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Abstract

An embedded system is a combination of hardware and software designed
to perform a dedicated function. Embedded systems typically come with
stringent performance constraints such as throughput, latency, memory de-
mands and resource usages. Deriving (or proving) that these performance
constraints are satisfied in all possible circumstances is a challenging task
due to increasing complexity of such systems.

In this thesis, we focus on formal method-based performance analy-
sis techniques for dynamic streaming applications using dataflow models
of computation (MoC). Streaming applications are applications that trans-
form input streams of data of indefinite length to output streams of data.
They are considered dynamic if their computational and communicational
requirements vary at run-time. Dataflow formalisms have been widely used
to model and analyze streaming applications. Finite-state machine-based
scenario-aware dataflow (FSM-SADF) is one of better-known MoCs used
for modeling of dynamic streaming applications. In particular, FSM-SADF
models the execution of a dynamic application as a sequence of fairly static
modes of operation called scenarios. Each scenario is in turn modeled by a
synchronous dataflow (SDF) graph.

FSM-SADF allows rigorous design-time analysis and comes equipped
with various worst-case performance analysis techniques.

However, as the number of scenarios grows, FSM-SADF experiences
compactness problems which in turn render it incapable of capturing appli-
cations exposing fine-grained data-dependent dynamic behavior. As the first
contribution of this thesis we identify the semantic link between FSM-SADF
and parameterized dataflow models based on SDF we refer to as SDF-based
parameterized dataflow (SDF-PDF) by relating the concepts of FSM-SADF
scenario and SDF-PDF configuration/instance. SDF-PDF, by using dy-
namic parameters has the ability of capturing fine-grained data-dependent
application dynamics. By exploiting the semantic link with FSM-SADF we
adapt the worst-case throughput and latency analysis techniques of FSM-
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iv Abstract

SADF to be used for the analysis of SDF-PDF models. Thus, we have
indirectly, by introducing the SDF-PDF concept and recasting it into the
FSM-SADF context enabled worst-case performance analysis of applications
exhibiting fine-grained data-dependent dynamism.

SDF-PDF as a parameterized dataflow model considers data-dominated
applications with fine-grained data-dependent dynamics. However, many
streaming applications can in addition have intricate control requirements.
Therefore, the second contribution of the thesis combines parameterized
dataflow and FSM-SADF into a novel model called FSM-based parameter-
ized scenario-aware dataflow (PFSM-SADF). Combining the properties of
the two, as a FSM/dataflow hybrid, PFSM-SADF is able to capture appli-
cations with both fine-grained data-dependent dynamics and intricate con-
trol requirements. For a flavor of PFSM-SADF based on SDF called SDF-
based PFSM-SADF (SDF-PFSM-SADF), we in addition propose worst-case
throughput and latency analysis techniques.

As the third contribution of the thesis we consider SDF-PFSM-SADF
where parameters are deemed static or change infrequently. This is often
the case for many applications is practice. Under such restricted semantics
(normally, SDF-PFSM-SADF parameters are dynamic), we develop a tech-
nique that expresses the worst-case throughput of the graph as a function
of the graph’s parameters. Such expressions can be efficiently evaluated at
both design-time and run-time and therefore can be used to perform both
offline and online optimizations.

The available analysis methods for FSM-SADF are implemented in the
SDF3 tool. However, SDF3 is of limited scope in the sense that it supports
only a predefined set of properties. As the fourth contribution of the thesis,
we report on the translation of the FSM-SADF formalism to uppaal timed
automata that enables a more general verification of FSM-SADF models
than currently supported by existing tools, i.e. by SDF3.

Finally, the fifth and the last contribution of the thesis extends FSM-
SADF to enable it to capture systems that make use of event-driven mecha-
nisms to control the operation of its data-intensive parts. For the extension,
translated to uppaal timed automata, we propose a schedulability analysis
technique formulated as a reachability problem for (ordinary) timed au-
tomata.

All of the analysis techniques presented in this thesis are evaluated on
realistic case studies from the multimedia domain and/or on representative
artificial case studies.
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Chapter 1

Introduction

1.1 Embedded systems

The literature [82][118][75] defines embedded systems as electronic systems
that use a computer to perform a specific function. They are a combination
of hardware and software and additional mechanical, optical and/or other
parts. Although they make use of a computer to perform their function, they
are not perceived as computers themselves. Here, we think of computers as
devices that serve various functions like our desktop or laptop computers.

Examples of embedded systems span across numerous domains such as
biomedical, automotive, aerospace, consumer, etc. A good example from
the biomedical domain is a pacemaker, from the automotive an anti-lock
braking system in a car, from the aerospace domain a flight computer, from
the consumer a cell phone, washing machine, microwave oven etc. Thus,
our everyday lives are unimaginable without embedded systems.

The statistics confirm pervasiveness of embedded systems in today’s
society by saying that the worldwide market for embedded systems in 2009
was 160 billion euros, with an annual growth of 9 percent [36]. Which such a
growth, we will reach a staggering 275 billion of euros in 2016. Furthermore,
in 2009, embedded microprocessors account for more than 98 percent of all
produced microprocessors, thus vastly surpassing computing power in the
IT industry [36].

1.2 Challenges in embedded system design

Embedded systems are pervasive. That is a self-evident fact. What is less
evident is the number of problems faced by the industry in the process of
embedded system development due to increased complexity. The increase

1
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1.1 The System-on-Chip Era 3
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Fig. 1.1. A typical system-on-chip device

Fig. 1.2. Computation efficiency vs minimum feature length and time (MOPS is
Million Operations per Second) [53]

power-inefficient. An example is the Pentium from Intel. While we are pass-
ing 3 GHz CPU frequency, it consumes more than 100 W. That is definitely
not the solution to embedded and portable devices, which require processing
performance above 2 GOPS (giga operations per second) at average power
consumption as low as 0.1 W by 2007 (ITRS 2003 roadmap). However, in
recent years it has been shown in academia and gradually also in industry,

Fig. 1.1: A typical SoC device (source [118]).

in complexity is equally due to quite a few aggravating circumstances and
due to constraints the designs must comply to. We list the most important
ones.

The first aggravating circumstance is the market need for more and
more functionality to be implemented by embedded systems (large number
of use-cases) with lower cost and reduced time to market.

With regard to the degree of integration, the second aggravating factor
influencing design complexity is the system on chip (SoC) era. In partic-
ular, the complexity is growing due to exponentially increasing transistor
count which give rise to the SoC concept that enables integration of com-
plete systems on a single chip. In practice this means that in SoC, entities
like processors, digital signal processors (DSPs), sensors, memories, FPGAs
(field programmable gate arrays), actuators and others are placed on a sin-
gle chip. Fig. 1.1 shows a typical example of such a SoC device. Next to
the software-driven components (DSP core and the microcontroller), the
device contains specialized data paths in form of accelerators and various
memory organizations (RAM and FIFO). Although heterogeneity allows for
achieving lower power consumption and higher performance (e.g. signal pro-
cessing on a DSP is more efficient with respect to power dissipation and chip
area than on a microprocessor, while a microprocessor is more efficient in
handling control-flow oriented code [75]), it significantly impedes the design
process because it enlarges the design-space to be explored in search for a
system configuration that satisfies input design constraints.

The third aggravating circumstance leading to increased design com-
plexity is the dynamic nature of applications running on embedded SoC
platforms themselves. These applications change their computational and
communicational requirements at run-time depending on the characteristics
of input data, which from the system perspective results in a dynamically
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changing workload.

At the same time, systems must be constraint compliant. E.g., real-time
systems have constraints that concern various temporal properties like the
minimal throughput, maximal latency, deadline satisfaction, etc. Multime-
dia systems on the other hand must achieve certain quality of service (QoS)
levels. A good example is video quality in present-day streaming services
available to us through our smart-phones that is being constantly enhanced.
This leads to the increase of computational power needed to assure the de-
sired QoS level. Furthermore, portable systems have constraints concerning
power consumption and chip area. Here it is interesting to notice that QoS
and limited power consumption are two constraints that adversely affect
each other making the design problem even more difficult.

To summarize, these design constraints in interaction with the afore-
mentioned aggravating circumstances lead to vast design spaces. The for-
mulation and exploration of these design spaces with the overall goal of
optimizing the trade-offs between several design objectives while meeting
all the constraints is a difficult problem that impedes the design process of
an embedded system.

1.3 Embedded system design methodologies

This section briefly introduces the existing strategies that successfully ad-
dress the design challenges listed previously. It is important to emphasize
that these methodologies are not to be always considered independent of
each other but rather as being complementary to each other.

1.3.1 Platform-based design

The Taxonomies for the Development and Verification of Digital Systems [8]
defines platform-based design as an integration oriented design approach
emphasizing systematic reuse for developing complex products based upon
platforms and compatible hardware and software components, intended to
reduce development risks, costs, and time to market.

Simply put, in consideration of increasing non-recurring engineering
(NRE) and design costs, platform-based design advocates for reuse of pre-
designed intellectual property (IP) components while developing a plat-
form that will be suitable for some application domain [91]. This way,
NRE and design costs are reduced as the need for the development of new
IPs is avoided. Therefore, the company can focus on its core competency
rather than investing money and time in IP development. Typically, IP



4 Introduction

creation, design assembly and manufacturing, for the most part, no longer
take place in the same organization. Thus, platform-based approach defines
a “meeting-in-the-middle” design style that lies between the full custom and
fully programmable styles.

1.3.2 Model-based design

Model-based design flows [71][92], as the word suggests, focus on models
of computation (MoCs) as the core design artifact. In particular, they are
based on the use of models with a mathematical backing and a strong seman-
tics characterization. The entire system (applications and the platform) is
represented at an abstract level. Therefore, model-based design flows can be
combined with platform-based design flows. Typically, systems described by
models can be directly used as inputs into the synthesis trajectory. Within
the trajectory, the model enables a hierarchical design process that iter-
atively refines the design and includes details necessary to implement the
desired functionality [82]. Inside the process, different properties of the
system can be determined by analyzing its model.

In the model-based design approach the platforms should be as com-
posable as possible [91] and models relatively static so that analyzability
is ensured. However, as mentioned previously, modern applications are no
longer static and cannot be captured by static models without incurring
significant amounts of pessimism in the design process. This pessimism has
the effect of reducing the optimization margin a designer has at his/hers
disposal.

1.3.3 Scenario-based design

Scenario-based design approach [52][122][76][79] targets dynamic applica-
tions. Within the approach, the dynamic behavior of an application is
viewed as a collection of different modes or scenarios. Scenarios are derived
by bounded clustering of behaviors of the application and the application
mapping on the platform in such a way that these behaviors are similar from
some multidimensional cost perspective such as delay or energy consump-
tion. Internally, scenarios are fairly static and in isolation can be treated
using model-based design methodologies in consideration of a particular
platform. This shows that scenario-based design can be complemented with
platform-based and model-based design.

Within the scenarios methodology, clustering of behaviors in scenarios
is done in such a way that the system can be configured to exploit this cost
similarity [52].
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2.2. Application Scenario Methodology 19

Figure 2.3: The application scenario methodology overview.

i.e. when all the different cost aspects have been combined in a normalized
weighted sum. That is not always easy in practice because “comparing apples
and oranges” in a single dimension usually leads to inconsistencies and subopti-
mal results. Hence, N-dimensional Pareto sets can be used instead of weighted
uni-dimensional costs. Such Pareto sets [83, 36] allow to work with a Pareto
boundary between all feasible and all non-feasible points in the N-dimensional
cost space. Unfortunately, it becomes less obvious to deal with statements like
“nearby cost values” or “taking the worst case of all the operation modes in the
scenario”. So similarity between cost has to be substituted by a new element,
e.g. by defining the normalized, potentially weighted distance between two N-
dimensional Pareto sets corresponding to two scenario’s as the N-dimensional
volume that is present in between these 2 sets. Based on this distance value,
closeness between potential scenario options can be characterized. In addition,
the worst case located Pareto points for all the possible operation modes that
have been clustered (and that can be potentially encountered at runtime) have
to be taken into account for characterizing the scenario. As this thesis does not
use N-dimensional cost spaces, the reader is referenced to [77, 120, 121] for more
details.

2.2.2 Methodology Overview
Even though the application scenario concept is applicable in many contexts, we
have devised a general methodology that can be instantiated in all of these con-
texts. This application scenario methodology deals with issues that are common:
choosing a good scenario set, deciding which scenario to switch to (or not to
switch), using the scenario to change the system knobs, and updating the sce-
nario set based on new information gathered at runtime. This leads to a five step
methodology (figure 2.3), each of the steps having a design time and a runtime
phase. The first step is somewhat special in the sense that the runtime phase is
merged into the calibration step.

1. Identification of the scenario set: In this step, the relevant operation mode

Fig. 1.2: System scenario methodology overview (source [52]).

This approach leads to a five step methodology shown in Fig. 1.2, where
each of the steps has a design-time and a run-time phase. To clarify, con-
sider a block-based video decoder application, e.g. H.264 [84] that is to
be run on an battery-powered device supporting dynamic voltage and fre-
quency scaling (DVFS) [64]. Assume that the video decoder has an as-
sociated throughput constraint, i.e. it has to deliver a certain number of
video frames per unit of time. In H.264, frames are composed of a certain
number of macroblocks the number of which depends on the frame reso-
lution. Each macroblock can be encoded using several different encoding
schemes. On the decoder’s side each of these scheme’s entails a different
computational effort. Therefore, the time (and energy) needed to decode
a particular frame will depend on the exact breakup, i.e. how many mac-
roblocks of the frame belong to a particular encoding scheme. Now, the
decoder throughput constraint implies that every frame needs to be en-
coded within a fixed period of time called the available decoding time or
simply the frame budget. However, due to dynamism that the input video
stream exhibits, some frames require all the available decoding time, while
some do not. This fact can be used in conjunction with DVFS to achieve
energy savings and so prolong the battery life. With DVFS, when scaling
the voltage, the processor’s frequency and the execution time of a task scale
linearly (fclk ∼ VDD), while the energy consumption scales approximately
quadratically (E ∼ V 2

DD). Therefore, it is advantageous from energy saving
perspective to lower the processor’s voltage as long as the new frame de-
coding time is less or equal to the frame budget. This way, energy will be
saved, throughput constraints met and the battery life prolonged.

However, considering every frame breakup to tune the system at run-
time would involve too much overhead. In particular, for an H.264 decoder,
while decoding CIF images up to 6.22 · 1023 frame breakups would need
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to be considered [52] and for each one we would have to store one volt-
age/frequency setting. This is obviously impossible. Even if it was, i.e.
if memory was infinite, changing voltage/frequency settings of a processor
incurs a significant amount of overhead in time that would undermine the
purpose of the entire optimization.

Therefore, in the system scenario-based design methodology, it is neces-
sary to cluster frames with similar breakups and merge them into one system
scenario. This step corresponds to the identification step of Fig. 1.2. At
run-time, depending on the input frame characteristics the working scenario
needs to be predicted to scale the voltage and frequency values to the ones
determined at design-time. However, scenario prediction may incur a signif-
icant amount of overhead. This overhead can be accounted at design time
to further refine the scenario set. This corresponds to the prediction step of
Fig. 1.2. After the scenario had been predicted it can actually be run under
a configuration determined at design time (DVFS setting, scheduling, etc.).
This corresponds to the exploitation step of Fig. 1.2.

Once the working scenario changes, i.e. once a frame belonging to an-
other scenario is presented to the decoder, the DVFS processor settings are
to be changed. However, this implies some overhead which may be large.
Therefore, even when a scenario different from the current one is predicted,
it is not always a good idea to switch scenarios, because the overhead may
be larger than the gain. At run-time, decision on whether to switch scenario
or not are made by the switching step of the methodology. At design-time,
the switching overhead is used to further refine the scenario set.

Finally, the calibration step of the methodology helps with cases when it
is hard or even impossible to account for the actual run-time environment at
design-time. Therefore, the system is infrequently (otherwise, the overhead
would obviously become too large) calibrated to optimize the average-case
behavior.

1.4 System-level performance analysis

The design approaches outlined in the previous section can be fitted into
the Y-char approach of Fig. 1.3.

Given an application and architectural options, the goal of the design is
to by exploring different allocations of resources and binding and scheduling
options produce a system of desired characteristics. This is an iterative pro-
cess, well-known as design-space exploration (DSE) in which performance
analysis plays a crucial role, as can be seen in Fig. 1.3. In each iteration of
the process, different revisions of the application, architecture, allocation,
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Performance
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Fig. 1.3: Performance analysis in the design space exploration cycle
(source [82]).

binding and scheduling decisions are considered, until performance require-
ments are met with minimized costs.

Therefore, providing the designer with performance indicators of the
final system implementation at early design stages is of utmost importance.
We refer to this analysis as system-level performance analysis, or shortly
performance analysis. The performance indicators may include throughput,
latency, memory demands and resource usages.

Most of the approaches for performance analysis can be broadly divided
into two classes: simulation-based approaches and formal method-based
approaches.

Simulation-based approaches are widely used in the industry. Moreover,
several tools exist that support cycle-accurate co-simulation of complete
HW/SW systems. There exist free simulation frameworks too, such as the
broadly-known SystemC [1].

Simulation-based approaches can capture complex interactions and cor-
relations in systems. Therefore, they have a large and easily customizable
scope that renders them an attractive tool for performance analysis in ev-
eryday engineering practice.

However, in the parlance of [82], most of simulation-based techniques suf-
fer from insufficient corner-case coverage. This means that they are, in most
cases, unable to provide worst-case performance guarantees that is of critical
importance for many embedded systems. Typically, embedded systems are
very different from general purpose computing systems. This is primarily
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due to their dedication to control of systems and because they interact with
the physical environment. Therefore, they are typically imposed with strict
performance constraints. One of the most important constraints is the max-
imal allowed time to perform a computation which must be proven to have
an upper bound in all possible circumstances. Therefore, simulation-based
techniques, although very useful in system prototyping, cannot be used to
attest performance properties of hard-real time (embedded) systems.

That is where formal method-based analysis techniques come into action.
They do provide hard performance bounds. However, there is a tradeoff to
be taken into account. In particular, as formal method-based techniques
are typically not able to take into account all the complex interactions and
correlations in the system they capture, the performance bounds obtained
may be somewhat pessimistic. Therefore, a significant amount of effort is
put into developing techniques being able to produce tighter and tighter
performance bounds while maintaining computational tractability.

1.5 Problem statement

Streaming applications are applications that transform input data streams
of arbitrary length to output data streams by performing some determinis-
tic transformation. Examples are applications for video stream processing,
digital communications, image processing, etc.

Modern streaming applications expose increasing levels of dynamic be-
havior which in essence means that their computational and communica-
tional loads vary during run-time. Examples of such dynamic streaming
applications can be, e.g., found in the domains of multi-media [97] and
wireless signal processing [2] which are not static any longer, in contrast to
earlier generations of algorithms and standards. These applications often
require real-time processing capabilities. For streaming applications, these
real-time demands are expressed as throughput and latency constraints that
are considered the most important performance characteristics. Because of
that when using the terms “performance analysis” or “performance met-
rics/characteristics” we will be typically referring to throughput and la-
tency, unless stated otherwise. Other performance characteristics may in-
clude memory demands, resource usage, etc.

In this thesis we will primarily focus on formal method-based perfor-
mance analysis for dynamic real-time streaming applications by exploiting
the concept of system scenarios. We say primarily because in some con-
texts we will also consider some functional aspects of systems as absence of
deadlock, boundedness, execution patterns of enclosed subsystems etc.
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Dataflow models of computation (MoCs) have been widely used to model,
design, analyze, implement and optimize such applications. This is due to
their relatively simple graphical representation and their effectiveness in
exposing task-level or data-level parallelism that enable achieving high per-
formance implementations [92]. The most-well known, most used, stable
and mature flavor of dataflow is synchronous dataflow (SDF) [70]. In SDF,
applications are represented as SDF graphs (SDFG). SDF in its timed ver-
sion comes with a rich analysis portfolio including throughput analysis [50],
latency analysis [51] and buffer requirements analysis [123][43][108].

However, SDF is a static dataflow MoC, which means that properties of
SDFGs are fixed and known at compile time. Therefore, SDF is incapable of
tightly capturing the dynamic behavior of modern streaming applications,
the emphasis being on the word tightly. Of course, in many cases one can
construct an SDF model that captures the worst-case across all application
behaviors. However, such an abstraction will in many cases lead to overly
pessimistic worst-case performance bounds. Furthermore, the use of such
pessimistic results in the design process of Fig. 1.3 leads to overallocation
of resources on already resource scarce embedded processing platforms that
could have been used to host another application.

Thus, different dataflow models were proposed to increase the expressive
power of SDF [19][16][121][53][120][21][65][45]. However, for many of these
models key analysis and verification problems are undecidable or they do
not have known performance analysis techniques.

FSM-based scenario-aware dataflow (FSM-SADF) [46] is a dataflow MoC
that is able to capture dynamic applications and that is design-time analyz-
able. Inspired by the scenario-based design methodology, FSM-SADF clus-
ters the dynamic application data processing behaviors into a collection of
modes or scenarios that are internally static and captured by SDFGs. Sce-
nario occurrence patterns are given by a nondeterministic FSM. FSM-SADF
comes equipped with various performance analysis techniques: worst-case
throughput [46][98][113], worst-case latency [46][95][113] and storage space
analysis techniques [109][113].

Still, FSM-SADF suffers from succinctness (compactness [21]) problems
when the number of scenarios increases. In particular, FSM-SADF does not
provide us with compact constructs to envelop large numbers of operation
modes, i.e. scenarios. Indeed, an enumeration of these modes where every
mode would be captured by a single SDFG is in theory possible but in prac-
tice it will render the size of the model unmanageable and the run-time of
performance analysis prohibitive. This comes to the fore in modeling of dy-
namic streaming applications that expose fine-grained data-dependent be-
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havior. In particular, such applications may have thousands or even millions
of possible behaviors that render bottom-up enumeration-based clustering
impractical. A representative example of such an application is the epileptic
seizure predictor based on Lyapunov exponent calculator that was presented
in [60][59] with up to ∼ 2000000 possible behaviors. Further examples are
various block-based video coding applications like the VC-1 decoder pre-
sented in [12][13] that we use as a case-study in this thesis with ∼ 25000
behaviors only in case of SDTV input format. For formats of higher video
quality this number would further increase.

Therefore, to be able to prove worst-case performance bounds for such
applications, we need to alleviate the compactness problems of the original
FSM-SADF formalism. To that end, we consider the use of parameterized
dataflow based on SDF by defining a concept called SDF-based parame-
terized dataflow (SDF-PDF). By integrating dynamic parameters into SDF
we can capture dynamic applications without the loss of resolution in a
succinct manner. Furthermore, at design time, parameters help keep the
size of model sizes manageable and allow models to be quickly modified
or tuned for performance. Furthermore, parameterization allows to replace
successive analysis of all behaviors with a single parametric analysis. At
run-time, actor parameters allow for dynamic reconfiguration of models,
i.e. while a model is running. For the proposed SDF parameterization we
identify the semantic link between it and FSM-SADF. Using the link, we
propose a parametric worst-case throughput and latency analysis scheme for
SDF-PDF that is able to render significantly tighter worst-case throughput
and latency bounds than the approaches that rely on construction of “SDF
worst-case abstractions” of parameterized specifications.

However, applications in addition to exposing fine-grained data-dependent
behavior that we capture with parameterized dataflow models may also have
intricate control requirements. SDF-PDF does not provide constructs to
capture these requirements which may adversely affect the tightness of SDF-
PDF analysis. To alleviate this problem, we propose a refinement to SDF-
PDF that is in essence generalization of the original FSM-SADF formal-
ism where we use parameterized scenarios to capture the fine-grained data-
dependent application dynamics within a scenario. In the model, applica-
tion control requirements expressed in terms of allowed transitions between
scenarios are captured by a nondeterministic FSM. We refer to the novel
formalism as FSM-based parameterized scenario-aware dataflow (PFSM-
SADF). For an SDF-based flavor of PFSM-SADF called SDF-based PFSM-
SADF (SDF-PFSM-SADF) we develop corresponding worst-case through-
put and latency analysis techniques.
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SDF-PFSM-SADF allows us to analyze worst-case performance of ap-
plications exposing fine-grained data-dependent behavior within a superim-
posed control structure by means of parameterization. Parameters involved
are defined and bounded across scenarios and they are allowed to change
(within their bounds) every time a scenario is re-visited. Therefore, such
parameters can be called dynamic. However, for many applications in prac-
tice values of these parameters will still be unknown a priori, but once set
they will remain the same or will change infrequently often. We call such
parameters static. Therefore, what we now need to analyze is worst-case
performance but for given parameter values. Of course, such an analy-
sis could be performed enumeratively by analyzing all possible parameter
settings. However, parameters spanning wide intervals render the enumera-
tion impractical or impossible. Therefore, a parametric analysis approach is
needed. To that end, we propose an analysis approach that is able express
the worst-case throughput of the application as a collection simple functions
defined in graph parameters that can be evaluated in no-time when that is
needed. E.g., a run-time manager, given the application parameter values
we may need to decide whether the application can meet its throughput
constraints or not. If not, it can choose not to admit the application to the
system and inform higher layer protocols about the occurrence for further
(possibly error) handling.

In previous problems we have dealt with performance analysis in terms
of throughput and latency in context of parameterized scenarios. However,
other performance and functional properties such as memory requirements
and requirements on execution order of actors are oftentimes also vital parts
of a typical design trajectory. The original FSM-SADF had been analyzed
for some of those properties too. All of those analysis techniques are im-
plemented in the SDF3 tool [112]. However, the analysis of SDF3 tool
is limited to a set of predefined properties, which limits the user in defin-
ing new properties unless he/she wants to get involved into a long-lasting
software development process with the goal of extending the capabilities
of SDF3. Therefore, a more general verification framework than SDF3 is
needed. Thus, translation of FSM-SADF to timed automata (TA) is pro-
posed where the uppaal model checker is used to perform the actual verifi-
cation. The gain is twofold. First, the analysis of user-defined performance
metrics is supported. Second, by presenting FSM-SADF through a widely
used and user-friendly model-checker as uppaal, we make it available to a
wider rande of users [21].

FSM-SADF efficiently captures dynamic streaming applications by com-
bining dataflow and finite-state control. The control in FSM-SADF is data
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driven, i.e. the activation of a new scenario is triggered by input data avail-
ability. An example of such an application is a typical block-based video
encoder/decoder. However many systems rely on event-driven mechanism
to achieve control of data-intensive system parts. E.g., these mechanisms
may include handling non-synchronized event inputs from users. A typical
example may be a press to a button of a remote controller that changes
the TV channel and requires the video decoder to start processing a new
and different video stream. To capture such systems we introduce events
to FSM-SADF. Using the uppaal timed automata translation of the new
flavor of FSM-SADF we show how to perform schedulability analysis of such
systems.

1.6 Contributions

The main contributions of the thesis are listed below:

• We propose a framework for worst-case throughput and latency anal-
ysis of SDF-PDF. We base our techniques on the techniques of FSM-
SADF adapted to the parametric case by exploiting the semantic link
between SDF-PDF and FSM-SADF.

• We generalize the concept of FSM-SADF to the concept of PFSM-
SADF to be able to succinctly capture applications exposing both
fine-grained data-dependent dynamics and intricate control require-
ments. In addition, we develop corresponding worst-case throughput
and latency analysis techniques for an SDF-based flavor of PFSM-
SADF called SDF-PFSM-SADF.

• In consideration of restricted operational semantics of SDF-PFSM-
SADF where parameters once set remain fixed or change infrequently,
we propose a throughput analysis scheme that is able to express graph’s
throughput as a function of graph parameters.

• We propose a translation of FSM-SADF formalism to uppaal timed
automata to enable a more general verification than currently sup-
ported by existing tools.

• We briefly discuss possibilities for integration of event-driven control
with the FSM-SADF formalism and schedulability analysis of the com-
bination using the uppaal model checker.
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1.7 Thesis overview

The remainder of this thesis is organized as follows.
Chapter 2 introduces the dataflow concepts used throughout this thesis.
Chapter 3 addresses the first contribution of the thesis, that is the worst-

case performance analysis of SDF-PDF. We use SDF-PDF to capture and
analyze applications with fine-grained data-dependent dynamics.

In Chapter 4 we introduce PFSM-SADF and its specialization SDF-
PFSM-SADF with associated worst-case performance analysis techniques.
SDF-PFSM-SADF can be considered a refinement of SDF-PDF that is
achieved by integrating the information on the control requirements of the
application (if available) into the SDF-PDF model in form of an FSM.

For a restricted operational semantics of SDF-PFSM-SADF where pa-
rameters are deemed static (change or change infrequently often which may
happen oftentimes in practice), Chapter 5 presents a throughput analysis
scheme where throughput of the model is expressed as a function of param-
eters.

Chapter 6 leaves the parametric world of previous chapters and considers
the translation of FSM-SADF to TA to enable more general verification, i.e.
it goes beyond the throughput and latency analysis of previous chapters but
in a nonparametric context. Therefore, Chapter 6 is not in a narrow sense
related to previous chapters and can be read separately.

Finally, Chapter 7 concludes and sets directions to future work.
The last contribution concerning the modeling and schedulability anal-

ysis of FSM-SADF combined with event-driven control is briefly presented
in Appendix A 1. It is strongly correlated to Chapter 6 because as the basic
modeling concept it uses the translation of FSM-SADF to TA presented in
the same chapter.

Fig. 1.4 shows dependencies between chapters. In particular, if there
exists an edge between Chapter X and Chapter Y , Chapter Y is said to be
dependent on Chapter X. This in turn means that Chapter X should be
read prior to reading Chapter Y .

1To present this contribution, we choose to use an appendix rather than a chapter to
indicate that this is work in progress and that a significant amount of research effort is
needed to complete it.
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Chapter 2

Preliminaries

This chapter introduces the dataflow modeling concepts used throughout
this thesis. It starts by discussing Max-plus algebra. Max-plus algebra is
a mathematical tool that will be used to capture the temporal behavior of
SDF-based dataflow MoCs covered in this thesis.

2.1 Max-plus algebra

2.1.1 Definition

Define ε
def
= −∞ and e

def
= 0, and denote Rmax the set R ∪ {−∞}, where R is

the set of real numbers. For elements a, b ∈ Rmax, we define operations ⊕
(pronounced “o-plus”) and ⊗ (pronounced “o-times”) by

a⊕ b def
= max(a, b) and a⊗ b def

= a+ b. (2.1)

Clearly, for any a ∈ Rmax,

a⊕ ε = ε⊕ a = a, a⊗ ε = ε⊗ a = ε, (2.2)

and
a⊗ e = e⊗ a = a. (2.3)

By Max-plus algebra [7][61] we understand the analogue of linear algebra
developed for the pair of operations (⊕,⊗) extended to matrices and vectors
and denoted by Rmax = {Rmax,⊕,⊗, ε, e}.

Note that Rmax is a dioid, i.e. a semiring1 with idempotent addition
(a⊕ a = a).

1A set K equipped with two operations ⊕ and ⊗ is a semiring if ⊕ is associative and
commutative, ⊗ is associative and distributive with respect to ⊕, there is a zero element
ε (a⊕ ε = ε⊕ a = a, a⊗ ε = ε⊗ a = ε) and a unit element e (a⊗ e = e⊗ a = a) [41].

15
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2.1.2 Vectors and matrices in Max-plus

The set of n dimensional Max-plus vectors is denoted Rnmax, while Rn×nmax

denotes the set of n × n Max-plus matrices. The sum of matrices A, B ∈
Rn×nmax , denoted by A⊕B is defined by

[A⊕B]i,j = [A]i,j ⊕ [B]i,j , (2.4)

while the matrix product A⊗B is defined by

[A⊗B]i,j =
n⊕
k=1

[A]i,k ⊗ [B]k,j , (2.5)

where [A⊕B]i,j , [A⊗B]i,j , [A]i,j and [B]i,j are entries of matrices A⊕B,
A ⊗ B, A and B, respectively, with indices i and j. For a vector a =
[a1, . . . , an]T ∈ Rnmax and scalar c we use c ⊗ a or a ⊗ c to denote a vector
with entries identical to entries of a with c added to each of them, i.e.
c ⊗ a = a ⊗ c = [a1 + c, . . . , an + c]T . For a vector a ∈ Rnmax, ||a|| denotes
the vector norm, defined as

||a|| =
n⊕
i=1

ai. (2.6)

For a vector a ∈ Rnmax with ||a|| > −∞, we use anorm to denote a − ||a|| =
[a1−||a||, . . . , an−||a||]T , i.e. the normalized vector a, so that ||anorm|| = 0.
With A ∈ Rn×nmax and c ∈ Rmax, we use notation A⊗ c or c⊗A for a matrix
where [A ⊗ c]i,j = [c ⊗ A]i,j = [A]i,j + c. The ⊗ symbol in the exponent
indicates a matrix power in Max-plus algebra. For A ∈ Rn×nmax and k ∈ N>0,

A⊗k =
k⊗
i=1

A. (2.7)

For scalars c ∈ Rmax and α ∈ R, c⊗α = α · c. Furthermore, it is easy to
verify that Max-plus matrix multiplication is linear, i.e.

M ⊗ (a⊕ b) = M ⊗ a⊕M ⊗ b and M ⊗ (c⊗ a) = c⊗M ⊗ a (2.8)

for all M ∈ Rn×nmax , a, b ∈ Rnmax and c ∈ Rmax. In addition, the matrix
multiplication is monotone, which means that if a � b, then

M ⊗ a �M ⊗ b. (2.9)

Note that in (2.9), for M,N ∈ Rn×nmax , we write M � N if [M ]i,j ≤ [N ]i,j for
all i ∈ 1, . . . , n and j ∈ 1, . . . , n.
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2.2 Dataflow models of computation

2.2.1 The basics

Dataflow models of computation (MoC) are widely used for modeling, an-
alyzing and implementing streaming applications. This is thanks to their
simple graphical representation, compactness and the ability to expose par-
allelism contained in the considered application. Furthermore, the use of
dataflow in a design process encourages good software engineering practices
as modularity and code reuse.

Dataflow MoCs are instantiated as dataflow graphs. In such graphs,
nodes are called actors while edges are called channels. Actors represent
computational kernels, while channels capture the flow of streams of data
values between actors. These data values are called tokens. The essential
property of dataflow is that of an actor firing. Simply put, actor firing
denotes the execution of an actor. Actor firing is an atomic action during
which the actor consumes a certain number of tokens from input channels
through its input ports, executes some behavior and produces a certain num-
ber of tokens at its output ports that are put on its output channels [124].
Firings are controlled by firing rules that specify the conditions for the exe-
cution of these firings [96]. These conditions are typically specified in terms
of availability of input tokens, the values of input tokens and the state of
the enclosing actor [57]. In timed dataflow [107] under consideration in this
thesis, actor firing takes a finite amount of time called the actor firing delay.

In dataflow graphs, actors communicate by sending tokens along graph
channels. On a channel, these tokens form token sequences that we define
similarly as the concept of signals is defined in [71].

Definition 2.1 (Token sequence). Let V be a set of values and let T be a
set of tags originating from some totally ordered continuous time domain.
Let V and T include special values ⊥ and ∗ which indicate the absence of
value and an arbitrary value, respectively. We define a token sequence as a
total mapping σ : N>0 → V × T denoted using square bracket and commas
as follows [σ(1), σ(2), . . . , σ(n), . . .] = [σ(n)]∞n=1.

We call the set of all finite and infinite token sequences Σ where, of
course, Σ = 2V×T . We denote the tuple of N token sequences as σ where
N ∈ N>0. The tuple of token sequences will be denoted using parentheses,
as in ([σ1(n)]∞n=1, [σ2(n)]∞n=1, . . . , [σN (n)]∞n=1), an N -tuple with N sequences
of infinite length. The set of all such tuples will be denoted ΣN . A set of
tuples will be denoted using the usual braces for sets.
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Through the concept of firing, actors transform finite or infinite se-
quences of input tokens to finite or infinite sequences of output tokens.
Input and output sequences are communicated through actor input and
output ports, while the transformation between them is given by actor fir-
ing function.

We define a dataflow actor as follows.

Definition 2.2 (Dataflow actor). A dataflow actor A = (P,Q,R, f) is a
tuple, where P is the set of actor input ports, Q is the set of actor output
ports, R ⊂ ΣU is a set of finite sequences called the firing rules and f : ΣU →
ΣV is a mapping called the firing function, where U = |P | and V = |Q|.

However, actors in isolation are of little use in modeling of complex
systems. Therefore, we typically consider compositions of dataflow actors,
i.e. dataflow graphs that we define next in accordance with [21].

Definition 2.3 (Dataflow graph). A dataflow graph G = (A, C) is a di-
rected graph, where A is the set of vertices representing actors while C ⊆
A×A is a multiset2 of edges representing channels.

According to Definition 2.3, in the most general sense, a dataflow graph
is a directed graph with actors (cf. Definition 2.2) represented by vertices
and channels represented by edges. Channels convey values known as tokens
between the actors. Channels are conceptually FIFO queues that are defined
by source and destination actors. For that matter, given a dataflow graph
G, let for each c ∈ C, functions src : C → A and dst : C → A return the
source and destination actor of c, respectively.

2.2.2 Flavors of dataflow MoCs

Dataflow MoCs can be divided into two classes: static dataflow MoCs [58]
and dynamic dataflow MoCs [18].

Static dataflow MoCs are in wide use due to their predictability, strong
formal properties and amenability to powerful optimization techniques [18].

Most well-known representatives of static dataflow are homogeneous syn-
chronous dataflow (HSDF) [69], synchronous dataflow (SDF) [70] and cyclo-
static dataflow (CSDF) [19]. The firing rules for these MoCs are specified
in terms of availability of input tokens, regardless of their value. A firing
results in the consumption of these tokens from input channels and produc-
tion of tokens on output channels. These token production and consumption
numbers are called actor port rates or simply rates and they form the actor

2Parallel channels are allowed.
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Fig. 2. Comparison of dataflow models of computation.

analysis and run-time scheduling of these MoCs is more
complex. Computation graph actors may consume a different
number of tokens than the number of tokens needed to enable
the firing of the actor. This makes analysis and implementation
of this MoC even more complex than the SDF/WMG MoC.
In [39] it is shown that the CSDF MoC is as expressive as the
HSDF MoC, but it is more compact for certain aspects. The
changing port rates make analysis and scheduling of CSDF
more complex compared to SDF.

There exist several dataflow MoCs that can incorporate
some dynamism, allow design-time analysis, and can be imple-
mented reasonably efficiently. In earlier sections, FSM-based
SADF/HDF has already been discussed extensively. FSM-
based SADF offers many analysis algorithms, which typically
have a run-time similar to analysis algorithms for CSDF.
Sec. IV shows that it is further possible to derive efficient
implementations for FSM-based SADF. The implementation
efficiency is also similar to that for CSDF. Parameterized Syn-
chronous Dataflow (PSDF) [44] allows the rates of one or more
ports to be parameterized rather than constant. Parameterized
schedules and buffer sizes can be computed. Options to ex-
press dynamism are however limited. Variable Rate Dataflow
(VRDF) [45] does not require constant rates. Port rates are
allowed to vary arbitrarily within a specified range. Variable
Phased Dataflow (VPDF) [46] is a CSDF-like extension of
VRDF where the number of repetitions of CSDF phases can
be parameters from some finite interval. Existing analyses
of VRDF and VPDF are limited to computing (conservative)
buffer sizes under a throughput constraint.

Dataflow MoCs such as Boolean Dataflow (BDF) and
Dynamic Dataflow [47] allow data-dependent firing rules.
This makes them Turing-complete in the sense that they can
operationally simulate a Turing machine. Consequently, it is
impossible to realize an exact analysis of their timing behavior
and buffer sizes at design-time. These MoCs require run-time
scheduling and deadlock detection. This makes their imple-
mentation far less efficient compared to all MoCs discussed
so far. The Kahn Process Network (KPN) [17] is another
MoC that can be used to express application dynamism. The
Reactive Process Network (RPN) [48] MoC extends KPN with
state transitions that allow it to change the function of the

process network based on events. Both KPN and RPN do not
allow for design-time analysis and require a complex run-time
mechanism that incurs a large implementation overhead. We
consider DDF more expressive than KPN because the (infor-
mal) definition of DDF given in [47] allows non-functional
(indeterminate) behavior, which cannot be expressed in KPN.

Finally, we consider the general SADF MoC. FSM-based
SADF/HDF allows the graph structure to change with each
iteration. General SADF allows it also to change inside an
iteration. The BDF MoC also allows changing rates inside an
iteration, but it only allows a limited set of constructs. This
makes the general SADF MoC more expressive than BDF.
However, the general SADF MoC does not allow arbitrary
rates. Therefore, it is placed below the KPN MoC on the
expressiveness axis. Sec. III shows that a broad class of
analysis techniques is available for the SADF MoC. These may
suffer from state space explosion problems, however, making
this MoC less analyzable. Because it is possible to change
scenarios inside an iteration, the general SADF MoC requires
run-time scheduling. This makes its implementation not very
efficient.

An overall conclusion is that expressiveness is typically
traded off against analyzability and implementation efficiency.
Because of its ability to express dynamism while allowing
design-time analysis and efficient implementation, the FSM-
based SADF MoC provides an interesting trade-off between
expressiveness, analyzability, and implementation efficiency.

VI. SDF3 TOOL SET

The open-source SDF3 tool set [32] implements all analysis
and implementation techniques discussed in this paper. The
tool set also offers an SADF graph generation algorithm
that constructs random SADF graphs which are connected,
consistent, and deadlock-free. This generation algorithm can
be used to benchmark novel SADF analysis, transformation,
and implementation algorithms. If desired, the user can restrict
relevant properties of the generated graph (e.g., limit port rates,
or construct only acyclic or strongly connected graphs).

All algorithms and techniques implemented in SDF3 can
be accessed through a set of command line tools as well
as a C/C++ API. Besides the SADF MoC, the tool set of-
fers analysis, transformation, generation, and implementation
techniques for the SDF and CSDF MoCs. Algorithms are
provided to transform dataflow graphs from one MoC to
(conservative) dataflow graphs in another MoC. The rich set
of algorithms offered by SDF3, makes it a versatile tool set for
the development of novel dataflow-based design approaches.

VII. CONCLUSIONS

Embedded systems nowadays typically run multiple appli-
cations, such as multimedia and wireless, concurrently on a
heterogeneous MPSoC. Model-based design approaches are
used to map these timing-constrained applications to the
MPSoC. The Model-of-Computation used by these approaches
may differ in its design-time analyzability, expressiveness,
and implementation efficiency. Many dataflow-oriented MoCs
have been proposed in the past. In this paper, we compare
different dataflow models on the aforementioned aspects. This
comparison shows that many MoCs that allow design-time
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Fig. 2.1: Comparison of dataflow MoCs (source [110]).

type signature [53][63]. In HSDF and SDF, actor type signatures are fixed
and known at design-time. Actually, in HSDF all rates are equal to one. In
CSDF, actor type signatures can vary between actor firings as long as the
variation complies to a certain type of a periodic pattern.

Static dataflow MoCs owe their “nice” properties to their restricted se-
mantics. This restricted semantics, however, makes them an inadequate
design tool choice for capturing the dynamic behavior inherent to modern
streaming applications. The need for expressive power beyond that offered
by static dataflow MoCs announced the dawn of the class of dataflow MoCs
we call dynamic dataflow MoCs.

Most prominent dynamic dataflow models are parameterized SDF or
shortly PSDF [16], variable-rate dataflow (VRDF) [121], heterochronous
dataflow (HDF) [53], FSM-based scenario-aware dataflow (FSM-SADF) [46],
variable-rate phased dataflow (VPDF) [120], boolean dataflow (BDF) [21],
scenario-aware dataflow (SADF) [113], Kahn process networks [65], dynamic
dataflow (DDF) [21] and reactive process networks (RPN) [45]. However,
the increase in expressive power comes at the price of reduced analyzabil-
ity and implementation efficiency as shown by Fig. 2.1 borrowed from [110].
Furthermore, many of these MoCs are either not sufficiently analyzable or do
not have known performance analysis techniques at all. E.g., Buck [21] had
shown that BDF and DDF are Turing complete. Consequently, it is impossi-
ble to realize an exact performance analysis for such models at design-time.
Models such as PSDF and HDF although not Turing complete are untimed
and therefore are not equipped with any type of analysis that would address



20 Preliminaries

their real-time performance properties.

At this point we do not go any further into the intrinsics of all mentioned
dataflow MoCs (we will address many of them in the related work parts of
the chapters to come). Instead, we focus on SDF and FSM-SADF as these
models are the cornerstones of the work we present in this thesis.

2.3 Synchronous dataflow (SDF)

2.3.1 The model

SDF is the most widely used, stable and mature dataflow MoC [16]. In timed
SDF actor firing delays and rates are fixed and known at design-time. SDF
is a uninterpreted dataflow MoC, which means that the actual meaning
of the computations and semantics of data tokens are not relevant [67].
Furthermore, the firing rules of SDF are conjunctive which implies that all
actor input channels must contain sufficient quantities of input tokens for
the firing to be enabled. These quantities are given by port rates.

Now, given an SDF actor A = (P,Q,R, f) where P = {p1, . . . , pU} and
Q = {q1, . . . , qV } let function rA : (P ∪Q)→ N>0 return the rate value for
a given actor port. Then the firing rule of A takes the form

R = {([σp1(n)]
rA(p1)
n=1 , . . . , [σpU (n)]

rA(pU )
n=1 )} (2.10)

where σpi(n) = (∗,⊥) for all i = 1, . . . , U .

Firing rule of (2.10) says that in every firing A consumes rA(p1) input
tokens from port p1 and so on until the last input port pU from which it
consumes rA(pU ) tokens regardless of their value (notation ∗). The firing
rules do not depend on the availability times of input tokens, and therefore
the notation ⊥ is used.

Values rA(pi) are fixed and known at design-time and so are the firing
rules. This renders SDF a static dataflow MoC.

In consideration of the firing function of A, as SDF is an uninterpreted
dataflow MoC, we abstract from the token content and consider only the
timed part of the firing function given as the mapping fT : TU → T V

such that fT (n) = (τ(q1)(n), . . . , τ(qV )(n)) where τ(qi)(n) = (πr ◦σqi)(n) =
πr(σqi(n)) and πr is the right projection function, i.e. πr((v, t)) = t for any
(v, t) ∈ V × T .

For a particular output port qi ∈ Q of actor A with firing delay d the
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following equation holds under self-timed execution [47]

τ(qi)(n) = d+ max
pi∈P

τ(pi)(b
n

rA(qi)
c · rA(pi))

= d⊗
⊕
pi∈P

τ(pi)(b
n

rA(qi)
c · rA(pi)),

(2.11)

where τ(pi)(n) = (πr ◦σpi)(n) = πr(σpi(n)) and σpi(n) is the token sequence
of input port pi ∈ P . Equation (2.11) defines the Max-plus semantics
of self-timed execution of SDF. In particular, the production time of port
qi’s nth token equals to the availability time of the most delayed token
needed to perform the b n

rA(qi)
cth actor firing (max operator) increased by the

firing delay d of the actor (+ operator). Self-timed execution is a schedule
where every actor fires as soon as possible. The self-timed execution is of
special importance as it defines the tightest bound that can be given on the
temporal behavior of a system captured by an SDF model. With regard to
Max-plus algebra, two fundamental concepts that determine the self-timed
execution of an SDF actor are synchronization and delay. Synchronization
manifests itself when an actor waits for all input tokens to become available
(max operator). The delay manifests itself through the fact that the tokens
that are the result of an actor firing will be available after an amount of
time following the firing start time (+ operator). This amount of time is
equal to the actor firing delay.

Of course, (SDF) actors operating in isolation are of limited use for
modeling of complex systems. Therefore, we must consider compositions of
(SDF) actors, i.e. SDF graphs (SDFGs) that we formally define in Defini-
tion 2.4.

Definition 2.4 (SDFG). An SDFG G = (A, C, d, r, i) is a tuple where A is
the a of actors, C ⊆ A×A is a multiset of channels, d : A → R≥0 returns
for each actor its associated firing delay, r : A×C → N>0 returns for each
actor port its associated rate and i : C → N0 returns for each channel its
number of initial tokens.

Definition 2.4 refines Definition 2.3 by introducing the concept of rates,
firing delays and initial tokens. Existence of feedback loops in a dataflow
graph will cause deadlock unless initial tokens are appropriately placed on
graph channels forming feedback loops. The concept of initial tokens in
dataflow corresponds to the concept of initial marking in a related MoC
known as Petri nets. For more details, we refer to [80]. In this thesis as
in [90], we think of initial tokens as initial conditions for the execution rather
than a part of the execution itself.
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(a) Example SDFG.

while(1){
fire A0;
repeat (2) times {

fire A1; 
}
repeat (3) times {

fire A2; 
}
repeat (3) times {

fire A3; 
}
repeat (2) times {

fire A4; 
}
fire A5; fire A6;

}

(b) Schedule of the ex-
ample SDFG.

Fig. 2.2: SDF.

Fig. 2.2a shows an example of an SDFG. Actors are depicted by rect-
angles while port rates are annotated next to channel ends. If the value
is omitted, a rate value of 1 is assumed. Actor firing delays are denoted
alongside actors names. Initial tokens are depicted using black dots.

SDFGs can be scheduled at compile-time and thus implemented with
minimal run-time overhead. Schedule for an SDFGs is a loop over a series
of actor firings completing an iteration. Port rates can be used to unam-
biguously define a graph iteration, or a minimal set of actor firings that has
no net-effect on the token distribution of the graph. The schedule for the
running example can be denoted using the term A1

0A
2
1A

3
2A

3
3A

2
4A

1
5A

1
6 where

exponents represent actor repetition counts or as an infinite loop shown in
Fig. 2.2b.

We consider SDFGs that are consistent and deadlock-free. The graph
that is inconsistent may deadlock or be unbounded which means that it
has no unbounded execution with bounded buffers [90]. The existence of
a repetition vector implies consistency. The repetition vector of an SDFG
reveals how many times a particular graph actor needs to be fired in a valid
schedule/iteration. It is computed using the set of so-called balance equa-
tions [70]. We define it as a map Γ : A → N>0. With the abuse of notation,
for the running example, Γ(A0, A1, A2, A3, A4, A5, A6) = (1, 2, 3, 3, 2, 1, 1).
Nevertheless, consistency does not imply that a valid schedule exists. If a
graph contains cycles, it may deadlock although consistent. That is why
sufficient numbers of initial tokens must be placed in feedback channels.
Checking the deadlock-freedom of an SDFG is performed by computing an
iteration by abstract execution [70].
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2.3.2 Max-plus algebra for SDF

Equation (2.11) shows how Max-plus algebra [7] captures the semantics
of self-timed execution of SDF. In particular, (2.11) defines the Max-plus
algebraic semantics of an SDF actor. However, we are interested in the
Max-plus semantics of SDF at a graph level. Because SDFGs evolve in
iterations, the beginning and the end time of any SDFG iteration are fully
determined by the availability times of initial tokens. As mentioned, in the
SDF domain, initial tokens represent initial conditions for execution [90].
If the production timestamps of initial tokens after the kth graph iteration

are collected in the vector γ(k) ∈ R|I|max the evolution of an SDFG G is given
by the following recursive Max-plus linear equation

γ(k + 1) = MG ⊗ γ(k), (2.12)

for all k ∈ N0. In (2.12), MG ∈ R|I|×|I|max is the SDFG Max-plus matrix, I is
the set of initial tokens of the SDFG and γ(k) is the timestamp vector of
the kth SDFG iteration. Matrix MG is a square matrix, which follows from
the fact that each initial token has one entry in γ(k + 1), i.e. γ(k).

For initial tokens, throughout this article, we use the notation il where
l ∈ {1, . . . , |I|}, so that l specifies the position of the initial token’s times-
tamp in the timestamp vector and notation I is used for the set of graph’s
initial tokens.

From the recursion of (2.12), we can derive an explicit function for γ(k)
as follows

γ(k) = MG
⊗k ⊗ γ(0), (2.13)

for all k ∈ N>0. Matrix MG of (2.12) and (2.13) can be derived by symboli-
cally executing one iteration of the corresponding SDFG with the intention
of relating the entries of γ(k + 1) = [t′i1 , . . . , t

′
i|I|

] and γ(k) = [ti1 , . . . , ti|I| ]

where t′il and til are the timestamps of the corresponding initial tokens af-
ter the (k+ 1)st and the kth SDFG iteration embodied into the timestamp
vectors of the (k + 1)st and the kth iteration, respectively.

