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Preface 
 

This Master Thesis is written in culmination of the International Master Program in Reliability, 

Availability, Maintainability and Safety (MSc. RAMS) within the Production and Quality Engineering 

Department (IPK) at the Norwegian University of Science and Technology (NTNU), Trondheim, 

Norway. This work has been performed during the spring of 2016. This report is prepared for 

proposing a new method of failure rate estimation. The intended reader for this report should have 

practical experience in areas related to reliability and safety. In addition, certain basic knowledge on 

Bayesian Belief Networks is required to understand the models discussed in this report. 
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Abstract 
Prediction of failure rate for new subsea equipment is a challenge in oil and gas industry mainly due 

to lack of relevant data and use of increasingly novel technologies. There is a lack of common guideline 

or framework for failure prediction process of novel technology and different companies and experts 

follow different procedures. 

Many new technologies like Subsea processing with a subsea gas compression module installed at 

Åsgard field in Norway as recent as 2014 are emerging. The thesis proposes failure rate prediction 

method for new subsea equipment. The failure rate calculated is intended to be used as an important 

input for TQP during the early design phase.  

A comprehensive literature review to study the reliability databases and other methods like BBN, 

ANN, Rahimi and Rausand’s approach is done. The literature study was divided into two parts, 

reliability databases and other methods. Most of the generic methods do not consider the dynamic 

operational and environmental conditions during prediction process. It describes methods for failure 

rate prediction namely Regression models, Rahimi and Rausand’s approach, Bayesian Networks and 

Artificial Neural Network.  

A new approach is proposed using the available models. It mainly uses the weight parameters for RIFs 

and failure causes as inputs from Rahimi and Rausand (2013) and uses a BBN to calculate the failure 

rate for all failure modes of new subsea equipment. A BBN model is developed for quantifying the 

states of RIFs and its effect on failure cause and the failure rates of different failure modes of subsea 

equipment.  

 

  



viii 
 

Table of Contents  
Preface ................................................................................................................................................................ iii 

Acknowledgement ............................................................................................................................................. v 

Abbreviations .............................................................................................. Error! Bookmark not defined. 

Table of Contents ........................................................................................................................................... viii 

1 Introduction ............................................................................................................................................... 1 

1.1 Background ........................................................................................................................................ 1 

1.2 Objectives ........................................................................................................................................... 4 

1.3 Limitations.......................................................................................................................................... 4 

1.4 Approach ............................................................................................................................................ 5 

1.5 Structure of the report ...................................................................................................................... 5 

2 Subsea Production Systems – An introduction .................................................................................... 7 

2.1 Overview of Subsea Production System ........................................................................................ 7 

2.2 Challenges in Design and Operation of Subsea Production Systems ..................................... 10 

2.2.1 Flow Assurance challenges .................................................................................................... 10 

2.2.2 High cost of subsea interventions ........................................................................................ 11 

2.2.3 Technical Challenges in assuring reliable operation .......................................................... 11 

2.2.4 Constant failure rate assumption .......................................................................................... 11 

2.2.5 Increasing Novelty of subsea technologies ......................................................................... 12 

2.2.6 Adaptation from existing and proven technology and lack of data ................................ 12 

2.2.7 Expensive Reliability Testing ................................................................................................ 13 

3 Failure rate prediction databases .......................................................................................................... 14 

3.1 Literature Survey ............................................................................................................................. 14 

3.2 Failure rate – Definition and interpretation ................................................................................ 14 

3.3 Need of failure rate prediction in Subsea Industry .................................................................... 15 

3.4 Reliability Handbooks .................................................................................................................... 18 

3.4.1 Failure rate methods for handbooks of Electronic components ..................................... 18 

3.4.2 OREDA ................................................................................................................................... 20 

4 Failure rate prediction methods for general components ................................................................. 22 

4.1 Regression type models .................................................................................................................. 22 

4.1.1 Cox Model................................................................................................................................ 23 

4.1.2 BORA approach ..................................................................................................................... 26 



ix 
 

4.1.3 Brissaud et. al’s approach ....................................................................................................... 26 

4.2 Failure rate prediction method for new subsea equipment ...................................................... 27 

Step 1: New system familiarization: ..................................................................................................... 28 

Step 2: Identification of failure modes and failure causes: ............................................................... 28 

Step 3: Reliability information acquisition for similar known system; comparison of the new 

and the known system ............................................................................................................................ 29 

Step 4: Selection of relevant RIFs ........................................................................................................ 30 

Step 5: Scoring the effects of RIFs ....................................................................................................... 31 

Step 6: Weighing the contribution of failure causes to failure modes. ........................................... 32 

Step 7: Determination of failure rate for similar failure modes ....................................................... 32 

Step 8: Determination of failure rate for new failure modes, calculation of new total failure rate

 ................................................................................................................................................................... 34 

4.3 “3-Step” model (functions-material elements- faults and failures) .......................................... 35 

4.3.1 Modelling of complex systems .............................................................................................. 35 

4.3.2 Goal tree-Success tree and master logic diagrams ............................................................. 38 

4.3.3 “3-Step” Model ....................................................................................................................... 39 

4.3.4 Reliability analysis based on the 3-step model .................................................................... 42 

4.4 Bayesian Method ............................................................................................................................. 43 

4.4.1 BBN for reliability prediction................................................................................................ 44 

4.4.2 Bayesian Method for determining device failure rates from zero-failure data ............... 45 

4.5 Artificial Neural Networks (ANN) ............................................................................................... 48 

4.6 Discussion ........................................................................................................................................ 51 

4.6.1 Regression models ALM and PHM ..................................................................................... 51 

4.6.2 Rahimi and Rausand’s Method for new subsea equipment .............................................. 52 

4.6.3 3 Step Model ............................................................................................................................ 52 

4.6.4 Bayesian method with zero failure data available ............................................................... 52 

4.6.5 Neural Networks ..................................................................................................................... 53 

5 Proposed Model with an illustrative example ..................................................................................... 56 

5.1.1 Scope of model ........................................................................................................................ 56 

5.1.2 Choice of Model...................................................................................................................... 56 

5.1.3 Model Structure ....................................................................................................................... 56 

5.2 Model description............................................................................................................................ 57 

5.2.1 Illustrative example using a Subsea Pump .......................................................................... 57 



x 
 

5.3 Modelling details with an example ................................................................................................ 58 

5.3.1 Step 1: Execution of Rahimi and Rausand (2013)’s method ............................................ 58 

5.3.2 Step 2: BBN Approach .......................................................................................................... 61 

5.3.3 Sensitivity Analysis performed using GeNie....................................................................... 66 

6 Summary and Recommendation of further work .............................................................................. 70 

6.1 Summary and Conclusion .............................................................................................................. 70 

6.2 Limitations of the work .................................................................................................................. 71 

6.3 Recommendations of further work .............................................................................................. 72 

Appendix A ....................................................................................................................................................... 73 

Additional information about the reliability databases for electronic devices. ................................... 73 

Applendix B ...................................................................................................................................................... 75 

VBA Code and MS Excel Interface .......................................................................................................... 75 

B.1 Create all possible parent-child combinations ............................................................................. 75 

B.2  Code to Create Conditional Probability Tables ......................................................................... 77 

Bibliography ...................................................................................................................................................... 80 

 

 



1 
 

1 Introduction  

1.1 Background  

The present global energy requirements are met with 34% from oil, 25% from coal, 21% from natural 

gas, 12% from renewable, and 8% from nuclear energy sources. The world energy consumption is 

expected to reach 20679 Mtoe in 2040, about 56% over the 2010 levels, with conventional fossil fuels 

continuing to supply around 80% of the world energy through 2040 (EIA, 2013). Figure 1.1 shows 

the contributing sectors where the demand for Natural Gas (NG) continues to be in the uptrend with 

the consumption in 2040 expected to reach 5.23 Trillion cubic meters (TCM), a 64% increase from 

the 2010 consumption level. 

 

Figure 1.1 Global forecast on contribution of primary energy consumption Quadrillion BTU (EIA, 2013) 

The petroleum industry is increasingly relying on subsea technology to produce oil and gas in deeper 

waters to meet the increasing demand. Subsea production systems are used to develop reservoirs at 

multiple proximate locations; or to access reserves that are too deep for fixed platforms, technically 

or economically (ISO13628-1, 2005). They maximize use of infrastructure and facilitate early startup 

(Mason, 2006). Although these systems are designed and tested to withstand the harsh subsea 

conditions, failures do occur for example five offshore subsea fields in Australia recently experienced 

more than 100 equipment failures over a six-year period. The cost of the intervention was around 

AUD150 million ($106 million) and therefore reducing failures is even more critical in the current low 

oil price environment(Offshore-Mag, 2016). Shell had shut in production at its Brutus platform in the 

US Gulf of Mexico following a 2100-barrel spill near the Glider field in May 2016. The cause of the 

spill was the release of oil from subsea infrastructure (Evans, 2016). 
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Subsea developments are often challenging both from a technical and operational point of view and 

the recent plunge in oil and gas prices poses new limitations. In many cases, prototype and novel 

technologies are developed to reduce operating costs and enhance the profitability and productivity 

for example all-electric XTs (Bouquier et al., 2007), subsea compression (Hedne, 2014) and many 

more. The operators are skeptic in using the novel technologies as they fear that the new system might 

fail and lead to production losses, hydrocarbon leakages and costly maintenance interventions (Rahimi 

and Rausand, 2013). Even though the novel technology typically goes through a formal qualification 

process, these technology qualification processes are limited with respect to providing a quantitative 

reliability prediction method (Brandt et al., 2009). Myhrvold et al. (2016) also points out the lack of 

confidence of industry in using new subsea technologies and emphasizes the need of efficient 

reliability quantification methods during re-qualification of systems which utilize qualified 

technologies under slightly different conditions or with slight modifications.  

Quantitative reliability prediction1 forms an important part of qualification process and one of its most 

vital steps is failure rate estimation. It is necessary to identify design flaws effecting reliability as early 

as possible because it has compounding negative effects on the later stages of the project. Figure 1.2 

illustrates this effect with respect to cost of project. 

 

Figure 1.2 Compounding effects of design flaws in different stages of project 

Reliability needs to be correctly estimated in the early stages of qualification because of the following 

reasons (Rahimi and Rausand, 2013): 

                                                 
1 In this report, the terms reliability prediction and failure rate prediction are used interchangeably. Failure rate prediction 
is a part of Reliability prediction process. 
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 Identification of potential design weaknesses  

 Failure rate estimation for quantification reliability and availability  

 Comparison of different designs 

 Early estimation of Lifecycle costs 

 Establishing objectives and requirements of reliability testing  

 High costs of re-designing in case of inaccurate estimation 

The failure rate estimation of subsea equipment is difficult because the available failure rates for 

topside and subsea systems are based on generic databases (OREDA handbook (OREDA, 2009), 

Operator data etc.) and sparse failure data is available from subsea industry due to infrequent failures 

(Astrimar, 2015). Most of the failure rate prediction methods are based on field data analysis for 

estimation of parameters of life distribution which reflects deterioration characteristics (Toscano and 

Lyonnet, 2008)  

OREDA (2009) provides data of constant failure rates, failure modes, failure mechanisms for many 

subsea and topside oil and gas systems. These are based on the assumption that the equipment is 

exposed to environmental conditions which are stable and the failure rate is constant at any given 

point of time during operation. This assumption has two major limitations. A) Over-estimation of the 

reliability of equipment/system in harsher conditions B) Limited impact of maintenance activities on 

failure rates. Rahimi and Rausand (2013) have proposed a new approach based on failure rate 

evaluation with influencing factors (Brissaud et al., 2010) to solve these limitations to a certain extent.  

The subsea industry is moving towards the concept of standardization and modularization of 

components and systems respectively (Gjersvik et al., 2007, Mahler and Awo, 2014). It means that the 

basic components can be designed, qualified and combined according to specifications to be used in 

different environments. In such a scenario, there is a need of numerical and analytical method for 

reliability prediction against the costly physical testing approaches (Myhrvold et al., 2016).  

As a consequence, there is a need of practical models which can use the operational data and 

incorporate the dynamic parameters like maintenance intervals, environmental conditions for 

reliability quantification. Integration of the dynamic parameters with an adaptive model can improve 

the accuracy of these models (Myhrvold et al., 2016). 



4 
 

1.2 Objectives  

The main objectives of this thesis are, to study the present failure prediction methods used in subsea 

industry, identify the research gaps and propose a new model with illustrative example of subsea pump. 

The overall objective is achieved by accomplishing the following objectives. 

1) Make a brief description of subsea production systems with the need and challenges of 

reliability prediction.  

2) Give brief technical description for relevant new failure rate prediction methods. 

3) Study the different Failure rate prediction methods: Bayesian Belief Networks, Artificial 

Neural Network, 3-Step Model with brief description of regression based models. 

4) Identify the research gaps in the failure rate prediction methods when they are applied for 

subsea equipment.  

5) Select a relevant subsea equipment with similar topside equipment (for which data are 

available) to identify design changes, difference in influencing factors and maintenance –  

6) Develop a new approach to determination of failure rate functions for new equipment in 

subsea application. 

7) Discuss the results, ideas for further work.  

1.3 Limitations  

The main focus of this master thesis is to provide a relatively new approach to estimate the reliability 

of new technologies such as subsea production systems. An illustrative example of subsea pump is 

used due the increasing significance of subsea pumps in the novel subsea processing technology and 

another reason of choosing this as an example is constraints on availability of data. As Bayesian belief 

network (BBN) incorporates all the influencing factors easily, it is chosen as the most relevant 

reliability analysis tool used in this report. Most attention is being paid to the sub-objectives 3, 4 and 

6above, as these are the parts that are considered to be the most challenging of the sub-objectives. 

The thesis is carried out at NTNU, Trondheim. As a result there has been a limitation on the subsea 

equipment / system description and the reliability data. Only a selected failure rate prediction methods 

are discussed due to time and scope limitation of this thesis. As mentioned in the preface to the report, 

it is assumed that the reader has some prior knowledge of basic statistics and reliability studies. It saves 

the time and effort and lets the author to go straight to the problem. It is assumed that the reader is 
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familiar with concepts like failure rates, failure modes, probabilistic failure rate distributions, and 

confidence intervals.   

1.4 Approach  

The master thesis begins with a brief description of subsea production systems (SPS) to let the readers 

gain basic knowledge of SPS and understand the unique nature of subsea environment. The literature 

review documented in Chapter 3, is an interpretative review of selected failure rate prediction methods 

within the subsea oil and gas industry. This provides the background knowledge built upon to address 

the research problem. A new model for failure rate prediction is proposed and subsea pump is chosen 

as an illustrative example to explain the method and quantify failure rate. An outline of this approach 

is illustrated in Figure 1.2. 

 

 

 

Figure 1.2 Research approach 

1.5 Structure of the report  

The rest of the chapters and their contents are as follows: 

Chapter 2 gives an overview of the subsea production systems with brief explanation of all the sub-

systems. It gives a basic idea of the different sub-systems and equipment of subsea production systems. 

The chapter also highlights the main challenges in design and operation of subsea production systems. 

Chapter 3 briefly describes the terms failure rate and highlights the need of failure rate prediction for 

subsea systems. In addition, description of reliability handbooks/databases are presented. 

