS), CCSD
and CC singles, doubles and triples (CCSDT) [22] which scale as N4, N6 and N8,
respectively. In addition, there are the CC perturbative models CC2 [23] and CC3
[24]. In these models, the Hamiltonian is split into the Fock operator, considered
zero order, and the fluctuation potential considered first order. Similarly, double
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excitations are considered first order, triple excitations second order and so on.
Single excitations are treated like orbital relaxation parameters and included to
infinite order. When solving for the double amplitudes in CC2, only terms up to
first order are included and Eq. (2.27) is simplified, resulting in Eq. (2.29).

Ωμ2 = 〈μ2| Ĥ + [F,X2] |HF〉 = 0 (2.29)

In canonical basis, Eq. (2.29) is particularly simple because F is diagonal. Con-
sequently, the X2 amplitudes can be separated and expressed purely in terms of
the singles amplitudes and integrals. This eliminates the need for storage of the
X2 amplitudes and makes very efficient implementations possible. The standard
implementation of CC2 scales as N5, but it is possible to implement it scaling as
N4 [25].

In CC3, terms up to second order are included when solving for the triples and
similarly to CC2, it is possible to separate out the triples in Eq. (2.30).

Ωμ3
= 〈μ3| [F,X3] + [Ĥ,X2] |HF〉 = 0 (2.30)

Avoiding storage of the triples is critical because the number of amplitudes scale as
N6. High storage demands would severely limit the applicability of the model which
is already limited due to its N7 scaling. The X3-contributions to the singles and
doubles amplitude equations can be viewed as corrections to the CCSD equations.

Ωμ1
= ΩCCSD

μ1
+ 〈μ1| [H,X3] |HF〉 = 0 (2.31)

Ωμ2
= ΩCCSD

μ2
+ 〈μ2| [Ĥ,X3] |HF〉 = 0 (2.32)

The CC2 and CC3 models are considered intermediate in the CC hierarchy with
CC2 between CCS and CCSD and CC3 between CCSD and CCSDT. Having a
systematic hierarchy of models makes it possible to verify lower level results.

A model considered outside the hierarchy is the popular CCSD(T) model [26, 27].
In this model, the triples are included as a correction to the energy after solving the
CCSD equations. Calculating the correction scales as N7, but no further iterations
are required. As the effect of the triples are only added after the fact, CCSD(T)
cannot be used to calculate excited state properties in its standard formulation,
however, it is very accurate for the ground state.

2.5 Coupled cluster response theory

Calculating time dependent properties of coupled cluster can be done with two
different methods, response theory [28–32] and equation of motion (EOM) [33, 34].
These methods are similar and produce the same excitation energies, but other
properties are somewhat different. This section will describe coupled cluster linear
response, CCLR, and Section 2.6 will describe EOM.
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In linear response, the system is assumed to be dominated by the time independent
Hamiltonian in Eq. (2.12), H0. A small time dependent perturbation, V t, is added
to the Hamiltonian.

H = H0 + V t (2.33)

By expressing the perturbation as a Fourier series, we obtain its frequency compo-
nents.

V t =

∫ ∞

−∞
dωV ωe(−iω+α)t (2.34)

The time dependent expectation value of a Hermitian operator, B, can be expanded
in orders of the frequency with the first term being the time independent expec-
tation value. Writing the time independent ground state as |0〉 and its orthogonal
complement as {|k〉}, the time dependent expectation value can be expressed as an
expansion in orders of the perturbation.

〈B〉(t) = 〈0|B |0〉+
∫ ∞

−∞
dω〈〈B;V ω〉〉ω+iαe

(−iω+α)t

+
1

2

∫ ∞

−∞

∫ ∞

−∞
dω1dω2〈〈B;V ω1 ;V ω2〉〉ω1+iα,ω2+iαe

(−iω1−iω2+2α)t

+ . . .

(2.35)

In Eq (2.35), 〈〈B;V ω〉〉ω+iα is the linear response function and the next term
contains the quadratic response function. These can be viewed as the change in
the observable B in response to the operator V ω and operators V ω1 and V ω2 .

The exact linear response function is written as a sum over the orthogonal comple-
ment.

〈〈B;V ω〉〉ω+iα =
∑
k

( 〈0|B |k〉 〈k|V ω |0〉
ω − ωk + iα

− 〈0|V ω |k〉 〈k|B |0〉
ω + ωk + iα

)
(2.36)

Equation (2.36) diverges when ω approaches ±ωk, corresponding to the excitation
and deexcitation energies of the unperturbed system. The residues at these poles
are the transition matrix elements.

As discussed in Section 2.4, CC theory is not variational and instead a bivariational
Lagrangian must be constructed using the dual state, 〈Λ|.

〈Λ| = 〈HF|+
∑
μ

x̄μ 〈μ| exp(−X) (2.37)

Above, x̄ are Lagrangian multipliers. The time independent expectation value is
expressed in terms of 〈Λ| and |CC〉.

〈B〉0 = 〈Λ|B |CC〉 (2.38)
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Assuming the frequency components of the perturbation are time independent, we
can express the linear response function relatively easily.

〈〈B;C〉〉ω =
∑
μ

〈Λ| [B, τμ] |CC〉XC
μ (ω)

+
∑
μ

(
〈Λ| [C, τμ] |CC〉+

∑
ν

FμνX
C
ν (ω)

)
XB

μ (−ω)

(2.39)

The vector XB(ω) is related to the Fourier transform of the time dependent CC
amplitudes,

XB
μ (ω) =

∑
ν

(−A+ ωI)
−1
μν 〈ν| exp(−X)B |CC〉 (2.40)

and the elements of the F -matrix are the expectation values of the double commu-
tator between the Hamiltonian and excitation operators.

Fμν = 〈Λ| [[H0, τμ], τν ] |CC〉 (2.41)

Finally, the elements of the Jacobian A in Eq. (2.40) are the derivatives of the
Ω-vector with respect to the amplitudes.

Aμν =
∂Ωμ

∂xν
= 〈μ| exp(−X)[H0, τν ] exp(X) |CC〉 (2.42)

In order to determine the pole structure of the response function, it is necessary to
determine the eigenvalues of the Jacobian.

LkA = ωkLk ARl = ωlRl LkRl = δkl (2.43)

The Jacobian is not symmetric and the linear response function requires the eigen-
vectors from both left and right so both eigenproblems in Eq. (2.43) must be solved.
In addition, the eigenvalues are not guaranteed to be real. This can become an
issue with degenerate electronic states [35–37].

Deriving the response functions using the time dependent Schrödinger equation is
the most intuitive and instructive approach. However, it is often easier to derive
specific working equations using the quasienergy method [38, 39], especially for
perturbative models where it is not obvious how to define a generalised Hellmann-
Feynman theorem [40, 41].

Multiphoton processes requires higher order terms from the response expansion
such as the quadratic and cubic response functions. These response functions can
be derived similarly to the linear one, but the complexity of the equations grow
quickly and they will not be discussed here [30, 31]. Transition moments between
excited states can be derived from the quadratic response function and require the
corresponding transition matrix elements ΓB

k→m.

ΓB
k→m = 〈k| exp(−X)[B, τm] |CC〉

+
∑
n

XB
n (ωk − ωm) 〈k| exp(−X)[[H0, τn]τm] |CC〉

+ δkm 〈Λ|B |CC〉

(2.44)
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The Latin indices in Eq. (2.44) refer to excited CC states and the corresponding
vectors are obtained by transforming to the basis that diagonalises the Jacobian.

τm =
∑
μ

τμRμm 〈n| =
∑
ν

Lnν 〈ν| XB
n (ω) =

∑
ν

LnνX
B
ν (ω) (2.45)

Solving equation (2.44) as it is written would require a full diagonalisation of the
Jacobian which is obviously not possible. However, in actual implementations the
terms are obtained in the primitive HF basis and transformed afterwards.

Solving for the eigenvalues of the Jacobian is usually the most expensive step in
CCLR calculations. In most cases, we are only interested in a few electronic states
and the corresponding eigenvalues and eigenvectors. The Davidson algorithm [42,
43] solves iteratively for the lowest eigenvalues and only requires matrix vector
products. This is important because the Jacobian is too large to construct and
store explicitly. More recently, the Lanczos algorithm [44–46] has been used to
solve for the eigenvalues. It constructs a tridiagonal matrix which in principle
makes it possible to compute full spectra. Unfortunately, it is numerically unstable
and is limited by large storage and orthogonalisation requirements.

2.6 Coupled cluster equation of motion

The EOM method in CC [33, 34] is a similar to CCLR, but the equations are
somewhat easier to solve. In EOM, the excited states are assumed to exist in a
space spanned by a CI like expansion.

|c〉 =
∑
μ

cμτμ |CC〉 = exp(X)
∑
μ

cμτμ |HF〉 (2.46)

Note that the index, μ, in Eq. (2.46) runs over all states, including the reference
state. The corresponding τ0 operator is considered the identity operator. Similarly
a biorthogonal state is defined for the left hand side.

〈c̄| =
∑
μ

c̄μ 〈HF| τ †μ exp(−X) (2.47)

Energies of the excited states can then be expressed as pseudo expectation values.

E(c, c̄) =
〈c̄|H |c〉
〈c̄|c〉 (2.48)

and determining the excited states reduces to an eigenproblem. The matrix to be
diagonalised is nonsymmetric and is a similarity transform of the Hamiltonian.

HX = exp(−X)H exp(X) (2.49)
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By partitioning the similarity transformed Hamiltonian, the close relation with
CCLR becomes obvious.

HX =

(
0 ηT

0 A

)
+ E0I (2.50)

The first row in the matrix is the vector η,

ημ = 〈HF|H |μ〉 (2.51)

while A is the Jacobian from Section 2.5. For the ground state, the left and right
solutions are the 〈Λ| and |CC〉 vectors from before and the excitation energies are
the eigenvalues of A. Consequently, CCLR and EOM-CC produce the same excited
states and the same size intensives excitation energies. The two methods do differ,
however, for other excited state properties.

For example, the ground state transition moments are calculated as pseudo expec-
tation values. Because the Jacobian is not Hermitian, we must take the product of
the left and right expectation values.

D = 〈Λ|μ |c〉 〈c̄|μ |CC〉 (2.52)

Similarly, transition moments between excited states can be calculated. Unlike the
excitation energies, transition moments are not identical in EOM and CCLR and
they are not size intensive in EOM [47]. The difference is generally small and the
EOM transition moments are less computationally demanding than CCLR because
there is one less equation to solve.

2.7 Other ab initio methods

This section will briefly mention some other important ab initio methods. Specifi-
cally, the multiconfigurational self-consistent field [48, 49] method (MCSCF), Møller-
Plesset or many-body perturbation theory [50, 51] (MBPT) and the algebraic dia-
grammatic construction [52, 53] (ADC) approach.

A disadvantage of both CI and CC theory is that they rely on a good reference state
to obtain accurate results. At equilibrium geometries, most systems are described
well by a single reference and this is not a problem, but at stretched or twisted
geometries the effects can be large. A classic example is ethene when the double
bond is rotated 90◦. At this geometry, two electron configurations become equally
important and SCF breaks down. This is known as the multireference problem.
The correlation energy missing due to multireference character is known as static
correlation, as opposed to dynamic correlation arising from Coulomb repulsion.

Multiconfigurational SCF theory is one of the few methods that can describe mul-
tireference states. The basic idea of MCSCF is to optimise the MOs and the CI
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coefficients simultaneously. For FCI, this is unnecessary because the coefficients al-
ready provide full flexibility. For truncated CI wave functions, on the other hand, it
can provide important degrees of freedom. The MCSCF wave function is expressed
as an orbital rotation operator, exp(−κ), acting on a CI wave function.

|κ,C〉 = exp(−κ)
∑
i

Ci |i〉 (2.53)

As in CI, the wave function is constructed by minimising the energy expectation
value.

E = min
κ,C

〈κ,C|H |κ,C〉
〈κ,C|κ,C〉 (2.54)

Unfortunately, this is a complicated nonlinear optimisation and can only be em-
ployed on relatively small systems. In order to restrict the number of configurations
to include, MCSCF is usually employed on an active space. In the complete active
space (CAS) approach the orbital space is partitioned into an inactive part where
all the orbitals are doubly occupied, a secondary part with unoccupied orbitals and
an active part where the occupation numbers are allowed to vary [49]. Such ap-
proaches can be implemented very efficiently but the size of the active space must
be relatively small to avoid combinatorial explosion. This also limits the size of the
basis set, making it difficult to get quantitative results.

One of the earliest post HF methods is Møller-Plesset perturbation theory, also
known as many-body perturbation theory. In this approach, the Hamiltonian is
assumed to be dominated by the Fock operator and the fluctuation potential, see
Eq. (2.15), is viewed as a perturbation. It is possible to derive the equations of
MBPT by inserting the definitions into the Schrödinger equation and removing
terms of higher order. However, it is easier to use an exponential ansatz and CC
and MBPT is closely related. In fact, MP2 and CC2 only differ in the inclusion of
single excitations in CC2 and MBPT is size extensive.

A disadvantage with MBPT is that it is not suitable to describe excited states. In
the perturbative framework, response theory will produce higher order poles and
it is not possible to interpret eigenvalues as excitation energies [39]. Furthermore,
the MBPT equations diverge for degenerate states.

More recently, the ADC method has been proposed as an excited state version of
MBPT [52]. It was originally derived as a perturbation expansion of the polarisation
propagator, but it is easier to derive using the intermediate state representation
[53]. The starting point is an MBPT ground state, |Ψ〉, from which a set of excited
states are generated.

{|μ〉} = {τμ |Ψ〉} (2.55)

By orthogonalising the excited states, the intermediate states, {|n〉}, are obtained.
The ADC secular matrix M is then constructed using this basis.

Mmn = 〈m|H − E0 |n〉 (2.56)
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Excitation energies and excited states of the system are obtained by finding the
eigenvalues and eigenvectors of M . Transition moments and excited state proper-
ties can then be calculated as expectation values.

The ADC approach produces size intensive excitation energies and excited state
properties. Furthermore the M -matrix is Hermitian by construction, ensuring real
eigenvalues. On the other hand, the approach relies on an MBPT ground state.
Convergence of the Møller-Plesset perturbation expansion series is not guaranteed
and may diverge in some cases [54]. Currently, ADC(2) and ADC(3) have been
implemented as well as the extended ADC(2)-x version [55]. The approach has also
been used for core excitations, which we will return to in Chapter 5.

2.8 Basis sets

In order to obtain accurate molecular properties, we require an appropriate basis
set as well as an accurate correlation model. Using large basis sets is expensive
because most models scale with some power of the total number of orbitals, if not
worse. However, there is little point in using a high level method if the basis set
does not have the flexibility to describe the relevant property. Almost all basis sets
in use today are based on Gaussian functions and the two most popular types are
Pople’s split valence basis sets [56, 57] and Dunning’s correlation consistent basis
sets [58]. In calculations, a number of atomic orbitals (AOs) are usually centred to
each atom. These are non-orthogonal and resemble the spherical harmonics that
are the solution of the Schrödinger equation for the hydrogen atom. From these,
the orthogonal MOs are constructed.

Split valence basis sets are constructed by optimising exponents and coefficients
from HF atomic calculations. This produces basis sets well suited to describe
the HF wave function, but may be less suited for post HF methods. In order to
increase the flexibility of the basis set, diffuse and polarising primitive Gaussians
can be added. In most applications, the core orbital energy will remain unchanged
and it is not necessary to describe them with high accuracy. For this reason, core
orbitals are usually described by fewer functions than the valence orbitals, hence
the name.

The correlation consistent basis sets, referred to as cc-pVXZ where X is the cardi-
nal number, are constructed specifically to describe electron correlation. The basis
set is expanded by adding Gaussians that maximise the correlation energy, deter-
mined from atomic CISD calculations. Orbitals that make approximately the same
contribution are added at the same time and it turns out that this corresponds to
adding one Gaussian in each shell and one new shell for each level of the cardinal
number.

Similarly to the split valence basis sets, the correlation consistent basis sets are
not designed to recover correlation energy for the core electrons. If such effects
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are important, extra core correlation functions must be added using the cc-pCVXZ
basis sets [59]. Excited states and anionic states require additional diffuse functions,
optimised for the correlation energy of anions [60].



Chapter 3

Multilevel coupled cluster

3.1 Scaling of coupled cluster

Coupled cluster is one of the most accurate methods in electronic structure theory,
however, its high computational cost and steep scaling with system size has limited
its applicability. The most well known model, CCSD [21], scales as V 4O2 where V
is the number of virtual and O is the number of occupied orbitals. A doubling of the
system size will then lead to a 64-fold increase in computational cost. The available
computing power is growing rapidly with technological development, but not fast
enough to keep up with the demands for accurate calculations. Consequently, new
and smarter ways to solve the CC equations are needed. Many methods have been
proposed to reduce the scaling of CC models, far too many to mention here. For a
more extensive overview, see Section B.1.

Perhaps the most straightforward way to reduce the computational cost is to re-
move linear dependence in the integrals. This can be accomplished using density
fitting [61–65] or Cholesky decomposition [66–69]. In both methods, an auxiliary
basis is constructed that contains the information of the two-electron integrals. In
density fitting the auxiliary basis is provided beforehand and the integrals are fit-
ted, while the two-electron integral matrix is decomposed in the Cholesky approach
[70]. These methods greatly reduces the number of integral pairs to include, but
does not reduce the overall scaling in the standard approach.

The starting point of most reduced scaling methods is to note that the integrals
in Eq. (2.14) depend on a factor 1

r12
. Consequently, the interactions between

two electrons sufficiently far from each other must become negligible. In principle,
it should be possible to obtain the FCI energy with a linearly scaling model for
sufficiently large systems. Of course, such a model would be too expensive long
before we reach systems in the linear scaling regime.

19
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A more involved approach is to identify interactions between electrons that are far
away from each other and discard them. The canonical MOs obtained from HF
are highly delocalised, so this approach requires some kind of orbital localisation
procedure. This approach was pioneered by Saebø and Pulay for MBPT with the
projected atomic orbital method (PAO) [71, 72]. More recently, several methods
has been developed for CC based on similar ideas, for example natural linear scaling
CC [73], divide-expand-consolidate [74, 75], local pair natural orbital CC [76, 77]
and orbital-specific-virtual local CC [78, 79].

All the methods mentioned in the previous paragraph treat the whole molecular
system with the same level of theory. This is not the case with multilevel methods.
Often, one is interested in a part of the system and would like to focus compu-
tational resources on it. Multilevel methods achieve this by treating the relevant
parts with a high level method and the rest more approximately. The most well
known of these methods are probably the ONIOM model [80, 81] and density em-
bedding in density functional theory (DFT) [82–84]. Coupled cluster methods in
CAS like active spaces have also been proposed [85, 86].

3.2 Multilevel coupled cluster equations

The starting point when deriving the multilevel CC equations is to divide the
orbitals into two or more spaces. For the current derivation, the partition of the
orbital space is arbitrary as long as the orbitals are orthogonal. How to generate
the orbital spaces will be discussed in Section 3.4. We will begin with the two level
MLCCSD method described in Papers A and B. The high level method in this
model is CCSD while the rest is described by CC2. Note that the method is referred
to as extended CC2 (ECC2) in these papers. After presenting the MLCCSD model,
the method will be generalised to several spaces.

After partitioning the orbitals into an active and an inactive space, the cluster
operator can also be partitioned. Excitation operators only referring to active
orbitals, both occupied and virtual, are called internal while those only involving
inactive orbitals are called external. Those that involve both active and inactive
orbitals are referred to as semi-external. The cluster operator is then partitioned
into an active operator, T , and an inactive operator, S.

X = T + S (3.1)

Excitations that are internal in the active space are assigned to T , while the external
and semi-external are assigned to S. In Paper A, we experimented with including
the semi-external excitations in T . This would greatly reduce the computational
savings of the model, undermining its purpose. Similarly to the cluster operator,
the manifold of excited states can also be partitioned into states reached by internal
excitations and states reached by external and semi-external excitations.

{|μ〉} = {|μT 〉} ⊕ {|μS〉} (3.2)
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Singles are treated the same in CC2 and CCSD, so the singles are included in T .

The MLCCSD amplitude equations are obtained by inserting these definitions into
the CCSD equations (2.26) and (2.27). Because the singles are treated the same
in CC2 and CCSD, the singles amplitude equations are the same as in CCSD.
Similarly, the equations for the T2 amplitudes are unchanged, except that projection
manifold is restricted to the T2 states, {〈μT

2 |}.

〈μT
2 | Ĥ + [Ĥ,X2] +

1

2
[[Ĥ,X2], X2] |HF〉 = 0 (3.3)

In the equations for the S2 manifold there is an ambiguity. The CC2 equation,
(2.29), only contains a term with the X1-transformed Hamilton operator and a
commutator between the Fock operator and the doubles cluster operator. All other
terms are removed because they are higher order in the perturbation. In MLCCSD,
there is a commutator term between the fluctuation potential operator and the
active doubles T2 operator.

〈μS
2 | Ĥ + [F,X2] + [Û , T2] |HF〉 = 0 (3.4)

From a perturbation perspective, this term is second order and should not ap-
pear in the first order equations. On the other hand, the T2 equations should be 
solved to infinite order. From a practical perspective, accuracy must be weighted 
against computational cost. The most expensive term to compute arising from the 
commutator is a    index restricted version of the B term from CCSD.

ΩB
ABij =

∑
cd

tcdij (Ac|Bd) (3.5)

Capital indices are general and run over the whole orbital space, while the lowercase
indices are restricted to the active space so the overall scaling is quadratic with
system size. This is less than CC2 and the term should be included if it improves
accuracy. Some testing was done in Paper A, but it was performed on size extensive
properties that are poorly described by MLCCSD. Further benchmarking with size
intensive properties should be performed. All MLCCSD results reported in Papers
B and D were obtained with the version including the commutator.

The advantage of MLCCSD compared to full CCSD is the reduced cost. Theoret-
ically, MLCCSD should scale as V 2V 2

AO
2
A, where VA and OA are the number of

virtual and occupied active orbitals respectively. The overall scaling with system
size then becomes quadratic for the CCSD contributions and the computational
effort should be dominated by CC2 for sufficiently large systems.

The equations for the multilevel CC3 model are somewhat easier to derive than
for MLCCSD because there are no ambiguities. In fact, the amplitude equations
become the same as for full CC3, except that the indices are restricted to the active
space, see Section C.2. There is, however, a subtlety with the Fock matrix. As
stated in Section 2.4, the Fock operator must be diagonal in order to make the

n
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triples amplitude equations separable. This cannot be assumed in MLCC3 because
local orbitals are needed for a local active space, see Section 3.4. This would appear
to be a problem, however, it turns out that it is sufficient that the Fock operator
is diagonal in the active space. Off-diagonal elements in the Fock matrix will then
be projected out of the T3 amplitude equations and they become separable. The
overall scaling of the CC3 part of the MLCC3 model becomes V V 3

AO
3
A, linear with

respect to total system size.

Multilevel CCSD(T) is also possible with equations similar to MLCC3.

εμT
3
tμT

3
= −〈μT

3 | [U,X2] |HF〉 (3.6)

EMLCCSD(T)
corr =

∑
μ=μ1,μ2

xμ 〈μ| [U, T3] |HF〉 (3.7)

Note that Eqs. (3.6) and (3.7) differ from those given in Paper B. In the paper, the
indices are restricted to the active space which results in a computationally size
intensive correction while the one given here scales linearly. While the MLCCSD(T)
model is easy to implement and is relatively cheap, it is unclear how useful it
is. Total energy is a size extensive property that depends on the whole system.
Furthermore, CCSD(T) is best for geometry optimisations, but it is challenging to
have a consistent active space when the positions of the atoms change.

When expanding the MLCC model to more than two spaces, the cluster operator
must be divided into three or more operators. The most active operator will still
only contain internal excitations in the innermost orbital space and be labelled
T . The next operator, labelled S will contain excitations internal in the second
orbital space and those that are semi-external to the T space. Excitation that
are semi-external to the next space, however, are not included. In this way, one
constructs a hierarchy of increasingly smaller and higher level spaces. Extending
the equations in such a scheme is relatively straightforward and an example is given
in Section B.2.4. For sufficiently large systems, one could employ an outer space
only described at the HF level or even with frozen density.

3.3 Multilevel coupled cluster response theory

As mentioned previously, multilevel coupled cluster theory is best suited for size
intensive properties. This requires CC response theory. A detailed derivation of
MLCCSD response is given in Section B.2.5 and the MLCC3 equations are given
in Section C.2.3. The equations are quite involved, and take a lot of space, so
they will not be repeated here. In order to derive the equations, the quasienergy
approach was utilised as described in reference [87].

In general, the MLCC versions of the equations are very similar to the standard
theory versions. The MLCCSD Jacobian is given in Eq. (B.51) and the first
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rows corresponding to projection against 〈μ1| and 〈μT
2 | are the same as in CCSD.

Without the extra commutator in Eq. (3.4), the rows projecting against 〈μS
2 | would

be the same as in CC2. Due to the extra commutator, extra terms are added to the
CC2 part. Note that the double-double part of the Jacobian is usually assumed to
be diagonal in CC2. In general, the Fock matrix will not be diagonal in MLCCSD
and the AμT

2 ,νS
2
block will not be zero.

Several numerical examples of MLCCSD excitation energies are provided in Section
B.3.2. In general, MLCCSD reproduces the CCSD results well, even when there
are large discrepancies between CC2 and CCSD. All the active spaces used were
generated with Cholesky orbitals [88], see Section 3.4, which may be problematic
for diffuse basis sets. It is therefore encouraging that the errors with respect to
CCSD do not increase when going from cc-pVDZ to aug-cc-pVDZ. Note that the
excitation vectors, Ri in Eq. (2.43), have quite large contributions from semi-
external excitations in some cases. This is a useful diagnostic for the accuracy
compared to full space calculations and MLCCSD is relatively tolerant of semi-
external contributions.

For MLCC3, there is only one type of triple excitations and the MLCC3 response
equations reduce to the full space equations with the indices in the triples part
restricted to the active space. As with the ground state amplitude equations,
MLCC3 response scales as V V 3

AO
3
A.

A challenge when testing the MLCC3 model was finding systems with large differ-
ences between CCSD and CC3 that were small enough for a full CC3 calculation.
The systems presented in Section C.4.2 demonstrate that the MLCC3 model is
much more sensitive to the semi-external character of the excitation vector. Both
CC2 and CCSD have double excitations, so any missing CCSD correlation can be
partially recovered by the CC2 double excitations. In MLCC3, there are no triple
excitations outside the active space and a good active space is crucial. In Section
3.4, various alternatives to Cholesky orbitals are presented. The results in Paper C
demonstrate that it is possible to obtain CC3 accuracy with an almost two orders
of magnitude reduction in computational cost. For core excitations, triples are
required in order to obtain quantitative results, see Chapter 4.

3.4 Active orbital spaces

A critical component of MLCC is the choice of active space. The equations pre-
sented in Section 3.2 are valid for any choice of orbital space, but the active orbitals
must be able to describe the property of interest. With a poor choice of active space
we will not achieve full space accuracy and in some cases the results are worse than
the low accuracy model. A related challenge is to verify that the results are accurate
in the absence of full space results.

One way to choose an active space is using the HF orbital energy. In this approach,
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we pick a number of the highest occupied MOs (HOMO) and lowest unoccupied
MOs (LUMO). This is similar to the active spaces in CAS and earlier active space
CC approaches [85, 86]. This approach is straightforward and the Fock matrix
remains diagonal. However, the HF orbitals are not optimised for correlated calcu-
lations and display a very slow convergence to full space results as demonstrated
in Paper A. Furthermore, it is difficult to choose a consistent active space if the
geometry changes and the size of the active space scales with the size of the system.

Size intensive properties can be described in a localised active space. This requires
localised molecular orbitals and we used Cholesky orbitals [88] for all the results
reported in Papers B to D as well as some local geometry calculations in Paper A.

Cholesky orbitals are generated by decomposing the one-electron density matrix in
the AO basis. The elements of the resulting Cholesky vectors can be interpreted as
the orbital coefficients of a set of localised orbitals. Each of these vectors correspond
to a diagonal element in the density matrix, which again refers to an atomic orbital.
In order to construct a localised active space, a set of atoms are chosen before the
calculation begins. When decomposing the density matrix, we start with the largest
diagonal element corresponding to an AO on an active atom and the decomposition
proceeds until there are no active diagonal elements left greater than a certain
threshold. The orbitals in the inactive space are generated by decomposing the
rest of the matrix. Similarly, a virtual density is constructed by subtracting the
one-electron density from the inverse of the overlap matrix and virtual orbitals are
generated by decomposing this matrix. See Section B.2.2 for a detailed description.

After the decomposition, the Fock matrix is diagonalised in each active space. The
procedure is easily generalised to more than two spaces by assigning the atoms to
the different spaces and decomposing each space consecutively. In order to ensure
that the relevant density is included, the decomposition always starts with the most
active space.

An advantage with Cholesky orbitals is that they are easy to generate as they only
require an HF calculation and are generated non-iteratively. Another advantage
is that a consistent active space can be chosen for different geometries. This is
achieved by storing the ordering of the decomposed diagonal elements in the initial
geometry and decomposing from the same elements for each geometry. As the
diagonal elements correspond to AOs that are the same for each geometry, we
obtain a smooth potential energy surface. This is difficult to do using other types
of orbitals.

Unfortunately, it is difficult to generate a good active space for MLCC3 using
Cholesky orbitals, see Paper C. Generally, excited states have a more diffuse elec-
tron density than the ground state and requires extra diffuse orbitals, as discussed
in Section 2.8. In the HF one-electron density matrix, these orbitals will have very
small elements that do not contribute to the Cholesky orbitals. This is demon-
strated in Section C.4.2 and we propose a solution by explicitly adding extra diffuse
orbitals. While this approach solves the problem, it is not very satisfactory because
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it will make the active space scale with total system size.

One approach is to use a different type of localised orbitals. There are many types
of localisation schemes [89–93]. By using a localisation scheme depending on the
orbitals themselves and not the HF density, it is possible to generate a local active
space with the required flexibility to describe the excited states. This approach does
require additional criteria to decide which orbitals to include in the active space and
there is no straightforward way to keep a consistent active space when changing the
geometry. Different local orbitals have been combined with the MLCC3 approach
for core excitations with some success [94].

An optimal active space would contains all the orbitals necessary to describe the
process being studied, but no more than that in order to keep computational cost
down. Lower level models are typically qualitatively correct in their descriptions.
For example, the excitation vectors of CCSD and CC3 are usually very similar.
This can be exploited to construct an active space well suited to describe a specific
excitation and is the basis for the automated molecular orbitals, AMOs, recently
developed by Høyvik [95].

Automated MOs are similar to natural transition orbitals, NTOs, [96–98] and are
generated from the eigenvectors {Ri } of the Jacobian, see Eq. (2.43). Unlike the
NTOs, AMOs are generated from both the single and double excitation part of
the excitation vector. This greatly increases the number of orbitals that can be
generated and makes it possible to generate a sufficient active space.

The starting point when generating AMOs is to construct the occupied-occupied
matrix M and virtual-virtual matrix N .

Mij =
∑
a

RaiRaj +
∑
abk

(1 + δai,bkδij)RaibkRajbk (3.8)

Nab =
∑
i

RaiRbi +
∑
ijc

(1 + δai,cjδab)RaicjRbicj (3.9)

Diagonalising M and N produces a set of eigenvalues and eigenvectors.

Muk = λo
kuk Nvk = λv

kvk (3.10)

The eigenvectors form orthogonal transformation vectors, taking the canonical MOs
to the AMOs. Because the excitation vectors are normalised, the sum of the eigen-
values is 1 and the magnitude of each eigenvalue corresponds to the importance of
the corresponding AMO for the excitation. An active space can then be formed by
including AMOs until the sum of the eigenvalues reaches some predefined threshold.

In an MLCC calculation, one would start with a full space calculation with the
lower level method to obtain the excitation vectors, CCSD for example. After
generating the active space and diagonalising the Fock matrix in each space, the
excitation vectors are also transformed to the new set of MOs. These are then



26 Multilevel coupled cluster

used as start vectors for an MLCC3 calculation. If several excited states are to be
determined, it is possible to generate the transformation vectors from the sum of
the M - and N -matrices of each excitation, but results so far indicates that it is
better to generate a separate active space for each excited state. If several levels
of theory are desired, we can start with a full space calculation at the lowest level
and then use the excitation vectors to generate the active space for the next level
in an iterative procedure. This type of orbitals require very little input from the
user, hence the name.

3.5 Multilevel coupled cluster implementation

This section will briefly present the implementation of closed shell MLCC3 in Dal-
ton [99, 100] described in Section C.3. The MLCCSD code, including transition
moments [101], is only implemented as a pilot code and is currently no faster than
CCSD. Note that indices in the following equations refer to spatial orbitals.

The most expensive terms to calculate in MLCC3 are the triple amplitudes,

tabcijk = −P abc
ijk

1

εabcijk

(∑
D

taDij (bD|̂ck)−
∑
L

tabiL(Lj |̂ck)
)

(3.11)

and the virtual integral terms in the Ω contribution,

ΩADij = PAD
ij

∑
bck

(
2tAbc

ijk − tcbAijk − tAcb
ijk

)
(Db̂|kc) (3.12)

In the above equations, P is a permutation operator summing over the permu-
tations of the indices and the triple amplitudes are referred to as t because they
are only included in the active T operator. Note that the amplitude tAbc

ijk is only
nonzero if the general index is active. In Eq. (3.12), the amplitudes are written
with a general index to match the permutation operator.

The MLCC3 algorithm is based on the CCSD(T) algorithm originally implemented
by Rendell et al. [102]. This algorithm exploits the symmetry of the triple ampli-
tudes to reduce the computational effort,

tabcijk = tacbikj = tbacjik = tcbakji = tbcajki = tcabkij (3.13)

and is centred around a triple loop over the occupied indices. The loop is restricted
to the indices i ≥ j ≥ k and the minimum number of amplitudes are calculated.
An important difference between the CCSD(T) energy correction and the CC3
contributions to the Ω vectors from Eq. (2.32) is the X1-transformed Hamiltonian.
In CCSD(T), the single contributions are discarded and two-electron integrals, Eq.
(2.14), are symmetric.

(pq|rs) = (qp|rs) = (pq|sr) = (qp|sr) (3.14)
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In CC3, the contributions from each of these integrals must be calculated separately,
leading to an overall scaling of 2 × V V 3

AO
3
A. One N7 term from Eq. (3.11) and

one from Eq. (3.12). Multilevel CCSD(T) has also been implemented, scaling as
1× V V 3

AO
3
A.

