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Sammendrag
Effekten av tykkelse og Poissons tall på spenningskonsentrasjonen og spennings-
gradienten ved roten av gjennomgående hull i plater er systematisk analysert ved
hjelp av tredimensjonale elementanalyser. Effekten av Poissons tall på spennings-
konsentrasjonen ved sfæroidiske hulrom og rundtgående spor i sylindre er også
presentert ved hjelp av todimensjonale elementanalyser. Få løsninger eksisterer
som tar høyde for effekten av den tredimensjonale materialoppførselen på spenn-
ingskonsentrasjonen. Denne masteroppgaven har som mål å utføre en systematisk
gjennomgang av spenningskonsentrasjoner og spenningsgradienter for plater og
sylindere. Formålet med dette er at de metodene og resultatene som presenteres
kan benyttes for å utføre mer realistiske utmattingsberegninger.

Resultatene viser at spenningskonsentrasjonsfaktoren er sterkt påvirket av både
Poissons tall og platetykkelsen. Kt,max befinner seg midt i platen for små tykkelser,
men beveger seg ut mot den fri overflaten med økt tykkelse. For tykkere plater
ligger Kt, max 21.3% over Kt,surf for et sirkulært hull når ν = 0.3, og forskjellen øker
til 40% når ν = 0.45. Resultatene viser også at spenningsgradienten har en tre-
dimensjonal karakter. Ved hullranden av et sentralt gjennomgående hull er spen-
ningsgradienten lavest der Kt = Kt,max og høyest ved den fri overflaten. Verdien av
den laveste spenningsgradienten ligger 1% under den analytiske verdien. Noe som
betyr at den laveste spenningsgradienten befinner seg i det samme punktet som
den maksimale spenningen, og materialvolumet i dette området er derfor under
mye høyere belastning enn hva konvensjonelle metoder for utmatting tar høyde
for. Utmattingsberegninger basert på resultatene fra elementanalysene viser at
levetiden man finner ved konvensjonelle metoder er mye høyere enn i virkeligheten.
Hvis analytiske løsninger anvendes for å beregne levetiden til en plate, kan dette
medføre en levetid som er 57.7%, høyere enn ved bruk av tredimensjonale nu-
meriske resultater. Dette skaper bekymringer for dagens metoder og understreker
viktigheten av forskning på dette området.
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Abstract
The effect of thickness and Poisson’s ratio on the stress concentration factor and the
stress gradient at the notch root of central elliptical through-holes in plates are sys-
tematically investigated using three-dimensional finite element method. The effect
of Poisson’s ratio on the stress concentration factor at central spheres and circum-
ferential grooves in cylinders is also presented using two-dimensional finite element
method. Few solutions in literature considers the three-dimensional behaviour of
structures, even though it greatly affects the properties of the stress concentra-
tion factor. This research aims to provide a systematic and critical presentation
of the stress concentration factors and stress gradients for plates and cylinders.
Ultimately, the goal is to provide methods and data that allows for more reliable
fatigue assessments.

The results show that the stress concentration factor is strongly dependent on
the shape of the irregularity, the plate thickness and the Poisson’s ratio. It is found
that Kt,max moves from the mid-plane towards the free surface of the plate with
increasing thickness, but never reaches it. For large thicknesses, Kt,max is 21.3%
higher than Kt,surf for a circular hole when ν = 0.3, and the difference increases to
40% when ν = 0.45. The stress gradient at the notch root of a central through-hole
is lowest where Kt = Kt,max and highest at the free surface of the plate. The value
of the lowest stress gradient lies 1% below the analytical value. With the lowest
stress gradient positioned at the point of maximum stress, the volume of highly
stressed material is larger than accounted for by conventional methods for fatigue
calculations. A fatigue assessment based on the finite element results show that
the fatigue life is drastically overestimated by conventional methods. An analytical
approach leads to an overestimated fatigue life of 57.7%, compared to a calculation
based on the three-dimensional numerical results. This rises concerns about the
conventional methods, and highlights the importance of research within this field.
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1 Introduction
Structural irregularities, such as holes and grooves, cause a local stress concentra-
tion that exceeds the applied load. The magnitude of such, depends on the shape
of the irregularity, but challenges the fatigue life of the structure. For brevity, the
term notch will be used in reference to any structural irregularity.

The local stress concentration caused by the notch is highest at the notch root,
and measured by the stress concentration factor (SCF). The SCF is labelled Kt
and calculated from

Kt = σmax

S
(1)

where σmax is the maximum stress at the notch root, and S is the applied stress.
As this thesis only considers the gross SCF, the expression Kt is sufficient.

Some of the first classical solutions for SCFs in infinite plates were developed
by Kirsch [1], Kolosov and Inglis [2]. These are, to this day, valuable analytical
solutions. For central spheres in cylinders, some analytical solutions are developed
by Neuber [3], Timoshenko and Goodier [2], and Barber [4]. Many solutions
considering the finite width also exist [5], [6]. Engineering handbooks such as
Peterson [6] present solutions for a wide variety of problems, and is a valuable tool
for engineers. Most of the SCFs presented in engineering handbooks are based
on analytical and numerical solutions for thin plates, and there are no readily
available solutions that consider the three-dimensional properties of structures.

The great improvements of computers has made it possible to perform three-
dimensional finite element analyses (FEA) of high accuracy. Some recent papers
have considered the three-dimensional effects on SCF with the help of FEA. The
results by She and Guo [7] show that the maximum SCF varies with increasing
thickness, and that the value always lies above both the analytical solution and
the value found at the free surface. Yu et al. [8] shows that the SCF also increases
significantly with Poisson’s ratio, for all plate thicknesses. Vaz et al. [9] studied
the finite-width effect, and found that the SCF-response to changes in thickness
also depends on the plate width. If the three-dimensional effect on the SCF gives
results that exceed the analytical solution, this makes fatigue calculations unreli-
able. Bellet et. al. [10] studied the fatigue behaviour of 3D SCFs and showed that
the commonly used 2D solutions for the notch fatigue assessment results in false
prediction of fatigue life.

The relative stress gradient was introduced by Siebel and Stieler [11], and
the table with relative stress gradients that was presented then, is practically the
only one that is widely known [12]. In a recent article, Filippini [12] compared
the accuracy of different stress gradients, calculated from various analytical and
numerical stress solutions. He found that it was difficult to correctly capture the
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gradient based on the solutions that he considered. No approaches to estimate
the stress gradient in literature involve considering the three-dimensional effects,
or even using results form FEA to calculate the stress gradient. This means that
the three-dimensional behaviour of the stress gradient is unknown.

The purpose of this thesis is to provide a systematic and critical presentation
of three-dimensional SCFs and stress gradients, in an attempt to make fatigue
assessments more reliable. The thesis begins with a preliminary study that aims
to prove that FEA is a powerful tool to estimate stress concentration factors and
stress gradients, for both plates and cylinders with irregularities. The preliminary
study is based on 2D FEA and the FE-results are compared to known analytical
solutions.

In the second part, an approach to evaluate 3D behaviour based on results
from 2D FEA is presented. The results from 2D FEA of plates in plane strain
and generalised plane strain are presented, and then these results are compared to
the results from 2D axisymmetric FEA of cylinders. The third part of the thesis
contains the main study of 3D FEA, where the focus is on plates with central
holes. Here the effect of notch shape, thickness and Poisson’s ratio on the SCF
and the stress gradient is carefully evaluated. In the fourth part, to demonstrate
the importance of the results from 3D FEA, a fatigue assessment is performed,
based on the data collected from FEA. Finally, an appendix that contains figures
and information about all the FE-models used, is provided at the end.

In the description of the master thesis there is one topic that is mentioned that
will not be included. This is the spheroidal cavities with their axis perpendicular
to the direction of loading, as it was decided that focusing solely on 3D plates
would be more valuable.
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2 2D FEA as a preliminary reliability study
For finite element (FE) modelling of notches in thin plates, a 2D model subjected
to plane stress is a common approach, where the plane stress condition is used
to replicate the correct behaviour of thin plates. The numerical accuracy can be
tested by comparing the FE results to analytical solutions that are available for
some geometries. From this, the desired accuracy for a 2D model can be reached
through mesh refinement.

Additionally, the preliminary study of 2D models is an important benchmark
for reliable 3D finite element analysis (FEA), as few solutions considering the
thickness of plates exist and no analytical 3D solutions are available.

2.1 Stress concentration at central holes in plates
2.1.1 Circular holes

The first analytical solution to stress concentrations was found by Kirsch [2] in
1898, when he described the stress field around a circular hole in an infinitely wide
plate as shown in Figure 1a. Kirsch’s solution for a plate with a circular hole is
found in Theory of Elasticity [2] and may be expressed in the following way:

Kt = (σy)y=0

S
= 1 + 1

2(a
x

)2 + 3
2(a
x

)4 (2)

where σy is the local stress in the y-direction at x = a, S is the nominal stress at
the gross section, and a is the radius of the hole.

As the stress concentration factor (SCF) is largest at the notch root [2], this is
the region of interest, see Figure 1a. The analytical solution at the notch root of
a circular hole in an infinite plate, where x = a, is:

Kt,∞(x = a) = 1 + 1
2 + 3

2 = 3

where the subscript ∞ is used to emphasise that this is the analytical solution for
an infinite plate, a value that will be used later to evaluate the accuracy of the FE
results.

With finite element method (FEM) a high local accuracy can be applied to
the region of interest, saving computation time on the other regions. Because
of this, the mesh is finest close to the notch root, with an increasing element
density towards the notch root in order to accommodate for the high stresses in
this region. For best accuracy, the element at the notch root should have straight
perpendicular edges of equal length because the square is the most natural shape
of the element [13]. The element at the notch root is also the smallest element in
the mesh, with a non-dimensional element size h/ρ, where h is the length of the
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(a) Kirsch’s circular hole

(b) Inglis’ elliptic hole

Figure 1: The geometry of 2D plates with central holes, as studied by Kirsch for
circular holes and Inglis for elliptic holes (if w =∞). See Eq. (2) and (4).
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Figure 2: Kt from FEA for a thin plate with a central circular hole for varying
a/w. The results with full and reduced integration, as well as 1st and 2nd order
elements are presented.

edges (it is a square, so all sides are equal) and ρ is the radius of curvature at the
notch root. It is expected that the accuracy increases with more elements [13],
but is not automatically achieved, and the effect of h/ρ on FEA and what values
to choose for further analyses will be investigated in a later section.

With a fine mesh close to the notch root and a square element at the notch
root, the results from FEA should be close to the analytical solution. Figure 2
shows the results from a 2D FEA of a plate with a central circular hole where
h/ρ = 0.04. The hole-radius to plate-width ratio a/w was varied between 0.025
and 0.075 to allow for an extrapolation to a/w = 0. As a/w = 0 the plate width
is infinite and can be compared with the analytical solution. From Figure 2 it is
evident thatKt gets closer to the analytical solution when a/w decreases. The best
FEA result gives Kt = 3.0033, which is a deviation of 0.11% from the analytical
solution, showing that it is possible to use FEA to determine SCF-values in good
correspondence with analytical solutions.

Four different graphs are plotted in Figure 2, showing the effect of four different
settings that can be chosen for FE calculations. Firstly, a choice between first order
elements and second order elements must be made, which in practice is a choice
of how many nodes the element has (four or eighth), but mathematically it is the
choice of polynomial to describe the element, either linear or quadratic. Secondly,
a choice between full and reduced integration is presented, which in practice is a
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choice between trying to calculate the results by the lowest over-estimate or by the
lowest under-estimate. Combinations of these four parameters give the following
four element properties: 1F, 1R, 2F and 2R, which is what they are called from this
point, for brevity. Plots for several notch shapes will be studied before deciding
which of these parameters to use further, but already in Figure 2 the 1F element
shows a large error compared to the other FE results and the analytical solution.
The difference between 2F and 2R however, is very small.

2.1.2 Elliptic holes

Research on the stress distribution ahead of notches continued, and in 1909 and
1913, Kolosov and Inglis [1] developed analytical solutions for the stress concentra-
tion near elliptic holes in infinite plates. Schijve presents the result in Fatigue of
Structures and Materials [14], where the analytical equation is written as follows:

Kt = (σy)y=0

S
= 1 + a(a− 2b)(x−

√
x2 − c2)(x2 − c2) + ab2(a− b)x

(a− b)2(x2 − c2)
√
x2 − c2

(3)

where a is the semi-major axis of the ellipse and b is the semi-minor axis, as shown
in Figure 1b, and c =

√
a2 − b2.

With the use of Eq. (3), Kt for any elliptical through-hole in an infinite plate
can be found. The stress concentration is highest at the notch root, where x = a,
and inserting this into Eq. (3) gives

Kt(x = a) = 1 + 2
(
a

b

)
(4)

which is a well-known function that applies for any elliptic shape in 2D plates of
infinite width, including circular holes.

Eq. (4) shows that the SCF increased when the ellipse flattens. The radius of
curvature ρ at the notch root of an ellipse is given by ρ = b2/a, see Figure 1b, so
that the SCF increases with decreasing radius of curvature at the notch root. As
an example, if b = 0.5a and ρ = 1.25, Eq. (4) gives

Kt(x = a) = 1 + 2
( 1

0.5

)
= 5

showing that the SCF is significantly higher than for a circular hole and hence
increases with decreasing radius of curvature. It is evident that the stress gradient
at the notch root increases accordingly.

As long as b < a, the stresses ahead of elliptical holes are higher than for circular
holes and a finer mesh is required to capture this accurately. The actual depend-
ence between element size and curvature h/ρ is studied closely in Section 2.1.4,
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Figure 3: Kt from FEA for a thin plate with a central elliptic hole for varying
a/w. The results with full and reduced integration, as well as 1st and 2nd order
elements are presented.

but the number of elements in the FE model can quickly be increased and shifted
closer to the notch root, to increase the element density in the region of interest.
The FE results with h/ρ = 0.041 for 2D plates with central elliptic holes where
ρ = 1.25 and for varying a/w is presented in Figure 3.

