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Abstract

This master thesis seeks to develop a BWIM system by using the programming environment

Matlab, based on existing Bridge Weigh-in-Motion systems and the founding theories behind

it. The developement uses a beam model to create a strain signal based on it’s properties and

moment influence line. The beam model is subjected to moving loads representing train axles,

which induces strain at a sensor placed arbitrarily along the beam. To use as realistic a signal as

possible through this model, white gaussian noise and dynamic effects are included in the signal.

The resulting signal is used to develope and validate the BWIM algorithm. When the methods

for finding speed and axle distances was within a decent level of accuracy, the developement of

a linear matrix method for finding the influence lines was the next phase. This was based on

the properties of the train inducing the signal and the signal itself. This thesis shows how the

different elements of a BWIM program can be solved programaticly.

The thesis’ empirical data was collected from Leirelva railway bridge, where a setup of strain

gauges measured the bridge response for in all 6 different trains. This data was then used

to analyse how a BWIM system would perform for this typical early 1900’s Norwegian steel

railway bridge. Identifying the passing trains velocities proved to be of particular importance

to the BWIM system. The velocities of the trains were found through a brute force method.

The matrix method proved to perform well for all the different signals, creating a influence line

capable of nearly recreating the original signal, given the speed, and axle distances and weight.

However, since the actual train weights was unattainable it was not possible to control the

identified influence lines by using them to calculate the axle weights for comparison. The final

influence lines used for calculation of axle weights, was obtained by averaging the results for the

different train passages and a final filtering to rid the resulting influence line of unwanted noise.

This thesis highlights the difficulties of developing a BWIM system. By analysing how it

performed for the data material from Leirelva bridge, the thesis shows that a BWIM system

likely will work for these types of bridges.

The source code of this thesis will be made available on https://github.com/torholmslette-

bak/master2016



Sammendrag

Denne masteroppgava søker å utvikle et ’Bridge Weigh-in-Motion-system’ gjennom programmer-

ingsmiljøet Matlab, ved å ta utgangspunkt i eksisterende BWIM-systemer og de grunnleggende

teoriene bak. Gjennom utviklingen av BWIM-systemet benyttes en bjelkemodell for å lage et

tøyningssignal, basert på modellens egenskaper og momentinfluenslinje. Bjelkemodellen blir ut-

satt for bevegelige laster som representerer togaksler. Lastene induserer tøyning i en sensor som

er plassert vilkårlig langs bjelkemodellen. For å bruke et så realistisk signal som mulig, har hvit

gaussisk støy og dynamiske effekter blitt inkludert i signalet. Det resulterende signalet inkludert

effekter brukes til å utvikle og validere BWIM-algoritmen. Når metodene for å finne hastigheten

og akslingsavstanden til lastene ble funnet å være innenfor god nøyaktighet, ble neste trinn å

utvikle en lineær matrisemetode for å finne influenselinjene. Matrisemetoden tar i bruk togets

vekt, fart og akselavstand, og signalet selv. Denne masteroppgava viser hvordan ulike elementer

av et BWIM program kan løses programmatisk.

Masteroppgavas empiriske data har blitt samlet fra Lerelva jernbanebru, hvor utplasserte

tøyningssensorer målte responsen av seks ulike tog. Disse dataene ble deretter brukt til å anal-

ysere hvordan BWIM-systemet fungerer for denne typiske tidlig 1900-talls norske jernbanebrua

i stål. Å finne hastigheten til passerende tog viste seg å være av stor viktighet for BWIM-

systemet. Togenes hastighet ble funnet gjennom en ’brute force’ metode. Matrisemetoden viste

seg å fungere bra for de ulike signalene, gitt gode estimater av togets hastighet, akselsavstand og

akselsvekt. Siden de faktiske akselvektene til togene ikke er kjent, kunne ikke akselvektene som

er beregnet gjennom de kalkulerte influenslinjene bli kontrollert ved sammenligning av faktiske

verdier. De endelige influenslinjene brukt til beregningen av akselvekter, ble funnet ved å ta

gjennomsnittet av resultatene for de ulike togpasseringene og en endelig filtrering av uønsket

støy.

Masteroppgava framhever vanskelighetene ved utviklingen av et BWIM-system. Gjennom

å analysere hvordan systemet fungerte for datamaterialet fra Lerelva bru, viser oppgava at et

BWIM-system har gode forutsetninger for å fungere for denne brutypen.

Kildekoden brukt i masteroppgava vil bli gjort tilgjengelig via https://github.com/torholm-

slettebak/master2016

ii



Preface

This semester I got the opportunity to work with my favourite type of construction - bridges. I

got to implement a system capable of weighing a train while it passes a bridge. This has been

a major challenge including an infinite number of bugs and other problems. To actually be part

of, and hopefully contribute to, a very interesting and limitless technology has perhaps been the

highlight of my time spent at NTNU.
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Lauer for the oportunity to work with BWIM, as well as their valuable input and many hours

of help to a student sometimes lost within the world of BWIM.
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1. Introduction

1.1 Background

The Norwegian railway network covers large distances of Norway where sea, mountains and

rivers causes the need of a large number of bridges. There are over 3000 railway bridges in

Norway [11], many of which were built in the period 1900 - 1950. This means that many bridges

are around 100 years old and are closing in on their designed lifespan, and are built with old

methods and steel. The railway is in constant evolution, and over time the train velocities has

increased as well as traffic density. With lifespans of around 100 years, a steel railway bridge

needs properties to withstand weather and continous loading. This means continous inspections

of bridges are required. Every sixth year Norwegian bridges are subject of a major inspection, for

uncovering corrotion, and other damages of fatigue. This is a process demanding time, resources

and manpower. Therefore good estimates of traffic impact on older and newer bridges are a

necessity.

Bridge weigh-in-motion (BWIM) technologies was first developed in the USA in 1978. The

initial system consisted of strain sensors placed beneath the bridge and sensors beneath the road,

but systems using only strain sensors also exists. The general principle of a BWIM system is

that a vehicle’s axles induce strain in the bridge proportional to the influence ordinate and the

magnitude of axle load. Thus from knowing the influence line for a sensor location and the

measured strain, the axle weights can be calculated. In both road traffic and railway, static

scales have been, and still are, used to determine a vehicle or trains weight. The static nature of

such a system requires that the vehicle stands still, which limits traffic flow and causes general

inconvenience for both people performing the weighing and the drivers occupying the vehicles.

Bridge weigh-in-motion gives the abilty to determine traffic flow over a bridge and the ability

to monitor weight of trains, and thus to detect possible overloading of trains. The BWIM

system can be implemented so that it provides a continous data flow and automatic detection

of trains and calculations of axle weights. This would provide information of bridge behaviour

for different types of trains, different loads, and weather conditions. It will also provide data

describing dynamic effects on the bridge. This data could be used to find the optimal crossing

velocities for different train types. A permanent BWIM system providing continuous data could
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measure changes of bridge property over time, making it a bridge health monitor. Changes in

the bridge could be detected without a major inspection. A BWIM system could in theory

detect internal changes of a bridge, which could go undetected by a visual inspection. BWIM

traffic data including vehicle loads and traffic density can be combined with degradation data

to estimate how traffic density affects the aging of a bridge. It can over time provide us with

estimates of what demands future bridges spanning similar crossings will be subjected to.

BWIM systems have in general been used for road bridges, and different versions of BWIM

is used in Europa, USA and Australia. For railway bridges this is not the case, according to

González, [1] only Liljencranz’s [5] and one other implementation of BWIM for railwaybridges

have been made. Compared to road traffic, a railway bridge has constant properties making it

suitable for BWIM. The trains always follow the same track on a single track bridge, thus a

BWIM railway system doesn’t need to make special considerations for transversal effects varying

from train to train. Also, with a single track rail, the BWIM system doesn’t need to account for

multiple vehicle events. On the other hand, it requires capabilities to deal with a large number

of axles, and long strain signals.

1.2 Research objectives

The main goal of this master thesis is to develope and investigate methods of calculating influence

lines for steel railway bridges. A working method for calculating influence lines will enable

a BWIM system to be installed on any bridge without having to build a full CAD or frame

model. A direct calculation of influence lines by hand for an existing bridge is possible, but this

is something which will entail a lot of work, and because of degradation of bridges it might be

difficult to correctly determine it’s properties. Since the influence lines for a bridge are difficult to

derive by hand, one of my goals for this thesis is to further develope and test the algorithm from

the Matrix method. Influence lines are one of the main foundations in BWIM. To accomplish

calculating influence lines, I will develope my own version of a BWIM program. This thesis will

focus on a system independent of axle detectors, using only the strain gauges placed on a bridge

to perform BWIM. To do this, I have chosen the script language Matlab which well adapted

for this thesis’ puroses because of it’s extensive math libraries, plotting abilities, toolboxes and

simplicity which suits an early developement phase.

