
Automatic Sarcasm Detection in Twitter
Messages

Johan Georg Cyrus Mazaher
Ræder

Master of Science in Computer Science

Supervisor: Bjørn Gamback, IDI

Department of Computer and Information Science

Submission date: June 2016

Norwegian University of Science and Technology

Johan G. Cyrus M. Ræder

Automatic Sarcasm Detection in
Twitter Messages

Master’s Thesis, Spring 2016

Artificial Intelligence Group
Department of Computer and Information Science
Faculty of Information Technology, Mathematics and
Electrical Engineering

Abstract
In the past decade, social media like Twitter have become popular and
a part of everyday life for many people. Opinion mining of the thoughts
and opinions they share can be of interest to, e.g., companies and organiz-
ations. The sentiment of a text can be drastically altered when figurative
language such as sarcasm is used. This thesis presents a system for auto-
matic sarcasm detection in Twitter messages.
To get a better understanding of the field, state-of-the-art systems for

detecting sarcasm in Twitter messages are explored. Many such systems
already exist, and a common theme among them is the use of automatically
annotated data for both training and testing. In addition to presenting a
system for detecting sarcasm, this thesis also looks into the use of manually
annotated data for testing. To this end, a dataset of tweets manually
annotated with respect to the presence of sarcasm was built. The result
was very similar to that of a previously made set, and both of them showed
considerable deviation from automatic annotation. This implies that using
automatically annotated data for the task of sarcasm detection in tweets
is a mediocre approximation.
Experiments with both of the manually annotated datasets also gave

very similar results, showing that they are well annotated and reasonably
representative for sarcasm detection in tweets.

i

Sammendrag
I løpet av det siste tiåret har sosiale medier som Twitter blitt svært popu-
lære, og er en del av hverdagen for mange mennesker. Meningsutvinning
av tankene og meningene folk deler med hverandre kan være av interesse
for f.eks. selskaper og organisasjoner. Meningen i en tekst kan bli drastisk
endret ved bruk av figurativt språk slik som sarkasme. Denne oppgaven
presenterer et datasystem for automatisk gjenkjenning av sarkasme i mel-
dinger på Twitter.
For å få en bedre forståelse av fagfeltet har state-of-the-art datasystemer

for sarkasmegjenkjenning i Twitter blitt undersøkt. Mange slike systemer
finnes allerede, og en vanlig fremgangsmåte blant dem er å bruke automa-
tisk annoterte data til både trening og testing. I tillegg til å presentere et
datasystem for sarkasmegjenkjenning, ser denne oppgaven også på bruken
av manuelt annoterte data for testing. For å oppnå dette har et data-
sett av twittermeldinger manuelt annotert med hensyn på sarkasme blitt
laget. Resultatet var veldig likt resultatet til et tidligere laget tilsvaren-
de datasett. Begge viser også betydelige avvik fra automatisk annotering.
Dette antyder at bruken av automatisk annoterte data er en middelmådig
tilnærming til problemet.
Eksperimenter gjennomført med begge de manuelt annoterte datasette-

ne gir også veldig like resultater, noe som viser at de er godt annoterte,
og rimelig representative for sarkasmegjennkjenning i twittermeldinger.

ii

Preface
This Master’s Thesis has been completed as part of a Computer Sci-
ence Master’s Degree programme at the Department of Computer and
Information Science at the Norwegian University of Science and Techno-
logy (NTNU). The thesis was supervised by Björn Gambäck.

Johan G. Cyrus M. Ræder
Trondheim, June 13th, 2016

iii

Acknowledgements
I would like to thank my supervisor Björn Gambäck for his guidance
throughout the project. I would also like to thank Valerij Fredriksen,
Brage Ekroll Jahren, Mathieu Cliche, and Ellen Riloff for providing data.

iv

Contents

1. Introduction 1
1.1. Project Goals . 2
1.2. Defining Sarcasm . 2
1.3. Contributions . 3
1.4. Thesis Structure . 4

2. Background 5
2.1. Tweet Anatomy . 5
2.2. Part-of-Speech Tagging . 5
2.3. Algorithms . 6

2.3.1. Support Vector Machines 6
2.3.2. Logistic Regression 7

2.4. Tools and Resources . 8
2.4.1. Scikit-learn . 8
2.4.2. NLTK . 8
2.4.3. NRC Hashtag Sentiment Lexicon 8
2.4.4. AFINN . 9

2.5. Evaluation Metrics . 9
2.5.1. Inter-Annotator Agreement 9
2.5.2. System Performance 10

3. Related Work 13
3.1. State-of-the-Art . 13

3.1.1. SemEval 2015 . 13
3.1.2. Feature Selection . 15

3.2. Datasets . 17
3.3. Preprocessing . 19

v

Contents

4. Data 21
4.1. Datasets . 21
4.2. Annotating Tweets for MAD2 23

5. Architecture 25
5.1. Features . 25
5.2. System Design . 27

5.2.1. Preprocessing . 27
5.2.2. Workflow . 27

6. Experimental Setup 31
6.1. Algorithms and Grid Search 31
6.2. Experiments . 33
6.3. Baselines . 33

7. Results 35

8. Discussion and Conclusion 53
8.1. Discussion . 53
8.2. Conclusion . 55
8.3. Future Work . 56

Bibliography 58

A. List of Emoticons Converted to ASCII 65

vi

List of Figures

5.1. An overview of the system architecture. 29

7.1. Normalized confusion matrix for the AAD 10-fold cross val-
idation using all features and the SVC classifier. 36

7.2. Normalized confusion matrix for the AAD 10-fold cross val-
idation using lexical features and the SVC classifier. 37

7.3. Normalized confusion matrix for the AAD 10-fold cross val-
idation using sentiment features and the SVC classifier. . . . 38

7.4. Normalized confusion matrix for the AAD 10-fold cross
validation using all features and the LogisticRegression
classifier. 39

7.5. Normalized confusion matrix for the AAD 10-fold cross val-
idation using lexical features and the LogisticRegression
classifier. 40

7.6. Normalized confusion matrix for the AAD 10-fold cross val-
idation using sentiment features and the LogisticRegression
classifier. 41

7.7. Normalized confusion matrix for the testing with MAD1
using all features and the SVC classifier. 42

7.8. Normalized confusion matrix for the testing with MAD1
using all features and the LogisticRegression classifier. . 43

7.9. Normalized confusion matrix for the testing with MAD1-
auto using all features and the SVC classifier. 44

7.10. Normalized confusion matrix from testing with MAD1-auto
using all features and the LogisticRegression classifier. . 45

7.11. Normalized confusion matrix for the testing with MAD2
using all features and the SVC classifier. 46

7.12. Normalized confusion matrix from testing with MAD2 us-
ing all features and the LogisticRegression classifier. . . 47

vii

List of Figures

7.13. Normalized confusion matrix for the testing with MAD2-
auto using all features and the SVC classifier. 48

7.14. Normalized confusion matrix from testing with MAD2-auto
using all features and the LogisticRegression classifier. . 49

viii

List of Tables

3.1. Results for Task 11 in SemEval 2015. Taken from Ghosh
et al. [2015a]. 14

4.1. Rough quality check of the AAD. 22
4.2. Statistics for the different data sets. 22
4.3. Breakdown over inter-annotator agreement for the 2205 tweets

in MAD2. 24

5.1. Words identified by Ghosh et al. [2015b] as good candidates
for being used sarcastically. 26

6.1. Parameter values for the coarse grid search. 32
6.2. Parameter values for the fine grid search. 32
6.3. List of experiments. 33
6.4. Performance of theoretical baselines for the different data

sets. 34

7.1. Evaluation metrics and raw classification numbers for the
AAD 10-fold cross validation using all features and the SVC
classifier. 36

7.2. Evaluation metrics and raw classification numbers for the
AAD 10-fold cross validation using lexical features and the
SVC classifier. 37

7.3. Evaluation metrics and raw classification numbers for the
AAD 10-fold cross validation using sentiment features and
the SVC classifier. 38

7.4. Evaluation metrics and raw classification numbers for the
AAD 10-fold cross validation using all features and the
LogisticRegression classifier. 39

ix

List of Tables

7.5. Evaluation metrics and raw classification numbers for the
AAD 10-fold cross validation using lexical features and the
LogisticRegression classifier. 40

7.6. Evaluation metrics and raw classification numbers for the
AAD 10-fold cross validation using sentiment features and
the LogisticRegression classifier. 41

7.7. Evaluation metrics and raw classification numbers from test-
ing with MAD1 using all features and the SVC classifier. . . 42

7.8. Evaluation metrics and raw classification numbers from test-
ing with MAD1 using all features and the LogisticRegression
classifier. 43

7.9. Evaluation metrics and raw classification numbers from test-
ing with MAD1-auto using all features and the SVC classifier. 44

7.10. Evaluation metrics and raw classification numbers from test-
ing with MAD1-auto using all features and the LogisticRegression
classifier. 45

7.11. Evaluation metrics and raw classification numbers from test-
ing with MAD2 using all features and the SVC classifier. . . 46

7.12. Evaluation metrics and raw classification numbers from test-
ing with MAD2 using all features and the LogisticRegression
classifier. 47

7.13. Evaluation metrics and raw classification numbers from test-
ing with MAD2-auto using all features and the SVC classifier. 48

7.14. Evaluation metrics and raw classification numbers from test-
ing with MAD2-auto using all features and the LogisticRegression
classifier. 49

7.15. The classification of each class of tweet in percentages, using
all features and the SVC classifier. 50

7.16. The classification of each class of tweet in percentages, using
all features and the LogisticRegression classifier. 50

7.17. System performance compared to theoretical baselines for
the different data sets. 51

x

1. Introduction
Natural language processing (NLP) is a field within computer science
that deals with making computers able to meaningfully process human
language. Some applications of NLP are document topic classification,
language identification, and text summarization. Another area of use is
sentiment analysis, also known as opinion mining. The goal here is to auto-
matically extract a person’s opinion about something from a text they’ve
written, e.g., a customer review. As an example, in 2016, a Norwegian
newspaper, developed a system that classified the description of a per-
petrator as either favourable or unfavourable [Nipen et al., 2016]. They
used this system to investigate how the judicial system treats the genders
differently.
In recent times, social media have become an everyday part of many

people’s lives, and hence play a role in modern society. There are currently
1.65 billion monthly active users on Facebook [Facebook, 2016], and 310
million on Twitter [Twitter, 2016]. The number of people involved leads to
a vast amount of data being shared between them, regarding everything
from their daily lives to their (often vocal) opinions on a wide variety of
matters. A lot of this information can be valuable to different companies,
organizations, and other parties. Classic examples are a company won-
dering what people think of its newly launched product, or a politician
interested in seeing people’s reactions to a political debate. The amount
of data involved in this can quickly become too much to handle manually.
These traits make social media an interesting platform to explore opinion
mining on. Of special interest is Twitter. Messages on Twitter, called
tweets, are subject to a character limit, which forces the author to get to
the point. Using a feature of tweets called hashtags, it is also easy to or-
ganize them by topic. Posting a tweet is an easy process, and people often
respond swiftly to topics they are engaged in, resulting in quick feedback
and discussion. Big events such as political debates or sports events will

1

1. Introduction

often have a Twitter feed where people can post messages while the event
is taking place.
When doing semantic analysis of language, there are several problems

to tackle. For instance, people might not express themselves using clear
concise language. Instead, they might do something like using figurative
language, which is a prominent feature of human communication. Such
language can drastically alter the meaning of an utterance compared to
the literal interpretation. Because of this, it is necessary to find ways of
dealing with figurative language when performing opinion mining.
Sarcasm is a form of figurative language which can have a clear effect on

an utterance, i.e., alter or reverse its sentiment. Unfortunately, sarcasm
isn’t always easy to detect. It becomes even more difficult online than
face to face, as cues such as facial expressions and change of vocal pitch
are lost. In 2010, a man was arrested for a sarcastic tweet he wrote [Daily
Mail, 2010]. To avoid such incidents, the United States Department of
Homeland Security expressed interest in a sarcasm detector for Twitter
[DHS, 2014].