The FE results for an ellipse, when extrapolated to a/w = 0, gives Kt = 5.0075
as the closest result to the analytical solution from Eq. (4). The FEA solution
only deviates 0.15% from the analytical solution, again confirming that FEA is a
satisfyingly accurate tool. Figure 3 shows the results from using all the element
settings, both 1st and 2nd order elements with full and reduced integration, just
like in Figure 2. Again, it is observed that the first order elements are further
away from the analytical solution than the second order elements, and that the
1R elements are most inaccurate.

2.1.3 Holes with U-shaped ends

With the equation for the stress field around central elliptical holes, a wide variety
of notches were covered, but the remaining question was whether this description
could have any relation to notches with similar - but not elliptic - shapes. Ing-
lis found out that the stress concentration factor at the notch root of a central
through-thickness irregularity in an infinite plate was almost solely dependent on
the semi-major axis a and the elliptical shape at the notch root [1]. If the notch
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Figure 4: Hole with U-shaped ends, where the ends merge smoothly into an ellipse.

root of an irregularity is approximately elliptic in shape, Inglis suggested that the
SCF could be found by replacing the irregularity with an ellipse with the same
semi-major axis a and radius of curvature ρ, see Figure 4.

Inglis continued by showing that, if this was true, inserting the radius of
curvature ρ = b2/a into Eq. (4) would be practical. The equation takes the fol-
lowing form

Kt(x = a) = 1 + 2
√
a

ρ
(5)

where the radius of curvature at the notch root of any central notch with similar
geometry to an ellipse can be inserted.

A hole with U-shaped ends is classified as being similar to an ellipse if it has
the same radius of curvature at the notch root [6], this because it then merges
smoothly into an ellipse at the notch root, see Figure 4. If this criteria is satisfied,
Eq. (5) should give a good approximation of the SCF for central holes with U-
shaped ends. As an example, if the U-notch has a radius of curvature ρ = 1.25,
the analytical solution is Kt = 5 and the results from FEA are expected to come
close to this value. Figure 5 shows the Kt results from FEA for varying a/w,
where by an extrapolation to a/w = 0 a deviation of 2.27% and 2.17% for full and
reduced integration respectively. In Figure 5 only 2F and 2R elements are studied,
as the solutions for first order elements fell outside of the figure, again because
they showed low accuracy compared to second order elements. A final evaluation
of the different mesh parameters will be carried out in the next section.

The SCF fond through FEA gives a significant error relative to Eq. (5), but in
this case it is not because the results are inaccurate. In fact, Peterson [6] found that
the result for holes with U-shaped ends might be up to 2% higher than the value
for an elliptical hole with the same curvature at the notch root. Comparing the
FE result for the U-shaped hole and the ellipse it is found that Kt for a U-shaped
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Figure 5: Kt for plates with central holes with U-shaped ends for varying a/w.

Table 1: Kt from FEA for a central U-shaped hole and a central ellipse, where
both models have a/w = 0.05, ρ = 1.25 and h/ρ = 0.041.

Kt FEA
U-shape 5.12604
Ellipse 5.029468

hole is 1.92% higher than for the ellipse when both have a radius of curvature
ρ = 1.25, see Table 1. The U-shaped hole cause higher stress concentrations
than an elliptic holes because the ellipse changes in shape continuously, ensuring
that stresses gradually redistribute around the hole. The U-shaped hole however,
cause abrupt changes in the stress distribution around the hole, resulting in higher
stresses at the notch root. The radius of curvature at the notch root helps to better
redistribute the stress, explaining why the solutions for Kt may still be within 2%
of each other.

The properties of a U-shaped hole - relative to a circle and an ellipse - gives
a wide understanding of how any central notch affects the stress distribution, and
the effect of different shape parameters. As the results are conclusive, the central
hole with U-shaped ends will not be investigated further in this thesis, also because
it is assumed that the deviation from the elliptical results will be of a similar size
for 3D structures.
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2.1.4 Conclusion on mesh requirements based on 2D FE results

By increasing the number of elements in the mesh, the accuracy of the FEA solu-
tion improves, but the computation time increases accordingly [15]. With a pre-
liminary study, the mesh performance can be carefully evaluated to assure the
highest accuracy possible at reasonable computational cost.

Choosing a value a/w for FE modelling:

As it would be inefficient to model an infinite plate, Figures 2, 3 and 5 can be used
to determine a ratio a/w that seems reasonable for FEA. A region at which Kt
is barely affected by the finite width of the plate is desirable, as the actual effect
that a/w has on Kt is not fully understood. The desired a/w gives an SCF that
lies within a small deviation from the analytical solution, but the choice has to be
a compromise between the smallest deviation and the fact that a/w should be of
a realistic real-life size.

From Figures 2 and 3 the SCF decreases towards the analytical solution with
decreasing a/w, as would be expected. Ideally, to make the best choice for a/w,
plates with several a/w ratios would be modelled in 3D, but this is not possible
due to computation time. Because of this, the decision is made based on the 2D
results. The value a/w = 0.05 is chosen because the finite-width effect is minimal
and the size is also practical for modelling. An important reason for this choice
is that in the papers by She and Guo [7] and Yu et al. [8] the same value for a/w
was used, so it makes it very practical for comparing results. Vaz et al. [9] studied
the effect of the finite width and concluded that when a/w ≤ 0.05 the SCF results
were basically unaffected by plate width.

Choosing first or second order elements:

From FEM theory, elements allowing curved edges were expected to show best res-
ults along the edge of the hole [15], due to the curvature. The elements allowing
curved edges are described by quadratic polynomials rather than linear polynomi-
als, which would give a better approximation of a curved boundary. The choice
between these properties in FEA is made when applying first or second order ele-
ments, where the first order elements are those described by linear polynomials
and the second order elements are those described by quadratic polynomials [13].

In practice, what is decided is how many nodes that will be used in the calcula-
tion of each element. If a rectangular 2D element is used as an example, first order
elements only uses nodes at each of the corners, while second order elements use
an additional node at every edge of the element. This leads to four nodes in a first
order element and eight nodes in a second order element, which for a 3D element
- using the same example - would give eight and twenty nodes respectively.
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As 2D FEA is a relatively quick procedure, it was possible to test both first and
second order elements during the preliminary study, to compare the behaviour, as
shown in Figures 2 and 3. The SCF results are very consistent, however the second
order elements outperform the first order elements in all cases that are studied. In
Figure 5, the solutions with first order elements even ended up outside the figure.
For the second order elements, the solutions at a/w = 0 are satisfyingly close to
the analytical solutions, and based on all the preliminary results, using second
order elements is the obvious choice as it provides much higher accuracy.

The computation time is the only factor that could possibly force the need for
first order elements in 3D FEA, but when the difference in accuracy is as large as
the preliminary study shows, second order elements are needed for reliable results
regardless of the increase in computation time.

Choosing full or reduced integration:

After deciding how many nodes each element should have, the numerical integ-
ration method used to calculate the stiffness matrix for each element must be
chosen.

The nodal forces for one element are directly related to the nodal displacements
via the element stiffness matrix [13]. This is the local stiffness matrix that controls
the coupling between all forces and displacements at all nodes in the element. The
global stiffness matrix couples every local stiffness matrix with the global forces
and displacements. Each element of the global stiffness matrix is an integral that
is calculated by numerical integration [13].

For numerical integration, FEM applies an integration formula called Gauss
quadrature to integrate the element polynomials as exactly as possible. The special
property of the Gauss quadrature is that the first term integrates a 1st order
polynomial exactly, the second term integrates a 3rd order polynomial exactly and
the third term integrates a 5th order polynomial exactly. Full integration chooses
the lowest number of terms from the Gauss quadrature that are needed to exactly
integrate the stiffness matrix, which often results in an over-integration because
the element stiffness matrix often has 2nd or 4th order polynomials [13]. Reduced
integration chooses the term that is one lower than for full integration, sometimes
ending up with a more accurate solution [13].

As both integration methods have some weaknesses, a comparison was given
in Figures 2, 3 and 5. All figures show the same consistent behaviour, where full
integration lies slightly above reduced integration for all a/w. In fact, the accuracy
of both methods is satisfying compared to the analytical solution at a/w = 0. As
reduced integration lies closer to the analytical solution it seems to be the best
choice, but both methods have some weaknesses in 3D [13]. Thus it is safest to
control the accuracy by 3D FEA, and the results are presented in a later section.
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Choosing a satisfying value h/ρ for FE mesh:

By comparing Figures 2 and 3 it shows that an ellipse with b/a = 0.5 requires a
finer mesh in order to reach the same accuracy as for a circular hole. This accel-
erated an investigation of the link between the radius of curvature ρ at the notch
root and the length h of the smallest element at the notch root. The investigation
involved up to eight different 2D FEAs with refined meshing at the notch root, and
was performed for both plates with elliptical and circular holes. To assure that all
analyses were as reliable, the perfectly square shape of the notch-root element was
maintained, even though the size was varied.

As no analytical solutions for finite-width plates with central holes exists, rather
than following other available numerical approaches, a new approach was intro-
duced. The new approach was based on the idea that if the element density
increases drastically, the size of the smallest element goes towards zero. Because
the accuracy of a FE model increases with increasing number of elements [13],
perfect accuracy should be achieved when h = 0. Figure 6 shows the differences in
Kt that was found for varying h, and the polynomial that was used and extrapol-
ated to h = 0. This is a numerical approach to determine the assumed accurate
solution, Kt,h=0. The scaling at the y-axis in Figure 6 was chosen for practical
reasons, so that both graphs could be shown in the same figure as the important
result is the value of the polynomial at h = 0.

In Figure 7 the Kt results from FEA for both the ellipse and the circle are
normalised by the suggested numerical solution. The results are plotted for varying
h/ρ values, and the graphs for an ellipse and a circle coincide. This means that the
same accuracy is found in a plate with a central elliptic hole and a central circular
hole, as long as the same h/ρ value is used. The analysis presented in Figure 7
was calculated with 2F elements, but almost exactly the same results are found
with 2R elements due to the normalisation of the y-axis.

Figure 7 is an important resource, as it gives the expected accuracy of an FE
model for any given h/ρ, and the results are actually specific for a/w = 0.05.
It is found from the figure that for h/ρ ≥ 0.06 the solutions for the ellipse and
circle begin to separate. This is not surprising, as both solutions are becoming
less accurate with increasing h/ρ, and the two different notch types will naturally
cause different behaviour under inaccurate conditions.

When choosing a h/ρ value to use for further analyses, it is most important
to consider the computation time involved for the elliptic hole, as it requires a
much finer mesh. Trial and error with 3D FEA was used to find a satisfying value
that the computer could solve, and h/ρ = 0.06 was chosen. With this value, the
expected error is 0.1%, which is extremely low. An accuracy of this level is not
needed for fatigue life calculations, as errors up to 1% will have minor effects on
the fatigue life, but results of high accuracy are always desired.
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Figure 6: The values of Kt as the element size h goes towards zero.

Figure 7: Accuracy of Kt with changing element size h/ρ at the notch root.
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2.2 Stress gradients at central holes in plates
Both the analytical solutions and the results from finite element analysis show
that the maximum stress at the notch root is much higher than the remotely
applied stress. Such high stress concentrations cause high stress gradients, which
affect fatigue assessment [16]. Estimating the stress gradient based on the results
from FEA allows for a quick and specific fatigue assessment, as will be shown
in section 5. The stress gradient is simply the rate of change in stresses at the
notch root, but it is not as straight forward to correctly calculate this value from
FEA. The resulting gradient depends on the number of nodes considered in the
calculation and the accuracy of the FE model.

2.2.1 Analytical solution

The value of the stress gradient changes with the radius of curvature at the notch
root, and the term «relative stress gradient» is commonly used. The relation
between the relative stress gradient χ and the local stress σy was defined by Siebel
and Stieler [11], and is given by

χ =
∣∣∣∣∣∣{dσy(x)/dx}x=a

σy(x = a)

∣∣∣∣∣∣ (6)

where σy is the stress function in terms of the distance x away from the notch
root, while σy(x = a) is the maximum stress at the notch root [14].

However, it is most natural to express the gradient together with the radius
of curvature ρ, and the product χρ is introduced. In the following, this product
is what will be referred to as the «stress gradient». Schijve [14] showed that the
stress gradient for an elliptic trough-hole in an infinite plate could be calculated
from Eq.(6) by inserting Eq.(3), which gives

χρ = (2 + 1
Kt

)

so that for a circular hole where Kt = 3, the stress gradient χρ = 7/3.

2.2.2 Effect of nodal averaging on the FE-results

To determine the stress gradient from FEA, all the data about the stress field
close to the notch root is needed. It requires a lot of time, for 3D FEA in par-
ticular, to extract all this data from the results. In the process of collecting large
amounts of data from many FE models, the quickest way is to collect data from
the corner nodes of each element, nodes 1-4 in Figure 8a. However, these values
are not theoretically accurate. The stresses are most accurately calculated at the
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(a) 2D 8-node Element (b) 2D Mesh close to the notch root

Figure 8: (a) The eight node element at the notch root, where the corner nodes are
grey and crosses represent the Gauss points. (b) The 2D mesh closest to the notch-
root, showing that node number 1 is the only node without shared boundaries.

Gauss integration points within the element for both two- and three-dimensional
elements [13], as indicated by x-symbols in Figure 8a. Stresses calculated at the
Gauss points are interpolated and extrapolated to all other points within the ele-
ment, and the stress at any point within the element becomes a function of the
stresses at the Gauss points [13].

The reason why the nodal stresses are less accurate is because the mesh consists
of many elements that share the same boundaries, see Figure 8b. Stresses are
discontinuous across these boundaries, as stresses change between elements [13].
This means that two neighbouring elements will predict different stress values at
their connective nodes, as these values are based on extrapolations from the Gauss
points within two different elements. This results in up to four different stress
predictions at the same node.

