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Motivation 
 
 
The main motivation behind this Ph.D. project can be traced back to Professor Rølvåg’s work 
with the European Space Agency (ESA) and various projects with contractors in the military 
industry. From 1996 to 1999, ESA, Matra Marconi Space and Fedem Technology AS worked 
together in a project called the “SAR (Synthetic Aperture Radar) Deployment Modelling 
Project” [1]. The purpose of the project was to develop a software tool capable of simulating the 
deployment and latching of space mechanisms. From about the years 2000 to 2003, Professor 
Rølvåg was working on designing and simulating the IDG (Integrated Director Group) radar, 
which was to be installed on the new frigates of the Royal Norwegian Navy. Due to the intended 
use of the radar, very strict requirements were set to the resonance frequencies of the radar. 
During the design process of the radar, over 2 000 simulations were performed on virtual models 
of the radar in FEDEM. The radar is an active mechanism, meaning two separate models of the 
radar had to be created, one for time domain simulations and one for modal analyses. This is 
because the dynamical effects caused by the active elements are not included in modal analyses 
in FEDEM, or to the best of the author’s knowledge, any other flexible multibody systems 
simulation software. Instead, they have to be included in the virtual model as passive elements 
when performing modal analyses. This meant that for each design suggestion, two models and 
simulations of the suggested design had to be performed in order to see if the radar design met 
the initial requirements. This inefficiency gave life to the idea of a simulation tool which could 
include system properties of both active and passive elements in virtual models. This would 
eliminate the need to create two separate system models for time domain simulations and modal 
analyses, and hence reduce the modeling and simulation work load by almost 50 %. 
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Abstract 
 
 
When performing modal analyses of active flexible multibody systems, both controller effects 
and flexible body dynamics should be included in a multidisciplinary system model. Control 
system software, such as MATLAB and Simulink, usually supports both controller design and 
control system simulation, in which the mechanical system can be modeled with rigid bodies, 
lumped masses, inertias, springs, dampers or analytical equations. This will cause the flexible 
body dynamics to be predicted by very simplified models. In active flexible multibody dynamics 
software systems, such as FEDEM, feedback type controllers will typically calculate loads 
applied to the mechanical model based on feedback measurements of the system. This approach 
works well in a time domain analysis when the controller drives the mechanical model with 
applied loads based on the given controller algorithms. However, a major problem occurs in 
modal analyses of the closed-loop system. In a free vibration analysis, all loads are set to zero, 
which decouples the controller and mechanical model. As a result, the mechanical model 
becomes singular in all controlled degrees of freedom. A common approach by mechanical 
engineers when performing modal analyses of active flexible multibody systems is to introduce 
additional boundary conditions for the system degrees of freedom affected by controllers. This 
causes the flexibility in the different joints of the mechanism to be omitted since the joints are 
made rigid at relevant positions. Another common, though inaccurate, solution to this problem is 
to represent the controller effects by virtual springs, dampers and inertias in the mechanical 
model. Nonetheless, this approach is only applicable for simple control systems in which the 
mechanical engineer knows how to transform the controller into an equivalent mechanical 
model. Additionally, when designing and optimizing active flexible multibody systems, the 
engineer also has to update two system models simultaneously: one for the modal analysis and 
one for the time domain dynamic simulation. 
 
This thesis presents a method for performing modal analyses of active flexible multibody 
systems in a finite element environment based on the generalized eigenvalue problem. The 
mechanical equivalent properties of position, velocity or acceleration feedback proportional-
integral-derivative (PID) controllers are derived, and it is shown how these properties can be 
included into a system model appropriate for modal analysis. Controllers containing non-
collocated sensors and actuators are also covered. Since the controller parameters may not be 
explicitly defined for the engineer working in a finite element environment, a method for 
deriving the controller gains for PID controllers using perturbations is also presented. Two 
versions of the modal analysis method are presented: one simplified n-dimensional undamped 
version and one complete 3n first-order version which include all system properties. The derived 
theory is verified throughout this work through examples. The presented method is of relevance 
to mechatronic products involving vibrational issues in disciplines such as robotics, aerospace 
and aviation, military, etc. 
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1.  Introduction 
 
This thesis presents a method for performing modal analyses of active flexible multibody 
systems in a finite element (FE) environment based on the generalized eigenvalue problem. In 
this chapter, current approaches for modal analysis of such systems are presented, and some of 
the shortcomings of these approaches are highlighted. The aim of this Ph.D. project is presented, 
along with some questions regarding this issue which may be familiar to mechanical engineers 
who have been working with active flexible multibody systems. 
 
 
1.1.  The Problem 
 
The modal parameters, i.e. natural frequencies, mode shapes and damping ratios, of a system are 
of special interest to engineers working with the dynamics of structures and mechanisms. One of 
the classic textbook examples of failure to accurately predict such parameters is that of the 
Tacoma Narrows bridge, a suspension bridge which was opened to traffic on 1 July 1940 and 
collapsed on 7 November of that same year due to wind induced vibrations [2, 3]. 
 
The dynamic performance of active flexible multibody systems is strongly dependent on an 
optimal interaction between the mechanical components and the controllers. To illustrate some 
of the challenges for accurately predicting the modal parameters of active flexible multibody 
systems, a satellite tracking antenna has been chosen as an example. A virtual model of the 
topical satellite tracking antenna is depicted in Figure 1. 
 

 
Figure 1: Satellite tracking antenna. 
 
The intended usage of the antenna in Figure 1 is to track earth orbiting satellites from an 
earthbound position. The antenna mechanism has two main joints for manipulating the pointing 
direction of the antenna dish: rotations about the global x- and y-axis (elevations). Each of these 
are handled by a motor and controlled by an angular position feedback PID controller. Due to the 
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intended use of the antenna, its pointing accuracy is a subject of great importance. If the antenna 
starts to vibrate during operational use, its pointing accuracy may be greatly reduced, and its 
usefulness diminished. Identifying the modal parameters of the mechanism thus becomes a key 
engineering task. This task, often referred to as modal analysis, usually follow either one of two 
routes: solving the eigenvalue problem or analyzing the time response of the system when 
subjected to disturbances. The former method may be referred to as analytical or theoretical 
modal analysis, while the latter may be referred to as experimental modal analysis. 
 
A great source of insight into experimental modal analysis is a paper written by Avitabile [4] and 
a book written by Ewins [5]. Basically, experimental modal analysis consists of analyzing the 
responses of a system when exited or otherwise brought into motion. Time domain responses can 
in themselves be used to derive natural or resonance frequencies and damping ratios, but one of 
the core aiding tools in experimental modal analysis is the Fourier transform, or more 
specifically the discrete Fourier transform, and its most widely used algorithm, the fast Fourier 
transform (FFT) [6]. One major issue with the experimental modal analysis approach is the 
challenge in deriving the mode shapes of the system, especially for a system containing a large 
number of degrees of freedom (DOFs).  
 
Analytical or theoretical modal analysis, often referred to simply as modal analysis, has its origin 
in the eigenvalue problem and the free vibrations of a system. For an active flexible multibody 
system such as the satellite tracking antenna, the challenge is to include all relevant system 
properties in a multidisciplinary system model. One obstacle for this is that the basic formulation 
and solvers for control systems and mechanical systems are different. Control systems are often 
modeled as first-order equation systems (state-space formulation), e.g. [7-9], while mechanical 
systems are usually modeled as second-order symmetrical equation systems, e.g. [3, 10-12]. 
Solving the eigenvalue problem for the satellite tracking antenna may thus be approached from 
two different discipline strategies: control system engineering or mechanical engineering. 
  
Control system software, such as MATLAB and Simulink1, usually support both controller 
design and control system simulation. The mechanical systems can be modeled with rigid bodies, 
lumped masses, inertias, springs and dampers or analytical equations. Using this approach, the 
closed-loop eigenvalues and eigenvectors can be predicted as shown in e.g. [13-15]. From a 
mechanical engineers point of view, the flexible body dynamics are by this approach predicted 
by very simplified models. This may work well if the dynamics due to flexible bodies can be 
neglected. If not, control and observation spillover can cause a reduction in dynamic 
performance and may lead to system instability. Unmodeled flexible body dynamics also make 
modal analysis and controller synthesis unreliable. 
 
Due to the complexity of the mechanical components, both in form and function, it may be 
practical to handle a system such as the satellite tracking antenna through an FE approach. 
Effective time domain dynamic simulations of flexible multibody systems in an FE environment 
have been described by for instance Sivertsen [12] and Géradin and Cardona [16]. FE software, 

                                                            
1 MATLAB and Simulink by The MathWorks, Inc. 
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routes: solving the eigenvalue problem or analyzing the time response of the system when 
subjected to disturbances. The former method may be referred to as analytical or theoretical 
modal analysis, while the latter may be referred to as experimental modal analysis. 
 
A great source of insight into experimental modal analysis is a paper written by Avitabile [4] and 
a book written by Ewins [5]. Basically, experimental modal analysis consists of analyzing the 
responses of a system when exited or otherwise brought into motion. Time domain responses can 
in themselves be used to derive natural or resonance frequencies and damping ratios, but one of 
the core aiding tools in experimental modal analysis is the Fourier transform, or more 
specifically the discrete Fourier transform, and its most widely used algorithm, the fast Fourier 
transform (FFT) [6]. One major issue with the experimental modal analysis approach is the 
challenge in deriving the mode shapes of the system, especially for a system containing a large 
number of degrees of freedom (DOFs).  
 
Analytical or theoretical modal analysis, often referred to simply as modal analysis, has its origin 
in the eigenvalue problem and the free vibrations of a system. For an active flexible multibody 
system such as the satellite tracking antenna, the challenge is to include all relevant system 
properties in a multidisciplinary system model. One obstacle for this is that the basic formulation 
and solvers for control systems and mechanical systems are different. Control systems are often 
modeled as first-order equation systems (state-space formulation), e.g. [7-9], while mechanical 
systems are usually modeled as second-order symmetrical equation systems, e.g. [3, 10-12]. 
Solving the eigenvalue problem for the satellite tracking antenna may thus be approached from 
two different discipline strategies: control system engineering or mechanical engineering. 
  
Control system software, such as MATLAB and Simulink1, usually support both controller 
design and control system simulation. The mechanical systems can be modeled with rigid bodies, 
lumped masses, inertias, springs and dampers or analytical equations. Using this approach, the 
closed-loop eigenvalues and eigenvectors can be predicted as shown in e.g. [13-15]. From a 
mechanical engineers point of view, the flexible body dynamics are by this approach predicted 
by very simplified models. This may work well if the dynamics due to flexible bodies can be 
neglected. If not, control and observation spillover can cause a reduction in dynamic 
performance and may lead to system instability. Unmodeled flexible body dynamics also make 
modal analysis and controller synthesis unreliable. 
 
Due to the complexity of the mechanical components, both in form and function, it may be 
practical to handle a system such as the satellite tracking antenna through an FE approach. 
Effective time domain dynamic simulations of flexible multibody systems in an FE environment 
have been described by for instance Sivertsen [12] and Géradin and Cardona [16]. FE software, 
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such as FEDEM2, can also be interfaced with control system software for dynamic time 
simulation analyses of active systems [12]. Feedback type controllers will typically calculate 
loads applied to the FE structure based on feedback measurements of the system. For that reason, 
the controller is comparable to a “black box” or unknown function, as seen from the mechanical 
engineer’s point of view. This approach works well in time domain analyses when the controller 
drives the FE model with applied loads based on the given controller algorithms. Even so, a 
major problem occurs in modal analyses of the closed-loop system. In free vibration analyses, all 
loads are set to zero, which decouples the controller and mechanical model. As a result, the 
antenna mechanism becomes singular in both elevation DOFs. 
  
Most FE software systems today support modal analysis of flexible mechanical systems but do 
not include effects from controllers. In addition, mechanical engineers may experience limited 
knowledge about controllers, actuators and sensors, and are therefore susceptible to doing critical 
mistakes. Probably the most common approach by mechanical engineers when performing modal 
analyses of systems such as the satellite tracking antenna is to introduce additional boundary 
conditions for the system DOFs affected by controllers, thereby omitting the flexibility in the 
different joints of the mechanism by making the joints rigid at relevant positions. The greatest 
flaw in this approach is that the eigenfrequencies and eigenmodes for an active mechanism are 
not the same as for a purely mechanical system, as shown in for example [8, 10, 18]. Several 
other sources exist that support this statement, either directly or indirectly, e.g. [19-25].  
 
Another common, though inaccurate, solution to this problem is to represent the controller 
effects by virtual springs, dampers and inertias in the mechanical model [18]. For example, 
Sharon et al. [19] have stated that: “If an ideal actuator and corresponding ideal sensor are acting 
on the same point (collocated control) in a purely inertial system, then: 1. Negative position 
feedback is equivalent to a spring action. 2. Negative velocity feedback is equivalent to a 
damping action. 3. Negative force feedback is equivalent to decreasing inertia. 4. Positive force 
feedback is equivalent to increasing inertia.” Bernzen [21] has demonstrated that actuators can be 
controlled to act like virtual passive mechanical spring-damper elements using a velocity 
feedback PI controller. Ryu et al. [23] mentioned that a position feedback PD controller is 
physically equivalent to a virtual spring and damper whose reference position is moving at a 
desired velocity. Nonetheless, this approach is only applicable for simple control systems in 
which the mechanical engineer knows how to transform the controller into an equivalent 
mechanical model. The engineer also has to update two system models: one for modal analysis 
and one for time domain dynamic simulation. 
 
 
1.2.  Aim of Study 
 
Due to the reasons listed in the previous section, several industrial companies, one of which 
being the Kongsberg Group, have expressed a desire for a method which can be used to 
accurately predict the modal parameters of active flexible multibody systems. The overall aim of 
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this work has been to allow engineers working in an FE environment to be able to accurately 
predict modal parameters of such systems, and the work has been aimed at covering the 
controller types most commonly used in the industry. This work has therefore been limited to 
single or multiple degrees of freedom flexible multibody systems with position, velocity or 
acceleration feedback single or multiple input and output controllers of type proportional-
integral-derivative (PID), the most common type of controllers in use today [26, 27]. The sensors 
and actuators to the controller can either be collocated or non-collocated, and the controller can 
contain both continuous and discontinuous elements. The presented method is intended to be 
implemented into an FE software system, preferably FEDEM. 
 
The main findings which will be presented in this work is how various controllers affect the 
dynamic performance of the active system, and how the controller properties may be included in 
a system model appropriate for modal analysis. Two modal analysis versions will be proposed: 
one simplified version based on the second-order n-dimensional differential equations of the 
system, and one complete version which transforms the second-order n-dimensional differential 
equations into a first-order 3n-dimensional form. In addition, a method for deriving the controller 
parameters of unknown PID-type controllers will be presented. The method is based on 
perturbations and is able to handle both continuous and discrete time independent and time 
dependent controller elements. With this knowledge at hand, FE-based eigenvalue solvers may 
be upgraded with relatively reasonable effort to not only include the flexibility of elastic systems 
but also the active elements from controllers. This allows for more accurate modal analyses of 
active and flexible system, in addition to being and efficiency improvement for engineer working 
with such systems by eliminating the need for two synchronized system models. 
 
This thesis is divided into six main sections, including this introductory chapter, in addition to 
the four appended papers. In Chapter 2, the basic theory comprising this work is explained. How 
to solve eigenvalue problems and theory into common control engineering practice are covered. 
A major focal point in this work has been on how to express the properties of various controllers 
in time domain, thus making the controller compatible with standard mechanical second-order 
differential equations. This theory is explained in more details in the appended papers, but is for 
convenience also included in Chapter 2 of this thesis, although in a somewhat more summarizing 
form. The focus for this thesis has been more on the initial or preliminary work to be carried out 
prior to the actual modal analysis, i.e. pre-processing, and not so much on actually solving the 
problem (processing) or interpreting the results from the modal analysis (post-processing). 
Chapter 3 is a brief summary of the appended papers and lists some of the most important 
findings in these. In Chapter 4, a brief discussion regarding the proposed methods for solving the 
eigenvalue problem for active flexible multibody systems is presented, along with answers to 
questions raised in Section 1.3. Chapters 5 and 6 are a conclusion to this work and suggestions 
for future work. Paper I is intended as being an initial investigation into the field of modal 
analysis of active flexible multibody systems. The main objective of Paper II is to derive a 
method for performing modal analyses of active flexible multibody systems based on second-
order differential equations. An n-dimensional eigenvalue problem version is presented for 
systems without damping and controllers not containing position integral gains. In Paper III, the 
theory derived in Paper II is built on and further expanded, focusing on active systems with non-
collocated sensors and actuators and PID controllers containing position feedback integral gains. 
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A 3n state-space version for the eigenvalue problem is presented. A method for deriving the 
controller parameters of unknown PID-type controllers is presented in Paper IV. 
 
 
1.3.  Practical Engineering Questions 
 
Engineering is all about solving practical problems. What kind of questions could arise from the 
issue presented in Section 1.1.? The main question is if there are any eigenfrequencies within the 
bandwidth of the controlled system that may cause vibrational issues. Below are listed some 
examples of questions which are frequently asked by mechanical engineers regarding this issue: 
 

1. A proportional-derivative (PD) controller and a hydraulic actuator are driving a 
suspension system. In what way does the effective system mass, stiffness and damping, 
and hence the eigenfrequencies of the system, become affected? What if the controller 
use both position, velocity and force feedback? Can fixed boundary conditions be applied 
to the driving DOFs to remove the singularities occurring when the forces are set to zero? 
If not, how can the controller be represented by equivalent mechanical properties 
supported by the FE software? 

 
2. One might know how to solve the problem raised by Question 1, however, the controller 

may also contain discrete elements like hysteresis, logical switches, dead zones, time 
delays and limit elements. How do these types of controller elements affect the closed-
loop eigenfrequencies, and can they be represented by mechanical properties in the FE 
software? 

 
3. It may be decided to use a PID controller to minimize position and velocity deviations on 

a machining centre. Does the integral part of the controller affect the stiffness or damping 
of the mechanical system, and does the derivate effect introduce any artificial inertia to 
the mechanical system? 

 
4. It may be desired to optimize a rotating machinery, and the clutch and actuator have a 

limited and nonlinear torque capacity. How can one model the boundary conditions when 
they are dependent on the reaction torque? When the applied torque exceeds the clutch 
and actuator capacity the machinery is suddenly free to rotate! 

 
The topic regarding these questions will be treated in this work, and each of these questions will 
be answered in the Section 4.2.  
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2.  Theory 
 
2.1.  Mechanical Systems 
 
The core basis for dynamic mechanical systems is the second-order ordinary differential 
equations of motion, which for a system containing multiple degrees of freedom (MDOF) may 
be written as: 
 
 ( ) ( ) ( ) ( )t t t t+ + =Mr Cr Kr F  (1) 
 
where M, C and K are the n n×  system mass, damping and stiffness matrices, respectively, and 
where n is the number of DOFs. F(t) is the 1n×  vector of driving or input forces acting on the 
various masses, and r(t) is the 1n×  vector of positions for the masses with respect to time. ( )tr  
and ( )tr  are the first and second time derivatives of r(t). Typically, M, C and K will be 
symmetrical matrices. 
 
In general, the modal parameters of a system described by Equation (1) may be derived by 
solving the generalized eigenvalue problem: 
 
 A = B  (2) 
 
where A and B are both an n n×  matrix,  is an n n×  diagonal matrix of the generalized 
eigenvalues and  is an n n×  full matrix whose columns are the corresponding eigenvectors. 
The eigenvalues correspond to the roots of the characteristic polynomial equation. If the 
mechanical MDOF system is undamped, the generalized eigenvalue problem can be given as: 
 
 K = M  (3) 
 
Both the eigenvalues and eigenvectors of Equation (3) will typically be real.  
 
 
2.2.  State-Space Methods 
 
For a damped MDOF mechanical system, Equation (3) cannot be used to accurately derive the 
modal parameters of the system, since the damping matrix C introduces coupling between the 
derivatives in Equation (1). The exception being proportional or Rayleigh damping [10], which 
will not be covered here. In general, the eigenvalues and eigenvectors of the damped MDOF 
system will be complex [28]. The imaginary part of the complex eigenvalues is the frequency of 
oscillation, and the real part is the constant in the exponent of the oscillation amplitude envelope. 
For the complex eigenvectors, the amplitude at each DOF can be viewed as having both a 
magnitude and a phase angle [5]. In the introduction of [28], Adhikari gives a brief and good 
description of the issue of non-proportionally damped systems. He states that the solution 
procedures of such systems will primarily follow two routes: the state-space method and 
approximate methods in n-space. 
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The basic principle behind the state-space method is to express the second-order differential 
equations in a first-order (state-space) form. There exist several ways of doing this, but two main 
categories will be covered here. The first is a method often encountered in control engineering 
practice. The equation for free vibrations of Equation (1) may be rewritten as: 
 
 x = Ax  (4) 
 
where  
 

    ,      ,   = = = -1 -1

r r 0 I
x x A

r r -M K -M C
 (5) 

 
The eigenvalues and eigenvectors of the system can now be calculated by solving the standard 
eigenvalue problem for the system matrix A: 
 
 A =  (6) 
 
The solution of Equation (6) will yield 2n complex eigenvalues and eigenvectors. For systems 
which are less-than-critically damped, the complex eigenvalues occur as complex conjugate pairs 
with corresponding complex conjugate modal columns. The eigenvectors will occur in 
accordance with the state vector x, i.e.: 
 

 i =
x
x

 (7) 

 
One drawback of this method is the matrix inversion which has to take place on matrix M. 
Matrix inversion is both computationally expensive and a source for errors, and are usually 
avoided whenever possible.  
 
Foss [29] has described another method for expressing the second-order differential equations on 
a state-space form. Keeping in line with the format used in this work, the method is here 
reproduced on the form most closely resembling that which is presented by Ewins [5]. The 
equation for free vibrations of Equation (1) may be rewritten as: 
 
 Bx + Ax = 0  (8) 
 
where 
 

    ,      ,      ,   = = = =
r r K 0 C M

x x A B
r r 0 -M M 0

 (9) 

 
The eigenvalues and eigenvectors of the system can now be calculated by solving the generalized 
eigenvalue problem for the system matrix A and B using Equation (2). As for the system 
described by Equation (4), the solution of the generalized eigenvalue problem for Equation (8) 
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will yield 2n complex eigenvalues and eigenvectors, which will occur in complex conjugate 
pairs. The variant of Foss’ method used by FEDEM is: 
 
 − =Ax Bx 0  (10) 
 
where: 
 

    ,      ,      ,   = = = =
r r K 0 -C -M

x x A B
r r 0 -M -M 0

 (11) 

 
The methodology derived through this Ph.D. project and presented in this thesis is mainly based 
on this FEDEM formulation of the state-space method. 
 
As stated by Adhikari [28], one concern with the state-space method is that although the state-
space method is exact in nature, it requires significant numerical effort for obtaining the 
eigensolutions as the size of the problem doubles. How to efficiently solve these systems is 
treated in Section 2.5.  
 
 
2.3.  Control Systems 
 
If a mechanical system is affected by controllers of some kind, the system is said to be active. Its 
counterpart, a passive system, is a mechanical system without any form of active controllers. In 
this work, the term control system is used to refer to the complete active system (physical 
process, sensor, actuator and controller), whereas the word controller is used to refer to the part 
of the control system containing the control algorithms. Only feedback controllers will be dealt 
with in this work, so all control system terminology used here refers implicitly to feedback 
controllers. 
 
If the control system has only one sensor measuring a system variable and only one actuator 
executing its commands, the system is said to be single-input single-output (SISO). A control 
system containing several sensors and actuators is said to be multiple-input multiple-output 
(MIMO). A control system is usually described by using a block diagram. An example of such a 
diagram is given in Figure 2. The figure shows a block diagram used for describing a SISO 
feedback control system. 

 
Figure 2: Block diagram of a SISO feedback control system. 
 
In Figure 2, y0 is the reference variable, y is the measured variable and e is the difference 
between y0 and y. u is the controller output and FCtrl is a force from the controller exerted by an 

Controller Physical Process 0y e FCtrl

v
y

−  
Actuator Sensor 

u x 
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will yield 2n complex eigenvalues and eigenvectors, which will occur in complex conjugate 
pairs. The variant of Foss’ method used by FEDEM is: 
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x x A B
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 (11) 
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actuator. x is the state variable from the physical process, either position r, velocity r  or 
acceleration r , while v  is the disturbance on the physical process. 
 
It is a customary control engineering practice to use Laplace transformation on both the 
mechanical system and the controllers, and then treat the system in the s-plane and on state-space 
form [9]. A brief summary of customary control engineering practice is given below. A general 
state-space representation of a linear and time-invariant system (without disturbances) with p 
inputs, q outputs and n DOFs is [30]:  
 

 
( ) ( ) ( )
( ) ( ) ( )
t t t
t t t

x = Ax + Bu
y = Cx + Du

 (12) 

 
where x(t) is the 2 1n×  state vector, A is the 2 2n n×  state matrix, B is the 2n p×  input matrix 
and u is the 1p ×  input vector. B is hence an array which maps the physical locations of the input 
forces to the internal variables of realization. y(t) is the 1q ×  output vector, C is the 2q n×  
output matrix and D is the q p×  matrix corresponding to direct input/output feedforward or 
feedthrough. y(t) is physical sensor measurements such as displacement, velocity or acceleration 
and C is an array which constructs these physical quantities from the internal variables x(t). The 
input control force can be written as: 
 
 ( ) ( )t tu = Ky  (13) 
 
where K is the p q×  feedback gain matrix. Inserting Equation (13) into Equation (12) and 
performing some intermediate calculations yields: 
 

 
( )( )

( )

( ) ( )

( ) ( )

t t

t t

-1

-1

x = A + BK I - DK C x

y = I - DK Cx
 (14) 

 
For the free vibration of the system, D can be set to zero, which gives:  
 

 
( )( ) ( )

( ) ( )
t t
t t

x = A + BKC x
y = Cx

 (15) 

 
The closed-loop eigenvalue problem can hence be formulated as: 
 
 ( )A + BKC =  (16) 
 
Even though Equation (16) can solve the eigenvalue problem for active systems, all of the 
matrices in Equation (16) are given in state-space form, making them difficult to combine with 
FE-based software systems. In this work, one of predominant motivations has been to keep both 
systems in time domain and in line with the second-order differential equations in order to make 
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the derived theory more accessible to mechanical engineers and more compatible with FE-based 
simulation software for active flexible multibody systems. 
 
As stated in the introductory chapter, the most common type of controllers in use today is the 
PID controller. For a feedback PID controller, the controller output u is given by: 
 

 ( ) ( ) ( ) ( )PID p i d
du t K e t K e t dt K e t
dt

= + +  (17) 

 
where Kp is the proportional gain, Kd is the derivative gain and Ki is the integral gain from the 
controller. Equation (17) is sometimes referred to as the ideal form of the PID controller. The 
form of the PID controller most often encountered in the industry is the standard form: 
 

 1( ) ( ) ( ) ( )PID p d
i

du t K e t e t dt T e t
T dt

= + +  (18) 

 
where Ti is the integral time and Td is the derivative time. Ti and Td are related to the parameters 
of the ideal form in Equation (17) through: 
 

    ,   p p d
i i d p d d

i i p

K K KK T K K T T
T K K

= ⇔ = = ⇔ =  (19) 

 
In this work, the ideal form of the PID controller given by Equation (17) will be used.  
 
Since FCtrl is a force from the controller which acts on the physical process, the equation of 
motion for a single degree of freedom (SDOF) mechanical system combined with a feedback 
PID controller can be written as: 
 
 ( ) ( ) ( ) ( ) ( )Ctrlmr t cr t kr t F t F t+ + = +  (20) 
 
This way of representing the controller is in accordance with equations found in [15] and Papers 
I and II. If for simplicity the actuator is said to have an exchange ratio of 1:1, Equation (20) can 
be written as: 
 
 ( ) ( ) ( ) ( ) ( )PIDmr t cr t kr t F t u t+ + = +  (21) 
 
Using the fact that e is the difference between y0 and y, Equation (17) can be split into a 
feedforward or feedthrough part: 
 

 0 0 0( ) ( ) ( ) ( )
FeedforwardPID p i d

du t K y t K y t dt K y t
dt

= + +  (22) 

 
and a feedback part: 
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 ( ) ( ) ( ) ( )
FeedbackPID p i d

du t K y t K y t dt K y t
dt

= + +  (23) 

 
If for simplicity the sensor is said to have an exchange ratio of 1:1, and depending on what state 
variable the sensor measures, i.e. position ( ( ) ( ))x t r t= , velocity ( ( ) ( ))x t r t=  or acceleration 
( ( ) ( ))x t r t= , Equation (21) can be written as: 
 
 0( ) ( ) ( ) ( , ) ( ) ( , )

Feedback FeedforwardPID PIDmr t cr t kr t u x t F t u x t+ + + = +  (24) 
 
In Equation (24), the part of the controller output u associated with the feedforward part can be 
viewed as an external driving force since x0 is a predefined value or function of an external 
reference, and not a function of the system’s variables. Due to the fact that x is a function of one 
of the system variables, the part of the controller output u associated with the feedback part can 
be viewed as an internal force similar to inertia, damping and spring forces. The free vibration of 
the active system is thus given by the following equation: 
 

 ( ) ( ) ( ) ( ) ( ) ( ) 0p i d
dmr t cr t kr t K x t K x t dt K x t
dt

+ + + + + =  (25) 

 
where x(t) is either a function of position r(t), velocity ( )r t  or acceleration ( )r t .  
 