For sufficiently small active spaces, the dominant part of the MLCC3 calculation
will be integral transformation. In Dalton, integrals are stored as AO integrals and
they have to be transformed to MO basis which scales as N4OA where N is the
total number of atomic orbitals. This bottleneck can be avoided by using Cholesky
decomposed integrals [69]. On the other hand, if the CC3 part is dominated by the
integrals, the overall calculation will be dominated by CCSD.

The current implementation has been parallelised with OpenMP [103] which results
in considerable speedups compared to the serial version. OpenMP is limited to
shared memory threading which limits the number of CPUs that can be employed.
In order to utilise multinode architecture, MPI is required [104]. Because the
MLCC3 code is structured as a loop where each iteration is independent of the
others, it would be very well suited for an MPI implementation. The only subtlety
would be how to distribute the integrals, but the code is already batching the
integrals to reduce I/O and a similar procedure could be utilised for parallelisation.
Unfortunately, the rest of the Dalton CC code is not parallelised or MPI safe, so
such an implementation would require considerable programming effort. In the
future, we wish to implement a new CCSD code in Dalton making it possible to
incorporate MPI.





Chapter 4

X-ray spectroscopy in
multilevel coupled cluster

4.1 The core-valence separation approximation

X-ray spectroscopy is a field in rapid development. Using soft X-rays in the 250-900
eV range it is possible to selectively excite the core electrons of specific elements in a
compound. For example, the carbon K-edge is typically found between 280 eV and
300 eV while the nitrogen edge is found around 400 eV. Single functional groups
can then be targeted and the method provides highly local chemical information.
More recently, development of free electron lasers (FEL) has made time resolved
X-ray absorption spectra (XAS) possible [105–113].

In electronic structure theory, core excited states poses a number of challenges not
encountered when calculating valence excited states. When solving the eigenprob-
lem in Eq. (2.43) starting with the lowest eigenvalue and building up is no longer
an option because there will typically be hundreds of states lower than the first
core excited state. In CC theory, there are two solutions to this problem. One is to
use the Lanczos algorithm [44–46] to solve for the whole spectrum simultaneously.
For small molecules, this is a valid approach, but as mentioned in Section 2.5, large
storage requirements limits the applicability for larger systems. Nonetheless, the
method is valuable as a benchmark for the other approach, core-valence separation
(CVS) [114–116]

The CVS approximation is based on the observation that there is a large energy gap
between core and valence excited states and their interactions will be negligible.
Consequently, the coupling elements in the Jacobian can be discarded. In practice,
this is achieved by projecting out the corresponding elements of the trial vectors
and result vectors when solving Eq. (2.43).

29
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Table 4.1: Comparison of core excitations, in eV, of oxygen for
butanal using CCSD, MLCC3 and CC3. The active space was
generated using AMOs.

S1 nocc nvir S2 nocc nvir

CCSD 534.71 20 171 539.44 20 171
MLCC3 533.01 10 115 535.89 12 142
CC3 533.00 20 171 535.86 20 171

The projection operator, P acts on a vector b so that all elements without at least
one core orbital index are set to zero.

Pbai = 0 ∀ i 
= core (4.1)

Pbabij = 0 ∀ i 
= core ∧ j 
= core (4.2)

The two methods can be combined if a full core excited spectrum is desired. In
Paper D we use both to assess MLCCSD for core excited states.

4.2 Multilevel CCSD core excitations

Core electrons are described by highly localised 1s orbitals. Consequently, core
excitations are also highly local. Figures D.6 and D.7 demonstrates the change in
electron density between the ground state and the core excited states of ethanal,
calculated at the CCSD level. The excitation leads to a large reduction in electron
density in the core region and a corresponding increase around it. In Paper D
we explore the use of MLCCSD for core excited states of carbon and oxygen in
aldehydes.

In general, MLCCSD is able to reproduce the CCSD excited states very well. For
the first excited states of oxygen, a Cholesky active space with only oxygen active is
able to reproduce the CCSD position of the peak with an error of 0.01 eV for ethanal
and 0.03 eV for propenal. The errors in the transition moments and the excitation
energies of the higher Rydberg states are a bit larger, but including the adjacent
carbon atoms make the CCSD and MLCCSD spectra almost indistinguishable.
Comparing results from CVS-Davidson and full space Lanczos, the errors due to
CVS are very small.

For the carbon excitations, the errors in MLCCSD are somewhat larger. When
several atoms of the same element are bonded directly to each other, it is necessary
to use larger active spaces to reproduce the full space spectra, compare Figures D.11
and D.12. Unfortunately, the CCSD results do not compare well with experimental
results, see Tables D.7 and D.8.
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λo
1 = 0.941 λo

2 = 0.025 λo
3 = 0.013 λo

4 = 0.011
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3 = 0.011 λv
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Figure 4.1: The four most important occupied (above) and virtual AMOs for the first
core excitation of thymine. Basis aug-cc-pCVTZ/aug-cc-pVDZ

4.3 Multilevel CC3 core excitations

The MLCCSD results for core excited states were very encouraging, however,
MLCC3 was initially disappointing [94]. Using Cholesky orbitals, the convergence
towards full space results turned out to be much slower than for MLCCSD. Other
types of localised orbitals converged faster, but the number of active orbitals were
still too high to obtain large reductions in computational cost. The solution is to
use the automated molecular orbitals developed by Høyvik [95] described in Section
3.4.

Butanal is a good test system because it is relatively small and the oxygen core
excitations are localised at the end of the chain. Multilevel CCSD performed very
well for this system, as shown in section D.3.4. It was also used to test MLCC3
with different types of localised orbitals with reasonably good results [94]. In Table
4.1, results calculated by Høyvik using MLCC3 and AMOs are compared with
CCSD and CC3. The errors of MLCC3 are 0.01 and 0.03 eV for the two excitation
energies. In comparison, the errors for CCSD are 1.71 and 3.58 eV. The basis set
is aug-cc-pCVDZ on oxygen and aug-cc-pVDZ on the rest, resulting in a total of
20 occupied and 171 virtual orbitals. Note that this basis set is not large enough
to reproduce experimental results, see Section 5.1.

In order to test the AMOs on a larger and more challenging system, we recalculated
the core excitation energy of thymine from Paper G using aug-cc-pCVTZ on oxygen
O(8), see Figure G.1, and aug-cc-pVDZ on the rest. Earlier attempts to calculate
this excitation with MLCC3 and local orbitals were not very successful. Figure 4.1
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shows the four most important occupied and virtual AMOs plotted with Chimera
[117]. While the occupied AMOs are concentrated around O(8), the virtual AMOs
appear to be completely delocalised. This explains why localised active spaces
failed.

Table 4.2: Comparison of core excitations, in eV, of O(8) in thymine
using CCSD, MLCC3 and CC3. The active space was generated using
AMOs. Timings are given in seconds. Note that the calculations were
performed on different systems and timings are not directly comparable.

ΔE nocc nvir tCPU nCPU

CCSD 533.57 33 264 950 4
MLCC3 531.31 15 134 1370 4
CC3 531.19 33 264 122000 10

Table 4.2 contains the core excitation energies of thymine calculated at the CCSD,
MLCC3 and CC3 level. The error in CCSD compared to CC3 is 2.38 eV, compared
to just 0.12 eV with MLCC3. Timings for the calculations are given for one iteration
of the excitation energy. They are not directly comparable because the full space
calculation had to be run on the Stallo [118] cluster for a total of 491 hours, while
the MLCC3 calculation could run on an iMAC at home. The theoretical speedup
is (

264× 33

134× 15

)3

≈ 81 (4.3)

With this active space, the time spent in the CCSD and CC3 part is about the
same. Consequently, the CCSD part will become dominant if the active space is
reduced further. This bottleneck can be avoided if several active spaces are used,
as described in Section 3.4. A faster CCSD code than the one currently in Dalton
would also be an improvement and this will be implemented with MLCCSD. Note
that the full space calculation spent roughly 5% of the time on integral transforma-
tion while MLCC3 spent 20% of the time on this. Cholesky integral decomposition
will reduce the computational cost of integral transformations [69].



Chapter 5

The accuracy of coupled
cluster for core excitations

5.1 Basis set dependence

Figures 6.2, D.6 and D.7 demonstrate that core excitations involve large changes in
the electron density compared to the ground state. Consequently, basis sets that
describe the ground state well cannot automatically be assumed to be suitable for
the excited state. A recent study of a number of small molecules [119] indicates
that the basis set requirements depends on the type of excitation with Rydberg
states requiring considerably larger and more diffuse basis sets.

Table 5.1 presents CC3 excitation energies computed with the aug-cc-pVXZ, aug-
cc-pCVXZ, and d-aug-cc-pCVXZ basis set series, abbreviated aXZ, aCXZ, and
daCXZ [59, 60]. Adding core polarising functions improves the description of the
ground state. This results in higher excitation energies for all basis sets except
double zeta. The aDZ basis contains only four contracted s-functions on oxygen,
so the added core polarising function is used to describe the excited state and
lowers the excitation energy. The shift induced by the core functions is more or less
constant. Adding double augmentation has almost no effect on the first two excited
states, but give large shifts for the higher excitations. Compared to experimental
values, CC3 is a bit too low and the gap between the states is a bit too small.

In Figure 5.1, core excitation energies of water calculated with CC2, CCSD and
CC3 are plotted against basis sets. All the basis set series shows a lowering of the
excitation energy with basis set size. The gap between the first two excited states is
described reasonably well with CCSD and CC2, but there are large discrepancies for
the third excitation, particularly with smaller basis sets. From the CCSD results,
the basis set converges faster when using doubly augmented basis sets. For the
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Table 5.1: The first four core excitation energies (eV) of
water calculated with the aug-cc-pVXZ, aug-cc-pCVXZ,
and d-aug-cc-pCVXZ series of basis sets and the 6-
311++G∗∗ basis set compared with experimental results
by Schirmer et al. [120].

S1 S2 S3 S4

aDZ 536.34 538.12 540.16 540.57
aTZ 533.43 535.20 536.84 537.13
aQZ 533.23 534.99 536.44 536.61
a5Z 533.16 534.92 536.15 536.23

aCDZ 535.59 537.37 539.40 539.81
aCTZ 533.81 535.58 537.23 537.51
aCQZ 533.65 535.42 536.87 537.04
aC5Z 533.60 535.37 536.60 536.68

daCDZ 535.57 537.33 538.15 538.20
daCTZ 533.80 535.56 536.39 536.45
daCQZ 533.65 535.41 536.25 536.30

6-311++G∗∗ 533.99 535.76 538.45 538.71

exp. 534.0 535.9 537.1 -

lowest state CCSD is too high, CC3 a bit too low, and CC2 close to experiment.
Relativistic effects are not included, so we expect the accurate CC3 calculation
to be a bit too low, see Section 5.3. Transition moments appear to be much less
sensitive to the basis set than excitation energies [119].

For comparison, the split-valence basis set 6-311++G∗∗ is also included [121]. This
basis set performs better than aCDZ, even though it is smaller. The largest expo-
nential for the 1s orbitals is about 5485 for the Pople set compared to 11720 for
aCDZ (and 164200 for aC5Z) and the ground state total energy is 0.25 eV lower
for aCDZ. The Pople set contains one more contracted s-function and one less
d -function and the extra s-function is required to describe the first excited state
where 6-311++G∗∗ is 1.35 eV lower than aCDZ. For comparison, aCTZ is 2.55 and
2.73 eV lower than 6-311++G∗∗for the two states.

Using large basis sets like d-aug-cc-pCVQZ is not feasible with CC3 for larger
systems. For second row elements, this basis set includes 134 contracted basis
functions per atom. Luckily, the core excitations are local, making it unnecessary
to use the full basis set on the entire molecule.

Figure E.1 depicts the five most important conformers of glycine optimised using
CCSD(T) and aug-cc-pVDZ basis in CFOUR [122, 123]. The first CC3 core excita-
tion for each atom in the lowest energy conformer is given in Table E.3 calculated
with various basis sets in the aug-cc-pCVXZ series. Basis sets with parentheses are
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Figure 5.1: Plots of excitation energies of water against basis set using CC2, CCSD and
CC3 compared to experimental results (solid lines) by Schirmer et al. [120].
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mixed where the indicated zeta level is employed on the atom being excited and
aug-cc-pVDZ is used on the rest. Comparing the excitation energies obtained with
a(CT)Z and aCTZ, the largest difference is 0.15 eV while the difference between
aCDZ and a(CT)Z is more than 1 eV for all atoms. With a(CQ)Z, the excitation
energies are reduced another 0.02 to 0.16 eV.

Comparing to the experimental values obtained by Plekan et al. [124], the results
vary depending on the element. Oxygen excitation energies are too low, nitrogen
is very close and carbon is too high. This is similar to the results for molecular
nitrogen, N2, see Paper F, and thymine, see Paper G. A plausible explanation for
this behaviour is that relativistic effects are not included, see Section 5.3. The
results for C(1) is considerably worse than for the other atoms. This peak is hard
to see because the other carbon has a very intense signal. In reference [124], the
assignment was based on comparison to other amino acids and the SCF static-
exchange method (STEX) [125]. Consequently, the experimental value is uncertain
[126]. Glycine is a molecule with many conformers [127], however, calculations
only showed small geometric effects on the core excitations, consistent with the
experiment.

In Table E.4, calculated core ionisation energies are compared to experiment. In
order to calculate the electron binding energy, a highly diffuse s-function is added
to the basis set. By projecting out elements of the excitation vector not involving
this function, the model is effectively removing an electron [116, 128]. The results
are similar to the core excitations with aCDZ being more than an eV higher than
a(CT)Z, small differences between a(CT)Z and aCTZ and a(CQ)Z being a bit lower.
Unlike the excitation energies, the carbon ionisations are close to experiment while
oxygen is more than 1 eV too low. This may be due to the combination of CVS
and ionisation effectively fixing two indices, leaving only singles and approximate
doubles to describe the relaxation. For nitrogen gas, N2, the ionisation energy is
well reproduced, see Paper F.

5.2 Vibrational effects

Another effect that may affect the experimental spectra is the vibrational levels
of the excited state and changes in the zero point vibrational energy. For most
molecules it is difficult to resolve any vibrational structure in NEXAFS spectra,
though they can have large effects, particularly on intensity [129]. Nitrogen, N2,
displays a clear vibrational structure in both electron energy loss spectroscopy
[130] and NEXAFS, see Paper F. Because N2 only has one degree of freedom,
it is possible to map the entire potential energy surface of both the ground and
excited states. The vibrational levels and intensities of the vibrational transitions
can then be obtained by fitting a Morse potential and solving for the vibrational
levels [131–133].
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In Figure F.1, the calculated CC3/d-aug-cc-pCVQZ NEXAFS spectrum is plotted
together with an experimental spectrum obtained from the SOLEIL synchrotron in
France [134]. The theoretical spectrum is plotted with Lorentzian line broadening
and an empirical line broadening constant. Intensities in the spectra are normalised
to the first vibrational peak. The error in the position of the first peak is 0.13 eV,
while the error in the gap up to the first Rydberg state is 0.06 eV. Without double
augmentation, the Rydberg states were shifted 0.4 eV up. In comparison, CCSD
is 0.90 eV too high and ADC(2)-x is 1.66 eV too low compared to experiment.

Figure F.2 is a close up of the first peak in the spectrum and reveals that the
distance between the vibrational levels is about 0.02 eV too high, see Table F.1.
This happens because the CC3 potential surface is too deep. The ADC(2)-x po-
tential is too shallow and the separation of the vibrational levels is too small. The
equilibrium bond length of the first core excited state is 0.006 Å shorter than the
one obtained in experiment [130] while the ground state is 0.002 Å too long [135].
Increasing the basis set and level of theory improves the ground state geometry
[136].

For the Rydberg excited states, the vibrational levels are also too far apart, but the
difference between the states is very good. Note that the second 1Σ+

u state is very
weak and in between the vibrational levels of the second 1Πu state, so its exact
position is uncertain, see Figure F.4. The intensities for these states are too low,
but they were calculated at the CCSD level. For the first core excitation, CCSD is
0.77 eV too high compared to CC3 while it is about 1.1 eV too high for the Rydberg
states. It is possible there are similar errors in the intensities. Calculations with
aug-cc-pCV5Z and Lanczos calculations in aug-cc-pCVTZ indicate that basis set
and CVS errors raises the excitation energy by about 50 meV. These sources of error
are probably small compared to the largest known unknown, relativistic effects.

5.3 Relativistic effects

Relativistic effects are usually ignored in electronic structure calculations on light
elements because they only affect the core electrons. Core electrons generally do not
contribute much to molecular geometries, valence excitations and other “normal”
calculations [4, 5]. Furthermore, full four component relativistic calculations require
different basis set expansions for the so-called large and small components. While
this does not affect the scaling of the model, it can increase the prefactor by several
orders of magnitude [137].

The most important relativistic effects for closed shell systems are the mass-velocity
effect that contracts the core orbitals, reducing the energy, and the Darwin effect
which is related to the smearing of the electron charge and raises the energy [138].
These effects can be approximated for the one-electron term of the Hamiltonian by
rescaling the one-electron integrals. This approach is known as the second order
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Douglas-Kroll-Hess (DKH2) correction, [139, 140]. Using the DKH2 correction
results in a more or less constant shift for the core excitation energies. Carbon
excitations are shifted up by about 0.08 eV, Nitrogen by 0.20 eV and Oxygen by
0.34 eV.

Effects that are not accounted for by the DKH2 correction include spin-orbit cou-
pling, two-electron mass-velocity and Darwin terms and the Gaunt term. For light
elements, these effects are important and will generally decrease the excitation en-
ergy, particularly the Gaunt term [141]. As the relativistic effects mostly affect the
core electron, they provide a constant shift for the whole spectrum and the DKH2
correction has not been employed in the calculations reported in this thesis. This
is a subject that should be explored further in the future.



Chapter 6

Using coupled cluster to
probe ππ∗-nπ∗ transitions in
thymine

6.1 Excited states of thymine

Dimerisation of thymine induced by UV light is believed to be an important factor
in the development of skin cancer [142]. As a result, the molecule has been exten-
sively studied, both experimentally and theoretically [110, 112, 143–147]. However,
the excited state dynamics of thymine is still debated and different studies have
arrived at different conclusions. When exposed to UV light, the molecule will be
excited to a ππ∗ state with A′ symmetry. What happens next is unclear. Molecular
dynamics with CAS indicates that the molecule is trapped in a local minimum in
the ππ∗ state [143] while X-ray ionisation experiments indicates a rapid transition
to the lower nπ∗ state with A′′ symmetry [110].

Figure 6.1 shows simplified orbital diagrams for the relevant electronic states. The
Koopmans’ picture [148] described by the diagram is oversimplified. For example,
the lowest singlet excited state is nπ∗ in the ground state equilibrium geometry,
even though HOMO has π-symmetry. Nevertheless, the diagrams are useful to
describe the electronic states conceptually. When the molecule is excited with UV
light an electron hole is formed, represented by half filled orbitals in the diagram.
If the molecule is core excited, the 1s electron can fill the electron hole, resulting in
a reduction of the core excitation energy. The final state will be the same as if the
molecule was excited from the ground state so the reduction in excitation energy
corresponds to the valence excitation energy.

39
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GS ππ∗ nπ∗ CE

Figure 6.1: Simplified orbital diagram demonstrating
the configuration of the ground state (GS), relevant
valence excited states and the core excited state (CE).

Whether the core electron is excited to the electron hole depends on the transi-
tion moment between the excited states. The transition moments depends on the
overlap integrals between the orbitals involved in the two states. Because the core
electron is described by a highly local 1s orbital, the magnitude of the transition
moments can be qualitatively predicted by the locality of the electron hole. Fig-
ure 6.2 shows the difference in the electron density between the ground state and
the different excited states while Figure G.5 shows the difference between the core
excited state and the other states. From the density plots, it is clear that the nπ∗

electron hole is localised around oxygen 8 (O(8)), see Figure G.1. This makes it
possible to distinguish between the two states. The same argument can be made
based solely on the HF orbitals, see Figure G.1.

The core excited state is very high in energy, 530 eV above the ground state, and is
consequently very unstable. Almost instantaneously, a valence electron will collapse
into the core hole [149]. In order to get rid of the excess energy, the molecule will
emit an Auger electron [150–152].

6.2 The experiment

The goal of the experiment described in Paper G is to demonstrate the capabil-
ity of time resolved X-ray spectroscopy to distinguish between excited states of
organic molecules. Currently, few facilities can perform such experiments, which
was performed with the Linac Coherent Light Source (LCLS) free electron laser
at SLAC National Accelerator Laboratory. In the experiment, thymine molecules
were excited with a 267 nm (4.64 eV), UV pulse. The molecules were then probed
after a varying time delay by a soft X-ray pulse. A monochromator was used to
control the wavelength of the probe pulse. Measuring the absorption of X-rays is
challenging, but the Auger electrons can be measured using a mass spectrometer.
For details of the experiment, see Section G.2.1.
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Figure 6.2: Change in electron density from the ground state to the nπ∗, ππ∗ and 1sπ∗

excited states of thymine calculated with CCSD and aug-cc-pCVDZ/aug-cc-pVDZ. Red
isosurfaces indicate electron density reduction and blue indicate density increase, isovalue
0.01. Excitation energies are calculated with CC3 and aug-cc-pCVDZ/aug-cc-pVDZ (va-
lence) and aug-cc-pCVTZ/aug-cc-pVDZ (core).
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An earlier experiment using delayed ultrafast X-ray Auger probing (DUXAP) indi-
cated a short lived excited state appearing immediately after the probe pulse with
a signal around 508 eV and starting to disappear after 100 fs [110]. While the first
signal faded, another signal started to build strength around 490 eV which lasted
for more than 20 ps. This was interpreted as population being transferred from the
ππ∗ state to the nπ∗. Because photoionisation experiments are sensitive to both
electronic states and molecular geometry, NEXAFS should provide less ambiguous
results.

The NEXAFS results are summarised in Figure G.2. A new feature appears in
the spectrum at 526.4 eV, 5.0 eV lower than the ground state peak at 531.4 eV.
The new feature appears about 60 fs after the bleach of the ground state signal
and is still visible after 20 ps. It is natural to interpret this feature as buildup of
population in the nπ∗ state, however, accurate theoretical calculations are required
to verify this.

6.3 Molecular geometries

The first step in predicting experimental results is obtaining good molecular ge-
ometries. Initially, we used geometries obtained using CAS from reference [143].
When comparing these geometries to geometries optimised using CC2, provided
by Basile F. E. Curchod, qualitative differences were observed. In particular, the
nπ∗ state was always lower in energy than the ππ∗ state when excitation energies
were calculated with CCSD for the CAS geometries. With the CC2 geometries,
the ordering changed and the ππ∗ state was lower in the ππ∗ stationary point.

To obtain more accurate geometries, new geometry optimisations were performed.
The ground state geometry was optimised with CCSD(T) in CFOUR [122, 123]
using aug-cc-pVDZ and is given in Table G.1. Excited state geometries were opti-
mised in Q-Chem [153] using CCSD and aug-cc-pVDZ. Obtaining the excited state
geometries was considerably more challenging than the ground state, particularly
the ππ∗ geometry. At the first attempt, the nπ∗ state converged to a stationary
point while the ππ∗ state immediately passed through an intersection, making it
necessary to stop the calculation and start again from the new geometry. This
time, the energy minimisation did not converge but the molecule started bending
and eventually hit an intersection with the ground state. At the third attempt the
optimisation was started from an almost converged geometry and a ππ∗ stationary
point was obtained.

Vibrational frequencies were calculated using CFOUR for each of the stationary
points to verify that they were in fact minima. The ground state was a minimum
but neither of the excited states were, though the imaginary frequencies of the
nπ∗ geometry were very small. Slightly perturbed geometries were generated and
the optimisations started again. The nπ∗ optimisations moved around on a flat
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potential energy surface dominated by rotations of the methyl group until it settled
in a geometry distorted out of the plain. The final geometry, given in Table G.2, was
less than 0.01 eV lower in energy than the planar stationary point but a frequency
calculations confirmed it was a minimum. The ππ∗ state did not converge, but
went through an avoided crossing and ended up in the nπ∗ minimum. Table G.3
contains the ππ∗ saddle point geometry and the frequencies are given in Table G.4.

The main differences between the ground state and excited state geometries is a
stretch of the C(5)-C(6) double bond for the ππ∗ saddle point and a stretch of the
O(8)-C(4) bond for the nπ∗ minimum energy geometry. In addition, the nπ∗ is
distorted out of the plane.

6.4 Excited state calculations

Excitation energies, both core and valence, were calculated using Dalton [99] and all
calculations except the CC3 core excitations used aug-cc-pCVDZ on the oxygens
and aug-cc-pVDZ on the rest. The extra core correlation functions have almost
no effect on the valence excitation, but were included for consistency. The new
implementation described in Paper C were used for the CC3 calculations.

Figure G.1 B shows the calculated CCSD energies calculated for geometries inter-
polated between the various stationary points. There is a barrierless path from
the Franck-Condon (FC) point [154, 155] to the conical intersection and the ππ∗

saddle point. With CC3, the excitation energies of both states are reduced, but
the effect varies so that the difference between the states is reduced for all three
geometries, see Tables G.5 and G.6. This brings the intersection closer to the sad-
dle point. Valence excitation energies were also calculated using aug-cc-pVTZ and
CC2 and compared to aug-cc-pVDZ calculations. The largest difference between
the two basis sets is 50 meV, indicating that aug-cc-pVDZ is sufficient for the va-
lence excitations. Oscillator strengths were calculated with CCSD linear response
in the length gauge and the oscillator strength to the ππ∗ state is predicted to
be several orders of magnitude larger than the nπ∗ state. Two higher states were
also calculated, but they do not intersect with the lower states and have very low
oscillator strengths in the FC geometry.

The core excited states were calculated using the CVS approximation. Excitation
energies were calculated using CC3 with auc-cc-pCVTZ on the oxygen being excited
and aug-cc-pVDZ on the rest, see Table G.7. Oscillator strengths were calculated
with CCSD linear response and are given in Tables G.8 and G.9.

To verify that excitations from the nπ∗ state is indeed more intense than those from
the ππ∗, transition moments between excited states are required. In principle, tran-
sition moments from a valence excited state to a core excited can be calculated in
the standard way using Eq. (2.44) which requires solving for XB

μ (ωk ± ωm). Solv-
ing for the plus combination works fine, but the minus combination corresponds to
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an energy range with a large number of nearly degenerate Rydberg states. Con-
sequently, it is very hard to converge the eigenproblem. It is possible that the
expression in Eq. (2.44) can be rewritten to avoid solving for this vector, however,
in EOM it does not appear at all. For this reason, the oscillator strengths given
in Tables G.8 and G.9 between excited states were calculated using EOM-CCSD.
The EOM-CCSD ground state oscillator strengths for core excited states were also
calculated and the difference between CCSD-LR and EOM-CCSD is negligible.

6.5 Comparing results

Theoretical and experimental spectra are compared in Figure G.3. The double peak
from the ground state is well reproduced with CC3 predicting excitation energies
of 531.19 and 532.23 eV compared to experimental values of 531.4 and 532.3 eV. In
the predicted spectrum, the first peak is somewhat more intense than the second
while the opposite is observed in experiment. The reason for this discrepancy is
most likely due to the beginning of the ionisation edge lending intensity to the
second peak. Because the area of the theoretical spectrum is normalised to the
experimental peaks, the predicted peaks appear too intense.

The predicted peak from the O(8) core in the nπ∗ state is at 526.05 eV which
fits well with the experimental feature at 526.4 eV, especially when considering
that the ground state peak is also a bit too low. However, this is not enough
to definitely assign the feature because the peaks corresponding to the ππ∗ state
in the FC and saddle point geometries are at 526.29 and 526.33 eV, respectively.
Oscillator strengths, given in Table G.8 and G.9 are needed to distinguish the two
states. The predicted oscillator strength from the O(8) core in the nπ∗ state and
minimum energy geometry is predicted to be more than an order of magnitude
stronger than the ππ∗ state in the FC or saddle point geometries. As a result,
the predicted peaks from the ππ∗ in Figure G.3 are barely visible. Note that the
excitations from O(7) are predicted to be dark in the excited state.

Taken together, the experimental and theoretical results indicate that the rela-
tively long lived feature is indeed the nπ∗ state. With a lifetime of less than 100
fs, it appears unlikely that there is minimum in the ππ∗ state and access to the
intersection must be barrierless. The current results say nothing about the fate of
the nπ∗ state. Molecules in the minimum will be hot and it is possible they will
eventually find a path on the potential energy surface leading to an intersection
with the ground state. Another possibility is that an intersystem crossing takes
place and the system enters a triplet state before reaching the ground state [147].
This is a subject that requires further study.

This project demonstrates that XAS can be used to distinguish between electronic
states, even at femtosecond time scales. Combined with high level theoretical
techniques, it is possible to assign signals with high precision and the evolution of
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the states can be observed directly. While the results in the gas phase may not be
directly transferable to thymine in DNA, it seems likely that the reactive ππ∗ is
short lived in the cells. We are not vampires and can walk around in sunlight.





Chapter 7

Conclusion and future work

This thesis has presented the ongoing development of multilevel coupled cluster
theory. The code presented in Paper C is probably the fastest CC3 code currently
available and has already been used extensively. For the rapidly developing field
of X-ray spectroscopy, CC3 can reliably produce results accurate to within a few
tenths of an eV.

Reaching basis set convergence is challenging for core excited states. In order to get
a good description of the ground state, core correlation functions must be included.
For double zeta basis, this is just one extra s- and p-function, while for triple zeta,
the extra core functions are two s-, two p- and one d -function. For the larger sets,
there are even more extra core functions. For the first core excited state, diffuse
functions may not be required, but for Rydberg excitations diffuse functions are
mandatory. Doubly augmented basis sets are recommended for such states.

For valence excitations, aug-cc-pVDZ can provide good results, at least for the
lowest states. This is not the case for core excitations and even the smaller 6-
311++G** set performs better than aug-cc-pCVDZ. The Pople set contains an
extra relatively tight s-function, while aCDZ contains an extra diffuse d -function.
The extra s-function appears to be important for the description of the “volcano”
seen in for example Figure 6.2. For quantitative accuracy, larger sets are required
and the (d-)aug-cc-pCVXZ series appears to converge steadily towards the basis
set limit.

When comparing to experiment there appears to be a systematic discrepancy, as
noted in Section 5.3. A likely explanation is relativistic effects, which is consistent
with the fact that the discrepancy depends on the element and grows with nuclear
charge. Another potentially important effect is coupling with vibrational states.
Studying the effect of vibrations is complicated by the fact that it in most cases is
not possible to discern vibrational levels in experimental spectra, nitrogen being an
exception. In addition, sampling of the potential energy surface is required which
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is very expensive. There have been some studies on the magnitude of these effects
[129, 141], but their total effect is still unclear.

The downside to CC3 is, of course, its high computational cost. Currently MLCC3
ground state and excitation energies have been implemented properly, but lack of
a good procedure to generate active spaces has so far limited the application of the
multilevel part. Automated molecular orbitals have the potential to change this.
As demonstrated in Section 3.4, these orbitals make it possible to construct an
active space tailor made for the excitation in question with very little input from
the user. While the steep scaling of CC3 limits the size of the systems that can be
treated, it also means that a relatively modest reduction in the number of active
orbitals can give large reductions in computational cost.

Cases where the excited states are nearly degenerate are potentially challenging,
particularly if the ordering of the states is changed when going from CCSD to CC3.
Highly diffuse excitations may also be complicated and a procedure to deal with
such cases is required. A possible explanation is that the CVS approximation is not
orbital invariant. Double zeta basis fails to describe the physics as demonstrated
in Section 5.1 and may exacerbate the problem. Cases where MLCC3 fails can
be identified quite easily by inspecting the excitation vector. If all the involved
orbitals are active, the errors compared to the full space are very small. Currently,
the contributions from the different spaces are printed automatically, making it
easy to evaluate the quality of the results.

As mentioned in the end of Chapter 6, the fate of the nπ∗ state in thymine is
unknown. In order to investigate the possible role of triplet states, it is necessary to
implement CC3 triplet excitations. This should be a relatively small modification
of the singlet code [156]. Triplet excitations will also be needed in a proposed
project at SLAC involving the excited states of nitrobenzene.

All the oscillator strengths reported in this thesis were computed using CCSD. The
assumption is that CCSD intensities are similar to those of CC3, noting that one is
usually only interested in relative oscillator strengths. For valence excitations, this
is a reasonable assumption [157], however, as far as the author is aware, nobody
has done a study of CC3 intensities for core excitations. Doing so requires the
implementation of the left matrix vector product of the Jacobian and the F -matrix,
which will be the next implementation project after triplet states.

More long term, a proper implementation of MLCCSD is necessary. This is a large
project, because such an implementation would ideally replace the ageing CCSD
code in Dalton. Furthermore, it should be implemented with MPI, or at least be
MPI safe, making it possible to implement MLCC3 in parallel.
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Abstract

We present a size-extensive extension to the CC2 model that avoids the compli-
cations with quasi-degeneracies that are present in the CC2 model and related
perturbation theory based approaches. The formulation also provides a consistent
model for treating different parts of a molecular system at different levels of electron
correlation. Such a subsystem approach leads to large reductions in the computa-
tional requirements without compromising the accuracy. In this initial study we
focus on static molecular properties.
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A.1 Introduction

Coupled cluster response theory [28, 29, 31, 32, 158–161] has proven a highly use-
ful computational model in quantum chemistry. For instance, CCSD excitation
energies can be calculated routinely for molecules with 25 atoms or more. For
an explanation of the standard acronyms used in coupled cluster theory, see Ref.
[160, 161]. The CC2 model [23] was originally developed with the purpose of cal-
culating size-extensive and size-intensive dynamic molecular properties, such as
frequency dependent polarizabilities, excitation energies and transition moments.
The computational scaling of the CC2 model is N5 compared to N6 for CCSD, when
the number of electrons increases with the total number of orbitals N. The method
enters naturally in the hierarchy of coupled cluster [23] models CCS, CC2, CCSD,
CC3 and CCSDT, etc that offer a systematic approach to the electron correlation
problem. The accuracy of CC2 is expressed in orders of the fluctuation potential
and the energy is correct to second order, just like the MP2 model. The CC2
linear response function is only correct to first order and the single replacement
dominated excitations are correct to second order. However, due to the perturba-
tion treatment of the double excitation cluster operator, the double replacement
dominated electronic excitations are of zeroth order. For a recent overview of CC2
response theory implementations we refer to Hättig and coworkers [162].