The problem is usually solved by the FE software, that takes the average of
these nodal stresses, and uses this average stress as the nodal stress [13]. Abaqus,
which is the FE software used here, automatically averages the stresses if the node
is shared by two or more elements [17]. Abaqus uses a 75% averaging threshold,
meaning that the difference between the nodal solutions from all connected ele-
ments must be less than 25%. If not, then no data will be written for that particular
node. Bell [13] argues that with a fine mesh, the actual resemblance between the
element nodes are high, as the nodal stresses become very close to the stresses at
the Gauss points. Thus, the problem of nodal averaging is likely to disappear with
fine meshing.

Even with a fine mesh, the accuracy of the node at the notch root is a remaining

15



concern (see node number 1 in Figure 8b). As stresses at nodes shared between
two or more elements are averaged, the node positioned at the notch root will
not be averaged. This node is not shared with any other elements, as seen in
Figure 8b. The stresses at this node are thus calculated using extrapolations
within the element, so that the accuracy when using this node in finding the SCF
and the stress gradient is unknown. In the following, the accuracy at this node
is investigated, and different approaches to optimise the solution are suggested.
One can assume that the FE-software describes the behaviour at node number 1
well, but as it is important that the SCF and the stress gradient is calculated as
accurate as possible, it becomes vital to investigate this closely.

2.2.3 Finding the correct stress gradient from the FE-results

In the FEA post-processing stage it is possible to find the stress distribution close
to the notch root of the structure and derive the stress function from it. The stress
gradient can then be calculated from Eq.(6) by inserting the resulting stress and
slope of the stress function at the notch root. In this case, if the nodal stress at
the notch root is inaccurate, it affects the entire stress function, directly impacting
both the SCF and the relative stress gradient.

A quick way to evaluate the accuracy of the stress function at the notch root
is by studying the SCF at the notch root. This works as a first approach, because
it is assumed that when the SCF is not calculated correctly, the stress gradient of
the stress function must also be wrong. To demonstrate this approach, the FE-
results for a 2D plate with an elliptic through-hole where b/a = 0.5 was studied.
Two different ways to find Kt was used, first by calculating Kt directly from the
nodal stress at the notch root (node 1), and secondly by rejecting the node at the
notch root and extrapolate polynomials from the nodal stresses at the other nodes
(nodes 2, 3, . . . , 8) to x = a. See Figure 8b for the nodal references. The results
are presented in Figure 9, which is used as a first approach to consider the accuracy
of the node at the notch root. If n is the number of nodes considered, a polynomial
of n− 1 degrees is used for all results, apart from the direct solution that is found
at node 1. For the presentation of the results in Figure 9 a linear curve-fit is used
between all of the Kt results, simply to visually enhance the results.

The SCF calculated directly from the nodal stress at node 1 is actually a very
good result, as seen in Figure 9. Since the plate studied has a finite width a/w =
0.05, the analytical solution to the specific problem is unknown. The properties
of Kt with increasing a/w, as previously presented, gives that the solution should
be higher than the analytical solution. The element size itself, h/ρ = 0.041, also
contributes to the elevation of the SCF relative to the analytical solution. The only
other results from Figure 9 that seem to be of similar accuracy is when the first
node is rejected and high order polynomials are applied, meaning that 6-7 nodes
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Figure 9: Difference in Kt at the notch root, when different nodes from the FE-
solution are taken into consideration.

ahead of the notch are considered. This gives a converging SCF value, which is
slightly higher than the value at node 1, but no conclusion as to which is more
accurate can be made. These two solutions are very close to each other. For this
thesis the required accuracy for fatigue applications was set to a maximum error
of 1%, as errors lower than this will have little impact on the fatigue life, and both
the results that were discussed lie below this error. For practical purposes, picking
the nodal stress at node 1 is a much faster way to get results, and will be very
beneficial for 3D FEA in particular. It is reasonable that by choosing this method
to find the SCF, it provides great accuracy and the procedure is simple.

High accuracy predictions of the SCF is very important for relevant fatigue
assessments, but it does not necessarily confirm that the stress function has the
correct stress gradient. It is possible to achieve the same SCF value from func-
tions with different stress gradients at the notch root. There is, however, only
one gradient that is theoretically accurate, and it is important for correct fatigue
assessments to get this property right.

In Figure 10 the stress gradient for a 2D plate with a circular through-hole
(b/a = 1) is presented and the same approaches, both including and rejecting
node 1, are used to find the stress gradient. It is seen from the figure that the
stress gradient increases when more nodes ahead of the notch are considered. When
including node 1, the solution is almost exactly the same as when rejecting node
1, but only when considering the first two and three nodes away from the notch
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Figure 10: Stress gradient at the notch root (x = a) of a circular hole in a plate,
where the number of nodes considered determines the solution.

root. When including more than the three first nodes (nodes 1-3), the solution
decreases slightly as the number of nodes increases. When node 1 is rejected,
the stress gradient continues to increase until five nodes ahead of the notch are
considered (nodes 2-6), and from this point it becomes constant.

The analytical solution for the stress gradient at a circular hole is χρ = 7/3,
but that is for an infinitely wide plate and the effect of a/w and h/ρ on the solution
is unknown, as it is not documented in literature. Hence, the results in Figure 10
are not expected to reach the analytical solution. The solutions both involving and
excluding node 1, separate when considering more than three nodes, but it is not
yet know which of these that is the most accurate solution. In order to make any
further statements about whether to include the first node or not, an investigation
of the impact of h/ρ and a/w on the stress gradient is included.

Figure 11 and Figure 12 show how the stress gradient changes with h/ρ and
a/w respectively. In these figures the solutions are extrapolated to h/ρ = 0 and
a/w = 0. The results in Figure 11 are from an FEA where a/w = 0.05, and the
results in Figure 12 are from an FEA where h/ρ = 0.04, so that the analytical
solution is not expected in either of these cases. However, a combination of these
graphs where both h/ρ and a/w goes to zero should lead to the analytical solution.
As the solution that includes node 1 is already below the analytical solution when
h/ρ = 0 in Figure 11, and according to Figure 12 is expected to continue to decrease
with decreasing a/w, this solution is not approaching the analytical solution.
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Figure 11: The stress gradient solution for varying h/ρ from 2D FEA of a plate
with a central circular hole, comparing the results from nodes 1− 4 and 2− 5.

Figure 12: The stress gradient solution for varying a/w from 2D FEA of a plate
with a central circular hole, comparing the results from nodes 1− 4 and 2− 5.
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When considering the combination of figures for the stress gradient calculated
from nodes 2-5 instead, the anticipated result becomes χρ = 2.3327 as h/ρ =
a/w = 0, which is very close to the analytical value. From this, it is clear that the
stress gradient is best determined from nodes 2-5, which will be used throughout
this thesis. It could be argued that choosing nodes 2-6 could lead to a slightly
more accurate solution based on what was shown in Figure 10. Due to a desire
to keep the number of nodes to an absolute minimum, in order to manage the
workload during post processing of all FEAs, nodes 2-5 is a better choice in this
thesis, as the accuracy is still extremely close to the solution with nodes 2-6.

As the stress field close to the notch root undergoes a rapid increase, caused by
the notch, this region is dominated by high stress gradients. It is seen from Fig-
ure 11 that the mesh density in this region, close to the notch root, clearly affects
the accuracy of the results. Unfortunately, even with today’s powerful computers,
it is difficult to overcome this effect, as computational time is so demanding for
3D models. The lowest mesh density that was possible with 3D FE-models for
this thesis was h/ρ = 0.06, which means that a negative error of about 4% might
be expected for the stress gradient results. A lower stress gradient is more critical
for fatigue, and the error leads to a conservative fatigue assessment.

2.3 Stress concentration at side-grooves in plates
As 2D FE-models solve quickly with today’s computers, it is an excellent way to
test a broad range of properties and learn as much as possible about the stress
behaviour, and thorough testing of the accuracy is possible. A 2D model of a
plate with a central hole has a lot of similarities with a 2D model of a plate with
side-grooves. In fact, the modelling procedure in FEM only requires the changing
of one boundary condition to make a plate with side-grooves from a plate with
a central hole. Because of this, it is very natural to also test the accuracy of 2D
plates with side-grooves in order to investigate the accuracy of FEA properly. The
principle difference between the SCFs for central holes and side-grooves is also a
very central part of the theory on SCFs. A short presentation of the SCF behaviour
for plates with side-grooves hence serve the purpose of demonstrating important
principles from theory as well as investigating accuracy.

Unfortunately, analytical solutions are not widely available for plates with side-
grooves in the same manner as for central holes. However, several equations are
presented in literature that are based on numerical approaches and physical tests.
These equations are widely accepted and it is expected that the FE-results, with
the desired accuracy, should deviate less than 1% from the equations.
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2.3.1 Semicircular side-grooves

Several equations for plates with semi-circular side-grooves are found in literature.
The equations presented by Roark [5] and Pilkey [6] are slightly different, but they
give the same result for a finite width plate with semicircular side-grooves. The
equation as presented by Roark [5] is:

Kt = 1
1−

(
a
w

)
3.065− 3.37

(
a

w

)
+ 0.647

(
a

w

)2

+ 0.658
(
a

w

)3
 (7)

where the term outside the square brackets is the geometric relation between the
net section and the gross section of the structure, as only the gross SCFs is con-
sidered in this thesis, for simplicity.

When a/w = 0.05 Eq. (7) gives Kt = 3.05. In comparison, a 2D FEA for
a plate with semicircular side-grooves gives Kt = 3.067. Here the FE-result is
0.56% higher than the result from Eq. (7). The same mesh was used for the plate
with side-grooves as for a central hole, and it is evident that the accuracy of the
FEA relative to Eq. (7) is very good. It is also emphasised by both Roark [5] and
Pilkey [6] that Eq. (7) gives excellent agreement with test-data when a/w ≤ 0.5.

If comparing the results for side-grooves with the corresponding solutions for
central holes, it is observed that side-grooves cause higher SCFs, and the explan-
ation is that these two models have different constraints. As already shown, the
central hole causes a maximum tensile stress of approximately σy = 3S at the notch
root, but it also causes a compressive stress in x-direction σx = −S above and be-
low the hole. The same behaviour is not possible for a plate with side-grooves,
where stresses in x-direction above/below the semicircle would act perpendicular
to a free surface, thus must be zero due to mechanical equilibrium. In order to
balance the compressive stress above/below the central hole, moments are initi-
ated. These moments cancel out, but they constrain the material above/below the
circular hole if compared to side-grooves. Thus giving an explanation as to why
the SCF is higher for side-grooves than central holes.

2.3.2 Semi-elliptic side-grooves

Plates with semi-elliptic side-grooves are not covered in engineering handbooks,
but Peterson [6] showed that central elliptic holes and central U-shaped holes give
SCFs with a difference of about 2%. Based on this, it is reasonable to assume
a similar relation between semi-elliptic side-grooves and U-shaped side-grooves.
With the same mesh as for central elliptic holes, a similar accuracy is expected.
2D FEA gave Kt = 5.235 for a plate with semi-elliptic side-grooves, when ρ = 1.25
and a/w = 0.05.
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2.3.3 U-shaped side-grooves

In order to compare the FEA results for semi-elliptic side-grooves with literat-
ure, the available equations for U-shaped side-grooves are needed. Together with
the equation for semicircular side-grooves in plates, Pilkey [6] and Roark [5] also
present equations for U-shaped side-grooves. The equation for U-shaped side-
grooves when the curvature at the notch root is ρ = 1.25, based on the presentation
by Roark [5], is:

Kt = 1
1−

(
a
w

)
4.935− 4.878

(
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w

)
+ 0.515
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w

)2

+ 0.432
(
a

w

)3
 (8)

which, just like for semicircular side-grooves, gives the gross SCF.
When inserting a/w = 0.05, Eq. (8) gives Kt = 4.939. The result is question-

able straight away, as the result is below the analytical SCF for a central elliptic
hole. It turns out, by consulting the corresponding chart developed by Peterson [6],
that the solution for U-notches becomes asymptotic as the ratio ρ/(w−a) becomes
significantly small. For this thesis, the value is extremely small, and not covered
by the chart. Hence, it becomes reasonable to assume that the equation is invalid
for the specific case studied.

If considering the same example using FEA, Kt = 5.36 for a plate with U-
shaped side-grooves. When comparing the FE-results for U-shaped side-grooves
and semi-elliptic side-grooves, the difference is 2.4%. The correspondence between
the FE-results is very consistent, as Peterson [6] suggested a difference of 2% for
central elliptic and central U-shaped holes. The general accuracy of the FE-model
has shown to be very high to this point, and it is most likely to be within 1% error
of the potential analytical solution.

The FE-results show great consistency, where the SCF increases as expected
when going from a plate with semi-elliptic side-grooves to a plate with U-shaped
side-grooves. Also, the FE-results provided great accuracy for the plate with
semicircular side-grooves. There is no doubt that FEA is a powerful tool as it has
shown a consistent and high accuracy, throughout the preliminary study.
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3 2D FEA used for 3D evaluation of structures
It is commonly assumed that 3D FEA best describes real structures, but some
methods exists to calculate 3D behaviour from simple 2D FE models. Two cases
that will be studied in the following are 2D axisymmetric models of cylinders and
2D models of plates in plane strain. Plane strain is the theoretical state of a plate
when it has infinite thickness, and 2D plane strain models can thus approximate the
behaviour of plates with large thicknesses. 2D models of axisymmetric cylinders
on the other hand, is the most conventional and accurate way to model cylinders
that have one axis of symmetry, as well as being a simple method that is quickly
performed.

Recent literature points at four important impacts on the maximum SCF in
three-dimensional structures. These are the thickness of the plate, the Poisson’s
ratio of the material, the width of the plate and the notch shape. These findings
are credited to She and Guo [7], Yu et al. [8], Vaz et al. [9] and Yang et al. [18].
The 2D FEA of plates in this section focuses on plates with a central circular hole,
and because the plate width is constant (a/w = 0.05) and the thickness is infinite
(plane strain), the effect of the Poisson’s ratio on Kt and the stress gradient is
what will be studied closely. To find the effect of thickness on Kt and the effect of
Poisson’s ratio on plates with different thicknesses, 3D FEA is required. For the 2D
FE study of axisymmetric cylinders, the cylinder radius is constant (a/w = 0.05),
but the effect of both the notch shape and the Poisson’s ratio will be studied.