Chapter 4 gives detailed literature review with discussion of failure rate prediction methods namely 

Cox model, Prediction of failure rate for new subsea equipment by (Rahimi and Rausand, 2013) 

Bayesian Networks, Artificial Neural Networks. 

Chapter 5 presents the new model of prediction of failure rates based on the research gaps identified 

in literature review. The model is explained with an illustrative example of subsea pump.  

Chapter 6 includes Summary, Conclusion and Recommendation of further work. 

 Literature Review  

Reliability 

Prediction Methods 

Recommendation 

of a suitable 

approach 

 Evaluation of 

Selected method 

with an example  

 Identification 

of further work 
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2 Subsea Production Systems – An 

introduction 

This chapter briefly describes the sub-systems of a typical subsea production system and explains the 

need and challenges of the failure rate prediction process of a subsea equipment. 

2.1 Overview of Subsea Production System 

The continuous increase in the consumption of oil and gas combined with efforts in the industry to 

reduce operating costs is driving the research and development of new technologies in the industry. 

Accordingly, technologies and equipment for exploring and excavating the resources of deep sea areas 

that are buried underground under the sea have been gradually enhanced. Facilities that are used for 

the development of resources buried underground in coastal areas and the open sea are collectively 

prefixed with the term, subsea. The examples include subsea well, subsea field, subsea project, and 

subsea development (Woo et al., 2014).  

A complete subsea production system comprises several subsystems necessary to produce 

hydrocarbons from one or more subsea wells and transfer them to a given processing facility located 

offshore (fixed, floating or subsea) or onshore, or to inject water/gas through subsea wells (ISO13628-

1, 2005). Depending on the complexity of a system, subsea production systems can be classified into 

various types ranging from a system that consists of a single well that is connected to a fixed platform, 

FPSO, or an onshore platform through flowlines to a system in which a number of wells are connected 

to a manifold in a template or cluster form and transport oil to a fixed or floating platform or an 

onshore platform (ISO13628-1, 2005). 
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Fig 2.1  Typical Subsea Production System (ISO13628-1, 2005) 

Key for reading figure 2.2 

1. Running and retrieving tool 

2. Installation and workover control 

3. Completion/workover riser and workover controls umbilical  

4. Satellite well 

5. Template 

6. Flowlines 

7. Production controls 

8. Production riser 

9. Riser base/SSIV 

10. Manifold  

11. Export flowline 

A subsea production or injection system shown in Figure 2.2 includes the following subsystems 

 A wellhead and associated casing strings to provide basic foundation structure and pressure 

containment system for the well.  
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 A subsea Christmas tree incorporating flow and pressure-control valves. It controls the 

pressure and flow of the hydrocarbons coming out from the well and directs it to downstream 

equipment. 

 A structural foundation/template for positioning and support of various equipment; 

 A manifold system for controlled gathering/distributing of various fluid streams; 

 A subsea processing equipment, including fluid separation devices and/or 

pumps/compressors and associated electrical power distribution equipment; 

 A production control and monitoring system for remote monitoring and control of various 

subsea equipment. 

 A chemical injection system; 

 An umbilical with electrical power and signal cables, as well as conduits for hydraulic control 

fluid and 

 Various chemicals to be injected subsea into the produced fluid streams; 

 One or more flowlines to convey produced and/or injected fluids between the subsea 

completions and the seabed location of the host facility; 

 One or more risers to convey produced and/or injected fluids to/from various sea floor to 

host processing facilities.  

As the operation environment of subsea equipment corresponds to the deep sea or ultra-high deep 

sea, traditional equipment that has been previously used in offshore and onshore environments is not 

appropriate for this field development. Therefore, to collect oil and gas in the deep sea, safe and 

reliable equipment that is specialized for the deep sea needs to be developed pertaining to 

requirements of different fields (Woo et al., 2014). 

The subsea oil and gas industry is moving more and more of the traditional topside fluid processing 

systems to the seabed. This strategy has the potential to give increased production from low-energy 

reservoirs and may also lead to significant cost saving (Mahler and Awo, 2014). In addition, the oil 

and gas industry is currently exploring new challenging areas, such as ultra-deep waters and the Arctic 

region. Statoil has announced the idea of “Subsea Factory” in which all the subsystems of subsea 

production system will be on sea bed (Statoil, 2014). Figure 2.2 illustrates the Statoil subsea factory 

with all the sub-systems onsea-bed. 



10 
 

 

Figure 2.2 Statoil Subsea Factory (Statoil, 2014) 

2.2 Challenges in Design and Operation of Subsea 

Production Systems 

For the mechanical and electromechanical subsea equipment, there are some databases but no 

standard and accurate methods of failure rate prediction due to complex failure mechanisms. 

Moreover, when these equipment are used in subsea the challenges increase further. Some of those 

challenges are:   

2.2.1 Flow Assurance challenges 

The challenge of delivering multiphase reservoir fluids to the host with high availability is commonly 

known as flow assurance (Bai and Bai, 2012). The ultra-deep subsea environment is characterized by 

very low temperatures and high pressures and high hydrostatic pressure. These harsh conditions cause 

significant technical problems related to flow assurance like hydrates, corrosion, slugging and flow 

stability control.  Longer tiebacks are required to connect the production wells to storage facilities. 

Increased hydrostatic pressure requires higher pressure to maintain production rates. 
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2.2.2 High cost of subsea interventions 

To carry out maintenance of subsea equipment, it is required to use remotely operated vehicles (ROV). 

They are usually operated from a floating drilling rig of varying size and capacity depending on the 

nature of intervention. The intervention costs are driven by the duration of repair and for subsea 

equipment it’s longer due to remote and deep installations. Figure 2.4 illustrates the average day rates 

for offshore rigs according to the internal data compiled by DNV in 2006.  

 

Fig 2.4 Average day rates of offshore rigs for intervention (Fanailoo and Andreassen, 2008) 

2.2.3 Technical Challenges in assuring reliable operation 

The reservoirs situated in high temperature and high pressure area require cooling of both drilling 

mud and electronics (Fanailoo and Andreassen, 2008).  

2.2.4 Constant failure rate assumption  

Data from OREDA presents constant failure rates which assumes that the routine maintenance keeps 

the equipment in “as good as new” condition. This assumption might not work for subsea equipment, 

for example when a valve has failed and it is replaced with a new valve of same type, it is wrongly 

believed that the equipment is as good as new, the environmental conditions in the well have changed 

to produce a more hostile environment (Rausand and Høyland, 2004). The high cost of subsea 

intervention drives the need of longer maintenance intervals for subsea installations. In addition, the 

harsh subsea environment, technical and flow assurance challenges increase the degradation rate of 

the equipment. As a result, constant failure rate model is not accurate and makes an increasing failure 

rate model is more suitable as shown in figure 2.5.  
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Figure 2.5 Failure rate of a maintained vs. non-maintained equipment (Rahimi and Rausand, 2012) 

2.2.5 Increasing Novelty of subsea technologies 

As the subsea systems are employed in deep and ultra-deep water depths, the industry is developing 

new and novel technologies for reliable, safe and highly productive operation. Some of the novel 

solutions include: 

 Subsea separation and pumping(e.g. Åsgard 

 All-electric actuators for valves 

 Electric submersible pumps (ESP) 

These new technologies were qualified by the many industry partners like Aker Solutions, Oceaneering 

and many others. During qualification ,the failure data for some of the components of these new 

subsea equipment were not available in OREDA but were derived from data of similar components 

with expert judgement (Brandt et al., 2009). These necessary crude adjustments lead to uncertainty in 

failure data and poses a challenge for using the failure rate data of these components in future subsea 

developments. 

2.2.6 Adaptation from existing and proven technology and lack of data 

For the failure rate data of a component in a novel subsea equipment, many subsea companies adapt 

the failure rate of components from existing and proven technology as far as possible. The application, 

operating environment, accessibility of maintenance are some of the factors which influence the failure 

characteristics of the component (Brissaud et al., 2010).  
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Qualitative means can be used to assess the level of adjustment by comparing the influencing factors 

between new and existing operating environment (Thies et al., 2009). For example, a hydraulic actuator 

moved from topside to subsea will be subjected to increased pressure, rate of corrosion, etc. As a 

result there will be an increase in failure rate. Quantitative measures can be used by quantifying the 

influencing factors such as lifetime loading, duty cycles, and pressure (Rahimi and Rausand, 2013). 

Although these methods yield an idea about the new failure rate, they are not easily estimable because 

of no concrete methods in measuring the effect of influencing factors. This increases the uncertainty 

in overall reliability estimation during design.  

2.2.7 Expensive Reliability Testing  

Complex systems are being developed to overcome the increasing subsea challenges for example 

integration of power and control systems for subsea. As the complexity increases, the propagating 

failure modes, multiple failure modes and failure rates per component increases. This leads to the 

complexity in how a system might fail as makes it difficult to use the traditional reliability testing 

methods (Myhrvold et al., 2016). As a result, an extensive and cost incurring process is required to 

achieve the confidence of subsea industry partners.  
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3 Failure rate prediction databases 

The previous chapter highlighted the challenges of failure rate prediction process in subsea industry. 

A literature review is done to study and describe the different methods and databases available for 

failure rate prediction. It is divided into 2 chapters. This chapter presents a literature survey on failure 

and reliability handbook which contain the databases of oil and gas industry and other industries for 

collection of failure data and analysis of operational and maintenance data.  

3.1 Literature Survey  

The literature has mainly been obtained through databases like Science direct, One petro, Scopus etc. 

The reference lists in the reviewed articles have also been explored in order to get further information.  

The literature search began with using the terms “reliability assessment” and “reliability prediction”. 

The following terms were also used in addition to narrow down the search results to get relevant 

results 

 Failure rate prediction 

 New technology 

 Subsea 

 Bayesian network 

3.2 Failure rate – Definition and interpretation  

NORSOK Z-016 (NORSOK, 2003) defines failure as “termination of an ability an item have to perform a 

required function”. The failure rate function expresses the probability that an item that has survived up 

till time t, will fail during the next period of time. If the condition of the equipment is deteriorating, 

this probability of failure will increase with age t.  The probability distribution of failure rate varies 

with time according to the condition of equipment. The selection of an appropriate failure distribution 

must be based on a thorough understanding of the deterioration mechanisms. Failure rates of products 

are usually affected by wear, fatigue, and other stress-related failure mechanisms, and these may result 

in equipment degradation and increasing failure rate with time.  

The failure rate of mechanical products is often assumed to be bathtub-shaped as illustrated in Fig. 

3.1, consisting of three distinct periods: (i) a burn-in period with a decreasing failure rate, (ii) a useful 
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life period with a nearly constant failure rate, and (iii) a wear out period with an increasing failure rate 

(Rausand and Høyland, 2004). 

The term failure rate has two different interpretations. It may be interpreted as the conditional 

probability as the product that is functioning at time “t” will fail in a following short interval (Rausand 

and Høyland, 2004). As such, the failure rate indicates how a single product improves or deteriorates 

over time. This failure rate is sometimes called the force of mortality (FOM). The other interpretation 

is related to the frequency of failures of products that are repaired. This concept is sometimes called 

as rate of occurrence of failures (ROCOF) and does not tell much about the deterioration of a single 

product (Rausand and Høyland, 2004).  

 

Fig 3.1 Bathtub curve 

It is very common that reliability studies are based on field data (OREDA, 2009), but in case of subsea 

production systems the field data is incomplete and lacks sufficient detail (Brandt et al., 2009). Further 

sections in this chapter discuss the need of failure rate prediction in subsea systems and the research 

that has been done to formulate failure rate models and methods. 

3.3 Need of failure rate prediction in Subsea Industry 

Chapter 2 lists the high level of technology applied and qualified for subsea industry. Although subsea 

systems and equipment are designed and tested to withstand the harsh subsea conditions, failures do 

occur given that technology is relatively new and not much experience exists. And as the number of 

subsea installations increases, the likelihood of recording a failure increases (Uyiomendo and Tore, 

2015). Reliability analysis quantifies the equipment/system reliability and acts as a decision support 

for the operator during development of a new equipment/system.  
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Reliability requirements should be based on 5 factors according to IEC 60300-3-4  

1) The failure criteria  

2) The application of the equipment/system 

3) The environmental conditions 

4) The operating conditions 

5) The methods intended to be applied for determining the requirement  

The requirement of system reliability can be expressed with failure rate, survivor probability, and the 

mean time to failure (MTTF). The probabilistic analysis of any given safety function design is one of 

the fundamental concepts in today’s functional safety standard IEC 61508. The probabilistic analysis 

is possible only when the failure rate data for all the products that are installed or might be installed is 

available.   

 The need of failure rate prediction process for subsea equipment are listed below: 

 Check the possibility of achieving reliability requirement  

 Achieve a safe and reliable design which meets requirements of end-user(s) 

 Provide input to safety analysis 

 Establish maintenance/upgrade requirements  

The deployment of subsea systems requires specialized equipment and processes and implies a very 

high cost. Any requirement to repair or intervene the subsea equipment is normally very expensive 

and this type of expense may result in economic failure of the subsea technology development. Figure 

3.2 illustrates the different stages in a project cycle and significance of failure rate prediction.  

Therefore, before an operator accepts to install a new subsea system, he must be convinced that the 

new system has a sufficiently high reliability and a prerequisite is that failures requiring subsea repair 

interventions must not occur. A subsea intervention requires an intervention vessel and often a long 

production down-time at a cost of several million US dollars. The time to the first planned intervention 

may be in five years, and even longer, and it is important that the installed system is able to survive at 

least this period without failure. 
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Figure 3.2 Failure rate prediction in feedback analysis from collected failure data (adapted from (Hameed et al., 2011)) 

The weaknesses and limitations of equipment and system design must be identified and improvements 

made in the early stages of product lifecycle. If flaws are revealed and corrected in the design phase, 

their consequences are not as significant as it will be during the later stages of product lifecycle. The 

issues like redesign and reengineering occurs due to failure in identification of the design flaws.  

As most of the new subsea developments are gradually extended to the deep sea, relevant equipment 

and facilities require strict qualification for the functions and requirements of various systems. RAM 

(Reliability, Availability, and Maintenance) analysis using the predicted failure rate is an integral part 

of the qualification process (Fanailoo and Andreassen, 2008). It is a powerful tool to demonstrate the 

commercial performance and thus the economic impact of a proposed concept. In a RAM analysis 

probabilistic simulation models are established to provide a prediction of the future performance of a 

system or component. These models can then be used to simulate different development options and 

scenarios and could be a powerful tool for decision support when assessing different concepts and 

solutions. Failure rates of different subsystem and components are input RAM analyses.  

Failure rate prediction processes include identification of critical failure modes which identifies the 

most significant contributors to failure. This enables the designer to make changes to provide a 

product with higher reliability. The results of the process can be used to plan technology qualification 
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programs, and to arrive at a tradeoff between the system capital expenditure, operating expenditure, 

redundancy requirements, and subsea system modularity. 

3.4 Reliability Handbooks 

Several reliability databases are available as handbooks which list the failure data e.g. failure mode, 

failure cause, failure rates for electronic and general components and systems (OREDA, 2009, DoD, 

2011). This section describes different methods used in the reliability handbooks. 