First, consider the following. It was shown in [44], that the production
timestamp t of any graph token can be represented as a Max-plus scalar
product

t =
⊕
ij∈I

mj ⊗ tij = [m1, . . . ,m|I|]⊗ γ(k). (2.14)

between a vector of suitable constants called the initial token dependency
vector or shortly the dependency vector and the timestamp vector of the
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Fig. 2.3: Execution of the SDFG of Fig. 2.2a.

kth iteration. Then, also the entries of γ(k + 1) can be written as linear
combinations of entries of γ(k) as follows

t′il =
⊕
ij∈I

ml,j ⊗ tij = [ml,1, . . .ml,|I|]⊗ γ(k). (2.15)

It straightforwardly follows from (2.12) and (2.15) that dependency vectors
[ml,1, . . .ml,|I|] define the rows of MG. These vectors are determined by
symbolic execution of one iteration of the graph as proposed by Algorithm 1
of [44].

The Max-plus matrix of the SDFG of Fig. 2.2a is given in (2.16).

MG =



10 −∞ −∞ −∞ −∞ 10
18 12 −∞ −∞ −∞ 18
16 −∞ 9 −∞ −∞ 16
22 16 14 8 −∞ 22
22 16 14 8 −∞ 22
−∞ −∞ −∞ −∞ 10 −∞

 (2.16)

Fig. 2.3 shows the evolution of the timestamp vector for the first five
iterations of the running example SDFG.

Time is depicted horizontally and the six tokens of the timestamp vec-
tor are depicted vertically so that contours visualize the timestamp vectors
of (2.12), i.e. (2.13).

An important property of SDF is monotonicity. This means that an
earlier or shorter firing of an actor cannot lead to another actor firing oc-
curring later. This property straightforwardly follows from (2.12), (2.13)
and (2.9). Therefore, in worst-case temporal analysis, if actors are imple-
mented in software, one can use their worst-case execution times (WCET)
to get from the model an upper bound on the actual firing times and data
production times of the real application in practice [46].
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2.3.2.1 Deriving MG

We exemplify how to derive MG using the example SDFG of Fig. 2.2a. This
graph has six initial tokens. We represent the timestamp vector of the kth
graph iteration as

γ(k) = [ti1 , ti2 , ti3 , ti4 , ti5 , ti6 ]T . (2.17)

Similarly, the timestamp vector of the (k + 1)st iteration is represented as

γ(k + 1) = [t′i1 , t
′
i2 , t
′
i3 , t
′
i4 , t
′
i5 , t
′
i6 ]T . (2.18)

Recall that the iteration of the graph is given by the minimal periodic
schedule of Fig. 2.2b.

According to that schedule actor A0 fires first. In order to fire, A0 must
consume token i6 the timestamp of which is expressed using the following
Max-plus scalar product

ti6 = [−∞,−∞,−∞,−∞,−∞, 0]⊗ γ(k). (2.19)

Therefore, according to the Max-plus semantics of SDF of (2.11), the tokens
produced by its firing are determined by the timestamp vector

ti6 ⊗ 0 = [−∞,−∞,−∞,−∞,−∞, 0]⊗ γ(k). (2.20)

Thereafter, actor A1 fires two times. In a firing, A1 consumes one token
from channel (A0, A1) and a token from its self-edge. The timestamp of i1
is expressed as

ti1 = [0,−∞,−∞,−∞,−∞,−∞]⊗ γ(k). (2.21)

The timestamps of tokens of channel (A0, A1) are given by (2.20). By con-
suming i1 and one token from channel (A0, A1), the first firing of A1 pro-
duces three tokens determined by the timestamp vector

([0,−∞,−∞,−∞,−∞,−∞]⊗ γ(k)

⊕ [−∞,−∞,−∞,−∞,−∞, 0]⊗ γ(k))⊗ 5

= [5,−∞,−∞,−∞,−∞, 5]⊗ γ(k).

(2.22)

Similarly, the second firing consumes the self-edge token and the remaining
token from (A0, A1) whose timestamp is given by (2.20). However, now the
self-edge token carries the timestamp of (2.22) as it was produced in the
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first firing of A1. Therefore, the next three tokens produced by A1 carry
the timestamp

([5,−∞,−∞,−∞,−∞, 5]⊗ γ(k)

⊕ [−∞,−∞,−∞,−∞,−∞, 0])⊗ 5

= [10,−∞,−∞,−∞,−∞, 10]⊗ γ(k)

(2.23)

The second firing of A1 restores i1 because this is also the last firing of A1

within the iteration. Therefore,

t′i1 = [10,−∞,−∞,−∞,−∞, 10]⊗ γ(k). (2.24)

By continuing the symbolic execution until the completion of the iteration
we similarly obtain the new timestamps of remaining initial tokens as follows

t′i2 = [18, 12,−∞,−∞,−∞, 18]⊗ γ(k),

t′i3 = [16,−∞, 9,−∞,−∞, 16]⊗ γ(k),

t′i4 = [22, 16, 14, 8,−∞, 22]⊗ γ(k),

t′i5 = [22, 16, 14, 8,−∞, 22]⊗ γ(k),

t′i6 = [−∞,−∞,−∞,−∞, 10,−∞]⊗ γ(k),

(2.25)

By organizing the dependency vectors of (2.24) and (2.25) into matrix rows,
we obtain MG of (2.16).

2.4 FSM-based scenario-aware dataflow

2.4.1 Basic concepts

As already stated, the concept of synchronous dataflow scenarios [44] ex-
tends the expressive power of SDF by combining streaming data and finite
control into a MoC called FSM-SADF [46]. More precisely, application
behaviors are clustered into a group of static modes of operation called
scenarios each modeled by an SDFG, while scenario occurrence patterns
are constrained by a nondeterministic FSM. Consequently, an FSM-SADF
graph (FSM-SADFG) evolves in iterations of its scenario SDFGs.

From the perspective of an FSM-SADF actor this means that an actor,
within the execution of an FSM-SADFG it is a part of, operates in different
scenarios. In each scenario actor may attain a different type signature and
a different firing delay. We formalize this concept as follows.

Let A = (P,Q,R, f) be an FSM-SADF actor where P = {p1, . . . , pU}
and Q = {q1, . . . , qV }. Let SA = {sA1, . . . , sAZ} be the set of scenarios of A.
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where Z = |SA|. Let function rA : (P ∪Q)× SA → N>0 give the rate value
for a given actor port and a given scenario. Let function dA : SA → R≥0

return the firing delay of an actor for a given scenario. Then, the general
firing rule of an FSM-SADF actor is as follows

R = {([σp1(n)]
rA(p1,sAi)
n=1 , . . . , [σpU (n)]

rA(pU ,sAi)
n=1 )Zi=1}, (2.26)

where σpi(n) = (∗,⊥) for all i = 1, . . . , U . Unlike an SDF actor that has
only one firing rule (cf. (2.10)), an FSM-SADF actor has as many firing rules
as there are scenarios (notice that R of (2.26) is composed of Z tuples). As
inherited from SDF, in FSM-SADF tokens are uninterpreted and the firing
rules do not depend on token arrival times.

Correspondingly, we proceed by defining the timed firing function of
FSM-SADF for an arbitrary qi ∈ Q as follows

τ(qi)(n) =dA(sQ(qi, L))

⊗
⊕
pi∈P

τ(pi)(

L∑
j=1

rA(pi, sQ(qi, j))).
(2.27)

In (2.27), sQ : Q × [1, . . . , L] → SA where L ∈ N>0 defines the sce-
nario sequence that lead to the production of token σqi(n) = (∗, τ(qi)(n)).
Admissible sequences, i.e. scenario occurrence patterns are given by the
scenario FSM. Unlike SDF actors (cf. (2.10), (2.11)), FSM-SADF actors
(cf. (2.26), (2.27)) across different firings in different scenarios consume and
produce different numbers of tokens. Similarly, their firing delays differ from
one scenario to the other. Thus is FSM-SADF a dynamic dataflow MoC.
Note that different scenario sequences will result in different evaluations
of (2.27) for the same n. Therefore, it would be mathematically correct to
call τ , i.e. τ(qi)(n) a relation rather than a function with sQ as its parame-
ter. But to stay in correspondence with the existing dataflow literature [72]
we abuse the notion of a function.

Naturally, FSM-SADF actors are composed into graphs. An example of
an FSM-SADFG is shown in Fig. 2.4. The graph has two scenarios: s1 and
s2 modeled by two SDFGs. The difference between the scenarios3 is that
scenario s2 misses channels (A1, A2) and (A2, A4), while the firing delay
of actor A2 is different than the firing delay of the same actor in s1. The
scenario FSM has two states where each of the states corresponds to one
scenario. In the figure, state ξ1 corresponds to s1, while ξ2 corresponds to
s2. The scenario FSM defines admissible scenario sequences. The opera-
tional semantics of the model is as follows: every transition in the scenario

3We will be using the terms scenario and the scenario SDFG interchangeably
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Fig. 2.4: Example FSM-SADFG.

FSM schedules the execution of one iteration of the SDFG that models
the scenario corresponding to the transition’s destination state. From the
perspective of FSM-SADF actors, this means that their execution within
one scenario is governed by one firing rule and one firing function. In that
case, (2.26) and (2.27) reduce to (2.10) and (2.11), i.e. within an FSM-
SADFG iteration, an FSM-SADF actor reduces to an SDF actor. The dy-
namic behavior of FSM-SADF is defined across iterations, while within one
the behavior is static. Furthermore, an FSM-SADF actor where |SA| = 1 is
an SDF actor. Therefore, FSM-SADF generalizes SDF. We give the formal
definition of FSM-SADF as adopted from [98]. First we define the scenario
FSM as follows.

Definition 2.5 (Scenario FSM). Given a set S of scenarios, a scenario
FSM F on S is a tuple F = (Ξ, ξ0,T,Φ), where Ξ is the set of states, ξ0 is
the initial state, T : Ξ→ 2Ξ is the transition function and Φ : Ξ→ S is the
scenario labeling.

Thereafter, we define FSM-SADF in Definition 2.6.

Definition 2.6 (FSM-SADF). FSM-SADF F is a tuple F = (S, F ) where
S is the set of scenarios and F is an FSM on S.
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Fig. 2.5: Execution of FSM-SADFG of Fig. 2.4.

Note that in Definition 2.6 scenario SDFGs are included in the FSM-
SADF (although not explicitly mentioned) through the set S, i.e. we make
no difference between the terms scenario and scenario SDFG.

2.4.2 Max-plus algebra for FSM-SADF

Because an FSM-SADFG evolves in iterations of its SDF constituents, i.e.
scenario SDFGs, the Max-plus algebraic semantics of SDF is naturally car-
ried over to FSM-SADF. In particular, a sequence of scenarios can be asso-
ciated with a sequence of timestamp vectors γ(0), γ(1), . . . where

γ(k + 1) =MF(ζF(k + 1))⊗ γ(k). (2.28)

In (2.28), MF : S → R|I|×|I|max , returns the Max-plus matrix of the scenario
SDFG, ζF : N>0 → S returns the scenario of the (k + 1)st FSM-SADFG it-
eration. Fig. 2.5 shows the execution of the running example FSM-SADFG.
As before, time is depicted horizontally and the six tokens of the timestamp
vector are depicted vertically so that contours visualize the timestamp vec-
tors of (2.28). Let

s = s1, . . . , sk ∈ S∗ ∩ L (2.29)

denote a sequence of scenarios where L defines a restriction of S∗ determined
by the scenario FSM. Note that ∗ stands for Kleene star. It had been shown
in [46] that the completion time of (2.29) can be defined as follows

A(s) = αT ⊗ µ(s)⊗ β, (2.30)

where α is the final delay, µ : S∗ → R|I|×|I|max is the morphism that associates
sequences of scenarios with Max-plus matrices as follows

µ(s) =MF(sk)⊗ . . .⊗MF(s1) (2.31)
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and β is the initial delay. The initial delay β specifies the initial enabling
time of initial tokens and typically β = 0, while the final delay α serves as
a mean to specify the metrics we are interested in. E.g., if we are interested
in the makespan of a sequence of scenarios, we set α = 0. The triple
A = (α, µ, β) defines a Max-plus automaton [40].

In Max-plus automata, the concurrency features of a system are mod-
eled by the possible choices between the letters that represent the static sub-
schedules the system evolves in, and the synchronization features are imple-
mented by the Max-plus algebra. In particular, Max-plus automata covers
a class of systems with synchronization phenomena and variable schedules.
Therefore, the completion time of a variable schedule can be given by a
product of matrices describing the synchronization between particular static
subschedules and vectors specifying the initial state of the system and the
metrics we are interested in (cf. (2.30)).

On the other hand, FSM-SADF evolves in iterations of its nondetermin-
istically chosen scenario SDFGs which are internally static. These scenario
SDFGs are finite dimensional causal stationary recurrent Max-plus systems
(cf. (2.12) and (2.13)). The schedule of an FSM-SADFG is determined by
the driving scenario sequence. The synchronization between scenarios is
determined by the availability of initial tokens that exist between them.

Therefore, Max-plus automata can be used to capture the temporal
behavior of FSM-SADF as letters that drive the Max-plus automata cor-
respond to FSM-SADFG scenarios. Synchronization between scenarios is
captured by scenario matrix products. Each matrix “implements” the self-
timed schedule of one scenario SDFG iteration that is in turn a subschedule
of the enclosing FSM-SADFG.

If we take another look at Fig. 2.5, in the parlance of Max-plus automata
theory, we say that the contours in the figure are recognized by a Max-plus
automaton of 2.30 driven by (2.29).

The theory of Max-plus automata had been used in [46] to analyze worst-
case performance of FSM-SADF. We leave this matter aside now and explain
it in detail in the chapter to come when we reformulate the FSM-SADF
results and apply them to SDF-PDF.

2.5 Summary

In this chapter, preliminary dataflow concepts were presented. These con-
cepts will be used throughout this thesis. Special focus was put on the Max-
plus algebraic semantics of SDF and FSM-SADF as we will heavily depend
on those when elaborating the Max-plus algebraic semantics of SDF-PDF



2.5. Summary 31

in Chapter 3 and SDF-PFSM-SADF in Chapter 4. Furthermore, the Max-
plus algebraic semantics of FSM-SADF will be used to define a policy that
assures determinacy of the FSM-SADF in the model-checking context of
Chapter 6.
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Chapter 3

Worst-case performance
analysis of SDF-based
parameterized dataflow

As discussed both in Chapter 1 and Chapter 2, dynamic dataflow MoCs
have been introduced to provide designers with sufficient expressive power
to capture increasing levels of dynamism in modern streaming applications.

When comparing these models, one must take into account their ex-
pressiveness, compactness, analyzability (ease of analysis) and intuitive ap-
peal [21].

When compared to other dynamic dataflow MoCs, FSM-SADF offers a
good tradeoff between expressiveness and analyzability. However, in consid-
eration of streaming applications with fine-grained data-dependent dynam-
ics, FSM-SADF suffers from compactness problems. Simply put, if FSM-
SADF is to be used to tightly capture the behavior of such applications,
an enormous number of scenarios needs to be foreseen. This in turn makes
the graph explode is size (renders the model size unmanageable) and makes
the analysis run-time prohibitive. Therefore, to treat such applications, we
need to look for a more compact model than FSM-SADF.

Among dynamic dataflow MoCs, parameterized dataflow MoCs hold an
important place. This is due to the fact that they by integrating dynamic
parameters and run-time adaptation of parameters in a structured way al-
low for a compact representation of fine-grained data-dependent dynamics
inherent to many modern streaming applications.

However, these models have been primarily analyzed for functional be-
havior and correctness, while the analysis of their temporal behavior has
attracted less attention.

33
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This chapter analyzes worst-case performance metrics (throughput and
latency) of an important class of parameterized dataflow MoCs based on
synchronous dataflow where we allow for an explicit representation of the
dependencies between parameters. We refer to such models as SDF-based
parameterized dataflow (SDF-PDF).

To achieve this, we first introduce the Max-plus algebraic semantics of
SDF-PDF. Thereafter, we model run-time adaptation of parameters us-
ing the theory of Max-plus automata by exploiting the semantic link be-
tween FSM-SADF and SDF-PDF based on one-to-one correspondence be-
tween FSM-SADF scenarios and SDF-PDF configurations/instances where
an adaptation of parameters in SDF-PDF corresponds to a scenario transi-
tion in FSM-SADF. Finally, we show how to derive the worst-case perfor-
mance metrics from the resulting Max-plus automaton structure.

We evaluate our approach on a representative case study from the mul-
timedia domain.

Different parts of this chapter have been published in [105][101][99] and
are being considered for publication in [100].

3.1 Introduction

In the strictest sense, making a comparison of different flavors of dynamic
dataflow MoCs is not an easy task. The work of [110] compares dataflow
models based on their expressiveness and succinctness, analyzability and
implementation efficiency (cf. Fig. 2.1). Prior to [110], Buck [21] mentioned
similar criteria: expressive power, compactness1, ease of analysis and intu-
itive appeal.

As discussed in Chapter 1, FSM-SADF lies well-positioned in the trade-
off space defined by expressiveness and analyzability. In particular, in con-
trast to many other dynamic dataflow MoCs it nourishes a high level of
design-time analyzability. However, if one wishes to use FSM-SADF for
modeling of streaming applications that expose fine-grained data-dependent
dynamics, he/she will soon face compactness problems. Such applications
may have thousands or even millions of possible behaviors which makes
bottom-up clustering (or even worse enumeration) of these into scenarios
impractical [60]. In particular, due to a large number of scenarios, the model
size will soon become unmanageable and the analysis run-time prohibitive.
This is because the symbolic simulation of a scenario SDFG to generate its
Max-plus matrix (cf. Algorithm 1 of [44]), especially for graphs with large

1We will be using terms compactness and succinctness interchangeably.
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repetition vectors, is both time and memory demanding (cf. Fig. 11 of [46]).
On the other hand, if one tries to keep the scenario number moderate, the
analysis may be overly pessimistic.

Therefore, in the context of streaming applications with fine-grained
data-dependent dynamics an alternative to FSM-SADF needs to be consid-
ered.

In particular, we consider parameterized dataflow as a meta-modeling
technique that integrates parameters and run-time adaptation of parameters
into a certain class of dataflow MoCs we refer to as base models [18]. This
way, using parameters, one is able to express fine-grained data-dependent
dynamics of modern streaming applications in a compact way. This has
repercussions both at design- and run-time. At design time, parameters
help keep the size of models/libraries manageable and allow models to be
quickly modified or tuned for performance. At run time, parameters allow
for dynamic reconfiguration of the model while it is running [81].

In this work, we are interested in parameterized dataflow MoCs where
SDF serves as the base model. Such models are of special importance, as
SDF is considered the most stable and mature dataflow MoC.

Examples of such MoCs are parameterized SDF (PSDF) [16], schedula-
ble parametric dataflow (SPDF) [38], boolean parametric dataflow (BPDF) [12]
and variable rate dataflow (VRDF) [121].

We refer to such models, obtained by parameterization of SDF (in terms
of rates and actor firing delays in the timed dataflow context) as SDF-based
parameterized dataflow (SDF-PDF). Furthermore, in SDF-PDF we allow
for an explicit representation of the dependencies between parameters. Al-
though such models have been extensively analyzed for functional behav-
ior and correctness, the analysis of their temporal behavior, in particular
analysis of their performance metrics such as throughput and latency, had
received far less attention. One reason is that all MoCs mentioned above
except VRDF are untimed and therefore inherently not accompanied by
temporal behavior analysis techniques. The second reason is that in case
where only firing delays are parameterized, one can easily imagine an im-
plied analysis for such models. This analysis would include an initial step
where a certain “SDF-based worst-case abstraction” of the original param-
eterized specification is constructed and subjected to standard SDF perfor-
mance analysis techniques [50][51]. The information needed to construct
such a “worst-case SDF abstraction” would include the upper endpoints of
parameterized actor firing delay intervals (assuming these are initially box
constrained). The validity of such an abstraction follows from the mono-
tonicity property of SDF [44] that SDF-PDF inherits.
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However, using these endpoints will often incur significant amounts of
pessimism. E.g., if actors are implemented in software their firing delays
correspond to worst-case execution times (WCETs) of associated software
modules. It is often the case that these WCETs depend on the module
inputs in very complex ways. Paper [4] lists a few examples of applications
where WCETs are expressed as polynomial functions of application inputs.
Therefore, taking the upper endpoints of default parameter intervals and
not considering these dependencies will most definitely incur a significant
amount of pessimism which results in a decrease of the optimization margin
a designer has at hers/his disposal.

The case of graphs containing parameterized rates is even more com-
plicated, as these necessarily do not influence the temporal behavior of the
model in a “monotonic” way. By this we mean that increasing the value of
a rate in the graph does not necessarily need to lead to a later completion
of the graph’s iteration. Quite the contrary, this may lead to an earlier
completion of an iteration. To the best of our knowledge, there exists no
systematic approach that would determine the “worst-case SDF abstrac-
tion” of a SDF-PDF-like structure with parameterized rates. The problem
gets even more complicated if these rates show functional dependence on
other rates, design environment parameters or input signal parameters what
we indeed do allow to occur in SDF-PDF.

The aforementioned justifies the need for novel worst-case parametric
performance analysis techniques that by operating directly on parameterized
graphs (with interdependent parameters) remove the need for the touchy
construction process of “SDF-based worst-case abstractions” of original pa-
rameterized specifications is such exist at all.

In this work we present such a worst-case performance analysis frame-
work for SDF-PDF specifications in consideration of certain technical con-
straints we impose on the input graph structures. Within the framework,
we consider self-timed execution of SDF-PDF structures. We base our ap-
proach on the Max-plus algebraic [7] semantics of self-timed execution of
SDF that SDF-PDF inherits. We model parameter reconfigurations using
the theory of Max-plus automata [40] by exploiting the Max-plus semantic
equivalence of SDF-PDF parameter reconfigurations and scenario transi-
tions in FSM-SADF. By subjecting the derived Max-plus automaton struc-
ture to appropriate analysis, we are able to derive the relevant worst-case
throughput and latency metrics for SDF-PDF.
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extern int rx_data(uint*,uint*)
extern int pre_process(int, uint);
extern int process(int, uint);
extern void tx_data(int);

void main(void){
uint g, h;
int res1, res2, res3;
while(1){

res1 = rx_data(&g, &h);
for(uint i=0; i < g; i++){

res2 = pre_process(res1, i);
for(uint j=0; j < h; j++){

res3 = process(res2, j);
tx_data(res3);

}
}    

}
}

(a) C specification.

pre_process
g

rx_data process tx_datah

(b) Dataflow specification.

Fig. 3.1: Motivational example.

3.2 Motivational example

Parameterized dataflow MoCs are important as they through the use of dy-
namic parameters allow for a succinct representation of applications expos-
ing fine-grained data-dependent dynamics. Furthermore, they define precise
semantics for parameter reconfiguration across application activations.

A motivational example of a synthetic DSP application that illustrates
the importance of parameterized dataflow as a modeling and analysis con-
cept is shown in Fig. 3.1. The C specification of the example application is
shown in Fig. 3.1a. The application consists of two nested loops with bounds
g and h. The loop bound values are input data-dependent as computed in
the rx data module. The actual implementation of the rx data module is
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assumed to involve complex input data processing. The derived bounds are
assumed to depend on some characteristics of the input signal. Across differ-
ent application activations, parameters take different values. Assume that
bound g can be assigned with a value originating from the interval [0,m/2]
while h can be assigned with a value from [0, n/2]. It this case, the applica-
tion will attain as many behaviors as there are integer points in the rational
2-polytope Pm,n given by the set of constraints {0 ≤ m/2, 0 ≤ n/2}. With
m = 2001 and n = 4500 the specification of Fig. 3.1a abstracts 2, 252, 126
application behaviors [27] and defines 2, 252, 1262 possible transitions be-
tween pairs (g, h) from one application activation to the other. Therefore,
we can say that the application exposes fine-grained data-dependent dy-
namism. In FSM-SADF, the application could be represented as an FSM-
SADF with an unacceptably large number of scenarios, i.e. 2, 252, 126. The
analysis run-time for such a structure would be prohibitively large because
Algorithm 1 of [44] would have to be run 2, 252, 126 times, i.e. once per
scenario SDFG. Furthermore, if we assume that the SDF3 tool [112] uses
1kB to store the configuration of a scenario, the complete configuration file
size only for this example would be cca. 2GB.

Luckily, data-dependent behavior of the application can be succinctly
expressed (as a single entity) using the parameterized dataflow structure of
Fig. 3.1b where loop bounds are denoted using parameterized graph rates
(actor firing delays are implied). This way, at design-time, we keep the
model size manageable. In particular, we avoid the need for enumeration of
Pm,n that would result in 2, 252, 126 non-parameterized dataflow structures
accounting for all (g, h) pairs. At run-time, parameters express the appli-
cation reconfiguration in a natural and intuitive fashion, i.e. as a (simple)
change of parameter values.

Assuming now that each module is mapped to a separate processing
element the worst-case performance analysis for the motivational example
is difficult due to several reasons.

First, the application is dynamic, i.e. in every activation the values of
loop bounds g and h differ from those in the previous activation.

Second, the consecutive activations of the application will be pipelined,
i.e. they may be active at the same time.

Third, consecutive activations are inter-dependent as a module in the
current activation cannot commence execution before all executions of the
same module of the previous activation have completed because they share
the same processing element.

The outlined importance of parameterized dataflow in modeling of dy-
namic streaming applications justifies the need for a framework that can



3.3. Related work 39

address the worst-case performance analysis for such applications. This is a
challenging problem the solving of which we dedicate the remainder of this
chapter.

3.3 Related work

We begin by providing more insight into the class of parameterized dataflow
MoCs based on SDF whose main members were listed in Section 3.1.

We start with PSDF [16]. PSDF introduces parameters to SDF actors
that control their functionality and/or their dataflow behavior. PSDF con-
cept enables hierarchical integration where PSDF graphs can be abstracted
into actors in higher PSDF levels. It is of vital importance, that the in-
terface dataflow of a hierarchical actor remains unchanged throughout any
iteration of its hierarchical parent actor. This way, one maintains a level of
predictability and permits efficient quasi-static scheduling at least for a class
of PSDF specifications that satisfy certain technical constraints regarding
the number of initial tokens placed on feedback channels.

SPDF [38] is a MoC closely related to PSDF. SPDF explicitly define re-
quirements that a parameterized dataflow specification must satisfy so that
questions about liveness (deadlock freedom), boundedness and schedulabil-
ity can be answered at compile-time. In contrast to SPDF, PSDF employs
run-time mechanisms that check the consistency and bounded memory con-
sistency of a specification.

BPDF [12] is a syntactical extension of SPDF developed to elegantly
treat cases where actor port rates may be 0. This is achieved by the in-
troduction of conditional channels annotated with boolean expression. De-
pending on the value the expression attains at run-time, channel is to be
activated or deactivated. Deactivation infers that no consumption or pro-
duction can take place at that channel.

VRDF [121] introduces facilities for frequent changes of actor port rates
by means of parameterization. However, VRDF defines strong structural
constraints that must be satisfied for achieving boundedness. More pre-
cisely, every production of p tokens must be coupled by exactly one con-
sumption of p tokens. In addition, these pairs must be well-parenthesized
in the graph.

As originally proposed, all these models, except VRDF are untimed and
consequently not accompanied by any kind of temporal analysis. Paper [121]
discusses the temporal aspects of VRDF. However, it is of limited scope as
it considers conservative buffer size computations under a given throughput
constraint.
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Some results exist, though, on parametric throughput analysis of SDF
and HSDF. In particular, the authors of [48] add the notion of parame-
terized actor firing delays to SDF. Consequently, via state-space analysis
embedded in a divide and conquer algorithm, one can obtain expressions
for the throughput of the graph expressed as functions of parameters. How-
ever, the parametric analysis is limited only to actor firing delays, while the
rates are kept constant. The second and even more important difference
between the work of [48] and ours is in the semantics of parameterization.
In particular, the purport of parameterization in [48] is syntactical because
parameters are static, i.e. once set they do not change. Therefore, the
static nature of SDF is preserved. Nevertheless, parameterization renders
the analysis more complex as seen in the same work. In our work, pa-
rameterization of SDF implies dynamic parameters, i.e. parameters whose
values change at run-time. Therefore, SDF-PDF does not inherit the static
nature of SDF, but is a dynamic dataflow MoC. Poplavko et al. [88] use
parametric expressions to derive upper bounds for firing delays of actors
of HSDF graphs. In the same work, these graphs are used to define exact
timing models for capturing computation and communication of indepen-
dent jobs running on a multiprocessor network-on-chip platform. However,
as in [48] these parameters are static and moreover, they are even known
at design-time which means that in contrast to [48] the analysis of [88] at
HSDF graph level is not parametric. The work of [33] applies the technique
of [48] to FSM-SADF which is a dynamic dataflow MoC by adding param-
eterized actor firing delays to FSM-SADF. However, rates are left constant
within scenarios. Furthermore, FSM-SADF implies a reasonably sized set of
application scenarios/modes/behaviors and is not appropriate for capturing
the fine-grained data-dependent application dynamics. Authors of [87] also
consider scenarios of SDF behavior, but in their case only HSDF graphs are
considered (graphs in which all consumption and production rates are equal
to one, i.e. constant). Parameters denoting actor firing delays are used to
derive timing overlap between scenarios. However, the timing model of [87]
as the analysis of FSM-SADF will also experience compactness issues as the
number of scenarios grows.

3.4 SDF-based parameterized dataflow

In this section we formally present SDF-PDF as a dynamic dataflow MoC
obtained by applying parameterization to SDF. We define SDF-PDF as
a model that can be used to capture the existing parameterized dataflow
MoCs based on SDF such as PSDF, SPDF, BPDF and VRDF. This way
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these models can be subjected to the performance analysis of SDF-PDF we
define in Section 3.7 if they comply to certain restrictions we put on the
input graph structure.

We proceed by first focusing on SDF-PDF actors in Subsection 3.4.1,
that we compose into SDF-PDF graphs (SDF-PDFGs) in Subsection 3.4.2.
Thereafter in Subsection 3.4.3 we define the subset of SDF-PDF we will use
for performance analysis of systems. Finally, in Subsection 3.4.4 we discuss
the semantic link between our analysis model and FSM-SADF that is the
foundation of the Max-plus algebraic semantics of SDF-PDF we present in
Section 3.5.

3.4.1 SDF-PDF actors

We start by defining our parameterization scope. Having in mind SDF as
an uninterpreted dataflow MoC with conjunctive firing rules, we consider
parameterization of SDF rates and actor firing delays. As we wish to pro-
duce a dynamic dataflow MoC, we declare our parameters dynamic, i.e. we
allow for parameter values to change at run-time.

Rate parameterization concerns data-dependent dynamics that the de-
signer wishes to expose at a module, i.e. actor level. Therefore, parame-
terized rates capture data-dependent variation of communication patterns
between actors. On the other hand, parameterized firing delays are used
to capture the temporal effect of data-dependent dynamics within modules
represented by actors on the overall composition, i.e. the graph. Moreover,
we may say that by using parameterized firing delays the designer hides
module implementation details irrelevant at a particular abstraction level.
E.g., if actors are implemented in software, their firing delays correspond
to worst-case execution times (WCET) of modules they represent. These
in turn may be represented as parametric expressions defined in terms of
input parameters to the module or maximal iteration counts of module
loops [73][4].

We now define the concept of an SDF-PDF actor and the semantics
of the parameterization employed. Let A = (P,Q,R, f) be an SDF-PDF
actor. Actor port rates are parameterized using parametric arithmetic ex-
pressions. We let the production of these expressions be governed by an
arbitrary grammar RA defined over a set of symbolic variables PAi by de-
fault constrained to the set of nonnegative integers. To exemplify, consider
the SDF-PDF actor A shown in Fig. 3.2. The actor has one input and one
output port annotated with rates 1 + u and u + 2v, respectively, that are
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A ,3 u+2v1+u

Fig. 3.2: SDF-PDF actor.

generated by the grammar

RA := k | k · p | RA1 +RA2 (3.1)

where k ∈ N>0 and p ∈ PAi = {u, v}. The definition of RA of (3.1) allows
for rates that are linear combinations of parameters u and v.

As we will witness soon, parameterization of actor port rates has reper-
cussions on both the actor firing rules and the actor firing function. Simi-
larly, we let actor firing delay be parameterized by a parametric expression
generated by an arbitrary grammar DA defined over a set of symbolic vari-
ables PAd by default constrained to the set of nonnegative real numbers.
Parameterization of firing delays will influence the (timed) actor firing func-
tion. For actor A of Fig. 3.2,

DA := k, (3.2)

where k ∈ R≥0 and PAd = ∅, i.e. we only allow for constant firing delays.

Now, given sets of parameters PAi and PAd let xA denote a configuration
of A that is obtained by assigning values to all parameters of PAi and PAd.
Simply put, a configuration is a set of parameter values (one value for each
parameter). Furthermore, let XA denote the domain of A that is the set of
all configurations of A with Z = |XA|.

For an actor A, let function rA : (P ∪ Q) × XA → N0 given an actor
port and an actor configuration return its rate. It does so by evaluating the
parametric arithmetic expression generated by RA valid for that port at a
specific xA ∈ XA. In particular, parameters in the parametric arithmetic ex-
pressions are replaced by their values that are specified in the configuration.
This gives us a concrete arithmetic expression that when evaluated yields the
rate value of the port as nonnegative integer. Similarly, let dA : XA → R≥0

given a configuration return the firing delay of the actor. It does so by eval-
uating the parametric arithmetic expression generated by DA that gives the
parameterized firing delay of A for xA ∈ XA. In particular, parameters in
the parametric arithmetic expressions are replaced by their values that are
specified in the configuration. This gives us a concrete arithmetic expression
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that when evaluated yields the firing delay of the actor as a nonnegative real
number.

With the notations above, the general firing rule of an SDF-PDF actor
A is as follows

R = {([σp1(n)]
rA(p1,xAi )
n=1 , . . . , [σpU (n)]

rA(pU ,x
A
i )

n=1 )Zi=1}, (3.3)

where σpi(n) = (∗,⊥) for all i = 1, . . . , U . From (3.3) it follows that an SDF-
PDF actor has as many firing rules as it has configurations. Configurations
may change from one actor firing to the next which makes SDF-PDF a
dynamic dataflow MoC.

We proceed by defining the firing function of an arbitrary SDF-PDF
actor defined for its arbitrary output port qi ∈ Q as follows

τ(qi)(n) =dA(xQ(qi, L))

⊗
⊕
pi∈P

τ(pi)(
L∑
j=1

rA(pi, xQ(qi, j))).
(3.4)

An SDF-PDF actor evolves in firings under different configurations. This
means that if configurations differ from one firing to the next one, so will
the actor firing rules differ as well as the firing delays. Therefore, in con-
sideration of (3.4) where we compute the production time of token σqi(n)
that equals to τ(qi)(n) we must consider the configuration sequence that
lead to the production of σqi(n). This sequence is given as a mapping
xQ : Q× [1, . . . , L]→ XA where L ∈ N>0. The sequencing of configurations
is arbitrary and therefore it can be modeled as a nondeterministic choice
and the (timed) firing function of (3.4) can take many different values for
the same value of n depending on all possible interleavings of configurations
that can produce output sequences of length n. Therefore, as in the case of
FSM-SADF, it would be mathematically correct to call it a firing relation
rather than a function but we deliberately leave the term function for the
reason explained while discussing the firing function of an FSM-SADF actor.
Given a configuration, SDF-PDF actor acts like an “ordinary” SDF actor,
i.e. for an XA with a single configuration, it is trivial to check that (3.3)
and (3.4) reduce to (2.10) and (2.11). This shows that SDF-PDF generalizes
SDF.

3.4.2 SDF-PDF graphs

SDF-PDF actors are composed into SDF-PDF graphs (SDF-PDFGs). From
the considerations of the previous subsection on SDF-PDF actors and the
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definition of SDFG (cf. Definition 2.4), with a minimal change in notation,
it is rather straightforward to induce a definition for the composition of
SDF-PDF actors, i.e. an SDF-PDFG.

Let graph rates be expressed as parametric arithmetic expressions. Let
the expression production be governed by an arbitrary grammar R. Simi-
larly, we let actor firing delays be parameterized by an arbitrary grammar
D. Then, an SDF-PDFG is to be defined as follows.

Definition 3.1 (SDF-PDFG). An SDF-PDF graph is defined as a tuple
G = (A, C,Pi,Pd, r, d, i,XG), where A is the set of actors, C ⊆ A×A the
multiset of channels, Pi is the set of nonnegative integer parameters, Pd is
the set of nonnegative real parameters, r : A×C → R returns for each port
its (possibly symbolic) rate, d : A → D returns for each actor its associated
(possibly symbolic) firing delay, i : C → N0 returns for each channel its
associated number of initial tokens while XG is the domain of the graph.

Aside the typical dataflow graph constituents such as actors, channels,
rates, firing delays and initial tokens, Definition 3.1 introduces the concept
of SDF-PDFG domain that extends the concept of SDF-PDF actor domain
discussed earlier. The domain XG of an SDF-PDFG G is the set of all
configurations of G. A configuration of an SDF-PDFG is determined by
assigning concrete values to all parameters defined by the sets Pi and Pd.
We denote a configuration of G with xGi ∈ XG where i ∈ {1, . . . , |XG|}.
Once a configuration is routed through the grammars R and D and applied
to the SDF-PDFG, an instance of that graph emerges, denoted ιG(xGi ). An
instance of an SDF-PDFG is nothing but an SDFG.

Simply put, SDF-PDFGs are SDFGs with rates and actor firing delays
parameterized by parametric arithmetic expressions. A configuration is a
set of parameter values appearing in those expressions (one value for each
parameter). When parameters in these parametric arithmetic expressions
are replaced by their values that are specified in the configuration, we obtain
concrete expressions. By evaluating these concrete expressions an SDF-
PDFG instantiates to an SDFG called its instance.

To ensure that all graph rates are well-defined at all times, we require
that all parameters remain constant within an SDF-PDFG iteration, i.e. re-
configurations are only allowed in-between iterations. Across iterations, con-
figurations change arbitrarily through reconfiguration, which can be mod-
eled as a nondeterministic choice. Therefore, SDF-PDF supports nonde-
terminism. The SDF-PDF model of Definition 3.1 offers a high modeling
flexibility as actor port rates and actor firing delays can be expressed as
arbitrary expressions of parameters. Furthermore, the concept of domain
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adopted from [16] allows to explicitly represent the dependencies between
parameters by specifying XG as a set of (nonlinear) constraints. These
dependencies may originate from a variety of sources such as arithmetic ex-
pressions that express the values of parameters in terms of values of other
parameters [81].

3.4.3 Our analysis model

The key technique to execute an SDF-PDFG as any other dataflow graph
is scheduling. In our performance analysis to be disclosed soon, we consider
self-timed scheduling. Because SDF-PDF is a dynamic dataflow models, it
will be dynamically scheduled, i.e. at run-time once all parameter values
are known.

However, to give compile-time worst-case performance guarantees for
SDF-PDF programs we need to have a degree of knowledge how the program
is scheduled. Therefore, we revert to a scheduling concept called quasi-
static scheduling, i.e. we consider only SDF-PDF specifications for which
a quasi-static schedule is available. Quasi-static scheduling is a middle-
ground between static and dynamic scheduling where most of the schedule
is known at compile-time while only some scheduling decisions are made at
run-time [93].

Furthermore, we focus on consistent/bounded and deadlock-free SDF-
PDF specifications because the ones that are not are of little practical im-
portance.

However, for programs modeled in the general SDF-PDF abstraction
of Definition 3.1 it is not decidable (at compile-time) whether they are
consistent/bounded, deadlock-free and quasi-static schedulable.

To ensure consistency/boundedness, deadlock-freedom and quasi-static
schedulability we need to restrict parameterization patterns. In particular,
we need to restrict R so that design-time guarantees regarding consistency,
boundedness and deadlock-freedom can be provided and that a quasi-static
schedule for the specification can be computed. Furthermore, we need to
restrict the parameter change intervals so that at all times all rates in the
graph are well-defined. As we are interested in performance metrics of SDF-
PDF, this type of functional analysis is outside the scope of this paper.
Therefore, we revert to the existing results. To the best of our knowledge,
only SDF-PDF of [38] and its relative BPDF of [12] define precise criteria
under which consistency/boundedness and deadlock-freedom are decidable
at compile-time. The algorithms for deciding on consistency/boundedness
through the derivation of the repetition vector and generation of the quasi-
static schedule are parametric extensions of SDF algorithms [9]. Therefore,
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we take the definition of R from [38] for our analysis model as follows

R := k | p | R1 · R2. (3.5)

In (3.5), k ∈ N>0 and p ∈ Pi with Pi a set of symbolic variables, i.e. rates are
defined as products of positive integers and/or symbolic variables by default
constrained to N>0. Here we notice that we exclude 0 from the value set
of rate parameters while Definition 3.1 allows it. This is because a rate of
0 in the context of a channel balance equation of an SDF-PDFG has an
ambiguous semantics. For a balance equation to be satisfied, if one channel
rate is 0 and the other is parametric, either the parametric rate must be 0
too or the repetition vector entry of one of the channel actors must be 0.
We go for the former, i.e. if one rate of the channel is 0, we require that the
other rate must be 0 too. We include this in the analysis model, using the
notion of conditional channels borrowed from BPDF. There, every channel
is annotated with a boolean expression. At run-time, whether the boolean
expression evaluates to true (tt) or false (ff) is the channel enabled or
disabled, respectively. Disabled means that no production or consumption
will take place at that channel. In particular, let Pb be a set of boolean
parameters. Let

B := tt | ff | b | ¬B | B1 ∧ B2 | B1 ∨ B2, (3.6)

where b ∈ Pb be a grammar defined over Pb. Let β : C → B return for a
channel its condition. As mentioned, if β(c) evaluates to ff, the channels is
disabled, which translates to both its source and destination rate being equal
to 0. This way, dynamic change of graph topology is achieved. Conditional
channels have no bearing on the repetition vector of the graph, i.e. its entries
are obtained by solving the balance equations using the default rates, that
is the ones defined by R. Consequently, actors fire the designated number of
times regardless of the fact whether they actually produce/consume tokens
or not. Therefore, conditional channels must not be confused with the
notion of conditional execution of e.g. BDF [22] as they serve as syntactical
sugar to account for the possibility of a rate being equal to 0.

Fig. 3.3a shows an example SDF-PDFG. For the example, Pi = {p, q},
Pd = {a1, a2, a3, a4} and Pb = {b}. Channels (A1, A2) and (A2, A4) are
made conditional using boolean parameter b via (3.6). Rates are parame-
terized via expressions generated by (3.5) and the firing delays via D := d
where d ∈ Pd. The graph’s quasi-static schedule is shown in Fig. 3.3b and
defines the string A1

0A
q
1A

p
2A

p
3A

q
4A

1
5A

1
6. The repetition vector of the graph

equals to Γ(A0, A1, A2, A3, A4, A5, A6) = (1, q, p, p, q, 1, 1). The domain of
the graph is given as XG = {p ∈ [1, 20], q ∈ [1, 30], a1 = a2 = a3 = a4 = 3}.
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(a) Example SDF-PDFG.

while(1){
fire A0;
repeat (q) times {

fire A1; 
}
repeat (p) times {

fire A2; 
}
repeat (p) times {

fire A3; 
}
repeat (q) times {

fire A4; 
}
fire A5; fire A6;

}

(b) Schedule of the ex-
ample SDF-PDFG.

Fig. 3.3: SDF-PDF.

3.4.4 SDF-PDF and FSM-SADF

After having elaborated our SDF-PDF analysis model, the crucial point be-
ing that parameters are allowed to change in-between graph iterations, we
establish a semantic link between our analysis model and FSM-SADF by
showing that the concept of configuration/instance corresponds to the con-
cept of scenario in FSM-SADF and that every SDF-PDF can be unfolded
to an FSM-SADF that captures its temporal behavior if every configura-
tion/instance is declared a scenario. Consequently, the concept of reconfig-
uration in SDF-PDF corresponds to the concept of scenario transition in
FSM-SADF.

We start the discussion from the perspective of SDF-PDF and FSM-
SADF actors. If we compare the firing rules and the firing functions of
FSM-SADF actors of (2.26) and (2.27) to that of SDF-PDF actors of (3.3)
and (3.4) we observe a striking resemblance. Actually, they are fully corre-
spondent in the sense that the notion of scenario in FSM-SADF corresponds
to the notion of configuration in SDF-PDF. This follows from the fact that
once the scenario information is accounted for by an FSM-SADF actor,
that actor instantiates to a single SDF actor. In the context of SDF-PDF,
once the configuration is applied to an SDF-PDF actor, a single SDF actor
emerges.

Consider now an SDF-PDF actor and its domain. By applying each and
every domain configuration to the actor, we will obtain as many SDF actors
as is the cardinality of the actor domain. If we now group all those SDF
actors with different type signatures and firing delays and call them scenar-
ios, this group forms an FSM-SADF actor. From the observer’s perspective
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the original SDF-PDF actor and the so constructed FSM-SADF actor will
temporally (in terms of their timed firing functions) behave the same.

This informally presented equivalence in temporal behavior of SDF-PDF
and FSM-SADF actors straightforwardly applies to corresponding actor
compositions, i.e. SDF-PDFGs and FSM-SADFGs.

In particular, SDF-PDF evolves in iterations of its instances, ιG(xGi ).
Instances are defined by configurations that are arbitrarily selected (nonde-
terminism) from one SDF-PDFG iteration to the other. These instances are
nothing but SDFGs. On the other hand, FSM-SADFG evolves in iterations
of its scenario SDFGs, where scenario occurrence patterns are given by the
scenario FSM. Now, given a SDF-PDFG and its domain, for each domain
configuration an instance SDFG can be obtained. If we group these in-
stances and call them scenarios, we have obtained an FSM-SADFG. As the
instance occurrence pattern is arbitrary, so will the newly constructed FSM-
SADFG have a fully connected FSM where each state corresponds to one
scenario and vice-versa (scenario labeling is a bijection). From the observer’s
perspective, in terms of the timestamp vector sequence γ(0), γ(1), γ(2), . . .
of production times of initial tokens after the kth graph iteration, the two
graphs behave the same for a properly paired instance/scenario sequence.

E.g., consider the example SDF-PDFG of Fig. 3.3. Assume that the
graph has only two configurations, namely xG1 = {b = tt, p = 3, q = 2, a1 =
5, a2 = 4, a3 = 4, a4 = 4} and xG2 = {b = ff, p = 3, q = 2, a1 = 5, a2 =
6, a3 = 4, a4 = 4}. If we evaluate these configurations we obtain two SDFG
instances of the original SDF-PDFG, namely ιG(xG1 ) and ιG(xG2 ). These
in turn correspond to scenario s1 and s2 SDFGs of the FSM-SADFG of
Fig. 2.4a. Because the same FSM-SADFG has a fully connected FSM, us-
ing the correspondence xG1 ≡ s1 and xG2 ≡ s2, any configuration/instance2

sequence of the SDF-PDFG has an “equivalent” FSM-SADF scenario se-
quence. The difference exists however in the repetition vector entries for
actor A2 in s2 and ιG(xG2 ) due to the convention that the repetition vector
of an SDF-PDFG depends not on the values of channel conditions. In par-
ticular, with ιG(xG2 ), Γ(A2) = 3 while for s2, Γ(A2) = 1. But, this is only
a matter of convention and not semantics. If we set Γ(A2) = 3 in s2, the
completion times of SDF-PDFG and FSM-SADFG iterations expressed by
means of γ(k) are equal as shown in Fig. 3.4 for the configuration/scenario
sequence 〈xG1 ≡ s1, x

G
2 ≡ s2, x

G
1 ≡ s1, x

G
2 ≡ s2, x

G
1 ≡ s1〉.

Not mentioned so far, but worth pointing out is that both SDF-PDF
and FSM-SADF defined precise semantics for the delivery of configurations
and scenario information to the implementing actors. These mechanisms

2We will be using the terms configuration and instance interchangeably.
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Fig. 3.4: Execution of SDF-PDFG of Fig. 3.3.

include addition of extra channels to the original specifications that carry
tokens with values of parameters and scenarios. However, these elements
are added in a purely dataflow manner and do not influence the semantics
of the models. Therefore, in our presentation they are left out for simplicity
and without loss of generality because the temporal analysis needs not to
make a difference between data token channels and such parameter delivery
channels as they are added in a purely dataflow manner. For more details we
refer the interested reader to the concepts of parameter distribution network
of SPDF [38], the concept of initflow of PSDF [16]. For FSM-SADF we will
be discussing scenario information delivery mechanisms in Chapter 6 when
we introduce the traditional operational semantics of FSM-SADF.

3.5 Max-plus algebra for SDF-PDF

After having formally defined our SDF-PDF analysis model in the previous
section, we proceed by defining the Max-plus algebra-based tools needed
to capture its temporal behavior. This is a crucial milestone on the path
towards our final goal, i.e. the performance analysis for SDF-PDF.

3.5.1 Max-plus algebraic semantics of SDF-PDF

With regard to the Max-plus algebraic semantics of FSM-SADF of (2.28)
and the semantic link of SDF-PDF and FSM-SADF explained in the pre-
vious section where reconfiguration in SDF-PDF corresponds to a scenario
transition in FSM-SADF, the evolution of an SDF-PDFG G can be given as
a recursive Max-plus linear equation relating the timestamps vectors γ(k+1)
and γ(k) of initial tokens after the (k + 1)st and the kth SDF-PDFG itera-
tion, respectively, as follows

γ(k + 1) =MG(ζG(k + 1))⊗ γ(k). (3.7)
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In (3.7), MG : XG → R|I|×|I|max denotes a mapping that for each xG ∈ XG

returns the associated Max-plus matrix of the instance SDFG, i.e. MιG(xG).
Mapping ζG : N>0 → XG returns the configuration that determines the
instance ιG(xG) that is executed as the (k+1)st iteration of the SDF-PDFG.
Therefore, the temporal behavior of an SDF-PDFG can be fully described
by a set of Max-plus instance matrices. The number of such matrices equals
to the cardinality of XG, i.e. |XG|. However, |XG| is typically very large and
proportional to the cardinality of the product set of parameter ranges. This
renders the generation of this set via enumeration of XG often unachievable
in a reasonable amount of time or even impossible if the firing delays are
defined in R≥0.

Instead of enumeration, with the overall goal of compacting the repre-
sentation while retaining relevant information, we advocate for the charac-
terization of temporal behavior of SDF-PDF models using a set of parame-
terized Max-plus matrices, i.e. matrices whose entries will be parameterized
expressions in Pi and Pd (Pb will be handled separately). In the light of the
aforementioned, the evolution of an SDF-PDFG can be described via

γ(k + 1) =
(
Mpar

G (ζG(k + 1))
)

(ζG(k + 1))︸ ︷︷ ︸
MG(ζG(k+1))

⊗γ(k). (3.8)

In (3.8), Mpar
G : XG → EI×I denotes a mapping that for each xG ∈ XG

returns the associated parameterized Max-plus matrix ((Mpar
G (xG))(·) no-

tation) that when evaluated for that xG ((·)(xG) notation) is nothing but
the Max-plus matrix of the instance SDFG, i.e. MG(ζG(k + 1)) = MιG(xG)

when ζG(k + 1) = xG. Notation E defines the set of all arithmetic expres-
sions defined on (Pi∪Pd∪Rmax) which in turn is used to define EI×I the set
of all I by I Max-plus matrices with entries in E. By using parameterized
matrices, one needs not to perform an enumeration of XG. The difficulty is
moved, however, to determining the mapping Mpar

G defining the collection
of parameterized matrices as constituents of its codomain. It is a collection
(and not a single parameterized matrix) because in a parametric (general)
setting, the partitioning of XG occurs naturally due to the max operator in
Max-plus. In itself, as we will explain later, it is not clear how to derive
Mpar

G and therefore, in this thesis, we use Mpar
G as an abstract concept.

What we will show how to derive, is the mapping Mpar′
G : XG → EI×I that

for each xG ∈ XG returns a parameterized matrix that is a conservative
approximation of Mpar

G (xG), or formally

Mpar
G (xG) �Mpar′

G (xG) (3.9)
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for all xG ∈ XG. This is a sound approximation as the relative approxi-
mation error goes to 0 with growing entries of the repetition vector of the
graph.

