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Abstract

Offshore oil and gas installations are mostly powered by simple cycle gas turbines. To increase the efficiency,

a steam bottoming cycle could be added to the gas turbine. One of the keys to the implementation of

combined cycles on offshore oil and gas installations is for the steam cycle to have a low weight-to-power

ratio. In this work, a detailed combined cycle model and numerical optimization tools were used to develop

designs with minimum weight-to-power ratio. Within the work, single-objective optimization was first used

to determine the solution with minimum weight-to-power ratio, then multi-objective optimization was ap-

plied to identify the Pareto frontier of solutions with maximum power and minimum weight. The optimized

solution had process variables leading to a lower weight of the heat recovery steam generator while allowing

for a larger steam turbine and condenser to achieve a higher steam cycle power output than the reference

cycle. For the multi-objective optimization, the designs on the Pareto front with a weight-to-power ratio

lower than in the reference cycle showed a high heat recovery steam generator gas-side pressure drop and a

low condenser pressure.

Keywords: black-box optimization, multi-objective optimization, genetic algorithm, combined cycle,

process simulation, heat recovery

Nomenclature

child child solution vector

f objective function

LHV lower heating value (kJ/kg)

m mass (kg)
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ṁ mass flow rate (kg/s)

Nf number of objective functions

Np population size

Nt number of solutions used by the binary tournament selection operator

parent parent solution vector

p population vector

pcond condensing pressure (bar)

psteam live steam pressure (bar)

Q child population

q vector in the solution space

rand random number uniformly distributed between 0 and 1

ratio tuning parameter of the crossover operator

RLgt relative gas turbine load (-)

T temperature (◦C)

Tsteam live steam temperature (◦C)

W/P weight-to-power ratio (kg/kW)

x solution vector

Ẇaux auxiliary power (W)

Ẇgt gas turbine gross power (W)

Ẇnet,plant net plant power (W)

Ẇsc steam cycle modified power (W)

Ẇst steam turbine gross power (W)

∆p pressure drop (bar)

∆phrsg gas-side HRSG pressure drop (bar)
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∆Tcw cooling water temperature difference (K)

∆Tpinch pinch-point temperature difference (K)

ηnet,plant net plant efficiency (-)

σ standard deviation

Φ parent population

CPSO constrained particle swarm optimizer

GA genetic algorithm

GSS generating set search

GT gas turbine

HRSC heat recovery steam cycle

HRSG heat recovery steam generator

MO multi-objective

NSGA-II non-dominated sorting genetic algorithm II

OTSG once-through heat recovery steam generator

PSO particle swarm optimizer

SC steam cycle

ST steam turbine

VGV variable guide vane

1. Introduction

Today’s offshore oil and gas installations are mostly powered by simple cycle gas turbines (GTs). To

counter the cost of CO2 emissions in Norway (taxes and quota), an alternative to a simple cycle configuration

could be a combined cycle plant to increase the plant’s efficiency and decrease the CO2 emitted per generated

kWh. A steam bottoming cycle, as part of a combined cycle, needs to be simple, with low weight and volume,

on an offshore oil and gas installation [1]. On a small scale, a few offshore installations have combined cycles

installed [2]. A 2013 increase in the CO2 tax by the Norwegian parliament may make combined cycles more

attractive for the future on the Norwegian continental shelf [3].
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One of the keys to the implementation of combined cycles on offshore oil and gas installations is for the

steam bottoming cycle to have a low weight-to-power ratio. For the remainder of this paper, the steam

bottoming cycle will be referred to as the heat recovery steam cycle (HRSC). The HRSC consists of a heat

recovery steam generator (HRSG), a steam turbine, a condenser, various pumps, a water treatment unit,

and associated auxiliaries. While the design criteria for maximizing the HRSC power and efficiency are

well-known [e.g., see 4], those for minimizing the weight-to-power ratio are still unclear. Previous studies of

off-shore HRSC installations are based on knowledge-based designs relying on previous experience, literature

search, and experts’ opinions as exemplified in [5]. The knowledge-based design methodology is described

in [6].