These handbooks collect failure data for many types of components and assemblies, mainly of the 

electronics category and for different environments and analyze it using different models to provide 

failure modes and failure rates. Table 3.1 summarizes some of the most common reliability handbooks. 

Table 3.1 Summary Table of Failure prediction methods 

Application Area Prediction handbooks/databases 

Electronics  MIL-HDBK-217F (DoD, 2011) 

 Parts Count Technique 

 Parts Stress Technique  

Other Related Databases 

 Telcordia-SR332 (SR332, 2011) 

 PRISM 

FIDES (Guide, 2009) 

Oil and Gas OREDA (OREDA, 2009) 
FMEDA 

  

3.4.1 Failure rate methods for handbooks of Electronic components  

Foucher et al. (2002) proposed a broad classification of the reliability prediction methods for electronic 

devices into three categories:  

(1) Bottom–up statistical methods  

(2) Top–down similarity analysis methods based on an external failure database 

(3) Bottom–up physics-of-failure methods 

The first two categories are based on statistical analysis of failure data, while the last category is based 

on physics-of-failure models. The third category uses data from material properties, functional loads, 

design characteristics and usage environment to predict failure rate.  Foucher et al. (2002) compare 

the methods based on eight specified criteria related to accuracy, ease of data exchange, amount of 
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devoted resources, time to obtain reliability estimate, ease of customization, traceability, repeatability 

and ability for evolution. They conclude that the best reliability prediction will be achieved by a 

combination of different methods, depending on the phase of equipment’s lifecycle and on the 

objectives and assumptions of the manufacturer or the customer.  

3.4.1.1 Bottom-up statistical methods  

Bottom-up statistical methods are based on prediction approaches using statistical curve fitting from 

component failure data, which is collected in the laboratory, in field or from manufacturers. It is 

assumed that failure of components are independent of each other. This section lists the bottom-up 

statistical methods mentioned in the literature.  

MIL-HDBK-217F  

Military handbook MIL-HDBK-217F is a database of the failure rate estimates for various types of 

parts used in electronic systems. The estimates are primarily based on laboratory testing under 

controlled environmental stresses. The United States department of defense (DoD) stopped updating 

after the latest version in 1995. Military handbook remains one of the important databases in the 

industry, alternative methods have been developed which are more accurate (Guide, 2009). The 

database employs two types of method for estimation 

1) The parts count technique (prediction at reference condition)  

2) The part stress technique (prediction at operating condition).  

In “parts stress analysis” method, a detailed input of the parameters from stress analysis and 

environment, quality, applications, maximum ratings, complexity, temperature and other application-

related factors are needed. IEC 61709 (Commission, 1996) presents stress models and values for 

electronic components as a basis for conversion of the failure rate data from reference (baseline) 

conditions to the actual operating conditions. The stated stress models are generic for the different 

component types and contain constants that are averages of typical component values taken from 

tests or specified by different manufacturers. In “parts count analysis”, it is assumed that component 

operates under typical operating conditions.  
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3.4.1.2 Top-down similarity methods 

Top-down similarity analysis methods are based on proprietary databases (TD) which use similarity 

analysis between previous sub-systems or systems with available reliability data and newly designed 

systems with less reliability data. It gives an insight into prediction of reliability for new technologies. 

All failure causes, not only component failure rates are considered and therefore, FMECA (IEC 60812, 

2006) is most important. A typical TD approach is summarized for circuit card analysis by Foucher et 

al. (2002). 

3.4.1.3 Bottom up physics of failure methods 

 

PRISM 

PRISM includes terms for failure rates from temperature cycling to solder joint but treats those 

contributions as constant failure rate without justification. Reliability Analysis Center (RAC) is an 

important source of reliability data which is managed by Rome Laboratory, New York. 

RIAC 217Plus 

The RIAC-Handbook-217Plus reliability prediction model published in 2006 is an official successor 

of the MIL-HDBK-217FN2 and the PRISM methodology. 

FIDES Guide 

FIDES Guide is created by FIDES Group in 2004. Fides group is a consortium of leading French 

companies: Airbus France, Eurocopter, GIAT industries, MBDA, THALES. 

3.4.2 OREDA 
The Offshore reliability data project (OREDA) started in 1981 in collaboration with the Norwegian 

Petroleum Directorate (now known as Petroleum Safety Authority, Norway). The initial objective of 

the project is to exchange and collect reliability data from wide range of equipment used in oil and gas 

exploration ranging from offshore topside to subsea equipment.  The main purpose of OREDA 

project is to contribute to cost-effective and safe design and operation within the oil and gas industry; 

through a high quality database for reliability data. It is the most significant database available in this 

industry today.  

The OREDA handbook lists the average failure and repair rates of equipment/sub-system. In 

OREDA, items are grouped into equipment classes on the basis of the main function of the item e.g. 
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pipelines, manifolds etc. Then, for each equipment class, boundaries are defined to identify the items 

that are part of it for example, for equipment class called valves, OREDA defined boundary includes 

a valve, an actuator, a solenoid/pilot valve and position monitoring equipment. 

It is based on the assumption that the data comes from “useful life phase” of bath-tub curve where 

the failure rate is constant. So the failure rate function and mean time to failure (MTTF) is given as   

𝑧(𝑡) = 𝜆 

𝑀𝑇𝑇𝐹 =
1

𝜆
 

The severity of failures and therefore the failure rates are classified into 4 classes: Critical failure, 

Degraded failure, incipient failure and unknown failure. The failure rates are estimated separately for 

each class depending on the no. and the nature of failures. The maximum likelihood estimator of 𝜆 

when the failure data is from identical items that have been operating under same conditions i.e. 

homogenous sample is given by 

�̂� =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑠𝑒𝑟𝑣𝑖𝑐𝑒
=  
𝑛

𝜏
 

where, n and 𝜏 denote the observed number of failures and aggregated time in service respectively. 

The uncertainty in �̂� is presented as 90% confidence interval (see Rausand and Høyland (2004). 

The failure data for an item is collected from different installations with different operational and 

environmental conditions (multi-sample) is more practical with respect to homogenous sample. These 

samples may have different failure rates and different confidence intervals. Spjøtvoll (1985) proposed 

a rational estimation procedure for estimating failure rate from the merged samples. A detailed analysis 

by Vatn (1993) indicates that there may be a large variation between the data from different 

installations and therefore the multi-sample estimator should only be used.  

 

 



22 
 

4 Failure rate prediction methods for general 

components 

There are various failure rate prediction methods developed for different systems and industries. This 

chapter explains some of the methods which are developed for subsea oil and gas industry. In addition, 

methods which are developed in other industries and can be applied in subsea industry are also studied. 

Table 4.1 lists the methods discussed in this chapter.   

Table 4.1 Failure rate prediction methods discussed in this chapter 

General Failure rate methods Proportional Hazard (PH) Models  
Accelerated Failure Time (AFT) Models 
Brissaud’s Approach 
BORA Project 

Rahimi’s Approach  

Artificial Neural Networks 

Bayesian Belief Networks 

Reliability Prediction for intelligent 
transmitters  

  

4.1 Regression type models  

The most commonly used models for times between failures for repairable systems are renewal 

processes and homogeneous Poisson processes (HPPs). In a renewal process the times between 

failures are assumed to be independent and identically distributed. An HPP is a special type of a 

renewal process where it, in addition to assumptions for poison process, is assumed that the times 

between failures are exponentially distributed, i.e., with a constant failure rate. This means that 

repairable systems where the observed data indicate any form of trend due to deterioration or 

improvement of the system, these models are not appropriate. A model with time-dependent failure 

intensity, such as a nonhomogeneous Poisson process (NHPP) may be a better choice (Rausand and 

Høyland, 2004, RIGDON and BASU, 1990). 

Several factors will influence the equipment reliability, and these are referred as reliability-influencing 

factors (RIFs). A RIF is a relatively stable condition, which by being changed will have a positive or 

negative effect on the reliability of the equipment. The RIFs should be identified and should, as far as 

possible, be quantified and monitored. A RIF may be constant (e.g., a design or material feature) or 

may vary (rather slowly) in time, such as temperature. Ascher and Feingold (1984) list 18 generic RIFs 
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that influence the failure behavior of a repairable system, but they claim that those RIFs are usually 

ignored in reliability analysis. 

Various types of regression models have been suggested and the RIFs are included in the models as 

explanatory variables or covariates. Some of the RIFs are qualitative and to include such a RIF into 

the regression model, it is necessary to define one or more measurable indicators that are correlated 

with the RIF. This indicator is called a covariate. A covariate may be a continuous variable, a discrete 

variable taking several values, or a binary variable. The binary variable takes the value 1 when a specific 

feature is present and the value 0 when the feature is not present.  

The most commonly used regression-type models for reliability analysis fall into two main categories 

(Lawless, 1983).  

1) Accelerated failure time (ALT) model assumes that the effect of a covariate is to multiply 

the time to failure by some constant. In this method, the covariates influence how fast the 

time is running. The accelerated failure time model can be used together with parametric life 

models such as the exponential (Feigl and Zelen, 1965, Lindqvist and Tjelmeland, 1989), 

Weibull, log-normal, and extreme value distributions (Lawless, 1983).  

2) Proportional Hazards (PH) model is a method where the predicted failure rate λ(t) is 

assumed to be in the form of  

𝜆 (𝑡) = 𝜆0(𝑡) 𝜋(𝑧) 

Where, λ0(t) is the baseline failure rate determined in specific conditions and the factors π (z) 

models the covariates that are used to adjust the baseline failure rate to actual operating 

conditions. The covariates do not alter the shape of the failure rate function but they change 

its scale by a factor. Using this approach requires extensive data for determining the values of 

covariates and related parameters.  

4.1.1 Cox Model 

Cox proposed a new functional form for the representing covariates in PH model to estimate the 

effects of covariates on times to failures of a system (Cox, 1972).  

 𝜆 (𝑡) = 𝜆0(𝑡) 𝑒
∑ 𝛼𝑗𝑧𝑗
𝑛
𝑗=1   

 

(1)  
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where, α1, α2…. αn  are unknown parameters. A linear expression of the covariates can be obtained by 

taking the logarithm of the equation 1, such that the unknown parameters can be estimated using 

linear regression analysis. Cox developed a regression analysis based on partial likelihoods and this 

approach is Cox regression analysis. A detailed study by Cox (1972) explains the theory and 

applications of PH models. Figure 4.1 illustrates the steps involved in reliability prediction of an 

equipment using Cox model. 
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Figure 4.1 Reliability Prediction of equipment using Cox model (adapted from (Rahimi et al., 2011) 
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Other approaches based on PH model are summarized below.  

4.1.2 BORA approach  

The BORA project (Vinnem et al., 2009)discusses reliability assessment of safety barriers on offshore 

oil and gas installations. The approach is based on set of generic RIFs that are divided into five 

categories: human factors, task-related factors, administrative factors and organizational factors. The 

RIFs to be used for the particular assessment are selected using expert judgement and are delimited 

to six. An influence diagram is then set up linking the RIFs to a defined failure mode. The state of 

each RIF is classified into one out of six possible states and a scoring and weighing process is used to 

determine the effects of each RIF.  

4.1.3 Brissaud et. al’s approach  

A similar approach based on PH model was suggested by Brissaud et al. (2010). This method uses 

RIFs that are divided into five categories: design, manufacture, installation, operation and 

maintenance. The estimation of the application specific failure rate is comparable to the approach in 

military handbook, but the calculation of multiplicative factors is done in another way by scoring and 

weighting procedure. The steps of this method are, 

1) Divide system into several main component groups.  

2) Represent the system failure rate as a sum of the main component groups' failure rates (i.e. as 

a serial system).  

a) If the system does not verify serial properties (e.g. redundant systems), the approach may 

be individually applied to each serial subsystem, 

b) The obtained failure rates are then combined into reliability functions according to the 

proper system architecture, through the system structure function.  

3) Express the baseline failure rate of each component (i.e. main component group) as a 

percentage of the whole system baseline failure rate.  

The effects of the influencing factors are included by influencing coefficients. Each coefficient 

corresponds to one factor and vice-versa. If a component is susceptible to an influencing 

factor, its baseline failure rate is multiplied by the corresponding influencing coefficient. The 

coefficient values are defined according to the states of the influencing factors.  

Notice that having an a priori idea of the whole system failure rate is usually more realistic 

than getting accurate values for all of the components. 
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𝜆𝑠 = ∑𝜆𝑖

𝑁

𝑖=1

 

𝜆𝑠 = ∑[𝜆𝑖,𝑚𝑒𝑎𝑛∏ 𝐶𝑗
∗]

𝑗∈𝐽𝑖

𝑁

𝑖=1

 

𝜆𝑖,𝑚𝑒𝑎𝑛 = 𝑤𝑖 𝜆𝑠,𝑚𝑒𝑎𝑛 

Where 𝜆𝑠and 𝜆𝑖 are respectively the system's and the components' (i.e. main component 

groups) failure rates; 𝜆𝑠,𝑚𝑒𝑎𝑛and 𝜆𝑖,𝑚𝑒𝑎𝑛the system's and components' baseline failure rates; 

𝑤𝑖 the contribution (in percentage) of component i in the whole system's baseline failure rate 

N is the number of components which make up the system, 𝐶𝑗
∗is the influencing coefficient 

corresponding to influencing factor j; and 𝐽𝑖 is the set of indices of influencing factors which 

have an effect on component i. 

4.2 Failure rate prediction method for new subsea equipment  

Rahimi and Rausand (Rahimi and Rausand, 2013) developed this method to combine available topside 

failure data from  available databases with the effects of RIFs on different failure causes for failure 

rate prediction of new subsea equipment. However, its applicability is not only in subsea technology 

and it can be applied to other new systems as well. As the failure rates for topside components is 

available from several databases, the failure rates for subsea environment are predicted using 

“marinization” of failure rates. The following steps summarize the approach: 

Relevant data for the new subsea system is acquired from different databases depending on the 

availability and similarity between the new and existing equipment. For subsea equipment relevant 

topside data is used from OREDA (OREDA, 2009) and other databases. Several categories of data 

collected: 

 Technical data is identified from similar equipment which is supplied by manufacturers and 

understanding the system models and functions 

 Environmental data about the subsea and ocean operating conditions are necessary to identify 

the RIFs 

 Operational and maintenance data (field data) 

 Expert judgement is necessary in the process as the novel technology is applied and several 

decisions depend on expert knowledge during the process.  
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Brief Stepwise procedure: 

Step 1: New system familiarization:  

The application of new system is defined with its functions and sub-systems. DNV-RP-A203 (DNV, 

2011) suggests list of critical items specifying key issues such as frequency of operation, materials, load 

and capacity etc.  

Step 2: Identification of failure modes and failure causes: 

 FMECA (Rausand and Høyland, 2004) is carried out to identify the potential failure modes, failure 

causes and mechanisms. An influence diagram shows the different RIFs, failure causes (FC), failure 

modes (FM) and their inter-relationships. Figure 4.2 illustrates the RIFs, how they affect FCs and 

which FCs cause which failure modes and combination of failure modes for failure rate.  

