
Developing Software Quality in KBE
Implementations

Lars Feiring Barlindhaug

Master of Science in Engineering and ICT

Supervisor: Ole Ivar Sivertsen, IPM
Co-supervisor: Geir Iversen, Aker Solutions KBeDesign

Department of Engineering Design and Materials

Submission date: June 2012

Norwegian University of Science and Technology

THE NORWEGIAN UNIVERSITY
OF SCIENCE AND TECHNOLOGY
DEPARTMENT OF ENGINEERTNG DESIGN
ANI) MATERIALS

MASTER THESIS SPRING 2012
FOR

STUD.TECHN. EARS BARLINDHAUG

DEVELOPING SOFTWARE QUALITY IN KBE IMPLEMENTATIONS
Videreutvikling av programvarekvalitet I KBE-implementationer

Knowledge Based Engineering (KBE) is a software technology that enables companies to

significantly improve their competitive edge in design and engineering, both in large and small

projects. It allows design rules and experience from previous projects to he reused in novel cases.

AML (Adaptive Modeling Language) is a programming language and development environment for

KBE applications.

AUnit. a tool supporting testing practises for AML was developed in the candidate’s project
assignment last fall. To affect actual improvement, the tool and related practises must he
implemented in the standard practises of AML development teams.

The assignment includes:

I. Expand the AUnit framework to the point where it is a practical and easy-to-use tool
that can he a natural part of AML development teams’ standard practises.

2. Introduce AUnit and related practises to AML development teams
a. Study best practises for software testing, including Continuous Integration and

Test-driven development.
h. Create supportive and introductory material to aid the adoption ol testing

practises related to AUnit. For example a “get started” manual or an

introductory training for a development team. Justify the selected approach.
c. Pilot AUnit in a real life environment

The thesis should he written as a research report with summary both in English and
Norwegian, conclusion, literature references, table of contents, etc. l)uring preparation of the
text, the candidate should make eflbrts to create a well arranged and well written report. To
ease the evaluation of the thesis, it is important to cross—reference text, tables and Igures. For
evaluation of the work a thorough discussion of results is appreciated.

Three weeks after start at the thesis work, an A3 sheet illustrating the work is to he handed in.
A template for this presentation is available on the [PM’s web site under the menu
“Undervisning”. This sheet should he updated when the Master’s thesis is submitted.

The thesis shall he submitted as two paper versions. One electronic version is also reqtiested
on a CL) or a l)VD, as a pdf-file.

The contact persons are:
From 1PM: Qazi Sohail Ahniad

Ole Ivar Sivertsen

From industry: Geir Iversen (Aker So! utions)
geir.iversen@akersolutions.com

Torgeir Web Ole Ivar Sivertsen
Head of Division Professor/S upervi SOf

wrNu
Norgesteknisk.
naturvitenskapclige universft

T ituU for produktttvW!isr
r’!rcr, er

Abstract

The report is written to show as to what extent test-driven development (TDD)
and continuous integration (CI) can be used on KBE models and how a unit testing
framework for KBE models can be developed.

Test-driven development (TDD) and continuous integration (CI) has changed the
way software is tested. Software testing was often a separate process at the end
of a project. It is now being worked on during the entire development period.
TDD and CI relies on unit tests. Unit tests are done by dividing the code into
the smallest possible units and testing each of them independently. This master’s
thesis asks how these practices can be used for testing knowledge based engineering
(KBE) models.

A unit testing framework for the Adaptive Modeling Language (AML), AUnit, has
been developed. It is explained in detail and an introductory guide to using AUnit
for testing KBE models in AML is included. AUnit was used to perform TDD and
CI on different KBE models, both creating new models and testing existing ones.

Testing KBE models differ to a large degree from testing regular object-oriented
software. Different approaches for unit testing and TDD has been performed on
several KBE models. It was concluded that the basic attributes in KBE models
cannot be unit tested in a sensible way. This includes adding any superclasses
and simple parameters like height and width. Without including these attributes,
unit testing cannot fully be performed on KBE models using AUnit. However, the
models can highly benefit from having unit tests for the logic in the model, which
is where the most severe bugs will be. When the attributes are implemented in
the model, test-driven development (TDD) can be performed on the models.

Automatic continuous integration (CI) has been performed on a KBE model and
the basic principles of CI have been accounted for. CI for KBE models does not
differ much from other software projects, so its focus is reduced.

iii

iv

Sammendrag

Denne rapporten er skrevet for å vise hvordan test-drevet utvikling (test-driven
development, TDD) og kontinuerlig integrasjon (continuous integration, CI) kan
brukes for å teste kunnskapsbaserte engineering modeller (knowledge based engi-
neering models, KBE) og hvordan et enhetstestingsrammeverk for KBE modeller
kan utvikles.

Test-drevet utvikling (TDD) og kontinuerlig integrasjon (CI) er nye måter å teste
programvare på. Testing av programvare var tidligere en separat prosess på slutten
av prosjektet. Nå blir det jobbet med under hele utviklingsperioden. TDD og CI
er avhengig av enhetstester, enhetstester lages ved å dele koden opp i små enheter
og teste de hver for seg. Denne masteroppgaven ønsker å finne ut hvordan TDD og
CI kan brukes for a teste kunnskapsbaserte engineering modeller (KBE modeller).

AUnit er et enhetstestingsrammeverk for Adaptive Modeling Language (AML)
som har blitt utviklet av forfatteren. Det er beskrevet i detalj og en introduksjon-
sguide som forklarer hvordan man kan teste KBE modeller er inkludert. AUnit
ble brukt til å utføre TDD og CI på forskjellige KBE modeller, både nye modeller
og eksisterende.

Å teste KBE modeller er i stor grad forskjellig fra å teste vanlig, objekt-orientert,
programvare. Forskjellige fremgangsmåter har blitt utført på flere KBE modeller.
Det har blitt konkludert med at man ikke kan enhetsteste de mest grunnleggende
attributtene i KBE modeller på en fornuftig måte. Dette inkluderer superklasser
modellen arver fra og enkle parametere som for eksempel høyde og bredde. Selv
om KBE modeller ikke kan fullstendig enhetstestes med AUnit, kan de dra stor
nytte av å ha enhetstester for logikken i modellen, som er der de mest alvorlige
feilene inntreffer. Når disse attributtene er på plass i modellen kan man utføre
test-drevet utvikling (TDD).

Automatiserte kontinuerlig integrasjonstester (CI) har blitt utført på en KBE mod-
ell og prinsippene bak CI er blitt redegjort for. CI for KBE modeller fungerer
ganske likt som for andre software systemer, så fokuset på CI i denne oppgaven er
redusert.

v

vi

Contents

Abstract iii

Sammendrag v

Preface ix

Acronyms xi

Glossary xiii

List of Figures xvii

1 Introduction 1
1.1 Motivation . 2
1.2 Research questions . 3
1.3 Related work . 4
1.4 Structure . 4

2 Test-Driven Development 5
2.1 TDD Principles . 6
2.2 Usefulness of TDD . 7

3 Continuous Integration 9
3.1 Continuous Integration build process 10
3.2 Continuous integration in practice 13
3.3 Developing KBE-models . 14

4 Getting started with AUnit 17
4.1 Writing a unit test . 17
4.2 Working the AUnit GUI . 18
4.3 Using AUnit from the command line 19
4.4 Other AUnit uses . 20

vii

5 Unit testing KBE models 21
5.1 Challenges . 21
5.2 Testing approaches . 23
5.3 Testing examples . 27
5.4 Testing at Aker Solutions KBeDesign 45

6 AUnit 47
6.1 Overall structure . 48
6.2 Core . 48
6.3 GUI . 49
6.4 Print . 53

7 Results and discussion 55
7.1 Unit testing KBE models and test-driven development 55
7.2 Unit testing at Aker Solutions KBeDesign 59
7.3 Continuous integration . 59
7.4 AUnit . 60

8 Conclusion 63
8.1 Further work . 64

Bibliography 65

A Introduction to AML 69

B Software testing 75

C AUnit Reference 79

D TDD approaches 83

E AUnit source code 91

F Bottle KBE model 135

G Beam KBE model 139

H Bookshelf KBE model 143

I Luva Spar test code 163

viii

Preface

This thesis marks the completion of my Master of Science degree in Engineering
and ICT from the Department of Engineering Design and Material (IPM) at Nor-
wegian University of Science and Technology (NTNU). It is a continuation of the
work I did on my project report [7] in 2011.

The report is written to show as to what extent test-driven development and con-
tinuous integration can be used on KBE models and how a unit testing framework
for KBE models can be developed.

I would like to thank Professor Ole Ivar Sivertsen and Qazi Sohail Ahmad from
IPM for great help and inspiration. I would like to thank all the team members
at Aker Solutions KBeDesign, especially Geir Iversen, for all the help and sup-
port. I would also like to thank TechnoSoft Inc. (TSI) for granting me an AML
development license for this work.

ix

x

Acronyms

AI Artificial Intelligence.

AML Adaptive Modeling Language.

CAD computer aided design.

CI continuous integration.

CLI command line interface.

GUI graphical user interface.

JVM Java Virtual Machine.

KBE knowledge based engineering.

SWEBOK Software Engineering Body of Knowledge.

TDD test-driven development.

TSI TechnoSoft Inc..

VCS version control system.

xi

xii

Glossary

AUnit
AUnit is a unit testing framework for testing KBE models written in AML.
Unit testing frameworks are usually referred to as xUnit systems. A conven-
tion for language specific systems is to replace the x with the first letter in
the language, so there is JUnit for Java and NUnit for .NET. For AML the
testing framework is therefore named AUnit.

Knowledge Based Engineering

AML
The Adaptive Modeling Language [57] is a programming language developed
by TechnoSoft Inc. (TSI) that is used to create KBE models. An introduction
to AML can be found in appendix A.

KBeDesign
KBeDesign [29] is a department under the Aker Engineering & Technology [2]
subdivision of Aker Solutions which creates KBE product models which are
used internally in many of Aker Solutions’ projects.

Technosoft Inc.
TechnoSoft Inc. (TSI) [58] is the software company that develops and sells
AML.

Engineering

Computer aided design (CAD)
Computer aided design is the use of computers to aid in the development,
change and analysis of a design [41].

xiii

Computer Science

Data type
A data type is set to describe what kind of data a variable contains. For
example if the data type is set to an integer the variable holds whole numbers
or the boolean data type is used for true/false values.

Dynamically typed languages
Dynamically typed languages like AML does not set the data type directly
in the code. Instead, the program is allowed to change data types after it is
compiled.

eXtreme Programming (XP)
Extreme programming is a software methodology that focuses on short de-
velopment cycles and frequent releases. This results in responsive software
projects where it is easier to adapt to new requirements [9].

Lisp
Lisp’s name is derived from LISt Processing. Lists are one of the fundamental
data structures in Lisp. It was developed by John McCarthy at MIT in
1958 [64].

Common Lisp
Common Lisp is an effort to standardize the different Lisp implementations
or dialects. It was published as an ANSI standard in 1994 [62].

Java
Java is an object-oriented programming language originally developed at Sun
Microsystems in 1995. It is mostly inspired by C and C++, but with less low-
level functionality and a simpler structure. Java applications are platform
independent as they run on a Java Virtual Machine (JVM), not directly in
the operating system [63].

Refactoring
Refactoring is the process of changing and restructuring a portion of existing
code without changing how it behaves for the user or other parts of the
program. The system should be functional after each refactoring step, which
should be as small as possible. [22].

Superclass
A superclass is a class other classes are inheriting from, it can also be called a
parent class. All KBE models must have at least one superclass, the default,
top-level, superclass is object.

xiv

Figure 1: The waterfall model, from [53].

Waterfall model
The waterfall model is a sequential design process that dates back to 1956 [26].
It describes how a software process goes through a set of stages, from re-
quirements to analysis and program design to coding and testing [48]. The
waterfall model has been subjected to substantial criticism [34, 46], saying
that software projects need to redo all the steps described in the waterfall
model numerous times during the course of the project. The waterfall model
is slowly replaced by more agile and iterative design processes.

xv

Petroleum industry

Access platforms
Access platforms are used to get access to valves, monitor gauges or replace
parts [31, p. 7]. They have a strict design based on rules from NORSOK,
NS and DNV [32, p. 68] as well as internal company-specific standards [32,
p. 12]. The placement of the valves and gauges can change countless times
during a project.

Aker Solutions
Aker Solutions [3] is a Norwegian oil services company. It works in sections
like construction, engineering, maintenance and modifications for different
oil fields all over the world.

DNV
Det Norske Veritas is an independent foundation that does classification, risk
management and technical advisory for the oil and gas industry [16].

NORSOK
NORSOK, Norsk sokkels konkurranseposisjon or Norwegian Offshore Com-
petitive Position in English is creating standards for the Norwegian oil and
gas industry. The standards are managed by Norwegian Standard [44].

NS
Norsk Standard or Norwegian Standard in English is responsible for most of
the standardization in Norway [43].

Spar platform
A spar platform is resting on a single large cylinder [42] and is used in deep
waters [25].

xvi

List of Figures

1 The waterfall model, from [53]. xv

2.1 Test-driven development cycle . 5

2.2 Simplified test-driven development cycle, red-green-refactor 6

2.3 Stress positive feedback loop. Inspired by figure 25.1 in [8, p. 124] . 7

3.1 Continuous integration, inspired by figure 1-1 in [17, p. 5]. 10

3.2 Comic, programmers waiting for the code to compile [38]. 12

3.3 Lava-lamps during a successful build, from [13]. 13

3.4 FinalBuilder successfully testing the beam model. 14

3.5 FinalBuilder running a failing test for the beam model. 15

4.1 AUnit GUI screenshot . 19

5.1 Missile model with spherical and conical nose 22

5.2 Bottle model drawn in AML . 27

5.3 Illustration of the bottle showing the relationship between the body
and the end cap’s height and placement. 29

5.4 Front view of a beam with vertical studs and floorboards on top. . . 31

5.5 Front view of a beam with studs. 32

5.6 Beam with a width of 5, space of 1 and support beam width of 1 . . 35

5.7 Beam with a width of 6, space of 2
3 and stud width of 1 36

5.8 Beam with a width of 5, showing the x-coordinates. 38

5.9 Beam with a width of 6, showing the x-coordinates. 41

xvii

5.10 A bookshelf model. 44

5.11 A broken bookshelf model, a shelf is inserted into the top part of
the frame. 45

6.1 Relationship between the core, GUI and print modules. 47

6.2 AUnit test results tree structure . 48

6.3 UML sequence diagram showing how a test is execute inside the
core module. 49

6.4 AUnit object tree . 50

6.5 AUnit GUI running the beam tests 51

6.6 UML sequence diagram showing a user starting AUnit and running
a test. 52

6.7 AUnit GUI test in .NET . 52

6.8 AUnit GUI test in AML . 54

7.1 Process for unit testing KBE models 59

7.2 A notification pop-up window in AML. It is used when input pa-
rameters are wrong. 60

A.1 AML S-expression evaluation of (* (+ 1 4) (+ 4 5)) 70

A.2 Bookshelf model structure . 72

xviii

Chapter 1

Introduction

KBE models make it possible for engineers to create intelligent product models
based upon rules and experience. A KBE model can scale a product based on size
or load in a matter of minutes by updating the internal structure of the model.
For example, it will add internal beams to sustain a higher load capacity. This
can save many man-hours in engineering projects. During the course of ordinary
product development projects, components are often re-sized and adjusted as new
features are needed. Using KBE models, the components can be modified in
minutes instead of being created from scratch every time there is a change [36].

Examples of KBE models are access platforms and stair towers. They have a
strict design based on rules from NORSOK, NS and DNV [31, p. 68] as well as
internal company-specific standards [31, p. 12]. Additionally, the structure of these
components are often changed during a project to accommodate adjustments in
the platform layout.

AML is a KBE system developed by TechnoSoft Inc. (TSI), initially based on
Common LISP. For readers not familiar with AML it is recommended to read
appendix A which gives an introduction to AML.

Unit tests are one of the forms of software testing a program goes through. Unit
test are made by finding the smallest possible units of code that can be tested
separately [1, Sec. 2.1.1] [11, p. 137]. In addition there is integration testing which
is done to make sure that the different parts of the program interact with each
other as expected. Finally there is a system test which checks the functionality
of the complete, finished, program. Different testing techniques are discussed in
appendix B.

AML does not have any features for unit testing. The problem text calls for
a framework that is tightly integrated with AML development teams’ standard

1

practices. A fully functional unit testing framework (AUnit), which can be used
on KBE models created with TSI’s Adaptive Modeling Language (AML), will
be created. The foundation of AUnit was created during the author’s project
report [7].

In order to create an easy to use testing framework, AUnit will be expanded with a
graphical user interface (GUI) that can take in a test suite1 and display the results.
Also AUnit’s core functionality will be improved and updated to work optimally
with both the GUI and the command line interface (CLI).

AUnit has been tested in an AML development team, Aker Solutions’ KBeDesign
department. These experiences are used to further improve the framework and
create introductory material for AUnit. The introductory material found in chap-
ter 4 is meant for KBE developers wishing to incorporate unit tests into their daily
routine. An important factor is looking at how unit tests can be written for KBE
models, and where it differs from regular software development.

The report uses terms from several different fields with many different terms, so
the reader is encouraged to use the glossary found at page xiii actively.

1.1 Motivation

Having a unit testing framework available for AML makes it possible to test the
KBE models created with AML as well as other AML programs.

All software is tested, both during its production and before the finished product
is released. Tests can be run on all or parts of a program and verify that it works
as expected. Every time something new is added or updated in the project, the
program is tested again. Without unit testing, these tests are usually based on
manually executing parts of the code and verifying that no errors are thrown and
that the output is as expected.

Unit tests are a formalization of the tests all programmers do when developing
software, by writing the tests down in a way that the computer understands. The
advantage with this formalization process is that the tests can be run with little
effort again and again. Often when developing complex applications, changes in
one part of the program can have unexpected effects on seemingly unrelated parts
elsewhere in the program. With manual tests the developer might not think to
test these unrelated parts. The error will be discovered later (maybe even after
the program is released) and will be harder to fix since the programmer is not sure

1A set of tests are referred to as a test suite.

2

what caused the error. With unit tests all the tests can easily be run after every
change in the code, checking that all parts of the code always work as expected.

AUnit also allows developers to do test-driven development (TDD). TDD is a
software development method where the unit tests are written before the code.
TDD is a way of programming that ensures that unit tests will always be available
for every part of the code, because the code is written based on the tests. It has
also been showed that TDD leads to better code that is easier to maintain [37,
p. 4].

Continuous integration (CI) is another software development method that relies
on unit testing. The principle of CI is that software should be automatically fully
tested and integrated into a real-life environment after every change in the code.
CI leads to faster integration time and less time spent on fixing difficult bugs,
because the bugs are discovered earlier before they get too difficult to fix.

Having unit tests in place can combat some of the unwanted problems that arise
because of the localization differences between different teams. For example, Aker
Solutions KBeDesign is in Norway and TSI in North America. A software update
from TSI can cause unexpected changes to Aker Solutions’ product models. With
a set of unit tests and a continuous integration environment, TSI can detect any
conflicts themselves and make the changes before releasing the software update
into Aker Solutions’ production environment.

1.2 Research questions

The research questions defined below will give the background for the work done
in this report.

RQ1: How can unit tests for AML KBE models be written in a concise
manner using known input and output parameters?

RQ2: How can test-driven development be used for developing KBE
models in AML?

RQ3: How can continuous integration be used in an environment de-
veloping KBE models with AML?

3

1.3 Related work

As to the author’s knowledge, there has not been any research or development
done on unit testing KBE models. However, this report is based on reasearch
from two existing fields, software testing and knowledge based engineering.

The first software testing principles are from The Art of Software Testing [39] by
Myers et al. and Software testing techniques [10] by Beizer. More than twenty years
later, Beck developed unit testing and the first unit testing framework, JUnit. He
later laid out the principles for test-driven development in Test-driven develop-
ment: by example [8]. Continuous integration for KBE models is based on Fowler’s
articles [20, 21, 22, 23].

Several papers on KBE technology has been published in the last ten years, mainly
from Stokes [55], Cooper and Rocca [14] and Milton [36]. In 2012 Rocca published
an article [47] describing KBE, i.e. how it differs from computer aided design
(CAD) systems and some of the challenges the technology is facing.

1.4 Structure

Chapter 2 and 3 describes how test-driven development and continuous integration
works. How the unit testing framework, AUnit, is used to write unit tests for
AML-based KBE models is explained in chapter 4. Then in chapter 5 AUnit is
used for doing TDD on several KBE models, including models used in real life
environments. Chapter 6 gives a detailed look at the inner workings of AUnit.
The results are discussed in chapter 7.

4

Chapter 2

Test-Driven Development

Test-driven development is a coding style created by Kent Beck [8], one of the
main contributors to the JUnit unit testing framework for Java and eXtreme Pro-
gramming (XP).

This chapter will look at the principles behind TDD and its usefulness in software
projects. Then follows a discussion on how TDD can be used for developing KBE
models.

Add a test

Run all tests
and fail

Write codeRun all tests
and succeed

Refactor
and remove
duplication

Figure 2.1: Test-driven development cycle

5

Run all tests
and fail

Run all tests
and succeed

Refactor
and remove
duplication

Figure 2.2: Simplified test-driven development cycle, red-green-refactor

2.1 TDD Principles

The process of test-driven development is to write unit tests before the programmer
writes any code. After the test is written the goal is to make it succeed1. After the
test has succeeded the programmer refactors the code to remove any duplication
inside the code and between the code and the test. New code should only be
written to refactor2 the existing code or to make a test pass. One should never
write a new test if another test is already failing.
A simpler way to look at the test-driven development cycle is “red/green/refactor”
(see figure 2.2). Kent Beck [8, p. x] refers to this as the TDD mantra:

Red
Write a test before writing new code. The test will fail and be “red”.

Green
Make the test succeed, turn green, taking as many shortcuts as necessary.

Refactor
Remove any duplication in the code necessary to make the test go green.

2.1.1 Duplication

After the creation of a test it is allowed, or even encouraged, to take shortcuts. For
example by the program returning the expected values directly, causing temporary

1Making tests succeed is often referred to as “go green”. This comes from the status bar in
JUnit that turns from red to green when all tests succeed.

2See the glossary on page xiii.

6

tight deadline,
high complexity

Stress level

More bugs Run tests

increased stress

reduced
stress

increased
stress

Figure 2.3: Stress positive feedback loop. Inspired by figure 25.1 in [8, p. 124]

duplication. A finished piece of code, however, must not contain any information
that exists in the unit test, but be refactored until all the duplication is removed.

2.2 Usefulness of TDD

With TDD the programmer is forced to think in detail about how the unit being
developed will act, what it will take as input and what will be the output. Re-
search [24] has shown that this leads to code that is better structured and easier
to expand and refactor.

Another important point is that when the stress level rises as the project comes
closer to the deadline, the developer will not have time to do as much testing
as needed and bugs will appear. The developer will become even more stressed
which results in a negative feedback loop, as seen on the left side in figure 2.3.
On the other hand, if the project uses TDD the tests can easily be run as the
stress level rises. Developers can check all the modules for errors when a single
module has been changed. A stressed programmer can easily overlook a conflict
that arises somewhere else in the code. This way the unit tests will work to reduce
the stress [8, p. 124].

Several research projects are conducted on the efficiency and quality of soft-
ware done with TDD compared to the traditional waterfall model. George and
Williams [24] did a test with 24 professional programmers that they split into
two groups developing the same Java application, one using TDD and the other
a waterfall-like3 approach creating the tests after the code. They found that the

3See the glossary on page xiii for a definition of the waterfall model.

7

TDD projects passed 18 percent more functional black box tests, but used 16
percent more development time.

There are a few validity issues with George and Williams’s research. With only 24
programmers working in pairs of two, it leaves only 6 pairs doing each programming
style. There were also great variations between the pairs, the time to complete the
exercise was varying from 200 to over 400 minutes and between 12 and 20 (out of
a total 20) test cases passed. The programmers working with TDD ended up with
a set of working unit tests while the waterfall group had some unit tests, but not
full coverage, even though they were encouraged to write unit tests. This makes
it unfair to compare the time differences between the two groups since the TDD
programmers created more useful code. George and Williams also has a hypothesis
that code written in TDD is easier to maintain and have better design than using
traditional software development methods [24, p. 1137].

Other research backs up George and Williams’ hypothesis. Müller and Padberg
have established that using TDD leads to faster error fixing [37, p. 4]. Given
that 85 to 90 percent of software development budgets go to maintaining existing
code [18, p. 17], code quality and maintainability has a clear advantage over faster
development time.

Also, Maximilien and Williams [33] finds TDD highly beneficial. While developing
a complex software system at IBM they experienced a 50 percent drop in error
defects compared to a similar system developed earlier that wrote unit tests after
implementing the code [33, p. 6]. There are several uncertainties with this compar-
ison. Even though the two software projects are similar, they are not equal. They
had different requirements and people, also the newest project may have gained
experience from the first.

8

Chapter 3

Continuous Integration

The first part of this chapter will give an introduction to CI and an explanation
of how it works. Section 3.2 will discuss the usefulness of CI for KBE-projects. A
brief account of how CI works for KBE projects will be given in section 3.3.

Continuous integration is the process of automating the building and testing pro-
cess in software development. It originates from an article Fowler and Foemmel
wrote in 2000 [23] that Fowler revised in 2006 [21].

“If it hurts, do it more often.”

Fowler, Frequency Reduces Difficulty [20]

Continuous integration was conceived to avoid the indeterminately long integration
processes common in large software projects. Integration is among the last phases
in a software development project where all the different parts of the software are
joined together and put under integration tests to verify that they can interact
with each other as planned [21].

Fowler’s way of avoiding these long and expensive integrations is to integrate very
often1. When a programmer has done some work on a project and is satisfied with
the result, he builds it on his computer. Then the code is committed into a common
code repository where it is checked out into a real-life test environment. Here unit
and integration tests are performed on the software. If these tests succeed, the
developer can continue his work, if something fails he must fix it immediately.

1Continiuous integration is not technically correct since it does not mean to integrate all the
time (continuously) only often [17, p. xxii].

9

Developer

Developer

Version
Control
System

CI Server

Build server

Feedback

commit

commit
poll

Figure 3.1: Continuous integration, inspired by figure 1-1 in [17, p. 5].

CI can either be done manually, with custom scripts or a dedicated Continuous
Integration server. A CI server automatically looks for new additions to the code
repository, builds the code and sends the test results to the developer via email.

When the frequency of difficult tasks like integration is decreased, each time will
be less painful. During the course of long software projects, specifications change
numerous times and parts of the software has often evolved in different directions.
The cost of making fundamental architectural changes is much larger than in the
beginning of the project. If the integration process is done sooner these changes
can be done as early as possible. Additionally, when a process like integration
is done more often, the development team will become better at integration and
be able to learn from past mistakes [20]. Having short iterations, adjusting the
course as the project advances and learning from previous mistakes are some of
the cornerstones of extreme programming [9].

3.1 Continuous Integration build process

The following section will discuss the practices of continuous integration from
Fowler’s article [21].