Direct-search algorithms are widely used in engineering when the objective function is a black-box, e.g.,

a sequential flowsheet simulation code, or a solver of differential-algebraic equations. Black-box optimizers

do not make use of derivative information (they are also called derivative-free methods) as the black-box

function may be non-differentiable, discontinuous, not defined in some points of the feasible space, and

affected by numerical noise. Well-known examples of such methods are the Simplex method [7], the Pattern

Search Algorithm [8], the Particle Swarm Optimizer (PSO) [9], and the several Genetic Algorithms (GAs)

developed since the 1960s. A review and benchmarking of methods can be found in [10] for unconstrained and

bound-constrained problems, and in [11] for nonlinearly constrained problems. Thanks to their robustness

regarding numerical issues, such as numerical noise and discontinuities in the objective function, black-

box methods have been successfully applied to several process engineering problems since the early 1970s,

including steam cycles [12] integrated HRSCs [13], and steam generators [14].

More recently, engineering problems with different possible decision criteria (e.g., minimum weight or cost

versus maximum power or efficiency), in which it is not easy to identify a single objective function, are often

formulated and tackled as Multi-Objective (MO) optimization problems by means of evolutionary algorithms

[15]. Instead, as for single-objective methods, such as the above mentioned direct-search methods, which

return a single solution, evolutionary MO algorithms aim at determining the so-called Pareto frontier, i.e.,

a set of the most interesting solutions. Indeed, by definition of Pareto-optimality, no feasible solution gives

better objective function values than a Pareto-optimal solution for at least one of the objective functions.

For example, given two objective functions, f1 and f2 (e.g., power and weight), if the solution x is Pareto-

optimal, no feasible solutions exist with the same value of f1 and a better objective function value of f2 and

vice versa. Compared to the single solution returned by a single-objective optimizer, knowing the Pareto

frontier is very useful in practice because: 1) it indicates not just one but a space of good solutions, allowing

the designer to select the solution which best matches the installation constraints; 2) it graphically plots the

trade-off between the different objectives (e.g., the gain of power which could be achieved by increasing the

weight by a certain amount); and 3) it is possible to derive general criteria by analyzing the features of the

Pareto-optimal solutions. As a consequence, MO algorithms have been extensively applied to the design of
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HRSCs in dual-pressure [16] and other combined cycles [17], Organic Rankine Cycles on offshore platforms

[18] and for low grade waste heat [19], and novel energy systems [20].

The aims of this work were to find the minimum weight-to-power ratio for a heat recovery steam cycle

designed for offshore oil and gas installations, and to determine the trade-off between weight and power.

These aims were to be achieved while utilizing a commercial process simulator with detailed process models

within an optimization framework. In more detail, a process model of a single pressure level combined cycle

was coupled with MATLAB [21] and used as a ‘black-box’ function by specific optimization algorithms. The

process model computed the combined cycle performance and weight for fixed HRSC design variables, which

were set by the MATLAB optimizer. Within this framework, firstly PGS-COM, the direct-search algorithm

proposed by Martelli et al. in [22] and described in detail in [11], was used to determine the solution with

minimum weight-to-power ratio; then NSGA-II, the multi-objective optimizer described in [23], was applied

to identify the Pareto frontier of solutions with maximum power and minimum weight.

2. Methodology

2.1. Process description

The layout for the combined cycle was based on one GT (GE LM2500+G4), one single-pressure once-

through heat recovery steam generator (OTSG), one steam turbine (ST), and a deaerating condenser, as

shown in Fig. 1. This setup is explained in more detail in [5] (layout c). The GT was equipped with dry

low emission burners and variable guide vanes (VGVs). The use of VGVs for marine combined cycles is

further described in [24]. Process model assumptions are listed in Table 1. The HRSG designed for an

offshore oil and gas installation including design parameter selection is discussed in [1]. Model validation of

the knowledge-based design, which was the starting point for the optimization, was performed in [5]. For

the gas turbine, the exhaust mass flow rate was constant at 90 kg/s for all design cases, whereas the turbine

outlet temperature varied slightly (530–534 ◦C) due to changes in HRSG pressure loss.