1.1. Project Goals
G1: Investigate sarcasm and machine learning
Look into linguistic theory on sarcastic language and how machine learn-
ing can be used as a tool to automatically detect sarcasm in tweets.

G2: Experiment with different features and algorithms
Experiment with different combinations of features and machine-learning
algortihms, and explain why the results turn out the way they do.

1.2. Defining Sarcasm
An exact, universal definition of sarcasm is hard to nail down. The Ox-
ford Dictionary of English (not to be confused with the Oxford English
Dictionary) defines sarcasm as1:

“The use of irony to mock or convey contempt”
1http://www.oxforddictionaries.com/definition/english/sarcasm

2

1.3. Contributions

Merriam Webster gives several definitions2:

“A sharp and often satirical or ironic utterance designed to cut
or give pain”
“A mode of satirical wit depending for its effect on bitter,
caustic, and often ironic language that is usually directed against
an individual”
“The use of words that mean the opposite of what you really
want to say especially in order to insult someone, to show ir-
ritation, or to be funny”

The last definition is closest to the one that will be used here; for the
purpose of this thesis, sarcasm will be defined as follows:

“Sarcasm is meaning the opposite of what you say”

This definition was chosen because it is well defined and allows for rel-
atively precise classification of tweets as sarcastic or not.

1.3. Contributions

C1: A dataset of tweets manually annotated as either sarcastic or not
sarcastic.

C2: The implementation of a system classifying tweets as either sarcastic
or not sarcastic.

C3: A comparison of different manually annotated datasets for the pur-
pose of testing.

C4: A comparison of different machine learning algortihms and feature
combinations for detecting sarcasm in tweets.

2http://www.merriam-webster.com/dictionary/sarcasm

3

1. Introduction

1.4. Thesis Structure
Chapter 2 contains some background information the reader is expected
to know before reading the rest of the thesis. The state-of-the-art analysis
undertaken is presented in Chapter 3. The data used for training and test-
ing the system are detailed in Chapter 4, along with information about
the creation of a manually annotated dataset. In Chapter 5, the architec-
ture of the system is presented. Experiments that have been performed
are given in Chapter 6. Chapter 7 presents the results of the experiments.
Finally, the discussion of the results is given in Chapter 8, together with
the conclusion, and suggestions for future work.

4

2. Background
This chapter contains some useful information about tweets, and gives
brief overviews of the classification algorithms chosen for the system. It
also presents the main tools and resources that have been used in the
implementation, as well as the evaluation metrics used later on.

2.1. Tweet Anatomy

In addition to containing text, tweets can contain URLs, hashtags, and
mentions. A tweet that begins with “RT” is a retweet. A retweet is a
tweet that one user has forwarded from another user. A hashtag is any
word prefixed with the hashmark symbol “#”, e.g., “#ThisIsAHashtag”.
Hashtags are useful for grouping tweets by topic. A mention is a reference
to another Twitter user. This is done by prefixing the user’s name with
the “@” symbol, e.g., “@JohnDoe123”. A tweet is considered a reply if it
starts with a mention. A tweet can contain a maximum of 140 characters,
including any URLs, hashtags, and mentions. However, URLs that are
longer than a certain length will automatically be shortened. The rules
regarding character length are being overhauled shortly after the comple-
tion of this thesis,1 but this does not affect the tweets used here.

2.2. Part-of-Speech Tagging

The act of part-of-speech tagging (POS-tagging) is to assign a part-of-
speech-tag (e.g., verb, noun, interjection) to each token (word, punctu-
ation mark, etc.) of a sentence. Doing this is not as simple as having a
dictionary where each token is listed with a POS-tag. The role a token

1https://blog.twitter.com/express-even-more-in-140-characters

5

2. Background

plays in a sentence must also be taken into account. For instance, consider
the following two sentences:

• “Did you read the text?”

• “Did he text you?”

In the first sentence, the word “text” is used as a noun, but in the second
it is used as a verb. POS-tagging is a fairly well researched area, and
several algorithms have been developed for doing it automatically. The
best results on the English Wall Street Journal corpus are now above 97%,
Spoustová et al. [2009] report achieving an accuracy of 97.43%. However,
the accuracy for getting all the tokens in individual sentences right is not
as high, Manning [2011] states a 56% accuracy for this problem.

2.3. Algorithms
In general, a classification algorithm is an algorithm that classifies objects
into one of several classes. To do this, the algorithm must first learn.
The straightforward way to do this is doing what is called supervised
learning. When doing this, the algorithm is fed object examples whose
classification is already known. By looking at predefined features of the
examples, somewhat defined clusters should appear, e.g., examples of class
X tend to have high values in one feature and low values in another. The
algorithm then separates the clusters, and assigns a class to each based
on the previously known classification. When presented with an example
whose classification is unknown, values for the features are calculated, and
the example is classified based on which cluster it ends up in.

2.3.1. Support Vector Machines

The support vector machine (SVM) classifer was introduced by Cortes
and Vapnik [1995]. To learn, it separates classes of examples by creating
a linear hyperplane that divides them (in the two-dimensional case this
hyperplane would just be a straight line). The hyperplane is created such
that it maximizes the margin between the two classes. The examples that
end up defining the margin are called the support vectors. New examples
can then be classified by which side of the hyperplane they fall on.

6

2.3. Algorithms

However, there is no guarantee that the training examples can be separ-
ated this way in the original input space. If this is the case, the examples
can often still be linearily separated in a higher-dimensional space. To do
this, the examples can be mapped into a higher-dimensional space using
a transformation function, linearily separated there, and then the hyper-
plane is mapped back into the original input space.
In the mathematical formulas that constitute the SVM algorithm, the

examples never appear by themselves, but always appear pairwise as inner
products with each other. This means that individual examples don’t
need to be transformed. In fact, nothing needs to be transformed at
all. It is sufficient to know what the result of the inner product between
two examples in the higher-dimensional space is back in the original input
space. The function giving this result is called the “kernel”. Two examples
are the “linear kernel”: K(u,v) = u ·v+ c, where c is some constant, and
the “radial basis function kernal”: K(u,v) = exp(−γ‖u− v‖2), where γ
is some constant. Using a kernel is known as the “kernel trick”, and can
be more computationally efficient than using a transformation function.

2.3.2. Logistic Regression

Logistic regression (LReg) is a classification method that has its origins
in linear regression. To train the classifier, each training example is mul-
tiplied by a weight vector, and then passed through the so called logistic
function, which is a sigmoid:

Sigmoid(x ·w) = 1
1 + exp−x·w

x = [1, x1, x2, . . . , xn] is an example.
w = [w0, w1, w2, . . . , wn] is the weight vector.

For a given set of weights, the logistic function gives a number between
0 and 1 for each example in the training data. These numbers can be inter-
preted as the probability of belonging to a certain class. Comparing these
numbers to the actual probabilities of the training data (the examples be-
longing to that class have probability 1, the others have probability 0), an

7

2. Background

error term can be computed. This is done by taking the squared differ-
ence, just like in linear regression. The goal is to choose optimal weights
so that the error term is minimized. Test examples are classified using the
chosen weights and the logistic function.

2.4. Tools and Resources

The following tools and resources are key components of the realized sys-
tem. They have all been previously employed by others in similar studies.

2.4.1. Scikit-learn

Scikit-learn [Pedregosa et al., 2011] is a package for Python. It contains
implementations of many state-of-the-art machine-learning algorithms, as
well as useful tools for processing data. It is released under the BSD
license, and as such is freeware. One of Scikit-learn’s focuses is ease of
use, thus maintaining one of Python’s core ideologies. Although developed
in a high-level language, Scikit-learn includes both precompiled code
and libraries such as the C++ libSVM library [Chang and Lin, 2011] to
achieve good performance. It is also well documented by its developers.

2.4.2. NLTK

NLTK (Natural Language Toolkit) [Bird et al., 2009] is a Python package
designed to help build programs that work with human language data. It
provides an interface with many corpora and lexical resources, and a wide
range of tools for processing language data, e.g., tokenization, stemming,
and part-of-speech tagging. NLTK is a free, open-source, project.

2.4.3. NRC Hashtag Sentiment Lexicon

The NRC Hashtag Sentiment Lexicon [Mohammad et al., 2013] is a lexicon
containing terms and their associated sentiment values (a real number in-
dicating how positive/negative that term is). The terms can be unigrams,
bigrams, or pairs containing any combination of the two. The sentiment
score is calculated by looking at how often a term co-occurs with a set of
positive and negative hashtags. The data used to generate the lexicon is a

8

2.5. Evaluation Metrics

set of about 775,000 tweets collected in 2012. It was first developed as part
of a twitter-sentiment-evaluation system that competed in a shared task
organized by the Conference on Semantic Evaluation Exercises (SemEval-
2013).

2.4.4. AFINN

The AFINN lexicon [Årup Nielsen, 2011] is a smaller lexicon containing
2462 words and 15 phrases, and their associated sentiment values. The
terms have been manually selected and annotated by AFINN’s author.
The lexicon focuses on obscene words, internet slang, and emotional words.
It was initially developed for analyzing tweets posted in relation to the
COP15 United Nations Climate Conference.

2.5. Evaluation Metrics

Certain metrics are needed to evaluate system performance. This section
presents metrics that are common in the field of study of this thesis, and
which are used later on.