We now discuss how to compose this matrix. In particular, as SDF is the
base model of SDF-PDF, the timestamp t of any token produced within the
(k+ 1)st SDF-PDFG iteration can be written as a Max-plus scalar product

t =
⊕
ij∈I

mpar
j ⊗ tij = [mpar

1 , . . . ,mpar
|I| ]⊗ γ(k), (3.10)

where tij are the timestamps of initial tokens after the kth graph iteration
and mpar

j are now parameterized expressions in E. Therefore, the times-
tamps of initial tokens at the end of the (k + 1)st iteration embedded in
γ(k + 1) can be computed as follows

t′il =
⊕
ij∈I

mpar
l,j ⊗ tij = [mpar

l,1 , . . . ,m
par
l,|I|]⊗ γ(k). (3.11)

In this case, dependency vectors [mpar
l,1 , . . . ,m

par
l,|I|] where l = 1, . . . , |I| will

form the rows of a parameterized Max-plus SDF-PDFG matrix that repre-
sents an element of the codomain of Mpar

G , i.e. Mpar′
G . Thus, the challenge

lies in determining expressions of type (3.11)3. In the remainder of this sec-
tion we show how to do this for a type of graphs that in addition to being
consistent, deadlock free and quasi-static schedulable satisfy the following
two requirements.

Requirement 3.1. For all SDF-PDFG channels c ∈ C such that src(c) 6=
dst(c) and i(c) > 0, i(c) > Γ(dst(c)) · r(dst(c), c) must hold, i.e. if c has
initial tokens, there must be enough of them for actor dst(c) to complete all
its firings within the iteration. Functions src : C → A and dst : C → A
return for each channel its source and destination actor, respectively.

With this requirement, we limit our attention to feed-forward structures
where initial tokens in graph channels (other than self-edges) are not repro-
duced more than once within an iteration. This way, in cyclic graphs, within
one iteration, feedback loops can be broken resulting in acyclic specifications
from the perspective of a single iteration. Across multiple iterations, the
cyclicity is effectively restored. Fortunately a large number of streaming
applications fall under this requirement that is typically enforced in litera-
ture to enable effective quasi-static scheduling [17][38][16]. In the context
of our Max-plus analysis we impose this requirement as it is not clear how

3Actually, their conservative approximations in the context of (3.9)
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Fig. 3.5: Latency-rate abstraction

to deal with schedule loops of length greater than one [9] with parametric
repetition counts.

Requirement 3.2. For all SDF-PDFG channels c ∈ C such that src(c) =
dst(c), i(c) = 1 must hold.

This requirement disables the bounding of auto-concurrency. Auto-
concurrency of actors can be bounded by inserting a particular number of
tokens on their self-edges. With Requirement 3.2 we allow either full auto-
concurrency for an actor or no auto-concurrency at all. This is because we
during the process of determining Mpar

G , i.e. Mpar
G , with regard to (3.10)

wish to avoid situations where tokens produced by the actor depend on dif-
ferent self-edge tokens from one actor firing to the next. This requirement is
not restrictive in practice as any such actor in the graph can be replaced by
its latency-rate abstraction [119] that conservatively captures its temporal
behavior. Fig. 3.5b shows such a conservative latency-rate based abstrac-
tion of an actor with auto-concurrency bounded to n displayed in Fig. 3.5a.
Note that the collection i1, . . . , in of Fig. 3.5a is collapsed into a single to-
ken i1,...,n of Fig. 3.5b. Actor A itself is expanded into two actors A1 and
A2 with firing delays a and a

n , respectively. We believe the same princi-
ple could be straightforwardly applied to cyclic graph substructures with
channels not compliant to Requirement 3.1 using the notion of local itera-
tions [38]. The “problematic” subgraphs would then be replaced by their
latency-rate abstractions. The procedure could be recursively repeated in a
bottom-up fashion in line with different levels of substructure nesting. This
is, however, a subject of future work.
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3.5.2 Max-plus model of SDF-PDF execution

3.5.2.1 The basics

To determine Mpar
G , i.e. Mpar′

G , as with SDF [44], we need to compute
one iteration of the considered SDF-PDFG, i.e. the production times of
restored initial tokens after one iteration of the graph expressed via the
scalar product of (3.11). Recall that within an iteration, graph parameters
do not change, i.e. they are static and an SDF-PDF actor can be treated
as an SDF actor.

With SDF it is straightforward to keep track of timestamps of tokens
produced by actor firings on channels within a simple FIFO container. This
is due the fact the channel quantities are finite and known. Each FIFO
element stores the dependency vector of the token it refers to (cf. (2.14)).
With parameterized rates, the situation is more subtle. The channel quan-
tities will still be finite but unknown as they are determined by parameters.
Therefore, it would become cumbersome to define such a FIFO structure.
Instead, we capture the ordering of tokens using the firing indices of their
producing actors as a mapping τ : A× Z → E|I|×1. The nonpositive firing
indices are reserved for the initial tokens themselves. As initial tokens repre-
sent the initial conditions for the execution of the graph, they are therefore
assumed to be produced by some past actor firing. We give the following
definition of τ as follows from the Max-plus algebraic semantics of self-timed
execution of SDF (cf. (2.11)) that SDF-PDF inherits (cf. (3.4)):

τ(Aj , n) =
⊕

Ai|(Ai,Aj)∈C

ε((Ai, Aj)) (3.12a)

⊗ τ
(
Ai,
⌈n · r(Aj , (Ai, Aj))− i((Ai, Aj))

r(Ai, (Ai, Aj))

⌉)
(3.12b)

⊗ d(Aj). (3.12c)

Equation (3.12) encodes the Max-plus semantics of self-timed execution of
an SDF-PDF actor within an iteration of the superordinate SDF-PDFG. Its
graphical interpretation is shown in Fig. 3.6. Synchronization is expressed
via (3.12b) where an actor waits for the last required input token needed
to perform the nth firing. The timestamps of these tokens are determined
using the firing indices of their production actors where the number of initial
tokens on the considered channel must be taken into account. After all input
tokens are in place, the firing commences and finishes after an amount
of time equal to the firing delay of that actor. This is the delay part of
Max-plus and is expressed via (3.12c). However, in presence of conditional
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Fig. 3.6: Illustration of (3.12).

channels, some input channels are disabled and therefore do not influence
the production times of output tokens. This concept of conditional channels
is accounted for in the Max-plus semantics of an SDF-PDF actor by (3.12a),
where ε : C → {0,−∞} is defined as follows

ε(c) =

{
0 if β(c) = tt

−∞ if β(c) = ff
(3.13)

for all c ∈ C.

3.5.2.2 Computation of the actor response

We show now how to compute τ(·, n) for an actor within an SDF-PDFG
iteration. Equation (3.12) reveals that in computing the response of an
actor, different inputs (channels) can be treated in isolation. Ultimately,
particular contributions need to be superimposed. This corresponds to the
Max-plus superposition principle [7]. We first show how to apply (3.12) to
one input channel and compute the channel’s contribution to the actor’s
response using the concept of Max-plus convolution.

3.5.2.2.1 Max-plus convolution Consider a general SDF-PDF chan-
nel structure of Fig. 3.7. Channel (X,Y ) is defined with parameterized
rates p and q, actors X and Y and their parameterized firing delays x and
y, respectively, while the number of initial tokens on the channel equals to
i(X,Y ). By default, it is enabled i.e. the implied channel condition always
evaluates to tt. We compute the output of actor Y using (3.12). We only
treat the case when in the figure, i(X,Y ) = 0. The case where i(X,Y ) > 0
is trivial due to Requirement 3.1. More precisely, within one iteration of the
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Fig. 3.7: SDF-PDFG channel.

graph, actor’s demand for input tokens on that channel will always refer to
one of those i(X,Y ) initial tokens, i.e. no firings of X within the iteration
need to be considered. For actor Y with i(X,Y ) = 0, (3.12) transforms to

τ(Y, n) =

(
τ(Y, n− 1)⊕ τ(X,

⌈n · q
p

⌉
)

)
⊗ y. (3.14)

We treat (3.14) using backward substitution. Backward substitution is a
well-known method for solving recurrence equations and it works exactly as
the name implies. In particular, starting from the equation itself, we work
backwards substituting the values of the recurrence for previous ones.

If we unfold (3.14) for k times and substitute it back, we obtain

τ(Y, n) = τ(Y, n− k)⊗ y⊗n ⊕
k⊕
i=1

τ(X,
⌈(n− i+ 1) · q − ι

p

⌉
)⊗ y⊗i. (3.15)

We obtain the base case when k = n from (3.15) as follows

τ(Y, n) = τ(Y, 0)⊗ y⊗n ⊕
n⊕
i=1

τ(X,
⌈(n− i+ 1) · q − ι

p

⌉
)⊗ y⊗i︸ ︷︷ ︸

conv(τ(X,
⌈
n·q−ι
p

⌉
),y⊗n)

. (3.16)

In the second term of the Max-plus summation of (3.16) we recognize the
Max-plus convolution of the input token timestamp sequence and the im-
pulse response of actor Y , denoted h(Y, n) where h : N>0 → Rmax is the
timestamp sequence belonging to tokens produced by the actor in response
to the impulse input token timestamp sequence

u(n) =

{
0 if n = 1

−∞ otherwise
, for all n ∈ N>0. (3.17)
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For a complete presentation we refer to [42]. When the actor has a self-edge
with one initial token, its impulse response takes the form

h(Y, n) = y⊗n , for all n ∈ N>0. (3.18)

When an actor is without a self-edge,

h(Y, n) =

{
y if n = 1

−∞ otherwise
, for all n ∈ N>0. (3.19)

An actor without a self-edge can be interpreted as an actor with a self-
edge with an infinite stock of initial tokens all available at t = −∞. Then,
when (3.19) is applied to (3.16), (3.16) reduces to

τ(Y, n) = τ(X,
⌈n · q
p

⌉
)⊗ y. (3.20)

We formally define the previously used concept of Max-plus convolution.

Definition 3.2. Let ς1(n) and ς2(n) be two sequences in Rmax, i.e. ς1,2 :
N>0 → Rmax. The convolution of the two, denoted conv(σ1, σ2) is defined
as

conv(ς1, ς2)(n) =

n⊕
i=1

ς1(n− i+ 1)⊗ ς2(i). (3.21)

In case of an actor with a self-edge, we wish to obtain a closed form
solution for (3.16), i.e. a solution without the recursive part defined by the
convolution. Note that, for the case of an actor without a self-edge, (3.20)
immediately provides such a solution.

Before we proceed we define the concept of an eventually periodic se-
quence as follows.

Definition 3.3 (Eventually periodic sequence [26]). We say that the se-
quence ς(n) is eventually periodic (or shortly periodic) if ∃K ∈ N>0,∃c ∈
N0,∃π ∈ Rmax such that ∀n ≥ K :

ς(n+ c) = π⊗c ⊗ ς(n). (3.22)

The term “periodic” has to be understood in the Max-plus-algebraic
sense: the terms of the sequence are Max-plus multiplied by a constant
factor c · π. If ς(n) is an eventually periodic sequence then the smallest
possible c for which (3.22) holds is called the period of ς(n). The smallest
possible corresponding π is then called the ratio of ς(n).
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An SDF/SDF-PDF actor is a Max-plus linear system that can be de-
scribed with (2.13). Consequently, according to the fundamental theorem
in Max-plus algebra [26][29], SDF/SDF-PDF actors are eventually periodic
and transitively are SDFGs/SDF-PDFGs as their compositions.

Therefore, the convolution of (3.16) is an eventually periodic sequence
of Definition 3.3. In the parametric context, representing the convolution
of (3.16) in terms of Definition 3.3 is challenging. In particular, it is intu-
itively clear from the context that there would not exist a single represen-
tation but quite a few depending on the relationships of involved channel
rates and actor firing delays. Furthermore, even if we knew a way to derive
these representations, it follows from Definition 3.3, that these representa-
tions would again be recursive, and recursiveness is a thing we wanted to
get rid of in the first place. Therefore, we need a simpler representation.
In particular, we take advantage of the periodicity property to simplify the
analysis into an entirely (in contrast to eventually) periodic pattern where
the period equals to 1, i.e. c = 1. “Entirely” means that (3.22) holds for all
n ∈ N>0. The idea is to find a delay δ and a ratio π such that term δ⊗π⊗n
is a conservative linear upper bound to the convolution in (3.16). This
(conservative) linear bound is, in terms of Definition 3.3, an entirely periodic
sequence with c = 1. We show how we can to this for SDF-PDF structures
compliant to Requirement 3.1 and to Requirement 3.2.

SDF-PDFG graphs satisfying Requirement 3.1 are acyclic within an it-
eration because their feedback channels always host enough initial tokens to
account for all firings of the consuming actor within an iteration. Therefore,
to compute one iteration of the graph, we can consider it acyclic, i.e. com-
pute one iteration of the acyclic graph by starting from its source actors.
If the source actor (X in Fig. 3.7) has a self-edge4, the timestamps of out-
put tokens of that actor can be described as an entirely periodic sequence
where the ratio equals to the firing delay of the actor. This is because the
actor has no other dependencies than the one given by its self-edge, and
the self-edge token is restored every firing delay time-units. Once such a
sequence is consumed by another actor (Y in Fig. 3.7) that has a self-edge
too, the output of that actor is then defined by (3.16). The problematic
part of (3.16) is the convolution of the input sequence (normalized to the
input of the considered actor by channel rate fraction, i.e. q

p in Fig. 3.7)
and the impulse response of the considered actor.

These sequences can be represented as lines with rational slopes in
N>0 × R plane (where the x-axis is the index domain and y-axis is the
time domain) as shown by Fig. 3.8 for arbitrary sequences ς1 and ς2. Their

4The case of an actor without a self-edge is trivial.
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Fig. 3.8: Periodic sequences in Rmax.

slopes equal to their ratios and represent the asymptotic growth rates of
the sequences. Their counterparts in conventional linear system theory are
sine functions, while their slopes are counter-parted with the frequencies of
the sine waves [30]. If the input slope is strictly smaller than the slope of
the impulse response (smaller slope means smaller ratio), then the output
of the actor will be a periodic sequence that inherits the slope/ratio of the
impulse response and this is a kind of the “low-pass” effect. If opposite, the
slope/ratio of the output will attain the slope/ratio of the input.

To summarize, the ratio of the output of an SDF-PDF actor with one in-
put channel is defined by the larger of the ratios of the input token sequence
(normalized by the fraction of the consumption and production rate of the
channel defining the dependence as accounted for by the ratio of (3.12b))
and the ratio of the actor’s impulse response. In addition, the output se-
quence will incur a delay that initially accounts for the number of firings
that the producing actor needs to perform to enable the first firing of the
consuming actor. This number of firings equals to the ceiling of the channel
rate fraction (cf. (3.12b)). Finally, as follows from the discussion above, the
output token sequence given by the convolution of (3.16) can be conserva-
tively bounded using the following result.

Proposition 3.1. Let ς1(n) and ς2(n) be two entirely periodic sequences in

Rmax with period equal to 1, defined by ς1(n) = δ1 ⊗ π1
⊗dr·ne and ς2(n) =

π2
⊗n, where n ∈ N>0, r ∈ Q≥0 and δ1, π1, π2 ∈ Rmax. Then, the following

inequality holds:

conv(ς1, ς2)(n) <

{
δ1 ⊗ π1

⊗(1+r) ⊗ π2
⊗n = if π2 ≥ r · π1

δ1 ⊗ π2 ⊗ π1
⊗(1+r·n) if π2 ≤ r · π1

(3.23)



3.5. Max-plus algebra for SDF-PDF 59

Proof. We prove this by induction using the argument

x ≤ dxe < x+ 1. (3.24)

First, we consider the case where π2 ≥ r · π1. We prove the induction
base case, i.e. when n = 1. By substituting ς1(n) = δ1 ⊗ π1

⊗dr·ne and
ς2(n) = π2

⊗n into (3.21), we obtain

conv(ς1, ς2)(n) = δ1 ⊗
n⊕
i=1

π1
⊗dr·(n−i+1)e ⊗ π2

⊗i. (3.25)

For n = 1, (3.25) reduces to

conv(ς1, ς2)(1) = δ1 ⊗ π1
⊗dre ⊗ π2. (3.26)

By combining (3.24) and (3.26) we obtain the following inequality

conv(ς1, ς2)(1) = δ1 ⊗ π1
⊗dre ⊗ π2 < δ1 ⊗ π1

⊗(1+r) ⊗ π2 (3.27)

that proves the base case. We continue with the induction step, i.e. evalu-
ate (3.25) for (n+1) with the induction hypothesis of (3.23) where π2 ≥ r·π1.
We obtain

conv(ς1, ς2)(n+ 1) = δ1 ⊗
n+1⊕
i=1

π1
⊗dr·(n−i+2))e ⊗ π2

⊗i

= δ1 ⊗
n⊕
i=1

π1
⊗dr·(n−i+1)e ⊗ π2

⊗i

⊕ δ1 ⊗ π1
⊗dre ⊗ π2

⊗(n+1)

= conv(ς1, ς2)(n)

⊕ δ1 ⊗ π1
⊗dre ⊗ π2

⊗(n+1).

(3.28)

By substituting the induction hypothesis into (3.28) we obtain the following
inequality

conv(ς1, ς2)(n+ 1) < δ1 ⊗ π1
⊗(1+r) ⊗ π2

⊗n

⊕ δ1 ⊗ π1
⊗dre ⊗ π2

⊗(n+1).
(3.29)

If we use (3.24) to get rid of the ceiling in (3.29), we obtain

conv(ς1, ς2)(n+ 1) < δ1 ⊗ π1
⊗(1+r) ⊗ π2

⊗n

⊕ δ1 ⊗ π1
⊗(1+r) ⊗ π2

⊗(n+1)

conv(ς1, ς2)(n+ 1) < δ1 ⊗ π1
⊗(1+r) ⊗ π2

⊗(n+1).

(3.30)
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Inequality (3.30) shows that the induction hypothesis holds for (n+ 1) too
which completes the proof for the case where π2 ≥ r · π1.

Now we consider the case where π2 ≤ r ·π1. The base case is simple and
equal to that of (3.26). We proceed with the induction step. By substituting
the induction hypothesis into (3.28) we obtain the following inequality

conv(ς1, ς2)(n+ 1) < δ1 ⊗ π2 ⊗ π1
⊗(1+r·n)

⊕ δ1 ⊗ π1
⊗dre ⊗ π2

⊗(n+1).
(3.31)

If we get rid of the ceiling function and rearrange, we obtain

conv(ς1, ς2)(n+ 1) < δ1 ⊗ π2 ⊗ (π1
⊗(1+r·n)

⊕ π1
⊗(1+r) ⊗ π2

⊗n︸ ︷︷ ︸
π1⊗(r·n)

). (3.32)

Because we are considering the case where π2 ≤ r · π1, we can replace
inside the bracket the term π2 with r · π1 (cf. underbrace of (3.32)) so that
the (3.32) still holds. We obtain

conv(ς1, ς2)(n+ 1) < δ1 ⊗ π2 ⊗ (π1
⊗(1+r·n)

⊕ π1
⊗(1+r) ⊗ π1

⊗(r·n))

conv(ς1, ς2)(n+ 1) < δ1 ⊗ π2 ⊗ (π1
⊗(1+r·n)

⊕ π1
⊗(1+r·(n+1))).

(3.33)

If follows from (3.33) that

conv(ς1, ς2)(n+ 1) < δ1 ⊗ π2 ⊗ (π1
⊗(1+r·(n+1))), (3.34)

which completes the proof.

In the right hand side of (3.23) the member 1 in the exponents stems
from the fact that x+ 1 is used to bound dxe as x ≤ dxe < x+ 1. Member
δ1 accounts for some initial delay of the input sequence ς1(n), sequence
ς2(n) represents the impulse response of the considered actor, while r stands
for the fraction of the channel destination and source rate. The result
of (3.23) conservatively bounds conv(ς1, ς2)(n). In particular, (3.23) defines
a linear upper bound for conv(ς1, ς2)(n) as a entirely periodic sequence with
c = 1, i.e. one that can be expressed by δ ⊗ π⊗n. When π2 ≥ r · π1,
δ = δ1 ⊗ π1

⊗(1+r) and π = π2, while when π2 ≤ r · π1, δ = δ1 ⊗ π2 ⊗ π1

and π = r · π1. The bound of (3.23) is exact in the “ratio part”, i.e. it
correctly captures the asymptotic growth rate of conv(ς1, ς2)(n). It only
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Fig. 3.9: Self-timed execution of the SDF-PDF structure of Fig. 3.7 with
p = 3, q = 2, x = 3, y = 5 and i(X,Y ) = 0.

adds a finite amount of delay to conservatively shift the estimate over the
actual values of conv(ς1, ς2)(n). This shift is derived from the ratios of the
involved sequences as specified by (3.23). Therefore, when n → ∞, the
relative approximation error of (3.23) will asymptotically reach 0.

We demonstrate the application of Proposition 3.1 to the structure of
Fig. 3.7 with, of course, i(X,Y ) = 0. With regard to Proposition 3.1, in
the figure, δ1 = 0, π1 = x, π2 = y, r = q

p . Fig. 3.9 shows the execution of
the structure with: p = 3, q = 2, x = 3, y = 5. From the figure we see that
actor Y is the bottleneck and its firing delay defines the ratio of the output
sequence τ(Y, n). In particular,

τ(Y, n) = [8, 13, 18, 23, . . .]. (3.35)

On the other hand, with Proposition 3.1, π2 ≥ r · π1 and

τ(Y, n) ≤ 3⊗(1+ 2
3

) ⊗ 5⊗n = [10, 15, 20, 25, . . .]. (3.36)

By comparing (3.35) and (3.36), we see that (3.36) conservatively bounds (3.35)
and that for n→∞ the relative approximation error goes to 0 because both
sequences attain the ratio (asymptotic growth rate) of 5 time-units.

Now, consider the execution of the structure when p = 2, q = 3, x =
3, y = 1 that is shown in Fig. 3.10. From the figure, it follows that

τ(Y, n) = [7, 10, 16, 19, . . .]. (3.37)

In this case, with Proposition 3.1, π2 ≤ r · π1, i.e. actor X is the bottle-
neck and its firing delay normalized to r defines the ratio of the output
token sequence (defined by Y ’s output channels). In particular, according
to Proposition 3.1,

τ(Y, n) ≤ 1⊗ 3⊗(1+ 3
2
·n) = [8.5, 13, 17.5, 22, . . .]. (3.38)
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Fig. 3.10: Self-timed execution of the SDF-PDF structure of Fig. 3.7 with
p = 2, q = 3, x = 3, y = 1 and i(X,Y ) = 0.

By comparing (3.37) and (3.38), again we see that for (3.38) conservatively
bounds (3.37) and that for n→∞ the relative approximation error goes to 0
because the sequences of (3.37) and (3.38) attain the same ratio (asymptotic
growth rate) of 4.5 time-units.

So far we treated only two actors in isolation. We have shown how
we can construct a linear upper-bound on their responses using the result
of Proposition 3.1. In a graph, these responses will represent inputs to
other actors. Therefore, Proposition 3.1 is to be repetitively used to bound
the responses of remaining graph actors. From this discussion it follows
that the response of a arbitrary actor Ak of an SDF-PDFG compliant to
Requirements 3.1 and 3.2 within an iteration can be conservatively bounded
by a delay-ratio (δ, π) abstraction as follows

τ(Ak, n) =
⊕
ij

(δk,j ⊗ πk,j⊗n)⊗ tij

= [(δk,1 ⊗ πk,1⊗n), . . . , (δk,|I| ⊗ πk,|I|⊗n)]⊗ γ(k).

(3.39)

A delay-ratio (δ, π) abstraction defines the dependency vector entries as
linear functions of n, i.e. the actor firing index. More specifically, given a
dependency vector entry that represents the minimal temporal distance of
some arbitrary token and an initial token, its ratio will be determined by
the scaled (via rate fractions) firing delay of the slowest actor in the path
defined by the producing actors of the two tokens.

3.5.2.2.2 Max-plus superposition For an actor with multiple input
channels, once we have computed how different inputs contribute to the
output of the considered actor, we ultimately need to superimpose the con-
tributions to fully determine the output (sequence). Across corresponding
dependency vector entries of different contributions expressed via (3.39),
the following propositions defines a conservative linear upper bound for the
corresponding output dependency vector entry.
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Proposition 3.2. Let Υ = {ς1(1), . . . , ςN (n)} be a set of entirely periodic
sequences in Rmax such that ςi(n) = δi ⊗ πi⊗n. Let δ = max(δ1, . . . , δN )

and π = max(π1, . . . , πN ) and let Σ(n) =
N⊕
i=1

ςi(n). Then, Σ(n) attains the

following conservative linear upper-bound

Σ′(n) = δ ⊗ π⊗n. (3.40)

Proof. By taking π for the ratio of the bound and 0 for the initial delay,
the bound will eventually (for some n0 ∈ N>0) compensate for the initial
delay difference of particular sequences, i.e. the sequence with the largest
ratio will dominate. By taking δ for the delay of the estimate, the estimate
will dominate for all n ∈ N>0. In Fig. 3.8, sequence Σ′(n) defines such a
bound on ς1(n) and ς2(n). If for Σ′(n) we set π = max(π1, π2) = π1 = 1
and δ = 0, Σ′(n) starts to dominate after n = 4. However, by setting
δ = max(δ1, δ2) = δ2 = 4, Σ′(n) dominates over Σ(n) = ς1(n)⊗ ς2(n) for all
n ∈ N>0.

The result of (3.40) defines a entirely periodic sequence with c = 1 that
attains the ratio of the slowest input sequence and the delay of the most
delayed sequence. Sequence Σ(n) is piecewise linear. However, in our com-
putations we choose to use a conservative estimate that is entirely periodic.
This way we avoid dealing with the cumbersome problem of enumeration
of Σ(n)’s pieces in a parametric context. With such an enumeration, which
would split the firing index domain it is not clear how to construct the map-
ping Mpar

G , i.e. Mpar′
G . However, the bound of (3.40) is exact in the “ratio

part” and when n→∞, the relative approximation error goes to 0.

By using (3.16) and (3.20) in conjunction with Proposition 3.1 and
Proposition 3.2 we can compute the response of any graph actor within
an iteration expressed in the form of (3.39) that we use to renderMpar

G , i.e.
Mpar′

G . We show how to do this in on an example in the subsection to come.

3.5.3 Example

We exemplify the parameterized matrix generation process using the SDF-
PDF specification of Fig. 3.3. This is an artificial but an illustrative example
that covers all the relevant cases in actor response computation elaborated
prior to this subsection. Note that we discuss the application of our tech-
niques to a realistic case study later on in Section 3.8.

Here, for the running example, we will compute the iteration of the
graph using its quasi-static schedule that is given as A1

0A
q
1A

p
2A

p
3A

q
4A

1
5A

1
6.



64 Worst-case performance analysis of SDF-PDF

The timestamp vector of the kth SDF-PDFG iteration is specified as

γ(k) = [ti1 , ti2 , ti3 , ti4ti5 , ti6 ]. (3.41)

Furthermore, every entry of γ(k) can be written in terms of (3.12) (by
associating it with the corresponding producing actor) and onwards as the
Max-plus scalar product of (3.10).

ti1 = τ(A1, 0) = [0,−∞.−∞,−∞,−∞,−∞]⊗ γ(k),

ti2 = τ(A2, 0) = [−∞, 0,−∞,−∞,−∞,−∞]⊗ γ(k),

ti3 = τ(A3, 0) = [−∞,−∞, 0,−∞,−∞,−∞]⊗ γ(k),

ti4 = τ(A4, 0) = [−∞,−∞,−∞, 0,−∞,−∞]⊗ γ(k),

ti5 = τ(A5, 0) = [−∞,−∞,−∞,−∞, 0,−∞]⊗ γ(k),

ti6 = τ(A6, 0) = [−∞,−∞,−∞,−∞,−∞, 0]⊗ γ(k).

(3.42)

According to the quasi-static schedule of the specification, actor A0 fires
first. It has only one input channel (A6, A0), i.e. we need to consider
only one contribution. It fires a nonparametric number of times within
iteration and does not have a self-edge. Channel (A6, A0) forms a directed
cycle (feedback loop) and due to Requirement 3.1 it must host a sufficient
number of initial tokens to fire A0 at least Γ(A0) times. This is the case
because Γ(A0) = 1 and i((A6, A0)) = 2. Thus, we use (3.12) to compute
τ(A0, n) for all n = 1, . . . ,Γ(A0) one-by-one. In (3.12), the right hand side
will always refer to one of the timestamps of initial tokens. This way the
feedback is effectively broken. We evaluate (3.12) for A0 with n = 1 as
follows

τ(A0, 1) = τ(A6, 0)⊗ 0

= [−∞,−∞,−∞,−∞,−∞, 0]⊗ γ(k).
(3.43)

A more interesting case is that of actor A1 which fires a parametric
number of times within an iteration, i.e. Γ(A1) = q and has a self-edge.
Then τ(A1, n) cannot be derived in a one-by-one fashion, but we need to
express the analytical relation between τ(A1, n) and n. We use (3.16) in
the context of A1. The input token sequence to A1 is defined by (3.43). By
substituting (3.43) and ti1 of (3.42) into (3.16) we obtain



3.5. Max-plus algebra for SDF-PDF 65

τ(A1, n) = [0,−∞,−∞,−∞,−∞,−∞]

⊗ γ(k)⊗ a1
⊗n

⊕ [−∞,−∞,−∞,−∞,−∞, 0]

⊗ γ(k)⊗ a1
⊗n

= [a1
⊗n,−∞,−∞,−∞,−∞, a1

⊗n]

⊗ γ(k).

(3.44)

Even a more intriguing case arises in the consideration of the next actor
in the quasi-static schedule, i.e. A2 with Γ(A2) = p. Actor A2 has a self-edge
and one input dependency defined by tokens produced by A1 on channel
(A1, A2). However, channel (A1, A2) is conditional and whether we consider
it in the computation of the response of A2 depends on the evaluation of
expression b. We need to consider both cases, i.e. when b = tt and b = ff.
The consideration splits our exploration into two exclusive parts, one where
b = tt and the other where b = ff. We proceed with

C0 ≡ b = tt, (3.45)

which says that (A1, A2) is enabled, i.e. it needs to be accounted for when
computing the response of A2. Thus, using (3.16), (3.42) and (3.44) we
derive

τ(A2, n) = [−∞, 0,−∞,−∞,−∞,−∞]

⊗ γ(k)⊗ a2
⊗n

⊕ [conv(a1
⊗d q

p
·ne
, a2
⊗n),−∞,−∞,−∞,−∞,

conv(a1
⊗d q

p
·ne
, a2
⊗n)]⊗ γ(k).

(3.46)

Every entry of the dependency vector of (3.46) expressed as a convolu-
tion needs to be treated by Proposition 3.1 in a one-by-one manner. For an
entry, Proposition 3.1 gives rise to two cases that split the original param-
eter space (the graph domain) into two exclusive parts. For each of these
parts, the iteration computation continues in a separate branch. In case of
actor A2 only one split will occur as for the two dependency vector entries
of (3.46) defined by a convolution, these convolutions are identical. The
parts of the parameters space to be considered are defined by inequalities
p · a2 ≥ q · a1 and p · a2 ≤ q · a1. We continue the computation in the part
of the space defined with

C1 ≡ p · a2 ≥ q · a1. (3.47)
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With (3.47), using (3.23), (3.46) transforms to

τ(A2, n) � [a1
⊗( q

p
+1) ⊗ a2

⊗n, a2
⊗n,−∞,−∞,−∞,

a1
⊗( q

p
+1) ⊗ a2

⊗n]⊗ γ(k).
(3.48)

The right-hand side of (3.48) computed using Proposition 3.1 is a con-
servative estimate of the actual τ(A2, n) and therefore the � notation. A
similar case to that of actor A2 is the one of actor A3 with Γ(A3) = p.
From (3.16) using (3.42) and (3.44) we derive

τ(A3, n) = [−∞,−∞, 0,−∞,−∞,−∞]

⊗ γ(k)⊗ a3
⊗n

⊕ [conv(a1
⊗d q

p
·ne
, a3
⊗n),−∞,−∞,−∞,−∞,

conv(a1
⊗d q

p
·ne
, a3
⊗n)]⊗ γ(k).

(3.49)

Equation (3.49) mandates a further split of the parameter space with
p · a3 ≥ q · a1 and p · a3 ≤ q · a1. We proceed with

C2 ≡ p · a3 ≤ q · a1. (3.50)

With (3.50),using (3.23), (3.49) reduces to

τ(A3, n) � [a1 ⊗ a3 ⊗ a1
⊗( q

p
·n)
,−∞, a3

⊗n,−∞,−∞,

a1 ⊗ a3 ⊗ a1
⊗( q

p
·n)

]⊗ γ(k).
(3.51)

We proceed with actor A4 with Γ(A4) = q. This actor has two input
channels, and therefore to compute its outputs we apply the Max-plus su-
perposition principle. First we consider the contribution of channel (A2, A4)
given by (3.48). This is a conditional channel annotated with Boolean ex-
pression b. Therefore we need to consider two cases: one where b = tt and
the other where b = ff. The latter case conflicts with (3.45) and therefore
is not satisfiable. This branch of exploration is immediately dropped. We
proceed with the former, i.e. when b = tt. In that case channel (A2, A4) is
enabled and contributes to the output of A4 as follows (we substitute (3.48)
and ti4 of (3.42) into (3.16))
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τ (A2,A4)(A4, n) � [−∞,−∞,−∞, 0,−∞,−∞]

⊗ γ(k)⊗ a4
⊗n

⊕ [a1
⊗(1+ q

p
) ⊗ conv(a2

⊗d p
q
·ne
, a4
⊗n),

conv(a2
⊗d p

q
·ne
, a4
⊗n),−∞,−∞,−∞,

a1
⊗(1+ q

p
) ⊗ conv(a2

⊗d p
q
·ne
, a4
⊗n)]⊗ γ(k).

(3.52)

The convolutions of (3.52) split the parameter space with q · a4 ≥ p · a2

and q · a4 ≤ p · a2. We arbitrarily choose to proceed with

C3 ≡ q · a4 ≤ p · a2. (3.53)

With (3.53), via (3.23), (3.52) becomes

τ (A2,A4)(A4, n) � [a1
⊗(1+ q

p
) ⊗ a2 ⊗ a4 ⊗ a2

⊗( p
q
·n)
,

a2 ⊗ a4 ⊗ a2
⊗( p

q
·n)
,

−∞, a4
⊗n,−∞,

a1
⊗(1+ q

p
) ⊗ a2 ⊗ a4 ⊗ a2

⊗( p
q
·n)

]⊗ γ(k).

(3.54)

Similarly, we calculate the contribution of channel (A3, A4).

τ (A3,A4)(A4, n) � [−∞,−∞,−∞, 0,−∞,−∞]

⊗ γ(k)⊗ a4
⊗n

⊕ [conv(a1 ⊗ a3 ⊗ a1
⊗( q

p
·d p
q
·ne)

, a4
⊗n),

−∞, conv(a3
⊗(d p

q
·ne)

, a4
⊗n),

−∞,−∞,

conv(a1 ⊗ a3 ⊗ a1
⊗( q

p
·d p
q
·ne)

, a4
⊗n)]⊗ γ(k)

(3.55)

In (3.55), two convolutions define the further split in the parameter
space. The first one (first and last entries of the dependency vector) proposes
the following split: a4 ≥ a1 and a4 ≤ a1. We proceed with the option

C4 ≡ a4 ≥ a1. (3.56)

With (3.56), (3.55) becomes

τ (A3,A4)(A4, n) � [a1
⊗(1+ q

p
) ⊗ a3 ⊗ a4 ⊗ a1

⊗n,−∞,

conv(a3
⊗(d p

q
·ne)

, a4
⊗n), a4

⊗n,

−∞, a1
⊗(1+ q

p
) ⊗ a3 ⊗ a4 ⊗ a1

⊗n]⊗ γ(k).

(3.57)
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The remaining convolution of (3.57) defines a further split along the
current branch of exploration via options q · a4 ≥ p · a3 and q · a4 ≤ p · a3.
By selecting

C5 ≡ q · a4 ≤ p · a3, (3.58)

from (3.57) we derive

τ (A3,A4)(A4, n) � [a1
⊗(1+ q

p
) ⊗ a3 ⊗ a4 ⊗ a1

⊗n,−∞,

a3 ⊗ a4 ⊗ a3
⊗( p

q
·n)
, a4
⊗n,−∞,

a1
⊗(1+ q

p
) ⊗ a3 ⊗ a4 ⊗ a1

⊗n]⊗ γ(k).

(3.59)

To finalize the computation of response of A4 now we need to superim-
pose the contributions of A2 and A4. Thus

τ(A4, n) = τ (A2,A4)(A4, n)⊕ τ (A3,A4)(A4, n). (3.60)

The computation of (3.60) involves an iterative approach where each entry
of the dependency vector of the first contribution is paired with the corre-
sponding entry of the second contribution and the combination is treated
by Proposition 3.2. By considering all combinations of maximal delays and
periods between corresponding dependency vector entries, Proposition 3.2
further splits the parameter space. For the concrete examples of (3.54)
and (3.59) only the first and the sixth entry of dependency vectors are to
be treated as the others are either equal (the fourth and the fifth entry) or
one immediately dominates because the other equals to −∞ (second and
third entry). For the first and the sixth entry (note these are equal in the
respective dependency vectors of (3.54) and (3.59)) in the light of Propo-
sition 3.2, we define the corresponding delay-ratio abstractions as follows:

δ1 = a1
⊗(1+ q

p
) ⊗ a2 ⊗ a4, π1 = a2

⊗( p
q

)
, δ2 = a1

⊗(1+ q
p

) ⊗ a3 ⊗ a4 and π2 = a1.
Now, Proposition 3.2 mandates four splits in the parameter space defined
by the following sets of inequalities: {δ1 ≥ δ2, π1 ≥ π2}, {δ1 ≥ δ2, π1 ≤ π2},
{δ1 ≤ δ2, π1 ≥ π2} and {δ1 ≤ δ2, π1 ≤ π2}. However, in the current part of
the parameter space/domain, constrained by (3.45), (3.47), (3.50), (3.53),
(3.56) and (3.58) it is straightforward to see that only the constraint {δ1 ≥
δ2, π1 ≥ π2} does not conflict with the previously made assumptions and
is, furthermore, redundant. Therefore, the computation only continues for
δ1 ≥ δ2, π1 ≥ π2, with regard to which, (3.60) transforms to

τ(A4, n) � [a1
⊗(1+ q

p
) ⊗ a2 ⊗ a4 ⊗ a2

⊗( p
q
·n)
,

a2 ⊗ a4 ⊗ a2
⊗( p

q
·n)
, a3 ⊗ a4 ⊗ a3

⊗( p
q
·n)
, a4
⊗n,

−∞, a1
⊗(1+ q

p
) ⊗ a2 ⊗ a4 ⊗ a2

⊗( p
q
·n)

]⊗ γ(k).

(3.61)
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Now according to the quasi-static schedule we consider A5, with Γ(A5) =
1. As for all actors with a constant repetition count, we evaluate (3.12) for
all n up to the repetition vector entry for the actor. We obtain

τ(A5, 1) = τ(A4, q) � [a1
⊗(1+ q

p
) ⊗ a2

⊗(1+p) ⊗ a4,

a2
⊗(1+p) ⊗ a4, a3

⊗(1+p) ⊗ a4,

a4
⊗q,−∞, a1

⊗(1+ q
p

) ⊗ a2
⊗(1+p) ⊗ a4]⊗ γ(k).

(3.62)

Actor A6 fires only once and produces the tokens carrying the timestamp

τ(A6, 1) = τ(A5, 0)⊗ 10

= [−∞,−∞,−∞,−∞, 10,−∞]⊗ γ(k).
(3.63)

The computation of (3.63) completes the iteration. What remains to be
done is to determine the entries of γ(k+1) = [t′i1 , t

′
i2
t′i3 , t

′
i4
, t′i5 , t

′
i6

] from com-
puted actor responses and compose the corresponding dependency vectors
row-by-row into a matrix. These entries are determined from evaluations
of responses of initial token producing actors at the iteration boundary, i.e.
for values of n that equal to their repetition vector entries because for those
values of n initial tokens are restored. For the example graph, with

t′i1 = τ(A1, q) t′i2 = τ(A2, p) t′i3 = τ(A3, p)

t′i4 = τ(A4, q) t′i5 = τ(A5, 1) t′i6 = τ(A6, 1),
(3.64)

we obtain the parameterized matrix of (3.65)

Mpar
G (xG) �Mpar′

G (xG) =



a1
⊗q −∞

a1
⊗(1+ q

p
) ⊗ a2

⊗p a2
⊗p

a1
⊗(1+q) ⊗ a3 −∞

a1
⊗(1+ q

p
) ⊗ a2

⊗(1+p) ⊗ a4 a2
⊗(1+p) ⊗ a4

a1
⊗(1+ q

p
) ⊗ a2

⊗(1+p) ⊗ a4 a2
⊗(1+p) ⊗ a4

−∞ −∞
−∞ −∞ −∞ a1

⊗q

−∞ −∞ −∞ a1
⊗(1+ q

p
) ⊗ a2

⊗p

a3
⊗p −∞ −∞ a1

⊗(1+q) ⊗ a3

a3
⊗(1+p) ⊗ a4 a4

⊗q −∞ a1
⊗(1+ q

p
) ⊗ a2

⊗(1+p) ⊗ a4

a3
⊗(1+p) ⊗ a4 a4

⊗q −∞ a1
⊗(1+ q

p
) ⊗ a2

⊗(1+p) ⊗ a4

−∞ −∞ 0 −∞


(3.65)
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Fig. 3.11: Exploration tree.

where xG ∈ XG∩(b = tt)∩(p ·a2 ≥ q ·a1)∩(p ·a3 ≤ q ·a1)∩(q ·a4 ≤ p ·a2)∩
(a4 ≥ a1)∩(q·a4 ≤ p·a3), i.e. xG belongs to the part of the original graph do-
main refined by the set of constraints of (3.45), (3.47), (3.50), (3.53), (3.56)
and (3.58). Furthermore, there exists a finite number of such partitions
XG =

⋃n
i=1XGi that we call natural SDF-PDFG subdomains. Each subdo-

main XGi ⊆ XG defines one parameterized matrix. Collected, matrices form
the codomain of Mpar′

G . Recall that, matrix Mpar′
G (xG) defines a conserva-

tive approximation of the theoretical concept of Mpar
G (xG) first presented

in (3.8). The conservativity is due to Propositions 3.1 and 3.2 used in de-
riving of Mpar′

G (xG).

Fig. 3.11 illustrates the partitioning of the parameter space (domain)
XG for the running example. The matrix of (3.65) is defined by the path
determined by the black nodes of the exploration tree.

At this point it is opportune to discuss the semantics of an entry of
the parameterized SDF-PDFG matrix that is same as the semantics of the
entry of a Max-plus SDFG matrix. In particular, [Mpar

G (xG)]m,n represents
the minimal time distance between token im of the (k + 1)st SDF-PDFG
iteration and token in of the kth SDF-PDFG iteration. The parametric
representation of the matrix entries gives clear insight into the structure
of the graph and temporal relationships of actors in the graph. Basically,
[Mpar

G (xG)]m,n defines the delay of the slowest path in the graph connecting
the producing actors of initial tokens im and in. This path is determined
by the delay that all actors along the path contribute to and by the ratio of
the slowest actor in the path. E.g. if we consider [Mpar′

G (xG)]4,1 as obtained
from (3.61), we see that actor A2 is the bottleneck of the path from i1
to i4, i.e. it has the highest ratio (or in the light of conventional linear
system theory it has the lowest cutoff frequency). On the other hand, such
relationships cannot be studied from a concrete Max-plus matrix.
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3.5.4 Algorithm for computation of an SDF-PDFG iteration

Algorithm 3.1 specifies the previously described procedure for the compu-
tation of one iteration of an SDF-PDFG.

It is defined by the recursive function ExploreGraph that explores the
tree-like structures like that of Fig. 3.11 in a depth first-search manner. The
inputs to the function are G the SDF-PDFG itself with all associated meta-
data like the quasi-static schedule of the structure, T the set of dependency
vectors of all graph channels, curr actor the structure containing all re-
quired meta-data for the actor being currently evaluated, curr actor ndx

the index of the currently processed actor in the quasi-static schedule,
curr in chan ndx the index of the currently processed input of the currently
processed actor, curr init tok dep ndx the index of the currently pro-
cessed entry of the dependency vector either within a Max-plus convolution
or Max-plus superposition context, curr init tok dep delay ndx the in-
dex of the currently set maximal delay among all the delays observed for the
currently processed dependency vector entry, curr init tok dep ratio ndx

the index of the currently set maximal ratio among all the ratios observed
for the currently processed dependency vector entry, two-valued variable
in contr comput completed is a flag denoting whether or not all input
channel contributions have been considered for the currently processed ac-
tor, constraints the set of constraints defining the parameter space par-
tition of the current exploration path and res (passed by reference) the
result set containing parameterized matrices governing the behavior of the
SDF-PDFG in a partition of the initial domain defined by all the constraints
encountered along the exploration path.

In the function, actors are processed as ordered in the quasi-static sched-
ule (cf. Line 6). Once the last actor had been processed, the dependency
vectors are composed into the related parameterized matrix and along with
the constraints encountered added to the result set (cf. Line 49). In the pro-
cessing of a particular actor the contributions stemming from all its input
channels are processed one by one (cf. Line 9). If the channel is conditional,
i.e. annotated by a boolean expression (cf. Line 10) we need to continue
the search recursively in two exclusive parts of the domain. One is defined
by the case when the considered boolean expression evaluates to tt (cf.
Line 12) and the other when the expression evaluates to ff (cf. Line 13).
Note that in the next invocation of the function, this conditional channel
is no longer conditional, i.e. the boolean condition has been replaced by a
concrete boolean value, i.e. tt and/or ff. Of course, with regard to pre-
vious assumptions made on the values of boolean expressions, the current
assumption may conflict with those. Therefore a satisfiability check is re-
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ALGORITHM 3.1: Compute iteration of an SDF-PDFG.
1 Function ExploreGraph(G, T, curr actor, curr actor ndx, curr in chan ndx, curr init tok dep ndx,

curr init tok dep delay ndx, curr init tok dep ratio ndx, in contr comput completed, constraints, ref res)

2 if ((Feasible(constraints) == false) or (Satisfiable(constraints) == false)) then /* check

feasibility and satisfiability of constraints encountered so far */

3 return;

4 end if
5 if curr actor == null then /* pick the next actor from the Qss we have finished with the previous

one */

6 curr actor = G.Qss[curr actor ndx];

7 end if
8 if (curr actor) then /* process actor, by first considering input contributions */

9 if (curr input chan = curr actor[curr in chan ndx]) then
10 if (IsConditional(curr input chan, constraints)) then
11 expression = GetExpression(curr input chan);

/* Consider both options, i.e. expression = tt and expression = ff */

12 ExploreGraph(G, T, curr actor, curr actor ndx, curr in chan ndx, 0, 0, 0, false,

constraints+(expression = tt), res);

13 ExploreGraph(G, T, curr actor, curr actor ndx, curr in chan ndx, 0, 0, 0, false,

constraints+(expression = ff), res);

14 else
15 if ( IsEnabled(curr input chan) and curr input chan[curr init tok dep ndx] ) then
16 options = compute output(T[curr in chan ndx][curr init tok dep ndx],

curr actor.impulse response);

17 i = 0;

18 while (i < options.num options) do
19 curr actor.contributions[curr in chan ndx][curr init tok dep ndx] =

options[i].solution;

20 ExploreGraph(G, T, curr actor, curr actor ndx, curr in chan ndx,

curr init tok dep ndx + 1, 0, 0, false, constraints +

options[i].constraint, res);

21 i++;

22 end while

23 else
/* completed one input contribution, go to the next */

24 ExploreGraph(G, T, curr actor, curr actor ndx, curr in chan ndx + 1, 0, 0, 0,

false, constraints, res);

25 end if

26 end if

27 else
/* completed all contributions, proceed with Max-Plus superposition of contributions by

combining all delay and ratio relationships over all initial token dependencies */

28 if (in contr completed == false) then
29 curr init tok dep ndx = 0;

30 curr actor.dp = sort delays and ratios(curr actor.contributions);

31 end if
32 if (curr actor.dp[curr init tok dep ndx]) then
33 if (curr delay =

curr actor.dp[curr init tok dep ndx].delays[curr init tok dep delay ndx]) then
34 if (curr ratio =

curr actor.dp[curr init tok dep ndx].ratios[curr init tok dep ratio ndx])

then
35 T[curr actor output chan ndx all][curr init tok dep ndx].delay =

curr delay.value;

36 T[curr actor output chan ndx all][curr init tok dep ndx].ratio =

curr ratio.value;

/* next ratio for current delay */

37 ExploreGraph(G, T, curr actor, curr actor ndx, 0, curr init tok dep ndx,

curr init tok dep delay ndx, curr init tok dep ratio ndx + 1, true,

constraints + options[i].constraint);

38 else
/* next delay */

39 ExploreGraph(G, T, curr actor ndx, 0, 0, curr init tok dep ndx, 0,

curr init tok dep delay ndx + 1, true, constraints, res);

40 end if

41 else
/* next initial token dependency */

42 ExploreGraph(G, T, curr actor, curr actor ndx, 0, curr init tok dep ndx + 1, 0,

0, true, constraints, res);

43 end if

44 else
/* done with this actor, do the next one */

45 ExploreGraph(G, T, null, curr actor ndx + 1, 0, 0, 0, 0, false, constraints, res);

46 end if

47 end if

48 else
/* no more actors in the qss, this is a leaf node - build the matrix associated with a set of

constraints */

49 res += process(G,T,constraints);

50 end if
51 return;

52 end
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quired at the very beginning of the function (cf. Line 2). If it fails, this
branch of exploration is left altogether.

If it does not fail and the channel is deemed enabled (cf. Line 15),
we continue by considering particular dependency vector entries of that
channel. This may incur as many Max-plus convolutions as there are entries
in the input dependency vector. As a convolution (cf. Line 16) incurs
splitting of the parameter space, the search is recursively continued for each
splitting option (cf. Line 20) while proceeding with the next dependency
vector entry (note the increment of curr init tok dep ndx in the recursive
call). Note that there are maximally two options per dependency vector
entry. Of course, newly added constraints should not conflict with the
previous ones, i.e. their feasibility needs to be verified (cf. Line 2). If
the combination is not feasible this branch of exploration is left all together
(cf. Line 3). Once all entries of the dependency vector of one input channel
have been processed, the algorithm continues with the next input channel
(cf. Line 24).

Once the contributions of all inputs have been computed, the algorithm
performs the bounding of delay-ratio pairs over all corresponding entries of
dependency vectors of different contributions according to Proposition 3.2.
This is marked by resetting curr init tok dep ndx (cf. Line 29) if the flag
in contr comput completed is set to false (cf. Line 28) to denote that
the actor had not yet been treated by Proposition 3.2. Note that in later
recursive calls, the flag in contr comput completed will be set to true

(cf. Lines 37, 39 and 42). All combinations are considered, i.e. for each
dependency vector entry (cf. Line 32) a different pivot delay (cf. Line 35)
and a pivot ratio (cf. Line (36)) are set and the search is continued for the
next ratio that is to be deemed maximal (cf. Line 37). Once all periods
have been exhausted (cf. Line 34), we proceed with the next pivot delay
(cf. Line 39). Once all delays have been exhausted, we proceed with the
next dependency vector entry (cf. Line 42). Note that after every recursive
call the feasibility is verified with the newly added constraint. The search is
aborted in the current branch if the feasibility check fails (cf. Line 3). Once
ending with the current actor, we proceed to the next one (cf. Line 45) until
the quasi-static schedule has been entirely processed and the matrix added
to the solution set (cf. Line 49).

The algorithm has exponential time complexity in the worst-case. How-
ever, practical application may be expected to have only a few critical pa-
rameters while the graph structures can expose sparsity in the sense that
there will be no dependencies between many initial tokens in the graph.
Furthermore, the definitions of the domains may be such that many explo-
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ration paths will be pruned out due to infeasibility. All this will make the
computational effort of Algorithm 3.1 reasonable and render it applicable
in many cases in practice.

