

ii

Acknowledgements

I would like to express my very great appreciation to my supervisor, Dr. Stefano Nichele.
His insights, guidance and encouragement has proven invaluable and vital to the comple-
tion of this thesis. I would also like to offer my special thanks to Solveig Isabel Taylor,
who apart from being an excellent proofreader, also did a marvelous job at helping me
search for literature. Tore Bye and Marte Taylor Bye have also provided me with much
needed feedback after proofreading drafts of my thesis. Finally, a big thanks to Hanna
Holm who has kept my morale up during the last few weeks of work to get this thesis
completed.

iii

iv

Table of Contents

Summary i

Acknowledgements iii

Table of Contents vi

1 Introduction 1
1.1 Assignment text . 1
1.2 Structure of this thesis . 2

2 Background 3
2.1 Reservoir computing . 3

2.1.1 The development of reservoir computing 3
2.1.2 Physical reservoirs . 5
2.1.3 The readout layer . 6
2.1.4 Challenges in reservoir computing 6

2.2 Cellular automata . 7
2.2.1 Elementary Cellular automata 7
2.2.2 Cellular automaton behavior . 8
2.2.3 The edge of chaos . 9
2.2.4 Uses of cellular automata . 9

2.3 Cellular automata in reservoir computing 10
2.3.1 Why use cellular automata with reservoir computing 10

3 Methodology 11
3.1 The experimental framework . 12

3.1.1 The reservoir . 13
3.1.2 The readout layer . 13

v

4 Experiments 15
4.1 The 5-bit memory task . 15

4.1.1 The problem . 15
4.1.2 Solving the problem . 16
4.1.3 Results . 16
4.1.4 Discussion . 16

4.2 30th order NARMA . 19
4.2.1 The problem . 19
4.2.2 Solving the problem . 19
4.2.3 Results . 20
4.2.4 Discussion . 20

4.3 Japanese vowels dataset . 25
4.3.1 The problem . 25
4.3.2 Solving the problem . 25
4.3.3 Results . 26
4.3.4 Discussion . 26

4.4 Temporal bit parity and density . 29
4.4.1 The problem . 29
4.4.2 Solving the problem . 30
4.4.3 Results . 34
4.4.4 Discussion . 34

5 Analysis 37
5.1 Performance of individual cellular automaton rules 37
5.2 Viability . 39

5.2.1 Resource constraints . 39
5.2.2 Input/output restrictions . 39

6 Conclusion 41
6.1 Computational capabilities . 41
6.2 Performance . 41
6.3 Summary . 42
6.4 Further work . 42

Bibliography 43

vi

Chapter 1
Introduction

Reservoir computing represents a trend in machine learning where input is transformed
by processes in dynamical systems called reservoirs. The learning happens by estimating
weights for a linear combination of the perturbed input signal in the reservoir. Current
research have mostly been done on untrained artificial neural networks as reservoirs. Re-
cently, however, more work has been done on exploring alternative reservoirs.

Cellular automata are discrete models studied in various fields of research. Complex
patterns emerge from seemingly simple automata.

This thesis will look at existing research on using cellular automata in a reservoir
computing framework and expand on possibilities for further research on the subject.

1.1 Assignment text

Investigation of cellular automata for Reservoir Computing. The investigation
focus on 1 dimensional elementary (Boolean) cellular automata. Reservoir
Computing projects an input onto a nonlinear dynamical system (reservoir
with an expressive and discriminating space) and trains a single readout layer
to read the output. In this project, state of the art Reservoir Computing will
be studied using elementary cellular automata.

Based on the assignment text, a hypothesis and two research questions have been made.
Hypothesis: Cellular automata are able to act as performant reservoirs for tasks tradi-

tionally being solved by a reservoir computing approach.
Research question: Are cellular automata capable of acting as reservoirs for tasks that

typically are solved by conventional reservoir computing approaches?
Research question: How does changing properties of a cellular automata reservoir

affect its performance?
In order to investigate this, a small subset of all cellular automata, elementary cellular

automata, are used. The results do therefore not necessarily represent the best possible

1

Chapter 1. Introduction

results with cellular automata, but should give a clue as to the capabilities of cellular
automata.

1.2 Structure of this thesis
This thesis is divided into six chapters.

1. Introduction: Introduces the research questions and motivation for writing this the-
sis.

2. Background: Overview of current research in fields relevant for this thesis.

3. Experimental methodology: A brief overview of the experiments that will be run
and a detailed explanation of the framework that will be used to run the different
experiments.

4. Experiments: The actual experiments and specific methodology for the different
experiments. Every experiment includes results and analysis specific to each exper-
iment.

5. Analysis: Comparison and analysis of the results from the different experiments.

6. Conclusion: A summary of the results and how they relate to the research questions,
including a list of further work.

2

Chapter 2
Background

2.1 Reservoir computing
Reservoir computing is a framework for machine learning originally inspired by artificial
neural networks.

Figure 2.1 illustrates the main components of a reservoir computing system. An input
signal is projected to a dynamical system, which then transforms the input according to the
dynamics of the system. The final output is then generated, usually as a linear combination
of the states of the dynamical system. This means that in many cases, training a reservoir
computing system can be performed relatively easy using some form of linear regression.

2.1.1 The development of reservoir computing
Reservoir computing has developed as a combination of several approaches to machine
learning that were discovered independently. The first approaches were Echo State Net-
works by Jaeger (2001), Liquid State Machines by Maass et al. (2002). Table 2.1 displays
the number of publications on reservoir computing since 2002, showing how interest in
the field has developed the last 15 years.

Input signal

Reservoir

Readout layer Output signal

Figure 2.1: Illustration of the main components of a reservoir computing system.1

1All figures in this chapter were made by Emil Taylor Bye to illustrate the background material.

3

Chapter 2. Background

Table 2.1: Number of publications found in the Scopus database when searching titles, abstracts and
keywords for “reservoir computing”, “echo state network” and “liquid state machine”. The search
was performed 14, 2016. Note that the number of publications for echo state network and liquid
state machine do not include results that show up when searching for reservoir computing.

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
Reservoir computing 0 0 0 0 0 10 22 31 36 33 56 67 71 60 24
Echo state network 0 3 8 17 15 30 36 40 58 47 81 71 83 98 32
Liquid state machine 1 3 5 7 5 16 6 7 8 14 9 8 7 6 2
Total 1 6 13 24 20 56 64 78 102 94 146 146 161 164 58

Echo state networks

Echo state networks are recurrent neural networks with randomly generated input and
recurrent connections first introduced by Jaeger (2001). In echo state networks, only the
output weights are trained, while the input and recurrent connections in the network remain
fixed. Most of the publications in the field of reservoir computing has been about echo state
networks (see Table 2.1).

Echo state networks are named after the echo state property, which is deemed neces-
sary for echo state networks to work. The echo state property states that a network should
gradually lose information from earlier input. Specifically, if two networks with the same
internal dynamics, but in different states are repeatedly given the same input, they should
converge to the same state.

In order for an echo state network to have the echo state property, the recurrent weights
have to be scaled after being randomly generated. Yildiz et al. (2012) proposes the follow-
ing recipe in order to ensure the echo state property in echo state networks:

1. Initialize the recurrent weights W with non-negative entries, that is wij ≥ 0.

2. Scale W so that ρ(W) < 1, where ρ(W) is the spectral radius of W.

3. Change the signs of some of the entries in W to get negative connection weights
as well. The number of negative weights may impact performance, but the optimal
number of negative weights varies from problem to problem.

Liquid state machines

Liquid state machines are, like echo state networks, artificial neural networks with ran-
domly initialized weights. The difference lies in that liquid state machines are based on
spiking neural networks. Instead of transmitting information between neurons continu-
ously, every cell has its own threshold, and it is first when a cell’s threshold has been
reached, that it will “fire” and propagate information to the nodes it is connected to. Maass
et al. (2002) introduced this concept inspired by biological neural networks.

In order for liquid state machines to be computationally useful, they have to have the
point-wise separation property. For liquid state machines, this is ensured by using spiking
neurons with dynamic synapses.

In order to get output from a liquid state machine, a linear combination of the neuron
states are used. This output layer is typically trained using some form of linear regression..

