
Superconductivity in Dirac Materials

Severin Bøyesen Sjømark

Master of Science in Physics and Mathematics

Supervisor: Asle Sudbø, IFY

Department of Physics

Submission date: June 2016

Norwegian University of Science and Technology



 



i

Summary
In this Master’s thesis we consider superconductivity in Bravais and bipartite
lattice fermion models with nearest neighbour hopping and Rashba-type spin-orbit
coupling. The superconductivity is modelled from a negative-U Hubbard model,
leading to a general interaction Hamiltonian we simplify by mean field theory.
We investigate inter- and intraband superconducting pairing mechanisms with
no momentum-transfer in the helicity band basis, and the consequent structure
in the spin basis. The goal of this thesis is to find some general requirements
on the pairing mechanisms in order to achieve Majorana edge states. We do
this by considering the symmetry properties of our systems, and look at the
requirements on the superconducting pairing to achieve non-trivial topological
phases. Particular focus is put on the proposed venue of chiral p-wave pairing, well
known to lead to a relativistic energy dispersion, and Majorana fermions. Because
of spin-momentum locking as a result of spin-orbit coupling, a chiral p-wave
pairing in the diagonalized band basis is required for a relativistic dispersion. By
transforming the chiral p-wave superconducting terms back to the spin basis, it
is observed that the form of the superconducting gap functions in this basis need
not be chiral. This is a consequence of the momentum-dependent transformation
between the band and spin basis.
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Sammendrag
I denne Masteroppgaven ser vi på superledning i Bravais og undergitter fermion-
modeller med nærmeste nabo hopping og Rashba spinn-bane kobling. Superled-
ningen er modellert fra en negativ-U Hubbard modell, som leder til en generell
vekselvirkning i Hamilton-funksjonen vi reduserer ved hjelp av middelfeltsteori.
Vi undersøker forskjellige superledende vekselvirkningsmekanismer i båndba-
sisen, og ser på den resulterende strukturen i spinn-basisen. Målet med denne
oppgaven er å finne generelle vilkår for vekselvirkningsmekanismene som fører
til Majorana kanttilstander. Vi gjør dette ved å undersøke symmetriegenskapene
til de superledende modellene, og ser på krav på de superledende parametrene
som kan føre til ikke-trivielle topologiske tilstander. Spesielt fokus blir satt på
kiral p-bølge parring av elektroner, en mekanisme som er kjent for å lede til en
relativistisk dispersjonsrelasjon og Majorana fermioner. På grunn av spinn-impuls
locking som et resultat av spinn-bane koblingen, kreves en kiral p-bølge parring
i den diagonaliserte båndbasisen for å oppnå en relativistisk dispersjon. Ved å
transformere de kirale p-bølge superledningsleddene tilbake til spinn-basisen
finner vi at formen på de superledende gap-funksjonene ikke trenger være kirale
p-bølger i denne basisen. Dette er en konsekvens av at transformasjonen som
knytter spinn-basisen til bånd-basisen er avhengig av impuls.
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Chapter 1

Introduction

1.1 Motivation and Background

Condensed matter physics has in the last decades seen an explosion in experi-
mental detection and research on new phenomena. Among these, novel quantum
phenomena play a major role, perhaps most prominently the field of superconduc-
tivity. In 1911 H. K. Onnes discovered an abrupt disappearance of resistance upon
cooling mercury down to 4.2 K[11]. In the years to follow, several other materials
was found to display the same property at similar near-zero temperatures. In 1933
W. Meissner and R. Ochsenfeld discovered that in this regime of zero resistance,
the materials also expelled magnetic fields[22], an effect named after Meissner.
Two years later F. and H. London provided the first theoretical explanation of
the peculiar Meissner effect in superconductors[33]. In 1950 a phenomenological
theory of superconductivity was put forth by V. L. Ginzburg and L. D. Landau[44],
providing a model of superconductivity as a second-order phase transition. The
most important theoretical step came in 1957, with the first microscopic theory of
superconductivity by J. Bardeen, L. Cooper and J. R. Schriffer[55]. The BCS-theory
describes an attractive, phonon-mediated interaction between electrons, resulting
in Cooper pairs that support superconductivity. The fact that the interaction is
mediated by phonons is in agreement with observations that the critical tempera-
ture of a superconducting material, the temperature at which it transitions from a
normal to a superconducting state, depends on the isotope mass of the material.
Phonons, being vibrational excitations of the positive ions of a material, are thus
expected to enter in the microscopic mechanism of superconductivity, see figure
1.11.1. In the late 1970s and early 1980s heavy fermion compounds were found that
exhibited a superconducting phase transition at Tc . 1 K[66]. One might be tempted
to think of these as low-Tc, but relative to the Fermi energy, inversely proportional
to effective mass, this critical temperature is relatively high as compared to those
of conventional superconductors, with a larger Fermi energy. It is unlikely that
BCS-theory is capable of explaining superconductivity in these heavy fermion
compounds, hinting at a different mechanism. Additionally, phonon-mediated
superconductivity should break down at temperatures exceeding ∼ 30 K, due to
thermal fluctuations. However, in 1986 a cuprate material was found with a higher
critical temperature[77], providing more evidence for other possible mechanisms
of superconductivity than in the BCS-theory. In the last three decades several
more of these high-temperature cuprate superconductors, in addition to others,
have been discovered. The microscopic mechanism of these is still very much an
open question in condensed matter physics, although there has been some recent
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research shedding light on various aspects of it[88].

Figure 1.1: A qualitative picture of Cooper pairs. As an electron (blue) travel past ions
there is a Couloumbic attraction exerted on them, leaving a positive concentration in its
wake. Another electron is attracted by this concentration of charge. Movements in the
lattice are called phonons, and the Cooper pair is formed by an attractive, phonon-mediated
interaction.

Another class of materials that have spurred a lot of interest and research in
the last decades are Dirac materials. Dirac materials, whose low-energy fermionic
excitations behave as massless Dirac particles, satisfy the relativistic Dirac equa-
tion, rather than the non-relativistic Schrödinger equation. In essence, this group
of materials display novel electronic properties that are of great interest within
computation and electronics[99–1717]. Graphene, the perhaps most known Dirac
material, was first theorized in 1947 by P.R. Wallace [1818] and for the first time
fabricated in 2004 by Nobel Prize winners A. Geim and K. Novoselov[1919]. The
Dirac properties of graphene were theorized in 1984 by D. P. DiVincenzo and E.
J. Mele [2020]. Graphene is a two-dimensional lattice of carbon atoms, and due to
its bipartite honeycomb lattice structure, gapless edge states arise, even though
the bulk is insulating. See figure 1.21.2 for the well-known energy dispersion of
graphene. The gapless edge states in graphene are protected by both inversion
and time-reversal symmetry[2121]. In 1987 edge states protected by time-reversal
symmetry were predicted in HgTe quantum wells[2222]. This prediction started the
field of topological insulators, materials that are insulators in the bulk, but due
to non-trivial topological bulk properties, possess gapless, and thus conducting
edge states. The HgTe quantum well was experimentally realized in 2007[1010],
and since its prediction several other 2D and 3D materials have been discovered
with topologically protected states. Grand efforts has also been undertaken in
constructing the theoretical framework for this class of materials, and microscopic
models, field theories and classification schemes have been developed[99, 2323–2626].

The fusion of the two fields superconductivity and topological insulators has
brought forth the rather young research area of topological superconductivity. Topo-
logical phases in superconductors had been explored prior to the classification
and theoretical framework of topological insulators[2727], but the revelations arising
from the latter has brought about increased focus on topological superconductors.
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Figure 1.2: The energy dispersion of graphene. At six special points in the Brillouin zone
the two bands touch and make Dirac cones, linear in momentum.

This class of systems display topologically protected superconducting edge states
in the form of Majorana fermions[99, 2828, 2929]. Majorana fermions, first hypothe-
sized by E. Majorana in 1937[3030], are particles that are their own antiparticles, as
opposed to Dirac fermions. Majorana fermions in topological superconductors
exist as quasiparticles, and have been shown to obey non-Abelian statistics, and
they may consequently lead the way to topological quantum computation[3131].
The most prominently proposed mechanism for topological superconductivity is
through a chiral p-wave superconductive pairing[99, 2121, 2929]. The chiral p-wave
pairing ensures a relativistic quasiparticle dispersion, providing the grounding
for Majorana fermions. Recently, the first experimental detection of Majorana
fermions were made in a topological quantum spin liquid[3232].

As is evident, a lot of interesting physics lies at the intersection of supercon-
ductivity and topological materials. The motivation for this thesis lies in the study
of superconductivity in spin-orbit coupled systems. Spin-orbit coupling in general
is a vastly rich field in that the effect is central to topological insulators, heterostruc-
tures, and other novel electronic phenomena[2525, 3333]. Spin-orbit coupling leads to
spin-momentum locking and a splitting of spin-degenerate energy bands, effects
that have interesting physical consequnces. In this thesis, we will focus on near-
est neighbor hopping and Rashba-type spin-orbit coupling in two-dimensional
Bravais- and bipartite lattices. The Hamiltonian for these two types of lattices
is somewhat different, caused by the sublattice structure of the bipartite lattice.
Diagonalizing these one-particle problems we will further the analysis to general
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two-particle interaction terms in the Hamiltonian, bringing superconductivity
into the picture through a mean field theory approach. The next step is to go into
some detail on different pairing mechanisms in the diagonalized band basis, and
investigate the resulting spin structure. We will investigate general requirements in
these lattice models on the pairing interaction to achieve topologically non-trivial
superconductivity, in particular through chiral p-wave pairing. In doing so the
stage is opened up for Majorana edge states.

1.2 Structure of Thesis

This thesis starts off by going through some very basic preliminaries in terms of
mathematical notation and physical theory in chapter 22. Chapter 33 will serve as
a short introduction to aspects pertaining to symmetry and topology relevant to
subsequent chapters. In chapter 44 we delve further into the underlying concepts
and theory from physics that we build upon later in this thesis, among which are
spin-orbit coupling, superconductivity and topological materials. We investigate
the two-dimensional Bravais lattices in detail in chapter 55, and expand to bipartite
lattices in chapter 66. Appendix A provides a simplified Python-code used for
plotting energybands.
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Chapter 2

Preliminaries
2.1 Mathematical Conventions

We will follow common notation in physics. Vectors and matrices are written
boldfaced as in A, while real and complex numbers are not, as in A. The cartesian
unit vectors are written as x̂, ŷ and ẑ. Complex conjugation is noted by an asterisk
z∗, Hermitian conjugation is denoted by a dagger A† and transposition is written
with a T , as in AT . The commutator relationship of two matrices or operators
is written with square brackets [A,B] ≡ AB −BA, while the anti-commutator is
written with curly brackets {A,B} ≡AB+BA. We will denote the derivative with
respect to a varieble i as ∂i . All instances of r and x refer to a spatial coordinate, p
refer to a momentum coordinate, k refer to momentum space, σ refer to spin and
E or ε to an energy. The Pauli spin matrices are

σx =
(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
. (2.1)

The tensor product of two matrices A and B is denoted A⊗B. The tensor product
is non-commutative and obey the following rule, for the example of 2x2 matrices
A and B

A⊗B =
(
A11 A12
A21 A22

)
⊗
(
B11 B12
B21 B22

)

=


A11

(
B11 B12
B21 B22

)
A12

(
B11 B12
B21 B22

)
A21

(
B11 B12
B21 B22

)
A22

(
B11 B12
B21 B22

)
 . (2.2)

2.2 Quantum Theory

Some quick remarks regarding notation from quantum theory. For a more thorough
treatment, see e.g. [3434]. The most interesting quantum mechanical operator, and
the one that describes the dynamics of a quantum system, is the Hamiltonian
operator

H =
p2

2m
+V (x, t). (2.3)

We will assume a time-independent potential. Together with a wavefunction,
ψ(x, t), describing the state of our system, the Hamiltonian satisfies Schrödingers
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equation
i∂tψ(x, t) = Hψ(x, t) = Eψ(x, t), (2.4)

where E are the energy eigenvalues (or the spectrum of the Hamiltonian) of our
system, i.e. the possible energies it can have. The Hamiltonian is hermitian,
meaning that it is self adjoint

H† ≡H∗T = H. (2.5)

A consequence of this is that the operator H has only real eigenvalues, as the energy
must be real. The spectrum of a system will often be denoted by Ei or εi , where
i denote the quantum numbers of the system, e.g. linear momentum, p, crystal
momentum, k, or spin, σ .

We will make use of the second quantization formalism from Quantum Field
Theorya. Particles are in second quantization understood as excitations of fields,
and employ creation and annihilation operators, which will be reviewed presently.
A state |nk〉 can be created (excited) from the vacuum, |0〉, via a creation operator

c†k |0〉 = |nk〉 . (2.6)

Similarly a state may be destroyed via an annihilation operator

ck |nk〉 = |0〉 . (2.7)

Electrons are fermions (half-integer spin), and owing to the Pauli principle the
creation and annihiliation operators for electrons must obey the following anti-
commutator relations

{c†k ,c
†
k} = 0 (2.8)

{ck ,ck} = 0 (2.9)

{c†ki ,ckj } = δij . (2.10)

Given that the first-quantized form of a single-particle Hamiltonian is known,
H1 |φk〉 = εk |φk〉, the single-particle operator is in second-quantized language
written as

H1 =
∑
kikj

〈ki |H1 |kj〉c†kickj , (2.11)

where the matrix elements are 〈ki |H1 |kj〉 =
∫
φ∗ki (x1)H1φkj (x2)dx1dx2. For a non-

interacting system there is only on-site overlap, and we write

H1 =
∑
k

εkc
†
kck . (2.12)

aSee e.g. [3535] for a more thorough treatment of many-body quantum theory.
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A two-particle operator is in second-quantized language written as

H2 =
∑

kikjknkm

〈kikj |H2 |knkm〉c†kic
†
kj
cknckm , (2.13)

with 〈kikj |H2 |knkm〉 =
∫
φ∗ki (x1)φ∗kj (x2)H2φkn(x2)φkm(x1)dx1dx2. These matrix ele-

ments describe two ingoing particles φkm(x1) and φkn(x2) interacting through the
mechanism H2 resulting in the two outgoing particles φki (x1) and φkj (x2).

Starting out with creation and annihilation operators working in a discretized,
periodic position space, c†xi and cxi , we may in second quantization language write
the Fourier transform to continuous momentum space and vice versa by

ck =
1
√
N

∑
xi

cxi e
−ik·xi (2.14)

c†k =
1
√
N

∑
xi

cxi e
ik·xi (2.15)

cxi =
1
√
N

∑
k

cke
ik·xi (2.16)

c†xi =
1
√
N

∑
k

cke
−ik·xi , (2.17)

N being the number of discrete lattice points in our system. These will be exten-
sively used, in addition to the relations

1
N

∑
k

eik·(xi−xj ) = δij (2.18)

1
N

∑
xi

eixi ·(k−k
′) = δ(k−k′). (2.19)
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Chapter 3

Topology and Symmetry
In mathematics, topology is the study of geometrical properties and spatial rela-
tions unaffected by the continuous change of shape or size of figures. What lies
at the heart of applied topology is the distinction between different topologies,
which in physics translates to the distinction of different topological phases. We
say that a physical system, call it A, is topologically distinct from system B, if
by the underlying theorems of topology, we cannot continuosly change system
A to B. As a result, the two systems are in different topological phases, and will
display different physics. Topology is a vast field, even when applied to physics,
so this chapter will aim to give a brief and conscice introduction to the aspects of
relevance to this thesis, namely topological insulators and superconductors. For
more thorough treatments applied to physics, see for instance [99, 2323, 2525].