The set of matrices obtained via Algorithm 3.1 when evaluated at a
corresponding xG ∈ XG are actually conservative estimates of the corre-
sponding Max-plus instance matrices. This is due to the conservativity
entailed by Propositions 3.1 and 3.2. Therefore, the following inequality
holds (

Mpar′
G (xG)

)
(xG) �MG(xG) = MιG(xG) (3.66)

for all xG ∈ XG. The approximation of (3.66) per matrix entry only incurs
an added element of delay while the ratio of the sequence used to obtain
the actual matrix value is exact and captures the slowest actor in the path
between two tokens (cf. Propositions 3.1 and 3.2). We show this by example.
E.g., we mentioned in the prelude that when we evaluate SDF-PDFG of
Fig. 3.3 at the configuration xG = {p = 3, q = 2, a1 = 5, a2 = 4, a3 =
3, a4 = 4} its instance SDFG emerges. This instance is equal to the scenario
s1 SDF-PDFG of Fig. 2.4a whose Max-plus matrix is given by (2.16). We
consider an arbitrary entry of the left and right-hand side matrices of (3.66)
for the example graph. With (3.65),

[(
Mpar′

G (xG)
)

(xG)
]
4,1

= 28.3, while

with (2.16), [MιG(xG)]4,1 = 22. For growing values of p and q, i.e. for growing
repetition vector entries the ratio component becomes dominant and the
relative error shrinks and for {p, q} → ∞ it reaches 0. E.g, with xG =
{p = 300, q = 200, a1 = 5, a2 = 4, a3 = 3, a4 = 4},

[(
Mpar′

G (xG)
)

(xG)
]
4,1

=

1216.3, while [MιG(xG)]4,1 = 1210.

3.6 Problem definition

In this section we define the performance metrics of interest for SDF-PDF,
i.e. worst-case throughput and worst-case latency.

3.6.1 Worst-case throughput

We define throughput of an SDF-PDFG in terms of numbers of iterations
per time-unit, which is in accordance with the definition of the throughput
used for SDF [50] and FSM-SADF [46] and the practical consideration that
an iteration typically represents a coherent set of calculations, e.g. decoding
a video frame.

An SDF-PDFG evolves in iterations of its nondeterministically sequenced
instances. Therefore, a particular execution of an SDF-PDFG can be associ-
ated with a sequence of Max-plus timestamp vectors γ = γ(0), γ(1), γ(2), . . .
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The completion time of the kth SDF-PDFG iteration is given by the norm
of γ(k), i.e. ||γ(k)||. Therefore, we define the worst-case throughput of an
SDF-PDFG by adopting the definition of worst-case throughput for FSM-
SADF of [46] as follows.

Definition 3.4 (Worst-case throughput). Worst-case throughput of an SDF-
PDFG G is defined as the largest value ThG ∈ R such that for every possible
instance sequence and its associated Max-plus timestamp vector sequence
γ = γ(1), γ(2), . . ., for every ε ∈ R such that ε > 0, there is some K ∈ N>0

s.t. for all L ∈ N>0, L > K,

L

||γ(L)||
> ThG − ε. (3.67)

Simply put, Definition 3.4 says that the throughput is the worst-case
long-run average of completed iterations per time-unit. However, such a
long-run average does not necessarily exist for all instance/configuration
sequences. Instead it may bounce between superior and inferior limiting
bounds [44][98] and therefore the need for a somewhat cumbersome formu-
lation of Definition 3.4.

3.6.2 Worst-case latency

Similarly as proposed by [46][110] for FSM-SADF, we define the worst-case
latency of an SDF-PDFG G relative to a desired period ρ ∈ R.

Definition 3.5 (Worst-case latency). Worst-case latency of an SDF-PDFG
G relative to a desired period ρ ∈ R is defined as the smallest vector LG
such that for every possible instance sequence and its associated Max-plus
timestamp vector sequence γ = γ(1), γ(2), . . ., for every k ≥ 0,

γ(k) � k · ρ+ LG. (3.68)

Definition 3.5 is a common definition of worst-case latency as a linear
bound on actor firings of the form (3.68) where typically ρ = 1

ThG
[110].

Note that in contrast to throughput, where we are only interested in the
asymptotic growth rate of γ, to determine the worst-case latency we need
to know at what time particular actor firings start or complete their firings
within an iteration.
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3.7 Performance analysis for SDF-PDF

3.7.1 Introductory remarks

The problem of worst-case performance analysis for SDF-PDFG is challeng-
ing due to four reasons: 1) SDF-PDFG actors execute in parallel within a
graph iteration; 2) SDF-PDFG iterations overlap, i.e. they are pipelined (in
Fig. 3.4, at t = τ two instances are concurrently active); 3) SDF-PDFG iter-
ations are inter-dependent, i.e. synchronized by the availability of the initial
tokens; and 4) SDF-PDFG is a dynamic dataflow structure, i.e. properties
of consecutive iterations may drastically differ (cf. Fig. 3.4).

The definitions for worst-case throughput and latency for an SDF-PDFG
(cf. Definitions 3.4 and 3.5) reveal that we need to consider the completion
times of iterations. An SDF-PDFG evolves in iterations of its instances
defined by configurations. Therefore, using the semantic link between SDF-
PDF and FSM-SADF explained in Section 3.4.4 and the definition of the
completion time (cf. (2.30)) of a sequence of FSM-SADF scenarios of (2.29)
we can define the completion time of a sequence of configurations

x = xG1 , . . . , x
G
k ∈ X∗G (3.69)

of an SDF-PDFG as follows

A = αT ⊗ µ(x)⊗ β, (3.70)

where α is the final delay, µ : X∗G → R|I|×|I|max is the morphism that associates
sequences of configurations with Max-plus matrices as follows

µ(x) =MG(xGk )⊗ . . .⊗MG(xG1 ) (3.71)

The structure A = (α, µ, β) defines the Max-plus automaton tuple of an
SDF-PDFG G. Note that in (3.69), x ∈ X∗G which means that configura-
tions are sequenced nondeterministically/arbitrarily.

3.7.2 Worst-case throughput

The Max-plus automaton structure of (3.70) with the morphism µ of (3.71)
fully captures the temporal behavior of a given SDF-PDFG. We use this
structure to study the performance of SDF-PDF in a similar fashion it
had been used to study the performance of FSM-SADF [46][98][95]. In
particular, we focus on the results obtained for an FSM-SADFG with a fully
connected FSM. This is because, as discussed in Section 3.4.4, the temporal
behavior of an SDF-PDFG in terms of vectors γ(k) is equal to that of an
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FSM-SADFG obtained by calling all SDF-PDFG configurations/instances
scenarios and allowing an arbitrary occurrence pattern between them. An
arbitrary scenario occurrence pattern in terms of FSM-SADF is defined
by using a fully connected FSM where the scenario labeling function is a
bijection.

Let G be an SDF-PDFG. Define the worst-case evaluation Max-plus
matrix of SDF-PDFG G as follows

Mw−c
G =

⊕
xGi ∈XG

MG(xGi ). (3.72)

Furthermore, let M ∈ Rn×nmax be a Max-plus matrix. The communication
graph of M ∈ Rn×nmax , denoted G(M) = (N , E), is a graph with the set of
nodes given by N = {1, . . . , n} where a pair (i, j) ∈ E ⊆ N ×N is an edge
of the graph if [m]j,i 6= −∞ and [m]j,i is the weight of that edge.

In analogy to the results obtained for an FSM-SADFG with a fully con-
nected FSM (cf. Proposition 5.2 of [46] that directly follows from Theorem 2
of [40]), the worst-case throughput of SDF-PDFG G corresponds to the in-
verse of the maximum cycle mean (MCM) [34] of the communication graph
of Mw−c

G . Formally,
1

ThG
= mcm(G(Mw−c

G )), (3.73)

Where mcm(G(M)) of a communication graph of an arbitrary Max-plus
matrix M is defined as

mcm(G(M)) = max
c

∑
e∈cw(e)∑
e∈c 1

, (3.74)

where max is taken over all circuits c of G(M) and the sums are taken
over all edges e of c. Map w : E → R returns the edge weight where
w((i, j)) = [m]j,i.

The intuitive explanation is as follows. The weights of the edges corre-
spond the entries of Mw−c

G and represent minimal timing distances between
tokens across consecutive iterations. As we consider executions composed
of arbitrary large number of iterations, all such distances must reside within
the cycles of the communication graph. Therefore, the inverse of the MCM
of the communication graph equals to the worst-case throughput.

The problem now lies in determining Mw−c
G of (3.72). Enumeration of

XG imposes itself as a solution to the problem. However, as we already
stated in Section 3.5.1 enumeration of XG may not be feasible in practice
due to size of XG. Even with relatively small domains, if the repetition
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vectors of instances are relatively large, the generation of all MιG(xG) will
take a significant amount of time as the instance needs to be simulated,
i.e. every actor’s firing needs to be symbolically performed. Actually, the
experimental results of [46] show that the time needed to produced MιG(xG)

scales “more than linearly” with the repetition vector entries.
However, the enumeration problem can be avoided by using the set of

parameterized SDF-PDFG matrices as obtained by Algorithm 3.1. In that
case, the problem of (3.72) transforms to

Mw−c
G �Mw−c′

G

=
⊕

Mpar∈cod(Mpar′
G )

⊕
xG∈dom(Mpar′

G ) s.t.Mpar′
G (xG)=Mpar

Mpar(xG)

︸ ︷︷ ︸
Mopt

(3.75)

In (3.75), cod(Mpar′
G ) denotes the codomain of the mapping Mpar′

G . Simply
put cod(Mpar′

G ) is the set of parameterized matrices obtained by running
Algorithm 3.1. Notation dom(Mpar′

G ) is used for the domain of the mapping
Mpar′

G . Then the notation xG ∈ dom(MG) s.t. [MG(xG)] = Mpar denotes a
particular natural subdomain of G. Note that the right hand side of (3.75)
defines a conservative estimate of Mw−c

G denoted Mw−c′
G due to (3.66).

To determine the worst-case throughput of an SDF-PDFG we use Mw−c′
G

or formally,
1

Th ′G
= mcm(G(Mw−c′

G )). (3.76)

In this case, Th ′G may be a conservative estimate of the actual value denoted

Th ′G ≤ ThG. (3.77)

We say “may” because if the critical cycle of G(Mw−c′
G ) has weights corre-

sponding to entries (i, j) of Mw−c
G where [Mw−c′

G ]i,j = [Mw−c
G ]i,j , then the

inverse of the MCM of G(Mw−c′
G ) will be equal to the actual throughput

value. Nevertheless, when it is a conservative estimate, for growing repeti-
tion vector entries of the graph, the relative estimation error moves towards
0.

In (3.75), matrix Mopt as a concrete matrix can be obtained by solving
a series of optimization problems as follows:

foreach (i, j) s.t. [Mpar]i,j 6= −∞ do

maximize
xG

[Mpar(xG)]i,j

subject to xG ∈ dom(Mpar′
G ) s.t.Mpar′

G (xG) = Mpar.
(3.78)
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ALGORITHM 3.2: Conservative approximation of the worst-case
evaluation matrix of an SDF-PDFG.
Data: Mapping Mpar′

G

Result: Conservative approximation of the worst-case evaluation

matrix of an SDF-PDFG, Mw−c′
G

1 for i = 1 to |I| do
2 for j = 1 to |I| do
3 [Mw−c′

G ]i,j = −∞;

4 foreach Mpar ∈ cod(Mpar′
G ) do

5 if [Mpar]i,j 6= −∞ then
6

tmp = maximize
xG

[Mpar(xG)]i,j

subject to x ∈ dom(Mpar′
G ) s.t.Mpar′

G (xG) = Mpar

(3.79)7

[Mw−c′
G ]i,j = [Mw−c′

G ]i,j ⊕ tmp
8 end if

9 end foreach

10 end for

11 end for

We summarize the procedure for obtaining Mw−c′
G in Algorithm 3.2. The

input to the algorithm is the mapping Mpar′
G (xG)), while the output is the

desired Mw−c′
G of (3.75). Each entry of Mw−c′

G corresponds to the maximal
entry among all corresponding maximal entries of parameterized matrices
defining the codomain ofMpar′

G (cf. Line 4). These entries on the other hand
correspond to the maximum value an entry of the parameterized matrix at-
tains when evaluated for all configurations within the subdomain the matrix
is defined in. It is obtained by solving the optimization problem of (3.79),
i.e. (3.78) where the objective function is the entry of the considered param-
eterized matrix, i.e. a parameterized expression. Recall that Algorithm 3.1
returns a set of parameterized matrices valid in different subregions of the
SDF-PDFG domain. The type of optimization problems encountered in
(3.78) depends on the formulations of R and D in the definition of our
analysis model as well as on the specification of the SDF-PDFG domain.
In the definition of R we were constrained by decidability of boundedness,
deadlock-freedom and schedulability. If only rates were subject to parame-
terization, in the context of (3.78) we would be facing rational functions of
polynomials. These problems can be converted to polynomial programming
problems [23] and solved using the techniques of [94]. When it comes to the
definition of D, no restrictions regarding the functional behavior of SDF-
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PDF exist. However, technical restrictions exist regarding the availability of
optimization techniques needed to give global solutions to (3.78). To stay in
the scope of polynomial programming, we limit D to polynomial functions
of parameters or more formally

D := k | k · d | D1 · D2 | D1 +D2 (3.80)

where d ∈ Pd and k ∈ R≥0. When it comes to the definition of the XG

that with the definitions of R and D determines the type of the optimiza-
tion problems we encounter, it is the designer’s responsibility to specify the
domain in a way that a global solver for the problem of (3.78) exists. For
the solver of [94] we require that the domain is compact in the Euclidean
sense, i.e. bounded and closed.

We exemplify using the SDF-PDFG of Fig. 3.3. For simplicity, assume
that its domain is given by

XG =C0 ∩ C1 ∩ C2 ∩ C3 ∩ C4 ∩ C5∩{
p = w1 · w2, w1 + w2 = 2 · x1 − x2,

p ∈ [1, 10], q ∈ [1, 10], w1 ∈ [1, 3], w2 ∈ [1, 4],

x1 ∈ [1, 3], x2 ∈ [1, 5], a1 ∈ [1, 7], a2 = 4,

a3 ∈ [1, 5], a4 = 4
}

(3.81)

Equation (3.81) is a very illustrative example of a domain specification be-
cause it shows how graph parameters (rates and actor firing delays) may
exhibit arbitrary dependence on parameters not present in the graph itself
in a nested fashion. E.g. parameterized rate p nonlinearly depends on pa-
rameters w1 and w2 which in turn depend on parameters x1 and x2. The
domain (3.81) in addition defines a default parameter interval for each pa-
rameter, e.g p ∈ [1, 10]. For illustration purposes, in (3.81) we assume that
the SDF-PDFG domain is a subset of the natural scenario subdomain de-
fined by the constraints encountered while producing the matrix of (3.65).
This way, during the generation of Mw−c′

G , (3.75) needs only to maximize
over the entries of (3.65), i.e. run (3.78) only once. After running (3.78),
we obtain the worst-case evaluation matrix specified by (3.82).

Mw−c′
G =



24 −∞ −∞ −∞ −∞ 24
34.5 24 −∞ −∞ −∞ 34.5
34 −∞ 24 −∞ −∞ 34

42.5 32 32 24 −∞ 42.5
42.5 32 32 24 −∞ 42.5
−∞ −∞ −∞ −∞ 0 −∞

 (3.82)
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Fig. 3.12: Communication graph of Max-plus matrix of (3.82).

The communication graph of Mw−c′
G is shown in Fig. 3.12. In the graph-

ical representation of G(Mw−c′
G ), rather than using numerical values given

by the set {1, . . . , n, . . . , |I|} for node designators, we use the names of the
initial tokens the numerical values refer to, e.g. value n corresponds to
in. The critical cycle of the graph is marked with bold edges. The MCM
of the graph is mcm(G(Mw−c′

G )) = 1
2 · (42.5 + 10) = 26.25, and therefore

Th ′G = 1
26.25 iterations per time-unit.

The same specification can be analyzed for worst-case throughput by
constructing a worst-case SDF abstraction of the parameterized specifica-
tion by using parameter upper bounds for rates and firing delays and en-
abling all conditional channels. In that case, for the running example we
would obtain the throughput value of Th ′G = 1

70 time-units per iteration
which is clearly a significant overestimation of the result obtained using
our approach although our result is a conservative estimate itself. This is
because in this case, the “worst-case” SDF abstraction cannot take into
account the complex parameter interdependencies of (3.81).

3.7.3 Worst-case latency

From Definition 3.5 it follows that determining the worst-case latency equals
to finding the smallest LG such that γ(k) � LG+k ·ρ holds for every possible
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sequence γ. Therefore,

LG =
⊕
k

(γ(k)− k · ρ). (3.83)

It follows from (3.83) that given ρ we are interested in the maximal value
γ(k) can attain for all possible instance sequences. As follows from the
Max-plus algebraic semantics of SDF-PDFG defined by (3.70) and (3.71)
and the monotonicity of SDF-PDFG, γ(k) can be conservatively bounded
as follows.

γ(k) � γw−c(k). (3.84)

In (3.84),

γw−c(k) = Mw−c
G ⊗ γw−c(k − 1), (3.85)

where γw−c(k) is the worst-case evaluation timestamp vector of the kth
graph iteration. Matrix Mw−c′

G is used to define a bound on γw−c(k). For-
mally,

γw−c′(k) � γw−c(k), (3.86)

where

γw−c′(k) = Mw−c′
G ⊗ γw−c′(k − 1) (3.87)

for all k > 0. Therefore, the worst-case latency computation problem for
SDF-PDF of (3.83) transforms to

LG � L′G =
⊕
k

(γw−c′(k)− k · ρ). (3.88)

for the given enabling vector γw−c′(0). Typically, γw−c′(0) = 0. The right
hand side expression of (3.88) now represents a conservative bound on LG
that we want to determine, denoted L′G. Formally,

L′G � LG. (3.89)

At first glance, this bound seems hard to compute because we need to
consider all γw−c′(k) vectors up to an arbitrary large k as we consider finite
SDF-PDFG executions of arbitrary length. However, the sequence γw−c′(k)
as defined by (3.87) has a very nice property. In particular, it follows from
the Max-plus spectral theory [61][7] that the sequence of vectors given by
γ(k + 1) = M ⊗ γ(k) where M ∈ Rn×nmax for k ≥ t where t ∈ N>0 will show a
periodic behavior of type

γ(k + c) = γ(k)⊗ c⊗ η. (3.90)
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In (3.90), η ∈ Rmmax is the cycle-time vector of M that is computed from the
MCMs of the maximal strongly connected subgraphs of the communication
graph of M . The value of c can be computed from the cyclicities of the max-
imal strongly connected subgraphs of M . The MCM of the communication
graph of M will equal to the maximal among cycle-time vector entries. For
more details we refer to [28] and [61].

Therefore, in the context of our Mw−c′
G where the inverse of its MCM

corresponds to the throughput of the graph Th ′G, by setting

ρ =
1

Th ′G
, (3.91)

the periodicity property of (3.90) allows us to solve the problem of (3.88)
by only determining the first t + c timestamp vectors of (3.85), i.e. for
k = 1, . . . , t+ c. This is because for the values of k beyond t+ c, the growth
rate of γw−c(k) cannot be faster than determined by the cycle-time vector
and consequently the inverse of Th ′G that is the maximal among all cycle
time vector entries and will not lead to a larger L′G.

We compute the conservative bound to LG for the running example SDF-
PDFG with Mw−c′

G of (3.82), γw−c′(0) = [0, 0, 0, 0, 0, 0]T and 1
Th ′G

= 26.25

time-units per iteration. For Mw−c′
G , η = [26.25]T , c = 2 and t = 2 and

therefore

L′G =
⊕{

[0, 0, 0, 0]T , [24, 34.5, 34, 42.5, 42.5, 10]T − 26.25,

[48, 58.5, 58, 66.5, 66.5, 52.5]T − 52.5,

[76.5, 87, 86.5, 95, 95, 76.5]− 78.75
}

= [0, 8.25, 7.75, 16.25, 16.25, 0]T .

3.8 Evaluation

In this section, we evaluate our analysis techniques on a realistic case study
from the multimedia domain. In particular, we consider the case of a VC-
1 video decoder used in a region of interest (ROI) coding scheme. We
show how graph parameters can exhibit complex dependencies on the de-
coder’s input signal parameters. Furthermore, we demonstrate that in the
presence of such complex parameter dependencies, using the “worst-case
SDFG” constructed from parameter interval endpoints in the worst-case
throughput analysis will lead to a very pessimistic end result. With regard
to that result, we show that our technique can give a significantly tighter
but still a conservative estimate. Thereafter, we discuss the tightness of the
performance bound and technical aspects of the analysis.
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Fig. 3.13: Case study.

3.8.1 VC-1 decoder

ROI coding [55] is a feature of modern video codecs that allows to indepen-
dently store and transmit a video in a variety of regions of interest. This
feature is useful for achieving higher error resilience as errors cannot cross
ROI boundaries or for saving bandwidth as a ROI can be coded with more
bits to obtain a much higher-quality than that of the non-ROI which is
coded with fewer bits. Typical way of representing ROIs in a video picture
is by the use of a rectangular region that corresponds to a picture slice.
Slice on the other hand is a group of macroblocks. We exemplify using the
picture from the Foreman sequence shown in Fig. 3.13b. In the sequence,
the region of interest is the foreman’s face represented by the rectangular
“ROI slice”, while the background is represented by the “Background slice”.

The VC-1 decoder shown in Fig. 3.13a adopted from [13] is used to de-
code only ROI slices, i.e. the foreman’s face. The decoder has two main
pipelines: the intra pipeline (actors MBB , INTRA and IQUIT ) and the
inter pipeline (actor MC ). VLD performs variable-length decoding, actor
SMB splits slices into macroblocks, actor LOOP implements the deblock-
ing filter, while actor OUTPUT stores the decoded slice into the output
frame buffer. One iteration of the SDF-PDFG of Fig. 3.13a corresponds
to decoding of one picture slice. Boolean expressions defined over boolean
parameters x and y are used to adjust the topology of the graph according
to the type of slice subject to processing. In particular, we differentiate
between three types of slices: 1) intra-coded only (x ∧ ¬y); 2) inter-coded
only (¬x ∧ y); and 3) both intra- and inter-coded (x ∧ y).

We assume the ROI (foreman’s face) can be abstracted into an ellipse of
known characteristics, i.e. of known circumference o and eccentricity ε where
ξM and ξm are the major and minor axis of the ellipse, respectively. The
ellipse abstraction is a natural representation for a face where eccentricity
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can be thought of as a characteristic of a particular face (some faces are
more oval than the others) while the circumference models the distance of
the face from the capturing device. The bounding rectangle of the ellipse
defines the actual slice to be decoded. These considerations lead to the
definition of XG as follows

XG =
{
p = (2 · ξM · 2 · ξm)/(16 · 16), p ∈ [1, P ], (3.92a)

q ∈ [1, 16] (3.92b)

p′ ≥ µ · P, p+ p′ ≤ P (3.92c)

o2 = 4 · π2(ξ2
M + ξ2

m), o ≥ O (3.92d)

ε2 · ξ2
M = ξ2

M − ξ2
m, ε = E, 2 · ξM ≤ w, (3.92e)

2 · ξm ≤ h (3.92f)

a = aref , b = bref , c = cref , d = dref , (3.92g)

e = eref , f = fref , g = qref , h = href

}
. (3.92h)

The number of macroblocks p within the slice is given by the area
of the ellipse’s bounding rectangle (cf. (3.92a)). Note that the size of a
macroblock is 16 × 16 pixels. Depending on resolution, the picture/frame
consists of maximally P macroblocks (cf. (3.92a)). The number of blocks
within a macroblock q is constrained by (3.92b). It is known that o is
always greater than a certain predefined constant O (cf. (3.92d)), i.e. O
defines the maximal distance from the face to the camera. Furthermore,
ε is equal to a constant E and the ellipse is entirely contained inside the
picture/frame (cf. (3.92e) and (3.92f)). Within a picture, it is assumed that
the background always occupies the portion µ of the picture/frame compris-
ing p′ macroblocks (cf. (3.92c)). Referent actor execution times (cf. (3.92g)
and (3.92h)) were taken from [13] and are expressed in cycles of the STMi-
croelectronics STxP70 processor.

From the case study we see the modeling flexibility the SDF-PDF offers.
In particular, it allows to express fine-grained data dependent behavior using
parameters. The value that parameters attain at run-time may in turn
depend on the characteristics of the input data (the input signal). In the
case study, these are the relative displacement of the tracked object (face)
and the camera and the ovality of the face.

In the exercise, we assume SDTV input format with signal type 480i
16:9 and resolution 720x480 pixels. Thus, w = 720, h = 240 and P = 1620.
Furthermore, O = 700, E = 0.6 and µ = 30. For these values using our
performance analysis technique presented in Section 3.7 we obtain a con-
servative throughput estimate of 1.74727 · 10−7 slices per referent processor
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cycle. By using SDF in an upper endpoint manner (taking the maximal de-
fault values for all parameters) we obtain the guaranteed throughput value
of 1.05699 · 10−7 slices per cycle. Both values are conservative approxima-
tions of the actual value but our technique tightens the SDF result by 39.65
percent.

3.8.2 Tightness of performance bound and technical aspects
of the analysis

The performance bounds derived by our analysis techniques are conserva-
tive.

For throughput, the conservativeness is solely incurred by Propositions 3.1
and 3.2 that are vital in deriving Max-plus algebraic abstraction of the
worst-case behavior of the input SDF-PDF structure. This straightfor-
wardly follows from (3.75). Still, as we have shown, the relative approx-
imation error goes to 0 with the growing repetition vector entries of the
graph. An exact result could be obtained by performing domain enumera-
tion, were every configuration would be treated as a scenario of the implied
FSM-SADFG. Still, for large domain as in the case of VC-1 decoder pre-
sented above, the analysis time of such an approach would be prohibitive. To
illustrate, obtaining the worst-case throughput estimate using “worst-case
SDF abstraction” of the VC-1 decoder case study in the SDF3 tool [112]
took 79.07 seconds on an Intel Core i5-750 CPU running at 2.67 GHz with
8GB main memory. Furthermore, 99% of that time was used to produce the
SDFG Max-plus matrix (Algorithm 1 of [44]). This is because symbolic ex-
ecution (simulation) of graphs with large repetition vector entries is costly
in time (and memory). In particular, as mentioned, the time needed to
produce the matrix scales “more than linearly” with the growing repetition
vector entries [46]. Therefore, it would take all too long to process the entire
domain of the VC-1 decoder case study and obtain the exact throughput
value as the size of the domain is of the order of magnitude of the product
set of parameter ranges, i.e. ∼ 16 · 1620.

For latency, the conservativeness is incurred by Propositions 3.1 and 3.2
as well as the fact that we use the matrix Mw−c

G , i.e. Mw−c′
G to derive it.

To derive an exact bound on latency one indeed needs to perform domain
enumeration and appliy the state-space analysis of [46], but as we argue
here, enumeration is not an option for applications with fine-grained data-
dependent dynamics.

Our analysis is not fully automated. In particular, the Max-plus alge-
braic characterization of SDF-PDF specifications specified by Algorithm 3.1
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is performed manually. Solving the problem of Algorithm 3.2 and the re-
sulting MCM problem is automated. Because the core of the analysis is
performed manually, we cannot provide relevant analysis time statistics for
the current revision of the work.

Still, the results are promising. In particular, the manual part of the
analysis for graphs similar in size (both in terms of actors, channels and
the number of parameters) to the VC-1 decoder above, typically takes up
to a few hours. This being the case, while taking into account the SDF3

analysis time per configuration/instance of the SDF-PDFG, implies that a
fully automated version of our analysis would outcompete the SDF3 analysis
in terms of run-time for applications with large domains. By “large” here we
mean both in terms of cardinality and size of the repetition vector entries
of the SDFGs that the domain configurations define. The automation of
the manual part of the analysis would consist of the implementation of
Algorithm 3.1 on top of the existing symbolic simulation algorithm of SDF3

(Algorithm 1 of [44]). In the mere technical sense, this would entail the
integration of a symbolic computation framework as GiNaC [10][11] and
and a nonlinear constraint solver such as RealPaver [54] with the SDF3

tool. A conservative estimate of the development time needed to accomplish
this would amount up to a few months.

3.9 Summary

In this chapter we considered the worst-case performance analysis problem
for dynamic streaming applications exhibiting fine-grained data-dependent
dynamism that can be captured using SDF-PDF where application/design-
space parameters expose complex interdependencies. So far, the problem
was coarsely treated using the existing SDF techniques that typically incur
too pessimistic performance estimates due to working with upper parameter
interval endpoints. However, in practice there even may be cases where tak-
ing the upper parameter interval endpoints results in under-approximations
because in a parameterized context it is not clear how to account for the
“non-monotonic” effect of parameterized rates to the temporal behavior
of the graph. From a real-time perspective the latter case is unacceptable.
Therefore, in our work, using the Max-plus algebraic semantics of SDF-PDF
we developed an analysis technique that works directly on parameterized
graphs and thus avoids the pitfalls of approaches that try to “worst-case
abstract” the parameterized specifications with SDF. Therefore, our tech-
nique is able to produce significantly tighter but still conservative perfor-
mance estimates than the existing techniques. To show that our technique
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is not only of mere theoretical interest but also applicable in practice, we
validated it on a realistic case-study from the multimedia domain for which
we were able to produce tighter worst-case performance estimates than by
using the existing techniques. This shows that in spite of the exponential
worst-case complexity of our technique for Max-plus algebraic characteri-
zation of SDF-PDFGs, our technique is applicable in everyday engineering
practice as for many applications only a few (critical) parameters will need
to be accounted for.



Chapter 4

Parameterized dataflow
scenarios

In Chapter 3 we presented SDF-PDF as a parameterized dataflow model
based on SDF which specializes in capturing applications with fine-grained
data-dependent dynamics.

SDF-PDF does not deviate from the dataflow framework, i.e. it is a
“full-blooded” dataflow MoC. Although well-suited for capturing concurr-
ency in streaming applications, purely dataflow-based models of compu-
tation are lacking in expressing intricate control requirements that many
modern streaming applications have. Consequently, a number of modeling
approaches combining dataflow and finite-state machines has been proposed.
However, existing FSM/dataflow hybrids struggle with capturing the fine-
grained data-dependent dynamics of modern streaming applications.

In this chapter, we enrich the set of such FSM/dataflow hybrids with
a novel formalism that uses parameterized dataflow as the concurrency
model. We call the model FSM-based parameterized scenario-aware data-
flow (PFSM-SADF). Through the use of parameterized dataflow, the formal-
ism can capture application’s fine-grained data-dependent dynamics while
the enveloping FSM enables the capturing of the application control flow.
We demonstrate the application of our modeling framework to SDF, for
which we propose a worst-case performance analysis framework based on the
Max-plus algebraic semantics of SDF and the theory of Max-plus automata.
We show that by using the novel hybrid one can give tighter bounds on
worst-case performance metrics such as throughput and latency for stream-
ing applications exposing fine-grained dynamic behavior embedded inside a
control-flow structure than by using the existing hybrids. We evaluate our
approach on a realistic case-study from the multimedia domain.

89
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Different parts of this chapter have been published in [106] and are being
considered for publication in [102].

4.1 Introduction

With regard to the concept used to represent the dataflow dynamics, the
class of dynamic dataflow MoCs can be further refined into two subclasses [18].

The first subclass is composed out of dataflow MoCs that are devel-
oped around an interacting combination of finite-state machines (FSM) and
dataflow graphs. Models such as heterochronous dataflow (HDF) [53] and
FSM-based scenario-aware dataflow (FSM-SADF) [46] are well-known ex-
amples of such FSM/dataflow hybrids where an FSM is used to decouple
control from concurrency. We bring further examples of such formalisms in
Section 4.3.

In the second subclass, dataflow dynamics are represented by alternative
means [18]. Examples of such models are BDF [22], DDF [22] and different
parameterized dataflow models including our recently disclosed SDF-PDF
(cf. Chapter 3).

The dichotomy between the two subclasses lies in the notion of state.
The MoCs of the first subclass maintain the notion of state, while the MoCs
belonging to the second subclass do not. In particular, the second subclass
considers models that involve different kinds of modeling abstractions, apart
from state transitions, as the key mechanisms for capturing dataflow behav-
iors and their potential for run-time variation [18].

The need for the first subclass is justified by the existence of streaming
applications with both intricate control requirements and concurrency [53].
FSMs have long been used to describe and analyze control requirements.
This is justified by their finite nature and strong formal properties.

The need for the second subclass, in particular for parameterized data-
flow models that we focus on here, stems from the fact that there exist
dynamic applications in which dynamism cannot be captured using a well-
defined state structure. Examples are DSP applications whose behavior will
depend on the results of some complex transformations performed on input
signal. Due to the fact that the results of these transformations can span
very large intervals, the existing FSM/dataflow hybrids with their finite na-
ture inherited from the FSM are not an efficient abstraction for capturing
fine-grained reconfiguration processes taking place in such applications. In
particular, in this context, we may expect the hybrid as a whole to explode
in size due to the size explosion of the underlying FSM.

Therefore, to keep the size of the problem manageable, other mechanism
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to capture run-time variation need to be employed. In case of applications
exposing fine-grained data-dependent dynamics, a good modeling choice are
parameterized dataflow models.

However, there exist many applications that combine the two, i.e. which
have both intricate control requirements and that expose fine-grained data-
dependent dynamics.

For this type of dynamic applications, to the best of our knowledge,
none of the MoCs belonging to the two dynamic dataflow subclasses pro-
vide a natural and intuitive representation. Therefore, we argue that a
combination of the two is needed.

In this chapter, we investigate an interacting combination of FSMs and
parameterized dataflow. We use FSMs to capture the application control
logic thanks to their finiteness, strong formal properties and an intuitive
state abstraction that serves well for modeling control-oriented parts of the
application. We use parameterized dataflow to express fine-grained data-
dependent dynamics of data-dominated parts of the application thanks to
its ability to combine dynamic parameters and run-time adaptation of pa-
rameters in a structured way.

We base the novel model on the concept of scenarios adopted from [46].
Consequently, we model the execution of an application as a sequence of
modes called scenarios, each of which is represented by a parameterized
dataflow structure while the scenario occurrence patterns are given by the
superordinate FSM. We refer to the novel model as FSM-based parame-
terized scenario-aware dataflow (PFSM-SADF). We demonstrate the appli-
cation of PFSM-SADF concept to SDF as it is arguably the most used,
mature and stable dataflow formalism. We refer to this specialization of
PFSM-SADF as SDF-based PFSM-SADF (SDF-PFSM-SADF) for which
we develop novel parametric worst-case performance analysis techniques
based on the Max-plus algebraic [7] semantics of SDF and the theory of
Max-plus automata [40].

4.2 Motivational example

In this section we use the opportunity to motivate the need for a FSM/dataflow
hybrid that can capture both application’s intricate control requirements
and its fine-grained data-dependent dynamics. A synthetic example of an
application that has both intricate control requirements and that exposes
fine-grained data-dependent dynamics is shown in Fig. 4.1. The application
is composed out of three modules: a control module and two data pro-
cessing modules f1 and f2. The C specification of the control module is
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extern void f1(void);
extern void f2(void);
extern bool input(void);
void main(void){

char state = 'A'; bool in;
while(1){

in = input(); 
switch(state){

case 'A':
f1(); state = in ? 'A' : 'B'; 
break;

case 'B':
f2(); state = 'A'; break;

default:
break;

} } }

(a) C specification of the control mod-
ule.

extern int rx_data(uint*,uint*)
extern int pre_process(int, uint);
extern int process(int, uint);
extern void tx_data(int);

void f1(void){
uint g, h;
int res1, res2, res3;
res1 = rx_data(&g, &h);
for(uint i=0; i < g; i++){

res2 = pre_process(res1, i);
for(uint j=0; j < h; j++){

res3 = process(res2, j);
tx_data(res3);

} }    }

(b) C specification of f 1 module.

'A' 'B'

(c) FSM specification of the control
module.

pre_process
g

rx_data process tx_datah

(d) Dataflow specification of f 1 mod-
ule.

Fig. 4.1: Motivational example.

shown in Fig. 4.1a, while its FSM specification is shown in Fig. 4.1c. The
control structure is simple and involves transitions between states ’A’ and
’B’ depending on the current state and the value of the control input in.
Within a state, the execution of a data processing module is invoked. C
specification of one of the data modules, namely f1 is shown in Fig. 4.1b.
A careful reader may notice that module f1 fully corresponds to the appli-
cation of Fig. 3.1a. In any case, the module consists of two nested loops.
The loop bounds g and h are input data-dependent and computed within
the rx data submodule that implements some complex data transforma-
tion. Assume, as in Section 3.2, that parameter g is assigned with a value
originating from the interval [0,m/2], while h is assigned with a value from
[0, n/2]. It this case, module f1 will attain as many behaviors as there are
integer points in the rational 2-polytope Pm,n given by the set of constraints
{0 ≤ m/2, 0 ≤ n/2}. With n = 4500 and m = 2001 the specification of
Fig. 4.1b abstracts 2, 252, 126 system behaviors [27]. Therefore, we can say
that module f1 and consequently the application as a whole expose fine-
grained data-dependent dynamics recapitulated within the superordinate
control structure. The data-dependent behavior of module f1 can be suc-
cinctly expressed using the parameterized dataflow structure of Fig. 4.1d
where loop bounds are abstracted into graph rates.
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As mentioned in the Section 4.1, for this type of dynamic applications,to
the best of our knowledge, none of the MoCs belonging the two dynamic
dataflow subclasses provide a natural and intuitive representation. The
models from the first subclass can express the control structure of Fig. 4.1a
through the notion of state, but cannot express fine-grained data-dependent
dynamics of the subordinate data processing module of Fig. 4.1b. The mod-
els from the second subclass (in particular parameterized dataflow models)
can express the latter, but not the former, i.e. their design interface cannot
expose the control structure directly to the programmer [18]. Therefore, a
combination of the two is needed.

4.3 Related work

Parameterized dataflow as a meta-modeling technique was first introduced
by [16]. The concept is applicable to any dataflow MoC that possess a
well-defined notion of an iteration. The application of the concept to a
target dataflow MoC, called the base model, extends the semantics of the
base model by introducing arbitrary parameters that can be modified at
run-time.

Following the publication of [16] various flavors of parameterized data-
flow based on SDF MoC were introduced. These models include SPDF [38],
BPDF [12] and VRDF [121]. Each of them was briefly described in Sec-
tion 3.3.

In addition, there exist other, more general models such as parameter-
ized and interfaced dataflow meta-model or shortly PiMM [35] and variable-
rate phased dataflow (VPDF) [120].

PiMM is obtained by enriching the meta-modeling techniques of [16]
with the notion of interfaces as introduced in interface based synchronous
dataflow (IBSDF) [86]. This way, PiMM inherits the well-establish recon-
figuration concepts of [16], while through the use of interfaces of IBSDF it
enables design reuse, i.e. the design of independent graphs that can be in-
stantiated in an entirely different design layout. PiMM as the parameterized
dataflow of [16] can be applied to various base models.

VPDF is a CSDF-inspired generalization of VRDF where actors operate
through sequences of phases. In each phase, the number of actor firings is
parameterized along with the rates (or token transfer quantas in the parlance
of [120]). The distinction is made to model loops for which no upper bound
on their number of iterations is known. In contrast to VRDF, rates are
allowed to have zero value and VPDF can model conditional execution.

To summarize, various flavors of parameterized dataflow models have
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been introduced as to support the growing need for efficient modeling tools
that can capture both coarse and fine-grained reconfiguration phenomena
present in modern streaming application. However, in their pure form,
they are all inadequate for abstracting application control requirements as
they do not depart from the dataflow framework and consequently do not
provide interfaces to present application control requirements directly to
the programmer. In addition, all of the models described expect VPDF and
VRDF support no notion of time, i.e. they are untimed and therefore not
accompanied by techniques for the analysis of their temporal behavior.

Next, we list models that do foster provision for expressing intricate con-
trol logic by defining precise semantics for integration of FSMs and dataflow.

Article [53] advocates for the use of a combination of hierarchical state
machines and various concurrent MoCs to decouple control from concurr-
ency. The approach is referred to as *charts (pronounced starcharts). When
SDF is used in conjunction with FSMs, the resulting model is referred to
as heterochronous dataflow (HDF). In HDF, two structural patterns are vi-
able. First, an FSM can refine an SDF actor. In this case, the FSM must
obey the SDF semantics externally. Second, an SDF can be used to refine
an FSM state. SDF actor type signature (the number of tokens consumed
and produced on each input and output) changes can occur only at iteration
boundaries. This is ensured by not allowing the FSM components to change
state until the last actor firing within an iteration had completed.

Scenario-aware dataflow (SADF) MoC introduced in [113] enables mod-
eling and analysis of dynamic systems by allowing actors to operate in dif-
ferent modes or scenarios across firings. In different scenarios, actors have
different execution times and rates. SADF uses a stochastic approach to
model scenario occurrence patterns. The operational semantics is defined
in terms of a labeled transition system that can be analyzed to obtain both
long-run average and worst-case performance metrics.

FSM-SADF [46], in detail described in Section 2.4, is a model that
is from the expressiveness point of view equivalent to HDF [110] but un-
like HDF has known performance analysis techniques and allows iteration
pipelining whereas HDF favors sequential schedules. FSM-SADF was intro-
duced as a restriction of SADF in the sense that with FSM-SADF scenarios
can change only between complete iterations of SDF models of the respec-
tive scenarios, while with SADF scenario changes are allowed within an
iteration. Furthermore, the Markov automata of SADF is restricted to a
(nondeterministic) FSM in FSM-SADF. On the other hand, FSM-SADF
extends SADF because it allows auto-concurrent actor firings. The overall
reduction in expressive power compared to SADF is advantageous from the
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analysis perspective. As in FSM-SADF a clearer separation between non-
deterministic control flow and determinate dataflow computations can be
made, the max-plus spectral analysis-based algorithms for determining per-
formance numbers for FSM-SADF avoid the state space explosion problems
that the original SADF analysis is prone to.

The DF* (pronounced “DFstar”) modeling framework of [31] is another
dataflow MoC in the family of FSM/dataflow hybrids. A DF* graph is a
network of blocks where each block consists of a set of code segments and a
block controller. Each code segment specifies an alternative behavior of the
block. The block controller is captured by a nondeterministic FSM. DF*
is similar to HDF and consequently to FSM-SADF in the sense that code
segments correspond to actor type signatures/scenarios.

The FunState MoC introduced in [117] defines precise semantics for sep-
arating dataflow from control in terms of functions driven by state machines.

Article [85] adds control flow provisions to bounded dynamic dataflow
(BDDF) introduced in the same work yielding another FSM/dataflow hy-
brid. BDDF allowing varying port rates with a requirement that the upper
bound of each data rate must be specified. The control flow is specified as
an FSM. Each state is defined by a network of blocks and it is executed
repeatedly until a combination of multiple events causes it to be stopped in
a non-preemptive manner and another state entered.

The modeling and simulation framework called El Greco [20] provides
facilities to dynamically change specification parameters. It supports spec-
ifications given as combinations of dataflow graphs and hierarchical FSMs.
Data-dependent dynamics can be captured using the limited support for
parameterized data rates. However, the framework is tailored for rapid
simulation-based algorithm exploration. Therefore, it is not clear from [20]
how to analytically analyze the model (in the presence of parameters).

All the aforementioned hybrids are inadequate for representing fine-
grained dynamism and fine-grained reconfigurations of data-dominated ap-
plication parts. This is mainly due to compactness issues because the finite
nature of FSM limits its resolution and renders it inadequate for capturing
fine-grained application dynamics. Furthermore, all of the listed models ex-
cept SADF and FSM-SADF are untimed and in their current form cannot
be used for performance analysis of systems.
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4.4 Parameterized dataflow

4.5 Preliminary remarks

In this section we elaborate our parameterized dataflow modeling framework
(refered to as PDF) which we use to define the parameterized dataflow
scenarios concept of Section 4.7.

As mentioned in Section 4.3, the concept of parameterized dataflow was
defined in [16]. Through a hierarchical discipline, it introduces dynamic
parameters to dataflow MoCs called base models that have a well-defined
notion of an iteration and by doing so it significantly increases their expres-
sive power.

In parameterized dataflow of [16], each hieararchical actor is composed
of 3 subgraphs, namely the init φi, the subinit φs and the body φb subgraph.

The body subgraph models the main functional behavior of the specifica-
tion, while the init and subinit subgraphs control the behavior of the body
graph by performing reconfiguration activity. This activity boils down to
setting parameter values. These reconfiguration mechanisms are referred to
as initflow to distinguish them from dataflow.

To assure run-time integrity of the application, parameters that influence
the dataflow interfaces of subsystems (e.g. port rates) are only allowed
to change once per iteration of the enclosing subsystem. Parameters that
do not (e.g. parameters that concern functionality) influence the dataflow
behavior of subsystems are allowed to change even more frequently.

To summarize, parameterized dataflow modeling framework of [16] pro-
vides reconfiguration facilities that can be exploited to achieve run-time
control of actor’s dataflow interfaces as well as the control of actor’s func-
tionality. Furthermore, parameterized dataflow concept of [16] by defining
a modular decomposition of parameterized dataflow specifications into 3
subgraph types is an implementation-oriented, untimed and an architec-
ture independent model. In particular, it favors development of portable
application for heterogenous multiprocessor SoCs [35].

However, in our work, it is analysis that is in the focus of our interest,
not synthesis. Therefore, from the performance analysis point of view, the
parameterization of [16] is rather impractical because the addition of aux-
iliary graphs (init and subinit) increases the model complexity and reduces
its intuitive appeal.

Therefore, to build a more analysis-oriented flavor of parameterized
dataflow concept we favor a more abstract definition. Still, we reuse many
of the concepts of [16]. More precisely, we think of PDF as a meta-modeling
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concept for integrating dynamic parameters and run-time adaptation of pa-
rameters in a structured way into a certain class of dataflow MoCs called
the base models that have a well-defined concept of a graph iteration [18].

4.6 Our parameterization model

In PDF, actor firing rules can be reconfigured in-between actor firings using
a set of parameters. More formally, a PDF actor is a dataflow actor A =
(P,Q,R, f) whose firing rules R depend on the set of parameters PA. In
particular, these parameters control the firing of an actor by parameterizing
conditions that need to be satisfied for an actor to fire. These conditions
typically concern availability of input tokens, their values and the enclosing
actor state. A PDF actor A admits the notion of configuration xA that is
obtained by assigning values to all parameters. Collected, configurations
define the domain of A, denoted XA. Once a configuration is applied to
an actor, an instance of the parameterized actor emerges, denoted ιA(xA)
that is nothing but a base model actor. Configurations can se applied to an
actor in-between actor firings.

A parameterized dataflow graph (PDFG) is, of course, a composition of
PDF actors. We define it by refining Definition 2.3 as follows.

Definition 4.1 (PDFG). A PDFG graph is a tuple G = (A, C,P, XG),
where A is the set of actors, C ⊆ A×A the multiset of channels, P is the
set of parameters, while XG is the domain of the graph.

In Definition 4.1, P is a set of parameters used to reconfigure the firing
rules of the graph actors, while XG is a set that collects all the configurations
xG of G.

The concept of domain allows to explicitly represent the dependen-
cies between parameters. These dependencies may arise from a variety of
sources. One source may be the design environment itself. In particular, it
may expresses the value of a parameter in terms of another.

Once xG is applied to G, an instance ιG(xG) of G emerges. This instance
is nothing but a base model graph.

To ensure the run-time integrity of the model, in PDF we allow recon-
figurations only in-between graph iterations. However, this does not mean
that reconfigurations of all actors must take place at the same time. Instead,
they take place once the considered actor had completed all its firings with-
ing the graph iteration. Therefore, a PDFG typically evolves in overlapped
(pipelined) iterations defined by different configurations/instances.
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p q r pqrA1 , a1 A2 , a2 A3 , a3 A4 , a4 A5 , a5

(a) SDF-PDF specification of an artificial application.

p q (r ) , s q (r ) , s q (r ) , s q (r ) , s pA1 , a1 A2 , a2 A3 , a3 A4 , a4 A5 , a5

(b) CSDF-PDF specification of an artificial application.

while(1){
fire A1;
repeat (p) times {

fire A2;
repeat (q) times {

fire A3;
repeat (r) times {

fire A4;
}

} 
}
fire A5;

}

(c) Schedule for the SDF-
PDF specification.

while(1){
fire A1;
fire A2;
repeat (q) times {

repeat (q) times {
fire A3; 

} 
}
fire A2;
repeat (s) times {

fire A3;  
}
fire A4;
fire A5;

}

(d) Schedule for the CSDF-
PDF specification with p =
q · r + s.

Fig. 4.2: SPDF and PCSDF specifications.

In our PDF flavor, we permit initial tokens on channels just as Petri nets
have initial markings [80]. Furthermore, initial tokens are considered initial
conditions for execution and their placement defines the initial system state.
Now, using the concept of initial tokens, we define an iteration as a minimal
non-empty set of actor firings that does not have a net effect on the (initial)
system state. Therefore, if reconfiguration takes place in-between iterations,
the system integrity is ensured. That is why PDF focuses on base models
that have a well-defined notion of an iteration. Examples of such models are
SDF and CSDF that originally host the iteration concept as defined above
and even BDF where the complete cycle, if it can be found, corresponds to
the notion of iteration. The ordering of configurations is nondeterministic,
which renders PDF a nondeterministic MoC.

By applying it to SDF, the concept of PDF refines to the concept of
SDF-PDF covered in detail in Chapter 3. For completeness, an example of
an SDF-PDF structure is given here too in Fig. 4.2a along with its quasi-
static schedule shown in Fig. 4.2c. Generally speaking, given a base model,
it is then convenient to refine Definition 4.1 to a one more appropriate in
the context of the considered base model. For SDF, Definition 4.1 refines
to Definition 3.1. The key addition in Definition 4.1 is the introduction of
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rates. In particular, SDF is a uninterpreted dataflow MoC with conjunctive
firing rules (cf. Section 2.3). Therefore, the firing conditions of SDF actors
only concern the availability numbers of tokens, i.e. rates.

Moreover, although initially developed for SDF, the refinement of Def-
inition 4.1 can also be used to define other uninterpreted refinements of
PDF. We exemplify using CSDF-based PDF (CSDF-PDF). Recall that in
CSDF, actor port rates exhibit a variation that forms a certain type of pe-
riodic pattern [19]. In the context of Definition 3.1, this can be modeled by
setting

R := k | p | R1(R2) | R1,R2, (4.1)

where k ∈ N>0 and p ∈ Pi with Pi a set of symbolic variables by default
constrained to N>0.

We exemplify using the CSDF-PDF structure of Fig. 4.2b. In the figure,
notation q(r), s generated with (4.1), denotes the parameterized cyclo-static
dataflow sequence r, r, r, . . . , r, s. In the sequence, r is repeated q times. This
means that in the first q firings within an iteration, an actor awaits for the
availability and eventually consumes r tokens, while in the last firing within
an iteration it awaits and consumes s tokens. Note that with the definition
of R of (4.1) we both parametrize the phase (length) and particular phase
rates.

Furthermore, to complete the example, we define an arbitrary domain for
the example graph that we specify with XG = {p ∈ [50, 100], r ∈ [3, 20], q ∈
N>0, s ∈ N>0, p = q · r + s, a1 = a2 = a3 = a4 = a5 = 1}. With the
requirement p = qr + s stemming from the graph domain definition, it is
relatively straightforward to derive a quasi-static schedule that defines the
iteration of the structure. Such a schedule is shown in Fig. 4.2d.

4.7 Integration of parameterized dataflow and
finite-state machines

4.7.1 The basics

PDF model defined in Section 4.4 introduces dynamic parameters to data-
flow MoCs that have a well-defined concept of iteration. This way, it in-
creases their expressive power by rendering them capable of modeling appli-
cations with fine-grained data dependent dynamics while keeping the model
size manageable. However, PDF does not provide facilities to capture in-
tricate control requirements that often accompany modern streaming appli-
cations because with PDF one cannot constrain reconfiguration patterns.
Recall that in PDF reconfigurations happen at iteration boundaries where
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(a) Example PFSM-SADFG

while(1){
fire A0;
repeat (q) times {

fire A1; 
}
repeat (p) times {

fire A2; 
}
repeat (p) times {

fire A3; 
}
repeat (q) times {

fire A4; 
}
fire A5;

}

(b) Scenario sP1 Qss

while(1){
fire A0;
repeat (u) times {

fire A2; 
}
fire A5;

}

(c) Scenario sP1 Qss

Fig. 4.3: PFSM-SADF.

the configuration to be applied next is nondeterministically chosen from the
graph’s domain, i.e. regardless of the current configuration.

