


3.7. Evolutionary algorithm Chapter 3. Methodology

where f is the fitness score of some genome G. G(R;) is the number of
robots that died, Ry, in the trial with genome G, and R, is the total number
of robots in the system.

This fitness function, however, gave poor results mainly due to the fit-
ness graph being discrete and failing to differentiate enough between different
genomes. Therefore, a different approach was implemented where the lifetime
of a robot used is instead.

£(G) = 2= G (3.10)

an(I{E

The fitness of a genome is calculated in a similar way as eq. 3.9. The
difference here is is that L; represents the lifetime of robot ¢ during simulation,
n is the total number of robots, and L,,,, is the maximum lifetime of a robot.
It is also possible to add additional reward for the ability to aggregate such
that self-assembly(or at least proximity) is promoted, but as mentioned earlier,
the purpose was to limit the amount of evolutionary guiding. In the case where
self-assembly does not occur, a more sophisticated objective function could be
implemented.

37



3.8. Data gathering Chapter 3. Methodology

3.8 Data gathering

The statistics logged for post-processing, and later analysis is as follows:

Fitness

Group size

Number of groups

Energy items collected by individual robots
Energy items collected by robot groups
Number of predators eaten by robot groups
Number of robots starved

Number of robots eaten by predators

These statistics are logged at the end of each scenario for every genome in all
the generations. These statistics are recorded by the agent observers and the
world observer, the only exception being energy collected which required some
additional modification of roborobo. This modification consisted of performing
the logging when energy is rewarded for eating food. Logging the group sizes,
and the number of groups is done a bit differently than the rest of the statistics.
The logging is performed by taking a snapshot which contains the number of
groups and their sizes every 50 iterations of the simulation. The reason for this
is that they change in value over the lifetime of a simulation, and this change

should be recorded.
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Chapter

Results and Discussion

This chapter shows the results of the simulations done with the framework
shown in chapter 3 as well as discussing these results. The chapter is mainly
divided into two sections, the first explaining the configuration of the simu-
lation as well as results depicted by graph data. The second section focuses
on discussing the results regarding the reason they have certain values and
graphs, as well as comparisons between the different simulations and discovery
of correlations and behavioural similarities.

4.1 Experimental Results

As stated in the chapter introduction, this section covers the results of the
simulations. Even though the simulator supports a wide variety of different
configurations, three main simulation groups were chosen for this particular
study.

e The first group considers different connection port configurations for the
robots.

e The second simulation group varies the difficulty of the environment.

e The third and final simulation group observes the effect of local commu-
nication between the robots in a self-assembly structure(the implemen-
tation is shown in sec. 3.5.3).

The two first simulation groups targets to contribute to the three main
self-assembly mechanisms discussed in chapter 2(Self-assembly Architectures,
Hardware Mechanisms and Assembly Protocols). The local communication
simulation group aims to study the effect of giving the robots the ability to
perform simple communication between the robots in a group.
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4.1.1 Port Configuration

The first group of simulations that were done was varying the number of con-
nection ports of the robots and their configuration. These simulations were
done such that one could record and discuss the impact of connections between
the robots. In more detail, this group of experiments was conducted such that
one could record:

e How the number of ports affected the general performance of the system.
e If there is any noticeable difference in the self-assembly architecture.

e In what way the port configuration promotes self-assembly, both regard-
ing the sizes of the different robot groups, and the number of groups.

e How the port configuration affects the fitness of the experiment, regard-
ing convergence and the final result.

The goal of running these simulations is to make correlations between its
results to show how configuring the hardware mechanism can affect a self-
assembly system. Snapshots of simulations using different port configurations
can be viewed in figure 4.1.
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Figure 4.1: The three different port configurations used in simulation

Common configuration parameters of importance for the simulations are
listed in table 4.1.
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Table 4.1: The simulation parameters for the environments.