3.1 The Berry Phase and The Chern Number

In 1984 M. V. Berry derived[3636] a topological invariant for quantum systems,
described through a geometric quantum phase. When going around a closed loop
C in k-space, the eigenstates of a quantum system acquire a non-trivial geometrical
phase factor, eiγ(C), where γ(C) is referred to as the Berry phase. The Berry phase
for a given eigenstate |um(k)〉 is given by the line integral along C of the Berry
connection

γm(C) =
∮
C

Am(k)dk, (3.1)

where the Berry connection Am(k) is a vector potential given by

Am = i 〈um(k)|∇k |um(k)〉 . (3.2)

This result assumes an adiabatic evolution of the quantum system, i.e. that we go
around the closed loop slowly. It is observed that the Berry connection is not gauge
invariant. Applying a U (1) gauge transformation to an eigenstate

|um(k)〉 → eiφ(k) |um(k)〉 , (3.3)

will transform the vector potential by

Am(k)→Am(k) + i∇kφ(k). (3.4)

This again will transform the Berry phase as

γm(C)→ γm(C) + 2πN, (3.5)
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with the integer N =
∮
∇kφ(k)dk. It is then obvious that the actual phase factor

an eigenstate acquires, eiγ(C), is gauge-invariant, and has the properties of a U(1)
gauge field. Via Stokes theorem[3737] the line integral of the Berry connection can
also be found from the surface integral of the curl of the Berry connection

γm(C) =
∫

Fmd
2k. (3.6)

The curl of the Berry connection, Fm = ∇×Am is called the Berry curvature[3838], or
the Berry flux[2323], and resembles a magnetic field mathematically. The integral is
over the two-dimensional sphere S2 in k-space. Fm is found from[2121]

Fm = Im
∑
n,m

〈um(k)|∇kH(k) |un(k)〉 × 〈un(k)|∇kH(k) |um(k)〉
(En(k)−Em(k))2 , (3.7)

where En(k) is the energy dispersion relation for the eigenstate |un(k)〉. As can be
easily seen from the denominator, a degenerate energy value causes a singularity
in the Berry curvature. As such, degeneracies in the energy dispersion are the
contributors to γm(C). One can now define a topological invariant, called the first
Chern numbera

Ch1 =
γm(C)

2π
. (3.8)

The Chern number is an integer[4040], Z, and an invariant even if the loop C encloses
a degeneracy of the Hamiltonian H(k). In essence, the Chern number is a measure
of the flux of the vector potential Am through the k-space, meaning that the
Chern number is non-trivial only when Am has a singularity. The Chern number
carries with it some important consequences. The textbook example is that of
the inteqer quantum Hall effect[4141]. Exerting a two-dimensional electron gas to a
perpendicular magnetic field will restrict the motion of the electrons to quantized
circular orbits. This will again lead to quantized energy levels, and in turn to
quantized conductivity. The integer quantum Hall conductivity may be written[4040,
4242]

σH =
e2

h
Ch1, (3.9)

i.e. the Hall conductivity is quantized by the Chern number. Halperin[4343] and
Hatsugai[4444] showed that the Hall conductivity can also be written as

σH =
e2

h
nedge, (3.10)

where nedge is the number of gapless edge states in the system. This means that if a
two-dimensional system has a bulk with a non-trivial Chern number, there will exist
gapless states at the edge/boundary of the system. This relation between a topological
quantity of the bulk and edge states is called the bulk-edge correspondence, and is

aThe topological invariant also goes by the names the Chern invariant[2323, 3939], or the Thouless-
Kohmoto-den Njis-Nightingale (TKNN) number[2929]
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our first encounter with what many argue prerequisites a topological material.

The Chern number is more generally defined as a winding number. The wind-
ing number, in its simplest form, is the number of times a closed curve travels
around a given point in some space, without going through the point. The winding
number is also called the degree of a continuous mapping. The energy dispersion
is described by a mapping from the momenta k to the Hamiltonian H(k). We
say that two target spaces, H(k), can be continuosly deformed into each other if
the deformation keeps all gaps in the energy dispersion open. Hamiltonians that
satisfy this condition belong to the same equivalence class, and have the same
winding number. The Chern number discussed above is just an example of such a
winding number. This means that if a Hamiltonian is deformed into another, and
this deformation closes the energy gap, the two Hamiltonians belong to different
topological phases, characterized by different winding numbers. As such, a change
in the winding number constitutes a topological phase transition.

3.2 Symmetries and theZ2 Invariant

The Chern number classifies systems that break time-reversal symmetry[2323]. For
the case of the quantum Hall effect this is true because time-reversal combined
with the magnetic field flips the direction of motion of the electrons. Time-reversal
invariant systems can however be topologically classified by another topological
number, if spin-orbit coupling is added to the system. In 2005 Kane and Mele[2525]
defined the Z2 invariant of time-reversal invariant topological insulators ν via the
quantities

δa =

√
det[w(Γa)]
Pf[w(Γa)]

. (3.11)

w(Γa)nm is the matrix connecting an eigenstate |un(k)〉 with the other time-reversed
eigenstates |um(−k)〉

w(Γa)nm = 〈um(−k)|Θ |un(k)〉 . (3.12)

Γa are the time-reversal invariant momenta, which can be generally written

Γa =
n1b1 +n2b2

2
, (3.13)

where bi is a reciprocal lattice vector. The spin-orbit coupling lifts the spin-
degeneracy of the energy dispersion, except at these time-reversal invariant mo-
menta. Pf denotes the Pfaffian of the matrix, with the property Pf(A) = det(A)2.
With the quantities δa, the topological invariant, ν, may be written

(−1)ν =
∏
n=0,1

δa=(n1,n2). (3.14)

δa satisfy the following conditions:

• The quantity is only defined at time-reversal invariant momenta.
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• The quantity takes on only the values δa = ±1.

• The quantity can only change when the gap of the system closes, given a
fixed gauge.

Let us now relate these quantities to properties of the system. [4545] considers
systems with an additional inversion symmetry, which could be for instance the
honeycomb lattice. The system then satisfies P̂H(k)P̂ −1 = H(−k), i.e. the Hamilto-
nian of the system is invariant under P̂k→−k. The eigenvalues of P̂ , P , evaluated
at the time-reversal invariant momenta, P (Γa), are found to satisfy the same prop-
erties as δa, such that the topological invariant for these systems with inversion
symmetry may be written

(−1)ν =
∏
m

Pm(Γa). (3.15)

This means that one can easily distinguish topological insulators from trivial insu-
lators with the help of parity and eigenstate considerations.

In [4646] the same scheme as above is followed for a triplet superconductor. A
general Hamiltonian for this system isb

H =
∑
k

ψ†kH(k)ψk (3.16)

H(k) =
(
ε(k)I2×2 ∆(k)
∆(k)† −ε(k)I2×2

)
, (3.17)

with the Nambu spinor ψ†k = (c†k,σ c−k,σ ). We assume that the normal state of
this system, described by ε(k), satisfies inversion symmetry (P̂ ) and time-reversal
symmetry (Θ̂), such that ε(−k) = ε(k). Time-reversal invariancy demands

Θ̂H(k)Θ̂−1 = H(−k)∗, (3.18)

with the time-reversal operator

Θ̂ = iσy ⊗ I2×2. (3.19)

A spin-triplet pairing is characterized by

∆(−k) = −∆(k). (3.20)

This allows us to define a new symmetry for H(k)

ΠH(k)Π−1 = H(−k), (3.21)

with Π = I2×2 ⊗ σz. The eigenvalues of Π are given by the sign of the normal state
dispersion evaluated at the time-reversal invariant momenta

πa = −sgn ε(Γa). (3.22)

bWe will look more closely at how this Hamiltonian comes about later in the thesis. It is written
explicitly here to make it more clear what we are talking about.
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Remarkably, these eigenvalues satisfy the same properties as the δa. It is then
suggested that one may write the Z2 topological invariant as

(−1)ν =
∏
nj=0,1

sgn ε(Γa=(n1,n2)). (3.23)

The quantity
∏
nj=0,1 sgn ε(Γa=(n1,n2)) may again be related to the number of different

connected components in the normal state ε(k), which is denoted ρ0(SF), such that

(−1)ν = (−1)ρ0(SF ). (3.24)

In other words, the topological invariant is directly connected to the number of
distinct Fermi surfaces the system has, see figure 3.13.1. In addition, the bulk-edge
correspondence may be written[4646]

(−1)ν = (−1)N , (3.25)

where N is the number of edge states. Based on this, an odd number of Fermi sur-
faces ensures an odd, non-trivial topological invariant of the system, and thus an
odd number of edge states. On the other hand, given that the topological invariant
of our system is Z2, an even number of Fermi surfaces is equivalent to ν = 0. The
system is in the topologically trivial phase, and there cannot be any edge states.
The important point is that if we have a system with a topologically non-trivial
bulk, we are ensured to have topologically protected edge states

kx

ky

kx

ky

Figure 3.1: Left: An odd number of Fermi surfaces, resulting in edge states. Right: An even
number of Fermi surfaces, resulting in no edge states.

So far we have seen a sampling of systems with parity, time-reversal symmetry and
others. There are countless other combinations of symmetries that could be consid-
ered, and all of these can be structured to make "the periodic table" of topological
insulators and superconductors[4747], see Table 3.13.1. The labeling AZ refers to the
10 symmetry classes in the notation of [4848]. TRS refers to time-reversal symmetry,
PHS to particle-hole symmetry and CS to chiral symmetry. Chiral symmetry is the
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Table 3.1: The periodic table of topological insulators and superconducors. The labeling
AZ refers to the 10 symmetry classes in the notation of [4848]. TRS refers to time-reversal
symmetry, PHS to particle-hole symmetry and CS to chiral symmetry. The value zero in the
symmetry columns reflects that the symmetry is broken, while ±1 denotes the eigenvalue if
the symmetry is unbroken. The three rightmost columns are labelled by their dimension, d.
The value zero in these columns denote that there is no topological invariant in the given
dimension, and hence that the corresponding system is trivial in terms of topology. Based
on Table I of [2323].

Symmetry d
AZ TRS PHS CS 1 2 3
A 0 0 0 0 Z 0
AIII 0 0 1 Z 0 Z

AI 1 0 0 0 0 0
BDI 1 1 1 Z 0 0
D 0 1 0 Z2 Z 0
DIII -1 1 1 Z2 Z2 Z

AII -1 0 0 0 Z2 Z2
CII -1 -1 1 Z 0 Z2
C 0 -1 0 0 Z 0
CI 1 -1 1 0 0 Z

combined effect of time-reversal symmetry and particle-hole symmetry, Θ̂T̂ . The
value zero in the symmetry column reflects that the symmetry is broken, while
±1 denotes the eigenvalue of the symmetry operator squared if the symmetry is
unbroken, e.g. T̂ 2. The three rightmost columns are labelled by their dimension, d.
The value zero in these columns denote that there is no topological invariant in the
given dimension. The quantum Hall state falls into class A in two dimensions, the
time-reversal invariant topological insulators in AII and the triplet superconductor
falls into class DIII.
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Chapter 4

Underlying Concepts and
Theory
This chapter will review and rederive physical theories and results of importance
to this thesis, in particular nearest neighbour hopping and Rashba spin-orbit
coupling, the BCS approach to superconductivity, and topological insulators and
superconductivity.

4.1 TheOne-Particle Problem

The Hamiltonian of a collection of identical, non-interacting particles in an ion
lattice can be written

H =
∑
i

p2
i

2m
+U (ri), (4.1)

where
p2
i

2m is the standard intrinsic kinetic energy of particle i, and U (ri) is the
external potential from the ion lattice experienced by a particle at position ri . Since
we are working on a lattice, it is natural to assume that a particle will spend most
of its time at a given lattice point, so the external potential can be split into two
parts

U (ri) =U (ri ,Ri) +
∑
i,j

U (ri ,Rj ). (4.2)

Ri denotes the coordinate of lattice point i, such that the first term accounts
for the potential contribution from a particles "mother" ion, while the second
term accounts for the contribution from every other ion in the lattice. With these
definitions it is logical to work with basis functions, ψi,σ (ri), that are eigenfunctions
of electrons around these isolated ions( p2

i

2m
+U (ri ,Ri)

)
ψi,σ (ri) = εi,σψi,σ (ri). (4.3)

The quantum numbers we are concerned with are position, i, and spin, σ . One
could additionally take e.g. orbitals into account, but we will restrict ourselves to a
single orbital at each ion. The second-quantization form of this Hamiltonian is

H =
∑
i,σ

εi,σc
†
i,σci,σ . (4.4)
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It is natural to assume a site- and spin-independent ε such that

H = ε
∑
i,σ

c†i,σci,σ . (4.5)

c†i,σci,σ defines the number operator, ni,σ , which count the number of particles in a
given state i,σ . As such the expression (4.54.5) is the number of particles multiplied
by the energy of a single particle. Introducing the second external potential term
will now lead to scattering of particles from one lattice point to another, since we
are considering contributions from other positions Rj . In second-quantization this
potential-term is ∑

i

∑
i,j

U (ri ,Rj )→
∑
i,j,σ

ti,jc
†
i,σcj,σ , (4.6)

where the matrix element ti,j is the scattering amplitude from ion lattice site j to i,
i.e. a hopping amplitude. It is independent of spin because the external potential is
spin-independent. This hopping from one site to another is inherently the kinetic
energy of the particle in the lattice, while the intrinsic kinetic energy ε now takes
the form of an on-site energy in the lattice; the energy required to excite the state
in the first place. To simplify matters, it is assumed that the hopping amplitude is
symmetric, ti,j = tj,i , and that the largest contributions to the term are from lattice
points that are nearest neighbours. The hopping amplitude is then set to ti,j ≡ tNN
such that

H = ε
∑
i,σ

c†i,σci,σ +
∑
〈i,j〉σ

tNNc
†
i,σcj,σ . (4.7)

i − 2 i − 1 i i + 1 i + 2

a1a2

Figure 4.1: The one-dimensional unit chain with the nearest neighbor vectors a1 and a2.