From Equation (25) it can be seen that if x(t) is a function of position r(t), Kp will affect the 
stiffness of the system, whereas Kd and Ki will affect the damping of the system. Similarly, if x(t) 
is a function of velocity ( )r t , Kp will affect the damping of the system, Kd the inertia and Ki the 
stiffness of the system, and if x(t) is a function of acceleration ( )r t , Kp will affect the inertia and 
Ki the damping of the system. In contrast, Kd is proportional to the derivative of the acceleration 
with respect to time, r , often referred to as jerk or jolt. This pattern is summarized in the 
following figure which can be found in Paper II: 
 

 
Figure 3: Pattern for the addition of controller gains into the system equation based on type of sensor input. 
 
The position of the proportional gain Kp in Figure 3 is also in agreement with the statement made 
by Sharon et al. [19]: “If an ideal actuator and corresponding ideal sensor are acting on the same 
point (collocated control) in a purely inertial system, then: 1. Negative position feedback is 
equivalent to a spring action. 2. Negative velocity feedback is equivalent to a damping action. 3. 
Negative force feedback is equivalent to decreasing inertia. 4. Positive force feedback is 
equivalent to increasing inertia.”  
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( ) ( )( ) ( ) ( ) ( ) 0d p iK r t m K r t c K r t kr t+ + + + + =  

( ) ( )( ) ( ) ( ) ( ) 0d p imr t c K r t k K r t K r t dt+ + + + + =  
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 ( ) ( ) ( ) ( )
FeedbackPID p i d

du t K y t K y t dt K y t
dt

= + +  (23) 

 
If for simplicity the sensor is said to have an exchange ratio of 1:1, and depending on what state 
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 0( ) ( ) ( ) ( , ) ( ) ( , )

Feedback FeedforwardPID PIDmr t cr t kr t u x t F t u x t+ + + = +  (24) 
 
In Equation (24), the part of the controller output u associated with the feedforward part can be 
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 ( ) ( ) ( ) ( ) ( ) ( ) 0p i d
dmr t cr t kr t K x t K x t dt K x t
dt

+ + + + + =  (25) 

 
where x(t) is either a function of position r(t), velocity ( )r t  or acceleration ( )r t .  
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Figure 3: Pattern for the addition of controller gains into the system equation based on type of sensor input. 
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Similarly as for Equations (24) and (25), for an active MDOF system containing MIMO PID 
controllers, the equation of motion can be written as: 
 
 0( ) ( ) ( ) ( , ) ( ) ( , )

Feedback FeedforwardPID PIDt t t t t t+ + + = +Mr Cr Kr u x F u x  (26) 
 
and the equation of motion for the free vibration as: 
 

 ( ) ( ) ( ) ( ) ( ) ( )p i d
dt t t t t dt t
dt

+ + + + + =Mr Cr Kr K x K x K x 0  (27) 

 
where x(t) is a vector of various state variables in accordance with what types of state variables 
the various sensors are measuring.  
 
In Paper II, the gradients for a MDOF MIMO system is written as: 
 

 i

i ij jk kl

Ctrl j k
Ctrl l Act Ctrl Sens l

j k l

F u ydF dx G G G dx
u y x

∂ ∂ ∂= =
∂ ∂ ∂

 (28) 

 
or, on matrix form as: 
 

 Ctrl
Ctrl Act Ctrl Sensd d d∂ ∂ ∂= =

∂ ∂ ∂
F u yF x G G G x

u y x
 (29) 

 
Where GAct, GCtrl and GSens are the actuator gradient, controller gradient and sensor gradient 
matrices, respectively. 
 
The actuator gradients describe the relationship between the controller forces FCtrl exerted by the 
actuator and the output signals u from the controller. It should here be clarified that in control 
engineering, inputs to the physical process (i.e outputs from the controller) is entitled inputs (u), 
whereas outputs from the physical process (i.e. inputs to the controller) is called outputs (y). In 
this work however, the inputs to the controller (y) has been labeled inputs, while the outputs from 
the controller (u) has been labeled outputs. The gradients of the controller force 

iCtrlF  with 
respect to controller output uj can be written as: 
 

    or   i

i ij

Ctrl
Ctrl Act Ctrl j Act j

j

F
d d dF du G du

u
∂

= = =
∂

F G u  (30) 

 
Matrix GAct has the dimensions 

CtrlF un n×  where 
CtrlFn is the number of controller forces and nu is 

the number of controller outputs. 
 
The controller gradients describe the relationship between the input variables y and output 
variables u both to and from the controller, respectively; that is, the various controller gains. The 
gradients of the controller output ui with respect to the controller input yj can be written as:  
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    or   
ij

i
Ctrl i j Ctrl j

j

ud d du dy G dy
y

∂= = =
∂

u G y  (31) 

 
Matrix GCtrl has the dimensions u yn n×  where nu is the number of controller outputs and ny is the 
number of controller inputs. 
 
The sensor gradients describe the relationship between the controller input variables y and the 
system state variables ,   and r r r  represented by the vector x. x is given as: 
 

 =
r

x r
r

 (32) 

 
Vector x has the dimensions 3 1rn ×  where nr is the number of all system DOFs. Each sensor is 
limited to measure only one state variable in only one single system DOF or between two system 
DOFs. The gradients of the controller input yi with respect to system DOF and state variable xj 
can be written as: 
 

    or   
ij

i
Sens i j Sens j

j

yd d dy dx G dx
x

∂= = =
∂

y G x  (33) 

 
Matrix GSens has the dimensions 3y rn n×  where ny is the number of controller inputs and nr is the 
number of all system DOFs.  
 
The matrix product G of the gradient matrices GAct, GCtrl and GSens has the dimensions 

3 .
CtrlF rn n×  If G is to be used with M, C and K, it should be of the same dimensions, i.e. r rn n× . 

This can be done by pre-multiplying G with the topology matrix relating each controller force 
iCtrlF  with its respective system DOFs and then splitting the new 3r rn n×  matrix product into 3 

r rn n×  matrices, GPos, GVel and GAcc, one for each state variable ,   and r r r . These new matrices 
GPos, GVel and GAcc can then be added to their respective system matrix, yielding the following 
equation system for the free vibration of a controlled mechanism: 
 
 ( ) ( ) ( )( ) ( ) ( )Acc Vel Post t t+ + + + + =M G r C G r K G r 0  (34) 
 
or, more conveniently: 
 
 eff eff eff+ + =M r C r K r 0  (35) 
 
where Meff is the effective mass matrix of the system, while Ceff is the effective damping matrix 
and Keff the effective stiffness matrix of the system. The dimensions of all the matrices are n n×  
and the vectors 1n× . 
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As stated in Paper III, Equation (34) is valid for all PID controllers only containing controller 
elements proportional to position, velocity or acceleration. Examples of controllers not covered 
by Equation (34) are: position feedback controllers containing integral gains or acceleration 
feedback controllers containing derivative gains, though the latter variant will not be covered in 
this work. Based on Equations (27) and (34), the equation of motion for the free vibration of an 
active MDOF system containing a position feedback PID controller can be written as: 
 
 ( ) ( ) ( )( ) ( ) ( ) ( )Acc Vel Pos SSEEt t t t dt+ + + + + + =M G r C G r K G r G r 0  (36) 
 
where GSSEE is the controller gradient steady-state error elimination matrix and dtr  is the 
position time integral vector of the system. Similarly as for Equation (34), Equation (36) may be 
more conveniently written as: 
 
 eff eff eff eff dt+ + + =M r C r K r Q r 0  (37) 
 
where Qeff is the effective steady-state error elimination matrix of the system. As in Equations 
(34) and (35), the dimensions of all the matrices in both Equations (36) and (37) are n n×  and 
the vectors 1n× . For a system with only collocated sensors and actuators, the controller gradient 
matrices GAcc, GVel, GPos and GSSEE will all be diagonal matrices. For a system with one or more 
non-collocated sensors and actuators, the GAcc, GVel, GPos and GSSEE matrices will be 
unsymmetrical. Systems containing non-collocated sensors and actuators are more thoroughly 
treated in Paper III. 
 
As shown in Paper II, in order to derive the modal parameters of an undamped system described 
by Equation (34), Equation (3) may be written as: 
 
 eff effK = M  (38) 
 
For a system containing damping, the generalized eigenvalue problem given by Equation (2) can 
be solved inserted for A and B in accordance with the system outlined by Equation (11). The 
basis for the 2n state-space generalized eigenvalue problem is then: 
 

    ,      ,      ,   eff eff eff

eff eff
= = = =

K 0 -C -Mr r
x x A B

0 -M -M 0r r
 (39) 

 
which inserted in Equation (2) yields: 
 

 eff eff eff

eff eff

K 0 -C -M
=

0 -M -M 0
 (40) 

 
However, as described in Paper III, if one or more of the controllers contain position feedback 
integral gains, Equation (37) has to be used. It is then not sufficient to only use a 2n state-space 
formulation for the generalized eigenvalue problem, since one of the state variables will not be 
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included. A proposed remedy to this problem is to expand the 2n state-space formulation into a 
3n state-space formulation for the generalized eigenvalue problem, following a similar pattern as 
Equations (11) and (40). The state vectors x and x  and the matrices A and B can be given as: 
 

    ,      ,      ,   
eff eff eff eff

eff eff

eff eff

dt
= = = =

r r Q 0 0 -K -C -M
x r x r A 0 K 0 B K 0 0

r r 0 0 M 0 M 0
 (41) 

 
where the dimensions of x and x  are 3 1n× , and those of A and B are both 3 3n n× . The 
generalized eigenvalue problem may then be solved as: 
 

 
eff eff eff eff

eff eff

eff eff

Q 0 0 -K -C -M
0 K 0 = K 0 0
0 0 M 0 M 0

 (42) 

 
 
 
2.4.  Identifying Unknown Controller Parameters 
 
One remark about the method presented in the previous section is that the controller properties 
have to be known explicitly prior to the modal analysis. To the best of the author’s knowledge, 
no commercial software system for simulation of active mechanisms fully integrates flexible 
multibody dynamics and control system simulation, since the underlying equations for control 
systems and mechanical systems are expressed in different forms. In flexible multibody 
dynamics software systems, such as FEDEM, feedback type controllers will typically calculate 
loads applied to the mechanism based on feedback measurements of the system. Additionally, 
some flexible multibody dynamics software systems also have the option of importing or 
communicating with the controller model as an external process, for instance through a dynamic 
link library (dll) or Simulink. For these reasons, the controller is comparable to a “black box” or 
unknown function, as seen from the mechanical part of the software system. In order to 
overcome this issue, a method for identifying the controller parameters may be applied. One such 
method is presented in Paper IV, and is a method for estimating controller parameters for 
systems containing either higher-order integral gains, higher-order derivative gains or a 
combination of proportional, integral and derivative gains, i.e. PID controller. Some of the theory 
in Paper IV is reproduced here with focus on controller parameter estimations for PID 
controllers. 
 
A potential method for parameter estimation, as described more completely in Paper IV, is to 
introduce perturbations into the system. This approach is not to be confused with the perturbation 
method described in [3], which can be used to solve nonlinear differential equations in which the 
solution is in the form of a power series. Perturbations in this context are incremental changes in 
a system variable. The basis of this technique can be found in, for instance, the principle of 
virtual work [3, 31, 32], the displacement method/direct stiffness method [33], system 
identification/parameter estimation [34, 35] and optimization theory [36]. For all the various 
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fields listed above, the concept remains the same: apply changes in one variable, measure 
reactions from other variables and then process the results in order to derive the desired system 
parameters. 
 
By applying incremental changes, perturbations, to the input (y) of the controller, small changes 
in the output (u) from the controller can be registered. These changes will be in accordance with 
the internal control routine of the controller. The parameters of the controller can thus be 
estimated based on predetermined changes in the controller input and registered changes from 
the controller output. 
 
A perturbation, as described in the previous paragraph, is illustrated in Figure 4: 

 
Figure 4: Perturbation j of t and y. 
 
In Figure 4, the variables time t and controller input y are perturbed by the values and j jy t  
during perturbation j. y0 and t0 are the initial values for y and t, respectively, at the present time 
step. From Figure 4, the following relationships can be derived: 
 
 0 0j j j jy y y y y y= − = +  (43) 
 
 0 0j j j jt t t t t t= − = +  (44) 
 
Since the controller output u is a function of y and t, the following equation can be given: 
 

 
0

0 0

0 0 0 0

( , ) ( , )

( , ) ( , )

j j

j j j

j j j

u u u
u y t u y t
u y y t t u y t

= −

= −

= + + −

 (45) 

 
The values  and j jy t  can be chosen arbitrarily, but it can be practical to express jy  as a 
function of jt . The linear equation for ( )jy t  for perturbation j can then be written as: 
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t
= +  (46) 

 
 
 
2.4.1. Proportional gain 
 
For a feedback type controller containing only a controller output u proportional to the input 
variable y, its feedback gain equation can be written as: 
 
 ( ) ( )P pu t K y t=  (47) 
 
where Kp is the proportional gain. Equation (47) can be written on a general differential form as: 
 

    or   p
udu dy du K dy
y

∂= =
∂

 (48) 

 
or, in discrete differential form as: 
 

    or   p
uu y u K y
y

∂= =
∂

 (49) 

 
Kp can thus be calculated by solving the following equation: 
 
 ( ) 1

pK y u−=  (50) 
 
 
 
2.4.2.  Integral gain 
 
For a feedback type controller containing only a controller output u proportional to the time 
integral of the input variable y, its feedback gain equation can be written as: 
 
 ( ) ( )I iu t K y t dt=  (51) 
 
where Ki is the integral gain. Equation (51) can be written in discrete differential form as: 
 

    or   i
uu y dt u K y dt
y dt

∂= =
∂

 (52) 

and Ki can be calculated by solving the equation: 
 

 ( ) 1

i j jK y dt u
−

=  (53) 
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In order to estimate Ki using the perturbation technique described in the previous sections, 

jy dt  needs to be discretized. In Figure 4, jy dt  is the area under the linear curve. If ( )jy t  
is given as in Equation (46), jy dt  can be made as a function of jy  and jt  by: 
 

 2
0 0

0 0

1 1
2 2

jj
tt

j
j j j j

j

y
y dt y dt y t t y y t

t
= = + = +  (54) 

 
Inserting Equation (54) into Equation (53) yields: 
 

 
1

0
1
2i j j jK y y t u

−

= +  (55) 

 
 
 
2.4.3. Derivative gain 
 
For a feedback type controller containing only a controller output u proportional to the time 
derivative of the input variable y, its feedback gain equation can be written as: 
 

 ( ) ( ) ( )D d d
du t K y t K y t
dt

= =  (56) 

 
where Kd is the derivative gain. Equation (56) can be written in discrete differential form as: 
 

    or   d
uu y u K y
y

∂= =
∂

 (57) 

 
Kd can be calculated by solving the equation: 
 
 ( ) 1

d j jK y u
−

=  (58) 
 
In order to estimate Kd using the perturbation technique described in the previous sections, jy  
has to be discretized. The derivative in Figure 4 can be given as: 
 

 j
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y
y

t
=  (59) 

 
Using Equation (43) as a basis, jy  can be given as: 
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 ( ) ( ) ( )D d d
du t K y t K y t
dt

= =  (56) 

 
where Kd is the derivative gain. Equation (56) can be written in discrete differential form as: 
 

    or   d
uu y u K y
y

∂= =
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 (57) 

 
Kd can be calculated by solving the equation: 
 
 ( ) 1

d j jK y u
−

=  (58) 
 
In order to estimate Kd using the perturbation technique described in the previous sections, jy  
has to be discretized. The derivative in Figure 4 can be given as: 
 

 j
j

j

y
y

t
=  (59) 

 
Using Equation (43) as a basis, jy  can be given as: 
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j
j j

j

y yy y y
t t

= − = −  (60) 

 
However, 0y  does not exist in Figure 4. In order to have both jy  and 0y , two perturbation 
steps have to be performed. An example of a two-step perturbation is illustrated in Figure 5. 

 
Figure 5: Two-step perturbation. 
 
As for the one-step perturbation illustrated in Figure 4, the values 0y , jy , 0t  and jt  can be 
chosen arbitrarily, but it can be practical to express jy  as a function of jt , while 0t  can be 
given as 0 jt t=  and 0 0y = . Equation (60) can then be simplified to: 
 

 0 j
j j

j

y
y y

t
= − =  (61) 

 
Inserting Equation (61) into Equation (58) yields: 
 

 
1

j
d j

j

y
K u

t

−

=  (62) 

 
 
 
2.4.4. PID controller  
 
For a PID controller, the feedback controller output is given by Equation (23). In a discrete 
differential form, this can be written as: 
 

    or   p i d
u u uu y y dt y u K y K y dt K y
y yy dt

∂ ∂ ∂= + + = + +
∂ ∂∂

 (63) 
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As demonstrated in Equation (63), a PID controller is a compound controller, consisting of both 
a proportional gain, an integral gain and a derivative gain. In order to estimate all three gains Kp, 
Ki and Kd using the perturbation technique, three perturbations need to be performed. And since 
the controller contains a derivative gain, a two-step perturbation algorithm needs to be used, as 
explained in Section 2.4.3. This gives the following set of equations: 
 

 

1 1 1 1

2 2 2 2

3 3 3 3

p i d

p i d

p i d

u K y K y dt K y

u K y K y dt K y

u K y K y dt K y

= + +

= + +

= + +

 (64) 

 
which can be written in matrix form as: 
 

 
1 1 1 1

2 2 2 2

3 3 3 3

p

i

d

u y y dt y K
u y y dt y K
u y y dt y K

=  (65) 

 
To derive the controller properties Kp, Ki and Kd, one can solve the following matrix system by 
the use of matrix inversion: 
 

 

1
1 1 1 1

2 2 2 2

3 3 3 3

p

i

d

K y y dt y u
K y y dt y u
K y y dt y u

−

=  (66) 

 
Inserting Equation (55) and Equation (61) into Equation (66) yields: 
 

 

1

1
1 0 1 1 1

1

2
2 0 2 2 2

2

3
3 0 3 3 3

3

1
2
1
2
1
2

p

i

d

yK y y y t u
t
yK y y y t u
t
yK y y y t u
t

−

+

= +

+

 (67) 

 
To avoid singularities when performing the matrix inversion in Equation (67), the determinant of 
the invertible matrix should be nonzero. This requirement is met for 1 2 3y y y≠ ≠  and 

1 2 3t t t≠ ≠ . Typically, jt  and jy  can be given as: 
 
 1 1 1 1 1   ,      ,      ,   sim j jt t y t t j t y j yδ= ⋅ = = ⋅ = ⋅  (68) 
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where simt  is the simulation time increment. δ  is a small positive scalar called the relative 
perturbation step size [36]. A possible default value of δ , as used by the authors in Paper IV, is 
0.1.  
 
 
2.5.  Eigensolver Methods 
 
A description of some eigensolver methods may be helpful and is thus included in this following 
section, with focus on common methods found in commercial software systems. Because of 
various cooperative policies, the underlying methods in commercial software codes are often 
hard to identify and document. 
 
Solving the eigenvalue problem λ=Ax Bx  is equivalent to calculating the roots of the 
characteristic polynomial equations. Since there is no general algebraic solution for the roots of 
polynomial equations of degree greater than four, it follows that all solution methods are 
necessarily iterative in nature. The different methods for solving the eigenvalue problem may be 
divided into three categories, based on the properties they utilize: polynomial iteration/ 
determinant methods, transformation methods and vector iteration methods [37]. The least 
applicable of these methods for large systems are the polynomial iteration/determinant methods; 
consequently, these methods will not be covered in this work. The basic property used by the 
transformation methods is [31]: 
 
    ,   T TA = B = I  (69) 
 
while for vector iteration methods, it is [31]: 
 
 i i iλ=A B  (70) 
 
where iλ  is an eigenvalue and i  its corresponding eigenvector. 
 
The transformation methods rely on transformations of the matrix under investigation into 
another matrix of same eigenvalues. Typical transformation methods are Givens 
tridiagonalization [37], Householders tridiagonalization [31, 37], and the QR [3, 31, 37-42] and 
QZ algorithms [40, 41]. The QR algorithm may be applied to solve the standard eigenvalue 
problem λ=Cx x  [43], while the QZ algorithm is an extension of the QR algorithm and may be 
used to solve the generalized eigenvalue problem λ=Ax Bx  [40]. For the QZ algorithm, A and 
B are typically transformed into upper triangular matrices from which the eigenvalues may be 
calculated from the diagonal elements. The QZ algorithm is implemented in LAPACK3, and may 
be used to solve the generalized non-symmetric eigenproblem. Several commercial software 
systems, such as MATLAB and FEDEM, use LAPACK. One of the LAPACK subroutines for 
computing the generalized eigenvalues for a pair of n-by-n real non-symmetric matrices, and 
optionally, the left and/or right generalized eigenvectors is the DGGEVX [44] routine. FEDEM 

                                                            
3 LAPACK – Linear Algebra PACKage, a software package provided by Univ. of Tennessee; Univ. of California, 
Berkeley; Univ. of Colorado Denver and NAG Ltd. Version 3.3.0. 
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R5.0 has the option of using this routine to solve the generalized eigenvalue problem. On the 
issue: “What algorithm does the EIG function use to compute eigenvalues?”, the MathWorks 
replied in 2009: “As of MATLAB 6.0 (R12) the EIG function makes use of several LAPACK 
functions to compute the eigenvalues and eigenvectors, depending on the structure of the 
matrix.” [45]. The function eig(A,B,‘qz’)in MATLAB uses the QZ algorithm [46]. 
 
The vector iteration methods are based upon iterations of arbitrary starting vectors in order to 
derive the systems eigenvalues and eigenvectors. One of the core algorithms in this group of 
methods is power iteration [37] or forward iteration [31]. Starting with the standard eigenvalue 
problem λ=Cx x  and an arbitrary starting vector 0x ; by repeatedly multiplying this vector with 
matrix C, a vector is obtained which is more and more parallel with the dominant eigenvector, 
i.e. the eigenvector corresponding to the largest eigenvalue [37]. For most engineering 
applications, the lowest rather than the highest eigenpair is of most interest. Using the 
abovementioned procedure on 1 1λ− −=C x x  instead of λ=Cx x  yields the dominant eigenpair of 

1−C , which is the lowest or least dominant eigenpair of C. This procedure is called inverse vector 
iteration. By introducing a shifting factor to these methods, other eigenpairs than the highest or 
lowest can be acquired. According to Bell [37], the most popular version of simultaneous inverse 
vector iteration methods is the subspace iteration method, developed and named by Bathe [31]. 
This method is generally applied to the generalized eigenvalue problem, and seeks to determine 
all the m lowest eigenpairs through an inverse iteration scheme that operates on p trial vectors, or 
a p-dimensional subspace, where p m≥ . In 1950, Lanczos [47] proposed a method for 
transforming a given n n×  matrix into a similar tridiagonal matrix in n iteration steps. However, 
as already recognized by Lanczos, the tridiagonalization procedure has a major shortcoming in 
that the constructed vectors, which in theory should be orthogonal, are, as a result of round-off 
errors, not orthogonal in practice. A remedy is to use Gram-Schmidt orthogonalization, but such 
an approach is also sensitive to round-off errors and renders the process ineffective when a 
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few eigenvectors and corresponding eigenvectors of the problem λ=Ax Bx , an iteration based 
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most efficient and robust technique for finding a limited number of eigenvalues/eigenvectors of 
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The unsymmetric Lanczos method is generally advised against due to instability [41, 48, 49], 
while the Arnoldi method is suffering from some storage issues [49, 50]. FEDEM R5.0 has the 
option of using the Lanczos method to solve the symmetric generalized eigenvalue problem. 
 
For real eigenvalue problems, MSC.Nastran4 [51] offers methods in two categories: the reduction 
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MSC.Nastran useful for small normal modes problems in analysis of structural components. For 
complex eigenvalue problem, MSC.Nastran offers QZ and complex Lanczos methods. 
 
From the Abaqus5 Version 6.7 Documentation [52] it is said that Abaqus provides eigenvalue 
extraction procedures for both symmetric and complex eigenproblems. For symmetrized 
eigenproblems Abaqus/Standard offers two approaches: Lanczos and subspace iteration methods. 
For complex eigenproblems the subspace projection method is used. Both the subspace iteration 
and the Lanczos methods use the Householder and QR algorithm for the reduced eigenproblem, 
and that the Lanczos solver with the traditional architecture is the default eigenvalue extraction 
method because it has the most general capabilities. 
 
In practical engineering applications, the system matrices are commonly large and real, and only 
a few of the system’s eigensolutions are of interest. For undamped mechanical problems, the 
system matrices will also be symmetrical, and as long as the sensors and corresponding actuators 
of the controller are collocated, the system matrices will remain symmetrical. The eigensolutions 
of these systems can be obtained by solving the eigenvalue problem given by Equation (38), and 
the solvers based on the Lanczos method may be a preferred choice. The Lanczos method gives 
faster convergence than subspace iteration [49, 53] and, as stated by Fischer [54], the direct 
application of QR type algorithms is limited to systems of several hundred DOFs and are thus 
not useful to solve large engineering problems with many thousand DOFs where actually only a 
limited set of the lowest modes is required. If damping is introduced into the system, Equation 
(2) is typically required to solve the eigenvalue problem using state-space methods, meaning that 
the eigenproblem matrices A and B may be unsymmetrical, unless the state-space form of 
Equation (9) or Equation (11) is used. In addition, as described in Section 2.3. and Paper III, non-
collocated sensors and actuators will typically yield unsymmetrical system matrices. A potent 
solver method for such systems is the Arnoldi method, which over the years has been attempted 
improved in order to overcome some of its storage issues [49, 55, 56]. 
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3.  Summary of Appended Papers 
 
3.1.  Paper I: Modal Analysis of Lumped Flexible Active Systems (Part 1) 
 
This paper was presented at the SIMS 2008: The 48th Scandinavian Conference on Simulation 
and Modeling in Oslo, Norway in 2008. It served the purpose of being an initial investigation 
into the field of modal analysis of active flexible multibody systems. The mechanical system was 
limited to be an SDOF mass-spring-damper system, and the controller was limited to be of type 
position feedback PD controller. This paper highlights some of the problems regarding modal 
analysis of active systems, particularly the one about external forces being set to zero for free 
vibration analyses. An active system containing no mechanical components other than a mass is 
shown to possess a natural frequency, which cannot be predicted by classical methods. But by 
investigating the active system, it is shown how the controller forces affecting the internal 
dynamics of the system, based on the equation of motion, can be isolated and included in a 
modal analysis. Equations for the damped and undamped natural frequencies of active systems 
based on classical equations are presented and verified through examples. The main results from 
this paper are shown in the following paragraph.  
 
The equation of motion for an active SDOF system containing a position feedback PD controller 
is shown to be: 
 
 ( ) ( )( ) ( ) ( ) ( ) ( ) ( )d p d ref p refmr t c K r t k K r t F t K r t K r t+ + + + = + +  (71) 
 
which yields the equation of motion for the free vibration as: 
 
 ( ) ( )( ) ( ) ( ) 0d pmr t c K r t k K r t+ + + + =  (72) 
 
Equation (72) yields the following equations for the undamped and damped natural frequency 
and the damping ratio as, respectively: 
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3.2.  Paper II: Modal analysis of active flexible multibody systems 
 
This paper has been published in the journal Computers and Structures. The main objective of 
this paper was to derive a method for performing modal analyses of active flexible multibody 
systems based on second-order differential equations. The paper was limited to dealing with the 
undamped eigenfrequencies of active MDOF systems containing SISO or MIMO PID 
controllers, and builds on findings in Paper I. It reveals how the active elements can be broken 
up into three separate parts (sensor, actuator and controller), and shows how the equations of 
motion for active systems are affected by the sensor input (position, velocity or acceleration) to 
the controllers. Further, an equation for the generalized undamped eigenvalue problem for active 
systems is presented and verified through two examples. The examples also serve the purpose of 
highlighting some of the shortcomings of current methods: FE-based methods do not include the 
controller properties and analytical methods do not include flexible body dynamics. The main 
results from this paper are exhibited in the following paragraph. 
 
The equation of motion for the free vibration of an active SDOF system containing a position, 
velocity or acceleration feedback PID controller is shown to be, respectively: 
 
 ( ) ( )( ) ( ) ( ) ( ) 0d p imr t c K r t k K r t K r t dt+ + + + + =  (76) 
 
 ( ) ( ) ( )( ) ( ) ( ) 0d p im K r t c K r t k K r t+ + + + + =  (77) 
 
 ( ) ( )( ) ( ) ( ) ( ) 0d p iK r t m K r t c K r t kr t+ + + + + =  (78) 
 
The equation for the gradient matrices of a MIMO controller can be written in matrix form as: 
 

 Ctrl
Ctrl Act Ctrl Sensd d d∂ ∂ ∂= =

∂ ∂ ∂
F u yF x G G G x

u y x
 (79) 

 
where GAct, GCtrl and GSens are the actuator, controller and sensor gradient matrices, respectively. 
In Equation (79), matrix GAct has the dimensions 

CtrlF un n× , where 
CtrlFn is the number of 

controller forces and nu is the number of controller outputs; matrix GCtrl has the dimensions 
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where the dimensions of all the matrices are n n×  and the vectors 1n× . Equation (80) yields the 
following equation for the generalized undamped eigenvalue problem: 
 
 ( ) ( )Pos Acc+ +K G = M G  (81) 
 
 
 
3.3.  Paper III: Modal Analysis of Active Flexible Multibody Systems Containing PID 

Controllers with Non-Collocated Sensors and Actuators 
 
This paper is submitted for publication in the journal Computers and Structures. The main 
objective of this paper was to build on and further expand the theory derived in Paper II, 
focusing on active systems with non-collocated sensors and actuators and PID controllers 
containing position feedback integral gains. The paper presents equations of motion for the 
above-mentioned systems and gives equations for performing modal analysis of such systems, 
which are verified through examples. The main results from this paper are shown in the 
following paragraph.  
 
