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Summary

The historical trend of steady increase in processor performance with each technology gen-
eration has slowed down during the last years due to power limitations. As transistor sizes
reduce, the power density on a chip does not remain constant anymore, which is known as
the end of Dennard scaling. This increase of power demand limits the number of transistors
that can be used simultaneously without exceeding the power budget. This phenomenon,
known as the Dark Silicon effect, can be mitigated by building heterogeneous systems
containing processing elements of different performance and power characteristics. The
SHMAC project at the NTNU aims to provide a platform for investigating heterogeneous
systems at all abstraction levels.

Current verification strategies for verifying the hardware parts of the SHMAC platform
include block-level and top-level testbenches, and bare-metal testing on FPGA. Both of
them run directed tests that exercise specific features of the design, which are manually
handcrafted by each SHMAC developer. This approach not only represents a tedious task
for the designer, but also does not ensure to reach all corner cases within the design. In
addition, these verification strategies lack of coverage metrics that measure verification
progress and quality, and do not provide mechanisms to effectively identify and track bugs
in the design.

This project proposes a new verification framework and methodology for the SHMAC
platform using the Universal Verification Methodology (UVM). This new methodology
is aimed to overcome the limitations of the existing verification strategies previously pre-
sented, and also is intended to provide highly reusable verification environments. The
latter plays an important role in reducing the effort and time spent on creating new tests as
the design complexity of the SHMAC platform increases and new extensions are imple-
mented.
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Chapter 1
Introduction

1.1 Motivation

Computing system performance has grown at an impressive rate since the mid 1980s. Until
the early 2000s, this increase in performance has followed Moore’s law [35] with a growth
of roughly 50% annually, as depicted in Figure 1.1. This was in part made possible because
improvements in production technology adhered to the principle called Dennard scaling
[15]. In a Dennard scaling process, transistor sizes are reduced while keeping the electric
fields constant. This translates into a lower power consumption per transistor, which again
was used to add more transistors to the same die area. The result is more transistors on a
fixed chip area at a constant power consumption.

Dennard scaling keeps the electric fields constant by reducing the transistors supply volt-
age and threshold voltage. However, sub-threshold leakage currents increase exponentially
when the threshold voltage is reduced, which has led to the end of Dennard scaling when
production size decreased past the 130 nm level [30]. This means it is no longer possible
to power more transistors without either increasing the power budget or leaving parts of
the chip unpowered. The latter is associated with the concept of Dark Silicon Effect [24],
which implies that only parts of a chip can be active simultaneously while others have to
be powered off in order to stay within the power budget.

The Dark Silicon Effect is motivating the emergence of new fields of study, where dif-
ferent approaches for transistor utilization are explored. One such field is the area of
heterogeneous processor design, where multicore processors are composed of cores that
have different performance and power characteristics. The task at hand is to select the pro-
cessing elements that will maximize performance for the current application under a fixed
power budget (i.e. maximizing energy efficiency), while the remaining processing ele-
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Chapter 1. Introduction

Figure 1.1: Historical growth in processor performance [27]

ments are powered off. ARM’s big.LITTLE technology is an example of a heterogeneous
computing architecture employed in the consumer market. It combines relatively slow,
low-power processor cores (LITTLE) with relatively more powerful and power-hungry
ones (big). Each processing task is dynamically allocated to a big or LITTLE core de-
pending on the instantaneous performance requirement of that task, as shown in Figure
1.2, where A15 and A7 clusters are the big and LITTLE cores respectively.

Figure 1.2: ARM’s big.LITTLE technology [40]
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1.1 Motivation

The EECS group at NTNU contributes to heterogeneous processors research with the
Single-ISA Heterogeneous MAny-core Computer (SHMAC) project. SHMAC is an in-
frastructure for investigating heterogeneous systems at all abstraction levels. The key idea
is to create a flexible framework in which different heterogeneous processors can be cre-
ated from a collection of processing elements and accelerators. The SHMAC platform has
a tile-based architecture, where processing elements are laid out in a rectangular grid with
connections to their nearest neighbor. To facilitate software design space exploration, the
programming model is kept constant across SHMAC-instances.

Functional verification is necessary to ensure the correctness of the SHMAC architecture.
Current verification strategies for validating the functionality of the hardware parts of the
SHMAC platform include block-level and top-level testbenches, and bare-metal testing on
FPGA. The first ones run a set of tests on the SHMAC RTL, while the latter executes tests
on a FPGA platform with a SHMAC bitfile. Both of them currently employ only prede-
fined test cases, also referred as directed tests [29], which are hand-coded by each SHMAC
developer. The main drawback of this approach is that each verification scenario has to
be considered independently and human interaction is required to set up the complete ver-
ification environment, generating the necessary traffic and checking results for each test
case. This represents a time-consuming and tedious task for the developer, and also often
leads to verification incompleteness, since it requires detailed enumeration of all possible
scenarios and corner cases.

Other deficiencies of the actual verification strategy for the SHMAC platform were iden-
tified by conducting a survey among SHMAC developers (see Appendix G for results).
Some of them agreed that the existing Verilog testbenches and the framework for running
bare-metal tests are not properly documented. Also, one of the main limitations they found
was the absence of debugging mechanisms to effectively identify and analyze errors in the
designs. This is particularly the weakest point of bare-metal tests since it is not possible
to get access to the values of the internal nodes unless additional hardware is added. It
was also confirmed that the limited error diagnosis capability is one of the major obstacles
software developers of the SHMAC face, since it makes it difficult to distinguish between
hardware and software bugs.

The current verification strategy has several limitations as described in the previous lines,
and in order to be able to bring the current platform up to leading industrial quality stan-
dards as well as enable future upgrades and modifications to the platform to be quickly
integrated and verified, a new verification strategy is needed. In addition to create an
optimized verification environment, it is also important to provide guidance on how the
SHMAC developers should implement the best verification practices. This includes the
elaboration of templates for efficient design specifications documents and verification
plans, as well as guidelines for implementing good design for verification practices.

This project is aimed at providing a new verification framework for the SHMAC plat-
form which maximizes quality and reusability while reducing the effort and time spent on
verification. This will be possible by employing the Universal Verification Methodology
(UVM), which is a standardized methodology for verifying complex IP and SoC in the
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Chapter 1. Introduction

semiconductor industry. As UVM places an emphasis on reuse of the verification infras-
tructure, it will make it possible to save significant time in the verification process when
new extensions or modifications are implemented on the SHMAC platform. The quality
of verification will be ensured by providing guidelines for good verification practices to
the SHMAC developers, as explained before.

1.2 Requirements for the project

Requirements are essential for systematically evaluating the success of the verification
framework to be implemented. The following table presents the main requirements that
the new verification framework must satisfy.

Table 1.1: Requirements for the new verification framework of the SHMAC platform

Requirement ID Description
REQ-Q1 The verification strategy must clearly define which metrics

and level of those metrics that is needed in order to decide
when verification is complete. If different environments re-
quire different metrics to be collected, that must be clearly
stated.
Example metrics: raw line coverage for block level test-
benches must be higher than 95%. Explained (i.e. justified)
line coverage for block level testbenches must be 100%.

REQ-Q2 The verification strategy must define the different types of
environments that should be implemented and high level fea-
tures of those environments such as stimuli generation strat-
egy and checking strategy.

REQ-Q3 The verification strategy must enable the user to do as effi-
cient debugging as possible.

REQ-Q4 The verification strategy must enable verification environ-
ments that are robust against future changes to the design
and that can easily be reused.

REQ-Q5 It must be easy to determine if the design has a HW bug.
REQ-Q6 Assuming a certain quality level has been achieved, the ver-

ification strategy must describe how the same level can be
maintained over time even if modifications to the RTL is on-
going.

REQ-Q7 The verification strategy must give guidance on how the team
should prioritize in order to get from the current state to the
new and improved way of doing verification.

REQ-Q8 The full system contains both hardware and software. The
verification strategy should also describe how hardware and
software can be verified together.
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1.3 Report structure

REQ-Q9 The verification strategy should also describe typical design
for verification guidelines that designers should follow when
writing RTL.

REQ-Q10 The verification strategy must list required documentation
needed before a verification engineer can efficiently start on
investigating how to e.g. verify a block. A outline of the
content of the necessary documents must be specified.

REQ-Q11 The verification strategy must describe what document that
must be produced when architecting a new verification envi-
ronment and the content of those documents.

REQ-Q12 The verification strategy must describe how bugs will be
managed and tracked.

1.3 Report structure

The organization of this report into individual chapters is briefly described for the readers
convenience:

Chapter 2: Background gives an overview of the SHMAC architecture, and explains key
concepts regarding functional verification, UVM and SystemC.

Chapter 3: Related work describes the existing verification strategy for the SHMAC
platform, as well as similar works regarding verification of complex processors and SoCs.

Chapter 4: SHMAC verification methodology includes an analysis of the limitations of
the current verification strategy for the SHMAC, and presents a new verification method-
ology aimed at overcoming these deficiencies.

Chapter 5: SHMAC verification framework gives a description of the new UVM-based
verification framework for the SHMAC, and explains how the verification environments
were implemented.

Chapter 6: Discussion/evaluation presents an analysis of the contribution of this work to
the continuous development of the SHMAC.

Chapter 7: Conclusion and future work provides concluding remarks and propositions
for future work on this project.
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Chapter 2
Background

Parts of this chapter have been fully or partially reused from the project preceding this
thesis, this is information of equal relevance to this dissertation [20].

2.1 SHMAC

The Single-ISA (Instruction Set Architecture) Heterogeneous MAny-core Computer is a
research project by the Energy Efficient Computing Systems group at NTNU that tries to
figure out how to make more energy efficient computers through a heterogeneous archi-
tecture [21]. The motivation for this comes as a result of the Dark Silicone effect.

The Dark silicon effect is a result of the fact that transistors are still shrinkable but the
power consumption is not [24]. An increased amount of transistors per area and a fixed
power per chip constraint, has resulted in that a lot of transistors has to be turned off
during operation. Because of this a lot of alternative architectures has emerged. They rely
on large-scale parallelism, heterogeneous cores, and accelerators to achieve performance
and energy efficiency [9]. The challenge is to figure out which amount of smaller and
bigger cores, with or without internal accelerators, and separate external accelerators that
gives the largest performance increase on the smallest amount of power.

The architecture is a mesh of different tiles coupled together. The tiles have a common
instruction set and architecture model, such that there is software portability across dif-
ferent SHMAC instances. There is a common router in all the SHMAC tiles that makes
this possible. It is a uniform architecture, all processing tiles see the same memory map,
but tile registers are per-tile, other memory locations are global. Every tile can be loaded
with any type of logical unit. The tile communicates only with its neighbours, and the
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Chapter 2. Background

Figure 2.1: Illustration of the high level architecture of the SHMAC processor [21]

mesh must be rectangular, but not necessarily square. Every SHMAC architecture must
contain one and only one APB tile, and one and only one main memory tile [22]. The
APB tile takes care of all the I/O in and out of the SHMAC mesh, and the memory tile,
depending on the target FPGA it is emulated on, is either ZBT-RAM or DDR-RAM. In ad-
dition to these we also have processor tiles, scratchpad tiles, accelerator tiles and dummy
tiles. The processor tiles are based around a modified RISCV sodor Z-scale core, but also
includes a tile register block, a tile memory and glue logic to bind it all together. Addi-
tional internal accelerators are also possible to include on the processor tile. The cores can
be implemented with a number of different energy/performance characteristics, and can
be optimized with vector processing, Out-Of-Order (OOO) operation, Branch prediction,
and etc. Cache sizes are also variable. The scratchpad tile is a RAM tile that provides
extra memory to connected tiles. Accelerator tiles are external accelerators designed for
a specific purpose, an example being an SHA1 core based on the SHA1 algorithm [22].
Dummy tiles are empty tiles, that only includes the router. These can be used in cases
where it is impossible/impractical to have a functional tile, and is just used to create the
rectangular shape of SHMAC. SHMAC tiles are summarized in table 2.1.

2.2 Verification

Since Moore’s law was introduced in 1960 the amount of transistors on a chip has in-
creased exponentially, and with it the complexity of the chip. With the increased complex-
ity of today’s processor designs, the time spent on verification has grown from 30-40%
spent of the total effort in 1996 to 50-80% spent today [13]. This is illustrated in Figure
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2.2 Verification

Table 2.1: SHMAC tiles

Prefix Tile type Amount allowed in the grid
V I/O 1
C CPU 0-9
R Scratchpad 0-8
Z ZBT RAM 1, if synthesizing for the RealView PB11MPCore
D DDR RAM 1, if synthesizing for the Versatile Express
S SHA1 0-8
. Empty 0-9

2.2. As processor designs keep getting more and more complex, verification becomes a
bigger and bigger part of the total effort spent on each design, and also the biggest delay
in the time to market process.

Figure 2.2: Illustration of the increasing verification gap [13]

The process of verifying a design have evolved from simple directed testing to extensive
verification libraries and methodologies. Directed tests are fast and easy to write for small
designs but a thorough verification requires more detailed systems. UVM which is used
for verification in this thesis, is a combination of different methodologies mostly based on
SystemVerilog [38] and e [38].

Verification is a process used to make sure that a design does what it is specified to do. A
test to an extent that it gives confidence in the correctness of the design. It is an observation
of design response based on input stimuli that ideally reaches all possible states in a design.
Most designs today are too large and too complex that to completely verify them, reach
all possible states and to try all possible combinations, would take such a large amount of
time, that it is practically impossible. That is why verification is normally done through
simulation of either a behavioral model or a specific state/value of the design at a given
time.

2.2.1 Directed test

Directed tests are simple tests, written from scratch, that directly targets expected signal
transitions and requires little overhead. It is an efficient way of writing basic tests for
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Chapter 2. Background

small designs, but becomes tedious and completely impossible to do for large designs.
Tests derived from a black box test specification has been shown by experience to be
insufficient to reach structural coverage targets [6]. Certain bugs in a system can be very
hard to imagine for a human mind, and added to this is the lack of ability for directed
tests to be reused to a larger degree. This calls for better and more efficient methods for
verification.

2.2.2 Static Verification

Static verification, also known as formal verification/analysis, is a mathematical proof
of a device under verification (DUV) [28]. A property to be studied is represented as a
mathematical model, where a calculus is used to perform computations on the model [10].

It is normal to describe a circuit as a functional unit and compute its outputs based on
its inputs and internal states, while avoiding timing constraints and the circuits electrical
behavior. The calculus must prove or disprove the existence of a relation between the
abstract models of the circuit specification and its implementation. Formal verification can
therefore only ascertain the logic correctness of a circuit. It is independent of technological
choices and cannot verify the design at a physical level. Model checking is the most
common form of formal verification. It represents the DUV as a finite state machine where
all sets of specified properties are mathematically proven for all input combinations, and
across all execution paths.

Formal verification is heavily reliant on logic as a tool. That includes first-order predicates,
higher order predicates and temporal logic. First-order predicates takes only individual
constants/variables as arguments, memory elements and interconnection wires is described
as time functions, gates is described as logical connectives. Higher order predicates have
additional quantifiers and stronger semantics compared to the first-order predicates. Inputs
and outputs are modeled as parameters, interconnection of components results from the
conjunction of the predicates of the components, and wires are modeled as quantified
variables in each predicate. What gives the logic a higher order is that functions and
predicates can be arguments and results of other functions and predicates. Temporal logic
is defined as a system which contains both linear and branching operators [7]. It is used to
reason and represent propositions that are fitting in regards to time.

2.2.3 Dynamic Verification

Dynamic verification is verification done at the same time as test code is executed on the
DUV. A model of the DUV has to be executed with applied input stimuli, compared to
a specified behaviour, and flagged for differences [28]. Dynamic verification consists of
three elements, stimulus generation, coverage measurements and analysis, and response
checking.

10



2.2 Verification

Stimulus generation

Stimulus generation is to create and apply input patterns that fully exercise the DUV, with
legal and useful stimulus.

• Legal stimuli, a particular data/temporal pattern that is not prohibited by the speci-
fication.

• Useful stimuli, a pattern that improves verification coverage, exercises corner cases
and find bugs.

There are three common stimulus generation techniques:

1. Manual directed tests, a handwritten program that stimulates the DUV and checks
its response.

2. Verification environments, application specific program that implements stimulus
generation, response checking and coverage measurements in the same program.

3. Random test generators, tests of random functionality or behavior on the DUV to
test for hidden holes in the verification coverage.