Parameter Value
Number of Robots 20
I[terations per Generation 10000
Scenarios 3
Generations 150

For this group of simulations, the most relevant statistics will be the differ-
ence between group actions versus single robot actions. The following pages
show the recorded data for simulations using, two connection ports, three con-
nection ports, and four connection ports(see figure 4.1).
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Figure 4.2: The fitness from connection port simulations

Figure 4.2 show the results for achieved fitness for the port configuration
simulations. The two and four connection port results are very similar where
the four connection port performs slightly better with an average fitness of
about 0.2 on generation 1 rising to about 0.5 on generation 150. The three
connection port simulation performs worse, concerning fitness, in every aspect

compared to the other port configurations.
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Figure 4.3: The group distribution from connection port simulations

Figure 4.3 represents the distribution of group sizes formed during simu-
lation. The size of the circles indicates the number of groups formed. The
two and four connection port simulations have more groups of all sizes with
the exception of a single group of size five which was formed from the three
connection port simulation. The four connection port simulation formed larger
groups than the two connection port simulation.
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Figure 4.4: Number of groups from connection port simulations

Figure 4.4 shows the number of groups which were formed in the different
simulations. It is seen that the results of the two and four connection port
simulations are very similar where the only notable difference is that the four
connection port results seem to converge at a faster rate. The three connection
port results are quite poor, having few groups throughout the trial.
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Figure 4.5: Number of robots eaten from connection port simulations

Figure 4.5 shows the number of robots which were eaten by predators
during simulation. The four connection port simulation performs best, but
only slightly better than the two connection port robots. The four connection
port results converges faster and has slightly better results at the end of the
simulation. The three connection port results are quite poor in comparison
where a lot more robots are consumed by predators.
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Figure 4.6: Number of robots starved from connection port simulations

Figure 4.6 shows the number of robots starved each generation. The results

for two and four connection port simulations are very similar where the average
number of robots starved is about four at the final generation(150). The three
connection port simulation performs slightly better on these results where the
average number of starved robots is slightly less than 3. The three connection
port simulation performs best on this result because most of the robots have
been consumed by a predator before they die of starvation.
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Figure 4.7: Energy consumed by group from connection port simulations

Figure 4.7 shows the energy consumed by groups of robots during simula-
tion. From these results, it can be viewed that the results containing 2 and
four connection ports are very similar with an average result of about 60 en-
ergy items consumed at generation 150. The three port configuration performs
a lot worse with a result of about ten energy items consumed at generation
150. The results are correlated with the results obtained from the number of
groups formed in the simulation(figure 4.4b).
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Figure 4.8: Energy consumed by robot from connection port simulations

Figure 4.8 shows the total amount of energy which is consumed by robots
which are not self-assembled. All of the graphs have similar results and slopes,
with the exception that the three connection port simulation performs worse.
The reason the average results of figure 4.8a and 4.8c flattens out and does
not increase after around generation 30 is that more of the robots are self-
assembling and hence is not tracked as a part of these results. As the energy
consumed is not decreasing because more robots are a part of groups, it can
be deduced that more energy is consumed on a per robot basis.
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Figure 4.9: Number of predators eaten from connection port simulations

Figure 4.9 tracks the number of predators that have been eaten by robot
groups. The four connection port simulation performs best and is correlated
with having larger group sizes than the other port configuration shown in figure
4.3c. As the robot groups must be of at least size three to consume a predator,
the results shown in this figure conform with the other results shown earlier.
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4.1.2 Environment Difficulty

The motivation for this experiment is to observe how changing the difficulty of
the environment affects the evolved behaviour. For the experiment two envi-
ronment difficulties were constructed, one easier and one more difficult. These
environment difficulties were then used in the simulations so that the impact
of the evolutionary pressure could be recorded and discussed. More specifically
the experiments were constructed to investigate how differing environment dif-
ficulties affect the following properties of the evolved behaviour:

e The amount of robot groups formed through self-assembly, and the num-
ber of robots in each group.

e How the energy gathering behaviour is affected. Whether the robots
prefer gathering energy individually, or as robot groups.

e How the environment difficulty affects the fitness of the experiment, re-
garding convergence and the final result.

The environment difficulty is modified by varying the following simulation
parameters: the initial energy level the robots, the maximum amount of energy
each robot can be charged with, the numer of energy items in the environment,
and the number of predators present in the simulation. Table 4.2 presents the
simulation parameters that are varied for the environments.

Table 4.2: The simulation parameters for the environments.