The goals of this master thesis:

1. Implement a working BWIM system

2. Implement methods for calculating the influence lines for an arbitrary bridge.

3. Identify good practices for building a BWIM system.

4. Analyse how Bridge weigh-in-motion works for a typical Norwegian steel railway bridge,

through measurement data from Lerelva bridge.

2



2. Theory

This chapter contains theory that is fundamental for the thesis. This includes mathematical

theory, and description of methods that enables the implementation of my BWIM system.

2.1 Bridge Weigh-in-Motion

A Bridge weigh-in-motion system is based on measurements of a bridge’s deformation. The

BWIM system uses these measurements to calculate passing vehicles axle loads. There are

different approaches to assembling such a system, but they typically consists of a strain gauge

measuring the strain induced by passing vehicles, an axle detector used to find the vehicle speed,

and spacing of axles and a computer or data storage device. An algorithm is then able to use

the data gathered from the axle detector and strain gauge to calculate axle loads. This thesis

will focus on a system independent of axle detectors, using only the strain gauges placed on a

bridge to perform BWIM.

2.1.1 Moses’ Algorithm

"Moses’ algorithm is based on the fact that a moving load along a bridge will set up stresses in

proportion to the product of the value of the influence line and the axle load magnitude. The

influence line being defined as the bending moment at the point of measurement due to a unit

axle load crossing the bridge" [13, p. 35]. Each individual girder’s stress is related to moment:

σi =
Mi

Wi
(2.1)

Expressing the moment in terms of strain gives

Mi = Wiσi = EWiεi (2.2)

Where:

σi = the stress in the i’th girder

Mi = the bendind moment in the i’th girder

Wi = the section modulus

3



E = The modulus of elasticity

εi = strain in the i’th girder

The sum of the individual girder moments is therefore:

M =

N∑
i=1

Mi =

N∑
i=1

EWiεi = EW

N∑
i=1

εi (2.3)

The sum of the girder strains is proportional to the gross bending moment. The total bending

moment and the measured strain is thus directly related by EW . These constants can be

calculated through the bridge’s dimensions and material properties. However through measuring

the effects of a known vehicle passing the bridge these constants can be derived.

Weigh in motion is an inverse type problem, the strain is measured and the cause of the strain

is to be calculated. The theoretical bending moment corresponding to axle loads on the bridge

at one strain sample, is given by:

MT
k =

N∑
i=1

AiI(k−Ci) (2.4)

Ci = (Li × f)/v (2.5)

Where:

N = the number of vehicle axles

Ai = the weight of axle i

Ik−Ci
= the influence line ordinate for axle i at sample k

Li = the distance between axle i and the first axle in meters

Ci = The number of strain samples corresponding to the axle distance Li

f = the strain gauge’s sampling frequency, in Hz

2.2 Influence lines

A influence line can be defined as: "A graph of a response function of a structure as a function of

the position of a downward unit load moving across the structure [4]." For a BWIM system this

response function typically is the bending moment at the sensor location. The influence line can

be found through assembling a model of the bridge in any CAD or frame-program. This would

however take a lot of time, especially for more advanced bridges. Depending on the support of

the bridge, the influence lines takes different theoretical forms, as seen in Figure 2.1. The true

influence line for a bridge lie somewhere in between the simply supported and fixed version [12,

p. 146].

Znidaric and Baumgärter [12], did a study on the effects of choice of influence line. This

study shows errors up to 10% for a short 2m bridge span, and errors of several hundred percent

4



Figure 2.1: Influence lines for simply and fixed supported bridges, figure from [13]

for a 32m bridge span, when using an incorrect influence line. This is illustrated by figure 2.2,

showing how a veihicles gross weight is affected when the influence line is varied from a simply

supported version to a fixed support version. This underlines the importance of using correct

influence lines for a BWIM system.

Figure 2.2: Errors of axle loads due to wrongly selected influence lines, figure from [13]

2.2.1 Using influence lines in the BWIM system

Even if a correct influence line for a BWIM setup is found, wrong placement of the influence line

with respect to the strain signal is a major source of error. In theory it should be possible to

detect the excact point of an axle passing over the sensor, as it results in a peak in the strain

signal. This peak corresponds to the major peak in the influence line. A good example of this

is seen in figure 2.3, which shows the influence line aligned with the strain signal from a 3 axle

vehicle. The first peak of the strain signal corresponding to the the first axle of the vehicle should

occur at the same location as the the peak of the influence line, which should be precisely at the

sensor location. For closely spaced axles it may be difficult to detect the individual peaks, because

they both influence the sensor at the same time, and because of system noise and dynamics.
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Figure 2.3: Placement of influence lines, influence line has been scaled.

2.2.2 Influence line through the Matrix Method

Quilligan [13] developed a Matrix method to calculate the influence line of a bridge through the

measured strain induced by a vehicle. This method is derived from Moses’, equation 2.6. The

Matrix method calculates an influence line for a specific strain signal, given a known train with

known axle weights and velocity. The found influence line is therefore subject to system noise and

dynamics which are likely to vary from vehicle to vehicle. An averaging of a sufficient number

of calculated influence lines should reduce the dynamic effects. The following description of the

Matrix method is an extension of Quilligans thesis "Bridge Weigh-in Motion : Development of a

2-D multi-vehicle algorithm [13]", and shows the math for a general case with unlimited number

of vehicle axles. In the appendix C, it is shown how the main part of the following description

of the Matrix method has been implemented in Matlab.

Error =

K∑
k=1

[εmeasured
k − εtheoreticalk ]2 (2.6)

Equation 2.6 were originally used to filter out the dynamic response of the bridge. The theoretical

strain in this equation can be expressed as a product of axle loads and influence ordinates at

sampling points, see equation 2.4, thus we can expand equation 2.6:

Error =

K∑
k=1

[
εmeasured
k −

( N∑
i=1

AiI(k−Ci)

)]2
(2.7)
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The set of influence ordinates I that minimizes Error, forms the wanted influence line.

∂Error

∂IR
=

∂
∑K

k=1

[
εmeasured
k −

(∑N
i=1 AiI(k−Ci)

)]2
∂IR

(2.8)

For a given number of known axle loads this equation comes down to a set of (K −Cn) number

of linear equations. Rearranging the equations and writing them in matrix form leads to:

[
Am

]
K−CN ,K−CN

{
I
}
K−CN ,1

=
{
M

}
K−CN ,1

(2.9)

Where:{
M

}
= a vector depending on axle weights and measured strain, Mi,1 =

(∑N
j=1 Ajε(i+Cj)

)
[
Am

]
is a matrix depending only on the axle loads, defined by equation 2.10.

[
Am

]
=

N∑
i=1

N∑
j=i

[
Am

]
+
(
AiAj

[
D
]
Cj−Ci

)
(2.10)

Which produces the upper triangle of the symmetric
[
Am

]
which through the transpose operation

can be used to build the full matrix. Where:[
D
]
Cj−Ci

= a matrix containing only one diagonal of ones, where the diagonal is placed with

an offset, Cj − Ci, from the center matrix diagonal.

Solving equation 2.9 for the influence ordinate vector gives the influence line for the strain history.

This can be done through inversion of the
{
Am

}
(equation 2.10) so that

{
I
}

=
{
Am

}−1

or

other numerical solutions like a Cholesky factorization. In this project this was done through

Matlab’s "\" operator [8]. When the influence line and the axle spacings are known, the axle

weights can be calculated by solving

A =
{
I
}
\ε (2.11)

2.3 Finding the train’s speed

By identifying a peak representing the same axle in the strain signals for two different sensors.

The time difference between two such peaks is the time the train uses to travel the distance

between the two sensors. Given the known distance between the sensors, s, the velocity is given

by v = s/t. Through doing cross correlation between two sensors strain signals. Cross correlation

measures the similarity between two signals as a function of the lag. This can be used to identify

the lag between two similar signals. The cross correlation of two signals has maximum value at

the lag equal to the delay. The time delay is then a product of the sampling frequency and the

lag in samples.
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2.4 Filtering and noise

All signals are subjected to noise, which can be defined as

"Unwanted disturbances superposed upon a useful signal that tend to obscure its

information content" [14]

Noise in a BWIM system can be intrinsic noise, that is noise generated inside a system, and

extrinsic noise which is noise generated outside the system. A train approaching the BWIM

sensors may be a source of extrinsic noise. Performing Bridge weigh-in motion relies upon the

information provided by the sensor signals. When finding the distances between axles, noise is

a source of distortion which may increase error of found distance. It may also make it difficult

for the program to detect the desired peaks in the signal which corresponds to the trains axles.