The equation of motion for the free vibration of an MDOF system containing a position feedback 
PID controller can be written as: 
 
 ( ) ( ) ( )( ) ( ) ( ) ( )Acc Vel Pos SSEEt t t t dt+ + + + + + =M G r C G r K G r G r 0  (82) 
 
where the matrix GSSEE is the gradient matrix of the steady-state error elimination, which 
corresponds to the position feedback integral gain. For an active SISO system with n system 
DOFs in which a sensor is placed on DOF i and an actuator is acting on DOF j, the controller 
gradient matrices will contain non-zero elements on position ij. If the controller is of type 
position feedback PID, the gradient matrices will be: 0

ijAcc =G , 
ijVel dK=G , 

ijPos pK=G  and 

ijSSEE iK=G . If the controller is of type velocity feedback PID, the gradient matrices will be: 

ijAcc dK=G , 
ijVel pK=G , 

ijPos iK=G  and 0
ijSSEE =G . Additionally, Equation (82) can be rewritten 

as: 
 
 eff eff eff eff dt+ + + =M r C r K r Q r 0  (83) 
 
where Meff is the effective mass matrix of the system, while Ceff is the effective damping matrix, 
Keff the effective stiffness matrix and Qeff the effective steady-state error elimination matrix of 
the system. The dimensions of all the matrices are still n n×  and the vectors 1n× . Equation (83) 
can be transformed into a first-order form as: 
 
 − =Ax Bx 0  (84) 
 
where: 
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    ,      ,      ,   
eff eff eff eff

eff eff

eff eff

dt
= = = =

r r Q 0 0 -K -C -M
x r x r A 0 K 0 B K 0 0

r r 0 0 M 0 M 0
 (85) 

 
The dimensions of x and x  are 3 1n×  and those of A and B are both 3 3n n× . The generalized 
eigenvalue problem for the active flexible multibody system can thus be solved as given by 
Equation (2). 
 
 
3.4.  Paper IV: A Method for Controller Parameter Estimation Based on Perturbations 
 
This paper is submitted for publication in the journal Multibody System Dynamics. The main 
objective of this paper was to derive a method for estimating the unknown controller gains Kp, Ki 
and Kd in the controller gradient matrix GCtrl, shown in Equation (79), of a SISO or MIMO PID 
controller. Since, as stated in the introduction, the controller is comparable to a “black box” or 
unknown function as seen from the mechanical engineer’s point of view, the parameters Kp, Ki 
and Kd are not necessarily explicitly known a priori for the engineer performing modal analyses. 
This paper presents a method which uses incremental changes (perturbations) in the controller 
inputs to derive the controller gains, and the method is verified through examples. The main 
results from this paper are shown in the following paragraph.  
 
The feedback controller output u of a PID controller can be given in a discrete differential form 
as a function of the controller input y as: 
 

    or   p i d
u u uu y y dt y u K y K y dt K y
y yy dt

∂ ∂ ∂= + + = + +
∂ ∂∂

 (86) 

 
Hence, for a PID controller, the gains Kp, Ki and Kd can be derived from solving the following 
matrix equation: 
 

 

1
1 1 1 1

2 2 2 2

3 3 3 3

p

i

d

K y y dt y u
K y y dt y u
K y y dt y u

−

=  (87) 

 
where jy  and ju  are incremental changes in controller input and output, respectively, for 
perturbation j. Discretization of jy dt  and jy  yields Equation (87) as: 
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where jt  is the time increment for perturbation j. 
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4.  Discussions 
 
4.1.  Discussion of the n-Dimensional and 3n State-Space Versions 
 
Presented by Equation (38) and in Paper II is an n-dimensional modal analysis version which can 
be used to solve systems containing marginal, negligible or no damping or steady-state error 
elimination. Undercritically damped natural frequencies do not differ significantly from 
undamped natural frequencies, the reason for this can be seen in the following equation [10]: 
 
 21d nω ω ζ= −  (89) 
 
where nω  and dω  are the undamped and damped natural frequencies, respectively, and ζ  is the 
damping ratio. Using the n-dimensional modal analysis version has several advantages over the 
more comprehensive 3n state-space version. FE-based multibody system simulation software, 
such as FEDEM, is usually based on the second-order mechanical dynamics equations. By 
keeping both the modal analysis and the time-domain dynamic equations in the n-space, the 
method may experience a higher degree of compatibility and be more easily implemented into 
such a software system, since, as stated by Alvin and Park [57], the equations determined in a 
state-space form are difficult to transform into well-known second-order equations. 
 
A typical method or algorithm for solving the full eigenvalue problem in FE software systems is 
the QR or QZ algorithm; the QZ algorithm being a generalization the QR algorithm. The QR 
algorithm is of order n3 [37]. For the proposed 3n state-space version, this would mean an 
(3n)3/n3 increase in computation time for systems of large n, which means that solving the 
eigenvalue problem using the proposed 3n state-space version will be up to 27 times more 
expensive with respect to computational time than an n-dimensional version. In addition, as 
stated in Section 2.1., both eigenvalues and eigenvectors of the n-dimensional version will be 
real, significantly reducing the complexity of the solutions. However, the main drawback of the 
n-dimensional version is accuracy. The 3n state-space version includes both damping and steady-
state error elimination effects, complementing the n-dimensional version on the accuracy issue. 
In addition, one positive side effect by the 3n state-space version is that both positive and 
negative damping can be calculated, making this version a potential tool for capturing system 
instability issues. 
 
One note about implementing these eigenvalue problem versions into software systems should be 
made. Most mechanical systems will only contain symmetrical matrices. As long as the sensors 
and actuators of the controllers are collocated, the system matrices will still be symmetric. 
However, if the sensors and actuators are non-collocated, the affected system matrices will 
become unsymmetrical, meaning that only unsymmetrical eigensolvers should be used, 
regardless of whether the n-dimensional or 3n state-space versions are used. This is an issue 
solely dependent on the eigensolver capacities and not on eigenproblem setup versions.  
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4.2.  Returning to the Practical Engineering Questions 
 
In Section 1.3., several relevant engineering questions regarding the topic addressed in this thesis 
were asked. With the knowledge presented in this work at hand, these questions can now be 
answered. Below are the questions repeated, and their answers listed in successive order. 
 
Question 1: A proportional-derivative (PD) controller and a hydraulic actuator are driving a 
suspension system. In what way does the effective system mass, stiffness and damping, and 
hence the eigenfrequencies of the system, become affected? What if the controller use both 
position, velocity and force feedback? Can fixed boundary conditions be applied to the driving 
DOFs to remove the singularities occurring when the forces are set to zero? If not, how can the 
controller be represented by equivalent mechanical properties supported by the FE software? 
 
Answer: Depending on the type of sensor input, the system mass, stiffness and damping will be 
affected as illustrated in Figure 3. If fixed boundary conditions are applied to the driving DOFs, 
the singularities which will occur due to forces being set to zero for free vibrations will be 
omitted. However, the predicted modal parameters may be incorrect since fixing the boundary 
conditions introduces additional erroneous constraints on the system. The controller may be 
represented by equivalent mechanical properties as outlined by Equations (27) and (34), and its 
modal parameters derived by Equations (38) or (39). 
 
 
Question 2: One might know how to solve the problem raised by Question 1, however, the 
controller may also contain discrete elements like hysteresis, logical switches, dead zones, time 
delays and limit elements. How do these types of controller elements affect the closed-loop 
eigenfrequencies, and can they be represented by mechanical properties in the FE software? 
 
Answer: As shown explicitly in Paper IV through examples, discrete elements may be treated as 
other discontinuous elements. The perturbation technique presented in details in Paper IV has the 
capabilities to calculate the effective controller gains at any instant in the dynamic time-domain 
motion simulation. Each time a modal analysis is performed, the instantaneous controller gains 
are derived. These gains may now be added to the system matrices in accordance with Equations 
(27), (34) and (36). 
 
 
Question 3: It may be decided to use a PID controller to minimize position and velocity 
deviations on a machining centre. Does the integral part of the controller affect the stiffness or 
damping of the mechanical system, and does the derivate effect introduce any artificial inertia to 
the mechanical system? 
 
Answer: Depending on the type of sensor input, the integral part of the controller might affect 
either stiffness or damping. If the sensor input is of type position, then the integral part will 
negatively affect the damping of the system. A too high integral gain for such a controller may 
lead to system instability and ultimately system failure. If the sensor input is of type velocity, 
then the integral part will affect the stiffness, whereas if the sensor input is of type acceleration 
or force, the integral part will affect the damping of the system. The derivative effect may 
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introduce artificial inertia to the system if the sensor input is of type velocity. If the sensor input 
is of type acceleration or force, the damping is equivalent to the time derivative of acceleration, 
also known as jerk or jolt. This has, however, not been covered in any extent in this work. 
 
 
Question 4: It may be desired to optimize a rotating machinery, and the clutch and actuator have 
a limited and nonlinear torque capacity. How can one model the boundary conditions when they 
are dependent on the reaction torque? When the applied torque exceeds the clutch and actuator 
capacity the machinery is suddenly free to rotate! 
 
Answer: By modeling the torque capacity as a limited controller, the coupling between the 
clutch and actuator may be kept intact as long as the reaction torque does not exceed the torque 
capacity. If or when the reaction torque exceeds the torque capacity, the coupling will then be 
broken and the rotational DOF will be free. Similarly as for the discrete elements asked for in 
Question 2, the perturbation technique can be utilized in order to detect changes in discontinuous 
elements. Additional boundary conditions may be applied as long as the reaction torque is within 
the limits of the torque capacity, and removed at the instant the torque capacity is exceeded.  
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5.  Conclusions 
 
In this thesis, a method for performing modal analyses of active flexible multibody systems 
based on the generalized eigenvalue problem has been presented. The overall aim of this work 
has been to make engineers working in a finite element environment able to accurately predict 
modal parameters of such systems. This work is aimed at covering the controller types most 
commonly used in the industry. Therefore, this work has been limited to single or multiple 
degrees of freedom flexible multibody systems with position, velocity or acceleration feedback 
single or multiple input and output PID controllers. The sensors and actuators to the controller 
can be either collocated or non-collocated, and the controller can contain both continuous and 
discontinuous elements. The presented method is intended to be implemented into a finite 
element software system. 
 
Two modal analysis versions have been proposed: one simplified and one complete. For the 
simplified version, the second-order n-dimensional differential equations form the basis for the 
method. The controller properties are incorporated into their respective system matrices, and the 
generalized eigenvalue problem is solved using the system’s mass and stiffness matrices. 
Damping, both passive and active, and steady-state error elimination are therefore not included 
in this version. This version derives the active system’s undamped eigenfrequencies and their 
corresponding real mode shapes. For the complete version, the second-order n-dimensional 
differential equations are transformed into a first-order 3n-dimensional form. As for the 
simplified version, the controller properties are added to their respective system matrices, but the 
generalized eigenvalue problem is solved using all of the system matrices. Hence, this version 
derives the active system’s complex eigenvalues and their corresponding complex mode shapes. 
Both versions of the presented method can handle collocation and/or non-collocation of sensors 
and actuators.  
 
Since the controller parameters may not be explicitly defined for the engineer working in a finite 
element environment, a method for deriving the controller gains for PID controllers using 
perturbations has been presented. By using the proposed perturbation technique, the controller 
properties can be estimated and added to their respective system matrices, making the 
perturbation technique a useful supplement for performing modal analyses of active flexible 
multibody systems in a finite element environment. It should be noted that the proposed method, 
particularly the perturbation technique, assumes a separation of the controller and the mechanical 
components, as shown in Figure 2. In control system synthesis, it is a common practice to 
include simplified mechanical properties such as inertias and spring properties into the controller 
model. Combining such controller models with a finite element model of the flexible multibody 
system will cause the properties of the active system to become severely altered in comparison to 
the actual physical or intended product, since some system properties will be counted for twice. 
 
So, what has been achieved by this Ph.D. project? Looking back at the Motivation section on 
page III, this project has its origin in a simulation inefficiency and inaccuracy encountered by 
Professor Terje Rølvåg during some of his previous work. The desire was to have an available 
tool that could eliminate the need for working with two separate system models for time domain 
simulations and modal analyses of active flexible multibody systems. Even though this tool is 
not yet completely implemented, this work represents a vital step on the road to providing a 
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system will cause the properties of the active system to become severely altered in comparison to 
the actual physical or intended product, since some system properties will be counted for twice. 
 
So, what has been achieved by this Ph.D. project? Looking back at the Motivation section on 
page III, this project has its origin in a simulation inefficiency and inaccuracy encountered by 
Professor Terje Rølvåg during some of his previous work. The desire was to have an available 
tool that could eliminate the need for working with two separate system models for time domain 
simulations and modal analyses of active flexible multibody systems. Even though this tool is 
not yet completely implemented, this work represents a vital step on the road to providing a 
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has been to make engineers working in a finite element environment able to accurately predict 
modal parameters of such systems. This work is aimed at covering the controller types most 
commonly used in the industry. Therefore, this work has been limited to single or multiple 
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single or multiple input and output PID controllers. The sensors and actuators to the controller 
can be either collocated or non-collocated, and the controller can contain both continuous and 
discontinuous elements. The presented method is intended to be implemented into a finite 
element software system. 
 
Two modal analysis versions have been proposed: one simplified and one complete. For the 
simplified version, the second-order n-dimensional differential equations form the basis for the 
method. The controller properties are incorporated into their respective system matrices, and the 
generalized eigenvalue problem is solved using the system’s mass and stiffness matrices. 
Damping, both passive and active, and steady-state error elimination are therefore not included 
in this version. This version derives the active system’s undamped eigenfrequencies and their 
corresponding real mode shapes. For the complete version, the second-order n-dimensional 
differential equations are transformed into a first-order 3n-dimensional form. As for the 
simplified version, the controller properties are added to their respective system matrices, but the 
generalized eigenvalue problem is solved using all of the system matrices. Hence, this version 
derives the active system’s complex eigenvalues and their corresponding complex mode shapes. 
Both versions of the presented method can handle collocation and/or non-collocation of sensors 
and actuators.  
 
Since the controller parameters may not be explicitly defined for the engineer working in a finite 
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countermeasure to this simulation inefficiency and inaccuracy. In this thesis, a method which 
eliminates the need for two separate system models for time domain simulations and modal 
analyses of active flexible multibody systems has been presented. Now, both passive and active 
system properties can be included, not only when performing time domain simulations, but also 
when performing modal analyses. By using the presented method, the work load required to 
perform simulations of active flexible multibody systems should be reduced by almost 50 %. In 
addition, the presented method should also yield more accurate eigenfrequency results than 
traditional methods, since both flexible multibody dynamics and controller effects are accounted 
for. Some of the results from this Ph.D. project have been highlighted through the practical 
engineering questions given in Sections 1.3. and 4.2. With this new knowledge at hand, these 
have now been answered.  
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6.  Future Work 
 
To move this project further, a handful of options are available. Even though the presented 
method is intended to be implemented into a finite element software system, this has not yet been 
fully accomplished. Implementation may reveal possible problems or shortcomings of the 
presented method that have not been considered by the author. In addition, the method and its 
algorithms have not been considered to be optimized with respect to computational effort. 
Optimizing the algorithms may greatly enhance the presented method with respect to for instance 
implementation, computational efficiency and ease of use. 
 
Deriving the modal parameters of the active system using the complete modal analysis version 
may yield complex eigenvectors. For the 2n state-space method presented by Foss [29], the 
information obtained by the 2n eigenvector matrix is explained. For the proposed 3n state-space 
method, no investigation has been made regarding the 3n eigenvector matrix. Nevertheless, it is 
likely that since one of the roots s in the cubic characteristic equation of Equation (76) is always 
real, its corresponding eigenvalues and eigenvectors can be ruled out of the equation. For the 2n 
state-space method, there is a correlation between the eigenvectors and the state vector x in 
Equation (10), as explained by Equation (7). This is also most likely the case for the 3n state-
space method. 
 
As stated in both the introduction and conclusion of this thesis, the work conducted herein has 
been limited to PID controllers, which are the most common type of controllers in use today. 
One possible extension of this project is to expand the theory to include other types of 
controllers. 
 
It would also be very interesting to see the method presented in this work applied in the design 
process of an actual product. Issues which could be clarified by performing such a task are for 
instance the actual increase in accuracy of the simulation results, how great the work load 
reduction due to the presented method will be and where the area of validity of the presented 
method lies. 
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Abstract 

Simulation and prediction of eigen-
frequencies and resonance problems for 
flexible structures is an important task in 
disciplines such as robotics and aerospace 
engineering. However, little effort seems to 
have been put into the problem dealing with 
modal analysis of mechatronic systems 
containing coupled flexible structures and 
control systems. When, for instance, 
designing a satellite tracking radar, it is 
crucial to be able to predict resonance in the 
radar system during normal working 
conditions. Resonance may lead to loss of 
satellite tracking accuracy and long term 
fatigue problems.  
 
This paper addresses the theory of solving 
the eigenvalue problem for a simple one-
degree-of-freedom system coupled with a 
single position feedback PD-controller. To 
test the theory, the nonlinear multi-
disciplinary simulation software FEDEM has 
been used. This paper is planned as the first 
in a series of papers addressing modal 
analysis of active flexible multibody systems.  
 
Keywords:  
Modal analysis, eigenvalue problem, flexible 
multibody system, PD-controller. 

1 Introduction 

To optimize performance and reduce development 
costs of mechatronic products, it is very important to 
use virtual testing. During the later years, mechanical 

products have become increasingly complex and 
mechanical functionality has gradually been replaced 
by cheaper and smarter control (active) systems. 
Typical examples are active / adaptive car 
suspensions, cranes, robots, machining centers, 
airplanes and satellites. 
 
Mechatronic systems are traditionally designed and 
tested in separate software systems since the 
underlying mathematics used to solve the subsystems 
are different. Control systems are often modeled as 1st 
order equation systems (state-space-formulation), 
while mechanical systems usually are modeled as 2nd 
order symmetrical equation systems. These 
subsystems are therefore traditionally solved 
decoupled by different equation solvers. This 
approach has several disadvantages: 
 
• The subsystems become sub-optimized because 

the couplings between them are limited. Control 
systems are often modeled as lumped springs and 
dampers in the mechanical subsystem and 
mechanical components are simplified as lumped 
masses, inertias and amplifiers in the control 
subsystem. The couplings between them are 
established through iterations and interchanges 
of force and response variables. The performance 
of the combined mechatronic system can thus not 
be simulated and optimized with a satisfactory 
accuracy and efficiency. 
 

• The mechanical system and the control system 
are mutually affected by each other. Changes in 
either of the systems will cause alterations in the 
other. This means that the two mathematical 
models must be updated separately, which is 
both time consuming and demands coordination 
and handling of different software versions 
between engineers from different departments. 
 

• A decoupled model representation does not 
support calculations of eigenfrequencies and 
mode shapes (modal analysis), which give 
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engineers vital information about the overall 
performance of a mechatronic system. 

 
A literature survey performed by the authors indicated 
that little effort has been put into the problem dealing 
with modal analysis of mechatronic systems 
containing flexible structures, like robots, cranes, 
suspension and aerospace systems. However, the topic 
has been discussed in some papers and reports. In [1] 
it is shown that when combining passive mechanical 
springs and active piezoelectric springs, the total 
stiffness of the system is a sum of the stiffness from 
each of the springs, as can be expected based on basic 
theory of dynamics. In [2] it is shown that actuators 
can be controlled to act like virtual passive mechanical 
spring-damper elements using a velocity feedback PI-
controller. In [3] it is shown that in contact motion 
force control, both the gain from a controller and the 
stiffness of the structure influences the natural 
frequency of the system. In [4] it is mentioned that a 
position feedback PD-controller is physically 
equivalent to a virtual spring and damper whose 
reference position is moving with a desired velocity. 
 
This paper focuses on eigenfrequency analysis for a 
mechanical system with one degree of freedom, 
combined with a position feedback PD-controller. 
First, a basic description of the PD-controller is given. 
Next, different variants of the one-degree-of-freedom 
system combining the PD-controller and the 
mechanical system are described, and an equation for 
the eigenfrequency of these systems is given. Finally, 
results derived from the eigenfrequency equation for a 
total of six different scenarios are compared to 
experimental tests performed in the nonlinear multi-
disciplinary simulation software FEDEM [5].  

2 The PD-controller 

Fig. 1 shows a simple block diagram used for 
describing a single-input single-output (SISO) feed-
back control system: 

 
Fig. 1 Block diagram for a single-input single output 

(SISO) feedback control system. 

The whole idea behind a control system is to 
manipulate a physical process to behave in a certain 
desired way.  is the reference value for a parameter 
in the physical process and represents how this 
parameter should behave;  is the measured value for 
the same parameter and represents how this parameter 
actually is behaving. In a steady-state process, the aim 
is to keep the process as stable as possible, 
suppressing the disturbances  acting on the process 
as effectively as possible.  

As shown in the block diagram, the difference  
between the reference value  and a measured value 

 is given by: 
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 is somehow manipulated in the controller, and out 
comes a controller value . This controller value is 
added with the disturbance  on the physical process. 
When combined,  and  make up the input value for 
the parameter in the physical process. The output 
value from the physical process is the measured value 

, which is then compared to the reference value , 
and the loop repeats itself.  
 
The function of the controller is to manipulate the 
physical process so that it behaves in the most 
satisfactory way. One common approach to achieving 
this goal is to construct the controller with a 
combination of a proportional part (P), an integral part 
(I) and a derivative part (D). Based on the controller’s 
incoming value , the outgoing controller value 

 for each of the three parts is, respectively: 
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where ,  and  are the proportional, integral and 
derivative gains, respectively. 
 
If combined, the different parts give the following 
equation for the outgoing controller value : 
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they will only have one eigenfrequency with one 
corresponding mode shape (oscillation).  

3.1 Passive system 
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parts only. 
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However, when observing the active system, it is 
obvious that the system does have an eigenfrequency. 
A simple active system, in accordance to Fig. 4, was 
created and dynamically simulated in FEDEM, with 
no initial equilibrium iterations. The following figure 
illustrates the position of the mass  in the active 
system when under influence of a constant force  
(equaling gravity). The mass was set to 1 kg and, for 
simplicity, the force was set to 10 N.  
 
For the PD-controller, the proportional gain  was 
set to 100, the derivative gain  to 0 and the 
reference value  representing the desired position of 
the mass to 0. 
 

 
Fig. 5 Position of the mass in the active system with 

Kp = 100 and Kd = 0. 

As Fig. 5 shows, the system clearly oscillates, even 
though the reference value  is 0. This implies that 
the system does possess an eigenfrequency. 

3.3 Coupled system 

If the passive system in Fig. 3 is combined with the 
active system in Fig. 4 they form a coupled system, as 
shown in Fig. 6: 
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The dynamic equation of motion for the coupled 
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When calculating the eigenvalue of the system, the 
external force  and the reference position  is set 
to zero, giving the following equation: 
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The undamped and damped eigenfrequencies for the 
coupled system now becomes, respectively: 
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where the damping ratio  now has become:  
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Eq. (26) and Eq. (28) correspond with formulas for 
effective natural frequency and effective damping 
ratio given in [6]. 

3.4 Experimental results 

To verify the theoretical results derived above, a 
simple test was created. The objective of the test was 
to see how the mass-spring-damper system and the 
PD-controller actually acted on the eigenfrequency of 
the coupled system. The testing environment was 
created in the nonlinear multidisciplinary simulation 
software FEDEM, rather than using actual physical 
equipment. A total of 6 different testing scenarios 
were created:  
 
Undamped 
I) Only a spring connecting the mass to the 

ground. 
II) Only a P-controller connecting the mass to the 

ground. 
III) A spring and a P-controller connecting the 

mass to the ground. 
 
Damped 
IV) A spring-damper system and P-controller 

connecting the mass to the ground. 
V) A spring and a PD-controller connecting the 

mass to the ground. 
VI) A spring-damper system and a PD-controller 

connecting the mass to the ground. 
 
An FE-model consisting of the coupled system shown 
in Fig. 6 was created in FEDEM. The external force  
was set to 10 N and the reference position  to 0. 
The mass  was set to 1 kg, the spring stiffness  to 
100 N/m, the damping coefficient  to 7.2 Ns/m, the 

proportional gain  to 44 N/m and the derivative gain 
 to 4.8 Ns/m.  and , and also  and , have 

deliberately been given different values, such that 
differences are easier to distinguish. With respect to 
Eq. (26), Eq. (27) and Eq. (28), this should give the 
eigenfrequencies listed in Tab. 1 (calculations are 
shown in the appendix). 
 
Fig. 8 and Fig. 9 show one graph from each of the six 
scenarios. The graphs picture the velocity of the mass 

 versus the time. The reason for using the velocity of 
the mass rather than its position is that it makes it 
easier to see the period of the oscillation. One period 
is then where the velocity is zero for the second time. 
Since FEDEM uses a numerical algorithm to solve the 
dynamic equation of motion, the results are only 
accurate to a certain number of decimals. To balance 
between accuracy of results and simulation running 
time, the time increment in the simulations was set to 
0.0005 seconds. 

4 Discussion  

The results presented in Fig. 8 and Fig. 9 show that 
the eigenfrequencies from the simulations corresponds 
perfectly to the pre-calculated eigenfrequencies for the 
six different scenarios. As these results imply, the 
proportional gain  and derivative gain  from the 
PD-controller influences the stiffness and damping 
properties of the mechanical system, respectively. So, 
when performing an eigenvalue analysis for a 
mechanism coupled with a PD-controller, the 
proportional and derivative gain from the PD-
controller should somehow be added to the stiffness 
and damping properties of the system. One way of 
doing this is to add a virtual spring with spring 
stiffness  corresponding to  and a virtual damper 
with damping coefficient  corresponding to  to 
the mechanical model. Another approach is to 
establish and solve the eigenvalues using a set of 
coupled equations representing the mechatronic 
system (mechanical and control system). This 
approach will be developed and reported in later 
papers, with a mission to solve eigenfrequencies and 
mode shapes for active flexible systems. 

5 Conclusion 

In this paper, a brief study of the eigenfrequencies of 
an active system containing a mass-spring-damper 
system and a position feedback PD-controller has 
been conducted. Theory for modal analysis of such a 
system has been derived and presented. The theory has 
been verified by experiments conducted in the 
nonlinear multidisciplinary simulation software 
FEDEM, showing that the derived theory concur with 
the experimental results. 
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1. Introduction

Modal analysis and dynamic simulation of active mechanisms
are a multidisciplinary challenge. The dynamic performance of
such products is strongly dependent on an optimal interaction be-
tween the controllers and mechanical components. An important
tool in the optimization of these products is modal analysis, which
predicts natural frequencies, mode shapes and damping ratios, of-
ten referred to as modal parameters, for the active system.

The challenge is to include all properties in a multidisciplinary
system model that is appropriate for modal analysis. One obstacle
is that the basic formulations and solvers for control systems and
mechanical systems are different. Control systems are often mod-
eled as 1st order equation systems (state-space-formulation)
ð _x ¼ Axþ Bu; y ¼ Cxþ DuÞ, see for example [1–3], while mechan-
ical systems are usually modeled as 2nd order symmetrical
equation systems ðM€rþ C _rþ Kr ¼ FÞ, see for example [4–7]. In
addition, for mechanisms involving large displacements and other
nonlinearities, the modal parameters are time dependent due to
time varying mass, damping and stiffness matrices. To the best of
the authors’ knowledge, a closed-loop modal analysis is not imple-
mented in any software package today. However, modal analysis of
active mechanisms can be approached from two different disci-
pline strategies.

Control system software, such as MATLAB and Simulink, usually
support both controller design and control system simulation. The
mechanical systems can be modeled with rigid bodies, lumped
masses, inertias, springs and dampers or analytical equations.
Using this approach, the closed-loop eigenvalues and eigenvectors

can be predicted as shown in for example [8–10]. From a mechan-
ical engineers point of view, the flexible body dynamics are by this
approach predicted by very simplified models. This may work well
if the dynamics due to flexible bodies can be neglected. If not, con-
trol and observation spillover can cause a reduction in dynamic
performance and may lead to system instability. Unmodeled flexi-
ble body dynamics also make modal analysis and controller syn-
thesis unreliable. Thus, modal analysis should be performed in
finite element (FE) based software systems.

The finite element method (FEM) is one of the best tools for per-
forming modal analysis of flexible structures due to its multidisci-
plinary modeling capabilities and ease of use. FE software can also
be interfaced with control system software for dynamic time sim-
ulation analyses of active systems [7]. Feedback type controllers
will typically calculate loads applied to the FE structure based on
feedback measurements of the system. For that reason, the control-
ler is comparable to a ‘‘black box’’ or unknown function, as seen
from the mechanical engineer’s point of view. This approach works
well in time domain analyses when the controller drives the FE
model with applied loads based on the given controller algorithms.
Even so, a major problem occurs in modal analyses of the closed-
loop system. In free vibration analyses, all loads are set to zero,
which decouples the controller and mechanical model. As a result,
the FE model becomes singular in all controlled FE degrees of free-
dom (DOFs).