3.1 Theoretical approach to plane strain
3.1.1 Hooke’s law

For this thesis, only isotropic linear-elastic materials are considered. An isotropic
material has the same properties in all directions within the material [19], and
linear-elastic materials have a linear relationship between stresses and strains,
where the strain returns to zero upon unloading [20]. Hooke’s law describes the
linear relation between stress and strain [2]. If a structure is loaded in uni-axial
tension in the y-direction, see Figure 13a, the elastic elongation by Hooke’s law is

εy = σy
E

(9)

where E is the Young’s Modulus of the material.
When the structure is subjected to loading in one direction, it affects the ma-

terial behaviour in the other two directions as well. The Poisson’s ratio is the ratio
between the transverse strain and the axial strain [2], given as
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(a) Cartesian coordinate system. (b) Cylindrical coordinate system.

Figure 13: The difference between the coordinate systems for plates and cylinders.

ν = −εz
εy

(10)

where εz is the transverse strain through the thickness of the structure (the z-
direction). The same equation can be found for the strain in x-direction simply
by replacing εz with εx.

From Eq. (9) and Eq. (10) it is found that two independent elastic constants
are needed to characterise the isotropic linear-elastic material [20], the Young’s
Modulus E and the Poisson’s ratio ν.

In this section, all equations are presented using Cartesian coordinates, simply
for brevity. Figure 13b shows the cylindrical coordinate system within a cylinder,
which can be compared to the Cartesian coordinates as shown in Figure 13a. The
concern is that by including cylindrical coordinates, it could lead to confusion
as the axial strain for cylinders is labelled εz. Further, the transverse strains in
the cylinder consist of the circumferential strain εφ and the radial strain εr. The
cylindrical coordinates will however be used when considering 2D axisymmetric
cylinders, but only then.

When giving Eq. (10) a closer look, it gives negative transverse strains, as
the Poisson’s ratio is positive for most materials [20]. This means that while the
structure is elongated in the y-direction, the structure has a contraction in the
two other directions [2]. The transverse strains can be expressed in terms of the
applied stress σy, as follows:

εx = εz = −ν σy
E

(11)
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where the transverse strains are equal because the material is isotropic.
If the plate, or even just an infinitesimal piece of the material, is loaded in

three directions, the coupling between all three contributions can be found by
superposing the strains [2] so that

εx = 1
E

[σx − ν(σy + σz)]

εy = 1
E

[σy − ν(σx + σz)]

εz = 1
E

[σz − ν(σx + σy)]

(12)

which ultimately leads to a 3D version of Hooke’s law.

3.1.2 Plane strain

An infinitely thick plate is, by definition, in plane strain (PE) [2]. With PE, it
follows that there are no out-of-plane strains, so that εz = 0. Even though an
infinite thickness is purely theoretical, the PE solution is often used as an approx-
imate for plates with a very large thickness compared to all the other dimensions.
If inserting the PE condition εz = 0 into Eq. (12), it gives:

0 = 1
E

[σz − ν(σx + σy)]

and by re-arranging the equation, it is found that

σz = ν(σx + σy) (13)
when a structure is in plane strain.

Eq. (13) shows that the stress appearing in the thickness-direction is a function
of the in-plane stresses, σx and σy. At the notch root σx = 0 and σy reaches its
maximum value, and the stress in z-direction simplifies to

σz = νσy,max (14)
giving a linear relationship between the stress in the loading direction and the
thickness direction for plates in plane strain. As seen, the ratio between these
stresses is given by the Poisson’s ratio of the material.

3.1.3 Generalised plane strain

The plane strain approach involves a plate with infinite thickness and no out-of-
plane strain. The general plane strain (GPE) approach suggests that the out–
of–plane strain reaches a constant (εz = constant), rather than go to zero, when
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a certain plate thickness is reached [2]. Such behaviour is more realistic, as an
infinite thickness is not achievable for real structures.

In order for the material to have constant strain in z-direction, the strain far
away from the notch root must equal the strain at the notch root. The strain far
away from the notch root can be found by rewriting the expression for εz found in
Eq. (12). If considering the strain at the gross section of the plate, σy = S while
σx = σz = 0, so that

εz∞ = −ν S
E

(15)

where εz∞ refers to the strain at the gross section, where the stress is applied.
As already mentioned, the condition for GPE requires that the remote strain

equals the strain at the notch root, which can be expressed as follows:

εz = εz∞

which means that Eq. (15) gives the constant strain required for GPE.
Inserting the expression for constant strain into Eq. (12), the stress at any point

inside the material can be calculated. The notch root is the most interesting point
to study, due to the high stress concentration, and here σx = 0. The equation for
εz, as taken from Eq. (12), reduces to:

−ν S
E

= 1
E

[σz − νσy]

If rearranging the variables, the equation for the stress in thickness direction
under GPE is found:

σz = ν(σy − S) = ν(Kt − 1)S (16)
which depends on Kt (the SCF in y-direction) and the Poisson’s ratio.

3.2 2D FEA of plates in plane strain
The FE-software is able to give solutions for plates with infinite thicknesses, simply
by changing the element settings to plane strain (PE). The element settings can
also be set to generalised plane strain (GPE), which is the expected behaviour
when plates reach a certain finite thickness. In this section, both these features
will be utilised and the results are compared. These features are valuable options
to 3D FEA, as 3D models often require extreme computation time. The actual
change in SCF with increasing thickness is studied by 3D FEA in a later section,
where the solution approaches GPE as the thickness increases.
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3.2.1 Central circular holes

The results from 2D FEA for plates with a central circular hole with varying
Poisson’s ratio is presented in Figure 14. Figure 14a shows the behaviour in PE
and Figure 14b shows the behaviour in GPE. It turns out that the in-plane stresses
for infinitely thick plates are the same as for thin plates (in PS), but with an
additional stress component in the thickness direction. Kt in Figure 14a, called
Kty to avoid confusion, is the same value that was found for thin plates in the
preliminary study.

When the plate is in GPE the value of Kty is slightly higher, but in both cases
unaffected by varying Poisson’s ratio. The SCF in the thickness direction, Ktz, is
the only component that changes with Poisson’s ratio, where the effect is highest
for PE. The difference between the solutions in PE and GPE is small for Kty, but
high for Ktz. This is expected, as GPE is more trusted than PE in replicating the
real thickness-effect on structures.

The dependence between the through-thickness stress and the Poisson’s ratio
under PE was shown in Eq. (14), where Ktz is the product between Kty and ν,
which is also visible when studying the results in Figure 14 closer. The equation
for the through-thickness stress under GPE was shown in Eq. (16), which directly
explains why the GPE results give a lower SCF. As Ktz is given by ν(Kty − 1),
which is the result for PE minus the Poisson’s ratio. The relationship is visible if
comparing Figure 14a and Figure 14b. It is also seen in the figures that Ktx = 0,
as stress perpendicular to a free surface must be zero, so that there can be no
stresses acting in the x-direction at the notch root.

The use of 2D FEA and GPE will be further studied by looking at the results
for semicircular side-grooves in plates. These results will be compared with the
behaviour of cylinders, used to evaluate the accuracy of the results.

3.2.2 Semicircular side-grooves

In the preliminary study it was shown that plates with side-grooves cause higher
SCFs than plates with central holes, and that this was due to a difference in
constraints. Thus, it is interesting to further evaluate the behaviour of plates
with side-grooves, also because these results can be compared to cylinders with
circumferential grooves, which is a very common design.

The results from FEA for plates with semicircular side-grooves are shown in
Figure 15. Figure 15a shows the results when the plate is in PE and Figure 15b
shows the results for GPE. Immediately it is seen that the results are very similar
to those for central circular holes, where the only difference is that the stresses
are slightly higher. This observation is true because Kty is higher for plates with
side-grooves, as already shown in the preliminary study, and due to Eq. (14) and
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(a) Plane strain

(b) Generalised plane strain

Figure 14: Results from FEA for a plate with a central circular hole when the
plate is in a) plane strain and b) generalised plane strain.
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(a) Plane strain

(b) Generalised plane strain

Figure 15: Results from FEA for a plate with semicircular side-grooves when the
plate is in a) plane strain and b) generalised plane strain.
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Eq. (16) the through-thickness SCF depends on Kty and increases accordingly.
Apart from this, the relationship between the SCF for PE and GPE is the same as
for plates with central holes, as the same equations (Eq. (14) and Eq. (16)) apply.

3.3 3D cylinders from 2D axisymmetric FE-models
Even though cylinders are three-dimensional structures, they have an axisymmetric
property that makes FE-modelling very simple. In fact, the complete 3D behaviour
of cylinders can be found from a 2D axisymmetric model. What this means is that
the cross section of the structure can be modelled, and by applying a rotational
symmetry to one of the edges, the FEA understands the full extent of the problem
and gives 3D results. In combination with the results for plates in GPE, it provides
a good outlook on the properties of SCFs and the stress gradient. In particular,
the behaviour related to the transverse/circumferential material contraction.

A special mesh, using axisymmetric elements, is applied to achieve the correct
results. Apart from this, the same meshing technique as for plates can be applied,
as both ρ and a/w are unchanged. The mesh sensitivity towards notch shape
and finite width was shown in the preliminary study, and as long as these are
considered it is reason to trust that the accuracy is maintained.

3.3.1 Central spheres and spheroids

Analytical equations for stresses at central spheres in cylinders are presented both
by Timoshenko and Goodier [2], and by Barber [4]. Both approaches give the same
solution at the notch root of the sphere. The analytical equations, as presented
by Timoshenko and Goodier [2], are:

σr
S

= − 6
7− 5ν

(
a

r

)5

+ 6
7− 5ν

(
a

r

)3

(17)

σz
S

= 9
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(
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2(7− 5ν)

(
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)3
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σφ
S

= 3
2(7− 5ν)

(
a

r

)5

− 6− 15ν
2(7− 5ν)

(
a

r

)3

(19)

where r is the cylindrical coordinate in the radial direction, see Figure 13b, away
from the centre of the sphere so that r = a is at the notch root.

Furthermore, an analytical solution for the stresses at spheroids (b 6= a) in
infinite bodies was developed by Neuber [3], and a chart based on these results is
found in Peterson [6]. The actual presentation of Neubers analytical equations in
«Theory of Notch Stresses» [3] is too comprehensive to consider here. However,
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Neuber’s approach began by finding the solution for a spherical hole [3], and his
equations give the same stresses at the notch root as Timoshenko and Goodier [2].

Since r = a at the notch root of the sphere, the stress concentration factors
acting in all three directions at the notch root can be found from Eqs.(17)-(19).
The SCF at the notch root of a central sphere in a cylinder can be found from

Ktz = 27− 15ν
2(7− 5ν) (20)

Ktφ = 15ν − 3
2(7− 5ν) (21)

Ktr = 0
for any given Poisson’s ratio.

If ν = 0.3, Ktz = 2.045, which is considerably lower than the theoretical SCF
for a circular hole, Kt = 3. This observation is well known and reasonable because
the stress can redistribute about the circumference of a sphere more smoothly than
about a hole constrained by two free plate-surfaces. The radial stress is zero, as
its direction is perpendicular to the hole.

Eqs.(20)-(21) show that the SCF for a sphere depends on the Poisson’s ratio,
and in Figure 16 these equations are plotted together with the results from a 2D
FEA, to show the effect of Poisson’s ratio. In Figure 16, the FEA results and
the analytical solution are in complete agreement. The circumferential SCF, Ktφ,
increases with increasing Poisson’s ratio, as was also observed in the thickness-
direction of plates in PE and GPE.

The FE-results for the SCF in the loading direction of cylinders,Ktz, for spheres
(b/a = 1) and spheroids (b/a = 0.5 and b/a = 2) are presented in Table 2. The
SCF increases with decreasing radius of curvature at the notch root, which is
consistent with the theory for plates [1]. The analytical solution for a central
sphere is also presented in Table 2, showing a deviation of 0.025% for the FE
results. This deviation is very small, again confirming the high accuracy of the
FE-model. The accuracy for a cylinder with a central spheroid is assumed to be
within a similar accuracy, as the same mesh with h/ρ = 0.04 is used. The chart
presented in Peterson [6] confirms that the FE-results for spheroids are close, but
the accuracy cannot be confirmed as the chart does not cover the relevant region
in detail.

The analytical stress gradient at the notch root of a sphere can be calculated
from the stress distribution in Eq.(18), as given by Timoshenko and Goodier [2],
by using the equation for the relative stress gradient Eq. (6). In Figure 17 the
analytical result is compared to the stress gradients calculated from the FE-results,
by using the method developed in the preliminary study. The stress gradient is
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Figure 16: Kt results from FEA for a cylinder with central sphere for changing
Poisson’s ratio, compared to the solution by Timoshenko and Goodier [2].

Figure 17: The stress gradient χρ at the notch root of a central sphere with
changing Poisson’s ratio. The stress gradient found from the analytical solution
by Timoshenko and Goodier [2] is also presented.
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Table 2: Kt from FEA for spheroidal cavities in cylinders with varying notch
shape, compared with the analytical solution by Timoshenko and Goodier [2].

b/a = 0.5 b/a = 1 b/a = 2
Ktz from FEA 3.32321 2.04448 1.44105
Ktz from [2] - 2.045 -

the same as for a circular through-hole in a plate, giving χρ = 7/3 when ν =
0.3. The figure shows that the accuracy of the FEA is great, as the result is
almost exact. For large Poisson’s ratios there is a small difference between the
results, but this is the region with highest stress gradients, and a slight deviation
is not surprising. Overall, the FEA gives almost perfect accuracy compared to the
available analytical solutions, both for the SCF and the stress gradient.

