
Self-assembly Mechanisms for
Evolutionary Robotics

Eirik Jakobsen
Christopher Jeffrey
Tannum

Master of Science in Computer Science

Supervisor: Keith Downing, IDI
Co-supervisor: Kazi Shah Nawaz Ripon, IDI

Department of Computer and Information Science

Submission date: June 2016

Norwegian University of Science and Technology

Abstract

In recent study, an increasing amount of time has been spent researching com-
plex systems due to the traditional Von Neumann architecture lacking sufficient
efficiency. A specific complex system which has been growing in popularity is
a system of swarm robots. Introducing evolutionary principles in such sys-
tems makes an attempt at collective computation, from simple elements, to
resolve complex problems. To further add functionality to such systems, self-
organizing techniques, such as self-assembly, have been introduced. Because
of the lack of research literature within this paradigm, there are few com-
parisons of the different implementations of self-assembly mechanisms. This
thesis outlines some mechanisms of self-assembly and explores the positive and
negative implications these may have on evolutionary self-assembling robots.
The results of the experiments conducted in this thesis show that self-assembly
mechanisms such as the connection hardware and introducing local communi-
cation can influence the system’s ability to self-assemble, and the behaviour of
the self-assembled group.

i

ii

Sammendrag

I nyere forskning har en økende innsats blitt brukt til å forske p̊a komplekse
systemer. Grunnen til dette, er et økende behov for å løse komplekse prob-
lemer der den tradisjonelle Von Neumann arkitekturen mangler tilstrekkelig
effektivitet. Et spesifikt komplekst system som har vært i økende popularitet
er et system av sverm roboter. Ved introdusering av evolusjonære prinsipper
i slike systemer gjør man et forsøk p̊a kollektiv beregning fra enkle elementer,
for å løse komplekse problemer. For å legge til ytterligere funksjonalitet til
slike systemer har selvorganiserende teknikker, for eksempel selvmontering,
blitt introdusert. P̊a grunn av mangel p̊a forskningslitteraturen innen dette
paradigmet, er det f̊a sammenligninger av de forskjellige implementeringer av
selvmonterende mekanismer. Denne avhandlingen beskriver noen mekanismer
for selvmontering og utforsker de positive og negative konsekvenser disse kan
ha p̊a evolusjonære selvmonterende roboter. Resultatene av forsøkene utført
i denne avhandlingen viser at selvmonteringsmekanismer, som for eksempel
tilkoblingsmaskinvare og innføring av lokal kommunikasjon, kan p̊avirke sys-
temets evne til å selvmontere, og oppførselen til den selvmonterte gruppen.

iii

iv

Preface

This master thesis is written at the Department of Computer and Informa-
tion Science at NTNU during the spring semester of 2016. During their 8th
semester, students are exposed to a number of different projects which are
provided by the IDI faculty and professors at NTNU. These projects are open
to interpretation by the students to enable their creativity. This thesis builds
on a research project conducted during the autumn of 2015, which had the
following project description:

”Self-assembly mechanisms are useful in collective robotics in order to allow a
group of robots to cross obstacles that a single robot could not cross. Another

use of such mechanism is the drag heavy objects by multiple robots. In the
last years, multiple mechanisms have been proposed in the literature. The first
task of the student will be to list these mechanisms find the relevant axes to
classify the self-assembly mechanisms of the literature. The second task will

be to compare these mechanisms. More specifically, an evolutionary algorithm
will be selected for its ability to learn behaviours in groups of robots.
Additionally, a task will be selected or designed for its proper level of
challenge (that can be addressed thanks to self-assembly). Finally, the

algorithm will be used on the task with the various mechanisms located, and
comparisons will be made on the difficulties to evolve behaviours using

self-assembly.”

From the researched project during 2015, several interesting research scopes
were discovered. An initial experiment was outlined during the project which
was elaborated and continued throughout this thesis. Exploring the different
mechanisms and behaviours of swarm-robotics became the foundation of this
thesis.

Special thanks to:

• Kazi Shah Nawaz Ripon for extensive help in forming this report, sup-
plementing theoretical foundation and imperative guidance.

• Jean-Marc Montanier for comprehensive help during the research project
of fall 2015 which prompted the writing of this thesis.

• Pauline Catriona Haddow for supplying this project and supplying con-
tact with excellent supervisors.

v

vi

Contents

1 Introduction 1
1.1 Thesis objectives . 3
1.2 Problem statement . 4
1.3 Structure of report . 4

2 Background 5
2.1 Related work . 5
2.2 Complex systems . 6
2.3 Self-assembly architectures . 7

2.3.1 Non-mobile Architecture 7
2.3.2 Mobile architecture . 9

2.4 Hardware mechanisms . 10
2.4.1 Docking mechanisms . 11

2.5 Assembly protocols . 12
2.5.1 Pre-determined assembly protocol 13
2.5.2 Learned assembly protocol 13

2.6 Machine learning algorithms . 14
2.6.1 Evolutionary algorithms 15

2.7 Artificial neural networks . 17

3 Methodology 21
3.1 Experiment motivation . 21
3.2 Experiment setup . 22
3.3 Environment . 22
3.4 Roborobo overview . 23
3.5 Roborobo modifications . 24

3.5.1 Robot Groups . 24
3.5.2 Docking mechanism . 26
3.5.3 Local communication . 26
3.5.4 Predators . 27

vii

3.5.5 Energy drain . 28
3.6 CTRNN . 29

3.6.1 Topologies . 30
3.7 Evolutionary algorithm . 31

3.7.1 Genotype . 31
3.7.2 Initialization . 32
3.7.3 Mutation operators . 33
3.7.4 Selection mechanism . 34
3.7.5 Elitism . 36
3.7.6 Evaluation . 36

3.8 Data gathering . 38

4 Results and Discussion 39
4.1 Experimental Results . 39

4.1.1 Port Configuration . 40
4.1.2 Environment Difficulty 50
4.1.3 Local Communication 59

4.2 Discussion . 60
4.2.1 Port configuration Analysis 61
4.2.2 Environmental difficulty analysis 65
4.2.3 Local communication analysis 66

5 Conclusion 69
5.1 Future work . 70

Appendices 79

A Parallelization 81

B Live graphing tool 83

C Configuration & Code 85

viii

List of Figures

2.1 Examples of self-organizing behaviour in nature. 6
2.2 Yamor robots configured as a snake[39]. 8
2.3 Atron assembled into a four wheeled car [9]. 8
2.4 A group of swarmbots preparing to transport an object[21]. . . . 9
2.5 Operation of a typical EA[13] 16
2.6 Model of an artificial neuron. 18
2.7 A feed forward network. 19

3.1 Initial configuration of the environment. 23
3.2 The relationship between a) the agent controller, b) the agent

observer, and c) the world observer. 24
3.3 Robot B aggregating the messages received from robot A, and C. 27
3.4 A screenshot of a simulation. The predators are marked with

red and the robots guided by the evolutionary algorithm are
marked with blue . 27

3.5 The difference in the activation function with respect to yi based
on a low and high value of gi . 30

3.6 Mapping the genotype into weights, gains, and time constants. . 32
3.7 Displays the mutation strategies for the random and incremental

mutation operators. 33
3.8 A roulette wheel where the size of each sector represents the

probability of picking a particular parent. 35
3.9 Selecting parents using a binary tournament. 36

4.1 The three different port configurations used in simulation 40
4.2 The fitness from connection port simulations 42
4.3 The group distribution from connection port simulations . . . 43
4.4 Number of groups from connection port simulations 44
4.5 Number of robots eaten from connection port simulations . . 45
4.6 Number of robots starved from connection port simulations 46
4.7 Energy consumed by group from connection port simulations 47

ix

4.8 Energy consumed by robot from connection port simulations 48
4.9 Number of predators eaten from connection port simulations 49
4.10 The fitness from environment simulations 51
4.11 The group distribution from environment simulations 52
4.12 Number of groups from environment simulations 53
4.13 Number of robots eaten from environment simulations . . . 54
4.14 Number of robots starved results from environment simula-

tions . 55
4.15 Energy consumed by group from environment simulations . 56
4.16 Energy consumed by robot from environment simulations . 57
4.17 Number of Predators eaten from environment simulations . 58
4.18 A robot using its sensors to follow a wall. 59
4.19 Robot groups moving with circular motion. 60
4.20 The three different port configurations used in simulation 61
4.21 This figure shows how the three connection port robots align . . 62
4.22 This figure shows how the two and four connection ports robots

align from initial configuration 63
4.23 This figure contains self-assembled robot groups with different

assembly combinations . 64
4.24 The message passed between the robots. 67

A.1 Distributing and gathering genomes. 81

B.1 The graphing tool showing fitness statistics for a trial. 83

x

List of Tables

2.1 Various hardware solutions to discovery and communication. . . 10
2.2 An overview comparing past research projects of swarm robots

based on the robot controller being evolved using an evolution-
ary algorithm, or pre-programmed for its intended usage. 12

4.1 The simulation parameters for the environments. 41
4.2 The simulation parameters for the environments. 50
4.3 The percentage of energy collected by groups of robots for the

environments. 66
4.4 The resulting desired rotations for different port combinations

with the evolved message and a test message for comparison. A
port status value of 1 means the particular port is connected, 0
means it is not connected. 67

xi

xii

Chapter 1
Introduction

Every year the expansion and development of robots increases. We see robots
being used in large military operations in the form of drones, as well as small
robots in households that can vacuum your house while you are gone. A lot
of this technology has only recently been developed, and it is expected that it
will continue to grow and become a part of almost every aspect of society.

As a part of advancing robotics, a lot of the different functionality and be-
haviour of robots are being explored. These mechanisms include self-replicating
machines, artificial intelligence, self-assembly, inter-robot communication, etc.
In this study, we will be exploring a robot’s ability to self-assemble.

Self-assembly is the autonomous organization of components into patterns
or structures without human intervention [60]. We can observe self-assembling
processes in nature at a molecular scale [26] as well as at a planetary scale
in the form of solar systems; each of which presents many different configu-
rations. There are several reasons to study self-assembly. One reason is, the
cells in the human body self-assemble, so understanding this mechanism can
help us understand life and the prerequisites for it. In chemistry, it has been
discovered that polymers can self-assemble from monomers to form materials
that can be used in a wide range of applications[12, 52]. In electronics, the self-
assembly of nanoparticles can be used to create certain semiconductors such
as solar panels[1]. In either case, understanding and controlling self-assembly
is essential.

Self-assembly is also used as a practical strategy for making nanostructures
as well as providing beneficial characteristics to the field of robotics. In a more
general sense, self-assembly can improve the movement of robots by being able
to overcome larger obstacles in the environment and having a large sensory field
by grouping the sensors in a self-assembled structure.

According to [62], there are three main characteristics that self-reconfigurable
systems benefit from. The first is versatility, systems can self-assemble into
new structures based on the specific task it is to solve. For example, the system

1

Chapter 1. Introduction

may change from a rolling robot to a snake robot depending on the situation.
The second characteristic is robustness. Since the robots are usually homoge-
neous, one can replace broken robots to repair the system. It is also possible
to automate this process, leading to self-repair which makes the system more
robust than other traditional systems. The last characteristic is the potentially
low cost of developing a self-reconfigurable system. Constructing many of the
same type of robot generally lowers the overall robot cost. In addition, there
are many complex machines that can be built from a reconfigurable system
that saves cost through reuse and generality. There are clear benefits of using
self-assembly mechanisms in robotics. However, there have been many differ-
ent approaches to try to achieve self-assembly in different systems of robots.

Self-assembly can form many different configurations based on the topol-
ogy of the organized structure. In addition, self-assembly systems vary in
their ability to reconfigure and disassemble depending on the challenges the
environment provides. One class of self-assembly systems is stochastic recon-
figuration. With stochastic reconfiguration, the robots do not have movement
capabilities themselves. The robots are moved passively by the environment
and bind to each other on random collisions[21]. With this form of recon-
figuration, the reconfiguration time can only be guaranteed statistically[62].
[7] demonstrates how robots named ”programmable parts” can self-organize
through passive movements provided by the environment. Systems that use
stochastic reconfiguration are most common at micro level environments, and
only achieve self-assembly because of the influence of their environment. These
characteristics do not conform to what we are trying to study, so this study
will not delve further into this topic.

A crucial part of this study is to observe how self-assembly can transpire as
an emergent behaviour through machine learning. A robot that can improve
its performance based on past observations is said to use some form of machine
learning. The main competing algorithms for machine learning in self-assembly
robot systems, as of writing, are reinforcement learning and evolutionary al-
gorithms. This study will look at machine learning and self-assembly from an
evolutionary algorithms point of view.

This study covers how to implement machine learning in a system that
takes advantage of self-assembly. In particular, how self-assembly can be used
in conjunction with evolutionary robotics. Evolutionary robotics represents a
way to automate the design of control systems for autonomous robots, using
algorithms based on Darwinian evolution [56]. Evolutionary robotics is a field
of research that lies under the field of artificial intelligence. The main purpose
of evolutionary robotics is to develop autonomous robot controllers that solve
a given task which is not directly programmed by a human. Evolutionary
robotics takes advantage of selective reproduction based on how well the robots
solve a certain task. The controller of a robot is most often represented with
an artificial neural network where the parameters of the neural network are

2

1.1. Thesis objectives Chapter 1. Introduction

set by an evolutionary algorithm.
There have been previous studies about using machine learning to pro-

mote self-assembly[56, 36, 31]. However, many of these studies use differing
self-assembly mechanisms such as the architecture used by the self-assembly
system, the actions that are performed by the robots to achieve an organized
structure and the docking mechanism hardware. In addition, the studies have
not compared the difficulty of environments in regards to the effect it can have
on self-assembly. Another element this study aims to explore is adding a local
communication module to give the robots the ability to communicate simple
messages within a self-assembled structure.

The motivation of this research is to analyse if any of these mecha-
nisms are superior in terms of promoting self-assembly with learned
robot controllers and the effect it may have on the self-assembled
structure’s behaviour.

The experiment will be done in simulation with the Roborobo platform[10].
Roborobo is a light-weight multi-platform simulator for extensive robotics ex-
periments, based on basic robotic hardware setup. The experiment is a simple
predator/prey scenario, where the evolved robots(prey) can self-assemble to
gain certain advantages over its predators. While creating the simulation,
great care has been taken into making most of the parameters of the system
configurable. This is done so that testing the different mechanisms is simple,
such that we can compare how introducing different mechanisms affect the
robot’s ability to self-assemble and the behaviour of the robots.