To look at a specific example, consider the one-dimensional unit chain of lat-
tice points, such that k = k. Each point has two nearest neighbours, given by
nearest neighbour vectors a1 = 1 and a2 = −1, see figure 4.14.1. Fourier transforming
the Hamiltonian to momentum space yields

H = ε
∑
k,σ

c†k,σck,σ +
∑
k,σ

tNNc
†
k,σck,σ (eik + e−ik)

=
∑
k,σ

ε̃k,σc
†
k,σck,σ , (4.8)

with the one-particle energy

ε̃k,σ = ε+ 2tNN cos(k). (4.9)

The on-site energy ε defines a reference level for the momentum-dependent energy
dispersion.
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4.1.1 The Dirac Equation and Spin-Orbit Coupling
Spin-orbit coupling is a quantum effect stemming from the interaction between a
particle’s motion, described by its momentum, and its spin. The effect of spin-orbit
coupling is to lock the spin of a particle to its linear momentum, and to split the
spin-degeneracy of energy bands[3333]. The spin-orbit interaction is a relativistic
correction to Schrödingers equation and can be found from the Dirac equation.
The Dirac equation[4949] in its original form is

(
βmc2 + c

3∑
µ=1

αµpµ
)

= i~∂tψ(x, t). (4.10)

Here β and αµ are 4-matrices that satisfy the following relations

α2
µ = β2 = 1 (4.11)

αµαν +αναµ = 0 (4.12)

αµβ + βαµ = 0, (4.13)

i.e their squares are equal to the identity matrix, and for µ, ν distinct they mutually
anticommute. Let us look at an electron with charge e and mass me. Assuming a
vector-potential A, scalar potential φ and kinetic and potential energies much less
than mec2, it can be shown[5050] that the Dirac equation reads( 1

2me
(p− e

c
A)2 + eφ− e~

2mec
σ ·B+ i

e~
4m2

e c2
E ·p− e~

4m2
e c2

σ · (E×p)
)
ψ =Wψ, (4.14)

with Etot =W +mc2. The first and second term is here equivalent to Schrödingers
equation for external fields A and φ. The third term is the interaction between the
magnetic moment of the electron, caused by its spin −µ = e~

2me
σ , and a magnetic

field, B. The fourth and the fifth term are the leading relativistic corrections to
the energy, the fourth being a zero-point fluctuation energy, and the fifth is the
spin-orbit coupling. Assuming a centrally symmetric E, like the case for orbital
motion of an electron around an atom, the electric field may be written[5151]

E = −1
e
r
r
dV
dr
. (4.15)

The spin-orbit coupling term of the Dirac equation can then be rewritten as

HSOC = − e~
4m2

e c2
σ · (E×p) (4.16)

=
e

2m2
e c2

S ·
(
− 1
e
r
r
dV
dr
×p

)
(4.17)

=
1

2m2
e c2

1
r
dV
dr

(S ·L) (4.18)

≡ λSOS ·L, (4.19)
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where S = ~
2σ and L = r × p. The spin-orbit coupling Hamiltonian is now cast

in a familiar form, and the interaction between spin and orbital motion is clear.
Looking at the spin-orbit coupling term in (4.144.14) let us assume an electric field
perpendicular to our two-dimensional lattice, i.e. E = Eẑ. The spin-orbit coupling
Hamiltonian is then

HSOC = − e~
4m2

e c2
Eσ · (ẑ ×p) (4.20)

= i
e~2

4m2
e c2

E
(
σy

∂
∂x
− σx

∂
∂y

)
(4.21)

=
e~2E

4m2
e c2

(σxky − σykx). (4.22)

This type of spin-orbit coupling is named Rashba-type spin-orbit coupling[5252],
and with λR = e~2E

4m2
e c2 , the expression is

HSOC = λR(σxky − σykx). (4.23)

It is apparent from the expression that HSOC(−k) = −HSOC(k), i.e. odd in momen-
tum. The pauli matrices σi act on the spin-part of the operators

σx ↑ =↓ (4.24)

σx ↓ =↑ (4.25)

σy ↑ = i ↓ (4.26)

σy ↓ = −i ↑, (4.27)

and ki = −i∂i . Consider again the one-dimensional unit chain of lattice points,
with nearest neighbors a1 = 1 and a2 = −1, figure 4.14.1. In one dimension, along the
x-direction, we only need to consider the term σykx, and on the chain kx may be
discretized as

kx = −i(c†i ci+1 − c†i ci−1). (4.28)

Taking spin into account, the product σykx is then

σy(−i(c†i ci+1 − c†i ci−1)) = −i
(
c†i,↑ c

†
i,↓

)(0 −i
i 0

)(
ci+1↑
ci+1↓

)
+ i

(
c†i,↑ c

†
i,↓

)(0 −i
i 0

)(
ci−1↑
ci−1↓

)
= −c†i,↑ci+1,↓ + c†i,↓ci+1,↑ + c†i,↑ci−1,↓ − c†i,↓ci−1,↑. (4.29)

The total Rashba Hamiltonian may now be written

HSOC = λR
∑
i

(
− c†i,↑ci+1,↓ + c†i,↓ci+1,↑ + c†i,↑ci−1,↓ − c†i,↓ci−1,↑

)
. (4.30)

Fourier transforming to momentum space results in

HSOC = λR
∑
k

(
c†k,↑ck,↓(e

−ik − eik) + c†k,↓ck,↑(e
ik − e−ik)

)
(4.31)

=
∑
k

(
s∗kc
†
k,↑ck,↓ + skc

†
k,↓ck,↑

)
, (4.32)
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with sk = 2iλR sin(k). The Rashba Hamiltonian thus describes a hopping process
in which the spin flips, with matrix element sk . Another, more illuminating and
general way to write the Rashba Hamiltonian for an arbitrary lattice is

HSOC = λR
∑

ri ,aj ,α,β

c†ri ,α
[
− σαβx (iaj · ŷ) + σαβy (iaj · x̂)

]
cri+aj ,β . (4.33)

aj are the nearest neighbour vectors, and α and β here refer to the spin-indices on
the operators. We have used that ki = −i∂i , and that acting on eik · aj with ∂i picks
out iaj · î. From this form it is straightforward to calculate the Rashba spin-orbit
coupling term for any lattice.

4.2 Two-Particle Interaction Term

We next look at a two-particle interaction term, starting from a Hubbard model,
and going from there to a general model. The Hubbard model reads

H =
∑
〈i,j〉σ

tc†i,σcj,σ +U
∑
i

ni,↑nj,↓. (4.34)

The first term is recognized as a hopping term, while the second term is an on-site
repulsion caused by having more than one electron at a site. This is of course
allowed by the Fermi principle if their spins are opposite, as is clear from the ex-
pression. Focusing on the second term only, and writing out the number operators
leads to

HU =U
∑
i

c†i,↑ci,↑c
†
i,↓ci,↓. (4.35)

Fourier transforming to momentum space yields

HU =
U

N2

∑
i

∑
k1,k2,k3,k4

c†k1,↑
ck2,↑c

†
k3,↓

ck4,↓e
iri ·(k2+k4−k1−k3), (4.36)

and using
1
N

∑
ri

eiri ·(k−k
′) = δ(k−k′), (4.37)

leads to

HU =
U
N

∑
k1,k2,k3

c†k1,↑
ck2,↑c

†
k3,↓

ck1+k3−k2,↓. (4.38)

Applying the anticommutation relations for fermion operators twice results in

HU =
U
N

∑
k1,k2,k3

c†k1,↑
c†k3,↓

ck1+k3−k2,↓ck2,↑. (4.39)
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Figure 4.2: Resistivity ρ(T ) and magnetic susceptibility χ(T ) for a conventional super-
conductor. At the critical temperature Tc the resistivity rapidly drops to zero, and the
superconductor expels applied magnetic fields, i.e. perfect diamagnetism χ(T < TC ) = −1.

Introducing q ≡ k1 +k3, k1 ≡ k and k2 ≡ k′ , the Hamiltonian may be written as

HU =
U
N

∑
k,k′ ,q

c†k,↑c
†
−k+q,↓c−k′+q,↓ck′ ,↑. (4.40)

It is obvious that this expression can be generalized to have a momentum-dependent
potential UN → Vk,k′ ,q, which results in a general two-particle interaction Hamilto-
nian

HI =
∑
k,k′ ,q

Vk,k′ ,qc
†
k,↑c

†
−k+q,↓c−k′+q,↓ck′ ,↑. (4.41)

This is a two-particle scattering term, where two electrons in the states k′ ,↑ and
−k′ + q,↓ are scattered to the two new states k,↑ and −k+ q,↑. The momentum-
dependent magnitude of this scattering process is described by Vk,k′ ,q.

4.3 Superconductivity

A superconductor is a material that below the transition temperature Tc exhibit
zero resistance and an expulsion of external magnetic fields, i.e. perfect diamag-
netism, see fig. 4.24.2. We will be concerned with the nature of the superconducting
gap, or order parameter, as it describes the pairing mechanism in any given su-
perconducting system. In order to get familiar with the order parameter, the BCS
theory for conventional superconductors is reviewed.
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4.3.1 BCS theory
The first microscopic theory of superconductors came in 1957 with the BCS the-
ory[55]. Going through the steps of the BCS theory will prove fruitful for later
sections. The theory lies grounded in the BCS reduced Hamiltonian[5353]

HBCS =
∑
k,σ

εkc
†
k,σ ck,σ +

∑
k,k′ ,σ

Vk,k′c
†
k,σ c

†
−k,−σ c−k′ ,−σ ck′ ,σ . (4.42)

The first term is the diagonal one-particle kinetic term. The second term captures
the assumptions made on the interaction, and describes the Cooper pairs. First of
all they have opposite momentum, k and −k. In addition they have opposite spins,
σ and −σ . We note that it has the form of the general interaction Hamiltonian in
(4.414.41), with q = 0. These restrictions are mounted in the assumption of a pairing
mechanism of two electrons both very close to the Fermi level. The goal is to
diagonalize the BCS reduced Hamiltonian, but as it stands now this can not be
done. First of all, by writing out the sum over the spin degrees of freedom, σ =↑, ↓,
and rewriting results in

HBCS =
∑
k,σ

εkc
†
k,σ ck,σ +

∑
k,k′

Vk,k′c
†
k,↑c
†
−k,↓c−k′ ,↓ck′ ,↑. (4.43)

The next step is to apply a mean field assumption on the operators

c−k,↓ck,↑ = 〈c−k,↓ck,↑〉+ c−k,↓ck,↑ − 〈c−k,↓ck,↑〉
= bk + δbk , (4.44)

where bk = 〈c−k,↓ck,↑〉 is the mean value (not an operator), while δbk = c−k,↓ck,↑ −
〈c−k,↓ck,↑〉 is the assumed small deviation from the mean value. Inserting this back
into the reduced BCS Hamiltonian, and neglecting terms of O(δ2

bk
) yields

HBCS =
∑
k,σ

εkc
†
k,σ ck,σ +

∑
k,k′

Vk,k′
{
b†kc−k′ ,↓ck′ ,↑ + bk′c

†
k,↑c
†
−k,↓ − b

†
kbk′

}
. (4.45)

Let us now define the following functions

∆†k′ = −
∑
k

Vk,k′b
†
k (4.46)

∆†k = −
∑
k′
Vk,k′b

†
k′ . (4.47)

Writing the chemical potential explicitly, µ, and slightly rewriting the first term in
the BCS reduced Hamiltonian leads to

HBCS =
∑
k

{
(εk −µ)c†k,↑ck,↑ + (εk −µ)(1− c†−k,↓c−k,↓)

}
−
∑
k,k′

(
∆†kc−k′ ,↓ck′ ,↑ +∆k′c

†
k,↑c
†
−k,↓

)
+
∑
k

∆kb
†
k. (4.48)
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The one-particle part is split in two halves, positive and negative k. The Hamilto-
nian may now be written on matrix form

HBCS =
∑
k

(εk −µ+∆kb
†
k)

+
∑
k

ψ†k

(
εk −µ −∆k
−∆†k −(εk −µ)

)
ψk, (4.49)

with the Nambu spinor ψ†k = (c†k,↑ c−k,↓). The matrix in the second term can now be
easily diagonalized by rewriting∑

k

ψ†kHkψk =
∑
k

ψ†kU
−1UHkU

−1Uψk

=
∑
k

ψ̃†k

(
λ+ 0
0 λ−

)
ψ̃k (4.50)

with the eigenvalues

λ± = ±
√

(εk −µ)2 + |∆k|2 ≡ ±Ek , (4.51)

and new spinors ψ̃†k = (η†k γ
†
k). This is a Bogoliubov transformation. The Hamilto-

nian is now diagonal

HBCS =
∑
k

(εk −µ+∆kb
†
k) +

∑
k

Ek(η
†
kηk −γ

†
kγk). (4.52)

The first sum term,
∑

k(εk−µ+∆kb
†
k) ≡H0, is the ground state energy of the system,

while the second term describe the fermionic excitations. ∆k describe a gap, the
superconducting gap, in the diagonalized system. ∆k is also the order parameter
for the superconducting system, and these two names will be used interchangeably.
Since mean field theory was applied to the problem, the gap equations(4.474.47) need
to be solved self-consistently. This means that ∆k must be chosen so as to minimize
the free energy of the system. The relation between the partition function Z and
the free energy F is

Z =
∑

e−βH = e−βH0
∏
k

(1 + e−βEk )(1 + eβEk ) = e−βF , (4.53)

which results in the free energy

F = H0 −
1
β

∑
k

(
ln(1 + e−βEk ) + ln(1 + eβEk )

)
. (4.54)

Minimizing F with respect to ∆k yields

b†k = ∆†k
tanh(βEk/2)

2Ek
. (4.55)
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Since there is only one solution, this is guaranteed to be a minimum as the free
energy must be bounded from below. Inserting the solution for b†k back into the
gap equations, results in the self-constistency equations for the gaps

∆k = −
∑
k′
Vk,k′∆k′

tanh(βEk′ /2)
2Ek′

≡ −
∑
k′
Vk,k′∆k′χ(Ek′ ), (4.56)

where we have defined

χ(Ek) =
tanh(βEk/2)

2Ek
. (4.57)

4.3.2 Pairing
The interaction term in the BCS reduced Hamiltonian (4.424.42) specifies little else than
there is a pair of electrons on opposite sides of the fermi surface, with opposite
spins. The exact mechanism of Vk,k′ is not set, although the original intent in
the BCS theory was for it to be a phonon-mediated attractive force between the
electrons. As the interaction term stands however, it could be any mechanism
dependent on the two momenta, and one can easily generalize to finite-momentum
scattering or a spin-dependent mechanism. The BCS theory describes spin-singlet
pairing. If we assume ∆k = |∆|, this can easily be seen by applying the fermionic
anticommutation relation to the operator pairs in (4.484.48)

c−k,↓ck,↑ = −ck,↑c−k,↓. (4.58)

This means that the spin-part of the wave function of the Cooper pair is antisym-
metric, requiring a symmetric space part, analogous to even angular momentum
spherical harmonics, l = 0,2, .... The pairings with l = 0 is called s-wave pairing,
l = 2 d-wave pairing, and so on. These are all singlet states. To make things more
general, and to access odd angular momentum states or triplet pairing, one may
write[2929, 5353]

Vk,k′ =
∑
λλ′

V gλkg
λ′
k′ , (4.59)

i.e. separating the dependency of Vk,k′ in k and k′. Inserting into the self-
consistency gap equation (4.564.56) and summing out k′ and λ′ yields

∆k =
∑
k′

∑
λλ′

V gλkg
λ′
k′∆k′χ(Ek′ )

=
∑
λ

gλk

∑
k′ ,λ′

V gλ
′

k′∆k′χ(Ek′ )

=
∑
λ

gλk∆
λ(T ). (4.60)

The k′- and λ′-dependency disappears, and ∆λ(T ) depends only on the thermo-
dynamics of the system. The k-dependency of the gλk now decides the symmetry
properties of ∆k, and thus the pairing mechanism.
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4.3.2.1 Symmetry of the order parameter

At the transition temperature Tc there is a macroscopic phase transition between
a normal state and a superconducting state. An essential condition for this is the
existence of off-diagonal long-range order[5454]. This order is in essence measured
by the expectation value bk = 〈c−k,↓ck,↑〉, which the order parameter ∆k is propor-
tional to. Since the system is going through a phase transition, there is obviously a
change in the order parameter, and this has to do with the breaking of symmetries.
The symmetry properties of the superconducting gap is of great importance, not
only because they describe the spin structure, but also because they illuminate
some aspects of high-Tc superconductivity, where BCS-theory fails.