10

3.1.1 Code repository

A code repository is maintained by using a version control system where each
developer can commit code into the project, revert to an earlier stage or merge
conflicting changes. For CI to work the repository needs to be used actively by
the developers - committing after every change in the software.

The code repository should contain everything the build machine needs to build
the software.

There are many version control systems (VCSs) to choose from, and most of them
are free. Going into a thorough discussion of VCSs is outside the scope of this
report, but I will mention three of the most popular systems. Concurrent Ver-
sions System (CVS) [15] is one of the first mainstream versioning systems; being
developed in 1990 the software has aged and is generally replaced by Apache Sub-
version (SVN) [5] which was created as a successor to CVS in 2000. Five years
after the initial development on SVN, Linus Torvalds developed Git [50] for aid-
ing the development of the Linux kernel. Git focuses on being fast with highly
reliable branching and merging capabilities. This eases the process of keeping a
main branch that contains code that it always working while a developer can do
experiments or bug fixes for previous releases on different branches.

It is important to note that the team must decide on a common coding standard;
indentations and code comments as well as the structure of the code. Having this
in place is vital for being able to have code that can easily be read and modified
by other team members.

3.1.2 Automated build

The entire build process should be automated to a simple process that does not re-
quire user interaction. There are several tools available for creating build scripts.
For Java, Maven [6] and Ant [4] are often used, for .NET Nant [40] and MS-
Build [35] are available. There are also language independent tools2 available, like
FinalBuilder [19], which can build and test software from almost any source.

3.1.3 Testing the build

The build should be self-testing using a set of unit tests. Unit tests have already
been discussed in chapter 2 and 5.

2Some building tools, like Ant, can also be used for different platforms using plugins.

11

3.1.4 Code commits

Each developer should commit changes to the main repository at least once a day.
Every time a commit is made, a build should be checked out into the integration
environment and go through all the tests. The integration environment should
resemble the production environment as closely as possible.

3.1.5 Build time

For a continuous integration process to be effective, the build must be fully auto-
mated and not be too time consuming. A CI build should never last more than
10 minutes according to the extreme programming guidelines. If it does, the tests
should be optimized until they take less than ten minutes [9].

Figure 3.2: Comic, programmers waiting for the code to compile [38].

This is because the programmer should still have the changes made to the code
fresh in his mind in case the build fails. If the programmer has started working
on a new task, it will be harder to look back at the last problem and find the
bug. With long build times, the best solution might be what we see in figure 3.2
avoiding that the developer becomes too occupied with a new problem to fix the
bug.

A way to decrease the build time is to use smart build tools that analyze what has
changed and needs to be rebuilt and leaves the unmodified code alone. AML has
this inbuilt in the compiler so that compile-system will only build the files that

12

Figure 3.3: Lava-lamps during a successful build, from [13].

has changed since the last build by default [60]. However, tests have to be run to
account for unexpected domino effects when changing the code.

3.1.6 Feedback

Finally, it is important that the entire team can get feedback from the integration
tests when they want it. Some use lights or lava-lamps showing if the build is
currently integration correctly or not, see figure 3.3. In addition websites can give
deeper insight in where the problem lies and show statistics of how well the build
is working over time. E-mail notifications are also a nice way to be notified of a
builds success, but they should be targeted to the developer(s) that sent the build,
not the entire team.

3.2 Continuous integration in practice

There are several research papers that have good experiences after implementing
continuous integration. In [56], Stolberg went from a waterfall testing process to
a completely integrated testing environment in about a year. He found it to be
faster than the waterfall method [56, p. 373] after the initial transition period was
over. Karlesky et al. shows in [28] that continuous integration can work well for
embedded systems.

13

Figure 3.4: FinalBuilder successfully testing the beam model.

3.3 Developing KBE-models

This section will discuss RQ3:

RQ3: How can continuous integration be used in an environment de-
veloping KBE models with AML?

A continuous integration environment for KBE models using the FinalBuilder [19]
software is set up. It was found that CI poses few challenges when used on KBE-
models compared to other software projects. Therefore this section is substantially
shorter than the previous chapter discussing TDD.

FinalBuilder is CI software that is meant to work for any kind of programming
language. It can check out source code from all the common version control system
(VCS), execute programs and learn from the users mouse clicks to test and perform
GUI operations.

First, FinalBuilder is set up to interact with the local VCS. In this case it is set
up with Subversion [5] to check out the latest source code from the repository.
Then it is set up to start the xemacs.exe process and from there start the AML
process. Next it loads the AUnit systems by selecting the command line interface
and typing the necessary commands (load-system :aunit). The AUnit commands
are run in the same way to set up AUnit and run the test scripts. Finally, it waits

14

Figure 3.5: FinalBuilder running a failing test for the beam model.

for AUnit to finish the testing by checking if the output files have changed. When
it is finished, it will check for a pass file that will be in the output directory if
every test has passed. If it doesn’t find the pass file, FinalBuilder will know that
some tests have failed.

FinalBuilder cannot read directly from AMLs command line so in order to make
sure that the loading of the systems is finished a wait time of 2 seconds is added
between the commands so that AML has time to respond.

15

16

Chapter 4

Getting started with AUnit

This chapter will give a step by step guide to working with AUnit. It is assumed
that the reader has some basic AML knowledge either from the AML introduction
in appendix A or the “AML Basic Training Manual” [59]. Appendix C gives more
thorough information on all of AUnit’s features.

4.1 Writing a unit test

AUnit introduces three basic commands for writing unit tests:

defaunit surrounds the entire test script with a single parameter that sets the
test name.

deftest creates a test method that can contain one or more tests. A special name,
set-up is reserved for setting up any prerequisites for the tests, this method
will run before every deftest method.

check-* methods are used to do tests. The most common, check-equals, is used
to compare two parameters. See appendix C.1 for a list of all the check
statements available.

17

1 (de f aun i t " Sample␣ t e s t "
2 (deftest " set−up "
3 (print " s e t t i n g ␣up␣ t e s t ")
4)
5
6 (deftest ’ test− int−equal
7 (check−equals (+ 2 2) 4)
8)
9

10 (deftest ’ t e s t− in t− f l oat−equa l
11 (check−equals 2 2 . 0)
12)
13
14 (deftest ’ t e s t− s t r ing−equa l
15 (check−equals " h i " " h i ")
16)
17)

Listing 4.1: Sample test code for AUnit

On line 1 there is a defaunit statement enclosing the entire test and naming it
Sample test. Following that there is a deftest set-up method that will run
before each of the tests. In more advanced examples this is normally used for
creating a model to test on. In this simple test it is not necessary, so it prints out
a string to demonstrate how it works.

The first test is found on line 6. Inside the deftest there is a check-equals statement
that checks if 4 is the same as 2 + 2. Hopefully it is. The tests on line 10 and 14
works similarly, checking if a floating point number can equal an integer and if it
can compare two strings. All these tests will pass in AUnit.

4.2 Working the AUnit GUI

After the system files are loaded, the AUnit GUI (see figure 4.1) can be started
from the AML command line interface with the (aunit) command. From the
GUI it is possible to either select a tests.def file which contains a list of test
scripts using the Load def button or test scripts can be loaded individually with
the Browse button.

When tests are loaded, Run all tests will execute all the tests loaded into AML,
Run selected test will only execute the test that is selected. Save to def file
saves a list of all the loaded tests. When a .def file is already loaded it will be
used, if not it will save the list to a tests.def file in the same folder as the tests.

18

Figure 4.1: AUnit GUI screenshot

After a test has finished the bottom of the AUnit window will change to reflect
the results of the tests. When all tests succeed, the bar will go from red to green.
The textbox above shows the results of the individual tests inside the test method
that can be selected in the tree.

4.3 Using AUnit from the command line

AUnit can also be used directly from the command line. This is normally a bet-
ter option for expert users and when running AUnit from other applications, for
example continuous integration servers.

First AUnit has to be prepared with the (first-setup) command. Then, a test

19

can be loaded with:

(run−scr ipt ‘ ‘C:\\ path\\ to \\ t e s t \\ c las s− to− te s t− te s t . aml ’ ’)

The results are available in the output directory, located next to the test script.

4.4 Other AUnit uses

AUnit can be used to create a failing test case, for example when one of TechnoSoft
Inc. (TSI)’s customers, like KBeDesign at Aker Solutions, needs TSI to fix a bug
or request a new feature in AML. It is often easier to create a failing test than to
describe exactly what went wrong when discovering a bug. The customer creates
a unit test that will trigger the bug and TSI can use the test while fixing the bug.
This way TSI and KBeDesign can easily relate to the same criteria for when a bug
is actually fixed.

20

Chapter 5

Unit testing KBE models

As shown in chapter 2, many projects show great results using TDD. It is therefore
interesting to know if TDD can be used in KBE projects. This chapter will discuss
how to test KBE models written in AML by exercising different approaches. It
aims to answer RQ1 and RQ2:

RQ1: How can unit tests for AML KBE models be written in a concise
manner using known input and output parameters?

RQ2: How can test-driven development be used for developing KBE
models in AML?

5.1 Challenges

Several problems arise when one tries to write unit tests for KBE models. The
models are complex and the expected output is usually not known beforehand, it
is calculated by AML. In order for unit tests to be easy to write and update, they
must compare a set of known or easily calculated parameters.

In regular software development the developer can expect a certain result from
the code he writes and formalizes these expectations into a test. A Java example
will be used to show this. Listing 5.1 tests a Car class that has a drive method
and a position parameter. To test the drive method, the developer can check if
the position of the Car has changed according to what was given as input to the
drive method.

21

Figure 5.1: Missile model with spherical and conical nose

Car car = new Car () ; // po s i t i o n i s i n i t i a l l y s e t to 0 .
a s s e r tEqua l s (5 , car . d r i v e (5) . p o s i t i o n) ;

Listing 5.1: Java code for testing a Car class

AML and other languages based on Lisp are dynamically typed. This means that
a property’s type1 is not set at compile time. In the Java example above the
position variable in the Car class is set to the integer data type and if it is
attempted to set it to a string (e.g. “five”) or a boolean (e.g. False) Java will give
an error message.

In AML a property can start out as a boolean value (e.g. nil2) and later change to
an integer (e.g. 5). For KBE-languages like AML the dynamic typing is extended
to apply to object types as well as data types [47, p. 166]. This is a useful feature
when a model uses different parts depending on other parameters. An example
is seen in listing 5.2 where the missile’s nose changes based on a keyword given
as input to the model (see figure 5.1). It can also be changed automatically, for
instance the length of the missile can determine which nose is suitable.

1See the glossary on page xiii for a description of data types.
2Simply put, nil is the boolean value equivalent of False in AML and Lisp.

22

(nose : class (case ! miss i le−nose−type
(sphere ’ spher i ca l−nose−c la s s)
(cone ’ open−conical−nose−class)
(t ’ spher i ca l−nose−c la s s))

)

Listing 5.2: AML code for selecting the missile nose type, from [59]

KBE models can also use an arbitrary number of sub objects that can have different
parameters and even be of different classes. This makes the object tree of a KBE
model impossible to predict before the model is instantiated as both the number
of objects, the type of objects and the depth of the tree is dynamic [47, p. 166].
When testing part by part using the-references3 in a dynamic tree, the tests will be
broken as soon as a parent object is renamed, removed or inserted. It also makes it
impossible to reuse the unit tests if any of the classes are used in a different place.
This chapter will look at different testing approaches taking these limitations into
account.

5.2 Testing approaches

5.2.1 Testing parameters

Hyp1: KBE models can be unit tested by directly checking that each
property has the expected value.

The hypothesis will be tested by doing an example checking that the diameter and
type of the bottle body is correct. The test can look like this:

3See appendix A.1.4 for explanation of the-referencing in AML.

23

(de f aun i t " bo t t l e− t e s t "
(deftest ’ set−up

(load "D:\\ workspace_win\\ s r c \\ polygon \\ s r c \\ bo t t l e . aml ")
(create−model ’ b o t t l e : class ’ bott l e−par−c lass)

)

(deftest ’ body−diameter
(check−equals
(the bo t t l e body diameter)
2 . 0)

)

(deftest ’ body−class
(check−equals
(type−of (the bo t t l e body))
’ open−cyl inder−object)

)
)

Listing 5.3: Testing the parameters in a bottle model

(define−class bott le−par−c lass
: inherit−from (ob j e c t)
: properties (

)
: subobjects (

(body : class ’ open−cyl inder−object
diameter 2 .0
)

)
)

Listing 5.4: AML code for the bottle’s body

It was established in chapter 2 that tests should not contain any duplication be-
tween the actual model code and the test script. With tests like the one above
(listing 5.3) we have the diameter (2.0) and superclass (open-cylinder-object)
duplicated. They are present in both the test and the model code (listing 5.4).

The duplication has several disadvantages. The main issue is that the tests only
check that the superclass and diameter properties are typed correctly in the code. If
both are misspelled, for example if the developer used a cylinder-object instead
of open-cylinder-object, the test will not discover the error. Instead, the tests
could lead the developer to think that everything is working when it is not. The
second issue is that the duplication makes it a more elaborate process to change
even minor details in the model. When making a change the exact same change

24

has to be made twice. Finally, the tests themselves are very time consuming to
write compared to the value they add to the KBE model.

The complete example can be found in appendix D.1.

5.2.2 Testing geometry

Hyp2: KBE models can be unit tested by calculating their volume
and surface area and comparing these values to the volume and surface
areas of the objects in the KBE model.

The next hypothesis aims to avoid duplication between tests and production code.
The tests check that the object’s surface area and volumes are correct. With an
open-cylinder-object, AML’s volume-of-object will give us the surface area
of the object. We know that the surface area for a cylinder is:

A = πdh (5.1)

Equation 5.1 is then implemented in the test script in listing 5.5, checking that
the specified superclass and default values return an object with the surface area
of a cylinder.

(de f aun i t " polygon−test "
(deftest ’ set−up

(c l e a r)
(load "D:\\ workspace_win\\ s r c \\ polygon \\ s r c \\ polygon . aml ")
(create−model ’ b o t t l e : class ’ b o t t l e− c l a s s)
)

(deftest ’ c y l i nde r− su r f a c e
(check−delta
(volume−of−object (the bo t t l e body))
(∗ pi 2 5)
0 .0001
)

)
)

Listing 5.5: Testing the surface area of a bottle model

This testing process was even more time consuming than the previous hypothesis.
The models get more complex as they are developed, they will turn into non-
standard geometrical shapes that will take a lot of effort to calculate by hand.

25

Using this approach the developer will do the calculations AML is doing himself
instead of depending on AML’s modeling engine. This turns into code that test
AML’s functionality more than they test the model.

The second hypothesis is tried out in on the whole bottle in appendix D.2.

5.2.3 Testing logic

Hyp3: KBE models can be tested by checking the return values from
just the conditionals, loops and calculations.

Finally, a third approach is performed based on Beck’s list of four main types of
code that should be tested [8, p. 278]:

• Conditionals (if/else/case)

• Loops (for/while)

• Operations (calculations)

• Polymorphism4

Following these recommendations it is not necessary to directly test all the class
instances and subobjects in a KBE model. For example, the positioning of an
object relative to a different object can be calculated by hand. The actual position
can be compared with the calculated outcome. This results in simple, but effective,
unit tests for all calculations in a model. The following section will create tests
based on the following hypothesis. A KBE model can be unit tested by checking
only conditionals, loops and operations.

This hypothesis will be tried out in different examples. First a simple bottle model
that has a few calculations to position its objects. Then follows a more complicated
beam model in section 5.3.2 where there are both engineering rules and positioning
calculations. In section 5.3.3 it is tested on an existing KBE-model of a bookshelf
made by KBE professionals at Aker Solutions KBeDesign. Finally, it is tried on a
small part of Luva’s spar platform.

4Polymorphism is the use of overloaded methods. For example the draw model in AML can
be called in the same way on both a box and a cylinder object, but it will draw different objects.
This can often replace if and case statements. For example, by creating a draw method in each
object’s class instead of a large draw class that has a different case statement for each object.

26

Figure 5.2: Bottle model drawn in AML

These models are in many ways simple, and the TDD-process might seem a bit
elaborate since the final solution is sometimes clear without going through all the
steps. The examples are meant to illustrate the process and how TDD can be
done in small steps. When using TDD in other projects, what is being done in
each cycle should be adjusted with regards to experience and complexity.

5.3 Testing examples

The following section features three examples of testing the logic in KBE models.

5.3.1 Testing a bottle model

When creating a bottle as seen in figure 5.2 one option is to start with a body
cylinder, as shown in listing 5.6. This can be done without the need for any
calculations or other code functions mentioned by Beck in [8], and thus no testing
is required. We add an open-cylinder-object as a subobject, which uses the diameter
and height from the class’ properties.

27

(define−class bott le−3−c lass
: inherit−from (ob j e c t)
: properties (

diameter (d e f au l t 2 . 0)
body−height (d e f au l t 5 . 0)
bottom−height (d e f au l t 0 . 5)
)

: subobjects (
(body : class ’ open−cyl inder−object

diameter ^^diameter
he ight ^^body−height
)

)
)

Listing 5.6: AML code for creating the body of a bottle

The model gets more complicated when we add an end cap on the body. This
needs to be oriented to the end of the body cylinder. The AML code for the
end cap is shown in listing 5.7. The code is added below the body subobject in
listing 5.6. The height and diameter is found in the properties in listing 5.6.

(bottom : class ’ cy l i nde r−ob j e c t
diameter ^^diameter
he ight ^^bottom−height

)

Listing 5.7: AML code for creating the end cap of a bottle.

Then the orientation can be calculated using TDD. Starting with the test seen in
listing 5.8, it checks that the orientation of the end cap cylinder matches the body
cylinder. First, there is a set-up method that is called before every unit test is
run. The set-up method in listing 5.8 clears AML’s canvas and loads the bottle
model.

AML refers to the center of objects when placing them. In relation to the center of
the main body, the end cap should be half the body’s height plus half the end cap’s
height below the body’s reference point. Each object is placed in the origin by
default. The necessary distance between the two object’s centers can be calculated
with formula 5.2.

dist = hbody

2 + hendcap

2 (5.2)

28

Figure 5.3: Illustration of the bottle showing the relationship between the body
and the end cap’s height and placement.

Since the body height is set to 5 and the bottom is set to 0.5, it should be placed
5/2 + 0.5/2 = 2.75 below the body, see figure 5.3. This is checked by comparing
the global positioning vectors of the body and the end cap.

(de f aun i t " bo t t l e− t e s t "
(deftest ’ setup

(c l e a r)
(load "D:\\ workspace_win\\ s r c \\ polygon \\ s r c \\ bott le−3 . aml ")

)
(deftest ’ bottom− locat ion−default

(create−model ’ b o t t l e
: class ’ bott l e−3−c lass)

(ch e ck− l i s t−d i f f
(convert−coords (the bo t t l e bottom) ’ (0 0 0)

: from : l o c a l : to : g l oba l)
(convert−coords (the bo t t l e body) ’ (0 0 0)

: from : l o c a l : to : g l oba l)
(l i s t 0 .0 0 .0 −2.75))

)
)

Listing 5.8: Test for checking the location of the bottle’s end cap.

The convert-coords seen in listing 5.8 is an AML function that converts the coor-
dinates of the object from local coordinates to global coordinates so that they can
be compared between different objects. It returns a list of x, y and z-coordinates.

29

Using TDD, this test should succeed as quickly as possible. Therefore the z-
coordinate is set directly to -2.75 in the orientation parameter, as shown in list-
ing 5.9.

(bottom : class ’ cy l i nde r−ob j e c t
diameter ^^diameter
he ight ^^bottom−height
o r i e n t a t i o n (l i s t

(t r a n s l a t e (l i s t 0 0 −2 .75)))
)

Listing 5.9: AML code for preliminary position for the bottle’s end cap.

This result in successful tests, but the bottom will not be placed correctly for other
height parameters. This calls for an additional test. Setting the heights to 10 and
2, the bottom should be placed at -6 (10

2 + 2
2 = 6) from the body. This is tested in

listing 5.10.

(deftest ’ bottom− location
(create−model ’ b o t t l e

: class ’ bott l e−3−c lass
: init−form (l i s t

’ body−height 10 .0
’ bottom−height 2 . 0))

(ch e ck− l i s t−d i f f
(convert−coords (the bo t t l e bottom) ’ (0 0 0)

: from : l o c a l : to : g l oba l)
(convert−coords (the bo t t l e body) ’ (0 0 0)

: from : l o c a l : to : g l oba l)
(l i s t 0 .0 0 .0 −6.0))

)

Listing 5.10: Test for checking the location of the bottle’s end cap with a body
height of 10 and bottom height of 2.

In order to get this test to succeed it is necessary to use the height values to
calculate the end cap’s position. Changing the orientation parameter to use the
bottle’s parameters in equation 5.2 instead of returning a value directly makes
both tests succeed.

30

Figure 5.4: Front view of a beam with vertical studs and floorboards on top.

o r i e n t a t i o n (l i s t
(t r a n s l a t e
(l i s t
0
0
(−(+ (ha l f (the s upe r i o r supe r i o r body he ight))

(h a l f ^he ight))))))

Listing 5.11: AML code for positioning the bottle’s end cap.

The process for the top of the bottle is similar. The complete source code and test
scripts can be found in appendix F.

5.3.2 Testing a beam model

In this section a simple beam is applied as an example on how to write unit tests
for KBE models made with AML. The complete source and test code can be found
in appendix G.

This model will create a beam with studs that might be used to hold up a floor
as seen in figure 5.4. The floorboards are dimensioned for a certain weight when
they have a maximum distance between each support. The KBE model must find
the optimal number of studs and place them correctly. If the space between the
studs is too large the floorboards will give in, at the same time it is costly to use
more studs than necessary.

The beam has a certain number of studs (ns) on it. It has a varying width, wb

and between every stud of width ws there should be a space not greater than

31

Figure 5.5: Front view of a beam with studs.

smax. There should always be studs at the start and ends of the beam. The space
between the studs might be less than smax so s is introduced as the actual space
between the beams.

The AML code of for the properties in the beam class will be as in listing 5.12. It
contains the height (hb), width (wb) and depth (db) of the beam and the height (hs),
width (ws) and depth (ds) of the studs as well as the maximum space between them
(smax). Only wb, ws and smax are necessary to calculate the number of support
beams.

(define−class beam−tdd−class
: inherit−from (ob j e c t)
: properties (

beam−height (d e f au l t 0 . 1)
beam−width (d e f au l t 10)
beam−depth (d e f au l t 0 . 5)

stud−height (d e f au l t 1 . 0)
stud−width (d e f au l t 0 . 5)
stud−depth (d e f au l t 0 . 5)

space−between−studs (d e f au l t 1 . 0)
)

: subobjects (
)

)

Listing 5.12: AML code for creating a beam class.

Now the set-up code for the unit tests can be created as seen in listing 5.13. This
code is running before each test. It creates a beam with a length of 5 and a space of

32

1 between the studs that have a width of 1. An additional beam of length 6 with a
height of 0.2 is also created. For the second beam the studs cannot be distributed
evenly, so the space between them will be less than the maximum space (1)5 This
way it is not necessary to create two models before every test when only one of
the models is needed.

(deftest ’ set−up
(c l e a r)
(load "D:\\ workspace_win\\ s r c \\beam\\beam . aml ")
(create−model ’beam

: class ’ beam−tdd−class
: init−form (l i s t

’ beam−width 5
’ beam−height 0 .1
’ space−between−studs 1
’ stud−width 1
)

)

(create−model ’ beam6
: class ’ beam−tdd−class
: init−form (l i s t

’ beam−width 6
’ beam−height 0 .2
’ space−between−studs 1
’ stud−width 1
)

)
)
)

Listing 5.13: Test code for setting up a beam class.

The beams class needs two subobjects, the main beam and the studs. The main
beam uses the built in box-object class directly, so it is added to the subobjects to
the beam class. It will be added without any tests since it doesn’t use any logic.

(main−beam : class ’ box−object
he ight ^beam−height
width ^beam−width
depth ^beam−depth)

Listing 5.14: Main-beam sub-object

5Alternatively, if running time is crucial, the developer can create two test scripts, one for a
beam length of 5 and another for a beam length of 6.

33

For the studs, a separate stud-class will be created in listing 5.15. It gets the
space-between-studs, height, width and depth from the beam class through the
use of the default keyword. The class-expression tells the series-object class that
it is going to create boxes.

(define−class s tud−c lass
: inherit−from (s e r i e s−ob j e c t)
: properties (

space−between−studs (d e f au l t 1 . 0)

he ight (d e f au l t 1 . 0)
width (d e f au l t 0 . 5)
depth (d e f au l t 0 . 5)

c l a s s− exp r e s s i on ’ box−object
)

: subobjects ()
)

Listing 5.15: Stud class

The stud is added to the beam class similarly to the main beam:

(stud : class ’ s tud−c lass
he ight ^stud−height
width ^stud−width
depth ^stud−depth)

Listing 5.16: Studs sub-object

With the beam class in place and the foundations of a stud class ready, it is
necessary to derive the equations for calculating the number of studs (ns) and the
space between them (s).
When there are ns studs there will be ns − 1 spaces between them and the total
length of the studs and spaces will equal the beam width (wb).

wb = nsws + (ns − 1)s (5.3)

The equation is solved for ns to find the number of beams.

wb + s = ns(ws + s) (5.4)

ns = wb + s

ws + s
(5.5)

34

Figure 5.6: Beam with a width of 5, space of 1 and support beam width of 1

For beams where the given smax and ws does not add up in 5.3 for whole numbers
of ns we need to add one more beam, resulting in an s < smax, when it does add up
s = smax. From this it is known that s ≤ smax. Equation 5.3 takes all occurrences
into account. This is done by taking equation 5.5, replacing s with smax and as a
result of this substitution rounding the value up.

ns =
⌈
wb + smax

ws + smax

⌉
(5.6)

Now that ns is known the only remaining unknown is s. Again, taking equation
5.3 as a starting point, but solving it for s instead of ns.

s = wb − nsws

ns − 1 (5.7)

Quantity is the first property implemented, it uses equation 5.6. Since this prop-
erty will calculate the number of studs, it needs a unit test. The following test
checks for the simplest scenario where the maximum space and width of the studs
can be easily distributed over the beam length (s = smax). Since a beam length of
5 is used, with a maximum space of 1 and stud width of 1 the model should create
5+1
1+1 = 3 studs according to equation 5.6 (see figure 5.6).

35

Figure 5.7: Beam with a width of 6, space of 2
3 and stud width of 1

(deftest ’ stud−quantity− len5
(check−equals
(the beam stud quant i ty)
3)

)

Listing 5.17: Test code for checking the number of studs on a beam of length 5.

Setting the quantity property to 3 will pass the test. It is also necessary to check
that the studs are calculated correctly when they don’t distribute evenly with the
maximum space (s < smax). When the beam length is increased by 1 from 5 to 6,
we should have an additional stud (4 in total) and the space between them should
decrease (see figure 5.7).

(deftest ’ stud−quantity− len6
(check−equals
(the beam6 stud quant i ty)
4)

)

Listing 5.18: Test code for checking the number of studs on a beam of length 6.