Probably the most common approach by mechanical engineers
when performing modal analyses of active mechanisms is to intro-
duce additional boundary conditions for the system DOFs affected
by controllers, thereby omitting the flexibility in the different
joints of the mechanism by making the joints rigid at relevant posi-
tions. The greatest flaw in this approach is that the eigenfrequen-
cies and eigenmodes for an active mechanism are not the same
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approach predicted by very simplified models. This may work well
if the dynamics due to flexible bodies can be neglected. If not, con-
trol and observation spillover can cause a reduction in dynamic
performance and may lead to system instability. Unmodeled flexi-
ble body dynamics also make modal analysis and controller syn-
thesis unreliable. Thus, modal analysis should be performed in
finite element (FE) based software systems.

The finite element method (FEM) is one of the best tools for per-
forming modal analysis of flexible structures due to its multidisci-
plinary modeling capabilities and ease of use. FE software can also
be interfaced with control system software for dynamic time sim-
ulation analyses of active systems [7]. Feedback type controllers
will typically calculate loads applied to the FE structure based on
feedback measurements of the system. For that reason, the control-
ler is comparable to a ‘‘black box’’ or unknown function, as seen
from the mechanical engineer’s point of view. This approach works
well in time domain analyses when the controller drives the FE
model with applied loads based on the given controller algorithms.
Even so, a major problem occurs in modal analyses of the closed-
loop system. In free vibration analyses, all loads are set to zero,
which decouples the controller and mechanical model. As a result,
the FE model becomes singular in all controlled FE degrees of free-
dom (DOFs).

Probably the most common approach by mechanical engineers
when performing modal analyses of active mechanisms is to intro-
duce additional boundary conditions for the system DOFs affected
by controllers, thereby omitting the flexibility in the different
joints of the mechanism by making the joints rigid at relevant posi-
tions. The greatest flaw in this approach is that the eigenfrequen-
cies and eigenmodes for an active mechanism are not the same
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as for a purely mechanical system, as shown in for example
[2,5,11]. Several other sources exist that support this statement,
either directly or indirectly, see for example [12–18].

Another common, though inaccurate, solution to this problem is
to represent the controller effects by virtual springs, dampers and
inertias in the mechanical model [11]. For example, Sharon et al.
[12] have stated that: ‘‘If an ideal actuator and corresponding ideal
sensor are acting on the same point (collocated control) in a purely
inertial system, then: (1) Negative position feedback is equivalent
to a spring action. (2) Negative velocity feedback is equivalent to a
damping action. (3) Negative force feedback is equivalent to
decreasing inertia. (4) Positive force feedback is equivalent to
increasing inertia.’’ Bernzen [14] has demonstrated that actuators
can be controlled to act like virtual passive mechanical spring-
damper elements using a velocity feedback PI controller. Ryu et
al. [16] mentioned that a position feedback PD controller is physi-
cally equivalent to a virtual spring and damper whose reference
position is moving at a desired velocity. Nonetheless, this approach
is only applicable for simple control systems in which the mechan-
ical engineer knows how to transform the controller into an equiv-
alent mechanical model. The engineer also has to update two
system models: one for modal analysis and one for time domain
dynamic simulation.

This paper reveals how a controller influences mechanical sys-
tem properties based on the type of controller and the type of feed-
back. The results indicate how a finite element model of an active
mechanism can be modified by equivalent mechanical properties
that represent the controller. The objective is to improve the accu-
racy of closed-loop modal analyses of flexible mechanisms driven
by controllers. First, a basic description of the interaction between
a single-input single-output (SISO) controller and a single degree of
freedom (SDOF) mechanical system is given. Next, the interaction
theory is expanded to include multiple-input multiple-output
(MIMO) controllers and multiple degrees of freedom (MDOF)
mechanical systems, putting an emphasis on the gradients be-
tween actuator exerted forces and sensor readings. The controllers
are limited to be of type proportional-integral-derivative (PID),
which are the most common type of controllers in use today
[19,20]. Finally, modal analyses are performed on both a two-joint
mechanism and a satellite tracking antenna, illustrating the limita-
tions by the current methods and how the derived theory can be
used to improve modal analyses. In both cases, the results of the
modal analyses are compared to eigenfrequency estimations of
the systems derived using the fast Fourier transform (FFT) algo-
rithm [21] on time series of various system responses, a method
that is frequently used in experimental modal analysis, see for
example [22–25]. This latter method is here used only as a refer-
ence, and is in itself an area of ongoing research. For the sake of
convenience, all simulations and experiments in this paper are per-
formed on virtual models in FEDEM1; however, the theory derived
in this paper is not dependent on any particular software system.

2. Interaction between mechanical systems and controllers

2.1. Single degree of freedom (SDOF) mechanical system with single-
input single-output (SISO) controller

Fig. 1 shows a simple block diagram used for describing a SISO
feedback control system.

In Fig. 1, y0 is the reference variable, y is the measured variable
and e is the difference between y0 and y. u is the controller output
and FCtrl is a force from the controller exerted by an actuator. x is
the state variable from the physical process, either position r,
velocity _r or acceleration €r, while v is the disturbance on the phys-
ical process.

One view of the control system is to isolate the control elements
from the physical process. The control elements then principally
contain three parts: a sensor, an actuator and a controller contain-
ing the various controller elements, as shown in Fig. 2.

The sensor and actuator are the interfaces to the mechanical
system; the sensor is the input to the controller and the actuator
is the output from the controller. Usually, the sensor measures
state variables, that is, position, velocity or acceleration, in the
mechanism’s relevant DOFs. The actuator can be simplified to a
set of forces acting on the mechanism. The equation of motion
for an SDOF mechanical system with a SISO controller can then
be given as:

m€rðtÞ þ c _rðtÞ þ krðtÞ ¼ FAppðtÞ þ FCtrlðtÞ ð1Þ
where m is the mass, c is the damping and k is the stiffness. r is the
displacement of the massmwith respect to time; _r and €r are the 1st
and 2nd time derivatives of r, respectively, that is, velocity and
acceleration of the mass m. FApp is the applied mechanical force
and FCtrl is the force from the controller. This is in accordance with
equations found in [10].

For a feedback PID-type controller, the controller output u is
given by:

uPIDðtÞ ¼ KpeðtÞ þ Ki

Z
eðtÞdt þ Kd

d
dt

eðtÞ ð2Þ

where Kp is the proportional gain, Kd is the derivative gain and Ki is
the integral gain from the controller. It is implied that the parame-
ters m, c, k, Kp, Ki and Kd are positive. As shown in Fig. 2, the effects
by the control elements on the mechanical system can be given as:

@FCtrl

@x
¼ @FCtrl

@u
@u
@y

@y
@x

or dFCtrl ¼ GActGCtrlGSens dx ð3Þ

where GAct is the actuator gradient, GCtrl is the controller gradient
and GSens is the sensor gradient.

Combining Eqs. (1) and (3) yields an equation of motion for the
free vibration of a SDOF mechanical system with a SISO controller
as:

m€rðtÞ þ c _rðtÞ þ krðtÞ þ GActGCtrlGSensxðtÞ ¼ 0 ð4Þ

For a position feedback controller, x(t) = r(t). Combining Eqs. (2) and
(4), and setting GAct and GSens to 1, yields an equation of motion for
the free vibration of a SDOF mechanical system with a position
feedback PID controller as:

Fig. 1. Block diagram for a SISO feedback control system.

1 FEDEM (Finite Element in Dynamics of Elastic Mechanisms) simulation software
is a multibody dynamics package distributed by Fedem Technology AS. It is based on
the finite element method and uses model reduction techniques to effectively
perform nonlinear time domain dynamic simulations of active flexible multibody
systems [7,26].
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Z
eðtÞdt þ Kd

d
dt

eðtÞ ð2Þ

where Kp is the proportional gain, Kd is the derivative gain and Ki is
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@FCtrl

@x
¼ @FCtrl

@u
@u
@y

@y
@x

or dFCtrl ¼ GActGCtrlGSens dx ð3Þ

where GAct is the actuator gradient, GCtrl is the controller gradient
and GSens is the sensor gradient.

Combining Eqs. (1) and (3) yields an equation of motion for the
free vibration of a SDOF mechanical system with a SISO controller
as:

m€rðtÞ þ c _rðtÞ þ krðtÞ þ GActGCtrlGSensxðtÞ ¼ 0 ð4Þ

For a position feedback controller, x(t) = r(t). Combining Eqs. (2) and
(4), and setting GAct and GSens to 1, yields an equation of motion for
the free vibration of a SDOF mechanical system with a position
feedback PID controller as:

Fig. 1. Block diagram for a SISO feedback control system.

1 FEDEM (Finite Element in Dynamics of Elastic Mechanisms) simulation software
is a multibody dynamics package distributed by Fedem Technology AS. It is based on
the finite element method and uses model reduction techniques to effectively
perform nonlinear time domain dynamic simulations of active flexible multibody
systems [7,26].
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m€rðtÞ þ ðc þ KdÞ_rðtÞ þ ðkþ KpÞrðtÞ þ Ki

Z
rðtÞdt ¼ 0 ð5Þ

Assuming a solution of the form r(t) = est for Eq. (5) gives a charac-
teristic equation:

ms2 þ ðc þ KdÞsþ ðkþ KpÞ þ Kis�1 ¼ 0 ð6Þ
For a velocity feedback controller, xðtÞ ¼ _rðtÞ, thus yielding the
equation of motion for the free vibration and the characteristic
equation for a SDOF mechanical system with a velocity feedback
PID controller as Eqs. (7) and (8), respectively:

ðmþ KdÞ€rðtÞ þ ðc þ KpÞ_rðtÞ þ ðkþ KiÞrðtÞ ¼ 0 ð7Þ
ðmþ KdÞs2 þ ðc þ KpÞsþ ðkþ KiÞ ¼ 0 ð8Þ
Similarly, for an acceleration feedback controller, xðtÞ ¼ €rðtÞ, the
equation of motion for the free vibration and characteristic equa-
tion for an SDOF mechanical system with an acceleration feedback
PID controller are given by Eqs. (9) and (10), respectively:

Kd r
vðtÞ þ ðmþ KpÞ€rðtÞ þ ðc þ KiÞ_rðtÞ þ krðtÞ ¼ 0 ð9Þ

Kds3 þ ðmþ KpÞs2 þ ðc þ KiÞsþ k ¼ 0 ð10Þ
Solving Eqs. (6), (8) or Eq. (10) with respect to s gives s as either a
real or complex number. As shown in [5], for a purely mechanical
system, s can be written as:

s ¼ �fxn � ixn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
¼ �fxn � ixd ð11Þ

where xn is the undamped natural frequency, xd is the damped
natural frequency and f is the damping ratio. The imaginary part

is the frequency of oscillation, and the real part is the constant in
the exponent of the oscillation amplitude envelope. Thus, if the con-
troller gains Kp, Ki and Kd are known, they can be represented by
equivalent mechanical properties in the system equation, thereby
taking their effect on the modal parameters of the system into con-
sideration when solving the eigenvalue problem for the active sys-
tem. However, their relation to the sensor input has to be taken into
consideration. As shown by Eqs. (6), (8), and (10), if the sensor mea-
sures position, Kp affects the stiffness of the system, whereas Kd and
Ki affect the damping of the system. If the sensor measures velocity,
Kp affects the damping of the system, Kd affects the inertia and Ki the
stiffness of the system. If the sensor measures acceleration, Kp

should affect the inertia and Ki the damping of the system. In con-
trast, Kd would be proportional to the derivative of the acceleration
with respect to time, r

v
, often referred to as jerk or jolt. This pattern

is illustrated in Fig. 3 and summarized in Tables 1–3.
If the real part of the complex number s is positive, the oscilla-

tion is growing, which means that the system is unstable. This can
occur for both the position and acceleration feedback PID control-
lers because of the Ki and Kd terms, respectively.

2.2. Multiple degrees of freedom (MDOF) mechanical system with
multiple-input multiple-output (MIMO) controller

As for the SDOF SISO system gradients in Eq. (3), the gradients
for a MDOF MIMO system can be written as:

dFCtrli ¼
@FCtrli

@uj

@uj

@yk

@yk
@xl

dxl ¼ GActijGCtrljkGSenskl dxl ð12Þ

or, on matrix form as:

dFCtrl ¼ @FCtrl

@u
@u
@y

@y
@x

dx ¼ GActGCtrlGSens dx ð13Þ

Eq. (4) describes the equation of motion for the free vibration of a
SDOF mechanical system with a SISO controller. Similarly, the equa-
tion for the free vibration of a mechatronic system with n degrees of
freedoms can be written as:

Fig. 2. Control elements.

Fig. 3. Pattern for the addition of controller gains into the system equation based on type of sensor input.

Table 1
Control system with position feedback PID controller.

Position feedback
Equations:
m€rðtÞ þ ðc þ KdÞ_rðtÞ þ ðkþ KpÞrðtÞ þ Ki

R
rðtÞdt ¼ 0

ms2 + (c + Kd)s + (k + Kp) + Kis
�1 = 0

Controller gain contribution on mechanical system
An increase in Kp will increase the system stiffness
An increase in Ki will decrease the system damping
An increase in Kd will increase the system damping
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M€rðtÞ þ C _rðtÞ þ KrðtÞ þ GActGCtrlGSensxðtÞ ¼ 0 ð14Þ
where M is the n � n mass matrix, C is the n � n damping matrix, K
is the n � n stiffness matrix and r, _r and €r are the n � 1 position,
velocity and acceleration vectors, respectively. x is a vector of the
system state variables, that is, position, velocity and acceleration.
GAct, GCtrl and GSens are the actuator gradient, controller gradient
and sensor gradient matrices, respectively.

2.2.1. Actuator gradient matrix GAct

The actuator gradients describe the relationship between the
controller forces FCtrl exerted by the actuator and the output signals
u from the controller. The gradients of the controller force FCtrli

with respect to controller output uj can be written as:

dFCtrl ¼ GAct du or dFCtrli ¼
@FCtrli

@uj
duj ¼ GActij duj ð15Þ

Matrix GAct has the dimensions nFCtrl � nu where nFCtrl is the number
of controller forces and nu is the number of controller outputs.

2.2.2. Controller gradient matrix GCtrl

The controller gradients describe the relationship between the
input variables y and output variables u both to and from the con-
troller, respectively; that is, the various controller gains. The gradi-
ents of the controller output ui with respect to the controller input
yj can be written as:

du ¼ GCtrl dy or dui ¼ @ui

@yj
dyj ¼ GCtrlij dyj ð16Þ

Matrix GCtrl has the dimensions nu � ny where nu is the number of
controller outputs and ny is the number of controller inputs.

2.2.3. Sensor gradient matrix GSens

The sensor gradients describe the relationship between the con-
troller input variables y and the system state variables r; _r and €r
represented by the vector x. x is given as:

x ¼
r
_r
€r

2
64

3
75 ð17Þ

Vector x has the dimensions 3nr � 1 where nr is the number of all
system DOFs. Each sensor is limited to measure only one state var-
iable in only one single system DOF or between two system DOFs.
The gradients of the controller input yi with respect to system
DOF and state variable xj can be written as:

dy ¼ GSens dx or dyi ¼
@yi
@xj

dxj ¼ GSensij dxj ð18Þ

Matrix GSens has the dimensions ny � 3nr where ny is the number of
controller inputs and nr is the number of all system DOFs.

The matrix product G of the gradient matrices GAct, GCtrl and
GSens has the dimensions nFCtrl � 3nr . If G is to be used with M, C
and K, it should be of the same dimensions, that is, nr � nr. This
can be done by pre-multiplying G with the topology matrix relat-
ing each controller force FCtrli with its respective system DOFs
and then splitting the new nr � 3nr matrix product into 3 nr � nr
matrices, GPos, GVel and GAcc, one for each state variable r, _r and €r.
These new matrices GPos, GVel and GAcc can then be added to their
respective system matrix, yielding the following equation system
for the free vibration of a controlled mechanism:

ðMþ GAccÞ€rðtÞ þ ðCþ GVelÞ _rðtÞ þ ðKþ GPosÞrðtÞ ¼ 0 ð19Þ

Table 2
Control system with velocity feedback PID controller.

Velocity feedback
Equations:
ðmþ KdÞ€rðtÞ þ ðc þ KpÞ_rðtÞ þ ðkþ KiÞrðtÞ ¼ 0
(m + Kd)s2 + (c + Kp)s + (k + Ki) = 0

Controller gain contribution on mechanical system
An increase in Kp will increase the system damping
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Usually, M, C and K are symmetrical matrices. If the control sys-
tem’s sensors and actuators are collocated, meaning that they are
sharing the same system DOFs, GPos, GVel and GAcc will also be sym-
metrical (diagonal). If the sensors and actuators are non-collocated,
GPos, GVel and GAcc will be unsymmetrical. For symmetrical matrices,
standard FE solvers can be used, while for unsymmetrical matrices,
unsymmetrical matrix solvers need to be used. This work is limited
to dealing with the former situation, that is, collocated sensors and
actuators.

For lightly damped systems, the damped and undamped natural
frequencies are approximately the same. This also holds true for
systems with a relatively slow steady state error elimination, that
is, a relatively low effect by the integral gain Ki for position feed-
back controllers. With this type of case, it is sufficient to solve
the eigenvalue problem for the undamped active system. If the sys-
tem is heavily damped, whether due to mechanical or controller
parameters, the actual and undamped eigenfrequencies are not
the same, as shown in Eq. (11). In such a case, the eigenvalue prob-
lem for the damped active system should be solved. If the steady
state error elimination of the system is relatively quick, which
means a relatively high effect by the integral gain Ki for position
feedback controllers, the system can become unstable. This would
be similar to experiencing an inverted or negative damping since
the constant in the exponent of the oscillation amplitude envelope
would be positive, thus yielding a growing oscillation. As for heav-
ily damped systems, the actual and undamped eigenfrequencies in
highly unstable systems are not the same. In such a case, the eigen-
value problem for the unstable active system should be solved.
This work is limited to the former situation, that is, lightly damped
systems with relatively slow steady state error elimination.

The generalized eigenvalue problem for the symmetrical un-
damped case can then be given as:

ðKþ GPosÞU ¼ ðMþ GAccÞUK ð20Þ
where K is a diagonal matrix of the generalized eigenvalues and U
is a full matrix whose columns are the corresponding eigenvectors.

3. Numerical examples

To verify the theory derived in the previous paragraphs and
illustrate the difference in accuracy of the various modal analysis
approaches mentioned in the introduction, two different examples
were chosen: one simple and one complex. The simple example
consisted of a two-joint mechanism, and the complex example
was a satellite tracking antenna. The intention behind the former
example was to have a simple and verifiable model for verification
of the derived theory, as well as to highlight some of the limita-
tions in the different modal analysis approaches mentioned in
the introduction. The objective of the latter example was to further
illustrate some of the limitations in the various modal analysis ap-
proaches. Since the former example is fairly simple, its utilitarian
value may be lost, so the latter example was chosen to compensate
for this. The antenna in the latter example was intended as an illus-
trative example only; therefore, it is deliberately not an exact rep-
lication of a real physical product. Because of this, the parameter
values used for the antenna are not of importance in this context.

3.1. Modal analysis of a two-joint mechanism

Fig. 4 shows a schematic illustration of a two-joint mechanism.
The two-joint mechanism consisted of two highly flexible beams
and two rotational joints, each governed by an angular position
feedback PD controller. The two joint DOFs were angular rotations
about the global y-axis, and were named h1 and h2, respectively.
The beams were created by using aluminum properties with a den-

sity of q = 2794 kg/m3 and a Young’s modulus of E = 65.7 � 109 Pa.
The dimensions of the beams were 18 mm in width, 0.5 mm in
thickness and 150 mm in length. An FE model was created for each
beam using 34 4-node quadrilateral 2D elements. The entire mech-
anism was assembled in FEDEM, as shown in Fig. 5.

Since a position feedback PD controller is physically equivalent
to a virtual spring and damper whose reference position is moving
with a desired velocity, as mentioned in [16], the controllers were
represented for simplicity by virtual springs and dampers in the
mechanism joints. The values for each virtual spring and damper
in the joint DOFs were, respectively, h1 : kh1 ¼ 0:1 Nm=rad; ch1 ¼
0:001 Nms=rad; h2 : kh2 ¼ 0:1 Nm=rad; ch2 ¼ 0 Nms=rad.

To perform modal analyses of the mechanism, three different
approaches were used:

1. Rigid body mechanismwith controller effects: Controller effects
were included, but the bodies of the mechanism were assumed
to be rigid, leaving only the two joint DOFs h1 and h2 remaining
(typical control theory approach).

2. Flexible body mechanism with rigid joint constraints: The flex-
ibility of the bodies of the mechanism were included, but the
controllers were replaced by rigid boundary conditions, mean-
ing that Dh1 and Dh2 are set to zero, leaving only structural
DOFs represented by FE models of the various bodies remaining
(typical finite element analysis (FEA) practice).

3. Flexible body mechanism with controller effects: Both flexibil-
ity of the mechanism bodies and the controller effects were
included, thereby ensuring that all system DOFs were kept
intact (new multidisciplinary approach). Eq. (20) formed the
basis for this modal analysis approach.

Fig. 4. Two-joint mechanism.

Fig. 5. FE model of the two-joint mechanism.
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frequencies are approximately the same. This also holds true for
systems with a relatively slow steady state error elimination, that
is, a relatively low effect by the integral gain Ki for position feed-
back controllers. With this type of case, it is sufficient to solve
the eigenvalue problem for the undamped active system. If the sys-
tem is heavily damped, whether due to mechanical or controller
parameters, the actual and undamped eigenfrequencies are not
the same, as shown in Eq. (11). In such a case, the eigenvalue prob-
lem for the damped active system should be solved. If the steady
state error elimination of the system is relatively quick, which
means a relatively high effect by the integral gain Ki for position
feedback controllers, the system can become unstable. This would
be similar to experiencing an inverted or negative damping since
the constant in the exponent of the oscillation amplitude envelope
would be positive, thus yielding a growing oscillation. As for heav-
ily damped systems, the actual and undamped eigenfrequencies in
highly unstable systems are not the same. In such a case, the eigen-
value problem for the unstable active system should be solved.
This work is limited to the former situation, that is, lightly damped
systems with relatively slow steady state error elimination.

The generalized eigenvalue problem for the symmetrical un-
damped case can then be given as:

ðKþ GPosÞU ¼ ðMþ GAccÞUK ð20Þ
where K is a diagonal matrix of the generalized eigenvalues and U
is a full matrix whose columns are the corresponding eigenvectors.

3. Numerical examples

To verify the theory derived in the previous paragraphs and
illustrate the difference in accuracy of the various modal analysis
approaches mentioned in the introduction, two different examples
were chosen: one simple and one complex. The simple example
consisted of a two-joint mechanism, and the complex example
was a satellite tracking antenna. The intention behind the former
example was to have a simple and verifiable model for verification
of the derived theory, as well as to highlight some of the limita-
tions in the different modal analysis approaches mentioned in
the introduction. The objective of the latter example was to further
illustrate some of the limitations in the various modal analysis ap-
proaches. Since the former example is fairly simple, its utilitarian
value may be lost, so the latter example was chosen to compensate
for this. The antenna in the latter example was intended as an illus-
trative example only; therefore, it is deliberately not an exact rep-
lication of a real physical product. Because of this, the parameter
values used for the antenna are not of importance in this context.

3.1. Modal analysis of a two-joint mechanism

Fig. 4 shows a schematic illustration of a two-joint mechanism.
The two-joint mechanism consisted of two highly flexible beams
and two rotational joints, each governed by an angular position
feedback PD controller. The two joint DOFs were angular rotations
about the global y-axis, and were named h1 and h2, respectively.
The beams were created by using aluminum properties with a den-

sity of q = 2794 kg/m3 and a Young’s modulus of E = 65.7 � 109 Pa.
The dimensions of the beams were 18 mm in width, 0.5 mm in
thickness and 150 mm in length. An FE model was created for each
beam using 34 4-node quadrilateral 2D elements. The entire mech-
anism was assembled in FEDEM, as shown in Fig. 5.

Since a position feedback PD controller is physically equivalent
to a virtual spring and damper whose reference position is moving
with a desired velocity, as mentioned in [16], the controllers were
represented for simplicity by virtual springs and dampers in the
mechanism joints. The values for each virtual spring and damper
in the joint DOFs were, respectively, h1 : kh1 ¼ 0:1 Nm=rad; ch1 ¼
0:001 Nms=rad; h2 : kh2 ¼ 0:1 Nm=rad; ch2 ¼ 0 Nms=rad.

To perform modal analyses of the mechanism, three different
approaches were used:

1. Rigid body mechanismwith controller effects: Controller effects
were included, but the bodies of the mechanism were assumed
to be rigid, leaving only the two joint DOFs h1 and h2 remaining
(typical control theory approach).

2. Flexible body mechanism with rigid joint constraints: The flex-
ibility of the bodies of the mechanism were included, but the
controllers were replaced by rigid boundary conditions, mean-
ing that Dh1 and Dh2 are set to zero, leaving only structural
DOFs represented by FE models of the various bodies remaining
(typical finite element analysis (FEA) practice).

3. Flexible body mechanism with controller effects: Both flexibil-
ity of the mechanism bodies and the controller effects were
included, thereby ensuring that all system DOFs were kept
intact (new multidisciplinary approach). Eq. (20) formed the
basis for this modal analysis approach.

Fig. 4. Two-joint mechanism.

Fig. 5. FE model of the two-joint mechanism.
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Because of the rigid body simplification made by the control theory
approach, only the two eigenfrequencies involving angular rota-
tions in the joint DOFs h1 and h2 can be retrieved for this approach;
consequently, all work in this paper involving the two-joint mech-
anism is limited to these two eigenfrequencies and their corre-
sponding mode shapes.

Since all simulations and modal analyses of the two-joint mech-
anism were performed in FEDEM, which is a flexible multibody
simulation software, the flexible bodies had to be emulated as rigid
for the control theory approach. This was achieved by scaling the
stiffness of the structural parts by a factor of 100, thus emulating
the structures as rigid.

To verify the accuracy of the modal analyses, a time simulation
response of the mechanism when suddenly subjected to gravity
was analyzed using the fast Fourier transform (FFT) algorithm.
Initial modal analyses of the mechanism revealed that both eigen-
modes of interest were observable at h2. As a result, the time re-
sponse of the angular rotations about h2 was used. The time
simulation ran for 10 s with a time increment of 0.001 s, giving a
frequency sampling rate fs of 1000 Hz and a frequency resolution
of approximately 0.1 Hz. No windowing functions were used for
the FFT, and thoughts regarding this choice are made in Sec-
tion 3.1.1. A plot of the FFT is shown in Fig. 6.

A comparison of the estimated eigenfrequencies derived by the
different modal analysis approaches and the estimated eigenfre-
quencies derived from the FFT are shown in Table 4. The mode
shapes of interest for the various approaches are sketched in Figs.
7–9.

As can be seen in Table 4, there is a difference in the results
from the three modal analysis approaches. All eigenfrequencies de-
rived by the different modal analysis approaches are higher than
those estimated by the FFT. The modal analysis method which
yields eigenfrequency estimations closest to the result of the FFT
is the multidisciplinary approach, while the FEA approach yields
the least concurring results. For the 1st eigenfrequency,x1, the dif-
ference between the FFT and the multidisciplinary approach is
0.06 Hz, the difference between the FFT and the control theory ap-
proach is 0.69 Hz and the difference between the FFT and the FEA
approach is 2.02 Hz. For the 2nd eigenfrequency,x2, the difference
between the FFT and the multidisciplinary approach is 0.50 Hz, the
difference between the FFT and the control theory approach is
3.86 Hz and the difference between the FFT and the FEA approach
is 9.72 Hz.

Fig. 7 is an illustration of the mode shapes derived using the
control theory approach. These modes have a purely rigid body

Table 4
Comparison of estimated eigenfrequencies from the FFT and different modal analysis
approaches.

Reference Multidisciplinary
approach

FEA approach Control theory
approach

FFT of
angular
rotations
at h2

Flexible body
mechanism with
controller effects

Flexible body
mechanism with
rigid joint
constraints

Rigid body
mechanism
with controller
effects

x1 2.7 Hz 2.76 Hz 4.72 Hz 3.39 Hz
x2 11.6 Hz 12.10 Hz 21.32 Hz 15.46 Hz

Fig. 6. FFT plot of time series of angular rotations about h2.

2nd mode shape 1st mode shape 

Fig. 7. 1st and 2nd mode shapes of the mechanism derived using the control theory
approach (rigid bodies, flexible joints).

2nd mode shape 1st mode shape 

Fig. 8. 1st and 2nd mode shapes of the mechanism derived using the FEA approach
(flexible bodies, rigid joints).

2nd mode shape 1st mode shape 

Fig. 9. 1st and 2nd mode shapes of the mechanism using the multidisciplinary
approach (flexible bodies, flexible joints).
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shapes of interest for the various approaches are sketched in Figs.
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As can be seen in Table 4, there is a difference in the results
from the three modal analysis approaches. All eigenfrequencies de-
rived by the different modal analysis approaches are higher than
those estimated by the FFT. The modal analysis method which
yields eigenfrequency estimations closest to the result of the FFT
is the multidisciplinary approach, while the FEA approach yields
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proach is 0.69 Hz and the difference between the FFT and the FEA
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Fig. 7. 1st and 2nd mode shapes of the mechanism derived using the control theory
approach (rigid bodies, flexible joints).
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Fig. 8. 1st and 2nd mode shapes of the mechanism derived using the FEA approach
(flexible bodies, rigid joints).
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Fig. 9. 1st and 2nd mode shapes of the mechanism using the multidisciplinary
approach (flexible bodies, flexible joints).
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Because of the rigid body simplification made by the control theory
approach, only the two eigenfrequencies involving angular rota-
tions in the joint DOFs h1 and h2 can be retrieved for this approach;
consequently, all work in this paper involving the two-joint mech-
anism is limited to these two eigenfrequencies and their corre-
sponding mode shapes.