The accuracy of the CC2 model has been extensively tested in the literature. Ex-
citation energies have been shown to be significantly less accurate than there cor-
responding CCSD excitation energies [23]. In a recent study, Korona [163] showed
that CC2 static average polarizabilities deviate around 6% from the CCSD val-
ues. In the same study, the anisotropy polarizabilities deviate as much as 18%.
For some smaller molecules the CC2 shielding constants [164] show a difference of
10% for nitrogen comparing to CCSD. The optical rotatory power is a complicated
property to calculate and 50% deviation between CC2 and CCSD is not unusual
[165]. Finally, for quasi-degeneracy situations the CC2 model breaks down due to
the perturbation theory treatment of the double excitations [166]. Although there
are many cases where CC2 is more accurate than indicated above, we see a need
to improve the accuracy of the CC2 model without increasing the computational
scaling to the N6 level.

In this paper we will explore a simple extension of the CC2 model that preserves
the overall N5 scaling. We will partition the double excitation space such that
a small active set are treated to infinite order and the remainder are treated by
perturbation theory. There are many ways to select active spaces either from a
perturbation theory perspective or from a chemical perspective. We have recently
demonstrated that subsystems of a molecular system can be efficiently defined using
the Cholesky decomposition of the one-electron density matrix [88]. In this way
electron correlation is introduced selectively in the molecule. The combination of
this flexibility with the partitioning of the double excitations we are able to define
models where one part is effectively described by CC2 and the other part by CCSD.
The associated wave function is fully anti-symmetric across the borders between
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the different levels of description. As we shall see the coupling between the different
levels are consistently determined within the coupled cluster equations. The new
method will be named extended CC2 and we will use the acronym ECC2.

The standard black box property of coupled cluster methods is lost when we intro-
duce this partitioning and apply different levels of correlation treatment to different
parts of the system. Previous experience with the selection of active spaces for
multi-configuration methods has a long history of complications [167]. However,
we propose to select active spaces at an atom level rather than at an orbital level,
making the selection process more chemically intuitive. The advantage of selecting
subsystems is that the computational scaling becomes independent of the size of
the surrounding system. Even though density functional theory (DFT) is a fully
black box method, we believe a subsystem approach will be able to compete with
the scaling of DFT.

A.2 The ECC2 model

Initially we divide the cluster operator into two parts, T and S, that together form
the complete cluster operator. In this notation the coupled cluster wave function
is expressed as

|CC〉 = exp(T + S)|HF 〉. (A.1)

For each of the cluster operators T and S we associate a projection manifold that
we denote {〈μT |} and {〈μS |} respectively. This implies the amplitude equations

〈μT | exp(−T − S)H exp(T + S)|HF 〉 = 0

〈μS | exp(−T − S)H exp(T + S)|HF 〉 = 0
(A.2)

where we have assumed the projection manifolds are orthogonal to the Hartree-Fock
reference |HF 〉. The energy is determined from the standard expression

E = 〈HF |H exp(T + S)|HF 〉. (A.3)

The strategy is now straightforward. The T operator will be treated to infinite
order and the S part will be determined by perturbation theory. The standard
CC2 model is obtained when T = T1 (single excitations) and S = S2 (double
excitations). The ECC2 parametrisation opens the possibility for the T operator
to include, besides the single excitations, a subset of double excitations and the S
operator contains the remaining double excitations. To be more explicit we write
the operators as

T = T1 + T2 =
∑
μ1

tμ1τ
†
μ1

+
∑
μ2εT

tμ2τ
†
μ2

S = S2 =
∑
μ2εS

tμ2
τ †μ2

(A.4)
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and we also introduce the T1 transformed Hamiltonian

Ĥ = exp(−T1)H exp(T1). (A.5)

The T-amplitude equations now take the following form

〈μ1|Ĥ + [Ĥ,X2]|HF 〉 = 0

〈μT
2 |Ĥ + [Ĥ,X2] +

1

2
[[Ĥ,X2], X2]|HF 〉 = 0

(A.6)

that are identical to the standard CCSD equations with amplitudes X2 = T2 +S2.
However, due to the limited size of the doubles projection manifold the computa-
tional scaling is reduced as compared to CCSD. The scaling will depend on how
the active double excitations are chosen and we now discuss these aspects.

We will only consider two types of active spaces (I and II) for the T operator. For
the first type, we construct double excitations among a selection of occupied and
virtual orbitals that we denote as active orbitals. This type of active space is made
up of so-called internal excitations. The type II active space will, besides the type
I excitations, also include excitations to and from external orbitals in such a way
that at least one orbital index is active, denoted semi-external excitations. When
T is a type II active space, then S-excitations are only among the external orbitals
and we call them external excitations.

The computational scaling of the Eq.(A.6) for the double excitations can now be
determined. When T is a type I active space we obtain by inspection of the coupled
cluster equations a maximum scaling of kO2V2, where O and V is the total number
of occupied and virtual orbitals respectively. This is without counting the MO-
transformation that scales as kN4. The k-factor only depends on the size of the
active space. For instance, the computationally demanding B-term [168] that in
full CCSD scales as V4O2 now only scales as kV2. The prefactor k is for the B-
term equal to O2

IV
2
I where OI is the number of active occupied orbitals in the type

I active space and VI is the corresponding number of virtual orbitals. We observe
that for a fixed size of the active space, the added computational cost of ECC2 is of
the order O2V2, which is less than the CC2 model itself. When the active space is
of type II, the computaional reduction is minimal. For example, the B-term scales
as kV4O.

The S-amplitude equations will be solved by perturbation theory through first
order in the fluctuation potential U. The Hamiltonian is partitioned into the Fock
operator F and the U operator such that H = F +U , where we assume the orbitals
are canonical and thus the Fock operator is diagonal [169]

F =
∑
p

εpEpp. (A.7)

Using the identity
〈μS

2 |[F, T ]|HF 〉 = 0 (A.8)
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Figure A.1: The 1-3-butadiene molecule can be imagined to be part of a larger system
that is described by a CCS wave function. All orbitals are allowed to relax through the
T1 cluster operator.

and that for type I active spaces we have the identity

〈μS
2 |[[Ĥ, T2], T2]|HF 〉 = 0, (A.9)

we obtain the first-order equation for the S-amplitudes

〈μS
2 |[F, S2] + Ĥ + [Ĥ, T2]|HF 〉 = 0. (A.10)

This equation is valid for type I active spaces, but when considering type II active
spaces, the term in Eq. (A.9) must be included when solving for the S-amplitudes.
The zero’th-order condition, 〈μS

2 |[F, S2]|HF 〉 = 0, is fulfilled when the amplitudes
are zero and the first non-vanishing S2 contribution is first order. The computa-
tional scaling of the commutator term in Eq. (A.10) for type I active spaces is
similar to Eq. (A.6) and scales as kV2O2.

Equations (A.6) and (A.10) defines the ECC2 model that will be explored in the
following sections. We may also consider models where the double excitations, both
T2 and S2, are limited to a reduced orbital space and only T1 includes excitations
in the entire molecule. This types of model will be useful when considering a
subsystem partitioning.

Before turning attention to some illustrative applications we will describe our sub-
system approach. The idea of treating different parts of a molecular system by
different level of accuracy was pioneered with Morokuma’s ONIOM model [170].
Our approach is different as we use the Cholesky decomposition to define occupied
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and virtual orbitals for subsets of atoms, see Ref. [88, 171] for details, and we can
in this way define several levels of subsystems. Figure A.1 illustrates the principle.
Initially we calculate the SCF one-electron density matrix in the atomic orbital ba-
sis. Then, based on a selection of active atoms, we decompose the density matrix
only selecting diagonals that corresponds to active atoms. When the active diago-
nals are smaller than a given treshold we stop. The generated Cholesky vectors are
now used as active occupied orbitals and they are orthogonal [171]. Subtracting the
active density from the original density we can now repeat the process for the next
subsystem. Virtual orbitals are generated in a similar manner starting from the
virtual density [88]. The main difference between ECC2 and the ONIOM approach
is that the ECC2 wave function is anti-symmetric across all levels of approximation
and excitations between the different levels are included consistent with the cou-
pled cluster equations. This is different from the ONIOM model that is not based
on an approximate wave function for the entire system.

A.3 Illustrative applications

A.3.1 Quasi-degenerate cases

Describing molecular dissociation, and chemical reactions, is problematic with per-
turbation based theories. The problem arises when bond breaking leads to HOMO
and LUMO becoming quasi-degenerate. Correction terms will then go towards sin-
gularities [160]. For second order theories, the highest order correction is negative,
so the total energy goes towards negative infinity. In the following examples, we
demonstrate that the ECC2 model remedies this problem by treating the HOMO
and LUMO to infinite order. In Eq. (A.10) it is possible to discard the commuta-
tor term to reduce computational cost at the expense of accuracy. This is done in
some of the following examples to assess the effect. In these cases, ECC2a refers
to the model where the commutator terms are omitted, while they are included in
ECC2b. ECC2 will refer to the model including the terms unless otherwise stated.

In figure A.2, the total energy of lithium hydride is plotted for a dissociation pro-
cess. All models use aug-cc-pVDZ and the ECC2 models employ an active space
including only HOMO-LUMO excitations. Not surprisingly, SCF performs poorly
and far overestimates the dissociation energy because SCF wave functions disso-
ciates into H− and Li+. The perturbative methods, MP2 and CC2, fail due to
quasi-degeneracy. For such a small system, only four electrons, FCI, CCSD and
ECC2-II are indistinguishable. At equilibrium distance, ECC2-I is no better than
the other perturbative models. However, ECC2-I does not diverge at large inter-
nuclear distances and coincides with FCI when the distance is larger than 5 Å.

A similar behaviour is observed for the sodium dimer in Figure A.3. Only HOMO
and LUMO are included in the active space and the basis is aug-cc-pVDZ. Again
MP2 and CC2 fail to describe the correct behaviour, ECC2-II closely matches
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Figure A.2: Total energy curves of lithium hydride.
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Figure A.4: Total energy curves for abstraction of one hydrogen atom from ethene.

CCSD while ECC2-I overestimates the equilibrium energy, but approaches CCSD
at large distances. Curves for both ECC2a and ECC2b are presented in Figure
A.3 and the commutator terms give a small improvement for both types of active
spaces.

Figure A.4 shows the total energy of ethene during abstraction of one hydrogen
atom using aug-cc-pVDZ. Initial geometries are given in Appendix A.4. For this
reaction, an active space of only HOMO and LUMO gives an unphysical bump
in the energy curve, as HOMO and LUMO changes nature along the abstraction
coordinate. At short distances they are the π-orbitals of the ethene double bond
while at longer distances they become the bonding and anti-bonding σ-orbitals of
the carbon-hydrogen bond. This problem is solved by expanding the active space
to include the two highest occupied and two lowest virtual orbitals. While the total
ECC2 energy is very different from that of CCSD, the errors in the dissociation
energy is about 4% for type I and 2% for type II active spaces. The difference in
the total energy is due to correlation effects in the orbitals that are described at
the CC2 level.
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A.3.2 Static molecular properties

To assess the performance of ECC2 for electronic dipole moments and polarizabil-
ities we investigate a number of molecules. We employed experimental geometries
obtained from Ref. [172], except for 1-3-butadiene, where we used an optimized
SCF geometry [173]. The ECC2 properties are calculated using finite differences
and the difference between analytical and numerical results for CC2 are in the
order of 0.01 a.u. for dipole moments and 0.001 a.u. for polarizabilities. In all
ECC2 calculations we used type I active spaces and both models, a and b, are used
to observe the effect of the commutator term in Eq. (A.10). We use unrelaxed
Hartree-Fock orbitals to assess the performance of coupled cluster response theory.

In Table A.1, the results for hydrogen fluoride and ozone are presented. The CC2,
CCSD and CC3 results are included for comparison. In these calculations we used
an aug-cc-pVTZ basis. For HF, the difference between the CC2 and CCSD dipole
moments is about 10%, and for the polarizability approximately 6%. Using the
ECC2b model with an active space of four occupied and five virtual orbitals, the
errors are reduced to 4% and 1%. In this model 9 orbitals enter CCSD space,
compared to the 76 orbitals in the full CCSD model. Including more occupied
orbitals in the active space is not expected to make much difference, as this would
include the 1s orbital of fluorine. For ozone, large electron correlation effects are
expected and the differences between CC2 and CCSD is indeed 21% and 8%. This
is reduced to 3% and 1% for the best ECC2 model. This is very encouraging, as
the error in polarizability is reduced by a factor of eight with respect to CCSD and
only 16 out of a total of 138 orbitals are included in the active space. Ozone may be
a special case, as we observe large changes when including only one virtual and one
occupied orbital in the active space. For the other molecules studied, ECC2 give
results that are intermediate between CC2 and CCSD and gradually approaches
CCSD as the active space is expanded. For the dipole moment of ozone, CC2
underestimates the value and the smallest active space ECC2 model overestimates
compared to CCSD.

Table A.2 contains the polarizabilities of ethyne and ethene, again using an aug-
cc-pVTZ basis. For these systems, the error of CC2 with respect to CCSD is less,
3.3% and 4.4%. Using active spaces with 8 virtual and 5 and 6 occupied orbitals
respectively, these errors are halved to 1.6% and 2.7%. Convergence is slow towards
the CCSD values and we note that the active spaces did not include orbitals of all
symmetry classes.

The polarizability is also calculated for the larger molecules benzene and 1-3-
butadiene using aug-cc-pVDZ. These results are reported in Table A.3. The error
is reduced from 4.8% to 2.7% for benzene and 7.5% to 2.6% for 1-3-butadiene. The
initial convergence is rather slow for these systems, even worsening in some cases.
However, when the seventh and eighth occupied and virtual orbitals are added, the
error decrease rapidly for both systems. Inspection of the orbital energies reveals
that, in both cases, orbitals with new symmetry classes are added to the active
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Table A.2: Polarizability in a.u. of ethyne and ethene along the C-
C bonds. v is the number of virtual and o is the number of occupied
orbitals.

Active space C2H2 C2H4

o v ECC2a ECC2b ECC2a ECC2b

CC2 31.30 35.73

1 1 31.30 31.30 35.72 35.72
2 2 31.29 31.30 35.72 35.73
3 3 31.22 31.22 35.70 35.71
4 4 31.17 31.11 35.69 35.70
5 5 31.14 31.08 35.34 35.29
5 6 31.00 31.06 - -
5 7 31.07 30.99 - -
5 8 30.91 30.79 - -
6 6 - - 35.27 35.19
6 7 - - 35.26 35.17
6 8 - - 35.24 35.15

CCSD 30.30 34.21
CC3 30.42 34.03

Table A.3: Polarizability in a.u. of benzene along a C2 axis going
through two hydrogen atoms and 1-3-butadiene along the C-C sin-
gle bond. v is the number of virtual and o is the number of occupied
orbitals.

Active space C6H6 C4H6

o v ECC2a ECC2b ECC2a ECC2b

CC2 86.31 82.59

1 1 86.32 86.32 82.56 82.56
2 2 86.35 86.31 82.55 82.55
3 3 86.33 86.30 82.53 82.55
4 4 86.30 86.30 82.51 82.54
5 5 86.29 86.29 82.46 82.52
6 6 86.26 86.25 82.44 82.49
7 7 85.77 85.44 80.38 80.17
8 8 85.18 84.94 80.04 80.84
9 9 85.07 84.82 79.97 79.73
10 10 84.92 84.62 79.34 78.85
11 11 - - 79.34 78.85

CCSD 82.38 76.81
CC3 81.52 76.29
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Figure A.5: Total energy curves for abstraction of one hydrogen atom from 1-3-butadiene
using an active space of 11 occupied and 32 virtual orbitals.

space. Including orbitals from all symmetry classes may be a guiding criteria for
choosing the active space. To test this, the polarizability of ethene is calculated
using an active space with a total of ten orbitals, that include the lowest energy
virtual orbitals from each symmetry. However, the calculated polarizability is 35.28
a.u., almost the same as the (5,5) model from Table A.2.

Comparing ECC2a and ECC2b, it is clear that including the commutator terms
gives an improvement, both for total energy and static properties. As the compu-
tational scaling of the commutator term is relatively small, we recommend it to be
included.

A.3.3 Subsystems

In this section we will demonstrate how the ECC2 model can be applied in connec-
tion with a subsystem approach. We use 1,3-butadiene as an example and consider
the abstraction of a hydrogen atom along the CH bond. In Figure A.1 is an illus-
tration of how the different approximation levels are selected. In the active CCSD
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Figure A.6: Initial configuration and active spaces for ethanamide.

part we limit the Cholesky decomposition of the one-electron density matrix to
generate only 5 occupied and 26 virtual orbitals. The remaining 10 occupied and
131 virtual orbitals are treated as the external orbital space. The entire external
space is described at the CC2 level and thus there is no SCF part in this calcula-
tion. We employ an aug-cc-pVDZ basis and use a type I active space and initial
geometries are given in Appendix A.4.

The results are given in Figure A.5 where we first observe the failure of CC2 and
MP2 at large distances. The ECC2 curve displays the correct behavior in the limit,
but the curve is shifted compared to CCSD. Evaluation of the dissociation energy
reveals that the shift is almost constant. The full CCSD dissociation energy is 535.1
kJ/mol and for ECC2 it is 531.5 kJ/mol, a difference within chemical accuracy.

We may include more occupied and virtual orbitals in the active space by changing
the threshold in the Cholesky decomposition to 2 × 10−4 and removing the limit
on the number of active orbitals. With this procedure we get 11 occupied and 32
virtual orbitals and we obtain a dissociation energy of 536.1 kJ/mol. This is a clear
improvement compared to the smaller active space.

We now consider a somewhat larger system that is illustrated in Figure A.6. Here,
the polar parts of ethanamide are described at the full CCSD level while the unpolar
methyl group is described at the CC2 level. The surrounding water molecules are
described at the CCS level. This results in 12 occupied and 36 virtual orbitals
being treated at the CCSD level, 4 occupied and 13 virtual at the CC2 level and
20 occupied and 92 virtual orbitals being treated at the CCS level. The initial
geometry can be found in Appendix A.4
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Figure A.8: Error in energy change as a function of the rotation angle of nitrogen-carbon
bond with respect to full CCSD for ethanamide with and without water molecules present.

In Figure A.7 we have plotted the total energy as a function of the rotation angle
of the amine group around the carbon-nitrogen bond in the presence of water
molecules.

In Figure A.8 the error defined as ΔEmethod −ΔECCSD with ΔE = E(φ) − E(0)
where φ is the rotation angle from initial configuration. The error for ethanamide
both with and without water molecules is presented. For both cases, the ECC2
error is within chemical accuracy and substantially more accurate than MP2 and
CC2.

A.4 Conclusions

We have presented a proof of principle behind our proposed extension of the CC2
model that we call ECC2. We have shown that with little additional computational
cost we may correct the divergence problems in CC2. Furthermore, static electric
properties are improved in ECC2 and this provide an indication this will also be
the case for dynamic properties.

We believe the real game changer is obtained with ECC2 in combination with
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the subsystem partitioning of a molecular system. Electron correlation is a local
property and it only seems logical to introduce this selectively in the parts of the
molecule where it is needed to describe the chemistry of interest. The concept is
best explained by Figures A.1 and A.6 and we have presented encouraging results
for a very small system. However, this provides ample evidence that the method will
work for much larger systems where it becomes really useful. We have previously
documented the speedup of the subsystem approach based on Cholesky orbitals [88]
and believe that for sufficiently large systems the method will be able to compete
with the scaling of DFT as the correlation part of the calculation becomes constant
with respect to size of the SCF and CCS parts.

In a forthcoming paper [174] we will develop the response theory associated with
the ECC2 model and also provide more details about the full implementation of
the method. The ideas behind ECC2 can of course be generalized to include other
types of excitations such as triple excitations. This will be important in the future,
especially when black box algorithms become computationally unfeasible and a
more targeted application of electron correlation is needed.

Acknowledgements

We acknowledge support from the Spanish MINECO through project number
CTQ2010-19738 and NOTUR for computer time.

Geometries

The initial geometries used in the calculations are presented in Tables A.4, A.5 and
A.6.

To break a bond, the hydrogen atom were moved in the direction of the original
equilibrium bond while the rest of the atoms were kept fixed. Similarly, under
rotation, only the two hydrogen atoms bonded to the nitrogen were moved. The
rotation axis was the carbon-nitrogen bond and the equilibrium dihedral angle were
arbitrarily chosen as origin.
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Table A.4: Initial geometry of ethene (Å).

atom X Y Z

C 0.000000 0.000000 0.665647
C 0.000000 0.000000 −0.665647
H 0.000000 −0.923658 1.239711
H 0.000000 0.923658 −1.239711
H 0.000000 −0.923658 −1.239711
H 0.000000 0.923658 1.239711

Table A.5: Initial geometry of butadiene (Å).

atom X Y Z

C 0.000000 0.000000 0.000000
C −0.524786 3.619893 0.000000
C −0.575773 1.160600 0.000000
C 0.050986 2.459292 0.000000
H −1.729024 3.619893 0.000000
H −0.394695 −0.938866 0.000000
H −0.130090 4.558760 0.000000
H 1.138098 2.500263 0.000000
H −1.662884 1.119629 0.000000
H 1.204238 0.000000 0.000000



A.4. Conclusions 69

Table A.6: Initial geometry of ethanamide and water (Å).

atom X Y Z

C 0.000000 0.000000 0.000000
N 0.000000 0.000000 1.343933
H 0.000000 0.868414 1.889388
H 0.312840 −0.833192 1.840835
C −0.376624 1.307903 −0.672187
O 0.253060 −1.003521 −0.691388
H −1.363003 1.198198 −1.136253
H 0.339480 1.513937 −1.472421
H −0.402903 2.149854 0.024644

H 0.754572 −0.846457 −2.313459
O 1.088567 −0.671047 −3.238879
H 1.886219 −1.216167 −3.310645

H −0.004761 2.260462 3.901190
O 0.588784 2.125496 3.147711
H 1.289772 1.519432 3.497171

H 3.281178 0.406328 3.620628
O 2.411900 0.236049 4.012560
H 2.133887 −0.628957 3.630014

H 1.647040 −2.542963 1.997237
O 1.446729 −2.109176 2.878366
H 0.685755 −2.579973 3.247016
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Abstract

We present a general formalism where different levels of coupled cluster theory can
be applied to different parts of the molecular system. The system is partitioned into
subsystems by Cholesky decomposition of the one-electron Hartree-Fock density
matrix. In this way the system can be divided across chemical bonds without
discontinuities arising. The coupled cluster wave function is defined in terms of
cluster operators for each part and these are determined from a set of coupled
equations. The total wave function fulfills the Pauli-principle across all borders
and levels of electron correlation. We develop the associated response theory for
this multi-level coupled cluster theory and present proof of principle applications.
The formalism is an essential tool in order to obtain size-intensive complexity in
the calculation of local molecular properties.
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B.1 Introduction

Wave function methods has reached a level of maturity where linear complexity
algorithms have been developed for most of the standard electronic structure models
including perturbation theory and coupled cluster (CC) theory. The locality of
electron correlation is the fundamental basis for these methods [175] and can be
exploited to reduce the scaling of electron correlation methods when orbitals are
localized. For example, in the projected atomic orbital method the occupied orbital
space is projected out from the atomic orbitals (AOs) giving a localized set of virtual
orbitals [176–179]. By localizing the occupied orbitals, a domain in physical space
can be defined and explicit correlation can be limited to electron pairs within
the domain. This approach has been exended to CC theory and implemented
as the local CCSD method [180–184]. The divide-expand-consolidate [185–187]
(DEC) and frozen density embedding [84, 188, 189] (FDE) methods are based
on fragmentation of the molecular system and calculating the electron correlation
energy for each fragment. In DEC, the fragments are gradualy expanded until
convergence while FDE considers the electron correlation for each fragment while
keeping the electron density in the rest of the system frozen.

To calculate the total dynamic electron correlation energy for large systems the local
pair natural orbital CCSD (LPNO-CCSD) [76, 190] and the orbital-specific-virtual
local CCSD (OSV-LCCSD) [78, 191] methods are the most efficient currently avail-
able. In LPNO-CCSD, the occupied orbitals are localized and each electron pair is
classified as strongly or weakly interacting using a Møller-Plesset second order per-
turbation (MP2) theory estimate. Only the strongly interacting pairs are treated
explicitly with CC theory and the complexity is further limited by generating a
truncated virtual set of orbitals for these electron pairs. Weakly interacting pairs
are only included as MP2 estimates. The OSV-LCCSD method is similar, but in
this case, a virtual basis is associated with each occupied orbital. This generally
requires larger but fewer sets of virtual orbitals. Both these methods have recently
been extended to perturbative triples [26] and are usually able to recover more
than 90% of the triples correlation energy [77, 79] with total wall times reduced by
several orders of magnitude for large systems compared to canonical calculations.
Recently, CC2 excitation energies were implemented in a hybrid OSV-LPNO for-
mulation [192]. Although this implementation is still a work in progress, reduced
scaling led to improved timings compared to resolution of identity CC2 for a few
hundred basis functions or more.

While the methods mentioned above make it possible to recover the correlation
energy for large systems, their scaling is sensitive to the thresholds set in the
program and how diffuse the basis functions are. An alternative approach to reduce
the scaling is using approximate representations of the two-electron integral matrix.
These methods have a long history in quantum chemistry and the most prominent
are density fitting [61–65, 193, 194], Cholesky decomposition [66–68, 195, 196],
pseudo spectral methods [197–205] and the more recent the tensor hypercontraction
method [25, 206–208].
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Many molecular properties are size intensive and only depend on a small part
of the molecular system. In such cases, it is not necessary to compute the total
correlation energy. Instead, one can use an accurate method on a small part of
the system. In this paper we will explore such an alternative approach that can
potentially lead to electron correlation methods with size-intensive complexity. In
an earlier paper [209], we introduced the multi-level coupled cluster (MLCC) model
denoted extended CC2 (ECC2) where an active space is treated with CCSD [21]
and the rest using CC2 [23]. We were able to improve the description of abstraction
processes were CC2 failed due to quasi degeneracies. In this communication, we
discuss MLCC more generally with several levels of theory and introduce MLCC
response theory. Using canonical orbitals, MLCC methods are reminiscent of the
active space CC method by Olsen and Köhn [85, 210]. The major difference is that
MLCC can employ several levels of theory, thus making it possible to gradually
increase accuracy and the associated computational cost.

To fully exploit the locality of electron correlation, we combine MLCC with lo-
calized Cholesky orbitals [68, 88]. While any set of orthogonal orbitals can be
employed, the Cholesky orbitals have the advantage that they can be computed
without optimization. The orbitals are generated by decomposing the one-electron
density matrix and this preserves the sparsity of the matrix. Carefully choosing
the pivoting elements, the generated orbitals can be localized to a spatial part of
the molecular system. Cholesky orbitals are less local than those of other methods
[89–92], but they are highly convenient for partitioning the system into subsys-
tems. The spatial division of the orbitals makes it possible to treat different parts
of the molecular system with different levels of theory like in the ONIOM model
[80, 81, 211].

This paper has been organized as follows. In the next section, we derive the working
equations of MLCC with up to CC3 [24] level of theory and give a detailed account
of the localization procedure. This is followed by a the derivation of the ECC2
linear response function. In Section B.3, we present proof of principle calculations
and the last section contains our concluding remarks.

B.2 Theory

B.2.1 The multi-level coupled cluster model

In this section we present a detailed derivation of the MLCC model. The cluster
operator X is divided into two separate contributions such that X = T + S. The
coupled cluster wave function is written as

|CC〉 = exp(X)|HF〉 = exp(T + S)|HF〉. (B.1)

The projection manifold associated with each contribution to the cluster operator
are denoted {〈μT |} and {〈μS |} and they are orthogonal to the Hartree-Fock (HF)
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reference state and each other. Inserting these definitions into the Schrödinger
equation and projecting onto the manifolds we obtain

〈μT | exp(−T − S)H exp(T + S)|HF〉 = 0 (B.2a)

〈μS | exp(−T − S)H exp(T + S)|HF〉 = 0. (B.2b)

The basic idea is to solve Eq. (B.2b) perturbatively for the amplitudes in the S
operator while the amplitudes in T are determined from Eq. (B.2a) without any
approximations. We divide the Hamiltonian into the Fock operator F and the
fluctuation potential U as the perturbation

H = F + U. (B.3)

The Fock operator is assumed to be diagonal such that F =
∑

p εpa
†
pap where p

labels spin orbitals. We now expand the S in orders of the perturbation U

S =S(0) + S(1) + S(2) + . . .

=
∑
μ∈μS

s(0)μ τ †μ +
∑
μ∈μS

s(1)μ τ †μ +
∑
μ∈μS

s(2)μ τ †μ + . . . (B.4)

where τ †μ denote excitation operators. Inserting Eq. (B.4) into Eq. (B.2b) we
obtain

εμs
(0)
μ = 0 (B.5)

εμs
(1)
μ = −〈μ| exp(−T )U exp(T )|HF〉 (B.6)

εμs
(2)
μ = −〈μ| exp(−T )[U, S(1)] exp(T )|HF〉 (B.7)

for μ ∈ μS . In deriving Eqs. (B.5-B.7) we have used that [F, τ †μ] = εμτ
†
μ where

εμ are orbital energy differences. Equations (B.6) and (B.7) differs from standard
CC perturbation theory [24] as the unperturbed part of the cluster operator is
included. In this way, the T operator is treated to infinite order. Our model is now
defined by the truncation of the unperturbed operator and the perturbation level
of the perturbative part. For example, in ECC2 (section B.2.3), the T operator is
truncated after double excitations and corresponds to CCSD while the S operator
is included to first order in the perturbation U .

The expression for the total MLCC energy is the same as in standard CC theory
and is given by

E = 〈HF|H exp(X)|HF〉. (B.8)

As in standard CC theory, there is no perturbative truncation in the energy ex-
pression, so the two operators are treated equally. Before introducing the ECC2
model, we now describe the scheme used to partition the molecular system.

B.2.2 Active spaces

We will use two different schemes to construct the active space. The first one is a
straightforward selection based on Hartree-Fock orbital energies, typically around
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Figure B.1: Example of an active
space based on orbital energies. Ex-
citations from active to active or-
bitals (red) are included in T , while
the semi external (purple), external
(blue), and their combinations are
included in S.

the HOMO-LUMO gap as illustrated in Figure B.1. This method was investigated
in our previous paper [209] and will not be discussed further here.

The second method is based on localized Cholesky orbitals [171]. These orbitals
are generated from Cholesky decomposing the AO Hartree-Fock density matrices

Dαβ =
∑
i

CαiCβi (B.9)

DV
αβ =

∑
a

CαaCβa (B.10)

for occupied and virtual orbitals. The C matrix contains the molecular orbital
(MO) coefficients where i and a label occupied and virtual MOs respectively and
α and β label AOs. The sum of the occupied and virtual density matrices is the
inverse of the AO overlap matrix S,

D+DV = S−1. (B.11)

Aquilante et al. [171] have demonstrated that the Cholesky orbitals are orthogonal
such that

Dαβ =
∑
i

LαiLβi (B.12)

∑
αβ

LαiSαβLβj = δij (B.13)
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Figure B.2: Decompostition scheme for 6-methyl-2,4-heptadione. The AO one-electron
Hartree-Fock density matrix is decomposed for diagonals corresponding to active atoms
indicated in red.

where Lαi are the Cholesky orbital coefficients for the occupied part. Similar
expressions hold for the virtual part and Eq. (B.11) shows that the virtual density
matrix can be calculated without explicit knowledge of the virtual MO coefficients.

When partitioning the molecular system into two parts, we classify the atoms as
active or inactive. In this way we obtain a set of active AOs that are centered
on the active atoms and similarly for the inactive atoms. As illustrated in Figure
B.2, the active Cholesky orbitals are determined by restricting the decomposition
to the diagonal elements of D and DV corresponding to active AOs. However,
the active part is not fully decomposed, but only diagonal elements larger than a
specific threshold are selected. We typically use the thresholds 0.2 and 0.3 for the
occupied and virtual parts, respectively. This has been shown to be sufficient to
reproduce the Lewis structure of the atoms [88]. After the active orbitals have been
generated, the inactive parts are decomposed with thresholds that are one hundreth
of the corresponding active thresholds. The described procedure generates two sets
of orbitals that can be classified as either active or inactive and the total number
is equal to the number of canonical orbitals.

Changing the molecular geometry will lead to changes in the diagonal elements
of the density matrix. This may result in different elements being chosen in the
decomposition which in turn can lead to discontinuities in the energy. However, if
for each geometry we only decompose among the same diagonal elements denoted
I and J in the following, the decomposition will be continuous. This restricted
decomposition corresponds to decomposing the matrix D̂(R) where R denote the
atomic coordinates

D̂αβ(R) =
∑
IJ

DαI(R)D̃−1
IJ (R)DJβ(R) (B.14)



B.2. Theory 79

where

D̃IJ(R) = DIJ(R) (B.15)

D̂αβ(R) =
∑
I

LαI(R)LβI(R) (B.16)

since the Cholesky decomposition is equivalent to an inner projection [212, 213]. In
Eqs.(B.14) and (B.15), D̃ is the submatrix of D corresponding to the decomposed
diagonal elements. The expression is numerically stable as long as D̃ is positive
definite. Furthermore, the expression can be used to calculate analytical molecular
derivatives in a straightforward fashion [214].

The above procedure can easily be generalized to more than two spaces by assigning
the atoms in the system to more than two sets. The decomposition procedure then
starts with the most acurate active set and decomposesD andDV to the thresholds.
After the first orbital set is computed, the next set is calculated by decomposing
the relevant diagonals. This is repeated for all sets except the last one, which
is decomposed to one hundreth of the thresholds. In this way, any number of
localized orbital spaces can be generated. To simplify the working equations, the
Fock matrix is block diagonalized in each space. The resulting Fock matrix will no
longer be diagonal, but there is no mixing between occupied and virtual parts.

After generating the orbital spaces, the projection manifolds can be assigned. The
first projection manifold is restricted to the excitations internal to the first space as
shown in Figure B.1 and only excitations from active to active orbitals are included.
In the case of two spaces, all other excitations are included in the inactive manifold.
If there are more orbital spaces, the second manifold includes excitations internal
to the second space and those between the first and the second space. Each new
space will then define a manifold that includes excitations internal in the space and
excitations between the space and the preceeding ones.