1.1 Thesis objectives

The main focus of this study is to compare the different mechanisms that
influence self-assembling robots that are governed by machine learning. Rele-
vant mechanisms are the self-assembly architecture, the assembly protocol, and
docking(assembly) mechanisms. The main objectives of this study includes:

• Implement and explain a simulation that uses various self-assembly mech-
anisms such as a self-assembly architecture and an assembly protocol.

• Compare and analyse the results of the self-assembly mechanism simu-
lations.

• Based on the analysis, make a conclusion as to the advantage of using cer-
tain implementations of self-assembly mechanisms and the environment
in which they reside.

3

1.2. Problem statement Chapter 1. Introduction

1.2 Problem statement

The scope of this study covers the self-assembly mechanisms in a system of
robots. The grand question this study is trying to contribute to is:

How do the elements present in a system of robots influence the
emergence of self-assembly when the robots are given basic learning
capabilities?

To get a better understanding of this field, this study will present methods
and analysis to answer the following questions:

• In what way does an evolved assembly protocol influence the robots
ability to achieve self-assembly?

• How does the connection port configuration, provided by the docking
mechanism, influence the systems ability to self-assemble?

• How does changing the robot environment difficulty change the systems
ability to self-assemble?

• How does introducing local communication between the robots influence
the self-assembled system’s behaviour?

1.3 Structure of report

The first chapter following the introduction is chapter 2 presenting the state
of the art. It explores the field of self-assembly robotics as well as machine
learning with an emphasis on evolutionary algorithms. The goal of this chap-
ter is to present the self-assembly mechanisms which are used to categorize
different self-assembly systems. In addition, machine learning is introduced
with an in-depth look at off-line and on-line evolutionary algorithms. Chapter
3 contains the system description and implementation, including modifications
which were made to the existing roborobo framework. Chapter 4 describes the
results of the experiment and an analysis and reasoning for their given state.
Chapter 5 concludes the study including personal thoughts about future work.

4

Chapter 2
Background

The purpose of this chapter is to introduce the background and main concepts
required to describe and compare self-reconfiguring robotic systems. The be-
ginning of this chapter includes a section of related work comparing similar
projects and experiments. Following, this chapter reviews the state-of-the-art
of self-assembly mechanisms. Self-assembly mechanisms includes the assembly
architecture, protocol and different hardware mechanisms for real world ap-
plication. This chapter also reviews any additional theory that is required for
the implementation and analysis of this experiment such as machine learning
and artificial neural networks.

2.1 Related work

Self-assembly in robotics is a relatively new field of research; however, there
are still some papers which attempts to discuss and compare the different
mechanisms in a self-assembly system. [37] mainly covers the potential of
reconfigurable systems, as well as the challenges of self-reconfigurable robotics.
Though this article does not conduct any experiment, it does touch upon some
of the same issues that this report is trying to outline.

[63] is an article released in 2002 that tries to explain how modular robots
can self-reconfigure to solve different tasks. In particular, this article looks at
PolyBot and how it is able to reconfigure into different shapes. [63] also covers
some of the benefits in general of having a self-reconfigurable system, as well
as challenges that are still being explored.

[48] discusses the hardware design issues for self-reconfigurable robot sys-
tems, and presents two solutions developed in their laboratory. Additionally,
the algorithmic challenges of planning reconfiguration from one shape to some
desired shape is discussed.

[62] is the more complete and detailed of the articles presented here. In
addition to the general benefits and challenges of modular self-reconfigurable

5

2.2. Complex systems Chapter 2. Background

robot system, it also looks at the different architectures the system can take,
application areas and history of the field. The article also includes an exten-
sive list containing many self-reconfigurable modular systems and the type of
architecture they have.

These papers outline what a modular self-reconfigurable system is and what
the benefits and challenges of these systems are. However, there is no direct
comparison between the mechanisms themselves. [62] introduces many differ-
ent systems that work quite differently, but there is no conclusion based on if
these systems promote self-assembly or not.

2.2 Complex systems

What separates complex systems from what we determine ”simple systems”
is that the behaviour of the system cannot be understood by simply looking
at individual parts of the system. The way the parts act together and how
they are connected is what gives rise to complex behaviour. This concept
brings us to emergent behaviour. Emergent behaviour is a process where the
system takes on certain patterns, regularities or form larger entities through
the interconnections and interactions among simple parts that by themselves
do not portray such properties. Further, this report will look at an emergent
behaviour known as self-assembly.

In nature, one can find many examples of complex systems displaying self-
organizing behaviour. The collectives range from just a few individuals to
millions. Some examples are flocking behaviour in birds, fish schooling, and
the complex societies seen among social insects(Figure 2.1).

(a) Flocking[4] (b) Schooling[44] (c) Termites[3]

Figure 2.1: Examples of self-organizing behaviour in nature.

Social insects such as termites build large structures featuring complex
architectures. These examples show how a collective of simple agents, without
a central controller, can accomplish tasks that each individual would be unable

6

2.3. Self-assembly architectures Chapter 2. Background

to perform themselves. Together, the actions of these agents form a collective
behaviour that can be considered intelligent.

These biological systems display massively parallel, decentralised compu-
tation. These systems stand in contrast to conventional computer systems
with a central processing unit executing instructions serially. Research into
self-assembling robot systems, therefore, take inspiration from biology, using
methods such as evolutionary algorithms simulating Darwinian evolution, and
artificial neural networks inspired by the way brains process data.

2.3 Self-assembly architectures

Self-reconfiguring robots can assemble into many different shapes, and there
are many ways to do so. We define these properties as the self-assembly archi-
tecture. Each architecture presents different challenges and benefits. The ar-
chitectures can in broad terms be categorized either as non-mobile- or mobile-
architectures. The non-mobile architectures are characterized by the topolo-
gies of the structures they form, while mobile architectures are characterized
by having more mobile robots with a higher degree of freedom. This section
will describe and define some of the common assembly architectures used in
previous projects.

2.3.1 Non-mobile Architecture

Typically these robots have little mobility themselves but can form complex
structures capable of a wide range of behavior. One of the long-term visions
for these kinds of robots is called ”bucket of stuff”[62]. The idea is to have
a collection of different robot modules which can be assembled on demand to
solve various tasks. One way to classify non-mobile robots is based on their
configuration topology. The main classes for configuration topologies are chain
and lattice configurations.

Chain topology

The chain topology is a configuration where each robot is connected in a serial
architecture. The robots can form many different shapes to represent creatures
such as snakes, spiders or other configurations needed to complete its task. One
of the challenges with this topology is coordinating movement and decisions
as information has to be propagated serially. Examples of chain architecture
based robots are Molecubes[64], Yamor[39], and Conro[11]. Yamor is depicted
in figure 2.2.

7

2.3. Self-assembly architectures Chapter 2. Background

Figure 2.2: Yamor robots configured as a snake[39].

Lattice topology

The Lattice architecture is a configuration where robots are arranged in a
grid/lattice topology. The robots can then execute motion and control in
parallel which provides a simpler configuration in comparison to the chain
architecture. Examples of lattice architecture would be a cubic or hexagonal
grid. Due to its simplicity, a lattice architecture is easier to scale. There have
been more research groups working on this class of architecture due to its easier
implementation [63].

Symmetry is a desirable property for robots that employ the lattice ar-
chitecture because this makes reconfiguration into new positions in the grid
easier. To maintain the symmetry property in three-dimensional space, each
robot needs more connection points and actuators than in two-dimensional
space[37]. This property complicates the design of the robots. Thus, building
these robots with a high enough power/weight ratio is difficult. Examples of
lattice architecture based robots which is able to perform self-reconfiguration
are ATRON[9], Miche[19], and Catoms[28]. Atron is depicted in figure 2.3.

Figure 2.3: Atron assembled into a four wheeled car [9].

8

2.3. Self-assembly architectures Chapter 2. Background

2.3.2 Mobile architecture

Mobile architectures are characterized by having autonomous robots which
can self-assemble and reconfigure themselves. Each robot can operate inde-
pendently or form larger structures when needed, by hooking up with other
units. The structures formed may have different topologies and can coordinate
their movements to form a larger virtual network[62]. One example of a mobile
architecture is presented in [24]. In the experiment depicted in figure 2.4, a
group of robots are programmed to move an object which requires cooperation
by being too heavy for a single robot to move.

Figure 2.4: A group of swarmbots preparing to transport an object[21].

Since each robot in the architecture is autonomous one challenge is making
the individual robots cooperate. Cooperation is especially difficult in cases
where the optimal solution to a task involves cooperation, but the robots can
complete the task individually. This challenge is demonstrated in [56] where
the researchers were able to promote self-assembly to solve the task, but the
self-assembly was only present in 2 out of 10 trials.

The high degree of mobility in each robot allows them to form a wide
variety of topologies to solve tasks, but this also makes reconfiguration more
difficult for large robot swarms. Because of this difficulty, there has been less
research into mobile architectures.

Experiments conducted demonstrates robots solving simple tasks such as
object transport[21], phototaxis[56], and energy collection[36, 58]. These ex-
periments demonstrate that mobile robots are capable of solving tasks through

9

2.4. Hardware mechanisms Chapter 2. Background

self-assembly. However, the tasks presented are trivial problems and do not re-
flect the complexity of real world problems. Before solving real world problems,
future research needs to demonstrate a greater amount of robots cooperating.
Additionally, robots that have the ability to take different roles when solving
problems as well as cooperating when solving multiple problems presented by
the environment.

2.4 Hardware mechanisms

Several robot systems that are capable of self-assembly have been developed
over the years[23, 59, 9]. Even though some vary greatly in implementation, all
these robots have some implementation of hardware which makes it possible
to perform self-assembly. The desired assembly architecture influences the
hardware available in each robot. However, some common properties can be
identified.

Prerequisites for self-assembly

The robots must have some form of movement to reach each other. This
movement can be provided by the hardware available or from external sources.
Similar to movement, the robots require a docking mechanism to physically
connect to other robots in order to self-assemble.

The requirements described can be considered as minimum requirements
for self-assembly, but for more advanced behaviour, the robots need additional
hardware utilities. If the robots are to be self-assembled without human in-
tervention, they need a discovery mechanism to detect the presence of each
other. To coordinate behaviour, the robots also need a communication mech-
anism capable of receiving and sending information. These requirements are
very general and can be achieved in a wide variety of ways. Table 2.1 describes
some methods to complete the discovery and communication requirements.

Table 2.1: Various hardware solutions to discovery and communication.

Chain Lattice

Discovery IR[11] IR[19]

Communication 1-wire bus[64], IR[11], Bluetooth[39] IR[9, 19]

It is possible to simplify or ignore some of these requirements, but self-
assembly is impossible without the docking mechanism. The choice of docking
mechanism can be a deciding factor in the performance of a self-assembling
robot.

10

2.4. Hardware mechanisms Chapter 2. Background

2.4.1 Docking mechanisms

The docking mechanism is an essential component in self-assembly and has
been solved in various ways in previous studies. For experiments with self-
assembly in simulation, the mechanisms are often simplified since the focus of
the experiments usually is the self-assembly behaviour. Therefore, it can be
difficult to replicate the results on real hardware. The real world introduces
noise, and the mechanisms designed must be able to cope with that imperfec-
tion. This is especially true in the context of machine learning as the resulting
controllers are rarely optimal. The desired self-assembly architecture also plays
a role in designing a docking mechanism.

Male-female connector

This form of connection mechanism is used by the ATRON[9] robots. The male
modules are shaped like three hooks that can lock onto female connector bars.
Each robot has eight connector modules and is arranged such that every second
connector is male and every second is female. The connector modules allow
each robot to connect to a maximum of eight other robots. A disadvantage
with this type of mechanism is that the robots have to match the male to the
female connectors before they can assemble, which eventually complicates the
docking procedure.

Gripper and ring

The swarm-bot platform[21] uses this mechanism for self-assembly in the real
world. Each robot is equipped with a gripper and is surrounded by a ring
matching the gripper. Each robot can initiate one connection to other robots,
but multiple robots can connect to each ring. There are several advantages
with this mechanism; it allows some misalignment that makes docking simpler,
and the ring makes it possible for several other robots to connect. Although
many robots can connect to the ring, having only one gripper limits the possible
configurations. This disadvantage can be mitigated by adding more grippers.

Magnetic docking mechanisms

These mechanisms typically use one or more magnets to form connections.
One desirable property these mechanisms have is that they can tolerate some
noise/misalignment since the magnet connectors can compensate by attracting
each other. One problem with using magnets is that robots wishing to connect
must make sure that they have the magnets in the right polarity to attract each
other. Also, if electromagnets are used, they have to power them continuously
to maintain the connection which increases power consumption.

11

2.5. Assembly protocols Chapter 2. Background

Magnetic slip-ring This mechanism is used in simulation by [58]. The
magnetic slip ring can be set to either a positive, negative, or neutral state. A
connection will be made if at least on of the robots have their slip-ring set to
positive, and neither of them has it set to negative. For simulation purposes,
it is assumed that the connection immediately becomes rigid.

Surfaces with magnets The Molecubes[55] also use magnets to form con-
nections. The Molecubes has flat connection surfaces with electromagnets
which can be turned on, or off to create connections. Each cube has four
connector surfaces, which means that each cube can connect to four other
cubes.

Permanent magnets and springs [38] describes this mechanism. Unlike
the two magnetic mechanisms previously described, this mechanism uses rare
earth permanent magnets. The magnets are separated by two springs and a
shape memory alloy(SMA) coil. The springs are designed to have a slightly
lower force than the magnets when they are compressed. The mechanism
detaches by applying an electrical current to the SMA, extending it to the
memorized length.

2.5 Assembly protocols

In the context of swarm robotics and this paper, the term assembly protocol is
defined as the sequence of actions that has to be performed before a successful
self-assembly can occur. For pre-programmed robots, the protocols are deter-
mined by the programmer and known in advance. Evolutionary robotics are
different in this regard since the controllers are evolved; therefore, the result-
ing assembly protocols may be unexpected. An overview of assembly protocols
used in previous projects is presented in table 2.2. As for a specific model of
an assembly protocol, we have two main approaches.

Table 2.2: An overview comparing past research projects of swarm robots
based on the robot controller being evolved using an evolutionary algorithm,
or pre-programmed for its intended usage.