Environment Predators Initial energy Food items Maximum energy
Easy environment 4 8000 25 10000
Hard environment 7 6000 20 8000

The results were obtained by running 20 simulation trials for each difficulty,
where each of the trails run for 150 generations.
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Figure 4.10: The fitness from environment simulations

Figure 4.10 shows the results for achieved fitness for the environment diffi-
culty simulations. The results for the easy environment are noticeably better
than the results from the hard environment, starting with an average fitness
of 0.24 at generation 1 and rising to 0.55 at generation 150.
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Figure 4.11: The group distribution from environment simulations

Figure 4.11 presents the distribution of group sizes formed during simula-
tion. The distribution for the easy and hard environments are very similar,
but one can see that the easy environment simulation has slightly more groups
of two and three robots.

52

Best case
Average case
Worst case

Standard Deviation




o 6.4 | g 6.4 i
@) &)
B 48} 8 48} 1
Q Q
~ ~
s 3 320 |
— —
) [
Qo Q
g g
= =}
z. z.

Generation Generation

(a) easy (b) hard

Figure 4.12: Number of groups from environment simulations

Figure 4.12 shows the average number of groups formed at a given times-
tamp in the simulation. One can see that the curves for both simulations are
quite similar, but the number of groups formed in the easy environment is
around one more at any given generation.
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Figure 4.13: Number of robots eaten from environment simulations

Figure 4.13 shows the number of robots which were eaten by predators
during the simulations. The easy environment simulation performs a bit better
than the hard simulation. In the easy environment simulation, an average of
around 16 robots are eaten in the first generation and decreases to around eight
robots in generation 150. In the hard environment simulation, an average of
around 17 robots are eaten in the first generation and decreases to around 11
robots in generation 150.
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Figure 4.14: Number of robots starved results from environment simula-
tions

Figure 4.14 shows the number of robots dying from starvation. The graphs
are relatively similar, with the worst case being almost the same. In the easy
environment, compared to the hard environment, there is around one robot less
dying from starvation for the average and best case. Surprisingly, these graphs
show that during the first 30 generations the results are getting worse. The
increase in robots starving can be explained by that many robots are getting
eaten by predators before they have time to starve in the early generations.
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Figure 4.15: Energy consumed by group from environment simulations

Figure 4.15 shows the total amount of energy consumed by robot groups
during simulation. In the easy environment simulation, the robot groups gather
far more energy than in the hard environment simulation. Gathering an aver-
age of 56 pieces of energy at generation 150 for the easy environment compared
to just 31 pieces in the hard environment simulation.
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Figure 4.16: Energy consumed by robot from environment simulations

Figure 4.16 shows the total amount of energy eaten by individual robots
during simulation. The easy environment performs better, collecting an av-
erage of 14 energy in the first generation and an average of 24 in the final
generation. The amount of energy gathered in both environments flattens
out at around 30 generations. The reason for this is that more robots are
self-assembling and is hence not tracked as part of these results.
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Figure 4.17: Number of Predators eaten from environment simulations

Figure 4.17 shows the number of predators eaten by robot groups. On
average, the amount of consumed predators is about the same for both envi-
ronment difficulties, with the robots in the hard environment being consumed
at a slightly higher rate. However, in the best case, the hard environment per-
forms significantly better. The results may be correlated with it being more
predators present in the hard environment that the robots can eat.
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4.1.3 Local Communication

The goal of this experiment is to investigate the impact local communication
has on the behaviour of the robots. The experiment is performed by selecting
the fittest genomes found during a simulation, removing the communication
module, and then observing the change in behaviour, if any.

The observed robot behaviour can be split into two phases, the individual
behaviour, and the group behaviour.

Individual behaviour

The individual robots have two observed movement strategies. The strategy
which is employed depends on if a wall is within the range of the robot sensors.
The first strategy involves moving in a wide circular path. This strategy occurs
when no walls are detected by the sensors. This strategy allows the robots to
collect more energy, and will attempt connections with other robots if they
collide. However, they make no attempt to avoid predators in their path. This
behaviour is usually observed at the beginning of the simulation since most of
the robots are initialised away from the walls.

The circular motion of the robots is wide enough to make them crash into
the walls of the environment. The behaviour of the robots changes when
the sensors detect a wall. Instead of moving in circles the robot changes its
movement pattern to follow the wall of the environment. Figure 4.18 shows
how a robot follows the wall while keeping it within sensor range.

A 4

Figure 4.18: A robot using its sensors to follow a wall.

The robot will continue moving along the wall until it meets another robot,
and can form a group, or if the sensors detect a bypassing robot group. If a
robot group comes within sensor range while the robot is moving along the
wall, the robot will abandon the wall and attempt to follow the group instead.
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Group behaviour

Figure 4.19: Robot groups moving with circular motion.