Smoothing the signal may therefore be completely necessary for a BWIM system. During the

developement of my version of BWIM for this thesis, several attempts on finding and using

appropriate noise filters have been made. Matlab contains many such filter functions which can

be used, such as a Butterworth and SGOLAY filters. These were both tested and partially used,

but are not directly present in my final BWIM system. The Butterworth filter nevertheless,

proved worthy for identifying signal peaks in the development fase.

2.4.1 Noise smoothing through fourier transformation

MathWorks Practical Introduction to Frequency-Domain Analysis, see [9], describes how fre-

quency analysis can be done with Matlab:

"Frequency-domain analysis shows how a signal’s energy is distributed over a range

of frequencies. A signal can be converted between the time and frequency domains

with a pair of mathematical operators called a transform. An example of this is the

Fourier transorm which decoposes a function into the sim of a number of sine wave

frequency components. The ’spectrum’ of frequency components is the frequency

domain representation of the signal. The inverse Fourier transform converts the

frequency domain function back to a time function."

Performing a fast fourier transformation in matlab on a vector signal, gives the oportunity to

remove unwanted frequencies from the signal. When the signal is transformed into the frequency

domain, setting all the frequencies above 30 Hz to zero and then transforming the signal back

into the time domain would smooth a typical BWIM signal greatly. Figure 2.4 shows filtering of

a strain signal where frequencies above 20 Hz have been eliminated.
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Figure 2.4: Figure showing filtering of a signal, where frequencies above 20 Hz in the signal have

been eliminated
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3. Method

This chapter describes the methods used in the thesis, and how the empirical data was obtained.

3.1 Programming a BWIM system

In the theory chapter we learned how a BWIM system works, the math behind it, and looking

into how others have devloped such systems. This master thesis’ goal is to create a working

BWIM program. Matlab is chosen as the developement languague for the following reasons:

• Matlabs excellent plotting properties

• Simplicity

• Good tools for analysing and debugging the code

• Its large library of toolboxes and functions

Using Matlab [10], and wanting to make the BWIM program as simple and efficient as

possible, I built a simple beam model of a bridge for simulating moving loads crossing it. The

moving loads are crossing the longitudinal direction of the beam, simulating a passing train like

shown in figure 3.1. The beam model was used to develope and validate the BWIM algorithm.

axle2 axle1

v
axlespacing

strain sensor

Figure 3.1: Beam model for developement of BWIM

A simple flow diagram describing the BWIM program:
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initialize

model
user BWIM instruments

Read
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Calculate

vehicle

velocity

Find axle
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Is

influence

line

known?

Calculate

influence

line

Save to

system,

for future

averaging

Build

influence

ordinate

matrix

Solve

system

for axle

weights

A = I\ε

signal

no
yes

Figure 3.2: Flow chart describing a BWIM system

This flow chart shows the main parts of how my BWIM system is designed. Help functions

solving small tasks for each box in the chart are excluded.

3.1.1 Producing a strain signal

Through the theoretical moment influence lines of the beam, a strain signal can be built through

the moment-strain relationship, found in equation 2.3, for a given set of axle weights. A simple

beam bridge model, as seen in figure 3.1, will not recreate a actual bridge strain signal but

will be used to create a working BWIM system. The produced strain signal will differ from

an actual strain signal mostly because of dynamics, from the train and bridge, and because

actual boundary conditions of a bridge will differ from the boundary conditions of a simple beam

model. The strain sensors will also produce noise distorting the signal. To make as good a signal

as possible, some effort were placed into recreating the effect mentioned above. To add noise

to the signal, white gaussian noise was included in the signal through Matlabs wgn function

"http://se.mathworks.com/help/comm/ref/wgn.html". Such a produced signal can be seen in

figure 3.3, which is produced by 8 axles moving across the bridge at 20 m/s.
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Figure 3.3: Strain signal created through beam model, sensor locations are as shown in sketch

of the BWIM setup for Leirelva bridge 3.6

This theoretical strain signal will vary greatly from an actual strain signal measured on a

bridge. The beam model used to develope this strain signal, may be comparable with simple

bridge types like a single span slab bridge, but will not be comparable with more complex

bridges. However for developing a BWIM program the simple beam model will suffice as the

different modules of BWIM will be roughly the same no matter the bridge type.

3.2 System setup at Lerelva bridge

The Department of Structural Engineering had access to Lerelva bridge for test purposes, where

we installed sensors using equipment on the underside of the bridge. Lerelva bridge is a typical

Norwegian railway bridge built in 1921 and many similar bridges exists built in the same manner.

It is a simple 25 meters steel truss bridge consisting of 5 verticals dividing the stringers into 6

sections. These stringers consist of angle profiles and plates built with the riveting teqnique.

This bridge is of particular interest for a BWIM system because few or none have installed and

tested such a system on a bridge of this type. If a BWIM system could be proved to work on

one such bridge, it could easily be adapted to similar bridges. Based on construction drawings

from around 1919 and especially B.1 and B.1, the dimensions of the bridge and sensor locations

was determined and used as input for the BWIM program.

Empirical data for analyzing and developing the my BWIM system, was gathered by sensors

under an actual bridge measuring train passings. The subject bridge is Lerelva bridge in Trond-

heim, figure 3.5, a typical Norwegian steel railway bridge. Three strain gauges, 3mm 120 ohms

from HBM, were placed by the support towards Trondheim on the first section of the longi-

tudinal stringer, like shown in figure 3.4b and 3.6. The sensors were placed with 1m spacing

around the middle of the stringer section. These strain gauges were connected to a National
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Instruments compactDAQ with module NI 9235 which produced an continuous data flow to a

standard laptop, see figure 3.4a. A Kipor generator was brought for power.

(a) System setup from data gathering at Lerelva (b) Placement of strain gauges on stringer section

Figure 3.4: Instruments for aquiring strain data

Figure 3.5: Lerelva bridge with a train passing over

Trondheim Heimdals1
s2 s3

Figure 3.6: Sketch of bridge showing sensor locations for system setup at Leirelva bridge
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3.3 Data gathered

The instruments discussed in 3.2, provides a measurement frequency of 1024 Hz. All data was

gathered the same system setup during a single day. In all six trains were recorded passing the

bridge. The system setup stored the signals for the three different sensors along with the time

for the elapsed signals in a matrix for each train. The recordings of train passings were started

and stopped manually, as no trigger was in place to start and end the signal automatically. Some

of the gathered signals therefore ended up being very long, which means it requires to have

essential data extracted. One of the reccordings was also very short, but still usable. Three of

the trains we measured traveled towards Heimdal, and three towards Trondheim. For simplicity

and necessity, this thesis assumes that the trains traversing Lerelva bridge does not accelerate

or decelerate while influencing the sensor.

3.4 Trains

The trains passing the bridge were of two types, a short two vagon commuter of type NSB92

as seen in figure 3.7, and a freight train with a EL14 locomotive as seen in 3.8. The weight of

the trains with passengers is unknown, resulting in axle weights being set equal the distibuted

weight of the brutto train like shown in table 3.1 obtained from [2, p. 81]. For the freight train the

properties of the locomotive was found through [3]. The axle distances was determined through

figures 3.7 and 3.8.

Figure 3.7: Axle distances of a NSB92 train
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Figure 3.8: Axle distances and weights for a EL14 locomotive

Axle 1 2 3 4 5 6 7 8

Axle

weight

[kg]

9500 9500 9500 9500 14575 14575 14575 14575

sum 38000 58300

sum to-

tal

96300

Table 3.1: Table of axle weights used to calculate Influence lines
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4. Analysis

This chapter will analyse the how my BWIM system performs, with special emphasis on the

influence lines produced by the Matrix method. Sensor locations are as shown in figure 3.6, and

are the source of the naming conventions in the plots in this chapter.

4.1 Strain data

The following figure 4.2, contains raw strain data for 6 different trains passing the Lerelva bridge.

Each subfigure contains data from three different strain sensors placed as described in System

setup, section 3.2. Three of the trains comes from the north side; train 3, train 5 and train 7,

and three from the south side; train 4, 6 and 8. The strain signals all appear similar in form,

except for train 7, figure 4.2e, which is a freight train. The other 5 trains are all of the same

type, a NSB 92 type passenger train 3.7.