Coverage measurements and analysis

Coverage measurement is formally defined as how thoroughly a design has been exercised
during verification [28]. Its primary coverage is code coverage, including integral cover-
age, and functional coverage, usually designed for and applied to both the specification
and the implementation. The coverage measurement can be divided into two tasks:

1. Identification of DUV features

2. Coverage model that quantifies the behavioral space it has.

Response checking

Response checking is to apply stimulus to a DUV and then compare its response to its
specified behavior [28].

1. Scoreboard, data structure that records expected DUV output and compares it to the
observed response from the DUV after it responds to a particular stimulus.

2. Reference model, a program that reflects intended DUV behavior at a chosen ab-
straction level, providing portals or hooks to observe intended behavior.

11



Chapter 2. Background

3. Assertions, a statement containing a Boolean and/or temporal expression describing
a liveness or safety property. A liveness property states something must eventually
happen, while a safety property states that something must never happen.

2.2.4 Electronic System-Level Design

Electronic System-Level (ESL) Design is the use of a higher level of abstraction to solve
the problem with the increasing design complexity in modern chip design[8]. This is
to reduce development cost by creating a virtual system prototype that enables earlier
development of software. The result of this is that it eases the communication between
different design groups when they try to figure out the best trade off between hardware
and software in terms of energy and performance.

2.2.5 Transaction-Level-Modeling

Transaction-Level-Modeling (TLM) is a technique to enable communication between blo-
cks of different abstraction levels, [8]. It makes ESL models practical, as all important
information that needs to be transferred in one turn is transferred as one single event or
transaction. This opens up the possibility to refine interface blocks or communication
blocks independently from the boxes they connect together. And makes for earlier devel-
opment of software and an earlier and better functional verification of hardware. TLM use
cases are architecture and algorithmic modeling, virtual software development platforms,
and as reference models for functional verification.

Architecture Modeling

Architecture Modeling is concerned with the partitioning of hardware and software. It is
to balance out which type of bus that is needed, how fast it needs to be and what kind of
arbitration scheme that is sufficient, when estimating the size and cost compared to the
goals of the model.

Algorithmic modeling

Algorithmic modeling is to figure out how to best implement application specific algo-
rithms, whether in hardware and software or just software, and how precise the arithmetic
calculations must be, to still have a functional algorithm. TLM is very useful here as it
is easier to do refinements in software for an algorithm, than to debug it in RTL. In case
parts of it is implemented in hardware the algorithm has to be refined from floating point
to fixed point.
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Virtual Software Development Platform

By using ESL and TLM software models a platform can be made to enable early devel-
opment of system software. During which it can be examined if the hardware have the
correct features, if the current architecture have enough control and status register, or if it
enables the software to meet its timing budget.

Functional Verification

Since TLM enables communication at different levels of abstraction, TLM models can
be fully or partly reused in functional verification of the RTL in question. This is very
useful as the use of constrained random test stimuli generation requires the development
of reference models in order to check the results of the randomized inputs.

Timing

There is three types of timing a TLM model can have, loosely timed, approximately timed,
and un-timed [34]. Loosely timed models have a loose dependency between timing and
data. Timing information and requested data is provided when a transaction is initiated.
The loosely models are independent of time advancement to produce a response, but this
also makes it possible to make them really fast. This makes them extremely useful for
software development on virtual Platforms. Approximately timed models have a strong
dependency between timing and data, and can depend on internal or external events get-
ting invoked and/or time advancement to produce a response. Synchronizing transactions
in correct order before processing is necessary to these models, and they also need to
trigger simulations switches, which in turn results in worse performance for these mod-
els. Un-timed models are relics from TLM 1.0 and have been deprecated in TLM 2.0. It
is possible to make untimed models in TLM 2.0 by using the constant SC ZERO TIME
which represents 0 time, and is the equivalent of a delta-cycle.

Sockets

Sockets are used to connect paths going forward or backward between an initiator and a
target [33]. Sockets supports both blocking and non-blocking transport, usually only one
of them are used for one connection. They offer a very convenient way to make TLM2.0
connections. Default transaction type is tlm generic payload using the TLM base protocol
semantics. The initiator socket is made to be used with an initiator to drive a target through
the target socket [33]. The initiator must either implement a backward interface or use a
simple initiator socket. The target socket is made to be used with a target to receive a
transaction from an initiator [33]. The target must either implement a forward interface or
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Figure 2.3: TLM blocking Transport [16]

use a simple target socket where only the methods registered with the socket needs to be
implemented. This is illustrated in figure 2.3 and figure 2.4.

Blocking and non-blocking transport

There are several interface methods used to pass transactions in TLM2.0, the most impor-
tant ones being the blocking and the non-blocking interfaces [14]. They are designed to
be used together with the generic payload, but can be used separately to model specific
protocols [4].

The blocking interface is implemented with one method for targets, b transport(transaction
, timeoffset), and is usually accompanied by the loosely timed coding style [14]. This
method can call the SystemC wait function, which responds to time or an event. The
time offset parameter will indicate when a transaction is valid in comparison to the current
simulation time, when passed from initiator to target. The blocking transport methods pass
a non-const reference to the transaction object and a timing annotation [4].

The non-blocking interface is implemented with two interfaces tlm fw nonblocking tran-
sport if and tlm bw nonblocking transport if, where one is used as a forward path from
initiator to target and the other one as a backward path from the target to the initiator
[4]. The approximately-timed coding style is what the non-blocking transport interface
is intended for. This interface is suited to model detailed interaction sequences between
initiator and target during each transaction. The non-blocking transport methods also pass
a non-const reference to the transaction object and a timing annotation, but it also passes a
phase to indicate the state of the transaction, and returns an enumeration value to indicate if
the return from the function also represents a phase transition. Non-blocking transport also
supports multiple phases within the lifetime of a transaction. Figure 2.3 shows a blocking
interface and figure 2.4 shows a non-blocking interface.
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Figure 2.4: TLM non-blocking Transport [16]

TLM Generic payload

TLM2.0 has a standard transaction class, tlm generic payload with several attributes; com-
mand, address, data, data length, response status, byte enable and byte enable length [14]
[33]. Command can be either a read, write or an ignore. Address is a base address, a ref-
erence point for other memory locations or addresses. Data is a data buffer, organized as
an array of bytes. Data length specifies the number of valid byte-enables in the buffer.
In TLM2.0 there is also a base protocol for execution of generic payloads over standard
initiator and target sockets. The Generic payload is the default transaction in TLM2.0 for
blocking and non-blocking transactions, it represents a generic read or write access to a
bus.

2.2.6 SystemVerilog

SystemVerilog is a combination of a hardware description language and a hardware ver-
ification language. It is based on Verilog and the advanced verification features found in
OpenVera [38]. SystemVerilog have four distinct language subsets; it is an object oriented
language for functional verification libraries like UVM or OVM, a design language, an
assertion language and a functional coverage language to assertion that a verification en-
vironment or a testbench have fully exerted and verified a design [32]. Because of this
SystemVerilog spans a large range of domains. Netlists and RTL are covered by the de-
sign language subset, general programming is covered by the object oriented features,
functional coverage is covered by its respected subset, testbenches are covered by all the
subsets except the design subset, temporal properties are covered by the assertion language
subset.

Systemverilog was created as a response to the need for a common, open verification lan-
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guage [39]. Verification languages like OpenVera[38] and e[38] already existed but they
were closed and cost money. A lot of companies did not want to pay for verification tools,
so they used a lot of time to create their own. As the design outgrew the verification capa-
bilities of Verilog, a productivity crisis emerged and resulted in the creation of Accellera
[1]. Which in turn created SystemVerilog, and also later UVM.

SystemVerilog comes with a large range of different verification features; new data types,
classes, constrained random generation, assertions and synchronization.

• New data types: All Verilog data types are included in SystemVerilog but new data
types have also been added [39]. Verilog-1995 has two basic 4-state data types:
variables and nets. These can be single or multi-bit, signed and unsigned, or floating
point numbers. They can also be grouped into fixed size arrays. Systemverilog
adds the logic type as an improvement over the old Verilog reg data type. The logic
data type is a variable but can also be driven by continuous assignments, gates, and
modules. It can be used anywhere a net is used except for modeling of bidirectional
buses. For improved simulation performance and reduces memory usage, 2-state
variables is added. The unsigned bit type, and four signed types, byte, shortint, int
and longint. Systemverilog also introduces compact declaration of fixed-size arrays,
array initialization using an array literal, dynamic arrays, and associative arrays, all
with added array operations and methods. Lastly enumerate, strings, and queue data
types are added, streaming operators, type conversion, type defining, structures and
unions are included. All arrays and structures can be either packed or unpacked.

• Classes: To ease control and increase reusability in the verification environment,
Systemverilog introduces classes. The classes organize functionality and support a
single inheritance model. This is what qualifies System Verilog as an object-oriented
program.

• Constraint-random: To remove the human fault factor and reach unthinkable states
in a design being verfied, Systemverilog includes randomized input variables. These
can be constrained by constraints. Constraints are used to exclude illegal values or
to test specific parts. They can also be turned off to verify proper error handling of
faulty input.

• Communication: Interfaces and modports are used to communicate between the
RTL netlist and classes. I/O connections are bundled by the interface, this allows
direct access through different levels of the hierarchy, and by that reduce the com-
mon issue of spaghetti code. Interfaces can also implement necessary functionality
for bus transfer protocols to make bus communication more efficient. This is also
the basis for Transaction Level Modeling (TLM).

• Synchronization: Mailboxes and semaphores are used to synchronize threaded TLM
and the RTL signals so that they can be used together. Mailboxes are used for mes-
saging and semaphores are used to control execution order and access to resources.

• Assertions: Methods for checking temporal and functional properties in a design.
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The methods can be placed several places in the code for immediate or delayed
checking of properties. Assertions are a good way to target specific behavior, by
separately describing expected transitions or results for properties one want to ver-
ify. A part of SystemVerilog, SystemVerilog Assertions (SVA), is a standardized
assertion language that provides a well defined system for assertions.

• Functional Coverage: Coverpoints and covergroups are used to easier track the
progress and monitor what exactly has been tested. For random variables this is
very important as it shows which functional parts of the design that has been exerted
by the input and which parts that must be tested more thoroughly.

2.2.7 Verification Methodologies

The first verification methodologies where based on different languages and created by dif-
ferent vendors to help increase their productivity in verifying designs. They where class
based, focused on reusability, and only let the user modify tiny parts of the code. It all
started with e Reuse Methodology (eRM), based on e, from Versity Design [38]. Cadence
combined it with SystemVerilog and created Unified Reuse Methodology (URM). Synop-
sis created the Reference Verification Methodology (RVM), based on OpenVera, around
the same time as eRM was created. This later became Verification Methodology Man-
ual (VMM), now with OpenVera as a base for SystemVerilog verification. At the same
time as URM and VMM was created, Mentor created the Advanced Verification Method-
ology (AVM) based on a combination of SystemC and SystemVerilog. URM and AVM
where later combined into the Open Verification Methodology (OVM), now only with
SystemVerilog. This later became combined with VMM to form the Universal Verifica-
tion Methodology (UVM), which is the standard used today. This is illustrated in figure
2.5.

2.3 UVM

UVM is a common practice for verification which relies on reusing and combining unit-
level environments and then running real software on an SoC [19]. It provides a Sys-
temVerilog base class library (BCL) and guidelines which supports the construction and
deployment of verification components (VCs) and testbenches that dramatically reduces
users coding effort and automatically enforces certain aspects of interoperability [12] [42].

Key concepts of the UVM [12]:

• A simple class hierarchy, rooted in UVM object,that makes it possible to implement
key services.

• Components and data, the two distinct categories for classes in the UVM. Compo-
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Figure 2.5: Development of methodologies [38]

nents are intended to model permanent, structural parts of a testbench (monitors and
drivers). Data are intended to model stimulus, observed transactions, and other data
flowing around the testbench.

• An object factory, that automatically creates objects based on either user specifica-
tion or default settings based on the used classes or derived classes.

• A configuration or resource database, which is a structure that allow configuration
values of any data type, including userdefined types, to be stored in a globally ac-
cessible table and later retrieved using a string name key.

• Interconnection of components, a SystemVerilog implementation of transaction-
level modelling (TLM), which allows VCs to be written to pass data through TLM
ports and exports, without regard for the details of other VCs that may be connected
to them.

• Sequences for stimulus generation, activity that is coordinated in sequence of ran-
dom stimuli, both on individual ports and across multiple ports of the DUV. A lot
of transactions are built upon the constrain-random functionality enabled by System
Verilog.

• Automated code generation using macros, or routine coding tasks automated using
macros.

1. Macros for factory registration, constructs a singleton instance of every object
wrapper class, and can use these instances to create instances of user classes
on demand.
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2. Macros to automate the creation of utility methods, automatically creates util-
ity methods for each derived UVM class created.

A typical UVM structure starts at a top level test, containing an environment. Inside the
environment there are subscribers, agents, a scoreboard, and a virtual sequencer. The
agents contains monitors, drivers and sequencers. Monitors and drivers connect to the
DUT through interfaces, and the environment and agents can be configured by configura-
tions. This is described in figure 2.6.

Figure 2.6: The organisation of the verification environment [18]

• Tests are top level components that control generation. This means that they can set
the contents of configurations, override components, transactions and sequences by
extending them, and start sequencers in specific components [5].

• Environments and agents are simply composed by their contained components.

• A subscriber is just a component with a built in analysis export [5].

• Monitors are components that can observe the communication between the DUT
and a testbench, and send transactions to the verification environment [5].

• A sequencer is a component that runs sequences and sends transactions generated
by those sequences to another sequencer or driver [5].

• A driver is a component that receives transactions from a sequencers and forwards
this to a DUT through its interface [5].
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2.4 SystemC Modeling

To make ESl models and TLM possible, SystemC has arisen as a perfect candidate. Sys-
temC is a C++ class library, where the C++ language contains the ability to model soft-
ware, and SystemC completes this ability by enabling modeling of hardware[8]. Together
they are perfect to make ESL models. Many algorithms and applications are already im-
plemented in C++ or in C and by wrapping them in a suitable SystemC wrapper, it can be
a good ESl model. SystemC is an IEEE 1666 standard, which means that it is open to the
industry and therefore have certain benefits, like access to commercial and freeware based
tools, and support. Since SystemC is based on C++ it is fast enough to be used for early
software development. Software development is usually the last part being done in a mod-
ern hardware development, but by using ESL models in SystemC, that part can be started
sooner, which can make a design process more efficient, as software development can be
finished faster. SystemC has a simulation kernel which supports parallel/concurrent exe-
cuting, this is important since hardware runs concurrently. TLM gives SystemC the ability
to communicate with other languages like SystemVerilog, and that also enables SystemC
modules to be used as reference models in a SystemVerilog test-suit.

2.4.1 Class concept for hardware

SystemC have certain hardware-constructs that are required to model hardware in an en-
vironment mainly used for software development. The constructs are all implemented in
C++, and enables concepts of time, hardware data types, hierarchy and structure, commu-
nications, and concurrency.

Time Model

SystemC uses the class sc time to obtain current time and to implement delays. The class
has a 64bit resolution. It contains an enumerated type that defines natural time units like
seconds, nanoseconds and the like. There is also a class called sc clock for models that
require clocks.

Hardware data types

Hardware requires more flexibility in data types width than C++ has native, so SystemC
has support for data types with explicit bit width for integral and fixed-point quantities.
Both binary and non-binary representations, like tri-state and unknown, is supported.
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Hierarchy and structure

To create a hierarchy SystemC uses module entities connected to other modules through
channels. Module classes can be instantiated within other modules.

Communications management

The SystemC channel can represent both simple communication like wires or FIFOs and
complex communication schemes to map to special hardware. The different channel im-
plementations can be used interchangeably. The library has common software and hard-
ware channels, like FIFOs, signals, mutex and semaphores, built in to it. Port classes are
used to connect modules to other modules or channels.

Concurrency model

There is no true concurrency in hardware simulation, but single units execute until simula-
tions of other units are required to continue with correct alignment in time. To determine
this in the simulation code, events are used as switches. The simulator swaps between
concurrent elements.

2.4.2 Simulation Kernel

The SystemC Simulation Kernel has three phases, elaboration, execution, and post-proce-
ssing or cleanup. Elaboration is where data structs are initiated, connections are estab-
lished, and anything else needed to prepare for the next phase, execution. This is all the
statements before the sc start() functions is called. In the execution phase the simulation
kernel controls the execution of processes so that they appear to be concurrent. Figure 2.7
shows an overview of the simulation kernel. First the elaboration process, then sc start() is
invoked and all simulation processes, minus a few exceptions, are initialized in an unspec-
ified deterministic order. Then code will be continuously evaluated for events or updates
while also advancing the simulation time when no processes needs to be evaluated. When
there is no more processes to run, the simulation ends, and a cleanup is invoked.