Project Pre-determined Evolved Reference

CONRO X [11]

Miche X [19]

SWARM-BOTS project X X [24, 56]

N/A X [58]

12

2.5. Assembly protocols Chapter 2. Background

2.5.1 Pre-determined assembly protocol

The traditional approach is to use an assembly protocol which is determined
by the programmer in advance. This means that the assembly protocol is em-
bedded in the controller software and does not change without reprogramming.

An example of a pre-determined protocol is found in [24]. In this experi-
ment, the s-bots uses RGB LEDs to signal their position, and if other s-bots
should dock with them. The lights are also used to determine if the self-
assembly process is complete.

Using the protocol described, the s-bots are successfully self-assembled in 26
out of 30 trials. The advantage of using a pre-programmed assembly protocol
is that it can be tailored to the problem. This often leads to good performance
and a predictable outcome of the assembly once the system is deployed. It
does, however, carry the disadvantage of being less general in the sense that
the protocol can only be changed by implementing new software. Depending
on the assembly protocol, it can also be quite complex which in turn, makes
the implementation increasingly difficult.

2.5.2 Learned assembly protocol

In a machine learning setting, we can give the robots docking mechanisms,
but leave the entire assembly protocol up to the learned controller. One might
ask why machine learning, where the resulting controller rarely is optimal,
is a good approach when pre-determined protocols can be developed instead.
According to [49], there are three main reasons for why we would want a robot
to learn. First, the programmer may not always have the ability to foresee all
the situations the robot may encounter. The robot must then learn from its
observations if it is to solve the probable new set of problems. Second, the
programmer cannot predict all changes that happen over time. If we had some
system that tried to anticipate tomorrow’s weather, then it must be capable of
analysing based on new sets of observation which were unknown at the time of
system’s design. And finally, the programmer may not even know the solution
to the problem themselves, such that the system itself must find the solution.
This last reason is especially interesting in accordance with self-assembly as we
do not always know when it is appropriate to employ self-assembly for solving
a certain problem.

An example of a type of learned assembly protocol is found in [56]. This
example uses s-bots each of which uses an artificial neural network to control
them. The neural network controls all of the input and output signals of the
s-bot. This also includes the use of the gripper(docking mechanism) and the
loudspeaker(produces sounds that can be used for communication between
the robots). Using a simple genetic algorithm, they were able to evolve an
assembly protocol in 2 out of 10 trials.

13

2.6. Machine learning algorithms Chapter 2. Background

Even though an assembly protocol was evolved, the desired results of using
the loudspeaker to signal position and performing self-assembly were inconclu-
sive. The s-bots rather used exploits such as lining up against the wall of the
experiment to perform a simpler self-assembly. The results also showed that
the loudspeaker was not used optimally and was something they would like to
explore in future research. This behaviour is one of the disadvantages of using
machine learning to develop assembly protocols. First of all, it may not be
able to create a protocol at all, and it is also likely that the end results are
sub-optimal. A reason for this is that the environment, in which the robots
are evolved, often impacts the type of assembly protocol that emerges.

2.6 Machine learning algorithms

We say that a robot is learning if it can improve its performance on tasks in
the future based on past observations. Learning ranges from trivial matters
such as writing a word to complex theories of the universe.

The learning algorithms commonly used for the automatic design of con-
trollers can be divided into two main subdomains: reinforcement learning(RL)
and evolutionary algorithms[8].

Reinforcement learning is a class of learning algorithms where the agent
learns through trial and error, receiving positive and negative feedback for its
actions[8]. The agent records the feedback received for performing a particular
action in each state. Through this process, the agent discovers which action
is optimal for a given state. Applying this form of learning to swarm robotics
presents several challenges. One challenge is the fact that a swarm performs
actions as a collective, but the learning is done on an individual level and does
not reward global behaviour[8]. Additionally, traditional RL requires that the
environment can be quantized into a finite number of discrete states[50, 8].
The number of possible interactions between the robots and the environment,
and the noise in the real world leads to a high amount of states and makes
it difficult to know how these are connected in advance[50]. Techniques such
as using an approximator[8] to reduce the state space, and more intelligent
reward mechanisms[8], can be used to reduce the impact of these challenges.
Several projects[32, 2, 34] have successfully applied reinforcement learning in
multi-agent systems. Given the challenges of RL, as the goals and ambition
of projects increase, researchers are drawn towards techniques that resemble
evolutionary algorithms[50].

Evolutionary algorithms attempt to find solutions to a problem by simu-
lating the mechanisms of Darwinian evolution[56]. In these algorithms, the
possible solutions are encoded into genomes and improved iteratively over
multiple generations, where well-performing individuals reproduce more and
spread their genome.

14

2.6. Machine learning algorithms Chapter 2. Background

2.6.1 Evolutionary algorithms

Evolutionary algorithms is a class of algorithm in the category of bio-inspired
algorithms [6]. Nature has shown that it is an excellent optimizer. When
we examine features and phenomenon in nature, it tends to find the opti-
mal strategy. The strategies employed are often very simple, but has great
results. Bio-inspired algorithms take inspiration from nature and attempts
to mimic the behaviour observed in nature. These algorithms can be cate-
gorized by the natural phenomenon they mimic. The three main categories
are evolution, swarm-based, and ecology [6]. These algorithms are optimization
algorithms and can, therefore, be used to automate the design of robot con-
trollers. Specifically in the field of evolutionary robotics, the focus has been
to employ evolutionary algorithms in the design of robot controllers.

There are many variants of evolutionary algorithms, the most common can
be categorized by when the evolution takes place[16].

In off-line evolution, the evolutionary development of robot con-
trollers takes place before the robots start their real operation pe-
riod. On-line evolution is the opposite, in that the evolutionary
development of robot controllers takes place during the real opera-
tion period of the robots(although off-line evolution might precede
on-line evolution as an educated initialization procedure)and is an
ever-continuing process.[16]

Off-line

The details of how off-line evolutionary algorithms are implemented usually
vary, however most implementations perform a variation of the same following
steps[13], displayed in figure 2.5.

The first step of an off-line algorithm is to generate some population. Two
main procedures can be used to generate the initial population. One can
either generate the genomes for the robots completely random or by some
function that applies bias. In the biological sense, a genome contains the
configuration or blueprint for an individual. Before the genome can be used
by the robots, the configuration must be translated into a robot controller. The
translation procedure can for example consist of translating the genome into
an artificial neural network, and uploading it to the robots. The next step after
initialization is the robots acting in the environment. After a given set of time
steps, the genome is evaluated by a fitness function which scores the robots
based on their ability to solve the task. At the end of a generation, some of the
genomes will be selected for reproduction based on their fitness. The algorithm
then proceeds to mate genomes through crossover and applying mutation on
the population. The process is repeated for this new set of genomes until the
desired fitness is reached, or some processing time threshold is met. [56, 31]

15

2.6. Machine learning algorithms Chapter 2. Background

describes examples of how this process can be applied to create controllers for
self-assembling robots.

Figure 2.5: Operation of a typical EA[13]

The evolution process requires a lot of trials to evaluate the performance
of each genome. Performing these trials on real hardware is, therefore, im-
practical, time-consuming, and possibly dangerous as the robots may damage
themselves or the environment. The evaluation is therefore often performed
in simulation[29]. Transferring the controllers evolved in simulation to real
hardware has proven to be problematic because the controllers tend to be less
efficient once transferred. This reality gap remains a critical issue in evolution-
ary robotics[29].

On-line

On-line evolutionary algorithms, in contrast to the off-line variants, does not
share a well-defined series of steps. Several algorithms for this category has
been proposed. Among them are mEDEA[36], MONEE[41], and ASiCo[57].

In mEDEA(minimal Environment driven Distributed Evolutionary Adap-
tation) each robot contains an active genome and a reservoir of received genomes.
The robots broadcast their genome in a limited range to other robots. At a
pre-defined number of time steps, the robot forgets its active genome and se-
lects a new one at random from the reservoir. The robot becomes inactive if

16

2.7. Artificial neural networks Chapter 2. Background

it runs out of genomes. An inactive robot remains stationary for the following
generation and receives genomes broadcasted from other robots. The result is
that over time, ineffective genomes are removed from the population while the
more successful genomes are able to spread.

MONEE(Multi-Objective and Open-Ended Evolution) can be considered
an adaptation of mEDEA. In MONEE the robot has a life cycle consisting of
two phases with a fixed duration. The first phase is the life phase. In the life
phase, the robot performs tasks such moving or foraging. When the lifetime
of the robot is reached, it enters a rebirth phase and becomes an ”egg”. The
egg is stationary and receives genomes from other robots that are currently
in their life phase. For the egg to select one genome out of the ones received
from the other robots, MONEE introduces the concept of parental investment.
During the life phase the robots receive credits for performing tasks in the
environment. When a robot passes its genome to an egg, it passes the number
of credits earned. The egg then uses the number of credits to compare and
select a new genome for rebirth. If there are multiple tasks defined, the egg uses
an exchange rate between the tasks based on their difficulty to compare them.
The exchange rate ensures that genomes who specialize in difficult tasks can
compete with genomes that perform easier tasks. This system allows genomes
to specialize in different tasks and therefore makes MONEE well suited for
multi-objective tasks.

ASiCo(Asynchronous Situated Co-evolution) is a co-evolutionary bio-inspired
algorithm that in contrast to MONEE and mEDEA uses a fitness function to
decide if a robot should reproduce. Like other on-line algorithms, multiple
genomes are present among the robots even though this algorithm carries the
characteristic of a fitness function from off-line algorithms. The ASiCo al-
gorithm works by having the robots act out some scenario and uses energy
gain or loss as a performance gauge. Differing from off-line algorithms, ASiCo
continuously evaluates the different robots’ fitness asynchronously. If a death
condition is met, then the robots are either removed from the system or sub-
stituted. If however a situated mating condition is met, then the candidate is
evaluated by its fitness. If the candidate is acceptable, then it is allowed to
reproduce. In the case where the fitness is not acceptable, it simply continues
to live on in the system.

2.7 Artificial neural networks

Computers excel at performing tasks that can be described as a series well-
defined steps, and can at these tasks easily outperform humans in doing so.
Tasks that humans find easy, such as understating speech or recognizing faces
has proven to be difficult to describe a series of unambiguous operations in the
conventional computation model. Biological neural networks, such as brains,

17

2.7. Artificial neural networks Chapter 2. Background

have evolved to be excellent at pattern recognition and data classification.
Artificial neural networks(ANN) take inspiration from how biological neural
networks process data.

ANN’s consist of interconnected processing units(neurons) which work in
parallel to solve a specific problem. The neurons employ a simplified model of
how a biological neuron works. The operation of an artificial neuron consists
of two main components, depicted in figure 2.6.

Figure 2.6: Model of an artificial neuron.

First, the neuron sums the action potential from the preceding neurons.
The activation function is then applied to the sum which produces a new action
potential as the output. The role of the activation function is to transform the
action potential in the node to an output that can be passed to the succeeding
nodes. These functions often have a thresholding effect where the neuron
outputs a low potential until a threshold is reached. A common activation
function is the logistics equation(2.1).

oi =
1

(1 + e−v)
(2.1)

The ouput of node i with internal action potential v.

The connection strength between neurons is simulated by introducing weights.
A neuron with a higher weight on one of its connections will be further in-
fluenced by that particular connection. Learning can then be performed by
modifying the weights on the connections in the ANN.

The neurons in ANN’s are organized into multiple layers, where each neuron
is connected to the neurons in the preceding layers. Typically there is an input
layer, an output layer, and zero or more hidden layers between them.

18

2.7. Artificial neural networks Chapter 2. Background

Figure 2.7: A feed forward network.

Figure 2.7 depicts a simple feed-forward network with one hidden layer.
The inputs are propagated from the input layer, on the left, to the output layer.
More complex network topologies introduce connections within the layers and
connections back to preceding layers.

Creating efficient robot controllers can be difficult as the number of sensors
and actuators grow. The designers may know what desired behavior for the
robots is, but expressing this in the conventional computing model as a series
of instructions can be difficult. Instead, with machine learning an ANN can
learn from examples of desired behavior provided by the controller designers.
This approach allows designers to create the desired controllers by providing
examples instead of knowing the exact solution.

Neural networks have been applied to design robot controllers in several[56,
36, 9] self-assembling robot systems. These robot systems all use different
approaches in how neural networks are applied to create the controller. [36]
uses a simple feed forward network, while [56] uses a CTRNN, and finally [9]
uses multiple neural networks which decide different parts of the behavior. This
shows that neural networks are a versatile tool for designing robot controllers
for self-assembling robot systems.

19

2.7. Artificial neural networks Chapter 2. Background

20

Chapter 3
Methodology

For this study, an experiment was implemented using the roborobo simulator[10].
Even though roborobo contains some functionality for running robot simula-
tions, a lot of modifications were needed for the simulator to fit the needs of
this experiment. This chapter will include a description of roborobo, the mod-
ifications that were made to the existing software, the experiment in general
and the motivation for its implementation.

3.1 Experiment motivation

The introduction lists several research questions that this project is aiming to
contribute. To not trivialise the environment and the interaction between the
robots, care was taken when designing this experiment. The thought behind
the experiment is to see collective behaviour using an evolutionary algorithm.
Caution was taken to implement an unbiased system in regards to the influence
it imposes on the algorithm to achieve correct and analysable results. For
example, the evaluation function in section 3.7.6 is quite simple and does not
add any guiding parameters to promote self-assembly.

One of the questions concerns how collective decision-making influences the
emergence of self-assembly. Swarm behaviour found in nature displays how
simple agents collectively can make a decision. The goal of this experiment is,
therefore, to design a similar environment to promote this form of collective
behaviour. In this environment, the robots have to form swarms for survival,
and collectively decide if they should self-assemble or attempt an escape.

By design, the robots are given a local communication module that can
be used to send an array of floating point numbers to its neighbours in the
self-assembly structure(see section 3.5.3). The influence of the communica-
tion module and the values that the communication packets take are entirely
governed by the neural network(see section 3.6).

The system has been made to be highly configurable. The focus of these

21

3.2. Experiment setup Chapter 3. Methodology

configurations are the evolutionary algorithm parameters as well as general
environmental setup. By varying the parameters of the experiment, it is pos-
sible to observe and analyse the problem statements which were discussed in
chapter 1. Depending on the configuration used when running the simulation,
it should be possible to see how different assembly protocols and behaviours
emerge, and how the self-assembly behaviour of the robots differ from similar
trials and different configurations. Chapter 4 portrays the results and analysis
of this experiment.