The strain signals have different levels of peak height suggesting that the trains actual axle

weights differ from what is found in table 3.1. This will throw off the magnitude of the resulting

average influence line found through the Matrix method. This error in calculated influence

line will inevitably be found again in the calculated axle weights . To account for the different

directions of the trains, the strain data for the trains going towards Trondheim has been reversed.

This is not necessary for finding influence lines, but makes it easier placing the found influence

lines in the same coordinate system. Some of the signals were originally very long, due to

not knowing exactly when the train would pass. This means cutting the signal into a vector

containing the essential data. Initially the goal was to identify exactly, or as closely as possible,

the time the train entered the bridge. Due to noise and dynamic effects identifying this, proved

a difficult process involving detection of peaks which lies close to peaks of noise. This proved

possible to do for each individual signal, but a general method performing this for every signal

was not within the authors capabilites. Therefore, to cut the signals as equally as possible the

first and last major peaks of the signals were used as reference points for appending of samples

before and after these peaks, as seen in figure 4.1. For this method to prove exact, the speed of

the train should be taken into consideration when appending sample points so that the influence

lines of the signals gets an as equal length as possible. The strain data from the freight train,

figure 4.2e, is not used for finding the bridge’s influence line because the train data is unknown.
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Figure 4.1: Plot showing the identified peaks and cutting points of strain signal

Axle weights for this train was not found, and guesswork of this data would be difficult. The

properties of the freight trains locomotive is known, and as discussed in 4.8 this could in theory

be used to calibrate thes sensors, and to identify errors in the BWIM system.

The numbering of trains originate from the numbering recorded signals. Some of the recorded

signals did not contain information from a train passing resulting in the signals starting at train

3.

4.2 Finding the speed of the train

The importance of using the correct speed in a BWIM system becomes apparent when calcu-

lating influence line for a sensor. A wrongly determined speed will result in what looks like

dynamic effects or an oscillating influence line, none of which should appear in a static influence

line. If the influence line is known incorrect train velocities will still cause wrongly calculated

axle weights. A correctly calculated speed is therefore of utmost importance for Bridge weigh-in-

motion. As discussed in theory there are two ways used by existing BWIM systems to find the

train’s velocity. Both these methods have been implemented and tested, however they contained

flaws making them unreliable, or unsuitable for this project.

• The method of peak identification 2.3, is very subjected to noise corrupting location of

identified peaks. A train bogie typically consist of axles in pairs or threes, which will all

influence the sensors simultaneously creating a major peak containing smaller peaks. In

such a case the identification of a single peak can be difficult, and will likely provide faulty

calculated velocity. Filtering was also employed by this method without being able to find

general values of filtering. The filtering of the signal also distorted the peaks to a degree
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Figure 4.2: Strain data from the three sensors of Leirelva bridge
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where the result could be unreliable.

• The method of phase difference using cross correlation depends on strain signals where

the trains velocities are known and the distance between two or more sensors. This method

seems to work independently of noise which likely makes it superior to the peak method.

This method will however require calibration for each setup of a BWIM system, due to

the method needing a system constant depending on the bridge and the sensor placement.

The velocity of the trains producing the strain signals in this thesis, was not known or

attainable through NSB or Jernbaneverket and therefore this method were not applicable

for finding velocities. Calibrating this method has neither been the focus of this thesis.

These two methods both work very well for a theoretical signal, however when noise and

dynamics are introduced as well as more complicated bridge boundary conditions identifying the

peaks representing the same axles becomes complex. A method identifying peaks, will have to

adapt to each signal because the magnitude of noise and dynamics vary for the different sensors

and train passings. Due to this thesis’ focus on the matrix method and influence lines, these

methods have not been a priority and since correct train velocities are of utmost importance for

calculating influence lines.

Since neither of these methods were usable without calibration, an alternative way was devel-

oped. This method determined the velocity by recreating the strain signal, like shown in figure

4.6, for various train velocities and minimizing the difference between measured and recreated

signal. It utilizes equation 2.7 and requires constant values of axle weights as well as known axle

spacings. The only varying factor is the speed used in each iteration to calculate an influence line.

A well suited Matlab function "fminsearch", was used to search for the optimal value of train

velocity. "fminsearch finds the minimum of a scalar function of several variables, starting at an

initial estimate. This is generally referred to as unconstrained nonlinear optimization [7]" This

method uses brute force, and its time consumption proved high. The accuracy of this method

is believed to be good, but there may be more than one solution satisying the criterias of the

algorithm.

The velocities of the trains found through this brute force method is shown in table 4.1,

and all plots and results produced have been made using these velocities, except for specificly

mentioned cases.

train 3 4 5 6 8

velocity

(m/s)

20.99 21.7276 21.4857 16.83 20.591465

Table 4.1: Table of determined train velocities
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4.3 Analysis of the influence lines calculated by the Matrix

method

For the theoretical strain signal for the simple beam model, shown in 3.3, the Matrix method

calulates an almost perfect influence line. Where the only source of error is likely due to noise,

or round off errors. The influence line incorporates the properties of a bridge. The analysis of
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Figure 4.3: Influence line calculated from created strain

the Matrix method is based on 5 different train passings, and 3 sensor readings on each passing.

The trains in these in this analysis is all of the type NSB 92 3.7. The weight of each train axle

is not known, and therefore the axle weights have been calculated from the gross weight of the

wagon and locomotive like shown in table 3.1. Passenger weight, or number of passengers, was

not known and has therefore been neglected.

Figure 4.4 show influence lines for 5 different trains passing the same sensor. These influence

lines are based on roughly the same number of sampling points, however due to differing train

velocities and that the strain signals does not have equal availability of data, since they sampling

was started and ended manually, they may differ a little in length. The influence lines have

been placed in a reference coordinate system based on the sensor location. The maximum peak

location of the influence lines have been placed at the sensors location.

A qualitative assessment of the influence lines in figure 4.4

• Train 3 and 5 travels in the same direction, and have a no distinct single peak, while train

4, 6 and 8 have more of a singular peak. This may be due to the different directions of the

trains.

– However other possibilities excist such as train velocity inducing different dynamic

effects or that the sensor readings are subjected to noisy creating additional peaks.
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Figure 4.4: Influence lines found through the matrix method, for the sensor 1. The legends of

the figures tells direction of the trains.
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• The different influence lines displays different values of magnitude, the influence line for

train 4 and 8 have a magnitude higher than 1 × 10−8. This is shown more clearly in plot

4.9, showing all the influence lying over each other.

As plainly seen in figure 4.4 there are big differences between the found influence lines. The

trains are all of the same type meaning that the magnitudes of the influence lines, which should

be the mostly dependent on axle weights, ought to be similar for all train passings. However as

discussed in 4.1, the different magnitudes could be explained with the unknown values of axle

weights. When the plots are laid on top of each other, as in figure 4.9, it is clearly visible that

there is some variation in peak magnitude. Especially train 4 and 8 have a higher maximum

peak magnitude than the others.

4.3.1 Accuracy of the Matrix method through recreating the strain

signal

One way of examining the accuracy of the matrix method is to recreate the strain signals by

assembling the calculated influence lines in the influence ordinate matrix depending on axle

spacings, and multiply this matrix with the axle weights vector. Figure 4.5, shows how the

signal shown in the method chapter 3.3 created for the beam model, have been recreated using

the the influence line calculated through the matrix method. This figure show that the influence
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Figure 4.5: Recreated signal shown on top of the created strain signal from 3.3

line created from a theoretical model bridge, were every property of the train is known, is not

able to exactly recreate the strain signal. This is believed to be because of white noise added to

the signal.

Figure 4.6 shows the strain signals from the three different sensors along with a recreated

signal using the found influence lines of the sensors, signals for other trains can be found in

appendix A.1. The signals being recreated are long and include sections where little or nothing
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(b) Recreated strain atop measured strain, train 3 for sensor 2
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(c) Recreated strain atop measured strain, train 3 for sensor 3

Figure 4.6: Recreated strain signals for train 3, overlayed measured signal to demonstrate accu-

racy of the matrix method
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happen during the first and last second of the signal. It is qualitatively difficult to compare the

different figures due to the different magnitudes of the strain signals. To identify and compare

errors the following equation 4.1, performing least square error will be used.