2.5.1. Inter-Annotator Agreement

In order to judge the agreement between two annotators that are classi-
fying items into distinct classes, it is informative to take into account the
hypothetical scenario of chance agreement between them. A measure that
does this is Cohen’s kappa, given by the formula below:

κ = p0 − pe
1− pe

Here, p0 is the observed agreement between the annotators, and pe is
the hypothetical probability of them agreeing by chance. pe is calculated
by assuming each annotator answers randomly with the same distribution
as their observed answers.

9

2. Background

2.5.2. System Performance

A common way to evaluate the performance of a classification systems is
by looking at the system’s precision, recall, and accuracy scores. These
scores are defined as follows:

Precision = tp

tp+ fp

Recall = tp

tp+ fn

Accuracy = tp+ tn

tp+ tn+ fp+ fn

Where tp is a true positive (an item correctly classified as belonging
to a certain class), fp is a false positive (an item incorrectly classified
as belonging to a certain class), tn is a true negative (an item correctly
classified as not belonging to a certain class), and fn is a false negative
(an item incorrectly classified as not belonging to a certain class).
As a simple example, let’s say that we have a bunch of red M&Ms and

a bunch of blue M&Ms, and a system that classifies them as either red or
blue. Let’s also say that we are currently regarding “red” as the positive
class. If the system has a precision of 0.80, a recall of 0.67, and an accuracy
of 0.90, then we know the following:

• 80% of all the M&Ms that are classified as red are indeed red,
whereas 20% of them are blue.

• 67% of all the red M&Ms are correctly classified, whereas 33% of
them are incorrectly classified.

• 90% of all the M&Ms are correctly classified, whereas 10% of them
are incorrectly classified.

10

2.5. Evaluation Metrics

It is common to combine precision and recall into a single score known
as the F-score, which was introduced by van Rijsbergen [1975]. The F-
score is the weighted harmonic mean of the two, and the general formula
is:

Fβ = 1 + β2

1
precision + β2 1

recall

= (1 + β2)× precision× recall
(β2 × precision) + recall

where recall is weighted with β2, and precision is weighted with 1. It is
common to use β = 1, so that the F-score becomes:

F1 = 2× precision× recall
precision+ recall

In the M&M example above, if we had regarded “blue” as the positive
class instead of “red”, the scores might have been different, even though
the classification stays the same. To evaluate the system performance, it
is therefore necessary to combine the two results. This is usually done
by either micro-averaging or macro-averaging. If tpred and fpred denote
true and false positives when “red” is the positive class, and tpblue and
fpblue denote true and false positives when “blue” is the positive class, the
different averages for precision are computed as follows:

Macro =
tpred

tpred+fpred
+ tpblue

tpblue+fpblue

2

Micro = tpred + tpblue
(tpred + tpblue) + (fpred + fpblue)

The averages for the other scores are computed analogously. Using
micro-average will bias the result towards the largest class(es), macro-
average will bias towards the smallest.

11

3. Related Work
The findings of the state-of-the-art study in Twitter sarcasm detection sys-
tems is presented here. Firstly, the SemEval-2015 workshop is presented.
The chapter then looks at different ways of identifying sarcasm in tweets,
and finally datasets and preprocessing are covered.

3.1. State-of-the-Art

3.1.1. SemEval 2015

SemEval is an international workshop on semantic evaluation that has
been held in recent years. Each time, a number of different tasks are an-
nounced, and participants submit the system(s) they have developed to
solve one or more tasks. The tasks usually cover a variety of topics, and
for the 2015 edition of SemEval, the overarching topics were: Text Sim-
ilarity and Question Answering, Time and Space, Sentiment, Word Sense
Disambiguation and Induction, and Learning Semantic Relations. Of par-
ticular interest is Task 11, “Sentiment Analysis of Figurative Language in
Twitter”. The goal was to determine whether a tweet expresses positive,
negative, or neutral sentiment. The crux of the task is that the data con-
tains a large amount of figurative language, so the systems must be able
to handle this to get accurate results. The training data used consists of
8000 tweets, out of which 5000 contain sarcasm, 1000 contain irony, and
2000 contain metaphor. The test data used consists of 4000 tweets, where
1200 contain sarcasm, 800 contain irony, 800 contain metaphor, and 1200
are classified as “other”. The tweets have been manually annotated by hu-
mans (i.e., given a score on a sentiment scale). The systems were scored
in two different ways. The first is the cosine similarity score. To calculate
this score, the sentiment scores output by a participating system, and the
manually given sentiment scores, are represented as vectors. The cosine

13

3. Related Work

Team Cosine MSE
CLaC 0.758 2.117
UPF 0.711 2.458
LLT_PolyU 0.687 2.600
elirf 0.658 3.096
LT3 0.658 2.913
ValenTo 0.634 2.999
HLT 0.630 4.088
CPH 0.625 3.078
PRHLT 0.623 3.023
DsUniPi 0.602 3.925
PKU 0.574 3.746
KELabTeam 0.552 4.177
RGU 0.523 5.143
SHELLFBK 0.431 7.701
BUAP 0.059 6.785

Table 3.1.: Results for Task 11 in SemEval 2015. Taken from Ghosh et al.
[2015a].

of the angle between them is then used as a measure of their similarity.
A score of 0 means no similarity and a score of 1 means a perfect match.
The second scoring method is the mean squared error (MSE). Systems
were penalized if they didn’t give a score to all the tweets in the test data.
The organizers made three very simple systems to use as a baseline. These
systems achieved cosine and MSE scores of: [0.390, 5.672], [0.426, 5.450],
and [0.547, 4.065]. Further information can be found in Ghosh et al.
[2015a] and on the webpage http://alt.qcri.org/semeval2015/. The
results for the task are reproduced in Table 3.1. All systems except the
bottom three beat the baselines. The MSE ranking order is not exactly the
same as the cosine ranking order, but is generally pretty close (with HLT
being the notable exception). The systems were also scored for each of
the four different types of figurative language (irony, sarcasm, metaphor,
other) that were present in the data. The results for irony and sarcasm
were a lot better than metaphor and other across all systems.

14

3.1. State-of-the-Art

3.1.2. Feature Selection

When designing a system for sarcasm detection in tweets, it is necessary
to choose certain characteristics, called features, of the tweets to look at.
For example, one might look for the presence of certain phrases, or give
the tweet a score based on the number of punctuation marks used. Well
chosen features will hopefully give a strong indication of whether a tweet
is sarcastic or not. Feature selection is therefore an important part of the
system development process.

Punctuation: Punctuation symbols are any symbols used to help ease
the readability and help convey the message of a text. These include com-
mas, colons, semi-colons, full stops, exclamation marks, question marks
and more. Using punctuation as an indicator involves looking for several
things. One is the amount of punctuation used. Heavy use of punctu-
ation can be a good indicator of sarcasm [Carvalho et al., 2009]. Another
is looking for certain combinations, such as a bunch of exclamation and
question marks together, or three consecutive dots (commonly used to
mark ellipsis), which can be a strong indicator of sarcasm [Davidov et al.,
2010].

Emoticons: Emoticons are sequences of characters used to convey emo-
tions, such as the smiley “:)”. Davidov et al. [2010] found that emoticons
(and onomatopoeic expressions for laughter) are helpful for detecting sar-
casm. It was also shown by González-Ibáñez et al. [2011] that emoticons
are important when humans try to identify sarcasm in tweets, so it is
not surprising that some of these can be used by an automatic system.
However, Wang and Castanon [2015] showed that while some emoticons
are used very consistently (i.e., always conveying the same emotion), oth-
ers are used inconsistently. This must be taken into account when using
emoticons.

n-grams: An n-gram is simply a unit consisting of n adjacent words (n =
1,2,3...). When n = 1 it’s called a unigram, n = 2 a bigram, and n = 3 a
trigram. For n greater than 3 it’s referred to by its numerical value (e.g.,
seven-gram). For the sentence “I like cake”, the unigrams are “I”, “like”,
“cake”, the bigrams are “I like”, “like cake”, and the trigram is “I like

15

3. Related Work

cake”. The idea behind using n-grams as features is that certain n-grams
will be good identifiers for figurative language. A more general version of
n-grams exist, called skip-grams. The difference is that in skip-grams the
words don’t necessarily need to be adjacent.

Part-of-speech: As described in Section 2.2, POS-tagging is the act
of tagging each token in a text with its POS-tag. This information can
then be used to create one or more features for the classifiers. For in-
stance, Carvalho et al. [2009] suggested looking at the number of interjec-
tions. Several papers report good results from features derived from POS-
tagging, e.g., [Barbieri et al., 2015] (UPF in Table 3.1) and [Karanasou
et al., 2015] (DsUniPi in Table 3.1). Another benefit is that POS-tagging
helps to distinguish between words that are different, but happen to have
the same spelling.

Sentiment: A common strategy is to include the use of sentiment diction-
aries, see for instance [Özdemir and Bergler, 2015] (CLaC in Table 3.1) and
[Barbieri et al., 2015]. These dictionaries usually contain sentiment values
for individual words, but can also contain sentiment values for other things,
e.g., hashtags. The two dictionaries mentioned in Section 2.4 (AFINN and
NRC) were highlighted by Özdemir and Bergler [2015] as being good dic-
tionaries. The information provided by sentiment dictionaries can be used
to create various features. Xu et al. [2015] (LLT in Table 3.1) use several
dictionaries to look at the overall sentiment of tweets, as well as looking
for sentiment polarity shifts, e.g., when a positive verb is used with refer-
ence to a negative clause. A similar approach was taken by Riloff et al.
[2013]. Their system learns a set of positive verb phrases (e.g., “love”, “ex-
cited”, “can’t wait”), and a set of negative situation phrases (e.g., “being
ignored”, “not getting”, “doing homework”), and then look for these in
tweets. The theory being that a polarity shift is an indicator of sarcasm.
Joshi et al. [2015] also use this idea by looking for incongruity in tweets,
i.e., when a positive word is followed by a negative word and vice versa.

User data: Some attempts have been made at using data about the au-
thor to help detect sarcasm. Given a tweet about a topic, Khattri et al.
[2015] use the author’s previous tweets about that topic to help detect

16

3.2. Datasets

sarcasm. If the general sentiment of the previous tweets doesn’t match
the sentiment of the tweet in question, then this increases the chance of
sarcasm. Note that people’s opinions can change over time, so one should
focus on the author’s more recent tweets about the topic. This approach
also assumes that the author’s previous posts are factual. Other informa-
tion about the author was looked at by Bamman and Smith [2015]. The
most useful feature they found was a binary indicator of certain terms
used by the author. In other words, an author would tend to use certain
terms when being sarcastic, and not use those terms when not being sar-
castic. Which terms to look for was decided on an individual basis by
going through an author’s tweets and selecting terms with high TF-IDF
scores (a statistical score measuring how important a word is to a docu-
ment). As pointed out by Khattri et al. [2015], obtaining the historical
tweets of an author isn’t always going to be possible, which is a weakness
of using these features.