Since all simulations and modal analyses of the two-joint mech-
anism were performed in FEDEM, which is a flexible multibody
simulation software, the flexible bodies had to be emulated as rigid
for the control theory approach. This was achieved by scaling the
stiffness of the structural parts by a factor of 100, thus emulating
the structures as rigid.

To verify the accuracy of the modal analyses, a time simulation
response of the mechanism when suddenly subjected to gravity
was analyzed using the fast Fourier transform (FFT) algorithm.
Initial modal analyses of the mechanism revealed that both eigen-
modes of interest were observable at h2. As a result, the time re-
sponse of the angular rotations about h2 was used. The time
simulation ran for 10 s with a time increment of 0.001 s, giving a
frequency sampling rate fs of 1000 Hz and a frequency resolution
of approximately 0.1 Hz. No windowing functions were used for
the FFT, and thoughts regarding this choice are made in Sec-
tion 3.1.1. A plot of the FFT is shown in Fig. 6.

A comparison of the estimated eigenfrequencies derived by the
different modal analysis approaches and the estimated eigenfre-
quencies derived from the FFT are shown in Table 4. The mode
shapes of interest for the various approaches are sketched in Figs.
7–9.

As can be seen in Table 4, there is a difference in the results
from the three modal analysis approaches. All eigenfrequencies de-
rived by the different modal analysis approaches are higher than
those estimated by the FFT. The modal analysis method which
yields eigenfrequency estimations closest to the result of the FFT
is the multidisciplinary approach, while the FEA approach yields
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Fig. 7. 1st and 2nd mode shapes of the mechanism derived using the control theory
approach (rigid bodies, flexible joints).
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Fig. 8. 1st and 2nd mode shapes of the mechanism derived using the FEA approach
(flexible bodies, rigid joints).
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Fig. 9. 1st and 2nd mode shapes of the mechanism using the multidisciplinary
approach (flexible bodies, flexible joints).
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Because of the rigid body simplification made by the control theory
approach, only the two eigenfrequencies involving angular rota-
tions in the joint DOFs h1 and h2 can be retrieved for this approach;
consequently, all work in this paper involving the two-joint mech-
anism is limited to these two eigenfrequencies and their corre-
sponding mode shapes.

Since all simulations and modal analyses of the two-joint mech-
anism were performed in FEDEM, which is a flexible multibody
simulation software, the flexible bodies had to be emulated as rigid
for the control theory approach. This was achieved by scaling the
stiffness of the structural parts by a factor of 100, thus emulating
the structures as rigid.

To verify the accuracy of the modal analyses, a time simulation
response of the mechanism when suddenly subjected to gravity
was analyzed using the fast Fourier transform (FFT) algorithm.
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simulation ran for 10 s with a time increment of 0.001 s, giving a
frequency sampling rate fs of 1000 Hz and a frequency resolution
of approximately 0.1 Hz. No windowing functions were used for
the FFT, and thoughts regarding this choice are made in Sec-
tion 3.1.1. A plot of the FFT is shown in Fig. 6.

A comparison of the estimated eigenfrequencies derived by the
different modal analysis approaches and the estimated eigenfre-
quencies derived from the FFT are shown in Table 4. The mode
shapes of interest for the various approaches are sketched in Figs.
7–9.

As can be seen in Table 4, there is a difference in the results
from the three modal analysis approaches. All eigenfrequencies de-
rived by the different modal analysis approaches are higher than
those estimated by the FFT. The modal analysis method which
yields eigenfrequency estimations closest to the result of the FFT
is the multidisciplinary approach, while the FEA approach yields
the least concurring results. For the 1st eigenfrequency,x1, the dif-
ference between the FFT and the multidisciplinary approach is
0.06 Hz, the difference between the FFT and the control theory ap-
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Fig. 7. 1st and 2nd mode shapes of the mechanism derived using the control theory
approach (rigid bodies, flexible joints).
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Fig. 8. 1st and 2nd mode shapes of the mechanism derived using the FEA approach
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Fig. 9. 1st and 2nd mode shapes of the mechanism using the multidisciplinary
approach (flexible bodies, flexible joints).

M. Bratland et al. / Computers and Structures 89 (2011) 750–761 755



motion, meaning no deformation of the beams. In the 1st mode
shape, the joints deflect in phase, while in the 2nd mode shape,
the joints deflect in anti-phase.

Fig. 8 is an illustration of the mode shapes derived using the FEA
approach. These modes have a purely flexible body deformation,
meaning no motion in the joints. In the 1st mode shape, both
beams deflect similarly; the deformation has a U-shaped form. In
the 2nd mode shape, the inner beam has an S-shape deformation,
whereas the outer beam has a U-shaped deformation, although
somewhat distorted.

Fig. 9 is an illustration of the mode shapes derived using the
multidisciplinary approach. These mode shapes are comprised of
a combination of the rigid body motions from Fig. 7 and the flexible
body deformations from Fig. 8. In the 1st mode shape, the joints
move in phase while the beams deform in the form of a U-shape,
which further adds to the deflection of each beam. In the 2nd mode
shape, the joints move in anti-phase. The inner beam has an S-
shape deformation and the outer beam has a distorted U-shape
deformation. In order to quantify the contributions from the rigid
body motions and flexible body deformations on the mode shapes,
the tip deflection in the 1st mode shape was analyzed. The total
vertical displacement of the tip is the most extreme displacement
in the 1st mode shape, and is a result of both joint and beam defor-
mation. Multiplying the joint deformations Dh1 and Dh1 with their
respective horizontal distance to the tip should give a vertical dis-
placement of 12.88. The total vertical displacement is 20.43, yield-
ing a ratio between joint motion and total deflection of 0.63, which
means that approximately 63% of the contribution in the 1st mode
shape is from the joint deflection, while approximately 37% is from
the flexible body deformation.

3.1.1. Discussion of the results from the analysis of the two-joint
mechanism

The results in Table 4 demonstrate a significant difference in the
accuracy of the three modal analysis approaches. The modal anal-
ysis method which yields eigenfrequency estimations closest to
the result of the FFT is the multidisciplinary approach. The reason
for this can be found by observing the mode shapes derived using
the various methods as illustrated in Figs. 7–9; the mode shapes
contain significant contributions from both rigid body motions
and flexible body deformations. The multidisciplinary approach
includes both rigid body motions and flexible body deforma-
tions, whereas the control theory approach only includes rigid
body motions and the FEA approach only includes flexible body
deformations.

In this example, both the control theory approach and the FEA
approach yield an overly stiff mechanism, resulting in eigenfre-
quencies that are too high. One reason for this can be that in this
example, the joint and beam stiffness can be viewed as two springs
in series. Two springs in series will always have a combined total
stiffness which is less than the stiffness of the individual springs.
For both the control theory and FEA approaches, either the beam
or the joint stiffness, respectively, will be emulated as infinitely
stiff. Yet, the stiffer the beams become, the more accurate the con-
trol theory approach will become, and similarly, the stiffer the
joints become, the more accurate the FEA approach will be.

Furthermore, by simplifying the mechanism with rigid bodies
for the control theory approach, all structural DOFs are excluded,
which results in only two derived eigenfrequencies. Too much
information about the modal parameters of the mechanism is lost
in the simplification of flexible to rigid structural bodies. For the
FEA approach, in which the controllers are replaced by rigid joint
constraints, nearly all eigenfrequencies and mode shapes can be
retrieved due to the fact that the number of structural DOFs is al-
most equal to the number of DOFs for the complete system. In this
case, however, the eigenfrequencies and mode shapes of interest

are incorrect since the joint DOFs, with its flexibility and controller
effects, are not included.

A technique for quantifying the comparison between mode
shapes is the Modal Assurance Criterion (MAC) [23], which can
be viewed as a squared, linear regression correlation coefficient
[27]. However, as pointed out in both [23,27], much care has to
be taken when using the MAC, one of which being the difficulty
in comparing translational and rotational DOFs due to the differ-
ence in units [23]. This is also an issue when deriving mode shapes
using experimental modal analysis techniques. As can be seen in
Figs. 7–9, both translational and rotational DOFs are essential in
describing the mode shapes of the two-joint mechanism, thus
making it difficult to derive the mode shape of the mechanism
using experimental modal analysis, and complicating the task of
deriving sensible results using the MAC. Excluding either type of
DOFs may only serve the purpose of confirming a pre-judged
result.

It is worth mentioning that because no windowing functions
were used on the FFT, the accuracy of the eigenfrequency estima-
tion by the FFT could be reduced. As mentioned in [22], in order
for the Fourier transform process to produce a proper representa-
tion of the time domain sampled data in the frequency domain,
the sampled data must consist of a complete representation of
the data for all time or contain a periodic repetition of the mea-
sured data. When this is not the case, the error, which is known
as leakage, could cause a serious distortion of the data in the fre-
quency domain. In order to avoid this, weighting functions called
windows can be used to better satisfy the periodicity requirement
of the FFT. Nevertheless, even though windows can greatly reduce
the leakage effect, they do cause some distortion in the data them-
selves and should be avoided whenever possible. For the time sim-
ulation of the two-joint mechanism in this example, which can be
viewed as a form of impact test, only marginal oscillations were
recordable after about 6 s of simulation time. By allowing the sim-
ulation to run for a total of 10 s, the sampled data should satisfy the
requirements of the Fourier transform process, thereby eliminating
the need to use windowing functions.

The basis for the FFT was the time response for a damped mech-
anism; in order to perform the modal analyses, the generalized
eigenvalue problem, as given by Eq. (20), was solved for an un-
damped mechanism. This could lead to some variation in the re-
sults since, as seen in Eq. (11), undamped and damped
eigenfrequencies are different. This could also contribute to
explaining why the FFT in this example yields results that are con-
sistently lower than those of the various modal analysis ap-
proaches; the damped eigenfrequencies are lower than the
undamped eigenfrequencies since xd ¼ xn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p
.

A comment about the control theory modal analysis approach
should also be made. As previously mentioned, all simulations
and modal analyses of the two-joint mechanism were performed
in FEDEM, and to emulate rigid bodies the structural stiffness of
the different flexible bodies was scaled by a factor of 100. However,
this does not yield entirely rigid bodies, which means that some
flexible body effects could unintentionally be included. Still, by
looking at the 3rd estimated eigenfrequency for this approach,
which was 143.05 Hz (compared to 14.31 Hz from the multidisci-
plinary approach), this should indicate that the structural parts
of the mechanism are quite rigid, meaning this method should
be a good approximation for a rigid body mechanism.

3.2. Modal analysis of a satellite tracking antenna

Fig. 10 shows a FEDEM model of a satellite tracking antenna.
The antenna basically consists of five structural parts: (1) a pedes-
tal, (2) a dish, (3) a combined x- and y-axis rotation housing, (4) a
pair of brackets attaching the xy rotation housing to the pedestal
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motion, meaning no deformation of the beams. In the 1st mode
shape, the joints deflect in phase, while in the 2nd mode shape,
the joints deflect in anti-phase.

Fig. 8 is an illustration of the mode shapes derived using the FEA
approach. These modes have a purely flexible body deformation,
meaning no motion in the joints. In the 1st mode shape, both
beams deflect similarly; the deformation has a U-shaped form. In
the 2nd mode shape, the inner beam has an S-shape deformation,
whereas the outer beam has a U-shaped deformation, although
somewhat distorted.

Fig. 9 is an illustration of the mode shapes derived using the
multidisciplinary approach. These mode shapes are comprised of
a combination of the rigid body motions from Fig. 7 and the flexible
body deformations from Fig. 8. In the 1st mode shape, the joints
move in phase while the beams deform in the form of a U-shape,
which further adds to the deflection of each beam. In the 2nd mode
shape, the joints move in anti-phase. The inner beam has an S-
shape deformation and the outer beam has a distorted U-shape
deformation. In order to quantify the contributions from the rigid
body motions and flexible body deformations on the mode shapes,
the tip deflection in the 1st mode shape was analyzed. The total
vertical displacement of the tip is the most extreme displacement
in the 1st mode shape, and is a result of both joint and beam defor-
mation. Multiplying the joint deformations Dh1 and Dh1 with their
respective horizontal distance to the tip should give a vertical dis-
placement of 12.88. The total vertical displacement is 20.43, yield-
ing a ratio between joint motion and total deflection of 0.63, which
means that approximately 63% of the contribution in the 1st mode
shape is from the joint deflection, while approximately 37% is from
the flexible body deformation.

3.1.1. Discussion of the results from the analysis of the two-joint
mechanism

The results in Table 4 demonstrate a significant difference in the
accuracy of the three modal analysis approaches. The modal anal-
ysis method which yields eigenfrequency estimations closest to
the result of the FFT is the multidisciplinary approach. The reason
for this can be found by observing the mode shapes derived using
the various methods as illustrated in Figs. 7–9; the mode shapes
contain significant contributions from both rigid body motions
and flexible body deformations. The multidisciplinary approach
includes both rigid body motions and flexible body deforma-
tions, whereas the control theory approach only includes rigid
body motions and the FEA approach only includes flexible body
deformations.

In this example, both the control theory approach and the FEA
approach yield an overly stiff mechanism, resulting in eigenfre-
quencies that are too high. One reason for this can be that in this
example, the joint and beam stiffness can be viewed as two springs
in series. Two springs in series will always have a combined total
stiffness which is less than the stiffness of the individual springs.
For both the control theory and FEA approaches, either the beam
or the joint stiffness, respectively, will be emulated as infinitely
stiff. Yet, the stiffer the beams become, the more accurate the con-
trol theory approach will become, and similarly, the stiffer the
joints become, the more accurate the FEA approach will be.

Furthermore, by simplifying the mechanism with rigid bodies
for the control theory approach, all structural DOFs are excluded,
which results in only two derived eigenfrequencies. Too much
information about the modal parameters of the mechanism is lost
in the simplification of flexible to rigid structural bodies. For the
FEA approach, in which the controllers are replaced by rigid joint
constraints, nearly all eigenfrequencies and mode shapes can be
retrieved due to the fact that the number of structural DOFs is al-
most equal to the number of DOFs for the complete system. In this
case, however, the eigenfrequencies and mode shapes of interest

are incorrect since the joint DOFs, with its flexibility and controller
effects, are not included.

A technique for quantifying the comparison between mode
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[27]. However, as pointed out in both [23,27], much care has to
be taken when using the MAC, one of which being the difficulty
in comparing translational and rotational DOFs due to the differ-
ence in units [23]. This is also an issue when deriving mode shapes
using experimental modal analysis techniques. As can be seen in
Figs. 7–9, both translational and rotational DOFs are essential in
describing the mode shapes of the two-joint mechanism, thus
making it difficult to derive the mode shape of the mechanism
using experimental modal analysis, and complicating the task of
deriving sensible results using the MAC. Excluding either type of
DOFs may only serve the purpose of confirming a pre-judged
result.

It is worth mentioning that because no windowing functions
were used on the FFT, the accuracy of the eigenfrequency estima-
tion by the FFT could be reduced. As mentioned in [22], in order
for the Fourier transform process to produce a proper representa-
tion of the time domain sampled data in the frequency domain,
the sampled data must consist of a complete representation of
the data for all time or contain a periodic repetition of the mea-
sured data. When this is not the case, the error, which is known
as leakage, could cause a serious distortion of the data in the fre-
quency domain. In order to avoid this, weighting functions called
windows can be used to better satisfy the periodicity requirement
of the FFT. Nevertheless, even though windows can greatly reduce
the leakage effect, they do cause some distortion in the data them-
selves and should be avoided whenever possible. For the time sim-
ulation of the two-joint mechanism in this example, which can be
viewed as a form of impact test, only marginal oscillations were
recordable after about 6 s of simulation time. By allowing the sim-
ulation to run for a total of 10 s, the sampled data should satisfy the
requirements of the Fourier transform process, thereby eliminating
the need to use windowing functions.

The basis for the FFT was the time response for a damped mech-
anism; in order to perform the modal analyses, the generalized
eigenvalue problem, as given by Eq. (20), was solved for an un-
damped mechanism. This could lead to some variation in the re-
sults since, as seen in Eq. (11), undamped and damped
eigenfrequencies are different. This could also contribute to
explaining why the FFT in this example yields results that are con-
sistently lower than those of the various modal analysis ap-
proaches; the damped eigenfrequencies are lower than the
undamped eigenfrequencies since xd ¼ xn
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A comment about the control theory modal analysis approach
should also be made. As previously mentioned, all simulations
and modal analyses of the two-joint mechanism were performed
in FEDEM, and to emulate rigid bodies the structural stiffness of
the different flexible bodies was scaled by a factor of 100. However,
this does not yield entirely rigid bodies, which means that some
flexible body effects could unintentionally be included. Still, by
looking at the 3rd estimated eigenfrequency for this approach,
which was 143.05 Hz (compared to 14.31 Hz from the multidisci-
plinary approach), this should indicate that the structural parts
of the mechanism are quite rigid, meaning this method should
be a good approximation for a rigid body mechanism.

3.2. Modal analysis of a satellite tracking antenna

Fig. 10 shows a FEDEM model of a satellite tracking antenna.
The antenna basically consists of five structural parts: (1) a pedes-
tal, (2) a dish, (3) a combined x- and y-axis rotation housing, (4) a
pair of brackets attaching the xy rotation housing to the pedestal
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motion, meaning no deformation of the beams. In the 1st mode
shape, the joints deflect in phase, while in the 2nd mode shape,
the joints deflect in anti-phase.

Fig. 8 is an illustration of the mode shapes derived using the FEA
approach. These modes have a purely flexible body deformation,
meaning no motion in the joints. In the 1st mode shape, both
beams deflect similarly; the deformation has a U-shaped form. In
the 2nd mode shape, the inner beam has an S-shape deformation,
whereas the outer beam has a U-shaped deformation, although
somewhat distorted.

Fig. 9 is an illustration of the mode shapes derived using the
multidisciplinary approach. These mode shapes are comprised of
a combination of the rigid body motions from Fig. 7 and the flexible
body deformations from Fig. 8. In the 1st mode shape, the joints
move in phase while the beams deform in the form of a U-shape,
which further adds to the deflection of each beam. In the 2nd mode
shape, the joints move in anti-phase. The inner beam has an S-
shape deformation and the outer beam has a distorted U-shape
deformation. In order to quantify the contributions from the rigid
body motions and flexible body deformations on the mode shapes,
the tip deflection in the 1st mode shape was analyzed. The total
vertical displacement of the tip is the most extreme displacement
in the 1st mode shape, and is a result of both joint and beam defor-
mation. Multiplying the joint deformations Dh1 and Dh1 with their
respective horizontal distance to the tip should give a vertical dis-
placement of 12.88. The total vertical displacement is 20.43, yield-
ing a ratio between joint motion and total deflection of 0.63, which
means that approximately 63% of the contribution in the 1st mode
shape is from the joint deflection, while approximately 37% is from
the flexible body deformation.

3.1.1. Discussion of the results from the analysis of the two-joint
mechanism

The results in Table 4 demonstrate a significant difference in the
accuracy of the three modal analysis approaches. The modal anal-
ysis method which yields eigenfrequency estimations closest to
the result of the FFT is the multidisciplinary approach. The reason
for this can be found by observing the mode shapes derived using
the various methods as illustrated in Figs. 7–9; the mode shapes
contain significant contributions from both rigid body motions
and flexible body deformations. The multidisciplinary approach
includes both rigid body motions and flexible body deforma-
tions, whereas the control theory approach only includes rigid
body motions and the FEA approach only includes flexible body
deformations.

In this example, both the control theory approach and the FEA
approach yield an overly stiff mechanism, resulting in eigenfre-
quencies that are too high. One reason for this can be that in this
example, the joint and beam stiffness can be viewed as two springs
in series. Two springs in series will always have a combined total
stiffness which is less than the stiffness of the individual springs.
For both the control theory and FEA approaches, either the beam
or the joint stiffness, respectively, will be emulated as infinitely
stiff. Yet, the stiffer the beams become, the more accurate the con-
trol theory approach will become, and similarly, the stiffer the
joints become, the more accurate the FEA approach will be.

Furthermore, by simplifying the mechanism with rigid bodies
for the control theory approach, all structural DOFs are excluded,
which results in only two derived eigenfrequencies. Too much
information about the modal parameters of the mechanism is lost
in the simplification of flexible to rigid structural bodies. For the
FEA approach, in which the controllers are replaced by rigid joint
constraints, nearly all eigenfrequencies and mode shapes can be
retrieved due to the fact that the number of structural DOFs is al-
most equal to the number of DOFs for the complete system. In this
case, however, the eigenfrequencies and mode shapes of interest

are incorrect since the joint DOFs, with its flexibility and controller
effects, are not included.

A technique for quantifying the comparison between mode
shapes is the Modal Assurance Criterion (MAC) [23], which can
be viewed as a squared, linear regression correlation coefficient
[27]. However, as pointed out in both [23,27], much care has to
be taken when using the MAC, one of which being the difficulty
in comparing translational and rotational DOFs due to the differ-
ence in units [23]. This is also an issue when deriving mode shapes
using experimental modal analysis techniques. As can be seen in
Figs. 7–9, both translational and rotational DOFs are essential in
describing the mode shapes of the two-joint mechanism, thus
making it difficult to derive the mode shape of the mechanism
using experimental modal analysis, and complicating the task of
deriving sensible results using the MAC. Excluding either type of
DOFs may only serve the purpose of confirming a pre-judged
result.

It is worth mentioning that because no windowing functions
were used on the FFT, the accuracy of the eigenfrequency estima-
tion by the FFT could be reduced. As mentioned in [22], in order
for the Fourier transform process to produce a proper representa-
tion of the time domain sampled data in the frequency domain,
the sampled data must consist of a complete representation of
the data for all time or contain a periodic repetition of the mea-
sured data. When this is not the case, the error, which is known
as leakage, could cause a serious distortion of the data in the fre-
quency domain. In order to avoid this, weighting functions called
windows can be used to better satisfy the periodicity requirement
of the FFT. Nevertheless, even though windows can greatly reduce
the leakage effect, they do cause some distortion in the data them-
selves and should be avoided whenever possible. For the time sim-
ulation of the two-joint mechanism in this example, which can be
viewed as a form of impact test, only marginal oscillations were
recordable after about 6 s of simulation time. By allowing the sim-
ulation to run for a total of 10 s, the sampled data should satisfy the
requirements of the Fourier transform process, thereby eliminating
the need to use windowing functions.

The basis for the FFT was the time response for a damped mech-
anism; in order to perform the modal analyses, the generalized
eigenvalue problem, as given by Eq. (20), was solved for an un-
damped mechanism. This could lead to some variation in the re-
sults since, as seen in Eq. (11), undamped and damped
eigenfrequencies are different. This could also contribute to
explaining why the FFT in this example yields results that are con-
sistently lower than those of the various modal analysis ap-
proaches; the damped eigenfrequencies are lower than the
undamped eigenfrequencies since xd ¼ xn
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in FEDEM, and to emulate rigid bodies the structural stiffness of
the different flexible bodies was scaled by a factor of 100. However,
this does not yield entirely rigid bodies, which means that some
flexible body effects could unintentionally be included. Still, by
looking at the 3rd estimated eigenfrequency for this approach,
which was 143.05 Hz (compared to 14.31 Hz from the multidisci-
plinary approach), this should indicate that the structural parts
of the mechanism are quite rigid, meaning this method should
be a good approximation for a rigid body mechanism.

3.2. Modal analysis of a satellite tracking antenna

Fig. 10 shows a FEDEM model of a satellite tracking antenna.
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tal, (2) a dish, (3) a combined x- and y-axis rotation housing, (4) a
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motion, meaning no deformation of the beams. In the 1st mode
shape, the joints deflect in phase, while in the 2nd mode shape,
the joints deflect in anti-phase.

Fig. 8 is an illustration of the mode shapes derived using the FEA
approach. These modes have a purely flexible body deformation,
meaning no motion in the joints. In the 1st mode shape, both
beams deflect similarly; the deformation has a U-shaped form. In
the 2nd mode shape, the inner beam has an S-shape deformation,
whereas the outer beam has a U-shaped deformation, although
somewhat distorted.

Fig. 9 is an illustration of the mode shapes derived using the
multidisciplinary approach. These mode shapes are comprised of
a combination of the rigid body motions from Fig. 7 and the flexible
body deformations from Fig. 8. In the 1st mode shape, the joints
move in phase while the beams deform in the form of a U-shape,
which further adds to the deflection of each beam. In the 2nd mode
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shape deformation and the outer beam has a distorted U-shape
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means that approximately 63% of the contribution in the 1st mode
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deformations.

In this example, both the control theory approach and the FEA
approach yield an overly stiff mechanism, resulting in eigenfre-
quencies that are too high. One reason for this can be that in this
example, the joint and beam stiffness can be viewed as two springs
in series. Two springs in series will always have a combined total
stiffness which is less than the stiffness of the individual springs.
For both the control theory and FEA approaches, either the beam
or the joint stiffness, respectively, will be emulated as infinitely
stiff. Yet, the stiffer the beams become, the more accurate the con-
trol theory approach will become, and similarly, the stiffer the
joints become, the more accurate the FEA approach will be.

Furthermore, by simplifying the mechanism with rigid bodies
for the control theory approach, all structural DOFs are excluded,
which results in only two derived eigenfrequencies. Too much
information about the modal parameters of the mechanism is lost
in the simplification of flexible to rigid structural bodies. For the
FEA approach, in which the controllers are replaced by rigid joint
constraints, nearly all eigenfrequencies and mode shapes can be
retrieved due to the fact that the number of structural DOFs is al-
most equal to the number of DOFs for the complete system. In this
case, however, the eigenfrequencies and mode shapes of interest
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[27]. However, as pointed out in both [23,27], much care has to
be taken when using the MAC, one of which being the difficulty
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ence in units [23]. This is also an issue when deriving mode shapes
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describing the mode shapes of the two-joint mechanism, thus
making it difficult to derive the mode shape of the mechanism
using experimental modal analysis, and complicating the task of
deriving sensible results using the MAC. Excluding either type of
DOFs may only serve the purpose of confirming a pre-judged
result.

It is worth mentioning that because no windowing functions
were used on the FFT, the accuracy of the eigenfrequency estima-
tion by the FFT could be reduced. As mentioned in [22], in order
for the Fourier transform process to produce a proper representa-
tion of the time domain sampled data in the frequency domain,
the sampled data must consist of a complete representation of
the data for all time or contain a periodic repetition of the mea-
sured data. When this is not the case, the error, which is known
as leakage, could cause a serious distortion of the data in the fre-
quency domain. In order to avoid this, weighting functions called
windows can be used to better satisfy the periodicity requirement
of the FFT. Nevertheless, even though windows can greatly reduce
the leakage effect, they do cause some distortion in the data them-
selves and should be avoided whenever possible. For the time sim-
ulation of the two-joint mechanism in this example, which can be
viewed as a form of impact test, only marginal oscillations were
recordable after about 6 s of simulation time. By allowing the sim-
ulation to run for a total of 10 s, the sampled data should satisfy the
requirements of the Fourier transform process, thereby eliminating
the need to use windowing functions.

The basis for the FFT was the time response for a damped mech-
anism; in order to perform the modal analyses, the generalized
eigenvalue problem, as given by Eq. (20), was solved for an un-
damped mechanism. This could lead to some variation in the re-
sults since, as seen in Eq. (11), undamped and damped
eigenfrequencies are different. This could also contribute to
explaining why the FFT in this example yields results that are con-
sistently lower than those of the various modal analysis ap-
proaches; the damped eigenfrequencies are lower than the
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A comment about the control theory modal analysis approach
should also be made. As previously mentioned, all simulations
and modal analyses of the two-joint mechanism were performed
in FEDEM, and to emulate rigid bodies the structural stiffness of
the different flexible bodies was scaled by a factor of 100. However,
this does not yield entirely rigid bodies, which means that some
flexible body effects could unintentionally be included. Still, by
looking at the 3rd estimated eigenfrequency for this approach,
which was 143.05 Hz (compared to 14.31 Hz from the multidisci-
plinary approach), this should indicate that the structural parts
of the mechanism are quite rigid, meaning this method should
be a good approximation for a rigid body mechanism.

3.2. Modal analysis of a satellite tracking antenna

Fig. 10 shows a FEDEM model of a satellite tracking antenna.
The antenna basically consists of five structural parts: (1) a pedes-
tal, (2) a dish, (3) a combined x- and y-axis rotation housing, (4) a
pair of brackets attaching the xy rotation housing to the pedestal
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and (5) another pair of brackets attaching the dish to the xy rota-
tion housing. Each structural part in the mechanism was modeled
as an FE model, therefore keeping the elasticity of the different
structures intact. Due to FEDEM’s reduction techniques [7], the vir-
tual model of the mechanism was reduced from approximately
950,000 DOFs to approximately 850 DOFs. There were two joints
in the mechanism: rotations about the global x- and y-axis (eleva-
tions). Each of these were handled by a motor and controlled by an
angular position feedback PID controller. However, for this case,
the controllers were deliberately not fully optimized. The sensors
and actuators for each respective rotational DOF were all
collocated.