2.4.3 Threads and Methods

Simulation processes in SystemC are member functions of sc module classes, registered
with the simulation kernel, and the kernel is the only caller of these functions. Theses
functions have no arguments and no return value. Other processes, that are not executed
by the simulation kernel, are invoked as function calls within the simulation processes
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Figure 2.7: SystemC simulation kernel [8]

of the sc module class, like C++ functions or class methods. There are three types of
simulation processes SC METHOD, SC THREAD, and SC CTHREAD. SC METHOD
is a timeless function with no arguments, no return value, and can be repeatedly be called
by the simulation kernel. It is basically a C++ function. An SC THREAD can only be
invoked once, but can self suspend and allow potential time to pass before continuing,
similar to the execution of a software thread. SC CTHREAD is similar to a SC THREAD
but is required to be clock sensitive.

2.4.4 Events, Sensitivity and Notifications

Events are caused by the event class member function, notify, and invokes SC METHODs
and SC THREADs that are sensitive to the event. They are implemented as sc event and
sc event queue SystemC classes. Sensitivity in SystemC is either static or dynamic. Dy-
namic sensitivity can change the simulation sensitivity during a process, while static can
not. An SC METHOD or SC THREAD can switch between dynamic and static sensitivity
during simulation.

2.4.5 Channels and interfaces

SystemC processes communicate using channels, events or through module boundaries.
Modules connect through ports, and interconnects through channels. Certain channels and
interfaces are finished implemented in SystemC. Worth mentioning is sc mutex, sc semap-
hore, sc fifo, and sc signal.

2.4.6 Modules and Hierarchy

SystemC separates interface and implementation, C++ header files(.h) are used for entities
and C++ implementation files(.cpp) are used for architecture. Design components are rep-
resented as modules, which are classes inheriting from the sc module base class. Modules
can contain other modules, channels, processes and ports.
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2.4.7 Data types: Logic, Integers, Fixed point

SystemC supports all C++ data types, but also include support for non-binary hardware
types as four-state logic (0,1,X,Z), and lets you define new data types. All the new data
types have a large operator overload so they can be used almost as easily as C++ data
types. Conversion from hardware to hardware or hardware to software data types, and all
other necessary methods to use hardware data types, are provided in SystemC.

2.5 UVMC

UVM connect (UVMC) is a UVM open-source library made by Mentor Graphics [23].
It provides TLM1.0 and TLM2.0 connectivity to pass objects between SystemC and Sys-
temVerilog models and components. A UVM Command API is also provided for access
and control of the UVM simulation from SystemC.

2.5.1 Enabling IP and VIP reuse

UVMC enables use of SystemC models as reference models in UVM, or reuse of stimulus
generation agents in SystemVerilog for verification of SystemC Modules [23]. This in
turn enables more VIPs/IPs to be used, and leverage different strengths in each language.
Through the UVM Command API, SystemVerilog UVM can be accessed from SystemC.

2.5.2 Key features

UVMC simplifies the connection between the languages by supporting standard UVM,
not requiring models or transactions to inherit from a base class, supporting existing TLM
models in both languages without modification, and therefore allowing independent mod-
els to be reused as they can communicate without being directly referred to each other
[23].

2.5.3 Making UVMC Connections

To make cross language TLM connections, UVMC provides connect and connect hier
functions [23]. In SystemVerilog TLM2.0 they are written like
uvmc tlm#(trans)::connect/connect hier(port handle, ”lookup”), and in SystemC TLM2
like uvmc connect/uvmc connect hier(port ref, ”lookup”). Trans is only used for Sys-
temVerilog to specify the unidirectional TLM transaction type. The port handle/ref is a
handle or reference to the interface, port, export, imp or socket instance to be connected.
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The lookup is an optional string used for matching ports together no matter the language
used. When the string matches for two ports, those ports are being connected not depen-
dant on if the components are of the same language or a different language.

2.5.4 Transaction Conversion

TLM generic payload is supported by UVMC, but if a different object is transferred a
converter is required. UVMC use separate converter classes to pack and unpack transac-
tions, which in turn allows converters to be defined independently from the transactions
they operate on. UVMC defines default converter implementations that use the standard
methodology for each language.

2.6 Questasim

Questasim is a simulator that has native support for SystemVerilog Testbenches, UPF,
UCIS, OVM/UVM, and SystemC [25]. It includes mixed-language capabilities, advanced
debugging capabilities, and a single simulation kernel that supports all standard verifica-
tion languages.
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Related work

In the last couple of years there has been done much work in regards to verification of
SoCs and heterogeneous systems. A summary of them will be presented here. Parts of this
chapter have been fully or partially reused from the project preceding this thesis, since this
is information of equal relevance to the dissertation [20].

3.1 Previous works in regards to verification of complex
heterogeneous systems and SoCs

Institute of VLSI Design, Hefi University Of Tech, released a paper in 2004 about ”Reuse
Issues in SoC Verification Platform [41]” where they discuss the issues when reusing IP
verification components on a SoC. There are two things to consider when verifying a SoC.
Interconnections of IPs where focus is on behaviour in comparison with SoC specifica-
tion, and unexpected interactions between IPs where focus is on chip integration. In the
verification of a single IP, bus function models(BFMs) are used as high level models in
replacement of real buses. The BFMs can be reused on other IPs with the same bus as it
was originally intended for, but it can also be used on other buses with small modifications.
In a SoC the BFMs are replaced by real buses. Monitors are used to transform events at
pin-level into transactions, which are high-level abstractions that eases reuse and increases
verification productivity. Monitors should be independent and not rely on input from other
monitors. This to ease the reuse of the monitors. The monitors can be completely reused
from IP to SoC verification as they are based on the same buses. But if they are reused,
they should keep the internal signals used when testing in the synthesis process. Drivers
are used to transform transactions to pin-level signals. If the driver is used as a peripheral
module it can not be reused in SoC verification, but if it is connected to external pins, it
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can. Simulation patterns is a connection between the input signals to the IP and the system
service. The system service contains system tasks, verification scripts, tools, and such. As
long as the system tools is kept fairly similar from IP to SoC verification, the simulation
patterns can be reused as stimuli, but may have to be modified. The strategy is to make the
IP verification platform as similar to the SoC verification platform, so that reuse is fairly
simple. Figure 3.1 presents the structure for verification of a single IP based on buses.

Figure 3.1: Bus-based structure of IP standalone verification platform [41]

The telecommunications laboratory at the National Technical University of Athens re-
leased a paper in 2003, ”Verification of a complex SoC; the PRO3 case-study [3]” where
they presents some aspects, in the architecture design, used to support the observability and
verifiability of a system. Minimization of the data paths is an important aspect as long data
flows are time consuming, hard to observe, and poses a difficulty in identifying a source
of error in case of failure. Shared packet buses are another important aspect to consider.
In a shared packet all control information related to the SoC, such as destination,source,
message type, and command, is integrated in the packet header. Shared interconnect struc-
tures eases observability since all data is transferred on the same bus. Lastly an embedded
hardware block for monitoring a shared bus enables the ability to control and observe.
Also described is a verification procedure where designers are told to write down detailed
specification documents from the design specification. A verification is done on the doc-
uments to avoid misunderstandings and interface mismatches. Sophisticated test benches
are used on the block level, and generic, intuitive test benches are used on the external
level. In between these, a hierarchical verification is used on the integration of one block
with other blocks, including all the interfaces and interconnects related to the blocks.
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3.2 Industry verification approaches

In 2002 Guy Mosensoson from Verisity Design, Inc released a paper on ”Practical Ap-
proaches to SoC Verification [36]” where he presents methods to approach SoC verifi-
cation and the challenges in relation to this. He mentions the importance of reuse of
verification IP/components to get fast, minimal effort, automation in the verification of an
entire system. Good tools to ease the verification of the separate components is also of
great importance. A verification component should be present for each component/unit in
an SoC.

The unit verification component should check for internal blockers and provide stand alone
coverage metrics, as these are useful for the full system verification. The old test plans for
SoC where multiple sets of directed tests. These are very inefficient and inaccurate. To
improve this, flexible and easily modifiable generic tests are used as a replacement.

Another thing to consider when verifying a SoC is the HW/SW co verification. This
because of unexpected HW/SW sequencing bugs, HW/SW dependencies, and general in-
crease in design time when doing verification of each part in sequence. To do this, real
software is run on simulated HW. The simulated HW works as high level references, veri-
fication shadows, that the designed HW can be compared against when doing verification.
Integration between components is one of the biggest challenges in verification of a SoC,
blocks that where assumed verified show up with bugs, conflicts happen when accessing
shared resources like memory, arbitration problems and deadlocks on the bus appears, and
priority conflicts happens when exception handling is performed. To handle this the verifi-
cation environment must focus on high level transactions, and be able to verify components
in parallel streams, and check their transactions if they are on the same bus. Other things
the paper mentions that a verification environment should have are high level abstract de-
scriptions of every component that has to be verified and self checking of these. Also,
changes done in the SoC when verifying should be done in the verification environment
and should by that avoid changes in the tests.

A paper released in 2003 by Yves Mathys and Andr Chtelain on ”Verification Strategy for
Integration 3G Baseband SoC [31]” they mention the importance of verification on differ-
ent levels when verifying a SoC. They use a top-down, bottom-up approach where they
verify in different levels. At the IP level they focus on the functionality of a single IP, and
use application stimulus to ensure correct behaviour in comparison with the system spec-
ification. At the RTL level SystemC models describing the system are used as reference
to compare with. At the SoC level the platform integration for components are verified on
all kinds of buses and connections. Worth mentioning are signals connectivity, memory
mapping, data paths, DMA, interrupts and inter-process communication, as these are the
most used connections and buses.

A practical and efficient SoC verification flow by reusing not only the IPs test bench but
also the IPs test case, is presented in the paper ”Practical and Efficient SoC Verification
Flow by Reusing IP Testcase and Testbench [43]” written by researchers from Connec-

27



Chapter 3. Related work

tivity Solutions. Because of this added reuse SoC verification and debugging becomes
less complex and less difficult. This in turn increases verification throughput using less
resources. The flow consists of two protocols interfaces, IF A connected to top chip pads
and IF B, communicating between IPs inside the SoC. Also included in the flow is a Sys-
tem Control Interface, IF C, that consists of control signals. When either IF B or IF A
is initiated a complementary verification IP (VIP), is created in the UVM testbench. VIP
is a configurable verification component that is encapsulated and follows a consistent ar-
chitecture for stimulus generation, coverage collection and protocol checking. For IF C
a testcase or testbench is sufficient to generate stimuli for control signals. As long as IP
testbenches and testcases are all designed for reuse, they can fully or partly be reused for
the SoC testbenches and testcases. Reuse has to be planned for by both IP engineers and
SoC engineers, but this collaborative work makes it easier to determine if an error is in the
SoC design or the IP design. It also allows IP and SoC engineers to work in their special-
ized field without having to worry about details outside of their respective fields. There
are three different ways to reuse verification component and test case files from IP level to
SoC. The first one is in regards to IF A, where VIP and test files for the IP can be reused,
without modification, for the protocol interface connected to the chip pads. Second, the
IF B VIP have to be configured from Active to Passive mode to be reused in the testbench.
This is due to the fact that the bus it was normally driving for one IP is now driven by an-
other IP. It does however require a new SoC testcase, as the testcase for the IP is disabled
in Passive mode. in the third case IF C is either controlled by the SoC and it’s test case
is used to drive the interface. Or it is controlled by another IP and it’s VIP and testcase is
reused to drive the interface, or it is connected to the top chip pads and the SoC testbench
is used to drive and generate stimuli.

3.3 ARM verification

Verification libraries with common test codes, used in base functions to test building blocks
in the DUV, are highlighted in ”Verification Methodology of Heterogeneous DSP+ARM
Multicore processors for Multicore System on Chip [11]” as it is the primary method for
test development described in the UVM design test flow. Because test generators will pull
a specific test code directly from the library, if needed in an individual test case, copies of
a specific test code are prevented to appear in the test directory. In other words, the use of
libraries ensures that there is only one copy of a test code. Automatic test generators can
generate new test cases from existing test code and by doing this changes or modifications
done to the existing test code will propagate to the new cases and update these. It works
like a inheritance system where changes done to any test code used by other test cases
will be present in all cases. This gives a reduced code effort. Elements from the library
are used for test cases performed on the DUV, and consists of manipulators that causes
a certain state to exists in a target, and checkers which either checks if data exists in a
memory location, if data matches a specific pattern, or a sequence of patterns that can give
proof of an event. The combination of manipulators and checkers are used for complex
interactions. Test cases are classified in a library structure divided firstly into sub modules
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and secondly into operation so that similar tests are kept in the same directory. Some
classifications are, Smoke which are tests that give a basic indication of a working DUT,
Functional which are tests which perform functional coverage, Performance which are
tests to show the capabilities of the DUV for specific operations relevant to the DUV,
Benchmarks which are test to generate standardized performance metrics, does not give
any design coverage. Other things highlighted is that many test at unit level reduces the
amount of tests at device level. This increases performance and speed of tests and reduces
verification time. Also if several blocks are equal only one needs to be thoroughly verified,
as this enhances simulation performance.

An example of an ARM Advanced Microcontroller Bus Architecture (AMBA) Advanced
Peripheral Bus (APB), being verified using UVM is described in the journal ”Design and
Verification of AMBA APB Protocol” by Shankar, Dipti Girdhar and Neeraj Kr. Shukla
at the ITM University, Gurgaon, India [26]. Here we can see the a standard UVM setup
being used, with test, environment, scoreboard, sequences, sequencer, driver, monitors and
agents. The design is assumed to be correct as it functional and code coverage is correct.
Figure 3.2 shows the setup.

Figure 3.2: AMBA APB UVM setup [26]

3.4 Summary

To summarise all the highlights from the related works section, when it comes to SoC
verification, we have that the verification results at unit level should be reusable in the
verification of the interconnects and at a higher level, and the tests themselves should be
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reusable at the unit level. The tests should work like a hierarchy where tests at any level
are configurable and modifiable and also partly or fully reusable in other tests. Changes
in the tests must automatically propagate to other tests throughout the design that uses
something from these tests. This builds upon the common verification libraries which
ensures that there is only one copy of a given test code, and that other test codes or test
generators which pulls code from the library always are updated with the latest changes
to any code. By using a high level description of the circuit at different levels, we have a
platform to test software on and a reference design to compare the verified hardware to.
This makes it possible to design HW and SW simultaneously, and to test efficiently. Many
and thoroughly tests at unit level decreases testing effort at a higher level, also copies of a
unit is not verified twice.
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4.1 Analysis of the current verification strategies

The current verification strategies for the SHMAC platform present several limitations,
which were identified and analyzed on the project preceding this thesis [20]. One of
the main shortcomings involves the use of directed tests in both testbenches and bare-
metal testing on FPGA. Hand-coding all the possible test cases not only represents a time-
consuming and tedious task for the developers, but also usually leads to verification in-
completeness. The reason for this is that not all the possible scenarios and corner cases
can be easily anticipated by the designer and included as test stimulus.

Other deficiencies of the actual verification strategy were identified by conducting a survey
among SHMAC designers, which is shown in Appendix G. They were asked about what
kind of verification approach they used, what difficulties or challenges they faced and what
features they suggest to be included in a new verification framework. Some developers
agreed that the documentation of the existing testbenches and the framework for running
bare-metal tests is not sufficient and clear. Also, some others claimed that there is a lack
of debugging mechanisms to effectively identify and analyze errors in the designs. In
addition, it was found out that the limited error diagnosis capability is one of the main
obstacles software developers of the SHMAC face, since it makes it difficult to distinguish
between hardware and software bugs.

In order to be able to bring the SHMAC platform up to leading industrial quality standards
as well as to enable future upgrades and modifications to the platform to be quickly inte-
grated and verified, a new verification methodology is needed.
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4.2 Proposed verification methodology

The proposed verification methodology consists of a sequence of steps to be followed
when designing and testing any module of the SHMAC platform. These are the following:

1. Elaboration of a circuit description document: the developer should write a docu-
ment which provides a description of the structure and operation of the module to
be implemented.