3.2 Experiment setup

For this experiment a micro-organism environment is imagined, where the
organisms find themselves in some liquid pool. The micro-organisms are the
agents in our system and are represented as robots. The main functions of the
robots are movement, foraging and self-assembly.

The robots find themselves in a pond. In the pond there are nutrients which
the robots can feed on to replenish their energy. At the same time the pond
also contains larger predator organisms who intend to prey on the robots.
It is imagined that the robots can assemble to form larger structures. The
robots can protect themselves from the predator organisms by forming a larger
structure which the predator is unable to eat. When the robots are assembled
they may eat the larger predator to replenish energy as well. To gain an
advantage the robots must form a large enough structure to prevent them from
being consumed by the predators. Maintaining the assembled structure cost
energy, which gives the robots an incentive to disassemble once the structure
is no longer required.

3.3 Environment

The imagined pond environment can be represented as a rectangular box(figure
3.1), containing the robots, nutrients and predators. Initially, the environment
is populated with nutrients, robots, and predators placed at random positions
in the environment. When a nutrient is consumed, a new one is placed at a
random position in the environment.

22

3.4. Roborobo overview Chapter 3. Methodology

Figure 3.1: Initial configuration of the environment.

3.4 Roborobo overview

The programming interface for roborobo is divided into three components(World
observer, Agent observers, Agent controllers)[10]. Each robot in the simula-
tion receives an instance of the agent controller and the agent observer. The
philosophy of the roborobo framework is that the programmer should imple-
ment the robot behaviour in the agent controller, and use the agent observer
and world observer to access states about the given agent and the world. This
relationship is visualised in figure 3.2.

23

3.5. Roborobo modifications Chapter 3. Methodology

(a) (b) (c)

Figure 3.2: The relationship between a) the agent controller, b) the agent
observer, and c) the world observer.

Each robot in the simulation also receives a component called the world
model. The world model contains an agent specific representation of the outside
world. The model includes states such as sensors readings and current velocity.

The observers can be used to perform tasks that are not directly related
to the robot behaviour. In each simulation step the observers are run before
any of the agent controllers are run. This means that the observers have a
stable snapshot of the world between each update. The observers are therefore
useful for performing tasks that should be carried out between each update of
the world. Examples of useful applications of the observers are updating the
agent’s world models, monitoring, logging, computing fitness, and managing
evolutionary algorithms. In the standard case, understanding the components
described in this section is sufficient to perform a wide variety of simulations.

The depicted experiment in this chapter is not realizable with the basic
roborobo framework. The necessary modifications to the framework are de-
scribed in section 3.5.

3.5 Roborobo modifications

As mentioned in section 3.4, roborobo does not support self-assembly out of the
box. Self-assembly support, therefore, requires adding additional abstractions
to roborobo. This section includes the different modifications that were made
to the roborobo framework to support self-assembly, local communication, and
a configurable system.

3.5.1 Robot Groups

The high-level abstraction that encapsulates the behaviour for connected robots
is called a Robot group. All robots that are capable of self-assembly are robot
groups. Single robots that are not connected are simply robot groups with

24

3.5. Roborobo modifications Chapter 3. Methodology

one member. The responsibilities of the robot group are to take care of group
movement, handling collisions, connecting and disconnecting.

Movement

In the roborobo framework, the robot’s movement is decided by the robot con-
troller by requesting a certain angular and translational velocity. The move-
ment of a group is decided by first converting the desired direction and velocity
into a translation vector.

~vxy = v · [cos(θ), sin(θ)] (3.1)

The combined movement of the group is then decided by averaging the
translation vectors from each member in the group.

~vt =
1

n

n∑
i=0

~vi (3.2)

Once the translation vector for the group is computed, it can be applied
to each member of the group by converting it back to the format of direction
and velocity that roborobo uses.

Collisions

Roborobo already performs collision detection for robots, but in robot groups,
some additional logic is required. The collision behaviour for robots is that
if they collide with a solid object, they stop. This behaviour is a problem
for groups of more than one robot because if one robot collides it may get left
behind by the rest of the group. This issue is solved by backing up the position
of each robot in a group before applying the computed translation. If a robot
in the group collides with something then the robots in the group are reverted
to their original position.

Connections

The connections between robots in a group can be considered as a graph,
where the robots are nodes and connections are edges. Connecting robots can
then be treated as simply adding an edge between the two nodes representing
the robots. Similar to connecting, disconnecting consists of removing the edge
between the nodes representing the robots. In the case that a robot has multi-
ple connections in the group extra care has to be taken because removing one
edge may split the graph into two smaller sub-graphs. If this occurs, the two
sub-graphs must now be treated as two new separate groups. It can be deter-
mined if a robot can simply be disconnected, or if we have to split the group
by finding out if there is a cycle that leads back to the disconnecting robot.

25

3.5. Roborobo modifications Chapter 3. Methodology

The existence of a cycle is determined by first removing the edge representing
the connection, and then performing a depth first search.

3.5.2 Docking mechanism

As described in section 2.4.1, there exists a wide variety of docking mechanisms
used in earlier projects. The docking mechanism implemented is therefore
highly configurable, to support a wide variety of different mechanisms. The
configurable properties are as following: the number of ports, the placement
of ports, and different genders for the ports.

Connection validation

The robots can attempt a connection at any time; this requires a procedure
to make sure the attempted connections are valid. Three requirements have
to be met before a connection can be established between robots. First, the
ports have to be spatially sound. Here, the distance between the ports has to
be less than a threshold value.

|~p1 − ~p2| < ε (3.3)

Next, the position of the ports has to be geometrically sound. Here, the
angle between the connection ports has to fit within a threshold range.

180− ε < |θ1 − θ2| < 180 + ε (3.4)

Finally, the gender of the ports must be compatible, meaning one of them
is female while the other is male or at least one of the connection ports being
universal.

3.5.3 Local communication

The robots are equipped with a communication module that allows local com-
munication with their connected neighbours. The message format is very sim-
ple; the robots can only broadcast message packets of floating point num-
bers. The size of the packets is equal to the number of connection ports. At
the receiving end, the packets sent by neighbours are aggregated into a sin-
gle packet. The aggregation is performed by adding the components of each
message packet with the corresponding components from the other message
packets. Figure 3.3 illustrates this process.

26

3.5. Roborobo modifications Chapter 3. Methodology

Figure 3.3: Robot B aggregating the messages received from robot A, and C.

In the robot controller, the messages from the communication module are
fed into dedicated message input neurons, and the value of the message output
neurons are broadcast to the neighbours.

3.5.4 Predators

A crucial part of the environment in the simulation are the predator robots.
These robots are not under the influence of the evolutionary algorithm and
rather uses a much simpler pre-programmed controller. The predator robots
have two basic actions that can affect the system: the predators can either eat
prey or explore the environment.

Figure 3.4: A screenshot of a simulation. The predators are marked with red
and the robots guided by the evolutionary algorithm are marked with blue

As seen in figure 3.4, the predators also uses six sensors which they use to
decide if they are colliding with an object and what that object is. Concerning
exploration, the predator controller uses a simple object avoidance tactic. If

27

3.5. Roborobo modifications Chapter 3. Methodology

the predator robots sense an object on any of its side sensors, it will change
its rotational velocity to avoid this object. In practice, this means that if the
predator senses an object on the right, it will steer left, and vice versa. A
slight random rotational velocity is added such that its movement becomes
more dynamic in the case where there is no collision. This object avoidance
behaviour is always employed as long as it does not sense a robot(prey). In
this case, it will have the opposite behaviour and turn towards the object, as
it intends to consume the prey.

In addition to movement, the predators can also consume a robot. Preda-
tors consume a robot when there is a collision between a normal robot and a
predator robot. If a robot is consumed, it is removed from the environment
and robot’s lifetime is recorded for use in the fitness function of the evolution-
ary algorithm. For a predator to be able to eat a robot, the robot must not
be part of a robot group of a size less than some configurable threshold. The
default threshold is set to two for the simulations run in this experiment. The
reason for this is to give the regular robots some advantage of self-assembling
in hopes of potentially evolving this behaviour.

3.5.5 Energy drain

In addition to the environmental hazards of predators, the robots also face the
issue with having a limited energy supply. If a robot loses all if its energy, then
it will die and be removed from the environment. Five main configurations
handle the energy parameters of the simulation:

• gEnergyMax, is a constant which represents the maximum amount of
energy the robot can hold. If a robot picks up more energy from an
energy source and the total energy exceeded gEnergyMax, then the total
energy will simply be gEnergyMax.

• gEnergyInit, is a configurable parameter which sets the initial energy of
a robot when spawned into the environment.

• gEnergyItemDefaultInit, is the store of energy an energy item in the
environment holds.

• gPassiveEnergyDrain, is the leak value of energy of a single robot. At
each time step, a robot loses gPassiveEnergyDrain amount of energy.

• The final energy parameter is gConnectionEnergyDrain, which is an ad-
dition drain for being self-assembled with another robot.

The reason for adding an energy hazard for the robots in this experiment
is to give them a non-trivial self-assembling scenario. If predators were the

28

3.6. CTRNN Chapter 3. Methodology

only environmental obstacle, then the robots would most likely develop a self-
assembly strategy and hold this construction for the remaining time of the
simulation. It is intended that the robots would have an environment which
allowed strategies such as dissembling the self-assembly structure to evolve or
perhaps not even self-assemble at all. This reasoning is also the justification
for giving the robots additional energy drain when assembled.

3.6 CTRNN

For this project, an artificial neural network that has gained a lot a popularity
in regards to robotics known as Continuous-Time Recurrent Neural Network
(CTRNN) was implemented. The CTRNN was researched and developed by
Randall Beer[5] and adds two new properties to the standard artificial neural
network. The properties that are introduced in CTRNN is a time constant
and a gain constant.

As most neural networks, the simple integration of the inputs from all
neighbouring neurons are added giving us the first standard equation for neural
networks:

si =
n∑

j=1

ojwi,j + Ii (3.5)

Here, oj represents the output(after activation) of neuron j, wi,j is the weight
from neuron j to neuron i and Ii is the sum of all the external inputs to node
i.

dyi
dt

=
1

τi
[−yi + si + θi] (3.6)

In order to preserve the previous state of the ANN, the internal state is stored.
yi denotes the internal state of neuron i. To derive the next internal state, Beer
computes dyi

dt
as a combination of the following inputs and the current internal

state of the node, where a time constant τi decides the rate of drain. θi is a
term added for a neuron-specific bias. It is only added here for mathematical
soundness as it is simply added as a bias node during implementation and
hence incorporated in si. The time constant τi is what gives CTRNNs the
ability to produce rich functionality and convincingly sophisticated cognition.
If τi has a low value, then we will have a high degree of drain and hence having
its new input dominate the next state. However, if τi has a high value, then
we have a higher degree of memory because its previous state will dominate
the next state.

oi =
1

1 + e−giyi
(3.7)

29

3.6. CTRNN Chapter 3. Methodology

To convert the internal state to an output oi, Beer typically uses a sigmoidal
activation function. A sigmoidal activation function is typical in other neural
networks as well, but Beer also employs a gain term gi, to influence the acti-
vation of the neuron.

−1 −0.5 0.5 1

0.2

0.4

0.6

0.8

1

yi

oiHigh Value gi

Low Value gi

Figure 3.5: The difference in the activation function with respect to yi based
on a low and high value of gi

As seen in figure 3.5, the value of the gain parameter can influence the
activation function in such a way that it can be a smooth, almost linear,
function or it can take on the behaviour of an activation function resembling
a switch. Having the ability to change the activation function on a neuron
to neuron basis, is the second reason(the first being time constants) CTRNNs
can give rise to complex and rich behaviour.

3.6.1 Topologies

In the robot controller, the neural network is responsible for making decisions.
The role of the robot controller is to forward inputs to the input layer of the
neural network and interpret the output. The information that the neural
network is provided with is as follows: sensor readings, the connection status
of each docking port, messages from the communication module, and finally
the current energy level of the robot. Once the inputs are processed the robot
controller reads the output layer to decide the values for the motor functions,
control of the connection ports, and the message to be sent via the commu-
nication module. The number of hidden layers and the number of neurons in
each of them is configurable at runtime.

30

3.7. Evolutionary algorithm Chapter 3. Methodology

The robots have to be able to detect, and distinguish between predators,
other robots, food, and the environment. The robots are equipped with six
sensors to achieve this. To represent this two different input topologies for the
sensors have been implemented.

Dense

The dense topology uses 24 nodes to represent the inputs where there is one
node per sensor for each of the four different objects that can be detected. With
this configuration, the robot can distinguish between multiple types of objects
at the same time. The motivation for designing another input topology is the
concern that by using 24 nodes the search space for the evolutionary algorithm
may become too large to find a good solution within a reasonable time.

Sparse

The sparse topology is a compromise between the number of nodes and the
robots ability to distinguish between multiple objects at the same time. Here
the input layer has six nodes for each of the sensors, and four additional nodes
that indicate whether a particular type of object is currently detected by one
of the sensors. This modification brings the number of input nodes for the
sensors down to 10, instead of 24. With this configuration, the robot can still
detect nearby robots, but it can not differentiate between multiple types of
objects at the same time.

3.7 Evolutionary algorithm

The following section describes the implementation of the evolutionary algo-
rithm for this project. In addition, in some of the sections, multiple imple-
mentations are mentioned. We see an occurrence of this in section 3.7.3 where
both random and incremental mutation operators being explained. The rea-
son multiple implementations were done is due to the initial implementation
yielding poor results and hence there was made an attempt at improving the
results.

3.7.1 Genotype

The genotype contains the weights, gains and time constants for the neural
network used in the robot controller. During run-time, the genotype size is
fixed and depends on the size of the neural network. The size of the neural
network is configurable (topology and size of each layer) in the simulation
configuration file, and hence, the genotype can change size depending on the
simulation run. The structure of the genotype is an array of double precision

31

3.7. Evolutionary algorithm Chapter 3. Methodology

floating point numbers in the range [−1, 1]. Each number in the genotype
represents a specific weight, gain, or time constant in the neural network.
Before the genotype can be used to configure the neural network the values
are mapped into the suitable range for each type of parameter(see figure 3.6).
The selected range, [−1, 1] used for the values in the genotype is therefore
arbitrary and holds no particular significance.

Figure 3.6: Mapping the genotype into weights, gains, and time constants.

3.7.2 Initialization

As seen in theory, there are two ways to initialize a population. It can be done
completely random, or there can be a more particular initialization with bias.
In the case of this experiment, a purely random initialization was implemented.
The reason for this is that there is no trivial functionality that these robots
should have for it to reach the most optimal solution.