3.3.2 Circumferential grooves

Analytical solutions to circumferential grooves are not available in literature, but
it should be mentioned that Neuber [3] developed a theoretical solution for deep
hyperbolic circumferential grooves. As these solutions are extensive, and not rel-
evant to the shapes studied here, no further details are presented. However, based
on the results, Neuber developed an equation (see Peterson [6] pg.59) which he
suggested to use as an approximate for grooves of arbitrary shapes. Peterson [6]
applied this equation to produce a chart of approximated SCFs for U-shaped cir-
cumferential grooves in cylinders. Based on this, Roark [5] presents the following
approximate equation for semicircular grooves in cylinders:

Kt = πw2

π(w − a)2

[
3.04− 5.42

(
a

w

)
+ 6.27

(
a

w

)2

− 2.89
(
a

w

)3]
= 3.085 (22)

where the fraction outside the square brackets turns the result into a gross SCF.
When a/w = 0.05, the result from Eq. (22) is Kt = 3.085. From FEA of

cylinders with semicircular circumferential grooves, Kt = 3.142 was found. Thus
the FEA gives a 1.85% error relative to Roark’s solution. The accuracy is expected
to be much higher when compared to an analytical solution of the problem, as the
FE-model is the exact same one as was used for central spheres. The only difference
is that one boundary condition is changed. This means that the same mesh is used,
where h/ρ = 0.04. This model provided great accuracy for cylinders with central
spheres, where the results were almost equal to the analytical solution. The results
found from FEA for circumferential grooves rises a concern about the accuracy of
Roark’s solution, and further comparison to Eq. (22) becomes less relevant.
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Table 3: Kt from FEA for circumferential grooves in cylinders with varying notch
shape, compared to available solutions in literature [5].

b/a = 0.5 b/a = 1 b/a = 2
Kt FEA 5.38474 3.14239 2.06185
Kt [5] - 3.085 -

Figure 18 presents the FE-results for cylinders with semicircular circumfer-
ential grooves and the effect of Poisson’s ratio on the results. From the figure
it is observed that the SCF in the circumferential direction (Ktφ) increases with
increasing Poisson’s ratio, while the SCF in the loading direction (Ktz) slightly
decreases. In comparison to the results for central spheres, Ktφ is significantly
higher for circumferential grooves and the effect of Poisson’s ratio is stronger. It
is also found that Ktz is higher for circumferential grooves than it is for central
spheres, which is caused by the strong radial contraction of the cylinder. This
causes a bottleneck in the stress distribution through the cylinder, causing abrupt
changes, and an elevated stress concentration is the result. This elevated value is
very close to the SCF for plates with side-grooves, and this similarity is further
investigated in the next section.

To compliment the semicircular FE-results, two other notch shapes were stud-
ied. In Table 3 all SCF results from FEA for cylinders with circumferential grooves
are presented. The Poisson’s ratio ν = 0.3 for all these analyses. The table also
includes the solution from Roark [5]. It was desired to compare Roark’s equations
for U-shaped circumferential grooves to the FE-results for semi-elliptic grooves as
well, but these equations were not valid for the cases studied here.

Accompanied by higher SCFs than for central spheres, the stress gradients
are lower for most Poisson’s ratios as well. This means that the region of highly
stressed material is much higher for cylinders with circumferential grooves, which
is known from theory [16]. The behaviour of the stress gradient for semicircular
grooves is presented in Figure 19, and the results are calculated based on the stress
distributions found from FEA. The stress gradient when ν = 0.3 can be found from
Figure 19, giving χρ = 2.239.
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Figure 18: Kt results from FEA for a cylinder with semicircular circumferential
groove for changing Poisson’s ratio.

Figure 19: The stress gradient χρ at the notch root of a cylinder with semicircular
circumferential groove, with changing Poisson’s ratio.
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3.4 Similarities between cylinders and plates in GPE
It was previously shown that plates in PE and GPE gave different estimations of
the SCF, and it was mentioned that GPE was the most realistic approach. It is
assumed that an FE-model in GPE gives a good description of the stress acting
in the thickness-direction. The FE-results for plates and cylinders can be used to
prove this assumption. The thickness direction of plates and the circumferential
direction of cylinders will here be generalised as the «transverse direction».

Figure 20a compares the results for transverse stresses in plates with side-
grooves (both in PE and GPE) and cylinders with circumferential grooves. It is
seen that the plate in GPE gives a very similar result as the cylinder. The explan-
ation is that when a plate is thick enough, it will be difficult for the material to
know whether it is inside a plate with side-grooves or inside a cylinder with a cir-
cumferential groove. For plates with a certain thickness, the material is assumed
to reach GPE, where the through-thickness strain is constant. For cylinders, the
strain in the circumferential direction is also constant, due to the rotational sym-
metry. The conclusion from this is that a plate with side-grooves in GPE and a
cylinder with a circumferential groove behave similarly.

The geometries of the two cases are also related, as the cross section of the
cylinder with a circumferential groove makes an exact 2D plate with side-grooves.
This is why the SCFs in loading direction are also similar. From FEA, where
ν = 0.3, Kt = 3.088 for the plate in GPE and Kt = 3.141 for the cylinder.

Central holes in plates and central spheres in cylinders have a considerable
difference in constraints, and the same analogy as presented for grooves does not
apply. Due to this, the SCF is lower at the notch root of a sphere than it is at
the notch root of a circular hole. And the response to increasing Poisson’s ratio
is not expected to be equal. Even though the cross-section of a cylinder with a
central sphere is a 2D plate with a circular hole, the constraints of these two models
are different. The difference between the stress behaviour is directly visible when
comparing Eq. (21) for a sphere and Eq. (16) for a plate with central hole in GPE.

Figure 20b shows the difference in transverse stresses between a cylinder with
central sphere and a plate with a central hole, both when the plate is in GPE
and PE. Both the cylinder and the plate in GPE responds similarly to increasing
Poisson’s ratio, but the solutions are quite different, as explained by the analytical
equations.

Based on the analogy that the transverse SCF for thick plates with side-grooves
and cylinders with circumferential grooves should be similar, the results show that
plates in GPE give the most realistic real-life results from 2D plates.
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(a) Cylinders with circumferential grooves and plates with side-
grooves in PE and GPE.

(b) Cylinders with central spheres and plates with central holes.

Figure 20: The results from FEA forKtz with changing Poisson’s ratio for cylinders
and plates in PE and GPE.
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4 3D FEA of plates with central holes
The results presented so far, were all based on 2D FEA and solutions from the
literature. This has provided a solid overview of the expected behaviour, both from
the SCF and the stress gradient, for varying notch-shapes. Most importantly, the
requirements for accurate FE-results were established from 2D FEA. These results
are crucial for critical compilation of 3D stress data.

The following 3D study will focus only on central holes in plates, as this will
allow for a deeper investigation of all affecting parameters. The study focuses on
the effect of Poisson’s ratio and thickness, as these properties are highlighted in
recent papers [7]–[9]. The effect of these properties on the stress gradient is yet
unknown, but is thoroughly studied here.

4.1 3D modelling technique
A 3D FE-model is made by a similar procedure as presented for 2D models, where
the main difference is that the actual thickness of the plate is modelled. For 2D
plates, only a quarter of the plate was needed for analyses, due to symmetry. By
adding the additional symmetry through the half-thickness for 3D plates, only 1/8
of the plate is needed for FEA. The main incentive for utilising symmetry is to
reduce computation time, and the computation time is highly challenged when
running 3D FE-models.

Meshing of the 3D model is also very similar to the 2D model, but 2D elements
and 3D elements have some differences. The main difference is that 3D elements
have three degrees of freedom at every node, while 2D elements have two. 2D
elements have 4-8 nodes, all in the same plane, while the 3D elements have 8-20
nodes in three different planes. These are the main reasons why 3D calculations
take much longer time to solve.

The desired mesh properties for 2D models were found from the 2D preliminary
study, which resulted in satisfying accuracy. The same mesh can be used in 3D,
but additional meshing is needed through the thickness of the plate. Figure 21
shows the mesh used for 3D FEA. The maximum SCF is expected to move towards
the free surface of the plate with increasing plate-thickness [7]–[9], and the mesh
density is highest in this region to accommodate for this. In Figure 21a is is seen
that the mesh density gradually increases towards the free surface, reducing the
number of elements needed and hence the calculation time [15].

Elements with straight perpendicular edges give highest accuracy [13]. Thus,
perfectly cubic elements are used at the notch root, at the free-surface, see Fig-
ure 21a. This means that moving from the mid-plane towards the free surface, the
elements at the notch root become more like a perfect cube. The length of the
cubic element is given by h/ρ = 0.06 for all 3D models, as found from the prelimin-
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(a) Mesh at the notch root (b) Mesh at the free-surface, the same as in 2D

(c) Perspective view of the 3D mesh

Figure 21: 3D FE-mesh for a plate with a central circular hole
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ary study. The actual number of elements and total degrees of freedom is different
for every 3D model, increasing with increasing thickness and for decreasing radius
of curvature ρ.

She and Guo [7] showed that the ratio of largest–to–smallest elements in the
thickness direction affects the SCF results. They showed that it affected the SCF
at the free-surface (Kt,surf) the most, while the maximum SCF (Kt,max), and the
overall stress concentration through the thickness, remained rather stable. Thus
this is not a concern, as the main focus is on the behaviour of the maximum SCF.
However, all 3D FE-models used are well within the convergent largest–to–smallest
element ratio, without a specific statement.

By applying the same mesh as in 2D, to the 3D models, it reduces the need for
a 3D preliminary study, saving time. As there are no analytical 3D solutions to
compare with, the preliminary 2D results are actually the only reliable results to
base further 2D and 3D analyses on. The final accuracy of the 3D model can be
controlled by a 3D PE analysis, as will be presented in the following.

4.2 Plane strain solution
Through extensive work with thin plates, a good resemblance between analytical
solutions and the FE-results was assured. This indicated that the FE-models that
were used, gave theoretically accurate results for thin plates. It is assumed that
the accuracy remains when transitioning from 2D FEA to 3D FEA, however this
is not yet tested. To verify the actual accuracy, the FE-results for 2D plates can
be compared to FE-results for 3D plates in PE. This is possible because σy at the
notch root should be equal for plates in PS and PE. The PE condition for a 3D
model can be found by restricting the displacement in z-direction, as suggested by
She and Guo [7]. This method is used as a tool to further control the accuracy of
the FE-models, assuring that the accuracy is maintained when transitioning from
2D FEA to 3D FEA.

The results from 3D FEA in PE for various central notches are presented
in Table 4, and the corresponding results from 2D FEA are also provided, for
comparison. The deviation between these results can be calculated from

% Error = 100×
(
Kt,3D

Kt,2D
− 1

)
(23)

which gives the percent error of the 3D model relative to the 2D model.
Table 4 shows that the 3D models deviate by 0.07%−0.1% from the 2D results,

for the notch shapes that were studied. From the preliminary study it is also known
that the accuracy of the 2D model is high, with a maximum deviation of 0.1% from
the estimated theoretical solution Kt,(h=0). Ultimately, the 3D FE-results for PE
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Table 4: Results from 2D FEA and 3D FEA in PE, where a/w = 0.05 and
h/ρ = 0.06 for all models.

Results from FEA b/a = 0.5 b/a =1 b/a = 2
Kt 2D plane stress 5.0303 3.0242 2.0249
Kt 3D plane strain 5.0338 3.0268 2.026966

% Error in 3D 0.07% 0.09% 0.1%

are extremely accurate, providing good grounds for reliable 3D SCFs and stress
gradients. As a prerequisite for fatigue life calculations, it was desired that the
3D FE-results had errors less than 1%. The results show much higher accuracy
than this, even without introducing extreme mesh requirements. In comparison,
She and Guo [7] states that their models were within 0.7% error in all cases that
they studied. Thus the accuracy of the 3D FEA that is used here is considerably
higher than what has been used in previous research.

The PE analysis can also be used to check the difference in accuracy between
full integration and reduced integration, where full integration was used in the
results presented above. Figure 22 shows the SCF results for both full integration
and reduced integration, where it is seen that full integration gives an overestimate
of Kt relative to the estimated theoretical solution for h/ρ = 0.06 (from Figure 7,
Section 2.1.4). Reduced integration gives an underestimate of the theoretical Kt-
value for h/ρ = 0.06.

Figure 22a shows the results for a circular hole, while Figure 22b shows the
results for an ellipse where b/a = 0.5. For an elliptic hole, both the solutions for full
and reduced integration are further away from the estimated theoretical solution
than for a circular hole. It is reasonable that such effects increase with increasing
SCF. However, the difference between full integration and reduced integration,
relative to the theoretical solution, seems to be consistent between the figures.

Even though the accuracies found in Table 4 are from 3D FEA using full
integration, the accuracies when using reduced integration are also great. The
results presented in Figure 22a and Figure 22b show errors of only 0.26% and
0.21%, respectively, for reduced integration. Based on this, both full and reduced
integration can be chosen with confidence for the models studied. As will be shown
in the next section, only reduced integration was achievable.

4.3 The 3D stress distribution
The stress distribution ahead of a thin plate is two-dimensional, as a thin plate is
in PS which requires that σz = 0 everywhere. Figure 23 shows the typical stress
distribution from 2D FEA, ahead of different central elliptic holes. The stress
acting in x-direction is always zero at the notch root, as it acts perpendicular to
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(a) Plate with central circular hole in PE.

(b) Plate with central elliptic hole in PE.

Figure 22: SCF for plates in PE with central a) circular holes and b) elliptic holes,
comparing the effect of full and reduced integration. The results are compared
with the estimated theoretical result when h/ρ = 0.06.
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Figure 23: The stress distribution ahead of a central notch in a 2D plate, showing
the 2D FE-results for both elliptic and circular holes.

the free surface. The stress in y-direction has its maximum at the notch root, and
decreases towards the value of the applied stress far away from the notch. The
maximum stresses seen in Figure 23 are consistent with Inglis’ equation, Eq. (4),
where the maximum stress increases as b/a decreases. The stress distribution for
an ellipse with b/a = 2 is very moderate compared to the others, and the main
focus for the 3D study of plates will be on holes where b/a = 0.5 and 1, as they
cause higher stress concentrations.