4

2.1 Reservoir computing

Subsequent work

Steil (2004) expanded on the training rule for recurrent neural networks presented by Atiya
and Parlos (2000), creating a new training rule called the backpropagation-decorrelation
rule. It was observed that most of the changes ended up happening in the weights to the
output nodes, so training of the internal weights was removed for a massive performance
gain, down to O(N) from O(N2). The result ended up being very similar to echo state
networks, with the main difference being that the output is being fed back into the network
in the case of the backpropagation-decorrelation rule.

The different approaches originate from different fields of research, however they all
shared a similar aim. It was observed that for many tasks, updating the internal dynamics
of a randomly initialized recurrent neural network is not necessary to achieve good per-
formance. Instead, the desired output could be achieved by training a simple, memoryless
output layer.

Since it was first discovered, reservoir computing has been able to achieve better per-
formance than recurrent neural networks on certain benchmarks. Jaeger et al. (2007) used
an echo state network for analyzing sound clips of nine Japanese men uttering a single
vowel multiple times, correctly predicting who uttered the vowel for every sound clip.
Previously, an error rate of 1.8% was the best achieved on that data set. Ilies et al. (2007)
used an echo state network to win the 2007 NN3 Artificial Neural Network and Computa-
tional Intelligence Forecasting Competition.

ORGANIC (Self-Organized Recurrent Neural Learning for Language Processing) was
a research project for speech and handwriting recognition using reservoir computing funded
by the European Union. It lasted from 2009 to 2012 resulting in 38 publications.

2.1.2 Physical reservoirs
Most of the research done on reservoir computing has been with reservoirs implemented on
conventional computers. However, the research has also created a foundation for exploring
ways to solve problems by exploiting the physical properties of different substances.

Fernando and Sojakka (2003) managed to perform speech recognition using waves in
a bucket of water, distinguishing between recordings of the word “zero” and “one” with
an error rate of 1.5%. The experiment was motivated by liquid state machines, using the
water as an artificial neural network, and a linear readout layer to produce the desired
output from the waves in the water.

Inspired by liquid state machines, several attempts have also been made at implement-
ing XOR gates using biological systems along with a linear readout layer. Jones et al.
(2007) tried to implement a liquid state machine using Escherichia Coli bacteria. The in-
put was given by exposing the bacteria to high and low temperatures, and acidic or basic
chemicals. Nikolic et al. (2007) used readouts from the visual cortices of cats, where the
input was given as visual stimuli to the cats.

Recently, more research has been done on exploiting various physical phenomena for
use in reservoir computing. Appeltant et al. (2011) performed computations using sim-
ple electrical circuits as a reservoir. Specifically, a Mackey-Glass oscillator coupled with
delayed feedback managed better performance than a liquid state machine with 1200 at
correctly classifying recordings of pronunciations of single digits.

5

Chapter 2. Background

Instead of electricity, Vandoorne et al. (2014) used electromagnetic radiation as input
to a reservoir consisting of exclusively passive components, namely waveguides, split-
ters and combiners. The reservoir itself did not consume any energy, and they reported
that bandwidths above 100 GBit/second should be very feasible, especially for signal that
already are optical.

2.1.3 The readout layer

In order to get results from a reservoir, the readout layer usually combines the states of the
reservoir nodes with different weights. These weights are usually attained through some
form of linear regression. Ideally this is done by solving the equation Xw = y. Typically
the equation is not solvable, however, so the goal is to find the w that minimizes the error:
||Xw − y||2.

Real data usually contains some noise, which may propagate to the reservoir states.
When training a reservoir computing system, it is vital to avoid relying on specific noise
patterns in the training data. One way to avoid this is to introduce additional noise to the
data before performing the regression. This minimizes the chance that the regression finds
random patterns of noise that it relies on. Instead of introducing additional noise to the
input data, a viable alternative is to penalize large coefficients. In that case, the expression
to minimize becomes ||Xw − y||2 + α||w||2, where α ≥ 0 is how much large weights
should be penalized.

Wyffels et al. (2008) compared dynamic noise injection to ridge regression for use
with reservoir computing. The conclusion was that ridge regression was superior in per-
formance, and that optimizing it was easier than generating optimal noise for a given
training set.

Triefenbach and Martens (2011) tested alternatives to linear regression for the readout
layer. One of the alternatives was logistic regression, a form of regression related to linear
regression. With logistic regression, the output is not a number on a continuous spectrum,
but selected from a set of possible outputs. This means that logistic regression may be
especially attractive for classification tasks.

2.1.4 Challenges in reservoir computing

Although reservoir computing systems have been showed viable for certain tasks, there is
still much ongoing research to make reservoir computing a more viable alternative com-
pared to other forms of machine learning.

Lukoševičius et al. (2012) summarized reservoir computing trends. Much of the re-
search within the field of reservoir computing is being done on echo state networks (see
Table 2.1). Intuitively, there should be a better way than randomly generating echo state
networks. Additionally, there are still a lot of variables that have to be manually tuned to
perform well at different tasks. Some kind of self-adapting reservoir could be possible,
potentially increasing reservoir performance. The backpropagation-decorrelation already
does this to some extent by feeding the output back into the reservoir, but it may be pos-
sible for a reservoir to perform unsupervised optimizations based on the input, but not the
expected output.

6

2.2 Cellular automata

Figure 2.2: Rule table for elementary cellular automaton rule 90

The full extent of the capabilities of different reservoirs has not been explored yet. The
“no free lunch”-theorem for supervised machine learning (Wolpert, 2002), when applied
to reservoir computing, implies that no single type of reservoir is capable of solving all
possible problems. However, where exactly does the limit go, for instance when trying to
compute different outputs on the same input stream with two different readout layers?

Section 2.1.2 explored some of the work implementing reservoirs in physical systems.
Various models are being explored for potential as reservoirs as well. Snyder et al. (2013)
explored random Boolean networks, and Yilmaz (2014) used cellular automata.

2.2 Cellular automata
A cellular automaton is a discrete dynamical of cells placed on a regular grid. The dy-
namics of a cellular automaton is given by 〈S, n, f〉. S is the set of states a cell a be in,
n is the size of a cell’s neighborhood, and f : Sn+1 → S is the local rule that governs
state transitions in the automaton. Figure 2.2 displays an example of a rule for a cellular
automaton with two states where a cell’s neighborhood is the cell to the left and to the
right of it.

Cellular automaton grids can have arbitrarily many dimensions, but most cellular au-
tomata use one, two or three dimensions. The neighborhood of a cell, that is the other cells
that determine the next state of a cell, are typically the cells located adjacent to a cell in
the grid, although this is not a requirement. However, the neighborhood should have the
same structure for every cell.

In this thesis, all the cellular automata are discrete, both in that the cell’s state is a
discrete value, and that the cells are placed on a discrete grid. Additionally, the automata
are synchronous, that is, the state of all the cells are updated at the same time. There have
been work on both continuous and asynchronous cellular automata, however, neither is
used in this thesis.

Cellular automata are usually uniform, that is, the same rule applies to every single
cell. Cattaneo et al. (2009) experimented with non-uniform automata, however. A non-
uniform automata is given by 〈S, {hi, ni}i∈Z〉 where hi : Sn+1 → S. Every rule, hi,
control the state transitions for a fixed subset of all the cells in the automaton.

Cellular automata have been studied since the middle of the 20th century. Notable
early work include Burks and Von Neumann (1966), where a 29-state cellular automata is
shown to be able to support universal computation.

2.2.1 Elementary Cellular automata
Elementary cellular automata are a subset of all cellular automata, consisting of a one-
dimensional grid with cells that can be in two states,usually referred to as 0 and 1. The

7

Chapter 2. Background

Class 1: rule 250 Class 2: rule 29 Class 3: rule 150 Class 4: rule 110

Figure 2.3: Wolfram’s four different cellular automaton classes illustrated by four elementary cel-
lular automata with random initial configurations. The top row contains the initial configuration of
cells, and the following rows represent one time step each.

neighborhood of a elementary cellular automaton cell is its adjacent cells.
An elementary cellular automata rule depend on three cells, which can be in one of

two states. For each of the 23 = 8 combinations of cell states, there are two states a cell
can end up in, which means that there are 28 = 256 unique elementary cellular automata
rules. According to Wolfram (2002, p. 57), of the 256 elementary cellular automata rules,
only 88 are fundamentally inequivalent.