With the quantity simply set to 3 at all times, this test will fail, so equation 5.6 is
implemented in the stud class as follows:

36

quant i ty (cei l ing
(/

(+ (the s up e r i o r supe r i o r beam−width)
^space−between−studs)

(+ ^width
^space−between−studs)))

Listing 5.19: Quantity calculation for the studs

This makes both tests pass!

With the quantity of studs in place, it is time to test and implement the rules for
the space between them, equation 5.7. Using the first scenario when the beam
length is 5 and the stud width is 1, there should be 3 studs and the space between
them should be 1.

(deftest ’ stud−space− len5
(check−equals
(the beam stud space)
1)

)

Listing 5.20: Test code for checking the spacing between the studs on a beam of
length 5.

Adding a space property set to 1 to the stud class will pass the test.

When the beam length does not add up with the number of studs and the spaces
between them, the space between the studs is reduced so that everything fits on
the beam. With 4 studs on the main beam of length 6, the space between them is
calculated using equation 5.7, s = 6−4·1

4−1 = 2
3 . Another test is created:

(deftest ’ stud−space− len6
(check−equals
(the beam6 stud space)
(/ 2 3))

)

Listing 5.21: Test code for checking the spacing between the studs on a beam of
length 6.

To pass both space-tests equation 5.7 is implemented in the stud class.

37

Figure 5.8: Beam with a width of 5, showing the x-coordinates.

space (/
(−

^^beam−width
(∗ ^quant i ty ^width))

(− ^quant i ty 1))

Listing 5.22: Space calculation for the studs

Now that the quantity and spacing is in order it is time to place the studs on the
main beam.

To avoid too much repetition in this report, the tests for x, y and z-axis placement
are created at the same time, although they could be done separately. Since the
stud is placed with regard to its center it should be placed half of its width inside
the beam, with a width of 1 this will be 0.5. The y-value adds half of the stud
height with the height of the beam and will be the same for all the studs. The
beam’s height is 0.1 and the stud’s height is 1, 0.1+ 1

2 = 0.6. The z-value is always
set to 0.

38

(deftest ’ s tud−pos i t ion− l en5− f i r s t−x
(check−equals
(f i r s t (convert−coords

(the beam stud stud−0000)
’ (0 0 0) : from : l o c a l : to : g l oba l))

0 . 5)
)

(deftest ’ s tud−pos i t ion− l en5− f i r s t−y
(check−equals
(second (convert−coords

(the beam stud stud−0000)
’ (0 0 0) : from : l o c a l : to : g l oba l))

0 . 6)
)

(deftest ’ s tud−pos i t ion− l en5− f i r s t−z
(check−equals
(third (convert−coords

(the beam stud stud−0000)
’ (0 0 0) : from : l o c a l : to : g l oba l))

0 . 0)
)

Listing 5.23: Checking the x-axis placement of the first stud.

The beam-support-class inherits the series-object class which creates any number
of objects and allows for individual placement of each. In the init-form property
the initial values for each support beam is set. The tests in listing 5.23 can easily
be passed by setting the x-axis position of all the studs to 0.5, the y-axis to 0.6
and z-axis to 0.

init−form ’ (o r i e n t a t i o n (l i s t
(t r a n s l a t e

(l i s t
0 .5
0 .6
0))))

Listing 5.24: Setting the x-axis placement of the first stud.

The y and z positions will be the same for all the studs, so the next tests will only
test the x-axis value. First the second stud is tested to see if the space between
them is calculated correctly. With the width of the first stud (1) plus the space
between the studs (1) and half of the current stud’s width (0.5) it should be placed
2.5 from the edge.

39

(deftest ’ stud−position− len5−second−x
(check−equals
(f i r s t (convert−coords

(the beam stud stud−0001)
’ (0 0 0) : from : l o c a l : to : g l oba l))

2 . 5)
)

Listing 5.25: Setting the x-axis placement of the second stud.

To get this test to pass, the orientation parameter is adjusted to take into account
which stud it calculates the position for. The index is used to know which stud
the position is calculated for, it starts at 0 for the first beam.

init−form ’ (o r i e n t a t i o n (l i s t
(t r a n s l a t e

(l i s t
(+
0 .5
(∗ ! index 1)
(∗ ! index 1)

)
0 .6
0))))

Listing 5.26: Setting the x-axis placement of the first stud.

Another test is added to check that the last stud is aligned correctly with the end
of the beam, it should be positioned at the end of the beam (the beam length)
minus half of its width.

(deftest ’ stud−posit ion− len5− last−x
(check−equals
(f i r s t (convert−coords

(the beam stud stud−0002)
’ (0 0 0) : from : l o c a l : to : g l oba l))

4 . 5)
)

Listing 5.27: Setting the x-axis placement of the last stud.

This test passes without any adjustments to the stud class.

The same tests are repeated for the beam with a length of 6. The tests for the
first beams x, y and z values are done together like with the last beam.

40

Figure 5.9: Beam with a width of 6, showing the x-coordinates.

(deftest ’ s tud−pos i t ion− l en6− f i r s t−x
(check−equals
(f i r s t (convert−coords

(the beam6 stud stud−0000)
’ (0 0 0) : from : l o c a l : to : g l oba l))

0 . 5)
)

(deftest ’ s tud−pos i t ion− l en6− f i r s t−y
(check−equals
(second (convert−coords

(the beam6 stud stud−0000)
’ (0 0 0) : from : l o c a l : to : g l oba l))

0 . 7)
)

(deftest ’ s tud−pos i t ion− l en6− f i r s t−z
(check−equals
(third (convert−coords

(the beam6 stud stud−0000)
’ (0 0 0) : from : l o c a l : to : g l oba l))

0 . 0)
)

Listing 5.28: Checking the x, y and z-axis placement of the first stud.

The x and z-tests pass, but the y-tests fail because this beam has a different height
than the first one. Instead of using 0.6 directly as the y-axis value it is necessary
to calculate it from the height of the beam and the stud:

(+
(ha l f ^he ight)
(^^beam−height))

41

With this calculation in place all the tests from listing 5.28 are passing.

For the x-axis value for the second stud it is necessary to add the width of the
previous stud (1), the space between them (2/3) and half of the beam width.

(deftest ’ stud−position− len6−second−x
(check−delta
(f i r s t (convert−coords

(the beam6 stud stud−0001)
’ (0 0 0) : from : l o c a l : to : g l oba l))

; Stud w, space , h a l f s tud w
(+ 1 (/ 2 3) 0 . 5)
0 .0001)

)

Listing 5.29: Checking the placement of the second stud.

The space between the beams is different from the last beam, so this test will not
pass since the code uses 1 directly as the space. With the following calculation for
the x-axis value, the-referencing the space and stud width will make the test pass.

(+
(ha l f ^stud−width)
(∗ ! index ^space)
(∗ ! index ^stud−width))

The last test checks that the fourth stud is positioned to the right edge of the
beam. This is done by subtracting half of the stud width from the beam length
(6 − 0.5 = 5.5).

(deftest ’ stud−posit ion− len6− last−x
(check−equals
(f i r s t (convert−coords

(the beam6 stud stud−0003)
’ (0 0 0) : from : l o c a l : to : g l oba l))

5 . 5)
)

Listing 5.30: Checking the placement of the last stud.

The test passes without any changes to the code.

Finally, the code for the stud placement will look like this:

42

init−form ’ (o r i e n t a t i o n (l i s t
(t r a n s l a t e
(l i s t
(+
(ha l f ^stud−width)
(∗ ! index ^space)
(∗ ! index ^stud−width))

(+
(ha l f ^he ight)
(^^beam−height))

0))))

Listing 5.31: AML code for placing the studs.

5.3.3 Testing a bookshelf model

This bookshelf model [30] was created by KBeDesign to demonstrate KBE tech-
nology for the LinkedDesign [32] EU-project. It creates a bookshelf that can be
automatically designed based on parameters for width, height, shelf and frame
thickness as well as a maximum width for each shelf. There is also a parameter
for setting the vertical space, so that shelves can be designed for everything from
CDs to encyclopedias. If the vertical space cannot be distributed evenly over the
height of the bookshelf, extra space is placed in the bottom shelf. See figure 5.10
for the default version of the bookshelf. The complete source code can be found
in appendix H.1.
Since the bookshelf model was created before it was decided to unit test it, the
tests were not written using TDD, but based on the existing code. Unit tests were
made to test all the formulas in the bookshelf and they all worked as expected.
It was not possible to check the input verification rules in kbe-bookshelf-data-model-
class without generating notification boxes when the rules were broken. The tests
can be enabled, but having the user click through a number of alert boxes each
time a test is done is not a good option.
All the tests succeeded, but when the bookshelf was drawn, it did not look correct
in all cases. With a large lower or upper shelf the inner shelf overlapped the outer
frame as seen figure 5.11.
An extra set of tests checking that the original width and height parameters
equaled the actual parameters of the model were added and the faults discov-
ered. It turned out that the lower and upper shelf was added on top of the model,
in addition to the height input parameter. This means that the formulas them-
selves were wrong, not taking into account the outer frame. The unit tests were

43

Figure 5.10: A bookshelf model.

edited to reflect the proper formulas and the code was adjusted in a TDD manner
until all the tests succeeded.

As mentioned in section 5.1, a problem that can arise when testing KBE-models is
that the number of subobjects is not known beforehand. As seen in the bookshelf,
the number of shelves and inner walls vary depending on the parameter given.
This means that these subobjects cannot be tested using direct the-referencing in
AML. However, testing all the calculation done in the code will include testing
all calculations done for the subobjects. The positioning of the shelves and inner
walls are stored in lists that can be iterated over, independent of their size.

An example of this is the testing of the shelf’s height and coordinates. First, the
code creates a list of height values for each shelf, then a shelf-coords list is made
calculating the coordinates of each shelf. The complete test code can be found in
appendix H.2

44

Figure 5.11: A broken bookshelf model, a shelf is inserted into the top part of the
frame.

5.4 Testing at Aker Solutions KBeDesign

A testing session took place at Aker Solutions KBeDesign department in April
2012. Aker Solutions are creating a spar platform for Statoil’s Luva6 field. This
KBE-model was tested by the author together with Geir Iversen and Johannes
Molland from the KBeDesign team.

With only a short time available, it was not feasible to test the entire model. One
component, the space manager was chosen. It controls the different planes used
in the model, like the x, y and z-axis and its minimum and maximum values (the
outer bounds). It was chosen because it is a key feature to the project, but can be
troublesome.

Before the tests could run it was necessary to remove some coupling with other
6Luva is a gas field in northern Norway where production will start in 2016. Officially renamed

to Aasta Hansteen, but still referred to as the Luva project [54].

45

classes, making it possible to instantiate kbe-spar-space-manager-class on its own.

The complete test code is available in appendix I.

With the limited screen resolution on the meeting room projector it was not possi-
ble to have AML’s command line interface, the XEmacs windows for programming
and the AUnit GUI window up at the same time. It was found that tests were
done much faster when they could be done in the same window as AMLs command
line interface. Therefore it was found necessary to have a better output from the
command line interface of AML for expert users prioritizing speed over simplicity.

46

Chapter 6

AUnit

AUnit’s foundations were made during a summer job at Aker Solutions KBeDesign
and the project thesis [7]. This chapter will explain the technology behind AUnit.

Start

Start

GUI

Command line
external program

Initialize Run test Output

Core

Print

start test

start test

result

result

result

Figure 6.1: Relationship between the core, GUI and print modules.

47

results

test-script-1-test

test-name

check-
eqauls

check-
eqauls

test-name2

check-
delta

test-script-2-test

... ...

Check statement

Unit test

Test script

Test suite

Test script equivalent:

Figure 6.2: AUnit test results tree structure

6.1 Overall structure

AUnit is currently comprised of three components; the AUnit core which runs
and evaluates the tests, the AUnit GUI which creates a graphical user interface
for AUnit and the AUnit print module which prints the test results to text and
html files. AUnit is made so that the core can be run independently and the GUI
module can be added when needed. Currently, the core needs some functionality
from the print module to run the tests.

The entrance and exit routes of AUnit are illustrated in figure 6.1. AUnit can be
started either from the GUI or via AMLs command line interface. From there the
tests are executed in the core. The core sends the results to the command line,
back to the GUI or the print module which creates reports.

The results from the tests are saved in a tree-structure as shown in figure 6.2. The
three first layers are displayed in the test tree in the GUI-application. The fourth
layer is shown in the text box when a user clicks on a unit test.

6.2 Core

A substantial amount of work is done to simplify the core functionality in relation
to creating the GUI and to ease further development of AUnit.

An instance of aunit-framework-class is loaded for every test script. It holds

48

Test-file Framework Results

defaunit
save-overall-results

deftest

check-*

save-results
aunit-result-class

Loop checksLoop checks

Loop testsLoop tests

aunit-result-collection-class

Figure 6.3: UML sequence diagram showing how a test is execute inside the core
module.

all the information on the test script like its name and file path. An
aunit-result-collection-class is created to hold all the test results. The test
script executes macros defined in the framework, like defaunit and deftest, see
figure 6.3. These macros then save the results to the result-object.
The tests and the results are saved in two separate objects under the main AUnit
instance, one for the results and one for the frameworks holding the test informa-
tion, see figure 6.4.

6.3 GUI

The AUnit GUI was created to make AUnit handle multiple, hierarchical, unit
tests for entire product models. For AUnit to be an effective tool it was decided
to create a GUI that has the ability to take in multiple tests and give immediate

49

Figure 6.4: AUnit object tree

feedback in the same window. The components are completely separate of the
command line interface used for development. This allows the developer to rerun
all the unit tests with the click of a button, a necessity for TDD as discussed in
chapter 2.

On the left side of the window there is a tree that displays the loaded tests. The
test tree uses AML’s ui-model-tree class, which displays AML objects in a tree
structure. The models are filtered to only show the test objects by setting the root
object to the results model and the object class to aunit-display-class. This en-
sures that the tree will only show objects that inherit from aunit-display-class.
It is an empty class that only inherits from the top-level object class. With AMLs
multiple inheritance features it can be inherited in addition to any other classes.

The Load def and Browse buttons triggers the aunit-gui-browse-class that
loads one or more test scripts into AUnit. The two different buttons open the
same file browser, but they are filtered for .def and .aml files respectively.

At the bottom of the window there is a status bar that turns green when all the
tests pass, otherwise it remains red. It started as a progress bar turning greener
as more tests passed, but it was replaced with a bar that is entirely red or green.
This is done because only a single failing test out of hundreds should be treated as
severely as one failing test out of five. A progress bar will not show this incident
very clearly. With tests independent of each other we might have one failing test
for each error [8, p. 149] and a single failing test will do very little impact on a
progress bar. Below the status bar there is a field showing the number of successful
tests as well as the percentage of successful tests.

defaunit creates a list of all the deftests. If there is a set-up function, it is
inserted between every deftest function.

50

Figure 6.5: AUnit GUI running the beam tests

6.3.1 Selecting technology for the AUnit GUI

Two main technologies for the AUnit GUI were considered. Either using Microsoft
.NET’s WPF (Windows Presentation Platform) and the C# programming lan-
guage or AML’s own user interface modules. To find the most suitable technology
a preliminary version was created using both technologies.

.NET’s WPF has a simple drag and drop based interface in Visual Studio that
makes it quick and easy to create GUIs. A few hours work resulted in a simple
window as seen in figure 6.7. It includes a file browser, an output box and a
progress bar showing if the tests succeeded or failed - all premade modules provided
by WPF.

The problem with the .NET solution was to connect it with AML, which is needed
to run the tests. Using .NET’s Process.StartInfo class it was possible to start
an instance of AML and redirect the input and output to the .NET application.

51

User GUI Core Print

(aunit)
Show AUnit

Press “Browse”
Add to test tree

Press “Run test”
execute-tests

run-test
open-file

print-results

test-results
Display test results

Figure 6.6: UML sequence diagram showing a user starting AUnit and running a
test.

Figure 6.7: AUnit GUI test in .NET

52

However, this does not open the AML canvas needed to draw the models. And
even more importantly, only one AML instance can be used at a time without
requiring an extra license. Switching between AML instances used for testing and
development makes it practically impossible to use the unit tests while program-
ming, like in TDD. Based on this knowledge an effort was made to see what could
be done with AML’s inbuilt user interface functions.

Using the same technology for the GUI and the core of the program avoids the
linking issues that .NET has with AML. The challenge with a GUI that is created
entirely in AML is the lack of drag and drop systems and fewer inbuilt modules
that makes it necessary to write more code for the GUI application.

AML has some user interface elements available similarly to .NET’s WPF. Adding
a file browser and output window was relatively easy. However, in xUnit the status
bar turning from red to green as tests pass is vital. AML does not have any pre-
made status bar module so it was necessary to create one using colored boxes.
Having done this the AML GUI (see figure 6.8) was just as good as the one made
in .NET, but also with a solid connection to the AUnit core.

6.4 Print

The print feature was included in the core functionality of AUnit before this report
was started. During this project it was separated from the core and made into an
independent module, although it is still required by the core.

The print component loops through the result of a test and prints it to a text-
and html-file. It has two classes, one containing functions that print html-codes
and another that evaluate the test-result object. This separation makes it easier
to add new report formats without interfering with the more advanced evaluation
code.

53

Figure 6.8: AUnit GUI test in AML

54

Chapter 7

Results and discussion

AUnit has been tested with several KBE-models using both test-driven develop-
ment (TDD) and continuous integration (CI).

7.1 Unit testing KBE models and test-driven de-
velopment

In the introduction, the following question was asked:

RQ1: How can unit tests for AML KBE models be written in a concise
manner using known input and output parameters?

In chapter 5 it was shown that unit tests for KBE models cannot be written in the
same manner as when doing regular software development. KBE models do a lot
of complex calculations that is not known by the developer beforehand. Normally,
when writing unit tests, the output can easily be calculated given a certain input.

KBE models also have a different structure than what is seen in other program-
ming projects. The back-bone of a KBE model are classes that have properties
and subobjects and they can in turn inherit more properties and subobjects from
other classes. When discussing testing it is beneficial to divide the properties and
subobjects in a class into two main categories: Simple properties like height and
length from the input and existing subobjects that are pre-made classes. On the
other hand there are properties and subobjects that contain logic and calculation,
referred to as logic properties and logic subobjects. In addition a KBE model has
functions and methods similar to what can be found in Java and C#.

55

Three hypothesizes were tried on a KBE bottle model:

Hyp1: KBE models can be unit tested by directly checking that each
property has the expected value.

First, testing every parameter in the model proved to be a very time consuming
exercise. In order to check that a property is correct it must be typed into the
test as well as in the KBE model. This leads to duplication in the code and test
script which makes it more difficult to adapt the test as the code evolves and just
double work that just tests that the properties are written correctly in both places.
Unit tests should give a certain input and expect and output, without duplicating
anything from the code under test.

Hyp2: KBE models can be unit tested by calculating their volume
and surface area and comparing these values to the volume and surface
areas of the objects in the KBE model.

The duplication is taken into consideration in the second hypothesis. By checking
the geometry of a KBE model by having the tests calculate the expected volume
or surface area and comparing it to the actual volume or surface area in the KBE
model, it should be possible to verify that the model is as expected. This approach
solves the duplication-issues with the first hypothesis, but they turn out to be just
as time-consuming to write. In addition the complexity of the tests is increasing
as the model evolves into non-standard geometric shapes. The developer has to do
the KBE-system’s work, and this leads to that the tests verify AML’s functionality,
not the KBE-model.

Hyp3: KBE models can be tested by checking the return values from
just the conditionals, loops and calculations.

A third hypothesis is posed, testing only the logic in the AML-code. This does not
result in any duplication and at the same time it is simple and quick to write the
tests. The problem with this approach is that simple properties like superclasses
and inherited properties are not tested, but must be visually inspected.

Another problem is that the number of subobjects in a model will change depend-
ing on the parameters given. This became evident in testing the bookshelf model
in section 5.3.3 where the number of shelves and dividers vary greatly. It is not
necessary to find each subobject and test them. Instead, the programmer can test

56

that the code creating the subobjects work correctly. In the bookshelf model there
are lists containing the positioning of the shelves, these lists are calculated in list-
ing 7.1. They can be used to test that the shelves are placed correctly, instead of
checking the orientation parameter of each shelf.

she l f−he ight− l i s t−1 (l et (
(a
(l i s t
(∗ −1 (+

(− ^^vert i ca l− spac ing− she lves− input
(h a l f ^^ thickness−of−she lves− input))

(h a l f ^^ thickness−top−she l f− input)))))

(var (∗ −1
^^vert i ca l− spac ing− she lves− input))

)
(loop f o r i from 2 to ^^number−of−shelves

do (push var a))
a)

s h e l f−he i gh t− l i s t (reverse ^ she l f−he ight− l i s t−1)

she l f−coords (loop f o r i from 0 to (− (length ^ sh e l f−he i gh t− l i s t) 1)
sum (nth i ^ s h e l f−he i gh t− l i s t) i n to dist−sum

col lect (mult iply−vector−by−scalar ^wa l l−d i r e c t i on dist−sum)
)

Listing 7.1: Calculation of shelf position in the bookshelf model

RQ2: How can test-driven development be used for developing KBE
models in AML?

Test-driven development was performed on the first two KBE examples; the bottle
model in section 5.3.1 and the beam in section 5.3.2. Unit testing a KBE-model
differs from other unit tests in that large parts of the code cannot be broken into
satisfactory units. When the code cannot be broken into units one cannot create
unit tests for it and test-driving its development becomes impossible. Therefore
TDD for KBE models involves writing code before the tests, it does not allow for
a fully test-driven development of KBE models. The developer must, as soon as
he tries to write some logic, an equation or a function, write unit tests first and
then refer to the regular TDD steps.

One alternative could be to write the same unit tests mentioned above, but start
with the tests for the logic first as per the standards in TDD. Then the simple
properties can be added when they are needed. This can cause some problems

57

when the properties are only used by the class’ sub- or superclasses. Take for
example the bottle example from section 5.3.1. The diameter values are not used
by any of the calculations, and can therefore be excluded without the tests failing.
Since most properties in AML have a default value, they will instead of being set
to their desired value be set to the default value. If the model was developed in
a test-driven fashion they could much easier be forgotten than if all the needed
properties were to be written first.
It is important to acknowledge this weakness in unit testing KBE models. They
are not complete and cannot fully verify a model. Instead they must be used as a
tool to minimize the risk of logical and calculation errors. Missing and misplaced
simple properties must be discovered through visual inspection of the model. The
testing framework can help with this by providing image comparison methods or
showing a 3D-model directly in the testing framework. Knowing that the logical
and calculation errors can be much more severe than missing properties, the unit
tests have a great significance for the accuracy of the KBE models.
Logical errors are more severe than misspelling and omissions because they will
normally be much harder to discover without proper tests. A calculation with an
error in the formula or a boolean value that should be true instead of false will
in most cases not cause any errors when executing the model. Instead the model
itself will be wrong. For other errors like inheriting the wrong, or a non-existing
superclass it will cause the program to give an error message or the model will be
noticeably different from what was intended.
However, one can never be sure that a test can discover all possible bugs in a
program. Myers’ quote below means that tests should be used to find errors, not
verify that there are no more errors in a program.

“Testing is the process of executing a program with the intent of finding
errors.”

Myers et al. The Art of Software Testing [39, p. 6]

7.1.1 Step by step

This section will summarize the experiences from the different projects AUnit has
been exercised on using the third hypothesis. A step by step guide to creating unit
tests for KBE models is shown. The process is summarized in figure 7.1.

• Create the main class. Set inheritance, simple properties and any subobjects
that uses already existing classes

58

Create the
main class

Add simple
properties,
existing

subobjects
and su-

perclasses

Are
calcula-
tions
neces-
say?

create new
classes

Start TDD

no

yes

Figure 7.1: Process for unit testing KBE models

• If any calculations are necessary, write unit tests and follow the steps for
TDD as described in chapter 2.

• Create any other necessary classes and repeat.

7.2 Unit testing at Aker Solutions KBeDesign

There was only one major problem that surfaced during the piloting of AUnit at
KBeDesign (section 5.4). In KBeDesign’s code for the Luva project they had tight
connections between some components in the model, which made it impossible
to run a single component independently. Especially with AML’s powerful the-
referencing system it is easy to fall into temptation and tightly integrate your code
with the rest of the program. Having separate units of code also greatly encourages
reuse of code in different projects.

7.3 Continuous integration

RQ3: How can continuous integration be used in an environment de-
veloping KBE models with AML?

Continuous integration (CI) is used to avoid long integration processes at the end
of a development-project by integrating the code into a real-life environment after

59

Figure 7.2: A notification pop-up window in AML. It is used when input param-
eters are wrong.

every change in the code. CI requires a code repository with code that can be
automatically built as well as unit tests and a system to execute the tests and give
feedback to the right people.

Performing CI on KBE-models is not different from other software projects. There-
fore CI will not be discussed in detail in this report. The problems that emerged
while doing CI for KBE models could apply to most other software projects. The
main challenge is to find a CI tool that can interact with AML and configuring it
properly.

7.4 AUnit

There have been a few development processes with the unit testing framework
used for testing KBE models, AUnit. It has been split into three modules, a print
and GUI module in addition to the core. All of the modules are built using only
AML.

AUnit is a working unit testing framework, but there are still several things that
can be added or improved, see section 8.1 for some suggestions for further work
on AUnit.

7.4.1 Verifying input parameters

When testing the bookshelf’s input parameter verification rules, AML generated a
warning pop-up box when a rule was broken. These pop-up boxes have to be closed
manually by the user. With several tests the testing process becomes very manual
when several pop-up windows have to be closed every time a test is running. This
could be solved by refactoring the code so that the rule checking for correct input
is in a separate function that can be tested by AUnit and called from the function

60

that generates the pop-up warning. However, the method takes in a bookshelf
model as a parameter, so a model with the wrong input-parameters has to be
created in order to test it. This means that the pop-up box will still be triggered
by the initial creation of the model in the set-up function. Another solution might
be to have AUnit suppress any warning boxes generated while testing.

61

62

Chapter 8

Conclusion

AUnit has developed into a fully featured unit testing framework with an easy to
use graphical user interface (GUI) as well as a command line interface for expert
users and program interfaces.

Although TDD can be done for KBE models, it is not viable to follow the steps
of TDD too closely. To efficiently create KBE models it is necessary to set some
properties and subobjects before the TDD-process can begin. This form of TDD
has been done successfully for different KBE models, also existing KBE models
made by KBE professionals has been successfully tested. Because some properties
and subobjects are created before the unit tests, a KBE model cannot be fully unit
tested in its current form, only the logic in the model is unit tested. The early
parameters need visual inspection to be verified. However, the benefit of testing
KBE models’ logic is substantial as this is where the most severe errors are found.

CI for KBE models works very similar to other programming applications, and
existing CI-servers like FinalBuilder [19] can be used.

63

8.1 Further work

The following section will outline some suggestions for further work with unit
testing KBE models and development on AUnit.

AUnit can be run from both the command line and a GUI application. It started
out giving feedback through text- and html-reports and the latest developments
have focused on the GUI application. When tests are run from the command line
it would be of great advantage to the users if the results could be printed directly
to the user in addition to any reports.