If considering the axial stress, σy, it is possible to grasp the extent of the 2D
behaviour, while trying to imagine how σy changes through the thickness of a 3D
plate becomes complicated. Figure 24 shows the actual stress distribution of σy
through the thickness of a plate, in the region close to the notch, as found from
3D FEA with t/a = 3. Figure 24a shows the results for a central circular hole and
Figure 24b shows the results for a central elliptical hole with b/a = 0.5. A more
dramatic stress distribution is observed for the ellipse than for the circle.

Figure 24 confirms that σy changes through the thickness of the plate, and the
effect of thickness and the Poisson’s ratio on Kt will be studied closely. For 3D
structures, σx = 0 at the notch root, but a stress σz is acting in the thickness-
direction of the material. The behaviour ofKtz will thus also be studied thoroughly.
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(a) Stress distribution σy ahead of a circular hole

(b) Stress distribution σy ahead of an elliptic hole (b/a = 0.5)

Figure 24: The 3D stress distribution of σy ahead of a central a) circular hole and
b) elliptic hole from 3D FEA.
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Figure 25: Maximum SCF from FEA with increasing plate thickness, for both full
and reduced integration. Equations from recent papers [7], [9] are also presented.

4.4 The effect of thickness
Apart from the analytical solutions for plates in PS and PE, the stress distribution
ahead of notches of any real plate thickness is unknown, or at least not fully
established and accepted. 3D FEA makes it possible to study the stress behaviour
in plates of any plate thickness, and the preliminary study shows that it is a reliable
tool.

4.4.1 The effect of thickness on the stress concentration factor

She and Guo [7] and Vaz et al. [9] both have developed equations to approximate
the effect of thickness on the maximum SCF. The maximum SCF at circular holes,
found from 3D FEA for many plate thicknesses, is compared to these equations in
Figure 25. The FE-results are here normalised by the analytical solution Kt∞ = 3,
as this is the approach used in the papers [7], [9]. Both the FE-results and the
equation by She and Guo are specific for a/w = 0.05, while the equation by Vaz
et al. is valid for all ratios. The effect of finite width is low when a/w = 0.05, the
equation by Vaz et al. becomes inaccurate for this specific case. With increasing
thickness, the SCF is expected to reach a constant value as it reaches GPE, which
is not the case with Vaz et al.’s solution in Figure 25.

A small difference between She and Guo’s results and the FE-results is also
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noticed in Figure 25. First of all, there is a difference in accuracy between these
two studies. The PE test showed that the results from FEA have a maximum
error of 0.07%, while She and Guo states that their PE test gave a maximum error
of 0.7% for their FE models. Also, it is seen from the plot presented by She and
Guo [7], that their numerical results for this specific case lie above the equation
for large t/a. This means that the FE-results from both these studies are more
alike than it seems from Figure 25. Ultimately, She and Guo’s formula is a general
equation that can be applied to any elliptical shape, which means that it cannot
be expected that this equation is in exact agreement with the FE results that are
specific for b/a = 1.

A comparison between full and reduced integration (2F and 2R respectively)
is also found in Figure 25. For the plate thicknesses that cause the largest SCFs,
it is seen that reduced integration gives an underestimate of the maximum value.
If extrapolating the curves in Figure 25 to t = 0, the solution for full integration
ends up at 1, while reduced integration ends up below. From this, it seems like
full integration is the most conservative choice for the specific cases studied here.
Figure 25 also shows that the 2R and 2F solutions have a very consistent difference
of approximately 0.4%. So the same conclusion is reached as from the PE test of
the 3D model; the accuracy using both full and reduced integration is more than
satisfying for the purpose of this research.

Full integration is favourable because it gives a maximum SCF value that
corresponds to the results from both [7], [9], but it is also the most computationally
expensive choice. As it is very difficult to solve 3D FEA for elliptical holes with
h/ρ = 0.06 using 2F elements, 2R elements will be used so that the accuracy
related to h/ρ = 0.06 is maintained throughout this thesis.

Figure 25 shows that the value of the maximum SCF changes with increas-
ing thickness. The general stress distribution through the thickness of the plate
changes with increasing thickness as well. This non-uniform stress distribution is
highlighted in recent research [7]–[9], [18]. Figure 26 shows the changes in SCF,
through the thickness of plates with various plate thicknesses, found from 3D
FEA. Both the results caused by a central circular hole and a central ellipse with
b/a = 0.5 are shown, and the estimated theoretical solution for h/ρ = 0.06 (see
Figure 7) is plotted for comparison.

It is very clear from Figure 26 that the SCFs inside the material are much
higher than those at the free surface of the plate. If the SCFs at the mid-plane are
considered, it is observed that thin plates lie close to the 2D PS solution and with
increasing thickness the SCF increases drastically. Eventually, before the plate
thickness reaches t/a = 3, the SCF decreases again. The solution approaches a
PE solution with increasing thickness, essentially the 2D PS solution. This trend
was also seen from maximum SCF behaviour in Figure 25. Figure 26b shows that
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(a) Plate with central circular hole

(b) Plate with central elliptic hole

Figure 26: Change in SCF through the thickness of plates with a central a) circular
hole and b) elliptic hole. The FE-results for various plate thicknesses are presented
together with the 2D solution found in Table 4.
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the behaviour is more dramatic for the ellipse, as the SCF is higher directly causing
out-of-plane stresses to appear for thinner plates.

If studying the behaviour of the maximum SCF in Figure 26, the maximum
is found at the mid-plane for thin plates, and moves away from the mid-plane
towards the free-surface of the plate with increasing plate thickness. Vaz et al. [9]
found that for thicknesses t/a ≤ 1.5 the maximum SCF remains at the mid-plane
of the plate. However, when the thickness is above t/a = 1.5, they showed that
the location of Kt,max moves away from the mid-plane and towards the free-surface
of the plate, but it never reaches it. This corresponds well with the observations
from Figure 26.

The position zmax of maximum SCF through the thickness of the plate, where
Kt = Kt,max, is presented in Figure 27. The position zmax for all plate thicknesses
studied by FEA are presented in the figure, for both plates with circular holes and
elliptic holes. It is found from Figure 27 that zmax is closer to the free-surface of
the plate for the elliptical hole than for the circular hole. This gives reason to
believe that that zmax is closer to the free-surface of the plate for notches with
lower notch root radii, which was also pointed out by She and Guo [7].

Figure 27 shows that when t/a ≤ 1.2, the maximum SCF remains at the mid-
plane for both circular holes and elliptical holes, which is also observed in Figure 26.
This is confirmed by Vaz et al. [9]. Figure 27 confirms that the maximum SCF
never reaches the free surface of the plate Vaz et al. [7], [9]. When graphically
comparing the results form FEA of a plate with circular hole and the results
presented by Vaz et al. [9], they seem satisfyingly similar. The exact numerical
values are difficult to draw from the figure, but the results by Vaz et al. are
expected to be less accurate, as they are based on FEA with first order elements,
but such effects are not directly visible when comparing the graphs.

A conventional way to find the SCF for fatigue assessments is by measuring
the stresses at the free-surface of the structure [7]. The results from FEA, as well
as from previous research [7]–[9], show that the through-thickness maximum SCF
is in fact not found at the free-surface of the plate. Thus, finding the difference
between the SCF at the free-surface and at the actual maximum becomes relev-
ant. Figure 28 presents the ratio of the maximum value and the surface value for
varying plate thicknesses, as found from FEA. An increase in the maximum SCF
relative to the surface value is seen for increasing thickness, until a critical thick-
ness is reached, where Kt, max/Kt, surf becomes constant due to GPE. The equation
developed by She and Guo [7] is also plotted in Figure 28, which shows the exact
same behaviour. She and Guo tested many elliptical shapes and concluded that
Kt, max/Kt, surf is elevated with decreasing radius of curvature at the notch root,
confirming the trend seen in Figure 28.

Vaz et al. [9] found that the maximum SCF is 24% higher than the value at
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Figure 27: The location of Kt,max inside the plate, given as the distance zmax away
from the mid-plane for different plate thicknesses.

Figure 28: The change in the ratio of maximum SCF relative to the SCF at the
free-surface of the plate, for increasing plate thickness.
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the free-surface of a circular hole when t/a ≥ 5. In Figure 28 the maximum value
is 21.3% higher than the value at the free-surface for plates with circular holes and
33% higher for plates with elliptical holes. The overall SCF behaviour from FEA
is consistent with the equation by She and Guo and the descriptions by Vaz et al..

4.4.2 The effect of thickness on the transverse stress

The main difference between studying a 2D model and a 3D model of the same
structure, is considering what happens through the thickness of the material. It
was just shown how the stress in the longitudinal direction (σy) changes through
the thickness, but this is also directly related to the material behaviour in the
transverse directions [20]. At the notch root, σx = 0, and thus only the stress
in z-direction of the transverse plane is relevant. The PE condition assumes no
strain through the thickness, but it has already been discussed that GPE is more
realistic.

The transverse SCF acting in z-direction under GPE can be found by rewriting
Eq.(16), which gives:

Ktz = ν(Kt − 1) (24)
where Kt is the SCF in y-direction.

Eq.(24) can be used together with the FE results, to evaluate the state of the
material. Figure 29 presents the FE-results for the SCF in z-direction, for plates
with central circular holes and elliptic holes. The figure includes the FE results for
all plate thicknesses studied, however the solution for t/a = 10 is removed from
Figure 29b, as it gives almost the exact same result as for t/a = 5.

Eq.(24) is plotted in both figures, so that the GPE condition inside the material
can be observed. The plate cannot have GPE everywhere, as σz must be zero at
the free-surface, which means PS. This is why a sudden decrease in Ktz is observed
close to the free-surface in Figure 29. The transverse stress appears as a reaction
to the material that tries to contract more in the region close to the notch, where
stresses are higher than in the surrounding material. As the SCF is higher for
an ellipse, Figure 29b reaches GPE for lower thicknesses than the circular hole in
Figure 29a, as also observed in Figure 26.

The constant strain inside the material that reaches GPE can be calculated.
Hooke’s law for εz was expressed in Eq.(12). At the notch root, σy = KtS and
σx = 0, and the equation for transverse strain at the notch root can be written as

εz = σz
E
− νKtS

E
(25)

where the results found in Figure 29 can be used to calculate the constant strain.
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(a) Plate with central circular hole

(b) Plate with central elliptic hole

Figure 29: The change in Ktz through the thickness of the plate for various plate
thicknesses. The results are compared with the solution from Eq. (24) for GPE.
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Figure 29 showed that σz was constant and equal to the GPE solution inside
the material for the largest plate thicknesses studied. The equation for σz in GPE
is known, see Eq.(16), and can be inserted into Eq.(25) which gives

εz = ν
(Kt − 1)S

E
− νKtS

E
= −ν S

E
= −0.3× 100

200000 = −1.5× 10−4

when the Poisson’s ratio ν = 0.3 and Young’s modulus E = 200.000 MPa.
Thus, the strain through the thickness of the structure, in the regions with

GPE, is equal to −1.5 × 10−4 for the FEA case shown in Figure 29. The same
equation can be used to calculate the strain in the region of GPE for any other
applied stress, Young’s modulus and Poisson’s ratio.

4.4.3 The effect of thickness on the stress gradient

The changes in SCF through the thickness of the plate was further enhanced by
increasing thickness, and it is expected that the stress gradient reflects a similar
behaviour. The relative stress gradient can be calculated from Eq.(6), which is
directly related to the SCF. The analytical solution for the stress gradient was
χρ = 7/3 for a circular hole and χρ = 11/5 for an elliptic hole. However, as
h/ρ = 0.06 for 3D FEA, the FE-results are not expected to reach the analytical
solution, but the estimated theoretical solution for a/w = 0.05 and h/ρ = 0.06. As
found from Figure 12, the estimated theoretical solution is χρ = 2.265 for circular
holes and χρ = 2.125 for elliptic holes. With the use of these values, any numerical
errors from FEM are accounted for.

By utilising the method developed in the preliminary study, the stress data
from FEA was used to calculate χρ at every point through the thickness of plates
with thickness t/a = 3. This procedure was performed for both circular holes and
elliptic holes. In Figure 30 the results are presented, and it is clear that χρ is much
higher at the free surface of the plate than anywhere else within the material. At
the same time, the lowest stress gradient is found inside the material. In fact, the
lowest χρ inside the plate is 0.8%−0.94% below the estimated theoretical solution,
for both elliptical and circular holes.

As the results in Figure 30 are for one specific plate thickness, it is not enough
to make a general statement. Figure 31 presents χρ for all plate thicknesses studied
by FEA. Three curves are plotted, representing the stress gradients found at the
mid-plane, at the free surface and at the point where Kt = Kt,max. The behaviour
from Figure 31 is consistent for all plate thicknesses studied. The highest stress
gradient is found at the free surface of plates, while the lowest stress gradient is
always where Kt = Kt,max.

It was previously shown (in Figures 26 and 29) that for small thicknesses,
Kt,max remains at the mid-plane. This is why the stress gradients at the mid plane
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(a) Plate with a central circular hole

(b) Plate with a central elliptic hole

Figure 30: The stress gradients through the thickness of the plate, along the notch
from the mid-plane towards the free surface, for a plate with half-thickness t/a = 3.
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and at Kt,max are equal for small plate thicknesses. It observed that the stress
gradients found at the mid-plane and at Kt,max are very similar even for larger
plate thicknesses. This was also observed from Figure 30.

The FEA results also clearly indicate that the stress gradient at the free-surface
of the plate is much higher than the estimated theoretical solution, for all plate
thicknesses studied. For t/a ≥ 3, the stress gradient at the free surface is approx-
imately constant, 12.7% and 14.8% higher than the estimated theoretical solution
for the circle and ellipse respectively.