The 256 elementary cellular automata rules are usually numbered according to a spe-
cific scheme. Figure 2.2 displays the rule table for rule 90, where black cells are in state 1
and white cells in state 0. The rule number is then made by interpreting the result states as
a 8-bit number, where the most significant bit is the next state of a cell if all the cells in its
neighborhood is 1. Similarly, the least significant bit is the result state if all the cells in its
neighborhood is 0.

Stephen Wolfram used elementary cellular automata in his book, A New Kind of Sci-
ence (2002). In the book, elementary cellular automata are used to study how very simple
systems can support advanced computations.

2.2.2 Cellular automaton behavior
Wolfram (2002, chap. 6) classifies cellular automaton behavior into four different classes
in increasing order of complexity. Examples of the four classes can be seen in Figure 2.3.

1. Cellular automata that end up with all cells in the same state for most initial config-
urations.

2. Cellular automata that stabilizes to fixed or simple periodic structures.

3. Cellular automata that exhibit chaotic and aperiodic behavior.

4. Cellular automata with complex localized structures.

These classes describe different kinds of behavior in cellular automata, but they are
qualitative in nature and a cellular automaton can not be easily classified for instance just
by looking at its rule. Different configurations of cell states may also alter which class
of behavior is seen in a cellular automaton. For instance, rule 110, which is said to be a
class 4 automaton will behave like a class 1 automaton if all the cells are 0, as all the cells

8

2.2 Cellular automata

will simply stay in the same state indefinitely unless cells are put into other states by an
external signal.

A cellular automaton must be in class 3 or 4 to let cells that are far away from each
other communicate.

In addition to the four classes, certain cellular automaton rules are additive. Additive
cellular automata are rules that can be written as an addition of the states in a cell’s neigh-
borhood modulo the number of possible states. Elementary cellular automaton rule 90 is
an example of such an additive rule, as it can be written as (c−1 + c1) mod 2, where c−1
and c1 are the cells before and after the current cell.

2.2.3 The edge of chaos

Wolfram’s four classes of cellular automaton behavior is a qualitative description of cel-
lular automaton behavior. Langton (1990) attempted to measure complexity of cellular
automata by measuring how chaotic they were. The theory was that interesting computa-
tions happened in automata that were on the “edge of chaos”.

A metric, λ, was devised to measure how chaotic different rules behaved. Lambda is
measured as the percentage of possible inputs that lead to a state other than the quiescent
state. The quiescent state may be chosen as any single valid state for a cellular automaton.
λ = 0 means that an automaton stays in the quiescent no matter the initial condition,
while λ = 1 means that an automaton is completely chaotic. The conclusion was that
cellular automaton rules around λ = 0.5, literally half-way between solid state and chaos,
exhibited the most complex behavior, and were most likely to belong in Class 4.

Calculating the λ of elementary cellular automata is trivial, and can be done by count-
ing how many input combinations results in a “1”, and divide this by 8. However, in this
case λ = 1 is not chaotic, but rather stuck in the non-quiescent state.

2.2.4 Uses of cellular automata

Cellular automata have been widely studied, both specifically how to solve certain prob-
lems, but also to study how complex computations can emerge from simple systems.

Neary and Woods (2006) proved that there exists at least one elementary cellular au-
tomaton which can act as a Turing machine. They did that by proving that rule 110 could
simulate a deterministic Turing machine in polynomial time, showing that it is P-complete.
Another cellular automaton that has been shown to emulate a Turing machine is Conway’s
Game of Life, a two-dimensional cellular automaton. The proof of this was published by
Rendell (2002).

Cellular automata have also been used as models to solve a variety of different prob-
lems, three different publications are included below to give some context to the extent of
the usage of cellular automata. de Carvalho and de Oliveira (2015) used 1-dimensional cel-
lular automata to implement a massively parallel sort. Xiao et al. (2011) explored cellular
automata for use in bioinformatics, as a tool to both visualize and explore the significance
of various patterns in proteins. Santé et al. (2010) reviewed different models that used
cellular automata for simulations of urban growth.

9

Chapter 2. Background

2.3 Cellular automata in reservoir computing
The use of cellular automata in reservoir computing was first researched by Yilmaz (2014).
A group of independent cellular automata are used as a reservoir. For each automaton there
is a random mapping, mapping the input to cell states. The cellular automata then evolves
for a number of time steps after receiving the input. The output layer is then trained with
the states of all the cellular automata after every evolution.

This is a new approach both to cellular automata, and to reservoir computing. There
is no previous published work where a linear combination of cellular automaton states
has been used for computation. For reservoir computing, this represents a new kind of
reservoir. Other than the preliminary experiments by Yilmaz (2014, 2015), there has not
been published any articles on cellular automata in combination with reservoir computing.

2.3.1 Why use cellular automata with reservoir computing
Investigating the use of cellular automata in combination with reservoir computing can be
interesting from several points of view.

It can help with further understanding and adapting reservoirs, providing a different
point of view than the traditional neural networks. At the same time, it is another way
to utilize cellular automata to perform advanced computations, possibly giving insight in
how computations can happen in cellular automaton-like structures.

Yilmaz (2014) reported that cellular automata only used between 2
3 and 1

3 as many
operations as an echo state network. The energy usage would also improve by two orders
of magnitude, due to the fact that echo state network perform mainly floating point opera-
tions while cellular automata can be implemented very efficiently on FPGAs. On a custom
implementation, linear regression may also be implemented more efficiently, as the matrix
multiplication can be implemented using addition instead of multiplication.

There also exist possible applications in unconventional computing. Farstad (2015)
managed to get a single-walled carbon nanotube and polymer composite random mesh to
behave like various cellular automata rules. In combination with reservoir computing, it is
possible that new types of computing devices can be manufactured.

10

Chapter 3
Methodology

In order to test the performance of cellular automata as reservoirs for reservoir computing,
an attempt was made to solve four different problems. Parameters of the reservoirs are
varied in each experiment to see how the different parameters affect the performance of
the reservoirs.

The first experiment is to try to solve the 5-bit memory task. This is an attempt to recre-
ate the results found by Yilmaz (2014). Afterwards, two common benchmarks for reser-
voir computing systems are performed, and the results compared with traditional reservoir
computing approaches. At last, an attempt is made to solve to simple tasks simultaneously,
using both traditional elementary cellular automata and non-uniform cellular automata. An
in-depth explanation of the experiments is included in every experiment’s section.

1 0 1Input

Reservoir output

Readout layer

0 0 1 1 Output

Figure 3.1: Illustration of a cellular automaton reservoir computing system. The input consists of
3 bits, which are mapped to R=3 automata. The automata are transformed I=2 times, and the cell
states after each transformation used to produce the output of 4 bits. The transformation rule is rule
90.

11

Chapter 3. Methodology

3.1 The experimental framework
A framework was written in Python to conduct the experiments. The framework was im-
plemented using the CPython 2.7.9 implementation of the Python programming language.
It was modelled after the framework described by Yilmaz (2014). Figure 3.1 illustrates the
layout of the framework.

The reservoirs used in this thesis consist of R elementary cellular automata of the same
size and with the same rule. For each cellular automaton there is a random mapping,
mapping each bit in the input to a single cell. All cells that do not have any input mapped
to them are initialized to zero.

Elementary cellular automata rules are only defined for three cells. Instead of setting
some boundary condition, cells were arranged in a circle so that every cell had two neigh-
bors. This was done by letting the “first” cell have the “last” cell as it’s left neighbor, and
the last cell had the first cell as it’s right neighbor.

After the input has been imprinted on the cellular automata, every automaton is trans-
formed according to its rule I times. The reservoir output is the state of every cell in the R
automata after all of the I transformations. This means that for every input, the reservoir
output consists of R · I · automaton size values, each either 0 or 1.

In most of the experiments in this thesis, the input is given as a time series. Elemen-
tary cellular automaton cells have no notion of memory other than their current state, so
overwriting a cell state will potentially erase some of the automaton’s memory. However,
if the cellular automaton is large enough, enough memory should hopefully be retained
when overwriting cell states.

If the input is given as a time series, the process shown in Figure 3.1 is repeated for
every time step. However, for any but the first time step, the input is not imprinted on
cellular automata with all states set to 0, but on the automata as they were after the last
transformation the previous time step.