One can choose many different sets of basis functions gk, but one very natural
choice is the set of basis functions for the irreducible representations of the symme-
try group of the lattice structure one is working with[5353, 5454]. The superconducting
gap function may then be written

∆k =
di∑
λ=1

ηλξ
i
λ(k), (4.61)

where di is the dimension of any given irreducible representation Γi , and ηλ are
complex coefficients invariant under all symmetry operations of the group of the
normal state. The group of the superconducting state will be a subgroup of the
group of the normal state, i.e. the lattice combined with spin symmetry, gauge
symmetry and time-reversal symmetry, if applicable. It is clear that the order
parameter can generally be written

∆k = |∆k|eiφ, (4.62)

and there is a U(1) gauge symmetry here in the choice of φ. Upon entering the
superconducting state a singular value of φ is chosen by the system, and the tran-
sition marks a spontaneously broken U(1) gauge symmetry. This is essentially
the whole story for conventional superconductors, while there may be additional
symmetries broken, e.g. time-reversal symmetry, in unconventional superconduc-
tors. Other sets of basis functions can also be chosen, and in continuum models
the choice naturally falls on angular momentum eigenstates[2929]. Some symmetry
properties of the order parameter also depends on whether the pairing is a triplet,
with total spin 1, or singlet, with total spin 0. A singlet pairing may generally be
written[5555]

∆singlet(k) = g(k)iσy =
(

0 g(k)
−g(k) 0

)
. (4.63)

Since the total spin is zero, this pairing corresponds to an even wavefunction. The
singlet state is thus even under inversion ∆singlet(k) = ∆singlet(−k). Similarly, a
triplet pairing may generally be written

∆triplet(k) = (d(k) · σ )iσy =
(
−dx(k) + idy(k) dz(k)

dz(k) dx(k) + idy(k)

)
. (4.64)
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The total spin is now 1, and this pairing corresponds to an odd wavefunction,
making the triplet pairing odd under inversion ∆triplet(k) = −∆triplet(−k).

4.4 DiracMaterials and Topological Insulators

Dirac materials are systems whose low-energy fermionic excitations satisfy the
Dirac equation, linear in momentum

E(k) ∼ k. (4.65)

Belonging to Dirac Materials are topological insulators, systems whose non-trivial
bulk topology lead to gapless edge states, also satisfying the Dirac equation. Let us
look at a simple model for a two-dimensional time-reversal invariant topological
insulator[99]. By Kramer’s theorem[5656] any eigenstate of a time-reversal invariant
Hamiltonian are at least twofold degenerate, and thus necessarily require that at
time-reversal invariant momenta the energy dispersion display no gaps. On matrix
form, the model Hamiltonian reads

H =
∑
k

ψ†k

(
εk sk
s∗k εk

)
ψk. (4.66)

εk is here the one-particle dispersion, satysfying the property ε∗−k = εk, while

sk has its origin in spin-orbit coupling. The Nambu spinor is ψ†k =
(
c†k,↑ c

†
k,↓

)
.

Diagonalizing this problem yields the eigenvalues

E(k) = εk ± |sk|, (4.67)

and the dispersion is gapless where sk = 0. Around these degenerate points E(k)
must be linear. In the continuum limit, k→ 0, the one-particle kinetic energy is
εk = k2

2m∗ −µ, while a spin-orbit coupling term takes the form sk = kx − iky . sk = 0
for k = 0, and to highest order E(k) ∼ k around k = 0. The circular cones made
up by the linear beahaviour around the degenerate momenta are called Dirac
cones, see figure 4.34.3. What separates this Dirac state from a normal insulating
state lies rooted in the topology of the band structure. The topology is classified by
the topological invariant, the Chern number. The normal insulator has a trivial
Chern number, while the Dirac state, or topological insulator, has a non-zero
Chern number. The simplest argument for this lies in the expression of the Berry
curvature, equation (3.73.7). The Chern number is the surface integral of the Berry
curvature, and we see from its expression that this integral is non-zero when the
curvature has singularities, i.e. when there are degenerate eigenvalues. This is
exactly the case when there are Dirac points in the energy dispersion. We also refer
to the discussion in chapter 33.
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E

Figure 4.3: The spherical cone energy bands, called Dirac cones, touch at the Dirac points.

4.5 Topological Superconductors

Analogous to a topological insulator one can study topological superconductors,
where the bulk band gap of the insulator corresponds to the bulk superconducting
gap, and the Dirac fermion conducting edge states of the topological insulator
are replaced by Majorana fermion edge states[99, 2929]. A Majorana fermion is its
own anti-(quasi)particle. A topological superconductor is as such viewed as a
topological insulator with particle-hole symmetry. The topological invariant for
insulators and superconductors is also slightly different, as the invariant for insula-
tors is defined over the entire Brillouin zone, while for a superconductor, pairing
is only achieved close to the Fermi surface. One also distinguish time-reversal
invariant and breaking topological superconductors. The latter is of great interest
in that they relate to non-Abelian statistics, an important feature for immunity to
decoherence, ideal for the purposes of quantum computing[3131].

The perhaps most studied approach to topological superconductivity is through
the chiral p-wave pairing[99]. We start out with the spin-less Bogoliubov-de Gennes
Hamiltonian, the form of which we recognize from (4.494.49),

HBdG =
∑
k

ψ†k

(
εk −µ −∆k
−∆†k −εk +µ

)
ψk. (4.68)

The spin-less Nambu spinor is ψ†k = (c†k c−k). Diagonalizing the BdG Hamiltonian
results in the eigenvalues

Ek = ±
√

(εk −µ)2 + |∆k|2. (4.69)
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The Bogoliubov-transformation that has been applied involve the new operators

ηk = ukck − vkc†−k (4.70)

η†k = u∗kc
†
k − v

∗
kc−k. (4.71)

In the fermionic case |uk|2 + |vk|2 = 1 to satisfy the anticommutation relations. This
diagonalization yield the Bogoliubov-de Gennes (BdG) equations

Ekuk = (εk −µ)uk −∆∗kvk (4.72)

Ekvk = −(εk −µ)vk −∆kuk, (4.73)

with the following relations

vk
uk

= −
Ek − (εk −µ)

∆∗k
(4.74)

|uk|2 =
1
2

(
1 +

(εk −µ)
Ek

)
(4.75)

|vk|2 =
1
2

(
1−

(εk −µ)
Ek

)
. (4.76)

An important point to notice about the BdG Hamiltonian is the particle-hole
symmetry, arising from the redundant description of operators at both k and −k.
This leads to the simple fact that for any eigenstate with energy Ek, there exists an
eigenstate with energy −Ek. This means that instead of writing the diagonalized
Hamiltonian as

HBdG =
∑
k

Ek(η
†
+,kη+,k − η†−,kη−,k), (4.77)

where the negative and positive energy states have been split, all the physics of the
problem is contained in

HBdG =
∑
k

Ekη
†
+,kη+,k, (4.78)

due to the particle-hole symmetry. Now, in the continuum limit, the chiral p-wave
pairing is

∆k = ∆0 · (kx − iky), (4.79)

while εk = k2

2m −µ. In the low-energy regime, when µ and k are small, we can set
εk ≈ −µ, and to leading order the energy dispersion is

Ek ≈
√
|∆0|2k2 +µ2. (4.80)

This has the form of a relativistic dispersion relation, with |∆0| taking the role of
the speed of light. The time-dependent Schrödinger equation is i∂tψk = Ekψk,
while ki = −i∂i , such that the BdG equations (4.734.73) are now

i∂tuk = −µuk +∆0(i∂x +∂y)vk (4.81)

i∂tvk = µvk +∆0(i∂x −∂y)uk. (4.82)
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Since they are linear in both spatial- and temporal derivatives, these two equations
are a form of the Dirac equation for the spinor (u, v)[5757]. Remarkably, if we take
the complex conjugate of the equations, they transform into each other under the
condition (u, v) = (v∗, u∗). This means that the quasiparticles in our diagonalized
problem

HBdG =
∑
k

Ekη
†
kηk, (4.83)

are their own antiparticles, and are as such Majorana fermions. Because of the
particle-hole symmetry and chiral p-wave pairing we have a singularity in the
Berry curvature (3.73.7), and thus a topologically non-trivial bulk, which by the bulk-
edge correspondence lead to these topologically protected Majorana edge states. In
addition, a chiral p-wave pairing breaks time-reversal symmetry when the chirality
of the spins are the same[2121], which is essentially the case in a spinless model, and
together with particle-hole symmetry this puts the BdG system in AZ class D (see
table 3.13.1), characterized by a Z topological invariant in two dimensions.
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Chapter 5

Bravais Lattices
This chapter will go into more detail on Bravais lattices, lattices with a single lattice
point in the basis. First, the one-particle problem consisting of nearest neighbour
hopping and spin-orbit coupling is presented. Next, the two-particle interaction
term is investigated, and through mean-field theory a general scheme for super-
conductivity in these lattices is developed. Finally, the symmetry properties of the
system are studied, in order to evaluate the requirements on the superconducting
gaps to ensure non-trivial topological behaviour.

5.1 One-Particle Problem

a1

a2
a1

a2

a3

Figure 5.1: Left: The square lattice with two of the nearest neighbour vectors a1 and a2.
Right: The hexagonal lattice with three of the nearest neighbour vectors a1, a2 and a3.

Two-dimensional Bravais lattices are lattices with a single lattice point in the
basis. Examples of such lattices are the square and hexagonal lattices, see figure
5.15.1. One common feature is that each lattice point has an even number of nearest
neighbours. These nearest neighbours are characterized by the nearest neighbour
vectors, ai . Notice that for 2n neighbours, only n vectors are defned. The reason
for this will become clear shortly. The lattice constant, a, is for conveniency set to
unity for the remainder of this thesis.

5.1.1 Hopping
The nearest neighbour hopping Hamiltonian Ht reads

Ht = −tNN
∑
ri ,aj ,σ

(
c†ri ,σcri+ajσ +H.c.

)
, (5.1)
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where H.c., the hermitian conjugate of the preceding terms, takes care of the
remaining neighbors, because by translational symmetry, hopping from ri + aj to
ri is the same as hopping from ri to ri − aj . Hopping is a spin-conserving process,
which is why creation and annihilation operators here have the same spin index σ .
The next step is to Fourier transform to momentum space, resulting in

Ht = −tNN
∑
k,aj ,σ

(
c†kσckσ e

−ik·aj +H.c.
)
. (5.2)

Summing over σ and using that

2cos(x) = eix + e−ix, (5.3)

leads to
Ht = −2tNN

∑
k

(
c†k↑ck↑ + c†k↓ck↓

)∑
j

cos(k · aj ). (5.4)

This can be written on matrix form

Ht =
∑
k

(
c†k↑c

†
k↓

)(tk 0
0 tk

)(
ck↑
ck↓

)
. (5.5)

The hopping amplitude is defined as

tk = −2tNN
∑
j

cos(k · aj ). (5.6)

With no off-diagonal terms in the Hamilton matrix, the energy dispersion relation
is easily found. From H |ψk〉 = E(k) |ψk〉, solving for the eigenvalues yields

E(k) = tk. (5.7)

This eigenvalue is spin-degenerate, i.e. the same for both ↑ and ↓ spins. The energy
dispersion for a square lattice along the kx-axis is plotted in figure 5.25.2.

5.1.2 Spin-Orbit Coupling
The Rashba spin-orbit coupling term is (4.334.33)

HSOC = λR
∑

ri ,aj ,α,β

{
c†ri ,α

(
− σαβx (iaj · ŷ) + σαβy (iaj · x̂)

)
cri+aj ,β +H.c.

}
. (5.8)

Fourier transforming to momentum space yields

HSOC = λR
∑

k,aj ,α,β

{
c†k,α

(
− σαβx (iaj · ŷ) + σαβy (iaj · x̂)

)
ck,βe

ik·aj

− c†k,β
(
− σβαx (iaj · ŷ) + σβαy (iaj · x̂)

)
ck,αe

−ik·aj
}
. (5.9)
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Figure 5.2: The energy dispersion with nearest neighbour hopping for a square lattice along
the ky-axis.

Summing over the spin-indices α, β results in

HSOC = λR
∑
k,aj

{
c†k,↑ck,↓(−iaj · ŷ + aj · x̂)(eik·aj − e−ik·aj )

+ c†k,↓ck,↑(−iaj · ŷ − aj · x̂)(eik·aj − e−ik·aj )
}

= 2iλR
∑
k,aj

{
c†k,↑ck,↓(−iaj · ŷ + aj · x̂)sin(k · aj )

+c†k,↓ck,↑(−iaj · ŷ − aj · x̂)sin(k · aj )
}
. (5.10)

Noting that the terms aj · x̂ − iaj · ŷ and aj · x̂ + iaj · ŷ can be written e−iθj and eiθj ,
respectively, with θi the polar angle of the nearest neighbour vector aj , the final
expression is

HSOC =
∑
k

(
c†k,↑ck,↓sk + c†k,↓ck,↑s

∗
k

)
(5.11)

=
∑
k

(
c†k↑c

†
k↓

)( 0 sk
s∗k 0

)(
ck↑
ck↓

)
.
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The spin-orbit coupling function is defined as

sk = 2iλR
∑
j

e−iθj sin(k · aj ). (5.12)

The total Hamiltonian with both hopping and spin-orbit coupling now reads

H =
∑
k

ψ†k

(
tk sk
s∗k tk

)
ψk, (5.13)

with ψ†k =
(
c†k,↑ c

†
k,↓

)
. Diagonalizing this problem yields the energy dispersion

εk,α = tk ± |sk|, (5.14)

where the diagonalized band basis Ak =
(
ak,1 ak,2

)T
and spin basis ψk are related

by the transformation

ψk = UAk =
(
−sk/ |sk| sk/ |sk|

1 1

)
Ak . (5.15)

The one-particle energy dispersion εk,α is no longer degenerate, owing to the split-
ting of the two spin-bands caused by spin-orbit coupling, see figure 5.35.3. However,
there will still be degenerate points wherever sk is zero. The k-dependency of the
energy dispersion close to these points is linear, and consequently these points are
Dirac points.

5.2 Interaction Hamiltonian

The BCS-type interaction term is

HI =
∑
k,k′q

Vk,k′ ,qc
†
k,↑c

†
−k+q,↓c−k′+q,↓ck′ ,↑. (5.16)

Inserting for the transformation to the diagonalized band basis (5.155.15) yields

HI =
∑
k,k′q

Vk,k′ ,q

{(
−
s∗k
|sk|

a†k,1 +
s∗k
|sk|

a†k,2
)
·
(
a†−k+q,1 + a†−k+q,2

)
·
(
a−k′+q,1 + a−k′+q,2

)
·
(
− sk

′

|sk′ |
ak′ ,1 +

sk′

|sk′ |
ak′ ,2

)}
. (5.17)

This can be contracted to

HI =
∑
k,k′q

∑
αββ′α′

V
αββ′α′

k,k′ ,q a†k,αa
†
−k+q,βa−k′+q,β′ak′ ,α′ . (5.18)
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Figure 5.3: The energy dispersion with nearest neighbour hopping and spin-orbit coupling
(λR/tNN = 1) for a square lattice along the kx-axis. We see that the spin-orbit coupling lifts
the degeneracy, and we get two bands, meeting in a Dirac point at the origin.