In this section we investigate the integration of PDF and FSMs in a
concept we refer to as parameterized dataflow scenarios. More precisely, we
propose a hybrid framework that extends PDF of Definition 4.1 with finite
state control expressed via an FSM. We achieve this by generalizing the
concept of FSM-SADF (HDF). In particular, we model the execution of an
application as a sequence of parameterized scenarios or shortly scenarios.
The sequencing of scenarios is dictated by the control structure captured
by the scenario FSM while a particular scenario is represented by a PDFG.
Scenario PDFGs may be entirely different (different parameters and graph
structures), or can only differ in their respective domains. From now on,
we use the terms scenario, PDFG and scenario PDFG interchangeably. We
refer to the new model as FSM-based parameterized scenario-aware dataflow
(PFSM-SADF).

We illustrate the concept using the structure of Fig. 4.3a where SDF is
used as a base model of PDF. The composite PFSM-SADF graph (PFSM-
SADFG) in the figure is defined over two parameterized scenarios sP

1 and
sP

2 , each of which is modeled by a scenario PDFG in this case being an SDF-
PDFG. Ordering of scenarios is dictated by the parameterized scenario FSM
or shortly scenario FSM, where each state corresponds to one scenario. The
example scenario FSM has two states: ξP

1 and ξP
1 . State ξP

1 corresponds to
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Fig. 4.4: Comparison of operational semantics of FSM-SADF and PFSM-
SADF.

sP
1 and state ξP

2 corresponds to sP
2 .

The operational semantics of PFSM-SADF is as follows. Each reac-
tion/transition of the scenario FSM incurs the execution of one iteration
of an arbitrary instance of the scenario PDFG that the transition destina-
tion state corresponds to. In consideration of an FSM/dataflow hybrid it is
natural to link the dataflow graph iteration with the reaction of the FSM.
This is because the reaction of the FSM will usually take a finite amount of
time within which the dataflow subsystem needs to perform some compu-
tation and possibly emit output tokens as a result. This implies finiteness
of computation that is not intrinsic to may models of computation [53]. In
dataflow, the solution to the finiteness problem is simple. In particular, the
notion of an iteration is used to assure finiteness of computation because a
nonterminating execution of a dataflow graph can be divided into a set of
iterations [53].

In PSDF context, the execution of one iteration of the scenario sP
i

PDFG, translates to the execution of one iteration of an arbitrary instance
of the scenario sP

i PDFG defined by some configuration xs
P
i originating

from the scenario PDFG domain XsPi
and denoted ιsPi

(xs
P
i ). Therefore, the

model fosters nondeterminism at two levels. The inter-scenario level, where
the parameterized scenario to be activated next is nondeterministically cho-
sen and at the intra-scenario level where one of the instances of that scenario
is nondeterministically chosen to carry out the actual execution of the sce-
nario. Fig. 4.4b illustrates the operational semantics of the PFSM-SADF
of Fig. 4.3a. Scenario PDFG domains are depicted as 2-dimensional planes
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Fig. 4.5: Example FSM-SADFG.

in the p− q − u space (we omit actor firing delay parameters). E.g., every
time a transition ξP

1 → ξP
2 is taken, one iteration of the scenario sP

2 PDFG is
executed. This corresponds to the execution of one iteration of an arbitrary
instance of scenario sP

2 PDFG defined by the configurations found in the
XsP2

hyperplane.

We use the opportunity to compare the operational semantics of PFSM-
SADF to that of FSM-SADF and show that PFSM-SADF generalizes FSM-
SADF. For the PFSM-SADFG of Fig. 4.3, let XsP1

= {xsP1 } and let XsP2
=

{xsP2 } where xs
P
1 = {q = 2, p = 3, a1 = 5, a2 = 4, a3 = 3, a4 = 4} and

xs
P
2 = {u = 2}. Thus, our PFSM-SADFG contains only one configuration

per parameterized scenario. If we apply these configurations to the scenario
graphs that are SDF-PDFGs, we obtain two instance SDFGs. As usual, the
scenario FSM defines the ordering of the activations of the two at run-time.

This structure is displayed in Fig. 4.5. This is nothing but an FSM-
SADFG with two scenarios, namely s1 and s2 that correspond to instances
ιG(xs

P
1 ) and ιG(xs

P
2 ) of the parameterized scenarios of the PFSM-SADFG

of Fig. 4.3, respectively. Fig. 4.4a illustrates its operational semantics in
the context of operational semantics of the PFSM-SADFG of Fig. 4.3. E.g.,
transition ξ1 → ξ2 is refined by the execution of one iteration of the scenario
s2 SDFG (which can be obtained by applying the configuration {u = 2} to
the sP

2 PDFG of the PFSM-SADFG of Fig. 4.3). Consequently, Fig. 4.4a
can be obtained by collapsing the hyperplanes of Fig. 4.4b into two config-
urations, namely xs

P
1 and xs

P
2 .
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This informally proves that PFSM-SADF generalizes FSM-SADF (HDF)
because an FSM-SADFG is a special case of an SDF-based PFSM-SADFG
with a single configuration per parameterized scenario. A reader may be
skeptical towards the claim that the concept of parameterized dataflow sce-
narios also generalizes HDF because HDF unlike FSM-SADF (where the
FSM is flat and sequential) enforces a hierarchical FSM discipline. This is
not an issue because as stated in [53], hierarchy adds nothing to the model
of computation but is used to reduce the number of transitions and makes
the FSM more intuitive and easier to understand.

Furthermore, PFSM-SADF via PDF of Definition 4.1 allows scenario
representations in base models other than SDF. A good example is CSDF,
that when used as the base model of PFSM-SADF is at run-time instanti-
ated into a CSDF graph.

We formally define the new model. First, we define the parameterized
scenario FSM in Definition 4.2.

Definition 4.2 (Parameterized scenario FSM). Given a set SP of param-
eterized scenarios, a parameterized scenario FSM FP over SP is a tuple
FP = (ΞP, ξP

0 ,TP,ΨP), where ΞP is the set of states, ξP
0 is the initial state,

TP : ΞP → 2ΞP
is the transition function and ΨP : ΞP → SP is the scenario

labeling.

Thereafter, we expose the definition of PFSM-SADF.

Definition 4.3 (PFSM-SADF). PFSM-SADF FP is a tuple FP = (SP, FP)
where SP is the set of PDF scenarios and FP is an FSM on SP.

4.7.2 Functional properties of PFSM-SADF

We briefly discuss the consistency, deadlock freedom and scheduling prop-
erties of PFSM-SADF. A PFSM-SADF progresses in iterations of its PDFG
scenario instances like an FSM-SADF model progresses in iterations of its
scenario SDFGs. It is natural to define scenarios at dataflow graph itera-
tion granularity due to the need for the finiteness of the computation that
refines an FSM reaction as well as due to a rather practical consideration
where an iteration typically represents a coherent set of computations, e.g.
decoding a video frame. The iteration boundaries in PDF are defined by
points in time at which graph’s initial tokens are restored. Recall that in the
PDF domain, these tokens represent initial conditions for graph execution.
Therefore, dependencies between two consecutive (parameterized) scenar-
ios are captured by these initial tokens that we consider as inter-scenario
synchronization data.
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Given the operational semantics of PFSM-SADF and its synchroniza-
tion principles described above, the same criteria for the consistency of
applications modeled by PFSM-SADF as for those modeled by FSM-SADF
applies, i.e. consistency of the application is guaranteed if all individual sce-
narios are consistent [96]. Deadlock freedom is a more subtle concept. Since
our modeling targets streaming applications, we consider infinite traces of
the scenario FSM. Therefore, an application modeled by PFSM-SADF is
deadlock-free if all individual scenarios are deadlock-free and there exists
no state in the scenario FSM with no outgoing transitions. As PFSM-
SADF is a dynamic dataflow model which means that it cannot be statically
scheduled. Still, as PFSM-SADFG progresses in scenario sequences, given
a trace of the scenario FSM a schedule for the trace can be constructed
by concatenating schedules of particular scenario graphs. Therefore, we
deem a PFSM-SADFG schedulable if for all its scenario graphs considered
in isolation a (quasi)-static schedule can be found.

Determining whether a particular scenario PDFG is consistent, deadlock-
free and schedulable is not an easy task. In general, no general decidability
criteria can be derived for the structure of Definition 4.1 and each refinement
of Definition 4.1 needs to be analyzed separately. Furthermore, this type of
functional analysis is outside the scope of this work and we will not consider
it further. Instead, in the context of performance analysis of systems, we
focus on a refinement of Definition 4.1 for which decidability criteria exists.
In particular, we focus on SDF-PDF of Definition 3.1 described in detail in
Section 3.4.3.

4.8 Parameterized synchronous dataflow scenar-
ios

4.8.1 Basic remarks

We continue with further formalization of PFSM-SADF concept in the con-
text of SDF because SDF has emerged as the most stable and mature data-
flow MoC for representing streaming applications and systems [16]. By
applying the concept of parameterized dataflow scenarios to SDF, we ob-
tain parameterized dataflow scenarios or shortly SDF-based PFSM-SADF
(SDF-PFSM-SADF).

In particular, we show how to capture the self-timed execution of SDF-
PFSM-SADF by extending the Max-plus apparatus of FSM-SADF. Conse-
quently, we propose a worst-case performance analysis framework for SDF-
PFSM-SADF based on the theory of Max-plus automata.
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4.8.2 Max-plus algebraic semantics of SDF-PFSM-SADF

SDF-PFSM-SADF is an SDF-based specialization of PFSM-SADF. There-
fore, in SDF-PFSM-SADF, every parameterized scenario sP

j ∈ SP is rep-

resented by a parameterized scenario SDF-PDFG1 of Definition 3.1. We
denote the domain of scenario sP

j SDF-PDFG with XsPj
.

An SDF-PFSM-SADF graph (SDF-PFSM-SADFG) evolves in iterations
of instances of the parameterized scenarios it encloses. As discussed in Sec-
tion 4.7, synchronization between different scenarios is achieved by the set
of tokens that exist in scenario PDFG, i.e. SDF-PDFG channels in-between
iterations. These tokens correspond to the initial tokens of parameterized
scenarios.

With SDF-PDF as the basic building block of SDF-PFSM-SADF, as
shown in Section 3.5, the availability times of initial tokens can be captured
using the timestamp vector of the kth graph iteration, i.e. γ(k). Therefore,
our first objective is to mathematically formulate the evolution of γ(k) for an
SDF-PFSM-SADFG. Following that, our second objective is to mathemati-
cally capture the completion time of a sequence of parameterized scenarios.

Let

MFP = {Mpar

sP1
, . . . ,Mpar

|SP|} (4.2)

be the set of all mappings of that per particular scenario given the scenario
SDF-PDFG configuration return the associated parameterized scenario ma-
trix (recall the semantics of Mpar

G from (3.8)). Now, the operational se-
mantics of SDF-PFSM-SADF says that an SDF-PFSM-SADFG evolves in
iterations of its scenario SDF-PDFG instances where the scenario occur-
rence patterns are given by the scenario FSM. Scenarios are synchronized
by the set of initial tokens whose production times are in turn captured by
the initial token timestamp vectors.

Therefore, the timestamp vectors of initial tokens after the (k + 1)st
SDF-PFSM-SADFG iteration can be related to the timestamp vector of
initial tokens after the kth iteration as follows

γ(k + 1) =
(
(MFP(πl(ζFP(k + 1))))(πr(ζFP(k + 1)))

)
(πr(ζFP(k + 1))︸ ︷︷ ︸

Mιπl(ζFP
(k+1))(πr(ζFP

(k+1)))

⊗γ(k).

(4.3)

In (4.3), mapping ζFP(k + 1) = (sP
j , x

sPj ) returns the active scenario of the
(k + 1)st SDF-PFSM-SADFG iteration as well as its configuration, while

1We will be using the terms parameterized scenarios SDF-PDFG, scenario SDF-PDFG
and scenario interchangeably.
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MFP : SP → MFP returns the configuration to parameterized Max-plus
matrix mapping of a particular scenario and πl and πr are the left and right
projection functions, respectively.

Finally, the matrix of the underbrace of (4.3) is the Max-plus matrix of
the SDFG instance running as the (k + 1)st iteration of the SDF-PFSM-
SADFG. To explain the cumbersome notation of (4.3), we use (4.4).

(k + 1)
ζ
FP

(k+1)
−−−−−−→(sP

j ∈ SP, xs
P
j ∈ XsPj

)
M

FP
(sPj )

−−−−−→Mpar

sPj

Mpar

sP
j

(x
sPj )

−−−−−−−→
(
Mpar

sPj
(xs

P
j )
)

(
Mpar

sP
j

(x
sPj )
)

(x
sPj )

−−−−−−−−−−−−→Mιπl(ζFP(k+1))(πr(ζFP (k+1)))

(4.4)
Starting from the SDF-PFSM-SADFG iteration indexed with (k + 1) by
applying ζFP , the running parameterized scenario and its running configu-

ration are determined as a pair (sP
j ∈ SP, xs

P
j ∈ XsPj

). Thereafter sP
j is used

as an argument to MFP to determine the mapping from configurations to
parameterized matrices within the scenario (cf. (4.2)), i.e. Mpar

sPj
. After the

mapping had been determined, it is used to determine the parameterized

matrix corresponding to the configuration xs
P
j from the initial pair. This

matrix is denoted (Mpar

sPj
(xs

P
j )). Finally, this matrix is evaluated at xs

P
j

which gives the Max-plus matrix of the running scenario SDFG instance,
denoted Mιπl(ζFP(k+1))(πr(ζFP (k+1))).

We use the opportunity here to graphically exemplify γ(k). Consider

the SDF-PFSM-SADFG of Fig. 4.3. Let XsP1
= {xsP1 } and let XsP2

=

{xsP2 } where xs
P
1 = {q = 2, p = 3, a1 = 5, a2 = 4, a3 = 3, a4 = 4}

and xs
P
2 = {u = 2}. Then the evolution of γ(k) for scenario sequence

sP = sP
1 , s

P
2 , s

P
1 , s

P
2 , s

P
1 , s

P
1 is shown in Fig. 4.6.

We now dedicate to our second objective, i.e. the computation of the
completion time of a sequence of parameterized scenarios

sP = sP
1 , . . . , s

P
k ∈ SP∗ ∩ L (4.5)

that we consider a part of the scenario FSM trace (if scenarios FSM transi-
tions were labeled with scenarios defining the transition destination states,
and all the states were declared accepting, L would be considered a language
the scenario FSM accepts).

Due to the fact that the activation of a scenario entails the activation of
an arbitrary scenario SDFG instance (nondeterministic choice), it is conve-



4.8. SDF-PFSM-SADF 107

t
i1

i2

i3

i4

i5

i6

0 10 20 30 40 50 60 70 80τ

Scenario sP
1 Scenario sP

2

Fig. 4.6: FSM-SADF.

nient to expand (4.5) as follows

sP = (sP
1 , x

sP1
1 | . . . | x

sP1
|X
sP1
|), . . . , (s

P
k , x

sPk
1 | . . . | x

sPk
|X
sP
k
|), (4.6)

where bar | denotes a nondeterministic choice. Then, from the recursion
of (4.3), we can derive an explicit function for the completion time of (4.6)
as follows

AP(sP) = αPT ⊗ µP(sP)⊗ βP (4.7)

where αP is the final delay, βP is the initial delay and µP : SP∗ → RI×Imax

is a morphism that associates sequences of parameterized scenarios s with
Max-plus matrices as follows

µP(sP) = µP((sP
1 , x

sP1
1 | . . . | x

sP1
|X
sP1
|), . . . , (s

P
k , x

sPk
1 | . . . | x

sPk
|X
sP
k
|))

=

((
MFP(sP

1 )
)

(x
sPk
1 | . . . | x

sPk
|X
sP
k
|)

)
(x
sPk
1 | . . . | x

sPk
|X
sP
k
|)⊗ . . .

⊗
((

MFP(sP
1 )
)

(x
sP1
1 | . . . | x

sP1
|X
sP1
|)

)
(x
sP1
1 | . . . | x

sP1
|X
sP1
|).

(4.8)

The triple AP = (αP, µP, βP) defines the Max-plus automaton structure
of [40]. In (4.7), βP captures the initial enabling times of graph’s initial
tokens, i.e. βP = γ(0) and typically γ(0) = 0. On the other hand αP

specifies the metrics we are interested in. E.g., if we are interested in the
makespan of the scenario sequence, we set αP = 0.

The Max-plus automaton structure of (4.7) with (4.8) can be used to
study the performance of SDF-PFSM-SADF in a similar fashion as it had
been used to study the performance of FSM-SADF. By comparing the Max-
plus automata structure of FSM-SADF (cf. (2.30) and (2.31)) and SDF-
PFSM-SADF (cf. (4.7) and (4.8)) we observe a striking resemblance. Both
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in FSM-SADF and PFSM-SADF the Max-plus automata structures are de-
fined on a finite number of scenarios. However the crucial difference lies in
the definition of automata morphisms of (2.31) and (4.8). In FSM-SADF,
the Max-plus automata morphism µ returns for a scenario the corresponding
scenario SDFG matrix and for each scenario there is only one such matrix.
With SDF-PFSM-SADF, the mapping µP for a parameterized scenario re-
turns the Max-plus matrix of an arbitrarily chosen parameterized scenario
SDFG instance. Further comparison of the morphisms reveals that (4.8)
can be unfolded into (2.31) in a way that every parameterized scenario in-
stance would become a scenario in an equivalent FSM-SADF. This follows
straightforwardly from the discussion on operational semantics of PFSM-
SADF compared to that of FSM-SADF of Section 4.7. Then the equivalent
structure could be used to analyze the original parameterized specification
for worst-case performance. However, in practice, this is not feasible because
Max-plus automata-based techniques for throughput analysis of FSM-SADF
rely on the automata product structure which would explode in size due to
unfolding. The same effect would incapacitate the use of state-space-based
latency analysis techniques.

However, as we show in the section to come, for worst-case performance
analysis, such an unfolding is not even necessary.

4.9 Worst-case performance analysis for parame-
terized synchronous dataflow scenarios

SDF-PFSM-SADF has a well-defined concept of iteration it inherits from
SDF-PDF. Furthermore, timestamp vector γ(k) of (4.3) is used to capture
the evolution of SDF-PFSM-SADF across iterations in a similar manner it
was used to capture the evolution of SDF (cf. (2.12)), FSM-SADF (cf. (2.28)
and SDF-PDF (cf. (3.7)).

Therefore, it is only natural to use the concept of iteration to define
performance metrics for PFSM-SADF similarly as done for SDF, FSM-
SADF and SDF-PDF.

4.9.1 Worst-case throughput

In particular, for worst-case throughput, we adopt the following definition
(cf. Definition 3.4 and Definition 2 of [46]).

Definition 4.4 (Worst-case throughput). Worst-case throughput of an SDF-
PFSM-SADF FP is defined as the largest value ThFP ∈ R such that for every
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possible instance sequence and its associated Max-plus timestamp vector se-
quence γ = γ(1), γ(2), . . ., for every ε ∈ R such that ε > 0, there is some
K ∈ N>0 s.t. for all L ∈ N>0, L > K,

L

||γ(L)||
> ThFP − ε. (4.9)

FSM-SADF uses the Max-plus automaton structure of 2.30 for worst-
case throughput analysis. Furthermore, Section 4.8 explaines how the SDF-
PFSM-SADF Max-plus automaton structure of (4.7) could be unfolded into
an equivalent structure of 2.30. However, the unfolding will lead to an
explosion in the problem size for scenarios with large domains. Therefore,
the problem needs to be approached from another angle.

In worst-case throughput analysis of FSM-SADF, one is interested in the
worst-case increase of A(s) of 2.30 for a growing length of s. This inverse of
this worst-case increase represents the worst-case throughput of the graph.
The increase is in turn computed as the MCM of the throughput graph of
the FSM-SADF [46][98].

With SDF-PFSM-SADF, in consideration of its operational semantics
where execution of a parameterized scenario corresponds to the execution of
one of its arbitrarily chosen instances, the worst-case increase of AP(sP) will
be defined using worst-case evaluation matrices Mw−c

sPj
of enclosed param-

eterized scenarios sP
j ∈ SP. For a parameterized scenario, a conservative

estimate of this matrix can be obtained using Algorithm 3.2.
For that matter, given a PFSM-SADFG FP let sP = sP

1 , . . . , s
P
k ∈ SP∩L.

Then, in consideration of (4.3) and (4.7), the following inequality holds

AP(sP) � αPT ⊗Mw−c
sPk
⊗ . . .⊗Mw−c

sP1︸ ︷︷ ︸
�µP(sP)

⊗βP.
(4.10)

The right hand side of (4.10) establishes a conservative upper bound on
AP(sP) of the left hand size. However, as immediately follows from Theo-
rem 2 of [40], the worst-case increases of both sides are equal.

Therefore, the representation of the right-hand side of (4.10) thanks
to its relatively small size that measures in the number of parameterized
scenarios can now be used for worst-case throughput analysis of SDF-PFSM-
SADF. We may think of it as a “reduced Max-plus automaton” of the
SDF-PFSM-SADF that abstracts an entire parameterized scenario into one
matrix.

The worst-case throughput of the considered SDF-PFSM-SADFG will
equal to the inverse of the MCM of its throughput graph. We now show
how to construct this throughput graph.
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In the construction of the throughput graph we will actually be using the
conservative estimates of Mw−c

sPj
matrices obtained using Algorithm 3.2, i.e.

Mw−c′
sPj

. Therefore, the computed throughput Th ′FP will be a conservative

estimate of ThFP . However, here as in the case of SDF-PDF, the relative
approximation error goes to 0 with growing scenario graph repetition vector
entries.

We specify now the throughput graph construction process. Traverse
over all scenario FSM states ξP

u ∈ ΞP and add a node to the throughput
graph for each initial token iv ∈ I of the SDF-PFSM-SADFG and label
the node with (ξP

u , iv). Then for every transition (ξP
r , ξ

P
s ) add an edge from

node (ξP
r , im) to node (ξP

s , in) if [Mw−c′
ΨP(ξPs )

]n,m 6= −∞ and set the weight of

the edge to [Mw−c′
ΨP(ξPs )

]n,m.

These weights represent minimal distances between initial tokens across
two consecutive scenarios. Over infinite sequences of scenarios these dis-
tances will be part of the throughput graph cycles. Therefore, the inverse
of the MCM of the throughput graph defines the worst-case throughput
value, i.e. its conservative estimate because we are using Mw−c′

sPj
matrices.

We exemplify using the running example SDF-PFSM-SADF of Fig. 4.3.
Assume that the respective scenario SDF-PDFG domains are given as fol-
lows

XsP1
=(p · a1 ≥ q · a1) ∩ (p · a3 ≤ q · a1)

∩ (q · a4 ≤ p · a2) ∩ (a4 ≤ a4) ∩ (q · a4 ≤ p · a3)

∩
{
p = w1 · w2, w1 + w2 = 2 · x1 − x2,

p ∈ [1, 10], q ∈ [1, 10], w1 ∈ [1, 3], w2 ∈ [1, 4],

x1 ∈ [1, 3], x2 ∈ [1, 5], a1 ∈ [1, 7], a2 = 4,

a3 ∈ [1, 5], a4 = 4
}

(4.11)

and

XsP2
= {u = 30} (4.12)

Equation (4.11) is a very illustrative example of a domain specification
because it shows how the concept of domain explicitly represents the de-
pendencies between parameters of the graph {p, q, a1, a2, a3, a4} and design
environment parameters {x1, x2, w1, w2}. After running Algorithm 3.2, we
obtain the conservative approximations of worst-case evaluation matrices of
the respective parameterized scenarios as specified by (4.13).
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Fig. 4.7: Throughput graph of SDF-PFSM-SADFG of Fig. 4.3.

Mw−c′
sP1

=



24 −∞ −∞ −∞ −∞ 24
34.5 24 −∞ −∞ −∞ 34.5
34 −∞ 24 −∞ −∞ 34

42.5 32 32 24 −∞ 42.5
42.5 32 32 24 −∞ 42.5
−∞ −∞ −∞ −∞ 0 −∞



Mw−c′
sP2

=



0 −∞ −∞ −∞ −∞ −∞
−∞ 30 −∞ −∞ −∞ 30
−∞ −∞ 0 −∞ −∞ −∞
−∞ −∞ −∞ 0 −∞ −∞
−∞ 30 −∞ −∞ −∞ 30
−∞ −∞ −∞ −∞ 0 −∞



(4.13)

Using the matrices of (4.13) we now construct the throughput graph which
is partially displayed in Fig. 4.7. The critical cycle of the throughput graph
is depicted using bold arrows. The critical cycle defines the MCM of the
throughput graph which attains the value (30 + 24)/2 = 27 time units and
therefore Th ′FP = 1/27 iterations per time unit.

At this point one might argue, that given the relatively small cardinality
of the scenario domains of (4.11) one could enumerate the domains and
use techniques of FSM-SADF to obtain the worst-case throughput value.
This claim holds for the running example, but in practice the respective
domains can be vast and enumeration infeasible. Another might argue that
instead of computing the worst-case evaluation matrices of parameterized
scenarios via Algorithms 3.2 and 3.1, one could simply construct the worst-
case SDFG of a parameterized scenario graph by taking the upper endpoints
of default parameter intervals which would in turn define a worst-case FSM-
SADF that can be analyzed. In response to this, we argue that such an
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approach (although straightforward) which disregards complex parameter
dependencies defined by the parameterized scenario domain specifications
might incur to much pessimism. For the running example, by merely taking
p = 10, q = 10 and u = 30 with a1 = 7, a2 = 4, a3 = 5 and a4 = 4
we obtain an FSM-SADFG with the worst-case throughput value of 1/70
iterations which compared to the estimate obtained using our technique
incurs too much unnecessary pessimism. Furthermore, in some case it may
happen that due to the fact that rates may influence the temporal behavior
of the structure in a “non-monotonic way”, the result obtained using default
parameter interval endpoints may even be an underestimation of the actual
throughput which is an unacceptable side-effect in a real-time setting.

4.9.2 Worst-case latency

The remaining performance metric to be discussed is latency. As for through-
put we adopt the definition of SDF-PDF (cf. Definition 3.5), i.e. FSM-
SADF (cf. Definition 3 of [46]).

Definition 4.5 (Worst-case latency). Worst-case latency of an SDF-PFSM-
SADFG FP relative to a desired period ρ ∈ R is defined as the smallest vector
LFP such that for every possible instance sequence and its associated Max-
plus timestamp vector sequence γ = γ(1), γ(2), . . ., for every k ≥ 0,

γ(k) � k · ρ+ LFP. (4.14)

Unlike with throughput where we were not interested in firing times
of individual actors but only the rate at which the iterations of the graph
are executed, to derive LFP we do need to consider what time do individual
actor firings take place or complete within an iteration. We need to consider
all possible scenario sequences. To do this we construct the state space
of scenario sequence executions using the conservative approximations of
worst-case evaluation matrices of the parameterized scenarios obtained via
Algorithm 3.2 and the scenario FSM. Using these matrices we are able to
conservatively bound vectors γ(k) of (4.5) and that is why we call this state
space also the worst-case evaluation state space of the SDF-PFSM-SADFG.
The latency derived from this state space is denoted with L′

FP and is a
conservative estimate of LFP .

The space is constructed incrementally in a bread-first search manner
from the parameterized scenario FSM. The state itself is defined as a tuple

(ΨP(ξP), γw−c′, w), , (4.15)
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where ξP ∈ ΞP, γw−c′ is a Max-plus timestamp vector which is used to
initialize the next scenario execution and w is the state weight.

Let tuple

(ΨP(ξP]), γw−c′], w]) (4.16)

define a state that is directly reachable from state (4.15). In that case,

γw−c′] = (Mw−c′
ΨP(ξP′)

⊗ γw−c′)
norm

(4.17)

and

w] = ||Mw−c′
ΨP(ξP′)

⊗ γw−c′||. (4.18)

Continuation of the state-space construction will eventually result in revisit-
ing an already existing state if the reachable part of the state space is finite.
The exploration terminates, when there are no more new states. For any
path of length k leading to state (ΨP(ξP), γw−c′, w), the actual γw−c′(k) of
the associated parameterized scenario sequence is given by T ⊗γw−c′ where
T equals to the sum of the weights of the path states.

By setting ρ = 1
Th ′

FP
, we can conservatively bound the latency in a

single traversal of state space by finding the smallest vector L′
FP such that

γw−c′(k) ≤ L′
FP + k

Th ′
FP

. This equals to determining the maximal value of

γw−c′(k) − k
Th ′

FP
observed. The exploration needs to consider only acyclic

paths in the state space as any cycle will not be faster than determined
by the throughput. We demonstrate this for the running example in (4.19)
over the state space path of Fig. 4.9.2.

L′FP =
⊕{

[0, 0, 0, 0, 0, 0]T , [0, 30, 0, 0, 30, 0]T − 27,

[24, 54, 35, 62, 62, 30]T − 54, [24, 84, 35, 62, 84, 62]T − 81,

[86, 108, 97, 116, 116, 84]T − 108,

[86, 138, 97, 116, 138, 116]T − 135
}

= [0, 3, 0, 8, 8, 0]T

(4.19)

A necessary condition to determine the latency in this way is that the
reachable part of the state space is finite. For the example SDF-PFSM-
SADFG of Fig. 4.3 with (4.13) this is indeed the case. However, in general,
this may not be so. Therefore, we need to define at least a sufficient condi-
tion under which the reachable part of the state space is finite.

For FSM-SADF, paper [46] in Proposition 4.1 gives a practical condition
under which the reachable part of the state space is finite. This result can
be recasted in the context of SDF-PFSM-SADF.
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Fig. 4.8: State space of SDF-PFSM-SADFG of Fig. 4.3.

In particular, we say that the reachable part of the state space is finite
if for every possible scenario sequence sP = sP

1 , . . . , s
P
p allowed by the FSM

and any k > 0 there is some m > 0 such that the matrix

M =
⊗

k≤l≤m
Mw−c′
sPl

(4.20)

contains no entries −∞.
We argue that this condition is too restricting. We show this by a

simple example. Imagine a SDF-PFSM-SADFG with only one scenario
defined by an actor with an self-edge hosting 2 initial tokens. The Max-plus
representation of such a scenario is a 2 by 2 Max-plus matrix with −∞ on
the diagonal. Therefore, any power of this matrix has entries −∞ on the
diagonal too and this matrix cannot satisfy (4.20) although the state-space
of such a specification is finite (we leave it to the interested reader as a
small exercise to generate the state space of this simple structure). We give
a new and less restricting condition for fitness of the reachable part of the
state space but only after we define the notion of matrix irreducibility in
Max-plus.

A matrix M ∈ Rn×nmax is called irreducible if its communication graph
G(M) is strongly connected [61].

We now give a sufficient condition for finiteness of the reachable part of
the worst-case evaluation state space of an SDF-PFSM-SADFG.

Proposition 4.1. Let FP = (SP, FP) be an SDF-PFSM-SADFG. Let C =

{ci} by the set of all simple cycles of FP. If the matrix Mci =
length(ci)⊕
n=1

Mw−c′
ΨP(ci(n))

is irreducible for every ci ∈ C then the reachable part of the state space is
finite.

Proof. Notice that any scenario sequence can be formed by concatenation
of cycles of the scenario FSM [98]. Now, irreducibility of a Max-plus matrix
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Mci implies that its eigenvalue is unique [61]. The eigenvalue on the other
hand specifies the asymptotic growth rate of a timestamp vector produced
by this matrix. Therefore, entries of the normalized timestamp vectors
generated by M can only take values from a bounded range because the
growth rate is the same for all the entries. Consequently, in consideration
of a scenario sequence as a repetitive pattern consisting only of one FSM
cycle, there will be a finite number of timestamp vectors within the sequence
which implies the finiteness of the state space over one cycle. The argument
straightforwardly carries over to concatenations of different cycles as they
are all individually bounded, i.e. no token timestamp can diverge.

If we verify the example with an actor with a self-edge hosting two initial
tokens where the finiteness criteria of [46] fails to give an answer against
Proposition 4.1, we see that Proposition 4.1 gives a positive answer to the
question, which is the correct one.

4.10 Evaluation

In this section, we demonstrate the application of our parameterized sce-
nario modeling and analysis techniques to a realistic case study from the
multimedia domain. We consider the case of a VC-1 video decoder used in a
region of interest (ROI) coding scheme. Thereafter, we discuss the tightness
of the performance bound and technical aspects of the analysis.

4.10.1 VC-1 decoder

The experimental setup is somewhat similar to that of Section 3.8.1. In
particular, we will be using the Foreman video sequence (cf. Fig. 3.13b) as
the input to the decoder with the difference that we will be decoding not only
the ”ROI slice” that captures the foreman’s face but also the “background
slice”. The slices are transmitted together and the decoder processes them
in an interleaved fashion to be able to reconstruct the entire picture, i.e.
frame.

In VC-1 coding, three different types of slices are supported: I, i and
Ii slices. In an I-slice all macroblocks are encoded in the Intra mode. In
an i-slice all macroblocks are encoded in the Inter mode. In an Ii -slice all
macroblocks are both Intra and Inter coded. The types of slices naturally
represent three modes of operation of the decoder shown in Fig. 4.9 adopted
from [13]. Each mode is represented by a different SDF-PDFG according to
our parameterized scenario modeling technique. Each SDF-PDFG iteration
corresponds to decoding of one slice.
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Fig. 4.9: VC-1 decoder captured in SDF-PFSM-SADF.

The functions of particular actors are already described in Section 3.8.1.

In contrast to the VC-1 decoder of Section 3.8.1, our decoder here also
decodes the background slices. Therefore, it must not only differentiate
slices based on the encoding scheme used, but also based on their affiliation
to either ROI or background.

Therefore, with slices being either ROI or background slices each of
which can be encoded in 3 different ways, the dynamic behavior of the
decoder can be captured using 6 scenarios: I P

ROI, iP
ROI, IiP

ROI, I P
background,

iP
background and IiP

background. E.g., scenario I P
ROI models the decoding of an I

slice capturing the ROI, i.e. the foreman’s face and captures as many be-
haviors as there are possible ROI slice sizes. The slice size expressed in the
number of enclosed macrobolocks (parameterized rate p) basically depends
on the given frame resolution, the displacement of the foreman’s face from
the capturing device (camera) and the ovality of the foreman’s face. These
relationships are encoded in the definition of the scenario domain.

For I P
ROI, we define XIPROI

by abstracting ROI into an ellipse of known

characteristics (cf. (4.21)).

XIPROI
=
{
p = (2 · ξM · 2 · ξm)/(16 · 16), p ∈ [1, P ], (4.21a)

q ∈ [1, 16] (4.21b)

p′ ≥ µ · P, p+ p′ ≤ P (4.21c)

o2 = 4 · π2(ξ2
M + ξ2

m), o ≥ O (4.21d)

ε2 · ξ2
M = ξ2

M − ξ2
m, ε = E, 2 · ξM ≤ w, 2 · ξm ≤ h (4.21e)

a = aref , b = bref , c = cref , d = dref , (4.21f)

e = eref , f = fref , g = qref , h = href

}
(4.21g)
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Detailed description of parameters involved can be found in Section 3.8.1.
The remaining 5 scenario domain definitions take a similar form and we do
not list them here.

Every scenario is fully determined by the scenario SDF-PDFG and the
respective domain. Of course, different scenarios may have the same graphs
or domains. In our case study, each of the SDF-PDFGs is shared by 2
scenarios.

As mentioned, in contrast to the VC-1 decoder case study of Section 3.8.1,
we here decode both the ROI and the background slices. But this is a dif-
ference that concerns only functionality and has no bearing on the modeling
itself. The second and crucial difference is that here by using SDF-PFSM-
SADFG we are able to express intricate control requirements that an appli-
cation may have. This is not possible by using SDF-PDF of Chapter 3. In
particular, in VC-1 or any other block-based coding scheme, slices are not
sequenced arbitrarily but the next slice type depends on the previous one.
The sequencing patterns are specified by group of pictures (GoP) structures
that always start with I-slices. In such a setting, the control requirements
of our decoder are specified by the FSM of Fig. 4.9. In particular, slices are
sequenced as follows. First, I slices of both ROI and the background are
decoded. Thereafter, a number of i and Ii slices forming i and Ii pictures
are decoded. This is first done for ROI and thereafter for the background.
In reality, the number of i frames following I and Ii frames is bounded by
the Group of Pictures length. For simplicity, we approximate this conser-
vatively by allowing an arbitrary long sequence of i slices that is always
followed by one Ii slice for both ROIs. Finally, the FSM revisits the initial
state.

In the exercise, we assume SDTV input format with signal type 480i
16:9 and resolution 720x480 pixels. Thus, w = 720, h = 240 and P =
1620. Furthermore, O = 700, E = 0.6 and µ = 30. For these values using
our performance analysis technique presented in Section 4.9 we obtain a
conservative throughput estimate of 1.78516 · 10−7 slices per cycle.

For comparison, if we were to build an FSM-SADF that is a conservative
model of SDF-PFSM-SADF model of Fig. 4.9 by using the upper endpoints
of default domain parameter intervals in each scenario we obtain a through-
put estimate of 1.44252 · 10−7. Therefore, compared to the capabilities of
FSM-SADF our contribution is twofold. First, PFSM-SADF as a model-
ing concept can express fine-grained reconfiguration phenomena in dynamic
systems as well as capture their intricate control requirements. Second,
by accounting for complex dependencies between parameters the worst-case
performance analysis techniques of SDF-PFSM-SADF tighten the results of
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FSM-SADF. In some cases even, if we use domain parameter upper interval
endpoints with FSM-SADF analysis, we may even underestimate the metric
of interest because we cannot account the “non-monotonic” effect of rates
to temporal behavior of the graph. By this we mean that increasing the
value of a rate in the graph does not necessarily need to lead to a later
completion of the graph’s iteration. Quite the contrary, this may lead to an
earlier completion of an iteration. For the case study the comparison shows
that our results tightens the FSM-SADF throughput estimate by 19.19%
while remaining on the safe side, i.e. conservative.

4.10.2 Tightness of performance bound and technical as-
pects of the analysis

In SDF-PFSM-SADF every scenario is represented by an SDF-PDFG. Each
of these is analyzed in isolation using the techniques presented in Chapter 3
and the results are composed in the final SDF-PFSM-SADF analysis. There-
fore, the conclusions of the discussion on tightness of performance bounds
for SDF-PDF presented in Section 3.8.2 simply carry over into the SDF-
PFSM-SADF context. More precisely, we are as conservative as the worst-
case evaluation matrices of scenarios are. For growing scenario repetition
vector entries the relative estimation error shrinks, i.e. it asymptotically
reaches 0 (cf. Subsection 3.5.4).

Because the worst-case evaluation matrices of scenarios are obtained
from parameterized matrices extracted by manually executing Algorithm 3.1
for each parameterized scenario, so is also the analysis partly manual.

Once the analysis of Chapter 3 has been fully automated, the additional
effort involved to fully automate the analysis of this chapter is negligible. In
particular, in the SDF3 tool, the implementation would entail the develop-
ment of a simple routine that would feed the worst-case scenario evaluation
matrices and the scenario FSM to the existing FSM-SADF Max-plus au-
tomata analysis algorithms.

4.11 Summary

In this chapter, we introduced the PFSM-SADF formalism that combines
FSM with parameterized dataflow as the underlying concurrency model.
An FSM has the natural capability of expressing intricate control logic gov-
erning the application behavior, while parameterized dataflow is very fit for
expressing fine-grained data-dependent application dynamics. In addition,
the domain concept entails a modeling flexibility which allows to represent
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the dependencies between parameters. These dependencies may arise from
a variety of sources, such as an expression in a design environment that
expresses the value of parameter in terms of another. For the SDF-based
specialization of PFSM-SADF we developed corresponding worst-case per-
formance analysis techniques that are able to provide tighter but still con-
servative performance bounds for systems exposing fine-grained dynamism
combined with control than the existing techniques do.



120 Parameterized dataflow scenarios



Chapter 5

Parametric throughput
analysis for SDF-based
parameterized
scenario-aware dataflow
graphs

SDF-based specialization of PFSM-SADF referred to as SDF-based PFSM-
SADF (SDF-PFSM-SADF) MoC is an efficient tool for capturing the fine-
grained data-dependent dynamics of modern streaming application with
intricate control requirements (cf. Chapter 4). The model comes equipped
with the worst-case throughput (and latency) analysis technique developed
in correspondence with its operational semantics where parameter reconfig-
urations occur between activations of different parameterized scenarios as
well as between consecutive activations of the same parameterized scenario.

However, not all applications will always utilize the full operational se-
mantics of SDF-PFSM-SADF. In particular, there may be situations where
parameters can be considered fixed across scenarios, i.e. they do not change
at all or change infrequently. In this chapter, we consider the through-
put analysis of SDF-PFSM-SADF in the presence of such, so called static
parameters. In particular, we propose a parametric throughput analysis
technique that computes the conservative estimate of the graph throughput
as a simple function of SDF-PFSM-SADFG parameters, i.e. rates and actor
firing delays. These functions can then be evaluated in a negligible amount
of time for a given set of parameter values. We base our technique on the

121
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theory of Max-plus automata. We evaluate our approach on an artificial
case study.

The contribution of this chapter has not been (yet) published.

5.1 Introduction

The concept of FSM-based parameterized scenario aware-dataflow (PFSM-
SADF) introduced in Chapter 4 enables succinct modeling of streaming
applications exposing both fine-grained data-dependent dynamics and in-
tricate control requirements. The execution of an application captured in
PFSM-SADF is interpreted as an execution of a sequence of parameterized
scenarios each of which is modeled by a parameterized dataflow graph. The
(parameterized) scenario occurrence patterns are specified by an nondeter-
ministic FSM that abstracts application control requirements.

A particularly important specialization of PFSM-SADF is obtained when
its paramterization concept is applied to SDF [70] as SDF is arguably the
most stable and mature dataflow MoC [16]. We refer to this specializa-
tion as SDF-based parameterized dataflow (SDF-PFSM-SADF) (cf. Chap-
ter 4). SDF-PFSM-SADF comes equipped with worst-case throughput (and
latency) analysis techniques based on the Max-plus algebraic semantics of
SDF [44] and the theory of Max-plus automata [40] that operate in full com-
pliance with the operational semantics of PFSM-SADF, i.e. SDF-PFSM-
SADF. In particular, over sequences of parameterized scenarios, parameters
are allowed to change not only between different parameterized scenarios
but also between consecutive activations of the same parameterized scenario.
We call such parameters dynamic parameters. Recall that the execution of
a parameterized scenario interprets as an execution of an arbitrarily chosen
instance of that parameterized scenario. As mentioned, instances are deter-
mined by configurations, while configurations are constrained to belong to
a subset of the parameter space referred to as the parameterized scenario
domain.

However, in practice, many applications do not utilize the full expres-
siveness of PFSM-SADF, i.e. SDF-PFSM-SADF. In particular, we consider
applications captured in SDF-PFSM-SADF for which, of course, parameter
values are a priori unknown, but once set they remain fixed or change in-
frequently. We call such parameters static parameters. In context of such
restricted semantics of SDF-PFSM-SADF we consider the problem of para-
metric throughput analysis. In particular, given an SDF-PFSM-SADFG,
our objective is to express the throughput of the graph or possibly its con-
servative estimate as a simple function of graph parameters, i.e. graph rates
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and actor firing delays. This is possible because the graph parameters are
deemed static. In case they are not, such a formulation is, of course, not
possible. In particular, we then must resort to the techniques of Section 4.9.

We build on the on the work of [33], that considers the throughput com-
putation problem for a flavor of FSM-SADF with parameterized actor firing
delays expressed as linear combinations of parameters. Note that a SDF-
PFSM-SADF with static parameters is equivalent to a FSM-SADF with
parameterized rates and parameterized actor firing delays which justifies
our starting point choice of [33]. Therefore, by extending the analysis to
SDF-PFSM-SADF, we generalize the initial result of [33] as we are, in the
parlance of FSM-SADF, able to treat FSM-SADF specifications with pa-
rameterized rates (parameterized rates are inherent to SDF-PFSM-SADF)
and parameterized firing delays where these are not restricted to linear
combinations of parameters but to polynomial functions of parameters. To
summarize, with our analysis compared to that of [33] the gain is twofold.

First, we can consider parameterized rates. Rates have a dramatic im-
pact on the dataflow and consequently temporal behavior of a dataflow
graph. Thus, the information on the dependence of graph throughput on
graph rates is of great significance to the designer. E.g., in scientific com-
puting, the number of iterations of some numerical algorithm can be rep-
resented as a graph rate in the corresponding dataflow model. The more
iterations the algorithm performs, the more precise is the result of the com-
putation. However, in a throughput constrained system, the designer may
need to determine what is the minimal number of such iterations that both
the throughput constraint as well as any result precision constraints are
satisfied.

Second, we can consider firing delays given as polynomial functions of
parameters, while the works of [33] and [32] allow only linear functions. In
particular, in the DVFS context of [32] parameters represent scale factors
where the actor firing delay is represented as a product of some constant
worst-case nominal firing delay and the scale factor that accounts for the
processor DVFS setting. This is a linear expression. By allowing a less
limiting pattern, i.e. polynomials, we can express firing delays as polynomial
functions of input parameters to the module the actor implements and so
refine the representation. We motivate by referring to matrix multiplication
and insertion sort case studies of [4] the worst-case execution time of which is
bounded by polynomial functions. This way we avoid the need for a constant
and pessimistic worst-case nominal firing delay that accounts for the “worst-
case input” and we can consequently provide a tighter throughput bound
which results in the increase of the optimization margin at the designer’s
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disposal.
We demonstrate our technique using an artificial case study that also

serves as the running example of this chapter.

5.2 Motivational example

We motivate by showing the benefits our end result could have in the prob-
lem scope of optimal voltage scaling in power-limited systems with real-time
constraints.

Minimizing energy consumption in low-power systems has become a crit-
ical design considerations, especially with the proliferation of portable and
mobile embedded systems. Energy consumption E in CMOS processors de-
pends linearly on the operating frequency f and the quadratically on the
supply voltage VDD as follows [24][32][78][77]

E = C1 · V 2
DD. (5.1)

The frequency f is given by

f =
VDD − Vt

C2 · VDD
=

1

C2
· (1− Vt

VDD
) (5.2)

where C1 and C2 are some constants dependent on hardware characteris-
tics and Vt is the threshold voltage so that VDD ≥ Vt. Equations (5.1)
and (5.2) reveal that controlling the voltage and the operating frequency
provide means to regulate the energy consumption leading to DVFS tech-
niques [25] that are commonly used to develop low power and energy sys-
tems. Furthermore, (5.2) reveals that while lowering the operating voltage,
the maximal possible operating frequency also reduces. Therefore, by re-
ducing voltage we reduce energy but at the expense of longer delays which
adversely affects performance [77]. In real-time systems this may have un-
desirable consequences.

Therefore the crucial step in the design process of power-limited real-
time systems is to determine the DVFS settings of platform processors so
that all real-time constraints are still met.

Consider a dynamic application with a throughput constraint captured
by the SDF-PFSM-SADFG with static parameters shown in Fig. 5.1. The
graph defines two scenarios and an FSM defining scenario ordering. The
internal structure of scenarios is irrelevant here and therefore they are ab-
stracted into hierarchical actors. We assume that all actors are mapped to
separate processors supporting continuous DVFS. Per scenario, computa-
tional requirements of a particular actor are expressed in processor clock
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Fig. 5.1: Motivational example.

cycles (parameter sets {µsP1 ,i} and {µsP2 ,i}) that are themselves (nonlinear)
functions of some design environment parameters κ1, . . . , κN and input sig-
nal parameters κN+1, . . . , κN+M . More formally,

µsPj ,i
= gsPj ,i

(κ1, . . . , κN+M ). (5.3)

Furthermore, we assume that the considered application is an numerical
algorithm the precision of which can be controlled by varying the number
of times particular actors run. The variation is captured using the parame-
terized rate w present in both scenarios

The design task is as follows. Given a precision constraint (equivalently,
the value w), the values of κ1, . . . , κN+M and the values of {µsPj ,i} find the

voltage setting for each of the processors so that the energy consumption is
minimized.

Now, if actor indexed by i operating in sP
j runs µsPj ,i

cycles on a processor

running at frequency fsPj ,i
, then the firing delay of that actor equals

dsPj ,i
=
µsPj ,i

fsPj ,i
. (5.4)

By combining (5.1)-(5.2) with (5.4), we can express the energy consumption
as a result of one firing of actor indexed by i in scenario sP

j as a function of
processor frequency as follows

EsPj ,i
= C1 ·

(
V 2

t

1− C2 · fsPj ,i

)2

. (5.5)
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Equation (5.5) reveals that lowering the operating frequency allows lowering
of voltage which results in reduced energy consumption.

The question is now what the lowest possible frequencies are so that the
application throughput and precision requirements are met.

Assume that the throughput of the application graph can be expressed
as a function of actor firing delays {dsPj ,i} and parameter w as follows

ThFP = h(dsP1 ,1
. . . , dsP2 ,R

, w). (5.6)

In this case determining the processor voltage settings that minimize the
energy consumption equals to solving the optimization problem where the
objective is to minimize the processor frequencies {fsPj ,i} while assuring that

the application throughput and precision constraint is met. The problem is
formulated as follows

minimize {fsPj ,i}

subject to ThFP = h(dsP1 ,1
. . . , dsP2 ,R

, w) ≥ T

w ≥W

dsPj ,i
=
µsP1 ,i

fsP1 ,i

µsPj ,i
= gsPj ,i

(κ1, . . . , κN+M ).

(5.7)

The problem of (5.7) is a typical (nonlinear) optimization problem with T
being the throughput constraint andW being the precision constraint. Here,
we assumed that the problem of (5.7) is solved at design-time. Nevertheless,
one can easily imagine heuristics being developed to address flavors (5.7)
at run-time too. The missing part in (5.7) is the formulation of the graph
throughput as a function of parameters that can be quickly evaluated. To
this formulation we dedicate the remainder of this chapter.

5.3 Related work

To the best of our knowledge the work on parametric throughput analysis1

for dataflow MoCs is relatively scarce 2. Paper [48] introduces a paramet-
ric throughput analysis technique for SDF where (only) actor firing delays
can be parametric. The analysis yields a set of simple expression of these

1Within this chapter, when we use the term “parametric analysis” we mean analysis
considering static parameters.

2Related work on analysis considering dynamic parameters is outlined in Section 4.3.
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parameters, that when evaluated for a particular set of parameter values,
give the throughput value of the input SDF specification. The core of the
technique is a divide & conquer algorithm used in conjunction with state-
space exploration of the graph [49]. However, SDF is a static dataflow MoC
and cannot be used to efficiently capture dynamic streaming applications.
Therefore, throughput analysis of dynamic applications using a SDF variant
that conservatively captures application’s temporal behaviour will incur a
significant amount of pessimism. The work of [33] generalizes the analy-
sis of [48] by considering the parametric throughput analysis problem for
FSM-SADF as a generalization of SDF able to capture dynamic streaming
applications. It adopts the divide & conquer strategy of [48] but, in addi-
tion, with the purpose of improving scalability, recasts it in the context of
the compositional Max-plus-based analysis of SDF/FSM-SADF.

However, both techniques of [48] and [33] can only consider structures
with parameterized actor firing delays, i.e. parameterized rates cannot be
accounted for which significantly hampers the application domain of the
technique. Furthermore, actor firing delays are limited to being constants
or linear combinations of parameters.

The work of [15] reports on work in progress on throughput analysis of
BPDF. Here, rates can be parametric. However, the analysis is applicable
to only acyclic BPDF specifications. Furthermore, the analysis itself (not
BPDF as a MoC) has limited support for dynamic behavior, i.e. no graph
topology reconfiguration is allowed from one graph iteration to the other
(in SDF-PFSM-SADF this is naturally supported by the scenario concept
itself).

5.4 The analysis model

In this section we formally define our analysis model. We consider SDF-
PFSM-SADF. In SDF-PFSM-SADF, every scenario is represented by an
SDF-PDFG, while, as usual, admissible scenarios sequences are defined by
the accompanying scenario FSM.

Furthermore, we allow actor firing delays to be represented as polynomial
functions of parameters.

Fig. 5.2 shows such an SDF-PFSM-SADFG. The structure in the figure
is composed out of two scenarios, namely sP

1 and sP
2 . Scenario sP

1 SDF-
PDFG has two rates that are parameterized with parameter x1 ∈ N>0

and two parameterized firing delays, namely those of actors A1 and A2,
parameterized with parameter x1 too.

In scenario sP
2 one firing delay is parameterized, namely that of actor
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Fig. 5.2: Example SDF-PFSM-SADFG.

A1 as a polynomial function of parameter x1, denoted x2
1 + 4.

Note that although this is typically not the case, for simplicity and
without the loss of generality, here we used one parameter (x1 ∈ N>0) to
parameterize both rates and actor firing delays in both scenarios.