The framework is modelled after that described by Yilmaz (2014), but there are a few
key differences. For the experiments where the output is a time series, input is given one
time step at a time, and the output is predicted for every time step. An alternative is to use
sliding windows, were a number of time steps are given as input simultaneously to a new
reservoir.

For the 5-bit memory task, Yilmaz (2014) used the entire input from all the time steps
as input to the reservoir, and then tried to predict the entire output sequence at once. In this
thesis, input is given one time step at a time, predicting the output at every time step. This
is more in line with traditional reservoir computing approaches, and utilizes the dynamics
of cellular automata to provide a form of fading memory instead of explicitly defining how
many time steps input should be remembered for.

Another difference is the size of the automata. In this thesis, the automata used have
more cells than the input requires. This is probably required in order to provide the au-
tomata with some memory which is not overwritten at every time step. Input size is varied
for the experiments, to see how more cells affect the performance.

In this thesis all input is converted to bit strings. Yilmaz (2014) proposes an input
scheme for non-binary input, however due to difficulties with implementing it, no attempt
was made on using it in this thesis. The effect of this scheme is unknown, but it is certainly
an interesting idea that should be tested.

12

3.1 The experimental framework

3.1.1 The reservoir
The cellular automata were first implemented in Python. Rule numbers were converted
to lookup tables by reversing the process described in Section 2.2.1. The lookup tables
for all the 256 rules were then manually inspected to see that they had been converted
correctly. Finally, a few rules were tested additionally by randomly initializing automata
and manually verifying that cells were transformed according to the given rule.

Later, the Python implementation was replaced with an implementation written in C
in order to decrease the run time. Functionality in the C implementation was verified by
comparing randomly initialized automata before and after transformation for all 256 rules,
with the Python implementation.

3.1.2 The readout layer
For the readout layer, the Python library scikit-learn 0.17 was used. More details on the
library can be found in Pedregosa et al. (2011). Scikit-learn was chosen for ease of use, as
it contains well documented code for various types of both offline and online learning.

13

Chapter 3. Methodology

14

Chapter 4
Experiments

4.1 The 5-bit memory task

4.1.1 The problem

The 5-bit memory problem is a problem first described by Hochreiter and Schmidhuber
(1997) as a problem that is hard to solve for recurrent neural networks. A system is given
four inputs a1,a2,a3 and a4 which can be either 0 or 1 at every time step. The first five
time steps either a1 or a2 is set to 1, and the other to 0. After the first five time steps, the
distractor signal a3 is set to 1 for a distractor period. Finally, the cue signal a4 is set to 1
and then a3 is again set to 1 for five time steps.

There are three different outputs, y1, y2 and y3, which also can be either 0 or 1. For all
the time steps except the last five, y1 and y2 are supposed to be 0 and y3 1. Then for the
last five time steps, y1 and y2 are supposed to replicate the signal given on a1 and a2 for
the first five time steps.

In order to pass the 5-bit memory task, correct output has to be produced for every
time step for all 32 combinations of the input signal. The results will be compared with
the results found by Yilmaz (2014).

Table 4.1: Parameters for the 5-bit memory task

Cellular automaton rule All 256 elementary cellular automata
I 2, 4
R 4, 8
Cellular automaton size 40
Distractor period 200

15

Chapter 4. Experiments

Table 4.2: Successful runs of the 5-bit memory task

Rule I=2, R=4 I=2, R=8 I=4, R=4 I=4, R=8
60 6% 37.3% 16.4% 46.0%
90 7.7% 17.7% 0.7% 3.2%
102 6.1% 30.4% 14.9% 50.2%
105 0% 1.4% 10.7% 41.7%
150 0.1% 1.3% 12.3% 37.1%
153 3.5% 26.7% 15.4% 43.0%
165 3.4% 13.7% 0% 1.7%
180 0.1% 1.8% 0% 0.0%
195 3.1% 23.1% 13.7% 45.3%

4.1.2 Solving the problem

The framework described in Chapter 3 was used with the parameters shown in Table 4.1.
The input was easily mapped to cellular automaton state since the four signals were either
0 or 1.

Linear regression was used as the readout layer, which was trained with all 32 input
patterns. Output variables were said to have the value of 0 if they were in the range
(−0.5, 0.5) and 1 if they were in the range (0.5, 1.5). If an output variable was not in
either of those ranges, the test failed.

Every possible combination of parameters listed in Table 4.1 were repeated 1000 times
to observe how they performed at solving the 5-bit memory task.

4.1.3 Results

9 elementary cellular automaton rules managed to get at least one successful run, as can
be seen in Table 4.2. 64 cellular automaton rules did not manage to produce correct output
for any single input pattern.

Unfortunately, larger values of I and R could not be tested, as the computer running
the experiments would run out of memory during regression.

4.1.4 Discussion

Yilmaz (2014) found that the rules 22, 30, 54, 60, 62, 90, 110, 126, 150 and 182 were
able to produce correct output for all the 32 different input patterns at least once. Results
for four of these rules were included in the paper, a copy of those results can be seen in
Table 4.3.

There are only three rules, 60, 90 and 150, that were found to be able to produce no
error at least once in the original paper and in this thesis. The original paper was not able
to get any correct results with R=8, I=8 or lower parameters, while several configurations
manages to produce correct output for lower parameters in this thesis.

Unfortunately, a 100% success rate was not reproduced in this thesis as the computer
the experiment ran on, ran out of memory. The original paper managed to run with much
larger values for I and R. This is probably at least partly because larger cellular automata

16

4.1 The 5-bit memory task

Table 4.3: Successful runs for rule 22, 90, 150 and 182 as reported by Yilmaz (2014, section 3,2).
The percentages are changed from showing failed runs to showing successful runs to match the
numbers in table 4.2

Rule 90 R=8 16 32 64
I=8 0% 22% 88% 100%
16 26% 96% 100% 100%
32 96% 98% 100% No data

Rule 150 R=8 16 32 64
I=8 0% 20% 92% 100%
16 16% 94% 100% 100%
32 92% 100% 100% No data

Rule 182 R=8 16 32 64
I=8 0% 18% 82% 100%
16 8% 86% 100% 100%
32 88% 100% 100% No data

Rule 22 R=8 16 32 64
I=8 0% 22% 80% 100%
16 14% 84% 100% 100%
32 84% 100% 100% No data

are used, as there are more cells than the input requires. The implementation in this thesis
is not optimized for memory either, so running with larger values of R and I could be
possible with better implementations.

Increasing R did increase performance for all the rules that managed to produce correct
output. Performance varied more with different I’s however, with rules 90 and 165 show-
ing decreased performance for larger I’s, even though the other rules generally improved
performance with larger I.

17

Chapter 4. Experiments

18

4.2 30th order NARMA

Table 4.4: Parameters for the NARMA experiment

Cellular automaton rule All 256 elementary cellular automata
I 4, 8, 16, 32
R 1, 2, 4
Cellular automaton size 200, 400
Number of cells to which input is mapped 64, 100

4.2 30th order NARMA
In this chapter, the output of a 30th order nonlinear autoregressive-moving-average (NARMA)
model will be estimated. The model was introduced by Atiya and Parlos (2000), and has
been used as a benchmark for reservoir computing systems.

4.2.1 The problem

y(k + 1) = αy(k) + βy(k)

29∑
i=0

y(k − i) + γu(k − 29)u(k) + δ (4.1)

This problem is to estimate y(k) as defined in equation 4.1 given an input vector u. In
this experiment, u is sampled uniformly from the interval [0, 0.5], and the parameters are
defined as α = 0.2, β = 0.04, γ = 1.5 and δ = 0.001.

Estimating the output is a complex task as the equation describes a highly non-linear
system where it is important to remember previous states for a certain time, given by the
order of the system. Linear regression by itself is not able to solve this problem, so in
this experiment, the computational capability of the reservoir is very important for a good
solution.

For every run of this experiment, two data sets with 1000 samples and the correspond-
ing output values are created, one for training and one for testing. The performance of the
different reservoirs is scored using normalized root-square-mean error, where a score of 0
means that the reservoir estimates y(k) perfectly. Every combination of the parameters in
table 4.6 were tested 10 times.