There are a number of check methods available for checking different structures
and data types. The handling of these check methods can be improved to make
them more intelligent. If each check method could intelligently handle more check
cases it would be easier to have an overview of existing methods and add new
functionality when needed, for example by using keyword-based input parameters.

For more complicated tests it can be highly beneficial to create local variables. In
AML, any local variables are created and accessed inside a let statement. AUnit
will not find any checks inside a let statement, instead it will interpret this as a set-
up command. This can be solved by recursively checking the test method’s content
to separate set-up and other non-testing expressions from the test methods.

The AUnit GUI has a tree structure for displaying the loaded tests and their
results. It should be possible to manipulate the order of the tests in the tree and
create new root nodes to group tests together. Also it should be possible to clear
the tree and load a new set of tests.

AUnit has a check-image feature that can compare a screenshot of a KBE model
with an existing screenshot. This feature could be built into the GUI, showing the
two screenshots.

AUnit should be able to suppress any alerts generated by AML. For example
when testing input verification rules that alert the user with pop-up boxes. This
is discussed in section 5.3.3 and 7.4.1

The report features a successful implementation of continuous integration (CI)
in FinalBuilder. Still there is room for improvements in the robustness of the
execution by having tighter integration between AML/AUnit and FinalBuilder,
relying less on external files and pressing AML’s GUI buttons. Also there are
many things that can be done in relation to notifying developers of how their
builds are doing in the integration tests.

64

Bibliography

[1] A. Abran et al. “Guide to the software engineering body of knowledge (SWEBOK)”. In:
Institute of Electrical and Electronics Engineers, 2004. Chap. 5 Software Testing. url:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4425813.

[2] Aker Solutions. Aker Engineering & Technology (Fornebu).
http://www.akersolutions.com/en/Utility-menu/About-us1/Corporate-structure/
Engineering/Aker-Engineering--Technology-AS/. [Online; accessed 10-May-2012].

[3] Aker Solutions. Start page - Aker Solutions.
http://www.akersolutions.com/. [Online; accessed 10-May-2012].

[4] Apache Software Foundation. Apache Ant - Welcome.
http://ant.apache.org/. [Online; accessed 27-March-2012].

[5] Apache Software Foundation. Apache Subversion.
http://subversion.apache.org/. [Online; accessed 12-March-2012].

[6] Apache Software Foundation. Welcome to Apache Maven.
http://maven.apache.org/. [Online; accessed 27-March-2012].

[7] L. Barlindhaug. Quality Assurance of KBE Software. Project report. 2011.
[8] K. Beck. Test-driven development: by example. Addison-Wesley Professional, 2003.
[9] K. Beck and C. Andres. Extreme programming explained: embrace change. second. Addison-

Wesley Professional, 2004.
[10] B. Beizer. Software testing techniques. Dreamtech Press, 2002.
[11] I. Burnstein. Practical Software Testing: A Process-oriented Approach. New York, NY,

USA: Springer Inc., 2003.
[12] C. Chapman and M. Pinfold. “The application of a knowledge based engineering approach

to the rapid design and analysis of an automotive structure”. In: Advances in Engineering
Software 32.12 (2001), pp. 903–912.

[13] Clark M. Pragmatic Automation.
http://www.pragmaticautomation.com/cgi-bin/pragauto.cgi/Monitor/Devices/
BubbleBubble-BuildsInTrouble.rdoc. [Online; accessed 21-May-2012].

[14] D. Cooper and G. L. Rocca. “Knowledge-based techniques for developing engineering ap-
plications in the 21st century”. In: Proceedings of the 7th AIAA Aviation Technology,
Integration and Operations Conference, Belfast, Northern Ireland. 2007.

65

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4425813
http://www.akersolutions.com/en/Utility-menu/About-us1/Corporate-structure/Engineering/Aker-Engineering--Technology-AS/
http://www.akersolutions.com/en/Utility-menu/About-us1/Corporate-structure/Engineering/Aker-Engineering--Technology-AS/
http://www.akersolutions.com/
http://ant.apache.org/
http://subversion.apache.org/
http://maven.apache.org/
http://www.pragmaticautomation.com/cgi-bin/pragauto.cgi/Monitor/Devices/BubbleBubble-BuildsInTrouble.rdoc
http://www.pragmaticautomation.com/cgi-bin/pragauto.cgi/Monitor/Devices/BubbleBubble-BuildsInTrouble.rdoc

[15] CVS. Concurrent Versions System - Summary.
http://savannah.nongnu.org/projects/cvs. [Online; accessed 12-March-2012].

[16] DNV. Tjenester for risikostyring.
http://www.dnv.no/. [Online; accessed 8-March-2012].

[17] P. Duvall, S. Matyas, and A. Glover. Continuous integration: improving software quality
and reducing risk. Addison-Wesley Professional, 2007.

[18] L. Erlikh. “Leveraging legacy system dollars for e-business”. In: IT Professional 2.3 (2000),
pp. 17–23.

[19] FinalBuilder. VSoft Technologies > Home.
http://www.finalbuilder.com/. [Online; accessed 27-March-2012].

[20] M. Fowler. Refactoring Home.
http://refactoring.com/. [Online; accessed 10-May-2012].

[21] M. Fowler. Continuous integration.
http://www.martinfowler.com/articles/continuousIntegration.html. [Online;
accessed 23-January-2012]. 2006.

[22] M. Fowler. Frequency Reduces Difficulty.
http://martinfowler.com/bliki/FrequencyReducesDifficulty.html. [Online; ac-
cessed 30-January-2012]. 2011.

[23] M. Fowler and M. Foemmel. Continuous integration.
http://www.martinfowler.com/articles/originalContinuousIntegration.html.
[Online; accessed 30-January-2012]. 2000.

[24] B. George and L. Williams. “An initial investigation of test driven development in in-
dustry”. In: Proceedings of the 2003 ACM symposium on Applied computing. ACM. 2003,
pp. 1135–1139.

[25] GlobalSecurity. Spar Platform.
http://www.global-security.org/military/systems/ship/platform-spar.htm.
[Online; accessed 1-May-2012].

[26] G. Hopper. “The interlude 1954-1956”. In: Symposium on Advanced Programming Methods
for Digital Computers, Washington, DC, 0HR Symposium Report ACR-15. 1956, pp. 1–2.

[27] IEEE Computer Society. Standards Coordinating Committee. IEEE Standard Computer
Dictionary: A Compilation of IEEE Standard Computer Glossaries. Tech. rep. Institute
of Electrical and Electronics Engineers, 1991.

[28] M. Karlesky et al. “Mocking the embedded world: Test-driven development, continuous
integration, and design patterns”. In: Proc. Emb. Systems Conf, CA, USA. 2007.

[29] KBeDesign. KBeDesign.
http://kbedesign.com/. [Online; accessed 10-May-2012].

[30] KBeDesign. “Bookshelf example”. KBE example made for the LinkedDesign project. 2012.
[31] P.-O. Korsnes. “Analysis of Access Platforms”. MA thesis. Norwegian University of Science

and Technology (NTNU), 2010.
[32] LinkedDesign. Home.

http://www.linkeddesign.eu/. [Online; accessed 24-April-2012].

66

http://savannah.nongnu.org/projects/cvs
http://www.dnv.no/
http://www.finalbuilder.com/
http://refactoring.com/
http://www.martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/bliki/FrequencyReducesDifficulty.html
http://www.martinfowler.com/articles/originalContinuousIntegration.html
http://www.global-security.org/military/systems/ship/platform-spar.htm
http://kbedesign.com/
http://www.linkeddesign.eu/

[33] E. Maximilien and L. Williams. “Assessing test-driven development at IBM”. In: Software
Engineering, 2003. Proceedings. 25th International Conference on. IEEE. 2003, pp. 564–
569.

[34] S. McConnell. Code complete. O’Reilly Media, Inc., 2009.
[35] Microsoft. MSBuild Reference.

http://msdn.microsoft.com/en-us/library/0k6kkbsd.aspx. [Online; accessed 27-
March-2012].

[36] N. Milton. Knowledge technologies. Vol. 3. Polimetrica sas, 2008.
[37] M. M. Müller and F. Padberg. “About the return on investment of test-driven develop-

ment”. In: EDSER-5 5 th International Workshop on Economic-Driven Software Engi-
neering Research. Citeseer. 2003.

[38] R. Munroe. xkcd: Compiling.
http://xkcd.com/303/. [Online; accessed 16-April-2012].

[39] G. J. Myers et al. The Art of Software Testing. second. John Wiley & Sons, 2004. isbn:
978-0-471-46912-4. url: http://eu.wiley.com/WileyCDA/WileyTitle/productCd-
0471469122.html.

[40] NAnt. NAnt - A .NET Build Tool.
http://nant.sourceforge.net/. [Online; accessed 27-March-2012].

[41] L. Narayan et al. Computer aided design and manufacturing. PHI Learning Pvt. Ltd.,
2008.

[42] NaturalGas.org.
http://www.naturalgas.org/naturalgas/extraction_offshore.asp. [Online; ac-
cessed 01-May-2012].

[43] Norsk Standard. Norsk Standard.
http://www.standard.no/. [Online; accessed 8-March-2012].

[44] Norsk Standard. Petroleum.
http://www.standard.no/petroleum. [Online; accessed 8-March-2012].

[45] R. Osherove. The Art of Unit Testing. Manning Publications Co., 2009.
[46] D. Parnas and P. Clements. “A rational design process: How and why to fake it”. In:

Formal Methods and Software Development (1985), pp. 80–100.
[47] G. Rocca. “Knowledge based engineering: Between AI and CAD. Review of a language

based technology to support engineering design”. In: Advanced Engineering Informatics
(2012).

[48] W. Royce. “Managing the development of large software systems”. In: proceedings of IEEE
WESCON. Vol. 26. 8. Los Angeles. 1970.

[49] G. Schreiber et al. Knowledge engineering and management: the CommonKADS method-
ology. the MIT Press, 2000.

[50] Scott Chacon. Git - Fast Version Control System.
http://git-scm.com/. [Online; accessed 12-March-2012].

[51] P. Seibel. Practical Common Lisp. APress, 2005. isbn: 1590592395.
[52] D. E. Shasha and C. A. Lazere. Out of their minds: the lives and discoveries of 15 great

computer scientists. Copernicus Series. Copernicus, 1998. isbn: 9780387982694.

67

http://msdn.microsoft.com/en-us/library/0k6kkbsd.aspx
http://xkcd.com/303/
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471469122.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471469122.html
http://nant.sourceforge.net/
http://www.naturalgas.org/naturalgas/extraction_offshore.asp
http://www.standard.no/
http://www.standard.no/petroleum
http://git-scm.com/

[53] P. Smith. File:Waterfall_model_(1).svg - Wikimedia Commons.
http://commons.wikimedia.org/wiki/File:Waterfall_model_(1).svg. [Online;
accessed 14-May-2011].

[54] Statoil. Looking for suppliers in Northern Norway for Aasta Hansteen. http : / / www .
statoil . com / en / OurOperations / FarNorth / Pages / SuppliersForAastaHansteen .
aspx. [Online; accessed 30-April-2012].

[55] M. Stokes. Managing Engineering Knowledge - MOKA: Methodology for Knowledge Based
Engineering Applications. Professional Engineering Publishing, 2001. isbn: 1860582958.

[56] S. Stolberg. “Enabling Agile Testing through Continuous Integration”. In: Agile Confer-
ence, 2009. AGILE’09. IEEE. 2009, pp. 369–374.

[57] TechnoSoft Inc. TechnoSoft Inc: Adaptive Modeling Language.
http://www.technosoft.com/aml.php. [Online; accessed 10-May-2012].

[58] TechnoSoft Inc. TechnoSoft Inc: Home.
http://www.technosoft.com/. [Online; accessed 10-May-2012].

[59] TechnoSoft Inc. AML Basic Training Manual. V3.04. TechnoSoft Inc., 2007.
[60] TechnoSoft Inc. AML Reference Manual. 5.0B5. TechnoSoft Inc., 2010.
[61] TechnoSoft Inc. AML Reference Manual. 5.0B5. TechnoSoft Inc., 2010.
[62] Wikipedia. Common Lisp — Wikipedia, The Free Encyclopedia.

http://en.wikipedia.org/w/index.php?title=Common_Lisp&oldid=448448036.
[Online; accessed 12-September-2011].

[63] Wikipedia. Java (programming language) — Wikipedia, The Free Encyclopedia.
http://en.wikipedia.org/w/index.php?title=Java_(programming_language)
&oldid=489990352. [Online; accessed 1-May-2012].

[64] Wikipedia. Lisp (programming language) — Wikipedia, The Free Encyclopedia.
http://en.wikipedia.org/w/index.php?title=Lisp_(programming_language)
&oldid=449939607. [Online; accessed 12-September-2011].

68

http://commons.wikimedia.org/wiki/File:Waterfall_model_(1).svg
http://www.statoil.com/en/OurOperations/FarNorth/Pages/SuppliersForAastaHansteen.aspx
http://www.statoil.com/en/OurOperations/FarNorth/Pages/SuppliersForAastaHansteen.aspx
http://www.statoil.com/en/OurOperations/FarNorth/Pages/SuppliersForAastaHansteen.aspx
http://www.technosoft.com/aml.php
http://www.technosoft.com/
http://en.wikipedia.org/w/index.php?title=Common_Lisp&oldid=448448036
http://en.wikipedia.org/w/index.php?title=Java_(programming_language)&oldid=489990352
http://en.wikipedia.org/w/index.php?title=Java_(programming_language)&oldid=489990352
http://en.wikipedia.org/w/index.php?title=Lisp_(programming_language)&oldid=449939607
http://en.wikipedia.org/w/index.php?title=Lisp_(programming_language)&oldid=449939607

Appendix A

Introduction to AML

This is an updated and improved version of the AML introduction chapter from
the author’s project report [7].

In order to have a good understanding on how to test code written in the AML it
is important to be familiar with AML’s basic code constructors. This chapter will
give a brief introduction to AML and show how KBE models are created in AML. It
is based on TechnoSoft Inc. (TSI)’s documentation; the AML Basic Training Man-
ual [59] and AML’s Reference Manual [60]. Seibel’s Practical Common Lisp [51]
is used as reference for general Lisp features.

A.1 AML basics

AML is a Lisp based programming language developed and owned by TSI, an
American company focusing on engineering software. AML is completely inde-
pendent from any Lisp implementations as it has its own compiler written from
scratch.

Lisp was designed by John McCarthy in 1958 and has been the de facto language
for Artificial Intelligence (AI) research, a term that John McCarthy coined as early
as 1956 [52, p. 24-30]. According to Schreiber et al. [49, p. 6], Knowledge systems,
which KBE is a subset of, is the most successful commercial result of AI. This
creates a natural link between LISP-based programming languages like AML and
KBE systems.

69

45

(* 5 9)

* (+ 1 4) (+ 4 5)

Figure A.1: AML S-expression evaluation of (* (+ 1 4) (+ 4 5))

A.1.1 S-expressions

S-expressions (or parenthesized lists) are the building blocks of AML. An S-
expression can contain an infinite number of elements, separated by a whitespace.
A valid AML-form of an S-expression is an empty list or a list that has a function
or method name as its first element. The name list calls the list function that
creates a list, the symbol + calls the + function that adds two numbers together.

In fact an AML program is an S-expression containing a series of other
S-expressions. This gives the AML-objects a tree-like structure. The recursive
nature of the programming language is the key to its success in KBE and AI.

As an example we will see how AML evaluates a calculation.

(∗ (+ 1 4) (+ 4 5))

The process is shown in figure A.1. First it evaluates the innermost arguments, (+
1 4) and (+ 4 5) to 5 and 9 respectively. When all the arguments are evaluated,
AML call the multiplication function and we get the answer, 45.

A.1.2 nil values

AML does not have Boolean values like true/false known from most other pro-
gramming languages. Instead it has a different concept; nil values. For example,
in an if-sentence nil will cause the false-expression to be evaluated and everything
that is not nil will cause the true-expression to be evaluated. There is a convention
to use t to specify that the expression is not nil.

(i f n i l " True " " Fa l se ") ; ; Returns " Fa lse "
(i f t " True " " Fa l se ") ; ; Returns "True "
(i f anything "True " " Fa l se ") ; ; Returns "True "

70

A.1.3 Class definitions

Classes are the backbone of AMLs object oriented structure. A class definition
specifies the class’ inheritance, its properties and subobjects. Inheriting a class,
known as a superclass makes all methods, properties and subobjects of that class
and its superclasses available. A class can inherit from more than one superclass.
Subobjects (children) creates an instance of a class, these classes will be child-
classes to the class containing the subobjects [61, Ch. 2]. Parameters work as the
model’s attributes [12, p. 907].

All class names should end with a “-class” suffix.

(define−class class−name−class
: inherit−from (ob j e c t)
: properties (

property−name (d e f au l t default−property−value))
: subobjects (

(subobject1 : class ’ chi ld−class−name−class)))

A.1.4 The referencing

The referencing is used to access a class’ properties and subclasses. It starts from
the root node and finds a path down the model tree corresponding to the keywords
given as parameters. If a path cannot be found it will go one level up in the tree
and attempt to find a valid path. By using the superior keyword one can determine
how many levels a the-reference should go up the tree before it starts looking for
a path.

Given the structure of the bookshelf as shown in figure A.2, a the-reference a
bookshelf-shelves-0003 will look like this:

(the Bookshe l f bookshe l f− she lve s bookshel f−she lves−0003)

If a property in a shelf needs to access a property in the wall, the superior keyword
is used.

(the s upe r i o r supe r i o r bookshe l f−wal l s bookshel f−walls−0000)

A.1.5 AML subroutines

There are three main types of subroutines in AML; functions, methods and macros.

71

Bookshelf
bookshelf-frame

side-1
side-2
top-shelf
bottom-shelf

bookshelf-walls
bookshelf-walls-0000
bookshelf-walls-0001

bookshelf-shelves
bookshelf-shelves-0000
bookshelf-shelves-0001
bookshelf-shelves-0002
bookshelf-shelves-0003

Figure A.2: Bookshelf model structure

A.1.5.1 Function

A function is the simplest subroutine. It takes in a set of arguments and returns
the last AML statement executed. It is loaded into the AML memory and can be
called at anytime from anywhere in the code.

Defining a function:

(defun function−name (arg1 arg2)
; f unc t i on body)

Calling a function:

(function−name arg1 arg2)

A.1.5.2 Method

A method is connected to a specific class. This class is specified as the second
argument in the method declaration. A method can only be called with an instance
of this class, or a subclass of that class. If a method is defined in both a class and
a subclass and called from a subclass, the method in the subclass will override the
method in the parent class [61, Ch. 2].

A method can make a the-reference to the class’ properties and subobjects.

72

Defining a method:

(define−method method−name class−name−class (arg1 arg2)
; method body)

Calling a method:

(method−name class−name−class arg1 arg2)

A.1.5.3 Macro

Macros differ from functions and methods. A function or method is evaluated
when the AML program is executed. With a macro, the AML compiler will take
in the input parameters and expand the macro into the code in all the places where
it is called. When the compiler is finished the code will only contain functions and
methods, all the macros will be expanded into s-expressions [51, Ch. 4]. Many of
the main building blocks in AML are macros, for example the for-loop.

Using a macro definition allows the programmer to improve the language and
create new functions on the same level as the pre-made AML functionality.

Defining a macro:
(defmacro macro−name (arg1 arg2)

; macro body)

Calling a macro:
(macro−name arg1 arg2)

73

74

Appendix B

Software testing

This is an updated and improved version of the software testing chapter from [7].

This chapter will look at different testing methods and different levels of software
testing.

“Testing is the process of executing a program with the intent of finding
errors.”

Myers et al. The Art of Software Testing [39, p. 6]

This may seem obvious, but it is important to emphasize that the objective of
software testing is to find bugs, not to verify that the software is bug-free.

B.1 Testing pitfalls

A problem with testing is that it can give the programmer a false sense of security.
A positive result in a test does not mean that the code is error-free. There can be
aspects not covered by the test or there can be bugs passing because of errors in
the test itself.

Errors in the test are often brought up when discussing disadvantages regarding
software testing. There are two possible outcomes from an error. If the error
causes a false positive1, the developer will be warned of the error when he finds
out that his own code is correct. If the test doesn’t find an existing bug, nobody

1A false positive is when a test finds a bug which is not really a bug, but correct behavior.

75

will be notified, given Myers’ statement above, this is not a problem. We do not
aim to find every single bug, just as many as possible.

One should also keep in mind that unit tests are a great deal less complex than
the code they are testing2 and therefore much less likely to contain an error than
the code under test.

B.1.1 Pesticide paradox

Boris Beizer coined the term pesticide paradox in his book Software Testing Tech-
niques [10, p. 9]. It creates a parallel between how insects become resistant to
pesticides and how software bugs will not be discovered by using the same tests
again and again.

A developer will run a unit test until it passes and the bug is dead. There is a
chance that during these iterations the developer has created new bugs. If a unit
has already been buggy, it has a higher probability of containing new bugs. Either
because it contains especially complex code or that new bugs appears while the
developer tries to fix existing ones [11, p. 139].

Since the code is written to comply with the unit test, the new bug will not be
discovered by the same set of tests. Therefore the tests need to always be rewritten
as the code is expanding.

B.2 Testing levels

The Software Engineering Body of Knowledge (SWEBOK) [1, Sec. 2.1] defines
three different conceptual testing levels; unit, integration and system testing.

B.2.1 Unit testing

Unit testing is testing of the smallest form of code that is possible to test separately
from the rest of the code [1, Sec. 2.1.1] [11, p. 137].

2Tests should have a cyclomatic complexity of 1 [45, p. 178], this means that a unit test should
not contain any logic.

76

B.2.2 Integration testing

“Integration testing is specifically aimed at exposing the problems that
arise from the combination of objects.”

Beizer, Software Testing Techniques [10, p. 21]

Integration testing is used to make sure that the interaction between the compo-
nents in the program is working. There are several ways to do integration testing.
Bottom-up starts with first integrating the components interacting with the core
of the program and then running a set of tests. The testing continues, adding
components interacting with the newly integrated layer. By adding layer by layer
all the way to the user interface of the program, the software is fully integration
tested. Top-down works similarly to bottom down testing, but starts with the user
interface and continues downwards to the core [1, Sec. 2.1.2] [27].

Adding all the components at once is usually not recommended and referred to as
“big bang” testing [1, Sec. 2.1.2].

B.2.3 System testing

During system testing the code is completely integrated. The whole system is
tested to make sure that it works in accordance with the requirements, usually
non-functional requirements. It is also used to verify the integration with external
systems. Most failures should already have been identified in the previous testing
levels. [1, Sec. 2.1.3]

B.2.3.1 Functional and non-functional requirements

Functional requirements are set to define how the software should work. For
example how the output should be formatted or that a missile should have both a
conical and spherical nose.

Non-functional requirements are measured on the finished software. They often
concern security, reliability, maintainability and performance [1, Sec. 1.3].

77

B.3 Testing methods

B.3.1 Black box and white box testing

Black box and white box testing are two of the main testing strategies [11, p. 65].
With black box testing the test cases are based solely on input and output data
[1, Sec. 3]. The tester does not know what happens inside the program during the
execution. With white box testing the tester looks at the inner workings of the
program to write test cases.

Unit testing can be written with both the black box and white box testing strategy
and both strategies should be used to ensure completion.

78

Appendix C

AUnit Reference

This chapter contains an in-depth look into AUnit’s functions. Some of it is new
to this report, other parts are from the author’s project report [7].

C.1 Check functions

The check functions are the AML unit testing framework’s assertions. The testing
functions built into AUnit are listed below. It is also possible for the user to define
new check functions, either at company or project level.

C.1.1 check-equals

Check-equals is the most basic test statement. It takes in two parameters and
uses AML’s equalp function to see if they are equal or not1. Integer and float
data types, for example 2 and 2.0 will be treated as equals and strings will match
regardless of case.

1Where JUnit and NUnit require an assertion method for each data type, like string, integer
and float, AML only requires one. This is because it is a dynamically typed language. Dynam-
ically typed language means that variables’ data types are not statically declared in the code.
Instead it is read from the value, we get that 1, 1.0 ’1’ and “1" is an integer, float, character and
string, respectively.

79

C.1.2 check-equals-strict

Check-equals-strict works similarly to check-equals, but uses AML’s equal function,
so string comparison will be case sensitive and 2 will not match 2.0.

C.1.3 check-nil and check-not-nil

We learned from section A.1.2 that AML does not have typical Boolean values like
true and false. Instead we will create methods that check if an expression is nil or
not nil. check-nil passes if the function under test returns nil, check-not-nil will
pass the test for any expression except nil. We will use this in an example testing
that the value of display-coord-systems? is set correctly.

(deftest ’ test−set−coord−systems
(change−value (the mi s s i l e display−coord−systems ?) t)
(check−not−nil (the mi s s i l e display−coord−systems ?)))

(deftest ’ test−disable−coord−systems
(change−value (the mi s s i l e display−coord−systems ?) n i l)
(check−ni l (the mi s s i l e display−coord−systems ?)))

Note that display-coord-systems? could be set to anything except nil in the first
example and the test will pass. The code will also be treated the same by the
AML interpreter.

C.1.4 check-delta

Check-delta is similar to check-equals, but it takes a third parameter, delta. The
delta parameter allows for some uncertainty in the calculations without the test
failing. For example working with floating point numbers, the test can fail after
insignificant changes because of rounding the numbers in large calculations. The
test will pass if the actual value is within ±delta of the expected value. This is how
JUnit’s assertEquals function works for decimal numbers. In the example below
we test if the body mass is within 0.5 of 16888.

(deftest ’ test−missile−body−mass
(check−delta
(the mi s s i l e missile−body−mass) 16688 0 . 5))

80

C.1.5 check-range

Check-range works similarly to check delta, but instead of defining a delta param-
eter the range is given explicitly by a range-min and range-max variable.

(deftest ’ test−missile−body−mass
(check−range
(the mi s s i l e missile−body−mass) 16687.5 16688 . 5))

C.1.6 check-list-diff

Check-list-diff is used to check the difference between two lists. It takes in two
lists and checks if the difference between the values matches a third list.

Check-equals can be used to compare lists, but will not find that lists like (list 1
2 3) and (list 1.0 2.0 3.0) are equal.

(ch e ck− l i s t−d i f f
(convert−coords (the bo t t l e bottom) ’ (0 0 0)

: from : l o c a l : to : g l oba l)
(convert−coords (the bo t t l e body) ’ (0 0 0)

: from : l o c a l : to : g l oba l)
(l i s t 0 .0 0 .0 −2.75))

C.1.7 check-list-delta

Check-list-delta is used to compare two lists. The third parameter is a delta
parameter that can set an uncertainty.

(check− l i s t−de l ta
’ (0 . 0 4 . 5 0 . 0)
(f i r s t (the bookshe l f bookshel f− f rame top− she l f position))
0 .000001)

81

82

Appendix D

TDD approaches

D.1 Testing model parameters

One way to test the bottle is to test all the properties and check if they are as
expected.

Starting with checking the bottle body diameter, it is necessary to first load the
bottle file and create the model.