 

Figure 4.2 Factors contributing to total failure rate of subsea system (Rahimi and Rausand, 2013) 
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Step 3: Reliability information acquisition for similar known system; 

comparison of the new and the known system  

OREDA and other databases e.g MechRel and RIAC are studied for collecting failure data of similar 

designed systems including failure mode, failure rate estimates including confidence interval, and 

failure mechanisms.  

To start with, total failure rate 𝜆(𝑇) is expressed in terms of the failure rates due to different failure 

modes as 

 
𝜆(𝑇) = ∑ 𝜆𝑖

(𝑇)
𝑛

𝑖=1
 

 

where, 𝜆𝑖
(𝑇)

is the failure rate for failure mode FMi and it is assumed that all failure modes are disjoint 

such that  

 𝜆𝑖
(𝑇)
= 𝛼𝑖𝜆

(𝑇)  

Where, 𝛼𝑖 is probability of occurrence of failure mode FMi  given that system failure has occurred. 

New and existing systems are compared with regards to RIFs, failure causes, failure mechanisms and 

failure modes as shown in figure 4.3. The dashed outlined rectangles in figure 4.3 are parameters of 

topside system and the solid ones are for subsea system. 
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Fig 4.3 Comparison of topside and subsea systems 

 Step 4: Selection of relevant RIFs  

RIFs influence the reliability of the system. The objective is to quantify the effect of RIFs on failure 

causes. Relevant RIFs are identified based on the insight gained in Step 3. Table 4.2 lists the generic 

RIFs (Ascher and Feingold, 1984, Brissaud et al., 2010).  

Table 4.2 Generic RIFs (Ascher and Feingold, 1984, Brissaud et al., 2010) 

Category  RIFs 

Design and Manufacturing  System structure 

Materials 

Dimensions 

Loads and capacities 

Quality (manufacturing process, installation, etc) 

Operational and Maintenance   Functional Requirements  

Time in Operation 

Mechanical Constraints 

Frequency of Maintenance 

Maintenance policy 

Accessibility for Maintenance 

Type and quality of maintenance 

Environmental  External  Temperature 

Location of operation 

Pressure 

Corrosive environment 

Pollution 

 Internal Pressure 

Sand particles in the fluid  

Chemical content 

 

Specific RIFs for new subsea system are selected by experts. They are then ranked according to their 

importance for each failure cause of new subsea system. This is done by first considering one failure 

cause at a time e.g. 𝐹𝐶𝑗 , and then comparing all the RIFs which influence 𝐹𝐶𝑗 pairwise i.e. comparing 

𝑅𝐼𝐹𝑗,𝑘1with 𝑅𝐼𝐹𝑗,𝑘2for all pairs (k1,k2) for failure cause 𝐹𝐶𝑗 . The weight εkj denotes the weight of 
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𝑅𝐼𝐹𝑘 for 𝐹𝐶𝑗These weights represent the importance of relevant RIFs on a particular FC such that 

∑ εkj 
𝑝
𝑘=1 .  

Step 5: Scoring the effects of RIFs  

After the weights of each RIF for a particular FC is calculated, this step quantifies the effects of each 

RIF on a particular FC. Some RIFs can influence failure causes in both topside and subsea systems 

and some in only one of the systems. This is quantified by using indicators 𝜈𝑘𝑗
(𝑇)

 for RIFs influencing 

topside FC and 𝜈𝑘𝑗
(𝑆)

 for RIFs influencing subsea FC where topside indicator 𝜈𝑘𝑗
(𝑇)

 is  

𝜈𝑘𝑗
(𝑇)

= {
1,     𝑖𝑓 𝑅𝐼𝐹𝑘 ℎ𝑎𝑠 𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑛 (𝑡𝑜𝑝𝑠𝑖𝑑𝑒)𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑐𝑎𝑢𝑠𝑒 𝐹𝐶𝑗
0 𝑖𝑓 𝑅𝐼𝐹𝑘 ℎ𝑎𝑠 𝑛𝑜 𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑛 (𝑡𝑜𝑝𝑠𝑖𝑑𝑒)𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑐𝑎𝑢𝑠𝑒 𝐹𝐶𝑗

 

And subsea indicator 𝜈𝑘𝑗
(𝑆)

  

𝜈𝑘𝑗
(𝑆)
= {

1,     𝑖𝑓 𝑅𝐼𝐹𝑘 ℎ𝑎𝑠 𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑛 (𝑠𝑢𝑏𝑠𝑒𝑎)𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑐𝑎𝑢𝑠𝑒 𝐹𝐶𝑗
0 𝑖𝑓 𝑅𝐼𝐹𝑘 ℎ𝑎𝑠 𝑛𝑜 𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑛 (𝑠𝑢𝑏𝑠𝑒𝑎)𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑐𝑎𝑢𝑠𝑒 𝐹𝐶𝑗

 

For each 𝑅𝐼𝐹𝑘and failure cause 𝐹𝐶𝑗 an influence score 𝜂𝑘𝑗 is used to indicate how much higher/lower 

effect 𝑅𝐼𝐹𝑘 has on 𝐹𝐶𝑗 for subsea system as compared to topside system. To score the effect of 

relevant RIFs on failure cause a seven point scale is used as shown in table 4.3. 

Table 4.3 A seven point scale for scoring the RIFs (Rahimi and Rausand, 2013) 

-3 -2 -1 0 1 2 3 

Much lower 

effect 

Significantly 

lower effect 

Slightly 

lower effect 

No 

difference 

Slightly 

higher effect 

Significantly 

higher effect 

Much higher 

effect 

 

In the table 𝜂𝑘𝑗 = +3 indicates that 𝑅𝐼𝐹𝑘has “much higher effect” on subsea 𝐹𝐶𝑗 compared to 

topside 𝐹𝐶𝑗 . 𝜂𝑘𝑗 = 0 implies that there is no difference in effect of 𝑅𝐼𝐹𝑘 on 𝐹𝐶𝑗 of topside and subsea 

systems. 𝜂𝑘𝑗 = −3 implies that 𝑅𝐼𝐹𝑘has “much lower effect” on subsea 𝐹𝐶𝑗 compared to topside 

𝐹𝐶𝑗 . All the seven points are applicable for scoring when 𝜈𝑘𝑗
(𝑇)

=1, while only three points are applicable 

when 𝜈𝑘𝑗
(𝑇)

=0 (only positive points are considered because 𝜈𝑘𝑗
(𝑇)

=0 implies RIFs will atleast effect the 

subsea FC positively). The number of RIFs influencing the subsea 𝐹𝐶𝑗 is ∑ ν𝑘𝑗
(𝑆)
 𝑝

𝑘=1  
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Step 6: Weighing the contribution of failure causes to failure modes.  

It is assumed that the failure causes are as “disjoint” as possible which means that the effect of two or 

failure causes on a failure mode should not be dominated by the combined effect of failure causes. 

The failure causes for each failure mode might contribute with different weights compared to the 

topside system. 𝑤𝑗𝑖
(𝑇)

represents the contribution of failure cause 𝐹𝐶𝑗 to failure mode 𝐹𝑀𝑖 from the 

topside system. Failure data from OREDA can be easily used to find 𝑤𝑗𝑖
(𝑇)

. Expert judgement is used 

to find the corresponding weights for subsea denoted by 𝑤𝑗𝑖
(𝑆)

. The weights are normalized in such a 

way that sum of the weights for a particular failure mode is  

 
 ∑ 𝑤𝑗𝑖

(𝑆)
𝑟

𝑗=1
= 1 𝑓𝑜𝑟 𝑖 = 1,2…𝑞 

 

Where, no. of failure modes is 𝑞 and it is considered same for both topside and subsea systems. 

Step 7: Determination of failure rate for similar failure modes  

The final failure rate of the subsea system is expressed in terms of the topside failure rate and the 

quantified parameter calculated from the previous steps. This approach is similar to that of BORA 

approach(Vinnem et al., 2009). Assuming that failure rate for failure mode 𝐹𝑀𝑖 in the subsea 

environment can be expressed in terms of failure rate for failure mode 𝐹𝑀𝑖 in the topside 

environment,  

 𝜆𝑖
(𝑆)
= 𝜆𝑖

(𝑇)
 (1 + 𝜅𝑖)   𝑓𝑜𝑟 𝑖 = 1,2,3…𝑞  

Where 𝜅𝑖 > −1 is a constant scaling factor that is calculated in further steps. 

As 𝜆𝑖
(𝑆)

 inderectly depends on the failure causes of the failure mode 𝐹𝑀𝑖 and their weights, the scaling 

factor 𝜅𝑖 must also depend on the weights 𝑤𝑗𝑖
(𝑆)

 of the respective failure causes. The parameter 𝑤𝑗𝑖
(𝑆)

 

is interpreted as  

 𝑤𝑗𝑖
(𝑆)

= Pr(the failure is caused by 𝐹𝐶𝑗𝑖| 𝐹𝑀𝑖 ℎ𝑎𝑠 𝑜𝑐𝑐𝑢𝑟𝑒𝑑) 

 

 

𝜅𝑖 also depends on the various effects of failure causes on the failure modes as compared with the 

topside system. This is quantified as weighted average of scores of the RIFs that effect 𝐹𝐶𝑗  
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 �̅�𝑗 =∑ 𝜀𝑘𝑗𝜈𝑘𝑗

(𝑆) 𝜂𝑘𝑗

3
    𝑓𝑜𝑟 𝑗 = 1,2… 𝑟

𝑝

𝑘=1
 

 

The weighted average score is divided by 3 for normalization, as the 7-pont scale is from -3 to +3. 

Then scaling factor 𝜅𝑖 is calcualted as: 

 
𝜅𝑖 = 𝑐𝑖  .∑ 𝑤𝑗𝑖

(𝑆)
𝑟

𝑗=1
 �̅�𝑗    𝑓𝑜𝑟 𝑖 = 1,2… . . 𝑞 

 

Where, 𝑐𝑖 represents the contant scaling factor calculated in further steps.  

To calculate 𝑐𝑖, it is first assumed that the failure rate, 𝜆𝑖
(𝑆)

can be delimited with respect to failure 

mode 𝐹𝑀𝑖  

 𝜆𝑖
(𝑆)
= [𝜆𝐿𝑜𝑤,𝑖

(𝑆)
, 𝜆𝐻𝑖𝑔ℎ,𝑖
(𝑆)

 ]  

Such that the boundary values are based on topside failure rate 𝜆𝑖
(𝑇)

for failure mode 𝐹𝑀𝑖 . The 

boundary parameters are denoted by 𝜃𝑚𝑖𝑛,𝑖 and 𝜃𝑚𝑎𝑥,𝑖 for each failure mode as: 

 𝜃𝑚𝑖𝑛,𝑖 𝜆𝑖
(𝑇)
≤ 𝜆𝑖

(𝑆)  ≤  𝜃𝑚𝑎𝑥,𝑖 𝜆𝑖
(𝑇)
   

The factors 𝜃𝑚𝑖𝑛,𝑖 and 𝜃𝑚𝑎𝑥,𝑖 are calculated using expert judgement. On combining equations, we get 

 
𝜃𝑚𝑖𝑛,𝑖 𝜆𝑖

(𝑇)
≤  1 + 𝑐𝑖  .∑ 𝑤𝑗𝑖

(𝑆)
𝑟

𝑗=1
 �̅�𝑗  ≤  𝜃𝑚𝑎𝑥,𝑖 𝜆𝑖

(𝑇)
  

(2) 

The values of �̅�𝑗 and 𝑤𝑗𝑖
(𝑆)

are calculated earlier in this step and in step 6 respectively. As a result, 𝑐𝑖 

should be calculated as a function of 𝜃𝑚𝑎𝑥,𝑖 and 𝜃𝑚𝑖𝑛,𝑖. 

To determine 𝑐𝑖, extreme cases of equation 2 are considered where all score for the RIFs, 𝜂𝑘𝑗 are 

given by extreme cases i.e the maximum case when all the scores 𝜂𝑘𝑗 are given as +3 and the 

minimum case when all the scores are given as -3. The value of �̅�𝑗 for failure cause 𝐹𝐶𝑗 would be 

given as +1 and -1 for maximum and minimum conditions respectively. This information, along 

with the fact that sum of all  𝑤𝑗𝑖
(𝑆)

 is equal to 1, is used to infer that for minimim case,                  

𝑐𝑖 = 1 − 𝜃𝑚𝑖𝑛,𝑖 and for maximum case 𝑐𝑖 = 𝜃𝑚𝑎𝑥,𝑖 − 1. The expression for 𝑐𝑖 is then written as: 
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𝑐𝑖 = 

{
 
 

 
 1 − 𝜃𝑚𝑖𝑛,𝑖, 𝑤ℎ𝑒𝑛∑ 𝑤𝑗𝑖

(𝑆)𝑟
𝑗=1  �̅�𝑗 < 0

0  ,                𝑤ℎ𝑒𝑛∑ 𝑤𝑗𝑖
(𝑆)𝑟

𝑗=1  �̅�𝑗 = 0

𝜃𝑚𝑎𝑥,𝑖 − 1, 𝑤ℎ𝑒𝑛∑ 𝑤𝑗𝑖
(𝑆)𝑟

𝑗=1  �̅�𝑗 > 0

     for i=1,2.........q 

(3) 

The equation 3 becomes 

 
 𝜆𝑖
(𝑆)
=  𝜆𝑖

(𝑇)
 (1 + 𝑐𝑖  .∑ 𝑤𝑗𝑖

(𝑆)
𝑟

𝑗=1
 �̅�𝑗)    𝑓𝑜𝑟 𝑖 = 1,2… . 𝑞 

 

 

Step 8: Determination of failure rate for new failure modes, calculation of 

new total failure rate  

The limitation of this method is that the failure rates of failure modes which are only relevant to subsea 

system cannot be quantified and expert judgement and technical reports have to be used.  

Finally total failure rate is calculated as sum of all the failure rates for the failure modes given as  

 𝜆𝑇𝑜𝑡𝑎𝑙
(𝑆)

=∑  𝜆𝑖
(𝑆)

𝑛

𝑖=1
 

The whole model is summarized in the flowchart shown in figure 4.4 

Figure 4.4 Flow chart showing steps of prediction of new failure rate based on Rahimi and Rausand (2013) 
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4.3 “3-Step” model (functions-material elements- faults and 

failures)  
The development of microelectromechanical systems (MEMS) has led to evolution in sensor systems. 

New sensors are intelligent and can handle data acquisition, its processing, and transmission. As a 

result, these sensors can transmit the signals in an appropriate form. International Society of 

Automation (ISA) and IEC (Commission, 2006) refer to these sensors as “transmitters” in process 

industry. The advanced functionalities of these transmitters include: self-adjustment, self-diagnosis 

and validation, error measurement correction and online reconfiguration. This presents specific issues 

like interactions between material elements and functions on system level, undefined behavior in faulty 

conditions and little reliability data. Table 4.4 lists the advantages and disadvantages of these 

transmitters in terms of reliability and safety. To resolve these issues a reliability analysis as a “3-Step” 

model is proposed by Brissaud et al. (2011). Reliability analysis of intelligent transmitters are required 

to determine safety integrities for safety critical systems in addition to the advanced functions. The 

issues during reliability analysis are:  

a) System complexity, many interactions between different material elements and functions 

b) System behavior during failure/fault is usually difficult to predict and not well known (due to 

programmable units)  

c) Various transmitted data may be wrong (e.g. diagnostic information and measurements) and 

are dependent on other data.  

d) Lack of available reliability feedback (e.g. failure modes and reliability data) due to new 

technology.  