Other: Several other features have been mentioned, such as excessive use
of upper case letters and use of ambiguous words [Barbieri et al., 2015], and
temporal imbalance [Hee et al., 2015] (LT3 in Table 3.1). Karanasou et al.
[2015], motivated by the work of Hao and Veale [2010], looked for patterns
in the language such as “as * as *”. However, the contribution of these
features seems only marginal. Ghosh et al. [2015b] looked at what they
called the “literal/sarcastic sense disambiguation task” (LSSD). Given an
utterance and a target word in that utterance, they aimed at identifying
whether the target word was used in a literal or sarcastic sense. In doing
so they (among other things) found a set of words that are often used
sarcastically, see Section 5.1. Maynard and Greenwood [2014] developed
a hashtag tokenizer, to correctly tokenize hashtags consisting of multiple
words, e.g., #imsolucky. They then used the information contained in
hashtags to look for sentiment and sarcasm in tweets.

3.2. Datasets

Obviously, data is required to train and test the system. One of the com-
mon ways of getting a dataset when working with Twitter is to use the
Twitter API to download a large amount of tweets. When looking for

17

3. Related Work

tweets containing a certain kind of content (e.g., sarcasm), it is possible
to use hashtags to find tweets that might contain that kind of content.
For the case of sarcastic messages, a common approach has been to down-
load tweets with the hashtags #sarcasm and #sarcastic (see for instance
[Liebrecht et al., 2013], [Forslid and Wikén, 2015], [Ghosh et al., 2015b]).
The assumption here is that authors generally label their tweets correctly.
An issue with this kind of dataset is that some of the tweets might be
about sarcasm instead of containing sarcasm [Davidov et al., 2010]. To
address this issue, González-Ibáñez et al. [2011] suggest only using tweets
where the hashtag of interest appears at the very end. This doesn’t elim-
inate the problem entirely though. The following tweet would still be in
the dataset, even though it doesn’t contain sarcasm: “@ username, he was
using #sarcasm”. Another issue raised by Davidov et al. [2010] is that
the data might be biased towards the hardest forms of sarcasm, where the
reader needs an explicit marker to understand that it’s sarcasm. However,
Bamman and Smith [2015] found that users are more likely to explicitly
state sarcasm when they are not very familiar with their audience. The
bias, if there is any, might therefore lie more towards sarcasm used between
people that don’t know each other very well, rather than towards difficult
forms of sarcasm.

Using hashtags to select sarcastic and non-sarcastic tweets is known
as automatic annotation. Another way of doing it is through manual
annotation. Due to time constraints this will obviously lead to a smaller
dataset, but one has complete control over what the dataset contains. This
does not guarantee, however, that the dataset will be flawless. Humans can
make mistakes about and disagree on the meaning of what someone has
said or written, and as shown by González-Ibáñez et al. [2011], detecting
sarcasm in tweets is a difficult task for humans. Also, McGillion et al.
[2015] (CPH in Table 3.1) report that the dataset used in the SemEval
workshop contains some repeated tweets that hadn’t always received the
same score by the annotators.

When collecting tweets it is possible, as just mentioned, to end up
with duplicate tweets and retweets; these should be removed. Forslid
and Wikén [2015] also suggest eliminating any tweets containing URLs or
pictures, as their contents might be necessary to identify any figurative
language present in the tweets.

18

3.3. Preprocessing

3.3. Preprocessing
Before further work is done with the data, it can be a good idea to pro-
cess it to achieve some form of standardization. Components that don’t
provide much information such as URLs and mentions can either be re-
moved entirely or be replaced by general URL and mention tokens. Words
that are spelled in unconventional ways, e.g., elongated words (“loooove”
vs. “love”), can be replaced with the conventional spelling. However,
if this information is going to be used as a feature later on, it must be
saved. Emoticons can be replaced with a token signaling the emotion
they express. Unusual punctuation sequences can be replaced, e.g., long
sequences of exclamation and question marks can be replaced by a single
“!?”. Any undecipherable sequence of characters can be removed.

19

4. Data
Data forms a key part of the experiments underlying this thesis, and the
datasets used for training and testing the system are presented here. De-
tails on the creation of a manually annotated set that is used as one of
the test sets are also given.

4.1. Datasets

As mentioned in Section 3.2, it is common to use data automatically an-
notated based on the presence of the hashtags #sarcasm and #sarcastic.
Cliche [2014] collected such a dataset for his online sarcastic tweet detector,
consisting of about 150,000 tweets with #sarcasm and 330,000 without.
For this thesis, after the preprocessing (see Section 5.2.1), 100,000 of those
tweets were chosen to be used as an automatically annotated dataset, out
of which 20,000 have the sarcasm hashtag, and 80,000 don’t. In the rest of
this, thesis this dataset will be referred to as “AAD” (automatically annot-
ated dataset). As a rough quality check of the dataset, 100 tweets with the
sarcasm hashtag and 200 without were selected at random and manually
investigated by the author, see Table 4.1. Assuming that tweets without
a sarcasm hashtag are not sarcastic seems to be a good approximation,
but the converse doesn’t seem quite as good.
In addition, two manually annotated sets are also used. The first, which

will be called “MAD1” (manually annotated dataset nr. 1) from now on, is
a set made by Riloff et al. [2013]. The original set consists of 3200 tweets,
half of which contain the sarcasm hashtag and half of which don’t. The
tweets were individually annotated by three annotators following certain
guidelines. The result was that 742 of them were judged to be sarcastic.
Unfortunately, some of the tweets have been deleted and are no longer
available for download from Twitter. As such, MAD1 consists of 2116
tweets, out of which 1047 have the sarcasm hashtag, 1069 don’t, and 459

21

4. Data

Tweets with Tweets without
#sarcasm #sarcasm

Number of tweets 100 200
Not Sarcastic 9 199
Sarcastic 64 1
Difficult to identify as 27 N/A
sarcastic without the hashtag

Table 4.1.: Rough quality check of the AAD.

AAD MAD1 MAD2
Number of tweets 100,000 2116 2205
Tweets with #sarcasm 20% 49% 51%
Tweets without #sarcasm 80% 51% 49%
Annotated as sarcastic N/A 22% 25%
Annotated as not sarcastic N/A 78% 75%

Table 4.2.: Statistics for the different data sets.

are judged to be sarcastic.
The second manually annotated set, hereinafter referred to as “MAD2”

(manually annotated dataset nr. 2), is made in a similar fashion to the
first. 2205 tweets, 1115 with the sarcasm hashtag and 1090 without, were
individually annotated by the author and two additional annotators. Out
of all of the tweets, 554 were judged to be sarcastic. The statistics for the
different data sets are summarized in Table 4.2. More details on how the
MAD2 set was created are given in the next section.
If we assume that the data in Table 4.1 is valid for the whole automat-

ically annotated dataset (a somewhat shaky assumption given the small
sample size and single annotator), we see that about 87% of the tweets in
the AAD would be annotated as not sarcastic, and about 13% as sarcastic.
This is different from the two other sets, that have similar distributions
to each other. If the AAD had contained 50,000 of each kind of tweet, the
numbers (i.e., those marked by “N/A” in Table 4.2) would instead be 68%
not sarcastic and 32% sarcastic.

22

4.2. Annotating Tweets for MAD2

4.2. Annotating Tweets for MAD2

As it’s not certain that #sarcasm works well for identifying whether or
not tweets are sarcastic, it is desirable to have manually annotated data
to work with. As only smaller such sets were found, they could only be
used for testing, rather than for both training and testing. In addition
to acquiring MAD1, it was decided to make another similar set for two
main reasons. Firstly, more data will hopefully give a better indication
of system performance. Secondly, if there are big differences in system
performance on the two sets, it will be interesting to study, as finding the
root cause of those differences can yield some useful insight.
The tweets used for MAD2 were taken from a larger set of about 103

million tweets collected using the Twitter API during the period December
2015 - March 2016 by two fellow students working on Twitter sentiment
analysis in a parallell project in the AI group at NTNU. More inform-
ation about the data collection process can be found in Fredriksen and
Jahren [2016]. In all, 2205 tweets, 1115 with the sarcasm hashtag and
1090 without were used. As with MAD1, the sarcasm hashtags were re-
moved prior to annotation to prevent the annotators from being influenced
by knowing whether or not a tweet is meant sarcastically. The tweets were
given in random order, and tweets containing URLs were not included in
the set. Three annotators, the author and two others, individually an-
notated the tweets. Like the author, the two other annotators are not
native English speakers. However, they use English regularily in their
line of work, and both of them have received formal education from, and
lived several years in, the United States. Like many young Norwegians,
the author has had significant exposure to the English language through
education, TV, books, online media, and video games. The guidelines for
annotation were the following:

1. Adhere to the definition of sarcasm used in this thesis.

2. For a tweet to be judged as sarcastic it must be sarcastic in and of
itself. Trying to guess the context of a tweet should be avoided.

3. Tweets that can be interpreted as either sarcastic or not sarcastic
should be judged as not sarcastic.

23

4. Data

4. If an annotator doesn’t understand a tweet or for some other reason
is extremely unsure about how to judge it, the tweet is to be set
aside and brought up for discussion with the other annotators to
clarify its content.

The reasoning behind the second and third rules is that if a tweet needs
the right context or interpretation to be sarcastic, the language (words,
phrasing, emoticons, etc.) is not clear enough to be considered sarcastic.

Number of Tweets
3-0 in favour of sarcastic 366
2-1 in favour of sarcastic 188
3-0 in favour of not sarcastic 1366
2-1 in favour of not sarcastic 285

Table 4.3.: Breakdown over inter-annotator agreement for the 2205 tweets
in MAD2.

Unfortunately, due to a mistake by the author, the tweets were converted
to lower case before given for annotation, so any upper case letters were
seen as lower case by the annotators. The annotators were aware that
roughly half the tweets used to have #sarcasm in them. In total, 35
tweets were brought up for discussion to clarify their content, and were
then annotated. The final judgement for whether or not a tweet is sarcastic
was done by a majority rules scheme, and a total of 554 tweets ended up
being judged as sarcastic. The pairwise inter-annotator agreement scores
calculated using Cohen’s kappa are 0.59, 0.60, and 0.71. For comparison,
they are 0.80, 0.81, and 0.82 for MAD1 (these values are for 200 of the
original 3200 tweets, 100 with and 100 without the sarcasm hashtag). A
breakdown over the number of total and partial agreements is given in
Table 4.3.