The behaviour of the robot groups is similar to the first strategy of the in-
dividual robots. Robot groups also move in wide circular motions, displayed
in figure 4.19, but if the group crashes into a wall, it will simply turn around
and continue. The robot groups consume predators in their path, but they
make no attempt to follow detected predators. The robot groups will continue
to move in circular motions, consuming energy, predators, and making con-
nections, until the end of the simulation, or until the members of the groups
starve.

Communication module

Disabling the local communication module has a significant effect on the be-
haviour. With the communication disabled the robots will no longer switch
to the group behaviour once they are connected. Instead, the groups will con-
tinue to perform the individual robot behaviour regardless of the number of
connected robots.

4.2 Discussion

This section covers the analysis of the obtained results. The section is split
into three parts. The first part covers the connection port simulations and
reviews the impact these results have on achieving self-assembly. The second
part covers the different environmental difficulty simulations. The third part
covers the local communication module and explains the effect it has on the
robot system.
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4.2.1 Port configuration Analysis

Regarding the results fetched from the port configuration simulations the first
obvious remarks stem from the simulation running a three port configuration.
The results of this simulation are much weaker concerning performance and
promotion of self-assembly than the simulations running two and four con-
nection ports. The reason for this can not be deduced completely from the
empirical results, but as the only difference in these simulations are the num-
ber of connection ports and the alignment; it is clear that the connection port
configuration can significantly impact the performance of the simulation. It
can also be deduced that it is not the number of connection ports that has the
primary impact of the solution, but rather the placement. The reason one can
make this claim is that the configuration using two connection ports and four
connection ports perform quite similar in terms of performance. If the number
of connection ports had a significant impact on the results, one would expect
the simulation using either two or four connection ports to yield even poorer
results than the three connection port simulation. This effect narrows the port
configuration problem down to the alignment of the connection ports.
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Figure 4.20: The three different port configurations used in simulation

Figure 4.20 shows a closer view of the alignment that the robots initially
have when spawned into the environment. As explained in 3.5, the robots can
rotate their connection ports as a group. A standard strategy which is usually
evolved is to either constantly rotate the connection ports in hopes of lining
up the ports to another robot, or, the robots start rotating their ports when
the sensors see another robot in an effort to self-assemble. There are two main
problems that the three connection port robots have compared to the other
port configurations. First, the initial port location does not align to any other
robot.
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Figure 4.21: This figure shows how the three connection port robots align

As seen in figure 4.21a, there is not a trivial alignment for the robots to
connect. One might initially presume that this is not a problem as the robots
have a mechanism for rotating their ports to solve this exact issue. However,
as all the robots are running the same genome, as per off-line evolution and
hence the same behaviour, it becomes increasingly difficult for the robots to
solve this problem. As explained earlier, the robots in this simulation tend to
evolve a strategy which involves constantly spinning the connection ports in
one direction. However, as seen in figure 4.21b, in the case where all robots at
some time step have rotated their connection ports 50°, the same issue of port
alignment would still hold.
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Figure 4.22: This figure shows how the two and four connection ports robots
align from initial configuration

Consider figure 4.22. In this example, there are two and four port config-
urations. It can be observed that with an initial rotation of the ports, there
exist possibilities for the robots to self-assemble without having the robots
behave differently in terms of rotating their connection ports. This differentia-
tion seems to be the main reason that the three connection port configuration
is being outperformed.

The second problem with robots having three connection ports, in this
alignment, is the possible group formations the robots can form. Chapter 2
covers the chain and lattice architectures that the robots can form when self-
assembling. The simulator is developed to support the lattice architecture
because if its simplistic method of coordinated movement.
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Figure 4.23: This figure contains self-assembled robot groups with different
assembly combinations

It can be seen from figure 4.23 that the different connection port configura-
tions create various types of groups. With two and four connection ports (figure
4.23a), the robot groups either take the form of a line or some square grid for-
mation. Possible formations of the three connection ports robot groups(figure
4.23b) breaks the pattern of a square grid configuration which makes it harder
for other robots trying to connect to the group. The main reason for this
connection problem is the relative position a connecting robot needs, is harder
to attain because of the larger distance between the connection ports.