To verify the accuracy of the modal analyses of the antenna
mechanism, a time simulation response of the antenna when sud-
denly subjected to gravity was analyzed using the FFT algorithm.
The time responses of the angular rotations in the antenna dish’s
center of gravity (CG) in the x-, y- and z-direction were used. The
simulation ran for 10 s with time increment of 0.001 s, yielding a
frequency sampling rate fs of 1000 Hz and a frequency resolution
of approximately 0.1 Hz. A decaying exponential windowing func-
tion, e�t, was used for the FFTs. The FFT plots of the time series are
shown in Figs. 11–13, and the estimated eigenvalues are presented
in Table 5.

Fig. 11. FFT plot of time series of angular rotations in the antenna dish’s CG in x-
direction.

Fig. 10. FEDEM model of a satellite tracking antenna. The structural parts of the antenna are: (1) the pedestal, (2) the antenna dish, (3) the combined xy rotation housing, (4)
the brackets attaching the xy rotation housing to the pedestal and (5) the brackets attaching the dish to the xy rotation housing.

Fig. 12. FFT plot of time series of angular rotations in the antenna dish’s CG in y-
direction.

Fig. 13. FFT plot of time series of angular rotations in the antenna dish’s CG in z-
direction.
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As in the previous section, three different approaches were used
to perform modal analyses of the antenna: a control theory
approach (rigid body mechanism with controller effects), an FEA
approach (flexible body mechanism with rigid joint constraints)
and a multidisciplinary approach (flexible body mechanism with
controller effects). To derive the eigenfrequencies for the antenna
using the control theory approach, analytical calculations based
on the antenna’s rigid body motions were used. The only rigid body
motions of the antenna were rotations in the two joints of the
mechanism: rotations about the global x- and y-axis (elevations).
The following data were used to derive the eigenfrequencies using
the control theory approach: the mass of the antenna dish was
approximately 275 kg, while the distance from the antenna dish’s
CG to the x- and y-axis revolute joints were 0.69 m and 0.88 m,
respectively. This should yield a moment of inertia for joint rota-
tions about the x-axis of Jx = 131 kgm2, and for joint rotations about
the y-axis of Jy = 213 kgm2. Both the x- and y-axis revolute joint
stiffness were 1,000,000 Nm/rad. A comparison of the estimated
eigenfrequencies derived by the different modal analysis ap-
proaches and the estimated eigenfrequencies derived from the
FFTs are shown in Table 5.

As can be seen in Figs. 11–13 and Table 5, the FFTs yield approx-
imately identical eigenfrequency estimations. Both of the FFTs for
the angular rotations about the y-axis (Fig. 12) and z-axis
(Fig. 13) in the dish’s CG yield values for all five eigenfrequencies.
The FFT for the angular rotations about the x-axis (Fig. 11) in the
dish’s CG only yields values for the 2nd, 3rd and 4th eigenfrequen-
cies. The multidisciplinary approach yields values closest to the
FFTs for all eigenfrequencies. The FEA approach yields less confirm-
ing values for all eigenfrequencies than the multidisciplinary ap-
proach. The control theory approach only yields values for the
first two eigenfrequencies. The most extreme differences between
the FFTs and the multidisciplinary, FEA and control theory ap-
proaches for the five eigenfrequencies are listed in Table 6.

As can be seen in Tables 5 and 6, for the first two eigenfrequen-
cies, the multidisciplinary approach yields values less than the
FFTs, though for all other eigenfrequencies, the multidisciplinary
approach yields values greater than the FFTs. Both the FEA and
control theory approach yield values consistently greater than
the FFTs. As previously mentioned, the control theory approach
yields values only for the first two eigenfrequencies.

Figs. 14–18 show the first five mode shapes of the antenna. The
1st mode shape has mainly rotations about the y-joint and some
swaying of the pedestal in the global x-direction. The 2nd mode
shape primarily has mainly rotations about the x-joint and some
swaying of the pedestal in the global y-direction. The 3rd mode
shape has both flexing of the antenna dish, rotations about the x-
joint and swaying of the pedestal in the global y-direction. The
4th mode shape has both flexing of the antenna dish, rotations
about the x-joint and large swaying of the pedestal in the global
x-direction. The 5th mode shape has large swaying of the pedestal
in the global x-direction and rotations about the y-joint.

3.2.1. Discussion of the results from the analysis of the satellite
tracking antenna

As can be seen in Figs. 11–13 and Table 5, there seems to be a
close correlation between the estimated eigenfrequencies derived
by the various FFTs, indicating that the FFTs should represent a sat-
isfactory control sample. The reason why all the FFTs do not yield
values for all eigenfrequencies can be found when looking at the
mode shapes that correspond to the different eigenfrequencies.
Only the 2nd, 3rd and 4th mode shapes contain any significant
rotations about the x-axis of the antenna dish’s CG. Since the FFTs
for angular rotations about the y- and z-axis of the antenna dish’s
CG yield results for all eigenfrequencies, this indicates that all
mode shapes have at least some angular rotations about these
axes. In order to better satisfy the requirements of the Fourier
transform process, a decaying exponential windowing function
was used on the time domain sampled data of the angular rota-
tions about the x-, y- and z-axis of the antenna dish’s CG prior to
the Fourier transformation. As stated in Section 3.1.1, even though
windows can greatly reduce the leakage effect, they do cause some
distortion in the data. However, for this example, none of the time
domain sampled data satisfied the periodicity requirement of the
Fourier transform process, thus causing serious errors in the FFTs
such as false and suppressed frequency peaks and noise. But when
comparing the windowed and unwindowed FFTs, only slight differ-
ences in the true frequency peaks were discovered, primarily on
the y-axis angular rotations; the greatest of these were 0.2 Hz.

Additionally, the FFTs were used on time series for a mechanism
controlled by a PID controller; to perform the modal analyses, the
generalized eigenvalue problem, as given by Eq. (20), was solved

Table 5
Comparison of estimated eigenfrequencies from the FFTs and the different modal analysis approaches.

References Multidisciplinary approach FEA approach Control theory approach

FFT of angular
rotations about X
(Hz)

FFT of angular
rotations about Y
(Hz)

FFT of angular
rotations about Z
(Hz)

Flexible body mechanism
with controller effects (Hz)

Flexible body mechanism with
rigid joint constraints (Hz)

Rigid body mechanism
with controller effects (Hz)

x1 – 9.7 9.8 9.26 16.05 10.91
x2 12.0 12.1 12.0 11.16 16.60 13.91
x3 26.1 26.2 26.1 26.41 27.55 –
x4 40.4 40.2 40.7 41.64 45.91 –
x5 – 46.3 46.2 47.24 49.46 –

Table 6
Most extreme differences between the FFTs and the different modal analysis approaches. The +/� signs indicate higher and lower eigenfrequency values, respectively, compared
to the FFTs.

Reference values from FFTs Multidisciplinary approach FEA approach Control theory approach
High/low FFT values (Hz) Flexible body mechanism

with controller effects (Hz)
Flexible body mechanism with
rigid joint constraints (Hz)

Rigid body mechanism with
controller effects (Hz)

x1 9.8/9.7 �0.54 +6.35 +1.21
x2 12.1/12.0 �0.94 +4.60 +1.91
x3 26.1 +0.31 +1.45 –
x4 40.2 +1.44 +5.71 –
x5 46.2 +1.04 +3.26 –
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As in the previous section, three different approaches were used
to perform modal analyses of the antenna: a control theory
approach (rigid body mechanism with controller effects), an FEA
approach (flexible body mechanism with rigid joint constraints)
and a multidisciplinary approach (flexible body mechanism with
controller effects). To derive the eigenfrequencies for the antenna
using the control theory approach, analytical calculations based
on the antenna’s rigid body motions were used. The only rigid body
motions of the antenna were rotations in the two joints of the
mechanism: rotations about the global x- and y-axis (elevations).
The following data were used to derive the eigenfrequencies using
the control theory approach: the mass of the antenna dish was
approximately 275 kg, while the distance from the antenna dish’s
CG to the x- and y-axis revolute joints were 0.69 m and 0.88 m,
respectively. This should yield a moment of inertia for joint rota-
tions about the x-axis of Jx = 131 kgm2, and for joint rotations about
the y-axis of Jy = 213 kgm2. Both the x- and y-axis revolute joint
stiffness were 1,000,000 Nm/rad. A comparison of the estimated
eigenfrequencies derived by the different modal analysis ap-
proaches and the estimated eigenfrequencies derived from the
FFTs are shown in Table 5.

As can be seen in Figs. 11–13 and Table 5, the FFTs yield approx-
imately identical eigenfrequency estimations. Both of the FFTs for
the angular rotations about the y-axis (Fig. 12) and z-axis
(Fig. 13) in the dish’s CG yield values for all five eigenfrequencies.
The FFT for the angular rotations about the x-axis (Fig. 11) in the
dish’s CG only yields values for the 2nd, 3rd and 4th eigenfrequen-
cies. The multidisciplinary approach yields values closest to the
FFTs for all eigenfrequencies. The FEA approach yields less confirm-
ing values for all eigenfrequencies than the multidisciplinary ap-
proach. The control theory approach only yields values for the
first two eigenfrequencies. The most extreme differences between
the FFTs and the multidisciplinary, FEA and control theory ap-
proaches for the five eigenfrequencies are listed in Table 6.

As can be seen in Tables 5 and 6, for the first two eigenfrequen-
cies, the multidisciplinary approach yields values less than the
FFTs, though for all other eigenfrequencies, the multidisciplinary
approach yields values greater than the FFTs. Both the FEA and
control theory approach yield values consistently greater than
the FFTs. As previously mentioned, the control theory approach
yields values only for the first two eigenfrequencies.

Figs. 14–18 show the first five mode shapes of the antenna. The
1st mode shape has mainly rotations about the y-joint and some
swaying of the pedestal in the global x-direction. The 2nd mode
shape primarily has mainly rotations about the x-joint and some
swaying of the pedestal in the global y-direction. The 3rd mode
shape has both flexing of the antenna dish, rotations about the x-
joint and swaying of the pedestal in the global y-direction. The
4th mode shape has both flexing of the antenna dish, rotations
about the x-joint and large swaying of the pedestal in the global
x-direction. The 5th mode shape has large swaying of the pedestal
in the global x-direction and rotations about the y-joint.

3.2.1. Discussion of the results from the analysis of the satellite
tracking antenna

As can be seen in Figs. 11–13 and Table 5, there seems to be a
close correlation between the estimated eigenfrequencies derived
by the various FFTs, indicating that the FFTs should represent a sat-
isfactory control sample. The reason why all the FFTs do not yield
values for all eigenfrequencies can be found when looking at the
mode shapes that correspond to the different eigenfrequencies.
Only the 2nd, 3rd and 4th mode shapes contain any significant
rotations about the x-axis of the antenna dish’s CG. Since the FFTs
for angular rotations about the y- and z-axis of the antenna dish’s
CG yield results for all eigenfrequencies, this indicates that all
mode shapes have at least some angular rotations about these
axes. In order to better satisfy the requirements of the Fourier
transform process, a decaying exponential windowing function
was used on the time domain sampled data of the angular rota-
tions about the x-, y- and z-axis of the antenna dish’s CG prior to
the Fourier transformation. As stated in Section 3.1.1, even though
windows can greatly reduce the leakage effect, they do cause some
distortion in the data. However, for this example, none of the time
domain sampled data satisfied the periodicity requirement of the
Fourier transform process, thus causing serious errors in the FFTs
such as false and suppressed frequency peaks and noise. But when
comparing the windowed and unwindowed FFTs, only slight differ-
ences in the true frequency peaks were discovered, primarily on
the y-axis angular rotations; the greatest of these were 0.2 Hz.

Additionally, the FFTs were used on time series for a mechanism
controlled by a PID controller; to perform the modal analyses, the
generalized eigenvalue problem, as given by Eq. (20), was solved

Table 5
Comparison of estimated eigenfrequencies from the FFTs and the different modal analysis approaches.

References Multidisciplinary approach FEA approach Control theory approach

FFT of angular
rotations about X
(Hz)

FFT of angular
rotations about Y
(Hz)

FFT of angular
rotations about Z
(Hz)

Flexible body mechanism
with controller effects (Hz)

Flexible body mechanism with
rigid joint constraints (Hz)

Rigid body mechanism
with controller effects (Hz)

x1 – 9.7 9.8 9.26 16.05 10.91
x2 12.0 12.1 12.0 11.16 16.60 13.91
x3 26.1 26.2 26.1 26.41 27.55 –
x4 40.4 40.2 40.7 41.64 45.91 –
x5 – 46.3 46.2 47.24 49.46 –

Table 6
Most extreme differences between the FFTs and the different modal analysis approaches. The +/� signs indicate higher and lower eigenfrequency values, respectively, compared
to the FFTs.

Reference values from FFTs Multidisciplinary approach FEA approach Control theory approach
High/low FFT values (Hz) Flexible body mechanism

with controller effects (Hz)
Flexible body mechanism with
rigid joint constraints (Hz)

Rigid body mechanism with
controller effects (Hz)

x1 9.8/9.7 �0.54 +6.35 +1.21
x2 12.1/12.0 �0.94 +4.60 +1.91
x3 26.1 +0.31 +1.45 –
x4 40.2 +1.44 +5.71 –
x5 46.2 +1.04 +3.26 –
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As in the previous section, three different approaches were used
to perform modal analyses of the antenna: a control theory
approach (rigid body mechanism with controller effects), an FEA
approach (flexible body mechanism with rigid joint constraints)
and a multidisciplinary approach (flexible body mechanism with
controller effects). To derive the eigenfrequencies for the antenna
using the control theory approach, analytical calculations based
on the antenna’s rigid body motions were used. The only rigid body
motions of the antenna were rotations in the two joints of the
mechanism: rotations about the global x- and y-axis (elevations).
The following data were used to derive the eigenfrequencies using
the control theory approach: the mass of the antenna dish was
approximately 275 kg, while the distance from the antenna dish’s
CG to the x- and y-axis revolute joints were 0.69 m and 0.88 m,
respectively. This should yield a moment of inertia for joint rota-
tions about the x-axis of Jx = 131 kgm2, and for joint rotations about
the y-axis of Jy = 213 kgm2. Both the x- and y-axis revolute joint
stiffness were 1,000,000 Nm/rad. A comparison of the estimated
eigenfrequencies derived by the different modal analysis ap-
proaches and the estimated eigenfrequencies derived from the
FFTs are shown in Table 5.

As can be seen in Figs. 11–13 and Table 5, the FFTs yield approx-
imately identical eigenfrequency estimations. Both of the FFTs for
the angular rotations about the y-axis (Fig. 12) and z-axis
(Fig. 13) in the dish’s CG yield values for all five eigenfrequencies.
The FFT for the angular rotations about the x-axis (Fig. 11) in the
dish’s CG only yields values for the 2nd, 3rd and 4th eigenfrequen-
cies. The multidisciplinary approach yields values closest to the
FFTs for all eigenfrequencies. The FEA approach yields less confirm-
ing values for all eigenfrequencies than the multidisciplinary ap-
proach. The control theory approach only yields values for the
first two eigenfrequencies. The most extreme differences between
the FFTs and the multidisciplinary, FEA and control theory ap-
proaches for the five eigenfrequencies are listed in Table 6.

As can be seen in Tables 5 and 6, for the first two eigenfrequen-
cies, the multidisciplinary approach yields values less than the
FFTs, though for all other eigenfrequencies, the multidisciplinary
approach yields values greater than the FFTs. Both the FEA and
control theory approach yield values consistently greater than
the FFTs. As previously mentioned, the control theory approach
yields values only for the first two eigenfrequencies.

Figs. 14–18 show the first five mode shapes of the antenna. The
1st mode shape has mainly rotations about the y-joint and some
swaying of the pedestal in the global x-direction. The 2nd mode
shape primarily has mainly rotations about the x-joint and some
swaying of the pedestal in the global y-direction. The 3rd mode
shape has both flexing of the antenna dish, rotations about the x-
joint and swaying of the pedestal in the global y-direction. The
4th mode shape has both flexing of the antenna dish, rotations
about the x-joint and large swaying of the pedestal in the global
x-direction. The 5th mode shape has large swaying of the pedestal
in the global x-direction and rotations about the y-joint.

3.2.1. Discussion of the results from the analysis of the satellite
tracking antenna

As can be seen in Figs. 11–13 and Table 5, there seems to be a
close correlation between the estimated eigenfrequencies derived
by the various FFTs, indicating that the FFTs should represent a sat-
isfactory control sample. The reason why all the FFTs do not yield
values for all eigenfrequencies can be found when looking at the
mode shapes that correspond to the different eigenfrequencies.
Only the 2nd, 3rd and 4th mode shapes contain any significant
rotations about the x-axis of the antenna dish’s CG. Since the FFTs
for angular rotations about the y- and z-axis of the antenna dish’s
CG yield results for all eigenfrequencies, this indicates that all
mode shapes have at least some angular rotations about these
axes. In order to better satisfy the requirements of the Fourier
transform process, a decaying exponential windowing function
was used on the time domain sampled data of the angular rota-
tions about the x-, y- and z-axis of the antenna dish’s CG prior to
the Fourier transformation. As stated in Section 3.1.1, even though
windows can greatly reduce the leakage effect, they do cause some
distortion in the data. However, for this example, none of the time
domain sampled data satisfied the periodicity requirement of the
Fourier transform process, thus causing serious errors in the FFTs
such as false and suppressed frequency peaks and noise. But when
comparing the windowed and unwindowed FFTs, only slight differ-
ences in the true frequency peaks were discovered, primarily on
the y-axis angular rotations; the greatest of these were 0.2 Hz.

Additionally, the FFTs were used on time series for a mechanism
controlled by a PID controller; to perform the modal analyses, the
generalized eigenvalue problem, as given by Eq. (20), was solved

Table 5
Comparison of estimated eigenfrequencies from the FFTs and the different modal analysis approaches.

References Multidisciplinary approach FEA approach Control theory approach

FFT of angular
rotations about X
(Hz)

FFT of angular
rotations about Y
(Hz)

FFT of angular
rotations about Z
(Hz)

Flexible body mechanism
with controller effects (Hz)

Flexible body mechanism with
rigid joint constraints (Hz)

Rigid body mechanism
with controller effects (Hz)

x1 – 9.7 9.8 9.26 16.05 10.91
x2 12.0 12.1 12.0 11.16 16.60 13.91
x3 26.1 26.2 26.1 26.41 27.55 –
x4 40.4 40.2 40.7 41.64 45.91 –
x5 – 46.3 46.2 47.24 49.46 –

Table 6
Most extreme differences between the FFTs and the different modal analysis approaches. The +/� signs indicate higher and lower eigenfrequency values, respectively, compared
to the FFTs.

Reference values from FFTs Multidisciplinary approach FEA approach Control theory approach
High/low FFT values (Hz) Flexible body mechanism

with controller effects (Hz)
Flexible body mechanism with
rigid joint constraints (Hz)

Rigid body mechanism with
controller effects (Hz)

x1 9.8/9.7 �0.54 +6.35 +1.21
x2 12.1/12.0 �0.94 +4.60 +1.91
x3 26.1 +0.31 +1.45 –
x4 40.2 +1.44 +5.71 –
x5 46.2 +1.04 +3.26 –
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As in the previous section, three different approaches were used
to perform modal analyses of the antenna: a control theory
approach (rigid body mechanism with controller effects), an FEA
approach (flexible body mechanism with rigid joint constraints)
and a multidisciplinary approach (flexible body mechanism with
controller effects). To derive the eigenfrequencies for the antenna
using the control theory approach, analytical calculations based
on the antenna’s rigid body motions were used. The only rigid body
motions of the antenna were rotations in the two joints of the
mechanism: rotations about the global x- and y-axis (elevations).
The following data were used to derive the eigenfrequencies using
the control theory approach: the mass of the antenna dish was
approximately 275 kg, while the distance from the antenna dish’s
CG to the x- and y-axis revolute joints were 0.69 m and 0.88 m,
respectively. This should yield a moment of inertia for joint rota-
tions about the x-axis of Jx = 131 kgm2, and for joint rotations about
the y-axis of Jy = 213 kgm2. Both the x- and y-axis revolute joint
stiffness were 1,000,000 Nm/rad. A comparison of the estimated
eigenfrequencies derived by the different modal analysis ap-
proaches and the estimated eigenfrequencies derived from the
FFTs are shown in Table 5.

As can be seen in Figs. 11–13 and Table 5, the FFTs yield approx-
imately identical eigenfrequency estimations. Both of the FFTs for
the angular rotations about the y-axis (Fig. 12) and z-axis
(Fig. 13) in the dish’s CG yield values for all five eigenfrequencies.
The FFT for the angular rotations about the x-axis (Fig. 11) in the
dish’s CG only yields values for the 2nd, 3rd and 4th eigenfrequen-
cies. The multidisciplinary approach yields values closest to the
FFTs for all eigenfrequencies. The FEA approach yields less confirm-
ing values for all eigenfrequencies than the multidisciplinary ap-
proach. The control theory approach only yields values for the
first two eigenfrequencies. The most extreme differences between
the FFTs and the multidisciplinary, FEA and control theory ap-
proaches for the five eigenfrequencies are listed in Table 6.

As can be seen in Tables 5 and 6, for the first two eigenfrequen-
cies, the multidisciplinary approach yields values less than the
FFTs, though for all other eigenfrequencies, the multidisciplinary
approach yields values greater than the FFTs. Both the FEA and
control theory approach yield values consistently greater than
the FFTs. As previously mentioned, the control theory approach
yields values only for the first two eigenfrequencies.

Figs. 14–18 show the first five mode shapes of the antenna. The
1st mode shape has mainly rotations about the y-joint and some
swaying of the pedestal in the global x-direction. The 2nd mode
shape primarily has mainly rotations about the x-joint and some
swaying of the pedestal in the global y-direction. The 3rd mode
shape has both flexing of the antenna dish, rotations about the x-
joint and swaying of the pedestal in the global y-direction. The
4th mode shape has both flexing of the antenna dish, rotations
about the x-joint and large swaying of the pedestal in the global
x-direction. The 5th mode shape has large swaying of the pedestal
in the global x-direction and rotations about the y-joint.

3.2.1. Discussion of the results from the analysis of the satellite
tracking antenna

As can be seen in Figs. 11–13 and Table 5, there seems to be a
close correlation between the estimated eigenfrequencies derived
by the various FFTs, indicating that the FFTs should represent a sat-
isfactory control sample. The reason why all the FFTs do not yield
values for all eigenfrequencies can be found when looking at the
mode shapes that correspond to the different eigenfrequencies.
Only the 2nd, 3rd and 4th mode shapes contain any significant
rotations about the x-axis of the antenna dish’s CG. Since the FFTs
for angular rotations about the y- and z-axis of the antenna dish’s
CG yield results for all eigenfrequencies, this indicates that all
mode shapes have at least some angular rotations about these
axes. In order to better satisfy the requirements of the Fourier
transform process, a decaying exponential windowing function
was used on the time domain sampled data of the angular rota-
tions about the x-, y- and z-axis of the antenna dish’s CG prior to
the Fourier transformation. As stated in Section 3.1.1, even though
windows can greatly reduce the leakage effect, they do cause some
distortion in the data. However, for this example, none of the time
domain sampled data satisfied the periodicity requirement of the
Fourier transform process, thus causing serious errors in the FFTs
such as false and suppressed frequency peaks and noise. But when
comparing the windowed and unwindowed FFTs, only slight differ-
ences in the true frequency peaks were discovered, primarily on
the y-axis angular rotations; the greatest of these were 0.2 Hz.

Additionally, the FFTs were used on time series for a mechanism
controlled by a PID controller; to perform the modal analyses, the
generalized eigenvalue problem, as given by Eq. (20), was solved

Table 5
Comparison of estimated eigenfrequencies from the FFTs and the different modal analysis approaches.

References Multidisciplinary approach FEA approach Control theory approach

FFT of angular
rotations about X
(Hz)

FFT of angular
rotations about Y
(Hz)

FFT of angular
rotations about Z
(Hz)

Flexible body mechanism
with controller effects (Hz)

Flexible body mechanism with
rigid joint constraints (Hz)

Rigid body mechanism
with controller effects (Hz)

x1 – 9.7 9.8 9.26 16.05 10.91
x2 12.0 12.1 12.0 11.16 16.60 13.91
x3 26.1 26.2 26.1 26.41 27.55 –
x4 40.4 40.2 40.7 41.64 45.91 –
x5 – 46.3 46.2 47.24 49.46 –

Table 6
Most extreme differences between the FFTs and the different modal analysis approaches. The +/� signs indicate higher and lower eigenfrequency values, respectively, compared
to the FFTs.

Reference values from FFTs Multidisciplinary approach FEA approach Control theory approach
High/low FFT values (Hz) Flexible body mechanism

with controller effects (Hz)
Flexible body mechanism with
rigid joint constraints (Hz)

Rigid body mechanism with
controller effects (Hz)

x1 9.8/9.7 �0.54 +6.35 +1.21
x2 12.1/12.0 �0.94 +4.60 +1.91
x3 26.1 +0.31 +1.45 –
x4 40.2 +1.44 +5.71 –
x5 46.2 +1.04 +3.26 –
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Fig. 16. The 3rd mode shape. This mode shape has both flexing of the antenna dish, rotations about the x-joint and swaying of the pedestal in the global y-direction.

Fig. 15. The 2nd mode shape. This mode shape mainly has rotations about the x-joint and some swaying of the pedestal in the global y-direction.

Fig. 14. The 1st mode shape. The middle figure is the undeformed shape. The left and right figures are the two extremity deformational shapes. This mode shape mainly has
rotations about the y-joint and some swaying of the pedestal in the global x-direction.
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for undamped mechanisms. This could lead to some variation in
the results since, as mentioned in Table 1, both Ki and Kd affect
the damping of the system, and as seen in Eq. (11), undamped
and damped eigenvalues are different.

As can be seen in Tables 5 and 6, there is a significant difference
in the results from the three modal analysis approaches. As for the
two-joint mechanism, the modal analysis method which yields
eigenfrequency estimations closest to the results of the FFTs is
the multidisciplinary approach. As for the two-joint mechanism,
both the control theory approach and the FEA approach consis-
tently estimate eigenfrequencies that are too high. Again, much
of the reason for this can be found by observing the mode shapes.
All mode shapes have a significant contribution from flexible body
dynamics, while only the first two mode shapes have any signifi-
cant rigid body motion. For this reason, the control theory ap-
proach only yields two eigenfrequencies: rotations about the x-
and y-joint. These mode shapes are also derived using both the
multidisciplinary approach and the FEA approach. Still, the FEA ap-
proach does not include the stiffness properties of the joints since
these are restricted by rigid boundary conditions for this approach.

This results in the yielding of a much stiffer mechanism for these
eigenfrequencies in comparison to the multidisciplinary approach,
which includes both joint stiffness and flexibility of the various
structures. Since these two mode shapes have significant contribu-
tions from both joint and structural stiffness, this would explain
why the control theory approach and the FEA approach yield high-
er eigenfrequencies than the multidisciplinary approach and the
FFTs. For the other mode shapes, the FEA approach yields consis-
tently higher eigenfrequencies than both the multidisciplinary ap-
proach and the FFTs. Again, the reason for this could be that the
FEA makes the mechanism too stiff by making the joints rigid.
For the control theory approach, these eigenfrequencies cannot
be discovered because the flexibility of the structure is the domi-
nant factor in these mode shapes. As a result, all stiffness contrib-
utors should be included in the modal analysis in order to make the
analysis more accurate.

The virtual simulations in FEDEM were performed using the
Newmark-b method with Newton–Raphson iterations [7] for time
integration of the mechanisms, and the Lobatto IIIC algorithm [7]
for time integration of the controllers. The use of different

Fig. 17. The 4th mode shape. This mode shape has both flexing of the antenna dish, rotations about the x-joint and large swaying of the pedestal in the global x-direction.

Fig. 18. The 5th mode shape. This mode shape has large swaying of the pedestal in the global x-direction and rotations about the y-joint.
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for undamped mechanisms. This could lead to some variation in
the results since, as mentioned in Table 1, both Ki and Kd affect
the damping of the system, and as seen in Eq. (11), undamped
and damped eigenvalues are different.

As can be seen in Tables 5 and 6, there is a significant difference
in the results from the three modal analysis approaches. As for the
two-joint mechanism, the modal analysis method which yields
eigenfrequency estimations closest to the results of the FFTs is
the multidisciplinary approach. As for the two-joint mechanism,
both the control theory approach and the FEA approach consis-
tently estimate eigenfrequencies that are too high. Again, much
of the reason for this can be found by observing the mode shapes.
All mode shapes have a significant contribution from flexible body
dynamics, while only the first two mode shapes have any signifi-
cant rigid body motion. For this reason, the control theory ap-
proach only yields two eigenfrequencies: rotations about the x-
and y-joint. These mode shapes are also derived using both the
multidisciplinary approach and the FEA approach. Still, the FEA ap-
proach does not include the stiffness properties of the joints since
these are restricted by rigid boundary conditions for this approach.