Since this experiment is about researching self-assembly, one might think
that initializing our robots with a behaviour to promote this, could be benefi-
cial. There are two main issues with an approach like this. First, self-assembly
in this complex system is an emergent behaviour(see ch. 2.2). This means
that there is no trivial configuration of the neural network that gives rise to
self-assembly. It is rather, emergent from the robots’ behaviour and their con-
nections with each other in the environment. As explained in chapter 2, there
are mechanisms such as the assembly protocol, the assembly architecture, and
also the hardware mechanisms used. None of these mechanisms can simply be
coded into a neural network.

The second issue with implementing a bias towards self-assembly is that this
might not be the best survival strategy in this experiment. Even though the
experiment is designed to give the robots a slight benefit from self-assembling,
this may not be the case in reality. Due to these two reasons, it was decided
to have a strictly random initialization.

32

3.7. Evolutionary algorithm Chapter 3. Methodology

3.7.3 Mutation operators

As seen in section 2.6.1, the proper step after mating genotypes is applying a
mutation to the resulting genome. Mutation is done using a mutation operator.
During the implementation of the experiment, two different mutation opera-
tors were implemented, the random mutation operator and the incremental
mutation operator.

During the first iteration of implementation, a standard random mutation
operator was implemented. As explained in 3.7.1, the genotype is modelled
using doubles, so a random mutation operator for this implementation simply
re-rolls the selected double, x, to a new double where x ∈ [−1.0, 1.0]. The
number of weights to be mutated is configurable and is represented as some
percentage, mutation rate.

Incremental

During initial trials, it was observed that the impact of completely changing
the value of a weight in the neural network could potentially drastically change
the behaviour of the robots. The change in behaviour yielded poor results of
the evolutionary algorithm because of constant destabilisation of the emergent
behaviours. The results from the preliminary trials caused an incremental mu-
tation operator to be implemented. The incremental mutation operator gave
better results than the random mutation operator, so it was decided that the
random mutation operator should be removed from the system. The incre-
mental mutation operator works in a similar manner as the random operator,
where a weight is chosen for mutation at some percentage, but instead of com-
pletely re-rolling its value, it only differs from its original value by a certain
threshold. The incremental mutation still causes a mutation to occur, but it
will not be as drastic, yielding smoother results. The difference is depicted in
figure 3.7.

(a) Random mutation
operator

(b) Incremental muta-
tion operator

Figure 3.7: Displays the mutation strategies for the random and incremental
mutation operators.

33

3.7. Evolutionary algorithm Chapter 3. Methodology

3.7.4 Selection mechanism

The selection step of an evolutionary algorithm is responsible for selecting
which individuals should become parents. In other words, it applies selection
pressure. If the selection pressure is too high, the algorithm may converge
prematurely, and if it is too low, the search may take more time than nec-
essary. For the experiment, two different selection mechanisms have been
implemented.

The first selection scheme that was implemented in this project was pro-
portional selection. In this selection scheme individuals are selected for repro-
duction with a probability proportional to their fitness compared to the total
fitness of the population. It is common to apply a scaling function on the
fitness in the population to adjust selection pressure. A scaling function that
is often used with proportional selection is Sigma scaling [20], which was also
initially used in this experiment:

S(f, f , σ, s) = s+
f − f

2σ
(3.8)

where f is the fitness of an individual, f is the mean fitness of the gener-
ation, σ is the fitness variance, and s is a scaling factor that can be used to
adjust the selection pressure.

Sigma scaling modifies the selection pressure introduced in the raw fitness
by using the populations fitness variance as a scaling factor. The scaling has
the effect of dampening the selection pressure when there are a few individuals
with an exceedingly higher fitness than the rest and increasing the selection
pressure when the population has a low variance.

The values obtained from the scaling can now be used to select parents
by sampling the distribution. Roulette wheel selection(RWS)[20] is one such
method. RWS can be visualized as giving each potential parent a sector with
size relative to the scaled fitness in the roulette wheel(figure 3.8). The parents
are then selected by spinning the wheel until the desired number of parents
are picked.

34

3.7. Evolutionary algorithm Chapter 3. Methodology

Figure 3.8: A roulette wheel where the size of each sector represents the prob-
ability of picking a particular parent.

The roulette wheel implementation gave less compelling results than ex-
pected, which caused tournament selection to be implemented which gave bet-
ter results and caused the roulette wheel selection mechanism to be removed
from the system.

Tournament selection

In contrast to proportional selection the individuals do not compete with the
entire population but instead, compete within groups selected at random.
Tournament selection performs parent selection by picking individuals at ran-
dom into a group. From the group the fittest individual is selected as the
parent. This process is repeated until the desired number of parents have
been selected. The group size varies between implementations, but typical
implementations compare two[20] individuals at a time, depicted in figure 3.9

35

3.7. Evolutionary algorithm Chapter 3. Methodology

Figure 3.9: Selecting parents using a binary tournament.

The described process introduces a high selection pressure since it selects
the fittest individual from each group. It is common to include an acceptance
threshold, t, into the selection to modify the selection pressure[20]. Each time
an individual is to be selected a random number r ∈ (0, 1), is generated. If
r < t, then the fittest individual is chosen. Otherwise, the less fit individual is
chosen. The selection pressure can then be tuned by increasing or decreasing
the acceptance threshold. A lower value for t decreases the selection pressure,
while a higher value increases the selection pressure.

3.7.5 Elitism

In each step of the evolutionary algorithm, the previous generation is replaced
by the offspring of the selected parents. Completely replacing the previous
generation with the new generation has the undesirable effect where mutations
in the children can lead to the loss of good partial solutions. A configurable
level of elitism has therefore been implemented into the evolutionary algorithm.
At the end of each generation, the n fittest individuals are promoted to elites,
who are then allowed entry into the next parent selection unchanged. Elitism
allows multiple generations to build upon the partial solutions in the elites and
ensures that the fittest genomes are preserved between generations.

3.7.6 Evaluation

The evaluation function was kept fairly simple as to restrain from guiding
the robots. Primarily, the evaluation function was only calculating how many
robots survived the trial.

f(G) =
G(R̄tot)

Rtot

(3.9)

36

3.7. Evolutionary algorithm Chapter 3. Methodology

where f is the fitness score of some genome G. G(R̄tot) is the number of
robots that died, R̄tot, in the trial with genome G, and Rn is the total number
of robots in the system.

This fitness function, however, gave poor results mainly due to the fit-
ness graph being discrete and failing to differentiate enough between different
genomes. Therefore, a different approach was implemented where the lifetime
of a robot used is instead.

f(G) =

∑n
i=1G(Li)

nLmax

(3.10)

The fitness of a genome is calculated in a similar way as eq. 3.9. The
difference here is is that Li represents the lifetime of robot i during simulation,
n is the total number of robots, and Lmax is the maximum lifetime of a robot.
It is also possible to add additional reward for the ability to aggregate such
that self-assembly(or at least proximity) is promoted, but as mentioned earlier,
the purpose was to limit the amount of evolutionary guiding. In the case where
self-assembly does not occur, a more sophisticated objective function could be
implemented.

37

3.8. Data gathering Chapter 3. Methodology

3.8 Data gathering

The statistics logged for post-processing, and later analysis is as follows:

• Fitness

• Group size

• Number of groups

• Energy items collected by individual robots

• Energy items collected by robot groups

• Number of predators eaten by robot groups

• Number of robots starved

• Number of robots eaten by predators

These statistics are logged at the end of each scenario for every genome in all
the generations. These statistics are recorded by the agent observers and the
world observer, the only exception being energy collected which required some
additional modification of roborobo. This modification consisted of performing
the logging when energy is rewarded for eating food. Logging the group sizes,
and the number of groups is done a bit differently than the rest of the statistics.
The logging is performed by taking a snapshot which contains the number of
groups and their sizes every 50 iterations of the simulation. The reason for this
is that they change in value over the lifetime of a simulation, and this change
should be recorded.

38

Chapter 4
Results and Discussion

This chapter shows the results of the simulations done with the framework
shown in chapter 3 as well as discussing these results. The chapter is mainly
divided into two sections, the first explaining the configuration of the simu-
lation as well as results depicted by graph data. The second section focuses
on discussing the results regarding the reason they have certain values and
graphs, as well as comparisons between the different simulations and discovery
of correlations and behavioural similarities.

4.1 Experimental Results

As stated in the chapter introduction, this section covers the results of the
simulations. Even though the simulator supports a wide variety of different
configurations, three main simulation groups were chosen for this particular
study.

• The first group considers different connection port configurations for the
robots.

• The second simulation group varies the difficulty of the environment.

• The third and final simulation group observes the effect of local commu-
nication between the robots in a self-assembly structure(the implemen-
tation is shown in sec. 3.5.3).

The two first simulation groups targets to contribute to the three main
self-assembly mechanisms discussed in chapter 2(Self-assembly Architectures,
Hardware Mechanisms and Assembly Protocols). The local communication
simulation group aims to study the effect of giving the robots the ability to
perform simple communication between the robots in a group.

39

4.1. Experimental Results Chapter 4. Results and Discussion

4.1.1 Port Configuration

The first group of simulations that were done was varying the number of con-
nection ports of the robots and their configuration. These simulations were
done such that one could record and discuss the impact of connections between
the robots. In more detail, this group of experiments was conducted such that
one could record:

• How the number of ports affected the general performance of the system.

• If there is any noticeable difference in the self-assembly architecture.

• In what way the port configuration promotes self-assembly, both regard-
ing the sizes of the different robot groups, and the number of groups.

• How the port configuration affects the fitness of the experiment, regard-
ing convergence and the final result.

The goal of running these simulations is to make correlations between its
results to show how configuring the hardware mechanism can affect a self-
assembly system. Snapshots of simulations using different port configurations
can be viewed in figure 4.1.

(a) 2-ports (b) 3-ports (c) 4-ports

Figure 4.1: The three different port configurations used in simulation

Common configuration parameters of importance for the simulations are
listed in table 4.1.

40

4.1. Experimental Results Chapter 4. Results and Discussion

Table 4.1: The simulation parameters for the environments.

Parameter Value

Number of Robots 20

Iterations per Generation 10000

Scenarios 3

Generations 150

For this group of simulations, the most relevant statistics will be the differ-
ence between group actions versus single robot actions. The following pages
show the recorded data for simulations using, two connection ports, three con-
nection ports, and four connection ports(see figure 4.1).

41

0 30 60 90 120 150
0

0.2

0.4

0.6

0.8

1

Generation

F
it

n
es

s

(a) 2-ports

0 30 60 90 120 150
0

0.2

0.4

0.6

0.8

1

Generation

F
it

n
es

s

(b) 3-ports

0 30 60 90 120 150
0

0.2

0.4

0.6

0.8

1

Generation

F
it

n
es

s

(c) 4-ports

Figure 4.2: The fitness from connection port simulations

Figure 4.2 show the results for achieved fitness for the port configuration
simulations. The two and four connection port results are very similar where
the four connection port performs slightly better with an average fitness of
about 0.2 on generation 1 rising to about 0.5 on generation 150. The three
connection port simulation performs worse, concerning fitness, in every aspect
compared to the other port configurations.

42

0 30 60 90 120 150
1

2

3

4

5

6

7

8

Generation

G
ro

u
p

si
ze

(a) 2-ports

0 30 60 90 120 150
1

2

3

4

5

6

7

8

Generation

G
ro

u
p

si
ze

(b) 3-ports

0 30 60 90 120 150
1

2

3

4

5

6

7

8

Generation

G
ro

u
p

si
ze

(c) 4-ports

Figure 4.3: The group distribution from connection port simulations

Figure 4.3 represents the distribution of group sizes formed during simu-
lation. The size of the circles indicates the number of groups formed. The
two and four connection port simulations have more groups of all sizes with
the exception of a single group of size five which was formed from the three
connection port simulation. The four connection port simulation formed larger
groups than the two connection port simulation.

43

0 30 60 90 120 150
0

1.6

3.2

4.8

6.4

8

Generation

N
u

m
b

er
of

R
ob

ot
G

ro
u

p
s

(a) 2-ports

0 30 60 90 120 150
0

1.6

3.2

4.8

6.4

8

Generation

N
u

m
b

er
of

R
ob

ot
G

ro
u

p
s

(b) 3-ports

0 30 60 90 120 150
0

1.6

3.2

4.8

6.4

8

Generation

N
u

m
b

er
of

R
ob

ot
G

ro
u

p
s

(c) 4-ports

Figure 4.4: Number of groups from connection port simulations

Figure 4.4 shows the number of groups which were formed in the different
simulations. It is seen that the results of the two and four connection port
simulations are very similar where the only notable difference is that the four
connection port results seem to converge at a faster rate. The three connection
port results are quite poor, having few groups throughout the trial.

44

0 30 60 90 120 150
0

5

10

15

20

25

Generation

N
u

m
b

er
of

R
ob

ot
s

E
at

en

(a) 2-ports

0 30 60 90 120 150
0

5

10

15

20

25

Generation

N
u

m
b

er
of

R
ob

ot
s

E
at

en

(b) 3-ports

0 30 60 90 120 150
0

5

10

15

20

25

Generation

N
u

m
b

er
of

R
ob

ot
s

E
at

en

(c) 4-ports

Figure 4.5: Number of robots eaten from connection port simulations

Figure 4.5 shows the number of robots which were eaten by predators
during simulation. The four connection port simulation performs best, but
only slightly better than the two connection port robots. The four connection
port results converges faster and has slightly better results at the end of the
simulation. The three connection port results are quite poor in comparison
where a lot more robots are consumed by predators.

45

0 30 60 90 120 150
0

3

6

9

12

15

Generation

N
u

m
b

er
of

R
ob

ot
s

S
ta

rv
ed

(a) 2-ports

0 30 60 90 120 150
0

3

6

9

12

15

Generation

N
u

m
b

er
of

R
ob

ot
s

S
ta

rv
ed

(b) 3-ports

0 30 60 90 120 150
0

3

6

9

12

15

Generation

N
u

m
b

er
of

R
ob

ot
s

S
ta

rv
ed

(c) 4-ports

Figure 4.6: Number of robots starved from connection port simulations

Figure 4.6 shows the number of robots starved each generation. The results
for two and four connection port simulations are very similar where the average
number of robots starved is about four at the final generation(150). The three
connection port simulation performs slightly better on these results where the
average number of starved robots is slightly less than 3. The three connection
port simulation performs best on this result because most of the robots have
been consumed by a predator before they die of starvation.