V
αββ′α′

k,k′ ,q is now a tensor consisting of products of the elements in the transformation
from the spin basis to the diagonalized band basis, and the original interaction
mechanism in the spin basis Vk,k′ ,q. The tensor has the following property

V
αββ′α′

k,k′ ,q =

Vk,k′ ,q
s∗ksk′
|sk ||sk′ |

, if α = α′

−Vk,k′ ,q
s∗ksk′
|sk ||sk′ |

, if α , α′ .
(5.19)

5.2.1 Intraband q = 0

We will start off by looking at intraband (α = α′ = β = β′) q = 0 pairing, the
simplest pairing mechanism, see figure 5.45.4. In the mean field approach, the
restricted interaction Hamiltonian is

Hintraband
I =

∑
k,k′

∑
α

V αk,k′
(
b†α(k)a−k′ ,αak′ ,α + bα(k′)a†k,αa

†
−k,α − b

†
α(k)bα(k′)

)
, (5.20)

with
b†α(k) = 〈a†k,αa

†
−k,α〉, (5.21)

and

V αk,k′ = Vk,k′
s∗ksk′

|sk||sk′ |
. (5.22)
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kx

ky

k′ ,↑−k′ ,↓

−k,↓

k,↑

Figure 5.4: Intraband q = 0 pairing. The inital (red) and final (blue) pair are in the same
band.

Defining the gap functions

∆α(k) =
∑
k′
V αk,k′bα(k′), (5.23)

and diagonalizing the mean field approach, following the same procedure as in
section 4.34.3 yields accordingly the energy dispersion

E±k,α = ±
√

(εk,α −µ)2 + |∆α(k)|2 (5.24)

The free energy is

F = H0 −
1
β

∑
k

∑
α

(
ln(1 + e−βEk,α ) + ln(1 + eβEk,α )

)
. (5.25)

H0 now contains the product ∆†α(k)bα(k) and minimizing the free energy with
respect to ∆†α(k) yields

bα(k) = ∆α(k)χ(Ek,α), (5.26)

with χ(Ek,α) from (4.574.57). The gap functions are then

∆α(k) =
∑
k′
V αk,k′∆α(k′)χ(Ek′ ,α) (5.27)

In this intraband case, the gap functions are independent of each other. In the
band basis the Hamiltonian reads

Hintraband =
∑
k,α

{
|∆α(k)|2χ(Ek,α) +

εk,α
2

(a†k,αak,α + a†−k,αa−k,α)

+∆α(k)a†k,αa
†
−k,α +∆†α(k)a−k,αak,α

}
. (5.28)



5.2. Interaction Hamiltonian 35

Using that s−k = −sk, the operator products that describe superconductivity are in
the spin basis

a−k,1ak,1 =
1
4

(
−
s∗k
sk

c−k,↑ck,↑ +
|sk|
sk

c−k,↑ck,↓ −
|sk|
sk

c−k,↓ck,↑ + c−k,↓ck,↓
)

(5.29)

a−k,2ak,2 =
1
4

(
−
s∗k
sk

c−k,↑ck,↑ −
|sk|
sk

c−k,↑ck,↓ +
|sk|
sk

c−k,↓ck,↑ + c−k,↓ck,↓
)
, (5.30)

and the superconducting terms are

Hintraband
SC =

1
4

∑
k

{
c†k,↑c

†
−k,↑

s∗k
sk

(−∆1(k)−∆2(k)) + c†k,↓c
†
−k,↓(∆1(k) +∆2(k))

+c†k,↑c
†
−k,↓
|sk|
sk

(∆1(k)−∆2(k)) + c†k,↓c
†
−k,↑
|sk|
sk

(−∆1(k) +∆2(k))

+H.c.
}
. (5.31)

The spin structure is that of the two aligned triplet pairing states, and the mixed
singlet pairing state. If ∆1(k) = ∆2(k) the mixed state disappears. This system
could possibly, in addition to superconductivity, support ferromagnetism. Fer-
romagnetism would shut down the singlet mixed state, and the aligned triplet
states are available for ferromagnetic interactions. However, there is also an orbital
effect to consider. A magnetic field set up by the aligned magnetic momenta of
a ferromagnet would destroy any unitary triplet pairing[5858, 5959]. What is needed
then is a nonunitary triplet pairing, e.g. chiral p-wave, which will be investigated
later in this chapter. Assuming a general separation of variables in the pairing
mechanism

Vk,k′ = V gkgk′ , (5.32)

the gap function (5.275.27), upon summing over k′ , reduces to

∆α(k) =
∑
k′
V gkgk′

s∗ksk′

|sk||sk′ |
∆α(k′)χ(Ek′ ,α)

=
s∗k
|sk|

gk∆
0
α(T ) (5.33)

≡
s∗k
|sk|

∆′α(k). (5.34)

The superconducting terms are now

Hintraband
SC =

1
4

∑
k

{
c†k,↑c

†
−k,↑

s∗k|sk|
s2k

(−∆′1(k)−∆′2(k)) + c†k,↓c
†
−k,↓

s∗k
|sk|

(∆′1(k) +∆′2(k))

+c†k,↑c
†
−k,↓

s∗k
sk

(∆′1(k)−∆′2(k)) + c†k,↓c
†
−k,↑

s∗k
sk

(−∆′1(k) +∆′2(k))

+H.c.
}
. (5.35)

The only unknown k-dependency of the gap functions is in gk.
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5.2.2 Interband q = 0

kx

ky

k′ ,↑−k′ ,↓

−k,↓

k,↑

Figure 5.5: Interband q = 0 pairing. The inital (red) and final (blue) pair are in different
bands.

Another q = 0 contribution is the scattering process where the initial and final
pair are in different bands, see figure 5.55.5. The contribution from this process is

Hinterband
I =

∑
k,k′

{
V 1122
k,k′ a

†
k,1a

†
−k,1a−k′ ,2ak′ ,2 +V 2211

k,k′ a
†
k,2a

†
−k,2a−k′ ,1ak′ ,1

}
. (5.36)

Applying the mean field theory approach to this yields

Hinterband
I =

∑
k,k′

{
V 1122
k,k′

(
b†11(k)a−k′ ,2ak′ ,2 + b22(k′)a†k,1a

†
−k,1 − b

†
11(k)b22(k′)

)
+V 2211

k,k′

(
b†22(k)a−k′ ,1ak′ ,1 + b11(k′)a†k,2a

†
−k,2 − b

†
22(k)b11(k′)

)}
,

(5.37)

with
bαβ(k) = 〈a−k,αak,β〉. (5.38)

From (5.195.19) we have that

V 1122
k,k′ = V 2211

k,k′ = −Vk,k′
s∗ksk′

|sk||sk′ |
. (5.39)

This allows us to define the order parameters

∆1(k) = −
∑
k′
Vk,k′

s∗ksk′

|sk||sk′ |
b11(k′) (5.40)

∆2(k) = −
∑
k′
Vk,k′

s∗ksk′

|sk||sk′ |
b22(k′). (5.41)
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Reinserting these into the Hamiltonian yields

Hinterband
I =

∑
k

(
∆†1(k)a−k,2ak,2 +∆2(k)a†k,1a

†
−k,1 −∆

†
1(k)b22(k)

+∆†2(k)a−k,1ak,1 +∆1(k)a†k,2a
†
−k,2 −∆

†
2(k)b11(k)

)
. (5.42)

Diagonalizing the full Hamiltonian now results in the eigenvalues

E±k,αβ = ±
√

(εk,α −µ)2 + |∆β(k)|2, (5.43)

with β , α. The free energy has the same form as in (5.255.25), with the difference that
H0 contain the terms ∆†1(k)b22(k) and ∆†2(k)b11(k). As such, minimizing the free
energy with respect to the gaps leads to

bββ(k) = ∆α(k)χ(Ek,βα), (5.44)

again with β , α, and the self-consistency equations are

∆1(k) = −
∑
k′
Vk,k′

s∗ksk′

|sk||sk′ |
∆2(k′)χ(Ek′ ,12) (5.45)

∆2(k) = −
∑
k′
Vk,k′

s∗ksk′

|sk||sk′ |
∆1(k′)χ(Ek′ ,21). (5.46)

The gap functions are now coupled to each other. Back in the spin basis the
superconducting terms have the following structure, using (5.295.29) and (5.305.30)

Hinterband
SC =

1
4

∑
k

{
c†k,↑c

†
−k,↑

s∗k
sk

(−∆1(k)−∆2(k)) + c†k,↓c
†
−k,↓(∆1(k) +∆2(k))

+c†k,↑c
†
−k,↓
|sk|
sk

(−∆1(k) +∆2(k)) + c†k,↓c
†
−k,↑
|sk|
sk

(∆1(k)−∆2(k))

+H.c.
}
. (5.47)

The same structure as for the simple intraband case is present, with the two aligned
triplet states and singlet mixed state. Furthermore, to achieve the mixed triplet
state we need to consider the more intricate finite-momentum interband pairings.
Assuming again a separation of variables in the pairing mechanism

Vk,k′ = V gkgk′ , (5.48)

the gap functions (5.455.45) and (5.465.46) are now

∆α(k) = −
∑
k′
V gkgk′

s∗ksk′

|sk||sk′ |
∆β(k′)χ(Ek′ ,αβ), (5.49)
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with β , α. Since these equations are coupled they are different from the gap-
functions in the intraband case. We write

∆α(k) = −
s∗k
|sk|

∆′αβ(k). (5.50)

The superconducting terms are now

Hinterband
SC =

1
4

∑
k

{
c†k,↑c

†
−k,↑

s∗k|sk|
s2k

(∆′12(k) +∆′21(k)) + c†k,↓c
†
−k,↓

s∗k
|sk|

(−∆′12(k)−∆′21(k))

+c†k,↑c
†
−k,↓

s∗k
sk

(−∆′12(k) +∆′21(k)) + c†k,↓c
†
−k,↑

s∗k
sk

(∆′12(k)−∆′21(k))

+H.c.
}
. (5.51)

These interband superconducting terms have the opposite sign of the intraband
terms. Because the new gaps are coupled, this will however not lead to any
cancellation in the combined intra- and interband system.

5.2.3 Chiral p-wave pairing
In order to achieve Majorana edge states we saw in section 4.54.5 that a gap function
that goes as |∆α(k)|2 ∼ k2 where εk,α = 0 is needed, all in the notation of the intra-
band q = 0 case. This ensures a relativistic energy relation Ek,α ≈ ±

√
µ2 + |∆α |2k2.

The origin of such a gap is often taken to be a chiral p-wave pairing, ∆(k) =
∆0(kx − iky). This is also the continuum limit of the spin-orbit coupling function sk
of the square lattice. Our one-particle dispersion εk,α has a minimum for k = 0,
and by adjusting our on-site energy, ε0

∑
i ni , k = 0 can be made to correspond to

εk,α = 0. Next we separate the variable dependence of V αk,k′ as we did in section 4.34.3

Vk,k′ =
∑
λ,λ′
|V |gλkg

λ′
k′ , (5.52)

such that after summing over k′ and λ′ the gap function may be written

∆α(k) =
∑
λ

∆0
αg

λ
k . (5.53)

We keep in mind that ∆α(k) ∝ s∗k
|sk |

, from (5.195.19), contained in gλk . Since the chiral
p-wave pairing has the same form as sk for the square lattice, we propose choosing
a single λ-value, and set gλk to be our spin-orbit coupling function sk. Let us check
if sk has the proper chiral p-wave form near k = 0 for lattices other than the square
lattice.

• Hexagonal lattice: The hexagonal lattice has nearest neighbour vectors a1 =

ax̂, a2 = a
(

1
2 x̂+

√
3

2 ŷ
)

and a3 = a
(

1
2 x̂−

√
3

2 ŷ
)
. The spin-orbit coupling functions
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is then

sk = 2iλR
(
sin(k · a1) + e−i

π
3 sin(k · a2) + ei

π
3 sin(k · a3)

)
≈ 2iλR

(
k · a1 + e−i

π
3 k · a2 + ei

π
3 k · a3

)
= 2iλR

(
kx + e−i

π
3 (
kx
2

+

√
3

2
ky) + ei

π
3 (
kx
2
−
√

3
2
ky)

)
= 2iλR

(3
2
kx −

3
2
iky

)
= 3iλR(kx − iky). (5.54)

As such, the chiral p-wave form is present near k = 0.

• Rhombic lattice: The nearest neighbour vectors of the rhombic lattice may be
written a1 = a(cosθx̂+ sinθŷ and a2 = a(cosθx̂ − sinθŷ. θ = 45o corresponds
to the square lattice. The spin-orbit coupling function is

sk = 2iλR
(
e−iθ sin(kx cosθ + ky sinθ) + eiθ sin(kx cosθ − ky sinθ)

)
≈ 2iλR

(
e−iθ(kx cosθ + ky sinθ) + eiθ(kx cosθ − ky sinθ)

)
= 4iλR

(
kx cos2θ − iky sin2θ

)
. (5.55)

For θ , 45o this function is an anisotropic variant of chiral p-wave.

• Oblique and rectangular lattice: Nearest neighbour vectors are a1 = a1x̂ and
a2 = a2(cos(θ)x̂ + sin(θ)ŷ, with θ = 90o being the rectangular lattice. The
spin-orbit coupling function is

sk ≈ 2iλR
(
kx(a1 + a2 cos2θ − ia2 cosθ sinθ)

+ky(a2 cosθ sinθ − ia2 sin2θ)
)
. (5.56)

A rectangular lattice, θ = 90o, is needed in order to achieve an anistropic
chiral p-wave function.

In summary: sk can be used as a chiral p-wave pairing function for the hexagonal,
rectangular, square, and rhombic lattice. If we take the pairing function gk to be
sk for these lattices, the energy dispersion will be relativistic, and edge states are
Majorana fermions.

It is clear from (5.355.35) and (5.515.51) that the gap functions in the spin basis need
not be on the chiral p-wave form, since it is the gap-function in the diagonalized
basis that go into the energy dispersions (5.245.24) and (5.435.43). For the intraband case
(5.315.31) the structure in the spin basis, upon setting ∆α(k) = ∆0

i sk, cancels out some
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of the spin-orbit coupling functions, and the resulting structure is

HSC =
1
4

∑
k

{
c†k,↑c

†
−k,↑s

∗
k(−∆0

1 −∆
0
2) + c†k,↓c

†
−k,↓sk(∆0

1 +∆0
2)

+c†k,↑c
†
−k,↓|sk|(∆

0
1 −∆

0
2) + c†k,↓c

†
−k,↑|sk|(−∆

0
1 +∆0

2)

+H.c.
}
. (5.57)

The superconducting order parameter in the spin basis is of chiral p-wave type
for the aligned states, s∗k, while for the mixed states it is real-valued. As such,
a chiral p-wave form of the gap-function in the diagonalized band basis leads
to a chiral p-wave form in the spin basis for the aligned triplet states, and real-
valued k-dependency for the mixed state. Rashba spin-orbit coupling causes
spin-momentum locking, and in order to describe two-particle interactions we
must work in the diagonalized band basis. Consequently, the gap functions are
defined in the band basis, and their form in the spin basis will be different.