2. Hardware design using design for verification practices: the developer should take
into account design for verification practices when coding the hardware description
of the module, in order to make the code as clear as possible as well as to be able to
identify any important design feature that needs to be tested.

3. Elaboration of a verification plan document: the developer should write a document
which provides a list of the main design features to be tested in the module.

4. UVM-based functional verification: the testbenches developed for the module should
be based on the Universal Verification Methodology (UVM) and maximize reusabil-
ity of previously implemented verification components.

The following subsections explain further these stages of the proposed verification method-
ology.

4.2.1 Elaboration of a circuit description document

The circuit description document essentially describes the architecture and the functional-
ity of the unit to be implemented. It should be used as a guide when coding the hardware
description of the module as well as when implementing the verification plan. Examples of
this document can be found in Appendix A and Appendix C, which correspond to the cir-
cuit description documents of the SHA1 core and the SHMAC router, respectively. They
are both divided into three sections: overview, external interface and operation. The first
provides a general description of the module, the second describes the input and output
ports, while the last one gives an explanation of the high-level behaviour of the module.

4.2.2 Hardware design using design for verification practices

Design for verification is a set of rules and guidelines that defines easy tasks designers can
perform so verification quality increases [2]. As main rule, register-transfer level (RTL)
code must always be maintainable, possibly reusable, and follow standard coding rules. It
should also be understandable by both outside designers and the designer who made it. In
addition, peer review of behaviour scenarios, corner cases and areas of risk is important as

32



4.2 Proposed verification methodology

it helps to avoid obvious bugs and ensures correct verification focus.

Additionally, high value assertions must be identified during the design. As the design
evolves, a growing number of assertions should be added, and used to check for correct
behaviour. The assertions help to eliminate bugs, reduce debug time, capture designers
intentions and assumptions, encourage a more thorough thought process about intended
behaviour, and ensure that future changes do not corrupt expected behavior. A summary
of these and other design for verification guidelines can be found in Appendix E.

4.2.3 Elaboration of a verification plan document

The verification plan is a list of all the design features to be exercised and tested on a
module, so that it can be used as a guide when implementing the testbench of the mod-
ule. Examples of this document can be found in Appendix B and Appendix D, which
correspond to the verification plan documents of the SHA1 core and the SHMAC router,
respectively. They are both divided into three sections: overview, test plan and UVM-
based suggested verification environments. The first gives an overview of the document
and describes the parts of it. The second includes a table which specifies all the design fea-
tures to be tested. This table contains 4 columns: section, description, coverage type and
priority. The first indicates the category of the feature, the second describes it, the third one
indicates the type of coverage that should be used (cover group, design assertion, or test
result if no coverage metric is used) and the last the relative priority of the feature. Finally,
the suggested UVM-based verification environments sections includes recommended tests
and verification environments that can be run in UVM in order to check the design features
listed on the previous section.

4.2.4 UVM-based functional verification

The UVM enables efficient development and reuse of verification environments, and also
makes it possible to measure the verification progress (based on the verification goals in the
test plan) as it combines automatic test generation, self-checking testbenches and coverage
metrics. This does not only ensures a thorough verification of a design, but also reduces
effort and time spent creating hundreds of tests (as done in the directed test methodology).

A common approach for implementing UVM-based tests in a complex system as the
SHMAC is the bottom-up methodology. It consists of creating a hierarchy of tests that
ranges from the unit level to the system level. Each test must be implemented in such a
way that reuses verification components of the lower verification levels. The following are
the suggested verification levels for testing any module in the SHMAC platform:

1. Unit level test: verifies an individual component or unit in isolation before it is
integrated to its corresponding tile on the SHMAC platform. For instance, it can
consist of the verification of a new hardware accelerator, either embedded on a CPU
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tile or on an independent tile.

2. Tile level test: verifies a complete tile within the SHMAC architecture by checking
the correct integration of its internal components. For instance, it can consist of the
verification of a tile containing a hardware accelerator and a router.

3. Top level test: verifies the correct integration between different tiles within the
SHMAC architecture. For instance, it can consist of the verification of an accel-
erator tile interacting with a processor and memory tiles.

In addition, efficient UVM coding is also important when implementing a verification
framework. There are common practices and conventions used in industry which allow
to produce consistent, readable and reusable code. They mainly consist of class naming
conventions, as well as general rules for reusable stimulus generation, functional cover-
age collection and message reporting. Appendix F contains a set of these UVM coding
guidelines, which are based on [17].
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The implemented framework is mainly focused on the complete verification of the SHA1
accelerator, which is one of the main co-processing units of the SHMAC platform. Since
the SHA1 core interacts with a CPU core and the main memory, its verification includes
integration tests with these units which exercise many features of the SHMAC architecture.
The same verification approach employed for the SHA1 can be applied to any new module
incorporated to the SHMAC.

The SHA1 core verification process can be divided into four stages, which test the SHA1
operation at different levels. These are the following:

• SHA1 core test: is aimed at verifying the SHA1 accelerator as a single unit, isolated
from the rest of the SHMAC modules.

• Router test: evaluates the correctness of the SHMAC router, so that it ensures the
absence of bugs in data transmission. The verification environment built for this test
also allows to monitor internal signals when reused in the following tests.

• SHA1 tile test: performs a test of the complete SHA1 tile, which involves the in-
tegration of the SHA1 core and the router. It reuses the verification environments
implemented for both units.

• Top level test: verifies the correctness of the integration between a CPU core, the
main memory and the SHA1 core. It employs a program written on memory which
performs a SHA1 computation.

These tests are further described in the following sections.

35



Chapter 5. SHMAC verification framework

5.1 SHA1 core test

The SHA1 accelerator employs the SHA1 algorithm to hash an input message of variable
length and produces a fixed-length message digest. A complete description of the SHA1
core operation can be found in Appendix A. This document provides information about
the SHA1 external interface and high-level behaviour, which is relevant for designing a
verification plan.

The verification plan for the SHA1 core, included in Appendix B, was designed with the
aim of testing different features of its functionality under different scenarios. As men-
tioned in the test plan, input data is suggested to be organized as a random block of 512
bits (16x32), which is the same size of the message block in the SHA1 algorithm. Larger
input data blocks can also be used, but they will not exercise any additional functionality
and may also increase the overall simulation time. The start address and size words needed
for the configuration of the SHA1 engine are also generated randomly, so that a random
portion of the 512-bits input block is selected for each test.

The suggested test goals in the verification plan are grouped into three different categories.
The first is associated with the use of different sets of input data. One special case is when
the size of the input block is between 56 and 64 bytes, since the SHA1 engine needs to pad
the input message with additional zero bits, as required by the SHA1 algorithm [37]. The
second group contains goals related to the correct operation of the status bits, and the last
includes those associated with other relevant properties of the SHA1 operation.

Each verification goal listed in the verification plan has a certain associated coverage type
and priority. The first one consists of checking that the SHA1 is able to operate with any
random input message. Since there are many possible combinations of input data and
none of them represents a corner case, no cover groups are used and the checking is done
by obtaining satisfactory output data. The second and third test goals involve different
combinations of start address and size input parameters, and need the use of cover groups
for measuring coverage. As explained before, the case when the size of the input block
is between 56 and 64 bytes is considered a corner case. The rest of the goals require
assertions to verify specific properties of the SHA1. In addition, the priorities assigned to
each verification goal indicate the relative importance of each one. The ones with priority
1 are considered to be essential for the SHA1 verification since they ensure that the core
can operate correctly with any input data. The goals with priority 2 are also relevant, and
make it possible to ensure complete correctness of the SHA1 core operation.

The following subsections describe the SHA1 SystemC reference model built for generat-
ing the expected output data necessary for performing the functional checking, as well as
the UVM-based environment implemented for the verification of the SHA1 core.
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5.1.1 SHA1 SystemC reference model

To make a SystemC reference model of the SHA1, an already written C++ algorithm/model
was taken as a basis. The C++ algorithm was wrapped in SystemC together with TLM2.0.
Then it was connected to a SystemVerilog module through UVMC. Communication be-
tween the modules went without problem, but communication between the SystemVerilog
module and the UVM framework was never completed. This was because fatal errors
where found, and they could not be fixed on time.

SHA1 C++ function

The SHA1 function takes in input from an update function and uses this to update a ”final”
function, which then returns a string. TLM 2.0 generic payload transfers data as unsigned
char* so the input data is converted from this to a string through a for loop using the os-
stringstream stream operator. The string is then converted, through a conversion function,
from a binary string to an Ascii string before it is inserted in the SHA1 function. The
SHA1 function returns a hex string, so this is converted again, through another conversion
function, to a binary string. Then this data string is converted to a char unsigned [vector]
and sent out through the analysis port.

SystemC wrapper for the SHA1 core

[33] The wrapper is implemented according to TLM 2.0 as a class. The wrapper is de-
signed to receive and process data into a simple C++ data. A simple target socket is
used as input port. It uses a TLM generic payload by defaults, and only needs to be
instantiated with the class name. As an output port we use a tlm analysis port with a
tlm generic payload as this can connect to the analysis port of the scoreboard. Because
the function is a normal C++ model and will finish ridiculously fast, the blocking transport
is used. It is registered with the input port and is defined in a function, b transport. In the
function the generic payload functions get data length() and get data ptr() is used to get
the length of the input data and the start address to the input data. Then when the SHA1
function is finished the generic payload function set data ptr is used to set the start of the
output array and the generic payload function set data length is used to set the length of
the array. After this a wait() function is used with a constant, SC ZERO TIME, that rep-
resents 0 time delay, to have a delta time-out before the generic payload is written to the
analysis port.

Connecting to UVMC

To connect the SystemC wrapper to a SystemVerilog component, the wrapper is instan-
tiated in a top level function sc main, and then each of the wrapper ports are put into a
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uvmc connect function together with a string. The string is used as an identifier to iden-
tify which ports that connect to which ports across the different languages. Lastly sc start
function is called to start the simulation, it is called without any arguments so that the
scheduler will run until it completes.

The same is done on the SystemVerilog side. The component sending data to the wrapper
has to be instantiated in a sv main top level function. Then a connect function from the
uvmc tlm class library, uses a port and a string to connect that port to the desired port, with
the string as an identifier. Lastly a run test function with no argument is used to start the
simulation.

The SystemVerilog component sends data to the SystemC module which translates, which
processes the data, computes new output which is translated and sent back to a SystemVer-
ilog module.

5.1.2 SHA1 UVM-based verification environment

The verification environment built for the SHA1 core follows the test plan previously pre-
sented. However, due to time limitations of the project, it is only aimed at checking the
design features with the highest priority (priority 1) specified on the test plan. Figure 5.1
shows the test environment implemented, also included in Appendix B. It essentially runs
tests which generate random blocks of input data, as well as random start addresses and
sizes, that are then driven to the SHA1 core. The hash values produced by the core are
finally compared with the expected ones. The following subsections describe the operation
of each relevant UVM component.

Sequencer

The transactions employed by the sequencer include the following variables:

• rand logic [31:0] input array [0:ARRAY SIZE-1]

• rand logic [31:0] size

• rand logic [31:0] start addr

• logic [31:0] hash array [0:4]
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Figure 5.1: Verification environment built for the SHA1 core

The variable input array represents the input array of data to be sent to the driver. Its
length is defined by the constant ARRAY SIZE, which has a default value of 16, since
the suggested size for the input data block is 512 bits (16x32). The variables size and
start addr represent the size (in bytes) and start address of the portion of the input data
block to be hashed. The following constraints are employed for these values:

• constraint size c { size inside {[1:(ARRAY SIZE*4)]};}

• constraint start addr c {
if (size[1:0] == 2’b00) {
start addr >= 0 && start addr <= (ARRAY SIZE - (size/4));
} else {
start addr >= 0 && start addr <= (ARRAY SIZE - (size/4) - 1);
}
}

The contraint size c indicates that the variable size must be randomized with a value in the
range from 1 to ARRAY SIZE*4 (64), since the size is expressed in bytes. The constraint
start addr c points out that the variable start addr must have valid values so that a portion
of the input array with a given size is selected.

Finally, the variable hash array represents the five hash values obtained as a result of the
SHA1 computation. A certain number of these transactions (100) are randomized, with
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the constraints previously defined, and grouped into a sequence, which is sent to the driver.

Driver

The run phase of the driver is implemented as a sequence of states which get the data
contained in each transaction and configure the core to run a SHA1 computation, and
finally store the result back to the same transaction. The following listing describes the
high-level operation of the driver.

Listing 1: Pseudo-code of the run phase of the driver of the SHA1 core test

1 Reset the DUT.
2 Get a new transaction from the sequencer.
3 Overwrite the start address register with the value specified in start addr.
4 Overwrite the size register with the value specified in size.
5 Overwrite the status register with any value (e.g. 1) to start the SHA1 computation.
6 for i < size do
7 Wait until the core requests data (req out = 1), and provide a new word from the

input array based on the address (out addr) indicated by the core.
8 end
9 Wait for the core to finish the SHA1 computation (irq = 1).

10 for i < 5 do
11 Read the Hi hash register and store the hash value in the ith element of the

hash array.
12 end
13 Finish the current transaction and go back to step 2 until the sequencer stops sending new

transactions.

Input Monitor

The run phase of the input monitor is also implemented as a succession of states. It essen-
tially monitors the input signals shown in figure 5.1 and extracts information in order to
get the values of the variables of the current transaction. Based on these values, it gener-
ates a prediction of the expected hash outputs by employing the SHA1 SystemC reference
model described previously, and stores these hash values in the hash array of the current
transaction, which is then sent to the scoreboard. In addition, it makes a functional cov-
erage analysis of the transaction. Listing 2 describes the high-level operation of the input
monitor.
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Listing 2: Pseudo-code of the run phase of the input monitor of the SHA1 core test

1 Wait until (req in = 1 & in write = 1 & in addr = 0), and store the value of in data in the
start addr variable of the current transaction.

2 Wait until (req in = 1 & in write = 1 & in addr = 4), and store the value of in data in the
size variable of the transaction.

3 for i < size do
4 Wait until (req in = 1 & in reply = 1), and store the value of in data in the ith element

of the input array of the transaction.
5 end
6 Calculate the expected result of the SHA1 computation by using the SHA1 SystemC

reference model, and store it in the hash array of the transaction.
7 Make a coverage analysis of the transaction (size and start addr are used as cover points).
8 Send the transaction to the analysis port, which is connected to the scoreboard.

Output Monitor

The run phase of the output monitor follows a sequence of states which monitor the output
signals shown in figure 5.1 and extract the hash values produced by the core. These are
then stored in the hash array of the current transaction, which is sent to the scoreboard.
Listing 3 describes the high-level operation of the output monitor.

Listing 3: Pseudo-code of the run phase of the output monitor of the SHA1 core test

1 Wait until the core finishes the current computation (irq = 1).
2 for i < 5 do
3 Wait until (req out = 1), and store the value of out data in the ith element of the

hash array of the transaction.
4 end
5 Send the transaction to the analysis port, which is connected to the scoreboard.

Agent

The sequencer, driver and monitors previously described are constructed in the build phase
of the agent. Also, two analysis ports are created in order to connect the monitors to the
scoreboard. The connect phase connects the sequencer to the driver, and also each monitor
to its respective analysis port.
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Scoreboard

The build phase of the scoreboard creates two analysis exports that are used to retrieve
transactions from both monitors, as well as two FIFOs which are employed to synchro-
nize the transaction streams coming from the two monitors. The connect phase connects
each analysis export to its respective FIFO, and finally the run phase gets the two current
transactions from the FIFOs and compares them. If they match, a message indicating a
satisfactory result is printed, or otherwise an error message is generated.

Environment

The build phase of the environment instantiates the agent and the scoreboard, while the
connect phase connects each analysis port of the agent with the respective analysis export
in the scoreboard.

Test

The build phase of the test instantiates the environment, while the run phase starts the test
by enabling the generation of a sequence of transactions which are sent from the sequencer
to the driver.

Top block

The top block instantiates the DUT (SHA1 core) and creates a virtual interface which
holds all the input and output signals of the DUT. This interface connects the DUT with
the driver and the monitors. In addition, it generates the clock signal which is driven to the
DUT and the virtual interface, and finally runs the test.

5.2 Router test

The SHMAC implements a 2D mesh-based Network-on-Chip (NoC) interconnect in or-
der to provide efficient on-chip communication. Each tile in the SHMAC has a router
which allows the communication with the neighboring tiles. A complete description of the
router operation can be found in Appendix C. This document provides information about
the router external interface and high-level behaviour, which is relevant for designing a
verification plan.