The most important finding from Figure 31 is that the point of Kt,max always
has the lowest stress gradient. Schijve [14] stated that a steep gradient was more
favourable than a low gradient. He explains that the volume of highly stressed
material is larger when the stress gradient is low. For 3D plates with central
circular holes and elliptical holes, the lowest stress gradient is lower than the
analytical value, where Kt,max is higher than the analytical value at the same
time. This means that the volume of highly stressed material is much larger in
this region than anticipated from theory. It is unknown how much a 1% decrease
in stress gradient, relative to the estimated theoretical value, means for fatigue
life. A simple fatigue life assessment will be presented in Section 5, to show the
relation between the different impacting factors, and how the findings may affect
the fatigue calculations.
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(a) Plate with central circular hole

(b) Plate with central elliptic hole

Figure 31: The variation of the stress gradient χρ with increasing thickness. The
value found at the free surface of the plate, at the mid-plane and at the location
of maximum SCF are compared for a plate with a central hole.
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4.5 The effect of Poisson’s ratio
One of the main benefits of analysing structures by FEM is that any parameter
is easily changed. Not only does this involve the geometrical parameters, but also
material constants, such as the Poisson’s ratio. Already, the relationship between
the applied stress in the longitudinal direction and the transverse response has
been studied. The Poisson’s ratio is an essential part of Hooke’s law, and in the
following the actual effect it has on the SCF and stress gradient will be studied
closely. If the effect of Poisson’s ratio is known, it becomes possible to predict the
changes in SCF between different materials.

4.5.1 The effect of Poisson’s ratio on the stress concentration factor

The Poisson’s ratio of the material controls the transverse contraction of the struc-
ture, and when a plate is loaded in uni-axial tension, contractions in both the
width- and thickness directions are expected for most materials. The stress at
the notch root is much higher than everywhere else in the material, causing the
material close to the notch root to contract more in the thickness direction than
the surrounding material with lower stresses [2], [21]. This causes a constraint in
the thickness direction, and due to mechanical equilibrium, a stress in the thick-
ness direction of the material (σz) appears. By Hooke’s law, this stress depends
on the Poisson’s ratio, and it becomes reasonable to question how this affects the
maximum SCF at the notch root.

In a recent paper by Yu et al. [8] the relation between SCFs and the Poisson’s
ratio was carefully studied for many elliptical shapes, plate thicknesses and Pois-
son’s ratios. The following is an approach that serves the purpose of supporting
their results by controlling their solution, as well as connecting the results to the
behaviour of the stress gradient. Yu et al. showed that increasing the Poisson’s
ratio directly leads to an increase in the maximum SCF. They found that when
the Poisson’s ratio goes from ν = 0.1 - 0.49, the peak value of Kt,max increases by
9% for a plate with a circular hole. The results form 3D FEA of a plate with cent-
ral circular hole for varying thickness and Poisson’s ratio is shown in Figure 32a,
which is similar to the figure provided by Yu et al. [8]. Unfortunately an error
was discovered in the equation developed by Yu et al. and because of this, their
solution was not plotted in Figure 32a. The peak value of Kt,max in Figure 32a
increases by 9.65% when ν = 0 - ν = 0.45. This result confirms the solution found
by Yu et al. [8]. Yu et al. also showed that the peak value of Kt,max for increasing
thickness is found when 1 ≥ t/ρ ≤ 1.5 for all elliptic shapes, which is also the case
in Figure 32a.

Another way to present the result is by plotting the Kt,max results for varying
Poisson’s ratio with each thickness separately, as shown in Figure 32b. Here the
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(a) Maximum SCF when thickness is varied.

(b) Maximum SCF when Poisson’s ratio is varied.

Figure 32: Maximum SCF from FEA of 3D plates with central circular holes with
varying thickness and Poisson’s ratio.

58



Figure 33: The ratio of maximum SCF and the SCF at the free surface for increas-
ing thickness and varying Poisson’s ratio.

effect of increasing Poisson’s ratio is clearer, where the increase in Kt,max with
increasing Poisson’s ratio is consistent for any plate thickness. Yu et al. [8] found
the same behaviour for all elliptic geometries that they studied, 0.1 ≥ b/a ≤ 1.

It might also be noticed from Figure 32b that all plate thicknesses give the same
Kt,max when ν = 0. The value at this point is Kt,max = 3.0212, the same value
as the estimated theoretical result for h = 0. The value at h = 0 was found from
extrapolation with the assumption of a theoretically perfect mesh. The reason why
this value appears in Figure 32b is that when ν = 0 there will be no transverse
material contraction, only longitudinal stress and strain. Thus, the element length
h remains unchanged in the x-direction, meaning that the mesh refinement at
the notch root has no effect on the solution. This result actually confirms the
assumption from the preliminary study, that Kt = 3.0212 is a good approximation
of the analytical solution for a finite-width plate where a/w = 0.05.

Figure 33 shows that Kt,max/Kt,surf also changes with Poisson’s ratio. Previ-
ously, when studying the effect of thickness, it was mentioned that the maximum
SCF becomes 21.3% higher than the value at the free surface. This was when
ν = 0.3 and in Figure 33 the same value is found. For ν = 0.45, that the max-
imum SCF becomes 40% higher than the value at the free surface, confirmed by
Yu et al. [8] who got 38%. This means that measuring the SCF at the free surface
always leads to an unrealistic overestimate of the fatigue life.
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4.5.2 The effect of Poisson’s ratio on the transverse stress

The effect of Poisson’s ratio on the transverse SCF in z-direction is shown in
Figure 34 for a central hole with varying plate thickness. In Figure 34a the lines
for GPE are also plotted, and it is seen that a GPE condition is reached for large
thicknesses when ν ≥ 0. From Eq.(24) it is found that for ν = 0.15, 0.3 and
0.45, the Ktz for GPE is 0.303, 0.606 and 0.909, respectively. When ν = 0.45, the
transverse contraction is so large that the actual Ktz reached for GPE is higher
than the one estimated from Eq.(24). For ν = 0 the transverse stresses are zero
and the structure is left with only longitudinal stress and strain, according to
Hooke’s law [2].

Figure 34b shows how each of the plate thicknesses vary with Poisson’s ratio.
The results for every thickness with increasing Poisson’s ratio seem consistent, as
all functions are approximately linear. Because the linear curves remain linear
when they reach ν = 0.45, it is reasonable that the effect of the Poisson’s ratio, as
explained above, is what causes the elevated GPE value for ν = 0.45 in Figure 34a.

The results in Figure 34b can be compared to the results found in the 2D study
of plates in GPE. If considering the trend in Figure 34b it looks like the solutions
for largest thicknesses converge towards the same solution, and these solutions
remain equal for all Poisson’s ratios. These solutions are in GPE, and it turns
out that the solution by 2D FEA for GPE from Figure 14b gives the same graph
for Ktz. It is seen from Figure 14a that the 2D PE solution gives a much steeper
function for Ktz, and it becomes possible to comprehend how wrong a solution
that assumes infinite thickness is, when used for real structures.

4.5.3 The effect of Poisson’s ratio on the stress gradient

By studying the effect of thickness on the stress gradient it was found that the
value at the free surface is higher than all other values inside the material. The
other effect of thickness was that the lowest stress gradient was always placed at
the point of maximum SCF. The effect of Poisson’s ratio on the stress gradient
is studied in Figure 35, to show how it affects both the value at the free surface
of the structure and at the mid-plane. The reason why the point of maximum
SCF was not considered, was simply because data from FEA at the mid-plane
were already available and the stress gradients at the mid-plane are approximately
equal to those at the point of maximum SCF, for all plate thicknesses studied.

When the Poisson’s ratio goes from ν = 0.1 to ν = 0.49 for plates with large
thickness, a large increase in the ratio of Kt,max/Kt,surf was found both by Yu et
al. [8] and from FEA, as shown in Figure 33. Yu et al. found that this increase was
simply due to a drastic reduction of the SCF at the free-surface with increasing
Poisson’s ratio. In Figure 35a the stress gradient at the free surface is studied, to
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(a) Maximum SCF in z-direction when thickness is varied.

(b) Maximum SCF in z-direction when Poisson’s ratio is varied.

Figure 34: Maximum SCF in z-direction from FEA of 3D plates with central
circular holes with varying thickness and Poisson’s ratio.
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see whether the decrease in SCF at the free surface affects the stress gradient. It is
found from the figure that the stress gradient rather increases with increasing Pois-
son’s ratio, and most rapidly for thick plates. This is an interesting development,
where the stress decreases at the same time as the curve becomes steeper towards
the notch root. It is however observed that the stress gradient decreases for the
thinnest plate that was studied, and this curve is almost equal to the analytical
solution for most Poisson’s ratios.

In Figure 35b the stress gradients found at the mid-plane for both thin and
thick plates show a similar behaviour for small Poisson’s ratios, which is close to the
estimated theoretical solution for h/ρ = 0.06. However, the two thicknesses with
highest maximum stresses (t/a = 0.5 and 1) directly decrease when the Poisson’s
ratio goes from zero. The reason why the solution at ν = 0 is equal to the estimated
theoretical solution for h/ρ = 0.06 is similar to the one explained for Kt,max. As
there is only a longitudinal stress and strain acting when ν = 0, the mesh remains
unchanged in both x- and z-direction. For Kt,max this meant that the value at
h = 0 was reached as the SCF result at the notch root became independent of
the mesh. However, the stress gradient is still dependent on the mesh size, as it
is calculated based on the results at the nodes and the distances between them.
Because of this, the stress gradient approaches the estimated solution at h/ρ = 0.06
rather than the solution at h = 0. From both Figure 35a and Figure 35b this is
consistent.

Further, another observation from Figure 35b is that the stress gradient at
the mid-plane, thus also at the point of maximum SCF, decreases with Poisson’s
ratio. The values found at ν = 0.45 are between 1.76% and 3.3% lower than
the estimated theoretical solution. This confirms the trend found in Figure 31
for ν = 0.3, and shows that the result is even more dramatic as Poisson’s ratio
increases further. There is a consistent decrease in stress gradient with increasing
Poisson’s ratio in Figure 35b for all plates apart from the two thinnest. The two
thinnest plates show a more irregular behaviour before it properly decreases, and
there are no valid assumptions as to why this happens apart from the actual effect
of the Poisson’s ratio. This result indicates that a full thickness evaluation would
be interesting, where many more thicknesses are studied.
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(a) Stress gradient at the plate free surface

(b) Stress gradient at the plate mid-plane

Figure 35: The stress gradient for varying Poisson’s ratio at the a) free surface
and b) mid-plane of the plate, as calculated from the FE-results.
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5 Fatigue assessment based on 3D FEA
The FE-results have confirmed that the maximum stress is located inside, and
never at the free surface, of the plate. This is the same as what has been found in
other papers considering the 3D SCFs [7]–[9], [18]. Findings related to the 3D stress
gradient however, has not yet been published by others. The FE-results showed
that the maximum stress gradient was much higher than the analytical value,
and located at the free surface of the plate. While the lowest stress gradient was
always lower than the analytical value and located at the point of maximum stress.
Some of the most critical factors for fatigue life is a high SCF and a low stress
gradient [16], and the FE-results show that both these are found at the same point
inside the plate. Thus, raising concerns about the true fatigue life of structures. A
fatigue assessment is included in this thesis to show what the new findings mean
for the fatigue life of structures, and will be compared to conventional methods
based on analytical solutions and the FE-results at the free surface of the plate.

5.1 Formulae for fatigue
Depending on the method used for fatigue assessment, both the SCF and the
stress gradient can be used in calculations. Here both the peak stress method,
which only considers the maximum SCF, and the stress gradient method, which
includes the stress gradient, are used to find the number of cycles to failure based
on the FE-results. Some important factors that will not be considered, is that the
probability of material defects increases with thickness (3D structure versus 2D)
and the effective stress, as this remains a simple example to easily illustrate the
potential weakness of conventional methods compared to the actual 3D behaviour
of plates. In the following example, the results from a plate with thickness t/a = 3
and an elliptic through-hole with b/a = 0.5 is considered. The FEA was limited
to linear elastic behaviour, and high-cycle fatigue will be considered where the
mean-stress σm = 0.

5.1.1 The peak stress method

With the peak stress method, calculations are based on the maximum stress amp-
litude at the notch root, found from

σa,max = KtS (26)
where S is the applied stress at the gross section of the structure and Kt is the
stress concentration factor at the notch root [20].
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The number of cycles to failure can be found from the stress–life curve, the
S–N curve, for the material. Assuming linear behaviour between logS and logN ,
the number of cycles to failure can be approximated by Basquin’s equation [22]:

σa = σ′f (2N)b (27)
where σ′f is the fatigue strength coefficient of the material, N is the number of
cycles to failure and b is the fatigue strength exponent.

The maximum stress amplitude found in Eq.(26) can be inserted into Eq.(27)
so that the number of cycles to failure can be calculated directly from the SCF
and the applied stress, giving:

KtS = σ′f (2N)b

and by rearranging the equation, the number of cycles to failure based on the peak
stress method is:

N = 1
2

KtS

σ′f

1/b

(28)

5.1.2 The gradient method

The peak stress approach would only be accurate if the largest defect existed at
the point of maximum stress. In reality, this is not likely. The gradient method is
an approach to account for the whole region of highly stressed material [14]. The
maximum stress amplitude as found in Eq.(26) is reduced by a support factor Sχ,
in the following matter:

σa = σa,max

Sχ
= KtS

Sχ

where the support factor Sχ depends on the relative stress gradient χ and a material
constant ρ0 at the notch root:

Sχ = 1 +√ρ0χ

As this is a "so called" corrected maximum stress amplitude, it can also be
evaluated using Basquin’s equation, see Eq.(27). Thus, the gradient method is
given by the following equation:

KtS

1 +√ρ0χ
= σ′f (2N)b

where N is the number of cycles to failure.
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By rearranging the equation, the number of cycles to failure based on the
gradient method is:

N = 1
2

 KtS

(1 +√ρ0χ)σ′f

1/b

(29)

5.2 Fatigue constants
The material used for fatigue calculations is a SAE4340 quenched and tempered
steel [22]. The material data is taken from the ASM Handbook [22] and the
material constant ρ0 is found from a table provided in Pilkey [6]. All the relevant
fatigue constants are presented in Table 5. In order for a direct relevance to the
FEA results, the same applied stress S is used in the fatigue calculations. Apart
from the fatigue constants, the same material constants as was used in 3D FEA
applies, so that the Poisson’s ratio ν = 0.3 and the Young’s modulus E = 200 GPa.