2.2. Model description

GT PRO (design), GT MASTER (off-design), and PEACE (preliminary engineering and cost estimation)

by Thermoflow Inc. were the software used for the combined cycle process modeling, simulations, and weight

estimations [25]. Within the Thermoflow package, the IAPWS-IF97 water and steam properties were used

[26]. The gas-side heat transfer convective correlations were based on ESCOAr [27].

GT PRO solves the heat and mass balance of the power plant and then uses the results to design the

HRSG and the rest of the HRSC that can implement this. Certain design selections, such as number

of pressure levels, type of HRSG, and condenser type, are chosen by the user. Material selection, tube

configuration, and fin type in the HRSG can also be altered by the user as listed in Table 1. For the
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condenser, GT PRO will select tube material (Titanium for seawater) and cleanliness (80% for seawater)

based on the cooling water type and will choose tube diameter and thickness of standard sizes, water velocity,

and number of passes in such a way as to produce a condenser of reasonable design and geometry [25].

The focus of the work outlined in this paper was to optimize the important process variables to achieve

a low weight-to-power ratio. The process variables (optimization decision variables) selected, as listed in

Table 2, were the ones which had a larger effect on the HRSC power, weight, or both. One can argue that

the optimization should have been done with cost as an objective function. The reason for omitting cost in

this study was that the cost for offshore installations is very project-specific.

The optimization was accomplished by linking MATLAB and GT PRO as displayed in Fig. 2. Microsoft

Excel was used as an interface between the MATLAB and Thermoflow software. The single-objective

optimization method used in this work was PGS-COM [11] and is further described in Section 2.3. For the

multi-objective optimization, the NSGA-II was used [23], which is further described in Section 2.4.

2.2.1. Definitions

This subsection defines the variables used in the model and in the following sections of the paper. The

steam cycle modified power output was defined as:

Ẇsc = Ẇst − Ẇaux,sc −∆Ẇgt (1)

where Ẇst is the steam turbine gross power (the electrical output at the steam turbine generator terminals),

Ẇaux,sc the steam cycle auxiliary power including boiler feedpump, condensate forwarding pump, cooling

water pump, and miscellaneous steam turbine auxiliaries. ∆Ẇgt is the difference in the gas turbine output

at the generator terminals from that of the knowledge-based design. The last term was included to take into

account changes in gas turbine power output due to changes in HRSG gas-side pressure drop. Considering

only the net power of the steam cycle was not sufficient since the gas turbine power also was affected by

changes in the HRSG design.

The net plant power output was defined as:

Ẇnet,plant = Ẇgt + Ẇst − Ẇaux (2)

where Ẇgt is the gas turbine gross power and Ẇaux the plant auxiliary power requirement.

The net plant efficiency was defined as:

ηnet,plant =
Ẇnet,plant

(ṁLHV )ng
(3)

where ṁng is the natural gas mass flow entering the system and LHVng the lower heating value of the

natural gas.
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For the off-design analyses, part load operational points were based on relative gas turbine load:

RLgt =
Ẇgt

Ẇgt,d

(4)

Ẇgt,d is here the gas turbine gross power output at design conditions.

CO2 emitted from the power plant was defined as:

CO2 emitted =
ṁCO2

Ẇnet,plant

(5)

where ṁCO2 is the mass flow of carbon dioxide emitted from the plant.

The weight-to-power ratio of the steam bottoming cycle was defined as:

W/P =
msc

Ẇsc

(6)

where msc is the total mass of all the included components in the steam cycle. Included in the weight

estimations were steam turbine, generator, condenser, and heat recovery steam generator with stack. These

weights were considered to be variable. A constant bulk weight was added to the equipment weight to

include water storage tank, water treatment system, pumps, and skid structure. The bulk weight was, in

this work, considered constant and would therefore not vary between the different designs. The wet weight,

i.e., including the H2O in the system, was used.