These issues (b) and (d) make the qualitative analysis like FMECA extremely weak for identification 

of failure modes. Due to (a) and (c) handling fault and failure interactions is difficult. Binary reliability 

models like fault trees and reliability block diagrams are not applicable due to (b) and (c) and transition 

state approaches like Markov models have difficulty in defining state boundaries due to (a) and (b).  

Brissaud et al. (2011) proposed a “3-step” model (functions-material elements- faults and failures) to 

handle functional and material aspects as well as various interactions during fault and failures for 

reliability quantification.  

4.3.1 Modelling of complex systems  

A new technology-based transmitter may present two levels of complexity:  
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a) At system level where intra and inter relationships between material elements and functions 

exist  

b) At component level where behavior of specific units is difficult to define  

As a result, the modelling of complex systems must be done with object-oriented and function-

oriented approaches.  

The system can be analyzed according to goals and functions using function-oriented approaches. 

They can be used in design phase to define functional requirements, or later phases of project to 

understand effective system operation (Lambert et al., 1999). Some examples of this approach are 

structured analysis and design technique (SADT) by Ross (1977)for intelligent transmitters; the functional 

analysis system technique (FAST) by Lambert et al. (1999). For reliability assessments an extended SADT 

has been developed that can be used in design phase when systems behavior can be defined in 

accordance with its components and functions.  

In Object-oriented approaches, a more formal method is applied where the system is organized as 

a set of individual objects (Luttenbacher et al., 1995). The static or dynamic systems with respect to 

material elements and their interactions i.e. structural analysis may be modelled using object-oriented 

approach. Some examples of this approach include the UML class diagrams and fault trees. In practice, 

function-oriented and object-oriented approaches do not reflect opposing concepts and, in particular, 

they can be used as complementary techniques 

. 
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Table 4.4 the advantages and disadvantages of these transmitters in terms of reliability and safety (Brissaud et al., 2011) 

Criterion  Pros Cons 

Reliability  Self-adjustment may prevent drifts 

or other faults and failures which 

appear with aging. 

The high amount of electronics, 

programmable units and software 

aspects implies new failure causes 

and modes which are usually not 

well known and difficult to 

predict. 

Faults and failures may be partly 

compensated using fault tolerant 

strategies (reconfiguration). 

Each fault or failure may affect 

several functions and transmitted 

data (e.g. measurements, 

diagnoses). 

Digital communication is often 

assumed to be more reliable than 

analogue wires. 

Digital communication reliability 

is questioned and may yield 

common cause failures. 

Maintainability  Information on drifts, influencing 

factors, charge exceeding, 

previous faults and failures with 

corresponding circumstances etc. 

may be monitored over time and 

used for preventive maintenance. 

Digital communication and online 

reconfiguration can make 

corrective maintenance easier and 

more efficiency. 

Specific expertise is required to 

maintain such complex systems. 

Safety  Self-diagnoses allow better fault 

and failure coverage, and safe 

states can be defined in more 

detail 

Transmitters are increasingly 

becoming “black box” systems. 
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4.3.2 Goal tree-Success tree and master logic diagrams  

Goal tree-success tree approach (GTST) in combination with master logic diagrams (MLD) is 

used to develop the final model for reliability analysis of these transmitters (Brissaud et al., 2011). 

GTST has been used for various applications for risk assessment of nuclear plants. The idea is that 

the complex systems can be analyzed using hierarchal frameworks. Figure 4.5 illustrates how systems 

are analyzed according to goals and functions using goal tree (GT) and according to its objects using 

success tree (ST).  

 

 Figure 4.5 Conceptual goal tree-success tree with different types of relationships (Brissaud et al., 2011)  

The system is analyzed using a top-down approach for both GT and ST. The topmost level of GT is 

defined as the system objective (or goal), and secondary level represents the necessary functions which 

have to be achieved to achieve the top function. Similarly the functions are analyzed until there is no 

possible of further development. The ST is analyzed as a system structure made of several system 

parts which are responsible for achieving sub-functions. The top most level of ST is the whole 

product/equipment and it is analyzed to its basic parts in different levels in a similar way to GT. 

Relationships exist between GT functions and ST objects as one ST object is may achieve one or 

many sub-functions of GT. 
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Master logic diagrams (MLD) are used to represent the relationships between GT functions and ST 

objects in a compact way. Figure x.x illustrates a typical MLD and the relationships between GT sub-

fuctions and ST sub-parts.  

 

Fig 4.6 Conceptual GTST-MLD where MLD (Brissaud et al., 2011) 

The combined diagram with both GTST –MLD provides a simple and efficient framework to 

understand and quantify causal relations for complex systems (Modarres and Cheon, 1999). This 

model acts as a supporting tool for 3-step proposed model with analysis of faults and failures 

introduced as an additional part.  

4.3.3 “3-Step” Model  

The basic description of this model with an example is described. For further details refer Brissaud et 

al. (2011) 

Functional Tree  

Goal-tree is referred to as functional-tree in this model as reliability of an equipment refers to the 

function of the equipment to perform its functions. The topmost function of the functional tree is 

called as the goal function. The goal function is described as a safety function which is used to prevent 
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the occurrence of a hazardous event. The goal function is divided into sub-functions (global functions) 

such that the combination of sub-functions assure that the goal function is achieved. The analysis 

continues to until the last level of basic functions similar to the process of GT. Only “AND” gates 

are used to model the relationships. The functions are classified as goal function, global function and 

basic function (see figure 4.7). All relevant basic functions have to be achieved to fulfill global function 

and so on. In this approach, goal function is divided into main and supporting functions on the basis 

of importance of functions. The global and basic functions are main functions of the equipment and 

supporting functions are auxiliary function which are “optional”. In figure 4.7 the goal, supporting, 

global and basic functions for intelligent transmitter.  

Material Tree  

Material tree provides the system structure with regards to material aspects of the system (interactions 

between the different system elements). Therefore success tree is referred to as material tree in this 

model. The materials or objects needed to achieve the functions given in the functional tree. It may 

include software elements, hardware elements and human factors. There are three level of analysis for 

material elements; system- where the whole system is analyzed, sub-systems refers to the materials or 

components which are functionally or physically grouped together and units are the basic elements. 

Similar to the functional tree the relationships between the elements and the parts are denoted by and 

gates. The material elements can also be distinguished as main material elements: which are required 

for the main system and supporting material elements which may be a part of other material elements. 

Fig 4.7 shows the system, sub-systems, units and supporting material elements of an intelligent 

transmitter.  

Faults and failure  

In order to proceed with the reliability analysis, faults and failures are studied to reveal dysfunctional 

aspects. Rausand and Øien (1996) describe the basic concepts of failure, failure mechanism, failure 

model and fault in detail. The model relates possible faults and to the particular material element given 

in the material tree. Then the effects of faults and failures are modelled by first the relationships 

between them and the material elements and then by relationships between functions and material 

elements. Both are represented in the relationship matrices. Fig 4.7 illustrates the faults and failures 

for an intelligent transmitter and ow they effect the materials and in turn the fuctions.  
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Fig 4.7 Illustration of 3-step model for an intelligent transmitter (Brissaud et al., 2011) 

Relationship matrices 

The relationship matrices or master logic diagrams (MLD) show the way of how a function is achieved 

by the material elements and supporting functions. The model uses a qualitative approach in this step 

with no numerical values. Stochastic relationships are used in further steps in the model. In the fig 4.7 

the relationship of the components are represented using filled dots. The degree of relationship (e.g. 
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strong or weak) is shown using colour shades of the dots (a “semi-qualitative” model). A dark coloured 

dot means that the functions or the upstream element in the diagram always needs full operational 

condition of the material element or the respective downstream element as so on.  

4.3.4 Reliability analysis based on the 3-step model 

Relationship Analysis 

To assess all the relationships between the elements (functions, faults and failures, material elements) 

considering both the direct and indirect relationship analysis is conducted. First, the terms are defined 

as  

Dd Fault or failure d occurs  

Pp Supporting material element p is in a failed state  

Mm Unit m is in a failed state 

Ss Supporting function s malfunctions 

Ff Basic function f malfuncitons 

Gg Global function g malfunctions 

Then, the direct relationship event between as downstream element a and an upstream element b is 

represented in relationship matrix AB, in the row of index a and column of index b, and defined as 

follows: 

ABa,b Event Aa directly implies event Bb 

DPd,p An occurrence of fault or failure d directly implies a failed state of supporting 

material element p 

PMp,m A failed state of supporting material p directly implies a failed state of unit m  

Similarly other relationship events can be explained. The assumptions are 

- All events are direct relationship events and are independent of each other and the probability 

of their occurrence is P[ABa,b] 

- The values of relationships are probabilities which depend on the dot colors in the relationship 

matrices  

The equations mentioned in the relationship analysis of Brissaud et al. (2011) is used to calculate the 

probability of failure and assuming a constant failure rate approach, the final failure rate is calculated. 

Refer to Brissaud et al. (2011) for details.  
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Table 4.5 Translation of degree of relationship into probability and vice versa. 

Relationship Input value  

(probability)  

Result translation for graphical 

representation 

Full/high  1.000 0.833-1.000 

Medium 0.667 0.500-0.833 

Low 0.333 0.167-0.500 

Nil/Very Low 0.000 0.000-0.167 

 

4.4 Bayesian Method 
In this approach, the probability of an event is a measure of our belief about the occurrence of the 

event and is referred to as the degree of belief. Bayes formula gives the probability of the parameter, 

given the observation in the data. This data is not limited to sample data only. It contains empirical 

and external data (prior) in addition. Bayes formula given below implies that the posterior distribution 

of a parameter is proportional to the product of likelihood and the prior distribution of the parameter. 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =  
𝑃𝑟𝑖𝑜𝑟 × 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
 

Subjective prior belief is indicated by the prior distribution. The posterior distribution is the 

conditional probability of parameter given the observations. It is a powerful and coherent method to 

mathematically, combine the different types of information and to express the inherent uncertainties.  

Bayesian belief network (BBN) is based on this theory. BBN is described ((Jensen, 1996)) as a directed 

acyclic graph (DAG) that defines the factorization of a joint probability distribution over the variables. 

The nodes of the DAG represent the variables. The directed links of the DAG give factorization. 

BBN provides an intuitive graphical model for reasoning under uncertainty. It provides a mechanism 

for representing the causal relationships between the entities of problem domain. Figure 4.8 illustrates 

a simple BBN. The nodes B and C are “parents” to the “child “node A. The probability distributions 

of B and C are specified across the possible outcomes/states that it can take. Node A is represented 

by conditional probabilities which are conditioned on the state of B and C. 
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Fig 4.8 Generic BBN with one child and two parents. 

4.4.1 BBN for reliability prediction 

It is a popular method of modelling uncertain and complex systems in power/nuclear and aviation 

industries and the modelling has been done for diagnosis purpose. This kind of modelling is not yet 

can be used in reliability modelling as it is useful in modelling common cause failures and study 

uncertainties (Langseth and Portinale, 2007). Hybrid causal logic (HCL) (Røed et al., 2009) framework 

can also be used in reliability and is further discussed in last chapter. Papers by Bobbio et al. (2001) 

proposed a method to convert fault trees into Bayesian networks, Langseth (2008) Langseth and 

Portinale (2007) explain the importance of Bayesian Networks in the field of reliability engineering. 

BBN is extensively used in reliability modelling of subsea BOPs (Baoping et al., 2013, Cai et al., 2012) 

and  it has alson been used for subsea X-mas Trees (Lyu et al., 2014). Therefore, it is worthwhile to 

evaluate the BBN as a choice of modelling tool for reliability prediction.  

BBN modelling is carried out in two main steps. However, many detailed approaches can be found in 

the literature.  

a) Structural modelling of the network: The structure of the model, which is a qualitative part, 

is modelled first. The variables, the relations among variables viz. the causal, functional, and 

informational relations are identified first as a part of qualitative modelling.  

b) Modelling of parameters: Conditional probabilities and utilities, which are quantitative in 

nature, are modelled in step two. Determining the structure of a model is an iterative process 

and needs interaction with domain experts. Domain knowledge is thus captured in the 

structure while defining variables, conditional independence and identification of links and 

their directionality. This modelling approach is in line with the requirement of failure rate 

modelling approach where correlation and causal relations of failure mechanisms need to be 

identified in close communication with the domain experts. In case of subsea equipment, not 

all the causes and effects of failure are deterministic. Various kinds of uncertainties are related 
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with cause effect mechanisms, for example imperfect knowledge about the factors affecting 

failure mechanism, measurement errors, noisy sensor readings or discretization of the real 

valued observation. BBN can handle such uncertainties and hence it seems to be a proper tool 

for modelling failure rate.  

4.4.2 Bayesian Method for determining device failure rates from zero-failure 

data 

This method employs Bayesian data analysis techniques utilizing available field reliability data and 

accelerated life test (ALT) results. Bremerman (2013) proposes this method to calculate a component 

failure rate using field reliability data and ALT in a Bayesian analysis framework. It uses a special case 

of Bayesian method used by (Guo et al., 2010b), called Clopper-Pearson method or interval. It can be 

applied when no informative prior exists. Clopper-Pearson interval is a method for calculating 

binomial confidence intervals. A binomial proportion confidence interval is a confidence interval for 

a proportion in a statistical population. The interval gives conservative results which is useful in failure 

rate prediction methods.  

The method uses a two-step procedure of finding out a Bayesian posterior estimate for failure rate. 

1)  Finding failure rate using Clopper-Pearson interval for binomial distribution when no 

informative prior is available and zero failures have occurred in the field. 

2) Deriving Bayes posterior failure rate using the gamma informative prior distribution with 

results from ALT. 

A detailed analysis of both the steps are: 

Step 1: Finding failure rate using Clopper-Pearson interval for binomial distribution when no 

informative prior is available and zero failures have occurred in the field. 

For an equipment, assuming that the probability of success is p, the simplest way to calculate the 

confidence interval for �̂� is the normal distribution approximation (Guo et al., 2010b). It is given as: 

 �̂� ± 𝑧
1−
𝛾
2
√[�̂�(1 − �̂�] 𝑛⁄  (4) 

where 𝑧1−𝛾
2
 is the 1 −

𝛾

2
 percentile of the standard normal distribution, �̂� is the maximum likelihood 

estimate of p and n is the sample size. The estimate �̂� is calculated by simply dividing number of 

successes by the sample size. Basically, the confidence interval of the estimate �̂� represents the 
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likelihood of that this estimate is in the population sample which is selected at random in the sample 

space.  Equation 4 has a limitation when �̂� is either 0 or 1 as the value becomes 0 in both the cases. 