There are not significant discrepancies between the results from the port
configuration simulation containing two and four connection ports. The only
result which differs significantly is ”predators eaten” (figure 4.9a and 4.9c¢).
The reason for this can be deduced from figure 4.3a and 4.3¢ which shows that
robots with four connection ports tend to form larger groups. It can however
be viewed from figure 4.4a and 4.4c that two and four connection ports have
roughly the same number of groups. The occurrence of a greater amount of
larger groups naturally agrees with eating more predators as groups need to
be of at least size three to consume a predator. The reason for four connection
ports robots to attain larger groups is simply that more connection ports allow
more points of entry for other robots trying to connect, which increases the
probability of succeeding self-assembly to the group.

From these results, it can be deduced that larger groups do not give rise to
better fitness in this experiment, but rather the number of groups (a group is
of minimum size 2) correlates with the fitness. The reason for this is that the
robots in the port configuration simulations are not in a great need of energy.
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The robots are able to naturally attain what they need in the environment
and hence do not have to rely on a strategy involving predator consumption.

4.2.2 Environmental difficulty analysis

The analysis and discussion on the impact of environmental difficulty can be
divided into three main categories: the impact of environmental threats when
the difficulty is modified, how the promotion of self-assembly is effected by the
environmental difficulty and finally, how the evolved energy collection strategy
is influenced by the environment difficulty.

Environmental threats

The robots have two threats in the environments presented, starvation and
getting killed by predators. The robots in the easy environment receive more
energy from each energy item, and there are more energy items available.
From figure 4.14 one can see that this reduces the amount of robots dying
from starvation in the easy environment, but the improvement is minuscule.

Increasing the number of predators in the environment seems to have a
higher impact on the difficulty presented by an environment. Figure 4.13
shows that increasing the amount of predators present in the environment has
a greater impact on the difficulty of the environment than limiting the energy
available. The reason for why increasing the number of predators has a much
higher impact on difficulty is not completely clear from the results. However,
the observed behaviour described in section 4.1.3 can help explain the results.
The sensors are used by the robot to detect walls and other robots, but not
predators or food. This behaviour means that the robot may miss some food,
but there is enough food in the environment so the robot will eventually find
more food. On the other hand, failing at predator avoidance has much more
severe consequences as the predator will instantly kill the robot.

Promotion of self-assembly

One of the motivations for this experiment was to see how modifying the
evolutionary pressure affects the promotion of self-assembly. Figure 4.12 show
that the robots form more groups in the easy environment. At first glance, this
seems to indicate that the easy environment is more successful at promoting
self-assembly. This difference in the number of groups may be explained by
examining the lifetime of the robots. As explained in section 3.7.6, the fitness of
a genome is determined by the average lifetime of a robot. The fitness achieved
in the easy environment, figure 4.10a, is higher than the fitness achieved in the
hard environment, figure 4.10b. The fitness means that the robots in the easy
environment live longer, and as a consequence have more time to form groups.
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However, figure 4.11 shows that the size of the robot groups formed is not
affected by modifying the difficulty of the environment. In both environments,
the distribution of group sizes is heavily weighted towards groups of two. The
reason for this may be that the environments give a high reward for being in
a group. That is protection from predators, the additional reward for form-
ing larger groups(being able to eat predators) is diminished as there is an
abundance of energy items in the environment.

Energy collection strategy

One can see from the figures 4.15 and 4.16that the robots in the easy envi-
ronment collect far more energy than the robots in the difficult. This result
can likely also be attributed to the fact that the robots in the easy environ-
ment live longer, and that there is more energy available, instead of a more
optimal energy gathering strategy. One can look at the ratio of energy col-
lected by individual robots versus energy collected by groups of robots for the
environments. This relationship is presented in table 4.3.

Table 4.3: The percentage of energy collected by groups of robots for the
environments.

Generation Easy Hard

10 54% 51%
50 1% 67%
100 1% 1%
150 2% 73%

Table 4.3 shows that in both environments the ratio of energy collected
by robot groups is approximately the same. The ratio means that although
the robots in the easy environment collect more energy in total, the strategies
evolved in the different environments are similar. This also coincides with
that the observed behaviour described in section 4.1.3 is very similar for the
different environments.