2.3. Single-objective optimization

The plant model described in Section 2.2 was used as a black-box function within the following opti-

mization problem with the aim of minimizing the HRSC weight-to-power ratio:

• Objective: minimize the HRSC weight-to-power ratio W/P .

• Decision variables: superheated steam temperature Tsteam, steam evaporation pressure psteam, HRSG

pinch point temperature difference ∆Tpinch, HRSG gas-side pressure drop ∆phrsg, condenser pressure

pcond, condenser cooling water temperature difference ∆Tcw.

• Constraints: the decision variables are bounded as indicated in Table 2.

The lower and upper bounds of the decision variables, as displayed in Table 2, were selected on the basis

of general technical limitations and practical limitations built into the GT PRO design tool. In more detail,

the upper bound on Tsteam was fixed by the gas turbine outlet temperature, while the lower bound was

set to guarantee a reasonably high steam quality at the steam turbine outlet. The lower bound on pcond

was set according to the typical limitations of the vacuum and sealing systems, while the upper bound was

set to a reasonably high value (so as not to exclude optimal solutions). The bounds on psteam were set on

the basis of a preliminary sensitivity analysis. To avoid a very large and high weight solution, the lower
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bounds of ∆Tpinch and ∆phrsg were set according to Table 2. The upper bounds of ∆Tpinch and ∆phrsg

were limited by a GT PRO practical design limitation related to the HRSG gas mass flux (mass flow rate per

unit of cross-sectional area). A high ∆Tpinch leads to a smaller heat transfer surface area which gives a high

gas mass flux. Similarly, a high ∆phrsg leads to a more compact design which in turn leads to a high gas

mass flux. For the ∆Tcw upper bound, typical regulations for the maximum allowable rise in cooling water

temperature were taken into account. The lower bound was selected to stay within a reasonable cooling

water mass flow rate.

Additional constraints were not included in the optimization problem since all the physical equations

(i.e., mass and energy balance equations) and technical limitations were enforced within the black-box (GT

PRO model). It is worth noting that the objective function value may not be defined in some points of the

feasible region defined by the bounds because the plant simulation code fails to return a feasible solution

(either a technical limitation is not met or the GT PRO sequential calculation fails to reach convergence).

Moreover, the objective function may also be non-smooth (non-differentiable or discontinuous). For these

reasons, an effective and robust direct-search algorithm must be used.

Among the available direct-search methods, we selected PGS-COM, the hybrid method specifically de-

veloped for non-smooth black-box problems [11]. This algorithm combines the positive features of the

Constrained Particle Swarm Optimizer (CPSO) [28], Generating Set Search (GSS) [29], and the Complex

[30]. Each iteration of the algorithm consists of three steps: (i) a search step corresponding to a population

update of a revised CPSO, (ii) an optional (skipped if the CPSO improves the best solution found so far)

poll step (i.e., sampling of the objective function along a set of directions satisfying certain mathematical

properties so as to guarantee the convergence to a stationary point) corresponding to an iteration of the

GSS around the best solution found so far, and (iii) a few optional (skipped if either the CPSO or the GSS

step finds a better solution) reflection steps corresponding to a few iterations of the Complex algorithm.

The algorithm stops when the swarm size (defined as the maximum distance between the best particle and

the remaining particles), the step size parameter of the GSS step and the size of the population used by the

Complex step become smaller than the given threshold, or the maximum number of function evaluations is

reached. The main idea is to exploit the effectiveness of the population-based CPSO algorithm to rapidly

identify promising regions of the set of the feasible solutions, and then take advantage of the effectiveness of

the Complex search for non-smooth problems to intensify the search in selected sub-regions. The GSS step

is used to generate the starting solutions for the Complex step, and to improve the algorithm robustness to-

wards numerical noise in the objective function (as GSS is more robust than Complex). The computational

results presented in [11] indicate that, for noisy non-smooth black-box problems, PGS-COM performs better

than 11 ad hoc methods. The parameter values of the algorithm (number of swarm particles, neighborhood

size, minimum GSS step size parameter, etc.) in this work were the same as the values recommended in

[11].
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2.4. Multi-objective optimization

In this section, the methodology of the multi-objective optimization problem to determine the Pareto-

optimal solutions (i.e., the Pareto frontier) with respect to minimum weight and maximum power is de-

scribed:

• Objective 1: minimum weight.