(de f aun i t " bo t t l e− t e s t "
(deftest ’ body−diameter

(load "D:\\ workspace_win\\ s r c \\ polygon \\ s r c \\ bo t t l e . aml ")
(create−model ’ b o t t l e : class ’ b o t t l e− c l a s s)
(check−equals
(the bo t t l e body diameter)
2 . 0)

)
)

When running the test AML will give an error message that no bottle class exists.
So we create the bottle class and add a body subobject. To make the test pass we
also need to set the diameter property to 2.0 in the subobject. At this moment
it is not necessary to assign the subobject to a specific class in order to pass the
test, so we use the top-level class object.

83

(define−class bott le−par−c lass
: inherit−from (ob j e c t)
: properties (

)
: subobjects (

(body : class ’ ob j e c t
diameter 2 .0
)

)
)

All the tests are succeeding, so the final step in the TDD-process remains, refactor
to remove duplication. The diameter is set to 2.0 in both the test and the model,
this is duplicate code and will cause trouble when the customer demands a bigger
bottle. We need to change this later to check the diameter against the input values.
With the code above we have an object with a diameter of 2, but it does not look
like a bottle, in fact it has no shape at all since it only uses the object class. So, in
order to obtain a bottle shape we want a cylindrical body. To do this we can add
a test checking for the class type of the body. Since the test now have two test
methods using the bottle model it is possible to extract the load and create-model
statements to a set-up method to avoid duplication.

(de f aun i t " bo t t l e− t e s t "
(deftest ’ set−up

(load "D:\\ workspace_win\\ s r c \\ polygon \\ s r c \\ bo t t l e . aml ")
(create−model ’ b o t t l e : class ’ bott l e−par−c lass)

)

(deftest ’ body−diameter
(check−equals
(the bo t t l e body diameter)
2 . 0)

)

(deftest ’ body−class
(check−equals
(type−of (the bo t t l e body))
’ open−cyl inder−object)

)
)

In the test above the body-class method will fail since it is expecting an open-
cylinder-object and it gets an object. This also discovers if the class is set to for
example a regular cylinder-object (a cylinder with caps) or an open-cone-object.
They both have a diameter property, but gives the wrong shapes.

84

This is a simple change in our bottle model, we set the class of the body to open-
cylinder-object and the test passes.

(define−class bott le−par−c lass
: inherit−from (ob j e c t)
: properties (

)
: subobjects (

(body : class ’ open−cyl inder−object
diameter 2 .0
)

)
)

Finally the height of the body must be set to 5. This is done by adding a test
similar to the diameter test.

(deftest ’ body−height
(check−equals
(the bo t t l e body he ight)
5 . 0)

)

And adding the height property to the body and setting it to 5.0 passes the test.

(define−class bott le−par−c lass
: inherit−from (ob j e c t)
: properties (

)
: subobjects (

(body : class ’ open−cyl inder−object
diameter 2 .0
he ight 5 .0
)

)
)

So, how much value does these unit tests add to the model? They are simple and
easy to write, but there is severe duplication in all of the tests. If the developer
mistakenly thinks the bottle body should be a cylinder-object instead of an open-
cylinder-object, this class will be used in both the test and the model, without
any chance of discovering the error before looking at the model and seeing that
there is no way to use it. This is not a big problem with the other properties. As
mentioned, the diameter and height can be replaced with values derived from the
input parameters.

85

Given that we want a cylinder there are no more efficient ways to tell AUnit that
we want a cylinder than to create the cylinder itself in AML. Therefore our test
case would just be a repetition of the production code.

The problem here is the test that checks for the open-cylinder-object. From the
testing perspective we are not interested in what class is used, we want to have
an object with the correct geometry. So what if instead it is tested for the surface
area1 of the cylinder?

D.2 Testing model geometry

We know that the surface area should be:

A = 2πrh (D.1)

A = πdh (D.2)

So a useful test might be:

(de f aun i t " polygon−test "
(deftest ’ set−up

(c l e a r)
(load "D:\\ workspace_win\\ s r c \\ polygon \\ s r c \\ polygon . aml ")
(create−model ’ b o t t l e : class ’ b o t t l e− c l a s s)
)

(deftest ’ c y l i nde r− su r f a c e
(check−delta
(volume−of−object (the bo t t l e body))
(∗ pi 2 5)
0 .0001
)

)
)

The check-delta function is used to avoid that any rounding errors to fail the test.
This test will only succeed if AML draws a cylinder, for a cone the surface area
will be smaller and for the object AML is unable to calculate the surface area.

1We use surface area and not volume. This is because the cylinder is a hollow object with
open ends. AML can only calculate the volume of solid objects.

86

This test is assuming the diameter and height are set to the correct values, the
goal of the test is to discover irregularities in the shape. Therefore it can use the
properties directly from the model to avoid any duplication.

(deftest ’ c y l i nde r− su r f a c e
(check−delta
(volume−of−object (the bo t t l e body))
(∗ pi (the bo t t l e body diameter) (the bo t t l e body he ight))
0 .0001
)

)

The test above checks that the surface area of the bottle body is as expected,
without duplicating any of the code used in the model. It is time to move to the
next test.

The bottle needs an end-cap at the bottom. It can be created from a solid cylinder
placed at the bottom. The diameter is set to the same as the bottle and the height
to 0.5.

Again it is necessary to test that the bottom is drawn in the right shape. The
bottom is a solid object so AML will find the volume of it when using the volume-
of-object method, therefore we need the formula for the volume of a cylinder.

V = πr2h (D.3)

V = π

(
d

2

)2

h (D.4)

Using equation D.4 it is possible to create a test for the volume of the bottom.

(deftest ’ bottom−volume
(check−delta
(volume−of−object (the bo t t l e bottom))
(∗ pi

(expt (h a l f (the bo t t l e bottom diameter)) 2)
(the bo t t l e bottom he ight))

0 .0001
)

)

AML will first give an error message saying that it is missing the “bottom” sub-
object. Creating a bottom subobject like this will pass the test:

87

(bottom : class cy l inde r−ob j e c t
diameter (d e f au l t 2 . 0)
he ight (d e f au l t 0 . 5)

)

Unfortunately this is not sufficient. Taking a look at the bottle object we see that
the bottom of the bottle is placed in the middle of the bottle body. We need to
test for position as well as geometry.

The following test checks for the bottoms position relative to the body of the
bottle. Since the reference point is in the middle of the objects it needs to be
positioned half of the body’s height plus half of the bottoms height below the
body.

(deftest ’ bottom− location
(check−equals
(+ (third (convert−coords (the bo t t l e bottom) ’ (0 0 0)

: from : l o c a l : to : g l oba l))
(h a l f (the bo t t l e bottom he ight))
(h a l f (the bo t t l e body he ight))
)

(third (convert−coords (the bo t t l e body) ’ (0 0 0)
: from : l o c a l : to : g l oba l))

)
)

)

From this test it is simple to adjust the location of the bottom:

o r i e n t a t i o n (l i s t
(t r a n s l a t e
(l i s t
0
0
(− (+

(ha l f (the s up e r i o r supe r i o r body he ight))
(h a l f (^ he ight)))))))

For creating the top of the bottle it is necessary for a surface area calculation. For
creating a simple bottle shape a truncated cone is sufficient.

Given the height h, start diameter D and end diameter d we get the following
formula.

The formula for the surface area of a truncated cone is as follows. The top and

88

bottom areas are ignored since they are not in our model.

A = π (s (R + r)) (D.5)

A = π

(
s

(
D

2 + d

2

))
(D.6)

s is the slant height of the cone, to formula to calculate it is as follows:

s =

√√√√(D
2 − d

2

)2

+ h2 (D.7)

Then D.7 is inserted into D.6:

A = π


√√√√(D

2 − d

2

)2

+ h2

(
D

2 + d

2

) (D.8)

From this it is possible to create a test case for the volume of the top.

(deftest ’ top−sur face
(check−delta
(volume−of−object (the bo t t l e top))
(∗ pi

(sqrt
(+ (expt (the bo t t l e top he ight) 2)

(expt (− (h a l f (the bo t t l e top start−diameter))
(h a l f (the bo t t l e top end−diameter)))

2)))
(+ (ha l f (the bo t t l e top start−diameter))

(h a l f (the bo t t l e top end−diameter))))
0 .0001
)

)

From this we can create an open-truncated-cone-object to use as a top.

(top : class ’ open−truncated−cone−object
start−diameter ^^diameter
end−diameter ^^end−diameter
he ight ^^top−height

)

89

The location test is similar to the one used for the bottom.

(deftest ’ top− l ocat ion
(check−equals

(− (third (convert−coords (the bo t t l e top)
’ (0 0 0) : from : l o c a l : to : g l oba l))
(h a l f (the bo t t l e top he ight))
(h a l f (the bo t t l e body he ight)))

(third (convert−coords (the bo t t l e body)
’ (0 0 0) : from : l o c a l : to : g l oba l))

)
)

o r i e n t a t i o n (l i s t
(t r a n s l a t e
(l i s t
0
0
(+ (ha l f (the s up e r i o r supe r i o r body he ight))

(h a l f (^ he ight))))))

From this example we see that it is not trivial to do unit testing of models. Even
with simple shapes used in the example the formulas used in the tests become
large and it is just as likely that there will be an error in the tests as in the model.
However, these problems are easy to discover if the test and model is refined until
they match.

The positioning tests are simpler and seem to work well, but here it is easy to
make the same mistake in both the test and model resulting in a passed test, but
wrong orientation.

90

Appendix E

AUnit source code

Source code for AUnit

E.1 Core

91

05/25/12 system.de �0

;;;-- ----
;;; System : :aunit
;;; Purpose : AML Unit testing framework
;;;
;;;
;;; Author : Lars Barlindhaug
;;;
(define-system :aunit
 :files '(
 " aunit-results.aml "
 " aunit-file-io.aml "
 " aunit-test-definitions.aml "
 " aunit-framework.aml "
 " aunit-run-tests.aml "
 " kbe-file-comparison-functions.aml "
)
)

0

 Page 1 �

0

05/25/12 aunit-results.am�0

(in-package :aml)

;;;--
;;; Class : aunit-display-class
;;; Inherit : object
;;; Purpose : Empty class, controls which classes are
;;; : displayed in the tree.
;;; Notes : Class is empty with purpose.
;;; Author : Lars Barlindhaug
;;;
(define-class aunit-display-class
 :inherit-from(object)
)

;;;--
;;; Class : aunit-result-class
;;; Inherit : object
;;; Purpose : Holds the results of a test
;;; Notes :
;;; Author : Lars Barlindhaug
;;;
(define-class aunit-result-class
 :inherit-from (object)
 :properties (
 result nil
 test-name ""
 type-of-test nil
 tested-object nil
 actual-value nil
 expected-value nil
)
)

;;;--
;;; Class : aunit-result-collection-class
;;; Inherit : aunit-display-class
;;; Purpose : Holds the results of all the tests
;;; : in a test set.
;;; Notes :
;;; Author : Lars Barlindhaug
;;;
(define-class aunit-result-collection-class
 :inherit-from (aunit-display-class)
 :properties (

 result nil
 test-name ""
 successful-tests nil
 total-tests nil
 tests (list)

 setup-cmds (list)
)

)

;;;--
;;; Class : aunit-result-test-class
;;; Inherit : property-object
;;; Purpose : Holds the results of each test.
;;; Notes :
;;; Author : Lars Barlindhaug
;;;
(define-class aunit-result-test-class
 :inherit-from (aunit-result-collection-class)
)

;;;--

0

 Page 1 �

0

05/25/12 aunit-results.am�0

;;; Function : find-test-from-result
;;; Purpose : Finds a test-object from a results object.
;;; Arguments : result (aunit-result-class)
;;; Returns : test object (aunit-framework-class)
;;; Author : Lars Barlindhaug
;;
(defun find-test-from-result (result)
 (let ((test-name (object-name result))
 (test-node (the superior superior test-fws (:from result)))
 (pos (position test-name (subobjects test-node))))
 (if pos
 (nth pos (children test-node))
 (format t "Error finding test ~a in ~a~%" test-name (subobjects tes�
t-node)))))

;;;--
;;; Function : find-result-from-test
;;; Purpose : Finds a result-object from a test-object.
;;; Arguments : test object (aunit-framework-class)
;;; Returns : result (aunit-result-class)
;;; Author : Lars Barlindhaug
;;
(defun find-result-from-test (test)
 (let ((test-name (object-name test))
 (result-node (the superior superior results (:from test)))
 (pos (position test-name (subobjects result-node))))
 (if pos
 (nth pos (children result-node))
 (format t "Error finding result ~a in ~a~%" test-name (subobjects r�
esult-node)))))

0

 Page 2 �

0

05/25/12 aunit-file-io.am �0

(in-package :aml)

;;;-- ----
;;; Class : aunit-filo-io-class
;;; Inherit : object
;;; Purpose : Writes the output files and reads the
;;; : expected values files
;;; : Default location is C:\Data.
;;; Notes :
;;; Author : Lars Barlindhaug
(define-class aunit-file-io-class
 :inherit-from (object)
 :properties (
 folder-path (default " C:\\Data ")

 expected-folder-path (default (forma t 'nil " ~a\\expected " �
^folder-path))
)
)

(defvar *expected-values* nil)

;;;-- ----
;;; Method : load-expected-values
;;; Purpose : loads the expected values from file .
;;; Arguments : -
;;; Returns : list of expected values
;;; Author : Lars Barlindhaug
;;;
(define-method load-expected-values aunit-file-io-class ()
 (let ((expected-results-file-path (format 'nil " ~a\\results.txt " (the e �
xpected-folder-path))))
 (with-open-file
 (expected-results-file expected-results-fil e-path :direction :inp �
ut :if-does-not-exist nil)
 (loop for line = (read-line expected-results-file nil :eof)
 until (equal line :eof)
 for eachline = (read-from-string line)
 collect eachline))))

0

 Page 1 �

0

05/25/12 auni t-test-definitions.am �0

(in-package :aml)

;;;-- ----
;;; Class : aunit-test-definitions-class
;;; Inherit : object
;;; Purpose : Sets the output and expected folder p aths.
;;; Notes :
;;; Author : Lars Barlindhaug
(define-class aunit-test-definitions-class
 :inherit-from (object)
 :properties (
 output-folder-path (default " C:\\Data\\output ")
 expected-folder-path (default " C:\\Data\\expected ")
))

;;;-- ----
;;; Macro : check-equals
;;; Purpose : Compares two values
;;; : and sends the result to report-resu lt.
;;; : int with same value and strings in
;;; : different cases will return t
;;; Arguments : actual-value
;;; : expected-value (optional)
;;; Returns : List of tested values and result bo ol.
;;; Author : Lars Barlindhaug
;;;
(defmacro check-equals (actual-value &optional (expected-value-arg 'nil))
 (let ((expected-value
 (if expected-value-arg
 expected-value-arg
 (find-expected-value actual-value))))
 ;(format 't "check-equals ~a ~a~%" actual-value exp ected-value)
 `(report-result
 (with-error-handler (:error-return-value 'nil)
 (equalp ,actual-value ,ex pected-value))
 " check equals "
 ',actual-value
 ,actual-value
 ,expected-value)))

;;;-- ----
;;; Macro : check-equals-strict
;;; Purpose : Compares two values
;;; : and sends the result to report-resu lt.
;;; : int with same value and strings in
;;; : different cases will return nil
;;; Arguments : actual-value
;;; : expected-value (optional)
;;; Returns : List of tested values and result bo ol.
;;; Author : Lars Barlindhaug
;;;
(defmacro check-equals-strict (actual-value
 &optional (expected-value-arg 'nil))
 (let ((expected-value
 (if expected-value-arg
 expected-value-arg
 (find-expected-value actual-value))))
 ;(format 't "check-equals ~a ~a~%" actual-value exp ected-value)
 `(report-result
 (with-error-handler (:error-return-value 'nil)
 (equal ,actual-value ,exp ected-value))
 " check equals strict "
 ',actual-value
 ,actual-value
 ,expected-value)))
;;;-- ----

0

 Page 1 �

0

05/25/12 auni t-test-definitions.am �0

;;; Macro : check-not-nil
;;; Purpose : Checks if an expression evaluates t o
;;; : something else than nil
;;; : and sends the result to report-resu lt.
;;; Arguments : actual-value
;;; Returns : List of tested values and result bo ol.
;;; Author : Lars Barlindhaug
;;;
(defmacro check-not-nil (actual-value)
 ;(format 't "check-not-nil ~a~%" actual-value)
 `(report-result
 (with-error-handler (:error-return-value 'nil)
 (not (equal ,actual-value nil)))
 " check not nil "
 ',actual-value
 ,actual-value
 " not nil "))

;;;-- ----
;;; Macro : check-nil
;;; Purpose : Checks if an expression evaluates t o nil
;;; : and sends the result to report-resu lt.
;;; Arguments : actual-value
;;; Returns : List of tested values and result bo ol.
;;; Author : Lars Barlindhaug
;;;
(defmacro check-nil (actual-value)
 ;(format 't "check-nil ~a~%" actual-value)
 `(report-result
 (with-error-handler (:error-return-value 'nil)
 (equal ,actual-value nil))
 " check nil "
 ',actual-value
 ,actual-value
 " nil "))

;;;-- ----
;;; Macro : check-delta
;;; Purpose : Checks if two values are withing a
;;; : difference delta from each other
;;; : and sends the result to report-resu lt.
;;; Arguments : actual-value
;;; : expected-value
;;; : delta
;;; Returns : List of tested values and result bo ol.
;;; Author : Lars Barlindhaug
;;;
(defmacro check-delta (actual-value expected-value delta)
 ;(format 't "check-delta ~a ~a~%" actual-value expe cted-value)
 `(report-result
 (with-error-handler (:error-return-value 'nil)
 (roughly-equal ,actual-valu e ,expected-value ,del �
ta))
 " check delta "
 ',actual-value
 ,actual-value
 (format 'nil " (~f +/- ~f) " ,expected-value ,delta)))

;;;-- ----
;;; Macro : check-range
;;; Purpose : check if a value is within a range
;;; : and sends the result to report-resu lt.
;;; Arguments : actual-value, range-min, range-max
;;; Returns : List of tested values and result bo ol.

0

 Page 2 �

0

05/25/12 auni t-test-definitions.am �0

;;; Author : Kim Nguyen (based on LB's check-equ al)
;;;
(defmacro check-range (actual-value range-min range-max)
 ;(format 't "check-range ~a ~a ~a ~%" actual-value range-min range-m �
ax)
 `(report-result
 (with-error-handler (:error-return-value 'nil)
 (< ,range-min ,actual-val ue ,range-max))
 " check range "
 ',actual-value
 ,actual-value
 (format 'nil " (~a - ~a) " ,range-min ,range-max)))

(defun check-list-diff (list1 list2 diff)
 (check-equals (list-diff list1 list2) diff)
)

(defun list-diff (list1 list2)
 (if (equal (length list1) (length list2))
 (loop for i from 0 to (- (length list1) 1)
 collect (- (nth i list1) (nth i list2)) int o diff-list
 finally (return diff-list))
 'nil))

(defmacro check-list-delta (actual-value expected-value delta)
 `(report-result
 (with-error-handler (:error-return-value 'nil)
 (not (list-delta-is-incorre ct? ,actual-value ,exp �
ected-value ,delta)))
 ;(roughly-equal ,actual-value ,expected-value ,de �
lta))

 " check list delta "
 ',actual-value
 ,actual-value
 (format 'nil " (~a +/- ~a) " ,expected-value ,delta)))

(defun list-delta-is-incorrect? (list1 list2 delta)
 (if (or (null list1) (null list2))
 't
 (loop for actual-value in list1
 for expected-value in list2
 when (not (roughly-equal actual-value expecte d-value delta))
 do
 (return 't))))

;;;-- ----
;;; Function : check-image
;;; Purpose : Calls export-image
;;; : Checks if the exported image equals a
;;; : reference image.
;;; Arguments : image-description (string)
;;; Returns : report-result return value
;;; : kbe-test-results-class.
;;; Author : Lars Barlindhaug
;;;
(defun check-image (image-description)
 (let ((current-image-file-path
 (format 'nil " ~a\\images\\~a.tif " *output-folder-path* image-des �
cription))
 (reference-image-file-path
 (format 'nil " ~a\\images\\~a.tif " *expected-folder-path* image-d �
escription)))
 (export-image image-description current-image-f ile-path)
 (print current-image-file-path)
 (print reference-image-file-path)

0

 Page 3 �

0

05/25/12 auni t-test-definitions.am �0

 (report-result
 (with-error-handler (:error-function 'write-error-string
 :error-function-argument 'nil
 :error-return-value 'nil)

 (kbe-identical-filestreams? reference-image-file-p ath current-i �
mage-file-path))

 " check image "
 image-description
 (format 'nil " <img src=\"images\\~ a.t �
if-thumb.png\" width=\"384\" height=\"224\" /> " image-description ima �
ge-description)
 (format 'nil " <img s rc= �
\"..\\expected\\images\\~a.tif-thumb.png\" width=\" 384\" height=\"224\" / �
> " image-description image-description))))

;;;-- ----
;;; Function : export-image
;;; Purpose : export an image to a file
;;; Arguments : image-description (string)
;;; Returns :
;;; Author : Lars Barlindhaug
;;;
(defun export-image (image-description current-image-file-path)
 (output-display :filepath current-image-file-path

 :format ' :tiff :line-width-scale 0.5 :min-line-width 1 :fore-colo �
r 'black)
 (let ((png-image-file-path (format 'nil " ~a.png " current-image-file-pat �
h))

(png-thumb-image-file-path (format 'nil " ~a-thumb.png " current-image-f �
ile-path)))
 (output-display :filepath png-image-file-path

 :format ' :png :line-width-scale 0.5 :min-line-width 1 :fore-col �
or 'black)
 (output-display :filepath png-thumb-image-file-path

 :format ' :png :image-width 384 :image-height 224 :line-width-sc �
ale 0.5 :min-line-width 1 :fore-color 'black)))

0

 Page 4 �

0

05/25/12 aunit-framework.am �0

(in-package :aml)

;;;-- ----
;;; Class : aunit-framework-class
;;; Inherit : object
;;; Purpose : Holds the path to save logfiles and i mages
;;; : from each test. Default is C:\Data.
;;; : results-list holds a list of all the
;;; : results.
;;; Notes :
;;; Author : Lars Barlindhaug
(define-class aunit-framework-class
 :inherit-from (object)
 :properties (
 test-script-path (default " C:\\Data\\test-script.aml ")
 folder-path (remove-filename-from-pa th ^test-script-path)

 expected-folder-path (default (forma t 'nil " ~a\\expected " �
^folder-path))
 reference-image-path (default (forma t 'nil " ~a\\images " ^e �
xpected-folder-path))

 output-folder-path (default (format 'nil " ~a\\output " ^fol �
der-path))
 current-image-path (default (format 'nil " ~a\\images " ^out �
put-folder-path))

 name (remove-aml-file-extension (fin d-filename-in-path ^te �
st-script-path))
)
 :subobjects (
 (io :class 'aunit-file-io-class)
 (test-definitions :class 'aunit-test-definitions-class)
)
)

(defvar *current-test* (the model-manager))
(defvar *expected-values* nil)
(defvar *current-image-path* nil)
(defvar *reference-image-path* nil)
(defvar *name-generator* nil)

;;;-- ----
;;; Method : clean
;;; Purpose : removes all loaded tests, incomplet e.
;;; Arguments : -
;;; Returns : -
;;; Author : Lars Barlindhaug
;;;
(define-method clean aunit-framework-class ()
 (when (member (read-from-string !name) (subobjects (the superior result �
s)))
 (delete-object (find-result-from-test (the)))
 (add-result)
)
)

;;;-- ----
;;; Method : set-up
;;; Purpose : set the folder paths and get the
;;; : expected values
;;; Arguments : -
;;; Returns : -
;;; Author : Lars Barlindhaug
;;;
(define-method set-up aunit-framework-class ()

0

 Page 1 �

0

05/25/12 aunit-framework.am �0

 (setf *expected-values* (load-expected-values (th e io)))
 (setf *expected-folder-path* (the expected-folder -path)) ;;used by chec �
k-image
 (setf *output-folder-path* (the output-folder-pat h)) ;;used by check-im �
age
 (setf *name-generator* (create-model 'name-genera tor :init-form (list ' �
auto-naming? t)))

 (add-result)

 ;;Core dependency to print
 (add-object (the) 'print 'aunit-print-class)

 (the)
)

;;;-- ----
;;; Function : delete-an-object
;;; Purpose : Deletes an object from the tree,
;;; : incomplete
;;; Arguments : object-name (string)
;;; : parent (aunit-result-*-class)
;;; Returns : nil if the s-expression do not star t
;;; : with check-, t if it does.
;;; Author : Lars Barlindhaug
;;
(defun delete-an-object (object-name parent)
 (let ((children (children parent))
 (subobjects (subobjects parent))
 (position (position object-name subobjects)))
 (if position
 (progn
 (delete-object (nth position children))
 (format t " Deleted: ~a from ~a ~% " object-name (object-name par �
ent))))))

(defun add-result ()
 (delete-an-object (read-from-string !name) (the s uperior results))

 (setf *current-test* (add-object (the superior re sults)
 (read-from-strin g !name)
 'aunit-result-te st-class
 :init-form
 (list
 'result " result "
 'test-name " test-title "
 'successful-tes ts " successful-tests "
 'total-tests " total-tests "
 'tests nil
 'setup-cmds nil)))
)

;;;-- ----
;;; Macro : defmodtest
;;; Purpose : Wraps around a model test.
;;; : evaluates the s-expressions and com bines
;;; : the results for all check-* macros.
;;; Arguments : test-title (string)
;;; : class-instance ro set correct paths using check-image
;;; : forms (s-expressions)
;;; Returns : save-results return value
;;; : List including test results,
;;; : number of tests, successful tests a nd
;;; : info from each test.
;;; Author : Lars Barlindhaug

0

 Page 2 �

0

05/25/12 aunit-framework.am �0

;;; : based on combine-results by Peter S eibel,
;;; : converted to AML by Geir Iversen
;;;
(defmacro defmodtest (test-title &key (class-instance 'nil) &rest forms)
 `(let ((total (list)) (setup-cmds (list)) (temp-list (li st)))
 ,@(loop for f in forms
 if (starts-with? " (check- " f)
 collect `(push ,f total)
 else
 collect `(push ',f total)
 collect f)
 (format 't " total ~a~% " total)
 (save-results ,test-title (reverse total) (rev erse setup-cmds))))

;;;-- ----
;;; Macro : defaunit
;;; Purpose : Wraps around all unit tests.
;;; : Goes through all deftest unit testi ng
;;; : functions and runs the set-up metho d
;;; : (if any) before each test.
;;; Arguments : test-title (string)
;;; : class-instance ro set correct paths using check-image
;;; : forms (s-expressions)
;;; Returns : save-results return value
;;; : List including test results,
;;; : number of tests, successful tests a nd
;;; : info from each test.
;;; Author : Lars Barlindhaug
;;; : based on combine-results by Peter S eibel,
;;; : converted to AML by Geir Iversen
;;;
(defmacro defaunit (test-title &key (class-instance 'nil) &rest forms)
 (let ((total (list)) (set-up nil))
 (loop for func in forms
 if (not (eq set-up nil))
 collect (push set-up total)
 if (starts-with? " (deftest 'set-up " func)
 do (setf set-up func)
 if (not (starts-with? " (deftest 'set-up " func))
 collect (push func total)
 ;do (print set-up)
)
 ;(format 't "all tests ~a~%" (reverse total))
 (save-overall-results
 test-title
 (loop for f in (reverse total)
 collect (eval f))
 'nil)))