24

5. Architecture
The design of the implemented system is described next. First, the fea-
tures that have been chosen are detailed. Then the workflow of the system
is described, from the initial preprocessing of data, to the final classifica-
tion result.

5.1. Features

The following features were implemented in the system:

Unigrams: Certain words might be used more in either sarcastic or non-
sarcastic tweets, and the goal of this feature is to capture these words. To
that end, a dictionary containing all the unigrams in the dataset is created,
and each unigram is considered a feature. However, this quickly leads to
too many features for a personal computer to handle, so two measures are
put in place to reduce the number of unigrams. First, a threshold is set
for the minimum number of times a unigram has to occur, unigrams that
appear fewer times than this threshold are discarded. In addition to help
reduce the number of features, this also prevents overfitting the system
to unusual vocabulary that might be specific to the data. The second
measure is to only include unigrams whose distributions are skewed more
than a certain ratio. A disadvantage with this is that clusters of words
that together indicate either sarcasm or not sarcasm, but individually are
insignificant, will be disregarded. The threshold for a unigram to be in-
cluded is set to 200, and the distribution has to have a skewed ratio of at
least 1.5. These numbers were chosen by trial and error using AAD, but
the choice was somewhat constrained by the power of the computer used
to run the system.

25

5. Architecture

love like great good really
best better glad yeah nice
happy cool amazing favorite perfect
super fantastic joy cute beautiful
shocked interested brilliant genius mature
right fun attractive lovely proud
awesome excited always sweet hot
wonderful wonder

Table 5.1.: Words identified by Ghosh et al. [2015b] as good candidates
for being used sarcastically.

Part-of-Speech: Sarcastic sentences might have characteristic structures
such as excessive use of interjections. Such structures might be captured
by POS-tagging the tweets. Each tag is used as a feature.

Punctuation: Similarily to the POS-tags, certain usages of punctuation
such as heavy use of full stops might be characteristic of sarcasm. For each
of a set of punctuation characters, a ratio of occurence of that character
to the length of the tweet is considered a feature. The punctuation char-
acters used were exclamation marks, question marks, colons, semicolons,
commas, full stops, quotation marks, and ellipsis.

Sentiment: Various measures using sentiment values are used as features.
Since sarcastic tweets are often negative, the sentiment of the whole tweet
is considered as a feature. Furthermore, several sentiment differences are
considered. One is the difference between the words of a tweet and the
emoticons. In a sarcastic sentence, there can sometimes be one key word or
phrase which is used sarcastically. Another feature consists of regarding
every verb and noun as a possible such word, and comparing its senti-
ment value to the value of the rest of the tweet. The same is done for a
short list of words that have been identified as good candidates for being
used sarcastically by Ghosh et al. [2015b], see Table 5.1. Lastly, sarcasm
can involve sudden shifts in sentiment polarity. As such, the sentiment
differences between adjecent words of a tweet are considered a feature.

26

5.2. System Design

5.2. System Design

The system is written in the programming language Python. Instead of
using the official release, a distribution of Python called Anaconda1 is
used. Anaconda comes with a slew of useful packages for Python already
installed, that aren’t included in the official release, e.g., Scikit-learn
and NLTK, see Section 2.4.

5.2.1. Preprocessing

For the AAD set, tweets containing URLs were removed. Tweets where
the sarcasm hashtag is placed somewhere other than at the end were also
removed. If a tweet ends with a sequence of hashtags, the entire sequence
is considered the end of the tweet. For instance, the following tweet would
not be discarded: “i love waking up at 5 am #sarcasm #notreally #fml”.
Out of the remaining tweets, 100,000 were selected for the AAD. The
tweets were then converted to lower case, and a selection of common
emoticons were converted from Unicode to ASCII, see Appendix A.
For the MAD1 set, the tweets were converted to lower case and the same

list of emoticons were converted from Unicode to ASCII, but otherwise
they were left untouched. The MAD2 set was treated the same way as
the AAD set, with the removal of tweets containing URLs and having the
sarcasm hashtag somewhere other than at the end, as well as conversion
to lower case and conversion of emoticons.

5.2.2. Workflow

For an overview of the system workflow, see Figure 5.1. After the tweets
are preprocessed, they are fed to the system. The initial step is tokeniz-
ation and POS-tagging. The tokenization is done by a special tokenizer
from NLTK called TweetTokenizer, which is calibrated for more casual lan-
guage, like the kind of language often found in tweets. The POS-tagging
is done by the standard NLTK POS-tagger, which uses the “University of
Pennsylvania Treebank Tag-set”,2 with a few additions for special charac-
ters and symbols. The following set of tags were not used as features due

1https://www.continuum.io/downloads
2www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

27

5. Architecture

to either beeing deemed unimportant, or being part of the punctuation
features: {“$”, “””, “(”, “)”, “,”, “–”, “.”, “:”, “CD”, “FW”, “LS”, “POS”,
““”, “#”}. The system then makes a pass through all the tokens to make
the dictionary of unigrams. Since the hashtag #sarcasm wasn’t removed
from the tweets in the preprocessing stage, it ends up as one of the uni-
grams. After the dictionary is finished, #sarcasm is explicitly removed
from it.
With all the groundwork done, the system then generates the feature

matrix based on the chosen combination of features. The sentiment fea-
tures make use of the AFINN lexicon [Årup Nielsen, 2011] and the NRC
lexicon [Mohammad et al., 2013] to calculate needed sentiment values. As
each tweet only has a minority of the total number of features (mostly due
to containing only a few of all the unigrams in the dictionary), it is import-
ant to store the feature matrix in a sparse format to save memory. The
feature matrix is then given as input to a classifier. The system uses one of
two classifiers, either the LogisticRegression or the SVC classifer. Both
are from the Scikit-learn package, the latter being an implementation
of the Support Vector Machine algorithm. See section 2.3 for a description
of the algorithms used by these classifiers. Features are then calculated for
the test data, and the predicton function yielded by the classifer is used
to classify the data. Finally, the result is compared to the gold stand-
ard (automatic/manual annotation) for the test data to evaluate classifier
performance.

28

5.2. System Design

Figure 5.1.: An overview of the system architecture.

29

6. Experimental Setup
After the system is implemented, a grid search is performed to optimize
its performance, the details of which are given in this chapter. The ex-
periments that have been chosen for testing the system, along with the
baselines used to judge system performance, are also presented here.

6.1. Algorithms and Grid Search

Some preliminary testing was done with four different classification al-
gorithms commonly used in Twitter NLP applications: Decision Trees,
LReg, Naïve Bayes, and SVM. The best performances were given by LReg
and SVM, hence these were chosen to conduct further testing.
To improve the perfomance of the classifiers, a grid search was performed

using the AAD with 10-fold cross validation. To do this, the AAD was
divided into ten folds, each with 10,000 tweets. The tweets for each fold
were selected at random, but under the constraint that all folds ended
up being stratified, i.e., they all have the same distribution of sarcastic
(20%) and non-sarcastic (80%) tweets as the AAD. One by one, each fold
was used as the test data, while the other nine were used as training data,
leading to 10 different data configurations. For each of these cofigurations,
the system was run multiple times with different parameter settings. The
parameter settings that led to the overall highest scores were chosen as
the best. The grid search process was performed twice, first it was done
on a coarse level, and then on a finer level, centered around the best result
from the coarse search. The parameters used in the grid search for LReg
are “C”, which controls the regularization strength, and “penalty”, which
dictates the penalization norm. For SVM the parameters are “C”, which
controls the regularization strength, “kernel”, which dictates the kernel,
and “γ”, which is a parameter used by certain kernels, see Section 2.3.1.
The results of the coarse searches are given in Table 6.1, and the results

31

6. Experimental Setup

LReg
Parameter Values

C {0.01, 0.1, 1, 10, 100}
Penalty {’l1’, ’l2’}

Best result: {1, ’l2’}

SVM
Parameter Values

C {0.1, 1, 10}
Kernel {’linear’, ’rbf’}
γ

(only used with ’rbf’ kernel)
{0.0001, 0.001, 0.01}

Best result: {1, ’rbf’, 0.01}

Table 6.1.: Parameter values for the coarse grid search.

LReg
Parameter Values

C {0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6}
Penalty {’l2’}

Best result: {1, ’l2’}

SVM
Parameter Values

C {0.6, 0.8, 1, 1.2, 1.4}
Kernel {’rbf’}
γ {0.006, 0.008, 0.01, 0.012, 0.014}
Best result: {1.4, ’rbf’, 0.014}

Table 6.2.: Parameter values for the fine grid search.

of the fine searches are given in Table 6.2. Since the best result for the
SVM is one of the corner points of the grid (C = 1.4 and γ = 0.014), it is
possible that even better parameters could have been found through more
searching. This was not done due to time constraints.

32

6.2. Experiments

LReg Parameters: C = 1.0, penalty = ’l2’
SVM Parameters: C = 1.4, kernel = ’rbf’, γ = 0.014

Both classifiers are used for all experiments

Training Data Test Data Features
AAD 10-fold cross validation All
AAD 10-fold cross validation Sentiment
AAD 10-fold cross validation Lexical

AAD MAD1 All
AAD MAD2 All
AAD MAD1-auto All
AAD MAD2-auto All

Table 6.3.: List of experiments.

6.2. Experiments

To gauge the effect of the different features, three 10-fold cross validations
are run using the best parameters found in the grid search. The first uses
all the features, the second uses only the sentiment features, and the third
uses only the lexical features (unigrams, POS-tags, punctuation). The
classifier is then trained on the whole AAD and tested using all the features
on MAD1 and MAD2. Lastly, instead of using the manual annotation, the
MAD1 and MAD2 sets are automatically annotated based on #sarcasm
(these sets will be referred to as “MAD1-auto” and “MAD2-auto”), and
the system is tested with all features on these as well. Table 6.3 lists the
experiments.

6.3. Baselines

To assess the skill of the system, it will be compared to two theoretical
baseline systems. The first system always classifies a tweet as the most
frequent class in the training data. The second system classifies at random,
with an even chance for both classes. The performance of these systems
on the different data sets is given in Table 6.4. For a classification system
with only two classes, if the precision, recall, and F-score are calculated

33

6. Experimental Setup

Most Frequent Classifier
Precision Recall F1-score Accuracy

AAD 0.40 0.50 0.44 0.80
MAD1 0.39 0.50 0.44 0.78
MAD2 0.37 0.50 0.43 0.75

MAD1-auto 0.25 0.50 0.34 0.51
MAD2-auto 0.25 0.50 0.34 0.51

Random Classifier
Precision Recall F1-score Accuracy

AAD 0.50 0.50 0.45 0.50
MAD1 0.50 0.50 0.46 0.50
MAD2 0.50 0.50 0.47 0.50

MAD1-auto 0.50 0.50 0.50 0.50
MAD2-auto 0.50 0.50 0.50 0.50

Table 6.4.: Performance of theoretical baselines for the different data sets.

using the micro-average (see Section 2.5.2), they will all be equal to the
accuracy. The scores given for the baselines are computed using the macro-
average. Since the accuracy is the same regardless which average is used,
all the micro-averaged scores can still be seen by looking at the accuracy.
In addition to the theoretical baselines, some comparisons will also be

done with results from work done by others using similar data, more on
this in Section 8.1.