The verification plan for the SHMAC router, included in Appendix D, is aimed at test-
ing its correct operation under different scenarios. The suggested verification goals are
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grouped into two different categories. The first is associated with all the possible ways in
which data can be sent from the input ports to the output ports. These goals do not re-
quire any coverage metric, and are assigned the highest priority since they ensure that data
can be transferred correctly. The second group of verification goals is related to the cor-
rect operation of the request and ready outputs. They require assertions to verify specific
properties, and are assigned a lower priority.

A SystemC behavioural model for the router was built in order to generate expected output
data. However, the implemented model did not follow the router operation accurately, so it
was decided not to use it in the verification environments. The implemented tests were then
only based on checking that input data was exactly the same as the output data obtained in
the selected output ports. These tests were based on the ones suggested in the verification
plan. However, due to time limitations, only the first three tests were performed. These
are described in the following subsections.

5.2.1 Router single data transfer test

It consists of a single data transfer from one input port of the router to one of the output
ports. The goal of this test is to check that data sent to any input port (only one at a time)
can be propagated to the desired output port. Figure 5.2 shows the test environment imple-
mented, also included in Appendix D. The following subsections describe the operation
of each relevant UVM component.

Figure 5.2: Verification environment built for the SHMAC router
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Sequencer

The transactions employed by the sequencer include the following variables:

• rand int nr inport

• rand logic [89:0] indata

• logic [89:0] outdata

• logic [4:0] out dir

The variable nr inport indicates which input port is used, and ranges from 0 to 4 (east,
north, west, south, local port respectively). The following constraint is used to define this
range:

• constraint nr inport c { nr inport inside {0, 1, 2, 3, 4}; }

The variable indata represents the data to be sent from the input port specified by nr inport.
The destination field of indata indicates the destination output port. In order to have a
reference, the current tile is assumed to have coordinates x = 1 and y = 1, so the destination
field can be constrained to have x and y destination coordinates in the range from 0 to 2,
as defined by the following constraint:

• constraint indata c {
indata[‘DEST X END:‘DEST X BEGIN] inside {4’d0, 4’d1, 4’d2};
indata[‘DEST Y END:‘DEST Y BEGIN] inside {4’d0, 4’d1, 4’d2}; }

The variable outdata represents the output data obtained in the output port which asserts a
request, while out dir indicates which output port asserts this request.

A certain number of these transactions (100) are randomized, with the constraints previ-
ously defined, and grouped into a sequence, which is sent to the driver.

Driver

The run phase of the driver is implemented as a sequence of states which get the data
contained in each transaction and drive the router in order to perform a single data transfer.
The following listing describes the high-level operation of the driver.

Input Monitor

The run phase of the input monitor is also implemented as a succession of states which
monitors the input signals req in and data in, and predicts the output data and which output
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Listing 4: Pseudo-code of the run phase of the driver of the Router single data transfer
test

1 Reset the DUT.
2 Get a new transaction from the sequencer.
3 Assert the bit in req in which is indicated by nr inport, and overwrite the portion of

data in which corresponds to the input port selected with the value of indata.
4 Wait until the selected input port asserts the ready output (rdy in = 1), and deassert req in.
5 Wait until there is a request in any of the output ports (req out = 1).
6 Finish the current transaction and go back to step 2 until the sequencer stops sending new

transactions.

port will be used. Listing 5 describes the high-level operation of the input monitor.

Listing 5: Pseudo-code of the run phase of the input monitor of the Router single data
transfer test

1 Wait until (req in = 1 & rdy in = 1) in any of the input ports, and store the number of the
stimulated input port in nr inport. Also store the input data in indata.

2 Predict the number of the output port to be used by analyzing the destination field in
data in.

3 Send the transaction to the analysis port, which is connected to the scoreboard.

Output Monitor

The run phase of the output monitor is also implemented as a succession of states which
monitors the output signals req out and data out. Listing 6 describes the high-level oper-
ation of the output monitor.

Listing 6: Pseudo-code of the run phase of the output monitor of the Router single data
transfer test

1 Wait until there is a request in any of the output ports (req out = 1), and store the number
of the stimulated output port in out dir. Also store the output data in outdata.

2 Send the transaction to the analysis port, which is connected to the scoreboard.

The agent, scoreboard, environment and test modules for this test have the same structure
as the ones implemented for the SHA1 test.
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5.2.2 Router sequential data transfer test

It consists of continuous data transfers from one input port of the router to one of the
output ports, and exercises all the possible combinations of input to output ports transfers.
The goal of this test is to check that any input port can send consecutive data packets to
any output port. The test environment implemented has the same structure as the shown
in Figure 5.2. Each relevant UVM component implemented is described in the following
subsections.

Sequencer

The transactions employed by the sequencer include the following variables:

• rand int nr tests

• rand logic [89:0] input array [0:TESTS*5-1]

• logic [89:0] output array [0:TESTS*5-1]

The variable nr tests indicates the number of consecutive data transfers to be done from
one input port to each output port. The variable input array is an array which contains
the data to be sent from one input port to the five output ports, in the order east, north,
west, south and local. The destination port in each data packet is selected by employing
constant values for the x and y coordinates in the destination field of the packet. As there
are nr tests transfers per output port, the length of the array is nr tests*5. Finally, the
variable output array is an array that contains the output data obtained in the output ports
which generate a request, in the order east, north, west, south and local. Then, if the test
is correct both input array and output array should be the same. The length of this array
is also nr tests*5.

A certain number of these transactions (10) are randomized, with the constraints previously
defined, and grouped into a sequence, which is sent to the driver.

Driver

The run phase of the driver is implemented as a sequence of states which get the data
contained in each transaction and drive the router in order to perform multiple sequential
data transfers from each input port to each output port. The following listing describes the
high-level operation of the driver.
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Listing 7: Pseudo-code of the run phase of the driver of the Router sequential data transfer
test

1 Reset the DUT.
2 Get a new transaction from the sequencer.
3 for i < 5 do
4 for j < 5 do
5 for k < nr tests do
6 Generate a request (req in = 1) in the ith input port.
7 data in = input array[j*nr tests + k]. Wait until the selected input port asserts

the ready output (rdy in = 1), and deassert req in.
8 Wait until there is a request in any of the output ports (req out = 1).
9 end

10 end
11 Select the (i + 1) input port.
12 end
13 Finish the current transaction and go back to step 2 until the sequencer stops sending new

transactions.

Input Monitor

The run phase of the input monitor is also implemented as a succession of states which
monitors the input signals req in and data in, and obtains from them the values of the
input array variable of the current transaction. Listing 8 describes the high-level operation
of the input monitor.

Listing 8: Pseudo-code of the run phase of the input monitor of the Router sequential data
transfer test

1 for t = 0; t < 5; t++ do
2 while req in[1] 6= 1 do
3 If (req in[0] = 1 & rdy in[0] = 1), store data in[0] in the nth element of the

input array and increase n.
4 end
5 for i = 1; i < 5; i++ do
6 for j = 0; j < n; j ++ do
7 Wait until (req in = 1 & rdy in = 1) in the input port i, and store data in in the

(i*n+j)th element of the input array.
8 end
9 end

10 Send the transaction to the analysis port, which is connected to the scoreboard.
11 end
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Output Monitor

The run phase of the output monitor is also implemented as a succession of states which
monitors the output signals req out and data out. Listing 9 describes the high-level oper-
ation of the output monitor.

Listing 9: Pseudo-code of the run phase of the output monitor of the Router sequential
data transfer test

1 for t = 0; t < 5; t++ do
2 while req out[1] 6= 1 do
3 If (req out[0] = 1), store data out[0] in the nth element of the output array and

increase n.
4 end
5 for i = 1; i < 5; i++ do
6 for j = 0; j < n; j ++ do
7 Wait until (req out = 1) in the output port i, and store data out in the (i*n+j)th

element of the output array.
8 end
9 end

10 Send the transaction to the analysis port, which is connected to the scoreboard.
11 end

The agent, scoreboard, environment and test modules for this test have the same structure
as the ones implemented for the SHA1 test.

5.2.3 Router multisource data transfer test

It consists of multiple data transfers at the same time, from the five input ports to different
output ports. The goal of this test is to check that all the input ports can be used simulta-
neously and propagate data to the output ports. The test environment implemented has the
same structure as the shown in Figure 5.2. Each relevant UVM component implemented
is described in the following subsections.

Sequencer

The transactions employed by the sequencer include the following variables:

• rand logic [4:0] dir tests

• rand logic [89:0] input array [0:4]

• logic [89:0] output array [0:4]

48



5.2 Router test

The variable dir tests in an array which indicates the direction (number of the output port)
of the data transfers from the five input ports in the order east, north, west, south and local.
The variable input array is an array which contains the data to be sent from the five input
ports, also in the order east, north, west, south and local. The destination field in each data
packet is set according to the values of the dir tests. Finally, the variable output array is
an array that contains the output data obtained in the output ports, in the order east, north,
west, south and local. Then, if the test is correct both input array and output array should
have the same elements but in different order. A certain number of these transactions (100)
are randomized, with the constraints previously defined, and grouped into a sequence,
which is sent to the driver.

Driver

The run phase of the driver is implemented as a sequence of states which get the data con-
tained in each transaction and drive the router in order to perform data transfers from the
five input ports at the same time. The following listing describes the high-level operation
of the driver.

Listing 10: Pseudo-code of the run phase of the driver of the Router multisource data
transfer test

1 Reset the DUT.
2 Get a new transaction from the sequencer.
3 Group the elements of the input array in a single word (from the element 0 to the element

4) and overwrite data in. Also assert the five input request signals (req in = 1).
4 Wait until there is a request in the five output ports (req out = 1).
5 Finish the current transaction and go back to step 2 until the sequencer stops sending new

transactions.

Input Monitor

The run phase of the input monitor is also implemented as a succession of states which
monitors the input signals req in and data in, and predicts the output data and which desti-
nation output port is used by each input port. Listing 11 describes the high-level operation
of the input monitor.

Output Monitor

The run phase of the output monitor is also implemented as a succession of states which
monitors the output signals req out and data out. Listing 12 describes the high-level op-
eration of the output monitor.
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Listing 11: Pseudo-code of the run phase of the input monitor of the Router multisource
data transfer test

1 Wait until (req in = 1 & rdy in = 1) in the five input ports, and store the input data of the
five ports (data in) in input array, in the order east, north, west, south and local.

2 Calculate the order of the destination output ports by analyzing the destination field in
each element of the input array.

3 Send the transaction to the analysis port, which is connected to the scoreboard.

Listing 12: Pseudo-code of the run phase of the output monitor of the Router multisource
data transfer test

1 Wait until there is a request in the five output ports (req out = 1), and store the output data
of the five ports (data out) in output array, in the order east, north, west, south and
local.

2 Send the transaction to the analysis port, which is connected to the scoreboard.

The agent, scoreboard, environment and test modules for this test have the same structure
as the ones implemented for the SHA1 test.

5.3 SHA1 tile test

A SHA1 tile in the SHMAC mesh contains a SHA1 accelerator and a router, which allows
the communication with CPU cores and memory located in other tiles. Figure 5.3 shows
a circuit that replicates the structure of a SHA1 tile. As it can be seen, the local input
and output ports of the router are connected to the SHA1 core, while the east input and
output ports of the router are connected to the general input and output ports of the tile,
respectively. Any input data packet is sent from the east input port of the router to the local
output port, and then processed by the SHA1 core. Any output data produced by the core
is sent from the local input port of the router to the east output port, so it is available in the
output port of the tile.

The input data signals of the SHA1 core are grouped into a single signal named data in,
since the router employs a single 90-bit data signal in each port. The output data signals
are also grouped into one signal named data out. Table 5.1 shows the distribution of the
bits in these two signals. It can also be seen in Figure 5.3 that the input rdy out of the
SHA1 core depends on both rdyE out and rdyL in. The reason for this is that the SHA1
should only be able to provide new data when the external module (memory) is ready
(rdyE out) and the corresponding port in the router is ready (rdyL in).

The SHA1 tile test is mainly aimed at checking the correct integration between the SHA1
core and the SHMAC router. At this level, it is assumed that the router has a correct
functionality and is free of bugs. Then, this test is based on checking that the SHA1 can
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5.3 SHA1 tile test

Figure 5.3: Circuit which replicates the structure of a SHA1 tile

still operate correctly while working with another SHMAC unit. The verification goals for
this test are the same as those specified in the SHA1 verification plan (Appendix B).

5.3.1 SHA1 tile UVM-based verification environment

The verification environment built for the SHA1 tile test reuses the UVM agents imple-
mented for testing the SHA1 core and the SHMAC router (single data transfer test). Figure
5.4 shows the structure of this verification environment, which contains three agents in to-
tal. Both router and SHA1 agents are configured in passive mode, and are only used for
monitoring internal signals and checking the correctness of partial results. The SHA1 tile
agent has the same operation as the SHA1 agent. The only difference is that the data sent
to the tile has a specific destination address so that it is directed to the SHA1 core through
the router.

The following subsections describe the UVM environment and test classes implemented
for this test.

Environment

The build phase of the environment instantiates the three agents and scoreboards. Both
sha1 agent and router agent are configured as passive agents, while the sha1tile agent is
configured as an active one. In addition, the connect phase connects each analysis port of
the agents with the respective analysis export in the scoreboards.
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Signal Bits Description

data in

31-0 in addr: input address
32 in reply: input reply signal
33 in write: input write signal

37-34 in mask: input mask signal
38 in exclusive: input exclusive signal
39 not connected
40 in burst: input burst signal

72-41 in data: input data
73 not connected

77-74 send x: x coordinate of the sender tile
81-78 send y: y coordinate of the sender tile
85-82 dest x: x coordinate of the destination tile
89-86 dest y: y coordinate of the destination tile

data out

31-0 out addr: output address
32 out reply: output reply signal
33 out write: output write signal

37-34 out mask: output mask signal
38 out exclusive: output interrupt signal (irq)
39 not connected
40 out burst: output burst signal

72-41 out data: output data
73 not connected

77-74 send x: x coordinate of the sender tile
81-78 send y: y coordinate of the sender tile
85-82 dest x: x coordinate of the destination tile
89-86 dest y: y coordinate of the destination tile

Table 5.1: Distribution of the bits of the SHA1 data signals

Test

The build phase of the test instantiates the environment and the configuration classes of
the three agents, which indicate whether the agent is active or passive. In addition, the
run phase starts the test by enabling the generation of a sequence of transactions in the
sha1tile agent.

It is important to mention that a bug was found in the SHA1 core while running this test.
When the SHA1 asserts a req out and no data is replied within the next three clock cycles,
the core starts providing new data and the SHA1 computation gets corrupted. This was
then confirmed by the SHMAC developers, and finally fixed.
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Figure 5.4: Verification environment built for the SHA1 tile

5.4 Top level test

The aim of this test is to check that the SHA1 core still operates correctly in a real en-
vironment, while working along with a RISC-V CPU core and the main memory. It
instantiates a SHMAC mesh which contains four tiles, as shown in figure 5.5: an APB
tile, a CPU tile, a SHA1 accelerator tile and a ZBT RAM tile. This SHMAC top level
file (shmac toplevel.vhd) was obtained by employing the makefile available in the mas-
ter branch of the SHMAC project. The APB tile allows communication with an external
module (testbench in this test), and makes it possible to write on the main memory and
initialize the SHMAC modules and interconnects. In addition, the ZBT RAM tile allows
other tiles to interact with the main memory, which in this case is modeled in the testbench.

The testbench built for this test is only written in SystemVerilog. The reason for this is
that the makefile of the SHMAC previously mentioned does not allow to monitor internal
signals, so it is no possible to reuse the UVM agents previously implemented for the router,
SHA1 core and SHA1 tile. Then, the test only runs one predefined SHA1 computation at
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Figure 5.5: Testbench built for the top level test

a time.

Listing 13 describes the operation of the testbench built for this test. It includes a task
which implements both APB write and read operations (APB controller), as well as a ZBT
RAM simulator.

Listing 13: Pseudo-code of the top level testbench

1 Reset the SHMAC.
2 Run the interconnects within the SHMAC.
3 Write the program to be run by the CPU in RAM.
4 Read and verify the data in RAM.
5 Write the configuration data as well as the data to be hashed by the SHA1 in RAM.
6 Read and verify the data in RAM.
7 Initialize the CPU tile.
8 Run a delay routine (10000 clock cycles).
9 Read the hash values stored in RAM by the CPU core.