In Figure B.3, the active and inactive Hartree-Fock one-electron densities are shown
for 6-methyl-2,4-heptadione using cc-pVDZ and the scheme in Figure B.2. The
electron density surface was generated with Molden [215]. Since the active orbitals
are generated first, the active electron density extends into the inactive parts of the
molecule, but normally not vice versa. This ensures that the electron density close
to the active atoms is described by a high level theory. In passing, we note that
the selection of active spaces can also be done using a density functional theory
electron density.

B.2.3 The ECC2 model

Extended CC2 is a two-level CC model where the unperturbative part T is treated
as CCSD and S as CC2. Single excitations are calculated the same way in both
models and the singles part of the cluster operator is simply refered to as X1. The
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(a) Active (b) Inactive (c) Total

Figure B.3: Active, inactive and total electron densities for 6-methyl-2,4-heptadione. The
basis set is cc-pVDZ and the surface corresponds to ρ = 0.02.

doubles part is split into two parts X2 = T2+S2. Since the T operator is evaluated
to infinite order the working equations are the same as for standard CCSD

〈μ1|Ĥ + [Ĥ,X2]|HF〉 = 0 (B.17)

〈μT
2 |Ĥ + [Ĥ,X2] +

1

2
[[Ĥ,X2], X2]|HF〉 = 0 (B.18)

where we have used the X1-transformed Hamiltonian.

Ĥ = exp(−X1)H exp(X1). (B.19)

When solving the S2 equations, we first note that all excitations in the S manifold
involve at least one inactive orbital and consequently

〈μS
2 |[[Ĥ, T2], T2]|HF〉 = 0. (B.20)

Inserting the Hamiltonian from Eq. (B.3), we obtain

〈μS
2 | Ĥ + [Ĥ, T2] + [F, S2] + [Û , S2] |HF〉

+ 〈μS
2 | [[Û , T2], S2] +

1

2
[[Û , S2], S2] |HF〉 = 0.

(B.21)

As the last three commutators are at least second order in U , they are discarded.
The [Ĥ, T2] term in the first line would normally be considered first and second
order. However, the Fock operator is not necessarily diagonal and the commutator
with F must be included in order to satisfy the zero order condition. Furthermore,
T is treated to infinite order, so the full Ĥ commutator is included. The working
equations for the S2 amplitudes then become

〈μS
2 |[F, S2] + Ĥ + [Ĥ, T2]|HF〉 = 0. (B.22)
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To summarize, the ECC2 model is defined by the working equations (B.17), (B.18)
and (B.22). We note that the ECC2 model is size extensive [169]. If two subsystems
are treated at different levels of theory, CCSD for system A and CC2 for system B,
the total energy is the sum of the model energies (E = ECCSD

A +ECC2
B ). Thus for

non-interacting subsystems the ECC2 equations reduce to the standard canonical
equations for each subsystem.

The computational reductions compared to full CCSD is achieved through the
reduced size of the projection manifold in Eq. (B.18). In full CCSD, equation (B.18)
contains a term that scales as V4O2, where V is the number of virtual orbitals and O
is the number of occupied orbitals. This particular term will scale as kV2 in ECC2
where the k prefactor only depends on the number of active orbitals and scales as
V2

AO
2
A where VA and OA denote the number of active orbitals. As the active space

is expected to contain only a fraction of the total number of orbitals, this leads
to a large reduction in computational cost. If the system size is increased while
keeping the size of the active space fixed, the complexity is that of CC2. We have
previously documented the performance of the ECC2 model for static properties
[209]. In passing we note that the equation for the S2 amplitudes resembles the
equation for explicitly correlated amplitudes in the CCSD(F12) model [216].

B.2.4 Other MLCC models

For larger systems we may introduce an additional orbital space that is described
by CCS. To achieve this, an additional Cholesky orbital space is calculated and
all double excitation amplitudes involving orbitals from this space are discarded
while the single excitation equations are the same. We may also define a static
Hartree-Fock space beyond the CCS part. In this case, all excitations involving HF
orbitals are not included.

To achieve higher accuracy, CCSD(T) [26] or CC3 [24] are natural extensions to
the ECC2 model. In this case, we may assign up to five different orbital spaces
that we denote P ,Q,R,S and T , where P refers to static HF space. The splitting
of the cluster operator X is summarized in the following equations.

X = X1 +X2 +X3 (B.23)

X1 = Q1 +R1 + S1 + T1 (B.24)

X2 = R2 + S2 + T2 (B.25)

X3 = T3 (B.26)

For CCSD(T) [24, 26] the amplitude equations are the same as for CCSD and a
triples correction is calculated and added to the energy in the end. The correspond-
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ing amplitude equations are summarized below

0 = 〈μ1|Ĥ + [Ĥ,X2]|HF〉 (B.27)

0 = 〈μR
2 |Ĥ + [F,R2] + [Ĥ, S2 + T2]|HF〉 (B.28)

0 = 〈μS
2 |Ĥ + [Ĥ,X2] + [[Ĥ,X2], X2]|HF〉 (B.29)

0 = 〈μT
2 |Ĥ + [Ĥ,X2] + [[Ĥ,X2], X2]|HF〉. (B.30)

In the current implementation, the triples correction is only calculated from the T2

amplitudes. When the orbital basis is non-cannonical the non-diagonal elements
will appear when commuting the Fock operator and the triples cluster operator.
However, this is not a complication as these terms will include excitations out of
the active space and become zero when projected against the active manifold. The
equation for the triples amplitudes becomes

εμT
3
tμT

3
= −〈μT

3 |[U, T2]|HF〉 (B.31)

giving the energy correction

ECCSD(T )
corr =

∑
μ∈μT

1 ,μT
2

tμ 〈μ| [U, T3] |HF〉 . (B.32)

As we will show in Section B.3, this approach can give large reductions in compu-
tational cost and still maintain the accuracy of the full model. The systems studied
so far have been fairly limited and one may consider including X2 in Eqs.(B.31)
and (B.32), however our results indicate this is not necessary.

The CC3 model [24] includes the triple excitation in an iterative and perturbative
fashion. Standard implementations scale as iterative N7. Although this is a very
steep scaling many systems require the triple excitations to achieve an accurate
description. Implementing CC3 in an MLCC framework could make it possible to
avoid the prohibitive computational cost. The equations for the amplitudes are
given below

0 = 〈μ1|Ĥ + [Ĥ,X2] + [Ĥ, T3]|HF〉 (B.33)

0 = 〈μR
2 |Ĥ + [F,R2] + [Ĥ, S2 + T2]|HF〉 (B.34)

0 = 〈μS
2 |Ĥ + [Ĥ,X2 + T3] + [[Ĥ,X2], X2]|HF〉 (B.35)

0 = 〈μT
2 |Ĥ + [Ĥ,X2 + T3] + [[Ĥ,X2], X2]|HF〉 (B.36)

0 = 〈μT
3 |[F, T3] + [Ĥ,X2]|HF〉 (B.37)

Note that the T3 commutator term in Eq. (B.33) is only non-zero when projecting
against 〈μT

1 | and that the doubles in the CCSD and CC3 spaces are both treated
to infinite order in the perturbation thus, Eqs. (B.35) and (B.36) contain similar
terms. The equations above have been derived using perturbation theory. However,
these may not be the optimal working equations. In Eq. (B.37), a commutator
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between the Hamiltonian and the full X2 operator is included. This term will scale
as V2V

3
TO

3
T where V2 is the number of virtual orbitals in R, S and T . Depending

on the size of the spaces, it is likely that the commutator term with R2 is small.
This may be true for the S2 commutator term as well. Numerical testing will be
necessary to decide whether these terms are needed or not. A similar argument
can be made for the T3 commutator term in Eq. (B.35), but this term will only
scale linearly with the size of the CCSD space.

B.2.5 Response theory

We will now derive the linear response function for the ECC2 model using CC
response theory [31, 32] and the quasienergy method [38, 39, 217]. This method
assumes a periodic time-dependent perturbation, but is sufficient for our purposes.
For application of the quasienergy method to CC2 and CC3 models, we refer the
reader to Refs. [23, 87].

The starting point is the introduction of a periodic time dependent perturbation,
V t, in the Hamiltonian

H = F + U + V t = H0 + V t. (B.38)

We assume that V t is a one-electron operator that can be expanded as finite a sum
over frequencies

V t =

N∑
j=−N

∑
A

AεA(ωj) exp(−iωjt). (B.39)

To ensure hermiticity, we require that A = A† is a real frequency independent
operator with ω−j = −ωj and (εA(ωj))

∗
= εA(−ωj).

Using the approach described in Ref. [87], we obtain the ECC2 quasienergy La-
grangian

L(t) = 〈HF|H exp(X) |HF〉

+
∑
μ1

t̄μ1

(
〈μ1| Ĥ + [Ĥ,X2] |HF〉 − i

dtμ1

dt

)

+
∑
μT
2

t̄μT
2

(
〈μT

2 | Ĥ + [Ĥ,X2] +
1

2
[[Ĥ,X2], X2] |HF〉 − i

dtμT
2

dt

)

+
∑
μS
2

t̄μS
2

(
〈μS

2 | [F + V̂ , S2] + Ĥ + [Ĥ, T2] |HF〉 − i
dtμS

2

dt

)
(B.40)

Due to the periodicity of V t the amplitudes can be expanded in the frequencies

tμ = t(0)μ + t(1)μ + t(2)μ + ... (B.41)
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with

t(1)μ =

N∑
j=−N

t(1)μ (ωj) exp(−iωjt)

=

N∑
j=−N

∑
A

tAμ (ωj)εA(ωj) exp(−iωjt).

(B.42)

The Lagrange multipliers can be similarly expanded. In this paper, we will only
derive the linear response function and will not need higher than first order ampli-
tudes due to the 2n+1 and 2n+2rules [169]. From the expansion of the amplitudes
and multipliers, each term in the Lagrangian can also be assigned an order in the
perturbation

L = L(0) + L(1) + L(2) + ... (B.43)

A stationary condition is obtained by taking the time average of the Lagrangian

{L}T =

∫ T

0

L(t)dt (B.44)

where T is the period of the perturbation. The amplitudes and multipliers can
then be determined using that

∂

∂t
(m)
μ

{L(n)}T =
∂

∂t̄
(m)
μ

{L(n)}T = 0. (B.45)

for all m ≤ n.

The zero order cluster amplitudes are the time independent amplitudes from Eqs.
(B.17), (B.18) and (B.22). To find the corresponding multipliers, we use that

∂{L(0)}T
∂t

(0)
μ

= 0 (B.46)

resulting in
t̄(0)A = η(0). (B.47)

Where η(0) is the same as in standard CCSD

η(0)ν = −〈HF|[Ĥ0, τν ]|HF〉 (B.48)

and A is the Jacobian matrix given below. Similarly, the first order stationary

condition with respect to the multipliers, ∂{L(1)}T /∂t̄(1)μ = 0, is used to determine
the first order amplitudes.

(ω1−A) t(A)(ω) = ξ(A) (B.49)

The right hand side is given by

ξ(A) =

⎛
⎜⎝〈μ1|Â+ [Â,X

(0)
2 ]|HF〉

〈μT
2 |[Â,X

(0)
2 ]|HF〉

〈μS
2 |[Â,X

(0)
2 ]|HF〉

⎞
⎟⎠ (B.50)
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and is the same as in CCSD.

The singles part of the Jacobian matrix, A, is the same in CC2 and CCSD and
the expressions are the same in ECC2. For the doubles, the matrix has two parts
corresponding to T2and S2. The T2 part is the same as for CCSD, while the S2

part is similar to CC2, but differ due to the inclusion of the T2 commutator term
in Eq. (B.22). We have the following expression for the full ECC2 Jacobian
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[Ĥ

0
,X

(0
)

2
],
τ ν

T 2
]|H

F
〉

〈μ
T 2
|[Ĥ
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[Ĥ

0
,T

(0
)

2
],
τ ν

1
]|H

F
〉

〈μ
S 2
|[Ĥ
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After determining the zero order multipliers and first order amplitudes, the linear
response function can be evaluated. The linear response function is given by [38]

〈〈A,B〉〉ωi
=

∂{L}T
∂εA(−ωi)∂εB(ωi)

∣∣∣∣∣
ε=0

. (B.52)

and inserting Eq. (B.40) into Eq. (B.52), we obtain the following expression



88 Multi-level coupled cluster theory

〈〈
A
,B

〉〉
ω

i
=

P
(A

(−
ω
i)
,B

(ω
i)
){ 〈H

F
|[Â
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where
X(A)(ωi) = ∂X(1)(ωi)/∂εA(ωi) (B.54)

is the derivative of the frequency dependent first order cluster operator obtained
from Eq. (B.42) and

P (x, y)f(x, y) = f(x, y) + f(y, x). (B.55)

As for the Jacobian matrix, the X1 and T2 parts of the response function are the
same as for full CCSD , but the S2 part differs from CC2. In particular, the terms
on line four in Eq. (B.53) would not be included. These additional terms only
include active double excitations and have lower scaling than CC2.

A direct implemention of the eigenvalue problem for the ECC2 Jacobian will require
storing all doubles amplitudes on disk. As the number of amplitudes scales as O2V2,
this may lead to extensive storage requirements for large systems. However, the S2

part can be partitioned into the T part using a similar technique to the one used
by Hättig and Weigend in RI-CC2 [218]. The number of double amplitudes can
also be reduced by employing a CCS space. In a practical application we expect
the CC2 part to be relatively small. Finally, increased use of solid state disks will
make storage of amplitudes less unattractive due to the high I/O performance.

B.3 Numerical examples

Currently, ECC2 has been implemented as pilot code in the Dalton [99] software
package. While the current implementation is too slow for production calculations,
it is useful for proof of principle demonstrations and the examples in this section
will illustrate the applicability of MLCC.

B.3.1 ECC2(T) calculations

To illustrate the efficiency of ECC2(T), we have chosen the model system depicted
in Figure B.4. The complex consists of a neon dimer and three water molecules
and our objective is to calculate the effect of the water molecules on the van der
Waals interaction between the neon atoms. While the system geometry is highly
artificial, it demonstrates the combination of van der Waals and dipole interactions
that requires triples corrections. We have performed calculations with the standard
CC models CC2, CCSD and CCSD(T), the second order perturbation model MP2
and two MLCC models. In both the MLCC models, the water molecules are treated
with CCS, CC2 and CCSD with CCSD closest to neon and CCS furthest away. The
neon atoms are treated with CCSD or CCSD(T).

We employ aug-cc-pVDZ basis and counterpoise correct when separating the system
into two fragments. Midbond functions are placed between the neon atoms as
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Figure B.4: Neon water complex. Green indicates CCSD(T), red CCSD, black
CC2, and blue CCS. R is the distance between the neon atoms.

described in Refs. [219, 220] and the midbond center is considered active. One
fragment contains the water molecules and the closest neon atom while the other
only consists of the remaining neon atom. Ghost orbitals from the counterpoise
correction are treated with the same level of theory as the corresponding atoms.
To obtain consistent orbital spaces, the number of orbitals in each orbital space
is kept the same. For example, there are in total 84 orbitals in the basis set on
the neon atoms and the midbond functions, this implies that all three calculations
have 84 orbitals in the CCSD(T) space.

The results of the calculations are presented in Figure B.5. Interaction energy
increases with increasing accuracy of the electron correlation and the equilibrium
distance contracts. The calculated interaction energies around the equilibrium
distance are presented in Table B.1 and the differences between the MLCC models
and the corresponding standard models are less than 0.15 cm−1. Figure B.6 shows
the interaction energy calculated using CCSD(T) with different numbers of water
molecules. As expected, the water molecule closest to the neon dimer influence
the interaction energy the most and the effect decreases with distance. Comparing
Figures B.5 and B.6, the water molecules change the interaction energy by about
20%. This effect is well described by ECC2.

The computationally most expensive term in CCSD(T) [26] scales as V 4O3. For
the ECC2(T) model, the CCSD(T) space contained 10 occupied and 74 virtual
orbitals compared to 25 occupied and 182 virtual orbitals in the full system. The
theoretical reduction in computational time for this term is 572 fold. In practice,
the CCSD(T) calculation for the whole system took 26823 seconds and only 159
seconds with ECC2(T), corresponding to a 168 fold reduction. For comparison, a
CCSD iteration for the full system took 234 seconds.
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Figure B.5: Interaction energy for neon dimer with three water molecules calculated
using counterpoise correction.

−35.00

−30.00

−25.00

−20.00

−15.00

−10.00

−5.00

 0.00

 2.5  3  3.5  4  4.5  5  5.5  6

In
te

ra
ct

io
n 

en
er

gy
 (

cm
−

1 )

R (Å)

0 water
1 water
2 water
3 water

Figure B.6: Interaction energy calculated using CCSD(T) for neon dimer with zero,
one, two and three water molecules.
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Table B.1: Energy in cm−1 calculated around equilibrium for
Neon water complex.

r(Å) CCSD ECC2 CCSD(T) ECC2(T)

3.00 -27.16 -27.28 -33.83 -33.79
3.05 -29.08 -29.20 -35.14 -35.08
3.10 -29.99 -30.10 -35.50 -35.41
3.15 -30.15 -30.26 -35.15 -35.06
3.20 -29.78 -29.88 -34.32 -34.22

O

A

O

B
O

C

O

D

Figure B.7: Subsystems of decanal. Red atoms are treated with CCSD, black with CC2,
and blue with CCS. Bonds are included in the most active space, so model C has two
CCSD carbons and two CCS carbons. Hydrogen is treated the same as their parent
carbon.

Table B.2: Excitation energies of decanal in eV using cc-pVDZ.

CCSD CC2 A B C D
1 4.08 4.17 4.12 4.08 4.11 4.11
2 8.58 8.34 8.55 8.61 8.60 8.59



B.3. Numerical examples 93

B.3.2 Excitation energies

Electronic excitations are often highly localized and therefore well suited for MLCC.
Decanal is used as a model system and four different cases are presented in Figure
B.7. We have used a modified geometry from Pubchem [221] (See supplementary
material [222] for the geometry.). For case A and B we only employ CCSD and
CC2 spaces, while for C and D we also introduce a CCS space. The results are
presented in Table B.2. Note that all excitations reported in this section are singlet
excitations.

For the first excitation, CC2 performs relatively well compared to CCSD with an
error of 0.09 eV, but for the second excitation the difference is 0.24 eV. With an
active space of only the oxygen atom, the closest carbon and the attached hydrogen,
the error is greatly reduced, especially for the second exciation, with an error of
just 0.03 eV. Including the next carbon and its hydrogen, case B, reduces the error
of the first excitation to less than 10−3 eV while the second excitation is 0.03 eV
too high.

For case C and D only slight changes from case B are observed, even though almost
half the molecule is treated with CCS in model D. To get a better understanding
of the behavior of the models, we analyze the single excitation vectors. Table B.3
contains the individual contributions from the different spaces to the excitation
vectors given in percent. The T → T refer to internal to the CCSD space while S
→ S to internal to the CC2 space. The semi external excitations are divided into
two groups. T → S, from CCSD to CC2, and S → T, the opposite. Excitations
involving CCS orbitals are referred to as R.

In cases B, C and D, the first excitation is more than 80% internal to the CCSD
space. Consequently, the CCSD excitation energy is almost exactly reproduced.
The second largest contribution is T→ S and the error is generally not very sensitive
to this type of excitation. For instance in case A, 45% of the first excitation is T
→ S and the error is still small. The second excitation is an even better example,
because the T → T part is only 7%, but ECC2 is still much more accurate than
CC2. Note that the CCS contribution is less than 1% for all excitations. Large
CCS contributions tend to give too high excitation energies.

For all the systems presented in this paper, the character of the double excitation
part of the excitations has little additional explanatory value. Most of the excita-
tions have over 90% single excitation character and the distribution of the doubles
excitations between spaces are more or less the same as for the single excitations.

In Figure B.8 we present three different partitions of trans-ethyl-i-butyl-diazene
with a geometry from Pubchem [223]. In case A, the nitrogen atoms are included
in a CCSD space and the rest treated with CC2. For case B the active space is
expanded to include the neighboring carbon atoms. For case C, the hydrogen atoms
are included as well. Including the hydrogen atoms does not increase the number
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Table B.3: Contributions in percent from the different types of single excitations for
decanal using cc-pVDZ.

Exci. T → T T → S S → T S → S R total

A
1 48.3 44.7 0.4 0.5 - 93.9
2 6.7 57.0 0.7 29.8 - 94.3

B
1 83.3 9.7 0.4 0.1 - 93.5
2 38.7 28.9 3.7 22.9 - 94.2

C
1 83.7 9.7 0.4 0.1 0.0 93.9
2 46.9 29.3 3.6 14.2 0.1 94.1

D
1 83.8 9.6 0.4 0.1 0.0 93.9
2 70.3 9.0 12.1 2.3 0.6 94.3
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Figure B.8: Subsystems of trans-ethyl-i-butyl-diazene. See Fig B.7 for explanation.
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Table B.4: Excitation energies of trans-ethyl-i-butyl-diazene in eV using cc-pVDZ above
and aug-cc-pVDZ below.

CCSD CC2 A B C
1 3.40 3.38 3.41 3.41 3.41
2 7.41 7.48 7.43 7.40 7.40
3 8.14 7.94 8.14 8.10 8.13
4 8.31 8.02 8.24 8.29 8.28
5 8.46 8.03 8.47 8.44 8.45
1 3.39 3.36 3.41 3.40 3.40
2 6.24 5.71 6.15 6.20 6.21
3 6.55 6.02 6.46 6.52 6.53
4 6.60 6.06 6.51 6.57 6.58
5 6.88 6.28 6.75 6.83 6.83

of occupied active orbitals as the bonding electrons are included in the first space
generated. However, the number of active virtual orbitals will increase.

Excitation energies were calculated using the basis sets cc-pVDZ and aug-cc-pVDZ
and the results are reported in Table B.4. With the smallest basis set, CC2 performs
well for the first excitation, but the error rapidly increases for the higher excitations.
A minimal active space including only the nitrogen atoms is enough to reduce
the error significantly. For case C the CCSD excitation energies are more or less
reproduced. Table B.5 contains the character of the single excitations and we note
that the internal contribution is not particularly high for the higher excitations.

With an augmented basis set, the CC2 results are much worse for all but the first
excitation. The error also increases for the smallest active space, but to a much
lesser extent. For cases B and C, the accuracy is almost as good as without aug-
mentation, even though only a small part of the higher excitations is internal to
the active space (See supplementary material [222] for contributions to the excita-
tions.). Even for case C, at least 80% of these excitations are T → S.

An obvious application of MLCC is modeling molecules in solutions. The solute
molecule can be described at high accuracy while the solution molecules are treated
in a more approximate fashion. To explore these possibilities, we have chosen a
model system consisting of one acetone and three water molecules shown in Figure
B.9. The geometry was optimized with B3LYP [224] using Gaussian [225] (See
supplementary material [222] for the geometry). In case A, acetone is treated with
CCSD while the water molecules are treated with CC2. In the second case, the
two water molecules further away from acetone are treated with CCS.

For case A, the first ECC2 excitation energy is very close to the CCSD value using
cc-pVDZ. For the higher excitations, however, there are considerable errors. This
is consistent with the percentages shown in Table B.7 as the first excitation is
almost entirely internal in the active space while the higher are almost entirely
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Table B.5: Contributions in percent from the different types of single excitations for
trans-ethyl-i-butyl-diazene using cc-pVDZ.

Exci. T → T T → S S → T S → S total

A

1 62.1 31.1 1.0 0.6 94.9
2 40.4 21.0 16.2 11.3 89.0
3 23.4 18.7 29.3 23.9 95.3
4 27.2 14.2 30.5 22.4 94.3
5 17.8 72.5 1.1 2.9 94.4

B

1 78.9 15.8 0.1 0.0 94.8
2 70.3 15.0 2.2 0.6 88.0
3 66.4 19.2 7.3 2.0 94.9
4 69.8 16.0 6.6 1.8 94.2
5 21.4 71.8 0.3 0.6 94.0

C

1 89.2 5.4 0.1 0.0 94.7
2 80.6 5.3 1.8 0.2 87.9
3 81.6 6.5 6.0 0.6 94.7
4 78.8 5.7 8.8 0.8 94.2
5 56.6 36.6 0.4 0.4 94.0
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Figure B.9: Subsystems of acetone-water complex. See Fig B.7 for explanation.

Table B.6: Excitation energies of acetone with water in eV using cc-pVDZ above and
aug-cc-pVDZ below.

CCSD CC2 A B
1 4.81 4.87 4.81 4.91
2 8.40 8.24 8.28 8.90
3 8.75 8.31 8.64 9.20
1 4.76 4.76 4.77 4.93
2 6.96 6.31 6.95 7.36
3 7.51 7.04 7.12 8.09
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Table B.7: Contributions in percent from the different types of single excitations for
acetone with water using cc-pVDZ.

Exci. T → T T → S S → T S → S R total

A
1 84.1 0.7 8.9 0.1 - 93.8
2 0.4 1.0 5.3 89.4 - 96.0
3 0.2 0.1 1.4 94.2 - 96.0

B
1 85.8 0.1 0.4 0.0 8.0 94.3
2 0.1 0.2 1.6 93.1 1.6 96.7
3 68.3 9.0 0.6 0.7 16.5 95.1

Table B.8: Contributions in percent from the different types of single excitations for
acetone with water using aug-cc-pVDZ.

Exci. T → T T → S S → T S → S R total

A
1 76.7 4.9 11.4 0.7 - 93.7
2 41.6 34.4 9.6 8.8 - 94.4
3 1.3 1.4 3.7 87.8 - 94.1

B
1 79.6 1.1 0.3 0.0 13.8 94.9
2 55.3 18.2 0.5 0.2 21.4 95.7
3 71.2 4.4 0.8 0.1 19.0 95.4

external. The first excitation of acetone is much lower than those of water and
is almost entirely localized on acetone. The higher excitation energies, however,
are about the same energy as those of water and have large external contributions.
A similar pattern is observed with the aug-cc-pVDZ basis, except that now the
second excitation is also mostly localized on acetone and is described accurately.

When including a CCS space the acetone excitation energies and errors increase.
This is due to the considerable contributions from the CCS space. Case B gives
solvent shifts of 0.45 eV and 0.49 eV with and without augmentation respectively
for the first excitation. This is higher than the 0.35 eV and 0.32 eV from full
CCSD, but more accurate than not including the water molecules. All three water
molecules in this system are close to acetone, making the system too small to
accommodate a CCS space. With enough water molecules to form a second or
third solvation shell, it is likely that CCS can accurately describe the effect of the
outer shells.

B.4 Conclusions

In this paper, we have expand upon the ECC2 model [209] and presented the de-
tailed derivation of the equations, including how to incorporate triple excitations
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in the MLCC framework. Initial tests of the ECC2(T) model using a proof of prin-
ciple implementation are encouraging and demonstrate a two orders of magnitude
reduction in computational requirements. We have also derived the ECC2 response
function and calculated excitation energies for various test systems.

Our experience so far shows that multi-level coupled cluster theory is useful when
treating the entire system with an accurate model is too expensive. The model
is not black box and the user must make an appropriate choice of active spaces
and verify that the results are accurate. For some systems and properties, such
as the lowest excitation energies of decanal, it is obvious where the active space
should be placed. In this case, verification can then be achieved by simultaneously
performing several calculations with different numbers of active atoms and com-
paring the change in the excitation energies. In all CCSD/CC2 calculations we
have performed so far, excitation energies with more than 80% internal character
deviate 0.01 eV or less from the CCSD values. In several systems we have studied,
ECC2 has produced excitation energies deviating less than 0.05 eV from the CCSD
values, even with significant semi external character and poor performance by CC2.

Adding a CCS space makes it difficult to determine the accuracy of the results from
the internal character of the excitation alone. This happens because the increased
excitation energies in CCS can remove contributions to the excitation that would
be included in a standard calculation. In some cases, acetone for example, this
can even change the order of the excitation energies. To ensure that all relevant
parts of the system are included in the active space, differences between ground-
and excited state electron densities can be very useful. Initial results indicate that
CCS gives a sufficient qualitative description to determine apropriate active space,
even for more difficult cases such as conjugated and charge transfer systems. These
findings will be published elsewhere.

For large systems, it is possible to use several levels of theory. Far away from
the atoms of interest, the Hartree-Fock wave function can be employed. If the
system size is increased even further, the computational complexity will scale as
Hartree-Fock. This makes it possible to obtain accurate local properties without
the prohibitive computational complexity encountered in standard CC theory.
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Abstract

We present an efficient implementation of the closed shell multilevel coupled cluster
method where coupled cluster singles and doubles is used for the inactive orbital
space and CCSD with perturbative triples is employed for the smaller active orbital
space. Using Cholesky orbitals, the active space can be spatially localized and the
computational cost is greatly reduced compared to full CC3 while retaining the
accuracy of CC3 excitation energies. For the small organic molecules considered we
achieve up to two orders of magnitude reduction in the computational requirements.
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C.1 Introduction

Wave function methods are the most accurate methods available in contemporary
electronic structure theory. They can be organized into systematic hierarchies
of models with increasing accuracy. This property is important when developing
systematic approaches to calculating molecular properties. The application range of
wave function theory is limited by the steep scaling of computational requirements
with system size. Consequently, the development of wave function methods for
large systems is still a major challenge in quantum chemistry and the focus of
intense research efforts.

When the entire system is described at the same level of theory we may obtain re-
ductions in computational cost by discarding interactions between electrons that are
far away from each other. The projected atomic orbital (PAO) method introduced
by Pulay and Sæbø [71, 72] has been used to obtain reduced scaling algorithms for
configuration interaction [176] and Møller-Plesset perturbation theory [177]. The
use of PAO orbitals has also been explored for coupled cluster singles and doubles
(CCSD) [226].

Among recently developed coupled cluster (CC) methods for local correlation we
mention the local pair natural orbital CCSD method (LPNO-CCSD) [76, 190] and
the orbital-specific-virtual local CCSD method [78, 191]. Riplinger et al. [77]
used an implementation of LPNO-CCSD(T) to perform single point energy calcu-
lations of the protein crambin that contains 640 atoms. Schütz et al. [79] also
performed single point CCSD(T) energy calculations on nucleobase dimers using
orbital-specific virtual local triples corrections. Alternative ways to achieve reduced
scaling is to divide the molecule into fragments and calculate interactions of the
fragments using a screening protocol [73, 75, 185, 227, 228]. For response properties
Helmich and Hättig [192] implemented CC2 excitation energies [23] using the PNO
method combined with orbital specific virtuals.

An alternative approach to reduced scaling is to exploit the linear dependence of
orbital products in the two-electron integral matrix. The most well known of these
methods are density fitting [61–65, 229] and Cholesky decomposition [66–69]. These
methods employ an auxiliary basis that is generally much smaller than the product
basis. A more recent approach is tensor hyper-contraction [25, 206, 207]. In this
approximation the integral parametrization is obtained by least squares fitting to
exact or density fitted integrals. In this way an N4 scaling CC2 algorithm has been
implemented where N is a measure of system size.

Recently, we introduced the multilevel coupled cluster (MLCC) formalism [174]
that makes it possible to apply different levels of coupled cluster theory to different
parts of the molecular system. In this paper we describe the implementation of
the multilevel CC3 (MLCC3) model that use CC3 [24, 87] to describe the active
part of the molecule and CCSD [21] for the rest. The CC3 model scales as N7

while CCSD scales as N6. With an appropriate active space, the overall scaling
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becomes N6 while retaining the accuracy of CC3. We note that similar methods
with energy based active spaces have been proposed [86, 230]. Even for relative
small systems where most atoms are active the steep scaling of CC3 results in large
reductions in computational requirements compared to full CC3. The framework
may be extended with additional spaces with lower accuracy and scaling, but this
will not be reported here.

Cannonical orbitals are highly delocalized and not suitable for partitioning the
orbital space into sets corresponding to fragments of the molecule; thus localized
orbitals must be used. In principle, any type of orbital localization procedure
can be used and we employ Cholesky orbitals [88]. These orbitals are generated
by Cholesky decomposing the HF density matrix. Each orbital corresponds to a
diagonal element in the density matrix which again corresponds to an atomic orbital
(AO). This makes it straightforward to assign an orbital space corresponding to the
active atoms and the orbitals are generated non-iteratively. A possible disadvantage
of Cholesky orbitals is that diffuse orbitals close to the HOMO-LUMO gap may
be left out of the active space. We will demonstrate one way of overcoming this
problem by explicitly including orbitals in the active space. We obtain standard
CC3 when the entire molecule is included in the active space.

The above discussed methods describe the entire molecular system at the same
level. This is contrary to multilevel approaches where the computational resources
are focused on a part of the system. Unlike other multilevel approaches like ONIOM
[80] and frozen density embedding [82, 83, 231], MLCC describes the whole system
with a single CC wave function. In principle, size intensive scaling can be achieved
by expanding the model with more spaces and describing the lowest space at the
HF level or lower.

In Section C.2 we present the theory behind MLCC with a focus on the MLCC3
model with equations for the ground state energy and excitation energies. In Sec-
tion C.3 we discuss the algorithm of our implementation and in Section C.4 we
present example calculations and compare timings to full CC3. The Section C.5
contains our conclusion and future perspectives.

C.2 Theory

C.2.1 The MLCC3 model

We start our discussion by deriving the equations for the closed shell MLCC3
model. We refer to Ref. [174] for a general derivation with more than two spaces
and a detailed discussion of how to generate the associated orbital spaces. The
CC3 [24] model includes triple excitations as a perturbative correction to CCSD
[21] and can be viewed as an intermediate between CCSD and full CCSDT. The
number of T3 amplitudes scales as V 3O3, where V is the number of virtual orbitals
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and O is the number of occupied orbitals. An implementation that explicitly stores
the amplitudes will have limited applicability, even in an active space approach.
However, the T3 amplitudes do not enter the energy expression for CC3 and can
be calculated independently of each other. Consequently, they can be calculated
on the fly without explicit storage.