As a test and comparison of performance, 1000 echo state networks were also created
and trained and tested in the same manner as the cellular automaton reservoirs.

4.2.2 Solving the problem
In order to be able to use the framework described in Chapter 3, the input has to be con-
verted to bit strings. The input for this experiment is given as IEEE 754 double-precision
floating-point numbers, and the binary representation of those numbers are used as an in-
put in this experiment. Figure 4.1 displays the underlying bit representation of the number
0.5. 64 bits are needed to represent the full range, however since the input numbers are in
the range [0, 0.5], the sign bit and the most significant exponent bit can be removed since
they will always be 0 for this experiment.

As an attempt to destroy as little of the automaton’s memory as possible when writing
new input values, they were divided up into two contiguous parts. The first part are the

19

Chapter 4. Experiments

0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

Sign bit

0.5=

Exponent bits
(11 bits)

Fraction bits
(52 bits)

Figure 4.1: The underlying bit representation of 0.5. Note that there are 46 fraction bits that are not
displayed in the figure.

cells that the input can be mapped to. The rest of the cells were guaranteed not to be
overwritten by the external signal directly.

In order to generate the data sets and echo state networks the Python library Oger
toolbox 1.1.3 was used. The echo state networks contained 100 nodes with an input scaling
of 0.05. This particular echo state network is quite small compared to typical echo state
networks. The specific number of nodes was selected because it was the configuration
used in Oger toolbox’s tutorial1 on how to estimate NARMA30 using echo state networks
with Oger toolbox. For more details on Oger toolbox, see Verstraeten et al. (2012).

4.2.3 Results
Plots of all the results can be found in Figure 4.2 to 4.5. Additionally, the actual num-
bers for best, worst and average performance for the different parameters can be found in
Table 4.5.

8 elementary cellular automaton rules were able to predict the output with a NRMSE
of less than 0.9. They were 85, 15, 240, 170, 119, 48, 34, and 138 in decreasing order of
runs with a NRMSE less than 0.9.

Two rules performed exceptionally bad, namely 255 and 0. They were unable to give
any meaningful results, as they return just 0 or 1 regardless of input. Therefore, the results
of the runs with those two rules were excluded from the results reported in this section.

4.2.4 Discussion
It is very clear that elementary cellular automata perform worse than a simple echo state
network. There seem to be some potential, however. The best results with cellular au-
tomata were comparable with the worst results with an echo state network. Despite very
simple rules and every cell only being able to represent either 0 or 1, it is somewhat possi-
ble to predict the output, although with quite a large margin of error.

This problem could possibly benefit from a better input mapping than just using the
binary representation of the input. Adding additional states or dimensions could also possi-
bly improve performance by making input of new time steps less destructive to the implicit
memory of the automaton.

In this experiment, increasing I leads to poorer performance. A possible explanation
is that increasing the number of iterations also erases the memory more quickly as infor-
mation may be discarded in the transformations. Increasing R seems to generally improve

1http://reservoir-computing.org/node/268 Checked June 17, 2016.

20

http://reservoir-computing.org/node/268

4.2 30th order NARMA

0.4

0.5

0.6

0.7

0.8

0.9

1

N
R
M
S
E

Figure 4.2: Performance for an echo state network with 100 nodes. Note that a lower score is better,
as a NRMSE of 0 indicated that the output is predicted completely correctly.

21

Chapter 4. Experiments

Table 4.5: Best, worst and average values for different parameters

Best NRMSE Worst NRMSE Average NRMSE
Echo state network 0.418 0.949 0.544
100 nodes

I = 4 0.746 9.545 1.672
I = 8 0.764 8.477 1.711
I = 16 0.895 9.055 1.802
I = 32 0.974 11.274 1.920

R = 1 0.766 11.274 1.991
R = 2 0.764 6.414 1.703
R = 4 0.746 7.047 1.634

Automaton size = 200 0.746 11.274 1.705
input cells = 64
Automaton size = 200 0.937 9.545 1.827
input cells = 100
Automaton size = 400 0.764 7.046 1.726
input cells = 64
Automaton size = 400 0.766 8.764 1.847
input cells = 100

0

2

4

6

8

10

12

4 8 16 32

N
R
M
S
E

I

Figure 4.3: Performance for the cellular automata reservoirs for varying I.

22

4.2 30th order NARMA

0

2

4

6

8

10

12

1 2 4

N
R
M
S
E

R

Figure 4.4: Performance for the cellular automata reservoirs for varying R.

performance. Higher R means that the input is projected in more ways, increasing the
chance of a projection that is useful for computation.

Finally, it seems that increasing the amount of cells the input can be mapped to lead to
poorer performance. A larger area means that there is more space around every input cell
on average, which may lead to less interesting interactions happening between input. The
total automaton size did not seem to have a dramatic impact on the performance, doubling
the size did not produce any drastic changes to the scores.

23

Chapter 4. Experiments

0

2

4

6

8

10

12

Size=200Input cells=64

Size=200Input cells=100

Size=400Input cells=64

Size=400Input cells=100

N
R
M
S
E

Figure 4.5: Performance for the cellular automata reservoirs for varying automaton sizes and input
cells.

24

4.3 Japanese vowels dataset

Table 4.6: Parameters for the Japanese vowel experiment

Cellular automaton rule All 256 elementary cellular automata
I 8, 16
R 8, 16
Cellular automaton size 21663, 30000

4.3 Japanese vowels dataset
The Japanese vowels dataset is a dataset presented by Kudo et al. (1999). It was later
donated to University of California, Irvine2. The dataset consists of sound clips of nine
Japanese men uttering the two vowels /ae/ successively.

In this section, an attempt will be made to correctly distinguish the sound clips based
on who uttered them. The purpose is to see how well the cellular automata are able to
extract relevant information from actual sound clips. As mentioned earlier, Jaeger et al.
(2007) managed to correctly classify every single sound clip in the dataset using a reservoir
computing approach.

4.3.1 The problem
The task is to correctly identify which of the nine men uttered every sound clip in the data
set. The data set consists of 640 sound clips, where 270 are used for training and 370 are
used for testing.

Every sound clip has already been analyzed, and a discrete time series with 12 LPC
cepstrum coefficients extracted, which is the data being used in this experiment. The time
series were all between 7 and 29 steps long.

The results will be compared with the performance of logistic regression on the raw
data to see what the effect transforming the dataset with cellular automata has on how well
the sound clips are classified.

4.3.2 Solving the problem
In order to decrease the number of bits required to represent the input, the smallest value
was found for each of the 12 coefficients, and every coefficient had this value subtracted.
This ensured that every coefficient was at or above zero, requiring one less bit for storage.

Additionally, all the time series were padded so that they were 29 time steps long. The
padding time steps just consisted of the number 0.0, 12 times.

Unlike the previous sections, input is not given one time step at a time. Instead, a
concatenation of all 29 time steps is given to the reservoir at once. The reason for this
is that all output prior to the last time step would probably be discarded as the learning
algorithms used in this thesis require a fixed input size. So, in order to avoid the first time
steps being “forgotten”, all time steps are given as input at once.

2It is available at http://kdd.ics.uci.edu/databases/JapaneseVowels/
JapaneseVowels.html, checked June 17, 2016.

25

http://kdd.ics.uci.edu/databases/JapaneseVowels/JapaneseVowels.html
http://kdd.ics.uci.edu/databases/JapaneseVowels/JapaneseVowels.html

Chapter 4. Experiments

Another difference from the earlier sections is that the training data is too large for it all
to fit in memory at once, so a online training algorithm had to be used. The readout layer
was trained with logistic regression, using stochastic gradient descent in order to train it in
an online. This meant that the data sets had to be shuffled before training in order to avoid
introducing unwanted biases in the readout layer.

4.3.3 Results
While writing this thesis, it was discovered that an error had been made in the program-
ming for this problem. Only half of the input was actually imprinted on the automata, and
all results presented in this section are from runs that had this error. There was not enough
time to repeat the entire experiment with the fixed code, but a 10 percentage point increase
from the best score by the erroneous code is the best result observed from running the fixed
version.

When just using logistic regression on the raw datasets, 98,108108%, or 363 of the
370 sound clips, were correctly paired with the person who uttered it. Performing logistic
regression, but with the datasets converted into the bit strings that were used as input to
the cellular automata produced 72.162162%, or 267 of 370, correct pairings.