10 Compare the computed hash values with the expected ones.

Finally, listing 14 describes the operation of the C program run by the CPU core in order
to perform a SHA1 computation.
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Listing 14: Pseudo-code of the C program run by the CPU core in the top level test

1 Read the start address value stored in RAM and use it to overwrite the start address
register of the SHA1 core.

2 Read the size value stored in RAM and use it to overwrite the size register of the SHA1
core.

3 Overwrite the status register of the SHA1 core with any value (e.g. 1) to start the
computation.

4 Run a delay routine (9000 clock cycles).
5 Read the status register and wait until the done bit is 1.
6 Read the hash values computed by the SHA1 core and store them in RAM.
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Chapter 6
Discussion/Evaluation

The set of UVM-based tests described in the previous chapter made it possible to ensure
the correctness of both the SHA1 accelerator core and the SHMAC router, and even could
detect the presence of a bug in the operation of the SHA1 core. The methodology applied
in these tests took into account the requirements specified in chapter 1 for the new veri-
fication strategy. Table 6.1 shows these requirements and indicates how the verification
methodology implemented satisfies them.
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Table 6.1: Strategies implemented for meeting the requirements for the project listed in table 1.1

Requirement ID Description Strategy implemented

REQ-Q1

The verification strategy must clearly define which metrics and level
of those metrics that is needed in order to decide when verification
is complete. If different environments require different metrics to
be collected, that must be clearly stated.

Both functional and code coverage were employed in the tests. The
first was implemented when using cover groups for certain variables in
the UVM transactions, while code coverage reports were generated
automatically by Questasim (which mainly include line and branch
coverage).

REQ-Q2

The verification strategy must define the different types
of environments that should be implemented and high level features
of those environments such as stimuli generation strategy
and checking strategy.

The verification plans implemented include suggested UVM-based
tests and verification environments.

REQ-Q3
The verification strategy must enable the user to do as efficient
debugging as possible.

The use of passive agents in the tests allows to monitor internal
signals and detect the source of possible bugs. In addition, assertions
made it possible to check specific properties of the designs and
easily detect the source of errors found in observable nodes.

REQ-Q4
The verification strategy must enable verification environments
that are robust against future changes to the design and that
can easily be reused.

The UVM verification environments were coded in such a way that
each UVM class can be easily reused in another verification
environment.

REQ-Q5 It must be easy to determine if the design has a HW bug.
The top level test of the SHA1 core assumes that the SHA1
hardware operates correctly, and any error detected at this level
is most likely to be a software bug in the CPU core.

REQ-Q6
Assuming a certain quality level has been achieved, the verification
strategy must describe how the same level can be maintained over
time even if modifications to the RTL is ongoing.

Any modification to the SHMAC architecture should be
documented so that appropriate test cases can be generated to
exercise the new functionality.

REQ-Q7
The verification strategy must give guidance on how the team
should prioritize in order to get from the current state to the
new and improved way of doing verification.

The verification methodology proposed previously includes
a sequence of steps that can be followed when testing a module
of the SHMAC platform.

REQ-Q8
The full system contains both hardware and software. The verification
strategy should also describe how hardware and software can be verified
together.

The top level test of the SHA1 core checks the integration between
a CPU core and the SHA1 accelerator by running a program which
consists of a SHA1 computation. Both software and hardware are
exercised and checked in this test.

REQ-Q9
The verification strategy should also describe typical design for
verification guidelines that designers should follow when writing
RTL.

Appendix E contains a set of useful design for verification
guidelines.

REQ-Q10

The verification strategy must list required documentation needed
before a verification engineer can efficiently start on investigating
how to e.g. verify a block. A outline of the content of the necessary
documents must be specified.

Appendix A and appendix C are examples of circuit description
documents, which essentially describe the structure and
functionality of a module.

REQ-Q11
The verification strategy must describe what document that must
be produced when architecting a new verification environment and
the content of those documents.

Appendix B and appendix D are examples of verification plan
documents, which essentially describe the features to be tested
in the corresponding modules and suggest UVM-based tests.

REQ-Q12
The verification strategy must describe how bugs will be managed
and tracked. This is left as future work.
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The methodology employed in the verification of the SHA1 accelerator core can be repli-
cated in the verification of any main component within the SHMAC architecture. This
bottom-up approach allows to check that a certain module can operate correctly first while
working independently (in isolation from the rest of the SHMAC modules) and then while
interacting with other modules such as routers, processors, memories and others. For in-
stance, this test methodology can be employed in the verification of a cache coherence
system, which is a future work in the SHMAC project. The first tests can be focused on
checking proper behaviour of the module while working with a local cache, and further
tests can include the integration of the module with the main memory and a CPU core.

In addition, in order to maintain the same quality of verification over all the SHMAC plat-
form, it is important to follow the same sequence of steps when designing and testing any
module of the SHMAC. As described in chapter 4, this process starts by elaborating a cir-
cuit description document in which the developer must explain relevant information about
the structure and functionality of the module. Then, while coding the hardware description
of the module, it is essential to follow some good design for verification practices. Next, a
verification plan document should be elaborated based on the circuit description document
and possible test cases detected in the design stage. Finally, only after having performed
the previous steps, the UVM-based testbench of the module can be implemented. In this
stage, it is also important to follow good UVM coding practices in order to produce con-
sistent, readable and reusable code.

The implementation of this verification methodology in the SHMAC project will allow to
bring the platform up to industry quality standards. Even though the UVM has a longer
learning phase compared to the methodology of directed tests, it provides a faster and more
thorough verification process over time. This is due to the fact that it makes it possible to
efficiently reuse verification components already implemented, and also because it can
run a large amount of random tests in a same verification environment, which increases
the probability of finding bugs in the design. The developers would then have a higher
certainty that their designs have a correct functionality and are free of errors.
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Chapter 7
Conclusion and future work

7.1 Conclusion

The verification framework implemented for the SHMAC platform, mainly based on the
complete verification of the SHA1 accelerator core, was aimed at providing a set of tests
that can check the correctness of SHMAC units in a more efficient and thorough way than
the current verification strategies do. The verification methodology proposed in chapter 4
also provides guidelines and good practices that can be followed to increase the quality of
verification.

This new verification methodology overcomes many of the limitations of the existing ver-
ification strategies for the SHMAC platform. One of these main deficiencies involves the
use of directed tests in both testbenches and bare-metal testing on FPGA. Hand-coding
all the possible test cases not only represents a time-consuming and tedious task for the
developers, but also usually leads to verification incompleteness. The proposed method-
ology defines first verification goals (in a verification plan) and then runs several random
tests aimed at checking that the design can achieve each of these goals. Coverage metrics
are employed to measure how thoroughly the design features are tested.

Constrained random stimulus, which were employed in all the UVM-based tests in this
work, make it possible to exercise most of the scenarios in which a design can work, and
then increase the probability of finding bugs. In fact, they helped to detect a bug in the
operation of the SHA1 accelerator core, as explained in chapter 5. This error is unlikely to
be detected by a methodology of directed tests, since it involves a not very usual test case,
where a random delay is used in one of the input ports of the core.

The verification strategy proposed in chapter 4 provides a formal and efficient approach
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to verify any module in the SHMAC platform. Each stage in this suggested verification
method has an impact in the overall quality of verification of the design. Design aimed at
verification is essential as it enables to identify all the possible relevant test cases. Then, the
verification plan can be designed with less effort. Also, an efficient verification plan makes
it easier to implement a UVM-based testbench, as it includes goals and test structures that
it must follow.

In addition, the verification framework was implemented with a strong focus on reusability,
as explained in chapter 5. This means that any verification component developed in this
work can be easily reused in a different verification environment, and also can be readily
extended or modified to verify new functionality of the DUTs. This same reusability
principle must be employed in other test environments in the SHMAC in order to make
the verification process faster and with less effort from the developer.

A verification framework for the complete architecture of the SHMAC can be built by
taking this work as starting point. The bottom-up verification approach and verification
strategy used for the SHA1 core can be replicated when testing any other module of the
SHMAC. The following section contains future work regarding the tasks that can be im-
plemented to build a complete verification framework for the SHMAC.

7.2 Future work

This section describes the tasks that can be performed to improve the verification quality
of the SHA1 core, as well as those that can be implemented to build a framework for the
verification of the complete SHMAC platform.

7.2.1 Attach the SHA1 SystemC reference model to the SHA1 verifi-
cation environment

The SHA1 SystemC model now stands as an independent module which can only com-
municate with its own separate SystemVerilog module, but not with the SHA1 verification
environment. Some difficulties were faced when implementing the connection between
these modules, which need to be fixed in order to run SHA1 tests faster. Also, the model
can be improved to be cycle-accurate in order to model the SHA1 core more precisely.

7.2.2 Create a SystemC router model

An attempt was made at making a router model, but it ended up being a collection of
incomplete parts. A router software model should be created in SystemC and be fitted
with TLM2.0 connection, so it can be used as a reference model in the verification suite.
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7.2.3 Rewrite the top level SHMAC makefile

The top level SHMAC makefile should be rewritten so that internal signals can be prop-
agated to outputs. This would make it possible to reuse agents implemented in unit level
tests, and check partial results of the current computation so that the source of a certain bug
can be more easily detected. Also, this would enhance the bottom-up verification approach
proposed in this work.

7.2.4 Build verification environments and reference models for the
rest of the SHMAC components

New verification environments should be implemented for the rest of the SHMAC units
using the strategies and guidelines proposed in this work. They should focus on reusability,
so less effort and time is spent in future tests. SystemC reference models of the rest of the
SHMAC units should also be built in order to generate predicted outputs of the modules,
and also to enable software developers to implement firmware at an earlier stage.
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SHA1 CORE CIRCUIT DESCRIPTION 

 

1.  Overview   

 The SHA1 core follows closely the SHA1 algorithm as specified in the SHA standard FIPS-

PUB 180-4 (http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf). It is used to hash 
a message, 𝑀, having a length of 𝑙 bits, where 0 < 𝑙 < 264. The algorithm uses 1) a message 

schedule of sixteen 32-bit words (w0-w15), 2) five working variables of 32 bits each (a-e), 

and 3) a hash value of five 32-bit words (h0-h4). The final result of SHA-1 is a 160-bit 

message digest.  

2.  External Interface   

 The SHA1 core interacts with external modules using the standard SHMAC router interface. 

The following figure shows the input and output ports of the core: 

 

Figure 1. External interface of SHA1 Core 

 The operation of each port is described in the following table: 

Port name Type Length 
(bits) 

Description 

req_in input 1 indicates that new data is introduced 

in_addr input 32 memory address of write destination 

in_burst input 1 not used, default value = 0 

in_reply input 1 indicates a reply after data is requested  

in_write input 1 indicates a write operation 

in_mask input 4 not used, default value = 0 

in_exclusive input 1 not used, default value = 0 

in_data input 32 input data 

in_sender input 9 not used, default value = 0 

rdy_out input 1 indicates that external memory is ready to 
provide new data  

req_out output 1 indicates that new data is requested 



out_addr output 32 memory address of required data 

out_burst output 1 not used 

out_reply output 1 indicates a reply to data previously requested 

out_write output 1 not used, default value = 0 

out_mask output 4 default value = 15 

out_exclusive output 1 not used 

out_data output 32 output data 

out_sender output 9 default value = 0 

rdy_in output 1 indicates that the core is ready to receive 
new data 

irq output 1 indicates that hash is done 

clk input 1 clock signal 

rst input 1 reset signal 

Table 1. Input/output ports of SHA1 core 

 

3.  Operation   

 The SHA1 core includes internal registers to store the necessary data. These are the 

following: 

Register name Offset Length 
(bits) 

Direction Description 

addr 0 32 W specifies the start address of the data 
block to create the hash from 

size 4 32 W size in bytes of the data block to create the 
hash from 

status 8 4 R/W For writes: starts the hash computation 
engine (any value). 
For reads: reads the current status. The 
following status bits are defined: 
- Bit 0: done (hash is computed and 
 interrupt line is asserted) 
- Bit 1: hashing (currently running the 
 hashing algorithm) 
- Bit 2: prefetching (still doing prefetching 
 of data) 
- Bit 3: error (requested hash operation 
 cannot be performed) 

H0 12 32 R hash value, word 0 

H1 16 32 R hash value, word 1 

H2 20 32 R hash value, word 2 

H3 24 32 R hash value, word 3 

H4 28 32 R hash value, word 4 

Table 2. Internal registers of SHA1 core 

 



 In addition, sixteen 32-bit registers (w0-w15) are used to store the message schedule, 

and five 32-bit registers (a-e) are used to store the working variables. They are employed 

exactly as in the standard document.  

 

 A state machine is employed to update all the registers and control the transfer of data 

between them. It is represented as an oval on figure 2, which represents the architecture of 

the SHA1 engine.   

 

 

 Figure 2. Architecture of the SHA1 engine 

 

 Programmers’ reference 

 The SHA1 engine can be used to perform a hash computation in the following way: 

1. Write address of data to addr 

The addr register represents the initial address of the block of data to create the hash from. In 

order to overwrite this register, the following signals have to be employed: 

req_in <= 1; 

in_addr <= 0; 

in_write <= 1; 

in_data <= (target address); 

  

2. Write number of bytes to size 

The size register represents size in bytes of the data block to create the hash from. In order to 

overwrite this register, the following signals have to be employed: 

req_in <= 1; 

in_addr <= 4; 



in_write <= 1; 

in_data <= (size of data block); 

 

3. Start hash engine by writing any value to the status register. 

In order to do so, the following signals have to be employed: 

req_in <= 1; 

in_addr <= 8; 

in_write <= 1; 

in_data <= 1 (or any value); 

 

4. Wait for the hash computation to be done.   

Every time the core requests data from memory, the following output signals are asserted: 

req_out = 1; 

out_addr = (required memory address); 

In order to reply with the next data element from memory, the following input signals are 

employed: 

      in_data <= data[i]; 

      req_in <= 1; 

      in_reply <= 1; 

and in the next clock cycle the rdy_out signal must be asserted in order to indicate that the external 

memory is ready to provide new data 

      rdy_out <= 1; 

Once all memory requests have been done and the hash has been computed, the done bit in the 

status register is asserted. This register can be read in the following way: 

req_in <= 1; 

in_addr <= 8; 

in_write <= 0; 

Once the output req_out is asserted, the status register can be read from out_data. 

Alternatively, the user can wait for the irq output to be asserted, and then clear it by reading the 

status register. 

 

5. Read hash from H0, H1, H2, H3 and H4. 

Each hash value can be read using the following signals: 

req_in <= 1; 

in_addr <= (address of hash register); 

in_write <= 0; 

Once the output req_out is asserted, the hash value can be read from out_data. 
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SHA1 CORE VERIFICATION PLAN 

 

1.  Overview   

 This document lists all the design features to be tested on the SHA1 core, and provides a 

suggested UVM-based verification environment for this module.    

2.  Test Plan 

  Input data should be organized as a block of 512 bits (16x32) which is generated 

randomly. Each test should employ a different set of random data. Addr (start address of the 

data block to create the hash from) and size (size in bytes of the data block to create the hash from) 

inputs are also generated randomly so that a random portion of the 512-bits block is selected 

for the test. 

   The following table contains the features to be exercised for verifying the SHA1 core. It 

includes the type of functional coverage required for each test, as well as suggested priorities 

for the order of execution of the tests.   

Section Description Coverage Type Priority 

Input data 

Data block to create 

the hash from 

The module can operate 

correctly for any set of 

random data 

Test result 1 

Start address and 

size of input data 

block 

The module can operate 

correctly for any start 

address and size values lower 

than 56 bytes (448 bits) 

Cover group 1 

The module can operate 

correctly for size values 

between 56 and 64 bytes 

(448 and 512 bits) 

Cover group 1 

A size value of zero asserts 

the error flag in  the status 

register 

Design assertion 2 

Status register 

Status bits are 

asserted when 

certain conditions 

occur 

Done bit is asserted when 

hash is computed 

Design assertion 2 

Hashing bit is asserted when 

the hashing algorithm is 

running 

Design assertion 2 

Prefetching bit is asserted 

when prefetching input data 

Design assertion 2 

Others 

Rdy_out input The rdy_out input is never 

set (which indicates that the 

external memory is not ready 

to provide data) and no hash 

is computed 

Design assertion 2 



Req_in input The req_in input can be 

asserted n clock cycles after 

the req_out output is 

asserted    

Design assertion 2 

Irq output The irq output is 0 on reset.  Design assertion 2 

The irq output changes from 

1 to 0 after reading the result 

Design assertion 2 

Table 1. Test plan for the SHA1 core 

 

3.  Verification environment   

 The following verification environment, shown on figure 1, is aimed at ensuring the 

correctness of the features with the highest priority (priority 1) specified on the test plan 

previously presented. It generates random blocks of data, as well as random start addresses 

and sizes, and drives them to the SHA1 core using the standard SHMAC router interface. The 

hash values produced by the core are then finally compared with the expected ones. 