We define a general cluster operator X,

X =
∑
μ

xμτμ, (C.1)

where the index μ runs over the excitation manifold, {〈μ|}, xμ is the corresponding
amplitude and τμ an excitation operator from the reference to |μ〉. In two level
MLCC3, the cluster operator is divided into two separate operators, T and S.
Each of the operators are associated with a projection manifold, {〈μT |} and {〈μS |}.
Excitations involving only active orbitals are called internal in the active space and
are included in T . Excitations involving both active and inactive orbitals are called
semi-external and those only involving inactive orbitals are called external. Both
semi-external and external excitations are included in S. Inserting these definitions
into the expression for the CC wave function and using the Hartree-Fock (HF) state
as reference state we obtain

|CC〉 = exp(X) |HF〉 = exp(T + S) |HF〉 . (C.2)

TheX1 andX2 are treated the same way in CCSD and CC3 and no special notation
is needed for these operators. All external and semi-external T3 amplitudes are
defined to be zero and the cluster operator is written as X = X1 +X2 + T3 with

X1 =
∑
AI

xA
I EAI (C.3)

X2 =
1

2

∑
ABIJ

xAB
IJ EAIEBJ (C.4)

T3 =
1

6

∑
abcijk

tabcijkEaiEbjEck. (C.5)

Capital letters refer to general indices that run over all orbitals, both active and
inactive. A,B,C... refer to virtual orbitals and I, J,K... occupied orbitals. The
indices a, b, c... and i, j, k... refer to virtual and occupied active orbitals respectively.
The EAI operator is a singlet excitation operator from orbital I to A. Similarly to
the cluster operator, the projection manifold is written as

{〈μ|} = {〈μ1|} ⊕ {〈μ2|} ⊕ {〈μT
3 |} (C.6)

with no {〈μS
3 |} manifold.

Because the T3 amplitudes do not appear in the energy expression, it is the same
in CC3 and CCSD. The CC amplitude equations are solved by projection [21].



C.2. Theory 105

Inserting the above definitions into these equations gives [24]

Ωμ1 = 〈μ1| exp(−X2)Ĥ exp(X2) |HF〉+ 〈μ1| [H,T3] |HF〉
= ΩCCSD

1 + 〈μ1| [H,T3] |HF〉 = 0
(C.7)

Ωμ2 = 〈μ2| exp(−X2)Ĥ exp(X2) |HF〉+ 〈μ2| [Ĥ, T3] |HF〉
= ΩCCSD

2 + 〈μ2| [Ĥ, T3] |HF〉 = 0
(C.8)

ΩμT
3
= 〈μT

3 | [Ĥ, T3] + [Ĥ,X2]

+ [[Ĥ,X2], X2] + [[H,T3], X2] |HF〉 = 0.
(C.9)

In Eqs. (C.7)-(C.9) we have used the X1-transformed Hamilton operator,

Ĥ = exp(−X1)H exp(X1) (C.10)

Equation (C.9) corresponds to the amplitude equation for MLCCSDT. In CC3, the
Hamiltonian is divided into the Fock operator F and the fluctuation potential U .
The X2 amplitudes are then considered first order in the perturbation, while the T3

amplitudes are considered second order. Single excitations are used as relaxation
parameters and included to infinite order. Removing all third order terms and
higher from Eq. (C.9) results in the CC3 amplitude equations

ΩμT
3
= 〈μT

3 | [F, T3] + [Û ,X2] |HF〉 . (C.11)

For canonical orbitals, the Fock operator is diagonal and equation (C.11) can be
solved explicitly for the T3 amplitudes. When using localized MOs, the Fock matrix
is no longer diagonal, but can be block diagonalized for each of the orbital spaces.
This ensures that any non-diagonal elements will be in the active-inactive block of
the Fock matrix where the corresponding T3 amplitudes are zero.

Projecting the commutator of the Fock operator and triple excitation operators
against the excitation manifold results in the difference between the Fock diagonal
elements. This corresponds to the energy differences between occupied and virtual
orbitals.

εabcijk = εa + εb + εc − εi − εj − εk. (C.12)

Assuming a biorthogonal basis, the T3 amplitudes can then be expressed as

tabcijk = − 1

εabcijk

〈abcijk | [Û ,X2] |HF〉 (C.13)

and Eq. (C.13) is inserted into Eqs. (C.7) and (C.8).

C.2.2 The working equations of MLCC3

The terms that need to be computed are most conveniently expressed using a
biorthogonal basis. In this parametrization the single and double excited manifolds
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are written as

〈ai | =
1

2
〈HF|Eia (C.14)

〈abij | =
1

6
〈HF| (2EjbEia + EibEja). (C.15)

Rewriting Eq. (C.13) in terms of integrals and amplitudes results in

tabcijk = −P abc
ijk

1

εabcijk

{∑
D

taDij (bD|̂ck)−
∑
L

tabiL(Lj |̂ck)
}
. (C.16)

The integrals in Eq. (C.16) are the X1-transformed integrals and P abc
ijk is the

permutation operator

P abc
ijk O

abc
ijk = Oabc

ijk +Oacb
ikj +Obac

jik +Ocba
kji +Ocab

kij +Obca
jki . (C.17)

Calculating the T3 amplitudes will scale as V V 3
AO

3
A where VA is the number of active

virtual and OA the number of active occupied orbitals. If the size of the molecular
system is increased without changing the active space, the cost of calculating the
T3 amplitudes will scale linearly with the total system size. The permutation
symmetry in Eq. (C.16) over the occupied-virtual index pairs can be exploited to
significantly reduce computational cost.

The triples contribution to Ω1 becomes

ΩA3
ai =

∑
bcjk

(tabcijk − tcbaijk)Ljbkc (C.18)

where Ljbkc is defined as

Ljbkc = 2(jb|kc)− (kb|jc). (C.19)

These terms scale as V 3
AO

3
A and the scaling is size intensive with respect to total

system size. However, their computational cost is typically much smaller than the
cost of the Ω2 terms.

Equation (C.8) produces three terms involving the triples, one Fock term, one
occupied and one virtual term:

ΩB3
abij = P ab

ij

∑
ck

(
2tabcijk − tcbaijk

)
F̂kc (C.20)

ΩC3
abLI = −P ab

LI

∑
cjk

(
2tbacIjk − tbcaIjk − tcabIjk

)
(jL̂|kc) (C.21)

ΩD3
ADij = PAD

ij

∑
bck

(
2tAbc

ijk − tcbAijk − tAcb
ijk

)
(Db̂|kc) (C.22)

The T3 amplitudes with general indices appear in the C3 and D3 terms. These
are zero if the index is inactive, but are written out to be consistent with the
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permutation operator. Terms involving semi-external T3 amplitudes are therefore
omitted in the algorithm. The virtual term, D3, is the most computationally
expensive and scales as V V 3

AO
3
A while the C3 and B3 terms scale as OV 3

AO
3
A and

V 3
AO

3
A, respectively. The above expressions are identical to standard CC3 with six

indices restricted to the active space. When including all orbitals in the active
space we obtain standard CC3. The overall scaling of the T3 contributions is linear
with total system size.

A variation of MLCC3 is to restrict all indices to the active space. The scaling of
this model is V 4

AO
3
A and only depends on the size of the active space making the T3

terms computationally size intensive. Yet another variant is to define two CCSD
spaces and only include orbitals from one of them in the MLCC3 equations.

C.2.3 MLCC3 excitation energies

Within a multilevel framework the total correlation energy is not evaluated with
high accuracy as the higher level correlation treatment is restricted to a part of
the system. On the other hand, properties like excitation energies and transition
moments are size intensive and only depend on the local environment. Therefore
these properties are prime candidates for a multilevel approach. In CC theory
the response functions can be derived from time dependent expectation values
[31, 32, 87] and the quasi-energy (QE) [32, 38, 87].

The starting point for CCLR is a time dependent perturbation, V t, that is added
to the time independent Hamiltonian H0.

H = F + U + V t = H0 + V t (C.23)

In the QE approach, V t must be assumed to be periodic and is written as

V t =
N∑

j=−N

∑
A

AεA(ωj) exp(−iωjt). (C.24)

Furthermore, we assume that A is a frequency independent one-electron operator.
To ensure hermiticity, we require that A is Hermitian,

ω−j = ωj (C.25)

and that (εA(ωj))
∗ = εA(−ωj). The amplitudes can now be expanded in orders of

the time dependent perturbation as

xμ(t) = x(0)
μ + x(1)

μ (t) + x(2)
μ (t) + ... (C.26)
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Expanding the first order amplitudes in the frequencies gives

x(1)
μ (t) =

N∑
j=−N

x(1)
μ (ωj) exp(−iωjt)

=

N∑
j=−N

∑
A

xA
μ (ωj)εA(ωj) exp(−iωjt).

(C.27)

Similarly, a set of Lagrangian multipliers, x̄, is introduced. These can be expanded
in the same way as the amplitudes.

Using the procedure described in reference [87], the following QE Lagrangian, L(t),
is obtained

L(t) = 〈HF|H exp(X1 +X2) |HF〉

+
∑
μ1

x̄μ1

(
〈μ1| Ĥ + [Ĥ,X2 + T3] |HF〉 − i

∂xμ1

∂t

)

+
∑
μ2

x̄μ2

(
〈μ2| Ĥ + [Ĥ,X2 + T3] +

1

2
[[Ĥ,X2], X2] |HF〉 − i

∂xμ2

∂t

)

+
∑
μT
3

t̄μT
3

(
〈μT

3 | [F, T3] + [Ĥ,X2] +
1

2
[[V̂ t, X2], X2] |HF〉 − i

∂tμT
3

∂t

)
(C.28)

The QE Lagrangian is not variational, but its time average {L}T must satisfy the
stationary conditions

∂

∂t
(m)
μ

{L(n)}T =
∂

∂t̄
(m)
μ

{L(n)}T = 0. (C.29)

for all m ≤ n. In order to obtain first order quantities, zero order multipliers and
zero and first order amplitudes are required. Equation (C.29) results in the same
expressions for the time independent amplitudes as Eqs. (C.7),(C.8) and (C.11).
The multipliers satisfy

x̄(0)A = η(0) (C.30)

with the vector η(0) given by

η(0)ν = −〈HF| [Ĥ, τν ] |HF〉 (C.31)

and the Jacobian matrix A given below. The first order amplitudes are found by
solving

(A− ω1)x(A)(ωj) = −ξA (C.32)

with

ξA =

⎛
⎝ 〈μ1| Â+ [Â,X2] |HF 〉

〈μ2| [Â,X2 + T3] |HF 〉
〈μT

3 | [Â, T3] +
1
2 [[Â,X2], X2] |HF 〉

⎞
⎠ (C.33)

and the Jacobian matrix
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A
=

⎛ ⎜ ⎝
〈μ

1
|[Ĥ

0
+
[Ĥ

0
,X

2
],
τ ν

1
]|H

F
〉

〈μ
1
|[Ĥ

0
,τ

ν
2
]|H

F
〉

〈μ
1
|[Ĥ

0
,τ

ν
T 3
]|H

F
〉

〈μ
2
|[Ĥ

0
+
[Ĥ

0
,X

2
+
T
3
],
τ ν

1
]|H

F
〉

〈μ
2
|[Ĥ

0
+
[Ĥ

0
,X

2
],
τ ν

2
]|H

F
〉

〈μ
2
|[Ĥ

0
,τ

ν
T 3
]|H

F
〉

〈μ
T 3
|[[

Ĥ
0
,X

2
],
τ ν

1
]|H

F
〉

〈μ
T 3
|[Ĥ

0
,τ

ν
2
]|H

F
〉

δ μ
T 3
ν
T 3
ε μ

T 3

⎞ ⎟ ⎠
(C

.3
4
)
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The above expressions are the same as in standard CC3 response theory with the
indices in the triples restricted to the active space. Excitation energies correspond
to the poles in the response function, i.e. when the matrix in Eq. (C.32) becomes
singular.This occurs when ω is an eigenvalue of the Jacobian.

Solving the eigenvalue problem requires the computation of the matrix-vector prod-
ucts

σ = AC. (C.35)

The vectors C3 and σ3 have the same dimension as T3 and are too large to be
stored. Instead, the Jacobian is partitioned and the triples part of σ is never
explicitly calculated. Inspection of the matrix in Eq. (C.34), reveals that σ1 and
σ2 can be expressed as the CCSD terms with some additional contributions from
the triples

σ1 = σCCSD
1 + 〈μ1| [H0, C3] |HF〉 (C.36)

σ2 = σCCSD
2 + 〈μ2| [[Ĥ0, C1], T3] |HF〉+ 〈μ2| [Ĥ0, C3] |HF〉 . (C.37)

The σ3 vector is expressed as

σT
3 = 〈μT

3 | [F,CT
3 ] |HF〉

+ 〈μT
3 | [Ĥ0, C2] |HF〉+ 〈μT

3 | [[Ĥ0, C1], X2] |HF〉 ,
(C.38)

and for a given eigenvalue, ω, the elements of C3 becomes

cμT
3
=

−1

εμT
3
− ω

(
〈μT

3 | [Ĥ0, C2] |HF〉+ 〈μT
3 | [[Ĥ0, C1], X2] |HF〉

)
. (C.39)

Expressing [Ĥ0, C1] as a Hamiltonian H̃0 with one-index transformed integrals, Eqs.
(C.36),(C.37) and (C.39) have the same structure as the ground state equations,
(C.7),(C.8) and (C.13). Partitioning the eigenvalue problem induces a dependence
on ω in the matrix and the equations must be iterated until self consistent.

C.3 Implementation

We have implemented the closed shell MLCC3 model in a local version of the Dalton
software package [99]. The ground state energy and singlet excitation energies have
been implemented. In order to make the implementation useful for many-level
MLCC theory, e.g. a hierarchy of methods like frozen density HF, HF, CCS, CC2,
CCSD and CC3, the MLCC3 has been implemented as independent of the Dalton
CC package as possible. Point group symmetry has not been utilized and the basic
algorithms are developed to take maximal advantage of BLAS libraries for matrix
and vector operations.

In Dalton the coupled cluster models are implemented with integrals in the AO ba-
sis. This approach is not suitable for MLCC because computational reductions are



C.3. Implementation 111

Algorithm 1 MLCC3 algorithm

1: for i=1,OA do

2: for j=1,i do

3: for k=1,j do

4: W ijk(abc) = −P abc
ijk

{∑
D taDij (bD|̂ck)−∑

L tabiL(Lj |̂ck)
}

5: tabcijk = 1
εabc
ijk

W ijk(abc)

6: for permutations do

7: Ωa
i =

∑
bc(t

abc
ijk − tcbaijk)Ljbkc

8: Ωab
ij =

∑
c(t

abc
ijk − tcbaijk)F̂kc

9: end for

10: for permutations do

11: Ωab
Lj = −∑

c(2t
abc
ijk − tcbaijk − tacbijk)(iL̂|kc)

12: ΩaD
ij =

∑
bc(2t

abc
ijk − tcbaijk − tacbijk)(Db̂|kc)

13: end for

14: end for

15: end for

16: end for

17: ΩAB
IJ = 1

2 (Ω
AB
IJ +ΩBA

JI )
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achieved by restricting MO indices and MLCC3 is implemented with MO integrals.
The required integrals are the ones in Eqs. (C.7), (C.8) and (C.13) and the cor-
responding C1-transformed integrals used in response calculations. The integrals
required have at most one inactive index in the MO basis and the most expensive
integral transformation scales as N4OA, where N is the number of AOs. For small
active spaces, the integral tranformation can be more expensive than the CC3 am-
plitude equations. The MO integrals are sorted to achieve optimal efficiency in the
matrix-matrix multiplications.

The implemented algorithm is similar to the CCSD(T) implementation by Rendell
et al. [102] and is outlined in Algorithm 1. The calculation is driven in an outer
loop over the active occupied indices i ≥ j ≥ k. We utilize the symmetry of the T3

amplitudes,

tabcijk = tacbikj = tbacjik = tcbakji = tcabkij = tbcajik (C.40)

to reduce the cost of calculating amplitudes by approximately a factor six. Note
that only V 3

A amplitudes are available in memory at any time. Consequently, the
contributions from these amplitudes must be added to all possible permutations of
the Ω indices in each iteration of the loop.

The X2 amplitudes are also sorted optimally for matrix multiplications. For a
full space calculation, the amplitudes are ordered as A,B, J, I. With an active
space, the occupied and virtual terms contribute to sets of double amplitudes with
different dimensions and two arrays are necessary in memory. Similarly, one or two
arrays are allocated for Ω2. These arrays must be symmetrized and packed after
the outer loop over occupied active orbitals. To avoid reading integrals inside the
loop, the program checks if it can keep all of them in memory and will read them
in if possible. If not, the program will read the integrals in batches over i,j and k
in an outer loop.

In total, the terms in Eq. (C.13) require twelve matrix-matrix multiplications
inside the outer loop, one virtual and one occupied term for each permutation of
the indices. The virtual terms are the most expensive, scaling as V V 3

A. After each
call to the matrix-matrix multiplier, the contributions must be reordered to the
appropriate permutation. Reordering requires additional computational effort, but
has been parallelized using OpenMP. After all the contributions are calculated they
are divided by orbital energies and amplitudes with three identical indices are set
to zero.

The Ω terms are expressed as products of the amplitudes multiplied by integrals or
Fock matrix elements as shown in Algorithm 1. Terms involving the Fock matrix
and Ω1 contributions are multiplied by the same linear combinations of amplitudes
and are therefore calculated together. Similarly, the virtual and occupied terms of
Ω2 are calculated together.
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C.4 Results

C.4.1 Parallelization

We have tested the code on the Stallo cluster at University of Tromsø [118]. The
cluster has two CPUs and 16 or 20 cores per node and we used 8 OpenMP threads
for the calculations unless stated otherwise. This is more than the code can utilize
for the smaller active spaces, but is appropriate for the larger calculations. To
ensure that the measured timings were comparable, all timings given in the tables
are from the same node. For this reason, only timings for ground state energy
iterations are reported. The excitation energy iterations take about two and a half
times longer.

Table C.1: CPU and wall time for the CC3 part of one iteration for Uracil in
minutes. Speedup factors are given in parenthesis.

basis orbitals 1 2 4 8

DZ
29 occ. CPU 17 20 23 31
103 virt. Wall 16 10 (×1.6) 6 (×2.7) 4 (×4.0)

aDZ
29 occ. CPU 163 202 215 287
191 virt. Wall 163 101 (×1.6) 54 (×3.0) 36 (×4.5)

Table C.1 contains timings for the triples part of one iteration of the full CC3 energy
of Uracil with 1, 2, 4 and 8 threads. Timings for basis sets cc-pVDZ and aug-cc-
pVDZ are reported. While the scaling is not linear with the number of threads,
parallelization gives a substantial speedup. With 8 threads the calculations are
about 4.5 times faster than with one thread for the largest basis set.It would be
desirable to parallelize our CC3 code with MPI, but will require substantial changes
to the CCSD code in Dalton.

C.4.2 Excitation energies

We explore the multilevel model on several different molecules using aug-cc-pVDZ
basis sets [60] and different active spaces. The systems were chosen so that full
CC3 is still feasible, but large enough to be divided into subsystems. The frozen
core approximation is not used in any of the calculations.

Pentanamide [232] is an appropriate test system as the change in the electron
density is localized around the amide group (see Fig C.1). In Fig. C.2 we show the
three different active spaces used. The singlet excitation energies are given in Table
C.2 and timings are reported in Table C.3. All calculations were carried out using
sufficient memory to avoid batching over the integrals. In model B, all excitation
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S1 S2

Figure C.1: Change in electron density between ground state and the first two singlet
excited states of pentanamide calculated with CCSD. Volumes in blue have increased
density and volumes in red have decreased density. Isovalue: 0.01

energies except for S4 has errors less than 0.02 eV. The CCSD excitation energy
for S1 and S3 differ less than 0.04 eV from CC3, but differences are larger for the
other states, in particular the S2 state that differ 0.17 eV. For model C the largest
error is 0.013 eV.

Table C.2: Excitation energies in eV calculated for pentanamide with aug-cc-pVDZ. Error
compared to Full CC3 in parenthesis.

CCSD A B C CC3

S1 5.752 (0.016) 5.745 (0.009) 5.739 ( 0.003) 5.737 ( 0.001) 5.736
S2 6.418 (0.171) 6.309 (0.062) 6.253 ( 0.006) 6.240 (-0.007) 6.247
S3 6.565 (0.039) 6.533 (0.007) 6.513 (-0.013) 6.517 (-0.009) 6.526
S4 7.223 (0.146) 7.180 (0.103) 7.140 ( 0.063) 7.090 ( 0.013) 7.077
S5 7.293 (0.112) 7.269 (0.088) 7.202 ( 0.021) 7.193 ( 0.012) 7.181

The iteration time for model B is 4.4 times faster than full CC3. There are 28
occupied and 232 virtual orbitals in total. In model B there are 24 occupied and
160 virtual active orbitals implying a theoretical speedup of

V V 3O3

V V 3
AO

3
A

=

(
28× 232

24× 160

)3

≈ 4.8. (C.41)

In passing, we note that the integral transformation accounted for about 15% of
the CPU time in B and about a third in A, but only 5% for full CC3. The integral
transformation time can be significantly reduced using Cholesky decomposed two-
electron integrals [68], however we have not implemented this in the new MLCC3
code.

We now consider ethyl-butyl-diazene [223]. This molecule was previously used
to investigate the performance of the CCSD/CC2 model (MLCCSD) [174] with
excellent results. Based on the density plots in Fig. C.3 we choose the two active
spaces shown in Fig. C.4.
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A

B

C

Figure C.2: Subsystems of pentanamide. Atoms in red are included in the CC3 space.
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Table C.3: Iteration time for ground state energy of pentanamide in min-
utes. For MLCC3 and CC3 we report time in the triples part. Speedup
factors are given in parenthesis. The number of active orbitals in each
model is given below.

CCSD A B C CC3

CPU 29 36 127 297 584
Wall - 5.3 (×13.9) 17 (×4.4) 38 (×1.9) 74

OA 28 19 24 27 28
VA 232 124 160 196 232

After diagonalizing the active and inactive blocks of the Fock matrix we find several
virtual orbitals in the inactive block that have lower energy than the active LUMO.
This can make the model unbalanced because it will favor excitations out of the
active space where the corresponding T3 amplitudes are set to zero. Indeed, as
seen in Table C.4, CCSD is more accurate than models A and B. Inspection of the
excitation vectors confirms they are dominated by semi-external excitations. The
vectors for states S2 to S5 in model A are less that 5% internal while those in B
are less than 21% internal. The vectors for S1 are 42% and 77% internal for A
and B respectively. In comparison, the excitation vectors for pentanamide B are
at least 88% internal except for S4.

To avoid this problem we use a modified orbital partitioning. In the models labeled
with + in Table C.4, virtual inactive Cholesky orbitals with lower energy than the
active LUMO are included in the active space. Note this requires a new diagonal-
ization of the active virtual Fock matrix. Including the additional orbitals reduces
the error to about 0.03 eV or less for both A+ and B+. The excitation vector for
S1 in A+ is 79% internal while the vectors for the higher states are 90% internal.
In B+ the vectors are 80% internal or more. We should stress there are several
other ways of selecting orbitals in the active space. For instance by considering the
diffuse orbitals separately in a virtual density matrix [174] or by well known orbital
localization procedures [93]. A detailed analysis of orbital selection procedures will
be published elsewhere.

Time per iteration is reported in Table C.5. The addition of virtual orbitals to
the active space gives only a small increases in the observed computational time.
Ideally, model A+ should be almost 800 times faster than full CC3. However,
for such a small active space, the dominating part of the CC3 iteration is in the
integral transformation. As a result, our calculation is only 90 times faster than full
CC3. Excluding the integral transformation time the speedup factor is 900. This is
probably due to better cache utilization for smaller active spaces and illustrates the
potential improvements using Cholesky decomposed integrals. A similar behavior
is observed for model B+.

Finally, we present results for hexadiene [233] using the active space indicated in
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S1

S2

Figure C.3: Change in electron density between ground state and the first two singlet ex-
cited states of ethyl-butyl-diazene calculated with CCSD. Volumes in blue have increased
density and volumes in red have decreased density. Isovalue: 0.01
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A

B

Figure C.4: Subsystems of ethyl-butyl-diazene. Atoms in red are active.
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Table C.5: Iteration time for ground state energy of ethyl-butyl-diazene in minutes.
For MLCC3 and CC3 we report time in the triples part. Speedup factors are given
in parenthesis. The number of active orbitals in each model is given below.

CCSD A B A+ B+ CC3

CPU 60 16 43 20 50 1947
Wall - 2.4 (×103) 6.1 (×40) 2.7 (×91) 6.6 (×37) 246

OA 30 9 17 9 17 32
VA 278 44 124 107 138 278

Fig. C.6. The selections of active space is based on the density plots in Fig. C.5.
Six virtual orbitals are added to the active space using the same scheme as for ethyl-
butyl-azene. This is a conjugated system which often requires triple excitations to
accurately describe the excited states [157].

Our results are given in Table C.6 and iteration times are given in Table C.7.
The MLCC3 model is about eight times faster than full CC3. In this case CCSD
performs surprisingly well for the three lowest states with errors less than 0.1 eV.
For these states the MLCC3 errors are reduced to less than 0.01 eV. For S4 and
S5, the errors are larger for both CCSD and MLCC3, but MLCC3 improves on the
CCSD numbers. Both models perform better for S6 and S7 and especially MLCC3
has small errors.

Table C.6: Excitation energies calculated for hexa-
diene, aug-cc-pVDZ. Error compared to Full CC3 in
parenthesis.

CCSD MLCC3 CC3

S1 5.664 (0.040) 5.620 (-0.004) 5.624
S2 5.857 (0.040) 5.810 (-0.007) 5.817
S3 6.128 (0.060) 6.058 (-0.010) 6.068
S4 6.325 (0.137) 6.284 ( 0.096) 6.188
S5 6.560 (0.225) 6.481 ( 0.146) 6.335
S6 6.588 (0.039) 6.529 (-0.020) 6.549
S7 6.740 (0.055) 6.701 ( 0.016) 6.685

The density plots in Fig. C.5 do not explain the difference in errors between S1 and
S5. However, the reduced accuracy can be explained from analyzing the excitation
vectors. The S4 and S5 states have the lowest internal character, in particular the
internal single excitation components of the vectors is 69% and 67%, respectively.
This could suggest the need for a larger space for these excitations. We note
that MLCC3 performs better than CCSD for all states and provides the largest
correction for the states with the largest errors in CCSD. For small active spaces,
the MLCC3 method can be used to estimate the importance of triple excitations.
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S1

S5

Figure C.5: Change in electron density between ground state and the first and fifth singlet
excited states of hexadiene calculated with CCSD. Volumes in blue have increased density
and volumes in red have decreased density. Isovalue: 0.01

Figure C.6: Subsystem of hexadiene. Atoms in red are active.
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Table C.7: Iteration time for ground state energy of hexadiene in minutes. For MLCC3
and CC3 we report time in the triples part. The number of active orbitals in each model
is given below.

CCSD MLCC3 CC3

CPU 16 27 241
Wall - 3.7 (8.1) 30

OA 23 17 23
VA 205 130 205

C.5 Conclusion

In this paper we have described an efficient implementation of the multilevel coupled
cluster model MLCC3. The implemented algorithm utilizes permutation symmetry
to reduce the cost of calculating the T3 amplitudes by a factor of six. The code
is parallelized using OpenMP and in future versions we will explore parallelization
using MPI as well.

Using the multilevel approach we can obtain CC3 accuracy at a fraction of the cost.
The user is required to select an active space relevant for the considered excitations.
Maps of changes in electron density between ground and excited states, obtained
from CCSD or a lower scaling method, can assist in selecting the active atoms.
The active orbital space should be augmented with low energy virtual orbitals
when using Cholesky orbitals and diffuse functions in the orbital basis. We will
in the future explore other approaches to generate active orbitals. Analysis of the
excitation vectors should be used to verify the quality of the results. The examples
presented here suggest that an internal character of 80% or more is sufficient.

In general, CCSD with diffuse basis sets are very accurate [157], particularly for
properties like oscillator strengths. For this reason, we have not yet implemented
oscillator strengths in the current code. For core-valence excitations, CCSD shows
larger discrepancies from CC3 and applications in this area are in progress.

Finally, we point out that the MLCC3 model can be generalized to include several
levels of theory. In principle, any number of spaces can be added and for very large
molecular systems, Hartree-Fock or even frozen densities may be used. This would
essentially provide size intensive CC models.
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Abstract

Core excited states are challenging to calculate mainly because they are embed-
ded in a manifold of high energy valence-excited states. Their locality, however,
makes their determination ideal for local correlation methods. In this paper, we
demonstrate the performance of multilevel coupled cluster theory in computing
core spectra both within the core-valence separated and the asymmetric Lanczos
implementations of coupled cluster linear response theory. We also propose a vi-
sualization tool to analyze the excitations using the difference between the ground
and excited state electron densities.
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D.1 Introduction

X-ray absorption spectroscopy (XAS) is a fundamental spectroscopic method for
determining the electronic and structural properties of molecules, as well as their
dynamic behavior [107–113]. In this type of spectroscopy, core electrons are ex-
cited, leaving behind a core hole. Since core orbitals are highly local, probing them
yields important information about their local environment in the molecular sys-
tem. An essential component for disclosing such information is the availability of
computational methods to model the experimental spectra.

The calculation of core excitations using electronic structure theory encounters spe-
cific challenges not present for valence excitations. At the typical energies involved
in X-ray spectroscopy, there is a high density of excited states with more loosely
bounded electrons. These states form a continuum and the challenge is to obtain
the core excited state within this continuum of states. Electronic structure pro-
grams usually employ subspace algorithms such as the Davidson algorithm [42, 43]
to determine eigenvalues. These methods are biased towards the lowest excitation
energies, which makes their common implementations impractical for finding the
high-energy excited states in question.

Due to the significant reduction in the screening of the nucleus following core ex-
citation, relaxation effects play an essential role and need to be accounted for in
a reliable manner. These relaxation effects mainly affect the molecular system in
two ways: a direct, attractive effect contracting the valence electron density and
an indirect repulsive effect from the interaction between the excited electron and
the valence electrons which increases polarization. Additional issues that must be
considered include the choice of basis set, the effect of relativity, vibrational effects
and spectral broadening schemes.

Despite such difficulties, many methods have been presented to compute core
spectra. More than forty years ago, Slater proposed the transition state method
[234, 235]. In this method, the molecular orbitals involved in the excitations are
set to half occupation and the excitation energies are calculated as the difference
between orbital energies. A somewhat similar method is the transition potential
method where excitation energies are calculated from the derivative of the total
energy with respect to the occupation number when the occupations are set to
one half in the relevant orbitals [236, 237]. Another early approach is the multi-
ple scattering or KKR [238–240] method. It describes electron propagation with a
reference Green’s function and a series of scattering events.

Density functional theory (DFT) based methods are the most common methods
used to obtain core excitations and we will mention some of them here. One ap-
proach employs pseudopotentials, commonly used to describe core electrons and
incorporate relativistic effects in DFT methods [241]. Pseudopotentials can be ex-
tended to include core holes, allowing the calculation of high energy excitations
[242]. In the DFT variant of the ΔSCF method [243], the electron density corre-
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sponding to Kohn-Sham orbitals is subtracted and added in each step of the self
consistent iteration. Core excitations are then obtained by subtracting the density
corresponding to a core hole [244]. Other methods are based on time-dependent
DFT (TDDFT). Examples are the complex propagator approach (CPP) of Norman
and coworkers [245, 246], and the TDDFT method with a restricted excitation man-
ifold [247–249]. In the CPP approach [245, 246], the absorption cross section of the
core excitation process is obtained directly from scanning the imaginary part of the
complex dipole polarizability over the relevant frequency region. The restricted ex-
citation manifold methods are similar in spirit to the core-valence separation (CVS)
technique [114].

Core-valence separation is used in most wave-function-based methods for calcu-
lating X-ray excitations. Due to the large energy difference between the valence
and core excited states, core-valence interaction parts of the Hamiltonian are very
small and can be neglected [114]. The CVS approximation was first implemented
within the second-order algebraic diagrammatic construction ADC(2) [52] method.
Wenzel et al. [115, 250–252] recently proposed it for the ADC(2), ADC(2)-x and
ADC(3) hierarchy of methods based on the intermediate state representation vari-
ant of the ADC formalism [53, 253]. Calculating excited states in ADC requires
solving an eigenvalue problem for a secular matrix [53, 253]. The core-valence sep-
aration greatly simplifies the eigenvalue problem by making the core excitations
extremal eigenvalues and significantly reducing the size of the vector space.

The calculation of X-ray absorption spectra has also been implemented within cou-
pled cluster (CC) theory [45, 46, 116, 254–258]. As in ADC, computing excited
states in CC theory requires solving an eigenvalue problem, specifically the eigen-
values of the Jacobian. To obtain the eigenvalues corresponding to core excited
states, an asymmetric Lanczos algorithm was used in Refs. 45 and 46 to construct
a truncated tridiagonal representation of the Jacobian matrix. Diagonalization of
this matrix makes it possible to obtain a full spectrum which includes core excita-
tions.

It is well known that the Lanczos algorithm is numerically unstable and may re-
quire explicit biorthogonalization [259]. This makes it necessary to store and read
a large number of vectors from disk, which becomes prohibitive for systems with
more than 300 orbitals. For this reason, the CVS approximation has recently been
implemented for CC linear response (CCLR) theory both within the Lanczos algo-
rithm, and for conventional CCLR [116]. Alternative algorithms targeting X-ray
excitations within the CC formalism are the CC-CPP approach [257], and the
energy-specific EOM-CC approach of Peng et al. [258] With the CVS approxima-
tion, the cost of calculating core excited states is approximately the same as the
calculation of valence excited states and the bottleneck is the steep scaling of the
CC methods with the dimension of the molecular system.

The locality of core excitations makes their calculation suitable for local methods
such as the multilevel coupled cluster (MLCC) approach [174, 209]. The MLCC
method treats a small part of the molecular system with a high accuracy CC
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method and the rest of the system more approximately [174, 209]. In this paper
we test the capability of the multilevel CCSD (MLCCSD) approach to reproduce
full CCSD Near Edge X-ray Absorption Fine Structure (NEXAFS) spectra. We
compare spectra obtained both with the full space or regular Lanczos algorithm
and with the Davidson algorithm with the CVS approximation.

In order to visualize and investigate the local nature of the excitations, ground and
excited state one-electron densities are calculated. The difference in the electron
densities is then plotted and a visualization of the excitation process is obtained.
This is similar to the visualization technique recently introduced by Wenzel and
Dreuw [260]

The paper is organized as follows. In the next section we give a brief outline of
how to compute core spectra within the MLCC approach. Section D.3 presents
the results of some example calculations. The last section contains our concluding
remarks, including a comparison to experiment for ethanal.