;;;-- ----
;;; Macro : deftest
;;; Purpose : Creates a unit test.
;;; : Evaluates the s-expressions and com bines
;;; : the results for all check-* macros.
;;; Arguments : test-title (string)
;;; : class-instance ro set correct paths using check-image
;;; : forms (s-expressions)
;;; Returns : save-results return value
;;; : List including test results,
;;; : number of tests, successful tests a nd
;;; : info from each test.
;;; Author : Lars Barlindhaug
;;; : based on combine-results by Peter S eibel,
;;; : converted to AML by Geir Iversen

0

 Page 3 �

0

05/25/12 aunit-framework.am �0

;;;
(defmacro deftest (test-title &key (class-instance 'nil) &rest forms)
 `(let ((total (list)) (setup-cmds (list)) (temp-list (li st)))
 ,@(loop for f in forms
 if (starts-with? " (check- " f)
 collect `(push ,f total)
 else
 collect `(push ',f total)
 collect f)
 ;(format 't "total ~a~%" total)
 (save-results (write-to-string ,test-title) (reverse total) (rever �
se setup-cmds))))

;;;-- ----
;;; Function : starts-with?
;;; Purpose : cheks if the s-expr. starts with th e
;;; : given string
;;; Arguments : string (string)
;;; : form (s-expression)
;;; Returns : nil if the s-expression do not star t
;;; : with check-, t if it does.
;;; Author : Lars Barlindhaug
;;
(defun starts-with? (string form)
 (let ((form-as-string (write-to-string form)) (string-l ength (length st �
ring)))
 (when (> (length form-as-string) string-length)
 (if (string= string form-as-string :end1 string-length :end2 string �
-length)
 't))))

;;;-- ----
;;; Function : remove-filename-from-path
;;; Purpose : Removes the file name from a file p ath
;;; Arguments : path (string, file path)
;;; Returns : string, file path
;;; Author : Lars Barlindhaug
;;
(defun remove-filename-from-path (path)
 (first
 (string-to-delimited-token-list
 path
 :delimiter (format 'nil " \\~a " (find-filename-in-path path)))))

;;;
;;;-- ----
;;; Function : find-filename-in-path
;;; Purpose : Finds the filename in a file path s tring
;;; Arguments : path (string, file path)
;;; Returns : string, file name
;;; Author : Lars Barlindhaug
;;
(defun find-filename-in-path (path)
 (first (last (string-to-delimited-token-list
 path
 :delimiter " \\ "))))

;;;
;;;-- ----
;;; Function : remove-aml-file-extension
;;; Purpose : Removes the .aml file extension fro m a
;;; : file path or file name.
;;; Arguments : path (string, file path/file name)
;;; Returns : string, file name/file path

0

 Page 4 �

0

05/25/12 aunit-framework.am �0

;;; Author : Lars Barlindhaug
;;
(defun remove-aml-file-extension (filename)
 (first (string-to-delimited-token-list
 filename
 :delimiter " .aml "))
)

;;;-- ----
;;; Function : report-result
;;; Purpose : write the result for a check-* macr o
;;; : to the log file.
;;; Arguments : result (boolean),
;;; : type-of-test (string),
;;; : tested-object,
;;; : actual-value,
;;; : expected-value,
;;; : test-name (string)
;;; Returns : aunit-result-class
;;; Author : Lars Barlindhaug
;;;
(defun report-result (result type-of-test tested-object
 actual-value expected-value & key test-name)
 (add-object
 current-test
 (generate-name *name-generator* 'rep-result)
 'aunit-result-class
 :init-form (list
 'result result
 'type-of-test type-of-test
 'tested-object `',tested-object
 'actual-value `',actual-value
 'expected-value `',expected-value)))

;;;-- ----
;;; Function : save-results
;;; Purpose : save the results from the tests
;;; : to a list.
;;; Arguments : test-title (string),
;;; : total (list of test results)
;;; : setup-cmds
;;; Returns : Creates a aunit-result-collection-c lass
;;; : that contains: test results,
;;; : number of tests, successful tests a nd
;;; : aunit-results-class from each test.
;;; Author : Lars Barlindhaug
;;;
(defun save-results (test-title total setup-cmds)
 (when (not (equal test-title " set-up "))
 (let (
 (successful-tests (count-result-in-list t total))
 (total-tests (length (get-list-of-results total)))
 (result (if (= successful-tests total-tests)
 't
 'nil)))
 (let
 ((test-collection
 (add-object
 current-test
 (read-from-string test-title)
 'aunit-result-collection-class
 :init-form (list
 'result result
 'test-name test-title

0

 Page 5 �

0

05/25/12 aunit-framework.am �0

 'successful-tests successf ul-tests
 'total-tests total-tests
 'tests 'nil
 'setup-cmds 'nil))))

 (add-test-name-to-tests total test-title)
 (change-value (the tests (:from test-collection)) total)
 (change-value (the setup-cmds (:from test-collection)) setup-cmds �
)
 (print test-collection)))))

;;;-- ----
;;; Function : remove-aml-file-extension
;;; Purpose : Adds the test name to each
;;; : aunit-result-class test instance
;;; Arguments : path (string, file path/file name)
;;; Returns : string, file name/file path
;;; Author : Lars Barlindhaug
;;.
(defun add-test-name-to-tests (tests test-name)
 (loop for test in tests
 do
 (if (typep test 'aunit-result-class)
 (change-value (the test-name (:from test)) test-name))))

;;;-- ----
;;; Function : save-overall-results
;;; Purpose : saves the results from each unit te sts
;;; : to a aunit-result-collection-class.
;;; : Used by defaunit.
;;; Arguments : test-title (string),
;;; : total (list of test results)
;;; : setup-cmds
;;; Returns : Creates a aunit-result-collection-c lass
;;; : that contains: test results,
;;; : number of tests, successful tests a nd
;;; : aunit-results-class from each test.
;;; Author : Lars Barlindhaug
;;;
(defun save-overall-results (test-title total setup-cmds)
 (let ((tests-results (get-number-success total))
 (total-tests (nth 0 tests-results))
 (successful-tests (nth 1 tests-results))
 (result (get-result total-tests successful- tests)))

 (change-value (the result (:from *current-test*)) result)
 (change-value (the test-name (:from *current-test*)) test-title)
 (change-value (the successful-tests (:from *current-test*)) success �
ful-testS)
 (change-value (the total-tests (:from *current-test*)) total-tests)
 (change-value (the tests (:from *current-test*)) total)
 (change-value (the setup-cmds (:from *current-test*)) setup-cmds)

 current-test))

;;;-- ----
;;; Function : find-expected-value
;;; Purpose : Finds the expected value of a test
;;; : from the expected-values file.
;;; Arguments : object-to-check
;;; Returns : Expected value
;;; Author : Lars Barlindhaug
;;; History
;;; Created on : 2011-08-07

0

 Page 6 �

0

05/25/12 aunit-framework.am �0

;;; Modified :
;;;
(defun find-expected-value (object-to-check)
 (let ((expected-values *expected-values*))
 (loop for key-value in expected-values
 until (when
 (equal (nth 0 key-value) object-to- check)
 (return (nth 1 key-value))))))

;;;-- ----
;;; Function : count-result-in-list
;;; Purpose : Count the number of result instance s
;;; that equals element in a list conta ining
;;; some aunit-result-class instances.
;;; Arguments : element, list
;;; Returns : Number of elements in the list.
;;; Author : Lars Barlindhaug
;;;
(defun count-result-in-list (element list)
 (let ((number-of-elements 0))
 (count-elements-in-list
 element
 (get-list-of-results list))))

;;;-- ----
;;; Function : get-list-of-results
;;; Purpose : Gets a list of the result values fr om
;;; : a list of aunit-result-classes
;;; Arguments : list
;;; Returns : List of result values (t/nil)
;;; Author : Lars Barlindhaug
;;;
(defun get-list-of-results (list)
 (loop for test-result in list
 when (typep test-result 'aunit-result-class)
 collect (the result (:from test-result))))

;;;-- ----
;;; Function : get-number-success
;;; Purpose : Gets the number of successful tests
;;; : from a list of results.
;;; Arguments : list
;;; Returns : Number of successful tests
;;; Author : Lars Barlindhaug
;;;
(defun get-number-success (list)
 (let ((number-of-tests 0) (successful-tests 0))
 (loop for test-result in list
 do
 (if (or
 (typep test-result 'aunit-result-tes t-class)
 (and
 (typep test-result 'aunit-result-co llection-class)
 (not (equal (the test-name(:from test-result)) " set-up ")) �
))
 (progn
 (setf number-of-tests (+ 1 number-o f-tests))
 (if (the result (:from test-result))
 (setf successful-tests (+ 1 suc cessful-tests))))))
 (list number-of-tests successful-tests)))

(defun get-result (total success)
 (if (equal total success)

0

 Page 7 �

0

05/25/12 aunit-framework.am �0

 t
 nil))

;;;-- ----
;;; Function : count-elements-in-list
;;; Purpose : Count the number of elements in a l ist.
;;; Arguments : element, list
;;; Returns : Number of elements in the list.
;;; Author : Lars Barlindhaug
;;;
(defun count-elements-in-list (element list)
 (let ((number-of-elements 0))
 (loop for instance in list
 when (equal instance element)
 do (setf number-of-elements (1+ number-of-ele ments)))
 number-of-elements))

;;;-- ----
;;; Function : get-window-resoltuion
;;; Purpose : Gets the window resolution, can be used
;;; : to ensure that check-image compares with
;;; : an image in the correct resolution.
;;; Arguments : -
;;; Returns : Window resolution (pixels).
;;; Author : Lars Barlindhaug
;;;
(defun get-window-resolution ()
 (let ((window-coordinates (get-window-coordinates (the current-display) �
)))
 (list (nth 2 window-coordinates)
 (nth 3 window-coordinates))))

0

 Page 8 �

0

05/25/12 aunit-run-tests.am �0

(in-package :aml)

;;;-- ----
;;; Function : run-test
;;; Purpose : Main function of the aunit test fra mework
;;; : It takes in a path to a folder cont aining
;;; : a test-script.aml.
;;; Arguments : folder-path (string)
;;; Returns :
;;; Author : Lars Barlindhaug
;;;
(defun run-test (aunit test-script-path)
 (print " run-test ")
 (clean aunit)
 (let ((result (load (format 'nil " ~a" test-script-path))))
 (format 't " Result: ~a " result)
 (print-results (the print (:from aunit)) result)
 result))

;;;-- ----
;;; Function : first-setup
;;; Purpose : Setup done when aunit is started.
;;; Arguments :
;;; Returns :
;;; Author : Lars Barlindhaug
;;;
(defun first-setup()
 (create-model 'aunit :class 'object)
 (add-object (the aunit) 'test-fws 'object)
 (add-object (the aunit) 'results 'object)
)

;;;-- ----
;;; Function : run-script
;;; Purpose : Runs a testing script
;;; Arguments : file-path (string)
;;; Returns :
;;; Author : Lars Barlindhaug
;;;
(defun run-script (file-path)
 (let ((name
 (read-from-string
 (remove-aml-file-extension (find-filename -in-path file-path)))) �
)
 (delete-an-object name (the aunit test-fws))
 (let ((aunit-fw
 (add-object (the aunit test-fws) name 'aun it-framework-class
 :init-form (list 'test-script-path file-path
 'output-file-nam e " results "))))
 (set-up aunit-fw)
 (run-test aunit-fw file-path))))

;;;-- ----
;;; Function : run
;;; Purpose : Runs a testing script
;;; Arguments : file-path (string)
;;; Returns :
;;; Author : Lars Barlindhaug
;;;
(defun run (file-path)
 (let ((name (remove-aml-file-extension (find-filename-i n-path file-path �
)))
 (test (add-object (the) (read-from-string n ame) 'aunit-framework- �
class
 :init-form (list 'test-script-path file-path

0

 Page 1 �

0

05/25/12 aunit-run-tests.am �0

 'output-fil e-name " results "))))
 (set-up test)
 (run-test test file-path)

))

;;;-- ----
;;; Function : aunit-setup
;;; Purpose : Sets up aunit for each testing scri pt.
;;; Arguments : test-script-path (string)
;;; Returns :
;;; Author : Lars Barlindhaug
;;;
(defun aunit-setup (test-script-path)
 (create-model 'aunit :class 'aunit-framework-class
 :init-form (list 'test-script-path test-script-path
 'output-file-name " results "))
 (set-up (the aunit)))

0

 Page 2 �

0

05/25/12 kbe-file-co mparison-functions.am �0

;;;-- ----
;;; Function : identical-filestreams?
;;; Purpose :
;;; Arguments :
;;; Returns :
;;; Author : Geir Iversen
;;; History
;;; Created on : 2011-03-01
;;; Modified :

;;; files are not compared for last changed date et c. hence, filestream a �
nd not file identical
(defun kbe-identical-filestreams? (filepath-1 filepath-2 &key debug?)
 (let ((file1 (or (probe-file filepath-1) (kbe-error-fil e-not-found file �
path-1)))

(file2 (or (probe-file filepath-2) (kbe-error-file- not-found filepath- �
2)))

(difference? (/= (file-length file1) (file-length f ile2))) ;;avoid char �
-by-char comparison unless needed

)
 (when debug? (format 't " File lengths filepath-1: ~a filepath-2: ~a~% �
"

 (file-length file1)
 (file-length file2)))

 (unless difference?
 (with-open-file (f1 file1 (:direction :input))

(with-open-file (f2 file2 (:direction :input))
 (loop for read1 = (read-char f1 t :eof)
 for read2 = (read-char f2 t :eof)
 for i upfrom 1
 until (or difference? (equal :eof read1) (equal :eof read2))
 do
 (setf difference? (not (equal read1 read2)))
 (when debug? (format t " ~a 1: ~a 2: ~a~% " i read1 read �

2))
))))

 ;;return
 (not difference?)
))

;;;-- ----
;;; Function :
;;; Purpose :
;;; Arguments :
;;; Returns :
;;; Author : Geir Iversen
;;; History
;;; Created on : 2011-03-02
;;; Modified :
;;;
;;; TODO reimplement this method using xml-parser - now performs byte by �
byte comparison, ignoring GUIDs and xml comments
;;;
(defun kbe-compare-akxml-exports (filepath-1 filepath-2)
 (let ((file1 (or (probe-file filepath-1) (kbe-error-fil e-not-found file �
path-1)))

(file2 (or (probe-file filepath-2) (kbe-error-file- not-found filepath- �
2)))

(difference? nil)
)

 (with-open-file (f1 file1 (:direction :input))
 (with-open-file (f2 file2 (:direction :input))

(loop for read1 = (kbe-xml-read-ignore-comments-and-ids f1 t :eof)
 for read2 = (kbe-xml-read-ignore-comments-and-ids f2 t :eof)
 for i upfrom 1
 until (or (equal :eof read1) (equal :eof read2))
 if (not (equal read1 read2))

0

 Page 1 �

0

05/25/12 kbe-file-co mparison-functions.am �0

 collect (list read1 read2) into differences
 finally (if (and (equal :eof read1) (equal :eof read2))

 (return differences)
 (return (append differences

 (list
 (let ((f (if (equal :eof read1)

 file1
file2)))

 (format 'nil " ~a bytes from ~a " (file-length f) f)))
))))))))

;; helper function for kbe-compare-akxml-exports
(defun kbe-xml-read-ignore-comments-and-ids (stream &optional (eof-error- �
p 'nil) (eof-value :eof))
 (let ((r (read stream t :eof)))
 (if (equal r '<) ;; hotfix - identifies "start comment" because <!-- i �
s read as 2 tokens: '< and (the --)

(loop for rr = (read stream eof-error-p eof-value)
 until (or (equal rr '-->) (equal rr :eof))
 finally (return rr)) ;; returning -->, because next token may be "sta �

rt comment" or id
 (if (and (stringp r) (or (find " ID " r) (find " id " r))) ;; skip GUID �
strings by performing an additional read

 (read stream t :eof)
r)))) ;;return r unless comment or string containing ID

0

 Page 2 �

0

E.2 GUI

112

05/25/12 system.de �0

;;;-- ----
;;; System : :aunit-gui
;;; Purpose : Graphical User Interface for
;;; AML Unit testing framework
;;;
;;; Author : Lars Barlindhaug
;;;
(define-system :aunit-gui
 :require-systems '(:aunit :aunit-print)
 :files '(
 " aunit-gui-browse.aml "
 " aunit-gui-results-bar.aml "
 " aunit-gui-progress-bar.aml "
 " aunit-gui-result-text-field.aml "
 " aunit-gui-tree.aml "
 " aunit-gui.aml "
)
)

0

 Page 1 �

0

05/25/12 aunit-gui-browse.am �0

(in-package :aml)

(define-class aunit-test-script-selection-class
 :inherit-from (file-selection-property-class)
 :properties (
 ;directory (default "D:\\workspace_win\\src\\test-c ases\\au �
nit")
 filter (default '" *.aml ")
)
)

(define-class aunit-gui-browse-button-class
 :inherit-from (ui-action-button-class)
 :properties ()
)

(define-class aunit-gui-browse-button-file-class
 :inherit-from (aunit-gui-browse-button-class)
 :properties (button1-action '(progn
 (let ((file-path (select-file-dialog
 :filter " *.aml ")))
 (when (not (equal file-path nil))
 (add-to-test-tr ee (the superior super �
ior) file-path)
 (file-selected- update-gui file-path)) �
)))
)

(define-class aunit-gui-browse-button-def-class
 :inherit-from (aunit-gui-browse-button-class)
 :properties (button1-action '(progn
 (let ((file-path (select-file-dialog
 :filter " *.def ")))
 (when (not (equal file-path nil))
 (change-value ^ ^def-file file-path)

 ;reverse, starts with last item which �
 is placed at the bottom of the list.
 (loop for test-file-path in (reverse �
(get-tests-from-def-file file-path))
 do
 (add-to-test- tree
 (the superio r superior)
 (format 'nil " ~a\\~a "
 (rem ove-filename-from-path �
 file-path)
 test -file-path))
)
 (file-selected- update-gui file-path)) �
)))
)

(defun get-tests-from-def-file (file)
 (with-open-file (file file
 :direction :input)
 (loop for line = (read-line file nil :eof)
 until (equal line :eof)
 collect line)))

(defun file-selected-update-gui (file-path)
 (replace-text (the superior chosen-test-field) fi le-path)

 (change-value (the superior action gray?) nil)

 (change-value (the superior run-selected-test gra y?) nil)
 (change-value (the superior save-test-def gray?) nil)
 (change-value (the superior clear-tree gray?) nil)

0

 Page 1 �

0

05/25/12 aunit-gui-browse.am �0

 (the superior superior update?)
)

(defun reset-update-gui ()
 (replace-text (the superior chosen-test-field) "")

 (change-value (the superior action gray?) t)

 (change-value (the superior run-selected-test g ray?) t)
 (change-value (the superior save-test-def gray?) t)
 (change-value (the superior clear-tree gray?) t)
 (the superior superior update?)
)

(define-class aunit-choosen-test-field-class
 :inherit-from (ui-field-class)
 :properties (
 content " Please browse for a test. "
 editable? nil
)
)

0

 Page 2 �

0

05/25/12 aun it-gui-results-bar.am �0

(in-package :aml)

(define-class aunit-gui-results-form-class
 :inherit-from (ui-subform-class)
 :properties (
 frame? t
)
 :subobjects (
 (result-label :class 'ui-label-class
 x-offset 0
 y-offset 10
 width 10
 height 80

 label " Result "
)

 (result-field :class 'ui-field-class
 x-offset (+
 (the superior superior result-label x-offset)
 (the superior superior result-label width))
 y-offset (the superior superior r esult-label y-offset)
 width 5
 height 80

 content ""
 editable? nil
)

 (successful-label :class 'ui-label-class
 x-offset (+
 (the superior superior result-field x-offset)
 (the superior superior result-field width)
 ^^element-x-margin)
 y-offset (the superior superior r esult-field y-offset)

 label " Successful tests "

 width 20
 height 80
)

 (successful-field :class 'ui-field-class
 x-offset (+
 (the superior superior successful-label x-off �
set)
 (the superior superior successful-label width �
))
 y-offset (the superior superior s uccessful-label y-offs �
et)

 width 16
 height 80

 content " 0/0 (0%) "
 editable? nil
)
)
)

0

 Page 1 �

0

05/25/12 auni t-gui-progress-bar.am �0

(in-package :aml)

(define-class aunit-gui-bar-class
 :inherit-from (ui-subform-class)
 :properties (
 x-offset (default 1)
 y-offset 5
 width 2
 height 90

 background-color (default 'red)
)
 :subobjects ()
)

;;STATUS bar
;; either completely RED or completely GREEN
(define-class aunit-gui-status-bar-class
 :inherit-from (series-object ui-subform-class)
 :properties (
 ;;ui-subform properties
 frame? t

 ;;series-object properties
 quantity 33
 class-expression 'aunit-gui-bar-class
 init-form '(
 x-offset (+ (* (+ ^space !width) !index) ^space �
)
 background-color (if ^success? 'green �
'red)
)

 space 1
 success? nil

)
 :subobjects ()
)

(define-method update-status-bar aunit-gui-status-bar-class (success?)
 (change-value !success? success?)
 !update?
)

;;PROGRESS BAR
;; shows progress, takes in an integer between 0 an d 1.
(define-class aunit-gui-progress-bar-class
 :inherit-from (series-object ui-subform-class)
 :properties (
 ;;ui-subform properties
 frame? t

 ;;series-object properties
 quantity 33
 class-expression 'aunit-gui-bar-class
 init-form '(
 x-offset (+ (* (+ ^space !width) !index) ^space �
)
 background-color (if (>= !index ^green �
-bars)
 'red
 'green))
 space 1
 green-bars 0
)
 :subobjects ()

0

 Page 1 �

0

05/25/12 auni t-gui-progress-bar.am �0

)

(define-method update-progress-bar aunit-gui-progress-bar-class (success- �
decimal)
 (change-value !green-bars (floor (* !quantity suc cess-decimal)))
 !update?
)

0

 Page 2 �

0

05/25/12 aunit-gui -result-text-field.am �0

(in-package :aml)

(define-class aunit-gui-result-text-field-class
 :inherit-from (ui-field-class)
 :properties (
 content ""
 input-rows 10)
 :subobjects ()
)

(define-method clear-results aunit-gui-result-text-field-class ()
 (replace-text (the) ""))

(define-method add-results aunit-gui-result-text-field-class (test)
 ;; checking for test=nil, this happends because
 ;; when two list-boxes are in use, both button-acti ons are fired.
 (when (not (null test))
 (insert-text (the)
 (format 'nil " ~a : ~a~%~a ~a~% "
 (format 'nil " ~a"
 (the type-of-test (:from test)))
 (format 'nil " ~a"
 (the tested-object (:from test)))
 (if (numberp (the expected-value (:from test)))
 (format 'nil " Expected: ~f "
 (the expected- value (:from test)))
 (format 'nil " Expected: ~a "
 (the expected-va lue (:from test))))
 (if (numberp (the actual-value (:from test)))
 (format 'nil " Actual: ~f "
 (the actual-va lue (:from test)))
 (format 'nil " Actual: ~a "
 (the actual-valu e (:from test)))))
 -2)))

0

 Page 1 �

0

05/25/12 aunit-gui-tree.am �0

(in-package :aml)

(defvar *pass-img* " D:\\workspace_win\\src\\aunit\\gui\\v.bmp ")
(defvar *fail-img* " D:\\workspace_win\\src\\aunit\\gui\\x.bmp ")
(defvar *grey-img* " D:\\workspace_win\\src\\aunit\\gui\\grey.bmp ")

(define-class aunit-gui-tree-class
 :inherit-from (ui-model-tree)
 :properties (
 root-object 'nil
 object-class 'aunit-display-class

 button1-action '(left-click !selected -item)
 button3-action '(execute-single-test
 (the superior superi or)
 (the superior superi or test-tree selected- �
item))
)
 :subobjects ()
)

(define-method save-tree-to-file aunit-gui-tree-class ()
 (let
 ((def-file
 (if (equal (the def-file) "")
 (format nil " ~a\\tests.def "
 (remove-filename-from-path
 (the content (:from !chosen-test-field))))
 (the def-file))))

 (format t " Writing tests to: ~a~% " def-file)
 (with-open-file (file def-file
 :direction :output)
 (loop for result in (reverse
 (tree-item-children
 (the root-object (:from (the)))))
 ;(loop for test in !items-list
 do
 (progn
 (format file " ~a~%"
 (find-filename-in-path
 (the test-script-path
 (:from (find-test-from-result result)))))
 (format t " ~a~%"
 (find-filename-in-path
 (the test-script-path
 (:from (find-test-from-result result)))))))))
)

(define-method clear-tree aunit-gui-tree-class ()
 (progn
 (delete-tree-items (the) (tree-item-children (! root-object)))
 (reset-update-gui))
)

(define-method prepare-tree aunit-gui-tree-class ()
 (add-object (the superior) 'results 'aunit-displa y-class)
 (add-object (the superior) 'test-fws 'aunit-displ ay-class)
 (change-value !root-object (the superior results))
)

(define-method set-all-images aunit-gui-tree-class (root img)
 (update-tree-item (the) (the superior (:from root)) :image img)
 (update-tree-item (the) root :image img)
 (let ((children (tree-item-children root)))

0

 Page 1 �

0

05/25/12 aunit-gui-tree.am �0

 (loop for child in children
 do
 (if (tree-item-children child)
 (set-all-images (the) child img)
 (update-tree-item (the) child :image img)))))

(define-method set-test-result-image aunit-gui-tree-class (test)
 (set-img (the) test (the result (:from test)))
 (loop for child in (tree-item-children test)
 do
 (if (typep child 'aunit-result-collection-class)
 (set-img (the) child (the result (:from child))))))

(define-method update-root-img aunit-gui-tree-class (result)
 (set-img (the) (the results) result))

(define-method set-img aunit-gui-tree-class (node result)
 (let ((img
 (if result
 pass-img
 fail-img)))
 (update-tree-item (the) node :image img))

)

(defun left-click (selected-item)
 (when (typep selected-item 'aunit-result-collection-clas s)
 (evaluate-results-tree (the superior superior) selected-item))
)

(defun test-already-in-tree? (test-name tree-root-children)
 (let ((name-list
 (loop for test in tree-root-children
 collect (object-name test))))
 (if (member test-name name-list)
 't
 'nil)))

0

 Page 2 �

0

05/25/12 aunit-gui.am �0

(in-package :aml)

(define-class test-form-class
 :inherit-from (ui-form-class)
 :properties (
 label " AUnit "
 x-offset 300
 y-offset 200
 width 500
 height 500
 measurement 'percentage

 side-margin 4
 element-margin 10
 element-x-margin 3

 def-file ""
)
 :subobjects (
 (chosen-test-field :class 'ui-field-class
 x-offset ^^element-x-margin
 y-offset ^^side-margin
 width 60
 height 4

 content " Please browse for a test. "
 editable? nil
)