 

 Figure 1. Verification environment for the tests with priority 1 on the test plan 

 

 The sequencer generates, for each test, a random data block of 512 bits (64x8), as well 

as a random start address and size. Then, the driver uses the standard SHMAC router protocol 

to configure and control the SHA1 core. First, it overwrites the internal registers (start address 

and size) and starts the hash computation. It then feeds the core with the data requested 

(specified on out_address) until all the memory requests are done. Once the hash is computed 

(indicated by the irq output), it reads the final five hash values produced by the core.  



 The monitor_input block gets the input data block generated by the driver, as well as the 

start_address and size, and employs a golden model of the SHA1 engine to produce the 

expected final hash values. The monitor_output block captures the hash values computed by 

the SHA1 core, and finally both expected and actual hash values are compared on the 

scoreboard.       
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SHMAC ROUTER CIRCUIT DESCRIPTION 

 

1.  Overview   

 The SHMAC implements a 2D mesh-based Network-on-Chip (NoC) interconnect in order 

to provide efficient on-chip communication. Parameters of the interconnect are as follows:  

Parameter Value 

Topology 2D mesh 

Routing Dimensions-ordered (XY) 

Switching Store-and-forward 

Flow control On/Off 

Router delay 1 cycle 

 The routers in the network are implemented with a traditional multi-stage architecture. 

As shown in figure 1, all routers contain five ports, for the East, North, West, South and Local 

connections, respectively. The router implements two stages: 1) route computation and 2) 

switch allocation and traversal. Route computation is done using the XY-routing algorithm. 

The switch allocation stage performs arbitration for competing inputs (using Round-Robin 

scheme), and sets the crossbar according to the result of arbitration. A packet which has been 
granted the access traverses the switch during the same stage. 

 

Figure 1. Internal architecture of the SHMAC router 



Router FIFOs implement a write-through model, meaning that the packet at FIFO head 

becomes available for reading immediately after it has been written to the FIFO. This allows 

a packet written to an output FIFO propagate to the input of the downstream router within 
the same cycle, which is referred to as a link traversal cycle. 

In general, it takes only one cycle for a packet to travel between the two adjacent routers. 
Packet traversal can be summarized as follows: 

 Cycle 1: The packet is written into the input FIFO. 

 Cycle 2: The packet goes through the crossbar and, if the output link is ready, is fed 

directly to the output link and into the input FIFO in the next router. If the output link 

is busy, the packet is inserted into the output FIFO and will wait there until link is 

ready. 

The interconnect link includes a set of parallel wires to transfer the packet data and two 

control signals. The valid and ready control signals represent whether the data is available at 

the link source and whether the link destination is ready to receive the data, respectively.  

 

2.  External Interface   

 The following figure shows the input and output ports of the SHMAC router: 

 

Figure 2. External interface of the SHMAC router 

 The operation of each port is described in the following table: 

Port name Type Length 
(bits) 

Description 

req_in input 5 indicates requests sent to the input ports: 
local, south, west, north and east (1 bit each) 

data_in input 450 input data sent to the input ports: 
local, south, west, north and east (90 bits 
each) 

rdy_in output 5 indicates that the input FIFOs are not full: 
local, south, west, north and east (1 bit each) 



req_out output 5 indicates that data is available in the output 
ports: local, south, west, north and east (1 bit 
each) 

data_out output 450 output data in the output ports: 
local, south, west, north and east (90 bits 
each) 

rdy_out input 5 indicates that an external module is ready to 
receive data from the input ports: local, 
south, west, north and east (1 bit each) 

clk input 1 clock signal 

rst input 1 reset signal 

Table 1. Input/output ports of the SHMAC router 

 

3.  Operation   

 The SHMAC router is composed of the following internal modules: 

 Input ports (5): each port contains a fixed-size FIFO which stores the incoming data when a 
request is done (req_in = 1) and the FIFO is not full (rdy_in = 1). 

 Route computation module (5): based on the coordinates of the destination tile in the SHMAC 
(indicated in the input data packet) and the coordinates of the current tile, it determines the 
output port where the input data will be sent. 

 Arbiter (5): performs arbitration for the competing input ports using a round-robin scheme 
(priority is updated every clock cycle), where only one gets granted at a time. It only grants if the 
input port is not empty and the destination output port is not full. The results of the arbitrations 
(in the 5 arbiters) are used to set the crossbar.    

 Crossbar (1): based on the grant signals from the arbiter, it directs the packets in the input ports 
to the desired output port. 

 Output ports (5): each port contains a fixed-size FIFO which stores the output data. It asserts a 
request signal (req_out = 1) when the FIFO is not empty, and data is read from the FIFO when 
rdy_out = 1. 
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SHMAC ROUTER VERIFICATION PLAN 

 

1.  Overview   

 This document lists all the design features to be tested on the SHMAC router, and provides 

suggested UVM-based tests for this module.    

2.  Test Plan 

  The following table contains the features to be exercised for verifying the SHMAC router. 

It includes the type of functional coverage required for each test, as well as suggested 

priorities for the order of execution of the tests.   

Section Description Coverage Type Priority 

Data routing 

Single data transfer The router can direct data 

from one input port to one 

output port (one data 

transfer at a time)  

Test result 1 

Sequential data 

transfer 

The router can direct 

continuously data from one 

input port to one output port 

Test result 1 

Multisource data 

transfer  

The router can direct data 

from multiple input ports to 

certain output ports (different 

destination ports) 

Test result 1 

The router can direct data 

from multiple input ports to 

the same output port (in 

multiple clock cycles) 

Test result 1 

Others 

Rdy_in output The rdy_in output of any 

input port is asserted when 

the FIFO is full 

Design assertion 2 

If the rdy_in output of any 

input port is not active, input 

data is not directed to the 

desired output port  

Design assertion 2 

Req_out output The req_out output of any 

output port remains active if 

the rdy_out input is not 

asserted 

Design assertion 2 

Rdy_out input If the rdy_out input of any 

output port is asserted after 

n clock cycles, the data in the 

head of the FIFO remains the 

same   

Design assertion 2 

Table 1. Test plan for the SHMAC router 

 

 



 

3.  UVM-based tests   

 The following tests are aimed at ensuring the correctness of the features with the highest 

priority (priority 1) specified on the test plan previously presented. 

A. Single data transfer test 

It consists of a single data transfer from one input port of the router to one of the output 

ports. The transactions in this test can include the following variables: 

Variable I/O Description 

Data_in I 
Data to be sent from one of the input ports, where  

the destination field in the data packet is predefined 

Nr_inport I Indicates which input port is used 

Data_out O 
Output data obtained in the output port which asserts 

a req_out  

Nr_outport O Indicates which output port asserts a req_out 

A successful test occurs when both data_in and data_out match, and the value of 

nr_outport matches with the output port associated to the destination field in data_in. 

 

B. Sequential data transfer test 

It consists of continuous data transfers from one input port of the router to one of the 

output ports. It should exercise all the combinations of routing between the five input and 

output ports. The transactions in this test can include the following variables: 

Variable I/O Description 

Nr_tests I 
Indicates the number of consecutive data transfers to 

be performed from one input port to each output port. 

Array_in I 

Array which contains the data to be sent from one 

input port to the five output ports (in the order east, 

north, west, south, local). The length of the array is 

Nr_tests*5.  

Array_out O 

Array which contains the output data obtained in the 

output ports which assert a req_out (in the order 

order east, north, west, south, local). The length of 

the array is Nr_tests*5. 

The same transaction can be used for testing each input port, so a full test will employ 

five of these transactions. A successful test occurs when both array_in and array_out 

match. 

 

C. Multisource data transfer test (different output ports) 

It consists of multiple data transfers at the same time, from the five input ports to different 

output ports. The transactions in this test can include the following variables: 

 



Variable I/O Description 

Dir_tests I 

Array which indicates the directions of the data 

transfers from the five input ports (in the order east, 

north, west, south, local). The length of the array is 5. 

Array_in I 

Array which contains the data to be sent from the five 

input ports (in the order east, north, west, south, 

local). The length of the array is 5. 

Array_out O 

Array which contains the output data obtained in the  

output ports (in the order east, north, west, south, 

local). The length of the array is 5. 

In order to check the correctness of the test, the array_in is resorted based on the 

directions specified in dir_tests, and compared with the array_out. 

 

D. Multisource data transfer test (same output port) 

It consists of multiple data transfers at the same time, from the five input ports to the 

same output port. The transactions in this test can include the following variables: 

Variable I/O Description 

Array_in I 

Array which contains the data to be sent from the five 

input ports (in the order east, north, west, south, 

local). The length of the array is 5. 

Array_out O 

Array which contains the output data obtained in the  

output port which asserts a req_out for five 

consecutive times. The length of the array is 5. 

Since the data in the output port can arrive in any order, the scoreboard in the test must 

not consider the order of the elements in both array_in and array_out, but must check 

that the elements are the same when comparing both arrays. 

 

Figure 1 shows a generic verification environment which can be used for performing these 

four tests. The sequencer in each test generates the transactions suggested and sends them 

to the driver, which controls the execution of the router (DUT). The input monitor generates 

the expected outputs (output variables in the transactions) from the data sent to the DUT, 

while the output monitor obtains the actual outputs (output variables in the transactions) 

from the data produced by the DUT. These two outputs are finally compared in the scoreboard. 

     



 

Figure 1. Generic verification environment for the tests with priority 1 on the test plan 
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DESIGN FOR VERIFICATION 

Guidelines: 

Pre design phase: 
1. Collaboration between design and verification engineers 

2. Make a design specification 

3. Make verification requirements 

4. Emphasize verification enablers and considerations in the specification 

5. Document shared resources and dependencies 

Designing phase: 
1. Update design specification continuously as the design evolves 

2. Update and keep a high level dialog with the verification engineers 

3. Write assertions on the go, as design evolves assertions should be added in parallel 

4. Write appropriate assertions for interfaces 

5. Analyze and model any potential conflict 

6. Watch out for copy-paste errors, exercise cation when doing copy-pasting 

7. Watch out for old comments, they might be misleading 

8. Make verification features accessible  

9. Get a peer review of behavior scenarios, corner cases and areas of risk 

Rules: 
1. Use an automated code checking tool (Linting) to ensure that the RTL follows standard 

coding rules 

2. RTL should be maintainable, possibly reusable 

3. RTL should be understandable for the designer and independent designers 

4. RTL can be in range from equation-based to behavioral 

5. FSMs can be either explicit or implied 

6. Write behavioral code in such a way that it is self-explanatory, if possible 

7. Use parameterization thing that changes/might change in the design, it accelerates corner 

case reachability 

8. Use error injectors, e.g. random invalidates, cache evicts 

9. Make interfaces as clean as possible 

10. Simplify where possible but within design goals and constraints 



Appendix F: UVM coding guidelines

89



UVM CODING GUIDELINES 

General Guidelines 
 Do not use any features of UVM that are specifically marked as deprecated in the UVM Class 

Reference or base class library.  

 Do not use internal features of the UVM base class library that is not documented in the 

UVM Class Reference.  

Lexical Guidelines and Naming Conventions 
 Only one declaration/statement per line. 

 User-defined names for SystemVerilog: 

o Variables and classes, use lower-case words separated by underscores e.g. derp_fish 

o Enum literals, constants, and parameters, use upper-case words separated by 

underscores e.g DERP_FISH 

 Restrict all user-defined UVM instance names (that is, strings such as component instance 

names) to the character set a-z, A-Z, 0-9 and _ (underscore).  

 Use shorter names for local variables and longer, more descriptive names for global items 

such as class names and package names.  

 Use the prefix m_ before the names of user-defined class member variables (officially known 

as class properties in SystemVerilog).  

 Use the names m_sequencer, m_driver, and m_monitor as the instance names of the 

sequencer, driver, and monitor respectively within every agent.  

 Use the suffixes _env and _agent after the instance names of every environment and agent, 

respectively.  

 Use the name m_config as the instance name of the configuration object within any 

component or sequence that has one.  

 Use the suffix _config after user-defined configuration class names.  

 Use the suffix _port after user-defined port names. 

 Use the suffix _export after user-defined export names. 

 Use the suffix _vif after user-defined virtual interface names. 

 Use the suffix _t after user-defined type definitions introduced using the keyword typedef  

 Use the suffix _pkg after user-defined package names. 

 Write comments wherever they add value to the source code and help the reader to 

understand the purpose of the code.  

 Include white space (blank lines, indentation) wherever it helps to make the code more 

readable.  

 When overriding built-in UVM virtual methods, do not insert the virtual keyword at the start 

of the overridden method definition.  

General Code Structure 
 In structuring and coding the verification environment, think primarily about reuse.  

 Use a consistent file structure and a consistent file naming convention throughout.  

 Each class should be defined within a package (as opposed to defining classes within modules 

or at file scope).  

 Use `include directives within a package to allow each class to be placed in a separate file  



 Use conditional compilation guards to avoid compiling the same include file more than once.  

 Do not use wildcard import at compilation unit scope.  

 Include uvm_macros.svh and import uvm_pkg::* inside each package or module that refers 

to the UVM base class library  

 Use one agent per interface, with a passive monitor and optional sequencer and driver 

whose existence is determined by the value of the get_is_active method of class uvm_agent.  

 An agent should not instantiate components other than one sequencer, one driver, and one 

monitor.  

 Use virtual sequences to co-ordinate the stimulus generation activities of multiple parallel 

agents, that is, to start sequences on the sequencers belonging to multiple agents.  

 Checking and functional coverage collection should be performed in checkers, scoreboards, 

coverage collectors, and other ad hoc subscriber components that are instantiated externally 

to any agent and connected to the analysis port of the monitor.  

 In general, connect agents, checkers, scoreboards, and coverage collectors using analysis 

ports and exports.  

 UVM environments should be written such that they can be used as top-level environments 

or reused as sub- environments in other larger verification environments.  

 Use factory overrides and/or the configuration database to adapt the behavior of repurposed 

UVM components to the needs of a new verification environment.  

 A top-level module should set configuration parameters that are retrieved by the test, the 

test should set parameters retrieved by the environment, and the environment should set 

parameters retrieved by lower-level environments or agents.  

 Represent layered protocols by having multiple sequencers, each with their own transaction 

type.  

Clocks, Timing, Synchronization, and Interfaces 
 Generate clocks and resets in a SystemVerilog module, never in a SystemVerilog program 

and never in the UVM class-based verification environment. 

 Use SystemVerilog modules in preference to SystemVerilog programs.  

 Use clocking blocks within a SystemVerilog interface in order to sense and drive a 

synchronous DUT interface.  

 Use modports to enforce the use of clocking blocks when accessed through virtual interfaces 

from the UVM verification environment.  

 Use modports that combine a clocking block with asynchronous signals in order to access an 

interface that combines synchronous and asynchronous signals.  

 In the verification environment, try where possible to confine synchronization to signals in 

the DUT interface and explicit delays to drivers and monitors, with other UVM components 

being untimed.  

 A driver should pull transactions from a sequencer using the non-blocking try_* methods in 

order to maximize reusability in the scenario where the author cannot know whether the 

sequence will block the execution of the driver.  

 A driver should only pull down transactions from the sequencer when it needs them.  

 If a driver needs to insert variable delays within or between transactions when driving the 

pins of an interface, this should be handled by storing delays in the transaction passed to the 

driver.  

 Use the uvm_event or uvm_barrier for ad hoc synchronization between sequences and/or 

analysis components such as scoreboards.  



 A monitor should not assign values to variables or wires in the SystemVerilog interface.  

 Use concurrent assertions and cover property in interfaces for protocol checking and related 

coverage collection.  

Split Transactors for Emulation/Acceleration 
 For emulation/acceleration, have two top-level SystemVerilog modules, one module that 

runs on the host computer and instantiates the UVM verification environment and a second 

module that is synthesized and runs on the emulator or accelerator.  

 The UVM verification environment running on the host computer should be untimed. It 

should not contain any delays or refer to any clocks. Any delays and clocks should be moved 

to the emulator/accelerator.  

 Split each UVM driver and monitor into two parts, an untimed part that runs on the host and 

a synthesizable part (BFM) that runs on the emulator/accelerator.  