34

7. Results
The results of the experiments described in Table 6.3 are presented in this
chapter. For each experiment, the precision, recall, F-score, and accuracy
are listed. In addition, the raw classification numbers are also given, under
the labels “Correct S”, “Correct NS”, “Incorrect S”, and “Incorrect NS”.
These have the following meanings:

Correct S: A sarcastic tweet correctly classified as sarcastic.
Correct NS: A non-sarcastic tweet correctly classified as not sarcastic.
Incorrect S: A non-sarcastic tweet incorrectly classified as sarcastic.
Incorrect NS: A sarcastic tweet incorrectly classified as not sarcastic.

The confusion matrix for each experiment is also given. The confusion
matrices are normalized to the range [0, 1]. The upper-left and lower-right
squares indicate correctly classified tweets. A good result will have high
values in these, represented by dark green colours, and low values in the
lower-left and upper-right squares, represented by dark brown colours.
Observations made for each result are included, and discussed further in
Chapter 8.
As mentioned in Section 6.3, using the micro-average causes the preci-

sion, recall, and F-score to be the same as the accuracy. The scores in
this chapter are computed using the macro-average, as described in Sec-
tion 2.5.2. The micro-averaged scores can still be seen by looking at the
accuracy.

35

7. Results

Result from the AAD 10-fold cross validation using all fea-
tures and the SVC classifier

Correct S 1041
Correct NS 7814
Incorrect S 186
Incorrect NS 959

Precision 0.87
Recall 0.75
F1-score 0.79
Accuracy 0.89

Table 7.1.: Evaluation metrics and raw
classification numbers for
the AAD 10-fold cross valid-
ation using all features and
the SVC classifier.

Figure 7.1.: Normalized confusion
matrix for the AAD
10-fold cross validation
using all features and
the SVC classifier.

Almost none of the non-sarcastic tweets are misclassified, but almost
half of the sarcastic tweets are. The system is conservative, i.e., the clas-
sification leans towards the biggest class. This result is the best for the
AAD cross validation.

36

Result from the AAD 10-fold cross validation using lexical
features and the SVC classifier

Correct S 808
Correct NS 7777
Incorrect S 223
Incorrect NS 1192

Precision 0.83
Recall 0.67
F1-score 0.72
Accuracy 0.86

Table 7.2.: Evaluation metrics and
raw classification numbers
for the AAD 10-fold cross
validation using lexical
features and the SVC
classifier.

Figure 7.2.: Normalized confusion
matrix for the AAD
10-fold cross validation
using lexical features
and the SVC classifier.

When using only the lexical features, the results worsen slightly, but the
general classification distribution is the same as with all features.

37

7. Results

Result from the AAD 10-fold cross validation using senti-
ment features and the SVC classifier

Correct S 98
Correct NS 7957
Incorrect S 43
Incorrect NS 1902

Precision 0.75
Recall 0.52
F1-score 0.49
Accuracy 0.81

Table 7.3.: Evaluation metrics and
raw classification numbers
for the AAD 10-fold cross
validation using sentiment
features and the SVC
classifier.

Figure 7.3.: Normalized confusion
matrix for the AAD
10-fold cross valida-
tion using sentiment
features and the SVC
classifier.

With only sentiment features, very few tweets as classified as sarcastic,
and the performance becomes very close to that of the most-frequent clas-
sifier.

38

Result from the AAD 10-fold cross validation using all fea-
tures and the LogisticRegression classifier

Correct S 801
Correct NS 7648
Incorrect S 352
Incorrect NS 1198

Precision 0.78
Recall 0.68
F1-score 0.71
Accuracy 0.84

Table 7.4.: Evaluation metrics and raw
classification numbers for
the AAD 10-fold cross valid-
ation using all features and
the LogisticRegression
classifier.

Figure 7.4.: Normalized confusion
matrix for the AAD 10-
fold cross validation us-
ing all features and the
LogisticRegression
classifier.

When the LogisticRegression classifier is used with all features, the
result is still conservative, like with SVC. However, the result is a bit worse.

39

7. Results

Result from the AAD 10-fold cross validation using lexical
features and the LogisticRegression classifier

Correct S 753
Correct NS 7652
Incorrect S 348
Incorrect NS 1247

Precision 0.77
Recall 0.67
F1-score 0.70
Accuracy 0.84

Table 7.5.: Evaluation metrics and
raw classification num-
bers for the AAD 10-fold
cross validation using
lexical features and the
LogisticRegression
classifier.

Figure 7.5.: Normalized confu-
sion matrix for the
AAD 10-fold cross
validation using lex-
ical features and the
LogisticRegression
classifier.

With lexical features only, the result changes very little, but becomes
slightly worse.

40

Result from the AAD 10-fold cross validation using senti-
ment features and the LogisticRegression classifier

Correct S 123
Correct NS 7853
Incorrect S 147
Incorrect NS 1877

Precision 0.63
Recall 0.52
F1-score 0.50
Accuracy 0.80

Table 7.6.: Evaluation metrics and
raw classification num-
bers for the AAD 10-fold
cross validation using
sentiment features and
the LogisticRegression
classifier.

Figure 7.6.: Normalized confu-
sion matrix for the
AAD 10-fold cross
validation using senti-
ment features and the
LogisticRegression
classifier.

Like with the SVC classifier, very few tweets are classified as sarcastic
when only using sentiment features. Again, the behaviour is very close to
the most-frequent classifier.

41

7. Results

Result from testing with MAD1 using all features and the
SVC classifier

Correct S 145
Correct NS 1458
Incorrect S 199
Incorrect NS 314

Precision 0.62
Recall 0.60
F1-score 0.61
Accuracy 0.76

Table 7.7.: Evaluation metrics and
raw classification numbers
from testing with MAD1
using all features and the
SVC classifier.

Figure 7.7.: Normalized confusion
matrix for the testing
with MAD1 using all
features and the SVC
classifier.

The classification distribution is different from the AAD cross valid-
ation. A greater portion of non-sarcastic tweets have been classified as
sarcastic. The classifier is still very conservative.

42

Result from testing with MAD1 using all features and the
LogisticRegression classifier

Correct S 249
Correct NS 1277
Incorrect S 380
Incorrect NS 210

Precision 0.63
Recall 0.66
F1-score 0.64
Accuracy 0.72

Table 7.8.: Evaluation metrics and
raw classification numbers
from testing with MAD1
using all features and
the LogisticRegression
classifier.

Figure 7.8.: Normalized confusion
matrix for the testing
with MAD1 using
all features and the
LogisticRegression
classifier.

Like for the SVC classifier, the classification distribution changes a lot
when testing with MAD1. More non-sarcastic tweets have been incor-
rectly classified as sarcastic, but unlike the SVC classifier, the proportion
of correctly classified sarcastic tweets has increased.

43

7. Results

Result from testing with MAD1-auto using all features and
the SVC classifier

Correct S 274
Correct NS 999
Incorrect S 70
Incorrect NS 773

Precision 0.68
Recall 0.60
F1-score 0.55
Accuracy 0.60

Table 7.9.: Evaluation metrics and
raw classification numbers
from testing with MAD1-
auto using all features and
the SVC classifier.

Figure 7.9.: Normalized confusion
matrix for the testing
with MAD1-auto using
all features and the SVC
classifier.

A greater portion of the sarcastic tweets have been classified as non-
sarcastic compared to the AAD cross validation results. Other than that
the distribution is similar.

44

Result from testing with MAD1-auto using all features and
the LogisticRegression classifier

Correct S 475
Correct NS 917
Incorrect S 152
Incorrect NS 572

Precision 0.69
Recall 0.66
F1-score 0.64
Accuracy 0.66

Table 7.10.: Evaluation metrics
and raw classification
numbers from testing
with MAD1-auto using
all features and the
LogisticRegression
classifier.

Figure 7.10.: Normalized confusion
matrix from testing
with MAD1-auto us-
ing all features and the
LogisticRegression
classifier.

The result is closer to the AAD cross validation than the MAD1 result
is. It is also less conservative than the AAD result.

45

7. Results

Result from testing with MAD2 using all features and the
SVC classifier

Correct S 169
Correct NS 1494
Incorrect S 157
Incorrect NS 385

Precision 0.66
Recall 0.60
F1-score 0.62
Accuracy 0.75

Table 7.11.: Evaluation metrics and
raw classification num-
bers from testing with
MAD2 using all features
and the SVC classifier.

Figure 7.11.: Normalized confusion
matrix for the testing
with MAD2 using all
features and the SVC
classifier.

The result is very similar to the SVC MAD1 result.

46

Result from testing with MAD2 using all features and the
LogisticRegression classifier

Correct S 307
Correct NS 1310
Incorrect S 341
Incorrect NS 247

Precision 0.66
Recall 0.67
F1-score 0.66
Accuracy 0.73

Table 7.12.: Evaluation metrics
and raw classification
numbers from test-
ing with MAD2 using
all features and the
LogisticRegression
classifier.

Figure 7.12.: Normalized confusion
matrix from testing
with MAD2 using
all features and the
LogisticRegression
classifier.

The result is very similar to the LogisticRegression MAD1 result.

47

7. Results

Result from testing with MAD2-auto using all features and
the SVC classifier

Correct S 282
Correct NS 1046
Incorrect S 44
Incorrect NS 833

Precision 0.71
Recall 0.61
F1-score 0.55
Accuracy 0.60

Table 7.13.: Evaluation metrics and
raw classification num-
bers from testing with
MAD2-auto using all fea-
tures and the SVC classi-
fier.

Figure 7.13.: Normalized confusion
matrix for the testing
with MAD2-auto us-
ing all features and the
SVC classifier.

The result is very similar to the SVC MAD1-auto result.

48

Result from testing with MAD2-auto using all features and
the LogisticRegression classifier

Correct S 509
Correct NS 950
Incorrect S 140
Incorrect NS 606

Precision 0.70
Recall 0.66
F1-score 0.65
Accuracy 0.66

Table 7.14.: Evaluation metrics
and raw classification
numbers from testing
with MAD2-auto using
all features and the
LogisticRegression
classifier.