Clopper-Pearson (C-P) interval overcomes this limitation. Guo et al. (2010a) propose that it can be 

written as  

 
𝑝|𝑃[𝐵𝑖𝑛(𝑛; 𝑝) ≤ 𝑥] ≥ 𝛾 2}⋂{𝑝|𝑃[𝐵𝑖𝑛(𝑛; 𝑝) ≥ 𝑥] ≥ 𝛾 2⁄⁄  

 

Where Bin(n;p) is a binomial random variable with n trials and probability of success p and x is the 

number of successes. (Guo et al., 2010b) also propose to rewrite the above equation for C-P interval 

as: 

 
∑ (

𝑛

𝑘
)𝑃𝐿

𝑘(1 − 𝑝𝐿)
𝑛−𝑘 = 𝛾

𝑛

𝑘=𝑥
 

 

 
∑ (

𝑛

𝑘
)𝑃𝑈

𝑘(1 − 𝑝𝑈)
𝑛−𝑘 = 𝛾

𝑛

𝑘=𝑥
 

 

Where 𝑝𝑈 and 𝑝𝐿 represent the upper and lower one-sided confidence bounds given the confidence 

level for 𝑝 is 1 − 𝛾. 

For an equipment or system, the probability of success is equivalent to its reliability. As a result, the 

beta-binomial one sided lower bound for reliability can be calculated by:  

 
∑ (

𝑛

𝑘
) 𝑟𝐿

𝑛−𝑘(1 − 𝑟𝐿)
𝑘 = 1 − 𝐶𝐿 = 𝛾

𝑦

𝑘=0
 

 

Where 𝑟𝐿represents the lower bound for reliability, y – no. of failures experienced, CL – confidence 

level, and 𝛾 – significance level.  

For a system to work without interruption, there should be no failures. With this assumption, and 

using the above equation, 𝑟𝐿 can be calculated as: 

 1 − 𝐶𝐿 = 𝛾 = 𝑟𝐿
𝑛  

The above equation is solved for 𝑟𝐿 and yields: 

 𝑟𝐿 = 𝛾
1
𝑛⁄   

This can be interpreted as, for n samples under test (in operation), the reliability is ≥ 𝑟𝐿 with a 

confidence interval of (1-γ) %. With an assumption of constant failure rate with no infant mortality 
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issues, it is correct to assume a HPP and the point failure rate estimate �̂� is calculated using the 

expression for reliability of exponentially distributed failure rate: 

 𝑟𝐿 = 𝑒−�̂�𝑡  

Using the last two equations, the failure rate estimate �̂�  is given as  

 
�̂� =

− ln 𝑟𝐿
𝑡

=  
− ln 𝛾

1
𝑛⁄

𝑡
=  
− ln 𝛾

𝑛𝑡
 

 

 
𝜆(1−𝛾)̂ =

−ln 𝛾

𝑛𝑡
 

 

This equation is used to find �̂� for a particular confidence provided zero failures have occurred in field 

on “n” samples in the field with total operating time of “t”.  

Step 2: Deriving Bayes posterior failure rate using the gamma informative prior distribution 

with results from ALT 

Assuming that the failure rate is constant for the repairable systems, HPP model is applied. The next 

approach consists of three main tasks: 

1. Define a prior distribution for the equipment failure rate. 

2. Gather evidence, known as the likelihood function. 

3. Construct the posterior distribution using Bayes’ theorem 

The most widely used prior distribution to define the uncertainty in failure rate is the gamma 

distribution [G(α,β)]. So, the process is assumed to be a HPP and G(α,β) is a natural conjugate prior 

distribution i.e. both prior and posterior distributions in Bayesian are from same family. It is also 

mentioned in the literature that gamma prior distribution is practical for many applications (Pandey et 

al., 2005, Scarf, 2007, Apostolakis and Mosleh, 1979, Martz and Waller, 1982). If the prior data is 

available, the failure rate is calculated using the gamma prior distribution with probability density 

function. Martz and Waller (1982): calculated it assuming that the frequency of the shocks to the 

system is constant and an HPP with a rate of λ, total no. of failures interpreted as the shape parameter 

α in total pseudo time units β. The probability density function is given as  

 
𝑔(𝜆; 𝛼, 𝛽) =

𝛽𝛼

𝛤(𝛼)
𝜆𝛼−1𝑒−𝛽𝜆;  𝜆, 𝛼, 𝛽 > 0 

(5) 
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The posterior distribution is given by equation (5) given the observed no. of failures “s” and total time 

“t” as (Martz and Waller, 1982): 

 
𝑔(𝜆|𝑠) =

𝑒−𝜆𝑡𝜆𝑠𝑔(𝜆)

∫ 𝑒−𝜆𝑡𝜆𝑠𝑔(𝜆)𝑑𝜆
∞

0

; 0 < 𝜆 < ∞ 
(6) 

By differentiating the above equation (6) with respect to λ and rearranging the terms in the form of 

bayes theorem, the posterior gamma function given “s” is given by: 

 
𝑔(𝜆|𝑠; 𝛼, 𝛽) =

𝜆𝑠+𝛼−1𝑒−(𝑡+𝛽)𝜆

∫ 𝜆𝑠+𝛼−1𝑒−(𝑡+𝛽)𝜆𝑑𝜆
∞

0

; 𝜆 > 0 
 

Substituting y=λ(t+β) in the above equation, we find that 

 𝑑𝑦 = (𝑡 + 𝛽) 𝑑𝜆  

 1

(𝑡 + 𝛽)𝑠+𝛼
∫ 𝑦𝑠+𝛼−1𝑒−𝑦𝑑𝑦
∞

0

=
𝛤(𝑠 + 𝛼)

(𝑡 + 𝛽)𝑠+𝛼
 

(7) 

Using the above result in the equation (7) for posterior gamma distribution is reduced to: 

 
𝑔(𝜆; 𝛼, 𝛽) =

(𝑡 + 𝛽)𝑠+𝛼

𝛤(𝑠 + 𝛼)
𝜆𝑠+𝛼−1𝑒−(𝑡+𝛽)𝜆;  𝜆 > 0 

 

which is a Gamma (s+α, t+β) distribution. The parameter (s+α) is referred to the combined number 

of failures, whereas (t+β) is the combined total test time. Now chi-distribution is used for the 

confidence interval and an estimate of failure rate is obtained (Refer to (Bremerman, 2013))  

4.5 Artificial Neural Networks (ANN) 
The classical approach consist of creating statistical-mathematical models that estimate the failure rate 

with respect of operative conditions of the equipment. Furthermore, the adoption of mathematical 

templates often results to be complex, unreliable and too much specific for each single equipment. A 

new approach based on artificial neural networks (ANNs) is proposed by Dohi et al. (2005). In 

particular, multilayer perceptions (MLPs) have been largely and often successfully adopted to 

categorize and to forecast, based on the postulation that if the training data sets are large enough, the 

network will be able to generalize a problem rather than simply memorize the proposed patterns. 

There are several distinguishing characteristics of ANNs which make them a useful method for failure 

rate prediction 
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1) On the contrary to traditional model-based methods, ANNs are data-driven self-adaptive 

methods in that there are few a priori assumptions about the models for problems under study. 

They learn from past examples and capture subtle functional relationships among the data 

even if the underlying relationships are unknown or hard to describe.  

2)  ANNs can generalize. After learning the data presented to them, ANNs can only correctly 

infer the unseen part of a population even if the sample data contain noisy information.  

3)  ANNs are universal functional “approximators” and have more general and flexible 

functional forms than the traditional analytical and/or statistical methods can effectively deal 

with.  

4)  They are non-linear. Real word failure models are generally non-linear. 

ANNs have been traditionally used for failure diagnosis and for lowering mean time to repair (MTTR) 

(Ogaji et al. (2002) Moon et al. (1998)). Kutyłowska (2015) uses neural networks for failure rate 

modelling of water-pipe networks.  

Basic Information about ANN 

The prototype of artificial neural networks is the brain and the entire nervous system in the human 

body. In artificial neural networks the method of information transferring is imitating the way of 

human nervous system performance. Natural neurons, the main elements of nervous system, are 

responsible for transferring information. ANN consists of neurons which are data processors. Each 

neuron is responsible for summarizing input signals. 

Abstracting from the biological description, a neuron could be represented, in a mathematical form, 

with a threshold logic unit (TLU). Briefly, this consists of an object which accepts an array of weighted 

quantities (incoming from a set of synapses), sums them, and, whether the sum overcomes a certain 

bound (usually called threshold, u), outputs a value, generally known as the activation level. A transfer 

function takes this value and produces the output of the current artificial neuron (outgoing towards 

the neighboring neurons by means of an axon). In mathematical terms, said (Xn) the input array (Wn) 

the corresponding array of weights, the activation level is given by 

𝑎 =∑𝑋𝑖𝑊𝑖

𝑛

𝑖=1
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Finally, the output value can be calculated as  

𝑦 = 𝑓(𝑎 − 𝜃) 

A MLP is usually composed of several layers of neurons. The first layer is conventionally defined as 

the input layer and is opportunely structured to receive the input array (the number of neurons being 

equal to the number of variables). The last layer represents the output stratum, where the solution is 

obtained. Any other level is invariably called hidden layer. Generally, each neuron (also known as 

node) in a layer, is fully connected to all nodes in the following level by means of unidirectional arcs, 

moving from the input nodes to the output ones. This justifies the feed-forward designation that 

identifies this kind of structure. Figure 4.9 illustrates a typical 3 layered ANN 

 

Figure 4.9 Illustration of a 3 layered network  

The learning mechanism is modelled on the brain’s adjustments of its neural connections. The most 

widely adopted method is by far the supervised learning rule. Briefly: a series of patterns (examples) is 

supplied to the net, along with the expected targets; and the net examines each pattern and adjusts the 

weights. 

There are several different suitable methods for this purpose, but, generally, the delta rule (Widrow 

and Hoff, 1960) is preferred. It is based on the assumption that weights modification can be better 

estimated by some fraction of the difference between the target and the actual output. Substantially, 

the underlying mathematical concept is that of the gradient descent. In short, the error function 

describes a space surface having at least one minimum. The net should look for the weights 
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distribution that minimizes the global error, moving along the surface to the minimum and, 

simultaneously, aiming to the shortest path to reach this target. 

There are mainly 4 inputs for failure rate prediction using ANN: 

a) Choice of subsets: It is important to divide the data between training and prediction. Training 

set contains the biggest chunk of data which is used to instruct the framework. The cross 

validation set is used to validate the current level of generalization reached by the network. 

The testing set for prediction is needed to test the network classification capabilities over 

restricted set of items. 

b) No of hidden layers: 3 layers, an input layer, a hidden layer and an output layer is enough to 

solve any problem (Haykin, 1994). 

c) No. of nodes in the input and output layer depend on the matrix size of inputs and 

outputs. For no. of nodes in hidden layer the following steps can be conducted 

1) The no. of hidden nodes should be set to 2 

2) The network should be trained and results recorded. The values of MSE indicate to stop 

the procedure if there is a growing trend 

3) The no. of hidden nodes is incremented by 1 and analyses is repeated. 

d) Activation functions in hidden and output layer: A sigmoid function is the most adopted 

activation function in MLP applications. However, hyperbolic tangent function can be used 

to compare the results.  

4.6 Discussion 

A discussion on the literature review is carried out to compare different methods with regard to 

different parameters of reliability prediction. Table x.x lists the parameters which are used to discuss 

the methods on the basis of the challenges of reliability prediction for subsea equipment.  

4.6.1 Regression models ALM and PHM 

Both ALMs and PHMs propose a baseline probability model which describes the evolution of 

operating process in normal operating conditions e.g. in laboratory testing conditions and then, 

introduces covariates on the degradation process to account for conditioning aspects of the 

component life, environment, loading, etc. As a result, both the methods require large amounts of 

data for prediction process. The difference between ALMs and PHMs lies in the modelling of the 



52 
 

dependence of the aging process on the covariates. While in PHMs, the effects of covariates are 

modelled as multiplicative factors in the failure rates, ALMs model explicitly the operating 

environment impacts on TTFs (Kumar and Klefsjö, 1994, Ansell and Philipps, 1997).  

4.6.2 Rahimi and Rausand’s Method for new subsea equipment  

This method gives a decision support by failure rate prediction in the early design process of a new 

subsea equipment. The suggested failure rate is an essential input to the technology qualification 

process (TQP). It compares subsea and topside subsea system and uses the generic data from topside 

system to form a linear relationship between the respective failure rates. Influencing factors like 

pressure, temperature, maintenance policy are quantified in the modelling process. It does not use 

knowledge available from subsea elements already used in other subsea systems(Rahimi and Rausand, 

2013). The calculated failure rate cannot be updated during the project cycle when more information 

is available.  

4.6.3 3 Step Model 

As the industry is moving towards predictive maintenance, there are high possibilities of intelligent 

sensor applications in safety instrumented system (SIS) in the future. The method uses GTST-MLD 

for defining the basic material elements, the sub-functions which depend on them and the degree of 

relationship between them (Brissaud et al., 2011). It proposes an appropriate model for reliability 

analysis of new technology-based transmitters even if the reliability data available is low. There is no 

way of finding to what extent does the redundancy in the system effects reliability. Only “AND” 

relationships are considered while analyzing the system both in case of system functions and system 

materials. As a result, other kind of relationships are ignored. The “semi-qualitative” approach with 

quantification might be too simple for explaining the complex relationships of system during fault and 

failures. All the direct relationships are considered as independent which might not be a valid 

assumption for complex systems.  

4.6.4 Bayesian method with zero failure data available 

Subsea dnv white paper emphasizes on use of mathematical models, modularization and simulation 

for reliability testing as it forms on of the most expensive parts of the qualification process. As a result, 

this method which is currently proposed in space industry can be used in subsea industry. 

Disadvantages or Limitations? 
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Industry might not accept testing equipment using just mathematical models. But it might be helpful 

to test them using the models in the initial design phase of the project and get a good estimate of the 

failure rate and reliability of the component or sub-system.  

 

Figure 4.10 Basic Steps in reliability Prediction methodology (adapted from Zafiropoulos and Dialynas (2005) 

4.6.5 Neural Networks 

Huge operational and condition data might be required for using neural networks. Condition data 

includes the raw condition data and the associated covariates that are extracted from original data, 

such as pressure, temperature etc. Event data means the records of the installation, maintenance and 

failure calendar time. With a data-driven model, there is no need to know the failure initiation 

mechanism exactly. However a large amount of data is necessary to ensure an accurate model. 

Subsea installations not only demand addressing peculiar technical issues in design and construction, 

but also greatly challenge maintenance engineering, as the harsh environment renders it difficult to 

perform required actions, with consequent large downtimes and business interruptions. For these 

reasons, it is fundamental that failure rate assessment of subsea equipment takes due account to the 
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influence of the environmental and operational parameters (e.g., fluid properties for engines, turbines, 

compressors, etc.) on the Time to Failure (TTF).
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Table 4.6 Comparison of all the methods  

Method of  

Reliability 

prediction 

Developer Basic Principle Inputs (type of data)  Amount of 

system input 

data required 

Applicability in 

design phase of 

product 

ALT Many developers Physics of Failure 

Regression 

Failure mode, 

Testing procedures 

Average Maybe 

PHM Cox (1972)(Most popular) Regression 

RIFs 

Influencing factors, 

Baseline failure rate, 

Probability distribution 

of covariates 

Average Maybe 

Prediction of 

failure rate for 

new subsea 

equipment  

Rahimi and Rausand (2013) Regression, 

RIFs 

Top-side failure rate 

data, 

RIFs 

Data related to RIFs 

Less/No 

data 

Yes 

3-Step model Brissaud et al. (2011) GTST-MLD 

Relationship Analysis 

Structural details of 

equipment 

Function details 

Less/No 

data 

Yes 

Bayesian with 

zero failure data 

Bremerman (2013) Bayesian inference, 

Confidence intervals, 

Probability distribution 

Physics of failure 

Operating data 

Reliability testing results 

Average  Yes 

ANN Dohi et al. (2005) ANN, MLP Operating data with all 

the parameters 

Large  No 
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5 Proposed Model with an illustrative 

example  

The objective of this chapter is to present a new model for the prediction of failure rates for subsea 

equipment. This chapter uses the concepts from existing models in literature of failure rate prediction 

process to develop a suitable method to quantify failure rate in pre-design qualification process for 

new subsea equipment.  