Transactions 
 Create user-defined transaction classes by extending the class uvm_sequence_item.  

 Try to minimize the number of distinct transaction classes. Use the same transaction class for 

the driver and monitor of an agent.  

 Register the transaction class with the factory using the macro `uvm_object_utils as the first 

line within the class.  

 Do not use field macros.  

 After the factory registration macro, declare any member variables.  

 Use the rand qualifier in front of any class member variables that might need to be 

randomized, now or in the future.  

 After any member variables, define a constructor that includes a single string name 

argument with a default value of the empty string, a call to super.new, and is otherwise 

empty 

 After the constructor, always override the convert2string, do_copy, do_compare, do_print, 

and do_record methods.  

 Consider overriding the do_pack and do_unpack methods.  

 When overriding do_pack and do_unpack, use the packing and unpacking macros (e.g. 

`uvm_pack_int) where they will simplify the code.  

 When overriding do_record, use the recording macros (e.g. `uvm_record_attribute and 

`uvm_record_field) where they will simplify the code.  

 When overriding the do_print, do_record, do_compare, and do_pack methods, do not make 

use of the printer, recorder, comparer, and packer policy object arguments to those methods 

within the body of the overridden method.  

 Always instantiate transaction objects using the factory.  

 In general, the string name of the transaction should be the same as the variable name.  

Sequences 
 Create user-defined sequence classes by extending the class uvm_sequence, parameterized 

with the type of the transaction to be generated by the sequence.  

 Register the sequence class with the factory using the macro `uvm_object_utils as the first 

line within the class.  

 After the factory registration macro, declare any member variables (using the prefix m_ as a 

naming convention).  



 Use the rand qualifier in front of any class member variables that might need to be 

randomized, now or in the future.  

 After the member variables (if any), define a constructor that includes a single string name 

argument with a default value of the empty string, a call to super.new, and is otherwise 

empty.  

 Any housekeeping code associated with the execution of a sequence, such as raising and 

lowering objections, should be placed in the pre_start and post_start methods of the 

sequence. The body method of the sequence should only execute the raw functional 

behavior of the sequence.  

 When generating transactions from the body task of a sequence, do so using procedural code 

with the following general pattern:  

req = tx_type::type_id::create("req"); 

start_item(req); 

if ( !req.randomize() ) ... 

finish_item(req); 

 Do not use the `uvm_do family of macros.  

 Use the built-in transaction variables req and rsp within a sequence, unless there is a specific 

reason to choose different variable names.  

 Only generate sequence items (transactions) from UVM sequences, not from ad hoc classes 

and not from UVM components.  

 Always instantiate sequence objects using the factory. Instantiations should take the form:  

seq_name = sequence_type::type_id::create("seq_name"); 

 The string name of each sequence object should be the same as the variable name  

 When creating a sequence object, always call the randomize method of the sequence object 

before starting the sequence.  

 Always check the value returned by the randomize method and report an error should 

randomization fail.  

 Start sequences procedurally by calling their start method.  

 Only override the pre_do, mid_do, and/or post_do callbacks of a sequence class as a way to 

modify the behavior of a pre-existing "immutable" sequence class.  

 Use the macro uvm_declare_p_sequencer to declare a variable p_sequencer in situations 

where a sequence needs access to the sequencer on which it is running.  

 Where a sequence needs access to a sequencer other than the sequencer on which it itself is 

running, add a member variable to the sequence object and assign that variable to refer to 

the sequencer before starting the sequence.  

Stimulus and Phasing 
 Use a virtual sequence to coordinate the behavior of multiple agents.  

 Virtual sequences should be started on the null sequencer.  

 Have a top-level sequence running on each agent that selects between all permissible child 

sequences at random.  

 Keep sequences as generic as possible: avoid writing directed sequences except where 

absolutely necessary.  

 Sequences should not be phase-aware.  

 Do override the run-time phase methods reset_phase, configure_phase, main_phase, 

shutdown_phase to generate stimulus, typically by starting sequences, but never in a driver, 

monitor, subscriber, or scoreboard component.  



 Do introduce user-defined run-time phases where the above predefined run-time phase 

methods are inappropriately named or would cause confusion.  

 When integrating multiple environments that each override the predefined or user-defined 

run-time phase methods, take care to order the phases correctly by introducing phase 

domains and synchronizing phases across domains.  

 Do not override the predefined pre- and post- phase methods (e.g. pre_reset_phase), but 

reserve these phase for use when synchronizing phases across domains.  

 Do plan any phase jumps carefully to ensure UVM components are left in a consistent state.  

Objections 
 Determine when to end the test by raising and dropping objections in any classes that may 

need to extend the test while they complete some processing. (This rule has changed 

significantly since the first preliminary release of these guidelines.)  

 Call the set_propagate_mode(0) method of every objection to disable the hierarchical 

propagation of that objection.  

 Consider the simulation speed impact of raising and dropping objections in inner loops, e.g. 

for individual transactions. Remove objections from inner loops if the simulation speed 

penalty is significant.  

 Where a sequence is to raise and drop objections, it should call raise_objection in its 

pre_start method and drop_objection in its post_start method.  

 Always perform the test if (starting_phase != null) before calling raise_objection or 

drop_objection within a sequence.  

 When starting a sequence that can raise and drop objections, if you want the sequence to 

raise and drop objections, set the starting_phase member of the sequence object before 

starting the sequence.  

 When calling raise_objection or drop_objection, always pass a 2nd argument describing the 

objection to help with debug.  

 If the kill method of a sequence is called and the sequence can raise an objection, ensure 

that the do_kill method of the sequence is overridden to drop the objection.  

Components 
 Create user-defined component classes by extending the appropriate subclass of class 

uvm_component in order to indicate intent.  

 Register the component class with the factory using the macro `uvm_component_utils as 

the first line within the class.  

 After the factory registration macro, declare any ports, exports and virtual interfaces (using 

the suffixes given in the section on Lexical Guidelines and Naming Conventions above).  

 After the ports, exports, and virtual interfaces, declare any member variables (using the 

prefix m_ as a naming convention).  

 After any member variables, define a constructor that includes string name and parent 

arguments with no default values and a call to super.new.  

 Instantiate any components from the build_phase method.  

 Always instantiate components using the factory. Instantiations should take the form:  

var_name = component_type::type_id::create("var_name", this); 

 The string name of the component should be the same as the variable name.  

 The second argument to create should be the reserved word this.  



 Where a user-defined component class extends another user-defined component class, care 

should be taken to insert calls of the form super.<phase_name>_phase wherever 

appropriate, that is, where the corresponding base class phase method performs some 

action.  

 Where a user-defined component class directly extends a class from the UVM base class 

library and overrides the standard build_phase method, do not call super.build_phase.  

Connection to the DUT 
 Use one SystemVerilog interface instance per DUT interface.  

 Use virtual interfaces to access the SystemVerilog interfaces from the UVM verification 

environment.  

 Encapsulate virtual interfaces inside a configuration object in the configuration database.  

 Copy virtual interfaces from the top-level configuration object to the configuration objects 

associated with agents or lower-level envs in the build_phase method of the top-level env.  

 An agent should check that its virtual interface has been set.  

TLM Connections 
 Make TLM port/export connections and assign virtual interfaces in the connect_phase 

method.  

 Communicate between UVM components using ports and exports, including analysis ports 

and exports where appropriate.  

 Use analysis ports and analysis exports (or objects of class uvm_subscriber) when making 

one-to-many connections between UVM components.  

 When making peer-to-peer connections between components, connect a port (or analysis 

port) directly to an export (or analysis export) without any intervening FIFO.  

 Communicate with an agent in one of two ways: either connect the analysis port of the agent 

to a subscriber or access the sequencer within the agent using a direct object reference from 

outside.  

Configurations 
 Use the configuration database uvm_config_db rather than the resource database 

uvm_resource_db.  

 Group the configuration parameters for a given component into a configuration object and 

set that configuration object into the configuration database.  

 Create user-defined configuration classes by extending the class uvm_object.  

 Use the class name <component_class>_config or <sequence_class>_config for the 

configuration class associated with a component or a sequence, respectively, where 

<component_class> is the class name of the component and <sequence_class> is the class 

name of the sequence.  

 Use the field name "config" for the configuration object in the configuration database.  

 Do not register user-defined configuration classes with the factory.  

 A component should typically get and set configuration parameters (typically configuration 

objects) in its build_phase method, as opposed to any other phase methods.  

 Always check the bit returned from uvm_config_db#(T)::get to ensure that the configuration 

parameter exists in the configuration database.  

 A sensible default value should be chosen if uvm_config_db#(T)::get returns 0.  



 Each component should get the configuration object associated with that specific component 

instance, and should not get the configuration object of any other component instance.  

 The configuration object associated with any given component instance should be set by its 

parent or by some other direct ancestor of that component instance, and not by any other 

component instance.  

 Avoid using an absolute hierarchical path name as the 2nd argument to 

uvm_config_db#T(T)::set, and provide the shortest possible unique path name.  

 A component instance may be associated with one configuration object or with no 

configuration object, and several component instances may be associated with the same 

configuration object.  

 For an agent, include a variable is_active in the configuration object to determine whether 

the agent is active or passive. Override the virtual get_is_active method to return this value. 

Check get_is_active before creating and connecting the sequencer and driver within the 

agent.  

 If a sequence is to be parameterized, the parameters for the sequence should be put into a 

configuration object in the configuration database. The configuration object should be 

associated with the sequencer on which the sequence is to run.  

 The code that starts a sequence should get any configuration object associated with that 

sequence from the configuration database and should assign a variable in the sequence 

object to refer to that configuration object.  

 If a component directly assigns the values of variables (including virtual interfaces) in its child 

components, it should do so in its build_phase method after creating those child 

components.  

The Factory 
 Always instantiate transaction, sequence, and component objects using the factory.  

 When using a factory override to substitute a transaction, sequence, or component object 

with another object whose class extends the class of the original, the factory override should 

take one of these forms:  

old_type_name::type_id::set_type_override( new_type_name::get_type() ); 

old_type_name::type_id::set_inst_override( new_type_name::get_type() ... ); 

 Call the static method uvm_factory::get() when you need access to the factory.  

Tests 
 Do not generate stimulus directly from the test, but use the test to set configuration 

parameters and factory overrides.  

 Set up the fixed aspects of the verification environment and generate default stimulus in the 

env class, not the test class, so that the env will run even with an empty test.  

 Where appropriate, use test base classes to define structure and behavior that is common 

across a set of tests, and create individual tests by extending these base classes.  

 For reuse, avoid making tests dependent on the specific details of the verification 

environment.  

 Use the command line processor to modify the behavior of tests without the need for 

recompilation.  

Messaging 
 To report a message, always use one of the eight standard report macros `uvm_info, 

`uvm_info_context, and so forth, rather than ad hoc $display statements or similar.  



 Set the message id either to a static string or to get_type_name().  

 Set message verbosity levels thoughtfully and methodically to avoid unnecessary data in the 

simulation log file and to differentiate between messages intended for use during the 

development and debug of the verification environment itself and messages intended for use 

when running tests and debugging the DUT.  

 By default, set the verbosity level of each message to a high number such that the message is 

less likely to be reported, rather than to a low number such that the message is always 

reported.  

 Set message severity levels thoughtfully to differentiate between messages that are purely 

informational, messages that may represent errors, and messages that are certainly errors.  

Register Layer 
 If you use a generator to create the SystemVerilog code for the register model, do not modify 

the generated code.  

 The top-level UVM environment should instantiate the register block using the factory and 

should call the build method of the register model.  

 In the case of a hierarchically organized UVM environment where child environments use 

register models, there should be a single top-level register block that instantiates the register 

blocks associated with the child environments, and so on down the hierarchy.  

 Any UVM environment that uses a register model should have a variable named regmodel 

that stores a reference to the register block for that specific environment.  

 A UVM environment that has a register model should set the regmodel variable of any child 

component that also uses a register model to the corresponding sub-block of its register 

block.  

 A UVM environment should only instantiate a register block if the value of the environment's 

regmodel variable is null.  

 The variable name and the UVM instance name of each child register block in the register 

model itself should correspond to the name of the associated agent.  

 A register block should only model DUT registers that are accessible by the UVM sequences 

associated with the immediately enclosing UVM environment.  

 A UVM environment that uses a register model and that instantiates an agent should 

instantiate and connect a register adapter and a register predictor for that agent.  

 A register model should use explicit prediction to keep its mirror values synchronized with 

the register values in the DUT.  

 The address map variable .map of the predictor in each child register block should be 

assigned to refer to the corresponding address map of the top-level register block.  

 A register sequence that reads or writes registers in a register model should extend 

uvm_sequence and should have a variable named regmodel that stores a reference to the 

corresponding register block.  

 Before starting a sequence that reads or writes registers, set the regmodel variable of that 

sequence.  

Functional Coverage 
 Collect functional coverage in the UVM verification environment using the SystemVerilog 

covergroup construct.  

 Where appropriate, collect functional coverage information in SystemVerilog interfaces using 

the cover property statement.  



 Either place a covergroup in a class as an embedded covergroup or place a covergroup in a 

package and parameterize the covergroup so that it can be instantiated from classes in that 

package.  

 Covergroups should be instantiated within UVM component classes as opposed to within 

transaction or sequence classes.  

 Covergroups should be instantiated within UVM subscribers or scoreboards that are 

themselves instantiated within a UVM environment class and are connected to the analysis 

ports of monitors/agents.  

 Instantiate the covergroup in the constructor of the coverage collector class.  

 In order to collect functional coverage information for internal signals within the DUT, 

encapsulate references to hierarchical paths to the DUT in a single SystemVerilog module (or 

interface), then access that module from the UVM environment using a virtual interface and 

SystemVerilog interface in the usual way.  

 Where coverage collection spans multiple DUT interfaces and thus depends on analysis 

transactions received from more than one agent, use the `uvm_analysis_imp_decl macro to 

provide multiple analysis exports in the coverage collector class.  

 Group coverpoints into multiple covergroups in order to separate coverage of specification 

features from coverage of implementation features.  

 Use a variable coverage_enable within the configuration object of the coverage collector to 

enable or disable coverage collection.  

 Sample covergroups by calling their sample method as opposed to specifying a clocking 

event for the covergroup.  

 Do not sample covergroups more frequently than necessary. Consider using a conditional 

expression iff (expression) with each coverpoint to reduce the sampling frequency.  

 Sample values within the DUT or at the outputs of the DUT. Do not sample the stimulus 

applied to the inputs of the DUT. Sample DUT registers when the register value is changed by 

the DUT, not when it is changed directly by the stimulus.  

 Consider setting the option.at_least of each covergroup and coverpoint to some value other 

than the default value of 1.  

 Do not set option.weight or option.goal of a covergroup or coverpoint.  

 Design coverpoint bins carefully to ensure that functionally significant cases are covered.  

 When designing coverpoints, specify any illegal values or values to be excluded for coverage 

as ignore_bins. Do not use illegal_bins. 
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New SHMAC Verification Framework
The goal of this survey is to gather information regarding automated testing needs on the 
SHMAC development

1. During your development on SHMAC, you worked on:
Mark only one oval.

 Hardware infrastructure (processor cores, system architecture, etc.)

 System software (OS, libraries, etc.)

 Application-specific accelerator

 Other: 

2. Did you test the hardware while implementing your design? How did you do that?
What tools did you use?
 

 

 

 

 

3. What difficulties/challenges did you face regarding verification when implementing
your design?
 

 

 

 

 

4. What features should the new verification framework include in order to overcome
these challenges?
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5. Did you have documented test requirements and/or specifications?
Mark only one oval.

 Yes

 No

6. Were your test cases documented?
Mark only one oval.

 Yes

 No

7. Did you use any formal verification method?
Mark only one oval.

 Yes

 No

8. If yes, which kind of verification method did you employ?
 

 

 

 

 

9. Would you use formal verification if it was easy to apply?
Mark only one oval.

 Yes

 No

10. How did you check for corner cases? Which of the following did you use?
Check all that apply.

 Didn't check for corner cases

 Constrained randomisation

 Fully randomised tests

 Directed tests

 Other: 

11. How did you get information out of a device under test?
Check all that apply.

 Through printfs

 Using a scope

 Using a simulator and examining signals

 Other: 



12/15/2015 New SHMAC Verification Framework

https://docs.google.com/forms/d/1hqgETB0nDkrr7k_D-NbSRhhTC1kCZ2_IsIBsT_gY1Jc/edit 3/3

Powered by

12. Additional suggestions on the implementation of the new verification framework
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