Figure 7.14.: Normalized confusion
matrix from testing
with MAD2-auto us-
ing all features and the
LogisticRegression
classifier.

The result is very similar to the LogisticRegression MAD1-auto res-
ult.

49

7. Results

Tables 7.15 and 7.16 summarize the results for the experiments using all
features. The numbers show the classification distribution in percentages.

AAD MAD1 MAD2 MAD1-auto MAD2-auto
Correct S 52% 32% 31% 26% 25%
Correct NS 98% 88% 90% 93% 96%
Incorrect S 2% 12% 10% 7% 4%
Incorrect NS 48% 68% 69% 74% 75%

Table 7.15.: The classification of each class of tweet in percentages, using
all features and the SVC classifier.

AAD MAD1 MAD2 MAD1-auto MAD2-auto
Correct S 40% 54% 55% 45% 46%
Correct NS 96% 77% 79% 86% 87%
Incorrect S 4% 23% 21% 14% 13%
Incorrect NS 60% 46% 45% 55% 54%

Table 7.16.: The classification of each class of tweet in percentages, using
all features and the LogisticRegression classifier.

A comparison between the baselines and the results for SVC and
LogisticRegression with all features is given in Table 7.17.

50

Precision Recall F1-score Accuracy
AAD

Random 0.50 0.50 0.45 0.50
Most-Frequent 0.40 0.50 0.44 0.80
SVC 0.87 0.75 0.79 0.89
LogisticRegression 0.78 0.68 0.71 0.84

MAD1
Random 0.50 0.50 0.46 0.50
Most-Frequent 0.39 0.50 0.44 0.78
SVC 0.62 0.60 0.61 0.76
LogisticRegression 0.63 0.66 0.64 0.72

MAD1-auto
Random 0.50 0.50 0.50 0.50
Most-Frequent 0.25 0.50 0.34 0.51
SVC 0.68 0.60 0.55 0.60
LogisticRegression 0.69 0.66 0.64 0.66

MAD2
Random 0.50 0.50 0.47 0.50
Most-Frequent 0.37 0.50 0.43 0.75
SVC 0.66 0.60 0.62 0.75
LogisticRegression 0.66 0.67 0.66 0.73

MAD2-auto
Random 0.50 0.50 0.50 0.50
Most-Frequent 0.25 0.50 0.34 0.51
SVC 0.71 0.61 0.55 0.60
LogisticRegression 0.70 0.66 0.65 0.66

Table 7.17.: System performance compared to theoretical baselines for the
different data sets.

51

8. Discussion and
Conclusion

This chapter discusses the results obtained from the experiments and looks
at some interesting observations made. Some topics for future work are
suggested at the end.

8.1. Discussion
The average inter-annotator agreement score for MAD2, as given by Co-
hen’s kappa, was 0.63. This value falls between two values reported by
others; Riloff et al. [2013] report 0.81 and Ptáček et al. [2014] report 0.54.
The number of tweets annotated, tweet language, and the instructions
given to the annotators vary for these three results, but sarcasm generally
appears difficult to agree upon. As long as humans don’t agree, how well
a system performs is somewhat subjective. It is interesting to note that
MAD1 and MAD2 have a very similar sarcastic vs. non-sarcastic distri-
bution. In both of them, slightly more than half the tweets containing
#sarcasm are either not sarcastic or need context to be identified by the
annotators, see Table 4.2. Creating datasets by automatically annotating
tweets based on the presence of #sarcasm seems inaccurate.
Upon a rough inspection of the AAD, it was discovered that it con-

tained a few duplicates, and a few foreign language tweets. These should
ideally have been removed. There were also numerous elongated words and
spelling errors. Shortening the elongated words and correcting the spelling
would have led to each word being more accurately represented during the
unigram dictionary creation. It would also have helped POS-tagging. This
could be taken even further by doing stemming and lemmatization. Men-
tions (see Section 2.1) should also have been removed from the tweets, as
they are disruptive for the POS-tag features.

53

8. Discussion and Conclusion

For the results using just the sentiment features (and AAD cross valid-
ation), only a small amount of tweets are classified as sarcastic; the beha-
viour is thus very close to the most-frequent classifier. This shows that the
sentiment features are quite bad at separating sarcastic and non-sarcastic
tweets from each other. The sentiment features used in this system have
very naïve implementations. More robust implementations are required
to take advantage of sentiment information. The results that use just lex-
ical features perform much better, being only slightly worse than using all
features together. Both the SVC and the LogisticRegression classifiers
perform best when using all the features, with the SVC classifier being bet-
ter, see Tables 7.1 and 7.4. Both classifiers are conservative, classifying a
large portion of the smaller class as the larger class. This implies that the
features are mediocre at separating the sarcastic and non-sarcastic tweets.

When tested with MAD1 and MAD1-auto, the performance for the SVC
classifier drops compared to the AAD results. For MAD1-auto, the change
is mainly that a larger portion of the sarcastic tweets are classified as non-
sarcastic, as can be seen in Table 7.15. If a lot of the chosen unigrams
derived from the training data don’t exist in MAD1-auto, it could ex-
plain this behaviour. For MAD1, the biggest difference is an increase in
non-sarcastic tweets being classified as sarcastic. These tweets might have
originally contained #sarcasm, but then been manually annotated as not
sarcastic. It is not surprising that the system, which is only trained on
an automatically annotated set, would pick up some of these as sarcastic.
When using the LogisticRegression classifier, the drop in performance
is not as drastic as with SVC, see Table 7.16. Logistic regression assigns
weights to the features, and it seems like it has emphasized features which
are not so specific to AAD. For MAD1, the biggest difference is still that
non-sarcastic tweets are classified as sarcastic at a much higher rate than
for AAD. Both classifiers indentify a higher percentage of sarcastic tweets
for MAD1 than for MAD1-auto. This might be because the MAD1 con-
tains more stereotypical sarcasm than MAD1-auto, which makes them
easier to group together. The discussion for MAD2 and MAD2-auto is
the exact same as for MAD1 and MAD1-auto because the results are
almost identical, which can be seen in Tables 7.15 and 7.16. This is an
interesting result in and of itself, as it implies that both MAD1 and MAD2
are well annotated and reasonably representative.

54

8.2. Conclusion

Comparing the results for MAD1 and MAD2 with the baselines, as done
in Table 7.17, we see that both SVC and LogisticRegression score better
in all metrics than the random classifier. Compared to the most-frequent
classifier they score better in precision, recall, and F-score, but tie or get
beaten in accuracy. Cliche [2014] and Forslid and Wikén [2015] use similar
data for training, and report F-scores of 60% and 71% respectively, but
the test data is different so it’s difficult to compare directly. Riloff et al.
[2013], Joshi et al. [2015], and Khattri et al. [2015] used MAD1 for testing
(but with more of the tweets available for download, see Section 4.1),
and report F-scores of 51%, 61%, and 88% respectively. The best F-score
for MAD1 from the results is 64%, given by the LogisticRegression
classifier.
While the accuracy for MAD1 and MAD2 fail to beat the most-frequent

baseline, this is not the case for MAD1-auto and MAD2-auto. The res-
ults for these beat the baseline accuracy by 9% for SVC and 15% for
LogisticRegression. The baselines are also beaten in the other met-
rics. As mentioned above, since the system is trained on an automatically
annotated set, it isn’t surprising that it is more accurate for automatically
annotated datasets.

8.2. Conclusion

In this thesis, a dataset (MAD2) of tweets manually annotated with re-
spect to the presence of sarcasm was built. The result was very similar to
that of a previously made set (MAD1), and both of them showed consid-
erable deviation from the automatic annotation. This implies that using
automatically annotated data for the task of sarcasm detection in tweets
is a mediocre approximation.
Experiments with both of the manually annotated datasets yield very

similar results, even though the sets are completely independent. This
shows that the sets are well annotated and reasonably representative for
sarcasm detection in tweets.
When experimenting with different algorithms and features, it became

evident that a naïve implementation of sentiment features is not sufficient,
allthough it did slightly improve overall performance.
The experiments also showed that with the chosen features, both the

55

8. Discussion and Conclusion

SVM and Logistic Regression algorithms beat theoretical baseline F-scores
by 13%-23% when tested with previously unseen manually annotated data.
They also beat F-scores from some of other work using the same data by
3%-13%. However, the best score from this thesis (for MAD1) is outper-
formed by 24% when compared with the work of [Khattri et al., 2015],
who make use of user data.
In Section 1.1, two goals were stated for this thesis. While both goals

were accomplished in principle, more work could certainly have been done.
For the first goal, a state-of-the-art study has been performed, and a
system has been implemented, although the approach was not very novel.
For the second goal, several features and algorithms were tested on both
automatically and manually annotated data. However, the differences
in system performance, especially between MAD1/2 and MAD1/2-auto,
could have been investigated more.

8.3. Future Work

After the annotation of MAD2, the annotators mentioned that context
would have helped a lot with some of the tweets. This is not surprising,
as sarcasm is rarely used in a vacuum, but rather in response to some
occurrence or utterance. Taking into account the context of a tweet, like
other tweets about the same topic, or other tweets from the same feed,
is a natural next step in the quest for an automatic sarcasm detection
system. One could also account for context by using information about
the author. Another thing brought up by the annotators was the issue
of domain knowledge. Some tweets would refer to people or incidents
that they had no knowledge about, which made it difficult to judge them.
Classifying tweets by topic and then using domain knowledge is another
area to explore. This could be of particular interest when dealing with
tweets about current topics and news stories. Using domain knowledge is
also a way of looking at the context.
An issue that has been brought up by some, e.g., Liebrecht et al. [2013],

is that the amount of sarcasm on Twitter is far less than the amount
typically used in training data. The sarcastic tweets used for MAD2 were
taken from a set of about 103 million tweets, out of which roughly 2000
had the sarcasm hashtag. Not all sarcastic tweets have this hashtag, but

56

8.3. Future Work

it gives some impression of the difference between real data and training
data. Even a rather conservative system like the one presented in this
thesis would almost certainly have a poor precision score when dealing
with realistically distributed data. Finding a way to deal with this issue
is a topic to consider for future work.
In the introduction it was mentioned that sarcasm plays a role in senti-

ment analysis of tweets. Exactly what role it plays and how to incorporate
it is yet another path to explore.
Finally, two straightforward improvements of the system presented here

would be the use of manually annotated data for testing, and better pre-
processing. In regards to the latter, the treatment of slight variations
of the same words (e.g., elongated or misspelled) would probably greatly
benefit the unigram selection process.