5.3 Symmetry and Topology

The full Hamiltonian with superconducting terms may now be written

H =
∑
k

ψ†k


tk sk ∆↑↑(k) ∆↑↓(k)
s∗k tk ∆↓↑(k) ∆↓↓(k)

∆†↑↑(k) ∆†↑↓(k) −tk s∗k
∆†↓↑(k) ∆†↓↓(k) sk −tk

ψk, (5.58)

with the Nambu spinor ψ†k = (c†k,↑ c
†
k,↓ c−k,↑ c−k,↓). This can be further simplified to

H =
∑
k

ψ†k

(
H0(k) ∆(k)
∆∗(k) −H0

∗(−k)

)
ψk, (5.59)

where the notation A denotes a 2x2 matrix. Let us first look at the symmetries of
the one-particle Hamiltonian, H0(k). The inversion operator, P̂ takes k→−k. For
the one-particle Hamiltonian to have inversion symmetry we require P̂H0(k)P̂ −1 =
H0(−k)[4545]. This is the same as demanding [H0(k), P̂ ] = 0. For the one-particle
system the following applies

H0(k)P̂ φk = H0(k)φ−k = ε−kφ−k (5.60)

P̂H0(k)φk = P̂ εkφk = ε−kφ−k, (5.61)

meaning that the one-particle Hamiltonian has inversion symmetry. This can
also be easily seen from the one-particle dispersion (5.145.14), ε−k = εk. Next, the
time-reversal operator, T̂ satisfies T̂H0(k)T̂ −1 = H0(−k)[4646]. This can be checked



5.3. Symmetry and Topology 41

explicitly, by noting that T̂ = iσyK̂ , where K̂ is complex conjugation. The effect of
K̂ poses the requirement then that iσyH0(k)(−iσy) = H0

∗(−k). This is fulfilled

iσyH0(k)(−iσy) =
(

0 1
−1 0

)(
tk sk
s∗k tk

)(
0 −1
1 0

)
=

(
tk −s∗k
−sk tk

)
= H0

∗(−k), (5.62)

because s−k = −sk and tk is real. As such, both inversion and time-reversal symme-
try[3333] is present for the normal state. From the form of the time-reversal operator,
T̂ 2 = −1, and since there is no particle-hole symmetry in the normal state, the
system belongs to AZ class AII, described by a Z2 topological invariant, see table
3.13.1. We now turn to the full superconducting Hamiltonian. The time-reversal
operator is now[4646]

T̂ = i(I2x2 ⊗ σy)K̂

=
(
iσy 0
0 iσy

)
K̂. (5.63)

We find

T̂H(k)T̂ −1 =


tk −s∗k ∆↓↓(k) −∆↓↑(k)
−sk tk −∆↑↓(k) ∆↑↑(k)

∆†↓↓(k) −∆†↓↑(k) −tk −sk
−∆†↑↓(k) ∆†↑↑(k) −s∗k −tk

 . (5.64)

The requirement for time-reversal symmetry, T̂H(k)T̂ −1 = H(−k)∗, holds if ∆σσ (k) =
∆∗−σ,−σ (−k) and −∆αβ(k) = ∆∗βα(−k) (β , α). These are relations connecting the gap-
functions when the spins are flipped. For the aligned triplet states we generally
have ∆↑↑(k) = −∆∗↓↓(k), see (4.644.64). This means that the gap-function for the aligned
triplet states must be odd in k in order to preserve time-reversal symmetry. On
the other hand, the requirement for the triplet mixed state is ∆↓↑(k) = −∆∗↓↑(−k),
and that of the singlet mixed state is ∆↓↑(k) = ∆∗↓↑(−k), see (4.634.63). This means that,
in order for time-reversal symmetry to be preserved, the triplet mixed state gap
function must be odd in k and real, and the singlet mixed state gap function must
be odd in k and imaginary or even in k and real. Next we check for particle-hole
symmetry. The particle-hole operator Θ̂ is[6060]

Θ̂ = (σx ⊗ I2x2)K̂

=
(

0 I2x2
I2x2 0

)
K̂ (5.65)
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and particle-hole symmetry invariance requires Θ̂H(k)Θ̂−1 = −H∗(−k). We find

Θ̂H(k)Θ̂−1 =


−tk s∗k ∆†↑↑(k) ∆†↑↓(k)
sk −tk ∆†↓↑(k) ∆†↓↓(k)

∆↑↑(k) ∆↑↓(k) tk sk
∆↓↑(k) ∆↓↓(k) s∗k tk

 . (5.66)

Particle-hole symmetry is present if ∆σσ ′ (k) = −∆σσ ′ (−k), i.e. odd in k. All of this
can be summarized as follows, with reference to table 3.13.1.

• Our one-particle system is both inversion and time-reversal symmetric. With
T̂ 2 = −1 and no particle-hole symmetry, this system is in AZ class AII, classi-
fied by a Z2 topological invariant in two dimension.

• With pairing mechanisms that break time-reversal symmetry, the system
belong to class D if particle-hole symmetry is preserved, since Θ̂2 = 1. This
class is characterized by a Z topological invariant. If particle-hole symmetry
is broken, and assuming no chiral symmetry, the system is in class A, also
characterized by a Z topological invariant.

• With pairing mechanisms that preserve both time-reversal and particle-hole
symmetry, the system belongs to class DIII, since T̂ 2 = −1 and Θ̂2 = 1. This
class is characterized by a Z2 topological invariant. Without particle-hole
symmetry, the system remains in class AII.

• Special case: Chiral p-wave pairing. This pairing is odd and imaginary, and
consequently preserves particle-hole symmetry. If the spins have the same
chirality, time-reversal symmetry is broken[2121], which puts the system in
class D. With opposite chirality, time-reversal symmetry is conserved. This
puts our system in class DIII. It is observed that for time-reversal invariancy
a triplet chiral p-wave pairing is only possible with the aligned states, as long
as the chirality of the pairs are different, i.e. satisfy ∆↑↑(k) = −∆∗↓↓(k). For a
chiral p-wave pairing in the intraband q = 0 case, (5.575.57), this is fulfilled.

These results are in accordance with [4747]. It is again emphasized that it is the
gap function in the diagonalized basis that goes into the energy dispersion, and
possibly make it relativistic, and as has been shown, transforming back to the spin
basis may lead to a different form of the gap function.
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Chapter 6

Bipartite Lattices
This chapter will go into more detail on two-dimensional bipartite lattices, con-
sisting of two sublattices, or equivalently two atoms in the basis. Firstly, the
one-particle problem consisting of nearest neighbour hopping and spin-orbit cou-
pling is presented. Next, the two-particle interaction term is investigated, and
through mean-field theory a general scheme for superconductivity in these lattices
is developed. Finally, the symmetry properties of the system are studied, in order
to evaluate the requirements on the superconducting gaps to ensure non-trivial
topological behaviour.

6.1 One-Particle Problem

b1

b2

b3

A B

Figure 6.1: The honeycomb lattice composed of sublattice A (black sites) and B (white sites),
with the three nearest neighbour vectors b1, b2 and b3 to site A.

To illustrate to a better degree we will look at as an example the honeycomb lat-
tice, perhaps the most studied bipartite lattice. The results derived are generalized
at the end of this section. The honeycomb lattice exhibits a hexagonal structure,
composed of two hexagonal sublattices A and B, see fig. 6.16.1. The distance between
a site A and nearest neighbour site B is a, which is set to unity for simplicity. Basing
ourselves on an A site, we have three nearest neighbours on the B-lattice. These
nearest neighbours are described by the following neighbour vectors

b1 = x̂ (6.1)

b2 = −1
2
x̂+

√
3

2
ŷ (6.2)

b3 = −1
2
x̂ −
√

3
2
ŷ. (6.3)
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The nearest neighbour hopping Hamiltonian is

Ht = −tNN
(∑

i

c†A,ricB,ri+b1
+
∑
i

c†A,ricB,ri+b2
+
∑
i

c†A,ricB,ri+b3
+ h.c.

)
. (6.4)

Fourier transforming to momentum space by

c†A,ri =
1
√
N

∑
k

c†A,ke
ik·ri (6.5)

cB,ri+bj =
1
√
N

∑
k

cB,ke
−ik·(ri+bj ), (6.6)

the full nearest neighbour hopping Hamiltonian is written as

Ht = −tNN
∑
k

c
†
A,kcB,k

3∑
i=1

e−ik·bi − tNN
∑
k

c
†
B,kcA,k

3∑
i=1

eik·bi . (6.7)

This can be cast in a more convenient form

Ht =
∑
k

(c
†
A,k c

†
B,k)

(
0 tk
t∗k 0

)(
cA,k
cB,k

)
. (6.8)

The matrix entry tk is given by

tk = −tNN
3∑
i=1

e−ik·bi . (6.9)

This results in the well-known energy dispersion relation for the honeycomb
lattice[6161]

E(k) = ±|tk|

= ±tNN

√
1 + 4cos

(3kx
2

)
cos

(√3ky
2

)
+ 4cos2

(√3ky
2

)
. (6.10)

A plot of this energy dispersion along the ky-axis, out to two of the six K-points,
is shown in figure 6.26.2. The K-points are the corners of the hexagonal reciprocal
lattice.

6.1.1 Spin-Orbit Coupling
Next we look at the nearest neighbour spin-orbit coupling between the sublattices.
The Rashba spin-orbit coupling Hamiltonian reads

HSOC = λR
∑
ri ,α,β

i
{
c†A,ri ,ασ

αβ
y cB,ri+b1,β + c†A,ri ,α

(
− 1

2
σ
αβ
y −

√
3

2
σ
αβ
x

)
cB,ri+b2,β

+ c†A,ri ,α
(
− 1

2
σ
αβ
y +

√
3

2
σ
αβ
x

)
cB,ri+b3,β +H.c.

}
. (6.11)
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Figure 6.2: The energy dispersion with nearest neighbour hopping for the honeycomb lattice
along the ky-axis. Because of the sublattice structure we get two energybands, meeting in
Dirac cones at the K-points, the corners of the hexagonal reciprocal lattice.

Going to momentum space results in

HSOC = λR
∑
k,α,β

i
{
c†A,k,ασ

αβ
y cB,k,βe

ik·b1 + c†A,k,α
(
− 1

2
σ
αβ
y −

√
3

2
σ
αβ
x

)
cB,k,βe

ik·b2

+ c†A,k,α
(
− 1

2
σ
αβ
y +

√
3

2
σ
αβ
x

)
cB,k,βe

ik·b3 +H.c.
}
. (6.12)

Summing over the spin indices α, β and writing out the hermitian conjugate leads
to

HSOC = λR
∑
k

i
{
− ic†A,k↑cB,k↓e

ik·b1 + ic†A,k↓cB,k↑e
ik·b1 + c†A,k↑

( i
2
−
√

3
2

)
cB,k↓e

ik·b2

+c†A,k↓
(
− i

2
−
√

3
2

)
cB,k↑e

ik·b2 + c†A,k↑
( i

2
+

√
3

2

)
cB,k↓e

ik·b3 + c†A,k↓
(
− i

2
+

√
3

2

)
cB,k↑e

ik·b3

+ic†B,k↓cA,k↑e
−ik·b1 − ic†B,k↑cA,k↓e

−ik·b1 + c†B,k↓
(
− i

2
−
√

3
2

)
cA,k↑e

−ik·b2

+c†B,k↑
( i

2
−
√

3
2

)
cA,k↓e

−ik·b2 + c†B,k↓
(
− i

2
+

√
3

2

)
cA,k↑e

−ik·b3 + c†B,k↑
( i

2
+

√
3

2

)
cA,k↓e

−ik·b3

}
.

(6.13)
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Collecting terms finally yields

HSOC = λR
∑
k

{
c†A,k↑cB,k↓

(
eik·b1 + e−i

2π
3 eik·b2 + ei

2π
3 eik·b3

)
+c†A,k↓cB,k↑

(
− eik·b1 + e−i

π
3 eik·b2 + ei

π
3 eik·b3

)
+c†B,k↑cA,k↓

(
− eik·b1 + ei

π
3 e−ik·b2 + e−i

π
3 e−ik·b3

)
+c†B,k↓cA,k↑

(
e−ik·b1 + ei

2π
3 e−ik·b2 + e−i

2π
3 e−ik·b3

)}
. (6.14)

This can be put on matrix form

HR =
∑
k

(
c†A,k↑ c

†
A,k↓ c

†
B,k↑ c

†
B,k↓

)
0 0 0 sk
0 0 −s∗−k 0
0 −s−k 0 0
s∗k 0 0 0



cA,k↑
cA,k↓
cB,k↑
cB,k↓

 . (6.15)

The spin-orbit coupling function is

sk = λR
3∑
j=1

e−iθj eik·bj , (6.16)

with θj the polar angle of nearest neighbour vector bj . The previously derived
hopping terms are independent of spin, i.e. they conserve spin, such that with
nearest neighbour hopping and Rashba spin-orbit coupling, the full equation reads

H =
∑
k

ψ†k


0 0 tk sk
0 0 −s∗−k tk
t∗k −s−k 0 0
s∗k t∗k 0 0

ψk, (6.17)

with ψ†k =
(
c†A,k↑ c

†
A,k↓ c

†
B,k↑ c

†
B,k↓

)
. This Hamiltonian equation is general for bipar-

tite lattices if we define

tk = −tNN
∑
j

eik·bj (6.18)

sk = λR
∑
j

e−iθj eik·bj . (6.19)

Diagonalizing this problem yields the eigenvaluesa

ε1,2,3,4 =
n
√

2

√
|sk|2 + |s−k|2 + 2|tk|2 +mχ (6.20)

with n = ±1 and m = ±1 and

χ =
√

(|sk|2 − |s−k|2)2 + 4(tks∗k − t
∗
ks
∗
−k)(t∗ksk − tks−k). (6.21)

aThe diagonalization was done in Wolfram Mathematica. The dispersion is in accordance with [6262].
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Figure 6.3: The energy dispersion with nearest neighbour hopping and spin-orbit coupling
(λR/tNN = 1) for the honeycomb lattice along the ky-axis. Because of the sublattice structure
we now get four energybands, and a doubling in Dirac cones.