D.2 Theory

D.2.1 Computing spectra within CC linear response theory

The CC wave function ansatz for a closed-shell system is defined by the exponential
parametrization

|CC〉 = exp(X) |HF〉 (D.1)

where |HF〉 is the Hartree-Fock reference state and X =
∑

μ xμτμ is the cluster
operator with the cluster amplitudes xμ and the corresponding excitation operators
τμ. Note that in conventional CC theory the cluster operator and amplitudes are
usually written as T and tμ, respectively. Here we use a slightly different notation
because the symbols T and tμ are reserved for the active space cluster operator and
amplitudes in MLCC theory [174, 209], see also Section D.2.3. The ground state
energy and amplitudes are determined by projection of the Schrödinger equation
on the reference state and a manifold of excitations

E = 〈HF| exp(−X)H exp(X) |HF〉 (D.2)

Ωμ = 〈μ| exp(−X)H exp(X) |HF〉 = 0 . (D.3)

In CC linear response theory, excitation energies, ωk, and left, Lk, and right, Rk,
excitation vectors are obtained solving the asymmetric eigenvalue equations

ARk = ωkRk; LkA = ωkLk (D.4)
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with the biorthogonality condition LiRk = δik. The Jacobian matrix A in Eq.
(D.4) is defined as the derivative

Aμν =
∂Ωμ

∂xν
= 〈μ| exp(−X)[H, τν ] exp(X) |HF〉 (D.5)

Transition strengths for dipole components A and B are determined from the single
residues of the linear response function, and take the form

SAB
0→j =

1

2

{
MA

0jMB
j0 + (MB

0jMA
j0)

∗} (D.6)

where the left and right transition moments are given by

MA
0j = ηARj + M̄j(ωj)ξ

A; MB
j0 = Ljξ

B (D.7)

and the auxiliary Lagrangian multipliers M̄j(ωj) are obtained from the solution of
the linear equation

M̄j (A+ ωjI) = −FRj . (D.8)

We refer to Refs. [31] and [159] for the definition of the remaining building blocks.

Equation (D.4) is most often solved iteratively via some generalization of the David-
son algorithm [42, 43]. The iterative procedure is initiated by selecting unit vectors
corresponding to specific occupied to virtual orbital excitations, often based on
Hartree-Fock orbital energy differences. The procedure will converge towards the
lowest eigenvalues and eigenvectors even if the initial start vectors correspond to
high energy excitations. This makes the procedure ill-suited for core excitations.

Another way to solve Eq. (D.4) is to build a tridiagonal representation, T, of the
Jacobian matrix A using an asymmetric Lanczos algorithm. The nonzero elements
of the tridiagonal matrix T = PTAQ are given by

Tll = αl = pT
l Aql (D.9)

Tl+1,l = βl =
√
pT
l+lql+1 (D.10)

Tl,l+1 = γl = sgn{pT
l+1ql+1}βl (D.11)

with the biorthogonal pl and ql vectors given by

ql+1 = β−1
l (Aql − γl−1ql−1 − αlql) (D.12)

pT
l+1 = γ−1

l (pT
l A− βl−1p

T
l−1 − αlp

T
l ). (D.13)

It is neither necessary nor convenient to generate the full tridiagonal matrix T, and
the procedure can be truncated at some dimension J � n where n is the dimension
of the full Jacobian. The diagonalization of T produces an effective spectrum that
covers the entire frequency range and converges from the top and bottom with
increasing Lanczos chain length J [44, 46, 261].
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A convenient choice of start vectors for the Lanczos algorithm is

q1 = u−1
A ξA =

ξA

||ξA|| ; pT
1 = v−1

A ηA =
||ξA||
ηAξA

ηA. (D.14)

With this choice, the eigenvectors L and R of T form the basis for an approximate
diagonal representation of the (complex) linear response function [45, 46]. The
absorption cross-section can then be computed from its imaginary component [45,
46]. Moreover, one may compute directly the transition strengths as

SAA
0→j = uAvALj1R1j − v2A

∑
l

Lj1Ll1Flj

(ωj + ωl)
, (D.15)

see Refs. 45 and 46 for further definitions and details.

D.2.2 The core-valence separation

The CVS approximation can be implemented within both the Davidson and the
asymmetric Lanczos algorithms [116]. Initially, a set of one or more core orbitals
is selected. In each iteration of the solver, a projector Pv is applied on the trial
vectors, removing all elements not referencing at least one of the selected core
orbitals. For a singles and doubles trial vector, b, the effect of the projector is

{
Pvbai = 0 ∀ i = valence,
Pvbabij = 0 ∀ i, j = valence

(D.16)

For the Davidson algorithm, Eq. (D.4) becomes the projected eigenvalue equation

Pv(APvRk) = ωkPvRk, (D.17)

and similarly for the left eigenvectors. By applying the projector in each iteration
during the solution of Eq. (D.8), the computation of CVS-CC transition moments
and transition strengths is also easily obtained.

Within the Lanczos algorithm, the projector is applied during the iterative con-
struction of the T matrix, i.e. to the pT

l and ql vectors and their linear transfor-
mations, pT

l A and Aql. The resulting Lanczos eigenvectors, as well as the Lanczos
trial vector bases, PT and Q, only contain excitations involving at least one core
orbital. This effectively decouples them from excitations with contributions from
occupied valence orbitals only. Diagonalization of the tridiagonal matrix yields the
core excitations as lowest roots and quickly converges to the exact results with
a significantly smaller Lanczos chain lengths. The oscillator strengths and cross
sections are obtained without further modifications to the general procedure.
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D.2.3 Multilevel coupled cluster theory for core spectra

Multilevel coupled cluster theory divides the molecular system into an active and
an inactive part. By treating the active part with a highly accurate method and
the inactive part more approximately, high accuracy results can be achieved at
greatly reduced cost [174, 209]. For example, the most expensive term in CCSD
[21] scales as V 4O2 where V and O are the number of virtual and occupied orbitals
respectively. By dividing the system into an active CCSD part and an inactive
part described by CC2 [23], one obtains the MLCCSD model. In this model, the
scaling of the most expensive CCSD term is reduced to V 2V 2

AO
2
A where VA and OA

are the number of active virtual and occupied orbitals respectively. For some of
the other CCSD terms arising from the double commutator, see Eq. (D.19) below,
the scaling reduction is less favorable, but no terms scale worse than V 2O2. This
is less than the scaling of CC2 which is V 3O2, so the overall scaling will be that of
CC2 for large systems.

To divide the system, a localized set of molecular orbitals (MO) is generated and
each orbital is assigned to an atom. Orbitals corresponding to active atoms then
form an active orbital space while those corresponding to inactive atoms form an
inactive space. We require that the orbitals are orthogonal and that the blocks
of the Fock matrix corresponding to each space are diagonal. In this work, we
have used Cholesky orbitals [88], but other schemes are possible. After generating
the orbital spaces, the cluster operator is divided into terms corresponding to each
space, X = T + S, where T corresponds to the active space and S to the inactive.
The approach can be generalized to several spaces.

The amplitude equations, Eq. D.3, become

〈μ1| Ĥ + [Ĥ,X2] |HF〉 = 0 (D.18)

〈μT
2 | Ĥ + [Ĥ,X2] +

1

2
[[Ĥ,X2], X2] |HF〉 = 0 (D.19)

〈μS
2 | [F, S2] + Ĥ + [Ĥ, T2] |HF〉 = 0. (D.20)

In Eqs. (D.18)-(D.20), Ĥ refers to the X1-transformed Hamiltonian operator

Ĥ = exp(−X1)H exp(X1), (D.21)

and μT and μS denote the active and inactive excited state manifolds, respectively.
Note that the equations for the single amplitudes, Eq. (D.18), and active double
amplitudes, Eq. (D.19), are the same as for full CCSD, while the equations for
the inactive amplitudes, Eq. (D.20), are similar to those of CC2, but contain some
extra terms involving the T -operator to give a balanced description. Excitations
only involving active orbitals are referred to as internal while those only involving
inactive orbitals are referred to as external. Excitations between the spaces are
called semi-external.
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When calculating MLCCSD excitation energies, the equations are similar to those
of full CCSD, however, the Jacobian matrix A is modified. The changes in the
A-matrix blocks are schematically summarized in Eq. (D.22) below

AMLCCSD =

T1 T2 S2( )
T1 CCSD CCSD CCSD
T2 CCSD CCSD CCSD
S2 CCX CCX CC2

(D.22)

The first two block rows, projecting against the singles and active doubles, are the
same as for standard CCSD, while the lower right block is the same as in CC2 and
is diagonal. Ideally, the CC2 block will have the largest dimension, resulting in a
large reduction in computational cost compared to CCSD. The blocks labeled CCX
in Eq. (D.22) contain hybrid terms between CC2 and CCSD that scales as CC2.
For more details on MLCCSD linear response, see Ref. 174.

Similarly, the intensities can be found using either Eqs. (D.6)-(D.7) or Eq. (D.15),
both involving the use of a MLCC-modified F matrix [262]. The F matrix can not
be as easily divided into blocks corresponding to the active and inactive space, but
contains a mixture of terms that scale as CC2.

D.3 Results

D.3.1 General computational details

The MLCCSD approach for core excitation spectra has been implemented in a
development version of the Dalton code [99, 100]. As the current MLCCSD im-
plementation is not optimized, our study has been limited to the relatively small
molecules ethanal (acetaldehyde), propenal (acrolein) and butanal (butyraldehyde).
Core absorption spectra have been computed using MLCCSD and compared to the
corresponding full CCSD and CC2 spectra. As core-valence polarized basis sets
are usually required for an accurate treatment of core excitations, we use aug-cc-
pCVDZ basis set [59] for the atoms of the specific edges in ethanal and butanal,
and either the aug-cc-pVDZ, indicated by aug-cc-p(C)VDZ, or the aug-cc-pCVDZ
basis for the remaining atoms. Our results indicate that the difference in the re-
sults between these basis sets is negligible. Due to the high computational cost
associated with the regular Lanczos algorithm, we only used aug-cc-pVDZ in the
case of propenal.

The active spaces used are described for each case in the following subsections. We
use the standard IUPAC numbering when discussing specific atoms, e.g. carbon 1
(C1) will always refer to the carbon closest to the oxygen atom, carbon 2 (C2)
to the next carbon in the chain, and so on. Spectra are plotted using calculated
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Figure D.1: Active spaces of ethanal indicated in red.

excitation energies and oscillator strengths in the length gauge with an empirical
line broadening of 1000 cm−1 and a normalized Lorentzian line shape function.

D.3.2 Ethanal

In Figure D.1, the active atoms of ethanal are colored red. Spaces A, B and C
only contain one second row atom each, and they are the smallest active spaces
possible. Our results indicate that this is too small for some of the excitations we
consider. Consequently we have also used space D which is the union of A and B.

The oxygen K-edge spectra calculated using the regular Lanczos algorithm with a
chain length of 2000 are presented in Figure D.2. The plots show the excitation
energies and intensities calculated using CC2, CCSD, and MLCCSD with spaces
A and D, employing aug-cc-pCVDZ for all models except MLCCSD A, where we
used aug-cc-p(C)VDZ instead. For the main edge, both MLCCSD models agree
almost perfectly with full CCSD. Model A is not able to reproduce the higher
energy fine structure, while D is reasonably close. Both MLCCSD models, unlike
CC2, reproduce the large gap between the main edge and the fine structure.
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Figure D.2: Ethanal. Comparison of the oxygen K-edge spectra as obtained in CC2,
CCSD and MLCCSD using the regular Lanczos algorithm. Basis sets: aug-cc-p(C)VDZ
for MLCCSD A and aug-cc-pCVDZ for the rest.
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Figure D.3: Ethanal. Comparison of the oxygen K-edge spectra as obtained in CC2,
CCSD and MLCCSD using both the Davidson algorithm with the CVS approximation.
Basis sets: aug-cc-p(C)VDZ for MLCCSD A and aug-cc-pCVDZ for the rest.
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Table D.1: Ethanal. Oxygen core excitation energies (in eV) and corresponding oscillator
strengths, f × 100 (dimensionless) computed using the CVS-Davidson algorithm. Basis
sets: aug-cc-p(C)VDZ for MLCCSD A and aug-cc-pCVDZ for the rest.

CC2 CCSD MLCCSD A MLCCSD D

ΔE f × 100 ΔE f × 100 ΔE f × 100 ΔE f × 100

S1 534.13 3.64 534.64 4.34 534.65 4.72 534.64 4.32
S2 535.95 0.05 539.46 0.04 539.21 0.05 539.40 0.05
S3 536.62 0.03 540.25 0.03 539.99 0.03 540.20 0.03
S4 536.83 0.00 540.50 0.22 540.26 0.18 540.46 0.20
S5 537.10 0.03 540.56 0.02 540.28 0.02 540.49 0.02

Figure D.3 contains the equivalent spectra calculated using the CVS approximation
within the standard implementation of CCLR. Note that only five excitations were
calculated using each model. As a result, the spectra presented are not complete in
the given energy range. This is particularly important for CC2 because the highest
eigenvalue computed was at 537.10 eV. The excitation energies are collected in
Table D.1. Similar to the Lanczos case, the MLCCSD results are very good for the
main edge and reasonably good for the fine structure. Unlike in the Lanczos case,
model A overestimates the oscillator strength of the main edge by about 10%.

The carbon K-edge spectra obtained using the regular Lanczos algorithm are plot-
ted in Figure D.4. The main edge is well reproduced by MLCCSD D. For the
higher excitations, however, MLCCSD seems to be closer to CC2. In should be
noted that the Lanczos algorithm calculates all roots in this case, so the bands in
Figure D.4 originate from both the active and inactive spaces. Furthermore, it is
less straightforward to determine which excitations correspond to which individual
core orbitals when using the Lanczos method without CVS.

These complications are lifted when applying, both in the Davidson and in Lanczos
case, the CVS approximation as shown in Figure D.5. Note that the CC2 results
are not included in the figure for clarity, but the values are reported in Table D.2
and they are very similar to the Lanczos CC2 results. As the core orbitals are
selected beforehand, it is possible to choose an active space corresponding to the
relevant atom or atoms. From Figure D.5, we observe that MLCCSD C reproduces
the carbon excitations of the methyl group very well. Model B has a slightly shifted
main edge, whereas D is almost indistinguishable from full CCSD.

Surprisingly, model B reproduces the peak just below 293 eV better than model D.
Similar behavior is observed for the other molecules in this study. At these higher
energies, the excitations have a higher double character and are more delocalized so
the MLCCSD method is expected to be less successful. For this reason we believe
the agreement with model B is a result of fortuitous error cancellation. Some of
this may be due to the localized orbitals. Full CCSD is orbital invariant as long as
there is no mixing of occupied and virtual orbitals. This invariance is broken by
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Figure D.4: Ethanal. Comparison of the carbon K-edge spectrum as obtained in CC2,
CCSD and MLCCSD via the regular Lanczos algorithm. Basis set aug-cc-pCVDZ.
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CCSD and MLCCSD using the CVS-Davidson algorithm. Basis sets: aug-cc-p(C)VDZ
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the CVS approximation and the Cholesky 1s orbital energy is about 0.04 eV higher
than the canonical orbital energy in active space B while only 0.01 for active space
D. These are small differences, but the effect is generally greater for smaller active
spaces and basis sets.

To visualize the effect of the excitation process, we have plotted the change in the
one-electron density between the ground and core excited states. This is achieved
by calculating the orbital occupations in the two states and calculating the CCSD
density difference using Molden [215]. In Figure D.6 the density difference in the
molecular plane is plotted for the most intense peaks of each atom in ethanal.
Immediately noticeable is the very large reduction in the core density of the atom
being excited and a corresponding increase in the density around the core. Further-
more, the oxygen excitation is highly localized with almost all the change taking
place on the oxygen atom, and only a small change on C1. The carbon excitations
are also fairly localized, but less so than for oxygen, particularly for C1.

Figure D.7 shows the same excitations plotted as 3D isosurfaces. Blue surfaces
correspond to increased densities and red to decreased densities. This reveals that
most of the increase goes out of the molecular plane for C1 and oxygen. Analysis
of the excitation vector reveals that the excitations are indeed 1s → π∗ excitations.
The excitation from C2 is also a 1s → π∗ excitation, but it is less clear from
the density change. The greater localization for oxygen and C2 can explain why
MLCCSD A and C perform better for these atoms than MLCCSD B does for C1.

D.3.3 Propenal

Propenal is the smallest conjugated aldehyde and we will use it to study the per-
formance of MLCCSD for a conjugated system. The active spaces adopted are
summarized in Figure D.8. Spaces A to D only contain one second row element
each, while E and F contain a double bond each.

The CVS Davidson results for oxygen are presented in Figure D.9 and Table D.3.
As for ethanal, both spaces containing oxygen reproduce the main edge well, and E
is better for the fine structure. Again, CC2 fails and yields too small a gap between
the main edge and the next excitation.

Obtaining the carbon K-edge spectrum in propenal is more complicated than for
ethanal because there are more carbon atoms. Combining the regular Lanczos
algorithm with MLCCSD would produce a large number of peaks corresponding
to inactive atoms and make the spectrum very difficult to interpret. In Figure
D.10 we compare the CCSD and CC2 spectra, obtained with the CVS-Davidson
algorithm, to the CCSD regular Lanczos spectrum. While CC2 performs better
for carbon than for oxygen, there are still large discrepancies compared to CCSD.
Comparing the Lanczos and CVS algorithms, we generally find a good agreement
below 292 eV, though with some small differences. These differences may be due
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Figure D.6: Difference in excited and ground state electron density in the molecular plane
for the most intense peaks of oxygen (left), C1 (middle) and C2 (right) calculated at the
CCSD level.

Table D.3: Propenal. Oxygen CVS-Davidson core excitation energies (eV) and corre-
sponding oscillator strengths f × 100 (dimensionless). Basis set: aug-cc-pVDZ.

CC2 CCSD MLCCSD A MLCCSD E

ΔE f × 100 ΔE f × 100 ΔE f × 100 ΔE f × 100

S1 534.28 3.31 535.01 4.22 535.04 4.53 535.02 4.22
S2 536.53 0.03 540.11 0.02 539.87 0.03 540.12 0.02
S3 537.05 0.01 540.71 0.00 540.45 0.01 540.72 0.00
S4 537.22 0.17 540.93 0.05 540.61 0.07 540.94 0.05
S5 537.29 0.00 541.05 0.13 540.76 0.10 541.06 0.14
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Figure D.7: Difference in excited and ground state electron density plotted as isosurfaces
(0.01) for the most intense peaks of oxygen (left), C1 (middle) and C2 (right) calculated
with CCSD. Blue corresponds to increased and red to decreased density.
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Figure D.9: Propenal. Comparison of the oxygen K-edge spectra obtained with CC2,
CCSD, and MLCCSD A and E and the CVS-Davidson algorithm. Basis set: aug-cc-
pVDZ.
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Figure D.10: Propenal. Comparison of the carbon K-edge spectra obtained with the
CVS-Davidson and regular Lanczos algorithms. Basis set: aug-cc-pVDZ.

to the Lanczos algorithm not being fully converged for the chosen chain length of
3000. Above 292 eV, the two spectra differ significantly. This happens because
there is a large number of states in this energy range and only five roots for each
C atom were determined using the CVS-Davidson approach. Consequently, only
few states were obtained within this energy range and it was somewhat arbitrary
which states the Davidson algorithm converged to. Because CCSD and MLCCSD
use different orbitals, the two methods will often converge to different roots in such
cases. This complication can be avoided by calculating more states. The CVS
results for CC2 and CCSD, as well as for two sets of MLCCSD active spaces, are
reported in TableD.4.

In Figure D.11, the same CVS CCSD spectrum is compared to a MLCCSD spec-
trum computed using the minimal active spaces B, C and D. MLCCSD reproduces
the main features of the spectrum and for most applications this will be sufficiently
accurate. Figure D.12 is similar to Figure D.11, but a set of larger active spaces
was used in the MLCCSD calculation. Spaces E and F both contain two second
row atoms, E contains oxygen and C1 and F contains the remaining carbons. As
can be seen in the figure, this gives excellent results for the excitations below 293
eV. Note that the peak at 287.5 eV appears to be a bit too intense. This happens
because the peak is the sum of two excitations that are separated by 0.07 eV in the
CCSD case and by 0.03 eV in MLCCSD, see Table D.4. The calculated intensities



148 NEXAFS within MLCC theory

0

0.05

0.1

0.15

0.2

0.25

286 287 288 289 290 291 292 293 294 295

in
te
n
si
ty

ΔE (eV)

CCSD
MLCCSD B+C+D

Figure D.11: Propenal. Comparison of the carbon K-edge spectra obtained with CCSD
and MLCCSD B, C and D with the CVS-Davidson algorithm. Basis: set aug-cc-pVDZ.
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Figure D.12: Propenal. Comparison of the carbon K-edge spectra obtained with CCSD
and MLCCSD E and F with the CVS-Davidson algorithm. Basis: set aug-cc-pVDZ.
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are actually slightly lower for MLCCSD.

D.3.4 Butanal

Finally, to investigate the behavior of single bonded carbon chains we calculated
the core excitation energies of butanal [263]. We used the active spaces in Figure
D.13. Active space A contains the oxygen atom and the attached methine group
which proved sufficient for ethanal and propenal. The active spaces B, C and D
only contain a methyl or a methylene group.

Figure D.14 shows the spectra at the oxygen K-edge of butanal calculated with
CC2, CCSD and MLCCSD and the CVS-Davidson algorithm. Similarly to ethanal
and propenal, the excitation energy of the main edge is too low with CC2 and the
gap to the higher shake-up excitations is too small. The spectra for CCSD and
MLCCSD are almost indistinguishable, even for the higher excitations.

Table D.5 collects the core excitation energies of oxygen in butanal with the cor-
responding oscillator strengths. None of the errors in the MLCCSD energies com-
pared to CCSD are larger than 0.03 eV. The errors in the oscillator strengths are
also small, whereas the relative errors vary a lot because the magnitude of the
oscillator strengths vary by three orders of magnitude.

Obtaining the carbon K-edge spectrum requires a bit more care in the choice of
active space, depending on the accuracy required. In Figure D.15, the peaks below
289 eV and above 292 eV correspond to C1 and were calculated using active space
A in MLCCSD and these are well reproduced. The rest of the peaks are from the
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Figure D.14: Butanal. CVS-Davidson oxygen K-edge calculated with the Davidson algo-
rithm. Basis set: aug-cc-pCVDZ

Table D.5: Butanal. Oxygen CVS-Davidson core excitation energies (eV) and correspond-
ing oscillator strengths f×100 (dimensionless, in parentheses). Basis set: aug-cc-pCVDZ.

CC2 CCSD MLCCSD A

ΔE f × 100 ΔE f × 100 ΔE f × 100

S1 534.17 3.65 534.68 4.33 534.69 4.31
S2 535.92 0.03 539.44 0.01 539.42 0.01
S3 536.66 0.01 540.17 0.05 540.14 0.05
S4 536.68 0.00 540.39 0.03 540.36 0.03
S5 536.88 0.03 540.60 0.15 540.57 0.15
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Figure D.15: Butanal. CVS-Davidson carbon K-edge calculated with the Davidson algo-
rithm. Basis set: aug-cc-pCVDZ

atoms C2, C3 and C4. They are shifted down a bit compared to CCSD, but overall
correspond reasonably well with CCSD. The CC2 spectrum is omitted from Figure
D.15 for clarity, but it showed similar discrepancies from CCSD as seen in ethanal
and propenal.

Comparing the excitation energies in Tab. D.6, the largest error for C1 is about
0.04 eV. For the other carbons, the errors are larger, but none are larger than 0.3
eV. We note that in some cases, the CC2 excitation energies are more accurate
than the MLCCSD excitation energies. These are weak excitations that will be
difficult to see in an experiment and oscillator strengths are better described by
MLCCSD.

D.3.5 Comparison with experiment

In order to demonstrate the accuracy of CC2 and CCSD we compare with experi-
mental values for ethanal. As large basis set effects are observed for core excitations
we use aug-cc-pCVTZ[59] in this comparison. From our experience, the larger basis
set is only required on the core being excited. As ethanal is rather small we employ
the same basis for all atoms.
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Table D.6: Butanal. Carbon CVS-Davidson core excitation energies (eV) and correspond-
ing oscillator strengths f × 100 (dimensionless). Basis set aug-cc-pCVDZ.

CC2 CCSD MLCCSD

ΔE f × 100 ΔE f × 100 ΔE f × 100

C1

S1 289.70 6.59 288.44 6.21 288.44 6.33
S2 293.34 0.86 292.74 1.27 292.78 1.33
S3 294.16 0.14 293.73 0.15 293.74 0.17
S4 294.25 0.13 293.92 0.22 293.94 0.24
S5 294.43 0.09 294.16 0.11 294.16 0.09

C2

S1 290.04 0.11 289.52 0.01 289.46 0.02
S2 290.08 0.62 289.68 1.01 289.63 1.05
S3 290.75 0.98 290.45 1.78 290.35 1.76
S4 290.96 0.08 290.88 0.17 290.73 0.13
S5 291.28 0.02 291.30 0.03 291.12 0.02

C3

S1 289.93 0.35 289.66 0.60 289.51 0.55
S2 290.51 0.07 290.35 1.25 290.16 1.19
S3 290.52 0.55 290.54 0.06 290.28 0.10
S4 290.80 0.01 290.91 0.07 290.61 0.01
S5 290.84 0.05 290.93 0.05 290.65 0.08

C4

S1 289.70 0.38 289.29 0.50 289.21 0.51
S2 290.48 0.78 290.22 1.45 290.11 1.44
S3 290.51 0.71 290.27 1.47 290.16 1.43
S4 290.80 0.00 290.68 0.02 290.55 0.01
S5 291.36 0.35 291.35 0.43 291.18 0.46

Table D.7: Ethanal. Oxygen core excitation energies (in eV) computed using
the CVS-Davidson algorithm compared with experiment[264] Basis sets: aug-cc-
pCVTZ.

CC2 CCSD MLCCSD A MLCCSD D Experiment

S1 532.58 532.69 532.61 532.69 531.53
S2 534.61 537.50 536.67 537.47 535.42
S3 535.27 538.28 537.39 538.24 536.32
S4 535.43 538.52 537.61 538.49 537.05
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Table D.8: Ethanal. Relative oxygen core
excitation energies (in eV) computed using
the CVS-Davidson algorithm compared with
experiment [264] Basis sets: aug-cc-pCVTZ.

CC2 CCSD Experiment

S1 0.00 0.00 0.00
S2 2.03 4.82 3.89
S3 2.69 5.59 4.79
S4 2.85 5.83 5.52

In Table D.7 we report oxygen K-edge excitation energies in ethanal and compare
to the NEXAFS excitation energies obtained by Prince et al.[264] Both CCSD and
CC2 is about 2 eV too high compared with experiment for the first core excitation
and the difference is about 0.1 eV between them. The difference between the
methods is larger for the higher states, as seen in Table D.8. Relative to the first
excited state, CC2 is about 1.9 eV too low for S2 and get progressively worse for
the higher states. The relative CCSD excitation energy of S2 is about 0.9 eV too
high and the difference between the higher states is a bit too low. We note that
MLCCSD D reproduces full CCSD well, while MLCCSD A has larger errors.

D.4 Conclusions

With the examples presented in this paper, we have demonstrated that it is pos-
sible to determine CCSD core excitation energies and oscillator strengths using
MLCCSD with small active spaces. In many cases, the results obtained with the
smallest active spaces are sufficiently accurate given that a linewidth of 1 eV or
more is not uncommon in experiments [264]. Small expansions of the active spaces
in ethanal and propenal were sufficient to obtain CCSD results with errors less
than 0.01 eV.

The current implementation is not yet fully optimal for production calculations
and no timings are therefore reported in this paper. However, the most expensive
term in CCSD scales as V 4O2, while CC2 scales as V 3O2. Butanal is a quite
small molecule and with active space A, the most expensive term to calculate in
MLCCSD will be the same as in full CCSD. The theoretical time reduction in the
CCSD part is

V 4O2

V 2V 2
AO

2
A

=
1872 × 202

612 × 82
≈ 59 (D.23)

and the overall theoretical scaling is that of CC2. Actual time reduction will depend
on the implementation and size of the active part compared to the whole system,
but results with multi-level CC3 [265] indicate that time reductions are close to the
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theoretical value for sufficiently large systems. We should emphasize that MLCCSD
is not a black box method as the active spaces need to be chosen. However, we are
confident that with time, users will gain experience in selecting optimal spaces.

To further investigate the excitation processes, we have visualized the change in
electronic density between states. For core excitations, a large reduction of elec-
tronic density is observed in the core and a corresponding increase in the valence
region. This may be used to determine a suitable active space. If the electron
change is delocalized with a low level method, a larger active space may be re-
quired. For small active spaces that only contain one second row atom, increasing
the size will probably not appreciably affect the overall computational cost because
the inactive part is relatively more expensive. Systematic studies with different
spaces will give an indication on whether the active space is large enough.
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Abstract

The coupled cluster models CCSD and CC3 are used to investigate the (core) ex-
cited states and electron binding energies of glycine in the gas phase. Excited states
and binding energies in the UV spectral range are calculated using standard cou-
pled cluster linear response, while core-level excited states and ionization potentials
are calculated using the core-valence separation approximation. The importance
of different conformers at the temperature of the experimental measurement is also
assessed.
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Figure E.1: Conformers of glycine.

E.1 Introduction

Glycine is the smallest amino acid found in proteins and is often used as a model
system for studying properties of biological molecules [266]. It plays an essential
role in living organisms and has even been found in space [267], supporting the
hypotesis of panspermia. In the gas phase it exists as neutral species. In solution,
it is a zwitterion and it is one of the smallest molecules with internal hydrogen
bonding. Furthermore, hydrogen bonding results in a large number of predicted
stable conformers [127, 268, 269].

A large number of studies have been performed on glycine in order to characterize
the molecule, including several X-ray spectroscopy studies in gas phase [124, 270,
271], in solution [272] and even in solid state [273, 274]. In order to interpret the
experimental results, accurate computational methods are required. The static
exchange (STEX) method [125] has been used in many studies to simulate the
spectra. While STEX can give good qualitative spectra, it requires shifts of several
eV to agree with experimental peaks.

A much more advanced approach is the algebraic diagramatic construction (ADC)
method [52, 275]. In this approach, an effective Hamiltonian is constructed based
on perturbation theory. This results in a size extensive and explicitly Hermitian
theory. By combining this method with the core-valence separation approximation,
the ADC(2) approach has been often used to calculate X-ray absorption spectra.
Wenzel et al. [250], for instance, were able to obtain spectra at the ADC(2) and
UADC(2) level of medium to large size systems. The extended ADC(2) method,
named ADC(2)-x, showed good agreement with experimental data, but fortuitous
error cancelation probably plays an important role, and it is difficult to systemati-
cally improve the accuracy [252].
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More recently, the CVS approximation has been implemented within the coupled
cluster (CC) framework [116]. The CC ansatz provides a systematic hierarchy of
models with increasing accuracy. This makes it possible to quantitatively predict
molecular properties and spectra and to assess whether a specific approximation
within the hierarchy is accurate enough. The calculation of spectroscopic observ-
ables related to the interaction of the molecular system with X-ray radiation dis-
plays strong dependence on the level of theory and size of the basis sets, making a
systematic approach particularly important.

In this work, we present and compare spectroscopic data of glycine calculated at
the CCSD (coupled cluster singles and doubles) [21] and CC3 (coupled cluster
singles, doubles and approximate triples) [24, 265] levels of theory. Specifically,
we have modelled absorption and ionization spectral parameters in the UV and
X-ray energy ranges, and compare them to experimental values from the literature
[124, 271]. As excited state properties show a strong dependence on the basis set,
we have performed calculations with different sets in order to determine the best set
with respect to both accuracy and cost. We also investigate the effect of different
conformers.

The paper is organized as follows. In Section E.2, we present a brief summary of
CC theory and CC linear response. In the Section E.3 we present our results and
compare to experiments and Section E.4 contains our concluding remarks.

E.2 Theory

In coupled cluster theory, the wave function is typically written as the exponential
of a cluster operator, X, working on a Hartree-Fock (HF) reference state

|CC〉 = exp(X) |HF〉 . (E.1)

The cluster operator is a sum of excitation operators each weighted by their cor-
responding amplitude, X =

∑
μ xμτμ, and the wave function is determined by

projection

E = 〈HF| exp(−X)H exp(X) |CC〉
Ωμ = 〈μ| exp(−X)H exp(X) |CC〉 = 0 .

(E.2)

Excitation energies and excited state properties are usually calculated using either
CC linear response (CCLR) [31, 32] or equation of motion (EOM) CC [34]. The
critical step in both methods is finding the eigenvalues of the Jacobian matrix, A,
with elements given by

Aμν =
∂Ωμ

∂xν
= 〈μ| exp(−X)[H, τν ] exp(X) |CC〉 . (E.3)
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Because the Jacobian is not symmetric, both the right, Ri, and left, Lj eigenvectors
must be determined

ARi = ωiRi; LjA = ωjLj . (E.4)

The eigenvectors must satisfy the biorthogonality condition, LjRi = δij , and the
eigenvalues, ωi, are the excitation energies of the system.

Typically, the Jacobian matrix will be far too large for a complete diagonalization
and the eigenvalue problem must be solved using a subspace algorithm. Usually,
the Davidson algorithm [42] is employed. This algorithm solves the eigenvalues
iteratively, starting with extremal values. As a result, it is not straightforward to
find eigenvalues corresponding to core excited states because they are embedded in a
continuum of valence excited states. The CVS approximation [114, 116] overcomes
this limitation by utilizing the fact that there is almost no coupling between valence-
and core excited states. Vector elements corresponding to such couplings can then
be set to zero without loss of accuracy and the algorithm will not collapse to valence
excited states.

In order to calculate ionization energies, an extremely diffuse orbital can be added
to the basis set [116, 128]. Integrals involving this orbital will then be zero and
ionization energies can be approximated as excitations to this orbital. The (rela-
tive) strength of the corresponding ionization can be approximately estimated by
the norm of the so-called Dyson orbitals [276], which can be obtained from the
transition density matrix elements for excitations to and from the diffuse orbital
[277].

E.3 Results

E.3.1 Geometries

In order to compare our results to experiment, accurate geometries are required.
Miller and Clary [266] identified five important conformers of glycine summarized
in Figure E.1. Conformer I indicates the numbering scheme adopted in this work
where atoms are ordered after their 1s orbital energy in descending order.