This results in the yielding of a much stiffer mechanism for these
eigenfrequencies in comparison to the multidisciplinary approach,
which includes both joint stiffness and flexibility of the various
structures. Since these two mode shapes have significant contribu-
tions from both joint and structural stiffness, this would explain
why the control theory approach and the FEA approach yield high-
er eigenfrequencies than the multidisciplinary approach and the
FFTs. For the other mode shapes, the FEA approach yields consis-
tently higher eigenfrequencies than both the multidisciplinary ap-
proach and the FFTs. Again, the reason for this could be that the
FEA makes the mechanism too stiff by making the joints rigid.
For the control theory approach, these eigenfrequencies cannot
be discovered because the flexibility of the structure is the domi-
nant factor in these mode shapes. As a result, all stiffness contrib-
utors should be included in the modal analysis in order to make the
analysis more accurate.

The virtual simulations in FEDEM were performed using the
Newmark-b method with Newton–Raphson iterations [7] for time
integration of the mechanisms, and the Lobatto IIIC algorithm [7]
for time integration of the controllers. The use of different
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for undamped mechanisms. This could lead to some variation in
the results since, as mentioned in Table 1, both Ki and Kd affect
the damping of the system, and as seen in Eq. (11), undamped
and damped eigenvalues are different.

As can be seen in Tables 5 and 6, there is a significant difference
in the results from the three modal analysis approaches. As for the
two-joint mechanism, the modal analysis method which yields
eigenfrequency estimations closest to the results of the FFTs is
the multidisciplinary approach. As for the two-joint mechanism,
both the control theory approach and the FEA approach consis-
tently estimate eigenfrequencies that are too high. Again, much
of the reason for this can be found by observing the mode shapes.
All mode shapes have a significant contribution from flexible body
dynamics, while only the first two mode shapes have any signifi-
cant rigid body motion. For this reason, the control theory ap-
proach only yields two eigenfrequencies: rotations about the x-
and y-joint. These mode shapes are also derived using both the
multidisciplinary approach and the FEA approach. Still, the FEA ap-
proach does not include the stiffness properties of the joints since
these are restricted by rigid boundary conditions for this approach.

This results in the yielding of a much stiffer mechanism for these
eigenfrequencies in comparison to the multidisciplinary approach,
which includes both joint stiffness and flexibility of the various
structures. Since these two mode shapes have significant contribu-
tions from both joint and structural stiffness, this would explain
why the control theory approach and the FEA approach yield high-
er eigenfrequencies than the multidisciplinary approach and the
FFTs. For the other mode shapes, the FEA approach yields consis-
tently higher eigenfrequencies than both the multidisciplinary ap-
proach and the FFTs. Again, the reason for this could be that the
FEA makes the mechanism too stiff by making the joints rigid.
For the control theory approach, these eigenfrequencies cannot
be discovered because the flexibility of the structure is the domi-
nant factor in these mode shapes. As a result, all stiffness contrib-
utors should be included in the modal analysis in order to make the
analysis more accurate.

The virtual simulations in FEDEM were performed using the
Newmark-b method with Newton–Raphson iterations [7] for time
integration of the mechanisms, and the Lobatto IIIC algorithm [7]
for time integration of the controllers. The use of different

Fig. 17. The 4th mode shape. This mode shape has both flexing of the antenna dish, rotations about the x-joint and large swaying of the pedestal in the global x-direction.

Fig. 18. The 5th mode shape. This mode shape has large swaying of the pedestal in the global x-direction and rotations about the y-joint.
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algorithms for time integration of the mechanisms and controllers
could be a source of error; a slight difference in frequency response
functions was discovered when two identical models, one active
and one passive, were simulated in FEDEM. For the eigenvalue
analyses, the Lanczos algorithm [28] was used. The FFTs were cal-
culated in both FEDEM and MATLAB, and yielded similar results.

One final comment should be made about the computational
work load caused by the multidisciplinary approach compared to
that of the FEA approach. For active systems, whether they be
structures or mechanisms, the number of structural DOFs is usually
far greater than the number of DOFs governed by controllers. The
controllers are usually limited to affecting only a few system DOFs.
Thus, solving the eigenvalue problem for the complete system,
meaning that both controller effects and flexible body dynamics
are included, should not take a significantly greater amount of time
to solve than that of regular FEA eigenvalue problem solutions, in
which only structural DOFs are included.

4. Conclusion

In this paper, a method for modal analysis of active flexible mul-
tibody systems has been derived. Including both controller effects
and flexible body dynamics when performing modal analyses of
active flexible multibody systems seems to yield more accurate
eigenfrequency estimations. The new multidisciplinary modal
analysis approach combines the best from the traditional separate
control and structural design disciplines to provide accurate eigen-
frequency and mode shape calculations.

By implementing this approach in a multidisciplinary software
system (FEDEM), finite element analysts will be able to include the
controller effects by augmenting the mass, stiffness and damping
properties of the mechanical system. The passive mechanical sys-
tem will then represent the active system during modal analyses
since all singularities will be replaced by mechanical equivalents
of the control system. Traditional finite element solvers can then
be used to derive the eigenfrequencies and eigenvectors of the
closed-loop system. This approach can therefore easily be imple-
mented into a finite element code. However, it is important to bear
in mind that the proposed multidisciplinary modal analysis ap-
proach has not yet been fully implemented into a commercial soft-
ware system, and is therefore considered to be undergoing further
research and improvement.

This paper has been limited to dealing with an undamped mod-
al analysis of active flexible multibody systems in which only con-
troller effects equivalent to mechanical stiffness and mass
properties are included.
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Abstract 
A method for performing modal analysis of undamped active flexible multibody systems with 
collocated sensors and actuators in a finite element environment was recently developed by the 
authors. In this paper, the theory is further expanded to include systems with non-collocated 
sensors and actuators, damping and steady-state error elimination. The closed-loop eigenvalue 
problem for active flexible multibody systems with multiple-input multiple-output proportional-
integral-derivative (PID) feedback type controllers and multiple degrees of freedom finite 
element models is solved.  
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1. Introduction 
 
Modal analysis and dynamic simulation of active flexible multibody systems - from now on 
referred to as active mechanisms - are a multidisciplinary challenge. The dynamic performance 
of such products is strongly dependent on an optimal interaction between the controllers and the 
mechanical components. An important tool in the optimization of such products is modal 
analysis, which predicts modal parameters, i.e. natural frequencies, mode shapes and damping 
ratios, for the active system. Due to the complexity of the mechanical components, both in form 
and function, it may practical to handle such systems through a finite element (FE) approach. 
Effective time domain dynamic simulations of multibody systems in an FE environment have 
been described by for instance Géradin and Cardona [1] and Sivertsen [2]. 
 
The authors have shown in [3] how PID-type controllers with collocated sensors and actuators 
affect mechanical systems based on the various types of sensor input (position, velocity or 
acceleration), and how to add the controller gains and mechanical properties into the second-
order system matrices. However, the theory for performing modal analyses of such systems was 
only derived for the undamped case without steady-state error elimination, i.e. no damping or 
position feedback integral gain. Damping can occur due to both the mechanical system and 
controllers, e.g. [3-9], while position feedback integral gain can cause the system to become 
unstable [3]. As demonstrated in [4], damping and system instability are basically determined by 
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the same factor: the constant in the exponent of the oscillation amplitude envelope; a negative 
constant yields a decaying oscillation, i.e. damping, whereas a positive constant yields a growing 
oscillation, and thus instability. The eigenfrequencies of such systems are not the same as for a 
stable undamped system, e.g. [4, 10]. In addition to altering the eigenfrequencies, damping also 
causes the eigenvectors to become complex [11].  
 
As stated in [12], the solution procedures of non-proportionally damped systems mainly follow 
two routes: the state-space method and approximate methods in “n-space”. The state-space 
method is exact in nature but requires significant numerical effort for obtaining the 
eigensolutions, as the size of the problem doubles from n to 2n. Most of the n-space methods 
either seek an optimal decoupling of the equations of motion or simply neglect the off-diagonal 
terms of the modal damping matrix. Following such methodologies will still yield only real 
mode shapes. The accuracy of these methods, other than the light damping assumption, depends 
upon various factors such as frequency separation between modes, driving frequency, etc [12]. In 
order to solve the damped eigenvalue problem for a system with n degrees of freedom (DOFs), 
the second-order differential equations can be reformulated as a first-order 2n-dimensional 
matrix equation system, as shown for instance in [13]. 
 
How to solve the eigenvalue problem for a closed-loop system on state-space form has been 
shown by e.g. Rastgaar et al. [14]. However, their theory is only valid for systems containing 
controller gains proportional to position and velocity, i.e. equivalent to stiffness and damping, 
respectively. As stated by Astrom and Hagglund [15, 16], PID controllers are the most common 
type of controllers in use today, and as shown by the authors in [3], depending on the type of 
sensor inputs, PID controllers can contain gains proportional to position, velocity, acceleration or 
the time integral of position, i.e. equivalent to stiffness, damping, mass and steady-state error 
elimination, respectively. Thus, modal analysis methods for active mechanisms should also take 
into consideration the effects caused by the various types of PID controllers. 
 
This paper addresses the theory for solving the eigenvalue problem for active mechanisms that 
contain both damping and steady-state error elimination and controllers with non-collocated 
sensors and actuators. The objective of this work is to help engineers working in an FE 
environment be able to accurately predict eigenfrequencies and mode shapes of active 
mechanisms containing any type of PID controllers, with the exception being controllers 
containing acceleration feedback derivative gains. The controllers can be of type single-input 
single-output (SISO) or multiple-input multiple-output (MIMO), and the sensors and actuators 
for the controllers can be either collocated or non-collocated. The theory derived in this work is 
intended to be implemented in an FE software system, but for the sake of validation, all 
eigenvalue problems in this work are solved in MATLAB1 using the eig() routine [17]. All time 
domain simulations are performed in FEDEM2.  
  

                                                            
1 MATLAB by The MathWorks, Inc., version R2010a. 
2 FEDEM (Finite Element in Dynamics of Elastic Mechanisms) simulation software is a multibody dynamics 
package distributed by Fedem Technology AS. It is based on the finite element method and uses model reduction 
techniques to effectively perform nonlinear time domain dynamic simulations of active flexible multibody systems 
[2, 18], version R5.0. 
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2. Non-Collocated Sensors and Actuators 
 
It has been demonstrated by the authors in [3] that for a single degree of freedom (SDOF) 
mechanical system with a PID feedback type controller, the equations of motion for the free 
vibrations based on sensor readings can be written as: 
 
Position feedback PID 
 
 ( ) ( )( ) ( ) ( ) ( ) 0d p imr t c K r t k K r t K r t dt+ + + + + =  (1) 
 
Velocity feedback PID 
 
 ( ) ( ) ( )( ) ( ) ( ) 0d p im K r t c K r t k K r t+ + + + + =  (2) 
 
Acceleration feedback PID 
 
 ( ) ( )( ) ( ) ( ) ( ) 0d p iK r t m K r t c K r t kr t+ + + + + =  (3) 
 
 
Further, it was also shown that for a multiple degrees of freedom (MDOF) mechanical system 
with a feedback type controller, the equation of motion for the free vibration can be written as: 
 
 ( ) ( ) ( )( ) ( ) ( )Acc Vel Post t t+ + + + + =M G r C G r K G r 0  (4) 
 
where M is the mass matrix, C is the damping matrix and K is the stiffness matrix of the 
mechanical system. GAcc, GVel and GPos are the controller gradient acceleration, velocity and 
position matrices, respectively, corresponding to the equivalent mass, damping and stiffness 
matrices from the controller. r  is the position vector, r  is the velocity vector and r  is the 
acceleration vector of the system. The dimensions of all the matrices are n n×  and the vectors 

1n× , where n is the number of DOFs. 
 
Equation (4) is valid for all PID controllers only containing controller elements proportional to 
position, velocity or acceleration. Examples of controllers not covered by Equation (4) are: 
position feedback controllers containing integral gains or acceleration feedback controllers 
containing derivative gains, though the latter variant will not be covered in this work. Based on 
Equations (1) and (4), the equation of motion for the free vibration of an active MDOF system 
containing a position feedback PID controller can be written as: 
 
 ( ) ( ) ( )( ) ( ) ( ) ( )Acc Vel Pos SSEEt t t t dt+ + + + + + =M G r C G r K G r G r 0  (5) 
 
where GSSEE is the controller gradient steady-state error elimination matrix and dtr  is the 
position time integral vector of the system. As in Equation (4), the dimensions of all the matrices 
are n n×  and the vectors 1n× . 
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The position of the controller gains in their respective matrices in Equation (7) are determined by 
the DOFs of the sensor and actuator placements. Since the sensor is placed on r1, the controller 
gains will be placed in column number 1, and since the actuator affects r3, the controller gains 
will be placed in row number 3. 
 
Combining Equations (6) and (7) yields the following matrix equation system for the free 
vibration of the active system in Figure 1 containing a velocity feedback PID controller as: 
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where meff is the effective mass of the system, while ceff is the effective damping, keff is the 
effective stiffness and qeff is the effective steady-state error elimination of the system. Assuming 
a solution for Equation (11) with the form ( ) str t e=  gives a characteristic equation:  
 
 2 1 0eff eff eff effm s c s k q s−+ + + =  (12) 
which is equal to: 
 
 3 2 0eff eff eff effm s c s k s q+ + + =  (13) 
 
Equation (13) is a cubic equation and has a solution for the roots s as either three real and 
unequal roots, three real roots in which at least two are equal, or one real root and a pair of 
complex conjugate roots [19]. If the roots of Equation (13) are a pair of complex conjugate roots, 
the imaginary part of s is the frequency of oscillation and the real part is the constant in the 
exponent of the oscillation amplitude envelope. A schematic overview of different instances of 
the roots s is shown in Figure 3. 
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a solution for Equation (11) with the form ( ) str t e=  gives a characteristic equation:  
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Equation (13) is a cubic equation and has a solution for the roots s as either three real and 
unequal roots, three real roots in which at least two are equal, or one real root and a pair of 
complex conjugate roots [19]. If the roots of Equation (13) are a pair of complex conjugate roots, 
the imaginary part of s is the frequency of oscillation and the real part is the constant in the 
exponent of the oscillation amplitude envelope. A schematic overview of different instances of 
the roots s is shown in Figure 3. 

 
Figure 3: Schematic illustration of the various instances of the roots s. 
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If the real part of the complex conjugate roots is positive, the oscillation is growing, and the 
system is therefore unstable. The borderline case for stability is when the real part of s is zero. 
When this occurs, s is equal to .nω  For this to occur, effc s  and 1

effq s−  have to be zero. This 
yields: 
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and since for this special case, /n eff effs k mω= = , the stability borderline value for qeff can thus 
be derived as: 
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In order to derive the roots of Equation (11), one possibility is to transform it into a first-order or 
state-space form. Based on [13], one possible way of writing Equation (11) in state-space form 
is: 
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In general, the dimensions of x and x  are 3 1n× , whereas the dimensions of A and B are both 
3 3 ,n n×  where n is the number of DOFs. In order to obtain the roots of Equation (16), the 
generalized eigenvalue problem, as given for instance in [20], can be solved. With the matrices 
in Equation (17) inserted, it may be written as: 
 
 A = B  (18) 
 
where  is a diagonal matrix of the generalized eigenvalues and  is a full matrix whose 
columns are the corresponding eigenvectors. The diagonal elements of the eigenvalue matrix  
correspond to the roots s of Equation (13).  
 
Based on Equation (11), the second-order differential equation of the free vibration for an 
MDOF system can be written as: 
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where Meff is the effective mass matrix of the system, while Ceff is the effective damping matrix, 
Keff the effective stiffness matrix and Qeff the effective steady-state error elimination matrix of 
the system. The dimensions of all the matrices are n n×  and the vectors 1n× . If the system in 
Equation (19) is written in state-space form as in Equation (16), its state-space matrices would 
be: 
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where the dimensions of x and x  are 3 1n× , and those of A and B are both 3 3n n× . 
 
 
4. Numerical Examples 
 
In this chapter, three examples for assessing the validity of the theory derived in Chapters 2 and 
3 are presented. The first example focuses on verifying the pattern for adding the controller gains 
into the system matrices for systems containing non-collocated sensors and actuators. The 
second example aims at verifying the proposed properties of a system containing a term 
proportional to the time integral of the position, i.e. steady-state error elimination. In the last 
example, the objective is to verify the derived theory for a system by combining the theory 
derived in Chapters 2 and 3. This is of importance when considering the implementation of the 
derived theory into an FE software system. 
 
 
4.1. Numerical Examples for Non-Collocated Sensors and Actuators 
 
In order to test the theory derived in Chapter 2, some numerical examples were made based on 
the active system in Figure 1. For each version of the system, two separate methods for deriving 
the natural frequencies of the system were used: (a) modal analysis by solving the eigenvalue 
problem, and (b) frequency analysis of the time responses using the fast Fourier transform (FFT) 
algorithm. By comparing the results from the two methods (a) and (b), the degree of validity of 
the derived theory should be revealed, meaning that if both methods yield concurring results, the 
validity of the method is supported. The mechanical properties of the system were set to: 

1 2 3 1 kgm m m= = = , 1 2 3 0 Ns/mc c c= = =  and 1 2 3 100 N/mk k k= = = , while the controller was 
set to be a velocity feedback PID controller with controller gains 0pK = , 50iK =  and 0.5dK = . 
Damping, both passive and active, were deliberately not included in this example in order to 
better see all frequency peaks in the FFT plots. To derive the natural frequencies using the FFT, 
the mass m3 was given an initial deflection and the time domain response of the mechanism was 
recorded. This simulation was carried out in FEDEM, with a total simulation time of 10 seconds 
and a simulation time increment of 0.001 seconds, yielding a frequency sampling rate fs of 1 000 
Hz and a frequency resolution of approximately 0.1 Hz. The result from the FFT is shown in 
Figure 4.  
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Figure 4: FFT plot of time series of displacements measured at r2. 
 
As can be seen in Figure 4, three frequency peaks are present, appearing at 1 0.9 Hzω = , 

2 2.1 Hzω =  and 3 2.8 Hzω = .  
 
Inserting the given values for the active system into Equation (8) gives the following equation: 
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which, by solving the eigenvalue problem, yields the eigenfrequencies 1 0.8613 Hzω = , 

2 2.0795 Hzω =  and 3 2.7566 Hzω = . A comparison of the results from the FFT and the modal 
analysis is shown in Table 1. 
 
Table 1: Comparison of eigenfrequencies derived using FFT and modal analysis. 
 FFT Modal analysis 

1ω  0.9 Hz 0.8613 Hz 

2ω  2.1 Hz 2.0795 Hz 

3ω  2.8 Hz 2.7566 Hz 
 
As can be seen in Table 1, the two methods yield concurrent eigenfrequency estimates for the 
system, thereby indicating a validity of the derived theory. To better distinguish between the 
results, the eigenfrequencies derived by the modal analysis are given with four decimals, while 
the FFT is only given with one since the FFT only has a frequency resolution of 0.1 Hz. 
 
In order to further support the validity of the derived theory, two more tests were performed on 
the given system, although with a slight alteration: Kd was changed to 0.3 and 0.7. The FFT plots 
for these tests are shown in Figure 5 and Figure 6, and the results from the tests are shown in 
Table 2 and Table 3, respectively. For the modal analysis of these tests, the relevant values for Kd 
were altered in Equation (21), and the eigenvalue problem was solved. The results from the 
modal analyses are also shown in Table 2 and Table 3. 
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Figure 5: FFT plot of time series of displacements measured at r2 for system with Kd = 0.3. 
 

 
Figure 6: FFT plot of time series of displacements measured at r2 for system with Kd = 0.7. 
 
Table 2: Comparison of eigenfrequencies derived using FFT and modal analysis for system with Kd = 0.3. 
 FFT Modal analysis 

1ω  0.9 Hz 0.8852 Hz 

2ω  2.0 Hz 1.9739 Hz 

3ω  2.8 Hz 2.8259 Hz 
 
Table 3: Comparison of eigenfrequencies derived using FFT and modal analysis for system with Kd = 0.7. 
 FFT Modal analysis 

1ω  0.8 Hz 0.8400 Hz 

2ω  2.2 Hz 2.2093 Hz 

3ω  2.7 Hz 2.6606 Hz 
 
As seen in both Table 2 and Table 3, the FFT and the eigenvalue problem yield concurrent 
results, which further support a validity of the derived theory. As before, the difference between 
the results is probably due to the number of given decimals. 
 
 
4.2. Numerical Examples for Active System Containing Damping and Steady-State Error 

Elimination 
 
In order to test the theory derived in Chapter 3, four experiments involving an active SDOF 
system were conducted. Figure 7 depicts a sketch of the experiment setup. 
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Figure 6: FFT plot of time series of displacements measured at r2 for system with Kd = 0.7. 
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Figure 7: Active SDOF system.  
 
The system in Figure 7 consists of a mass m1 connected to a wall via a spring k1 and a damper c1. 
There is one DOF in the system: translation in the horizontal direction (r1). An active force FCtrl 
is acting on the mass m1; the active force is governed by a position feedback PID controller 
whose reference is the position r1 of the mass. The parameters of the system were given as:  
m1 = 1 kg, c1 = 8 Ns/m, k1 = 12 N/m, Kp = 4, Ki = q and Kd = 2. Based on Equation (1), the 
effective mass m, damping c and stiffness k of the system are: m = 1 kg, c = 10 Ns/m and k = 16 
N/m, yielding an undamped natural frequency of: 
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and a value for the critical damping of: 
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A comparison of the values for c and cc reveals that, in principle at least, the system is an 
overdamped one, i.e. no oscillation should occur. However, increasing Ki should make the 
system start to oscillate. Using Equation (15), the value for Ki that should give a constant 
oscillation is: 
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Four different experiments were performed on this system by changing the value for the integral 
gain Ki from 0 to 80, 160 and 240, which should yield the following systems: overcritically 
damped, undercritically damped, undamped/marginally stable and unstable, respectively. The 
objectives of the experiments were to illustrate how Ki affects the system and to derive the 
eigenfrequencies and damping ratios for each case using the method outlined in Chapter 3. 
Additionally, in order to verify the theory, one time simulation of the free vibration of the system 
was performed for each case. The simulations were carried out in FEDEM; the system was set 
into motion by giving the mass an initial displacement. Each simulation had a total simulation 
time of 5 seconds, with a time increment of 0.0005 seconds.  
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4.2.1. Ki = 0: Overcritically Damped System 
 
The time response for the simulation with Ki = 0 is shown in Figure 8.  

 
Figure 8: Time response of system with Ki = 0. 
 
As seen from Figure 8, the system is not oscillating. Solving Equation (18) in MATLAB using 
the eig() routine yields a diagonal matrix D of generalized eigenvalues and a full matrix V, 
whose columns are the corresponding eigenvectors. The diagonal elements in D correspond to 
the roots s of Equation (13) when using the system shown in Equation (17). Hence, solving 
Equation (13) with respect to s, or Equation (18) inserted for A and B in accordance with 
Equation (17), yields the eigenvalues as three real and unequal values, thereby indicating a 
system without oscillations. 
 
 
4.2.2. Ki = 80: Undercritically Damped System 
 
The time response for the simulation with Ki = 80 is shown in Figure 9. 
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As seen from Figure 9, the system is oscillating with decreasing amplitudes. Peaks 1 and 2 occur 
at time t1 = 1.6770 sec and t2 = 3.8280 sec with amplitudes x1 = 0.0225356 m and x2 = 0.0095886 
m, respectively. This yields a time period of: 
 
 2 1 3.8280 1.6770 2.1510 sect tτ = − = − =  (25) 
 
and an eigenfrequency of:  
 

 1 1 0.4649 Hz
2.1510

ω
τ

= = =  (26) 

 
The damping ratio ζ  of an oscillation can be derived from [10]: 
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Inserting for x1 and x2 yields the following damping ratio: 
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As in Section 4.2.1, solving Equation (13) with respect to s, or Equation (18) inserted for A and 
B in accordance with Equation (17), yields the eigenvalues as one real value and a pair of 
complex conjugate values. The complex conjugate values are:  
 
 0.3970  2.9210s i= − ±  (29) 
 
which gives the eigenfrequency: 
 

 2.9210 0.4649 Hz
2

ω
π

= =  (30) 

and the damping ratio: 
 

 0.3970 0.3970 0.0993
4n

ζ
ω

− −= − = − =  (31) 

 
The results from this experiment are summarized in Table 4. 
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Table 4: Results from experiments on system with q = 80. 
  [Hz]ω  ζ
Time simulation 0.4649 0.0993 
Eigenvalue problem 0.4649 0.0993 
 
As seen from the results presented in Table 4, the time simulation and solution of the eigenvalue 
problem yield identical results. 
 
 
4.2.3. Ki = 160: Marginally Stable System 
 
The time response for the simulation with Ki = 160 is shown in Figure 10. 
 

 
Figure 10: Time response of system with Ki = 160. 
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Solving Equation (13) with respect to s, or Equation (18) inserted for A and B in accordance with 
Equation (17), yields the eigenvalues as one real value and a pair of complex conjugate values. 
The complex conjugate values are: 
 
 0  4s i= ±  (35) 
 
 which gives the eigenfrequency: 
 

 4 0.6366 Hz
2

ω
π

= =  (36) 

and the damping ratio: 
 

 0 0 0
4n

ζ
ω

= − = − =  (37) 

 
The results from this experiment are summarized in Table 5. 
 
Table 5: Results from experiments on system with q = 160. 

  [Hz]ω  ζ
Time simulation 0.6367 0.0001 
Eigenvalue problem 0.6366 0 
 
As seen from the results presented in Table 5, the time simulation and solution of the eigenvalue 
problem yield almost identical results. The difference in the results between the time simulation 
and eigenvalue problem is probably due to the limited numerical accuracy of the time simulation. 
 
 
4.2.4. Ki = 240: Unstable System 
 
The time response for the simulation with Ki = 240 is shown in Figure 11. 
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As seen from Figure 11, the system is oscillating with increasing amplitudes. Peaks 1 and 2 
occur at time t1 = 1.0935 sec and t2 = 2.4180 sec with amplitudes x1 = 0.0297421 m and x2 = 
0.0448529 m, respectively. This yields a time period of: 
 
 2 1 2.4180 1.0935 1.3245 sect tτ = − = − =  (38) 
 
and an eigenfrequency of : 

 1 1 0.7550 Hz
1.3245

ω
τ

= = =  (39) 

 
Inserted for x1 and x2 yields the following damping ratio: 
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2
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x

ζ
ω τ
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⋅
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The complex conjugate values are: 
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and the damping ratio: 
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4.2.5. Varying q from 0 to 2qs 
 
When solving Equation (13) with respect to s or Equation (18) inserted for A and B in 
accordance with Equation (17), the effects of varying q can be seen over a greater range of 
values. The eigenfrequency ω  and damping ratio ζ  for 0 2 0 320sq q≤ ≤ =  are shown in 
Figure 12. 
 

 
Figure 12: ω  and ζ  for 0 2 0 320sq q≤ ≤ = . 

 
As seen in Figure 12, the eigenfrequency ω  goes from 0 Hz to 0.8481 Hz while the damping 
ratio ζ  goes from 0.2301 to -0.1427. For q < 8, 0 Hzω = , indicating a system with a non-
oscillatory motion, i.e. an overcritically damped system. For this reason, ζ  does not have any 
values for q < 8. For q > 160, 0ζ <  , which indicates a system with “negative damping”, i.e. a 
growing oscillation and thus an unstable system. 
 
 
4.3. Active MDOF System with Position Feedback PID Controller and Non-Collocated 

Sensor and Actuator 
 
To further test the theory derived in Chapters 2 and 3, the system shown in Figure 13 was used. 
To illustrate the effects of the controller, two versions of the system in Figure 13 were made: one 
with and one without the controller, i.e. a passive and an active system, respectively. 

 
Figure 13: Active MDOF system with position feedback PID controller with non-collocated sensor and actuator. 
 
The system in Figure 13 is comprised of three masses (m1, m2 and m3) in series connected by 
springs (k1, k2 and k3) and dampers (c1, c2 and c3). Each mass has one DOF: translation in the 
horizontal plane, named r1, r2 and r3, respectively. The system is controlled by a position 
feedback PID controller with a sensor measuring position of r1, whereas an actuator is affecting 
mass m3 as a force FCtrl. The mechanical properties of the system were set to: 
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1 2 3 1 kgm m m= = = , 1 2 3 1 Ns/mc c c= = =  and 1 2 3 100 N/mk k k= = = , and the controller gains 
to: 80pK = , 20iK =  and 0.5dK = . Arranging these system properties in matrix form based on 

Equation (5), and expressing the position vector as: [ ]1 2 3
Tr r r=r  and the velocity and 

acceleration vectors in a similar manner, the matrices of the mechanical system were: 
 

 
1 0 0 2 1 0 200 100 0
0 1 0    ,   1 2 1    ,   100 200 100
0 0 1 0 1 1 0 100 100

− −
= = − − = − −

− −
M C K  (44) 

 
while the matrices of the controller gradients were: 
 

 
0 0 0 0 0 0 0 0 0

   ,   0 0 0    ,   0 0 0    ,   0 0 0
0.5 0 0 80 0 0 20 0 0

Acc Vel Pos SSEE= = = =G 0 G G G  (45) 

 
For the passive version of the system, only the mechanical properties of the system were 
included in the eigenvalue problem. This yields the following eigenfrequencies: 1 0.7081 Hzω = , 

2 1.9808 Hzω =  and 3 2.8562 Hzω = .  
 