The scenario FSM is defined by two states, namely ξP
1 and ξP

2 and transi-
tions between them. State ξP

1 corresponds to sP
1 , while state ξP

2 corresponds
to sP

2 .

5.4.1 The domain of the analysis model

An SDF-PFSM-SADFG evolves in iterations of its parameterized scenario
instances. Each scenario instance is an SDFG obtained by applying an
arbitrary configuration from the particular domain to the scenario SDF-
PDFG. Therefore, the concept of domain is crucial and in this subsection
we formally define requirements on the domain of our analysis model, i.e.
SDF-PFSM-SADF.

In the context of full operational semantics of SDF-PFSM-SADFG pre-
sented in Section 4.7, it was convenient to define domains per scenario.
However, in the context of this work (as it will become clearer later) it is
more convenient to treat the model through the notion of a unified (com-
posite) SDF-PFSM-SADFG domain

XFP = XsP1
× . . .×XsPK

(5.8)

for an SDF-PFSM-SADFG with K parameterized scenarios.
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For XFP , we require that it is defined in terms of some polynomial func-
tions, where a configuration x ∈ XFP of the SDF-PFSM-SADFG is denoted
as follows:

x = (x1, . . . , xn). (5.9)

Polynomials are a sound choice as approximation theory is centered on
them, i.e. various complex functions can be approximated by polynomials
of high degree [89]. Except that, we do not put any convexity or generalized
convexity restrictions on these functions, but we do require that the feasible
region is compact. A mathematical formulation (borrowed from [94]) is as
follows:

XFP = Z ∩ Ω (5.10)

where
Z = {x :ϕr(x) ≥ βr for r = 1, . . . , R1,

ϕr(x) = βr for r = R1 + 1, . . . , R},
(5.11)

and
Ω = {x : 0 ≤ lj ≤ xj ≤ uj <∞ for j = 1, . . . , n}, (5.12)

and where

ϕr(x) ≡
∑
t∈Tr

αrt

[ ∏
j∈Jrt

xj

]
for r = 0, 1, . . . , R. (5.13)

In (5.13), Tr is an index set for the terms defining ϕr(·) and αrt are real
coefficients for the polynomial terms (

∏
j∈Jrt xj), t ∈ Tr, r = 0, 1, . . . , R.

Note that indices can repeat within each set Jrt. E.g., if Jrt = {1, 1, 2, 3}
then the corresponding polynomial term is x2

1x2x3.
Simply put, XFP is defined using a set of polynomial functions forming

polynomial inequality and equality constraints of (5.11) with an attached
set of bounding or box constraints (5.12).

We exemplify using the running example SDF-PFSM-SADFG of Fig. 5.2.
In this case, parameter x1 defines the configuration x = (x1). The domain
XFP of the SDF-PFSM-SADFG is given as follows:

XFP = {1 ≤ x1 ≤ 5}. (5.14)

The domain specification of (5.14) contains (but not limited to) only one
box constraint. Box constraints give lower and upper bounds of all do-
main parameters. Any additional equality and inequality constraints not
present here would serve the purpose of nonlinearly shaping the Ω of (5.12).
In (5.14), x1 ∈ N>0 as x1 is used to parameterize rates too, but for the anal-
ysis to follow we will use the continuous interval of (5.14) as it by default
includes the feasible values of x1, i.e. 1, 2, 3, 4 and 5.
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5.4.2 Operational semantics of the analysis model

Here we define the operational semantics of our analysis model. By def-
inition, SDF-PFSM-SADF as a specialization of PFSM-SADF evolves in
iterations of its scenario SDF-PDFG instances. The sequencing of scenarios
is constrained by a sublanguage L of SP∗ that is (in the parlance of automata
theory) recognized by the scenario FSM. The execution of a scenario entails
an execution of an arbitrary SDF-PDFG instance of that scenario where the
set of instances is constrained by the SDF-PFSM-SADF domain definition.

Consider a parameterized scenario sequence sP ∈ SP∗ ∩ L of length k

sP = sP
1 , . . . , s

P
k . (5.15)

Recall that in consideration of the operational semantics of SDF-PFSM-
SADF, (5.15) can be written as (4.6). Now using the concept of (composite)
SDF-PFSM-SADFG configuration x ∈ XFP , we can re-write (4.6) as follows

sP = (sP
1 ,x1,1 | . . . | x1,|X

FP
|), . . . , (s

P
k ,xk,1 | . . . | xk,|XFP

|), (5.16)

so that

πsPi
(xi,j) ∈ XsPi

for all i = 1, . . . , k and j = 1, . . . , |XFP | . (5.17)

In (5.17), πsPk
: XFP → XsPk

is the scenario sP
k projection function. This

function, given a SDF-PFSM-SADFG configuration returns the particular
scenario configuration, i.e. values of the composite domain parameters rel-
evant for scenario sP

k . Recall that parameterized scenarios do not have to
share parameters. Therefore, it follows from the operational semantics of
PFSM-SADF/SDF-PFSM-SADF that given two scenario sequences sP

1 and
sP

2 of the same length k, such that

πl(s
P
1 (i))) = πl(s

P
2 (i))) for all i = 1, . . . , k, (5.18)

it does not necessarily hold that

ππl(sP1 (i)))(πr(s
P
1 (i)))) = ππl(sP2 (i)))(πr(s

P
2 (i)))) for all i = 1, . . . , k. (5.19)

This is a straightforward consequence of the intra-scenario nondeterminism,
i.e. a parameterized scenario execution entails the execution of any of its
SDF-PDFG instances. Worst-case performance analysis under the full oper-
ational semantics of SDF-PFSM-SADF has been addressed by Section 4.9.

In this article we consider a restricted operational semantics, where sce-
nario parameters values are a priori unknown, i.e. they are determined at
run-time, but once known they remain fixed or change infrequently.
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Mathematically speaking, we require that for all scenario sequences
sP
m, s

P
n ∈ SP∗ ∩ L such that k = length(sP

m) = length(sP
n),

if πl(s
P
m(i))) = πl(s

P
n(i))) for all i = 1, . . . , k,

⇒ ππl(sPm(i)))(πr(s
P
m(i)))) = ππl(sPn(i)))(πr(s

P
n(i))))

for all i = 1, . . . , k.

(5.20)

With (5.20), an SDF-PFSM-SADFG reduces to an FSM-SADFG with both
parameterized rates and actor firing delays. For this case, we show how
throughput of the specification can be expressed as a simple function of
specification parameters by generalizing the result of [33] for FSM-SADF
graphs including both parameterized rates and parameterized firing delays
expressed as polynomial functions of SDF-PFSM-SADF domain parameters.

5.5 Parametric throughput analysis

5.5.1 Baseline matter

The approach of [33] considers FSM-SADFGs with parameterized actor fir-
ing delays expressed as linear combinations of parameters originating from
a parameter space (graph domain in the parlance of our work) constrained
to a convex polytope.

To illustrate, consider our running example graph of Fig. 5.2 but modi-
fied in a manner that parameterized rates have been set to 1 and the firing
delays expressed as polynomial functions have been upper-bounded by lin-
ear functions. In particular, the firing delay x2

1 + 4 of A1 in sP
2 had been

(conservatively) upper bounded on XFP of (5.14) with 6 · x1 − 1. For com-
pleteness, the structure is shown in Fig. 5.3 along with the linear upper
bound (LUB) for the firing delay of A1 in sP

2 . Domain XFP of (5.14), is a 1-
dimensional convex polytope in parameter x1. It is shown in Fig. 5.4. Now,
we show how to apply the analysis procedure of [33] developed around the
divide & conquer strategy of [48]. Initially, a random configuration xr inside
XFP is selected. For that configuration a maximum cycle mean expression
(MCME) Mxr must be identified. This is achieved as follows. Given xr,
for each scenario SDFG, its parameterized Max-plus matrix is determined
by symbolic execution of the structure. During the execution, whenever
the max operator of Max-plus is applied to two or more parametric de-
pendency vector entries, only the largest among them propagates to the
next step of the symbolic execution. It is straightforward to determine the
largest by simply evaluating each one at xr. For the running example with
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Fig. 5.3: Example SDF-PFSM-SADFG for the analysis of [33].
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Fig. 5.4: Domain of SDF-PFSM-SADFG of Fig. 5.3a.

xr = (x1 = 4), we obtain the following matrices:

Mpar

sP1
(xr) =


x1 −∞ −∞ x1

−∞ x1 + 10 −∞ x1 + 10
x1 x1 + 10 −∞ x1 + 10
−∞ −∞ 0 −∞

 (5.21)

and

Mpar

sP2
(xr) =


0 −∞ −∞ −∞
−∞ 6 · x1 − 1 −∞ 6 · x1 − 1
−∞ 6 · x1 − 1 −∞ 6 · x1 − 1
−∞ −∞ 0 −∞

 . (5.22)

Once all parameterized scenario matrices have been computed, one needs
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Fig. 5.5: Throughput graph of SDF-PFSM-SADFG of Fig. 5.3a.

to construct the parameterized throughput graph of the FSM-SADFG cor-
responding to configuration xr. The graph is constructed in the usual way
as described in [46] using matrices of (5.21) and (5.22) and the scenario
FSM of Fig. 5.2. It is displayed in Fig. 5.5. The parameterized through-
put graph is then evaluated at xr (right hand sides of the graph weight
expressions in Fig. 5.5 are concrete values) to obtain a concrete throughput
graph. Maximum cycle mean (MCM) analysis is performed on the concrete
graph to determine the critical cycle (cycle with bold arrows in Fig. 5.5).
Once the critical cycle is identified, using the relation between the edges in
the parameterized and the concrete throughput graph, the MCM expression
(MCME) Mxr of xr can be extracted. The inverse of the Mxr defines the
throughput expression for xr as follows

Thxr =
1

Mxr

. (5.23)

For our xr,

Mxr =
1

2
· (7 · x1 + 9) (5.24)

and

Thxr =
2

7 · x1 + 9
. (5.25)

In any case, once Mxr had been found for xr, the divide & conquer algorithm
evaluates the throughput ThFP(xc) for each corner configuration xc of the
initial convex polytope (configurations x1 and x2 in Fig. 5.4). When the
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inverse of the throughput of the corner configuration is equal to the MCM
value obtained when evaluating the MCME Mxr for xc, denoted Mxr(xc),
then xc belongs to the same throughput region as xr. If this holds for all
corner points, the polytope is deemed a throughput region with throughput
expression Thxr defined by (5.23). If 1

Th
FP

(xc)
is not equal to Mxr(xc), xc

belongs to some other throughput region. In that case, a new MCME Mxc

is derived for xc and the initial polytope is split into two subpolytopes via
the cutting hyperplane Mxc = Mxr . For each subpolytope, the divide &
conquer algorithm is recursively invoked until all throughput regions have
been identified. We refer the interested reader to [48] for more details.

For our running example, the divide & conquer algorithm defines two
throughput regions denoted with r1 and r2 in the Fig. 5.4. The line 1

2 ·
(7 · x1 + 9) = 10 + x1 divides the original domain into two throughput
regions r1 and r2. As the initial domain is unidimensional, the configuration
xcut = (x1 = 2.2) obtained as a solution of the equation 1

2 ·(7·x1+9) = x1+10
determines the border between the two subregions. In r1, Thx = 1/(x1+10)
for all x ∈ r1 and in r2, Thx = 2/(7 · x1 + 9) for all x ∈ r2.

5.5.2 Problem transformation

The previously described analysis of FSM-SADF with paremeterized actor
firing delays cannot be applied to SDF-PFSM-SADF structures with domain
of type (5.10) due to several reasons.

First, the initial domain must be a convex polytope which is not the
case with the formulation of (5.10). This is because the divide & conquer
procedure of [48] does not apply to domain shapes other than convex poly-
tope.

Second, in [33], actor firing delays are restricted to linear combinations
of parameters and our analysis model allows these delays to be expressed
as polynomial functions of parameters. If we try to consider actor firing
delays posed differently than linear functions of parameters with [33], the
underlying divide and & conquer algorithm would no longer work because
now it would have to deal not with splitting hyperplanes but with splitting
hypersurfaces. A recursive call to the divide & conquer including such
a hypersurface would conflict with the initial requirement that the input
domain must be a convex polytope.

Third, the analysis of [33] does not support parameterized rates that
are inherent to SDF-PFSM-SADFG. In particular, in [33] if rates are kept
constant and actor firing delays are linear combinations of parameters also
the parameterized Max-plus matrix entries will be linear combinations of
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parameters. As the constructed throughput graph has its edge weights ex-
pressed in terms of those entries, they will also be linear combinations of
parameters and so will the generated MCMEs. Because within the divide
& conquer algorithm MCMEs define splitting hyperplanes, due to linearity
of MCMEs are the domain subregions for the next call to divide & con-
quer also convex polytopes and divide & conquer can be continued until all
throughput regions have been identified. However, as follows from the dis-
cussions of Chapters 3 and 4, in the presence of parameterized rates, entries
of parameterized matrices are nonlinear functions of rates (and actor firing
delays) while the divide & conquer of [33] in its current form accepts no
nonlinearities.

To exemplify, we use Algorithm 3.1 to generate the conservative esti-
mates of parameterized matrices of scenario graphs of SDF-PFSM-SADFG
of Fig. 5.2. We obtain three matrices. Two for scenario sP

1 and one for sP
2 .

These matrices are shown in (5.26), (5.27) and (5.28), respectively.

Mpar′
sP1

(πsP1
(x)) =


x2

1 −∞ −∞ x2
1

−∞ x1 + 10 −∞ x1 + 10
x2

1 x1 + 10 −∞ x2
1

−∞ −∞ 0 −∞

, (5.26)

for all x ∈ XFP ∩ (x2
1 ≥ x1 + 10).

Mpar′
sP1

(πsP1
(x)) =


x2

1 −∞ −∞ x2
1

−∞ x1 + 10 −∞ x1 + 10
x2

1 x1 + 10 −∞ x1 + 10
−∞ −∞ 0 −∞

, (5.27)

for all x ∈ XFP ∩ (x2
1 ≤ x1 + 10).

Mpar′
sP2

(πsP2
(x)) =


0 −∞ −∞ −∞
−∞ x2

1 + 4 −∞ x2
1 + 4

−∞ x2
1 + 4 −∞ x2

1 + 4
−∞ −∞ 0 −∞

, (5.28)

for all x ∈ X.

In case of scenario sP
1 SDF-PDFG, during the construction of mapping

Mpar′
sP1

, the initial domain needed to be partitioned into two exclusive parts

defined by the exploration tree of Fig. 5.6. All these matrices contain entries
which are nonlinear functions of domain parameters. Therefore, the analysis
of [33] cannot be applied.
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Fig. 5.6: Exploration tree for scenario sP
1 of the SDF-PFSM-SADFG of

Fig. 5.2.

However, we do not give up on the divide & conquer approach of [33]
and [48]. Instead we immerse ourselves into the task of problem lineariza-
tion. If all matrix entries and constraints stemming from the definition
of XFP could be expressed as linear functions of some substitute variables
spanning some higher-dimensional convex polytope X̃FP derived from XFP ,
then the divide & conquer technique would be applicable in X̃FP . To per-
form the linearization, we will use the reformulation-linearization technique
(RLT) introduced in [94]. Through the addition of variables called lifting
variables, RLT is employed to define linear relaxations for polynomial pro-
gramming problems where the objective function and constraint functions
are polynomials with integer exponents. In particular, when applied, RLT
gives an explicit algebraic characterization of the convex hull of the feasible
region of the original problem.

RLT technique is developed in the context of polynomial programming.
In our analysis model we allow parameterized rates and firing delays ex-
pressed as polynomial functions of parameters. These parameters are in
turn defined over the domain XFP composed of polynomial equalities and
inequalities (cf. (5.11)). However, the entries of our parameterized matrices
can be rational functions of domain parameters. This is a direct conse-
quence of Proposition 3.1 used in calculating the actor responses which
are then composed into a parameterized matrix. Therefore as a preceding
step to RLT, we first need to represent entries of parameterized matrices as
polynomial functions.

5.5.3 Problem polynomization

5.5.3.1 Approach outline

Across scenarios the respective parameterized matrices of the codomain of
Mpar

sPk
, where sP

k ∈ SP are entrywise represented using rational functions of
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parameters. To be able to apply RLT, we need to express the entries of
parameterized matrices as polynomial functions. To do this, as a pre-step,
we use the result of [23] which says that rational (objective) functions can
be turned into polynomial ones by introducing additional variables we call
called polynomization variables.

In particular, for a rational function of original parameters

x 7→ fi(x) :=
pi(x)

qi(x)
(5.29)

with given polynomials pi, qi ∈ R[x], we introduce additional variables xn+i

called polynomization variables with associated constraints

ϕn+i ≡
pi(x)

qi(x)
≤ xn+i, i = 1, . . . ,M . (5.30)

The original SDF-PFSM-SADF domain XFP is now expanded into a struc-
ture we call the polynomized domain X̂FP that is represented in terms of
polynomized configurations obtained by expanding (5.9) as follows

x̂ = (x1, . . . , xn, xn+1, . . . , xn+M ) ∈ Rn+M . (5.31)

Formally,

X̂FP = XFP ∩ {x̂ = (x1, . . . , xn, xn+1, . . . , xn+M ) ∈ Rn+M : (5.32a)

ϕn+i(x̂) ≡ xn+i · qi(x)− pi(x) ≥ 0 for i = 1, . . . ,M (5.32b)

ln+i ≤ xn+i ≤ un+i, for i = 1, . . . ,M (5.32c)

xn+i 7→
pi(x)

qi(x)
for i = 1, . . . ,M}. (5.32d)

Note that the polynomized domain in addition to the usual mathematical
definition of the feasible region (cf. (5.32a), (5.32b) and (5.32c)), contains
the information about the relationship of the polynomization variables and
the original domain variables (cf. (5.32d)). We call this information polyn-
omized domain metadata.

We have now introduced new (polynomization) variables to the problem
to deal with rational functions hampering the use of RLT.

Now we are tempted to simply generate the set MFP = {Mpar

sP1
, . . . ,Mpar

|SP|}
of all configuration to parameterized scenario mappings for a given SDF-
PFSM-SADFG by using Algorithm 3.1 and apply polynomization to each
matrix of cod(Mpar

sPk
) across all sP

k ∈ SP. Needless to say, many polynomiza-

tion variables will be the same across these matrices and are, of course, not
reintroduced.
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However, the process of MFP generation is unnecessarily demanding in
the context of SDF-PFSM-SADF with static parameters. Instead of gener-
ating MFP , in the spirit of the divide & conquer algorithm of [33], we wish
to construct these matrices on-the-fly, i.e. when needed given a particu-
lar configuration of the linearized domain obtained by application of RLT.
However, to construct the linearized domain via RLT, we need to obviously
know the polynomized domain which boils to knowing the polynomization
variables. We now show how to determine polynomization variables without
actually generating the parameterized scenario matrices.

5.5.3.2 Determining polynomization variables

To see how to determine the polynomization variables, we first need to re-
mind ourselves of the semantics of the parameterized scenario matrix entry,
i.e. [Mpar

sPk
(πsPk

(x))]m,n. This entry specifies the minimal timing distance be-

tween token im in the current iteration of the scenario sP
k SDF-PDFG and

token in in the previous iteration. This distance is determined by the most
tardy path among the paths of the graph connecting the producing actors
of in and im. The tardiness of the path can be expressed using a delay-ratio
abstraction as we witnessed in Chapter 3. The delay is determined by the
firing delays of path actors, while the ratio is determined by the firing delay
of the slowest actor in the path. As seen in Chapter 3, the involved firing
delays are scaled where the scale factors are defined by products of channel
rate fractions.

We exemplify using the graph of Fig. 5.7a. The graph in the figure
contains only one path, namely (A1, A2) − (A2, A3). We compute graph
actor responses in dependence on the availability times of initial tokens
after the kth graph iteration that form the timestamp vector

γ(k) = [ti1 , ti2 , ti2 ]T . (5.33)

Actor A1 has no input dependencies and can fire at a period determined by
its own firing delay. Thus, the timestamps of tokens produces by A1 are
given as follows

τ(A1, n) = [a1
⊗n,−∞,−∞]⊗ γ(k). (5.34)

In consideration of actor A2 (as follows from Proposition (3.1)), we need to
differ between two cases

C1 ≡ p1 · a2 ≥ p2 · a1, and (5.35)

C2 ≡ p1 · a2 ≤ p2 · a1. (5.36)
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(b) Exploration tree for the structure.

Fig. 5.7: Structure used to explain polynomization and RLT.

Using (5.36) and (5.34), we obtain

τ(A2, n) � [a2 ⊗ a1
⊗(1+

p2
p1
·n)
, a2
⊗n,−∞]⊗ γ(k). (5.37)

For A3 using (5.37) we write

τ(A3, n) � [a1 ⊗ a2 ⊗ conv(a1
⊗(

p2
p1
·d p4
p3
·ne)

, a3
⊗n),

conv(a2
⊗d p4

p3
·ne
, a3
⊗n), a3

⊗n]⊗ γ(k).
(5.38)

To obtain a closed form solution for the convolution defining the second
entry of the dependency vector, we need to consider two cases

C3 ≡ p3 · a3 ≥ p4 · a2, (5.39)

C4 ≡ p3 · a3 ≤ p4 · a2. (5.40)

With (5.40), (5.38) transforms to

τ(A3, n) � [a1 ⊗ a2 ⊗ conv(a1
⊗(

p2
p1
·d p4
p3
·ne)

, a3
⊗n),

a3 ⊗ a2
⊗(1+

p4
p3
·n)
, a3
⊗n]⊗ γ(k).

(5.41)
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Now to account for the remaining convolution in the dependency vector
of (5.41), we need to consider two cases

C5 ≡ p1 · p3 · a3 ≥ p2 · p4 · a1, (5.42)

C6 ≡ p1 · p3 · a3 ≤ p2 · p4 · a1. (5.43)

with (5.43), (5.41) transforms to

τ(A3, n) � [a1 ⊗ a2 ⊗ a3 ⊗ a1
⊗ p2
p1
·(1+

p4
p3
·n)
,

a3 ⊗ a2
⊗(1+

p4
p3
·n)
, a3
⊗n]⊗ γ(k)

= [a1 ⊗ a2 ⊗ a3 ⊗ a1
⊗ p2
p1 ⊗ a1

⊗ p2
p1
· p4
p3
·n
,

a3 ⊗ a2
⊗(1+

p4
p3
·n)
, a3
⊗n]⊗ γ(k).

(5.44)

On the other hand, with (5.42), (5.41) transforms to

τ(A3, n) � [a1 ⊗ a2 ⊗ a1
⊗ p2
p1
·(1+

p4
p3

) ⊗ a3
⊗n,

a3 ⊗ a2
⊗(1+

p4
p3
·n)
, a3
⊗n]⊗ γ(k)

= [a1 ⊗ a2 ⊗ a1
⊗ p2
p1 ⊗ a1

⊗ p2
p1
· p4
p3 ⊗ a3

⊗n,

a3 ⊗ a2
⊗(1+

p4
p3
·n)
, a3
⊗n]⊗ γ(k).

(5.45)

Equations (5.44) and (5.45) produced by the exploration of bold paths of
the exploration three of Fig. 5.7b reveal that the temporal distances be-
tween tokens are indeed defined by responses of actors along the graph path
connecting the producing actors of those tokens that are scaled using rate
fractions of channels defining the path. E.g. if we consider the firsts depen-
dency vector entries of (5.44) and (5.45) that encode the temporal distance
between i3 and i1, we see that this distance is determined by a delay-ratio
abstraction, where the delays and rates are determined by firing delays of
actors scaled by products of path channel rate fractions. In case of (5.44),
A1 is the slowest actor in the path and therefore the ratio equals to the
firing delay of A1 scaled by the product of rate fractions encountered in the
path, i.e. p2

p1
· p4p3 . The delay is contributed to by all path actors with A1’s

firing delay scaled with p2
p1

. In case of (5.45), A3 is the slowest and therefore
the ratio equals to the firing delay of A3 which needs not to be scaled as A3

is the producing actor of i3. The delay is contributed by all actors with the
firing delay of A1 scaled with p2

p1
· p4p3 .

These considerations reveal that no matter what the constellation of
relative actor speeds is, the expressions for dependency vector elements will
involve products of path channel rate fractions and actor firing delays.
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ALGORITHM 5.1: Generation of the polynomized domain.

1 Function PolynomizeDomain(SP, XFP)

input : Set SP

input : SDF-PFSM-SADFG domain XFP

output: Polynomized SDF-PFSM-SADFG domain, X̂FP

2 X̂FP ← XFP ;

3 i← 1;

4 foreach sPk ∈ SP do
5 foreach channel ∈ CsP

k
do

6 chann src rate ← SrcRate(channel) ;

7 chann dst rate ← DstRate(channel) ;

8 if ExpressionType(chann dst rate/chann src rate) = type rational
then

9 if NotIncluded( chann dst rate / chann src rate) then
10 xn+i ← chann dst rate / chann src rate;
11 li+n = LowerBound(chann dst rate / chann src rate);
12 ui+n = UpperBound(chann dst rate / chann src rate);

13 AddPolynomizationVar(X̂FP , xn+i,
xn+i · chann src rate− chann dst rate ≥ 0,
li+n ≤ xn+i ≤ ui+n) ;

14 i← i+ 1;

15 end if

16 end if

17 end foreach

18 end foreach

19 return X̂FP;

20 end

Therefore, to polynomize entries of Mpar

sPk
(πsPk

(x)) we need to introduce

as many polynomization variables to the original domain as there are ratio-
nal rate fractions in the sP

k SDF-PDFG.

5.5.3.3 Domain polynomization

After determining polynomization variables for all scenarios graphs of an
SDF-PFSM-SADFG, we can derive the desired parameterized version of
the original domain. The overall procedure is specified by Algorithm 5.1.
The input to the procedure are all scenario graphs of the SDF-PFSM-
SADFG and the initial domain. The output of the algorithm is the polyn-
omized SDF-PFSM-SADFG domain. We consider fractions of destination
(cf. Line 7) and source rates (cf. Line 6) for all channels (cf. Line 5) of
each scenario SDF-PDFG (cf. Line 4). If this fraction is rational in terms
of parameters (cf. Line 8) and not already considered (cf. Line 9) a new
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polynomization variable is generated (cf. Line 10) for which lower and up-
per bounds are calculated (cf. Lines 11 and (12)). We must produce these
bounds as RLT requires that all variables must be box constrained (note
that box constraints are specified in the definition of the polynomized do-
main in (5.32c)). Finally, the polynomization variable xn+i is added to the
polynomized domain X̂FP along with the associated constraints in Line 13.
In the context of SDF-PFSM-SADF, where polynomization variables stand
for fractions of rates that are always positive and represented as products
of constant and parameters, we use the following simple relations to obtain
the box constraints of a polynomization variable xn+i of (5.30):

ln+1 =
min(pi(x))|x∈X

FP

max(qi(x))|x∈X
FP

, un+1 =
max(pi(x))|x∈X

FP

min(qi(x))|x∈X
FP

. (5.46)

For the example graph of Fig. 5.2 with its initial domain of (5.14), by
introducing the polynomization variable x2 7→ 1

x1
, the polynomized domain

takes the form
X̂FP = {1 ≤ x1 ≤ 5,

x1 · x2 − 1 ≥ 0

0.2 ≤ x2 ≤ 5,

x2 7→
1

x1
}.

(5.47)

However, for the sake of simplicity of presentation, we take advantage of
having performed the exploration of Algorithm 3.1 beforehand and obtained
the matrices of (5.26), and (5.27). We observe that in (5.26) and (5.27)
this fraction does not appear. This is due to the fact that actor A0 in both
scenario graphs fires only once within an iteration and therefore all tokens
that A2 consumes within an iteration are the result of a single A0 firing
and the fraction 1

x1
plays no role. Therefore, for the example SDF-PFSM-

SADFG we can freely proceed with

X̂FP = XFP . (5.48)

5.5.4 Problem linearization

5.5.4.1 Approach outline

The polynomized domain mathematically formulated in (5.32) inherits all
the properties of the initial domain defined in (5.10). In particular, it only
extends the original domain by introducing the polynomization variables
and their attached constraints to polynomize rational functions encountered
as entries of parameterized scenario matrices.
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Given an SDF-PFSM-SADFG and its polynomized domain, we now need
to define a way how to linearize both the polynomized domain and all the
parameterized matrices entries without knowing them beforehand.

What comes to our rescue is the RLT technique of [94] that is able to
give an explicit algebraic characterization of the convex hull of the feasible
region of the input space.

We define our linearization space as follows.

L = {x̂ :ϕm(x̂) ≥ 0,m ∈ N0,

x̂ ∈ X̂FP}.
(5.49)

In (5.49), ϕm(x̂) stands for a parameterized scenario matrix entry. There-
fore, L consists of all entries of parameterized matrices of all SDF-PFSM-
SADF scenarios and the associated polynomized domain itself. Note that
after polynomization had been applied, ϕm(x̂) denotes a polynomial func-
tion in X̂FP .

Now, denote Λ = {1, . . . , n + M} (the meaning of n and M stems
from (5.31)) and let δ be the maximum degree of any polynomial appearing
in L of (5.49) (note again that L includes X̂FP). Define Λ = {Λ, . . . ,Λ}
to be composed of δ replicates of Λ. Furthermore, let Jl ⊆ Λ be a set of
indices for lower bound factors (note that the same index i may occur more
than once in Jl). Similarly, let Ju ⊆ Λ be a set of indices for upper bound
factors.

Then, in order to construct an explicit algebraic characterization of the
convex hull of the feasible region of (5.49) the RLT procedure begins by
generating implied constraints of the type∏

j∈Jl

(xj − lj)
∏
j∈Ju

(uj − xj) ≥ 0, (5.50)

where Ju ⊆ Λ is a set of indices for upper bounding factors and Jl ⊆ Λ is the
set of indices for lower bounding factors where |Jl ∪ Ju| = δ. This addition
of implied constraints to L of (5.49) is called the reformulation phase. The
number of distinct constrains of type (5.50) is given by

T =
δ∑

k=0

(
n+M + k − 1

k

)
·
(
n+M + (δ − k)− 1

(δ − k)

)
. (5.51)

After the addition, let us substitute

XJ =
∏
j∈J

xj , for all J ⊆ Λ, (5.52)
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where the indices in J are assumed to be sequenced in nondecreasing order
and where X{j} ≡ xj for all j ∈ Λ and X∅ ≡ 1. This phase is called the
linearization phase as with the substitution of (5.52) all inequalities and
equalities contained in (5.49) expanded with (5.50) are now linear in the
variables XJ that we call the lifting variables. The number of X-variables
of (5.52) besides X{j} and X∅ is

L =

(
n+M + δ

δ

)
− (n+M + 1). (5.53)

To summarize, when RLT of (5.50) and (5.52) is applied to the space L
of (5.49) defined over X̂FP , L transforms to the linearized space L̃ defined
as follows

L̃ = {x̃ :ϕ̃m(x̂) ≥ 0,m ∈ N0,

x̃ ∈ X̃FP}
(5.54)

Notation x̃ is used to denote a linearized configuration defied as follows

x̃ = (x̂, XJ1 , . . . , XJL). (5.55)

The linearized configuration x̃ belongs to the linearized domain X̃FP that is
derived from X̂FP by the application of RLT to L of (5.49) and is specified
as follows

X̃FP = {x̃ = (x̂, XJ1 , . . . , XJL) ∈ Rn+M+L : (5.56a)

ϕ̃r(x̃) ≥ βr for r = 1, . . . , R1, (5.56b)

ϕ̃r(x̃) = βr for r = R1, . . . , R, (5.56c)

ϕ̃n+i(x̃) ≥ 0 for i = 1, . . . ,M, (5.56d)

ϕ̃t(x̃) ≥ 0 for k = 1, . . . , T (5.56e)

li ≤ xi ≤ ui for i = 1, . . . , n, (5.56f)

li ≤ xi ≤ ui for i = n+ 1, . . . , n+M, (5.56g)

lJj ≤ XJj ≤ uJj for j = 1, . . . , L, (5.56h)

xn+i 7→
pi(x)

qi(x)
for i = n+ 1, . . . n+M, (5.56i)

XJj 7→
∏
i∈Jj

xi, for j = 1, . . . , L, i = 1, . . . , n+M}. (5.56j)

The linearized domain inherits all the constraints of X̂FP (cf. (5.56d)
and (5.56g)) and transitively from XFP (cf. (5.56b), (5.56c) and (5.56f)).
The difference is that these constraints are now linearized and expressed



5.5. Parametric throughput analysis 145

in terms of x̃. Together with the implied constrains (cf. (5.56e)) and the
box constraints defined for lifting variables (cf. (5.56h)), X̃FP now forms the
algebraic characterization of the convex hull of the original feasible region
of XFP . The box constraints for the lifting variables are simply derived from
the box constrains of the X̂FP variables defining the substitution of (5.52).
In addition, the linearized domain, contains meta-data, i.e. the information
of the substitutions made on the road from XFP via X̂FP to X̃FP (cf. (5.56i)
and (5.56j)).

Now again one might be tempted to apply RLT after deriving all param-
eterized matrices using Algorithm 3.1. This way, the space of (5.49) is fully
defined and RLT can be straightforwardly applied via (5.50) and (5.52).
Recall however that within the divide & conquer algorithm we wish to con-
struct these matrices on-the-fly and therefore, we do not a priori know how
the linearization space of (5.49) looks like. Thus, we need to apply RLT on-
the-fly too during the process of determining the parameterized matrix for
a linearized configuration x̃. The problem is however, that without knowing
the maximum degree of polynomials appearing in L we cannot construct x̃
either. Hence, the crux of the matter is determining δ.

5.5.4.2 Determining δ

We once again consider the structure of Fig. 5.7a and the actor responses
computed for the structure that are expressed as scalar products of the
dependency vector and the initial token timestamp vector. These vectors
are used to construct the parameterized matrix by evaluating them for n
which equals to the repetition vector entry for that actor. Dependency
vector entries are polynomial functions. Therefore, we need to determine
the maximal degree among these polynomials. Consider the response of
actor A3 of (5.44). In particular, consider the first entry of the dependency
vector. This entry encodes the minimal temporal distance between token
i3 and initial token i1. It is defined by the path (A1, A2) − (A2, A3) and
therefore takes into account all rate fractions encountered along the path.
Thus the polynomial is at least of the degree of the product of all rate
fractions along the path (we call this degree the path degree) increased by the
degree of the (possibly polynomial) expression that defines the actor firing
delay itself (we call this degree the actor degree). The other contributing
factor is n which at the moment of the construction of the parameterized
matrix takes the value of the repetition vector entry of A3. Therefore, the
degree of any entry of the dependency vector defining the response of an
actor at the iteration boundary cannot be greater than the maximum degree
of actor’s repetition vector entry (we call this degree the repetition vector



146 Parametric throughput analysis for SDF-PFSM-SADFGs

entry degree) entry increased by the maximal degree of any graph path
leading to that actor increased by the actor degree.

With this in mind, we give the procedure to determine δ. It is specified
in Algorithm 5.2.

The inputs to the algorithm are all scenario SDF-PDFGs of the SDF-
PFSM-SADFG and the polynomized domain of the SDF-PFSM-SADFG.
The output is the required maximal degree of any polynomial appearing in
L. The algorithm iterates over all scenario SDF-PDFGs (cf. Line 3). For
each scenario graph, first all feedback loops are cut, rendering it acyclic (cf.
Line 4). This can be done because we consider only graphs that are acyclic
within an iteration (cf. Requirement 3.1). In such graphs, due to consis-
tency, rates on feedback channels (channels with initial tokens) are constant,
and therefore do not influence the degree of polynomials encountered during
parameterized Max-plus matrix generation and can be disregarded in the
scope of Algorithm 5.2. Now, within the acyclic scenario specification, we
consider all paths (cf. Line 7). For a path, we consider all its channels (cf.
Line 10). For each considered channel, we fix its source actor (cf. Line 11)
and then consider how it influences all the actors along the path. First we
check whether the considered actor has a self-edge or not (cf. Line 13). If
it does not, it only influences the downstream actors by an amount of de-
lay equal to its firing delay and therefore only the degree of its firing delay
needs to be accounted for (cf. Line 27). If it does have a self-edge then it
influences the responses of the downstream actors by its firing delay scaled
by products of channel rate fractions. The influence needs to be accounted
for each downstream actor separately (cf. Line 18). For each channel of
the subpath defined by the currently considered actor (SrcActor) and the
sink actor, we check whether the channel has parameterized rates or not
(cf. Line 19). If it does, the degree of the subpath polynomials is increased
by one (cf. Line 20) to account for one additional factor in the rate frac-
tion product that scales the output of the considered actor to input of the
currently considered downstream actor (DstActor). Here we also account
the for the value of n for which particular dependency vectors are finally
evaluated before they are collected into the parameterized matrix. For the
SrcActor this n equals to the repetition vector entry of the considered
downstream actor. Therefore, the path degree is adjusted accordingly (cf.
Line 22). Initially the repetition vector entry of the considered actor itself
needs to be accounted. This entry multiplying its firing delay defines the
parameterized matrix diagonal entries (cf. Line 15).

Finally, after all paths of all scenario graphs have been accounted for,
one needs to take also the maximal degree of the polynomial appearing in
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ALGORITHM 5.2: Determination of maximal degree of any poly-
nomial of L.
1 Function MaxDegree(SP, X̂FP)

input : Set SP

input : Parameterized domain X̃FP

output: Max degree δ

2 δ ← 0 ;

3 foreach sPk ∈ SP do
4 G ← ConvertToAcyclic(sPk ) ;

5 Paths ← GetAllPaths(G);
6 path ← null;
7 while path ← GetNextPath(Paths, path) do
8 channel ← null;
9 pathdegree ← 0;

10 while channel ← GetNextChannel(path, channel) do
/* Consider the propagation of this actor along the

path */

11 SrcActor ← GetSrcActor(channel);
12 subpathdegree ← 0 ;

13 if HasSelfEdge(SrcActor) then
/* Account for diagonal matrix entries */

14 tmp ← PolyDeg(GetFirDelay(SrcActor) ·
GetRVEntry(SrcActor)) ;

15 pathdegree ← max(pathdegree, tmp) ;

16 tmpchannel ← channel;
17 subpathdegree ← PolyDeg(GetFirDelay(SrcActor)) ;

18 repeat
19 if HasParametricRates(tmpchannel) then
20 subpathdegree ← subpathdegree + 1;

/* Add the degree of the repetition vector

entry of the dest */

21 DstActor ← GetDstActor(channel)
22 subpathdegree ← subpathdegree + PolyDeg(

GetRVEntry(DstActor))
23 end if

24 until tmpchannel ← GetNextChannel(path, tmpchannel);
/* Done with propagation of this actor */

25 pathdegree ← max(pathdegree, subpathdegree) ;

26 else
/* Account firing delay only */

27 pathdegree ← max(pathdegree,
PolyDeg(GetFirDelay(SrcActor))) ;

28 end if

29 end while

30 end while
31 δ ← max(δ, pathdegree);

32 end foreach

33 δ ← max(δ, PolyDeg(X̂FP));

34 return δ;

35 end
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the polynomized domain X̂FP into account (cf. Line 33).
Algorithm 5.2 results in a degree that in reality might be lower than

the actual maximal degree. In theory of RLT, using any higher degree is
perfectly acceptable. Still the drawback is that then the relaxation size will
be larger than necessary [74].

5.5.4.3 Domain linearization exemplified

We now apply RLT to the domain of our example SDF-PFSM-SADFG of
Fig. 5.2. The application of Algorithm 5.2 yields δ = 2. The linearized
domain is given as follows:

X̃FP = {1 ≤ x1 ≤ 5,

x̃ : ϕ̃t(x̃) ≥ 0, for t = 1, . . . , 3

1 ≤ X11 ≤ 25,

X11 7→ x1 · x1}.

(5.57)

where
x̃ = (x1, X11). (5.58)

In (5.57), ϕ̃t stands for the set of linearized implied constraints obtained
during the reformulation phase of (5.50) and afterwards linearized during
the linearization phase of (5.52) using lifting variable X11. There are in
total 3 such constraints given as follows:

Jl = {1, 1}, Ju = ∅ :[(x1 − 1)(x1 − 1)] ≥ 0

→ X11 − 2 · x1 + 1
, (5.59)

Jl = ∅, Ju = {1, 1} :[(5− x1)(5− x1)] ≥ 0

→ X11 − 10 · x1 + 25
, (5.60)

and
Jl = {1}, Ju = {1} :[(x1 − 1)(5− x1)] ≥ 0

→ −X11 + 6 · x1 − 5
. (5.61)

5.5.5 Divide and conquer

We now fully specify the procedure for parametric throughput analysis. We
start from the top-level. In particular we adapt the divide & conquer algo-
rithm of [48] to fit our purpose. Its specification is given by Algorithm 5.3.
The inputs to the algorithm are the SDF-PFSM-SADFG itself, its linearized
(sub)domain and the reference to the result set. First, a random configu-
ration in X̃FP is selected (cf. Line 3). For that configuration we then
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ALGORITHM 5.3: Adapted divide & conquer algorithm of [48].

1 Function DivideAndConquer(G, X̃FP, ref Mcmes)
input : SDF-PFSM-SADFG G
input : Linearized (sub)domain X̃FP of G
output: Set of MCM expressions, denoted Mcmes

2 bBranchingNode ← false;

3 x̃r ← GetRndConf(X̃FP);

4 Mx̃r ← ComputeMCME(G, X̃FP,x̃r);

5 Vertices ← GetVertices(X̃FP);

6 foreach x̃ci ∈ Vertices do
7 if Mx̃r (x̃c) 6= 1/ComputeThroughput(x̃ci) then

8 Mx̃ci
← ComputeMCME(G, X̃FP, x̃ci) ;

9 bBranchingNode ← true;

10 X̃ ′FP ← X̃FP ∪ {Mx̃r −Mx̃ci
} ;

11 X̃ ′′FP ← X̃FP ∪ {Mx̃ci
−Mx̃r}

12 DivideAndConquer(G, X̃ ′FP, Mcmes);

13 DivideAndConquer(G, X̃ ′′FP, Mcmes);

14 end if

15 end foreach
16 if bBranchingNode = false then

17 AddtoResultSet(Mcmes, Thx̃r = 1
Mx̃r

, X̃FP);

18 end if

19 end

determine the corresponding MCME (cf. Line 4). If the throughput of all
corner configurations (vertices) of the polytope X̃FP is equal to the inverse of
Mx̃r(x̃ci), then the input (sub)domain X̃FP defines a throughput region and
the inverse of Mx̃r is the desired throughput expression for that region, i.e.
Thx̃r . Throughput expression Thx̃r is added to the result set (cf. Line 17).
If not, a splitting hyperplane between x̃r and x̃ci is defined as Mx̃r = Mx̃ci
where Mx̃ci

is the MCME valid for x̃ci and calculated by the call of Line 8.
The splitting plane splits the original domain into two subdomains for which
the search is recursively continued (cf. Lines 12 and 13) until all throughput
regions are identified. The throughput for an arbitrary configuration x̃r is
computed by employing the techniques of Section 4.9 but in consideration
of a single configuration, i.e. x̃r.

5.5.6 Deriving MCME of a configuration

The key part of the divide & conquer algorithm is the ComputeMCME func-
tion that returns the MCME for some configuration of the linearized SDF-
PFSM-SADFG domain. Adopted from [33] and recast into the context
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ALGORITHM 5.4: Adapted ComputeMCME algorithm of [33] for
MCME computation.

1 Function ComputeMCME(G, X̃FP, xr)
input : SDF-PFSM-SADFG G
input : Domain X̃FP of G
input : Configuration x̃r in X̃FP

output: MCME Mx̃r for x̃r

2 foreach sPk ∈ SP do
3 AddtoSet(SetofParameterizedMatrices, GetLinearizedParamMat(sPk , x̃r,

X̃FP))

4 end foreach
5 PTG ← ConstructPTG(SetofParameterizedMatrices, G) ;

6 CTG ← EvaluatePTG(PTG);
7 criticalCycle ← MCM(CTG) ;

8 foreach cycle ∈ criticalCycle do
9 Mx̃r ← Mx̃r + GetEdgeWeight(cycle, PTG) ;

10 end foreach
11 Mx̃r ← Mx̃r/ length(cycle);
12 return Mx̃r;

13 end

of SDF-PFSM-SADF it is specified by Algorithm 5.4. The input to the
algorithm is the SDF-PFSM-SADFG itself, its linearized domain and the
configuration for which the MCME is to be determined. This MCME is
the output of the algorithm. First, for all scenarios graphs their respective
linearized parameterized Max-plus matrices are constructed (cf. Line 3).
These matrices are valid for the configuration of consideration. Then, using
the scenario FSM and these matrices, the linearized parameterized through-
put graph of the considered SDF-PFSM-SADFG is constructed (cf. Line 5)
and evaluated at x̃r (cf. Line 6). The purpose of the step is to identify the
critical cycle of the starting linearized parameterized throughput graph via
MCM analysis of the concrete throughput graph (cf. Line 7). Thereafter,
using the correspondence between edges in the linearized parameterized and
concrete throughput graph, the weight of the critical cycle can be computed
as a parametric expression in X̃FP (cf. Line 9). The final Mx̃r is produced
by dividing the result of Line 9 with the cycle length (cf. Line 11).

5.5.7 Deriving the parameterized scenario matrix for a pa-
rameter space point

The crucial part of Algorithm 5.4 is the routine GetLinearizedParamMat

that given a configuration x̃r returns the associated linearized parameter-
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ized matrix of the considered scenario SDF-PDFG. The specification of the
routine is given by Algorithm 5.5.

The algorithm is a simplified version of Algorithm 3.1. Simplified be-
cause there is no need for recursive calls present in Algorithm 3.1. Here, the
domain needs not to be split as using the configuration of interest we can im-
mediately resolve all splitting options that emerge from the considerations
related to Max-plus convolutions and Max-plus superposition.

The inputs to the algorithms are the scenario SDF-PDFG, the linearized
domain of the superordinate SDF-PFSM-SADFG and the configuration un-
der consideration. The output is the linearized parameterized matrix of
the scenario graph valid for the given configuration. As in Algorithm 3.1,
we compute one iteration of the parameterized graph using its quasi-static
schedule (cf. Line 2). Actors are considered in the order they appear in
the quasi-static schedule (cf. Line 3). According to the Max-plus superpo-
sition principle we can consider one input channel at a time (cf. Line 7).
The input is represented, as usual, by the Max-plus dependency vector and
a convolution needs to be performed between the impulse response of the
considered actor and all entries of the input dependency vector (cf. Lines 10
and 11). As a Max-plus convolution gives two options to proceed with, in
Algorithm 3.1 the initial domain is split into two exclusive parts and the
exploration is recursively continued. Here, as we know the configuration of
interest, there is no need for that. In particular, we determine which the op-
tion of interest using the configuration is and proceed only with that option
(cf. Line 12). Once all the actor input channels have been considered in this
manner, we now need to superpose the contributions of different input chan-
nels. In Algorithm 3.1 this step included further partitioning of the initial
domain. Here the same argument holds as with the Max-plus convolution.
We need not to partition, as by knowing the configuration of interest, we
only proceed with the relevant case. In particular, having all the input con-
tribution dependency vectors, we construct the output dependency vector
as a vector whose entries are the maximal dependency vector entries across
all corresponding input dependency vector entries. As in Algorithm 3.1, we
use the delay-ratio abstraction, i.e. we choose the maximal delay and ratio
across all input dependency vector entries (cf. Lines 18 and 19). After all
actors in the quasi-static schedule have been processed, we simply evaluate
and collect the responses of initial token producing actors into the matrix
Mpar′

G (cf. Line 25). Thereafter, we polynomize it (cf. Line 26) so we can
finally linearize it in terms of lifting variables of the linearized domain (cf.
Line 27). During both steps, we make use of the domain metadata that
specifies all the substitutions.
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ALGORITHM 5.5: Derive parameterized Max-plus matrix of a pa-
rameterized scenarios for a linearized configuration.

1 Function GetLinearizedParamMat(G, X̃FP, x̃r)
input : Scenario SDF-PDFG G
input : Linearized domain X̃FP

input : Configuration x̃r
output: M̃par′

G - RLT linearized version of matrix Mpar′
G (x̃r)

2 Qss ← GetQss(G);
3 n ← NumofInitialTok(G);
4 while curr actor ← GetNextActor(Qss, curr actor) do
5 h ← GetImpuseResponse(curr actor) ;

6 output channels ← GetOutputChannels(curr actor);
7 curr actor contributions ←

CreateArrayofInputContributions(curr actor);
8 while currinchan ← GetNextInChan(curr actor, currinchan) do
9 for i← 1 to n do

10 currinchandep ← T(currinchan, i);
11 response ← maxplus convolution(currinchandep, h)

12 response pruned ← EvaluateAndPrune(response, X̃FP, x̃r);
13 curr actor contributions(currinchan,currinchandep) ←

response pruned;
14 i← i+ 1;

15 end for

16 end while
/* Completed all input contributions, proceed with

superposition */

17 for i← 1 to n do
18 delay ← PruneDelays(curr actor contributions(:,currinchandep)

, x̃r) ;

19 ratio ←
PruneRatios(curr actor contributions(:,currinchandep)), x̃r)
;

20 T(output channels, i) ← (delay,ratio);
21 i← i+ 1;

22 end for
23 Update(T, output channels) ;

24 end while
25 Mpar′

G ← ConstructMatrix(T, G, Qss);

26 M̂par′
G ← PolynomizeMatrix(Mpar′

G , X̃FP);

27 M̃par′
G ← LinearizeMatrix(M̂par′

G , X̃FP);

28 return M̃par′
G ;

29 end
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Fig. 5.8: Linearized domain X̃FP (cf. (5.57)) of the example SDF-PFSM-
SADFG of Fig. 5.2

5.6 Evaluation

5.6.1 Case study

We now show how do derive all the throughput regions and associated
throughput expressions using an artificial (but representative) case study
application captured by the SDF-PFSM-SADFG of Fig. 5.23.

To do so, we apply the divide & conquer procedure of Algorithm 5.3. The
linearized domain of (5.57) that alongside the SDF-PFSM-SADFG itself is
the input to the procedure is shown in Fig. 5.8.

From the figure, we see that X̃FP defines a convex hull of the original fea-
sible region (domain) of the SDF-PFSM-SADFG defined by positive integer
points (recall that x1 is used to parameterize rates too and thus is limited
to a subset of positive integers) of the curve X11 = x1 · x1 and depicted
using a dashed line. All linearized configurations not being positive integer
points of this curve are not feasible in the graph because for those config-
urations X11 6= x1 · x1 or x1, X11 6∈ N>0. However, the divide & conquer
must consider the entire relaxation of the feasible region.

3Note that future work is needed to add more complete realistic case studies.
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Fig. 5.9: Linearized parameterized throughput graph for x̃r.

It starts by selecting a random configuration x̃r ∈ X̃FP . Let x̃r = (x1 =
3, X11 = 10). First, we compute the linearized parameterized scenario sP

1

and sP
1 matrices using Algorithm 5.5.

These matrices take the form

M̃par′
sP1

(x̃r) =


X11 −∞ −∞ X11

−∞ x1 + 10 −∞ x1 + 10
X11 x1 + 10 −∞ x1 + 10
−∞ −∞ 0 −∞

 (5.62)

and

M̃par′
sP2

(x̃r) =


0 −∞ −∞ −∞
−∞ X11 + 4 −∞ X11 + 4
−∞ X11 + 4 −∞ X11 + 4
−∞ −∞ 0 −∞

 . (5.63)

and represent conservatives estimates of matrices Mpar

sP1
(x̃r) and Mpar

sP2
(x̃r),

respectively. This is because Algorithm 5.5 uses Propositions 3.1 and 3.2
when deriving them.

The matrices are now used to construct the linearized version of the
parameterized throughput graph. The structure is shown in Fig. 5.9 where
the critical cycle is depicted using bold arrows. From the throughput graph
we can determine (bound) the linearized MCME for x̃r. In particular,
M̃xr ≤ 1

2 ·(X11+x1+14). In the next step of the divide & conquer one needs
to determine the throughput of the corner points x̃1 = (x1 = 1, X11 = 1),
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x̃2 = (x1 = 3, X11 = 5) and x̃3 = (x1 = 5, X11 = 25) of X̃FP and check
whether its inverse is equal to the M̃xr evaluated for each particular corner
point, i.e. M̃xr(xi), where i = 1, . . . , 3.