46

0 30 60 90 120 150
0

28

56

84

112

140

Generation

E
n

er
gy

C
on

su
m

ed
b
y

G
ro

u
p

R
ob

ot
s

(a) 2-ports

0 30 60 90 120 150
0

28

56

84

112

140

Generation

E
n

er
gy

C
on

su
m

ed
b
y

G
ro

u
p

R
ob

ot
s

(b) 3-ports

0 30 60 90 120 150
0

28

56

84

112

140

Generation

E
n

er
gy

C
on

su
m

ed
b
y

G
ro

u
p

R
ob

ot
s

(c) 4-ports

Figure 4.7: Energy consumed by group from connection port simulations

Figure 4.7 shows the energy consumed by groups of robots during simula-
tion. From these results, it can be viewed that the results containing 2 and
four connection ports are very similar with an average result of about 60 en-
ergy items consumed at generation 150. The three port configuration performs
a lot worse with a result of about ten energy items consumed at generation
150. The results are correlated with the results obtained from the number of
groups formed in the simulation(figure 4.4b).

47

0 30 60 90 120 150
0

12

24

36

48

60

Generation

E
n

er
gy

C
on

su
m

ed
b
y

R
ob

ot

(a) 2-ports

0 30 60 90 120 150
0

12

24

36

48

60

Generation

E
n

er
gy

C
on

su
m

ed
b
y

R
ob

ot

(b) 3-ports

0 30 60 90 120 150
0

12

24

36

48

60

Generation

E
n

er
gy

C
on

su
m

ed
b
y

R
ob

ot

(c) 4-ports

Figure 4.8: Energy consumed by robot from connection port simulations

Figure 4.8 shows the total amount of energy which is consumed by robots
which are not self-assembled. All of the graphs have similar results and slopes,
with the exception that the three connection port simulation performs worse.
The reason the average results of figure 4.8a and 4.8c flattens out and does
not increase after around generation 30 is that more of the robots are self-
assembling and hence is not tracked as a part of these results. As the energy
consumed is not decreasing because more robots are a part of groups, it can
be deduced that more energy is consumed on a per robot basis.

48

0 30 60 90 120 150
0

1.6

3.2

4.8

6.4

8

Generation

N
u

m
b

er
of

P
re

d
at

or
s

E
at

en

(a) 2-ports

0 30 60 90 120 150
0

1.6

3.2

4.8

6.4

8

Generation

N
u

m
b

er
of

P
re

d
at

or
s

E
at

en

(b) 3-ports

0 30 60 90 120 150
0

1.6

3.2

4.8

6.4

8

Generation

N
u

m
b

er
of

P
re

d
at

or
s

E
at

en

(c) 4-ports

Figure 4.9: Number of predators eaten from connection port simulations

Figure 4.9 tracks the number of predators that have been eaten by robot
groups. The four connection port simulation performs best and is correlated
with having larger group sizes than the other port configuration shown in figure
4.3c. As the robot groups must be of at least size three to consume a predator,
the results shown in this figure conform with the other results shown earlier.

49

4.1. Experimental Results Chapter 4. Results and Discussion

4.1.2 Environment Difficulty

The motivation for this experiment is to observe how changing the difficulty of
the environment affects the evolved behaviour. For the experiment two envi-
ronment difficulties were constructed, one easier and one more difficult. These
environment difficulties were then used in the simulations so that the impact
of the evolutionary pressure could be recorded and discussed. More specifically
the experiments were constructed to investigate how differing environment dif-
ficulties affect the following properties of the evolved behaviour:

• The amount of robot groups formed through self-assembly, and the num-
ber of robots in each group.

• How the energy gathering behaviour is affected. Whether the robots
prefer gathering energy individually, or as robot groups.

• How the environment difficulty affects the fitness of the experiment, re-
garding convergence and the final result.

The environment difficulty is modified by varying the following simulation
parameters: the initial energy level the robots, the maximum amount of energy
each robot can be charged with, the numer of energy items in the environment,
and the number of predators present in the simulation. Table 4.2 presents the
simulation parameters that are varied for the environments.

Table 4.2: The simulation parameters for the environments.

Environment Predators Initial energy Food items Maximum energy

Easy environment 4 8000 25 10000

Hard environment 7 6000 20 8000

The results were obtained by running 20 simulation trials for each difficulty,
where each of the trails run for 150 generations.

50

0 30 60 90 120 150
0

0.2

0.4

0.6

0.8

1

Generation

F
it

n
es

s

(a) easy

0 30 60 90 120 150
0

0.2

0.4

0.6

0.8

1

Generation

F
it

n
es

s

(b) hard

Figure 4.10: The fitness from environment simulations

Figure 4.10 shows the results for achieved fitness for the environment diffi-
culty simulations. The results for the easy environment are noticeably better
than the results from the hard environment, starting with an average fitness
of 0.24 at generation 1 and rising to 0.55 at generation 150.

51

0 30 60 90 120 150
1

2

3

4

5

6

7

8

Generation

G
ro

u
p

si
ze

(a) easy

0 30 60 90 120 150
1

2

3

4

5

6

7

8

Generation

G
ro

u
p

si
ze

(b) hard

Figure 4.11: The group distribution from environment simulations

Figure 4.11 presents the distribution of group sizes formed during simula-
tion. The distribution for the easy and hard environments are very similar,
but one can see that the easy environment simulation has slightly more groups
of two and three robots.

52

0 30 60 90 120 150
0

1.6

3.2

4.8

6.4

8

Generation

N
u

m
b

er
of

R
ob

ot
G

ro
u

p
s

(a) easy

0 30 60 90 120 150
0

1.6

3.2

4.8

6.4

8

Generation

N
u

m
b

er
of

R
ob

ot
G

ro
u

p
s

(b) hard

Figure 4.12: Number of groups from environment simulations

Figure 4.12 shows the average number of groups formed at a given times-
tamp in the simulation. One can see that the curves for both simulations are
quite similar, but the number of groups formed in the easy environment is
around one more at any given generation.

53

0 30 60 90 120 150
0

5

10

15

20

25

Generation

N
u

m
b

er
of

R
ob

ot
s

E
at

en

(a) easy

0 30 60 90 120 150
0

5

10

15

20

25

Generation

N
u

m
b

er
of

R
ob

ot
s

E
at

en

(b) hard

Figure 4.13: Number of robots eaten from environment simulations

Figure 4.13 shows the number of robots which were eaten by predators
during the simulations. The easy environment simulation performs a bit better
than the hard simulation. In the easy environment simulation, an average of
around 16 robots are eaten in the first generation and decreases to around eight
robots in generation 150. In the hard environment simulation, an average of
around 17 robots are eaten in the first generation and decreases to around 11
robots in generation 150.

54

0 30 60 90 120 150
0

3

6

9

12

15

Generation

N
u

m
b

er
of

R
ob

ot
s

S
ta

rv
ed

(a) easy

0 30 60 90 120 150
0

3

6

9

12

15

Generation

N
u

m
b

er
of

R
ob

ot
s

S
ta

rv
ed

(b) hard

Figure 4.14: Number of robots starved results from environment simula-
tions

Figure 4.14 shows the number of robots dying from starvation. The graphs
are relatively similar, with the worst case being almost the same. In the easy
environment, compared to the hard environment, there is around one robot less
dying from starvation for the average and best case. Surprisingly, these graphs
show that during the first 30 generations the results are getting worse. The
increase in robots starving can be explained by that many robots are getting
eaten by predators before they have time to starve in the early generations.

55

0 30 60 90 120 150
0

28

56

84

112

140

Generation

E
n

er
gy

C
on

su
m

ed
b
y

G
ro

u
p

R
ob

ot
s

(a) easy

0 30 60 90 120 150
0

28

56

84

112

140

Generation

E
n

er
gy

C
on

su
m

ed
b
y

G
ro

u
p

R
ob

ot
s

(b) hard

Figure 4.15: Energy consumed by group from environment simulations

Figure 4.15 shows the total amount of energy consumed by robot groups
during simulation. In the easy environment simulation, the robot groups gather
far more energy than in the hard environment simulation. Gathering an aver-
age of 56 pieces of energy at generation 150 for the easy environment compared
to just 31 pieces in the hard environment simulation.

56

0 30 60 90 120 150
0

12

24

36

48

60

Generation

E
n

er
gy

C
on

su
m

ed
b
y

R
ob

ot

(a) easy

0 30 60 90 120 150
0

12

24

36

48

60

Generation

E
n

er
gy

C
on

su
m

ed
b
y

R
ob

ot

(b) hard

Figure 4.16: Energy consumed by robot from environment simulations

Figure 4.16 shows the total amount of energy eaten by individual robots
during simulation. The easy environment performs better, collecting an av-
erage of 14 energy in the first generation and an average of 24 in the final
generation. The amount of energy gathered in both environments flattens
out at around 30 generations. The reason for this is that more robots are
self-assembling and is hence not tracked as part of these results.

57

0 30 60 90 120 150
0

1.6

3.2

4.8

6.4

8

Generation

N
u

m
b

er
of

P
re

d
at

or
s

E
at

en

(a) easy

0 30 60 90 120 150
0

1.6

3.2

4.8

6.4

8

Generation

N
u

m
b

er
of

P
re

d
at

or
s

E
at

en

(b) hard

Figure 4.17: Number of Predators eaten from environment simulations

Figure 4.17 shows the number of predators eaten by robot groups. On
average, the amount of consumed predators is about the same for both envi-
ronment difficulties, with the robots in the hard environment being consumed
at a slightly higher rate. However, in the best case, the hard environment per-
forms significantly better. The results may be correlated with it being more
predators present in the hard environment that the robots can eat.

58

4.1. Experimental Results Chapter 4. Results and Discussion

4.1.3 Local Communication

The goal of this experiment is to investigate the impact local communication
has on the behaviour of the robots. The experiment is performed by selecting
the fittest genomes found during a simulation, removing the communication
module, and then observing the change in behaviour, if any.

The observed robot behaviour can be split into two phases, the individual
behaviour, and the group behaviour.

Individual behaviour

The individual robots have two observed movement strategies. The strategy
which is employed depends on if a wall is within the range of the robot sensors.
The first strategy involves moving in a wide circular path. This strategy occurs
when no walls are detected by the sensors. This strategy allows the robots to
collect more energy, and will attempt connections with other robots if they
collide. However, they make no attempt to avoid predators in their path. This
behaviour is usually observed at the beginning of the simulation since most of
the robots are initialised away from the walls.

The circular motion of the robots is wide enough to make them crash into
the walls of the environment. The behaviour of the robots changes when
the sensors detect a wall. Instead of moving in circles the robot changes its
movement pattern to follow the wall of the environment. Figure 4.18 shows
how a robot follows the wall while keeping it within sensor range.

Figure 4.18: A robot using its sensors to follow a wall.

The robot will continue moving along the wall until it meets another robot,
and can form a group, or if the sensors detect a bypassing robot group. If a
robot group comes within sensor range while the robot is moving along the
wall, the robot will abandon the wall and attempt to follow the group instead.

59

4.2. Discussion Chapter 4. Results and Discussion

Group behaviour

Figure 4.19: Robot groups moving with circular motion.

The behaviour of the robot groups is similar to the first strategy of the in-
dividual robots. Robot groups also move in wide circular motions, displayed
in figure 4.19, but if the group crashes into a wall, it will simply turn around
and continue. The robot groups consume predators in their path, but they
make no attempt to follow detected predators. The robot groups will continue
to move in circular motions, consuming energy, predators, and making con-
nections, until the end of the simulation, or until the members of the groups
starve.

Communication module

Disabling the local communication module has a significant effect on the be-
haviour. With the communication disabled the robots will no longer switch
to the group behaviour once they are connected. Instead, the groups will con-
tinue to perform the individual robot behaviour regardless of the number of
connected robots.

4.2 Discussion

This section covers the analysis of the obtained results. The section is split
into three parts. The first part covers the connection port simulations and
reviews the impact these results have on achieving self-assembly. The second
part covers the different environmental difficulty simulations. The third part
covers the local communication module and explains the effect it has on the
robot system.

60

4.2. Discussion Chapter 4. Results and Discussion

4.2.1 Port configuration Analysis

Regarding the results fetched from the port configuration simulations the first
obvious remarks stem from the simulation running a three port configuration.
The results of this simulation are much weaker concerning performance and
promotion of self-assembly than the simulations running two and four con-
nection ports. The reason for this can not be deduced completely from the
empirical results, but as the only difference in these simulations are the num-
ber of connection ports and the alignment; it is clear that the connection port
configuration can significantly impact the performance of the simulation. It
can also be deduced that it is not the number of connection ports that has the
primary impact of the solution, but rather the placement. The reason one can
make this claim is that the configuration using two connection ports and four
connection ports perform quite similar in terms of performance. If the number
of connection ports had a significant impact on the results, one would expect
the simulation using either two or four connection ports to yield even poorer
results than the three connection port simulation. This effect narrows the port
configuration problem down to the alignment of the connection ports.

(a) 2-ports (b) 3-ports (c) 4-ports

Figure 4.20: The three different port configurations used in simulation

Figure 4.20 shows a closer view of the alignment that the robots initially
have when spawned into the environment. As explained in 3.5, the robots can
rotate their connection ports as a group. A standard strategy which is usually
evolved is to either constantly rotate the connection ports in hopes of lining
up the ports to another robot, or, the robots start rotating their ports when
the sensors see another robot in an effort to self-assemble. There are two main
problems that the three connection port robots have compared to the other
port configurations. First, the initial port location does not align to any other
robot.

61

4.2. Discussion Chapter 4. Results and Discussion

(a) Initial alignment (b) After 50◦ port rotation.

Figure 4.21: This figure shows how the three connection port robots align

As seen in figure 4.21a, there is not a trivial alignment for the robots to
connect. One might initially presume that this is not a problem as the robots
have a mechanism for rotating their ports to solve this exact issue. However,
as all the robots are running the same genome, as per off-line evolution and
hence the same behaviour, it becomes increasingly difficult for the robots to
solve this problem. As explained earlier, the robots in this simulation tend to
evolve a strategy which involves constantly spinning the connection ports in
one direction. However, as seen in figure 4.21b, in the case where all robots at
some time step have rotated their connection ports 50◦, the same issue of port
alignment would still hold.