The geometries were optimized at the CCSD(T) level using CFOUR [122, 123] and
the aug-cc-pVDZ [60] basis set of Dunning and coworkers. Frequencies were also
calculated for the different geometries and zero point energies of about 2.15 eV
were obtained for all conformers, consistent with earlier studies [266]. Geometries,
ground state energies and zero point energies are collected in the supplementary
material. The optimized geometries were not strictly symmetric, but most states
could nonetheless be clearly assigned as either A′ (in the plane), or A′′ (out of the
plane) for conformer I, II and III. States of A′ symmetry are of σ character, and
those of A′′ symmetry are of π character.
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E.3.2 Excitation and binding energies of conformer I

In this section we present CCSD and CC3 excitation and ionization energies calcu-
lated for the lowest energy conformer, using several different basis sets. Transition
strengths for the excitations calculated with CCSD are also given, and they were
computed in the length gauge.

In our experience, diffuse basis functions [60] are important for excited state prop-
erties, so they have been included in all basis sets. Furthermore, core-valence
polarization functions [59] are required for accurate core excitations and are in-
cluded. For the sake of brevity, we adopt a shorthand notation for the basis sets.
For example, aug-cc-pCVDZ will be refered to as aCDZ. We also use mixed basis
sets for core excitations and ionizations, and these are indicated with parentheses,
i.e., a(CT)Z means aug-cc-pCVTZ on the atom being excited and auc-cc-pVDZ on
the rest.

Table E.1 collects the results for the valence excitations and ionizations investi-
gated. Only small changes are observed for the excitation energies, both with
respect to basis sets and wavefunction models. Osted et al. [278] have also in-
vestigated the UV excitations of (among others) glycine at the CCSD level of
theory. Using the aD(T)Z basis set, they reported 5.88 eV (f = 0.00053), 6.32
eV (f = 0.01247), 7.24 eV (f = 0.04608), 7.48 eV (f = 0.01535) and 7.61 eV
(f = 0.03162) for their minimum energy conformer. Unfortunately, no experimen-
tal gas-phase UV results seem to be available in the literature.

For the ionizations, the effect of changing the basis set is somewhat larger, with
the smaller basis set yielding values slightly closer to the experimental one. The
deviations from the experimental values for both CC methods is modest, and it
does not exceed 0.3 eV.

We now turn our attention to the X-ray spectra. Core excitation energies cal-
culated with CCSD for all types of edges together with their relative intensities
are presented in Table E.2, whereas CC3 and experimental excitation energies are
given in Table E.3. Changes of about 1 eV are observed when comparing CCSD
and CC3 excitation energies, and the A′′ states were generally lowered more than
the A′. For C1 and O5, the lowest core excitation changed from being an A′ state
to an A′′ state when going from CCSD to CC3.

Increasing the basis from aCDZ to a(CT)Z lowers the excitation energy by another
eV, indicating that triple zeta basis (as well as high level theory) are required to
accurately predict core excitation energies. However, only small differences are
observed between a(CT)Z and the larger sets, indicating that it is sufficient to use
triple zeta only on the atom being excited.

Comparing the results to experiment, too high excitation energies are observed for
carbon and too low energies for oxygen, but all CC3 results are within 0.4 eV,
with the sole exception of the C1. Relativistic effects would increase all excitation
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Table E.3: Conformer I. CC3 core excitation energies and experimental results from
Plekan et al. [124] (eV). No symmetry could be determined for the degenerate states of
C1 with aCDZ

aCDZ a(CT)Z aCTZ a(CQ)Z exp.

C1

289.77 (A∗) 288.71 (A′′) 288.59 (A′′) 288.57 (A′′)
287.7

289.77 (A∗) 288.73 (A′ )
290.74 (A′ ) 289.70 (A′ )

289.4
290.83 (A′′) 289.79 (A′′)
291.06 (A′ ) 290.02 (A′ )

C2

290.15 (A′′) 288.97 (A′′) 288.94 (A′′) 288.78 (A′′) 288.4
293.09 (A′ ) 292.03 (A′ )
293.86 (A′ ) 292.81 (A′ )
294.35 (A′′) 293.27 (A′′)
294.47 (A′ ) 293.41 (A′ )

N3

402.76 (A′ ) 401.34 (A′ ) 401.34 (A′ ) 401.20 (A′ ) 401.2
403.76 (A′′) 402.36 (A′′)

402.4403.94 (A′ ) 402.54 (A′ )
403.94 (A′′) 402.55 (A′′)
404.55 (A′ ) 403.15 (A′ ) 403.8

O4

533.94 (A′′) 532.10 (A′′) 532.01 (A′′) 531.90 (A′′) 532.2
535.63 (A′ ) 533.93 (A′ )
536.43 (A′ ) 534.73 (A′ )
538.83 (A′ ) 535.13 (A′′)
537.01 (A′ ) 535.31 (A′ )

O5

536.86 (A′′) 535.16 (A′′) 535.01 (A′′) 534.99 (A′′)
535.4

536.92 (A′ ) 535.22 (A′ )
538.30 (A′ ) 536.65 (A′ ) 537.7
538.74 (A′′) 537.08 (A′′)
538.90 (A′ ) 537.24 (A′ )



E.3. Results 167

Table E.4: Conformer I. CCSD and CC3 core ionization energies and comparison with
the experimental results from Plekan et al. [271] (eV)

aCDZ a(CT)Z aCTZ a(CQ)Z exp. (±0.1)

C1
CCSD 294.68 293.75 293.79 293.70

292.3
CC3 293.37 292.35 292.40 292.23

C2
CCSD 297.92 296.98 297.04 296.93

295.2
CC3 296.57 295.52 295.58 295.39

N3
CCSD 408.56 407.14 407.17 407.08

405.4
CC3 406.48 405.09 405.11 404.95

O4
CCSD 542.71 540.75 540.81 540.66

538.4
CC3 538.91 537.24 537.29 537.09

O5
CCSD 544.22 542.33 542.38 542.24

540.2
CC3 540.83 539.21 539.24 539.05

energies, but the increase would be about 0.1 eV for carbon, 0.2 eV for nitrogen and
0.3 eV for oxygen. Vibrational effects may also influence the position of the peaks.
For nitrogen, N2, this effect decreased the excitation energy slightly [279]. We note
that the peak corresponding to C1 is close to the intense peak from C2 and difficult
to resolve in experimental spectra. Our results indicate that this peak corresponds
to two nearly degenerate states close to a symmetry allowed intersection.

Core ionization energies are compared with experiment in Table E.4. CCSD over-
estimates the ionization potentials by 1.5–2.5 eV, depending on the edge. The CC3
carbon binding energies are close to the experimental values, whereas nitrogen and
especially oxygen ionization energies are too low. The error for oxygen is more
than 1 eV and will only partially be offset by including relativistic effects.

E.3.3 Effect of conformers

In Table E.5 we present core excitation energies and transition moments of O5
for the different conformers, calculated using the aCDZ basis set. Only small
differences in the excitation energies are observed between the different conformers
but II shows considerable differences in the transition moments. In addition, the
order of the two lowest states is the opposite of the two other conformers (I and
III) with a symmetry plane. However, these changes would be difficult to detect
experimentally and might change with a larger basis set [124].

Within CC3, the peaks in the spectrum move closer together, see Table E.6, and
the A′′ state is the lowest for all three conformers. Conformer II is 0.4 eV lower
than the others, but again, this would be hard to resolve in experiment. For the
other atoms, smaller differences are observed between the conformers.
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Table E.6: Glycine CC3 core excitations O5 (eV), aCDZ

I II III IV V

S1 536.86 (A′′) 536.44 (A′′) 536.84 (A′′) 536.86 536.78
S2 536.92 (A′ ) 536.65 (A′ ) 536.92 (A′ ) 536.99 536.97
S3 538.30 (A′ ) 537.72 (A′ ) 538.35 (A′ ) 538.41 538.38
S4 538.74 (A′′) 537.83 (A′′) 538.75 (A′′) 538.91 538.76
S5 538.90 (A′ ) 537.85 (A′ ) 538.82 (A′ ) 539.01 538.99

E.4 Conclusions

In this paper we have demonstrated the accuracy of CC3 combined with the CVS
approximation to predict core-level spectra. Triple zeta basis sets are required for
convergence, but only on the atom being excited. Discrepancies between calcula-
tions and experiment can partially be ascribed to relativistic effects. Vibrational
effect may also be important, but neither relativistic not vibrational effects were
included in this study.

Only small differences are predicted between the conformers of glycine. Conformer
II shows some variation in the predicted spectra of O5 and C1. However, the
changes are quite modest and would be difficult to observe in experiment because
the excited states are close together.
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Table E.7: Geometry of conformer I, Å

X Y Z

H 2.381241 −0.100621 0.001448
O 1.617858 −0.703469 0.001228
O 0.551882 1.305495 −0.000600
C 0.502925 0.087807 −0.000246
C −0.772090 −0.754539 −0.002222
H −0.733956 −1.419463 0.878899
H −0.734996 −1.412502 −0.888662
N −2.020891 0.004291 0.001327
H −2.032275 0.624191 0.815143
H −2.031512 0.632846 −0.805841

Table E.8: Geometry of conformer II, Å

X Y Z

C 0.610875 0.046401 −0.000142
O 1.698633 0.590019 0.001762
O 0.453312 −1.297663 −0.001159
H −0.522747 −1.429620 −0.002539
C −0.710897 0.837585 −0.002688
H −0.695843 1.486334 −0.894226
H −0.693871 1.497027 0.880945
N −1.879677 −0.071719 0.001882
H −2.472399 0.077665 −0.813273
H −2.460244 0.070428 0.827065

Table E.9: Geometry of conformer III, Å

X Y Z

C 0.585191 −0.082107 −0.000627
O 1.654781 −0.666393 0.005885
O 0.487664 1.282748 −0.003308
H 1.404587 1.609031 0.000306
C −0.775551 −0.784298 −0.009842
H −0.777321 −1.462667 0.860907
H −0.780645 −1.431194 −0.904475
N −1.987348 0.036596 0.006411
H −1.984369 0.671730 −0.794309
H −1.984917 0.638753 0.832252
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Table E.10: Geometry of conformer IV, Å

X Y Z

C 0.492420 −0.081816 −0.023844
O 0.533458 −1.299377 −0.048611
O 1.604534 0.701664 0.089639
H 2.362413 0.092543 0.121347
C −0.767735 0.754284 −0.165811
H −0.686416 1.627128 0.503673
H −0.756737 1.138273 −1.208780
N −1.939509 −0.054878 0.188806
H −2.784280 0.365814 −0.200593
H −1.840115 −0.982089 −0.231934

Table E.11: Geometry of conformer V, Å

X Y Z

C 0.565636 −0.095325 −0.035361
O 1.580608 −0.729527 0.189795
O 0.542934 1.271148 −0.099941
H 1.451914 1.564118 0.084241
C −0.799001 −0.693338 −0.340586
H −0.790017 −1.722166 0.050139
H −0.872613 −0.747170 −1.448469
N −1.874684 0.073307 0.312821
H −2.776123 −0.345093 0.074994
H −1.889152 1.026319 −0.057060

Table E.12: Relative ground state and zero point en-
ergies energies, CCSD(T), aug-cc-pVDZ, kJ/mol

ΔE0 V0 total

I 0.0000 208.228 0.0000
II 3.2901 209.190 4.2520
III 6.8944 208.329 6.9957
IV 5.4620 208.200 5.4338
V 10.2096 208.512 10.4934
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Abstract

The high resolution near edge x-ray absorption fine structure spectrum of nitrogen
displays the vibrational structure of the core excited states.This makes nitrogen
well suited for assessing the accuracy of different electronic structure methods for
core excitations. We report high resolution experimental measurements performed
at the SOLEIL synchrotron facility. These are compared with theoretical spectra
calculated using coupled cluster theory and algebraic diagrammatic construction
theory. The CC3 model is shown to be in quantitative agreement with experiment.
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F.1 Introduction

X-ray absorption spectroscopy (XAS) provides a unique ability to study local prop-
erties of molecules [107–113]. The research area is in rapid development and,
currently, several facilities are under construction, such as the European XFEL
in Hamburg and the LCLS II at SLAC. In order to fully understand the insight
provided by XAS, accurate theoretical methods are required to interpret the ex-
periments.

Simulating high energy processes such as near edge x-ray absorption fine structure
(NEXAFS) spectra involves a number of challenges not encountered in low energy
processes such as UV/Vis spectroscopy. Exciting an electron from a core orbital
involves a significant reduction in the screening leading to large relaxation effects.
The most important are contraction of the valence electron density and repulsion
from the electron transferred from the core. Accounting for these effects theoreti-
cally is challenging. For example, results from density functional theory often have
to be shifted 10 eV or more to agree with experimental results [280, 281], and most
methods require shifts of more than 1 eV [45, 124, 282]. More recently, the extended
algebraic diagrammatic construction (ADC-x) method has produced results within
a few tenths of an eV from experimental values, however, the accuracy appears to
partially rely on error cancellation from the basis set [252].

Another challenge when computing core exciting states is that they are embedded in
a continuum of Rydberg states. Most electronic structure methods involve solving
an eigenvalue problem in order to determine excited electronic states. Usually, some
version of the Davidson algorithm [42] is used for this. It solves the eigenproblem
iteratively starting with extremal eigenvalues, normally the lowest one, but this is
not a good approach for core excitations because there will be many lower energy
excited states. Several methods have been proposed to overcome this problem. In
the ΔSCF method [243], the energy of the excited state is calculated by restricting
the occupation in the core orbitals and the excitation energy is calculated as the
difference from the ground state. Another approach is to solve for the eigenvalues
using the Lanczos algorithm [44–46]. With this algorithm, the eigenvalues are
solved for the whole spectrum simultaneously. However, the algorithm may become
numerically unstable and it is necessary to store a large number of vectors on disk.
This limits the size of systems where the method can be applied.

Arguably the most successful approach to determining the core excited states is
the core-valence separation (CVS) approach [114]. The energy differences between
the core and valence orbitals are typically several hundred eVs. Consequently,
their overlap integrals become very small and the coupling between them can be
neglected. The CVS approach is utilized in ADC [115] and has also been imple-
mented with coupled cluster (CC) [116]. For CC, the differences between CVS and
full space results are typically less than 50 meV.

Recently, we reported a new implementation of coupled cluster singles and doubles
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with perturbative triples (CC3) [24, 265]. This implementation has now been ex-
panded with the CVS approximation and in this paper we will use an experimental
spectrum of nitrogen to assess the accuracy of CC3 for core excited states. The
vibrational structure in the spectrum makes it possible to evaluate the shape of the
potential energy surface and determine the effect of vibrations on the excitation
energy. Because N2 only has 14 electrons, it is possible to use very large basis sets
and minimize the basis set error which can be several eVs for core excitations.

In Section F.2 we will briefly summarize CC theory, particularly CC3, and the CVS
approximation. In Section F.3 we describe our computational and experimental
approach and in Section F.4 we present our results. Section F.5 contains our
concluding remarks and future perspective.

F.2 Theory

In CC theory, the wave function is written as the exponential of the cluster operator,
X =

∑
μ
xμτμ, acting on the Hartree-Fock (HF) reference state,

|CC〉 = exp(X) |HF〉 . (F.1)

The excitation operators, τμ, take the reference state to an excited state in the
Fock space, |μ〉 = τμ |HF〉, and xμ is the corresponding amplitude. In exact theory,
the CC formulation is equivalent to full configuration interaction (FCI) up to a
normalisation factor, but in practice the cluster operator is truncated at some
excitation level and the amplitude equations solved with projection

E = 〈HF| exp(−X)H exp(X) |HF〉
Ωμ = 〈μ| exp(−X)H exp(X) |CC〉 = 0

(F.2)

When calculating time dependent properties such as excitation energies and transi-
tion moments, the standard methods are CC linear response [31, 32] and equation
of motion CC (EOM-CC) [34]. Both methods require the eigenvalues of the non-
symmetric Jacobian matrix A, whose elements are defined as

Aμν =
∂Ωμ

∂xν
= 〈μ| exp(−X)[H, τν ] exp(X) |CC〉 . (F.3)

The eigenvalues of the Jacobian correspond to the vertical excitation energies of
the system and it is sufficient to only solve from one side if other properties are not
required. If transition moments and other excited state properties are desired, it
is necessary to solve the eigenvalue problem from both the left and the right side.
As mentioned in the introduction, the eigenproblems are typically solved using an
iterative procedure like the Davidson method [42].
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Figure F.2: Comparison of the first peak in the experimental and CC3 spectra. CC3 is
shifted 0.13 eV up and the distances between the vibational peaks are a bit too large.

In order to obtain core excited states, the CVS approximation is necessary. In this
approximation, elements coupling the core and valence excited states are projected
out. For each iteration of the Davidson algorithm, elements of the eigenvectors not
corresponding to the core orbitals are set to zero. In this way, the core excited and
valence excited states are completely decoupled and the algorithm will (given the
appropriate choice of start vectors) converge to the lowest core excited states.

F.3 Experimental and computational details

Calculations were performed at the Stallo computer cluster in Tromsø, Norway
[118]. Dalton [99] was used for the CC calculations. Calculations with ADC(2)-x
were performed with Q-Chem [153]. Vibrational analysis was performed using the
VIBROT [132, 133] program by Sundholm. The CVS approximation [115, 116]
was used for core excited state calculations and CC3 was calculated using a new
implementation [265] in Dalton. All calculations used the d-aug-cc-pCVQZ [59, 60]
basis set. Ionization energies were obtained by including an ultra diffuse orbital and
discarding elements in the excitation vectors not referring to this orbital, similar to
the CVS approximation. Transition moments were calculated in the length gauge.
Theoretical spectra are plotted with an empirical Lorentzian line broadening of
0.06 eV half width at half maximum.

The experimental spectrum was recorded at room temperature at the PLÉIADES
soft x-ray beamline, SOLEIL synchrotron, France[134] by measuring the total X-ray
induced electron yield. The photon energy resolution was 50 meV. The spectrum
was offset-corrected according to Ref. [130].
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Figure F.3: Comparison of ADC(2)-x, CCSD and experiment. CCSD is too high and
ADC is too low.

F.4 Results

In Figure F.1, we compare the first experimental peaks with the theoretical spec-
trum. Energies of the excited states were computed using CC3 while the transition
moments were determined at the CCSD level.

Six electronic states give rise to the peaks in the spectrum. The peaks between
400 and 403 eV are by far the most intense and correspond to excitations from the
σu core orbital to two sets of equivalent π∗

g orbitals. At about 406.2 eV, the first
Rydberg state appears. This is a 1Σ+

u state where an electron is excited from the
core σu to σ∗

g . The last peak is a combination of two 1Πu states, from core σg to
π∗
u, and a 1Σ+

u , from core σg to σ∗
u. Vibrational structure is observed for all these

states except the last 1Σ+
u state which is too weak and convoluted with the much

stronger 1Πu states. These assignments are consistent with those of Chen et al.
[130]

Figure F.2 shows the vibrational structure of the first state in closer detail, with
the calculated positions and relative intensities of the peaks presented in Table F.1.
The absolute error of the 0 → 0 transition is 0.13 eV in CC3 while the distance
between the vibrational levels is 0.02 eV too high. Figure F.3 compares the spectra
of ADC(2)-x and CCSD to experiment. For ADC(2)-x, the position of the first
transition is 1.65 eV too low and the vibrational separation is 0.03 eV too low.
Corresponding numbers for CCSD are 0.91 and 0.03 eV, both too high. Equivalent
calculations with aug-cc-pCVQZ and aug-cc-pCV5Z showed a decrease in the first
excitation energy of 0.04 eV when increasing the basis set. The excitation energy
was also calculated using the Lanczos algorithm with and without CVS in the aug-
cc-pCVTZ basis. The excitation energy is decreased by 0.02 eV and the intensity
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Table F.1: Positions and intenseties of the vibrational structure of the first excited state.
Higher vibrational transitions indicated relative to the previous transition.

ADC(2)-x CCSD CC3 Experiment

transition ΔE f ΔE f ΔE f ΔE f

0 → 0 399.24 1.00 401.80 1.00 401.03 1.00 400.90 1.00
0 → 1 +0.20 1.14 +0.27 0.52 +0.25 0.65 +0.23 0.95
0 → 2 +0.20 0.76 +0.26 0.16 +0.25 0.25 +0.23 0.56
0 → 3 +0.19 0.40 +0.26 0.04 +0.24 0.08 +0.22 0.24
0 → 4 +0.18 0.18 +0.25 0.01 +0.24 0.02 +0.21 0.09
0 → 5 +0.18 0.08 +0.25 0.00 +0.23 0.01 +0.21 0.04
0 → 6 +0.17 0.03 +0.25 0.00 +0.23 0.00 +0.22 0.02

is reduced by 6% when using CVS.

The intensities in the CC3 spectrum fall off too quickly compared to the experiment.
They are calculated at the CCSD level and it is possible that CC3 intensities would
be closer to experiment. However, the oscillator strength is almost constant across
the relevant bond lengths and the structure mostly depend on the potential energy
surface. Compared to ADC and CCSD in Table F.1, the ADC potential is much
shallower than the CC potentials, resulting in the vibrational levels being closer
together. The CCSD potential is deeper than the CC3 potential, resulting in larger
energy gaps. The minimum energy of the first core excited CC3 potential is at 1.158
Å, compared to an experimental value of 1.164 Å [130] and 1.187 Å with ADC(2)-x.

Positions and relative intensities of the Rydberg states are presented in Table F.2.
The energy gap between the first core excited state and the first Rydberg state is
calculated to be 5.20 eV with CC3, 0.06 eV lower than the experimental value. For
comparison, the gap is 5.68 eV with ADC(2)-x and 5.57 eV with CCSD. For the
gap between the two states, the error is less than 0.01 eV. We note that changing
the basis from aug-cc-pCVQZ to d-aug-cc-pCVQZ reduces the gap from the first
core excited state by about 0.4 eV for all models.

The energy gaps between the vibrational states are both about 0.03 eV too high
for the Rydberg states, indicating that the calculated potential energy surfaces are
too deep. Intensities are also too weak for both the 0 → 0 transitions, especially
for the 1Πu state. The 0 → 1 transitions, on the other hand, are too strong. In
this case it is possible that the error occurs due to the CCSD intensities being too
low relative to the first excited state. Furthermore, the 0 → 1 transitions are quite
weak and the peaks are convoluted with other states, so it is challenging to obtain
accurate intensities, especially for the weak 1Σ+

u state.

We have plotted the CC3 potential energy surfaces in Figure F.4. We have also
indicated the relevant vibrational levels with horizontal lines. For the first core
excited state, the equilibrium bond length is stretched compared to the ground
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Table F.2: Positions and relative intenseties of the vibrational structure of the Rydberg
states. Higher vibrational transitions indicated relative to the previous transition.

CC3 Experiment

transition ΔE f × 10 ΔE f × 10

1Σ+
u 0 → 0 406.23 0.29 406.16 0.36

1Σ+
u 0 → 1 +0.31 0.07 +0.29 0.03

1Πu 0 → 0 407.22 0.53 407.15 0.91
1Σ+

u 0 → 0 407.41 0.03 407.36 0.02
1Πu 0 → 1 +0.32 0.14 +0.28 0.13

state, while for the Rydberg states, it is slightly compressed. When the bond is
stretched, the higher 1Σ+

u state goes through a symmetry allowed intersection with
the 1Πu state and an avoided crossing with the other 1Σ+

u state. There is also
a large number of dark states whose transitions are forbidden by symmetry not
shown in the figure.

In Figure F.5 the change in the electron density between the ground state and the
first 1Πu state is plotted using Molden [215]. The density is plotted in a plane
containing the N2 molecule and in 3D using isosurfaces. A large density reduction
is observed in the cores and a corresponding increase occurs with π symmetry. We
note that a superposition of the two core holes is formed because the two atoms
are equivalent.

Finally, the first ionization potentials was calculated to be 409.80 and 409.91 eV.
This compares to an experimental value of 409.93 eV [283]. We note that CC3
predicts at least one extra vibrational X-ray photoionization spectrum (XPS) peak,
however, the resolution of the experiment was not high enough to observe this.

F.5 Conclusion

Calculating core excited states is challenging, not just because of the difficulties
of finding the corresponding eigenvalues, but also because of the large relaxation
effects that occur. In general, CCSD performs well for valence excited states with
typical errors of 0.2 eV compared to CC3 [157]. For core excited states, errors
in CCSD of more than 1 eV are common. Furthermore, core excitation processes
require much larger basis sets for convergence than valence excitations in our ex-
perience. In this paper, we have demonstrated that CC3 can predict spectra with
sufficient accuracy to assign peaks to states, but it requires a large basis set. How-
ever, basis set requirements can be relaxed by utilizing the fact that the excitation
is very local and the large basis set is only needed on the atom being excited.
Furthermore, multilevel CC3 can reduce the computational cost by two orders of
magnitude [265].
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Figure F.5: Electron density change of first 1Πu in the plane and as isosurfaces. Red
indicates reduced density and blue increased. Isovalue: 0.01

Vibrational effects can be important in NEXAFS spectra and are required when
describing the spectrum of N2. Both directly in order to describe the vibrational
structure, but also due to shifts induced by the zero point energy. In most cases,
it is not possible to resolve any vibrational structure in X-ray spectra in detail.

We have not included relativistic effects in the calculations. Using the Douglas-
Kroll correction [139, 140], all excitation energies get an increase of 0.2 eV due to
contraction of the core orbitals. However, for light elements like Nitrogen, there
are important relativistic relaxation effects that will counteract the energy increase
[141]. How these effects interact in NEXAFS spectra requires further study.

When calculating NEXAFS, CC3 tends to predict too high excitation energies.
This is not the case when simulating XPS where the binding energies tend to be
too low. This may be because two indices are fixed, effectively leaving only singles
and approximate doubles to describe the relaxation. A potential solution is to
calculate the ground state at the CC3 level, but the ionization energies at the full
CCSDT level.
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Abstract

Organic chromophores with heteroatoms possess an important excited state relax-
ation channel from an optically allowed ππ∗ to a dark nπ∗ state. We are exploiting
the element and site specificity of soft x-ray absorption spectroscopy to selectively
follow the electronic change during the ππ∗/nπ∗ internal conversion. As a hole
forms in the n orbital during ππ∗/nπ∗ internal conversion, the near edge x-ray ab-
sorption fine structure (NEXAFS) spectrum at the heteroatom K-edge exhibits an
additional resonance. We demonstrate the concept with the nucleobase thymine, a
prototypical heteroatomic chromophore. With the help of time resolved NEXAFS
spectroscopy at the oxygen K-edge, we unambiguously show that ππ∗/nπ∗ internal
conversion takes place within (60 ± 30) fs. High-level coupled cluster calculations
on the isolated molecules used in the experiment confirm the superb electronic
structure sensitivity of this new method for excited state investigations.
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G.1 Article

The efficient conversion of light into other forms of energy plays a key role in many
processes such as photosynthesis or human vision [284, 285]. It is well established
that the efficiency of these processes is guaranteed by coupled ultrafast electronic
and nuclear dynamics that cannot be described using the Born-Oppenheimer ap-
proximation (BOA). The breakdown of the BOA implies that the fundamental
details of such mechanisms are notoriously difficult to understand: they proceed
on an ultrafast timescale and occur mostly at positions where potential energy sur-
faces come close or even intersect. From an experimental point of view, it is highly
desirable to access the nuclear geometry as well as the electronic degrees of free-
dom separately, in order to compare them to quantum simulations. The transient
nuclear geometry can be best studied by time resolved diffraction techniques using
short X-ray [286] or electron pulses [287]. X-ray spectroscopy methods provide a
high selectivity on the electronic state, as shown prominently for metal containing
molecules at their K- and L-edges [288–290]. We demonstrate the ability of time-
resolved soft X-ray spectroscopy to differentiate between distinct electronic excited
states of organic molecules, closing an important gap in the classes of molecules to
be investigated.

In this article, we concentrate on the internal conversion between excited states
of different electronic character, which is a crucial path photoenergy conversion in
organic molecules. Organic chromophores exhibit strongly absorbing ππ∗ excited
states, which can be described in a single electron Hartree-Fock (HF) picture as
an electron-hole pair in a formerly occupied and an unoccupied molecular orbital
(MO), both with π symmetry. Many of these chromophores, such as azo-switches
[286, 291, 292], nucleobases [145, 293–295], and amino acids [296], also contains
heteroatoms with electron lone pairs. They therefore exhibit nπ∗ excited states,
with a hole in a heteroatom-centered lone pair (n) orbital and an electron in a
π∗ orbital. The ππ∗/nπ∗ internal conversion provides photochemical pathways to
reactions like cis-trans isomerizations and intersystem crossing to the triplet mani-
fold of electronic states governed by the El Sayed selection rules [297]. Unlike ππ∗

excited states, nπ∗ states are usually not directly accessible due to low absorption
cross-sections from the ground state. The ππ∗/nπ∗ internal conversion through
conical intersections is therefore a crucial gateway process for photochemistry.

The preferential localization of the n orbital at the heteroatom has wide-reaching
implications for resonant core level spectroscopy using x-rays. In general, near
edge x-ray absorption fine structure (NEXAFS) spectra show isolated features due
to resonant states below the core ionization edge of an element. Those features
are due to transitions from this element’s core orbital to an unoccupied valence
orbital, for instance a π∗ orbital. The core orbital is confined to the immediate
vicinity of one particular atom (see Fig. G.1A). The core-to-valence absorption
cross-section is strongly dependent on the spatial overlap between the core and the
empty valence orbital [298, 299]. Since core ionization potentials of carbon, nitrogen
and oxygen are more than 100 eV apart, element- and site-specific probing of the
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local electronic structure in an organic molecule is possible with soft x-rays. In
the case of excited states, the electron hole in a formerly occupied orbital enables
an additional NEXAFS resonance. The spatial overlap makes a 1s-n transition
from the strongly localized heteroatom 1s core level to the electron hole of an nπ∗

state more intense than the 1s-π transition to the delocalized π hole of a ππ∗ state.
Therefore, we expect a negligibly weak time-resolved (TR) NEXAFS signature
from the photoexcited ππ∗ state to transform into a strong nπ∗ state signature
as the molecule undergoes ππ∗/nπ∗ internal conversion, largely independent of
geometry changes during the dynamics. For the isolated molecules used in this
study, computationally demanding high level coupled cluster (CC) simulations [116,
160, 265] are now feasible and confirm the spectroscopic attribution based on orbital
localization.

We test and exemplify the sensitivity of TR-NEXAFS spectroscopy on the ππ∗/nπ∗

transition in the benchmark chromophore thymine, since there is a rich literature
on its excited states (see Refs. [145, 293, 294, 300]) and citations therein). Thymine
exhibits two high-lying occupied MOs, an oxygen localized n-orbital and a delo-
calized π-orbital (see Fig. G.1A). Its lowest unoccupied MO (π∗) is similar to the
π-orbital in delocalization. The molecule can be excited at 267 nm to a ππ∗ state;
the lower-lying nπ∗ state is optically dark.

Figure G.1B shows a reduced potential energy sketch from the CC simulations
along the two nuclear coordinates, which are expected to be most relevant for
the molecular dynamics. In contrast to earlier theoretical studies [143, 144] the
ππ∗/nπ∗ conical intersection seam is not isolated by a barrier from the Franck-
Condon (FC) point, but directly accessible. After photoexcitation, the nuclear
wavepacket is driven out of the FC region by a gradient along the C(5)-C(6) bond
elongation towards a saddle point. On its way, it encounters the ππ∗/nπ∗ coonical
intersection seam, which indicates a rapid (on a 100 fs scale) internal conversion.
In the nπ∗ excited state, a local minimum can be reached from the ππ∗/nπ∗ conical
intersection by O(8)-C(4) bond elongation [301].

The ππ∗ relaxation in thymine has been experimentally investigated using many
methods available in ultrafast technology [145, 294] including our own DUXAP
study, where we investigated excited state nonresonant Auger spectra at the oxy-
gen K-edge [110]. It is challenging to attribute signals in ultrafast photoelectron,
photoion, absorption, or DUXAP spectroscopy directly to a particular process, like
internal conversion, since changes in both, the electronic structure as well as the
nuclear geometry, influence the observables. In our own study we were e.g. pref-
erentially sensitive to local C-O bond length changes during relaxation of the ππ∗

state. We demonstrate in the following, that our new TR-NEXAFS technique is
strongly and selectively sensitive to the ultrafast ππ∗/nπ∗ internal conversion.

The experimental ground state NEXAFS spectrum of thymine is shown in black in
Fig. G.2A. It exhibits a double peak π∗ resonance. Based on our CC calculations,
and in agreement with earlier studies [112], we assign the lower energy peak at
531.4 eV to a linear combination of HF single electron excitations from the O(8)
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Figure G.2: (A) Representative NEXAFS spectra 2ps after UV excitation and without
UV excitation. UV-induced increase in intensity is marked red, UV-induced decrease
is light blue. UV excitation leads to the appearance of a new spectral feature around
526.4 eV and a bleach of the ground state π∗ resonance at 531.4 eV. (B) False-color plot
of time-dependent NEXAFS difference spectra (see color bar in the upper right corner).
The UV-induced features at 526.4 eV and 531.4 eV are clearly visible throughout the
positive pump-probe delays. (C) Time-dependence of the UV-induced features with fits
based on a rate equation model.
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1s orbital to several unoccupied π∗ orbitals with significant contributions from the
aforementioned π∗ MO. The linear combination is such that the core excited state
possesses a high degree of electron localization at O(8), thus the strong absorption
cross section in the Mbarn regime (see a discussion in Section G.2.6). The higher
energy peak at 532.2 eV corresponds to an excitation from the O(7) 1s orbital to a
different linear i combinationof π∗ MOs [112]. The increase in intensity at photon
energies beyond the π∗ resonances is predominantly due to a smooth feature of
K-edge ionization at 537 eV and additional weak resonant transitions [112].

The NEXAFS spectrum taken 2 ps after UV excitation is shown in green in Fig.
G.2A. It is a superposition of the excited state spectrum and the ground state
spectrum, which is weakened by transfer of an estimated 13 % of the population
(see Section G.2.5) to the excited state. The excited state spectrum is redshifted
to lower photon energies with respect to the ground state, which is obvious by
the background-free signature at 526.4 eV. This signature must be a new core
excitation channel either to the n or π electron hole. An additional signature of
UV excitation, the intensity reduction in the area of the π∗ resonances, is the
result of a bleach of the ground state spectrum almost entirely compensated by
the redshift of the smooth K-edge ionization feature in the excited state spectrum.
The effect is therefore only visible where the ground state exhibits the strongest
intensity modulations, i.e. the π∗ resonance. It is therefore a direct signature of the
ground state depopulation and largely independent of any following excited state
dynamics.