• Objective 2: maximum power.

• Constraints: same as those for the single-objective problem.

Over the past decade, multi-objective evolutionary algorithms have been attracting growing attention

from both method developers and engineers, and a large number of algorithms have been proposed [15].

This is mainly due to their ability to find multiple Pareto-optimal solutions (i.e., the Pareto frontier) in

one single run. Among the several evolutionary algorithms to tackle the MO problem, we selected the Non-

dominated Sorting Genetic Algorithm II (NSGA-II) [23] because it is quite effective on black-box problems

[31], well-proven [17], and readily available within the MATLAB Global Optimization Toolbox [21].

The algorithm adopts the general idea of a genetic algorithm but with some changes. The algorithm

starts with a random solution population Φ of size Np. Then, the standard genetic algorithm operators (i.e.,

selection, crossover, and mutation) are used to create a child population Q from Φ with the same size Np.

More in detail, the binary tournament selection is applied to choose the parent solutions for reproduction,

i.e., choosing a set of Nt solutions at random and then taking the best individual out of that set to be

a parent. Child solutions are created according to the ‘intermediate’ crossover function, i.e., by taking a

weighted average of the parents’ solutions:

childj = parent1j + rand · ratio · (parent2j − parent1j) (7)

where childj labels the j-th variable of the child’s solution vector, parent1j and parent2j the j-th variable

of the parents’ solution vector, rand indicates a random number between 0 and 1, and ratio is a free tuning

parameter to be set by the user. Finally, in order to search a broader space by providing genetic diversity

to the child solutions, the Gaussian mutation operator is applied. It adds a random number taken from

a Gaussian distribution with mean value equal 0 and standard deviation σ to each solution variable. It is

worth noting that the standard deviation shrinks as generations go by.

Once N child populations are generated, the parent and child populations (thus 2N solutions) are sorted

according to the principle of non-domination: given a minimization problem with Nf > 1 objective functions

f , a solution (element of the population) p dominates another element q ∈ Φ ∪ Q if there exists at least

one objective function i with fi(p) < fi(q), and fk(p) ≤ fk(q) for all other k. Solutions are ranked by

assigning each of them a fitness equal to its non-domination level. According to this criterion, elements with
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no dominating elements have fitness equal to 1, those dominated only by elements with fitness equal to 1

have fitness equal to 2, and so on. For each fitness level, in order to preserve solution diversity and obtain

a uniform Pareto frontier, elements are sorted according to the ‘crowded-comparison criterion,’ which gives

preference to those solutions that have a larger distance from the others in the function space (thus, are far

away on the Pareto frontier). Finally, the new population is generated by taking the first Np elements of

the sorted fitness levels. The process is repeated until either all elements of the population have fitness level

equal to 1 (i.e., all solutions stay on the Pareto frontier) or a predetermined number of function evaluations

are reached.

The NSGA-II parameter values, after preliminary computational tests, were selected as:

- Population size, Np = 50

- Number of solutions for the selection function, Nt = 4

- Ratio parameter of the crossover function = 1

- Scale and shrink factors of the mutation function = 1

- Maximum number of generations = 1, 000

3. Results and discussion

3.1. Single-objective optimization

The objective function for the single-objective optimization was the HRSC weight-to-power ratio W/P .

One optimization required approximately 10,000 GT PRO simulations with a computational time of

around 10 hours on a 2.4 GHz Intel Core i7-2760QM CPU (Quad-core).

The results are displayed in Table 3. Compared to the knowledge-based design, the optimized solution

has variables leading to a lower weight of the HRSG (weight-wise the dominant component) while allowing

for a larger steam turbine and condenser to achieve a higher steam cycle power output. The higher HRSG

pinch-point temperature difference and the gas-side pressure drop for the optimized solution led to a smaller

HRSG. The lower condensing pressure led to a higher power output and higher steam turbine and condenser

weights.