Performance for the cellular automata reservoirs can be seen in Table 4.7 and Fig-
ure 4.6 to 4.8.

No rules showed exceptional performance, 104 different rules managed to correctly
classify 23.78% of the sound clips.

4.3.4 Discussion
In this experiment it seemed like the cellular automata destroyed the information that was
useful for grouping the sound clips. Even with the bug in the code fixed, it only seemed
to be able to correctly classify about half the sound clips that were correctly classified
without other transformation than converting the numbers to bit strings.

Varying R and the size of the automata does not seem to have much effect, but in-
creasing I seems to destroy valuable information slightly more, leading to fewer correctly
classified sound clips.

Apart from the transformation, there are a few other factors that might have contributed
to the low rate of correctly classified sound clips. Scikit-learn’s documentation states that

Table 4.7: Best, worst and average values for different parameters

Highest success rate Lowest success rate Average success rate
I = 8 23.78% 4.32% 11.54%
I = 16 23.78% 4.32% 11.03%

R = 8 23.78% 4.32% 11.25%
R = 16 23.78% 4.32% 11.33%

Automaton size = 21663 23.78% 4.32% 11.27%
Automaton size = 30000 23.78% 4.32% 11.31%

26

4.3 Japanese vowels dataset

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

8 16

P
er

ce
n
ta

g
e

of
co

rr
ec

tl
y

cl
a
ss

ifi
ed

sa
m

p
le

s

I

Figure 4.6: Performance for the cellular automata reservoirs for varying I.

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

8 16

P
er

ce
n
ta

ge
of

co
rr

ec
tl

y
cl

as
si

fi
ed

sa
m

p
le

s

R

Figure 4.7: Performance for the cellular automata reservoirs for varying R.

27

Chapter 4. Experiments

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

21663 30000

P
er

ce
n
ta

g
e

of
co

rr
ec

tl
y

cl
a
ss

ifi
ed

sa
m

p
le

s

CA size

Figure 4.8: Performance for the cellular automata reservoirs for varying automaton sizes.

stochastic descent gradient typically require around 106 samples before it converges, and
in this experiment only 270 different inputs were available for testing. Modifying the
numbers to save space might also have had a negative impact on performance, as the
dataset converted to a form that could be used as input to cellular automata had poorer
performance than the original dataset.

Lastly, it is possible that greater performance could be achieved by inputting one time
step at a time instead of concatenating them and inputting them at once. While information
would probably be lost in the process, this more closely emulates the time aspect of the
sound clips.

28

4.4 Temporal bit parity and density

Table 4.8: Parameters for the temporal parity task

Cellular automaton rule All 256 elementary cellular automata
I 2, 8, 16
R 2, 8, 16
Number of cells the input bit should be mapped to 1, 10
Input area (multiples of input cells) 1.0, 2.0, 4.0
CA size (multiples of input area) 1.0, 2.0, 4.0

Table 4.9: Parameters for the temporal parity and density task

First CA rule 27, 38, 39, 48, 53, 83, 105, 138, 142, 150,
154, 166, 174, 180, 208, 210

Second CA rule The same rules as the first
I 8, 16
R 8, 16
Number of cells the input bit should be mapped to 10
Input area (multiples of input cells) 2.0, 4.0
CA size (multiples of input area) 2.0, 4.0
Delay for the density output 0, 1, 2, 3, 4, 5, 6

4.4 Temporal bit parity and density

In this section the framework described in Chapter 3 will be expanded by adding a second
elementary cellular automaton rule in order to create a non-uniform cellular automaton.
The purpose of this is to see whether non-uniform cellular automata can possibly act as
better reservoirs than uniform automata. The reservoirs will be tested by having them
compute two different functions on the same input stream.

4.4.1 The problem

The two tasks for this experiment are to compute temporal bit parity and temporal bit
density for an input stream of bits. Those two function were used by Snyder et al. (2013)
to investigate the performance of Random Boolean Networks for reservoir computing.

The input to both tasks is a vector of 0’s and 1’s. Temporal bit parity should return if
there has been an odd number of 1’s in the last N time steps. Temporal bit density should
return if there has been more 1’s than 0’s in the last N time steps. Additionally, there can
be a delay of τ time steps between an input is given and the output for that time step is
expected.

In order to shrink the search space for non-uniform cellular automata, uniform cellular
automata are first allowed to solve the temporal bit parity problem. Then the best perform-
ing rules are used to look at the performance for non-uniform cellular automata. This is
done in order to be able to perform an exhaustive search of the search space.

29

Chapter 4. Experiments

Input

Input area

First CA Rule Second CA Rule

Figure 4.9: Illustration of a non-uniform CA used for temporal parity and density.

4.4.2 Solving the problem

Unlike the other experiments, this attempts to use a non-uniform CA with two different
elementary CA rules. Figure 4.9 shows the structure of the non-uniform automata used
for this experiment. Another modification that was made from the setup used previously
is that instead of mapping the input bit to just one cell, it is mapped to several cells.

Table 4.8 displays the configurations used to solve the temporal bit parity task, and
Table 4.9 displays the configurations tested for solving both temporal bit parity and density
at the same time. Note that when calculating both functions at the same time, a delay is
introduced to the density function. All the different combinations of parameters were
tested 10 times.

Training happened using 300 time steps, with a randomly generated bit. Testing was
done using 150 time steps.

The readout layer was trained using ridge regression. Similar to earlier experiments,
output in the range (−0.5, 0.5) were said to be 0, and output in the range (0.5, 1.5) were
said to be 1. For this task, the value of 0 means false while 1 means true:

The result is measured as the percentage of time steps that had a correct output. When
calculating two functions, both outputs had to be correct.

Table 4.10: Runs with 100% correct output for the parity task

I R Number of runs
2 2 0
2 8 4
2 16 2
8 2 0
8 8 14
8 16 32
16 2 16
16 8 22
16 16 32

30

4.4 Temporal bit parity and density

Table 4.11: Best, worst and average values for different parameters for the parity task

Best result Worst result Average result
1 input cell 73.33% 0% 49.55%
10 input cells 100% 0% 52.04%

Input area = 1.0 84% 0% 49.29%
Input area = 2.0 100% 0% 52.11%
Input area = 4.0 100% 0% 50.98%

Automaton area = 1.0 100% 0% 51.95%
Automaton area = 2.0 100% 0% 50.54%
Automaton area = 4.0 85.33% 0% 49.88%

0

0.2

0.4

0.6

0.8

1

1 10

C
or
re
ct
n
es
s

inputs

Figure 4.10: Performance for automata grouped by number of inputs for the parity task.

31

Chapter 4. Experiments

0

0.2

0.4

0.6

0.8

1

1 2 4

C
or
re
ct
n
es
s

Automata area

Figure 4.11: Performance for automata grouped by automata area for the parity task.

0

0.2

0.4

0.6

0.8

1

1 2 4

C
or
re
ct
n
es
s

Input area

Figure 4.12: Performance for automata grouped by input area for the parity task.

32

4.4 Temporal bit parity and density

Table 4.12: Best, worst and average values for uniform and non-uniform automata with varying
delays.

Best result Worst result Average result
Uniform automata
Delay = 0 1.000000 0.280000 0.687089
Delay = 1 0.980000 0.300000 0.671021
Delay = 2 0.970000 0.270000 0.655383
Delay = 3 0.950000 0.206667 0.645520
Delay = 4 0.940000 0.313333 0.640092
Delay = 5 0.943333 0.230000 0.621846
Delay = 6 0.893333 0.173333 0.607762
Non-uniform automata
Delay = 0 1.000000 0.153333 0.701950
Delay = 1 1.000000 0.186667 0.679857
Delay = 2 1.000000 0.210000 0.657042
Delay = 3 1.000000 0.116667 0.635057
Delay = 4 1.000000 0.070000 0.617650
Delay = 5 1.000000 0.146667 0.602109
Delay = 6 1.000000 0.056667 0.589444

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6

C
or
re
ct
n
es
s

Delay for density task

Figure 4.13: Performance for uniform automata for varying delays.

33

Chapter 4. Experiments

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6

C
or
re
ct
n
es
s

Delay for density task

Figure 4.14: Performance for non-uniform automata for varying delays.