We note in passing that χ(−k) = χ(k). The energy-dispersion with spin-orbit
coupling is shown in figure 6.36.3, for the value λR/tNN = 1. The spin-orbit coupling
lifts the degeneracy, and causes a doubling in the number of Dirac cones, shifted
away from the K-points. The transformation from the helicity band basis in which
the one-particle Hamiltonian is diagonal looks like

cA,k,↑
cA,k,↓
cB,k,↑
cB,k,↓

 =


ηk,+ ζk,− ξk ρk,+
−ηk,+ −ζk,− ξk ρk,+
−ηk,− ζk,+ −ξk −ρk,−
ηk,− −ζk,+ −ξk −ρk,−

 ·

ak,1
ak,2
ak,3
ak,4

 , (6.22)

with

ηk,α =
−2s∗−kt

∗2
k − s

∗
k(|s−k|2 − |sk|2 − 2|tk|2 +αχ)

2
√

2χ
√
|sk|2 + |s−k|2 + 2|tk|2 −αχ

(6.23)

ζk,α =
−2s−ks∗ktk + t∗k(|sk|2 + |s−k|2 +αχ)

2
√

2χ
√
|sk|2 + |s−k|2 + 2|tk|2 −αχ

(6.24)

ξk =
−tks∗k + t∗ks

∗
−k

2χ
(6.25)

ρk,α =
|s−k|2 − |sk|2 +αχ

4χ
. (6.26)
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In other words, the interaction Hamiltonian will consist of products of all four
bands. The inverse transformation is

ak,1
ak,2
ak,3
ak,4

 =


ρk,+/ηk,+ −ρk,+/ηk,+ ρk,−/ηk,− −ρk,−/ηk,−
ξk/ηk,+ −ξk/ηk,+ ξk/ηk,− −ξk/ηk,−
ζk,−/ηk,+ ζk,−/ηk,+ ζk,+/ηk,− ζk,+/ηk,−

1 1 1 1

 ·

cA,k,↑
cA,k,↓
cB,k,↑
cB,k,↓

 . (6.27)

6.2 Interaction Hamiltonian

The general on-site two-particle interaction term on the bipartite lattice reads

HI =
∑
k,k′q

Vk,k′ ,qc
†
k,↑c

†
−k+q,↓c−k′+q,↓ck′ ,↑, (6.28)

for any of the two sublattices. Carrying out the transformation to the diagonal
helicity band basis will, in line with the derivation for the single lattice (5.175.17),
generally give

HI =
∑
k,k′q

∑
αββ′α′

V
αββ′α′

k,k′ ,q a†k,αa
†
−k+q,βa−k′+q,β′ak′ ,α′ , (6.29)

where V αββ
′α′

k,k′ ,q is a tensor giving the coefficient to any given combination of the
four helicity-band operators as a function of the phases in the transformation from
the spin basis to the band basis and the pairing mechanism in the spin basis Vk,k′ ,q,
i.e.

V
αββ′α′

k,k′ ,q = Vk,k′ ,qG
αββ′α′

k,k′ ,q , (6.30)

with G
αββ′α′

k,k′ ,q a product of the phases in the transformation (6.226.22). (6.296.29) contain

all possible pairing mechanisms in the band basis. The elements in G
αββ′α′

k,k′ ,q is
dependent on the sublattice nature of the interaction, for instance if only same-
lattice interactions contribute

c†A,k,↑c
†
A,−k+q,↓cA,−k′+q,↓cA,k′ ,↑ (6.31)

or if interlattice interactions are also considered, e.g.

c†A,k,↑c
†
A,−k+q,↓cB,−k′+q,↓cB,k′ ,↑. (6.32)

Regardless of the choice, because we have four bands, Gαββ
′α′

k,k′ ,q will have 4×4×4×4 =

256 terms that will not be given here. Keep in mind however that phases in G
αββ′α′

k,k′ ,q
may cancel later transformations back to the spin basis.
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6.2.1 Intraband q=0
With intraband q = 0 terms only, the interaction term is

HI =
∑
k,k′

∑
α

V αk,k′a
†
k,αa

†
−k,αa−k′ ,αak′ ,α . (6.33)

In the mean field approach this reduces to

HI =
∑
k,k′

∑
α

V αk,k′
(
b†α(k)a−k′ ,αak′ ,α + bα(k′)a†k,αa

†
−k,α − b

†
α(k)bα(k′)

)
, (6.34)

with
bα(k) = 〈ak,αa−k,α〉. (6.35)

Going through the standard steps in the BCS-approach, and diagonalizing results
in

Ek,α =
√

(εk,α −µ)2 + |∆α(k)|2 (6.36)

∆α(k) = −
∑
k′
V αk,k′∆α(k′)

tanh(βEk′ ,α/2)
2Ek′ ,α

(6.37)

HI = −
∑
k,k′

∑
α

(
∆†α(k)a−k,αak,α +∆α(k)a†k,αa

†
−k,α −∆

†
α(k)bα(k′)

)
. (6.38)

We would now like to transform back to the spin-basis to evaluate the form of the
superconductivity, i.e. if it is singlet, triplet or both. Transforming the ∆α(k)-terms
back to the spin-basis using (6.226.22) yields

HI =
∑
k,α

{
∆α(k)(φα,∗A,k,↑c

†
A,k,↑ +φα,∗A,k,↓c

†
A,k,↓ +φα,∗B,k,↑c

†
B,k,↑ +φα,∗B,k,↓c

†
B,k,↓)

·(φα,∗A,−k,↑c
†
A,−k,↑ +φα,∗A,−k,↓c

†
A,−k,↓ +φα,∗B,−k,↑c

†
B,−k,↑ +φα,∗B,−k,↓c

†
B,−k,↓)

+∆†α(k)(φαA,−k,↑cA,−k,↑ +φαA,−k,↓cA,−k,↓ +φαB,−k,↑cB,−k,↑ +φαB,k,↓cB,−k,↓)

·(φαA,k,↑cA,k,↑ +φαA,k,↓cA,k,↓ +φαB,k,↑cB,k,↑ +φαB,−k,↓cB,k,↓)
}
. (6.39)

The φ-amplitudes are here defined as the phase in the transformation (6.276.27) for
the given operator. Summing over α = 1,2,3,4 yields

HI =
∑
k

{
∆A,A,↑,↑c

†
A,k,↑c

†
A,−k,↑ +∆A,A,↓,↓c

†
A,k,↓c

†
A,−k,↓ +∆A,A,↑,↓c

†
A,k,↑c

†
A,−k,↓

+∆A,A,↓,↑c
†
A,k,↓c

†
A,−k,↑ +∆B,B,↑,↑c

†
B,k,↑c

†
B,−k,↑ +∆B,B,↓,↓c

†
B,k,↓c

†
B,−k,↓

+∆B,B,↑,↓c
†
B,k,↑c

†
B,−k,↓ +∆B,B,↓,↑c

†
B,k,↓c

†
B,−k,↑ +∆A,B,↑,↑c

†
A,k,↑c

†
B,−k,↑

+∆A,B,↓,↓c
†
A,k,↓c

†
B,−k,↓ +∆A,B,↑,↓c

†
A,k,↑c

†
B,−k,↓ +∆A,B,↓,↑c

†
A,k,↓c

†
B,−k,↑

+∆B,A,↑,↑c
†
B,k,↑c

†
A,−k,↑ +∆B,A,↓,↓c

†
B,k,↓c

†
A,−k,↓ +∆B,A,↑,↓c

†
B,k,↑c

†
A,−k,↓

+∆B,A,↓,↑c
†
B,k,↓c

†
A,−k,↑ +H.c

}
. (6.40)
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The gaps in the spin-basis are

∆A,A,↑,↑ = ∆A,A,↓,↓ = ∆1(k)
ρ∗−k,+ρ

∗
k,+

η∗−k,+η
∗
k,+

+∆2(k)
ξ∗−kξ

∗
k

η∗−k,+η
∗
k,+

+∆3(k)
ζ∗−k,−ζ

∗
k,−

η∗−k,+η
∗
k,+

+∆4(k)

∆A,A,↑,↓ = ∆A,A,↓,↑ = −∆1(k)
ρ∗−k,+ρ

∗
k,+

η∗−k,+η
∗
k,+
−∆2(k)

ξ∗−kξ
∗
k

η∗−k,+η
∗
k,+

+∆3(k)
ζ∗−k,−ζ

∗
k,−

η∗−k,+η
∗
k,+

+∆4(k)

∆B,B,↑,↑ = ∆B,B,↓,↓ = ∆1(k)
ρ∗−k,−ρ

∗
k,−

η∗−k,−η
∗
k,−

+∆2(k)
ξ∗−kξ

∗
k

η∗−k,−η
∗
k,−

+∆3(k)
ζ∗−k,+ζ

∗
k,+

η∗−k,−η
∗
k,−

+∆4(k)

∆B,B,↑,↓ = ∆B,B,↓,↑ = −∆1(k)
ρ∗−k,−ρ

∗
k,−

η∗−k,−η
∗
k,−
−∆2(k)

ξ∗−kξ
∗
k

η∗−k,−η
∗
k,−

+∆3(k)
ζ∗−k,+ζ

∗
k,+

η∗−k,−η
∗
k,−

+∆4(k)

∆A,B,↑,↑ = ∆A,B,↓,↓ = ∆1(k)
ρ∗−k,+ρ

∗
k,−

η∗−k,+η
∗
k,−

+∆2(k)
ξ∗−kξ

∗
k

η∗−k,+η
∗
k,−

+∆3(k)
ζ∗−k,−ζ

∗
k,+

η∗−k,+η
∗
k,−

+∆4(k)

∆A,B,↑,↓ = ∆A,B,↓,↑ = −∆1(k)
ρ∗−k,+ρ

∗
k,−

η∗−k,+η
∗
k,−
−∆2(k)

ξ∗−kξ
∗
k

η∗−k,+η
∗
k,−

+∆3(k)
ζ∗−k,−ζ

∗
k,+

η∗−k,+η
∗
k,−

+∆4(k)

∆B,A,↑,↑ = ∆B,A,↓,↓ = ∆1(k)
ρ∗−k,−ρ

∗
k,+

η∗−k,−η
∗
k,+

+∆2(k)
ξ∗−kξ

∗
k

η∗−k,−η
∗
k,+

+∆3(k)
ζ∗−k,+ζ

∗
k,−

η∗−k,−η
∗
k,+

+∆4(k)

∆B,A,↑,↓ = ∆B,A,↓,↑ = −∆1(k)
ρ∗−k,−ρ

∗
k,+

η∗−k,−η
∗
k,+
−∆2(k)

ξ∗−kξ
∗
k

η∗−k,−η
∗
k,+

+∆3(k)
ζ∗−k,+ζ

∗
k,−

η∗−k,−η
∗
k,+

+∆4(k).

(6.41)

∆i,j,σ ,σ ′ = ∆i,j,σ ′ ,σ for all sublattice combinations indicate a triplet nature, and both
the mixed and the aligned states are present. From the inverse transformation
(6.276.27) it is seen that mixing of bands 1,2 and 3,4 is needed for a singlet character,
i.e. interband pairing. The phases in ∆i,j,σ ,σ ′ might cancel against phases in ∆α(k)

stemming from G
αββ′α′

k,k′ ,q in (6.306.30). Assuming an even k-dependence of the ∆α(k),
the following properties are noticed for the mixed sublattice combinations by
looking at (6.236.23)-(6.266.26),

∆A,B,↑,↑(k) = ∆A,B,↓,↓(k) = ∆B,A,↑,↑(−k) = ∆B,A,↓,↓(−k) (6.42)

∆A,B,↑,↓(k) = ∆A,B,↓,↑(k) = ∆B,A,↑,↓(−k) = ∆B,A,↓,↑(−k). (6.43)

This is reminiscent of a singlet character between mixed sublattice operators. If
the k-dependence of the ∆α(k) is odd, a triplet character between mixed sublattice
operators is present

∆A,B,↑,↑(k) = ∆A,B,↓,↓(k) = −∆B,A,↑,↑(−k) = −∆B,A,↓,↓(−k) (6.44)

∆A,B,↑,↓(k) = ∆A,B,↓,↑(k) = −∆B,A,↑,↓(−k) = −∆B,A,↓,↑(−k). (6.45)

6.2.2 Interband q = 0

Once again, the pairing where the initial and final pairs are in different bands could
be considered. Instead of going through the rather tedious exercise of writing out
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phases and gap equations, we can draw on the results in the case of Bravais lattices
and the structure of the transformation (6.276.27). First of all, the superconducting
interaction Hamiltonian will be

Hinterband
SC =

∑
k

∑
α

(
∆†α(k)a−k,αak,α +∆α(k)a†k,αa

†
−k,α −∆

†
αbα(k)

)
, (6.46)

with bα(k) = 〈ak,αa−k,α〉, and the coupled gap equations

∆α(k) =
∑
k′

∑
β,α

Vk,k′G
ααββ
k,k′ ∆β(k′)χ(Ek′ ,β), (6.47)

with the energy dispersion

E±k,α = ±
√

(εk,α −µ)2 + |∆α(k)|2. (6.48)

The spin structure of all this will be the exact same as in the intraband case,
only with these new coupled ∆α(k) replacing the ones in (6.416.41). The exact band-
dependence of Gααββk,k′ will determine if there is any cancellation of phase functions.

6.2.3 Chiral p-wave pairing
The Bravais lattice model allowed writing the chiral p-wave pairing by the spin-
orbit coupling function sk in a straight-forward fashion. This is not the case
in the bipartite lattice, due to the non-trivial dependency of the one-particle
dispersion (6.206.20) on the hopping and spin-orbit coupling function. No easy-to-find
combination of the spin-orbit coupling functions behave as chiral p-wave around
the momenta where the one-particle dispersion is equal to zero. Therefore, the
choice rather falls on expanding the gap function in the basis functions of the
irreducible representations of the symmetry group[5454]

∆(k) =
di∑
λ=1

ηλξ
i
λ(k). (6.49)

The gap function may always be put together to have a chiral p-wave form, by
adjusting the complex coefficients ηλ to suit the basis functions ξ iλ(k). Basis
functions for common lattice symmetry groups can be found in the literature[6363].
The structure of the gaps in the spin basis have the form

∆i,j,σ ,σ ′ (k) =
∑
α

∆α(k)φαi,j,σ ,σ ′ (k), (6.50)

With the φ-amplitudes given by the inverse transformation. Assuming that ∆α(k)
(6.476.47) can be expanded as to have a chiral p-wave form close to momenta where
the one-particle dispersion is zero, the gap function may be written

∆α(k) = ∆0
αgk. (6.51)
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gk will now be a product of k-dependent functions arising from G
ααββ
k,k′ and Vk,k′ ,

which together forms a function that behaves as chiral p-wave around zeroes in
εk,α . From (6.506.50) it is clear that the spin structure of the gaps need not exhibit
the chiral p-wave behaviour, because of the k-dependency of the φ-amplitudes.
As such, the same conclusion can be drawn as for the Bravais lattice case. The
spin-momentum locking caused på spin-orbit coupling forces the two-particle
interactions to be defined in the diagonalized band basis, and the structure in the
spin-basis will be different.