The time-dependence of the difference signal (x-ray absorption with UV minus x-
ray absorption without UV) is shown in Fig. G.2B. The spectrally integrated time
trends at ground state bleach and excited state feature are shown in Fig. G.2C. The
temporal onset of the excited state feature exhibits a delay ((60±30) fs according to
a rate equation fit, see Section G.2.5) with respect to the temporal overlap between
UV and x-ray pulses, which is marked by the bleach onset. The intensity of the
526.4 eV feature is only due to 13 % of the population in the ground state NEXAFS
spectrum. Its absorption cross-section is similar to the π∗ resonance. Therefore,
it must be likewise due to a localized transition, which is the signature of the nπ∗

state, not the ππ∗ state. Accordingly, the delay of the nπ∗ signature of (60 ± 30)
fs directly reflects the nuclear wavepacket dynamics to access the ππ∗/nπ∗ conical
intersection seam, in agreement with our earlier DUXAP study.

Our intuitive interpretation is supported by CC NEXAFS spectra simulations of the
ground state and of the excited states at the minimum and saddle point geometries
identified in Fig. G.1B. We compare calculated to experimental spectra of the
ground state and 2 ps after UV excitation in Fig. G.3. All three simulated excited
state spectra exhibit their lowest energy resonance around 526.4 eV. In all cases,
the final state is the same O(8)-centered core-excited state (CE). As expected,
the oscillator strength in the nπ∗ state beats the ππ∗ state by a factor of 40,
almost independent of the molecular geometry (see Section G.2.5). We scaled the
simulated excited state spectra to the estimated ratio of 13 % excited molecules.
Only the simulated nπ∗ state spectrum shows a comparable intensity at the 526.4
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eV position.

Thus, with the TR-NEXAFS method presented here, we can confirm population of
the nπ∗ state through a directly accessible conical intersection within 60 fs. Com-
parison of experimentally observed and calculated NEXAFS absorption intensities
suggests that internal conversion into the nπ∗ state is a major channel in the relax-
ation dynamics of thymine. The nπ∗ signature shows a biexponential decay with
time constants of (1.9 ± 0.1) ps and (10.5 ± 0.2) ps. This supports a consecutive
relaxation process via a level with nπ∗ character to a final level of non-nπ∗ char-
acter, to which our method is insensitive. The nπ∗ level is most probably another
minimum in the singlet nπ∗ state, since intersystem crossing to a triplet nπ∗ state
is forbidden by the El Sayed selection rule. The transition to the final state can
be either intersystem crossing to a nearby triplet ππ∗ state with strong spin orbit
coupling [302] or internal conversion to the ground state [303], which is supported
by the recovery of the ground state bleach in our data.

In conclusion, we demonstrated with this work a novel method to selectively inves-
tigate ultrafast ππ∗/nπ∗ internal conversion. We use the dominating absorption
strength of the oxygen 1s-n resonance to directly monitor this nonadiabatic pro-
cess. An alternative method, however less selectively sensitive to electronic struc-
ture changes, is time-resolved photoelectron spectroscopy using extreme ultraviolet
pulses. Here one relies on spectrally resolving ionic continua that single out certain
valence states [304], thus exhibiting nonadiabatic transitions by kinetic energy or
angular distribution changes [305, 306]. An assignment is, however, only possi-
ble by high-level simulations of excited state ionization cross-sections, whereas we
confirm the validity of our intuitive orbital-based assignment of core excitations
by quantitative CC simulations. Our results prove that the method already works
reliably under the current, still challenging conditions of x-ray free-electron laser
experiments with low repetition rates and high temporal and spectral jitter. The
method has the potential to become a standard tool for ultrafast investigations at
the upcoming second generation of ultrafast x-ray sources with up to MHz repeti-
tion rates and improved shot-to-shot stability.
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G.2 Supporting material

G.2.1 Experimental Methods

The experiment was performed at the LCLS free electron laser facility, SLAC Na-
tional Accelerator Laboratory, at the soft x-ray (SXR) instrument [307, 308]. A
schematic representation of the experimental setup is shown in Fig. G.4. Thymine
was purchased from Sigma Aldrich and evaporated by an effusive oven into an ultra
high vacuum chamber at a temperature of 160◦C leading to a sample density of
1012 cm−3 in the overlap region of optical and x-ray laser [110, 309]. Molecules
were excited by 267 nm pulses with 70 fs duration and a focus diameter of 100
μm FWHM. Soft x-ray pulses with 70 fs duration and a focus diameter of 70 μm
FWHM were used to probe the sample in the oxygen K-edge spectral region from
520 to 550 eV by simultaneously tuning the FEL and the monochromator of the
SXR instrument with an energy resolution of < 0.5 eV [310]. The intensity of the
essentially background-free transient feature at 526.4 eV was measured for a wide
range of UV pump intensities, to make sure the experiment took place in the linear
absorption regime well below saturation. Temporal and spatial overlap of UV and
SXR pulses was optimized to a bleach in the Auger spectra of thymine induced by
photofragmentation at high UV intensities. Oxygen 1s Auger spectra were recorded
with the 2m long LCLS-FELCO magnetic bottle spectrometer [311]. The photon
energy dependent absorption cross-section of the sample is proportional to the in-
tegrated Auger electron yield. SXR pulses were delayed with respect to UV pulses
between -200 fs and 20 ps. To achieve NEXAFS difference spectra, UV laser pulses
were blocked on a shot-by-shot basis. LCLS pulses are strongly fluctuating in in-
tensity and relative arrival time. Therefore, both parameters were recorded on a
shot-by-shot basis by an optical x-ray cross-correlator [312] and a gas detector after
the monochromator, respectively. The dataset was resorted into ≥ 50 fs delay bins
and several x-ray intensity bins. Difference spectra from different x-ray intensity
bins were averaged
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Figure G.4: Schematic representation of the experimental setup. Broad-bandwidth ultra-
short soft X-ray (SXR) pulses (green) are monochromatized and focused into the inter-
action region of the experimental chamber. There, they are quasi-collinearly overlapped
with ultrafast UV pulses with a wavelength of 267 nm (violet). The sample thymine is
evaporated into the interaction region by an in-vacuum oven. The relative timing between
UV and soft X-ray pulses is measured on a shot-by-shot basis using the SXR timing tool to
compensate for the 200 fs timing jitter. Auger electron spectra from core-excited thymine
molecules are detected in a magnetic bottle photoelectron spectrometer. NEXAFS spectra
can be generated by measuring the photon energy dependent integrated Auger electron
yield.

G.2.2 Theoretical Methods

The thymine ground state geometry (Table G.1) was optimized with CCSD(T)/aug-
cc-pVDZ using CFOUR [122]. Excited state geometries (Table G.2 and G.3) were
optimized at the EOM-CCSD/aug-cc-pVDZ level employing Q-Chem [153]. No
symmetry restrictions were applied for geometry optimizations. Valence excitation
energies were obtained with CC3 using the aug-cc-pCVDZ basis on the oxygens
and the aug-cc-pVDZ basis on the other atoms. We employed a newly developed
implementation in Dalton [24, 87, 99, 265]. Oxygen 1s to valence excitation energies
and oscillator strengths were computed at the CCSD level of theory with the same
basis as for the valence excitations using a newly developed linear response code
employing core-valence separation and implemented in Dalton [31, 32, 34, 116]. The
core to valence excitation energies were offset-corrected by benchmark calculations
of the lowest core to valence excitation energies at the CC3/aug-cc-pCVTZ/aug-
cc-pVDZ level. With this correction we achieve quantitative agreement with the
NEXAFS transition energies within the experimental error bars on a purely ab ini-
tio basis. The theoretical core excitation energies are not corrected for relativistic
effects and we estimate the effect to increase excitation energies by 0.1-0.3 eV.

Thymine exhibits Cs symmetry in the ground state. The two lowest-lying excited
states have different representations, A′′(nπ∗) and A′(ππ∗), and the ππ∗/nπ∗ con-
ical intersection is symmetry allowed. We note that no complex eigenvalues of the
Jacobian matrix were encountered in the vicinity of the conical intersection seam
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[36, 37]. In contrast to earlier studies [143, 144, 313–315], we could not identify
a minimum in the ππ∗ state. Instead we found a saddle point geometry with Cs

symmetry, which is directly accessible from the Franck-Condon region. The energy
lowering degrees of freedom of the saddle point are out of plane bending, as con-
firmed by frequency calculations, which were performed for all observed stationary
points [316, 317], (Table G.4). The nπ∗ minimum geometry is distorted from Cs

symmetry with O(8) out of the plane. We encountered the ππ∗/nπ∗ conical in-
tersection seam in between the Franck-Condon point and the ππ∗ saddle point in
close proximity to the latter (energy difference < 0.03 eV). Based on calculated core
excitation energies and oscillator strengths, NEXAFS spectra were simulated by
convoluting theoretical stick spectra with Gaussians to account for peak broadening
and the experimental energy resolution.

G.2.3 Localization of excitations and the single electron pic-
ture

For our intuitive prediction of the expected intensities of excited state NEXAFS
features we rely on the Hartree-Fock (HF) molecular orbital (MO) based one-
electron picture. In this framework, core-excited as well as valence-excited states
are described as a single electron excitation from an occupied to an unoccupied HF-
MO. Despite its success in the case of relative intensities for core-excitations from
the ππ∗and nπ∗ states, it fails in predicting relative intensities for core-excitations
from the nπ∗ state and the ground state. The ground state core-excitation leads
to the π∗ MO in the one-electron picture, which is highly delocalized and exhibits
only weak density at the oxygens. Nevertheless, both coupled cluster simulations
and experimental results predict the transition intensity to be comparable to the
nπ∗ state core-excitation, which involves the strongly localized n MO.

The reason for the failure of the MO picture lies in the HF formalism, which only
optimizes occupied MOs. The employed coupled cluster methods calculate valence
and core excited states by optimizing a series expansion of electron excitations
into the virtual MOs inherently leaving the single electron MO picture. The most
appropriate, but less intuitive way to inspect these excitations is therefore to look
at electron density changes instead of orbitals (see Fig. G.5). The density changes,
however, qualitatively agree with the MO picture in cases of transitions between
MOs which are occupied in the HF reference wavefunction.

G.2.4 Rate equation model

To analyze the transient 526.4 eV feature in the TR-NEXAFS spectra, a rate
equation model was employed, which assumes the following chain of subsequent
excited state single exponential population transfers with time constants τ1 to τ3:

ππ∗ state → nπ∗ state → (nπ∗)′ state → final state
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GS → CE nπ∗ → CE

ππ∗ → CE

Figure G.5: Visualization of electron density changes for core excitations from the ground
state, the nπ∗ state and the ππ∗ state to the lowest O(8) 1s core-excited state. In the
case of core excitation from the nπ∗ state and the ππ∗ state, the electron density changes
agree with the predictions from the Hartree-Fock molecular orbital based single electron
picture. The density change for the nπ∗ state core excitation is strongly localized at O(8),
since two MOs with strong localization at this oxygen are involved. The density change
for the ππ∗ state core excitation is delocalized, since it involves delocalized π∗ MO apart
from the localized O(8) 1s MO. The electron density change for the core excitation from
the ground state disagrees with the predictions from the HF MO picture. The latter
involves the localized O(8) 1s MO and a delocalized π∗ MO. The electron density change,
however, is strongly localized due to linear combination of single electron transitions to
several π∗ MOs.
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Figure G.6: Representation of the fit of the bleach signal (blue) used to determine the
experimental response function and time zero. The experimental data are extracted from
a region of interest in the Auger spectra from the photon energy region, where the bleach
is observable in the NEXAFS spectra. For better comparison with the analogue dataset
from the region of the nπ∗ feature (green), the bleach dataset is inverted. Both datasets
are normalized to the maximum modulation. The time-dependence of nπ∗ feature is fitted
with the rate equation model. The delay between the bleach and the nπ∗ feature is clearly
visible.

Since the 526.4 eV signature decays in a bi-exponential fashion, the step labeled
as (nπ∗) had to be included. The character of that step cannot be completely
determined by the present results. Its transition moment is only 42% of the nπ∗

state according to our fit of the experimental data. It is nevertheless very likely also
of nπ∗ character, since the calculated oscillator strength for core excitation from
the ππ∗ state is only 2.5% of the oscillator strength from the nπ∗ state, one order
of magnitude lower. One possible explanation is that thymine relaxes thermally
out of the nπ∗ minimum identified in our calculations into a lower lying minimum,
from which it then relaxes to the final state, which is either the ground state or a
triplet state.

Since the bleach signature only decays slowly within the investigated delay-time
window, it is ideal to exctract the exact time zero and the instrument response
function (90 fs) using an error function fit. To decrease the noise level, a region of
interest with the strongest UV-induced modulations was identified in the resonant
Auger spectra from the ground state π∗ resonances. The plotted intensities in
Fig. G.6 refer to the integrated UV-induced changes in this region of interest. For
comparison, Fig. G.6 also shows the analogue signal for the 526.4 eV, which was
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fitted (see Fig. G.2 and Fig. G.6) with a weighted sum of the time-dependent
populations of the nπ∗ and (nπ∗)′ steps, convoluted with the instrument response
function (g(t)).

I(Δt) = g(t)⊗ heavyside×
(
I1

τ2
τ2 − τ1

(
e−

Δt
τ2 − e−

Δt
τ1

)

+ I2
τ3

τ2 − τ1

(
τ2

τ3 − τ2

(
e−

Δt
τ3 − e−

Δt
τ2

)
− τ1

τ3 − τ1

(
e−

Δt
τ3 − e−

Δt
τ1

))) (G.1)

The delay between the onsets of the bleach and the 526.4 eV feature is clearly
visible in Fig. G.6.

G.2.5 Excited state population analysis

Calculated and experimental intensities of the nπ∗ feature and the ground state
π∗ resonance have to be compared, to estimate, which fraction of the excited state
population is observable in the nπ∗ feature. For this, we chose the same NEXAFS
spectra of the ground state and 2 ps after UV excitation as in Fig. G.2A. The
ratio of integrated peak areas between the nπ∗ (I2) and ground state π∗ resonance
features (I1) is 0.053. These can now be compared to the ratio of calculated tran-
sition moments for the nπ∗ feature (σ2) and the ground state π∗ resonance (σ1)
0.65. Assuming 100% population transfer from the ππ∗ state, the rate equation
model predicts the nπ∗ level to contain 36% and the (nπ∗)′ level 57% of the overall
relative excited state population (P0). According to the rate equation fit, the tran-
sition moment of (nπ∗)′ level σ2′ is 42 % of the nπ∗ transition moment σ2. This
leads to the relation for I2

I2 = f × P0 × σ2 × (0.36 + 0.57× 0.42) (G.2)

where f is a conversion factor between experimental intensities and calculated tran-
sition moments. It can be evaluated by

f =
I1
σ1

(G.3)

Evaluating both equations gives a value of 13 % for the overall excited state pop-
ulation P0 relative to the ground state. This moderate excitation ratio fits well
together with our expectations of the excitation ratio based on our scan of the
UV intensity dependence of the nπ∗ feature intensity. Comparison with the inten-
sity dependence furthermore supports the initial assumption that the relaxation to
the nπ∗ state observed in the present experiment is a major channel for the ππ∗

population.
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Figure G.7: Intensity of the transient 526.4 eV feature for different UV intensities together
with a rate equation fit. The ordinate is rescaled to match the estimated 13 % excited
state population for the UV intensity used in the pump–probe experiment.

G.2.6 Intensity scan

To confirm that UV excitation takes place in the linear regime, we investigated the
dependence of the nπ∗ feature intensity on the UV intensity (see Fig. G.7). At low
UV intensities, the nπ∗ feature intensity has approximately a linear response. At
high intensities, saturation is observable. The most relevant processes contribut-
ing to the excited state population are single photon excitation from the ground
state and further single photon excitation from the excited state i.e. sequential or
resonance-enhanced two photon excitation. The dependence of the relative popu-
lation P0 in the excited state on the photon flux F is therefore

P0 =
σ1

σ1 − σ2

(
e−σ2×F − e−σ1×F

)
(G.4)

where σ1 and σ2 are the ground state and excited state absorption cross-sections.
The value of σ1 is approximately 30 MBarn, the value of σ2 is unknown. Since
absorption of two photons brings the molecule very close to the ionization threshold
where the density of states is particularly high, the value of σ2 can be expected to
be higher than σ1. The absolute upper limit for relative excited state population
can be estimated by neglecting sequential two photon excitations i.e. by setting σ2

to zero. In this case, the saturation value refers to 100% population in the excited
state. The UV intensity for the pump-probe experiments leads to 24% of this
saturation value. Assuming any value higher than 0 for σ2 reduces the population
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in the excited state at saturation. Assuming 13% excitation at the intensity of
the pump probe experiments based on the comparison between experimental and
calculated intensities yields a value for σ2, which is 1.5 times σ1.

G.2.7 Theoretical results

Table G.1: Ground state minimum geometry (Å).

atom X Y Z

C −1.6332 0.0426 −0.0001
C 0.7570 0.8384 −0.0001
C 1.1979 −0.5713 0.0000
C 0.2400 −1.5432 0.0000
C 2.6817 −0.8510 0.0002
N −0.6415 1.0215 −0.0007
N −1.1219 −1.2509 −0.0002
O −2.8353 0.2919 0.0005
O 1.5118 1.8105 0.0003
H −0.9734 1.9835 −0.0002
H 0.4869 −2.6087 0.0000
H −1.8153 −1.9901 0.0005
H 3.1589 −0.4028 −0.8884
H 3.1587 −0.4025 0.8887
H 2.8721 −1.9376 0.0005
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Table G.2: nπ∗ state minimum geometry (Å).

atom X Y Z

C 1.6756 0.0108 0.0230
C −0.6393 0.8270 −0.0428
C −1.1709 −0.4819 −0.0168
C −0.2637 −1.5185 0.0106
C −2.6680 −0.6951 −0.0181
N 0.7453 1.0515 0.1200
N 1.1227 −1.2492 0.0249
O 2.8776 0.2283 −0.0350
O −1.3720 1.9491 0.1211
H 1.1236 1.9641 −0.1066
H −0.5521 −2.5678 −0.0154
H 1.7941 −2.0025 −0.0250
H −3.1289 −0.2542 0.8817
H −3.1341 −0.2281 −0.9015
H −2.8981 −1.7710 −0.0329

Table G.3: ππ∗ state saddle point geometry (Å).

atom X Y Z

C 1.6623 0.0922 0.0003
C −0.6981 0.8798 −0.0002
C −1.1498 −0.4710 −0.0003
C −0.1879 −1.5766 −0.0009
C −2.6197 −0.7577 0.0004
N 0.7372 1.0841 −0.0013
N 1.1229 −1.2303 0.0007
O 2.8833 0.2096 0.0008
O −1.4102 1.9113 0.0002
H 1.0655 2.0428 −0.0010
H −0.4451 −2.6345 −0.0012
H 1.8537 −1.9394 0.0014
H −3.1038 −0.3058 0.8849
H −3.1047 −0.3049 −0.8832
H −2.8159 −1.8424 −0.0001
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Table G.4: Vibrational frequencies, ν (cm−1), and IR intensi-
ties, I (km/mol)

GS nπ∗ ππ∗

ν I ν I ν I

100 0.00 82 2.64 292i 31.79
134 0.72 100 1.89 126i 0.25
143 0.01 135 0.51 94i 13.22
269 2.41 181 19.25 129 0.54
279 0.12 247 4.70 153 0.30
376 22.94 262 2.22 271 7.96
381 21.25 337 4.95 300 5.65
451 18.44 406 30.45 372 18.71
525 52.61 460 21.14 440 35.66
536 6.68 468 91.00 441 76.76
594 1.37 510 15.10 496 11.09
665 88.91 521 47.83 578 0.36
730 4.42 576 6.25 610 0.16
735 25.94 637 47.10 662 4.14
754 1.88 741 33.82 726 12.06
797 3.42 753 3.86 754 65.88
875 19.64 794 7.54 768 9.75
960 11.63 942 26.29 925 17.76

1011 1.94 1012 1.58 968 4.02
1052 0.12 1060 0.32 996 0.39
1154 9.39 1146 62.73 1150 59.95
1199 154.13 1211 44.59 1185 30.92
1249 3.83 1243 13.73 1254 12.70
1373 12.10 1283 5.37 1319 32.57
1386 0.06 1390 84.14 1351 11.99
1403 6.08 1419 0.70 1387 90.04
1424 66.38 1432 13.49 1412 41.87
1453 6.06 1476 22.63 1443 7.86
1477 1.66 1476 6.40 1466 22.10
1499 111.43 1492 0.86 1480 36.99
1699 0.03 1516 27.52 1524 1.79
1739 555.62 1627 45.54 1620 263.15
1778 817.99 1800 742.28 1762 320.77
3034 23.89 3048 24.42 3022 14.56
3109 10.51 3115 13.00 3080 11.34
3123 14.47 3144 13.12 3121 14.83
3212 4.81 3265 1.64 3275 5.94
3594 60.42 3637 70.62 3588 68.66
3643 96.73 3680 76.92 3650 99.19
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Table G.5: Thymine CCSD excitation energies, (ΔE), eV, and intensisties
(I,×10) for the three different geometries, aug-cc-pCVDZ/aug-cc-pVDZ.

GS nπ∗ ππ∗

ΔE I ΔE I ΔE I

S1 5.10 (nπ∗) 0.00 3.84 (nπ∗) 0.00 4.48 (ππ∗) 2.19
S2 5.37 (ππ∗) 1.95 4.78 (ππ∗) 2.41 4.74 (nπ∗) 0.00
S3 5.77 (πn∗) 0.00 5.51 (ππ∗) 0.17 5.37 (πn∗) 0.01
S4 6.47 (nπ∗) 0.00 5.83 (πn∗) 0.00 6.15 (πn∗) 0.00

Table G.6: Thymine CC3 valence excitation en-
ergies, eV, for the three different geometries, aug-
cc-pCVDZ/aug-cc-pVDZ. Excited state character
in parenthesis.

GS nπ∗ ππ∗

S1 4.90 (nπ∗) 3.69 (nπ∗) 4.29 (ππ∗)
S2 5.13 (ππ∗) 4.61 (ππ∗) 4.40 (nπ∗)
S3 5.65 (πn∗) 5.12 (ππ∗) 5.26 (πn∗)
S4 6.17 (ππ∗) 5.70 (πn∗) 5.60 (ππ∗)

Table G.7: Thymine CC3 core excitation ener-
gies, eV, for the three different geometries, aug-
cc-pCVTZ/aug-cc-pVDZ.

GS nπ∗ ππ∗

O(8) 531.19 529.74 530.62

O(7) 532.23 531.82 531.84
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Table G.8: Thymine CCSD core excitation energies, (ΔE), eV, and intensisties
(I,×100) for the three different geometries from ground state (top), nπ∗ state
(middle) and ππ∗ (bottom), O(8), aug-cc-pCVDZ/aug-cc-pVDZ

GS nπ∗ ππ∗

ΔE I ΔE I ΔE I

GS

S1 535.46 3.41 534.49 3.24 535.28 3.25
S2 538.95 0.04 538.53 0.05 538.82 0.03
S3 539.86 0.15 539.31 0.21 539.64 0.32
S4 539.95 0.23 539.38 0.45 539.68 0.13
S5 539.97 0.08 539.45 0.18 539.77 0.15

nπ∗

S1 530.36 3.68 530.65 4.32 530.52 3.87
S2 533.84 0.00 534.69 0.01 534.06 0.00
S3 534.76 0.00 535.47 0.06 534.88 0.28
S4 534.84 0.12 535.54 0.00 534.92 0.00
S5 534.86 0.00 535.61 0.07 535.01 0.00

ππ∗

S1 530.09 0.17 529.70 0.77 530.80 0.30
S2 533.57 0.01 533.74 0.02 534.34 0.01
S3 534.49 0.00 534.53 0.14 535.16 0.26
S4 534.57 0.12 534.60 0.04 535.19 0.00
S5 534.59 0.01 534.66 0.17 535.28 0.01
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Table G.9: Thymine CCSD core excitation energies, (ΔE), eV, and intensisties
(I,×100) for the three different geometries from ground state (top), nπ∗ state
(middle) and ππ∗ (bottom), O(7), aug-cc-pCVDZ/aug-cc-pVDZ

GS nπ∗ ππ∗

ΔE I ΔE I ΔE I

GS

S1 536.45 3.17 536.39 3.16 536.42 3.10
S2 538.75 0.01 538.71 0.02 538.72 0.01
S3 539.55 0.24 539.05 0.05 539.20 0.05
S4 539.70 0.04 539.55 0.22 539.50 0.26
S4 540.10 0.15 540.06 0.14 540.06 0.17

nπ∗

S1 531.35 0.00 532.55 0.00 531.66 0.01
S2 533.65 0.00 534.87 0.00 533.96 0.00
S3 534.45 0.12 535.21 0.08 534.44 0.15
S4 534.59 0.00 535.71 0.00 534.75 0.00
S5 535.00 0.00 536.22 0.00 535.30 0.00

ππ∗

S1 531.08 0.03 531.61 0.03 531.93 0.04
S2 533.38 0.01 533.93 0.01 534.23 0.01
S3 534.18 0.00 534.27 0.35 534.72 0.48
S4 534.32 0.65 534.77 0.00 535.02 0.00
S5 534.73 0.02 535.28 0.00 535.58 0.00
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[16] J. Paldus, J. Č́ıžek, and I. Shavitt. Correlation problems in atomic and molecular systems.
IV. extended coupled-pair many-electron theory and its application to the BH3 molecule.
Phys. Rev. A, 5:50–67, Jan 1972.

[17] K. A. Brueckner. Nuclear saturation and two-body forces. ii. tensor forces. Phys. Rev.,
96:508–516, Oct 1954.

[18] Richard A. Chiles and Clifford E. Dykstra. An electron pair operator approach to coupled
cluster wave functions. application to he2, be2, and mg2 and comparison with cepa methods.
J. Chem. Phys, 74(8):4544–4556, 1981.

[19] Simen Kvaal. Variational formulations of the coupled-cluster method in quantum chemistry.
Mol. Phys., 111(9-11):1100–1108, 2013.

[20] James B. Robinson and Peter J. Knowles. Approximate variational coupled cluster theory.
J. Chem. Phys., 135(4), 2011.

[21] George D. Purvis and Rodney J. Bartlett. A full coupled-cluster singles and doubles model:
The inclusion of disconnected triples. J. Chem. Phys., 76(4):1910–1918, 1982.

[22] Jozef Noga and Rodney J. Bartlett. The full ccsdt model for molecular electronic structure.
J. Chem. Phys., 86(12):7041–7050, 1987.

[23] O. Christiansen, H. Koch, and P. Jørgensen. The second-order approximate coupled cluster
singles and doubles model CC2. Chem. Phys. Lett., 243:409–418, 1995.

[24] Henrik Koch, Ove Christiansen, Poul Jørgensen, Alfredo M. Sanchez de Merás, and Trygve
Helgaker. The cc3 model: An iterative coupled cluster approach including connected triples.
J. Chem. Phys., 106(5):1808–1818, 1997.

[25] Edward G. Hohenstein, Sara I. L. Kokkila, Robert M. Parrish, and Todd J. Mart́ınez.
Quartic scaling second-order approximate coupled cluster singles and doubles via tensor
hypercontraction: Thc-cc2. J. Chem. Phys., 138(12):–, 2013.

[26] Krishnan Raghavachari, Gary W. Trucks, John A. Pople, and Martin Head-Gordon. A
fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Lett.,
157(6):479 – 483, 1989.

[27] John F. Stanton. Why ccsd(t) works: a different perspective. Chemical Physics Letters,
281(1–3):130 – 134, 1997.

[28] Hendrik J. Monkhorst. Calculation of properties with the coupled-cluster method. Inter-
national Journal of Quantum Chemistry, 12(S11):421–432, 1977.

[29] Esper Dalgaard and Hendrik J. Monkhorst. Some aspects of the time-dependent coupled-
cluster approach to dynamic response functions. Phys. Rev. A, 28:1217–1222, Sep 1983.

[30] Jeppe Olsen and Poul Jørgensen. Linear and nonlinear response functions for an exact state
and for an mcscf state. The Journal of Chemical Physics, 82(7):3235–3264, 1985.

[31] H. Koch and P. Jørgensen. Coupled cluster response functions. J. Chem. Phys., 93:3333–
3344, 1990.



Bibliography 211

[32] Thomas Bondo Pedersen and Henrik Koch. Coupled cluster response functions revisited.
J. Chem. Phys., 106(19):8059–8072, 1997.

[33] D. J. Rowe. Equations-of-motion method and the extended shell model. Rev. Mod. Phys.,
40:153–166, Jan 1968.

[34] John F. Stanton and Rodney J. Bartlett. The equation of motion coupled-cluster method. a
systematic biorthogonal approach to molecular excitation energies, transition probabilities,
and excited state properties. J. Chem. Phys., 98(9):7029–7039, 1993.

[35] John F. Stanton. Coupled-cluster theory, pseudo-jahn–teller effects and conical intersec-
tions. J. Chem. Phys., 115(22):10382–10393, 2001.

[36] Christof Hättig. Structure optimizations for excited states with correlated second-order
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Dan Jonsson, Poul Jørgensen, Joanna Kauczor, Sheela Kirpekar, Thomas Kjærgaard, Wim
Klopper, Stefan Knecht, Rika Kobayashi, Henrik Koch, Jacob Kongsted, Andreas Krapp,
Kasper Kristensen, Andrea Ligabue, Ola B. Lutnæs, Juan I. Melo, Kurt V. Mikkelsen,
Rolf H. Myhre, Christian Neiss, Christian B. Nielsen, Patrick Norman, Jeppe Olsen, Jógvan
Magnus H. Olsen, Anders Osted, Martin J. Packer, Filip Pawlowski, Thomas B. Pedersen,
Patricio F. Provasi, Simen Reine, Zilvinas Rinkevicius, Torgeir A. Ruden, Kenneth Ruud,
Vladimir V. Rybkin, Pawel Sa�lek, Claire C. M. Samson, Alfredo Sánchez de Merás, Trond
Saue, Stephan P. A. Sauer, Bernd Schimmelpfennig, Kristian Sneskov, Arnfinn H. Steindal,
Kristian O. Sylvester-Hvid, Peter R. Taylor, Andrew M. Teale, Erik I. Tellgren, David P.



Bibliography 215

Tew, Andreas J. Thorvaldsen, Lea Thøgersen, Olav Vahtras, Mark A. Watson, David J. D.
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set-up for high-quality soft-x-ray absorption spectroscopy of large organic molecules in the
gas phase. J. Electron Spectrosc., 184(8–10):452 – 456, 2011.

[108] Claudio Garino, Elisa Borfecchia, Roberto Gobetto, Jeroen A. van Bokhoven, and Carlo
Lamberti. Determination of the electronic and structural configuration of coordination
compounds by synchrotron-radiation techniques. Coordin. Chem. Rev., 277:130 – 186,
2014. Following Chemical Structures using Synchrotron Radiation.
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[125] Hans Ågren, Vincenzo Carravetta, Olav Vahtras, and M. Lars G. Pettersson. Direct scf
direct static-exchange calculations of electronic spectra. Theor. Chem. Acc., 97(1):14–40,
1997.



Bibliography 217

[126] Kevin Prince. personal communication.

[127] Vincenzo Barone, Malgorzata Biczysko, Julien Bloino, and Cristina Puzzarini. Glycine
conformers: a never-ending story? Phys. Chem. Chem. Phys., 15:1358–1363, 2013.

[128] John F. Stanton and Jürgen Gauss. A simple scheme for the direct calculation of ionization
potentials with coupled-cluster theory that exploits established excitation energy methods.
The Journal of Chemical Physics, 111(19):8785–8788, 1999.

[129] Alberto Baiardi, Marco Mendolicchio, Vincenzo Barone, Giovanna Fronzoni, Gus-
tavo Adolfo Cardenas Jimenez, Mauro Stener, Cesare Grazioli, Monica de Simone, and Mar-
cello Coreno. Vibrationally resolved nexafs at c and n k-edges of pyridine, 2-fluoropyridine
and 2,6-difluoropyridine: A combined experimental and theoretical assessment. J. Chem.
Phys., 143(20), 2015.

[130] C. T. Chen, Y. Ma, and F. Sette. K -shell photoabsorption of the n2 molecule. Phys. Rev.
A, 40:6737–6740, Dec 1989.

[131] Philip M. Morse. Diatomic molecules according to the wave mechanics. II. Vibrational
levels. Phys. Rev., 34:57–64, Jul 1929.

[132] Dage Sundholm. VIBROT. http://www.chem.helsinki.fi/~sundholm/software/GPL/.

[133] Dage Sundholm, Jürgen Gauss, and Ansgar Schäfer. Rovibrationally averaged nuclear
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the photophysics and the photochemistry of nucleic acids and nucleobases. Chem. Rev.,
116(6):3540–3593, 2016. PMID: 26928320.

[294] Carlos E. Crespo-Hernández, Boiko Cohen, Patrick M. Hare, and Bern Kohler. Ultra-
fast excited-state dynamics in nucleic acids. Chem. Rev., 104(4):1977–2020, 2004. PMID:
15080719.

[295] Susanne Ullrich, Thomas Schultz, Marek Z. Zgierski, and Albert Stolow. Electronic relax-
ation dynamics in dna and rna bases studied by time-resolved photoelectron spectroscopy.
Phys. Chem. Chem. Phys., 6:2796–2801, 2004.

[296] Martin Klessinger and Josef Michl. Excited States in Photochemistry of Organic Molecules.
Wiley, New York, 1st edition, 1995.

[297] MA El-Sayed. Spin-orbit coupling and the radiationless processes in nitrogen heterocyclics.
J. Chem. Phys., 38(12):2834–2838, 1963.

[298] Joachim Stöhr. NEXAFS Spectroscopy. Springer-Verlag Berlin Heidelberg, New York, 1st
edition, 1992.

[299] Rolf Manne. Molecular Orbital Interpretation of X-Ray Emission Spectra: Simple Hydro-
carbons and Carbon Oxides. J. Chem. Phys., 52(11):5733–5739, 1970.
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Hobza, Hans Lischka, and Josef Michl. Relaxation mechanisms of uv-photoexcited dna and
rna nucleobases. Proc. Natl. Acad. Sci. U. A., 107(50):21453–21458, 2010.

[314] David Asturiol, Benjamin Lasorne, Michael A. Robb, and Llúıs Blancafort. Photophysics of
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