The W/P was 4% lower than in the case of the knowledge-based design. The difference is small but not

negligible. This difference could rise if hardware design (fin design, material selection, tubing design and

layout, steam turbine design, condenser design) were also actively altered. Moreover, note that three of the

six optimization variables were at their bounds: ∆Tpinch, ∆phrsg, and ∆Tcw. This means that a further

improvement of the W/P ratio could be achieved by relaxing these bounds and enlarging the feasible region.

Assuming that the upper bound on ∆Tcw cannot be increased without violating environmental regulations,
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only ∆phrsg and ∆Tpinch could be increased. As explained in Section 2.3, these upper bounds were set by

the GT PRO design criteria which tend to limit the gas mass flux across the HRSG sections.

3.1.1. Off-design operation

Off-design process simulations have previously been performed for the knowledge-based design [5]. On

offshore oil and gas installations, part load operation is of high importance since the power plant has to

follow the demand of the oil and gas processes. To be able to compare whether the optimized design showed

an improved or a worse part load behavior, off-design simulations for the load range of 40–100% relative

gas turbine load were completed using GT MASTER [25]. The results are shown in Fig. 3. The net plant

efficiency difference between the two designs remains close to constant in the 40–100% load range.

3.2. Multi-objective optimization

Fig. 4 displays the objective function values of non-dominated solutions returned by the algorithm

after 50,000 function evaluations (corresponding to 50,000 GT PRO simulations). Those solutions can be

considered as an approximation of the Pareto front, although the front could be pushed lower (and pass

through the point found by the single-objective optimizer) if more function evaluations were completed.

However, practical limitations capped the maximum number of function evaluations (simulation runs) as

the displayed Pareto front approximation took more than 60 hours. The knowledge-based design is also

indicated in Fig. 4.

How do the parameters develop along the Pareto front? To the left in Fig. 4, for designs with a lower

weight, the parameters are characterized by low ∆Tcw, and high psteam, ∆Tpinch, ∆phrsg, and pcond. The

solutions to the right in the figure show the opposite behavior of the process parameters. Tsteam shows small

variations in the range of 478–488 ◦C for all designs on the Pareto front. There are some commonalities for

designs with a W/P lower than for the knowledge-based design (W/P = 34.4). Among the non-dominated

solutions returned by the multiobjective algorithm, eight designs that have a lower W/P than 34.4 are

shown in Fig. 5, where W/P is plotted as a function of the steam cycle weight. All the eight designs have a

∆phrsg > 28 mbar and pcond < 0.07 bar.

The parameter development was further emphasized by running two single-objective optimizations to

complement the Pareto front. The first objective was to minimize the weight while staying within the lower

and upper bounds of the parameters. The second objective was to maximize power output. The results

from the two optimizations are shown in Table 4.

Two designs, A and B, highlighted in Fig. 5 show different designs with the same W/P . Designs A

and B have significantly different process parameters, as displayed in Table 4, but result in the same W/P .

Design A is a low weight/low power solution while design B is a solution with higher weight and power.
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The selection of design could then be decided by the need for power or by the limitation of weight on the

offshore installation.

The weight distribution of the components composing the variable weight in the designs along the Pareto

front is shown in the stacked area diagram in Fig. 6. The eight designs with the lowest W/P are indicated

by the box in Fig. 6.

4. Conclusions

Optimization of the design can open up new ways of thinking about the plant. A designer may have

difficulty thinking outside the box, e.g., through being affected by existing designs and experts’ opinion.

This can be exemplified by the condenser pressure in this work. Existing designs in offshore oil and gas

installations have a higher condenser pressure to keep the weight of the condenser lower. The knowledge-

based design methodology, which is affected by previous designs, also selected a higher condenser pressure

(0.07 bar). However, the optimizer designed the condenser to maximize the power of the steam cycle and

instead focused the weight savings on the HRSG. The maximum W/P therefore had a low condenser pressure

of 0.037 bar. The resulting W/P was 4% lower than in the knowledge-based design.