Table 5: Constants used for fatigue calculations.

S σ′f b ρ0
100 MPa 1898 MPa −0.09 50 µm

5.3 Fatigue life calculations
5.3.1 The peak stress method

The number of cycles to failure based on the peak stress method is found from
Eq. (28), where the only variable is the SCF. The maximum SCF value found from
FEA was higher than the analytical solution, while the SCF at the free surface
of the plate was much lower than both the analytical solution and the maximum
SCF from FEA. In Table 6 the fatigue life calculated from the peak stress method,
using both the FEA results and the analytical solution, is presented.

Table 6: Comparing the fatigue life by the peak stress method, based on the
analytical solution and the FEA results. Where both the FEA results at the point
of maximum SCF and at the free surface are considered.

KtS N
Analytical solution [1] 500 MPa 1.37× 106 cycles
Max SCF from FEA 520.8 MPa 8.71× 105 cycles

SCF at free surface from FEA 398.4 MPa 1.71× 107 cycles
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The number of cycles to failure at the point of maximum SCF is by far the
most critical. It is seen from Table 6 that the number of cycles to failure are
all very large numbers. This indicates that S = 100 MPa is close to the fatigue
limit of the material [14]. The purpose of these results is however to illustrate the
differences between the solutions, which is independent of the applied stress, and
thus fully valid for applied stresses above the fatigue limit as well. This means
that when changing the applied stress in Eq. (28), a lower number of cycles would
be calculated, but the same differences between the solutions would be found.

Table 6 shows that when the analytical solution is used for calculating the
fatigue life, it gives 1.573 times the lifetime found when actually considering the
maximum SCF. This means that the fatigue life is overestimated by 57.3% when
the analytical solution is used on plates with t/a = 3. An even larger overestimate
is found when the SCF at the free surface is used for fatigue calculations, giving a
fatigue life that is 19.6 times the fatigue life found at the point of maximum SCF.

5.3.2 The gradient method

The number of cycles to failure based on the gradient method is calculated from
Eq. (29), where the fatigue life varies with both the SCF and the stress gradient.
The stress gradient results from FEA were highest at the free surface and lowest at
the point of maximum SCF. Table 7 gives the fatigue life found from the gradient
method, based on the FEA results and the analytical solution. The «analytical»
stress gradient used for these calculations is in fact the estimated theoretical value
when h/ρ = 0.06 (χρ = 2.125). This value is used so that the results become
compatible, for a realistic comparison.

Table 7: Comparing the fatigue life by the gradient method, based on the analytical
solution, and the FEA results at the point of maximum SCF and at the free surface.

KtS χ N
Analytical solution [14] 500 MPa 1.7 2.35× 107 cycles
Max SCF from FEA 520.8 MPa 1.688 1.49× 107 cycles

SCF at free surface from FEA 398.4 MPa 1.976 3.55× 108 cycles

Table 7 shows that when considering the analytical solution for both the SCF
and the stress gradient, the fatigue life becomes 1.577 times higher than when con-
sidering the values found at the point of max SCF. In other words, by considering
the analytical solutions, the fatigue life might be overestimated by 57.7%, even
after considering the effect of h/ρ. The result at the free surface of the structure is
expected to deviate greatly from the other results, but is simply included to show
why this approach should never be used. The results show that using the SCF

68



and stress gradient found at the free surface gives a fatigue life that is 23.8 times
the fatigue life found at the point of maximum SCF.

Finding the maximum SCF from FEA is a relatively simple procedure, while
finding the stress gradient is an extensive process, and based on this it is interesting
to test whether the maximum SCF from FEA can be combined with the analytical
stress gradient to give a realistic fatigue assessment. Here the analytical stress
gradient found from literature should be applied, meaning χρ = 11/5. Inserting
the analytical relative stress gradient χ = 1.76 and Kt,maxS = 520.8 into Eq. (29),
the number of cycles to failure is found:

N = 1
2

 520.8
(1.297)1898

−1/0.09

= 1.57× 107 cycles

which is 1.054 times higher than the result when both parameters are found from
FEA at maximum SCF. By combining the maximum SCF found from FEA and
the analytical stress gradient, a potential 5.4% overestimate of the actual lifetime
could be expected.

5.4 Conclusion on fatigue life
Both the peak stress method and the gradient method show that the SCF and
stress gradient should never be measured at the free surface for fatigue calcula-
tions. Both methods also show that a purely analytic approach is expected to
overestimate the fatigue life by more than 50%. As the peak stress method is a
conservative approach, the results using the analytical solution could probably be
accepted. However, the gradient method is supposed to give a corrected view of
the actual fatigue life and it shows that the fatigue life is actually greatly overes-
timated when using the analytical solutions.

The proposed approach, where the maximum SCF found from 3D FEA and
the analytical stress gradient are combined, only results in a 5.4% error relative
to the full 3D approach. Considering the amount of work required to perform a
full 3D evaluation, this error is small and a good compromise. However, the full
3D approach where both the stress gradient and the maximum SCF from 3D FEA
are used, is assumed to be the most accurate approach. In particular because it
was found that the stress gradient decreases relative to the estimated theoretical
approach with increasing Poisson’s ratio. Even though the gradient found from
3D FEA can be replaced by the analytical solution, the results show that the 3D
SCF is absolutely necessary in order to perform realistic fatigue calculations.

In the context of fatigue assessments of real structures, a lot of safety factors
are involved. An overestimation of 5.4% quickly disappears when all safety factors
are applied, and the proposed approach is hence both achievable and a reliable.
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6 Discussion of method
In the preliminary study most of the choices of parameters and their effects on
the results were presented. In this way, the thought process behind all of these
choices were made visible. A thorough preliminary study was needed, as results
with as high accuracy as possible was desired. For a large study, such as for this
thesis, a preliminary study is believed to be crucial, as it provides the elementary
understanding of FEM as well as the nature of SCFs.

A plate width with very low impact on the SCF was chosen in the preliminary
study. The result of this is that the findings are specific to one plate-width. It
was found most valuable to investigate the effect of thickness and Poisson’s ratio,
as the 3D effect of finite-width was already properly covered [9]. The idea behind
choosing a value with low finite-width effect was that it would replicate the most
general behaviour of wide plates. From this, the results presented should be reliable
for all a/w ≤ 0.05 (from [9]). The a/w ratio that was chosen, was also already
used in the three most relevant articles to this thesis [7]–[9].

Sources of errors that should be mentioned in regards to this thesis are based
on the accuracy of FEM and the post processing of data from FEA. The FE-
results should never be taken as accurate solutions, as it is a method meant for
accurate approximations [13]. Intuitively it is assumed that the approximation is
better, the more elements that are applied to the model [13], and the choice of
mesh is carefully studied in the preliminary study to assure this. With reduced
integration, it was shown that the maximum SCF for small plate thicknesses could
be underestimated, but apart from this the overall accuracy was good. This means
that the results are not expected to be much further from the real solution due
to this choice. Nevertheless, reduced integration was the only possible option to
solve the relevant structures with the desired accuracy.

The sources of errors in regards to the post processing of the FE-results are
related to the methods used to collect stress data, and the approach used to calcu-
late Kt and the stress gradient. These were all discussed in the preliminary study,
and attempts to reduce the errors were made. As Kt is simply found from the
stress value at the notch root node, it depends on the quality of the nodal stress.
The stress gradient was calculated based on an approach introduced for a plate
with a central circular hole. It was assumed that this method was accepted for all
models, but the accuracy for other notches has not been tested. It should also be
mentioned that in most of the figures presented, straight lines are used between
the data points not as an attempt to assume what happens, but simply to make
the figures easy to read. Straight lines are preferred over smooth lines, as straight
lines clearly indicate that it is - by all means - just to connect the data points.

For 3D FEA, only central holes were studied. This was a conscious choice,
due to computation time, as reducing the accuracy to achieve more was never
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an option. The goal was always to do something reliable. A compromise was
to include side-grooves in the 2D study, to present the difference in SCFs. The
idea was that the difference could be considered to get an idea of the expected
behaviour of the 3D results for side-grooves.

The results are in good correspondence with previous research, and the accur-
acy is similar, if not higher. As all relevant papers found on 3D SCFs are based on
3D FEA, any further advancements within this field relies on physical testing that
can confirm these observations. Due to all the possible errors involved with FEA,
and 3D FEA in particular, the final limiting factor is that there are no relevant
physical evidence to compare with.

72



7 Conclusion
The effect of Poisson’s ratio and thickness on the SCF and stress gradient was
found from extensive 3D analyses of central holes and elliptical holes (b/a = 0.5)
in plates. A large range of thicknesses (t/a = 0.2, 0.5, 1, 3, 5, 10) and Poisson’s
ratios (ν = 0, 0.15, 0.3, 0.45) were considered. The 3D model that was used for
analyses, deviated 0.17% - 0.19% from the numerically estimated analytical solu-
tion for a/w = 0.05. Some characteristics that were already pointed out in previous
research [7]–[9], was confirmed by the results. Some new details about the SCF be-
haviour was found, complemented by some very interesting findings about the 3D
behaviour of the stress gradient. Complementing these results, a fatigue analysis
was presented to show the importance of 3D FEA.

7.1 Key findings
1. The maximum SCF through the thickness remains at the mid-plane of the

plate when t/a ≤ 1.2. For all larger thicknesses studied, it was found that
the maximum stress moves towards the free surface of the plate, but never
reaches it. This complements the result by Vaz et al. [9] who showed that
the maximum value remains at the mid-plane for t/a ≤ 1.5.

2. For a central circular hole, Kt,max is 21% higher than Kt,surf when ν = 0.3
and the difference increases to 40% when ν = 0.45. For a central elliptic hole
gave difference of 33% when ν = 0.3. Confirming that the SCF measured at
the free surface underestimates the stress state, as stated by She and Guo [7].

3. The highest stress gradient is always located at the free surface of plates,
and for t/a ≥ 3 it is 12 - 14% higher than the theoretical solution.

4. The lowest stress gradient, which is most critical for fatigue, is always found
at the point of Kt,max, for all plate thicknesses and Poisson’s ratios stud-
ied. The value is 1% lower than the theoretical solution when ν = 0.3 and
decreases further with increasing Poisson’s ratio. This result highlights the
critical state of the material in this region, as a low gradient means that
more material is highly stressed, increasing the probability of fatigue failure.

5. The peak value of Kt,max increases by 9.65% from ν = 0 to ν = 0.45. This is
the same result as was shown by Yu et al.[8].

6. Fatigue analyses show that the value of Kt,max is important for reliable res-
ults. The introduced approach, using the analytical stress gradient and
Kt,max from 3D FEA, gave a 5.4% overestimate of the fatigue life of a 3D
structure, which is small compared to safety factors applied for fatigue.
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7.2 Further work
It is suggested that further work within this field focuses on the following:

• Physical testing of 3D structures, which requires the development of appro-
priate methods to estimate the stress field inside the specimens.

• More elliptical shapes could be studied, in particular by changing b. It is
interesting to look at more shapes where b < a, although this is thoroughly
covered by She and Guo [7].

• The effect of Poisson’s ratio on plates with elliptic through-holes with various
radii of curvature. This requires powerful computers.

• The effect of a/w on the SCF, although this is studied by Vaz et al. [9].

• More thicknesses in the range of 0 ≤ t ≤ 3, where the effect of thickness on
SCF is largest. Larger thicknesses are not interesting, as a clear sign of GPE
is found for t=10a for all models studied.

• A study of plates with central spheroids would complement the findings of
this thesis very well.
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A Appendix: The finite element models

A.1 Input parameters for the FE-model
All FEAs, both in 2D and 3D, were modelled with the same parameters. The
material constants and geometrical parameters used for FEA were:

Applied stress S 100 MPa
Half-width of plate w 100 mm
Half-height of plate h 100 mm
Half-thickness of plate t 1 mm− 50 mm
Major radius of ellipse a 5 mm
Minor radius of ellipse b 0.5 mm, 1 mm, 2 mm
Young’s modulus E 200 GPa
Poisson’s ratio ν 0, 0.15, 0.3, 0.45

A.2 The 3D structures studied
The different structures that were studied, with their respective geometrical prop-
erties, are presented below:

1) Plate with central elliptic through-hole:
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2) Plate with side-grooves:

3) Cylinder with central sphere/spheroid:
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4) Cylinder with circumferential grooves:

A.3 Boundary conditions for FEA
As the FE-software does not require modelling of the full structures, the symmetry
planes found in the structures above can be applied as boundary conditions to
simplify the models.

Boundary conditions for plates: In 2D, only 1/4 of the model needs to be
considered after applying two boundary conditions. In 3D, only 1/8 of the model
needs to be considered after applying an additional boundary condition through
the half-thickness of the plate. The figures below shows the models that were used,
with the boundary conditions for both central holes and side-grooves in plates. The
parameter U is used for displacement, and the subscript explains in what direction
the displacement is restricted.
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Boundary conditions for cylinders: The whole 3D behaviour of cylinders can
be captured from a 2D model when an axisymmetric line is added as a boundary
condition. The figures below shows the models needed and the boundary condi-
tions for both cylinders with circumferential grooves and cylinders with central
spheres. In these figures the displacement is labelled U22 to avoid confusion, as the
coordinate system for cylinders is different than for plates. The subscript refers to
displacement in the longitudinal direction. The left figure is for a central sphere
and the right figure is for circumferential grooves.
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