6.3 Symmetry and Topology

Let us analyze the symmetries of the one-particle bipartite Hamiltonian. It is
known that the system with hopping only has both parity and time-reversal sym-
metry, particularly in the honeycomb case[2121]. Let us check the effect of spin-orbit
coupling. The parity operator is[4545]

P̂ = σx ⊗ I2x2 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 . (6.52)

Inversion symmetry demands P̂H0(k)P̂ −1 = H0(−k). The notation A denotes a 4x4

matrix. With H0(k) from (6.176.17) the result is

P̂H0(k)P̂ −1 =


0 0 t∗k −s−k
0 0 s∗k t∗k
tk sk 0 0
−s∗−k tk 0 0

 . (6.53)

Since t−k = t∗k, inversion symmetry is present if sk = 0, i.e. spin-orbit coupling
breaks inversion symmetry. Let us next check time-reversal symmetry with spin-
orbit coupling. The time-reversal operators is

T̂ = i(I2x2 ⊗ σy)K̂ =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 K̂, (6.54)

where complex conjugation, K̂ , demands T̂H0(k)T̂ −1 = H0(−k)∗. Applying this

relation to the one-particle Hamiltonian yields

T̂H0(k)T̂ −1 =


0 0 tk s∗−k
0 0 −sk tk
t∗k −s∗k 0 0
s−k t∗k 0 0


= H0(−k)∗. (6.55)
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As such, time-reversal is preserved with the addition of spin-orbit coupling. With
no particle-hole symmetry in the one-particle Hamiltonian, and T̂ 2 = −1 we are in
AZ class AII, characterized by a Z2 topological invariant. Let us next look at the
full superconducting Hamiltonian for the bipartite lattice

H(k) =



0 0 tk sk ∆A,A,↑,↑ ∆A,A,↑,↓ ∆A,B,↑,↑ ∆A,B,↑,↓
0 0 −s∗−k tk ∆A,A,↓,↑ ∆A,A,↓,↓ ∆A,B,↓,↑ ∆A,B,↓,↓
t∗k −s−k 0 0 ∆B,A,↑,↑ ∆B,A,↑,↓ ∆B,B,↑,↑ ∆B,B,↑,↓
s∗k t∗k 0 0 ∆B,A,↓,↑ ∆B,A,↓,↓ ∆B,B,↓,↑ ∆B,B,↓,↓

∆†A,A,↑,↑ ∆†A,A,↑,↓ ∆†A,B,↑,↑ ∆†A,B,↑,↓ 0 0 −tk −s∗−k
∆†A,A,↓,↑ ∆†A,A,↓,↓ ∆†A,B,↓,↑ ∆†A,B,↓,↓ 0 0 sk −tk
∆†B,A,↑,↑ ∆†B,A,↑,↓ ∆†B,B,↑,↑ ∆†B,B,↑,↓ −t∗k s∗k 0 0
∆†B,A,↓,↑ ∆†B,A,↓,↓ ∆†B,B,↓,↑ ∆†B,B,↓,↓ −s−k −t∗k 0 0


,

(6.56)

The Nambu spinor is now ψ†k =
(
c†A,k,↑ c

†
A,k,↓ c

†
B,k,↑ c

†
B,k,↓ cA,−k,↑ cA,−k,↓ cB,−k,↑ cB,−k,↓

)
.

This can be compactified to

H(k) =

H0(k) ∆(k)

∆∗(−k) −H0
∗(−k)

 . (6.57)

Analogous to the 4x4 Bravais lattice case, we take the time-reversal and particle-
hole symmetry operators to be

T̂ = i(I4x4 ⊗ σy)K̂ (6.58)

Θ̂ = (σx ⊗ I4x4)K̂. (6.59)

This form on the operators ensures time-reversal and particle-hole symmetry of
the one-particle part of the full Hamiltonian, H0(k). Applying the time-reversal

symmetry operator on (6.566.56) results in

T̂H(k)T̂ −1

=



0 0 tk s∗−k ∆A,A,↓,↓ −∆A,A,↓,↑ ∆A,B,↓,↓ −∆A,B,↓,↑
0 0 −sk tk −∆A,A,↑,↓ ∆A,A,↑,↑ −∆A,B,↑,↓ ∆A,B,↑,↑
t∗k −s∗k 0 0 ∆B,A,↓,↓ −∆B,A,↓,↑ ∆B,B,↓,↓ −∆B,B,↓,↑
s−k t∗k 0 0 −∆B,A,↑,↓ ∆B,A,↑,↑ −∆B,B,↑,↓ ∆B,B,↑,↑

∆†A,A,↓,↓ −∆†A,A,↓,↑ ∆†A,B,↓,↓ −∆†A,B,↓,↑ 0 0 −tk −sk
−∆†A,A,↑,↓ ∆†A,A,↑,↑ −∆†A,B,↑,↓ ∆†A,B,↑,↑ 0 0 s∗−k −tk
∆†B,A,↓,↓ −∆†B,A,↓,↑ ∆†B,B,↓,↓ −∆†B,B,↓,↑ −t∗k s−k 0 0
−∆†B,A,↑,↓ ∆†B,A,↑,↑ −∆†B,B,↑,↓ ∆†B,B,↑,↑ −sk −t∗k 0 0


,

(6.60)

The constraints on the gap functions in order to satisfy time-reversal symmetry
are for the aligned states, ∆i,j,σ ,σ (k) = ∆∗i,j,−σ,−σ (−k), and for the mixed states
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−∆i,j,α,β(k) = ∆∗i,j,β,α(−k) (β , α). Clearly, the constraints are the same as for the
Bravais lattice case. Under the particle-hole symmetry operator the Hamiltonian
transforms as

Θ̂H(k)Θ̂−1

=



0 0 −tk −s∗−k ∆†A,A,↑,↑ ∆†A,A,↑,↓ ∆†A,B,↑,↑ ∆†A,B,↑,↓
0 0 sk −tk ∆†A,A,↓,↑ ∆†A,A,↓,↓ ∆†A,B,↓,↑ ∆†A,B,↓,↓
−t∗k −s∗k 0 0 ∆†B,A,↑,↑ ∆†B,A,↑,↓ ∆†B,B,↑,↑ ∆†B,B,↑,↓
s−k −t∗k 0 0 ∆†B,A,↓,↑ ∆†B,A,↓,↓ ∆†B,B,↓,↑ ∆†B,B,↓,↓

∆A,A,↑,↑ ∆A,A,↑,↓ ∆A,B,↑,↑ ∆A,B,↑,↓ 0 0 tk sk
∆A,A,↓,↑ ∆A,A,↓,↓ ∆A,B,↓,↑ ∆A,B,↓,↓ 0 0 −s∗−k tk
∆B,A,↑,↑ ∆B,A,↑,↓ ∆†B,B,↑,↑ ∆B,B,↑,↓ t∗k −s−k 0 0
∆B,A,↓,↑ ∆B,A,↓,↓ ∆B,B,↓,↑ ∆B,B,↓,↓ s∗k t∗k 0 0


,

(6.61)

Again, the same requirements on the gaps are found for particle-hole symmetry as
in the Bravais lattice case, namely ∆i,j,σ ,σ ′ (k) = −∆i,j,σ ,σ ′ (−k). This translates to an
odd k-dependence of the gap functions.

In conclusion: The same time-reversal and particle-hole symmetry properties
of the one-particle Hamiltonian is found as in the Bravais lattice case. As opposed
to the Bravais lattice case, spin-orbit coupling breaks inversion symmetry. Par-
ity, however, does not directly affect the topological classification. In addition,
the same requirements on the gaps arise from these two symmetries when the
superconducting terms are considered.
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Chapter 7

Conclusion
This thesis has presented and derived the diagonalization of the one-particle prob-
lem consisting of nearest neighbour hopping and Rashba spin-orbit coupling in
Bravais and bipartite lattices. A general interaction Hamiltonian has been studied
in these systems through mean-field theory, resulting in superconducting terms. In
the diagonalized basis, inter- and intraband pairings have been studied under the
condition that there is no momentum transfer in the scattering process. This has
allowed for a study of the spin-structure for these pairing mechanisms. The main
focus has been on a chiral p-wave pairing, which is shown to lead to a relativistic
energy dispersion, and Majorana fermion edge states. For many of the Bravais
lattices, the spin-orbit coupling function may be used as the chiral p-wave pairing
function. For the bipartite lattices the chiral p-wave pairing function is constructed
from basis functions of the irreducible representations of the symmetry group. An
important result of this thesis is that it is the superconducting gap in the diagonal-
ized basis that need to be on a chiral p-wave form in order to ensure this. This is
because of spin-momentum locking caused by the Rashba spin-orbit coupling. The
form of the superconducting gap in the spin basis does not necessarily have to be
on a chiral p-wave form. Next, important symmetry properties of the Hamiltonian
matrices, both with and without superconducting terms have been derived, and
from these, a topological classification is put forth. Symmetry restrictions has led
to requirements on the pairing functions in order to achieve non-trivial topological
phases, thus ensuring the existence of gapless edge states.

Possible future work includes, but is not limited to, expanding from one orbital to
several, and to look at three-dimensional lattice models. One could also add mag-
netism to the systems, and investigate how it affects the spin structure of the pair-
ings. A more immediate task is considering in more detail the finite-momentum
interband scatterings, and the resulting gap functions and spin structure.
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Appendix A

Example Code
What follows is a simplified script written in Python, exemplifying the methods
used to plot energybands. Two methods are pesented; solving the Hamiltonian
numerically, and a simple expressional implementation based on the results of this
thesis. Both, of course, produce the same results. This script is for the honeycomb
lattice, and comments and descriptions follow throughout. Functions for saving a
figure, labeling axes, adding text to plots, or other non-essential functionalities are
omitted.

1 import numpy as np

2 import matplotlib.pyplot as plt

3 import scipy

4

5 #Number of discrete points in momentum space

6 Nx=1000

7 Ny=1000

8

9 #Energy parameters

10 tNN=1 #Nearest neighbor hopping energy

11 lambdaR=1 #Nearest neighbor spin-orbit coupling energy

12

13 #Nearest neighbor vector components, assuming a=1

14 b1x=1

15 b1y=0

16 b2x=-0.5

17 b2y=0.5*np.sqrt(3)

18 b3x=-0.5

19 b3y=-0.5*np.sqrt(3)

20

21 #Momentum space

22 kx=np.linspace(-np.pi,np.pi,Nx)

23 ky=np.linspace(-np.pi,np.pi,Ny)

24 KX, KY = np.meshgrid(kx,ky)

25

26

27 #Initialize energy eigenvalue arrays

28 Eval1=np.zeros((Nx,Ny))

29 Eval2=np.zeros((Nx,Ny))

30 Eval3=np.zeros((Nx,Ny))
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31 Eval4=np.zeros((Nx,Ny))

32

33 #Function that takes in tNN, lambdaR and calculates energy

eigenvalues from the Hamiltonian matrix.

34 def energy_honeycomb(tNN,sNN):

35 #Loop over discretized k-space and calculate

eigenvalues and eigenvectors of our system

36 for m in range(0,Ny):

37 for n in range(0,Nx):

38 #Matrix elements of the Hamiltonian

39 t=-tNN*(np.exp(1j*(kx[n]*b1x+ky[m]*b1y))+np.

exp(1j*(kx[n]*b2x+ky[m]*b2y))+np.exp(1j*(kx[n]*b3x+ky[

m]*b3y)))

40

41 s_plus=lambdaR*(np.exp(1j*(kx[n]*b1x+ky[m]*b1y

))+np.exp(1j*np.pi/3)*np.exp(1j*(kx[n]*b2x+ky[m]*b2y))

+np.exp(-1j*np.pi/3)*np.exp(1j*(kx[n]*b3x+ky[m]*b3y)))

42

43 s_minus=lambdaR*(-np.exp(1j*(kx[n]*b1x+ky[m]*
b1y))+np.exp(1j*2*np.pi/3)*np.exp(1j*(kx[n]*b2x+ky[m]*
b2y))+np.exp(-1j*2*np.pi/3)*np.exp(1j*(kx[n]*b3x+ky[m

]*b3y)))

44

45 #Hamiltonian matrix

46 H=np.array([[0,0,t,s_plus],[0,0,-np.conjugate(

s_minus),t],[np.conjugate(t),-s_minus,0,0],[np.

conjugate(s_plus),np.conjugate(t),0,0]])

47

48 #Solve for the eigenvalues of the Hamiltonian

matrix

49 Evals=scipy.linalg.eigh(H, eigvals_only=True)

50

51 Eval1[n,m]=Evals[0]

52 Eval2[n,m]=Evals[1]

53 Eval3[n,m]=Evals[2]

54 Eval4[n,m]=Evals[3]

55 return Eval1,Eval2,Eval3,Eval4

56

57 #Alternative function that simply calculates the energy

eigenvalues from the calculated expressions

58 def energy_honeycomb_exp(tNN,lambdaR):

59 #Loop over discretized k-space and calculate

eigenvalues and eigenvectors of our system

60 for m in range(0,Ny):

61 for n in range(0,Nx):



59

62 #Matrix elements of the Hamiltonian

63 t=-tNN*(np.exp(1j*(kx[n]*b1x+ky[m]*b1y))+np.

exp(1j*(kx[n]*b2x+ky[m]*b2y))+np.exp(1j*(kx[n]*b3x+ky[

m]*b3y)));

64 s_plus=lambdaR*(np.exp(1j*(kx[n]*b1x+ky[m]*b1y

))+np.exp(1j*np.pi/3)*np.exp(1j*(kx[n]*b2x+ky[m]*b2y))

+np.exp(-1j*np.pi/3)*np.exp(1j*(kx[n]*b3x+ky[m]*b3y)))

65 s_minus=lambdaR*(-np.exp(1j*(kx[n]*b1x+ky[m]*
b1y))+np.exp(1j*2*np.pi/3)*np.exp(1j*(kx[n]*b2x+ky[m]*
b2y))+np.exp(-1j*2*np.pi/3)*np.exp(1j*(kx[n]*b3x+ky[m

]*b3y)))

66

67 chi=np.sqrt((s_plus*np.conjugate(s_plus)-

s_minus*np.conjugate(s_minus))**2+4*(t*np.conjugate(

s_plus)-np.conjugate(t)*np.conjugate(s_minus))*(np.

conjugate(t)*s_plus-t*s_minus))

68

69

70 Eval1[n,m]=np.sqrt(2*tp*np.conjugate(t)+s_plus

*np.conjugate(s_plus)+s_minus*np.conjugate(s_minus)+

chi)*1/np.sqrt(2)

71 Eval2[n,m]=np.sqrt(2*tp*np.conjugate(t)+s_plus

*np.conjugate(s_plus)+s_minus*np.conjugate(s_minus)-

chi)*1/np.sqrt(2)

72 Eval3[n,m]=-np.sqrt(2*tp*np.conjugate(t)+

s_plus*np.conjugate(s_plus)+s_minus*np.conjugate(

s_minus)+chi)*1/np.sqrt(2)

73 Eval4[n,m]=-np.sqrt(2*tp*np.conjugate(t)+

s_plus*np.conjugate(s_plus)+s_minus*np.conjugate(

s_minus)-chi)*1/np.sqrt(2)

74 return Eval1,Eval2,Eval3,Eval4

75

76 #Call on the energy eigenvalue function (change to

energy_honeycomb_exp(tNN,lambdaR) for expressional

version)

77 Eval1,Eval2,Eval3,Eval4=energy_honeycomb(tNN,lambdaR)

78

79 #Block for plotting a 3D surface plot of the energy

eigenvalues of all four bands

80 plt.figure()

81 ax = plt.gca(projection=’3d’)

82 surf = ax.plot_surface(KX, KY, Eval1)

83 surf = ax.plot_surface(KX, KY, Eval2)

84 surf = ax.plot_surface(KX, KY, Eval3)

85 surf = ax.plot_surface(KX, KY, Eval4)
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86 plt.colorbar(surf, shrink=0.5, aspect=5)

87

88 #Block for plotting the energy dispersion along the k_y-

axis

89 plt.figure()

90 E1_band=[];

91 E2_band=[];

92 E3_band=[];

93 E4_band=[];

94 for j in range(0,Ny):

95 E1_band.append(Eval1[Nx/2,j]);

96 E2_band.append(Eval2[Nx/2,j]);

97 E3_band.append(Eval3[Nx/2,j]);

98 E4_band.append(Eval4[Nx/2,j]);

99 plt.plot(ky,E1_band,’k’,ky,E2_band,’k’,ky,E3_band,’k’,ky,

E3_band,’k’)
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