4.2.3 Local communication analysis

As described in section 4.1.3, the evolved behaviour makes use of the commu-
nication module. When the communication module was disabled, the robots
did not change their behaviour when they formed groups. Therefore, it is rea-
sonable to assume that local communication is at least involved in modifying
the robot behaviour once connected to a group. Exactly how the evolved neu-
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ral network interprets the messages received is challenging to infer, but one
can observe the messages sent to get a conceptual understanding.

[0.992 0.999 0.423 0.002]

Figure 4.24: The message passed between the robots.

Without any other inputs, all robots send the message displayed in 4.24
by default. Receiving other inputs, such as sensors, changes the message by a
negligible amount. The surprising thing about the message is that the com-
ponents in the communication messages have wildly different values. It turns
out that the values in the messages have an interesting interaction with the
port connection status that is also propagated to the neural network. The port
connection status contains the robot’s connection status of each port.

Table 4.4: The resulting desired rotations for different port combinations with
the evolved message and a test message for comparison. A port status value
of 1 means the particular port is connected, 0 means it is not connected.

Message:[0.992 0.999 0.423 0.002] Message: [1.0 1.0 1.0 1.0]

Port status  Desired rotationgeg/step  Port status — Desired rotationgeg /step

1100 0.9482 1100 0.719
1010 0.999 1010 0.976
1001 0.517 1001 0.658
0110 0.997 0110 0.866
0101 0.705 0101 0.674
0011 0.997 0011 0.822

Table 4.4 shows how the desired rotation for the robots varies with the
local topology of the connected robots. The table shows this variation with
the evolved message and a dummy message for comparison. It can be observed
that the resulting desired rotations for the robots have different values for the
two messages. The desired rotation for the robots determines the radius of
the circular motion that dictate the robot group movements. These results
show that the local communication module is used for two purposes. The first
purpose is to act as a switch to change from the individual robot behaviour
to the group behaviour. Additionally, the communicated message decides the
robot group’s behaviour depending on the different connection topologies.
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Chapter

Conclusion

The main focus and goal of this thesis have been to discover and test the
elements present in a self-assembly system when robots are given basic learning
capabilities. The experiment has been conducted using a heavily modified
version of the roborobo framework. The main factors that have been researched
in accordance with self-assembly have been: connection port configuration,
environmental influence and local communication.

The results obtained from the connection port simulations, show that con-
figuration of the connection ports can significantly impact the emergence of
self-assembly using an evolutionary algorithm. The port configuration consists
of the number of connection ports each robot has available and the relative po-
sitioning of the connection ports on the robot. Both elements influence the size
and frequency of self-assembling robot groups. It can, however, be narrowed
down to a single influential self-assembly mechanism: the assembly protocol.
It is evident from the results that providing the robots with tools that allow
an efficient and simple assembly protocol to be evolved, is essential to achieve
successful results.

The main focus of the learning algorithm should be to solve the task at
hand and not deriving a complex strategy for achieving self-assembly. Having
the ability to form a complex assembly protocol can be appropriate in a partic-
ular situation as it may significantly improve performance. However, it should
not be a minimum requirement for the ability to self-assemble. An evolution-
ary algorithm performs better when an incremental solution to some desired
behaviour is possible. If the least complex achievable self-assembly protocol
requires sufficiently advanced cognition, then the robots may only have a few
occurrences of self-assembly or none at all.

The results gained from the environment difficulty simulations implies that
the difficulty of the environment is not directly correlated with promoting
self-assembly. The results show that the robots perform better in an easy en-
vironment, but this is rather due to restrictions in the environment and not
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due to the ability to self-assemble. The only effect that difficult environments
impose on self-assembly is making robots die earlier, giving them fewer op-
portunities to self-assemble. Promoting self-assembly may rather see a larger
impact if the rules of the environment change(examples include translation
speed of predators and the physical size of the environment).

One of the problem statements this study aimed to examine was the in-
troduction of a local communication module. From the results discussed in
chapter 4, it was seen that using the local communication module drastically
changed the behaviour of self-assembled groups. However, it cannot be made
any conclusive remarks as to the local communication module promoting the
robots to self-assemble as deciphering the evolved values of the neural network
is very difficult. From a logical point of view, one would not expect there
to be a difference, because the local communication module only transmits
information between the robots in a self-assembled group. Hence, there is
seemingly no reason why this would help two singular robots to self-assemble.
However, when using an evolutionary algorithm, the use of certain modules
may be utilised differently than the developer predicts. The evolved genomes
may use the module as a state machine instead of a message passing module.