The proposed model takes advantage of the potentiality of different reliability prediction approaches. 

It combines the use of FMECA, reliability influence diagrams and hierarchical RIF model in Rahimi 

and Rausand (2013) to predict failure rates using the available data from similar topside equipment. 

5.1.1 Scope of model  

The model intends to provide a tool to calculate the failure rate with scope of handling uncertainties 

in the input data. It helps in the decision making during the design process of new equipment. 

However, it has some limitations. Failure modes which are not common between subsea and topside 

are not considered in the model. Knowledge of existing systems can be utilized but a specific approach 

is not covered in this model.  

5.1.2 Choice of Model  

The model proposed by Rahimi and Rausand utilizes the relevant existing data available for subsea 

equipment but does not introduce uncertainties in the model. It proposes a good way of calculating 

the effects of RIFs on failure causes, effects of failure cause on failure mode and contribution of 

failure modes on total failure rate of subsea equipment. With Bayesian approach, it is possible to 

determine the prior probability distribution with confidence interval, update it with the evidence 

available and get the posterior distribution. In addition, when more information is available during 

later stages of the project, evidence can be added in the Bayesian network for a more certain failure 

rate prediction. Therefore, the new model combines both the methods for predicting failure rate of 

new subsea equipment. 

5.1.3 Model Structure 

The model comprises of 3 main steps: 
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a) Execution of Rahimi and Rausand (2013)’s method step-wise to obtain the weights and the 

range of subsea failure rate. 

b) Creating a BBN with RIFs, failure causes, failure modes and the total failure rate.  

c) Use the weights calculated in Rahimi’s method and apply it in the BBN and use the total failure 

rate to obtain the intervals of failure rates for different states of total failure rate in BBN. 

5.2 Model description 
The model is based on Bayesian Belief Networks (BBN), the basic principle of which has been briefly 

described in Section 4.4.1 and Rahimi’s approach described in detail in Section 4.2. One of the most 

important assumptions in BBNs is the dependence of probability distribution of a node on the parent 

nodes (Jensen, 1996). BBNs are extensively used in dependability, risk analysis and maintenance 

applications now e.g. the Risk OMT method (Vinnem et al., 2012). Details of mathematical 

background of BBNs is not mentioned in this section as it has been mentioned briefly in previous 

sections of this report. Refer to Jensen (1996) for basics of BBN.  

Further, the model is explained with the help of an illustrative example of a new subsea pump.  

5.2.1 Illustrative example using a Subsea Pump 

Subsea pump is considered because of its significance and novelty of subsea gas compression 

technology. Due to the decrease in reservoir pressure of existing wells and increase in tie-back of 

subsea installations, there is a need of boosting the flowrate and pressure of the fluid coming out from 

the well. High flow rate and pressure helps in increasing the production and distribution of oil and 

gas. The subsea gas compression technology is developed recently to solve this problem. It first subsea 

gas compression module is installed at Åsgard (Hedne, 2014) and is developed and tested for Ormen 

Lange (Henri et al., 2010). Figure x.x illustrates a generic set up of Subsea gas compression module 

(Bjerkreim et al., 2009). The pump is used to increase the pressure and flow of the oil coming from 

the separator.  
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Figure 5.1 Generic Setup of Subsea Gas compression module (Bjerkreim et al., 2009) 

Subsea pump is usually made of components used in topside but the materials and the design is 

improved to minimize the interconnections and improving the reliability. Due to lack of available data 

from the industry, and a method based on open source data is used in this study. The objective of this 

example is to illustrate the approach and not present an extensive and realistic case study.  

5.3 Modelling details with an example 

This section describes the model in main steps mentioned in section 5.1.3.  

5.3.1 Step 1: Using Rahimi and Rausand (2013)’s method for calculating 

weights to be used in BBN 

This section illustrates how this method can be applied for a new subsea pump to move the fluids as 

a part of subsea processing. The main objective of this step is to calculate the relative weights of RIFs 

and failure causes of subsea pump. The pump is made of components which are similar to that of 

topside pumps with improved design. Information of RIFs, failure causes and failure modes are taken 

from (Rahimi and Rausand, 2013) as this data is not available in such detail for a subsea pump. The 

steps in this procedure are as below: 

 

 



59 
 

Step1: New system familiarization 

The pump is a multiphase pump and must have a high reliability. The maintenance procedure is also 

not similar to topside application. The pumped fluid’s properties change overtime.  

Step 2: Identification of failure modes and failure causes 

Table 5.1 illustrates the failure modes and failure causes listed after a FMECA (Rahimi and Rausand, 2013) 

Category Description  

Failure modes Fail to start on demand (FTS) 

Low output (LOO) 

Spurious stop (UST) 

Failure Causes Mechanical failure-general (MFG) 

Blockage/plugged (BLK) 

Instrument failure-general (IFG) 

Control failure (CF) 

 

Step 3: Reliability information acquisition for similar known system; comparison of new and 

known system. 

The physical boundary of the topside pump is mentioned in OREDA (OREDA, 2009). The 

assumption is all failure modes in subsea pump is similar to that of topside pump, failure causes are 

also similar with different effects. The subsea pump and topside pump are compared using  

Step 4 Selection of RIFs 

The procedure of selection of RIFs is extensive and hence not a part of this study. The selected RIFs 

are taken from the similar example in (Rahimi and Rausand, 2013). Figure 5.2 illustrates the effect of 

these RIFs on failure causes. 
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Figure 5.2  Reliability influencing diagram for a subsea pump (Rahimi and Rausand, 2013) 

The selected RIFs are;  

Location of operation; Frequency of Maintenance; Loads and capacity.  

Step 5: Scoring the effects of RIFs 

RIFs are scored on a scale of -3 to +3 if they are relevant for subsea or topside. For example, “Location 

of operation” effects the failure cause “IFG” for both subsea and topside pump and therefore 

“Relevance” is 1. Also, the effect of “location of operation” on IFG for subsea pump is significantly 

lower than topside pump because of the location of pump in a capsule. Therefore it gives a value of 

“-2”. Table 5.2 illustrates the assessment of RIFs for topside and subsea pump on the basis of 

discussion in the Section 4.2.5.  

Table 5.2 Scoring of RIFs for subsea pump by comparison with topside pump (adapted from (Rahimi and Rausand, 2013) 

 Failure Causes  

RIFs Category Interpretation  MFG BLK IFG CF 

Frequency of 

Maintenance 

TS Every year  Relevance 1 0 1 0 

SS Every 5 year Relevance 1 0 1 0 

  Score 1 0 0 0 

Loads and Capacity TS Normal  Relevance 0 1 0 0 

SS Up to 2 times more Relevance 0 1 0 0 

  Score 0 0 0 0 

Location of 

operation  

TS Offshore Relevance 0 0 1 1 

SS Seabed Relevance 0 0 1 1 

  Score 0 0 -2 1 
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Step 6: Weighing the contribution of the failure causes to failure modes 

The failure data in OREDA (2009) for topside pump is used to find the contributing weight of each 

failure cause to each failure mode. Table 5.3 lists the weights of failure causes for failure modes. For 

calculating relative weights (𝜀𝑘𝑗) of RIFs with respect to failure causes, the equation 7 is used. The 

values of 𝜈𝑘𝑗
(𝑆)

 , 𝜂𝑘𝑗 are given in table 5.2 and values of �̅�𝑗 in table 5.3a. The value of 𝜀𝑘𝑗 is calculated 

using  

 
 �̅�𝑗 =∑ 𝜀𝑘𝑗𝜈𝑘𝑗

(𝑆) 𝜂𝑘𝑗

3
    𝑓𝑜𝑟 𝑗 = 1,2… 𝑟

𝑝

𝑘=1
 

(7) 

However, as all the other values are assuming the 7 states of for ease of understanding the model, we 

continue the calculation with the On calculation, it is found that the weight of “Location of operation” 

and “Frequency of Maintenance” for failure cause IFG are 0.33 and 0.67 respectively. Refer to Section 

4.2.8 for further understanding.  

Step 7: Adjustment of old failure rate for each failure mode, calculation of total failure rate. 

The minimum and maximum parameters delimiting the subsea failure rate for the relevant failure 

modes are 𝜃𝑚𝑖𝑛,𝑖 = 0.3 and 𝜃𝑚𝑎𝑥,𝑖 = 1.1. The topside failure rates for failure modes FTS, LOO, 

UST are 40.73, 81.46 and 101.82 respectively. 

Table 5.3a Values of �̅�𝑗 for each failure cause (adapted from (Rahimi and Rausand, 2013)) 

Failure causes MFG BLK IFG CF 

�̅�𝑗  0.33 0 -0.33 0.33 

 

Table 5.3b Contributing weights for failure causes to failure modes (adapted from (Rahimi and Rausand, 2013)) 

 MFG BLK IFG CF 

Failure modes  

FTS 1 - - - 

LOO 0.75 0.25 - - 

UST - - 0.4 0.6 

     

5.3.2 Step 2: BBN Approach 

After getting the information about the relative weights of RIFs and failure causes, Bayesian belief 

network (BBN) is used to calculate failure rate, study uncertainties and sensitivities. The steps 
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mentioned in (b) and (c) of section 5.1.3 are combined in this section for better explanation. A 

Bayesian belief network (BBN) can be used as an alternative to fault trees and cause and effect 

diagrams to illustrate the relationships between a system failure or an accident and its causes and 

contributing factors (Rausand and Høyland, 2004). In operational risk analysis, BBNs are used to 

model the effects of organizational and operational risk influencing factors on major accident risks. 

Two recent methods RiskOMT (Vinnem et al., 2012) and hybrid causal logic (Røed et al., 2009) 

demonstrate the impact of BBN on basic events used in FTA. The procedures described in Risk OMT 

and hybrid causal logic method are combined to demonstrate RIFs and a modified tool based on the 

original tool in excel (Edwin, 2015) is used for using the Bayesian Network tool called GeNie2.   

Note that in the BBN, only 5 states are considered for each node and RIFs due to computational 

limitations of MS Excel. Ideally, 7 states should be used in BBN because Rahimi and Rausand’s 

approach uses 7 states for scoring the RIFs. However, we will use the weights calculated in section 

5.3.1 for ease of computation. The model gives a better understanding and confidence to the 

parameter failure rate.  

Step 1: Construct Influence diagram/BBN using RIFs, failure causes and failure modes. 

RIFs are represented as outermost parent nodes. Different combinations of RIFs influence 

different failure causes which are child nodes. Failure causes affect different failure modes. 

For subsea pump, the influence diagram illustrated in figure 5.2 is translated into a BBN with 

top child nodes as the failure modes of subsea pump.  

Step 2: Determine the importance of RIFs with respect to each other and the weights of 

failure causes for each failure mode.  

The importance of RIFs on each failure cause and failure cause on each failure mode are 

expressed as weight wi, where ‘i’ is the parent node so that, 

 ∑ wi = 1.  

Weights 𝜀𝑘𝑗and 𝑤𝑗𝑖
(𝑆)

 which are calculated in the results of section 5.3.1 are used to ease the 

weight assignment process. For example, for the failure cause IFG, weights found from the 

previous step for RIFs frequency of maintenance and Location of operation are 0.33 and 

0.67,  

                                                 
2 http://www.bayesfusion.com/#!genie-modeler/lf73d  

http://www.bayesfusion.com/#!genie-modeler/lf73d
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Figure 5.3 Initialization of BBN using prior probability mass 

Step 3: Assign R-value  

Assume all nodes take 5 states representing the severity of each RIF such that ‘5’ indicates that 

RIF has very high effect on the subsea failure rate and ‘1’ denotes that RIF has very low effect 

on subsea failure rate (which means it will decrease the failure rate with respect to topside). 

Assign the R-value which represents the distribution of probability mass across the possible 

outcomes of child node. This is a subjective entry made by experts based on their belief of 

how close the child RIF distribution must be in relation to its parents’ state (Røed et al., 2009). 

Figure 5.4 illustrates the assignment guide for deciding a suitable R-value. In the calculations 

done in the example in this report, an R-value of 2.5 is assumed. 

 

Step 4: Assign the conditional probability table (CPT) for the child nodes (failure causes and failure  

Modes).  

Using the weights obtained for the child nodes (failure modes) and R-value, CPTs are 

calculated. For the given example, this is implemented in MS Excel by Edwin (2015) with 

modification done by the author for reducing states to 5 and adding the case of RIF=1. For 
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the parent nodes, unconditional node probabilities are assigned. The method of their 

assignment is discussed in further steps. 

Step 5: Assign unconditional probabilities to parent nodes (RIFs) and express uncertainty in RIFs.  

The RIF may be treated as a stochastic quantity to reflect the uncertainty in the measurement 

of its true value. A mathematically appropriate probability distribution for random quantities 

on a scale of 0 to 1 is the beta distribution (Vatn, 2013).  The prior probability distribution of 

a RIF is beta distributed with parameters (α0, β0). Jeffery’s prior (α0=0.5, β0=0.5) is the best 

choice to reflect ignorance in a particular parameter in Bayesian statistics.  

Table 5.4 Assignment guide for deciding a suitable R-value  

R-Value Assignment Guide 

0-0.25 Do not trust state of parent RIFs. Uniformly distribute the probability mass across all states 

0.25-0.75 Base the probability mass distribution of child on parent’s state to a slight extent 

0.75 -1.25 Base the probability mass distribution of the child on the parents’ state to a medium extent 

1.25 -1.75 Base the probability mass distribution of the child on the parents’ state to a strong extent 

1.75-2.5 Base the probability mass distribution of the child on the parents’ state to a very strong extent. 

 

Vatn (2013) proves that an approximate posterior distribution is also beta distributed with 

parameters(𝛼0 +
𝑠2(1−𝑠)

𝑉𝑠
, 𝛽0 +

𝑠2(1−𝑠)2

𝑉𝑠
 ). Where 𝑉s is the variance which reflects the expert’s 

belief on how accurate the observed score reflects the true score of the RIF. The BBN is 

initialized with prior probabilities calculated in MS Excel. This is illustrated in Appendix A. 

Step 6: Initialize the BBN and Provide evidence and update node probabilities.  

The weights obtained from Section 5.3.1 for child nodes (failure modes), R=2.5 and respective 

CPTs for each child node is used. The prior probabilities are used to initiate the parent nodes 

(RIFs) with a variance Vs=0.0025. BBN is then initialized with the unconditional probabilities 

of RIFs and CPTs for child nodes. Figure 5.3 illustrates the initialized BBN.  