62

4.2. Discussion Chapter 4. Results and Discussion

(a) Two connection ports alignment (b) Four connection ports alignment

Figure 4.22: This figure shows how the two and four connection ports robots
align from initial configuration

Consider figure 4.22. In this example, there are two and four port config-
urations. It can be observed that with an initial rotation of the ports, there
exist possibilities for the robots to self-assemble without having the robots
behave differently in terms of rotating their connection ports. This differentia-
tion seems to be the main reason that the three connection port configuration
is being outperformed.

The second problem with robots having three connection ports, in this
alignment, is the possible group formations the robots can form. Chapter 2
covers the chain and lattice architectures that the robots can form when self-
assembling. The simulator is developed to support the lattice architecture
because if its simplistic method of coordinated movement.

63

4.2. Discussion Chapter 4. Results and Discussion

(a) Robot groups with two and four con-
nection ports

(b) Robot groups with three connection
ports

Figure 4.23: This figure contains self-assembled robot groups with different
assembly combinations

It can be seen from figure 4.23 that the different connection port configura-
tions create various types of groups. With two and four connection ports (figure
4.23a), the robot groups either take the form of a line or some square grid for-
mation. Possible formations of the three connection ports robot groups(figure
4.23b) breaks the pattern of a square grid configuration which makes it harder
for other robots trying to connect to the group. The main reason for this
connection problem is the relative position a connecting robot needs, is harder
to attain because of the larger distance between the connection ports.

There are not significant discrepancies between the results from the port
configuration simulation containing two and four connection ports. The only
result which differs significantly is ”predators eaten”(figure 4.9a and 4.9c).
The reason for this can be deduced from figure 4.3a and 4.3c which shows that
robots with four connection ports tend to form larger groups. It can however
be viewed from figure 4.4a and 4.4c that two and four connection ports have
roughly the same number of groups. The occurrence of a greater amount of
larger groups naturally agrees with eating more predators as groups need to
be of at least size three to consume a predator. The reason for four connection
ports robots to attain larger groups is simply that more connection ports allow
more points of entry for other robots trying to connect, which increases the
probability of succeeding self-assembly to the group.

From these results, it can be deduced that larger groups do not give rise to
better fitness in this experiment, but rather the number of groups (a group is
of minimum size 2) correlates with the fitness. The reason for this is that the
robots in the port configuration simulations are not in a great need of energy.

64

4.2. Discussion Chapter 4. Results and Discussion

The robots are able to naturally attain what they need in the environment
and hence do not have to rely on a strategy involving predator consumption.

4.2.2 Environmental difficulty analysis

The analysis and discussion on the impact of environmental difficulty can be
divided into three main categories: the impact of environmental threats when
the difficulty is modified, how the promotion of self-assembly is effected by the
environmental difficulty and finally, how the evolved energy collection strategy
is influenced by the environment difficulty.

Environmental threats

The robots have two threats in the environments presented, starvation and
getting killed by predators. The robots in the easy environment receive more
energy from each energy item, and there are more energy items available.
From figure 4.14 one can see that this reduces the amount of robots dying
from starvation in the easy environment, but the improvement is minuscule.

Increasing the number of predators in the environment seems to have a
higher impact on the difficulty presented by an environment. Figure 4.13
shows that increasing the amount of predators present in the environment has
a greater impact on the difficulty of the environment than limiting the energy
available. The reason for why increasing the number of predators has a much
higher impact on difficulty is not completely clear from the results. However,
the observed behaviour described in section 4.1.3 can help explain the results.
The sensors are used by the robot to detect walls and other robots, but not
predators or food. This behaviour means that the robot may miss some food,
but there is enough food in the environment so the robot will eventually find
more food. On the other hand, failing at predator avoidance has much more
severe consequences as the predator will instantly kill the robot.

Promotion of self-assembly

One of the motivations for this experiment was to see how modifying the
evolutionary pressure affects the promotion of self-assembly. Figure 4.12 show
that the robots form more groups in the easy environment. At first glance, this
seems to indicate that the easy environment is more successful at promoting
self-assembly. This difference in the number of groups may be explained by
examining the lifetime of the robots. As explained in section 3.7.6, the fitness of
a genome is determined by the average lifetime of a robot. The fitness achieved
in the easy environment, figure 4.10a, is higher than the fitness achieved in the
hard environment, figure 4.10b. The fitness means that the robots in the easy
environment live longer, and as a consequence have more time to form groups.

65

4.2. Discussion Chapter 4. Results and Discussion

However, figure 4.11 shows that the size of the robot groups formed is not
affected by modifying the difficulty of the environment. In both environments,
the distribution of group sizes is heavily weighted towards groups of two. The
reason for this may be that the environments give a high reward for being in
a group. That is protection from predators, the additional reward for form-
ing larger groups(being able to eat predators) is diminished as there is an
abundance of energy items in the environment.

Energy collection strategy

One can see from the figures 4.15 and 4.16that the robots in the easy envi-
ronment collect far more energy than the robots in the difficult. This result
can likely also be attributed to the fact that the robots in the easy environ-
ment live longer, and that there is more energy available, instead of a more
optimal energy gathering strategy. One can look at the ratio of energy col-
lected by individual robots versus energy collected by groups of robots for the
environments. This relationship is presented in table 4.3.

Table 4.3: The percentage of energy collected by groups of robots for the
environments.

Generation Easy Hard

10 54% 51%

50 71% 67%

100 71% 71%

150 72% 73%

Table 4.3 shows that in both environments the ratio of energy collected
by robot groups is approximately the same. The ratio means that although
the robots in the easy environment collect more energy in total, the strategies
evolved in the different environments are similar. This also coincides with
that the observed behaviour described in section 4.1.3 is very similar for the
different environments.

4.2.3 Local communication analysis

As described in section 4.1.3, the evolved behaviour makes use of the commu-
nication module. When the communication module was disabled, the robots
did not change their behaviour when they formed groups. Therefore, it is rea-
sonable to assume that local communication is at least involved in modifying
the robot behaviour once connected to a group. Exactly how the evolved neu-

66

4.2. Discussion Chapter 4. Results and Discussion

ral network interprets the messages received is challenging to infer, but one
can observe the messages sent to get a conceptual understanding.

[0.992 0.999 0.423 0.002]

Figure 4.24: The message passed between the robots.

Without any other inputs, all robots send the message displayed in 4.24
by default. Receiving other inputs, such as sensors, changes the message by a
negligible amount. The surprising thing about the message is that the com-
ponents in the communication messages have wildly different values. It turns
out that the values in the messages have an interesting interaction with the
port connection status that is also propagated to the neural network. The port
connection status contains the robot’s connection status of each port.

Table 4.4: The resulting desired rotations for different port combinations with
the evolved message and a test message for comparison. A port status value
of 1 means the particular port is connected, 0 means it is not connected.

Message:[0.992 0.999 0.423 0.002] Message: [1.0 1.0 1.0 1.0]

Port status Desired rotationdeg/step

1 1 0 0 0.9482

1 0 1 0 0.999

1 0 0 1 0.517

0 1 1 0 0.997

0 1 0 1 0.705

0 0 1 1 0.997

Port status Desired rotationdeg/step

1 1 0 0 0.719

1 0 1 0 0.976

1 0 0 1 0.658

0 1 1 0 0.866

0 1 0 1 0.674

0 0 1 1 0.822

Table 4.4 shows how the desired rotation for the robots varies with the
local topology of the connected robots. The table shows this variation with
the evolved message and a dummy message for comparison. It can be observed
that the resulting desired rotations for the robots have different values for the
two messages. The desired rotation for the robots determines the radius of
the circular motion that dictate the robot group movements. These results
show that the local communication module is used for two purposes. The first
purpose is to act as a switch to change from the individual robot behaviour
to the group behaviour. Additionally, the communicated message decides the
robot group’s behaviour depending on the different connection topologies.

67

4.2. Discussion Chapter 4. Results and Discussion

68

Chapter 5
Conclusion

The main focus and goal of this thesis have been to discover and test the
elements present in a self-assembly system when robots are given basic learning
capabilities. The experiment has been conducted using a heavily modified
version of the roborobo framework. The main factors that have been researched
in accordance with self-assembly have been: connection port configuration,
environmental influence and local communication.

The results obtained from the connection port simulations, show that con-
figuration of the connection ports can significantly impact the emergence of
self-assembly using an evolutionary algorithm. The port configuration consists
of the number of connection ports each robot has available and the relative po-
sitioning of the connection ports on the robot. Both elements influence the size
and frequency of self-assembling robot groups. It can, however, be narrowed
down to a single influential self-assembly mechanism: the assembly protocol.
It is evident from the results that providing the robots with tools that allow
an efficient and simple assembly protocol to be evolved, is essential to achieve
successful results.

The main focus of the learning algorithm should be to solve the task at
hand and not deriving a complex strategy for achieving self-assembly. Having
the ability to form a complex assembly protocol can be appropriate in a partic-
ular situation as it may significantly improve performance. However, it should
not be a minimum requirement for the ability to self-assemble. An evolution-
ary algorithm performs better when an incremental solution to some desired
behaviour is possible. If the least complex achievable self-assembly protocol
requires sufficiently advanced cognition, then the robots may only have a few
occurrences of self-assembly or none at all.

The results gained from the environment difficulty simulations implies that
the difficulty of the environment is not directly correlated with promoting
self-assembly. The results show that the robots perform better in an easy en-
vironment, but this is rather due to restrictions in the environment and not

69

5.1. Future work Chapter 5. Conclusion

due to the ability to self-assemble. The only effect that difficult environments
impose on self-assembly is making robots die earlier, giving them fewer op-
portunities to self-assemble. Promoting self-assembly may rather see a larger
impact if the rules of the environment change(examples include translation
speed of predators and the physical size of the environment).

One of the problem statements this study aimed to examine was the in-
troduction of a local communication module. From the results discussed in
chapter 4, it was seen that using the local communication module drastically
changed the behaviour of self-assembled groups. However, it cannot be made
any conclusive remarks as to the local communication module promoting the
robots to self-assemble as deciphering the evolved values of the neural network
is very difficult. From a logical point of view, one would not expect there
to be a difference, because the local communication module only transmits
information between the robots in a self-assembled group. Hence, there is
seemingly no reason why this would help two singular robots to self-assemble.
However, when using an evolutionary algorithm, the use of certain modules
may be utilised differently than the developer predicts. The evolved genomes
may use the module as a state machine instead of a message passing module.

In concluding remarks, it is shown that there should be a larger focus on
the connection mechanism which the robots have equipped. To promote self-
assembly, the ideal hardware mechanisms would be one which makes it easy for
the robots to evolve an efficient assembly protocol, but also yields an interface
to evolve complex assembly behaviour. In the case where static connection
points are used, using many, initially aligned connection ports increase the fre-
quency and size of the self-assembled groups. The difficulty of the environment
does not seem to impact the frequency of self-assembly, and one may consider
altering the static rules of the environment which may yield a noticeable im-
pact. A local communication module is an advantageous asset to provide for
self-assembly robots as it may be used to communicate a transition to group
behaviour as well as assisting in the type of behaviour which emerges from the
group.

5.1 Future work

From the observed results of self-assembly mechanisms and environment, it
is seen that improvements and further experimentation can be implemented.
This forms the basis for exploring other factors of self-assembly mechanisms.

The port configuration has the possibility to be explored further as the re-
sults of this study determined that it has a significant impact on the emergence
of self-assembly. A possible exploratory field would be to challenge the static
nature of the ports presented in this study. Hardware mechanisms which do
not depend on fixed positions on a robot where the robots are able to self-

70

5.1. Future work Chapter 5. Conclusion

assemble at any point on a connecting robot should, according to the results
obtained in this study, perform at a higher rate. An obvious end goal of stud-
ies like this one is to be able to realise these robots into the real world. In
these scenarios, the reality gap will probably inflict even stricter conditions on
performing a simple assembly strategy which could detriment the ability to
self-assemble.

Since the impact of changing the environment did not suggest a change in
assembly protocol or strategy, a reasonable continuation would be to catego-
rize which environmental scenarios self-assembly, through evolution, is most
appropriate. Changing the atomic rules of the environment and robot problem
tasks may yield results indicating scenarios where evolutionary self-assembly
is more appropriate.

Local communication is a mechanism which has not been significantly re-
searched in this field. According to the results obtained in this study, further
exploration into communication modules between the robots can give rise to
increasingly complex behaviour. In this study, a very simple protocol of passing
floating point numbers from one robot to another was implemented. Perhaps
there are better communication protocols available which could further the
performance. It is also possible to look at the possibility for robots to com-
municate on a local spectrum where they are not necessarily self-assembled.
Expanded local communication may improve their ability to form an effective
assembly strategy through evolution.

The evolutionary algorithm used in this study is simple and standard.
There exists additionally advanced evolutionary algorithms and other bio-
inspired algorithms where the mechanisms presented in this study should be
additionally explored.

71

5.1. Future work Chapter 5. Conclusion

72

Bibliography

[1] S. G. Bailey, S. Hubbard, and R. P. Raffaelle. Chapter 18 - Nanostructured
Solar Cells. In M. Henini, editor, Handbook of Self Assembled Semicon-
ductor Nanostructures for Novel Devices in Photonics and Electronics,
pages 552 – 564. Elsevier, Amsterdam, 2008.

[2] T. Balch. Behavioral diversity in learning robot teams. 1998.

[3] S. Bauer. Termites rush to damaged portion of mound.jpg, July 2007.

[4] W. Baxter. flocking.jpg, 2008.

[5] R. D. Beer. The dynamics of adaptive behavior: A research program.
Robotics and Autonomous Systems, 20(2):257–289, 1997.

[6] S. Binitha and S. S. Sathya. A survey of bio inspired optimization al-
gorithms. International Journal of Soft Computing and Engineering,
2(2):137–151, 2012.

[7] J. Bishop, S. Burden, E. Klavins, R. Kreisberg, W. Malone, N. Napp, and
T. Nguyen. Programmable parts: a demonstration of the grammatical
approach to self-organization. pages 3684–3691. IEEE, 2005.

[8] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo. Swarm robotics:
a review from the swarm engineering perspective. Swarm Intelligence,
7(1):1–41, Mar. 2013.

[9] D. Brandt, D. J. Christensen, and H. H. Lund. ATRON robots: versatility
from self-reconfigurable modules. In Mechatronics and Automation, 2007.
ICMA 2007. International Conference on, pages 26–32. IEEE, 2007.

[10] N. Bredeche, J.-M. Montanier, B. Weel, and E. Haasdijk. Roborobo! a
fast robot simulator for swarm and collective robotics. arXiv preprint
arXiv:1304.2888, 2013.