Continuing the divide & conquer we obtain the following three MCMEs
valid in three different throughput regions r1, r2, r3 ⊆ X̃FP

Mx̃∈r1 ≤ x1 + 10 for x̃ ∈ r1,

Mx̃∈r2 ≤
1

2
· (X11 + x1 + 14) for x̃ ∈ r2 and

Mx̃∈r3 ≤ X11 for x̃ ∈ r3.

(5.64)

Recall that (5.64) defines conservative upper bounds on MCMEs as the
scenario matrices we used to obtain them are conservative estimates them-
selves. The larger the repetition vector entries of the scenario graphs are,
the smaller the relative approximation error is. Throughput regions r1, r2

and r3 are depicted in Fig. 5.8 and are defined by the following two hy-
perplanes that divide the initial linearized domain: Mx̃∈r1 −Mx̃∈r2 = 0
and Mx̃∈r3 −Mx̃∈r2 = 0. Throughput expressions are merely the inverses
of MCMEs. Note that both are expressed as functions of x̃ ∈ X̃FP . How-
ever, the designer is interested only in feasible configurations, that is the
configurations x ∈ XFP . Therefore, for a given configuration x ∈ XFP ,
we need to compute x̃ ∈ X̃FP using the X̃FP metadata that maps x to
x̃ using the relationship between the original parameters and the lifting
parameters (cf. (5.52)). E.g. for x = {x1 = 4}, via (5.57), x̃ = {x1 =
4, X11 = 16} which is a feasible linearized configuration. Configuration x̃
belongs to r2. Using (5.64) we obtain the conservative throughput estimate
of Thx̃∈r2(x̃) ≥ 1

17 = 0.059 iterations per time unit. If we would apply
the analysis of Chapter 4 to the graph instantiated from the configuration
x = {x1 = 4} we would, of course, obtain the same result.

5.6.2 Tightness of performance bound and technical aspects
of the analysis

The parametric throughput analysis presented in this chapter is conservative
and incurs an over-approximation to the degree incurred by the Max-plus
algebraic characterization of SDF-PDFGs of Chapter 3. This is because
Algorithm 5.5 is nothing but a specialized version of Algorithm 3.1 that
entails conservativeness by employing Propositions (3.1) and 3.2 to derive
parameterized scenario SDF-PDFG matrices. Recall that these matrices
we later on compose into the parameterized throughput graph from which
we derive the associated throughput expression(s). Still, the relative er-
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ror shrinks with the growing repetition vectors of the scenario graphs (cf.
Subsection 3.5.4).

The analysis was performed manually on the synthetic case study appli-
cation as presented above. Assuming that the analysis of Chapter 3 is au-
tomated, the automation of the analysis of this chapter would consist of the
implementation of the polynomization (cf. Subsection 5.5.3) and lineariza-
tion (cf. Subsection 5.5.4) techniques presented on top of Algorithm 3.1,
i.e. Algorithm 5.5. Furthermore, polyhedra manipulation techniques must
be foreseen to implement the functionality of the divide & conquer tech-
nique (cf. Algorithm 5.3). In the mere technical sense, this would entail the
integration of a symbolic computation framework as GiNaC [10][11] and a
polyhedra manipulation library such as cddlib [39] with the SDF3 tool. A
conservative estimate of the development time needed to accomplish this
would amount up to a few months.

5.7 Summary

In this chapter we have proposed a parametric throughput analysis tech-
nique for SDF-PFSM-SADFGs with static parameters that generalizes the
results of [33] in a twofold manner. First, the analysis of [33] does not allow
for parameterized rates. Our analysis supports parameterized rates. That
is our first contribution. Second, the analysis of [33] requires that firing
delays are expressed as linear combinations of parameters. In our work we
allow a more general polynomial representation. That is our second contri-
bution. We base our approach on the theory of Max-plus automata applied
after problem linearization via RLT that creates a linear relaxation of the
original problem’s feasible region.



Chapter 6

Model checking of
FSM-SADF using timed
automata

In earlier chapters, among others, we presented (worst-case) performance
analysis techniques for a parameterized generalization of FSM-SADF, i.e.
SDF-PFSM-SADF. The analysis is based on the Max-plus algebraic seman-
tics of SDF-PFSM-SADF that it inherits from FSM-SADF. However, this
this type of analysis only treats temporal properties of FSM-SADF that
can be defined at the graph iteration level and provides no insight into
intra-iteration behavior of the graph.

Nevertheless, analysis exists for FSM-SADF that can consider other
properties than available via Max-plus-based analysis. In particular, this
analysis is based on specialized extensions of techniques used in conven-
tional model checking and is implemented in the SDF3 tool. However, this
analysis is limited to only a predefined set of properties that the user can-
not influence. Therefore, with the goal of providing means for enabling the
user to easily expand the analysis portfolio of FSM-SADF, in this chapter
we report on the translation of the FSM-SADF formalism to uppaal timed
automata that enables a more general verification than currently supported
by existing tools. We base our translation on a compositional approach
where the input FSM-SADF model is represented as a parallel composition
of its integral components modeled as automata. Thereafter, we show how
to model check quantitative and qualitative properties both supported and
not supported by the existing tools. We demonstrate our approach on a
realistic case study from the multimedia domain.

Different parts of this chapter have been published in [104][103].

157
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6.1 Introduction

The SADF formalism [113] captures application dynamism using scenarios.
Scenarios represent distinct application operating modes that occur dur-
ing its lifetime. Rates and actor firing delays differ from one scenario to
the other. The data dependent conditions that determine scenario occur-
rence patterns are abstracted into Markov chains. SADF to a large extent
preserves SDF’s compile-time analyzability [110]. State-of-the-art SADF
techniques are implemented in the SDF3 tool [112] as proposed by [116]
and are based on specialized extensions of techniques used in conventional
model checking.

FSM-SADF [111][46] is a restricted form of SADF introduced to speed-
up the analysis of the original formalism. FSM-SADF has been used in
several important modeling [97][96][32] and optimization contexts [32]. It is
a restricted form because unlike SADF, it does not support hierarchical con-
trol through the use of nested Markov chains. This means that FSM-SADF
cannot support sub-scenarios, i.e. in FSM-SADF actor rates and firing de-
lays can change only at scenario boundaries while in SADF, they can change
even within a scenario. In addition, FSM-SADF uses fixed actor firing delays
per scenario, while SADF uses discrete distributions per scenario. Further-
more, unlike the probabilistic abstraction approach of SADF, FSM-SADF
uses a non-deterministic abstraction where scenario sequences are speci-
fied by a non-deterministic FSM. These restrictions render the FSM-SADF
analysis faster than the analysis of SADF. In addition, FSM-SADF out-
competes SADF in terms of implementation efficiency [110]. However, the
analysis might be less precise due to the abstractions made. On the other
hand, FSM-SADF extends SADF by allowing actor-level auto-concurrency
(simultaneous executions of a particular actor) which is explicitly prohibited
in SADF as it may violate the determinacy of the model [113]. Thus, the
parallelism embedded in an FSM-SADF specification is implicitly greater
than the one embedded in an SADF specification. Note that, in essence,
auto-concurrency in FSM-SADF can cause determinacy related problems as
in SADF, but unlike SADF, FSM-SADF specifies polices to reinstate it. In
particular, we mean the FIFO policy closely related to its Max-plus seman-
tics introduced in [46] that we will elaborate soon enough. State-of-the art
FSM-SADF techniques are implemented in the SDF3 tool [112]. In particu-
lar, me mean Max-plus algebra-based techniques addressing the worst-case
throughput and latency computation. With these techniques, as shown in
previous chapters, the analysis is done compositionally per scenario. By
using compositional analysis, we avoid the state-space size induced prob-
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lems that occasionally occur with the model-checking techniques of SADF.
However, all comes with a price. In particular, the Max-plus algebraic ap-
paratus of FSM-SADF proposed by [46] is able to address only temporal
properties of FSM-SADF defined at iteration granularity (cf. Definitions 4.4
and 4.5). If we wish to analyze other temporal properties concerning intra-
iteration behavior of actors or functional properties in general, we must use
the model-checking engine of SADF. However, the model checker of SADF
explicitly excludes auto-concurrency and therefore we are limited to consid-
eration only of FSM-SADF models that exclude auto-concurrency too.

In addition, tools such as SDF3 can be too specialized in the sense that
they can only handle predefined properties, thus lacking support for analyz-
ing user-defined properties. To circumvent this limitation, in this chapter
we propose a translation of the FSM-SADF formalism to timed automata
(TA) [6] as the first step to enable more general verification. This is our
first contribution. Using TA has a number of advantages, in that very effi-
cient abstractions exist. For example, temporal logics can express many of
the properties common in reasoning about timed systems with concurrency.
Furthermore, TA models of dataflow specifications can be easily extended
to add costs such as energy, and include the behavior of the underlying im-
plementation platform. This would in the future give us the possibility of
using FSM-SADF for reachability analysis of embedded dynamic streaming
applications through an optimal control formulation using model-checking
techniques. Although other members of the SADF MoC family have been
translated to model checkers before [114, 115, 66] our translation is (to
the best of our knowledge) the first one that allows auto-concurrency in
the model and is able to ensure determinacy in its presence, by using the
scenario-level FIFO policy of [46] in a model checking context. This is our
second contribution. Auto-concurrency is important as it allows the designer
to embed more parallelism in the specification. Still, auto-concurrency can
cause determinacy issues and that is why existing translations [114, 115, 66]
pragmatically decide to prohibit it. Unfortunately, as discussed in Sec-
tion 6.7, auto-concurrency has a negative effect on the scalability of the
analysis.

We demonstrate our approach using a multimedia case study modeled
as an FSM-SADFG for which we compute important quantitative and qual-
itative properties, some of which are not supported by the SDF3 tool. We
use the uppaal [14] state-of-the-art TA model checker.
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6.2 Related work

The SADF model has already been subjected to model checking in [114],
which discusses a performance model-checking approach for SADF where
its semantics is based on a timed probabilistic (labeled transition) system
(TPS). In the TPS of SADF nondeterminism can be arbitrarily resolved
as it originates from concurrency of the actors, i.e. the ordering of time-
less actions will not affect the net behavior of the system. We call this
property of SADF action determinacy (or the diamond-property in a non-
probabilistic setting). This property is the key to efficient analysis imple-
mented in SDF3 [112]. However, SDF3 is not a general model-checker and
it supports only a set of predefined properties such as deadlock freedom,
maximum buffer occupancy, inter-firing latency, etc.

Theelen et al. [115] report on the use of the construction and analysis
of distributed processes (CADP) tool suite in model checking of SADF us-
ing interactive Markov chains (IMC). The inability of IMC in supporting
probabilistic choices is compensated by CADP. Also, IMC relies on expo-
nentially distributed time, and therefore the original discrete distribution of
SADF needed to be replaced by a single exponential distribution. There-
fore, CADP may not always deliver the same result as SDF3. Moreover,
CADP is unable to evaluate reward-based properties and therefore cannot
be used for the computation of throughput and buffer occupancy.

The work of Katoen et al. [66] extends the framework of [115] by intro-
ducing Markov automata (MA) based semantics of SADF. MA is a combi-
nation of probabilistic automata and Markov decision processes. The firing
delays of actors are specified by negative exponential distributions. State-
space reductions are based on confluence reduction which utilizes action
determinacy for SADF actors. The approach can be used to obtain quanti-
tative properties such as buffer occupancy, latency and throughput.

What is common to the aforementioned approaches is that they all con-
sider SADF. In FSM-SADF on the other hand, non-determinism is an ex-
plicit property of the model, and not a side-effect of concurrency. In ad-
dition, FSM-SADF allows actor-level auto-concurrency which is explicitly
prohibited in SADF. Geilen et al. [46] introduce the Max-plus algebraic se-
mantics of FSM-SADF that can be used to obtain worst-case throughput
and latency values in the presence of auto-concurrency. However, due to the
nature of the Max-plus representation of a scenario, the approach of [46] can
only give insight into the model’s temporal behavior at scenario (iteration)
boundaries. Therefore, the analysis of [46] is limited to throughput and
latency computations only.
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Fakih et al. [37] and Ahmad et al. [3] have previously used TA to
model SDF, the original synchronous dataflow formalism. However, the TA
model of SDF cannot be used to capture FSM-SADF as FSM-SADF unlike
SDF includes a combination of streaming data and control. Moreover, the
works of [37][3] are more concerned with modelling lower-level details of the
scheduling on a given execution platform.

6.3 Definition of FSM-SADF

We first redefine the concept of FSM-SADF of Definition 2.6 of Chapter 2.
The presentation of FSM-SADF (of that definition) as a collection of SDFG-
modeled scenarios served very well as the cornerstone of the Max-plus-based
compositional analysis defined by [46] (cf. Section 2.4.2). However, in the
model-checking context of this chapter it is convenient to establish an equiv-
alent but a more (traditional) operational semantics centered definition of
FSM-SADF as initially done in [111].

Therefore, we proceed by defining our dialect of the FSM-SADF formal-
ism in terms of a network of processes of certain properties. Thereafter, we
define its operational semantics that forms the basis for the uppaal trans-
lation by building on the work of [111] and [113]. But before getting all too
formal, we gently introduce the concept using an example.

6.3.1 Example FSM-SADFG

Consider the FSM-SADFG of Fig. 6.1. In FSM-SADF, two types of pro-
cesses1 can be distinguished: kernels and detectors [111][113]. Kernels spec-
ify the data processing part of the application, while detectors model the
control part of the application. The scenario graph of Fig. 6.1a consists
of three vertices representing processes. Processes A and B are kernels
(continuous lines) while process D (dashed line) serves as a detector. In
FSM-SADF there can only exist one detector, i.e. the control is global.
D determines in which scenario kernels A and B operate by sending them
control tokens via control channels (dashed lines). Control tokens are val-
ued. Tokens exchanged over data channels (continuous lines) are called
data tokens and we abstract from their values. Channels are considered
as FIFO buffers of infinite capacity. We use the terms channel and buffer
interchangeably. The graph has 8 initial tokens labeled i1, . . . , i8. Token
i1 is the initial token of the detector’s implicit self-edge (channel with the

1Process is just another name for an actor and we use the terms interchangeably.
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Fig. 6.1: Example FSM-SADF graph

same source and destination actor). This edge is usually not drawn as FSM-
SADF prohibits auto-concurrency for the detector. The running example
defines two scenarios: s1 and s2. Depending on the operating scenario, the
graph will change its properties. Fig. 6.1c specifies changes for graph rates
over scenarios, while Fig. 6.1d specifies how process firing delays change
over scenarios. The running example defines the FSM of Fig. 6.1b that de-
termines the possible scenario occurrences where every FSM state is labeled
with a scenario: state ξ1 is labeled with s1 and ξ2 is labeled with s2.

6.3.2 FSM-SADF redefined

Our full definition of FSM-SADF in the context of its traditional operational
semantics follows next. Compared with the one that can be found in [111],
it is more concise because it is not necessary to represent sets of detectors
and ports explicitly.

Definition 6.1 (FSM-SADF graph). An FSM-SADF graph is a tuple F =
(S,K,B, E,Rp, Rc,Ξ,T, ξ0,Φ, t, φι, ψι), where

1. S is the nonempty finite set of scenarios,

2. K is the nonempty finite set of kernels,

• P = K∪ {d}, where d /∈ K denotes the unique detector, is the set
of processes,

3. B ⊆ K × P is the set of buffers,
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4. E : P× S → N0 is the firing delay for each process in each scenario,

5. Rp, Rc : B×S → N0 is the production (consumption) rate of the kernel
producing to (process consuming from) each buffer in each scenario,

6. (Ξ, ξ0,T,Φ) is the FSM of the detector, where Ξ is the nonempty set
of states, ξ0 ∈ Ξ is the initial state, T : Ξ → 2Ξ is the transition
function, and Φ : Ξ→ S associates each state with a scenario,

7. t : K × S → S+ is the string of scenarios sent to the FIFO of each
kernel in each scenario of the detector,

8. φι : B→ N0 is the initial buffer status,

9. ψι : K → S∗ is the initial control status.

The detector is connected to every kernel by an explicitly ordered (FIFO)
control channel. We further define In(p) = {b ∈ B | πr(b) = p}, where πr is
the right projection function, to be the set of buffers that process p consumes
from (that input into p). Similarly, Out(k) = {b ∈ B | πl(b) = k}.

In anticipation of the next section we define ∅ to be the empty multiset,
P to be the set of all submultisets of its input set, ] to be the multiset
sum, and \ to be the zero-truncated asymmetric multiset difference. For
example let A = {1, 1} and B = {1, 2}. Then A ∪ B = {1, 1, 2} (maxima
of multiplicities), A ]B = {1, 1, 1, 2} (sums of multiplicities), A \B = {1},
and B \A = {2}. For strings σ, τ, ν ∈ S∗ we define σi to be the ith element
of σ, σ + τ to be the concatenation of σ and τ , and, if ν = σ + τ , then
ν − σ = τ .

6.3.3 Operational semantics

The behavior of an FSM-SADF graph is defined as a transition system
where states are configurations.

Definition 6.2 (Configuration). A configuration of an FSM-SADF graph
F = (S,K,B, E,Rp, Rc,Ξ,T, ξ0,Φ, t, φι, ψι) is a tuple (φ, ψ, κ, δ), where φ is
a buffer status, ψ a control status, κ a kernel status, and δ a detector status:

• A buffer status is a function φ : B → N0 from each buffer to the
number of tokens it stores,

• A control status is a function ψ : K → S∗ from each kernel to the
string of scenarios (control tokens) its FIFO stores,
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• A kernel status is a function κ : K → P(S × N0) that to each kernel
assigns a multiset of ongoing firings and their remaining execution
times,

• A detector status is a pair δ ∈ Ξ× (N0∪{−}) that represents the state
of the FSM and the remaining execution time of the ongoing firing,
or, if there is no ongoing firing, the value −.

The initial configuration of F is (φι, ψι, κι, δι), where φι and ψι are defined
in F, κι = K × {∅} and δι = (ι,−).

Five types of configuration transitions are distinguished.

Definition 6.3 (Kernel Start Action). A kernel start action transition

(φ, ψ, κ, δ)
start(k)−−−−−→ (φ′, ψ′, κ′, δ) represents the start of a firing of kernel

k. Let s = ψ(k)1 denote the scenario of the firing (if it is defined). The
transition is enabled if |ψ(k)| ≥ 1 and ∀b ∈ In(k) : φ(b) ≥ Rc(b, s). The
resulting statuses are defined as

φ′ = φ[b 7→ φ(b)−Rc(b, s)] for all b ∈ In(k)

ψ′ = ψ[k 7→ ψ(k)− s]
κ′ = κ[k 7→ κ(k) ] {(s, E(k, s))}]

Definition 6.4 (Kernel End Action). A kernel end action transition (φ, ψ, κ, δ)
end(k)−−−−→ (φ′, ψ, κ′, δ) is the end of a firing of kernel k. It is enabled if
∃s ∈ S : (s, 0) ∈ κ(k). The resulting buffer and kernel statuses are

φ′ = φ[b 7→ φ(b) +Rp(b, s)] for all b ∈ Out(k)

κ′ = κ[k 7→ κ(k) \ {(s, 0)}]

Definition 6.5 (Detector Start Action). A detector start action transition

(φ, ψ, κ, δ)
start(d)−−−−→ (φ′, ψ, κ, δ′) represents the start of a firing of the detector,

d. It is enabled if there is no ongoing firing ∃s ∈ Ξ : δ = (s,−) and all inputs
are available ∀b ∈ In(d) : φ(b) ≥ Rc(b,Φ(s)). The resulting statuses are

φ′ = φ[b 7→ φ(b)−Rc(b,Φ(s))] for all b ∈ In(d)

δ′ = (s, E(d,Φ(s)))

Definition 6.6 (Detector End Action). A detector end action transition

(φ, ψ, κ, δ)
end(d)−−−−→ (φ, ψ′, κ, δ′) is enabled if ∃s ∈ Ξ : δ = (s, 0), and the

resulting statuses are

ψ′ = ψ[k 7→ ψ(k) + t(k,Φ(s))] for all k ∈ K
δ′ = (s′,−) for some s′ ∈ T(s)
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In [111] time transitions are defined very generally, such that to account
for given scheduling/resource constraints one needs to instantiate the time
transitions needed. In the following we will assume a unconstrained execu-
tion, namely that all ongoing firings advance at the same pace.

Definition 6.7 (Time Transition). A time transition (φ, ψ, κ, δ)
time(t)−−−−→

(φ, ψ, κ′, δ′) represents time progressing t time units. It is enabled if no ker-
nel end or detector end transition is enabled, and t is the smallest remaining
execution time of any ongoing firing. The resulting kernel status is

κ′ = κ[k 7→ {(s, n− t)|(s, n) ∈ κ(k)}] for all k ∈ K

using multiset comprehension. The detector status δ = (s, n) is updated as
δ′ = (s, n− t), unless n = − in which case it is unchanged, δ′ = δ.

6.3.4 Overtaking problem and determinacy

The operational semantics of Section 6.3.3 allows simultaneous executions
of a particular kernel, i.e. auto-concurrency. Note that the kernel status of
Definition 6.2 entails a multiset of ongoing firings. In the case of the de-
tector, auto-concurrency is prohibited as its status entails only one possible
ongoing firing. With auto-concurrency and due to the potential difference
in kernel execution times over different scenarios, tokens may “overtake”
each other which makes it hard to ensure determinacy [113].

6.3.4.1 Overtaking by example

Let us illustrate this using the example FSM-SADFG of Fig. 6.1 and the
concept of token sequence of Definition 2.1. For data token sequences we
specify the scenario in which they were produced by defining V of Defini-
tion 2.1 as V = {∗} × S. For control token sequences, V = S.

E.g., [((∗, s), t)] denotes a sequence containing one data token of ar-
bitrary value (∗) produced in scenario s at t time-units. We consider
the execution of the FSM-SADFG of Fig. 6.1 from t = 0. In this case
V = {∗} × {s1, s2} for data token sequences and V = {s1, s2} for control
token sequences. At t = 0, the only enabled process is the detector D.
Assume that, by firing D, the FSM makes a transition from the initial state
ξ1 to state ξ2. State ξ1 corresponds to scenario s1, and ξ2 corresponds to
s2. After 1 time-unit, the control channels (D,A) and (D,B) host the to-
ken sequence [(s1, 1)]. Channel (B,D) now hosts [((∗,⊥), 0)] which refers
to the initial token i3 as i4 was just consumed by D firing. We use the ⊥
notation to leave the scenario value unspecified as we do not know in which
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scenario initial tokens were produced. Now A can start firing by consuming
the control token from channel (D,A), initial token i8 from its self-edge and
initial token i6 from channel (B,A). The new status of (D,A) becomes []
(empty token sequence) and the new status of (B,A) becomes [(∗,⊥), 0)]
that refers to initial token i5. As there is still one initial token left on chan-
nel (B,D), D can perform its second firing. This results in channel (D,A)
hosting [(s2, 2)], channel (D,B) hosting [(s1, 1), (s2, 2)] and channel (B,D)
hosting empty token sequence [] with the assumption that the FSM transi-
tion (ξ2, ξ1) was taken. As A is auto-concurrent it can commence its second
firing, but this time in scenario s2 while still being busy with the first one
in scenario s1. Due to the difference in firing delays of A in scenarios s1

and s2, the firing of scenario s2 started at t = 2 will finish earlier than the
earlier firing of scenario s1 started at t = 1. Therefore, at t = 4 the channel
(A,B) will host the sequence [((∗, s2), 4), ((∗, s2), 4)] as the firing delay of
A in scenario s2 equals to 2 time-units. On the other hand channel (D,B)
hosts the sequence [(s1, 1), (s2, 2)]. Kernel B will therefore commence fir-
ing in scenario s1 but by consuming the token ((∗, s2), 4) produced by A in
scenario s2 and will not wait for the “right” scenario s1 token that will be
produced at t = 5. After B had completed this firing, the status of (B,B)
becomes [((∗, s1), 5)].

6.3.4.2 Reinstating determinacy

The “overtaking” phenomenon just discussed results in tokens being con-
sumed in another scenario than the one they were produced in. This makes
it hard to ensure determinacy [113]. It is generally the modeler’s responsibil-
ity to ensure that the model does not exhibit overtaking or that overtaking
can be properly interpreted, i.e. that it does not invalidate the functional
correctness of the system. It could however be handled with a policy in the
semantics that ensures that tokens are only consumed by a kernel in the
scenario they belong to.

In our work, we adopt the scenario-level FIFO policy of [46] inherent
to the Max-plus semantics of FSM-SADF introduced in the same paper
and used throughout this thesis in earlier chapters. Recall, that one can
view the execution of the FSM-SADFG of Fig. 6.1 as the execution of a
sequence of SDF graphs obtained by applying the configurations of Fig. 6.1c
and Fig. 6.1d to the scenario graph of Fig. 6.1a. By doing so, one avoids
the overtaking problem as in a single scenario there can be no overtaking
thanks to the static nature of SDF. At a later stage, scenarios are “glued”
together and synchronized by the set of initial tokens. This can be done as
initial tokens produced at the end of a scenario contain enough information



6.3. Definition of FSM-SADF 167

t
i1
i2
i3
i4
i5
i6
i7
i8

10 20 300

Scenario s1 Scenario s2

Fig. 6.2: Execution of the FSM-SADFG of Fig. 6.1

to determine the timing of the next scenario [46]. We assume self-timed
execution. Fig. 6.2 shows the pipelined (self-timed) execution of the FSM-
SADFG of Fig. 6.1. The start time of a scenario is determined by the
reproduction times of initial tokens in the previous scenario. In Fig. 6.2,
we see overtaking along the axes of availability times of tokens i7 and i8.
E.g., we see that i7 of scenario s2 is actually produced (at t = 4) before i7
of scenario s1 (at t = 5), even though scenario s1 was started first. In spite
of this, the firing of B in scenario s1 will be initialized by the availability of
i7 belonging to s1 and not i7 belonging to s2 although it is produced first.
Therefore, i2 will be produced at t = 6 and not at t = 5 as discussed earlier.
This way, determinacy is ensured.

To introduce the Max-plus scenario-level FIFO policy to the semantics
of Section 6.3.3 one has to find a way to decouple scenarios. This could be
modeled by data channels having a separate buffer for each scenario in the
system and kernels only writing to and consuming from buffers belonging
to the scenario they are currently operating in. For control channels such
replication is not necessary as the detector is by definition “sequential”, i.e.
non auto-concurrent. With this concept of “scenario buffers”, no overtaking
between different scenarios is possible.

However, an interesting question emerges. In which scenario were the
initial tokens produced? If we treat initial tokens as a special class (no
scenario buffer affiliation) we will easily violate the functional correctness
of the system, e.g. introduce a deadlock. In the scenario graph of Fig. 6.1
imagine that the detector has fired twice by consuming initial tokens i3 and
i4 following the path ξ1 → ξ1 → ξ1 of the FSM. This means that the graph
has executed the scenario sequence s1s1. To complete the sequence, actor B
has fired twice so channel (B,D) hosts the sequence [((∗, s1), t1), ((∗, s1), t2)].
Now, if the transition ξ1 → ξ2 of the FSM is to be taken, the resulting (B,D)
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channel state after the completion of the scenario will be [((∗, s1), t2), ((∗, s1), t3)].
Being in state ξ2, the FSM can only perform the transition ξ2 → ξ1. By
the FIFO policy, to do that tokens belonging to s2 need to be consumed.
However, channel (B,D) only hosts tokens belonging to s1. Therefore, a
deadlock occurs.

Another approach might be to force initial token scenario affiliation.
However, this approach would also violate the functional correctness of the
model by introducing a deadlock or by restricting the language the scenario
FSM accepts.

As it is not clear how to deal with initial tokens belonging to channels on
which overtaking can take place, we only allow overtaking on channels with
no initial tokens, i.e. auto-concurrent actors can only produce in data buffers
that are initially empty. This excludes actor self-edges as these are used to
limit actor’s auto-concurrency by assigning them an appropriate number of
initial tokens. Actually, in the uppaal model of FSM-SADF of Section 6.4
they will be modeled as the number of instances of a particular actor in
the system. Consequentially, we only replicate data buffers that are filled
by auto-concurrent actors and are initially empty. Under this restriction on
the structure of the input FSM-SADF specification, the FIFO policy can be
straightforwardly encoded into the semantics of Section 6.3.3 by changing
the definition of the set of buffers of Definition 6.1 to B ⊆ K × P× (S ∪ s)
where s is the “default scenario”, which marks the buffer used when there
is no overtaking on the channel, i.e. the default buffer. Also, we redefine
In(p, s) = {b ∈ B | π2(b) = p ∧ (π3(b) = s when ω(b) = 1 ; s otherwise)},
where π2 and π3 are the 2nd and 3rd projection function, respectively and
ω : B→ {0, 1} is the function returning the information whether overtaking
is possible on the channel implemented by buffer b. Similarly, Out(k, s) =
{b ∈ B | π1(b) = p ∧ (π3(b) = s when ω(b) = 1 ; s otherwise)}, where π1

is the 1st projection function. Last, kernel start and end actions must be
altered to fit the new definitions. E.g. the kernel start action transition is
enabled if |ψ(k)| ≥ 1 and ∀b ∈ In(k, s) : φ(b) ≥ Rc(b, s).

Another option is to simply disallow auto-concurrency as it was done in
works on model checking SADF [113][114][115][66]. In this case, the notion
of a multiset of ongoing kernel firings in the kernel status of Definition 6.2
has to be changed so each kernel can have zero or one ongoing firings:
κ : K → (S × N0) ∪ {−}. To reflect this re-definition, the kernel start and
end actions have to be re-adjusted in the spirit of detector start and end
actions (recall that the detector is “sequential” by definition).
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Fig. 6.3: Network of timed automata in uppaal

6.4 Translation of FSM-SADF to Timed Automata

To be able to model check an FSM-SADF specification, we encode the oper-
ational semantics of FSM-SADF in the uppaal model checker. The correct-
ness of the translation follows from the construction itself as explained in
the remainder of this section. We limit our attention to self-timed bounded
FSM-SADF specifications [110].

In uppaal, a system is modeled as a network of TA that is extended
with bounded discrete variables that are part of the state. These variables
can be read, written and are subject to common arithmetic operations.

We recall the definition of TA where we use B(C) to denote the set of
constraints defined over a finite set of real-valued variables C called clocks
and where Act = {a!, a?, . . .} is a finite alphabet of synchronization actions.

Definition 6.8 (Timed automaton (TA)). A timed automaton A is a tuple
(L, l0, E, I), where L is a finite set of locations (nodes), l0 is the initial
location, E ⊆ L×B(C)×Act×2C×L is the set of edges between locations with
a guard, an action and a set of clocks to be reset, and I : L→ B(C) assigns

invariants to locations. We shall write l
g,a,r−−−→ l′ when (l, g, a, r, l′) ∈ E.

A state of the system modeled in uppaal is defined by the locations of all
automata, the clock values, and the values of the discrete variables. Every
automaton may fire an edge (sometimes misleadingly called a transition)
separately or synchronize with another automaton, which leads to a new
state [14]. An example of a network of timed automata is shown in Fig. 6.3.

In the graphical representation of the TA, edges are decorated with la-
bels. The green labels are used to specify guards, update labels are violet,
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while labels concerning channel synchronization are gray. Guards and up-
date labels operate on clocks as well as on discrete variables. Locations can
entail invariants that are denoted in pink color.

The network of Fig. 6.3 models a time-dependent light-switch (Fig. 6.3a)
and its user (Fig. 6.3b). The switch and the user communicate using the
press labels (channel). The user can press the switch (press!) randomly
at any time or even not press the switch at all. The switch waits to be
pressed (press?). If the user presses the switch, the light is on, but dimmed
(location dim). If the user presses the switch again, but after more than 10
time-units (guard x > 10), the light is off (location off). If the user presses
the switch within 10 time-units (guard x <= 10) the light is brightened
(location bright). At this point, whenever the user presses the switch, the
light will turn off (location off).

The FSM-SADF configuration of Definition 6.2 is modeled so that the
kernel and detector statuses are encoded in the states of the TA, while
the buffer and control statuses are modeled explicitly using discrete vari-
ables. These discrete variables are read and written during kernel/detector
start/end actions. Operations performed on discrete variables correspond
to checking the availability of input tokens, token consumption and token
production. Discrete variables do not add to the expressive power of the
formalism, and for presentation purposes, we do not encode their use in the
TA edge firings.

Given an FSM-SADF F, we generate a parallel composition of TA

System = A‖υ(k1)
k1

‖ . . . ‖ A‖υ(kn)
kn

‖ Ad, (6.1)

where ki ∈ K and n = |K|. By A‖υ(ki)
ki

we denote the fact that υ(ki) TA
in parallel are used to model kernel ki. Function υ : K → N>0 gives the
realized auto-concurrency of a kernel. If the kernel ki has a self-edge, i.e.
(ki, ki) ∈ B, then υ(ki) = φι((ki, ki)). If kernel ki has no self-edge, υ(ki) can
be found experimentally. We assume some Nki , then we need to verify that
the actual υ(ki) is strictly smaller, i.e., υ(ki) < Nki . This is discussed in
Section 6.5.

Fig. 6.4 shows the uppaal model of the FSM-SADFG of Fig. 6.1. In
the description language of uppaal, processes are obtained as instances of
parametrized process templates. In our translation we define two templates:
The kernel template of Fig. 6.4a and the detector template of Fig. 6.4b.
The kernel template is generic, while the detector template is customized
to correspond to the FSM of the input FSM-SADF specification. Note that
control buffers are implemented as FIFOs where the values of FIFO elements
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(a) Kernel in uppaal

(b) Detector in uppaal

Fig. 6.4: uppaal model of the FSM-SADFG of Fig. 6.1

are the scenario IDs, while data buffers are abstracted into integers as only
the amount of data buffer tokens matters, not their value.

Every kernel ki ∈ K is translated to the TA Aki = (Li, l
0
i , Ei, Ii) where

Li = {Initial, Fire}, l0i = Initial, and Ei and Ii are given as follows.
The edge

Initial
|ψ(ki)|≥1∧∀b∈In(ki):φ(b)≥Rc(b,s),∅,{xi}−−−−−−−−−−−−−−−−−−−−−−−−−−→Fire

corresponds to the kernel start action. To start firing, the kernel must first
gain knowledge in which scenario is it operating in. This information is
stored in the kernel’s control buffer. Therefore, the kernel peeks into its
control buffer if it is not empty, finds out the operating scenario s and waits
for the availability of the required number of tokens in its data buffers. This
behavior is encoded using the guard bool k tok available(int ker id)

where ker id is the ID of the kernel. Once the guard evaluates to true, the
kernel can actually perform the start action, by consuming input tokens both
from its control buffer and its data buffers. Consumption corresponds to
statuses being decremented. This behavior is encoded by the function void

k start fir(int ker id, int& scen id, int& delay), where scen id is
the ID of the operating scenario, and delay is the kernel’s firing delay in
the operating scenario. Aforementioned variables get their values within
the update label although these are known during the evaluation of the
k tok avail guard. This is because guards in uppaal must be side-effect
free. These variables are needed by the kernel end action that corresponds
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to the edge

Fire
xi=E(ki,s),∅,∅−−−−−−−−−→ Initial

and the invariant I(Fire) = xi ≤ E(ki, s). These two ensure that the sys-
tem stays in the location Fire for exactly the execution time E(ki, s) of the
kernel ki in scenario s. Thus, time transitions are encoded implicitly in the
operation of the network of TA, for which time progresses in unison. The re-
sulting data token production is coded in the function void k end fir(int

ker id, int scen id).
The detector TA uses the structure of its FSM (e.g. locations xi1 and

xi2 of Fig. 6.4b correspond to states ξ1 and ξ2 of the FSM of Fig. 6.1b), but
embeds in each transition a firing location wherein time can pass between
the events of consuming the input tokens and producing the output tokens.
We encode it as Ad = (Ld, l

0
d, Ed, Id), where Ld = Ξ ∪ {(ξ, ξ′) | ξ, ξ′ ∈

Ξ ∧ ξ′ ∈ T(ξ)} and l0d = ξ0. The edge set Ed is defined such that each
transition ξi → ξj described by T is translated into a detector start edge
followed by a detector end edge:

ξi
∀b∈In(d):φ(b)≥Rc(b,Φ(ξi)),∅,{xd}−−−−−−−−−−−−−−−−−−−−−−→ (ξi, ξj)

xd=E(d,Φ(ξi)),∅,∅−−−−−−−−−−−−→ ξj

The invariant function Id is defined such that each firing location (ξi, ξj)
maps to the invariant xd ≤ E(d,Φ(ξi)). The guard bool d tok avail(int

scen id) of edge ξi → (ξi, ξj) ensures that there are enough tokens present
in detector’s input data buffers before it commences firing. The operating
scenario of the detector depends on the current state of the scenario FSM.
The function void d start fir(int scen id, int& delay) updates data
buffer statuses as the result of the detector start action being performed.
The delay variable receives its value within the function. The update func-
tion void d end firing(int scen id) of edge (ξi, ξj) → ξj encodes the
effects of the detector end action to control statuses, i.e. the production of
control tokens.

To ensure determinacy in the presence of auto-concurrency we revert to
the considerations of Section 6.3.4. In uppaal, this means that we replicate
data buffers which are being filled by auto-concurrent kernels over scenar-
ios by simply declaring them as arrays of integers, where the array index
corresponds to the scenario ID. The aforementioned guard and update func-
tions of Fig. 6.4 all use scen id as the input parameter and will therefore
operate on the correct buffer replicas. As mentioned in Section 6.3.4, auto-
concurrency is only allowed for kernels that produce to buffers with no initial
tokens. Buffers in which overtaking is not possible, are not replicated and
the “default container” is used to store the number of tokens present in the
buffer. Whether overtaking is possible or not in a buffer is encoded with a
configuration constant that is checked in guard and update functions.
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When it comes to scheduling policies, the operational semantics of Sec-
tion 6.3.3 does not prescribe a particular one and consequentially neither
does the previously discussed TA translation. However, it is often conve-
nient to assume a certain class of scheduling policies. An important class
are those policies where actions take place without delay, i.e. processes
fire as soon as they are enabled. Recall from earlier chapters that we refer
to executions under such policies as self-timed executions. In uppaal, the
concept of urgency can be exploited to impose such a policy. Specifically,
an urgent broadcast channel [14] can be used to force kernel and detector
start actions without delay (channel self timed in Fig. 6.4). Following the
work of [114][46] [66][115] we adopt the concept of self-timed execution in
the remainder of this chapter.

To conclude, the translation of this section enables the user to represent
an FSM-SADF specification as a network of TA. The user can chose be-
tween allowing and prohibiting auto-concurrency, by the use of system-level
declarations. In case auto-concurrency is enabled, the user can chose to use
or not to use the scenario-level FIFO policy of [46] to ensure determinacy.
Furthermore, the user can choose to consider self-timed execution or not by
the use of the urgency concept in uppaal.

6.5 Model checking of TA model

In this section we demonstrate examples of qualitative and quantitative
analysis of FSM-SADF specifications using the uppaal model checker and
its query language. uppaal’s query language is used to specify the prop-
erties to be checked and is a subset of TCTL (timed computation tree
logic) [5]. We use the MPEG-4 decoder of Fig. 6.5 as our case-study [110][111].
All parameters in our case study are taken from [111].

The decoder functionality is given by the scenario graph of Fig. 6.5a. The
decoder processes streams consisting of I and P frames. These frames consist
of a variable number of macroblocks (0 to 99 for QCIF). The detector (FD)
detects the frame type. If the frame type is I, all frame macro-blocks are
decoded by the VLD and IDCT kernels, while the image is reconstructed by
the RC kernel. When the frame type is P, motion compensation is required
in the decoding process. Its functionality is implemented by the MC kernel.
I frame processing defines the I99 scenario, while P frame processing defines
the Px scenarios where x stands for the number of macro-blocks in the P
frame and x ∈ {0, 30, 40, 50, 60, 70, 80, 99}. The scenario occurrence pattern
is defined by the scenario FSM of Fig. 6.5b.

FSM-SADF is a non-deterministic model. With non-deterministic mod-
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the inability to evaluate reward-based properties in CADP.

This paper is organised as follows. After giving a brief

introduction to SADF and IMC, Section IV informally

presents our IMC semantics for SADF. Section V discusses

the use of CADP, focussing on model checking the MPEG-

4 decoder example. Section V I lists the lessons learned.

II. Scenario-Aware Dataflow

Fig. 1 depicts the SADF model of an MPEG-4 de-

coder for the Simple Profile taken from [35]. The nodes,

called actors here, represent individual tasks performed in

MPEG-4 decoding like V ariable Length Decoding (V LD)

and Reconstruction (RC) of the final video picture. The

edges are called channels and denote (potential) depen-

dencies between the actors. Such dependencies arise from

communicating tokens, which are abstract representations

of e.g. frames or macro blocks. The number of tokens that

actors consume or produce from/to a channel each time

they fi re (execute) is indicated by the rate labels at the

head and tail respectively. Fig. 1 shows that such rates

may be parameterised as opposed to SDF, where all rates

are fixed. SADF separates the data processing behaviour

from control behaviour causing (course-grain) dynamism

by distinguishing two types of actors and channels. K er-

nels (solid nodes) model the data processing part, while

detectors (dashed nodes) reflect control behaviour. The

Frame Detector (FD), for instance, captures that part of

the MPEG-4 decoder responsible for determining which

type of frame is to be processed by the other actors. The

different frame types imply different operation modes or

scenarios. The FD notifies other actors about the frame

type by communicating scenario-valued tokens over con-

trol channels (dashed edges). Tokens communicated over

data channels (solid edges) are unvalued. Any channel

represents a FIFO buffer which may include initial tokens

at the start of executing the application. Such cases are

indicated in Fig. 1 as a black dot on the edge labeled with

the number of initial tokens.

The MPEG-4 decoder model supports I-frames and P-

frames. When an I-frame is detected, a total of 99 macro

blocks must always be processed. This scenario is called

I99 . A P-frame requires processing between 0 and 99

macro blocks. The workload varies considerably depending

on the number of macro blocks that are processed. This

is because the V LD and IDCT actors are performed for

every individual macro block, while the FD, MC and RC

actors fire once per frame. We model this by defining a

number of different scenarios Px based on the number of

macro blocks that must be processed. Hence, the model

contains different scenarios in which (up to) 0, 30, 40, 50,

60, 70, 80, or 99 macro blocks are processed for a single P-

frame. Next to expressing course-grain workload variations

via scenarios, SADF can capture fine-grain variations in
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Fig. 1. SADF model of an MPEG-4 decoder

the workload within scenarios by associating a discrete

ex ecution time distribution to each scenario of any actor.

As indicated, the FD is responsible for determining the

scenario in which the other actors operate. SADF abstracts

away from the actual data-dependent control conditions on

which the scenario is determined in real-life by associating

Markov chains to detectors. In Fig. 1, FD contains a fully

connected 9-state Markov chain (one state per scenario),

where the transition probabilities are chosen such that the

probability of visiting each of the 9 states matches with

the occurrence probability of the represented scenario.

Designing distributed streaming systems is usually sub-

ject to satisfying/optimising various functional and per-

formance properties. A prominent performance criterium

is often throughput, which for the MPEG-4 decoder is

the number of frames that are completely processed per

second (i.e., the number of firing completions of actor

RC per time unit). Throughput for SDF is known to be

maximised in case of so-called self-timed ex ecution [29],

which refers to a class of scheduling policies where actors

fire as soon as they are enabled (i.e., when sufficient

tokens have become available on their inputs). Self-timed

execution has been adopted for the SADF analysis tech-

niques implemented in SDF3 [11], [37]. A prerequisite for

achieving a positive throughput is absence of deadlock,

which requires sufficient storage space to be available

for the buffers incorporated in channels (amongst others).

Analysis of buffer occupancies to identify some (minimal)

storage space distribution over the buffers (various such

distributions can exist [31]) is therefore another important

design aspect. Finally, various latencies or variations in

such latencies must often be minimised. Example latency

metrics for the MPEG-4 decoder are the minimum, ex-

pected and maximum time until processing the first frame

(first firing of actor RC) is completed.

III. Interactiv e Markov Chains

Contemporary model checkers like CADP allow user-

defined (quantitative and qualitative) properties to be eval-

uated. Such properties include the aforementioned per-

formance criteria for dataflow models as well as func-

tional correctness checks such as absence of deadlocks

and livelocks. We enabled the use of CADP by cap-

turing the behaviour of SADF using Interactive Markov

(a) Scenario graph

I99

P0

P40

P60

P80

P30

P50

P70

P99

              

(b) Scenario FSM

Fig. 6.5: FSM-SADF model of an MPEG-4 decoder [110][111]

els we are interested in worst-case analysis. The particular metrics analyzed,
the obtained results and the associated time and memory usage are shown
in Table 6.1. We compare our results and resource requirements to those
of the SDF3 tool. In SDF3, two sets of algorithms can be used to analyze
FSM-SADF: 1) The algorithms of the customized model checker [116, 114]
of SADF by considering states for which the involved reward is maximal.
However, these algorithms can be used only if there is no auto-concurrency
in the FSM-SADFG (e.g. all kernels have self-edges with one initial token).
In that case, the graph can be analyzed for deadlock freedom, maximum
buffer occupancy, maximum inter-firing latency, maximum response delay
and throughput. 2) The Max-plus based algorithms of [46] specifically de-
signed for FSM-SADF that can only analyze throughput and latency. The
Max-plus techniques for what they offer (throughput and latency) will out-
perform their model-checking counterparts. However, the model-checking
based SADF techniques offer a wider palette of metrics amenable to analy-
sis. Therefore, we base our comparison on the techniques of SADF. To be
able to compare our results to those of SDF3, we limit the auto-concurrency
of all kernels in Fig. 6.5a to one (imagine that all kernels have a self-edge
with one initial token). Before proceeding, we point out a subtle difference
between the operational semantics of SADF and FSM-SADF. In contrast to
the SADF model, in FSM-SADF the value of the control tokens produced by
the detector end action depends on the current state of the FSM and not on
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the next state. Therefore, to obtain the same behavior and corresponding
analysis results, the FSM of Fig. 6.5b needs to be augmented with the one
additional state I ′ before being subjected to SDF3 analysis. State I ′ must
be declared initial with one outgoing transition leading to the “original”
initial state I.

The experiments were performed on an Intel Core i5-750 CPU with 8
GB of main memory running uppaal 4.1.19 64-bit on Linux. The default
settings were used and uppaal was restarted between each query.

6.5.1 Deadlock

Analyzing for deadlock freedom is achieved with the uppaal query (A[]
not deadlock) where “A” is to be read as “always (invariantly)”. In SDF3,
checking whether a FSM-SADFG is deadlock free is performed during the
computation of any metric, i.e. there is no special option for this type of
analysis and the respective time and memory requirements cannot be given
(n/a in Table 6.1).

6.5.2 Maximum buffer occupancy

Maximum buffer occupancy of a particular buffer under all possible self-
timed schedules is obtained using the uppaal supremum operator, e.g.
(sup: bi). In SDF3, we use the input argument --compute buffer

occupancy"(maximum)" during application invocation. The results are or-
dered by the sequence: FD2VLD, FD2IDCT, FD2MC, FD2RC, VLD2IDCT,
VLD2MC, RC2MC, MC2RC, IDCT2RC, RC2FD. The difference in results
between SDF3 and uppaal is due to another subtle difference in the op-
erational semantics of SADF and FSM-SADF. In FSM-SADF, token con-
sumption takes place during detector/kernel start actions, while in SADF
consumptions take place at a later point - during the detector/kernel end
actions. Therefore, SDF3 will often deliver higher values because in SADF
tokens then get to spend more time in buffers than in FSM-SADF where
they during the firing may, conditionally speaking, be considered to be lo-
cally stored in the kernel itself and not in the input buffer.

6.5.3 Maximum inter-firing latencies

Maximum inter-firing latency of a process is defined as the maximum elapsed
time between two successive firing completions of the process. In uppaal,
process latencies can be obtained as suprema of the clock y that is reset every
time process p completes its firing, i.e. sup: p.y while p.y = 0 every time



6.5. Model checking of TA model 177

edge p.Fire → p.Initial of Fig. 6.4a is fired for the kernels or every time
edge d.(ξi, ξj)→ d.ξj of Fig. 6.4b is fired for the detector. In SDF3, we use
the input argument --compute inter firing latency"(maximum)". The
results are sequenced by FD, MC, VLD, RC, IDCT. In our experiments we
assume that all processes have just competed firing at t = 0, and therefore
in the latency measurement we include also the difference in time between
the completion of the first firing of the process and t = 0, while SDF3

starts measuring the time difference only after the first firing of the process
had completed. Therefore, we observe the difference in values delivered by
SDF3 and uppaal. The difference is entirely due to differing definitions of
inter-firing latencies used in a particular setting.

6.5.4 Maximum Response Delays

Maximum response delay of a process denotes the maximum time until the
first firing completion of that process. In uppaal, we determine it by check-
ing the relationship between the maximum response delay of a process p and
a constraint r using the query (E<> !p.bFirstFirCompleted and p.y >=

r), where p.y is a clock that is never reset, and p.bFirstFirCompleted is a
variable set to true when p completes its first firing. In SDF3, we use the
input argument --compute response delay"(maximum)".

6.5.5 Throughput

Throughput of an FSM-SADFG is defined as the long-run average of com-
pleted iterations per time unit. However, the analysis of this chapter, unlike
the Max-plus-based analysis of earlier ones, works at the process firing gran-
ularity. Therefore, we must find a way how to define throughput in terms
of process firings.

Throughput of a process is defined as the long-run average number of
firing completions of a process per-time unit. In SDF, the throughput of the
entire graph is defined as the throughput of a process normalized (divided)
by the number of firings of that process within the graph iteration [50]. The
same definition can be applied to FSM-SADF. Furthermore, as in FSM-
SADF the repetition vector entry of the detector equals to one for all sce-
narios (detector fires once per scenario), so is the throughput of the entire
graph equal to the throughput of the detector process. The TCTL [5] based
query language of uppaal cannot be used to evaluate such long-run aver-
ages. In SDF3, we use the input argument --compute throughput"(FD)".
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6.5.6 Process interleaving

We continue with a set of simple reachability properties not supported by
SDF3, but that can easily be verified in uppaal.

We check the interleaving of different process firings, e.g. “between two
consecutive firing completions of the process p, process q completes at least
n firings”, etc. For this we use a leads to query (whenever a eventually
b) and a counter variable: (p.Fire --> q.FireCount >= n). Variable
q.FireCount is reset every time p takes the edge Fire → Initial and
incremented every time q takes the same edge. In the experiment, p = MC,
q = RC, and n = 1.

6.5.7 Inter-process delay

We can also check whether the maximum delay between the completion
times of firings of two processes within a scenario is greater than, less than
or equal to a predefined value by constructing a query monitor TA that syn-
chronizes with the events of firing completions of the processes it monitors.
In the case of a kernel p, this synchronization takes place when the edge
p.Fire→ p.Initial is taken. In the experiment we verify that the MC-RC
delay is always smaller than 5000.

6.5.8 Realized kernel auto-concurrency

If we bound the auto-concurrency of a particular kernel p to Np, we can
check whether it has been fully utilized or not. Allowing Np concurrent
executions of p means that we have assigned Np processing elements to
p. If all are not used, the idle ones can be assigned to kernels of another
application. This design decision might improve the overall performance of
the system hosting multiple applications. To determine the realized auto-
concurrency of a kernel p we use the query sup: p.count where p.count
is a variable that is incremented every time edge Initial→ Fire is taken
and decremented whenever the edge Fire → Initial is taken. In this
experiment, p = VLD , NVLD = 2 and sup : VLD .count = 2.

6.5.9 Pipeline depth

Pipeline depth denotes the maximum number of scenario executions active
at the same time. In case of our MPEG-4 case study, the beginning of a
scenario is marked by the firing completion of the detector FD, while its
end is marked by the firing completion of the RC process. To compute the
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pipeline depth pdepth, use the query sup : pdepth where pdepth is incre-
mented every time FD takes the edge (ξi, ξj) → ξj and decremented every
time RC takes the Fire → Initial edge. In this case the pipeline depth
is three as there are three initial tokens in the data buffer (RC ,FD). This
was immediately visible in this example, but one can easily imagine a more
complicated initial token distribution where mere visual inspection would
not suffice.

6.5.10 Parallelism between actors

We can check whether processes in an arbitrary subset of P can fire in
parallel. E.g., processes p and q can fire in parallel if the query E<> p.Fire
and q.Fire evaluates to true. In our experiment p = MC and q = RC .
These two cannot fire in parallel.