4.4.3 Results
For the parity tasks, increasing both I and R had positive effect on the amount of correct
classifications. Table 4.10 displays the amount of runs with 100% correct output for dif-
ferent values of I and R. Figure 4.10 to 4.12 display performance for different amount of
input cells, and input and automaton areas. Information about the performance of those
parameters can also be found in Table 4.11.

The most successful rules for the parity tasks were 154, 210, 39, 27, 83, 180, 166, 53,
105, 138, 142, 174, 48, 150, 208, and 38 in decreasing order of most 100% successful
runs. These were the rules that were used in the non-uniform automata.

How the automata performed on both temporal bit parity and bit density at the same
time can be seen in Figure 4.13 and 4.14, and in Table 4.12.

4.4.4 Discussion
For the parity task, using just one cell for input did not manage to produce 100% correct
results. Optimal performance was achieved when there were twice as many cells as input
cells, and leaving a part of the cellular automaton that did not have any input mapped to it
did not seem to increase the performance.

When trying to solve two tasks at once, only the non-uniform automata were able to
get 100% correct output when there was any delay to the density function. However, with
the non-uniform automata, variance was also higher, with the extremes being further from

34

4.4 Temporal bit parity and density

the mean. The average performance also seemed to suffer a bit in the non-uniform case.
Part of the difference may come from a weakness in the methodology, however, as there
were 15 times more runs with non-uniform automata than uniform automata.

The non-uniform automata could also possibly be refined in order to increase their
performance. An exhaustive search of all the elementary cellular automata rules may find
better solutions than with just searching through the rules that performed well at the parity
task alone. Making the automata more non-uniform with different structures and sizes for
the different rule sections may also enhance the reservoir performance in certain cases.

35

Chapter 4. Experiments

36

Chapter 5
Analysis

5.1 Performance of individual cellular automaton rules

Table 5.1 shows lambda values for the elementary cellular automata rules with best perfor-
mance in the experiments conducted in this thesis. 75% of the rules had a λ of 0.5, even
though only 27.3% of the elementary cellular automata rules have a λ of 0.5. A λ value
of 0.5 is associated with chaotic rules where information is transmitted rapidly throughout
the automaton. Good rules were found outside of λ = 0.5, but it seems like limiting a
search for rules around λ = 0.5 could limit the search space while keeping many of the
best rules. These findings match the theory propsed by Langton (1990), who suggests that
cellular automaton rules around λ = 0.5 are in a critical state between two phases, and
that these are the automaton rules with most interesting behavior, capable of supporting
the most complex types of computation.

Every additive rule except rule 0, which discards the entire input, and 204, which
simply remains static regardless of input, are also among the best performing rules in
this thesis. Rule 60, 90, 102 and 150 were all among the rules that managed the 5-bit
task. Those four rules are all equivalent with an XOR-operation between two cells in
the neighborhood, or all three cells in the case of rule 150. They seem able to retain
information about the input pattern even after prolonged period of having a noise signal
added.

The two remaining additive rules, 170 and 240, were among the best scoring rules
for the 30th order NARMA experiment. They do not perform any calculation, instead, the
transformation function copies the state of the cell to the right or the left respectively. Sim-
ply estimating NARMA through regression gives very high errors, so something else has
to perform some sort of transformation. The only thing that can add any more information
is the random mapping to the different automata. In this specific case, different random
mappings let some bits live longer than others before they are overwritten by new input.

37

Chapter 5. Analysis

Table 5.1: The best performing rules and their λ-values

Rule λ Which benchmark did the rule perform well in
15 0.5 30th order NARMA
27 0.5 Temporal parity
34 0.25 30th order NARMA
38 0.375 Temporal parity
39 0.5 Temporal parity
48 0.25 30th order NARMA, temporal parity
53 0.5 Temporal parity
60 0.5 5-bit memory task
83 0.5 Temporal parity
85 0.5 30th order NARMA
90 0.5 5-bit memory task
102 0.5 5-bit memory task
105 0.5 5-bit memory task, temporal parity
119 0.75 30th order NARMA
138 0.375 30th order NARMA, temporal parity
142 0.5 Temporal parity
150 0.5 5-bit memory task, temporal parity
153 0.5 5-bit memory task
154 0.5 Temporal parity
165 0.5 5-bit memory task
166 0.5 Temporal parity
170 0.5 30th order NARMA
174 0.625 Temporal parity
180 0.5 5-bit memory task, temporal parity
195 0.5 5-bit memory task
208 0.375 Temporal parity
210 0.5 Temporal parity
240 0.5 30th order NARMA

38

5.2 Viability

5.2 Viability
Cellular automata for reservoir computing seem like a promising field of research. The
very simplest cellular automata, tested in this thesis, show interesting behavior and are able
to achieve surprising performance given the relative simplicity of the dynamics compared
to echo state networks.

5.2.1 Resource constraints
Individual computation in the cellular automata are very inexpensive, speed was typically
not an issue. Memory usage, however, was mainly the limiting factor of the experiment
parameters. This was especially true for all the experiments using offline training methods,
as the entire training set with the entire reservoir states for all input, had to be kept in
memory at the same time. Online training could potentially prove very useful, as the
entire training set is not required to be in memory at the same time. The one attempt at
online training in this thesis gave poor results, but that could very possibly be attributed to
a bad choice of dataset for use with cellular automata.

5.2.2 Input/output restrictions
With elementary cellular automata the input has to be given as a string of bits. Everything
on a conventional computer has an underlying bit representation, but it seems like this
may not always provide meaningful solutions, as seen in the Japanese vowels classifica-
tion. Despite that, it seemed like elementary cellular automata were still able to perform
some meaningful transformation on the bits of the real-valued numbers given in 30th order
NARMA prediction.

Memory usage was acceptable for the experiments were run, although much memory
was wasted, as a single byte was used for every cell state. In order to support larger
reservoirs, eight cells could be packed into one byte, although custom code would probably
have to be made for performing regression and estimating on the packed cells. Larger
reservoirs seem to perform better than smaller ones in many cases. However, performance
seems to increase very slowly compared to the reservoir size, so increasing the complexity
of the reservoirs may prove more useful as a means of generating better reservoirs.

39

Chapter 5. Analysis

40

Chapter 6
Conclusion

6.1 Computational capabilities
Are cellular automata capable of acting as reservoirs for tasks that typically are solved by
conventional reservoir computing approaches?

Elementary cellular automata are capable of increasing the dimensionality of input
signals, making it possible to estimate non-linear systems with a linear combination of
cell states. The cellular automata seem capable of remembering input for a large number
of time steps even with when receiving a noise signal. Even though elementary cellular
automaton cells are only able to represent a bit each, they are able to perform meaningful
operations when the input is given as a floating point number.

When analyzing voice recordings, the automata seemed to destroy information. How-
ever, it is quite possible that different encoding schemes and other cellular automaton will
be able to improve on the results found in this thesis.

6.2 Performance
How does changing properties of a cellular automaton reservoir affect its performance?

Increasing the size of the reservoirs, either by adding more automata, or transforming
them for more iterations, seem to increase the capabilities of cellular automata as reser-
voirs. Tuning seems to be required for every individual problem however, and increasing
the amount of iterations might not lead to increased performance in specific cases.

Larger automata generally imply more memory in the reservoir, but too large automata
typically decrease their performance. More memory means potentially more noise, and in
many cases it is desirable that old input gradually “fade away” from the reservoir.

Encoding input signals for input to the automata seems to play an important part in the
process. Simply mapping input bits to different cells on different automata seems to affect
how well a reservoir performs its task.

More complex dynamics, in the form of non-uniform cellular automata also seems

41

Chapter 6. Conclusion

like a viable method to increase what problems cellular automata are capable of solving.
A set of different rules operating on the same cell grid may solve more complex problems
without a significant difference in the time it takes to calculate the transformations.

6.3 Summary
In conclusion: are cellular automata are able to act as performant reservoirs for tasks
traditionally being solved by a reservoir computing approach?

Elementary cellular automata are able to perform some of the same tasks as other
reservoir computing systems. Very large reservoirs may be needed to get performance
comparable to conventional approaches. However, cellular automata may be implemented
very efficiently on certain hardware platforms, making very large reservoirs viable.