Error =
∑

(εmeas − εcalc)
2 (4.1)

The recreated strain signals, see figure 4.6, illustrates the accuracy of the matrix method. As

Error table

sensor 1 sensor 2 sensor 3

sum squared signal 1.3207 · 10−5 5.2029 · 10−6 3.5630 · 10−6

train 3 Error = 6.6307·10−8 6.3778 · 10−8 4.6781 · 10−8

error % 0.50205 1.22582 1.31297

sum squared signal 1.6646 · 10−5 6.8390 · 10−6 3.6794 · 10−6

train 4 Error = 7.6854·10−8 3.9514 · 10−8 3.4617 · 10−8

error % 0.46169 0.57779 0.94084

sum squared signal 1.2888 · 10−5 5.0447 · 10−6 3.4902 · 10−6

train 5 Error = 5.5810·10−8 3.4720 · 10−8 4.0623 · 10−8

error % 0.43303 0.68825 1.16391

sum squared signal 1.5975 · 10−5 6.1166 · 10−6 3.5417 · 10−6

train 6 Error = 8.4405·10−8 4.2931 · 10−8 3.6182 · 10−8

error % 0.52837 0.70188 1.02158

sum squared signal 1.6782 · 10−5 6.7436 · 10−6 3.7381 · 10−6

train 8 Error = 6.7858·10−8 3.0772 · 10−8 3.4069 · 10−8

error % 0.40435 0.45632 0.91138

averaged % 0.46590 0.73001 1.0701

Table 4.2: Errors of the recreated strain signals found in 4.6, rounded to four decimals, strain

signal cut to include an extra 600 points of the bridge length

table 4.2 and 4.6, shows the matrix method produces an influence line which recreates the strain

signal with very little error. The squared sum of the signals compared to error is very small

The error of this recreated strain mostly depends on the accuracy of speed, which decides the

sample distance between axles. The averaged errors in the table shows that sensor 3, closest

to the middle of the bridge, have the smallest average error. This could indicate that a sensor

placement closer to the middle of the bridge resulting less error of calculated influence lines.

However many other possibilities may also contribute to this

The differences between the unfiltered and filtered errors, tables 4.3 and 4.4 respectively,

are clear but not unexpected. They show that the filtering does not distort the error to an

amount which destroys the accuracy of the influence line. The averaged error percentages for
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Error table, filtered signals

sensor 1 sensor 2 sensor 3

sum squared signal 1.3207 · 10−5 5.2029 · 10−6 3.5630 · 10−6

train 3 Error = 8.3869·10−8 Error = 8.1484·10−8 Error = 7.8551·10−8

error % 0.63503 1.56614 2.20463

sum squared signal 1.6646 · 10−5 6.8390 · 10−6 3.6794 · 10−6

train 4 Error = 9.3855·10−8 Error = 5.6308·10−8 Error = 5.8075·10−8

error % 0.56382 0.82334 1.57837

sum squared signal 1.2888 · 10−5 5.0447 · 10−6 3.4902 · 10−6

train 5 6.8249 · 10−8 5.2464 · 10−8 6.9209 · 10−8

error % 0.52955 1.04000 1.98296

sum squared signal 1.5975 · 10−5 6.1166 · 10−6 3.5417 · 10−6

train 6 Error = 9.8692·10−8 Error = 5.2011·10−8 Error = 4.7314·10−8

error % 0.61781 0.85033 1.33589

sum squared signal 1.6782 · 10−5 6.7436 · 10−6 3.7381 · 10−6

train 8 Error = 8.7170·10−8 Error = 5.0457·10−8 Error = 6.2777·10−8

error % 0.51943 0.74823 1.67938

average % 0.57313 1.0056 1.7562

Table 4.3: Errors of the recreated strain signals with original signal filtered for noise above 20

Hz, rounded to four decimals and using the same setup as for the previous model 4.2

the different sensors in the error tables 4.4, 4.3 and 4.2 all show sensor 1 as being better able

to recreate the strain signal values. This may be because only the signals from sensor 1 has

been used to estimate the train velocities, and that one signal alone may produce a value better

suited to that particular signal. Due to the main focus of this thesis being on other areas of

BWIM systems, this has not been investigated further than this. Other possible reasons for this

observed difference between error percentages are that some sensor locations are better suited

for BWIM, or that the signals with lower values of strain are more susceptible to noise.

To really compare the methods of filtering however the found influence lines should be used to

calculate axle weights. Averaging of the influence lines gives the following plots. An interesting

discovery by studying these table, is that the longer the produced influence line becomes the

more accurately it reproduces the strain. As figure 4.1 shows, the trains affects the sensor over

a 2-3 second period. And the influence of a bogie stops shortly after it has passed the sensor,

as the flatness after the last peak indicates. This shows that a bridge of this type will have a

very local deformation due to loading. This means that a influence line for a sensor location on

a bridge type like this will be short compared with bridge length. Influence lines made with the

minimal cutting points can be seen in figure 4.7.
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Error table, minimal influence lines

Trondheim sensor middle sensor Heimdal sensor

sum squared signal 1.3205 · 10−5 5.1993 · 10−6 3.5575 · 10−6

train 3 Error = 8.3046·10−8 Error = 6.9250·10−8 Error = 5.6861·10−8

error % 0.62891 1.33192 1.59832

sum squared signal 1.6634 · 10−5 6.7644 · 10−6 3.6746 · 10−6

train 4 Error = 1.0317·10−7 Error = 5.0548·10−8 Error = 4.0564·10−8

error % 0.62024 0.74726 1.10391

sum squared signal 1.2886 · 10−5 5.0407 · 10−6 3.4850 · 10−6

train 5 7.5816 · 10−8 4.4896 · 10−8 5.1032 · 10−8

error % 0.58835 0.89067 1.46433

sum squared signal 1.6308 · 10−5 6.3414 · 10−6 3.7159 · 10−6

train 6 Error = 1.1471·10−7 Error = 5.0396·10−8 Error = 4.1867·10−8

error % 0.70340 0.79471 1.12670

sum squared signal 1.6795 · 10−5 6.6767 · 10−6 3.7751 · 10−6

train 8 Error = 9.2468·10−8 Error = 3.8699·10−8 Error = 4.0678·10−8

error % 0.55057 0.57961 1.07752

average % 0.61829 0.86883 1.2742

Table 4.4: Error table for minimal influence lines as in figure 4.7

4.4 Dynamic effects

The dynamic effects can clearly be seen in the plots of the influence lines for the various train

passings. They appear as oscillations in the plots, and are more visible in the low magnitude

areas of the influence line. These oscillations vary from train to train making it clear that the

dynamic effects depends on the train. The varying influencing factors may be train speed and

weight. In the source code producing these influence lines an assumption of train weight has

been made, which makes all train axles equal in weight. What is interesting is the effects of an

approaching train, which clearly induces oscillations in the bridge even though the train is as far

as 40 meters away from the beginning of the bridge. The differences between the dynamic effects

for the train passings may relate to velocity, axle weights and train acceleration (there may be

more causes).

These dynamic effects are unwanted in the static influence line. In theory, averaging enough

influence lines should reduce these effects enough to get usable data. This thesis does not contain

enough train passings to achieve this. Wrongly determined train velocity is a cause of oscillating

influence lines, and can easily be mistaken for dynamic effects. Figure 4.8 is an example of a

influence line determined from a wrongly set speed. A general formula for identifying influence
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Figure 4.7: Influence lines for the sensors, calculated by the matrix method using a minimal

strain signal

lines with too much oscillation should be developed. One way could be to use table 4.2 and

exlude the trains which dominates error, or that differs most from the other trains.

The support towards Trondheim is of a special nature, it is connected to a very little bridge

spanning perhaps 2 meters which cars may pass under, this can be seen in construction drawing

in appendix B. This may affect the train’s entry and cause dynamic effects. It also provides a

problem when determining what should be part of a final influence line, or which parts of the

influence line that is actually staticly influenced by the train on the bridge. One way to do it

would be to simply cut the influence line at the samples corresponding to the bridge, however

that does not seem likely to be a very good solution. Another way would be to smooth the

influence line to the point where the entry part becomes itegrated with the the major influence

line peak, which would result in a greatly distorted peak and is therefore not a good solution.

Calibration could determine what parts of the influence lines are actually needed.

4.5 Averaging calculated influence lines

To obtain as good an influence line as possible, averaging of the calculated influence lines should

provide representative values for the various signals.