 (browse-def :class 'aunit-gui-browse-button-def-class
 x-offset (+ (the superior superio r chosen-test-field x- �
offset)
 (the superior superio r chosen-test-field wi �
dth)
 2)

 y-offset ^^side-margin
 width 16
 height 4

 label " Load def "
)

 (browse :class 'aunit-gui-browse-button-file-class
 x-offset (+ (the superior superio r browse-def x-offset)
 (the superior superio r browse-def width)
 2)
 y-offset ^^side-margin
 width 12
 height 4

 label " Browse "

)

 (test-tree :class 'aunit-gui-tree-class
 x-offset ^^element-x-margin
 y-offset (the superior superior a ction y-offset)
 width 60
 height 50
)

 (action :class 'ui-action-button-class
 x-offset (right-adjustment ^width ^^side-margin)
 y-offset (+ (the superior superio r browse y-offset)
 (the superior superio r browse height)

0

 Page 1 �

0

05/25/12 aunit-gui.am �0

 ^^element-x-margin)
 width 20
 height 4

 label " Run all tests "
 gray? t

 button1-action '(execute-all-test s (the superior superi �
or))
)

 (run-selected-test :class 'ui-action-button-class
 x-offset (right-adjustment ^width ^^side-margin)
 y-offset (+ (the superior superio r action y-offset)
 (the superior superio r action height)
 ^^element-x-margin)
 width 20
 height 4

 label " Run selected test "
 gray? t

 button1-action '(execute-single-t est
 (the superior su perior)
 (the superior su perior test-tree selec �
ted-item))
)

 (save-test-def :class 'ui-action-button-class
 x-offset (right-adjustment ^widt h ^^side-margin)
 y-offset (+ (the superior superi or run-selected-test y �
-offset)
 (the superior superi or run-selected-test h �
eight)
 ^^element-margin)

 width 20
 height 4

 label " Save to def file "
 gray? t

 button1-action '(save-tree-to-fi le ^test-tree)
)

 (clear-tree :class 'ui-action-button-class
 x-offset (right-adjustment ^width ^^side-margin)
 y-offset (+ (the superior superio r save-test-def y-offs �
et)
 (the superior superio r save-test-def height �
)
 ^^element-x-margin)

 width 20
 height 4

 label " Clear all tests "
 gray? t

 button1-action '(clear-tree ^test -tree)
)

 (test-output :class 'aunit-gui-result-text-field-class
 x-offset ^^element-x-margin
 y-offset (+ (the superior superio r test-tree y-offset)
 (the superior superio r test-tree height)

0

 Page 2 �

0

05/25/12 aunit-gui.am �0

 ^^element-x-margin)
 width 94
 height 20
)

 (results-bar :class 'aunit-gui-results-form-class
 x-offset 5
 y-offset 90
 width 90
 height 5
)

 (status-bar :class 'aunit-gui-status-bar-class
 x-offset 5
 y-offset 85
 width 90
 height 5
)
)
)

(defvar *gui-name-generator* 'nil)

;;;-- ----
;;; Method : execute-all-tests
;;; Purpose : Done when pressing "run all tests" btn
;;; : Executes all the tests in the tree.
;;; Arguments : test-result (aunit-result-collectio n-class)
;;; Returns :
;;; Author : Lars Barlindhaug
;;;
(define-method execute-all-tests test-form-class ()
 (let ((sum-successful-tests 0)
 (sum-total-tests 0))

 (loop for test-result in (tree-item-children (the result s))
 do
 (let ((test (find-test-from-result test-result)))
 (if (typep test 'aunit-framework-class)
 (let ((result-list (execute-test (the) test)))
 (setf sum-successful-tests (+ sum -successful-tests (fir �
st result-list)))
 (setf sum-total-tests (+ sum-tota l-tests (second result �
-list)))))))

 (update-test-results (the) sum-successful-tests sum-total-tests)
)
)

;;;-- ----
;;; Method : execute-test
;;; Purpose : Done when pressing "run selected te st" btn
;;; : Executes the test or tests.
;;; Arguments : test-result (aunit-result-collectio n-class
;;; : or aunit-result-class)
;;; Returns :
;;; Author : Lars Barlindhaug
;;;
(define-method execute-single-test test-form-class (test-result)
 (if (typep test-result 'aunit-result-test-class)
 (progn
 (let ((test (find-test-from-result test-result))
 (result-list (execute-test (the) test))
 (successful-tests (first result-list))
 (total-tests (second result-list))

0

 Page 3 �

0

05/25/12 aunit-gui.am �0

 (success-decimal (/ successful-tests total-tests)))

 (select-tree-item (the test-tree) (find-r esult-from-test test))
 (update-test-results (the) successful-tes ts total-tests)))
 (if (typep test-result 'aunit-result-collection-class)
 (execute-single-test (the) (the superior (:from test-result)))
 (execute-all-tests (the)))))

;;;-- ----
;;; Method : execute-test
;;; Purpose : Runs a test
;;; Arguments : test (aunit-framework-class)
;;; Returns : list with # of suc. tests and tot. tests.
;;; Author : Lars Barlindhaug
;;;
(define-method execute-test test-form-class (test)
 (let ((test-script-path (the test-script-path (:from test)))
 (test-results (run-test test test-script-pa th))
 (successful-tests (the successful-tests (:from test-results)))
 (total-tests (the total-tests (:from test-results)))
 (success-decimal (if (not (equal total-tests 0))
 (/ successful-tests to tal-tests)
 0
)))

 (progn
 (the update?)
 (open-branch (the test-tree) (find-result-fro m-test test) :all? t)
 (set-test-result-image (the test-tree) (find- result-from-test test) �
)

 (list successful-tests total-tests)))
)

;;;-- ----
;;; Method : update-test-results
;;; Purpose : Updates the test results with the
;;; : number and % of succuessful tests
;;; : and the total number of tests.
;;; Arguments : # of successful tests
;;; : # of tests
;;; Returns : -
;;; Author : Lars Barlindhaug
;;;
(define-method update-test-results test-form-class (successful-tests tota �
l-tests)
 (let ((success-decimal (if (not (equal total-tests 0))
 (/ successful-tests to tal-tests)
 (progn
 (print " ERROR divide by zero ")
 0)))
 (success? (if (equal successful-tests total-tests) 't)))

 (replace-text (the results-bar successful-field)
 (format 'nil " ~d/~d (~d%) "
 successful-tests
 total-tests
 (round (* 100 success-dec imal))))

 (replace-text (the results-bar result-field) (p rinc-to-string success �
?))

 (update-root-img (the test-tree) success?)
 (update-status-bar (the status-bar) success?))

0

 Page 4 �

0

05/25/12 aunit-gui.am �0

)

;;;-- ----
;;; Method : evaluate-results-tree
;;; Purpose : Method is called when clicking on a
;;; : test in the tree.
;;; : TODO Move to test tree, change clas s?
;;; Arguments : results (aunit-result-collection-cl ass
;;; : or aunit-result-class)
;;; Returns : -
;;; Author : Lars Barlindhaug
;;;
(define-method evaluate-results-tree test-form-class (results)
 (clear-results (!test-output))
 (evaluate-tree (the) results))

;;;-- ----
;;; Method : evaluate-tree
;;; Purpose : Recursively evaluates all the resul ts
;;; : belonging to the test and adds them to
;;; : the text-box.
;;; Arguments : results (aunit-result-collection-cl ass
;;; : or aunit-result-class)
;;; Returns : -
;;; Author : Lars Barlindhaug
;;;
(define-method evaluate-tree test-form-class (results)
 (let ((test-results (the tests (:from results))))
 (loop for test in test-results
 do
 (progn
 (if (typep test 'aunit-result-collection-class)
 (progn
 (evaluate-tree (the) test)))
 (if (typep test 'aunit-result-class)
 (progn
 (add-results (!test-output) test))))))
)

;;;-- ----
;;; Method : add-to-test-tree
;;; Purpose : adds a test to the test tree in the GUI
;;; :
;;; Arguments : file-path to the test
;;; Returns : -
;;; Author : Lars Barlindhaug
;;;
(define-method add-to-test-tree test-form-class (file-path)
 (let ((name (remove-aml-file-extension (find-filename-i n-path file-path �
))))
 (if (test-already-in-tree? (read-from-string name) (tr ee-item-childre �
n (the test-tree root-object)))
 (format t " Test: ~a is already added to the window~% " name)
 (let ((test (add-object (the test-fws) (read-from-strin g name) 'aun �
it-framework-class
 :init-form (list 'test-script-path file-pat �
h
 'output-f ile-name " results "))))
 (set-up test)

 (the update?)

 (set-all-images (the test-tree) (find-resul t-from-test test) *gre �

0

 Page 5 �

0

05/25/12 aunit-gui.am �0

ey-img*)
 (select-tree-item (the test-tree) (the resu lts))
 (open-branch (the test-tree) (the results)))))
)

;;;-- ----
;;; Function : right-adjustment
;;; Purpose : Calculates the placement for adjust ing
;;; : gui components to the right-side of
;;; : the window.
;;; Author : Lars Barlindhaug
;;;
(defun right-adjustment (width side-margin)
 (- 100 width side-margin))

;;;-- ----
;;; Function : set-up-gui
;;; Purpose : Creates a name generator for the gu i.
;;; Author : Lars Barlindhaug
;;;
(defun set-up-gui ()
 (setf *gui-name-generator* (create-model 'name-gen erator :init-form (lis �
t 'auto-naming? t))))

;;;-- ----
;;; Function : aunit
;;; Purpose : starts aunit
;;; Author : Lars Barlindhaug
;;;
(defun aunit ()
 (set-up-gui)
 (let ((form
 (or
 (the interface forms test-form-class (:error nil))
 (add-object (the interface forms) 'test-f orm-class 'test-form-c �
lass))))
 (display form)
 (prepare-tree (the test-tree (:from form)))
)
)

;;;-- ----
;;; Function : start-aunit-dev
;;; Purpose : starts a development version of aun it
;;; : This allows for modifying aunit and
;;; : running the new version
;;; Author : Lars Barlindhaug
;;;
(defun start-aunit-dev ()
 (let ((form
 (add-object
 (the interface forms)
 (generate-name *gui-name-generator* 'test -win)
 'test-form-class)))
 (display form)
 (prepare-tree (the test-tree (:from form)))
)
)

0

 Page 6 �

0

E.3 Print

128

05/25/12 system.de �0

;;;-- ----
;;; System : :aunit-print
;;; Purpose : Printing tool for
;;; AML Unit testing framework
;;;
;;; Author : Lars Barlindhaug
;;;
(define-system :aunit-print
 :require-systems '(:aunit)
 :files '(
 " aunit-print-html.aml "
 " aunit-print.aml "

)
)

0

 Page 1 �

0

05/25/12 aunit-print-html.am�0

(in-package :aml)

;;;--
;;; Function : write-html-header
;;; Purpose : writes the HTML header tags,
;;; : date and starts the BODY and TABLE.
;;; Arguments :
;;; Returns :
;;; Author : Lars Barlindhaug
;;;
(defun write-html-header (html-file)
 (format html-file "
<HTML>~%
<HEAD>~%
<style type=\"text/css\">~%
td {text-aling:left; font-size:100%;}~%
td.fail {color:red;}~%
td.pass {color:green;}~%
td.header {text-align:center; font-size:120%; font-weight:bold;}~%
tr.heading {text-align:left; font-size:100%; font-weight:bold;}~%
tr.result {font-weight:bold}~%
</style>~%
</HEAD>~%
<BODY>~%")

 (let ((date-list (today :values? t)))
 (format html-file "<p>~%~a ~a ~%</p>~%" (nth 1 date-list) (nth 0 date�
-list)))

 (format html-file "<table border=\"0\">~% ")

 (defvar *test-collection-header?* t))

;;;--
;;; Function : write-html-footer
;;; Purpose : writes the AML info and then the
;;; : end tags for BODY and HTML header tags.
;;; Arguments :
;;; Returns :
;;; Author : Lars Barlindhaug
;;;
(defun write-html-footer (html-file)
 (format html-file "</table>~% ")

 (format html-file "<pre>~%~a~%~%</pre>~%~%" (report-aml-component-updat�
es))

 (format html-file "</BODY>~% </HTML>"))

(defun write-test-collection-name (html-file result-collection)
 (format html-file "<tr> <td class=\"header\" colspan=\"4\">~a</td></tr>�
~%"
 (the test-name (:from result-collection))))

(defun write-test-collection-header (html-file)
 (format
 html-file
 "<tr class=\"heading\"> <td>Result:</td> <td>Tested object:</td> <td>A�
ctual value:</td> <td>Expected value:</td></tr>~%"))

(defun write-test-collection-footer (html-file result-collection)
 (format html-file "<tr class=\"result\"> ~a <td>~a</td> <td colspan=\"2�
\">Successful: ~d/~d (~,2f%) </td></tr>~%"

0

 Page 1 �

0

05/25/12 aunit-print-html.am�0

 (get-pass-or-fail (the result (:from result-collection)))
 (the test-name (:from result-collection))
 (the successful-tests (:from result-collection))
 (the total-tests (:from result-collection))
 (calculate-percentage (the total-tests (:from result-collection�
))
 (the successful-tests (:from result-colle�
ction))))

 (format html-file "<tr> <td colspan=\"4\"> </td> </tr>~%"))

(defun write-test-result-html (html-file test-result)
 (format html-file "<tr> ~a <td>~a: ~a</td> <td>~a</td> <td>~a</td> </tr�
>~%"
 (get-pass-or-fail (the result (:from test-result)))
 (the type-of-test (:from test-result))
 (the tested-object (:from test-result))
 (the actual-value (:from test-result))
 (the expected-value (:from test-result))))

(defun write-test-result-txt (txt-file test-result)
 (format txt-file "(~a ~a)~%"
 (the tested-object (:from test-result))
 (the actual-value (:from test-result))))

(defun write-setup (html-file test-result)
 (format html-file "<tr>~a <td colspan=\"3\">~a</td> </tr>~%"
 "<td class=\"pass\">DONE</td>"
 test-result))

;;;--
;;; Function : get-pass-or-fail
;;; Purpose : depending on result,
;;; : returns a string PASS or FAIL.
;;; Arguments : result (boolean)
;;; Returns : PASS or FAIL (string)
;;; Author : Lars Barlindhaug
;;;
(defun get-pass-or-fail (result)
 (if result "<td class=\"pass\">PASS</td>" "<td class=\"fail\">FAIL</td>�
"))

0

 Page 2 �

0

05/25/12 aunit-print.am �0

(in-package :aml)

(define-class aunit-print-class
 :inherit-from (object)
 :properties (
 folder-path (default " C:\\Data ")
 output-folder-path (default (format 'nil
 " ~a\\output "
 ^folder-path))

 output-file-name (default " results ")
 html-output-file-path (default
 (format 'nil
 " ~a\\~a.html "
 ^out put-folder-path
 ^out put-file-name))
 txt-output-file-path (default
 (format 'nil
 " ~a\\~a.txt "
 ^outp ut-folder-path
 ^outp ut-file-name))
 pass-file-path (default (format 'nil
 " ~a\\pass "
 ^out put-folder-path))
)
)

;;;-- ----
;;; Method : print-results
;;; Purpose : Prints the results to output html a nd
;;; : txt files.
;;; Arguments : results
;;; Returns : -
;;; Author : Lars Barlindhaug
;;;
(define-method print-results aunit-print-class (test-result)
 (progn
 (when (not (directory? !output-folder-path))
 (create-directory !output-folder-path))

 (file-delete (!pass-file-path))
 (file-delete (!html-output-file-path))
 (file-delete (!txt-output-file-path))

 (with-open-file (html-output-file
 (the html-output-file-path) :direction :output)
 (write-html-header html-output-file)

 (with-open-file (results-txt-file
 (the txt-output-file-path) :direction :output)
 (print-result-collection html-output-file r esults-txt-file test-r �
esult))

 (write-html-footer html-output-file))

 (if (the result (:from test-result))
 (with-open-file (pass-file
 (!pass-file-path) :direction :output)
 (format pass-file " PASS"))))
)

;;;-- ----
;;; Function : print-result-collection
;;; Purpose : Loops over each

0

 Page 1 �

0

05/25/12 aunit-print.am �0

;;; : aunit-result-collection-class
;;; : and writes the results to the
;;; : log file with HTML markup.
;;; : Called by print-results,
;;; : calls print-test-result.
;;; Arguments : results
;;; Returns :
;;; Author : Lars Barlindhaug
;;;
(defun print-result-collection (html-file txt-file result-collection)
 (unless *test-collection-header?*
 (progn
 (setf *test-collection-header?* t)))
 (write-test-collection-name html-file result-coll ection)

 (let ((all-tests
 (the tests (:from result-collection))))

 (loop for test-results in all-tests
 do
 (if (typep test-results 'aunit-result-collection-class)
 (print-result-collection html-file txt-fi le test-results)
 (print-test-result html-file txt-file test- results))))

 (loop for setup-cmd in (the setup-cmds (:from result-collection))
 do
 (print-setup-command setup-cmd))

 (write-test-collection-footer html-file result-co llection))

;;;-- ----
;;; Function : print-test-result
;;; Purpose : Loops over each aunit-results-class
;;; : and writes the results to the
;;; : log file with HTML markup.
;;; : Called by print-result-colllection.
;;; Arguments : results
;;; Returns :
;;; Author : Lars Barlindhaug
;;;
(defun print-test-result (html-file txt-file test-result)
 (select-model test-result)

 (if (typep test-result 'aunit-result-class)
 (progn
 (print-test-collection-header html-file)
 (write-test-result-html html-file test-resu lt)
 (write-test-result-txt txt-file test-result))
 (progn
 (if (equal (type-of test-result) 'cons)
 (progn
 (print-test-collection-header html-file)
 (write-setup html-file test-result))))))

(defun print-test-collection-header (html-file)
 (if *test-collection-header?*
 (progn
 (write-test-collection-header html-file)
 (setf *test-collection-header?* nil))))

;;;-- ----
;;; Function : calculate-percentage

0

 Page 2 �

0

05/25/12 aunit-print.am �0

;;; Purpose : Finds the percentage of successful
;;; : tests, when there are no tests it
;;; : returns 100%.
;;; Arguments : total-tests (integer)
;;; : successful-tests (integer)
;;; Returns : percentage (float)
;;; Author : Lars Barlindhaug
;;;
(defun calculate-percentage (total-tests successful-tests)
 (if (not (= 0 total-tests))
 (* (/
 successful-tests
 total-tests)
 100)
 100))

0

 Page 3 �

0

Appendix F

Bottle KBE model

Source and test code for the bottle model from section 5.3.1.

135

05/09/12 bottle.am �0

(define-class bottle-class
 :inherit-from (object)
 :properties (
 diameter (default 2.0)
 end-diameter (default 1.0)

 body-height (default 5.0)
 bottom-height (default 0.5)
 top-height (default 1.0)
)
 :subobjects (
 (bottle-coordinate-system
 :class 'coordinate-system-class
 origin (list 1.0 0.0 0.0))

 (body :class 'open-cylinder-object
 diameter ^^diameter
 height ^^body-height
 orientation (list
 (translate (list 0 0 0)))
 reference-coordinate-system
 ^^bottle-coordinate-system
)

 (bottom :class 'cylinder-object
 diameter ^^diameter
 height ^^bottom-height
 orientation (list
 (translate
 (list
 0
 0
 (-(+ (half (the s uperior superior body �
height))
 (half ^heigh t))))))
 reference-coordinate-system ^^bo ttle-coordinate-system
)
 (top :class 'open-truncated-cone-object
 start-diameter ^^diameter
 end-diameter ^^end-diameter
 height ^^top-height

 reference-coordinate-system ^^bo ttle-coordinate-system

 orientation (list
 (translate
 (list
 0
 0
 (+ (half (the sup erior superior body he �
ight))
 (half ^height)))))
)

)
)

0

 Page 1 �

0

05/09/12 bottle-test.am �0

(defaunit " bottle-test "
 (deftest 'set-up
 (clear)
 (load " D:\\workspace_win\\src\\bottle\\src\\bottle.aml ")

)
 (deftest 'bottom-location-default
 (create-model 'bottle
 :class 'bottle-class)
 (check-list-diff
 (convert-coords (the bottle bottom) '(0 0 0)
 :from :local :to :global)
 (convert-coords (the bottle body) '(0 0 0)
 :from :local :to :global)
 (list 0.0 0.0 -2.75))
)
 (deftest 'bottom-location
 (create-model 'bottle
 :class 'bottle-class
 :init-form (list
 'body-height 10.0
 'bottom-height 2.0))
 (check-list-diff
 (convert-coords (the bottle bottom) '(0 0 0)
 :from :local :to :global)
 (convert-coords (the bottle body) '(0 0 0)
 :from :local :to :global)
 (list 0.0 0.0 -6.0))
)
 (deftest 'top-location-default
 (create-model 'bottle
 :class 'bottle-class)
 (check-list-diff
 (convert-coords (the bottle top) '(0 0 0)
 :from :local :to :global)
 (convert-coords (the bottle body) '(0 0 0) �
 �
 �
 :from :local :to :global)
 (list 0.0 0.0 3.0))
)

 (deftest 'top-location
 (create-model 'bottle
 :class 'bottle-class
 :init-form (list
 'body-height 10.0
 'top-height 2.0))
 (check-list-diff
 (convert-coords (the bottle top) '(0 0 0)
 :from :local :to :global)
 (convert-coords (the bottle body) '(0 0 0)
 :from :local :to :global)
 (list 0.0 0.0 6.0))
)
)

0

 Page 1 �

0

138

Appendix G

Beam KBE model

Source and test code for the beam model from section 5.3.2.

139

05/16/12 beam-tdd.am �0

(define-class stud-class
 :inherit-from (series-object)
 :properties (
 space-between-studs (default 1.0)

 height (default 1.0)
 width (default 0.5)
 depth (default 0.5)

 class-expression 'box-object

 quantity (ceiling
 (/
 (+ (^^beam-width)
 ^space-between-studs)
 (+ ^width
 ^space-between-studs)))
 space (/
 (-
 ^^beam-width
 (* ^quantity ^width))
 (- ^quantity 1))

 init-form '(
 orientation (list
 (translate
 (list
 (+
 (half ^wi dth)
 (* !index ^space)
 (* !index ^stud-width))
 (+
 (half ^he ight)
 (^^beam-h eight))
 0))))
)
 :subobjects ()
)

(define-class beam-tdd-class
 :inherit-from (object)
 :properties (
 beam-height (default 0.1)
 beam-width (default 10)
 beam-depth (default 0.5)

 stud-height (default 1.0)
 stud-width (default 0.5)
 stud-depth (default 0.5)

 space-between-studs (default 1.0)
)
 :subobjects (
 (main-beam :class 'box-object
 height ^beam-height
 width ^beam-width
 depth ^beam-depth)

 (stud :class 'stud-class
 height ^stud-height
 width ^stud-width
 depth ^stud-depth)
)

)

0

 Page 1 �

0

05/16/12 beam-tdd-test.am �0

(defaunit " beam-test "
 (deftest 'set-up
 (clear)
 (load " D:\\workspace_win\\src\\beam\\beam-tdd.aml ")
 (create-model 'beam
 :class 'beam-tdd-class
 :init-form (list
 'beam-width 5
 'beam-height 0.1
 'space-between-studs 1
 'stud-width 1
)
)

 (create-model 'beam6
 :class 'beam-tdd-class
 :init-form (list
 'beam-width 6
 'beam-height 0.2
 'space-between-studs 1
 'stud-width 1
)
)
)

 (deftest 'stud-quantity-len5
 (check-equals
 (the beam stud quantity)
 3)
)

 (deftest 'stud-quantity-len6
 (check-equals
 (the beam6 stud quantity)
 4)
)

 (deftest 'stud-space-len5
 (check-equals
 (the beam stud space)
 1)
)

 (deftest 'stud-space-len6
 (check-equals
 (the beam6 stud space)
 (/ 2 3))
)

 (deftest 'stud-position-len5-first-x
 (check-equals
 (first (convert-coords
 (the beam stud stud-0000)
 '(0 0 0) :from :local :to :global))
 0.5)
)

 (deftest 'stud-position-len5-first-y
 (check-equals
 (second (convert-coords
 (the beam stud stud-0000)
 '(0 0 0) :from :local :to :global))
 0.6)
)
 (deftest 'stud-position-len5-first-z
 (check-equals
 (third (convert-coords

0

 Page 1 �

0

05/16/12 beam-tdd-test.am �0

 (the beam stud stud-0000)
 '(0 0 0) :from :local :to :global))
 0.0)
)

 (deftest 'stud-position-len5-second-x
 (check-equals
 (first (convert-coords
 (the beam stud stud-0001)
 '(0 0 0) :from :local :to :global))
 2.5)
)

 (deftest 'stud-position-len5-last-x
 (check-equals
 (first (convert-coords
 (the beam stud stud-0002)
 '(0 0 0) :from :local :to :global))
 4.5)
)

 (deftest 'stud-position-len6-first-x
 (check-equals
 (first (convert-coords
 (the beam6 stud stud-0000)
 '(0 0 0) :from :local :to :global))
 0.5)
)

 (deftest 'stud-position-len6-first-y
 (check-equals
 (second (convert-coords
 (the beam6 stud stud-0000)
 '(0 0 0) :from :local :to :global))
 0.7)
)
 (deftest 'stud-position-len6-first-z
 (check-equals
 (third (convert-coords
 (the beam6 stud stud-0000)
 '(0 0 0) :from :local :to :global))
 0.0)
)
 (deftest 'stud-position-len6-second-x
 (check-delta
 (first (convert-coords
 (the beam6 stud stud-0001)
 '(0 0 0) :from :local :to :global))
 ;Stud w, space, half stud w
 (+ 1 (/ 2 3) 0.5)
 0.0001)
)

 (deftest 'stud-position-len6-last-x
 (check-equals
 (first (convert-coords
 (the beam6 stud stud-0003)
 '(0 0 0) :from :local :to :global))
 5.5)
)

)

0

 Page 2 �

0

Appendix H

Bookshelf KBE model

H.1 Source code

Source code for the KBE bookshelf model [30]. Developed by Aker Solutions KBe-
Design and later edited by the author.