6.4 Further work
The use of cellular automata with reservoir computing shows promising results, but much
work remains to be done in order to make it a viable alternative to conventional approaches
to reservoir computing.

The cellular automaton rule space remains mostly unexplored. Increasing the amount
of states could lead to more advanced computations without affecting the amount of in-
structions it takes to calculate the transformation too much. Additional states could also
bring more options when it comes to input. For instance, it is possible to imagine a scheme
where new input would not blindly overwrite the underlying state, but interact with it
somehow when new input was imprinted on the automaton cells. More states could also
be used to bring a more explicit notion of fading memory, where cell state could decay
over time.

Increasing the neighborhood size would also let cells interact more easily, possibly
requiring less iterations of transformation to perform calculations. Additionally, new di-
mensions could be added, increasing possibilities for cell states to propagate and interact.
More dimensions could also help prevent the loss of data due to overwriting the state of
input cells, as there are more cells to store the information that are not overwritten.

Simply adding more cells and dimensions blindly will not necessarily lead to better
performance in all cases, though. Fading memory is often a desirable trait in reservoirs,
especially for time series estimation, as it usually gets increasingly likely that old infor-
mation will not be necessary the older it gets. And while noise from old data might not
hurt performance directly, too much of it will slow down both the reservoir and the read-
out layer. It may be interesting to see how much data we really need from the reservoirs,
whether some of it can be discarded. By being able to discard some data, it may be possible
to support even larger reservoirs to increase performance.

This thesis briefly experimented with non-uniform automata. Instead of having multi-
ple reservoirs for performing different calculations on the same input, is there a “perfect”
reservoir consisting of several rules, each exchanging some information with each other,
capable of computing everything at once?

42

Bibliography

All URLs were checked on June 17, 2016.

Appeltant, L., Soriano, M. C., Van der Sande, G., Danckaert, J., Massar, S., Dambre, J.,
Schrauwen, B., Mirasso, C. R., and Fischer, I. (2011). Information processing using a
single dynamical node as complex system. Nature communications, 2:468.

Atiya, a. F. and Parlos, a. G. (2000). New results on recurrent network training: unifying
the algorithmsand accelerating convergence. Neural Networks, IEEE Transactions on,
11(3):697–709.

Burks, A. W. and Von Neumann, J. (1966). Theory of self-reproducing automata. Univer-
sity of Illinois Press.

Cattaneo, G., Dennunzio, A., Formenti, E., and Provillard, J. (2009). Non-uniform cel-
lular automata. In Language and Automata Theory and Applications, pages 302–313.
Springer.

de Carvalho, C. E. and de Oliveira, P. P. (2015). Sorting with one-dimensional cellular
automata using odd-even transposition. In New Contributions in Information Systems
and Technologies, pages 523–532. Springer.

Farstad, S. S. (2015). Evolving Cellular Automata in-Materio. Master’s thesis, Norwegian
University of Science and Technology.

Fernando, C. and Sojakka, S. (2003). Pattern Recognition in a Bucket. Advances in
Artificial Life, 2801(12):588–597.

Hettich, S. and Bay, S. (1999). The uci kdd archive. [http://kdd.ics.uci.edu/]
Irvine, CA: University of California, Department of Information and Computer Science.

Hochreiter, S. and Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computa-
tion, 9(8):1735–1780.

Ilies, I., Jaeger, H., and Kosuchinas, O. (2007). Stepping forward through echoes of the
past: forecasting with echo state networks. http://citeseerx.ist.psu.edu/

43

http://kdd.ics.uci.edu/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.295.4576{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.295.4576{&}rep=rep1{&}type=pdf

viewdoc/download?doi=10.1.1.295.4576{&}rep=rep1{&}type=
pdf.

Jaeger, H. (2001). The echo state approach to analysing and training recurrent neural
networks. GMD Report, (148):1–47.

Jaeger, H., Lukoševičius, M., Popovici, D., and Siewert, U. (2007). Optimization and
applications of echo state networks with leaky- integrator neurons. Neural Networks,
20(3):335–352.

Jones, B., Stekel, D., Rowe, J., and Fernando, C. (2007). Is there a Liquid State Machine
in the Bacterium Escherichia Coli? 2007 IEEE Symposium on Artificial Life, pages
187–191.

Kudo, M., Toyama, J., and Shimbo, M. (1999). Multidimensional curve classification
using passing-through regions. Pattern Recognition Letters, 20(11):1103–1111.

Langton, C. G. (1990). Computation at the edge of chaos: Phase transitions and emergent
computation. Physica D: Nonlinear Phenomena, 42(1-3):12–37.

Lukoševičius, M., Jaeger, H., and Schrauwen, B. (2012). Reservoir Computing Trends. KI
- Künstliche Intelligenz, 26(4):365–371.

Maass, W., Natschlager, T., and Markram, H. (2002). Real-time computing without stable
states: a new framework for neural computation based on perturbations. Neural Comput,
14(11):2531–2560.

Neary, T. and Woods, D. (2006). P-completeness of cellular automaton Rule 110. In
Automata, Languages and Programming, pages 132–143. Springer.

Nikolic, D., Singer, W., Haeusler, S., and Maass, W. (2007). Temporal dynamics of in-
formation content carried by neurons in the primary visual cortex. Advances in Neural
Information Processing Systems 19, pages 1041—-1048.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 12:2825–2830.

Rendell, P. (2002). Turing universality of the game of life. In Collision-based computing,
pages 513–539. Springer London.

Santé, I., Garcı́a, A. M., Miranda, D., and Crecente, R. (2010). Cellular automata models
for the simulation of real-world urban processes: A review and analysis. Landscape and
Urban Planning, 96(2):108–122.

Snyder, D., Goudarzi, A., and Teuscher, C. (2013). Computational capabilities of random
automata networks for reservoir computing. Physical Review E - Statistical, Nonlinear,
and Soft Matter Physics, 87(4):1–9.

44

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.295.4576{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.295.4576{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.295.4576{&}rep=rep1{&}type=pdf

Steil, J. J. (2004). Backpropagation-Decorrelation: Online recurrent learning with O(N)
complexity. IEEE International Conference on Neural Networks - Conference Proceed-
ings, 2:843–848.

Triefenbach, F. and Martens, J. P. (2011). Can non-linear readout nodes enhance the
performance of reservoir-based speech recognizers? Proceedings - 1st International
Conference on Informatics and Computational Intelligence, ICI 2011, (1):262–267.

Vandoorne, K., Mechet, P., Van Vaerenbergh, T., Fiers, M., Morthier, G., Verstraeten, D.,
Schrauwen, B., Dambre, J., and Bienstman, P. (2014). Experimental demonstration of
reservoir computing on a silicon photonics chip. Nature communications, 5.

Verstraeten, D., Schrauwen, B., Dieleman, S., Brakel, P., Buteneers, P., and Pecevski, D.
(2012). Oger: modular learning architectures for large-scale sequential processing. The
Journal of Machine Learning Research, 13(1):2995–2998.

Wolfram, S. (2002). A new kind of science. Champaign, IL: Wolfram Media.

Wolpert, D. H. (2002). The supervised learning no-free-lunch theorems. In Soft Computing
and Industry, pages 25–42. Springer.

Wyffels, F., Schrauwen, B., and Stroobandt, D. (2008). Stable output feedback in reservoir
computing using ridge regression. In International Conference on Artificial Neural
Networks.

Xiao, X., Wang, P., and Chou, K.-C. (2011). Cellular automata and its applications in
protein bioinformatics. Current Protein and Peptide Science, 12(6):508–519.

Yildiz, I. B., Jaeger, H., and Kiebel, S. J. (2012). Re-visiting the echo state property.
Neural networks, 35:1–9.

Yilmaz, O. (2014). Reservoir Computing using Cellular Automata. http://arxiv.
org/abs/1410.0162.

Yilmaz, O. (2015). Connectionist-Symbolic Machine Intelligence using Cellular Au-
tomata based Reservoir-Hyperdimensional Computing. http://arxiv.org/abs/
1503.00851.

45

http://arxiv.org/abs/1410.0162
http://arxiv.org/abs/1410.0162
http://arxiv.org/abs/1503.00851
http://arxiv.org/abs/1503.00851

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	

	
	

	
	
	
	

	
	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	