Figure 4.9 shows all the influence lines for one sensor, in one figure, which highlights the

differences and similarities between the figure. Clearly two of the influence lines, train 4 and

train 8 has a maximum peak magnitude which differs from the others. These two trains both

travels the bridge in the same direction, which could be a cause for the differing magnitudes,

however train 6, which also travels the same direction, does not follow this trend and in fact

aligns with the other peaks of train 3 and 5. Based on this it can be assumed that direction of
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Figure 4.8: Influence line train 5, showing how how a wrongly set speed induces high amplitude

oscillations

the train should not affect the magnitude of the maximum peak.

Another hypothesis for the differing peak heights, could be that the trains differ greatly in

actual axle weights. A heavy train would cause higher values of measured strain and the measured

strain is what the matrix method uses to find the influence lines. The values of axle weights used

to produce the influence lines of the bridge are fixed at the values of a empty train. A quick

study of equation 2.9, shows that increasing the values measured strain also would increase the

values of the influence line. This is therefore a likely cause of differing magnitudes.

The average of these influence lines will have a maximal peak magnitude somewhere between

the peaks of train 3,5 and 6 and train 4 and 8. This would cause problems when calculating

the axle weights, the axle weights of train 3, 5 and 6 would be underestimated, and the axle

weights of train 4 and 8 would be overestimated. This effect can be seen in the tables 4.5 and 4.6,

showing calculated axle weights using this averaged influence line. The equivalent of figure 4.9

for sensors 2 and 3 can be found in appendix A.10 and A.11. These collection of influence lines

also display a differing in magnitudes of the influence lines, with some differences. For sensor 2

train 4 and 8 still has higher maximum values, but train 8 produces a lower value of maximum

compared with train 4. For sensor 3 the efect of differing magnitudes are almost invisible, for

this sensor all trains seems to produce similar values except for train 6. This is also visible in

table 4.5, where the axle weights for sensor 3 shows train 6 having the highest total value.

Another factor which could be the source of these effects are the velocity of the trains. A

wrongly determined velocity causes oscillations in the influence lines as discussed previously,

and maybe this also could cause differing maximum peak values. It may also be that different

velocities could cause differing entry effects, which would provide the influence line a wrong value

at the beginning of the bridge.
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Figure 4.9: Influence lines from figure 4.4 on top of each other for sensor 1

The identified average influence lines used for calculations in the remaining thesis are shown

in figure 4.11, 4.12 and 4.7. These figures clearly show reduction of dynamic effects compared

to the influence lines of figure 4.4. The averaged influence lines are shorter than the original

influence lines of this chapter.

−30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30 35 40
−0.2

0

0.2

0.4

0.6

0.8

1
·10−8

meters

m
ag

ni
tu

de

averaged influenceline
bridge

Figure 4.10: Averaged of the 5 trains

A possible way to place the found influence line is shown in figure 4.10, which places the

influence line in the assumed position on the bridge. The maximum magnitude of the influence

line should be found at the sensor location, thusly the average influence line has been placed in

the corrdinate system of the bridge accordingly. There is however the problem of noise, which

makes identifying the actual max peak difficult. Filtering the signals so that a singular smooth

maximum peak can be identified. This could distort the actual signal, but is the way this has
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(b) Averaged influence line for sensor 2
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(c) Averaged influence line for sensor 3

Figure 4.11: averaged influence lines used to calculate axle weights
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been done in this thesis.

4.6 Using calculated influence lines

The Matrix method calculates an influence line vector, which is perfectly suited to that specific

strain signal. The signals will however vary from train to train, both in length and magnitude.

This means that the influence line for the sensor needs to be adapted to the strain signal. To

perform a standard axle weight calculation, the influence line is required to be correctly aligned

with the strain signal. The first peak of the strain signal, corresponding to the first axle of

the train, should occur at the same location as the peak of the influence line which should be

precisely at the sensor location.

Identifying the first peak of the strain signal is subject to noise which corrupts any reading

of peaks in the raw strain signa. Therefore filtering of noise is needed to correctly identify the

signals peaks. A trains axle spacings, as seen in 3.7 which is the train type of the measurements,

consists of short axle distances of about 2.5 meters. If the axle spacing between two axles are

short compared to the bridge, or more specifically short compared to the width of the influence

line, they both influence the signal simoultaneously and the peaks corresponding to the two axles

thus lies very close to each other. The filtering can therefore not be to hard or soft, which results

in problems when trying to automate the procedure of identifying axles.

To correctly align the strain signal and influence line, the matlab code used in this thesis first

smooths the strain signal to a degree where the desired number of peaks are identifyable before

using matlabs findpeaks [6] procedure to find the peak locations, like seen in figure 4.13. This

functions finds the local maxima of input vector and have the option of specifying conditions

for the maxima. When trying to place the influence line, it was found that axle detection needs

to be very accurate for the calculation of axle loads. When using the method described above,

with filtering to a degree where 8 peaks are found and to check how those peaks correspond with

the known train’s axle distances, proved to be accurate in some cases and very wrong in other

cases. A wrongly found axle peak could for instance result in negative axle weights, and generally

wrong axle weights. A more general method which seems to place the influence better is to filter

the signal to a degree where only the major peaks are found. The location of the first such peak

should roughly correspond to the centre between closely spaced axles, or a bogie centrum, on a

train. Since the trains axles spacings are known, a successfully identified bogie location should

place the influence line with a decent accuracy.

4.7 Calculating the axle weights

The system setup described in section 3.2, gives three different locations for measuring strain

and so thus three diffferent influence lines generated by the BWIM program. When calculating
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Figure 4.12: averaged influence lines, based on filtered strains, used to calculate axle weights
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shown are scaled to fit strain signal magnitude.
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the axle weights corresponding to each train, this will give three different estimates of the axle

weights. However, since data of actual axle weights of the trains are unknown, estimating

correctness of the BWIM can not be done through comparing known and calculated axle weights.

Figures 4.12 and 4.11 are the influence lines used to calculate the axle weights in the tables 4.6

and 4.5. By studying the different influence lines, it is clear that the visible differences between

the two variants are minimal. This can also be seen in their respected tables. The influence lines

produced by filtered strain seems to produce a influence line of slightly lower magnitude, which

when used to calculate axle weights results in slightly different values. Sensor location clearly

distinguishes the influence lines:

• The influence line from sensor 1, the middle section sensor, appear to be a mixture of the

influence lines from the other sensors.

– Sensor 3 is closer to the end of the bridge’s first section, and this can clearly be seen

through the negative influence after the first 5 meters of the bridge.

– Sensor 2 has lesser negative magnitude after the first 5 meters. The entry effects of

the averaged influence lines also appears to be least significant for this sensor location.

• Sensor 3 is influenced by a larger section of the bridge.

The axle weights in table 4.6 is calculated using the influence lines from figure 4.12 . These

The axle weights calculated for the minimal influence lines is similar to what is shown in the

tables 4.6 and 4.5. A shorter influence line may still contain dynamic effects, but likely less than

longer influence lines.

4.7.1 Accuracy of axle weights

As seen in tables 4.6 and 4.5, there are differences between the calculated axle weights for each

sensor. The values for the different axles should be relatively similar for each calculation, but for

some of the signals it is clear that values vary with up to 2000 kg which unlikely is explainable

by passenger distribution in the train. The axle weights of a bogie should be fairly equal, which

the tables are not showing. A more reasonable explanation for these differences from axle to axle

could be the placement of the influence line representing the axle, as has been discussed in 4.6.

These are errors which may have one or more reasons.