In concluding remarks, it is shown that there should be a larger focus on
the connection mechanism which the robots have equipped. To promote self-
assembly, the ideal hardware mechanisms would be one which makes it easy for
the robots to evolve an efficient assembly protocol, but also yields an interface
to evolve complex assembly behaviour. In the case where static connection
points are used, using many, initially aligned connection ports increase the fre-
quency and size of the self-assembled groups. The difficulty of the environment
does not seem to impact the frequency of self-assembly, and one may consider
altering the static rules of the environment which may yield a noticeable im-
pact. A local communication module is an advantageous asset to provide for
self-assembly robots as it may be used to communicate a transition to group
behaviour as well as assisting in the type of behaviour which emerges from the

group.

5.1 Future work

From the observed results of self-assembly mechanisms and environment, it
is seen that improvements and further experimentation can be implemented.
This forms the basis for exploring other factors of self-assembly mechanisms.

The port configuration has the possibility to be explored further as the re-
sults of this study determined that it has a significant impact on the emergence
of self-assembly. A possible exploratory field would be to challenge the static
nature of the ports presented in this study. Hardware mechanisms which do
not depend on fixed positions on a robot where the robots are able to self-
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assemble at any point on a connecting robot should, according to the results
obtained in this study, perform at a higher rate. An obvious end goal of stud-
ies like this one is to be able to realise these robots into the real world. In
these scenarios, the reality gap will probably inflict even stricter conditions on
performing a simple assembly strategy which could detriment the ability to
self-assemble.

Since the impact of changing the environment did not suggest a change in
assembly protocol or strategy, a reasonable continuation would be to catego-
rize which environmental scenarios self-assembly, through evolution, is most
appropriate. Changing the atomic rules of the environment and robot problem
tasks may yield results indicating scenarios where evolutionary self-assembly
is more appropriate.

Local communication is a mechanism which has not been significantly re-
searched in this field. According to the results obtained in this study, further
exploration into communication modules between the robots can give rise to
increasingly complex behaviour. In this study, a very simple protocol of passing
floating point numbers from one robot to another was implemented. Perhaps
there are better communication protocols available which could further the
performance. It is also possible to look at the possibility for robots to com-
municate on a local spectrum where they are not necessarily self-assembled.
Expanded local communication may improve their ability to form an effective
assembly strategy through evolution.

The evolutionary algorithm used in this study is simple and standard.
There exists additionally advanced evolutionary algorithms and other bio-
inspired algorithms where the mechanisms presented in this study should be
additionally explored.
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Appendix

Parallelization

In the experiments described in this study, the bulk of processing time is
spent evaluating the genomes using roborobo. The genome evaluations are
independent of each other and is therefore a good candidate for parallelization.
With a great number of global variables, the roborobo framework itself is not
easily parallelized. The solution was to use Message passing interface(MPI)
to run multiple cooperating roborobo processes.

The parallelization is done by letting one root process take responsibil-
ity for running the evolutionary algorithm, with multiple slave processes for
evaluating the genomes.

EA@@ EA@@
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(a) Distributing the genomes from the (b) Gathering the evaluated genomes
root process to the slave processes for from the slave processes.
evaluation.

Figure A.1: Distributing and gathering genomes.

At the beginning of each generation the root process generates the new
genomes from the evolutionary algorithm. The new genomes are then dis-
tributed evenly to each process, see figure A.la. Once all the genomes are
evaluated, the root process gathers the evaluated genomes from the slave pro-
cesses, see figure A.1b. The evaluated genomes are then used by the evolu-
tionary algorithm to create the next generation. This process is repeated until
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the target fitness is reached or a processing threshold is met.
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Appendix

Live graphing tool

Since the evaluation is quite time-consuming, there was a need for a tool that
could give feedback during the simulation instead of having to wait for it to
complete. A simple ”live” graph which plots fitness statistics was therefore
created, pictured in figure B.1

Figure B.1: The graphing tool showing fitness statistics for a trial.
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Having such a tool makes it easier to evaluate how well new configurations

are working, and saves time by shortening the feedback cycle.
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Appendix C

Configuration & Code

The project code and system configuration can be found at https://github.
com/christjt/ntnu-project-2016
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