The results of the multi-objective optimization allow the engineer to select the solution which best

matches the installation constraints, whether it be a design decided by the need for power or by the limitation

of weight on the offshore installation. In general, the designs on the Pareto front, resulting from the multi-

objective optimization, with W/P lower than the knowledge-based design showed a high gas-side HRSG

pressure drop and a low condenser pressure. The live steam pressure was in a narrow range around 480 ◦C.

The work shows the feasibility of linking MATLAB and Thermoflow software. For future work, the

optimization could be expanded to include detailed hardware design alterations, such as, fin design, tubing

design and layout, and material selection. This was not possible with the Thermoflow version used (only

possible via manual selection within the Thermoflow software). For future work, alternative geometries of

the entire HRSG could also be envisioned for a more compact result. This could, e.g., include a cylindrical

HRSG with helical-shaped coils.
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Figure 1: Layout of combined cycle for offshore oil and gas installations.
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Figure 2: Overview of methodology. The Thermoflow model of the combined cycle is used by the MATLAB optimizer as a

black-box function.

Figure 3: Comparison of the net plant efficiency at part load operation of the knowledge-based and optimized designs.
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Table 1: Process model assumptions.

Site

Ambient T (◦C) 15

Ambient pressure (bar) 1.013

Ambient relative humidity (%) 60

Frequency (Hz) 60

Cooling water system Direct water cooling

Cooling water Sea water

Cooling water T (◦C) 10

Gas turbine

Model type GE LM2500+G4

GT fuel Methane

Lower heating value (kJ/kg) 50047

GT inlet ∆p (bar) 0.010

HRSG

Tube material Incoloy

Fin material TP 409

Fin type Serrated

Tube layout Staggered

Condenser

Condenser type Deaerating condenser

Heat exchanger design Shell-and-tube

Table 2: Lower and upper bounds of optimization decision variables.

Variable Lower bound Upper bound

Tsteam (◦C) 400 510

psteam (bar) 15 40

∆Tpinch (K) 10 30

∆phrsg (bar) 0.015 0.035

pcond (bar) 0.03 0.12

∆Tcw (K) 3 10
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Table 3: Comparison of knowledge-based and optimized designs. The objective function was the weight-to-power ratio.

Knowledge-based design Optimized design

Tsteam (◦C) 450 495

psteam (bar) 25 24.5

∆Tpinch (K) 25 30

∆phrsg (bar) 0.025 0.035

pcond (bar) 0.07 0.037

∆Tcw (K) 10 10

Plant net power (MW) 42.9 43.5

Plant net efficiency (%) 51.0 51.7

CO2 emitted (kg/MWh) 387 382

GT gross power (MW) 32.1 31.9

ST gross power (MW) 11.3 12.0

SC modified power (MW) 11.1 11.7

Massflow steam (kg/s) 11.6 11.0

Weight wet HRSG (103 kg) 109 99

Weight ST+gen (103 kg) 60 73

Weight wet cond (103 kg) 12 16

Weight SC rest (103 kg) 200 200

Total SC weight (103 kg) 382 388

Weight-to-power ratio (kg/kW) 34.4 33.2
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Table 4: Lowest weight and highest power solutions as well as two designs with the same W/P (designs A and B) to showcase

the variable development along the Pareto front.

Parameter Minimum weight Maximum power Design A Design B

Tsteam (◦C) 415 510 480 487

psteam (bar) 40 16.4 38.5 21

∆Tpinch (K) 30 10 28 14

∆phrsg (bar) 0.035 0.015 0.034 0.030

pcond (bar) 0.12 0.03 0.11 0.032

∆Tcw (K) 5.9 10 6 9

ηnet,plant (%) 49.4 53.3 50.0 52.7

CO2 emitted (kg/MWh) 399 370 395 374

Ẇsc (MW) 9.8 13.1 10.2 12.6

msc (103 kg) 349 499 358 440

W/P (kg/kW) 35.8 38.0 34.9 34.9
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