The ratio tables, 4.10, 4.9 and 4.8, highlight the differences and similarities between the

influence lines. The ratio between axle weights for the different versions of the influence line

differ little from each other, all ratios are within 10 % showing that the calculated gross train

weights are reasonably constant from sensor to sensor. The tables show that the difference

between minimal and standard length influence line are small, while the influence lines calculated

from filtered signals have the highest values of difference. The tables also indicate that sensor

location is of significance. Sensor 1 and sensor to produce the most consistent ratio values,

where calculated gross vehicle weight is higher for every train compared with the same values
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Gross weight train

train 3 train 4 train 5 train 6 train 8

sensor 1 89132 99797 87516 104215 101447

sensor 2 88252 100268 86322 98714 100765

ratio: 0.99013 1.00472 0.98636 0.94722 0.99328

sensor 1 89132 99797 87516 104215 101447

sensor 3 93174 94096 91901 100458 96317

ratio: 1.04535 0.94287 1.05011 0.96395 0.94943

sensor 2 88252 100268 86322 98714 100765

sensor 3 93174 94096 91901 100458 96317

ratio: 1.05577 0.93845 1.06463 1.01767 0.95586

Table 4.8: Ratio table showing the ratio between gross train weight for the different sensors,

using values from table 4.5

Gross weight train

train 3 train 4 train 5 train 6 train 8

sensor 1 89375 99936 87678 106334 102103

sensor 2 88644 99802 86516 102551 101355

ratio: 0.99182 0.99866 0.98675 0.96442 0.99267

sensor 1 89375 99936 87678 106334 102103

sensor 3 92834 94018 91436 103587 96883

ratio: 1.03870 0.94078 1.04286 0.97417 0.94888

sensor 2 88644 99802 86516 102551 101355

sensor 3 92834 94018 91436 103587 96883

ratio: 1.04727 0.94205 1.05687 1.01010 0.95588

Table 4.9: Ratio table showing the ratio between gross train weight for the different sensors,

using values from table 4.7
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Gross weight train, from filtered signal

train 3 train 4 train 5 train 6 train 8

sensor 1 89276 99819 87649 104123 101524

sensor 2 87443 98560 85050 96451 99140

ratio: 0.97947 0.98739 0.97035 0.92632 0.97652

sensor 1 89276 99819 87649 104123 101524

sensor 3 93047 93980 91885 100147 95971

ratio: 1.0422 0.94150 1.0483 0.96181 0.94530

sensor 2 87443 98560 85050 96451 99140

sensor 3 93047 93980 91885 100147 95971

ratio: 1.0641 0.95353 1.0804 1.0383 0.96804

Table 4.10: Ratio table showing the ratio between gross train weight for the different sensors,

using values from table 4.6

from sensor 2. The same can not be said for the comparison of sensow 1 and 3 as well as sensor 2

and 3, where the ratio values vary from over 1 to under one for different trains. These differences

can be seen by studying the influence lines for the different sensors. The influence lines for sensor

1 and 2 are visually similar while the influence line for sensor 3 have the lowest peak value but

appears to have a wider zone of influence meaning that the sensor is affected more from the other

sections of the bridge.

Likley sources of error in calculated axle weights:

• Wrongly determined train velocity - resulting in incorrect influence lines, and error in

alignment of influence lines with strain signal.

• Peak detected by placement algorithm is wrong.

• Averaged influence line does not represent the strain signal, that is the axle weights used

to calculate the influence lines was not correct and resulted in too high or low magnitude

of the influence lines peak.

• The sensors may not be correctly calibrated, resulting in differences in axle weights from

sensor to sensor. This can be controlled by calculating the ration between the same axles

for different sensors.

4.8 Calibration and verification of the system

Attempts were made to aquire a signal able to calibrate and verify the system described by thesis.

The freight train has one constant which the other trains do not have, a locomotive which will

have axle weights approximately equal the given properties of the locomotive as listed in 3.4.
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Figure 4.15: Figure showing how extraction of the locomotive data in the signal

To be able to use the locomotive for these purposes, required special attention of the cutting of

the strain signal of train 7 4.2e. Through the BWIM program it was tried to identify the first

2 major peaks of the signal corresponding to the 6 axles of the locomotive and cut the signal

accordingly. The strain signal however proved difficult or impossible to cut correctly, due to the

length of the locomotive and the width of the influence line the next axle after the locomotive

also influenced the signal, which would affect the results.

The best suited sensor for this task proved to be the sensor closes to the support on the side

towards Trondheim. Figure 4.15 shows the first peaks of the strain signal for this sensor, where

the first two major peaks corresponds to the axles of the locomotive. The red circles named first

cutting point and first boigie over, shows a possible cut of the signal could be made. The third

and fourth major peak indicates axles of the vagons. The two first peaks should ideally have

had the same level of magnitude, the fact that they do not shows that the first and second set

of axles influence the sensor at the same time. The second point also is raised above the first

point, which also is the case for the next peak corresponding to vagon axles. A safe signal could

based on this not be found to perform calibration with, as it would provide a error. Therefore

this a calibration of the sensors have not been achieved in this project.

If this calibration locomotive had been found usable, better estimates of the axles weights of

the other trains could have been identified. It would also point to where the errors of the system

are the most crucuial.

During the time spent in this thesis, attempts were mad to validate the BWIM Matlab

program as well as the resulting influence lines. Due to later discovered bugs in the program

causing a systematic error in the averaged influence lines, it was for some time believed that the

sensors were uncalibrated. With the correction of this bug it is no longer possible to identify

signs of this. However some time went to investigate how the sensors could be calibrated through
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the BWIM program. One possible way was to calibrate the sensors based on the resulting axle

weights for a known train. This also coincides with how the system best could be validated, by

using the identified influence lines to calculate the axle weights of a train with known properties.

This would give the actual errors of the calculated influence lines, and perhaps give an insight

to what what are dynamic effects in the influence lines. The following scheme was made to scale

uncalibrated sensors.

1. Have a train, of which the known properties are velocity, axle distances and axle weights,

perform one or more runs in both directions.

2. The obtained strain signals from these passings are used along with the Influence line to

calculate the axle weights for at least one sensor.

3. The resulting axle weights should have a constant ratio between the same axles for different

sensors.

4. The axle weights are scaled to equal the known values. These scalars is the calibrating

constants for the sensors.

5. The scalars obtained could be used directly on the signal data, but the only part of the

BWIM which directly requires this scaling for correct results are the calculated axle weights.
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5. Conclusion and summary

The goal for this thesis was to create and analyze a BWIM system developed by the author.

This concluding chapter will summarize the essential results from the analysis. It will thereafter

seek to answer the initial goals from the research objectives 1.2.

5.1 How does the matrix method perform

The plots showing recreated strains, figure 4.6 and appendix figures A.1 to A.4 show the good

accuracy of the matrix method. Given accurate values of train velocity and axle distances the

individual influence lines are able to almost exactly recreate the signals. This means that the

matrix method by itself is a superior tool, but that it requires high levels of accuracy from the

rest of a the BWIM system.

The matrix method runtime depends on the signal length and number of train axles. Relying

on the symmetry of the matrices it is possible to only form half the matrix and use the transpose

operation to form the full a matrix, which saves computational time.

The problem with the matrix method is that it is subjected to dynamic effects from the

bridge. This can be solved by having several calibration runs in both directions and average the

resulting influence lines. A train moving at very low velocity would likely also help minimize

those dynamic effects and together with several calibration runs this would likely eliminate or

make the the dynamic effects negligible.

The matrix method is easily implemented using the theory described in section 2.2.2.

5.2 The placement algorithm

When it came to aligning the identified influence lines with the equation system, several two

different approaches was made both involving peak identification. Even with noise levels of the

signals identifying individual peaks, representing axles, for alignment was found possible to do for

each signal but no general method was successfully developed which was able to do this for every

signal. This method also increases error. Therefore a better solution proved to be identification

of the signal peaks produced by a bogie. This was done through smoothing the signal to the

point where individual axles are not visible. Section 4.6 shows how the influence lines have been

43



placed according to strain signal. This method has not been controlled properly, but seems to

result in satisying accuracy. It does not require any special input from user, and is likely reliable.

That is, it will not increase the error of future calculation with much, as it’s accuracy depends

much on other parts of the system.

This method can easily be improved, instead of using only the first peak of the strain signal to

align the influence lines, all the peaks could be used to identify a even safer placement. Possibly

an optimization routine, much like the one used in this thesis to find the trains velocities, could

be used to find the best possible placement of the influence lines. One way of performing this

optimization of alignment could be:

1. Use the placement found by the existing method as an initial guess of placement.

2. For each iteration of optimization, the axle weight is calculated and used to recreate the

strain signal.

3. A mean square error or similar function, is calculated

4. The alignment of influence lines which minimizes this error will likely be a good or perfect

placement.

This way of optimizing placement of influence lines could be used in a similar manner to

find the axle distances of the train. That way detection of peaks corresponding to axles would

not be necessary, also this method likely would be less subjected to, or even independent of,

noise. However such an algorithm could identify solutions with minimal errors but which do not

represent the actual train or signal.

5.3 Axle detection

Jernbaneverket controls the flow of train traffic in Norway, and given live locations of trains the

BWIM algorithm might not need to find axle distances. Instead a query of existing systems could

provide axle distances for the pasing train. This could in theory eliminate a source of error in

BWIM algorithm. Detecting axle peaks correctly likely requires an optimization type algorithm

for a bridge of this type. There might also exist other methods of getting good estimates of axle

distances, but the method of doing this through peaks in a strain signal is too susceptible to noise

and dynamics. The peak method appears to be a good way to identy train bogies, and maybe

even the center position of the bogies, which may be acceptible for some BWIM systems. As

mentioned above in section 5.2 it could be possible to optimize the best possble axle distances.