The next step is to give evidence to RIFs with the same states which are used during the 

procedure of scoring the RIFs in Section 5.3.1. Using the beta distribution explained by Vatn 

(2013), the parent nodes’ (RIFs) distributions are updated based on the observed RIF score 

(𝑆) and the posterior probabilities are observed in BBN.  

Step 7: Observe the states of failure modes and translate it into failure rate 

The failure rates of relevant failure modes are of interest. The final probability distribution of 

states is mapped to failure rate intervals obtained by dividing the delimiting range of final 
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failure rate obtained from result of section 5.3.1. Changes in probability mass distribution in 

this node are observed when evidence is provided.  

It is illustrated with the example below.  

For the failure mode FTS: Topside Failure rate is 40.73 (per 106 hours) as mentioned in 

OREDA. The maximum and minimum ranges obtained for the failure rate of FTS mode are  

𝜃𝑚𝑖𝑛,𝑖 ∗ 40.73 = 0.3 ∗ 40.73 = 12.219 (𝑝𝑒𝑟 10
6 ℎ𝑜𝑢𝑟𝑠) 

 𝜃𝑚𝑎𝑥,𝑖 ∗ 40.73 = 1.1 ∗ 40.73 = 44.803 (𝑝𝑒𝑟 10
6 ℎ𝑜𝑢𝑟𝑠) 

Similarly for LOO and UST the maximum and minimum ranges obtained for the subsea failure 

rate are, 

𝐿𝑂𝑂 (max) = 89.606 (𝑝𝑒𝑟 106 ℎ𝑜𝑢𝑟𝑠), 𝐿𝑂𝑂 (min) = 24.438 (𝑝𝑒𝑟 106 ℎ𝑜𝑢𝑟𝑠),   

𝑈𝑆𝑇 (max) = 112.002 (𝑝𝑒𝑟 106 ℎ𝑜𝑢𝑟𝑠), 𝑈𝑆𝑇 (min) = 30.546 (𝑝𝑒𝑟 106 ℎ𝑜𝑢𝑟𝑠),   

By dividing these ranges into 5 states, it is possible to match each range of failure rate to a 

state of failure mode in BBN. This is illustrated for failure mode FTS in the table 5.5. It can 

be done similarly for other nodes. 

Table 5.5 Mapping of state of failure mode FTS in BBN to Failure rate of that failure mode (failure rates are in 

(𝑝𝑒𝑟 106 ℎ𝑜𝑢𝑟𝑠) 

States  FTS 

State 1 12.219 – 18.73 

State 2 18.74-25.26 

State 3 25.27 -31.76 

State 4 31.77-38.28 

State 5 38.29-44.803 

 

Figure 5.4 illustrates the BBN when Location of operation has significantly low effect on CF and IFG 

and frequency of maintenance has high effect on MFG and IFG and loads and capacity has no 

difference in effects in subsea and topside..  
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Figure 5.4 Results of BBN model by forcing the RIFs in the state for a subsea pump 

It is observed that FTS and LOO has a high effect of RIFs with respect to topside and hence it will 

have a slightly higher failure rate. To quantify this effect we use the maximum and minimum values 

of failure rate for each failure mode. The failure rate ranges for each failure mode is calculated and 

ahown in the table  

5.3.3 Sensitivity Analysis performed using GeNie 

A sensitivity analysis performed using GeNie by setting the different failure modes as target nodes 

reveals that the failure cause FTS and LOO are most sensitive to MFG and UST is most sensitive to 

CF. Figure 5.5 illustrates all the sensitivity diagrams from GeNie  
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Figure 5.5a Sensitivity analysis of FTS  
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Figure 5.5b Sensitivity analysis of LOO 
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Figure 5.5c Sensitivity Analysis of UST  
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6 Summary and Recommendation of further 

work  

This chapter summarizes the work performed in the thesis and the results obtained. The results and 

findings are discussed and recommendation for further work is given in following sections.  

6.1 Summary and Conclusion  

Prediction of failure rate for new subsea equipment is a challenge in oil and gas industry mainly due 

to lack of relevant data and use of increasingly novel technologies. There is a lack of common guideline 

or framework for failure prediction process of novel technology and different companies and experts 

follow different procedures. 

The main objective of the thesis was to propose a new method for prediction of failure rate for new 

subsea equipment and explain it with an illustrative example. The example chosen is of a subsea pump 

which forms a part of subsea processing system. Subsea processing is a novel technology with a subsea 

gas compression module installed at Åsgard field in Norway as recent as 2014. There is a lack of 

relevant data from similar equipment and even if the data is available, there is an uncertainty in the 

selection and usage of the method for using the available data as an input for new model. The failure 

rate calculated is intended to be used as an important input for TQP during the early design phase.  

Another important objective of the thesis was to study the existing failure rate prediction methods 

and reliability databases (e.g. OREDA, FIDES etc.) and identify the research gaps in literature. A 

comprehensive literature review to study the reliability databases and other methods like BBN, ANN, 

Rahimi and Rausand’s approach is done. The literature study was divided into two chapters, Chapter 

3 and 4. Chapter 3 lists the important reliability databases and methods used in them. In most of the 

databases namely OREDA, MIL-HDBK 217F and many more, bottom-up statistical methods are 

used for calculating failure rates, identify failure causes and failure modes. FIDES uses a Physics of 

failure (PoF) approach in which the material factors, operational factors, and functional stress factors 

are used for predicting the failure rate. Most of the generic methods do not consider the dynamic 

operational and environmental conditions during prediction process. Chapter 4 describes methods for 

failure rate prediction namely Regression models, Rahimi and Rausand’s approach, Bayesian Networks 

and Artificial Neural Network. It is found that there is a lack of methods which can be used during 
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the early design phase of TQP for a novel subsea equipment. Most of them require large amount of 

input data for the failure rate prediction process. However, the approach by Rahimi and Rausand 

(2013) only uses topside data, FMECA and comparison methods between topside and subsea (by 

quantifying reliability influencing factors like frequency of maintenance, pressure etc.) for predicting 

the subsea failure rate for different failure modes. But it uses a linear relation and lacks the ability of 

handling uncertainty. As there is a lot of uncertainty in the choice and usage of input data during the 

reliability prediction process, Bayesian Belief Networks (BBN) are the best to model these factors.  

The new approach is described stepwise in chapter 5. It mainly uses the weight parameters for RIFs 

and failure causes as inputs from Rahimi and Rausand (2013) and uses a BBN to calculate the failure 

rate for all failure modes of new subsea equipment. A BBN model is developed for quantifying the 

states of RIFs and its effect on failure cause and the failure rates of different failure modes of subsea 

equipment. The method to easily generate conditional probability tables for BBN is based on the 

Hybrid Causal Logic (HCL) approach. The new model gives the possibility of inserting uncertainties 

into Rahimi and Rausand (2013)’s model. A sensitivity analysis is performed for the new subsea pump 

and is found that failure mode “Fail to start on demand (FTS)” is most sensitive to “Mechanical 

Failures”. 

6.2 Limitations of the work  

The model is currently designed for RIFs that can be in five states. Ideally 7 states of RIFs (as used in 

Rausand and Rahimi’s Model) and other nodes should be considered during modelling but it was not 

possible due to computational constraints of MS Excel. It is also assumed that if one RIF is effecting 

more than one failure causes at the same time it cannot influence each of them differently with respect 

to the state of the RIF. It means that for example the RIF, “Frequency of maintenance” effects failure 

causes FC1 and FC2 then it is not possible to set the state of RIF as “1” for FC1 and “2” for FC2 at 

the same time in the model. This is an inherent limitation of BBN. But in Rahimi and Rausand’s 

method “Frequency of maintenance” can be say “2” while effecting FC1 and “1” while effecting FC2.  

The new failure rate estimate for subsea equipment relies on the maximum and minimum limits 

calculated in Rahimi and Rausand’s approach. To select realistic estimates of these limits, extensive 

knowledge is required.  

The failure rate estimate model is just a proposal and cannot be verified by the author. It can only be 

verified by using the approach to estimate the failure rate of a subsea system for which enough 



72 
 

experience is available. The suggested approach is made for new subsea systems but it can be used in 

other industries. 

6.3 Recommendations of further work  

The new failure rate estimate model only uses the weights for RIFs and failure cause obtained from 

Rahimi and Rausand (2013)’s model, a better way of calculating weights for the BBN network is a 

possibility of further study. In addition, one of the major future scope of this model is updating the 

model for 7 states of RIFs and testing it on a simulated system in the industry for obtaining the 

estimates and verifying the results.  

As uncertainty is handled in this model and gives the experts the liberty to change the states of RIFs 

in an intuitive way, another scope of study is using another prior probability distribution in BBN and 

validating the results.  
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Appendix A 

Additional information about the reliability databases for 

electronic devices.  
 

Additional information about the reliability databases for electronic devices discussed in Chapter 3 is 

presented in this Appendix. Table A.1 illustrates the comparison criteria of BS, TD and BP methods 

as management of objectives. 

Table A.1 Comparison criteria of BS, TD and BP methods as management of objectives. (Foucher et 

al., 2002) 

  

IEEE 1413 (IEEE, 2009)gives the criteria for a guide which reviews the engineering information 

assessment that is critical for developing an IEEE 1413-compliant reliability prediction and describes 

the reliability prediction methods such as handbooks based on historic data (MIL-HDBK-217, RAC’s 

PRISM, SAE’s reliability prediction method, Telcordia SR-332 (SR-332, 2001), the CNET reliability 

prediction model), predictions using field data and test data, and the stress and damage model 

approach. Examples of use are provided for each method. Table A.2 lists the assessment criteria of 

reliability prediction methodologies. 
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Table A.2 Assessment Criteria of Reliability Prediction Methodologies (IEEE, 2009) 
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Applendix B 

VBA Code and MS Excel Interface 
 

Basic knowledge in VBA coding and use of pivot tables in MS Excel is required to understand code 

syntax and formulation. The Excel based tool made by Edwin (2015) is modified for using 1 RIF and 

the number of states of each node in BBN is reduced to 5. This is done to make the number of states 

used in the new model with number of states used for quantification of RIFs in Rahimi and Rausand 

(2013)’s method. 

B.1 Create all possible parent-child combinations  
Sheets("CreateCPT").Range("A12:ZZ46666").ClearContents 

Sheets("CreateCPT").Range("A11:G46666").ClearContents 

Sheets("CreateCPT").Range("A9:F9").ClearContents 

Application.ScreenUpdating = False 

Count = 11 'Index row number to start creating combinations 

 

If Range("NoRIFs") = 1 Then 

    i = 1 

    'CreateCPT.Cells(9, i) = 1 

    For RIF1 = 1 To 5 

    For Child = 1 To 5 

    CreateCPT.Cells(Count, 1) = RIF1 

    CreateCPT.Cells(Count, 7) = Child 

    Count = Count + 1 

    Next Child 

    Next RIF1 

     

ElseIf Range("NoRIFs") = 2 Then 

    For i = 1 To 2 
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    CreateCPT.Cells(9, i) = 1 / 2 

    Next i 

    For RIF1 = 1 To 5 

    For RIF2 = 1 To 5 

    For Child = 1 To 5 

    CreateCPT.Cells(Count, 1) = RIF1 

    CreateCPT.Cells(Count, 2) = RIF2 

    CreateCPT.Cells(Count, 7) = Child 

    Count = Count + 1 

    Next Child 

    Next RIF2 

    Next RIF1 

 

ElseIf Range("NoRIFs") = 3 Then 

    For i = 1 To 3 

    CreateCPT.Cells(9, i) = 1 / 3 

    Next i 

    For RIF1 = 1 To 5 

    For RIF2 = 1 To 5 

    For RIF3 = 1 To 5 

    For Child = 1 To 5 

    CreateCPT.Cells(Count, 1) = RIF1 

    CreateCPT.Cells(Count, 2) = RIF2 

    CreateCPT.Cells(Count, 3) = RIF3 

    CreateCPT.Cells(Count, 7) = Child 

    Count = Count + 1 

    Next Child 

    Next RIF3 

    Next RIF2 
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    Next RIF1 

 

ElseIf Range("NoRIFs") = ….Continue similarly for all RIFs … 

Else 

End If 

 Range("H11:W11").Select 

    Selection.AutoFill Destination:=Range("H11:W279946") 

    Range("H11:W279946").Select 

 MsgBox ("Configure interaction effects if any") 

End Sub 

B.2 Code to Create Conditional Probability Tables 
Sub CreateCPT() 

    Application.ScreenUpdating = False 

    'Delete already existing table 

    Sheets("CPT").Select 

    ActiveSheet.PivotTables("PivotTable2").PivotSelect "", xlDataAndLabel, True 

    Selection.ClearContents 

     

   'Selecting DataRange 

   Worksheets("CreateCPT").Activate 

    Sheets("CreateCPT").Range("A10").Select 

    Range(Selection, Selection.End(xlToRight)).Select 

    Range(Selection, Selection.End(xlDown)).Select 

    'Create PivotTable 

    ActiveWorkbook.PivotCaches.Create(SourceType:=xlDatabase, SourceData:= _ 

        "CreateCPT!R10C1:R46666C23", Version:=xlPivotTableVersion15).CreatePivotTable _ 

        TableDestination:="CPT!R1C1", TableName:="PivotTable2", DefaultVersion:= _ 

        xlPivotTableVersion15 

    Sheets("CPT").Select 

    Cells(1, 1).Select 
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     With ActiveSheet.PivotTables("PivotTable2").PivotFields("CHILD") 

        .Orientation = xlRowField 

        .Position = 1 

    End With 

     

    'For 1 Parent 

    If Sheets("CreateCPT").Range("NoRIFs") = 1 Then 

    With ActiveSheet.PivotTables("PivotTable2").PivotFields("RIF1") 

        .Orientation = xlColumnField 

        .Position = 1 

    End With 

     ActiveSheet.PivotTables("PivotTable2").PivotFields("RIF1").Subtotals = Array( _ 

        False, False, False, False, False, False, False, False, False, False, False, False) 

         

    'For 2 Parents 

    ElseIf Sheets("CreateCPT").Range("NoRIFs") = 2 Then 

    With ActiveSheet.PivotTables("PivotTable2").PivotFields("RIF1") 

        .Orientation = xlColumnField 

        .Position = 1 

    End With 

    With ActiveSheet.PivotTables("PivotTable2").PivotFields("RIF2") 

        .Orientation = xlColumnField 

        .Position = 2 

    End With 

     ActiveSheet.PivotTables("PivotTable2").PivotFields("RIF1").Subtotals = Array( _ 

        False, False, False, False, False, False, False, False, False, False, False, False) 

     ActiveSheet.PivotTables("PivotTable2").PivotFields("RIF2").Subtotals = Array( _ 

        False, False, False, False, False, False, False, False, False, False, False, False) 

     

    Else 

    End If 
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    'include the Conditional probabilities 

ActiveSheet.PivotTables("PivotTable2").AddDataField ActiveSheet.PivotTables( _ 

        "PivotTable2").PivotFields("Pj"), "Sum of Pj", xlSum 

End Sub 
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