6.6 Discussion

Another look at Table 6.1 reveals that uppaal allows us to check the model
against various properties, many of which are not supported by the SDF3

tool-set.

In our approach, an FSM-SADF model is encoded in the uppaal model
checker as follows. First, the structure of the scenario graph including the
description of scenarios (rates and firing delays across scenarios) is fed to our
modeling framework as a simple configuration table. Second, the scenario
FSM is specified using the uppaal graphical user interface. Therefore,
no coding is required from the user side. The only effort the user has to
undertake (as with any other tool) is to describe the model to the tool. The
analysis is by definition automatic and exact in terms of the input model,
meaning that if the input model is an exact representation of reality, so
is the analysis. Particular analyses are performed by running the uppaal
verifier module as discussed in Section 6.5 while their run-times are specified
in Table 6.1.

On average, uppaal analysis will take the same time as that of SDF3,
but with higher memory demands. This observation justifies the use of
a general verification tool such as uppaal as a complement to specialized
tools. The flexibility of the uppaal’s TCTL based query language and the
possibility of construction of various query monitor automata allows the
user to easily compute various qualitative and quantitative properties of
the model.

The only metric not supported by uppaal that is available in SDF3 is
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Th ′F
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Fig. 6.6: Convergence of the horizon method for throughput estimation for
the FSM-SADFG of Fig. 6.1

throughput. Here we take the opportunity to shortly discuss the applica-
bility of uppaal and TCTL in a conservative estimation of the throughput
value.

LetW be a window of time of finite duration W . The throughput equals
to the long run average number of firing completions of the detector process
per time-unit. Therefore, let c be a variable that is incremented every time
the detector completes a firing, i.e. takes the (ξi, ξj) → ξj edge and reset
every time when clock T equals to W (T == W ) along with the clock T
itself. By defining the property A[] (T == W) imply c >= H, we can
verify that the value of c within all time windows W will be greater or
equal than the value of the horizon H. If the property is satisfied, the con-
servative (property holds along the entire time axis divided into windows
W of duration W ) throughput estimate Th ′F is given by Th ′F = H/W . By
using larger values of W and by finding the maximum H for which the prop-
erty holds, we tighten the estimate at the price of increased analysis time.
We call this method of conservative throughput estimation for FSM-SADF
the horizon method. Unfortunately, the horizon method scales poorly, and
we could not apply it successfully to our MPEG-4 case study. In practice,
this is not a problem because the Max-plus-based engine of SDF3 can be
used to effectively compute the throughput of large FSM-SADFGs. How-
ever, for completeness we show how to use uppaal to compute the worst-
case throughput using the “small” example FSM-SADF graph of Fig. 6.1.
Fig. 6.6 shows how Th ′F converges to the exact value of 0.25 for growing W .
Some points are decorated with the time required by uppaal to deliver the
estimate value.
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Table 6.2: uppaal vs. SDF3 scalability via maximum buffer occupancy

SDF3 UPPAAL

Pipeline depth Time [s] Mem [MB] Time [s] Mem [MB]

1 0.80 90 1.14 121

2 5.5 113 2.96 196

3 17.96 169 7.42 567

4 64.66 319 20.44 1144

5 392.02 662 81.17 2551

6 > 1800 > 1708 > 133 > 5752

6.7 Scalability issues

We investigate the scalability of the TA FSM-SADF analysis from two an-
gles.

First, we consider time and memory requirements for the maximum
buffer occupancy calculation for the MPEG-4 case study while increasing
the pipeline depth, i.e. the number of initial tokens on (RC ,FD) channel.
The results and the comparison with the SDF3 tool are shown in Table 6.2.
With the pipeline depth of six, both tools experience state-space induced
complexity problems. Among the metrics supported by SDF3, the maxi-
mum buffer occupancy is the most demanding computation as the diamond
property of the underlying TPS [114] cannot be exploited, i.e. all inter-
leavings of timeless actions need to be considered. uppaal will by default
considers all possible interleavings of timeless actions and will time-wise
perform better that SDF3 for this type of analysis.

Second, for uppaal, we check how it copes with auto-concurrency when
performing the maximum buffer occupancy analysis. We perform the ex-
periments by increasing the number of VLD kernel instances in the model.
The results of the experiments are shown in Table 6.3. Already with three
instances of VLD we experience state-space induced complexity problems.
This indicates poorer scalability of the translation in the presence of auto-
concurrency when performing maximum buffer occupancy analysis when
compared to the case with no auto-concurrency at all.

It is not clear how to improve the scalability of the model for maximum
buffer occupancy analysis and other analysis defined by queries over discrete
variables. This is because in these type of analysis all action interleaving
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Table 6.3: uppaal scalability via maximum buffer occupancy for increased
auto-concurrency

UPPAAL

Number of VLD instances Time [s] Mem [MB]

1 7.48 559

2 31.44 1088

3 > 175.00 > 6249

need to be considered. However, for the analysis of temporal properties
like inter-firing latency and process response times (model-checking against
clocks), the SADF/FSM-SADF diamond property [114] could be exploited.
Unfortunately, traditional partial order reduction techniques embedded in
uppaal are insufficient to take advantage of this. However, process priori-
ties of uppaal could be used to do exactly that by arbitrarily prioritizing
process timeless actions which then can be considered as a simple form of
partial order reduction. This way significant state space reductions could
be achieved. We leave these considerations to future work.

6.8 Summary

FSM-SADF is a powerful dataflow formalism that is able to capture the
dynamic behavior of modern streaming applications while offering a good
trade-off between expressiveness, analyzability and implementation efficiency.
However, the formalism is currently only supported by the SDF3 tool-set
which implements a predefined set of properties that can be analyzed/verified.
In this chapter we proposed a translation of (nonparametric) FSM-SADF to
TA, thereby enabling the use of the uppaal model checker for analyzing and
verifying user-defined properties in a straightforward manner. Our transla-
tion of FSM-SADF model to TA is also the first translation of a member of
the SADF MoC family to a model-checker that supports auto-concurrency.
We also report on the scalability issues experienced.

For SDF-PFSM-SADF of Chapter 4 such a translation is not possible
because uppaal or (to the best of our knowledge) any other widely-used
model checker do not support parametric discrete variables that are part
of the state and that could be used to model parameterized rates of SDF-
PFSM-SADFG. Support exists however for capturing of parameterized fir-
ing delays within the concept of parametric timed automata (PTA) [62]. In
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particular, parametric timed automata allow within clock constraints the
use of parameters in place of constants. Nevertheless, PTA does not allow
to specify complex parameter inter-dependencies and the analysis would in
many cases be overly pessimistic.

6.9 A final remark

In FSM-SADF, scenario releases performed by the detector are data-driven.
However, many (dynamic) streaming systems make use of event driven
mechanisms to control the data-intensive pars of the system. With that
in mind, we refer the reader to Appendix A that briefly discusses a flavor of
FSM-SADF with event-driven control, i.e. where scenario releases are made
dependent on external events.
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Chapter 7

Conclusion and future work

7.1 Conclusion

Dataflow MoCs have been traditionally used in the modeling, analysis and
synthesis of (real-time) streaming applications. In the world of dataflow
MoCs, SDF is regarded as the most mature and stable one. Thanks to its
static nature where the numbers of tokens to be produced and consumed are
constant and known at design-time, it is predictable, statically schedulable
and amenable to powerful optimization techniques but at the cost of limited
expressive power.

However, modern streaming applications exhibit increasing levels of dy-
namic behavior and SDF is not expressive enough to capture their dynamic
behavior. Nevertheless, for many dynamic applications it is possible to
construct conservative SDF models. However, using those models in the
design process results in over-allocation of already scarce embedded system
resources. In a present-day design setting where the market is pushing for
more and more functionality to be added on the same device, prolonged
battery life and decrease in end product price, such an over-allocation is
not acceptable. Therefore, designers of embedded (real-time) streaming
systems must must be made familiar with other dataflow MoCs than SDF.
Many of those models are indeed sufficiently expressive to capture complex
dynamic behavioral patterns, examples being KPN and DDF models. How-
ever, the increase in expressiveness with these models must be paid in terms
of significantly reduced analyzability.

In particular, in a real-time setting that we focused on in this work,
where the correctness of the system depends not only on the logical result
of the computation, but also on the time at which results are produced,
rigorous temporal analysis needs to be performed on the system model to

185
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derive associated real-time guarantees. Unfortunately, for many dynamic
dataflow MoCs the problem of determining these real-time properties is
undecidable.

However, there exist models that are sufficiently expressive to capture
dynamic aspects of modern streaming application while retaining design-
time analyzability. One of those models is FSM-SADF. FSM-SADF con-
siders applications whose dynamic behavior can be seen as a progression of
a collection of fairly static patterns called scenarios. Each scenario is then
modeled by an SDF model while a nondeterministic FSM abstracts appli-
cation control requirements by constraining scenario occurrence patterns.

Although well-suited for capturing applications exposing coarse-grained
dynamism, once the number of scenarios starts to grow, FSM-SADF will
experience compactness problems that hamper its use in the modeling and
analysis of applications exposing fine-grained data-dependent dynamism.
Simply put, the size of the model will become unmanageable.

To alleviate the problems that hamper the use of FSM-SADF in analyz-
ing such applications, in Chapter 3 we introduce the concept of SDF-PDF
that integrates dynamic parameters with SDF. By using parameters we
can compactly represent applications exposing fine-grained data-dependent
dynamism. By showing that the concept of configuration in SDF-PDF is
correspondent to the concept of a scenario in FSM-SADF, we were able to
model the phenomena of parameter reconfiguration of SDF-PDF using the
theory of Max-plus automata and show how to derive worst-case perfor-
mance guarantees for SDF-PDF. We did this by recasting and extending
the FSM-SADF analysis techniques to a parametric context.

SDF-PDF as defined in Chapter 3 and parameterized dataflow (PDF)
in general are specialized for modeling of data-intensive applications that
exhibit fine-grained data-dependent dynamism. However, there exists many
applications that combine the former with intricate control requirements.
To be able to compactly capture such applications, we add support for
control to PDF. In particular, in Chapter 4 we show how to combine the
concept of parameter reconfiguration in PDF with finite-state control yield-
ing a novel FSM/dataflow hybrid we refer to as PFSM-SADF. In PFSM-
SADF, every parameterized scenario is modeled by an PDFG, while an FSM
constrains parameterized scenario occurrence patterns. For an SDF-based
specialization of PFSM-SADF, called SDF-PFSM-SADF we show how to
derive worst-case performance guarantees using the theory of Max-plus au-
tomata.

Following Chapter 4, in Chapter 5 we address the throughput computa-
tion problem for an important setting of SDF-PFSM-SADF, in particular
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one in which SDF-PFSM-SADFG parameters are deemed static, i.e. once
set they do not change or change infrequently. We show how combining the
existing results on parametric throughput analysis of FSM-SADF, our own
Max-plus characterization of parameterized scenarios developed in Chap-
ters 3 and 4 and the RLT technique we can express throughput of the graph
as a simple function of graph and design environment parameters. Such
expressions can then be used both at design-time and run-time to perform
various types of optimizations.

The main lesson learned from Chapters 3, 4 and 5 is that parameteriza-
tion can be used as an effective syntactic construct that allows for a compact
representation (keeps the model size manageable) of scenario-aware stream-
ing applications exposing fine-grained data-dependent dynamism. Further-
more, we have shown that by using parameterization we are able to replace
enumerative analysis the run-time of which may oftentimes be prohibitive
with a single parametric analysis. However, the price to pay for that is the
tightness of the analysis.

The temporal analysis techniques presented throughout Chapters 3, 4
and 5 are, in essence, based on the Max-plus algebraic semantics of FSM-
SADF. For FSM-SADF (and transitively for SDF-PDF and PFSM-SADF),
the analysis works at an iteration granularity and provides no insight into
the behavior of particular actors within iterations. Furthermore, the scope
of the analysis is limited to non-functional properties, i.e. to worst-case
throughput and latency. Nevertheless, analyses exists for FSM-SADF that
can consider other properties than available via Max-plus-based analysis
and are available in the SDF3 tool. Examples are deadlock freedom, buffer
occupancies, etc. However, the analysis of SDF3 explicitly excludes auto-
concurrency and is limited to only a predefined set of properties that the
user cannot influence. To extend the analysis by taking auto-concurrency
into account, in Chapter 6 we report on the translation of the FSM-SADF
formalism to uppaal timed automata that enables a more general verifica-
tion than currently supported by existing tools.

The lessons learned from Chapter 6 are interesting too. On one hand,
applying general purpose model-checkers to FSM-SADF does enable quick
definition and verification of user-defined properties which SDF3 does not
support. On the other hand, a general purpose model checker cannot in
general make use of intrinsic properties of FSM-SADF like action determi-
nacy (as a custom model-checker can) to reduce state-space of the model
and so improve the scalability of the analysis. To achieve such reductions,
the user has to be inventive and use the available modeling constructs of
the model-checker (like priorities in uppaal).
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Related to Chapter 6 but outside its scope, in Appendix A we briefly
consider combining FSM-SADF and even-driven control to enable modeling
and analysis of (interactive) streaming applications which make use of event-
driven mechanisms to control the operation of data-intensive parts. We
showed that under non-preemptive FIFO scheduling policy it is possible to
formulate and solve the schedulability problem for such applications as a
reachability problem for ordinary timed automata.

The modeling concept of Chapter 6 can be regarded as a special case
of more general RPN, while its further development in the notation and
semantics of RPN is left for future work.

7.2 Proposals for future work

This thesis investigated real-time (and some functional) aspects of modeling
and analysis of scenario-aware real-time streaming applications by exploiting
the concept of scenario-aware dataflow. With regard to the contributions
of the thesis briefly listed in Section 7.1 there are still some open questions
that deserve future research.

• Full automation.
Currently some parts of the parametric Max-plus analysis engine of
this thesis are not implemented in software but are performed man-
ually. In particular, we mean the Max-plus characterization of SDF-
PDFGs of Algorithm 3.1. Therefore, it would be advantageous to
fully automate the analysis framework potentially on top of the TU/e
SDF3 tool and in detail analyze its scalability.

• Alleviation of limitations imposed to the SDF-PDF input
graph structures.
The Max-plus characterization procedure of SDF-PDF structures spec-
ified in Algorithm 3.1 requires that the input graph structures satisfy
Requirements 3.1 and 3.2. In particular, Requirement 3.1 limits the
applicability of our techniques in the presence of cyclic dependencies
not defined by saturated channels. A starting point to eliminate that
requirement would be to apply a compositional analysis where input
graph subgraphs that do satisfy Requirement 3.1 would first be ana-
lyzed in isolation, yielding the Max-plus characterization that would
be used as a building block in the Max-plus characterization of the
graph as a whole.

• Parameterized subscenarios.
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In PFSM-SADF, scenarios are allowed to change in-between itera-
tions. However, it would be advantageous to allow parts of the graph
to be reconfigured within the iteration of the graph as a whole. This
leads us to the concept of subscenarios that involves a hierarchical
FSM discipline. Therefore, in the context of PFSM-SADF it would
be interesting to consider (parameter) reconfigurations at the bound-
aries of local scenario graph iterations that are dictated by a local
control mechanism in the form of an FSM.

• Latency as a maximal delay between corresponding firings of
SDF-PDFG and SDF-PFSM-SADFG actors.
In the context of SDF-PDF an SDF-PFSM-SADF latency was defined
as a linear bound on actor firings with regard to a given period. Other
definitions of latency exist. In particular, an interesting one may be
the one defined as the maximal delay between the firings of actors in
the graph representing the input and the output of the system [51].
With such a definition, different methods for latency analysis than
the ones presented in Chapters 3 and 4 would need to be developed.
These would potentially, in addition to worst-case evaluation Max-plus
matrices, need to use the best-case evaluation matrices that specify the
earliest production times of tokens. Using the two, the latency can be
derived as the difference of the latest and earliest firing times of actors
representing the output and the input to the system, respectively.

• Throughput-constrained DVFS.
Section 5.2 briefly motivates the main result of Chapter 5 by demon-
strating how, if one had throughput of a throughput-constrained appli-
cation expressed as a simple function of parameters, this information
could be used at design-time to optimize energy consumption. An in-
teresting next step would be to consider how the same could be done at
run-time (in an environment where parameters infrequently change)
by employing a heuristic that would give a suboptimal solution to the
optimization problem of (5.7).

• Cost-optimal reachability analysis.
Chapter 6 proposes a translation of FSM-SADF to uppaal timed au-
tomata. However, some scalability issues have been reported. With
regard to those, we believe it is possible to improve the scalability of
the analysis (at least in the analysis of temporal properties) by using
priorities in uppaal which would serve as means for achieving a simple
form of partial order reduction. Furthermore, as our translation also
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sets the first milestone towards enabling the use of FSM-SADF in a
wider context, e.g. cost-optimal analysis, it would be worthwhile to in-
vestigate reachability analysis of applications modeled by FSM-SADF
through an optimal control formulation using the uppaal family of
model checkers. E.g., by exploiting the priced timed automata for-
malism using the uppaal Cora tool, where energy associated with
an actor firing could be formulated as a cost, one could compute sce-
nario schedules/sequences that minimize energy consumption.

• Event-driven scenario-aware dataflow.
In Appendix A we rather informally hinted how one can combine FSM
and event-driven control and establish schedulability analysis for the
combination. A significant amount of additional research effort is
needed to fully formalize the concept and extend the analysis to differ-
ent scheduling policies including preemptive ones by using stopwatch
automata in uppaal.



Appendix

A Event-driven control and FSM-based scenario-
aware dataflow

FSM-SADF combines streaming data and finite control. Control is embod-
ied in the detector process that is operationally nothing but an FSM. The
reactions of the FSM are triggered by availability of tokens at detector’s
dataflow input ports that are produced by kernels. These productions may
be considered synchronous events.

However, many (real-time) streaming systems depend on asynchronous
event-driven mechanisms that control the operation of dataflow processes.
These mechanism are often based on FSMs fueled by external inputs.

Therefore, we briefly consider modeling and analysis possibilities for such
systems using a flavor of FSM-SADF the FSM of which is in addition to
being fueled by feedback from the kernels, also fueled by external inputs.
Furthermore, we show how the construct can be translated to uppaal timed
automata and subjected to schedulability analysis.

The contribution of this appendix has not been (yet) published as fully
formalizing and completing the result requires a significant amount of ad-
ditional (and future) research effort.

A.1 Introduction

FSM-SADF is an FSM/dataflow hybrid. It is composed out of a number of
processes we call kernels and a single detector. The detector is defined by
an FSM that captures application control requirements.

Externally, the detector FSM obeys the SDF semantics which means
that it consumes a number of tokens on every input. The production and
consumption numbers are dependent on the states of the FSM, i.e. scenar-
ios. Every firing of the detector entails a reaction of the FSM which then
means that these reactions are data-driven, i.e. triggered by the availability

191



192 Appendix

of input tokens that enable the detector firing.

In particular, if we adopt the definition of an event from [68] that says
that an event is any occurrence that causes a change of control flow, we may
consider reactions of the FSM-SADF FSM to be triggered by synchronous
events. Synchronous, because in the parlance of [68], these events are those
that occur at predictable times in the flow-control. Examples of such events
are conditional branch instruction or the occurrence of an internal trap
interrupt. All these can be anticipated.

However, there exist events that cannot be anticipated such as a hard-
ware interrupts. These (external) events occur at unpredictable times in
the flow-control [68] and consequently change it. We refer to such events as
asynchronous events that we will from now on simply refer to as events.

FSM-SADF has no provision for capturing systems that make use of
event-driven mechanisms.

Therefore, we use the opportunity to discuss an extension of FSM-SADF
able to capture systems where event-driven mechanisms based on FSMs are
used to control the operation of data-intensive system parts, i.e. the kernels.
In particular, we will modify the detector’s FSM in a way that in addition
to reacting to feedback from kernels it will now also react to external inputs.
Thereafter, we show how to perform the translation of the novel construct
to uppaal timed automata for verification purposes where we will focus on
the interesting problem of schedulability analysis.

A.2 Our analysis model

A.2.1 The basics

Generally speaking, we consider systems where different interacting com-
ponents by making use of events control the operation of data-intensive
components of the systems, i.e. the dataflow components.

Therefore, it is only natural to differ between two types of processes in
such systems as done in [56]: data- and event-driven processes where event-
driven processes control the operation of data-driven processes. In addition,
we assume that event-driven processes are based on FSMs that are fueled
by external inputs as well as by the feedback from the data-driven parts of
the system.

Inspired by [56], we now depict these two types of processes in Fig. 1.
Event-driven processes must be activated immediately after an event con-
nected to one of the inputs has occurred. Data-driven processes are acti-
vated after there is enough data tokens at their inputs. The required token
quantities are specified by configurations the even-driven processes deliver
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Data-driven 
process

Event-driven
process

Dataflow
Initflow

Eventflow

Fig. 1: Event- and data-driven processes.

to data-driven processes.

Events are communicated using the eventflow queues, configurations are
delivered to the data-driven processes using the initflow streams, while data
tokens are communicated using the dataflow streams.

Our objective is to combine event-driven control with FSM-SADF. Now,
FSM-SADF originally recognizes two types of processes: kernels and detec-
tors. Kernels abstract the data-intensive parts of the system, while detec-
tors abstract control-oriented parts of the system that control the data-
dominated parts of the system, i.e. the kernels.

This means that in the context of Fig. 1, kernels are data-driven pro-
cesses. They are configured using initflow streams in the usual way as
described in Chapter 6 (the initflow stream in Fig. 1 is a control channel
in the parlance of FSM-SADF). Detectors produce initflow tokens (control
tokens). An FSM-SADF detector encloses an FSM that externally obeys
the SDF semantics. Now, to incorporate even-driven control, detectors are
added features enabling them to react to externally generated events and
control the operation of kernels based on those events and, as usual, based
on the feedback from kernels. Eventflow is used to communicate events
between the environment and the detector and the kernels and the detector
(note that kernels can have eventflow outputs too). Based on external events
and feedback from the kernels, detectors configure kernels using initflow in
the usual way, i.e. by scheduling a scenario execution.

Now, TA have proven expressive enough to capture many real-time sys-
tems in particular event-driven systems [83]. In Chapter 6 we have shown
how to generate models of systems expressed in FSM-SADF in uppaal TA.
Therefore, it is only natural to combine the two to produce a uppaal timed
automata analysis model for the FSM-SADF with event-driven control.

As a digression from the discussion above (aside the TA part) it follows
that our analysis model can actually be regarded as a special case of RPN
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tokensavailable (kernel)
start [kernel ]!

:=consumetokens(kernel )
x :=0

end [kernel ]!
:= producetokens(kernel )

Initial Fire

x⩽delay

(a) Kernel.

∃sk , l∈q s.t. d (sk ,l)>D(sk )

ei ?
(k , l ):=insert (sk , l , q)

d (sk , l):=0
:=reconfig(sk , l , q)

start [sk ,l ]? ∣ end [ sk , l]?
remove (sk ,l , q)
d (sk , l):=0

(m ,n):=insert (sm, n , q)
:=reconfig (sm, n , q)

ei ?
(k , l ):=insert (sk , l , q)

d (sk , l):=0
:=reconfig(sk , l , q)

error

idle run

(b) Detector.

Fig. 2: uppaal TA models of FSM-SADF processes with event-driven
control.

where the underlying process network(s) are SDFG(s) where one iteration
of these SDFGs constitutes a single streaming transaction. For more details
we refer to [45].

A.2.2 UPPAAL timed automata model of FSM-SADF with event-
driven control

We build our TA analysis model using the translation of FSM-SADF to
uppaal TA presented in Chapter 6. In particular, the modeling of dataflow
and initflow (control channels) remains entirely the same. Event-based
interactions are modeled using uppaal channels. A basic model of a kernel
is shown in Fig. 2a.

It is of the same structure as the model of the kernel in Fig. 6.4a. Added
channels start and end are used to notify the detector that the firing of
the kernel had just started or completed, respectively. Note that events
announcing the start or an end of actor firing in the parlance of [68] are
synchronous events as they can be anticipated.

A basic model of the detector is shown in Fig. 2b. What a detector
basically does, is that it reacts to external events {ei}. Once an event is
raised, the detector configures the kernels to execute some selected scenario
sk ∈ S (reconfig(sk,l, ·)). Detector also receives feedback from kernels
via start and end channels and performs, if necessary, any further kernel
reconfiguration, i.e. release of a new scenario. As mentioned, this is a basic
model and can be extended with a richer state structure. Further details
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a b d

Scenario s1 4 1 1
Scenario s2 2 5 1

(d) Actor firing delays in sce-
narios s1 and s2

Fig. 3: Example FSM-SADF with event-driven control.

regarding Fig. 2b are explained in the section to come.

A.3 Schedulability analysis

We now demonstrate on an artificial case study how we can use the up-
paal TA model of FSM-SADF with even-driven control for schedulability
analysis of dynamic even-driven systems. We build on the approach of [83]
that showed how the schedulability problem of a real-time task set can be
transformed to a reachability problem for ordinary timed automata and
thus it is decidable. We show that the same can be done in a more general
context where the simple task model of [83] is refined into a dynamically
reconfigurable dataflow structure where reconfiguration patterns depend on
the current state of the system and external inputs.

Consider the application shown in Fig. 3.

The data-intensive part of the application is abstracted into the scenario
graph of Fig. 3a that defines two scenarios: s1 and s2 in detail specified by
Fig. 3d and Fig. 3c. The system is to react to two events: e1 and e2. The
timing constraints on these events are specified using the TA of Fig. 3b with
two clocks x and y. Actually, the advantage with timed automata is that
one can specify very relaxed timing constraints on events whereas with the
traditional approach events are often considered to be periodic [83].

Now, the semantics of the events is as follows. The occurrence of event
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e1 requires the execution of scenario s1 while the occurrence of e2 requires
the execution of scenario s2. The hard-real time requirement imposed to the
system is that the scenario must complete within a given time interval after
the corresponding event had been raised. This interval defines the scenario
deadline. Our task is to verify that that these deadlines are always met. We
consider FIFO scheduling policy where a scenario cannot be preempted.

In this case, the detector can be easily constructed from the basic model
of Fig. 2b. In particular, it retains the same state structure. Once an event
had occurred (ek?), scenario sk is inserted into the list q of active scenarios
(insert(sk,l, q)) and a clock that measures its time of presence in the list is
reset (d(sk,l) := 0). We use index l to address a particular scenario instance
as there may be more active instances of the same scenario. Finally, the
detector emits control tokens into kernel control buffers (initflow) as an
actual act of scenario scheduling (reconfig(sk,l, q)). Once the scenario sk,l
completes (end[sk,l]), the scenario is removed from the active scenario list.

The predicate ∃ sk,l ∈ q s.t. d(k, l) > D(sk) defining the guard on the
transition to error state is used to denote the situation when the active
scenario list becomes nonschedulable. To show that the system is schedula-
ble we must show that the error state is never reached. This can be verified
using the TCTL uppaal query A[] not detector.error.

In our experiment with D(s1) = 30 and D(s2) = 20 the system can be
proven schedulable in 0.38s while using 36MB of static memory on an Intel
Core i5-750 machine running at 2.66GHz. If we set D(s2) = 10, the system
is no longer schedulable.

Although we only consider FIFO scheduling, note that the detector
model allows for modeling of more elaborate scheduling schemes. To do
so, the user needs only to accordingly “implement” the uppaal update
label reconfig of Fig. 2b.

A.4 Summary

In this section we have informally shown how event-driven control mecha-
nisms can be combined with the existing reconfiguration facilities of FSM-
SADF. Using the combination of the two we can capture systems than make
use of even-driven mechanisms based on FSMs to control the operation of
their data-intensive parts. Furthermore, we performed a proof-of-concept
translation of the combination to uppaal timed automata. Finally, we
have shown how to perform the schedulability analysis of the model under
a FIFO non-preemptive scheduling scheme. Note that a significant amount
of research work is needed to fully formalize the concept (most likely in the
parlance of RPN [45]) and evaluate it on a set of realistic case studies.
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drager. Tools and Algorithms for the Construction and Analysis of
Systems: 7th International Conference, TACAS 2001 Held as Part of
the Joint European Conferences on Theory and Practice of Software,
ETAPS 2001 Genova, Italy, April 2–6, 2001 Proceedings, chapter Lin-
ear Parametric Model Checking of Timed Automata, pages 189–203.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.



204 Bibliography

[63] Axel Jantsch. Modeling embedded systems and SoCs: concurrency and
time in models of computation. Morgan Kaufmann, 2004.

[64] N.K. Jha. Low power system scheduling and synthesis. In Computer
Aided Design, 2001. ICCAD 2001. IEEE/ACM International Confer-
ence on, pages 259–263, Nov 2001.

[65] G. Kahn. The semantics of a simple language for parallel program-
ming. In J. L. Rosenfeld, editor, Information processing, pages 471–
475, Stockholm, Sweden, Aug 1974. North Holland, Amsterdam.

[66] J.-P. Katoen and Hao Wu. Exponentially timed SADF: Composi-
tional semantics, reductions, and analysis. In Embedded Software
(EMSOFT), 2014 International Conference on, pages 1–10, Oct 2014.

[67] K.M. Kavi, B.P. Buckles, and U. Narayan Bhat. A formal definition
of data flow graph models. Computers, IEEE Transactions on, C-
35(11):940–948, Nov 1986.

[68] Phillip A. Laplante and Seppo J. Ovaska. Real-time systems design
and analysis: tools for the practitioner. John Wiley and Sons, 2011.

[69] E. Lee and D.G. Messerschmitt. Static scheduling of synchronous
data flow programs for digital signal processing. Computers, IEEE
Transactions on, C-36(1):24–35, Jan 1987.

[70] E.A. Lee and D.G. Messerschmitt. Synchronous data flow. Proceedings
of the IEEE, 75(9):1235–1245, Sept 1987.

[71] E.A. Lee and A. Sangiovanni-Vincentelli. A framework for comparing
models of computation. Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, 17(12):1217–1229, Dec 1998.

[72] Edward A. Lee. A denotational semantics for dataflow with firing.
In Memorandum UCB/ERL M97/3, Electronics Research Labaratory,
Berkeley, CA 94720, 1997.

[73] Björn Lisper. Fully automatic, parametric worst-case execution time
analysis. In In Workshop on Worst-Case Execution Time (WCET)
Analysis, pages 99–102, 2003.

[74] Marco Locatelli and Fabio Schoen. Global optimization: theory, algo-
rithms, and applications, volume 15. SIAM, 2013.



Bibliography 205

[75] Zhe Ma, Pol Marchal, Daniele Paolo Scarpazza, Peng Yang, Chun
Wong, Jos Ignacio Gmez, Stefaan Himpe, Chantal Ykman Couvreur,
and Francky Catthoor. Systematic Methodology for Real-Time Cost-
Effective Mapping of Dynamic Concurrent Task-Based Systems on
Heterogeneous Platforms. Springer Netherlands, 2007.

[76] Stylianos Mamagkakis, Dimitrios Soudris, and Francky Catthoor.
Middleware design optimization of wireless protocols based on the
exploitation of dynamic input patterns. In Proceedings of the Con-
ference on Design, Automation and Test in Europe, DATE ’07, pages
1036–1041, San Jose, CA, USA, 2007. EDA Consortium.

[77] Jianfeng Mao, Qianchuan Zhao, and C.G. Cassandras. Optimal dy-
namic voltage scaling in power-limited systems with real-time con-
straints. In Decision and Control, 2004. CDC. 43rd IEEE Conference
on, volume 2, pages 1472–1477 Vol.2, Dec 2004.

[78] Lei Miao and C.G. Cassandras. Optimality of static control policies in
some discrete-event systems. Automatic Control, IEEE Transactions
on, 50(9):1427–1431, Sept 2005.

[79] Narasinga Rao Miniskar, Elena Hammari, Satyakiran Munaga,
Stylianos Mamagkakis, Per Gunnar Kjeldsberg, and Francky
Catthoor. Embedded Computer Systems: Architectures, Modeling,
and Simulation: 9th International Workshop, SAMOS 2009, Samos,
Greece, July 20-23, 2009. Proceedings, chapter Scenario Based Map-
ping of Dynamic Applications on MPSoC: A 3D Graphics Case Study,
pages 48–57. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[80] T. Murata. Petri nets: Properties, analysis and applications. Proceed-
ings of the IEEE, 77(4):541–580, Apr 1989.

[81] S. Neuendorffer and E. Lee. Hierarchical reconfiguration of dataflow
models. In Formal Methods and Models for Co-Design, 2004. MEM-
OCODE ’04. Proceedings. Second ACM and IEEE International Con-
ference on, pages 179–188, June 2004.

[82] Gabriela Nicolescu and Pieter J. Mosterman. Model-Based Design
for Embedded Systems. CRC Press, Inc., Boca Raton, FL, USA, 1st
edition, 2009.

[83] C. Norstrøm, A. Wall, and Wang Yi. Timed automata as task mod-
els for event-driven systems. In Real-Time Computing Systems and



206 Bibliography

Applications, 1999. RTCSA ’99. Sixth International Conference on,
pages 182–189, 1999.

[84] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke,
F. Pereira, T. Stockhammer, and T. Wedi. Video coding with
H.264/AVC: tools, performance, and complexity. Circuits and Sys-
tems Magazine, IEEE, 4(1):7–28, First 2004.

[85] M. Pankert, O. Mauss, S. Ritz, and H. Meyr. Dynamic data flow and
control flow in high level DSP code synthesis. In Acoustics, Speech,
and Signal Processing, 1994. ICASSP-94., 1994 IEEE International
Conference on, volume ii, pages II/449–II/452 vol.2, Apr 1994.

[86] J. Piat, S.S. Bhattacharyya, and M. Raulet. Interface-based hierarchy
for synchronous data-flow graphs. In Signal Processing Systems, 2009.
SiPS 2009. IEEE Workshop on, pages 145–150, Oct 2009.

[87] P. Poplavko, T. Basten, M. Bekooij, J. van Meerbergen, and B. Mes-
man. Task-level timing models for guaranteed performance in multi-
processor networks-on-chip. In Proceedings of the 2003 International
Conference on Compilers, Architecture and Synthesis for Embedded
Systems, CASES ’03, pages 63–72, New York, NY, USA, 2003. ACM.

[88] P. Poplavko, T. Basten, and J. van Meerbergen. Execution-time pre-
diction for dynamic streaming applications with task-level parallelism.
In Digital System Design Architectures, Methods and Tools, 2007.
DSD 2007. 10th Euromicro Conference on, pages 228–235, Aug 2007.

[89] Michael James David Powell. Approximation theory and methods.
Cambridge university press, 1981.

[90] Claudius Ptolemaeus, editor. System Design, Modeling, and Simula-
tion using Ptolemy II. Ptolemy.org, 2014.

[91] Alberto Sangiovanni-Vincentelli and Grant Martin. Platform-based
design and software design methodology for embedded systems. IEEE
Des. Test, 18(6):23–33, November 2001.

[92] Alberto Sangiovanni-Vincentelli, Haibo Zeng, Marco Di Natale, and
Peter Marwedel, editors. Embedded Systems Development: From
Functional Models to Implementations, volume 20 of Embedded Sys-
tems. Springer New York, 2014.



Bibliography 207

[93] M. Sgroi, L. Lavagno, Y. Watanabe, and A. Sangiovanni-Vincentelli.
Synthesis of embedded software using free-choice petri nets. In De-
sign Automation Conference, 1999. Proceedings. 36th, pages 805–810,
1999.

[94] Hanif D. Sherali and Cihan H. Tuncbilek. A global optimization algo-
rithm for polynomial programming problems using a reformulation-
linearization technique. Journal of Global Optimization, 2(1):101–112,
1992.

[95] F. Siyoum, M. Geilen, and H. Corporaal. End-to-end latency analysis
of dataflow scenarios mapped onto shared heterogeneous resources.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 35(4):535–548, April 2016.

[96] F. Siyoum, M. Geilen, J. Eker, C. von Platen, and H. Corporaal. Auto-
mated extraction of scenario sequences from disciplined dataflow net-
works. In Formal Methods and Models for Codesign (MEMOCODE),
2013 Eleventh IEEE/ACM International Conference on, pages 47–56,
Oct 2013.

[97] F. Siyoum, M. Geilen, O. Moreira, R. Nas, and H. Corporaal. Analyz-
ing synchronous dataflow scenarios for dynamic software-defined radio
applications. In System on Chip (SoC), 2011 International Sympo-
sium on, pages 14–21, Oct 2011.

[98] Firew Siyoum, Marc Geilen, Orlando Moreira, and Henk Corporaal.
Worst-case throughput analysis of real-time dynamic streaming ap-
plications. In Proceedings of the Eighth IEEE/ACM/IFIP Interna-
tional Conference on Hardware/Software Codesign and System Syn-
thesis, CODES+ISSS ’12, pages 463–472, New York, NY, USA, 2012.
ACM.

[99] M. Skelin, M. Geilen, F. Catthoor, and S. Hendseth. Worst-case la-
tency analysis of sdf-based parametrized dataflow mocs. In Design
and Architectures for Signal and Image Processing (DASIP), 2015
Conference on, pages 1–6, Sept 2015.

[100] M. Skelin, M. Geilen, F. Catthoor, and S. Hendseth. Worst-case per-
formance analysis for SDF-based parameterize dataflow. 2015. Under
review as an invited paper for publication in special issue of Elsevier’s
Microprocessors and Microsystems journal (MICPRO) on DSD 2015.



208 Bibliography

[101] M. Skelin, M. Geilen, F. Catthoor, and S. Hendseth. Worst-case
throughput analysis of SDF-based parametrized dataflow. In Digital
System Design (DSD), 2015 Euromicro Conference on, pages 17–24,
Aug 2015.

[102] M. Skelin, M. Geilen, F. Catthoor, and S. Hendseth. Parameterized
dataflow scenarios. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, PP(99):1–1, 2016.

[103] M. Skelin, E. R. Wognsen, M. C. Olesen, R. R. Hansen, and K. G.
Larsen. Model checking of finite-state machine-based scenario-aware
dataflow using timed automata. In Industrial Embedded Systems
(SIES), 2015 10th IEEE International Symposium on, pages 1–10,
June 2015.

[104] M. Skelin, E.R. Wognsen, M.C. Olesen, R.R. Hansen, and K.G.
Larsen. Towards translating FSM-SADF to timed automata. In Pro-
ceedings of the first international workshop on Investigating dataflow
in embedded computing architectures, IDEA 2015, Amsterdam, The
Netherlands, January 19 - 21, 2015, pages 13–16, 2015.

[105] Mladen Skelin, Marc Geilen, Francky Catthoor, and Sverre Hendseth.
Worst-case throughput analysis for parametric rate and parametric
actor execution time scenario-aware dataflow graphs. In Proceedings
1st International Workshop on Synthesis of Continuous Parameters,
SynCoP 2014, Grenoble, France, 6th April 2014., pages 65–79, 2014.

[106] Mladen Skelin, Marc Geilen, Francky Catthoor, and Sverre Hendseth.
Parametrized dataflow scenarios. In Proceedings of the 12th Interna-
tional Conference on Embedded Software, EMSOFT ’15, pages 95–104,
Piscataway, NJ, USA, 2015. IEEE Press.

[107] Sundararajan Sriram and Shuvra S. Bhattacharyya. Embedded Mul-
tiprocessors: Scheduling and Synchronization. Marcel Dekker, Inc.,
New York, NY, USA, 1st edition, 2000.

[108] S. Stuijk, M. Geilen, and T. Basten. Throughput-buffering trade-off
exploration for cyclo-static and synchronous dataflow graphs. Com-
puters, IEEE Transactions on, 57(10):1331–1345, Oct 2008.

[109] S. Stuijk, M. Geilen, and T. Basten. A predictable multiprocessor
design flow for streaming applications with dynamic behaviour. In
Digital System Design: Architectures, Methods and Tools (DSD), 2010
13th Euromicro Conference on, pages 548–555, Sept 2010.



Bibliography 209

[110] S. Stuijk, M. Geilen, B. Theelen, and T. Basten. Scenario-aware data-
flow: Modeling, analysis and implementation of dynamic applications.
In Embedded Computer Systems (SAMOS), 2011 International Con-
ference on, pages 404–411, July 2011.

[111] S Stuijk, AH Ghamarian, BD Theelen, MCW Geilen, and T Basten.
FSM-based SADF. Technical report, Eindhoven University of Tech-
nology, 2008. MNEMEE internal report.

[112] Sander Stuijk, Marc Geilen, and Twan Basten. SDF3: SDF for free.
2010 10th International Conference on Application of Concurrency to
System Design, 0:276–278, 2006.

[113] B. D. Theelen, M. C. W. Geilen, T. Basten, J. P. M. Voeten, S. V. Ghe-
orghita, and S. Stuijk. A scenario-aware data flow model for combined
long-run average and worst-case performance analysis. In Proceedings
of the Fourth ACM and IEEE International Conference on Formal
Methods and Models for Co-Design, 2006. MEMOCODE ’06. Pro-
ceedings., MEMOCODE ’06, pages 185–194, Washington, DC, USA,
2006. IEEE Computer Society.

[114] Bart D. Theelen, Marc Geilen, and Jeroen Voeten. Performance Model
Checking Scenario-Aware Dataflow. In Proceedings of the 9th Interna-
tional Conference on Formal Modeling and Analysis of Timed Systems
(FORMATS), volume 6919 of Lecture Notes in Computer Science,
Aalborg, Denmark, 2011. Springer.

[115] Bart D. Theelen, Joost-Pieter Katoen, and Hao Wu. Model checking
of Scenario-Aware Dataflow with CADP. In Wolfgang Rosenstiel and
Lothar Thiele, editors, Proceedings of the 2012 Design, Automation &
Test in Europe Conference & Exhibition (DATE), Dresden, Germany,
2012. IEEE.

[116] B.D. Theelen. A performance analysis tool for scenario-aware stream-
ing applications. In Quantitative Evaluation of Systems, 2007. QEST
2007. Fourth International Conference on the, pages 269–270, Sept
2007.

[117] L. Thiele, K. Strehl, D. Ziegengein, R. Ernst, and J. Teich. Funstate-
an internal design representation for codesign. In Computer-Aided
Design, 1999. Digest of Technical Papers. 1999 IEEE/ACM Interna-
tional Conference on, pages 558–565, Nov 1999.



210 Bibliography

[118] Filip Thoen and Francky Catthoor. Modeling, Verification and Ex-
ploration of Task-Level Concurrency in Real-Time Embedded Systems.
Springer US, 2000.

[119] Maarten H. Wiggers, Marco J. G. Bekooij, and Gerard J. M. Smit.
Modelling run-time arbitration by latency-rate servers in dataflow
graphs. In Proceedingsof the 10th International Workshop on Soft-
ware &Amp; Compilers for Embedded Systems, SCOPES ’07, pages
11–22, New York, NY, USA, 2007. ACM.

[120] Maarten H. Wiggers, Marco J. G. Bekooij, and Gerard J. M. Smit.
Buffer capacity computation for throughput-constrained modal task
graphs. ACM Trans. Embed. Comput. Syst., 10(2):17:1–17:59, Jan-
uary 2011.

[121] M.H. Wiggers, M.J.G. Bekooij, and G.J.M. Smit. Buffer capacity
computation for throughput constrained streaming applications with
data-dependent inter-task communication. In Real-Time and Embed-
ded Technology and Applications Symposium, 2008. RTAS ’08. IEEE,
pages 183–194, April 2008.

[122] Peng Yang, Paul Marchal, Chun Wong, Stefaan Himpe, Francky
Catthoor, Patrick David, Johan Vounckx, and Rudy Lauwereins.
Managing dynamic concurrent tasks in embedded real-time multime-
dia systems. In Proceedings of the 15th International Symposium on
System Synthesis, ISSS ’02, pages 112–119, New York, NY, USA, 2002.
ACM.

[123] Yang Yang, M. Geilen, T. Basten, S. Stuijk, and H. Corporaal. Ex-
ploring trade-offs between performance and resource requirements for
synchronous dataflow graphs. In Embedded Systems for Real-Time
Multimedia, 2009. ESTIMedia 2009. IEEE/ACM/IFIP 7th Workshop
on, pages 96–105, Oct 2009.

[124] Richard Zurawski. Embedded systems handbook. CRC Press, 2005.



Abbreviations

BDF boolean dataflow
BPDF boolean parametric dataflow
CSDF cyclo-static dataflow
CSDF-PDF CSDF-based PDF
DDF dynamic dataflow
FSM finite-state machine
FSM-SADFG FSM-SADF graph
FSM-SADF FSM-based scenario-aware dataflow
HDF heterochronous dataflow
KPN Kahn process network
MCME MCM expression
MoC model of computation
PDFG PDF graph
PDF parameterized dataflow
PFSM-SADFG PFSM-SADF graph
PFSM-SADF FSM-based parameterized scenario-aware

dataflow
PiMM parameterized and interfaced dataflow meta-

model
PSDF parameterized SDF
PTA parametric timed automata
RLT reformulation-linearization technique
RPN reactive process network
SADF scenario-aware dataflow
SDF3 SDF for free
SDF synchronous dataflow
SDF-PDFG SDF-PDF graph
SDF-PDF SDF-based parameterized dataflow
SDF-PFSM-SADFG SDF-PFSM-SADF graph
SDF-PFSM-SADF SDF-based PFSM-SADF
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212 Abbreviations

SPDF schadulable parametric dataflow
SSDF scalable SDF
VPDF variable-rate phased dataflow
VRDF variable-rate dataflow
CMOS complementary metal oxide semiconductor
DSE design space exploration
DSP digital signal processor
DVFS dynamic voltage and frequency scaling
FIFO first in first out
MCM maximum cycle mean
QoS quality of service
Qss quasi-static schedule
SDFG SDF graph
SoC system on chip
TA timed automata
WCET worst-case execution time



Symbols

I set of initial tokens of a dataflow graph
B buffers of an FSM-SADFG
φ(b) status of FSM-SADFG buffer b
x configuration of an SDF-PFSM-SADFG
x configuration sequence of an SDF-PDFG
Rc(b, s) consumption rate of FSM-SADFG kernel

consuming from buffer b in scenario s
ψ(k) status of the control buffer of FSM-SADFG

kernel k
d detector of an FSM-SADFG
δ status of an FSM-SADFG detector
E(p) firing delay of FSM-SADFG process p
F FSM-SADF scenario FSM
F FSM-SADF
SA scenario set of FSM-SADF actor A
S set of FSM-SADF scenarios
mcm(G) maximum cycle mean of weighted directed

graph G
In(p) input buffers of FSM-SADFG process p
il initial token of a dataflow graph with index l
K kernels of an FSM-SADFG
κ(k) status of FSM-SADFG kernel k
LFP worst-case latency of SDF-PFSM-SADF FP

LG worst-case latency of SDF-PDFG G
L′
FP conservative bound to LFP

L′G conservative bound to LG
x̃ linearized configuration of an SDF-PFSM-

SADFG
P set of arbitrary parameters
cod(f) codomain of mapping f
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dom(f) domain of mapping f
conv(ς1(n), ς2(n)) Max-plus convolution of Max-plus sequences

ς1(n) and ς2(n)
til production time of il after the kth graph it-

eration
t′il production time of il after the (k+1)st graph

iteration
γ(k) vector of production times of initial tokens

after the kth graph iteration or shortly the
Max-plus timestamp vector

Mxr MCME for SDF-PFSM-SADFG configura-
tion xr

Out(k) output buffers of FSM-SADFG kernel k
γ sequence of Max-plus timestamp vectors
xA configuration of PDF/SDF-PDF actor A
DA grammar used to define the firing delay of

SDF-PDF actor A
XA domain of PDF/SDF-PDF actor A
XsPj

domain of parameterized scenario sP
j

Pd firing delay parameters of an SDF-PDFG
d(A) firing delay of SDF-PDFG/SDFG actor A
RA grammar used to define rates of SDF-PDF

actor A
Pi rate parameters of an SDF-PDFG
r(A, c) rate of SDF-PDFG/SDFG port (A, c)
FP PFSM-SADF scenario FSM
ζFP(k) the scenario and the configuration of the kth

SDF-PFSM-SADFG iteration
ξP

0 initial state of FP

MFP(sP
j ) (returns) mapping Mpar

sPj

FP PFSM-SADF
sP
j PFSM-SADF scenario

ΨP scenario labeling of FP

SP set of PFSM-SADF scenarios
MFP set of mappings {Mpar

sPj
: sP

j ∈ SP}
ξP
j state of FP

ΞP states of FP

TP transition function of FP



Symbols 215

x̂ polynomized configuration of an SDF-PFSM-
SADFG

P process of an FSM-SADFG
Rp(b, s) production rate of FSM-SADFG kernel pro-

ducing to buffer b in scenario s
τ(A,n) production timestamp of tokens produced by

the nth firing of actor A
υ(p) realized auto-concurrency of FSM-SADFG

kernel p
MG Max-plus matrix of SDFG G
ζG(k) configuration determining the instance run-

ning as kth SDF-PDFG iteration
Pb boolean parameters of an SDF-PDFG
β(c) condition of SDF-PDFG channel c
ιG(xG) instance of PDFG/SDF-PDFG G determined

by configuration xG

MG(xG) Max-plus matrix of SDF-PDFG G instance
ιG(xG)

Mpar′
sPk

(x̃r) conservative estimate of M̃par

sPk
(x̃r)

M̃par

sPk
(x̃r) linearized parameterized matrix of scenario

sP
k valid for linearized SDF-PFSM-SADFG

configuration x̃r
XFP domain of an PFSM-SADFG

X̂FP polynomized domain of an SDF-PFSM-
SADFG

sP sequence of parameterized scenarios
E set of all arithmetic expressions defined on

(Pi ∪ Pd ∪ Rmax)
ThFP worst-case throughput of SDF-PFSM-SADF

FP

ThG worst-case throughput of SDF-PDFG G
Th ′FP conservative bound to ThFP

Th ′G conservative bound to ThG
Thxr throughput expression for SDF-PFSM-

SADFG configuration xr
ThFP(xr) throughput value for SDF-PFSM-SADFG

configuration xr
A timed automaton
Mw−c
sPj

worst-case evaluation Max-plus matrix of sce-
nario sP

j SDF-PDFG
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Mw−c
G worst-case evaluation matrix of SDF-PDFG

G
Mw−c′
sPj

conservative estimate of Mw−c
sPj

Mw−c′
G conservative estimate of Mw−c

G

dA(xA) firing delay of SDF-PDF actor A with config-
uration xA

dA(sA) firing delay of FSM-SADF actor A in scenario
sA

rA(p, xA) rate of SDF-PDF actor A’s port p with con-
figuration xA

rA(p, sA) rate of FSM-SADF actor A’s port p in sce-
nario sA

PAi rate parameters of SDF-PDF actor A
fT timed actor firing function
f actor firing function
R actor firing rules
P set of actor input ports
Q set of actor output ports
G dataflow graph
A set of PDF/SDF-PDFG/SDFG graph actors
C set of PDF/SDF-PDFG/SDFG graph chan-

nels
dst(c) destination actor of channel c
ζF(k) scenario of the kth FSM-SADFG iteration
MF(s) Max-plus matrix of FSM-SADF scenario s

SDFG
ξ0 initial state of F
A Max-plus automaton
α final delay of a Max-plus automaton
β initial delay of a Max-plus automaton
µ Max-plus automaton morphism
Φ scenario labeling of F
Ξ states of F
T transition function of F
πl left projection function
anorm normalized Max-plus vector a
xG configuration of SDF-PDFG G
XG domain of SDF-PDFG G
i(c) number of initial tokens on SDF-

PDFG/SDFG channel c
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AP Max-plus automaton
αP final delay of a Max-plus automaton
βP initial delay of a Max-plus automaton
µP Max-plus automaton morphism
πr right projection function
Γ dataflow graph repetition vector
B grammar generating channel conditions in an

SDF-PDFG
D grammar defining firing delays in an SDF-

PDFG
R grammar defining rates in an SDF-PDFG
Mpar

G (xG) parameterized SDF-PDFG matrix valid for
configuration xG

Mpar′
G (xG) conservative approximation of Mpar

G (xG)

X̃FP linearized domain of an SDF-PFSM-SADFG
s sequence of FSM-SADF scenarios
Σ set of all token sequences
ΣN set of all tuples of N token sequences
Rn×nmax set of n× n Max-plus matrices
Rnmax set of n dimensional Max-plus vectors
src(c) source actor of channel c
σ token sequence
τ(q)(n) production time of the nth token produced

by an actor at its port q
σ tuple of N token sequences
||a|| norm of Max-plus vector a
rA(p) rate of SDFG actor A’s port p
PAd firing delay parameters of SDF-PDF actor A
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