57

Bibliography
David Bamman and Noah A. Smith. Contextualized Sarcasm Detection
on Twitter. In Proceedings of the 9th International Conference on Web
and Social Media, pages 574–577, Oxford, United Kingdom, 2015.

Francesco Barbieri, Francesco Ronzano, and Horacio Saggion. UPF-taln:
SemEval 2015 Task 10 and 11 Sentiment Analysis of Literal and Figur-
ative Language in Twitter. In Proceedings of the 9th International Work-
shop on Semantic Evaluation (SemEval 2015), pages 704–708, Denver,
Colorado, 2015.

Steven Bird, Edward Loper, and Ewan Klein. Natural Language Processing
with Python. O’Reilly Media Inc., 2009.

Paula Carvalho, Luís Sarmento, Mário J. Silva, and Eugénio de Oliveira.
Clues for Detecting Irony in User-Generated Contents: Oh...!! it’s “so
easy” ;-). In Proceedings of the 1st international CIKM workshop on
Topic-sentiment analysis for mass opinion, pages 53–56, Hong Kong,
China, 2009.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A Library for Support
Vector Machines. ACM Transactions on Intelligent Systems and Tech-
nology (TIST), 2(3):27, 2011. (note: first version published in 2001).

Mathieu Cliche. The Sarcasm Detector. http://www.thesarcasmdetect
or.com/about/, 2014. [Online; accessed 29-May-2016].

Corinna Cortes and Vladimir Vapnik. Support-Vector Networks. Machine
Learning, 20:273–297, 1995.

Daily Mail. Frustrated air passenger arrested under Terror-
ism Act after Twitter joke about bombing airpot. http:
//www.dailymail.co.uk/news/article-1244091/Man-arreste

59

Bibliography

d-Twitter-joke-bombing-airport-Terrorism-Act.html, 2010.
[Online; accessed 29-May-2016].

Dmitry Davidov, Oren Tsur, and Ari Rappoport. Semi-Supervised Recog-
nition of Sarcastic Sentences in Twitter and Amazon. In Proceedings of
the Fourteenth Conference on Computational Natural Language Learn-
ing, pages 107–116, Uppsala, Sweden, 2010.

DHS. Computer Based Annual Social Media Analytics Subscrip-
tion. https://www.fbo.gov/?s=opportunity&mode=form&id=8aaf9a
50dd4558899b0df22abc31d30e&tab=core&_cview=0, 2014. [Online;
accessed 29-May-2016].

Facebook. Company Information. http://newsroom.fb.com/company-i
nfo/, 2016. [Online; accessed 29-May-2016].

Erik Forslid and Niklas Wikén. Automatic irony- and sarcasm detection
in Social media. Master’s thesis, Uppsala Universitet, 2015.

Valerij Fredriksen and Brage Ekroll Jahren. Twitter Sentiment Analysis:
Exploring Automatic Creation of Sentiment Lexica. Master’s thesis,
Norwegian University of Science and Technology, June 2016.

Aniruddha Ghosh, Guofu Li, Tony Veale, Paolo Rosso, Ekaterina Shutova,
Antonio Reyes, and John Barnden. SemEval-2015 Task 11: Sentiment
Analysis of Figurative Language in Twitter. In Proceedings of the 9th
International Workshop on Semantic Evaluation (SemEval 2015), pages
470–478, Denver, Colorado, 2015a.

Debanjan Ghosh, Weiwei Guo, and Smaranda Muresan. Sarcastic or Not:
Word Embeddings to Predict the Literal or Sarcastic Meaning of Words.
In Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, pages 1003–1012, Lisbon, Portugal, 2015b.

Roberto González-Ibáñez, Smaranda Muresan, and Nina Wacholder.
Identifying Sarcasm in Twitter: A Closer Look. In Proceedings of the
49th Annual Meeting of the Association for Computational Linguist-
ics:shortpapers, pages 581–586, Portland, Oregon, 2011.

60

Bibliography

Yanfen Hao and Tony Veale. An Ironic Fist in a Velvet Glove: Creative
Mis-Representation in the Construction of Ironic Similes. Minds and
Machines, 20(4):635–650, 2010.

Cynthia Van Hee, Els Lefever, and Véronique Hoste. LT3: Sentiment
Analysis of Figurative Tweets: piece of cake #NotReally. In Proceedings
of the 9th International Workshop on Semantic Evaluation (SemEval
2015), pages 684–688, Denver, Colorado, 2015.

Aditya Joshi, Vinita Sharma, and Pushpak Bhattacharyya. Harnessing
Context Incongruity for Sarcasm Detection. In Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language Processing,
pages 757–762, Beijing, China, 2015.

Maria Karanasou, Christos Doulkeridis, and Maria Halkidi. DsUniPi: An
SVM-based for Sentiment Analysis of Figurative Language on Twitter.
In Proceedings of the 9th International Workshop on Semantic Evalu-
ation (SemEval 2015), pages 709–713, Denver, Colorado, 2015.

Anupam Khattri, Aditya Joshi, Pushpak Bhattacharyya, and Mark James
Carman. Your Sentiment Precedes You: Using an author’s historical
tweets to predict sarcsm. In Proceedings of the 6th Workshop on Com-
putational Approaches to Subjectivity, Sentiment and Social Media Ana-
lysis (WASSA 2015), pages 25–30, Lisbon, Portugal, 2015.

Christine Liebrecht, Florian Kunneman, and Antal van den Bosch. The
perfect solution for detecting sarcasm in tweets #not. In Proceedings of
the 4th Workshop on Computational Approaches to Subjectivity, Senti-
ment and Social Media Analysis (WASSA 2013), pages 29–37, Atlanta,
Georgia (USA), 2013.

Christopher D. Manning. Part-of-Speech Tagging from 97% to 100%:
Is It Time for Some Linguistics? In Computational Linguistics and
Intelligent Text Processing, pages 171–189, Tokyo, Japan, 2011.

Diana Maynard and Mark A. Greenwood. Who cares about sarcastic
tweets? Investigating the impact of sarcasm on sentiment analysis. In
Proceedings of the 9th edition of the Language Resources and Evaluation
Conference, pages 4238–4243, Reykjavik, Iceland, 2014.

61

Bibliography

Sarah McGillion, Héctor Martínez Alonso, and Barbara Plank. CPH: Sen-
timent analysis of Figurative Language on Twitter #easypeasy #not. In
Proceedings of the 9th International Workshop on Semantic Evaluation
(SemEval 2015), pages 699–703, Denver, Colorado, 2015.

Saif M. Mohammad, Svetlana Kiritchenko, and Xiaodan Zhu. NRC-
Canada: Building the state-of-the-art in sentiment analysis of tweets. In
Proceedings of the Seventh International Workshop on Semantic Evalu-
ation (SemEval-2013), pages 321–327, Atlanta, Georgia (USA), 2013.

Kjersti Nipen, June Westerveld, and Fredrik Hager-Thoresen. Mor blir
forstått og unnskyldt i retten. Aftenposten, 1:4–6, February 1st 2016.

Canberk Özdemir and Sabine Bergler. ClaC-SentiPipe: SemEval2015 Sub-
tasks 10 B,E, and Task 11. In Proceedings of the 9th International Work-
shop on Semantic Evaluation (SemEval 2015), pages 479–485, Denver,
Colorado, 2015.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

Tomáš Ptáček, Ivan Habernal, and Jun Hong. Sarcasm Detection on Czech
and English Twitter. In Proceedings of COLING 2014, the 25th Inter-
national Conference on Computational Linguistics: Technical Papers,
pages 213–223, Dublin, Ireland, 2014.

Finn Årup Nielsen. A new ANEW: Evaluation of a word list for sentiment
analysis in microblogs. In Proceedings of the ESWC2011 Workshop on
’Making Sense of Microposts’: Big things come in small packages, pages
93–98, Heraklion, Crete, 2011.

Ellen Riloff, Ashequl Qadir, Prafulla Surve, Lalindra De Silva, Nathan
Gilbert, and Ruihong Huang. Sarcasm as Contrast between a Positive
Sentiment and Negative Situation. In Proceedings of the 2013 Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP
2013), Seattle, Washington, 2013.

62

Bibliography

Drahomíra Spoustová, Jan Hajič, Jan Raab, and Miroslav Spousta. Semi-
supervised training for the averaged perceptron POS tagger. In Proceed-
ings of the 12th Conference of the European Chapter of the Association
for Computational Linguistics, pages 763–771, Athens, Greece, March
2009. ACL.

Twitter. Company Information. https://about.twitter.com/company,
2016. [Online; accessed 29-May-2016].

C. J. van Rijsbergen. Information Retrieval. Butterworths, 1975.

Hao Wang and Jorge A. Castanon. Sentiment Expression via Emoticons
on Social Media. In IEEE International Conference on Big Data (Big
Data 2015), pages 2404–2408, Santa Clara, California, 2015.

Hongzhi Xu, Enrico Santus, Anna Laszlo, and Chu-Ren Huang. LLT-
PolyU: Identifying Sentiment Intensity in Ironic Tweets. In Proceedings
of the 9th International Workshop on Semantic Evaluation (SemEval
2015), pages 673–678, Denver, Colorado, 2015.

63

A. List of Emoticons
Converted to ASCII

Unicode ASCII Unicode ASCII Unicode ASCII
U+263A :) U+1F60B ;p U+1F623 :(
U+1F494 </3 U+1F60C :) U+1F624 :(
U+1F495 <3 U+1F60D :* U+1F625 :(
U+1F496 <3 U+1F60E :) U+1F626 D:
U+1F497 <3 U+1F60F ;) U+1F627 D:
U+1F498 <3 U+1F610 :| U+1F628 D:
U+1F499 <3 U+1F611 −_− U+1F629 D:
U+1F49A <3 U+1F612 :(U+1F62A :/
U+1F49B <3 U+1F613 :(U+1F62B :S
U+1F49C <3 U+1F614 :(U+1F62C :|
U+1F49D <3 U+1F615 :/ U+1F62D :(
U+1F49E <3 U+1F616 :$ U+1F62E :O
U+1F49F <3 U+1F617 :* U+1F62F :O
U+1F600 :D U+1F618 :* U+1F630 :(
U+1F601 :D U+1F619 :* U+1F631 >:O
U+1F602 :D U+1F61A :* U+1F632 :X
U+1F603 :) U+1F61B :P U+1F633 :S
U+1F604 :D U+1F61C ;P U+1F634 −_−
U+1F605 :D U+1F61D :P U+1F635 :X
U+1F606 :D U+1F61E :(U+1F636 :X
U+1F607 :) U+1F61F :(U+1F637 :X
U+1F608 :=) U+1F620 >:(
U+1F609 ;) U+1F621 :@
U+1F60A :) U+1F622 :’(

65