With a known influence line for the sensors and bridge, optimizing axle could work very well,

but this has not been investigated or tested in this thesis.

5.4 The main challenges of BWIM

There were many challenges identified, solved and failed, during this thesis.
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• Noise leading to problems with:

– Axle detection

– Alignment of peaks to build system for calculating axle weights.

– Depending on the chosen method finding the vehicles speed could be subjected to

noise.

• Having sufficient calibration vehicles traversing the bridge to find a representative influence

line.

• Removing or minimizing dynamic effects in influence lines calculated by the matrix method.

• To identify when the train starts to influence the bridge statically. This might be particular

to BWIM for railway bridges, as the rails affects the bridge long before the train is in

contact with the bridge. For the case of Lerelva bridge, there is also the special nature of

the support closest to the sensor, which is linked with a short span bridge over a one lane

road.

5.5 General summary of the master thesis

In section 1.2 there was a list of goals for this thesis, which will now be reviewed.

1. Implement a working BWIM system

The developement of the a simple BWIM program can be called a success, as the program is

able to do all that is required, the system is capable of reading and using any sort of strain signal

and identifying peaks corresponding to specific axles or at least bogie. The speed of the trains

have been identified using a brute force method, also other methods of finding vehicle speed have

been developed and tested successfully with the theoretical beam model.

2. Implement methods for calculating the influence lines for an arbitrary bridge

The BWIM system has been implemented with the Matrix method enabling the calculation

of influence lines for a strain signal where the properties of the passing train is known. The

testing of the Matrix method indicates that it can quite accurately calculate an influence line

for any type of signal, and that this influence line along with axle distances and axle weights

is able to recreate the signal with very little error. More specifics about the matrix method

is mentioned in 5.1. The influence lines have been the main focus of this master thesis, and

efforts went into developing alternatives to the linear matrix method. This was done through

optimization, and was successful for the theoretical strain signals produced through the beam

model, but more complex bridge structures the optimization proved more subjected to the initial

guess of the influence line. With optimization there might also exist more than one satisfying

solution satisfying tolerance limits for the routhine. When strain signals from Leirelva was

was used to test and further develope the Optimization routing it was found that it required

special considerations compared to the matrix method which performed no matter the signal

45



complexities. I do however believe that optimization method has the potential to work well for

bridges with smaller spans.

3. Identify good practices for building a BWIM system

Through this thesis I have higlighted good and less good aspects of different parts of my own

BWIM system. This can hopefully be of use for further developements of BWIM.

4. Analyse how Bridge weigh-in-motion works for a typical Norwegian steel

railway bridge, through measurement data from Lerelva bridge

Most of the analysis uses data from the setup at Lerelva bridge, and shows that calculation of

influence lines for this type of bridge may involve bigger challenges than for more simple bridge

types, like a slab bridge. Even though information of trains axle weights were not obtained, the

influence lines used for calculation of axle weight produced consistent results, especially for gross

train weight. Therefore there are good grounds to conclude that BWIM will work for railway

bridges similar to Lerelva Bridge.

5.6 Possible improvements and suggestions of future work

For future developements and further research on a BWIM system, the sample data gathered

from the bridge in question need to be induced by a train or vehicle with known properties. The

wanted properties of a calibration vehicle or train:

• Exact velocity of the vehicle or train

• Every axle distance is known.

• The axle weights of the train or veichle is known at the time of traversal.

This would enable the methods for calculating influence lines to be analysed with the main goal

of the system, namely calculating axle weights, in mind. The axle weights calculated using the

influence lines from the matrix method could then be compared and a proper error area identified.

For identifying how the dynamics of train and bridge affect the BWIM system, and the

calculations of influence lines, the trains traversing the bridge at a range of velocities would be

of particular use. The results of such a calibration would also give estimates of the best traversal

velocities for the bridge in question, which could provide information enabling the elongation of

the bridge’s lifespan. For reasons of comparison, implementation and testing of a shorter railway

bridge in concrete or steel would be interesting. If a second bridge or a shorter span could be

found within the same section of a railway, the same train could provide data on two different

bridges. This could help identify the limits of a railway BWIM system.

An alternative to the Matrix method could be to use theoretical influence lines for a more

complex beam model. For the bridge discussed in this thesis for instance the simple beam model

is insufficient, and a model more representative to the system could be like shown in figure 5.1.

The influence line found through such a model could be adapted to actual bridge supports, and

a good approximation of the actual influence line could be found using optimization routines. A

46



drawback of this way of finding influence lines could be that the bridge model would have to be

adapted to each system setup.

axle2 axle1

v
axlespacing

strain sensor

Figure 5.1: A more realistic beam bridge model

I believe that the posibilities of BWIM are numerous and that it can be useful for existing

systems and possibly replace them over time. In particular the possibility of analysing how

BWIM could be used to estimate how traffic flow over time will influence bridges. Will BWIM

be able to identify changing bridge properies over time?
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A. Figures

A.1 Recreated strain signals

A.2 Influence lines all sensors
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Figure A.1: Recreated strain signals for train 4
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Figure A.2: Recreated strain signals for train 5
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Figure A.3: Recreated strain signals for train 6
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Figure A.4: Recreated strain signals for train 8
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Figure A.5: Influence lines train 3
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(a) Influence line for sensor towards Heimdal, train 4
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(b) Influence line for middle sensor, train 4
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Figure A.6: Influence lines train 4
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Figure A.7: Influence lines train 5
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(a) Influence line for sensor towards Heimdal, train 6
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(b) Influence line for middle sensor, train 6
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Figure A.8: Influence lines train 6
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(a) Influence line for sensor towards Heimdal, train 8
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(b) Influence line for middle sensor, train 8
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Figure A.9: Influence lines train 8
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Figure A.10: Influence lines from figure:4.4 on top of each other for sensor 2
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Figure A.11: Influence lines from figure:4.4 on top of each other for sensor 3
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Figure A.12: Averaged influence line for sensor 2

−10 −5 0 5 10 15 20 25 30

0

2

4

6

·10−9

m

m
ag

ni
tu

de

Averaged influence line
bridge

Figure A.13: Averaged influence line for sensor 2
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Figure A.14: Averaged influence line for sensor 3
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B. Construction drawing of Lerelva

bridge
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C. Algorithms and code
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function [ M_c, A, C ] = findInfluenceLines( strainHistory, TrainData)

% This method will compute the necessary matrices and vectors for solving

% the system giving influence lines for a BWIM system

% This will be acomplished through Moses' equation

% The axle loads [A] are known, so the influence ordinates which minimises

% the following equation give best the best solution

% E = sum_from_k=1_to_k=numOfScans((M_k^M - M_k^T)^2)

% M_k^M = measured strain at scan k - measured response

% M_k^T = theoretical response

% TrainData is a matlab struct containg info of train speed, axle spacings

% and so on

% The returned variables: M_c = a vector depending on axle weights and measured strain

% A = matrix depending only on axle spacing and axle weights

% C = axle distances in signal samples

format long;

speed = TrainData.speed;

frequency = 1/TrainData.delta;

k = length(strainHistory);

n = length(TrainData.axleWeights); % number of axles

C = zeros(1,n);

% The matrix size

C(1) = 0;

% calculates axle distances in signal samples, depending on sampling frequency and train speed

for i = 1:n-1

C(i+1) = round((sum(TrainData.axleDistances(1:i)))*frequency/speed);

end

% % Defining the matrix size

if C(length(C)) > k

% Extract the necessary parts of the C vector

Cnew = C(C<k);

end

m = k-C(length(C));

M_c = zeros(m, 1);

for i = 1:m

for j = 1:n

M_c(i,1) = M_c(i,1) + TrainData.axleWeights(j)*strainHistory(i+C(j));

end

end

% Now creating the A matrix, which depends on the axle weights

% The diagonal <-> sum of the squares of the axle weights

% The loop only calculates the upper triange of the matrix

A = zeros(m, m);

for i = 1:n

for j = i:n
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offset = C(j)-C(i);

if((m) - abs(offset))>0 % axle n does influence strain

oneVec = ones(1,m - abs(offset));

diagonal = diag(oneVec,offset);

A = A + TrainData.axleWeights(i)*TrainData.axleWeights(j)*diagonal;

end

end

end

% Form the full matrix through the transpose of the upper triangle

A = A + tril(transpose(A),-1);

end
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