143

05/03/12 system.de �0

;;;Filename: system.def

(in-package :AML)

(define-system :bookshelf-system
 :files '(

 " kbe-bookshelf-input-mixin.aml "
 " kbe-bookshelf-data-model-class.aml "
 " kbe-bookshelf-class.aml "
 " kbe-bookshelf-frame-class.aml "
 " kbe-bookshelf-wall-series-class.aml "
 " kbe-bookshelf-shelf-series-class.aml "
)

)

0

 Page 1 �

0

05/03/12 kbe-bookshelf-input-mixin.am�0

;;;Filename: kbe-bookshelf-input-mixin.aml

(in-package :AML)

(define-class kbe-bookshelf-input-mixin
 :inherit-from (object)
 :properties (

 ;;; parameters set in GUI
 height-input 5
 width-input 3
 max-hs-input 0.5
 vertical-spacing-shelves-input 0.5
 shelf-depth 0.7
 thickness-bottom-shelf-input 0.05
 thickness-top-shelf-input 0.05
 thickness-dividing-walls-input 0.05
 thickness-of-shelves-input 0.05
 thickness-side-walls-input 0.05
)

 :subobjects (

)
)

0

 Page 1 �

0

05/03/12 kbe-bookshel f-data-model-class.am �0

;;;Filename: kbe-bookshelf-data-model-class.aml
(in-package :AML)

(define-class kbe-bookshelf-data-model-class
 :inherit-from (kbe-bookshelf-input-mixin data-model-node-mixin)
 :properties (

 property-objects-list (list
 (list (the superio r height-input self) ' �
(automatic-apply? t))
 (list (the superio r width-input self) '(�
automatic-apply? t))
 (list (the superio r max-hs-input self) ' �
(automatic-apply? t))
 (list (the superio r vertical-spacing-she �
lves-input self) '(automatic-apply? t))
 (list (the superio r thickness-bottom-she �
lf-input self) '(automatic-apply? t))
 (list (the superio r thickness-top-shelf- �
input self) '(automatic-apply? t))
 (list (the superio r thickness-dividing-w �
alls-input self) '(automatic-apply? t))
 (list (the superio r thickness-side-walls �
-input self) '(automatic-apply? t))
 (list (the superio r thickness-of-shelves �
-input self) '(automatic-apply? t))
)

;;;Properties:
 (height-input :class '(editable-data-property-class change-even �

t)
 after-change (kbe-validate-bookshelf-height ^s uperior)
 formula :inherit-formula
 label " Bookshelf height "
)

 (width-input :class '(editable-data-property-class change-event �

)
 after-change (kbe-validate-bookshelf- width ^superior)
 formula :inherit-formula
 label " Bookshelf width "
)

 (max-hs-input :class '(editable-data-property-class change-even �
t)

 after-change (kbe-validate-bookshelf-width ^sup erior)
 formula :inherit-formula
 label " Maximum horizontal length of one shelf "
)

 (vertical-spacing-shelves-input :class '(editable-data-property �

-class change-event)
 after-change (kbe-validate-bookshelf-height ^s uperior)
 formula :inherit-formula
 label " Vertical spacing between shelves "
)

 (thickness-bottom-shelf-input :class 'editable-data-property-cl �

ass
 formula :inherit-formula

 label " Thickness bottom shelf "
)

 (thickness-top-shelf-input :class 'editable-data-property-class

 formula :inherit-formula
 label " Thickness top shelf "
)

0

 Page 1 �

0

05/03/12 kbe-bookshel f-data-model-class.am �0

 (thickness-dividing-walls-input :class 'editable-data-property- �
class

 formula :inherit-formula
 label " Thickness of dividing walls "
)

 (thickness-side-walls-input :class 'editable-data-property-clas �

s
 formula :inherit-formula
 label " Thickness side walls "
)

 (thickness-of-shelves-input :class 'editable-data-property-clas �

s
 formula :inherit-formula
 label " Thickness of shelves "
)

)
)

;;;-- ------
;;;Method for verification of width-input and max-h s-input
;;;-- ------

(define-method kbe-validate-bookshelf-width kbe-bookshelf-data-model-clas �
s ()
 (if (< !width-input (* 0.5 (!max-hs-input)))
 (pop-up-message " WRONG INPUT PARAMETERS: The bookshelf is too narro �
w. Adjust bookshelf width or maximum horizontal len gth of one shelf. ")
 nil
)
)

;;;-- ------
;;;Method for verification of height-input and vs-i nput
;;;-- ------

(define-method kbe-validate-bookshelf-height kbe-bookshelf-data-model-cl �
ass ()
 (if (> !vertical-spacing-shelves-input !height-input)

 (pop-up-message " WRONG INPUT PARAMETERS: The bookshelf is too low �
 for even one vertical space in the bookshelf. Adju st bookshelf height or �
 vertical spacing between shelves. ")
 nil
)
)

0

 Page 2 �

0

05/03/12 k be-bookshelf-class.am �0

;;;Filename: kbe-bookshelf-class.aml
(in-package :AML)

(define-class kbe-bookshelf-class
 :inherit-from (kbe-bookshelf-data-model-class)
 :properties (
 height-for-shelves (- ^height-input
 (+ ^thickness-bottom- shelf-input
 ^thickness-top-she lf-input))

 number-of-dividing-walls (if
 (> ^width-inpu t ^max-hs-input)
 (ceiling (/ ^w idth-input ^max-hs-inp �
ut))
 0)
 number-of-shelves (if
 (>
 (* 2 ^vertica l-spacing-shelves-inpu �
t)
 ^height-for-s helves)
 0
 (- (floor
 (/ ^height-for-shel ves ^vertical-spacing- �
shelves-input))
 1))
 shelf-length (/
 (- ^width-input
 (+ (* 2 ^thickness-side-wa lls-input)
 (*
 ^thickness-dividing-wa lls-input
 ^number-of-dividing-wa lls)))
 (+ ^number-of-dividing-walls 1))

)

 :subobjects (
 (bookshelf-frame :class 'kbe-bookshelf-frame-class

)

 (bookshelf-walls :class (if (equal !number-of-dividing-walls 0)
 'null-object
 'kbe-bookshelf-wa ll-series-class)

)

 (bookshelf-shelves :class (if (equal !number-of-shelves 0)
 'null-object
 'kbe-bookshelf-s helf-series-class)
)
)
)

0

 Page 1 �

0

05/03/12 kbe-boo kshelf-frame-class.am �0

;;;Filename: kbe-bookshelf-frame-class.aml
(in-package :AML)

 (define-class kbe-bookshelf-frame-class
 :inherit-from (object)
 :properties (

vertical-offset (* 0.5
 (-
 (* 0.5 ^^thickness-bottom -shelf-input)
 (* 0.5 ^^thickness-top-s helf-input)))

)

 :subobjects (

(side-1 :class 'box-object
depth ^^^shelf-depth
width ^^^thickness-side-walls-input
height ^^^height-for-shelves
orientation (list

 (translate (list
 (+ (* -0.5 ^^^width-in put) (* 0.5 ^width))
 (-
 ^^^thickness-bottom-s helf-input
 ^^^thickness-top-shel f-input)
 0))

)
reference-coordinate-system nil
)

 (side-2 :class 'box-object
 depth ^^^shelf-depth

 width ^^^thickness-side-walls-input
 height ^^^height-for-shelves
 orientation (list

 (translate (list
 (- (* 0.5 ^^^width-in put) (* 0.5 ^width))
 ^^vertical-offset
 0))

)
 reference-coordinate-system nil
)

(top-shelf :class 'box-object
 depth ^^^shelf-depth
 width ^^^thickness-top-shelf-input
 height ^^^width-input
 orientation (list

 (translate (list
 (- (* 0.5 ^^^height-inp ut)
 (* 0.5 ^^^thickness- top-shelf-input))
 0
 0))

 (rotate 90 '(0 0 1))
)

 reference-coordinate-system nil
)

(bottom-shelf :class 'box-object
 depth ^^^shelf-depth
 width ^^^thickness-bottom-shelf-input
 height ^^^width-input
 orientation (list

 (translate (list
 (+
 (* -0.5 ^^^height-i nput)
 (* 0.5 ^^^thickness -bottom-shelf-input))
 0
 0))

0

 Page 1 �

0

05/03/12 kbe-boo kshelf-frame-class.am �0

 (rotate 90 '(0 0 1))
)

 reference-coordinate-system nil
)))

0

 Page 2 �

0

05/03/12 kbe-bookshelf -wall-series-class.am �0

;;;Filename: kbe-bookshelf-wall-series-class.aml

(in-package :AML)

(define-class kbe-bookshelf-wall-series-class
 :inherit-from (series-object)
 :properties (

 quantity ^^number-of-dividing-walls
 reference-coordinate-system (the superior su perior bookshelf-fr �

ame side-1)
 wall-direction (list 1 0 0)
 shelf-length-list-1 (let (

 (a (list (+
 (* 0.5 ^^thickness-side-w alls-input)
 ^^shelf-length
 (* 0.5 ^^thickness-dividi ng-walls-input))))

 (var
 (+ ^^shelf-length ^^thickness-div iding-walls-input))

)
 (loop for i from 1 to (- ^quantity 1)

 do
 (push var a)) a

)

 shelf-length-list (reverse ^shelf-length-lis t-1)

 wall-coords (loop for i from 0 to (- ^quantity 1)
 sum (nth i ^shelf-length-list) into dist-sum
 collect (multiply-vector-by-scalar ^wall-dire ction dist-su �

m)
)

 class-expression 'box-object

 init-form '(
 depth ^^shelf-depth
 width ^^thickness-dividing-walls-input
 height (the height

 (:from
 (the superior superior superi or bookshelf-frame sid �
e-1)))

 orientation (list
(translate (nth !index ^wall-coords))
)

 reference-object (the superior superior superior bookshelf-fr �
ame side-1)

 parent-coordinate-system ^^reference-coordinate- system
)

)
 :subobjects (

)
)

0

 Page 1 �

0

05/03/12 kbe-bookshelf- shelf-series-class.am �0

;;;Filename: kbe-bookshelf-shelf-series-class.aml
(in-package :AML)

(define-class kbe-bookshelf-shelf-series-class
 :inherit-from (series-object)
 :properties (

 reference-coordinate-system (the superior su perior bookshelf-fr �
ame top-shelf)

 wall-direction (list 1 0 0)
 shelf-height-list-1 (let (

 (a
 (list
 (* -1 (+
 (- ^^vertical-spacing-shel ves-input
 (half ^^thickness-of-she lves-input))
 (half ^^thickness-top-shel f-input)))))

 (var (* -1
 ^^vertical-spacing-shelves- input))

)
 (loop for i from 2 to ^^number-of-shelves do (push var �

 a))

 a)
 shelf-height-list (reverse ^shelf-height-lis t-1)

 shelf-coords (loop for i from 0 to (- (length ^shelf-height-li �
st) 1)
 sum (nth i ^shelf-height-list) into di st-sum

 collect (multiply-vector-by-scalar ^wall-dire ction dist-su �
m)

)

 quantity (if
 (<
 (- ^^height-input
 ^^thickness-bottom-shel f-input
 (* -1 (nth 0 (nth (- ^^ number-of-shelves 1) ^ �
shelf-coords)))
 (* 0.5 ^^thickness-of-s helves-input))
 ^^vertical-spacing-shelves- input)
 (- ^^number-of-shelves 1)
 ^^number-of-shelves)

 class-expression 'box-object

 init-form '(
 depth ^^shelf-depth
 width ^^thickness-dividing-walls-input
 height (the height (:from (the superior superior superior boo �

kshelf-frame top-shelf)))
 orientation (list

(translate (nth !index ^shelf-coords))
)

 reference-object (the superior superior superior bookshelf-fr �
ame top-shelf)

 parent-coordinate-system ^^reference-coordinate- system
)

)
 :subobjects (

))

0

 Page 1 �

0

H.2 Test code

Test code for the KBE bookshelf model.

153

05/09/12 tests.de�0

kbe-bookshelf-test.aml
kbe-bookshelf-wall-series-class-test.aml
kbe-bookshelf-shelf-series-class-test.aml
kbe-bookshelf-frame-class-test.aml
kbe-bookshelf-class-test.aml

0

 Page 1 �

0

05/09/12 kbe-bookshelf-test.am �0

(defaunit " bookshelf-test "
 (deftest 'set-up
 (clear)
 (load-system :bookshelf-system)
)

 (deftest 'height
 (create-model 'bookshelf
 :class 'kbe-bookshelf-class
 :init-form '(height-input 5
 max-hs-input 3))
 (check-equals
 (+
 (the bookshelf bookshelf-frame side-1 height)
 (the bookshelf bookshelf-frame top-shelf widt h)
 (the bookshelf bookshelf-frame bottom-shelf w idth))
 (the bookshelf height-input)))

 (deftest 'height-big-top-bottom
 (create-model 'bookshelf
 :class 'kbe-bookshelf-class
 :init-form '(height-input 5
 thickness-bottom-she lf-input 1
 thickness-top-shelf- input 0.5
 max-hs-input 3))
 (check-equals
 (+
 (the bookshelf bookshelf-frame side-1 height)
 (the bookshelf bookshelf-frame top-shelf widt h)
 (the bookshelf bookshelf-frame bottom-shelf w idth))
 (the bookshelf height-input)))

 (deftest 'width
 (create-model 'bookshelf
 :class 'kbe-bookshelf-class
 :init-form '(width-input 5
 max-hs-input 3))
 (check-equals
 (the bookshelf bookshelf-frame top-shelf heig ht)
 (the bookshelf width-input)
)
 (check-equals
 (the bookshelf bookshelf-frame bottom-shelf he ight)
 (the bookshelf width-input)))

)

0

 Page 1 �

0

05/09/12 kbe-bo okshelf-class-test.am �0

(defaunit " bookshelf-class-test "
 (deftest 'set-up
 (clear)
 (load-system :bookshelf-system)
)

 (deftest 'height-for-shelves
 (create-model 'bookshelf
 :class 'kbe-bookshelf-class
 :init-form '(height-input 5
 thickness-bottom-she lf-input 1
 thickness-top-shelf- input 1))
 (check-equals (the bookshelf height-for-shelves) 3))

 (deftest 'number-of-dividing-walls-width-less-tha n-max-hs
 (create-model 'bookshelf
 :class 'kbe-bookshelf-class
 :init-form '(width-input 2 max-hs-input 3))
 (check-equals (the bookshelf number-of-dividing -walls) 0)
)

 (deftest 'number-of-dividing-walls
 (create-model 'bookshelf
 :class 'kbe-bookshelf-class
 :init-form '(width-input 5 max-hs-input 2))
 (check-equals (the bookshelf number-of-dividing -walls) 3)
)

 ;;2*2 > 3.99999
 (deftest 'number-of-shelves-no-shelf
 (create-model 'bookshelf
 :class 'kbe-bookshelf-class
 :init-form '(vertical-spacing-shelves-input 2
 height-input 3.9999))
 (check-equals (the bookshelf number-of-shelves) 0)
)

 ;;2*1 + 0.5 + 0.5 > 2.9
 (deftest 'number-of-shelves-no-shelf-big-top-bott om
 (create-model 'bookshelf
 :class 'kbe-bookshelf-class
 :init-form '(vertical-spacing-shelves-input 1
 height-input 2.9
 thickness-bottom-sh elf-input 0.5
 thickness-top-shelf -input 0.5))
 (check-equals (the bookshelf number-of-shelves) 0)
)

 (deftest 'number-of-shelves
 (create-model 'bookshelf
 :class 'kbe-bookshelf-class
 :init-form '(vertical-spacing-shelves-input 2
 height-input 9))
 (check-equals (the bookshelf number-of-shelves) 3)
)

 (deftest 'number-of-shelves-2
 (create-model 'bookshelf
 :class 'kbe-bookshelf-class
 :init-form '(thickness-top-shelf-input 1
 thickness-bottom-she lf-input 1
 height-input 9
 vertical-spacing-she lves-input 2
 thickness-of-shelves -input 0.5))

 (check-equals (the bookshelf number-of-shelves) 2))

0

 Page 1 �

0

05/09/12 kbe-bo okshelf-class-test.am �0

 (deftest 'number-of-shelves-big-top-bottom
 (create-model 'bookshelf
 :class 'kbe-bookshelf-class
 :init-form '(vertical-spacing-shelves-input 1
 height-input 5
 thickness-bottom-she lf-input 0.5
 thickness-top-shelf- input 0.5))
 (check-equals (the bookshelf number-of-shelves) 3)
)

 (deftest 'number-of-shelves-big-lower-shelf
 (create-model 'bookshelf
 :class 'kbe-bookshelf-class
 :init-form '(vertical-spacing-shelves-input 1
 height-input 5.9
 thickness-bottom-she lf-input 0.5
 thickness-top-shelf- input 0.5))
 (check-equals (the bookshelf number-of-shelves) 3)
)

 (deftest 'shelf-length
 (create-model 'bookshelf
 :class 'kbe-bookshelf-class
 :init-form '(width-input 10
 thickness-side-walls -input 1
 thickness-dividing-w alls-input 0.2
 max-hs-input 2))
 (check-equals (the bookshelf number-of-dividing -walls) 5)
 (check-equals (the bookshelf shelf-length) (/ 7 6))
)

 (deftest 'bookshelf-walls-null-object
 (create-model 'bookshelf
 :class 'kbe-bookshelf-class
 :init-form '(width-input 2 max-hs-input 3))
 (check-equals (type-of (the bookshelf bookshelf -walls)) 'null-object)
)

 (deftest 'bookshelf-walls-kbe-object
 (create-model 'bookshelf
 :class 'kbe-bookshelf-class
 :init-form '(width-input 7 max-hs-input 3))
 (check-equals (type-of (the bookshelf bookshelf -walls)) 'kbe-bookshel �
f-wall-series-class)
)

 (deftest 'bookshelf-shelves-null-object
 (create-model 'bookshelf
 :class 'kbe-bookshelf-class
 :init-form '(vertical-spacing-shelves-input 2
 height-input 3.9))
 (check-equals (the bookshelf number-of-shelves) 0)
 (check-equals (type-of (the bookshelf bookshelf -shelves)) 'null-objec �
t)
)

 (deftest 'number-of-shelves-kbe-object
 (create-model 'bookshelf
 :class 'kbe-bookshelf-class
 :init-form '(vertical-spacing-shelves-input 2
 height-input 9))
 (check-equals (type-of (the bookshelf bookshelf -shelves))
 'kbe-bookshelf-shelf-series-class)
)

)

0

 Page 2 �

0

05/09/12 kbe-bookshel f-frame-class-test.am �0

(defaunit " bookshelf-frame-class-test "
 (deftest 'set-up
 (clear)
 (load-system :bookshelf-system)
)

 (deftest 'validate-bookshelf-width
 (create-model 'bookshelf
 :class 'kbe-bookshelf-class
 :init-form '(thickness-bottom-shelf-input 2
 thickness-top-shelf- input 1))
 (check-equals
 (the bookshelf bookshelf-frame vertical-offset)
 0.25)
)

 (deftest 'side-1-height
 (create-model 'bookshelf
 :class 'kbe-bookshelf-class
 :init-form '(height-input 10
 thickness-top-shelf- input 1
 thickness-bottom-she lf-input 2))
 (check-equals (the bookshelf bookshelf-frame si de-1 height) 7)
)

 (deftest 'side-1-orientation
 (create-model 'bookshelf
 :class 'kbe-bookshelf-class
 :init-form '(width-input 10
 thickness-side-walls -input 1
 thickness-top-shelf- input 1
 thickness-bottom-she lf-input 2))
 (check-equals
 (first (the bookshelf bookshelf-frame side-1 p osition))
 (list -4.5 1.0 0.0))
)

 (deftest 'side-2-height
 (create-model 'bookshelf
 :class 'kbe-bookshelf-class
 :init-form '(height-input 10
 thickness-top-shel f-input 1
 thickness-bottom-s helf-input 2))
 (check-equals (the bookshelf bookshelf-frame side-2 height) 7)
)

 (deftest 'side-2-orientation
 (create-model 'bookshelf
 :class 'kbe-bookshelf-class
 :init-form '(width-input 10
 thickness-side-walls -input 1
 thickness-top-shelf- input 1
 thickness-bottom-she lf-input 2))
 (check-equals
 (first (the bookshelf bookshelf-frame side-2 position))
 (list 4.5 0.25 0.0))
)

 (deftest 'top-shelf-orientation
 (create-model 'bookshelf
 :class 'kbe-bookshelf-class
 :init-form '(height-input 10
 thickness-top-shel f-input 1))
 (check-list-delta
 '(0.0 4.5 0.0)
 (first (the bookshelf bookshelf-frame top-sh elf position))
 0.000001)

0

 Page 1 �

0

05/09/12 kbe-bookshel f-frame-class-test.am �0

)

 (deftest 'bottom-shelf-orientation
 (create-model 'bookshelf
 :class 'kbe-bookshelf-class
 :init-form '(height-input 10
 thickness-bottom-s helf-input 1))
 (check-list-delta
 '(0.0 -4.5 0.0)
 (first (the bookshelf bookshelf-frame bottom -shelf position))
 0.000001)
)
)

0

 Page 2 �

0

05/09/12 kbe-bookshelf-w all-series-class-test �0

(defaunit " bookshelf-shelf-series-class-test "
 (deftest 'set-up
 (clear)
 (load-system :bookshelf-system)
)

 (deftest 'shelf-length-list
 (create-model 'bookshelf
 :class 'kbe-bookshelf-class
 :init-form '(thickness-side-walls-input 1
 thickness-dividing-w alls-input 0.1
 width-input 4
 max-hs-input 1
 vertical-spacing-she lves-input 2
 thickness-of-shelves -input 0.5))

 (check-equals (the bookshelf shelf-length) 0.32)
 (check-equals (the bookshelf number-of-dividing -walls) 4)

 (check-list-delta
 (the bookshelf bookshelf-walls shelf-length-li st)
 '(0.87 0.42 0.42 0.42)
 0.000001)
)
 (deftest 'wall-coords
 (create-model 'bookshelf
 :class 'kbe-bookshelf-class
 :init-form '(thickness-side-walls-input 1
 thickness-dividing-w alls-input 0.1
 width-input 4
 max-hs-input 1
 vertical-spacing-she lves-input 2
 thickness-of-shelves -input 0.5))
 (check-list-delta
 (first (the bookshelf bookshelf-walls wall-coo rds))
 '(0.87 0 0)
 0.000001)

 (check-list-delta
 (second (the bookshelf bookshelf-walls wall-co ords))
 '(1.29 0 0)
 0.000001)

 (check-list-delta
 (third (the bookshelf bookshelf-walls wall-coo rds))
 '(1.71 0 0)
 0.000001)

 (check-list-delta
 (fourth (the bookshelf bookshelf-walls wall-co ords))
 '(2.13 0 0)
 0.000001)
)
)

0

 Page 1 �

0

05/09/12 kbe-bookshelf-s helf-series-class-tes �0

(defaunit " bookshelf-shelf-series-class-test "
 (deftest 'set-up
 (clear)
 (compile-system :bookshelf-system)
)

 (deftest 'shelf-height-list
 (create-model 'bookshelf
 :class 'kbe-bookshelf-class
 :init-form '(thickness-top-shelf-input 1
 thickness-bottom-she lf-input 1
 height-input 9
 vertical-spacing-she lves-input 2
 thickness-of-shelves -input 0.5))

 (check-equals (the bookshelf number-of-shelves) 2)

 (check-equals (the bookshelf bookshelf-shelves shelf-height-list)
 '(-2.25 -2))
)

 (deftest 'shelf-coords
 (create-model 'bookshelf
 :class 'kbe-bookshelf-class
 :init-form '(thickness-top-shelf-input 1
 thickness-bottom-she lf-input 1
 height-input 9
 vertical-spacing-she lves-input 2
 thickness-of-shelves -input 0.5))
 (check-list-delta (first (the bookshelf bookshe lf-shelves shelf-coord �
s))
 '(-2.25 0 0)
 0.0000001)
 (check-list-delta (second (the bookshelf booksh elf-shelves shelf-coor �
ds))
 '(-4.25 0 0)
 0.0000001)
)
)

0

 Page 1 �

0

162

Appendix I

Luva Spar test code

Test code for the Luva spar model.

163

05/01/12 kbe-spar- space-manager-test.am �0

(defaunit " kbe-spar-space-manager-test "

 (deftest 'set-up
 (create-model 'kbe-spar-space-manager-class))

 (deftest 'label-manager-test
 (check-equals
 (get-plane-by-label
 (the kbe-spar-space-manager-class)
 " not-existing ")
 'nil))

 (deftest 'label-manager-x-min
 (check-equals
 (the label (:from (get-plane-by-label
 (the kbe-spar-space-manager -class)
 " x-min ")))
 " x-min "))

 (deftest 'label-manager-x-min-type
 (check-equals
 (type-of (get-plane-by-label
 (the kbe-spar-space-manager-class)
 " x-min "))
 'oda-datum-plane-class))

 (deftest 'label-manager-test-x-min-origin
 (check-equals
 (third (the origin (:from (get-plane-by-label
 (the kbe-spar-space -manager-class)
 " x-min "))))
 -50))

 (deftest 'label-manager-x-min-origin-convert-to-g lobal
 (check-list-delta
 (convert-coords
 (the reference-coordinate-system
 (:from (get-plane-by-label
 (the kbe-spar-space-manager-class)
 " x-min ")))
 (the origin (:from (get-plane-by-label
 (the kbe-spar-space-manag er-class)
 " x-min "))))
 '(-50 0 50)
 0))
 (deftest 'label-manager-x-min-origin-convert-to-g lobal-change-value
 (change-value (the origin (:from (the kbe-spar-space-manager-class)))
 '(10 10 10))
 (check-list-delta
 (convert-coords
 (the reference-coordinate-system
 (:from (get-plane-by-label
 (the kbe-spar-space-manager-class)
 " x-min ")))
 (the origin (:from (get-plane-by-label
 (the kbe-spar-space-manag er-class)
 " x-min "))))
 '(-40 10 60)
 0))

 (deftest 'label-manager-x-min-origin-convert-to-g lobal-change-value
 (change-value (the origin (:from (the kbe-spar-space-manager-class)))
 '(10 10 10))
 (check-list-delta
 (convert-coords
 (the reference-coordinate-system
 (:from (get-plane-by-label

0

 Page 1 �

0

05/01/12 kbe-spar- space-manager-test.am �0

 (the kbe-spar-space-manager-class)
 " x-min ")))
 (the origin (:from (get-plane-by-label
 (the kbe-spar-space-manag er-class)
 " x-min "))))
 '(-40 10 60)
 0))

 (deftest 'origin-default
 (check-equals
 (the origin (:from (the kbe-spar-space-manager-class)))
 '(0 0 0)))

 (deftest 'origin-change
 (change-value (the origin
 (:from (the kbe-spar-space-manager-class)))
 '(10 10 10))
 (check-equals
 (the origin (:from (the kbe-spar-space-manager-class)))
 '(10 10 10)))
)

0

 Page 2 �

0

	Title Page
	Abstract
	Sammendrag
	Preface
	Acronyms
	Glossary
	List of Figures
	Introduction
	Motivation
	Research questions
	Related work
	Structure

	Test-Driven Development
	TDD Principles
	Usefulness of TDD

	Continuous Integration
	Continuous Integration build process
	Continuous integration in practice
	Developing KBE-models

	Getting started with AUnit
	Writing a unit test
	Working the AUnit GUI
	Using AUnit from the command line
	Other AUnit uses

	Unit testing KBE models
	Challenges
	Testing approaches
	Testing examples
	Testing at Aker Solutions KBeDesign

	AUnit
	Overall structure
	Core
	GUI
	Print

	Results and discussion
	Unit testing KBE models and test-driven development
	Unit testing at Aker Solutions KBeDesign
	Continuous integration
	AUnit

	Conclusion
	Further work

	Bibliography
	Introduction to AML
	Software testing
	AUnit Reference
	TDD approaches
	AUnit source code
	Bottle KBE model
	Beam KBE model
	Bookshelf KBE model
	Luva Spar test code