73

Bibliography Bibliography

[11] A. Castano, W.-M. Shen, and P. Will. CONRO: Towards deployable
robots with inter-robots metamorphic capabilities. Autonomous Robots,
8(3):309–324, 2000.

[12] D. D. L. Chung. Use of polymers for cement-based structural materials.
Journal of materials science, 39(9):2973–2978, 2004.

[13] S. Doncieux, J.-B. Mouret, N. Bredeche, and V. Padois. Evolution-
ary robotics: Exploring new horizons. In New horizons in evolutionary
robotics, pages 3–25. Springer, 2011.

[14] K. L. Downing. Introduction to evolutionary algorithms. Citeseer, 2009.

[15] R. C. Eberhart and J. Kennedy. A new optimizer using particle swarm
theory. In Proceedings of the sixth international symposium on micro
machine and human science, volume 1, pages 39–43. New York, NY, 1995.

[16] A. E. Eiben, E. Haasdijk, and N. Bredeche. Embodied, on-line, on-board
evolution for autonomous robotics. Symbiotic Multi-Robot Organisms:
Reliability, Adaptability, Evolution., 7:361–382, 2010.

[17] S. Garnier, J. Gautrais, and G. Theraulaz. The biological principles of
swarm intelligence. Swarm Intelligence, 1(1):3–31, Oct. 2007.

[18] B. Gerkey, R. T. Vaughan, and A. Howard. The player/stage project:
Tools for multi-robot and distributed sensor systems. In Proceedings of
the 11th international conference on advanced robotics, volume 1, pages
317–323, 2003.

[19] K. Gilpin, K. Kotay, D. Rus, and I. Vasilescu. Miche: Modular Shape
Formation by Self-Disassembly. The International Journal of Robotics
Research, 27(3-4):345–372, Mar. 2008.

[20] K. S. Goh, A. Lim, and B. Rodrigues. Sexual selection for genetic algo-
rithms. Artificial Intelligence Review, 19(2):123–152, 2003.

[21] R. Gro, M. Bonani, F. Mondada, and M. Dorigo. Autonomous Self-
Assembly in Swarm-Bots. IEEE Transactions on Robotics, 22(6):1115–
1130, Dec. 2006.

[22] R. Gross and M. Dorigo. Evolution of Solitary and Group Transport
Behaviors for Autonomous Robots Capable of Self-Assembling. Adaptive
Behavior, 16(5):285–305, 2008.

[23] R. Gross and M. Dorigo. Self-Assembly at the Macroscopic Scale. Pro-
ceedings of the IEEE, 96(9):1490–1508, Sept. 2008.

74

Bibliography Bibliography

[24] R. Gross, E. Tuci, M. Dorigo, M. Bonani, and F. Mondada. Object
transport by modular robots that self-assemble. In Proceedings 2006 IEEE
International Conference on Robotics and Automation, 2006. ICRA 2006,
pages 2558–2564, May 2006.

[25] S. Hettiarachchi, W. M. Spears, D. Green, and W. Kerr. Distributed
agent evolution with dynamic adaptation to local unexpected scenarios.
In Innovative Concepts for Autonomic and Agent-Based Systems, pages
245–256. Springer, 2006.

[26] F. Heylighen and others. The science of self-organization and adaptivity.
The encyclopedia of life support systems, 5(3):253–280, 2001.

[27] F. Heylighen and others. The science of self-organization and adaptivity.
The encyclopedia of life support systems, 5(3):253–280, 2001.

[28] B. Kirby, J. Campbell, B. Aksak, P. Pillai, J. Hoburg, T. C. Mowry, and
S. C. Goldstein. Catoms: Moving Robots Without Moving Parts. In
PROCEEDINGS OF THE NATIONAL CONFERENCE ON ARTIFI-
CIAL INLIGENCE, volume 20, page 1730. Menlo Park, CA; Cambridge,
MA; London; AAAI Press; MIT Press; 1999, 2005.

[29] S. Koos, J.-B. Mouret, and S. Doncieux. Crossing the reality gap in evo-
lutionary robotics by promoting transferable controllers. In Proceedings
of the 12th annual conference on Genetic and evolutionary computation,
pages 119–126. ACM, 2010.

[30] J. B. Lee and R. C. Arkin. Adaptive multi-robot behavior via learning
momentum. In Intelligent Robots and Systems, 2003.(IROS 2003). Pro-
ceedings. 2003 IEEE/RSJ International Conference on, volume 2, pages
2029–2036. IEEE, 2003.

[31] H. Li, H. Wei, J. Xiao, and T. Wang. Co-evolution framework of swarm
self-assembly robots. Neurocomputing, 148:112–121, Jan. 2015.

[32] L. Li, A. Martinoli, and Y. S. Abu-Mostafa. Learning and measuring
specialization in collaborative swarm systems. Adaptive Behavior, 12(3-
4):199–212, 2004.

[33] L. Li, A. Martinoli, and Y. S. Abu-Mostafa. Learning and measuring
specialization in collaborative swarm systems. Adaptive Behavior, 12(3-
4):199–212, 2004.

[34] M. J. Mataric. Interaction and Intelligent Behavior. Technical report,
DTIC Document, 1994.

75

Bibliography Bibliography

[35] M. Mitchell. Life and evolution in computers. History and philosophy of
the life sciences, pages 361–383, 2001.

[36] J.-M. Montanier and P. C. Haddow. Adaptive self-assembly in swarm
robotics through environmental bias. In Evolvable Systems (ICES), 2014
IEEE International Conference on, pages 187–194. IEEE, 2014.

[37] S. Murata and H. Kurokawa. Self-reconfigurable robots. Robotics & Au-
tomation Magazine, IEEE, 14(1):71–78, 2007.

[38] S. Murata, E. Yoshida, K. Tomita, H. Kurokawa, A. Kamimura, and
S. Kokaji. Hardware design of modular robotic system. In Intelligent
Robots and Systems, 2000.(IROS 2000). Proceedings. 2000 IEEE/RSJ In-
ternational Conference on, volume 3, pages 2210–2217. IEEE, 2000.

[39] R. Mckel, C. Jaquier, K. Drapel, E. Dittrich, A. Upegui, and A. Ijspeert.
YaMoR and Bluemovean autonomous modular robot with bluetooth inter-
face for exploring adaptive locomotion. In Climbing and Walking Robots,
pages 685–692. Springer, 2006.

[40] K. Nahar. Artificial Neural Network. COMPUSOFT, An international
journal of advanced computer technology, 1:1, 2012.

[41] N. Noskov, E. Haasdijk, B. Weel, and A. E. Eiben. Monee: using parental
investment to combine open-ended and task-driven evolution. Springer,
2013.

[42] M. Park, S. Chitta, A. Teichman, and M. Yim. Automatic Configuration
Recognition Methods in Modular Robots. The International Journal of
Robotics Research, 27(3-4):403–421, Mar. 2008.

[43] L. E. Parker. L-ALLIANCE: Task-oriented multi-robot learning in
behavior-based systems. Advanced Robotics, 11(4):305–322, Jan. 1996.

[44] M. Polyglottus. mockingbird-tales-readings-in-animal-behavior-5.1.pdf,
Jan. 2011.

[45] J. H. Powers. Further Studies in Volvox, with Descriptions of Three New
Species. Transactions of the American Microscopical Society, 28:141, Sept.
1908.

[46] J. Pugh and A. Martinoli. Parallel learning in heterogeneous multi-robot
swarms. In Evolutionary Computation, 2007. CEC 2007. IEEE Congress
on, pages 3839–3846. IEEE, 2007.

[47] A. Rosenfeld, G. A. Kaminka, S. Kraus, and O. Shehory. A study of mech-
anisms for improving robotic group performance. Artificial Intelligence,
172(6-7):633–655, Apr. 2008.

76

Bibliography Bibliography

[48] D. Rus, Z. Butler, K. Kotay, and M. Vona. Self-reconfiguring robots.
Communications of the ACM, 45(3):39–45, 2002.

[49] S. Russell and P. Norvig. Artificial intelligence: a modern approach. 1995.

[50] J. Schmidhuber. Evolutionary computation versus reinforcement learn-
ing. In Industrial Electronics Society, 2000. IECON 2000. 26th Annual
Confjerence of the IEEE, volume 4, pages 2992–2997. IEEE, 2000.

[51] B. Siciliano and O. Khatib, editors. Springer handbook of robotics.
Springer, Berlin, 2008.

[52] V. Siracusa, P. Rocculi, S. Romani, and M. D. Rosa. Biodegradable poly-
mers for food packaging: a review. Trends in Food Science & Technology,
19(12):634–643, Dec. 2008.

[53] G. C. Sirakoulis and A. Adamatzky, editors. Robots and Lattice Automata,
volume 13 of Emergence, Complexity and Computation. Springer Inter-
national Publishing, Cham, 2015.

[54] C. Skjetne, P. C. Haddow, A. Rye, H. Schei, and J.-M. Montanier. The
ChIRP Robot: A Versatile Swarm Robot Platform. In J.-H. Kim, E. T. .
Matson, H. Myung, P. Xu, and F. Karray, editors, Robot Intelligence
Technology and Applications 2, volume 274, pages 71–82. Springer Inter-
national Publishing, Cham, 2014.

[55] G. Studer and H. Lipson. Spontaneous emergence of self-replicating struc-
tures in molecube automata. In Proc. of the 10th Int. Conf. on the Simu-
lation and Synthesis of Living Systems (Artificial Life X), pages 227–233.
Citeseer, 2006.

[56] V. Trianni, E. Tuci, and M. Dorigo. Evolving functional self-assembling in
a swarm of autonomous robots. From Animals to Animats, 8(July):405–
414, 2004.

[57] P. Trueba, A. Prieto, P. Caamao, F. Bellas, and R. J. Duro. Task-Driven
Species in Evolutionary Robotic Teams. In D. Hutchison, T. Kanade,
J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nier-
strasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar,
M. Y. Vardi, G. Weikum, J. M. Ferrndez, J. R. lvarez Snchez, F. de la Paz,
and F. J. Toledo, editors, Foundations on Natural and Artificial Compu-
tation, volume 6686, pages 138–147. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2011.

[58] B. Weel, E. Haasdijk, and A. E. Eiben. The Emergence of Multi-cellular
Robot Organisms through On-Line On-Board Evolution. In Applications

77

Bibliography Bibliography

of Evolutionary Computation, volume 7248 of Lecture Notes in Computer
Science, pages 124–134. Springer Berlin Heidelberg, 2012.

[59] H. Wei, Y. Chen, J. Tan, and T. Wang. Sambot: A Self-Assembly Modular
Robot System. IEEE/ASME Transactions on Mechatronics, 16(4):745–
757, Aug. 2011.

[60] G. M. Whitesides. Self-Assembly at All Scales. Science, 295(5564):2418–
2421, Mar. 2002.

[61] J. S. Yadav, M. Yadav, and A. Jain. Artificial neural network. Interna-
tional Journal of Scientific Research and Education, 1(06), 2014.

[62] M. Yim, W.-M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins,
and G. S. Chirikjian. Modular self-reconfigurable robot systems [grand
challenges of robotics]. Robotics & Automation Magazine, IEEE,
14(1):43–52, 2007.

[63] M. Yim, Y. Zhang, and D. Duff. Modular robots. Spectrum, IEEE,
39(2):30–34, 2002.

[64] V. Zykov, A. Chan, and H. Lipson. Molecubes: An open-source modular
robotics kit. In IROS-2007 Self-Reconfigurable Robotics Workshop, pages
3–6. Citeseer, 2007.

78

Appendices

79

Appendix A
Parallelization

In the experiments described in this study, the bulk of processing time is
spent evaluating the genomes using roborobo. The genome evaluations are
independent of each other and is therefore a good candidate for parallelization.
With a great number of global variables, the roborobo framework itself is not
easily parallelized. The solution was to use Message passing interface(MPI)
to run multiple cooperating roborobo processes.

The parallelization is done by letting one root process take responsibil-
ity for running the evolutionary algorithm, with multiple slave processes for
evaluating the genomes.

(a) Distributing the genomes from the
root process to the slave processes for
evaluation.

(b) Gathering the evaluated genomes
from the slave processes.

Figure A.1: Distributing and gathering genomes.

At the beginning of each generation the root process generates the new
genomes from the evolutionary algorithm. The new genomes are then dis-
tributed evenly to each process, see figure A.1a. Once all the genomes are
evaluated, the root process gathers the evaluated genomes from the slave pro-
cesses, see figure A.1b. The evaluated genomes are then used by the evolu-
tionary algorithm to create the next generation. This process is repeated until

81

Appendix A. Parallelization

the target fitness is reached or a processing threshold is met.

82

Appendix B
Live graphing tool

Since the evaluation is quite time-consuming, there was a need for a tool that
could give feedback during the simulation instead of having to wait for it to
complete. A simple ”live” graph which plots fitness statistics was therefore
created, pictured in figure B.1

Figure B.1: The graphing tool showing fitness statistics for a trial.

Having such a tool makes it easier to evaluate how well new configurations
are working, and saves time by shortening the feedback cycle.

83

Appendix B. Live graphing tool

84

Appendix C
Configuration & Code

The project code and system configuration can be found at https://github.
com/christjt/ntnu-project-2016

85

https://github.com/christjt/ntnu-project-2016
https://github.com/christjt/ntnu-project-2016

	Introduction
	Thesis objectives
	Problem statement
	Structure of report

	Background
	Related work
	Complex systems
	Self-assembly architectures
	Non-mobile Architecture
	Mobile architecture

	Hardware mechanisms
	Docking mechanisms

	Assembly protocols
	Pre-determined assembly protocol
	Learned assembly protocol

	Machine learning algorithms
	Evolutionary algorithms

	Artificial neural networks

	Methodology
	Experiment motivation
	Experiment setup
	Environment
	Roborobo overview
	Roborobo modifications
	Robot Groups
	Docking mechanism
	Local communication
	Predators
	Energy drain

	CTRNN
	Topologies

	Evolutionary algorithm
	Genotype
	Initialization
	Mutation operators
	Selection mechanism
	Elitism
	Evaluation

	Data gathering

	Results and Discussion
	Experimental Results
	Port Configuration
	Environment Difficulty
	Local Communication

	Discussion
	Port configuration Analysis
	Environmental difficulty analysis
	Local communication analysis

	Conclusion
	Future work

	Appendices
	Parallelization
	Live graphing tool
	Configuration & Code