To derive the eigenfrequencies of the active system in Figure 13 with the given properties, the 
generalized eigenvalue problem shown by Equation (18) was solved. Based on Equation (20), 
the A and B matrices for Equation (18) were: 
 

 

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

20 0 0 0 0 0 0 0 0
0 0 0 200 100 0 0 0 0
0 0 0 100 200 100 0 0 0
0 0 0 80 100 100 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

−
= − −

−
A  (46) 
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200 100 0 2 1 0 1 0 0
100 200 100 1 2 1 0 1 0
80 100 100 0.5 1 1 0 0 1

200 100 0 0 0 0 0 0 0
100 200 100 0 0 0 0 0 0
80 100 100 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0

− − −
− − −

− − − − −
−

= − −
−

B  (47) 

 
Solving Equation (18) with Equation (46) and Equation (47) inserted yields the following 
eigenfrequencies: 1 1.0783 Hzω = , 2 1.7088 Hzω =  and 3 2.9158 Hzω = . 
 
To verify the eigenfrequencies derived for both versions of the system in Figure 13, two time- 
simulations of the system were performed in FEDEM, one for the passive and one for the active 
system. To initiate the simulations, the mass m3 was given an initial deflection and the time 
domain response of the mechanism was recorded. The time simulation ran for 10 seconds with a 
time increment of 0.001 seconds, giving a frequency sampling rate fs of 1 000 Hz and a 
frequency resolution of approximately 0.1 Hz. The time domain results from the simulations for 
position r2 were transformed into frequency domain results by using the FFT algorithm. The FFT 
results for the passive and active systems are shown in Figure 14 and Figure 15, respectively. 
 

 
Figure 14: FFT plot of time series of displacements measured at r2 for system without controller. 
 

 
Figure 15: FFT plot of time series of displacements measured at r2 for system with controller. 
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One major concern about the proposed 3n state-space method is the threefold increase in 
dimensions of the eigenvalue problem. A typical method or algorithm for solving the full 
eigenvalue problem in FE software systems is the QR [10, 20-26] or QZ algorithm [23, 24]; the 
QZ algorithm being a generalization the QR algorithm [23]. The QR algorithm is of order n3 
[20]. For the proposed 3n state-space method, this would mean an (3n)3/n3 increase in 
computation time for systems of large n, which means that solving the eigenvalue problem using 
the proposed 3n state-space method will be up to 27 times more expensive with respect to 
computational time than an n-space method. 
 
It is worth mentioning that the proposed 3n state-space method given by Equation (20) has not 
been considered as being optimized with respect to computational efficiency. There may also be 
other and more computational cost effective and/or well-conditioned ways of expressing that 
equation. The main effort in this work has been directed at deriving a functional expression, not 
an optimal one. 
 
The proposed 3n state-space method is intended as a complement to the n-space method 
proposed by the authors in [3]. The proposed n-space method takes its basis in the same methods 
as the presented 3n state-space method, i.e. Equations (4) and (5), respectively, and is able to 
handle controller properties equivalent to mechanical mass and stiffness, but can be expanded to 
also include proportional/Rayleigh damping. The n-space method should be easier to implement 
in an FE software system and is more computationally effective than the presented 3n state-space 
method; however, it does not handle non-proportional damping or steady-state error elimination. 
For situations in which solving speed is more important than solution accuracy, or the effects by 
damping and steady-state error elimination are negligible with respect to the modal parameters, 
the n-space method can be used. Yet, if solution accuracy is an issue, or a stability analysis is 
desired, the presented 3n state-space method may be used. By offering these complementary 
methods for deriving the modal parameters of active flexible multibody systems, the ability to 
perform modal analyses of such systems for engineers working in an FE environment may be 
greatly improved. 
 
 
6. Conclusion 
 
In this work, a method for solving the eigenvalue problem for active multiple degrees of freedom 
systems containing position feedback PID controllers and non-collocated sensors and actuators 
has been derived and verified through numerical examples. The derived theory is intended to be 
implemented in a finite element software system, providing a powerful and accurate tool for 
engineers working in a finite element environment when performing modal analysis of active 
flexible multibody systems. 
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Abstract 
 
Simulation and prediction of eigenfrequencies and mode shapes for active flexible multibody 
systems is an important task in disciplines such as robotics and aerospace engineering. A 
challenge is to accurately include both controller effects and flexible body dynamics in a 
multidisciplinary system model appropriate for modal analysis. A method for performing modal 
analyses of such systems in a finite element environment was recently developed by the authors. 
On issue is, however, that for engineers working in a finite element environment, the controller 
properties are not always explicitly available prior to modal analyses. The authors encountered 
this problem when working with the design of a particular offshore windmill. The controller for 
the windmill was delivered in the form of a dynamic link library (dll) from a third party provider,  
and when performing virtual testing of the windmill design, it was of great importance to use the 
“real” controller in the form of the provided dll, rather than re-model it in for instance Simulink 
or EASY5.  
 
This paper presents a method for estimating the controller parameters of PID-type controllers 
when solving the closed-loop eigenvalue problem for active flexible multibody systems in a 
finite element environment. The method is based on applying incremental changes, 
perturbations, to relevant system variables while recording reactions from other system variables. 
In this work, the theory of the method is derived, and the method is tested through several 
numerical examples. 
 
Keywords: 
Modal analysis, Finite element method, Control system, Parameter estimation, Perturbation. 
 
 
1. Introduction 
 
Modal analysis and dynamic simulation of active flexible multibody systems - from now on 
referred to as active mechanisms - are a multidisciplinary challenge. The dynamic performance 
of such products is strongly dependent on an optimal interaction between the controllers and the 
mechanical components. An important tool in the optimization of such products is modal 
analysis, which predicts modal parameters, i.e. natural frequencies, mode shapes and damping 
ratios, for the active system. Due to the complexity of the mechanical components, both in form 
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and in function, it may practical to handle such systems through a finite element (FE) approach. 
Effective time domain dynamic simulations of multibody systems in an FE environment have 
been described by for instance Géradin and Cardona [1] and Sivertsen [2]. 
 
The authors have recently developed a method for performing modal analyses of active 
mechanisms in an FE environment [3]. In that work, the equations for the control system are 
expressed in second-order form, rather than in first-order or state-space form, which is typical 
practice in control system disciplines, see for instance [4-6]. One of the advantages of this 
approach is an increased compatibility with the mechanical equations, which are typically 
expressed in second-order form, e.g. [2,7-10], since equations determined in state-space form are 
difficult to transform into second-order structural dynamics equations [11]. The generalized 
eigenvalue problem will be of size n, where n is the number of degrees of freedom (DOFs), and 
traditional FE eigenvalue problem solvers can be utilized.  
 
One remark about that method is that the controller properties have to be known explicitly prior 
to the modal analysis. To the best of the authors’ knowledge, no commercial software system for 
simulation of active mechanisms fully integrates flexible multibody dynamics and control system 
simulation, since the equations for control systems are typically expressed in first-order form 
( ,  )= = +x Ax + Bu y Cx Du  while they are for mechanical systems typically expressed in 
second-order form ( )=Mr +Cr + Kr F . Control system software, such as MATLAB and 
Simulink1, usually support both controller design and control system simulation where the 
mechanical system can be modeled with rigid bodies, lumped masses, inertias, springs, dampers 
or analytical equations. This will cause the flexible body dynamics to be predicted by very 
simplified models. In flexible multibody dynamics software systems, such as FEDEM2, feedback 
type controllers will typically calculate loads applied to the mechanism based on feedback 
measurements of the system [2]. Additionally, some flexible multibody dynamics software 
systems also have the option of importing or communicating with the controller model as an 
external process, for instance through a dynamic link library (dll) or Simulink. For these reasons, 
the controller is comparable to a “black box” or unknown function, as seen from the mechanical 
part of the software system. This approach works well in a time domain analysis when the 
controller drives the mechanism with applied loads based on the given controller algorithms, 
however, a major problem occurs in modal analyses of the closed-loop system. In free vibration 
analysis, all loads are set to zero, which decouples the controller and mechanical model. As a 
result, the mechanism becomes singular in all controlled DOFs.  
 
In order to overcome this issue, methods for identifying the controller parameters may be 
applied. This paper is focused on presenting a method for estimating controller parameters for 
systems containing either higher-order integral gains, higher-order derivative gains or a 
combination of proportional, integral and derivative gains, the latter often being referred to as a 
proportional-integral-derivative (PID) controller, the most common type of controllers in use 
today [13,14]. However, the method presented in this work is not limited to apply to such 
                                                            
1 MATLAB and Simulink by The MathWorks, Inc. 
2 FEDEM (Finite Element in Dynamics of Elastic Mechanisms) simulation software is a multibody dynamics 
package distributed by Fedem Technology AS. It is based on the finite element method and uses model reduction 
techniques to effectively perform nonlinear time domain dynamic simulations of active flexible multibody systems 
[2,12]. 
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1 MATLAB and Simulink by The MathWorks, Inc. 
2 FEDEM (Finite Element in Dynamics of Elastic Mechanisms) simulation software is a multibody dynamics 
package distributed by Fedem Technology AS. It is based on the finite element method and uses model reduction 
techniques to effectively perform nonlinear time domain dynamic simulations of active flexible multibody systems 
[2,12]. 



controllers only. It may also be applied to any system containing properties corresponding to the 
ones listed above. An example can be the identification of the properties of a mechanical system 
equal to mass, damping and stiffness based on for instance position, velocity or acceleration 
parameters only. The objective of this work is to derive a method which can be used when 
performing modal analyses of active mechanisms, using FE based software systems. The 
software systems used in this paper are MATLAB and Simulink3 and FEDEM4. 
 
 
2. Interaction between Mechanism and Controller 
 
The equation of motion for a single degree of freedom (SDOF) mechanical system with a single-
input single-output (SISO) feedback controller can be written as [3]: 
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where m is the mass, c is the damping and k is the stiffness. r is the displacement of the mass m 
with respect to time; r  and r  are the first and second time derivatives of r, i.e. velocity and 
acceleration of the mass m. FApp is the applied mechanical force and FCtrl is the force from the 
controller. This is in accordance with equations found in [15].  
 
Figure 1 shows a simple block diagram used for describing a SISO feedback control system. 
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actuator. x is the state variable from the physical process (i.e. position r, velocity r  or 
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Since e is the difference between y0 and y, the controller output can be split into a feedforward or 
feedthrough part governed by y0 and a feedback part governed by y, as shown in [16]. The 
feedforward part can be interpreted as an applied force whose parameters are not affected by the 
system itself, and will not affect the internal dynamics of the system. Therefore, it is not of 
particular interest in this context. The only part which does affect the internal dynamics of the 
system is the feedback part. Thus, Equation (2) can more conveniently be written as: 
 

 ( ) ( ) ( ) ( )
FeedbackPID p i d

du t K y t K y t dt K y t
dt

= + +  (3) 

 
One view of the control system is to isolate the control elements from the physical process. The 
control elements then principally contain three parts: a sensor, an actuator and a controller that 
contains the various controller elements, as shown in Figure 2.  

 
Figure 2: Control elements. 
 
As shown in Figure 2, the effects by the control elements on the mechanical system can be given 
as: 
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where GAct is the actuator gradient, GCtrl is the controller gradient and GSens is the sensor gradient. 
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3. Estimation of Controller Parameters 
 
One of the main motivations behind this paper is to be able to perform accurate modal analyses 
of active mechanisms using FE based software systems. To be able to do so, the various 
controller gains, and hence the controller’s equivalent mechanical properties, must be known. 
However, these values are not always explicitly available for the person performing the modal 
analysis since mechanical engineers and control engineers usually operate in different software 
systems. Consequently, a method for estimating the values of interest should be derived. 
 
A potential method for parameter estimation is to introduce perturbations into the system. This 
approach is not to be confused with the perturbation method described in [7], which can be used 
to solve nonlinear differential equations in which the solution is in the form of a power series. 
Perturbations in this context are incremental changes in a system variable. The basis of this 
technique can be found in, for instance, the principle of virtual work [7,10,17], the displacement 
method/direct stiffness method [18], system identification/parameter estimation [19,20] and 
optimization theory [21]. For all the various fields listed above, the concept remains the same: 
apply changes in one variable, measure reactions from other variables and then process the 
results in order to derive the desired system parameters. 
 
In this paper, perturbations will be used on the decoupled controller in order to estimate the 
desired controller parameters. The controller is treated as a “black box” or an unknown function. 
By applying incremental changes, perturbations, to the input of the controller, small changes in 
the output from the controller can be registered. These changes will be in accordance with the 
internal control routine of the controller. The parameters of the controller can thus be estimated 
based on predetermined changes in the controller input and registered changes from the 
controller output. One important feature of the proposed technique is a save-and-restore 
capability of the system variables. After perturbing, all system variables are reset to their pre-
perturbation state in order to not affect any other simulations. 
 
 
3.1. The Perturbation Technique 
 
A perturbation, as described in the previous section, is illustrated in Figure 3. 

3. Estimation of Controller Parameters 
 
One of the main motivations behind this paper is to be able to perform accurate modal analyses 
of active mechanisms using FE based software systems. To be able to do so, the various 
controller gains, and hence the controller’s equivalent mechanical properties, must be known. 
However, these values are not always explicitly available for the person performing the modal 
analysis since mechanical engineers and control engineers usually operate in different software 
systems. Consequently, a method for estimating the values of interest should be derived. 
 
A potential method for parameter estimation is to introduce perturbations into the system. This 
approach is not to be confused with the perturbation method described in [7], which can be used 
to solve nonlinear differential equations in which the solution is in the form of a power series. 
Perturbations in this context are incremental changes in a system variable. The basis of this 
technique can be found in, for instance, the principle of virtual work [7,10,17], the displacement 
method/direct stiffness method [18], system identification/parameter estimation [19,20] and 
optimization theory [21]. For all the various fields listed above, the concept remains the same: 
apply changes in one variable, measure reactions from other variables and then process the 
results in order to derive the desired system parameters. 
 
In this paper, perturbations will be used on the decoupled controller in order to estimate the 
desired controller parameters. The controller is treated as a “black box” or an unknown function. 
By applying incremental changes, perturbations, to the input of the controller, small changes in 
the output from the controller can be registered. These changes will be in accordance with the 
internal control routine of the controller. The parameters of the controller can thus be estimated 
based on predetermined changes in the controller input and registered changes from the 
controller output. One important feature of the proposed technique is a save-and-restore 
capability of the system variables. After perturbing, all system variables are reset to their pre-
perturbation state in order to not affect any other simulations. 
 
 
3.1. The Perturbation Technique 
 
A perturbation, as described in the previous section, is illustrated in Figure 3. 

3. Estimation of Controller Parameters 
 
One of the main motivations behind this paper is to be able to perform accurate modal analyses 
of active mechanisms using FE based software systems. To be able to do so, the various 
controller gains, and hence the controller’s equivalent mechanical properties, must be known. 
However, these values are not always explicitly available for the person performing the modal 
analysis since mechanical engineers and control engineers usually operate in different software 
systems. Consequently, a method for estimating the values of interest should be derived. 
 
A potential method for parameter estimation is to introduce perturbations into the system. This 
approach is not to be confused with the perturbation method described in [7], which can be used 
to solve nonlinear differential equations in which the solution is in the form of a power series. 
Perturbations in this context are incremental changes in a system variable. The basis of this 
technique can be found in, for instance, the principle of virtual work [7,10,17], the displacement 
method/direct stiffness method [18], system identification/parameter estimation [19,20] and 
optimization theory [21]. For all the various fields listed above, the concept remains the same: 
apply changes in one variable, measure reactions from other variables and then process the 
results in order to derive the desired system parameters. 
 
In this paper, perturbations will be used on the decoupled controller in order to estimate the 
desired controller parameters. The controller is treated as a “black box” or an unknown function. 
By applying incremental changes, perturbations, to the input of the controller, small changes in 
the output from the controller can be registered. These changes will be in accordance with the 
internal control routine of the controller. The parameters of the controller can thus be estimated 
based on predetermined changes in the controller input and registered changes from the 
controller output. One important feature of the proposed technique is a save-and-restore 
capability of the system variables. After perturbing, all system variables are reset to their pre-
perturbation state in order to not affect any other simulations. 
 
 
3.1. The Perturbation Technique 
 
A perturbation, as described in the previous section, is illustrated in Figure 3. 

3. Estimation of Controller Parameters 
 
One of the main motivations behind this paper is to be able to perform accurate modal analyses 
of active mechanisms using FE based software systems. To be able to do so, the various 
controller gains, and hence the controller’s equivalent mechanical properties, must be known. 
However, these values are not always explicitly available for the person performing the modal 
analysis since mechanical engineers and control engineers usually operate in different software 
systems. Consequently, a method for estimating the values of interest should be derived. 
 
A potential method for parameter estimation is to introduce perturbations into the system. This 
approach is not to be confused with the perturbation method described in [7], which can be used 
to solve nonlinear differential equations in which the solution is in the form of a power series. 
Perturbations in this context are incremental changes in a system variable. The basis of this 
technique can be found in, for instance, the principle of virtual work [7,10,17], the displacement 
method/direct stiffness method [18], system identification/parameter estimation [19,20] and 
optimization theory [21]. For all the various fields listed above, the concept remains the same: 
apply changes in one variable, measure reactions from other variables and then process the 
results in order to derive the desired system parameters. 
 
In this paper, perturbations will be used on the decoupled controller in order to estimate the 
desired controller parameters. The controller is treated as a “black box” or an unknown function. 
By applying incremental changes, perturbations, to the input of the controller, small changes in 
the output from the controller can be registered. These changes will be in accordance with the 
internal control routine of the controller. The parameters of the controller can thus be estimated 
based on predetermined changes in the controller input and registered changes from the 
controller output. One important feature of the proposed technique is a save-and-restore 
capability of the system variables. After perturbing, all system variables are reset to their pre-
perturbation state in order to not affect any other simulations. 
 
 
3.1. The Perturbation Technique 
 
A perturbation, as described in the previous section, is illustrated in Figure 3. 



 
Figure 3: Perturbation j of t and y. 
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during perturbation j. y0 and t0 are the initial values for y and t, respectively, at the present time 
step. From Figure 3, the following relationships can be derived: 
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The values  and j jy t  can be chosen arbitrarily, but it can be practical to express jy  as a 
function of jt . The linear equation for ( )jy t  for perturbation j can then be written as: 
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 ( ) ( )P pu t K y t=  (11) 
 
where Kp is the proportional gain. Equation (11) can be written on a general differential form as: 
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y
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 (12) 

 
Since the perturbation technique is meant to be used with computers, it is more suitable to treat 
Equation (12) numerically rather than analytically. In discrete differential form, Equation (12) 
can be written as: 
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Kp can thus be calculated by solving the following equation: 
 
 ( ) 1

pK y u−=  (14) 
 
A perturbation algorithm for estimating Kp can be broken into six steps. Since the controller 
parameters may not be constant with time, the perturbation algorithm should be performed each 
time an eigenvalue analysis is to be performed. The steps in the perturbation algorithm are: 
 

1) Obtain the initial values y0 and u0 for the controller. 
2) Establish jy  and jt . For simplicity, jy  can be given as j jy t= , making it sufficient 

to establish jt . 
3) Calculate jy  and jt  in accordance with Equation (7) and Equation (8). 
4) Iterate the controller with these new values for the input jy  and time jt , and record the 

reaction from the controller ju  due to the change in the input. 
5) Calculate ju  based on u0 and ju  in accordance with Equation (9). 
6) Use Equation (14) to estimate Kp. 
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where Ki is the integral gain. Equation (15) can be written in discrete differential form as: 
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and Ki can be calculated by solving the equation: 
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In order to estimate Ki using the perturbation technique described in the previous sections, 

jy dt  needs to be discretized. In Figure 3, jy dt  is the area under the linear curve. If ( )jy t  
is given as in Equation (10), jy dt  can be made as a function of jy  and jt  by: 
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Inserting Equation (18) into Equation (17) yields: 
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3.3.2. Double Integration 
 
Like the single integration presented in Section 3.3.1, the feedback gain equation for a feedback 
type controller containing only a controller output u proportional to the double time integral of 
the input variable y can be written as: 
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where Kii is the double integral gain. Equation (20) can be written in discrete differential form as: 
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Based on antidifferentiation, the double integral jy dtdt  can be derived in discrete form as: 
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Kii can thus be estimated by solving: 
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3.3.3. Triple Integration 
 
Like the single and double integral presented in the previous sections, the feedback gain equation 
for a feedback type controller containing only a controller output u proportional to the triple time 
integral of the input variable y can be written as: 
 
 ( ) ( )III iiiu t K y t dtdtdt=  (24) 
 
where Kiii is the triple integral gain. Following the same procedure as for the double integral in 
the previous section, the triple integral jy dtdtdt  can be derived in discrete form as: 
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and Kiii can be estimated by solving: 
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3.4. Estimation of Controller Parameters for Controllers Containing Derivative Gain 
 
3.4.1. Single Derivation 
 
For a feedback type controller containing only a controller output u proportional to the time 
derivative of the input variable y, its feedback gain equation can be written as: 
 

 ( ) ( ) ( )D d d
du t K y t K y t
dt

= =  (27) 

 
where Kd is the derivative gain. Equation (27) can be written in discrete differential form as: 
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Kd can be calculated by solving the equation: 
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In order to estimate Kd using the perturbation technique described in the previous sections, jy  
has to be discretized. The derivative in Figure 3 can be given as: 
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Using Equation (7) as a basis, jy  can be given as: 
 

 0
0

0

j
j j

j

y yy y y
t t

= − = −  (31) 

 
However, 0y  does not exist in Figure 3. In order to have both jy  and 0y , two perturbation 
steps have to be performed. An example of a two-step perturbation is illustrated in Figure 4. 

 
Figure 4: Two-step perturbation. 
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Inserting Equation (32) into Equation (29) yields: 
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3.4.2. Double Derivation 
 
For a feedback type controller containing only a controller output u proportional to the double 
time derivative of the input variable y, its feedback gain equation can be written as: 
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where Kdd is the double derivative gain. Equation (34) can be written in discrete differential form 
as: 
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Similarly to the discretization of jy  in Section 3.4.1, jy  can be written as: 
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In order to derive y , three perturbation steps have to be performed. An example of a three-step 
perturbation is given in Figure 5. 

 
Figure 5: Three-step perturbation. 
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In Figure 5, 0jy  is the first perturbation step, 1jy  is the second perturbation step and 2jy  is 
the third perturbation step in perturbation j. In the figure, the following parameters are given: 

0 1 2j j j jt t t t= = = , 0 0jy = , 1j jy t=  and  2 1j jy y= − . Using this three-step perturbation 
series with the parameters as shown in Figure 5, the variables jy , jy  and jy  can be given as: 
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Since 0 0jy = , Equation (39) can be reduced to: 
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Kdd can thus be calculated by solving: 
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3.5. Estimation of Controller Parameters for Controllers Containing Combinations of 

Proportional, Integral and Derivative Gains 
 
For a PID controller, the feedback controller output is given by Equation (3). In a discrete 
differential form, this can be written as: 
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As demonstrated in Equation (42), a PID controller is a compound controller, consisting of both 
a proportional gain, an integral gain and a derivative gain. In order to estimate all three gains Kp, 
Ki and Kd using the perturbation technique, three perturbations need to be performed. And since 
the controller contains a derivative gain, a two-step perturbation algorithm needs to be used, as 
explained in Section 3.4.1. This gives the following set of equations: 
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which can be written in matrix form as: 
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To derive the controller properties Kp, Ki and Kd, one can solve the following matrix system by 
the use of matrix inversion: 
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Inserting Equation (19) and Equation (32) into Equation (45) yields: 
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To avoid singularities when performing the matrix inversion in Equation (46), the determinant of 
the invertible matrix should be nonzero. This requirement is met for 1 2 3y y y≠ ≠  and 

1 2 3t t t≠ ≠ . Typically, jt  and jy  can be given as: 
 
 1 1 1 1 1   ,      ,      ,   sim j jt t y t t j t y j yδ= ⋅ = = ⋅ = ⋅  (47) 
 
where simt  is the simulation time increment. δ  is a small positive scalar called the relative 
perturbation step size [21]. A possible default value of δ , as used by the authors in this work, is 
0.1.  
 
A perturbation algorithm for estimating Kp, Ki and Kd can be broken down into eight steps. Since 
the controller parameters may not be constant with time, as mentioned in Section 3.2, the 
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perturbation algorithm should be performed each time an eigenvalue analysis is to be performed. 
The steps in the perturbation algorithm are: 
 

1) Do one initial perturbation on the controller with 0y =  and 0t ≠ . This is to ensure 

0 0y = . 
2) Obtain the initial values y0 and u0 for the controller. 
3) Establish jy  and jt . For a PID controller, 1 3j = , but if Equation (47) is used, it is 

sufficient to establish 1t . 
4) Calculate jy dt  and jy . These are given by Equation (18) and Equation (32). 
5) Calculate jy  and jt  in accordance with Equation (7) and Equation (8). 
6) Iterate the controller with these new values for the input jy  and time jt , and record the 

reaction from the controller ju  due to the change in the input. 
7) Calculate ju  based on 0u  and ju  in accordance with Equation (9). 
8) Use the matrix system in Equation (46) to estimate Kp, Ki and Kd. 

 
 
 
3.6. Partitioning of Perturbation Steps 
 
When testing the perturbation technique presented in Sections 3.1 to 3.5, the authors experienced 
a problem with some controller simulation algorithms. In some cases, the controllers were 
suffering from what seemed as an erroneous time step dependent delay from when a change in 
the input resulted in a change in the outputs. In order to extract the gradients from such a system, 
it may be necessary to perform a perturbation using multiple time steps, that is, introducing 
incremental steps in between each perturbation. Such a multistep perturbation is illustrated in 
Figure 6. 

 
Figure 6: Partition of perturbation. 
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0 0y = . 
2) Obtain the initial values y0 and u0 for the controller. 
3) Establish jy  and jt . For a PID controller, 1 3j = , but if Equation (47) is used, it is 

sufficient to establish 1t . 
4) Calculate jy dt  and jy . These are given by Equation (18) and Equation (32). 
5) Calculate jy  and jt  in accordance with Equation (7) and Equation (8). 
6) Iterate the controller with these new values for the input jy  and time jt , and record the 

reaction from the controller ju  due to the change in the input. 
7) Calculate ju  based on 0u  and ju  in accordance with Equation (9). 
8) Use the matrix system in Equation (46) to estimate Kp, Ki and Kd. 

 
 
 
3.6. Partitioning of Perturbation Steps 
 
When testing the perturbation technique presented in Sections 3.1 to 3.5, the authors experienced 
a problem with some controller simulation algorithms. In some cases, the controllers were 
suffering from what seemed as an erroneous time step dependent delay from when a change in 
the input resulted in a change in the outputs. In order to extract the gradients from such a system, 
it may be necessary to perform a perturbation using multiple time steps, that is, introducing 
incremental steps in between each perturbation. Such a multistep perturbation is illustrated in 
Figure 6. 
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As illustrated in Figure 6, if the perturbation is divided into n equal sections, each perturbation 
step jt  and jy  would be comprised of n incremental sub-steps 

ij
t  and 

ij
y , where 1i n= . 

Note that the subscripts in this section are not to be confused with the subscripting presented in 
Section 3.4.2. For each 

ij
t  and 

ij
y , the system would be iterated. For the perturbation technique 

itself, only 
nj

t  and 
nj

y  would be used. The incremental sub-steps would then be of size: 
 

 1
ij jt t

n
=  (48) 
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Table 1: Comparison of the perturbation technique against results from the simulation in Simulink for a system with 
triple integration. 
 Perturbation Simulink 

1t  0.1 0.1

1y  0.1 0.1

1y dt  0.005 0.005

1y dtdt  41.6667 10−×  41.6667 10−×

1y dtdtdt  
64.1667 10−×  64.1667 10−×

 
As can be seen in Table 1, the perturbation technique and the Simulink simulation are identical 
for 1y dt , 1y dtdt  and 1y dtdtdt . 
 
 
4.2. Testing of the Perturbation Technique for Parameter Estimation of Controllers 

Containing Derivative Gain 
 
A comparison was made between the perturbation technique and Simulink for a system 
containing single and double derivation. For the perturbation technique, Equation (38) and 
Equation (39) were used for y  and y , respectively. In Simulink, this system was created by 
using two derivation blocks in series, as shown in Figure 8.  
 

 
Figure 8: System of double derivation modeled in Simulink using the Continuous Derivative block. 
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As can be seen in Table 2, the perturbation technique and the Simulink simulation are identical 
for both 1y  and 1y . 
 
 
4.3. Testing of the Perturbation Technique for Parameter Estimation of PID Controllers 
 
To verify the theory and method derived in Section 3.5, some basic tests were performed using 
the perturbation technique. The objective of the tests was to verify whether the perturbation 
technique could be used to estimate the controller parameters for any PID-type controller during 
any time step of a nonlinear dynamic time domain simulation. Since the perturbation technique is 
intended to be implemented in FEDEM, it is vital to test and verify the method in this software 
system. Additionally, one initial test of the perturbation technique for PID controllers was 
performed in Simulink. One possible setup for a PID controller in Simulink is shown in Figure 9. 
 

 
Figure 9: PID controller modeled in Simulink. 
 
For the PID system in Simulink, the following controller parameters were used: Kp = 1, Ki = 1 
and Kd = 1. These are the values which are to be treated as the unknown parameters of the PID 
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known a priori. For the perturbation of the PID controller based on Figure 4, the following 
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j jy t= , 0 1t t=  and 0 0 0 0y t y= = = . The ode4 (Runge-Kutta) solver was used, and the 
simulation start time was set to 0.0. Three perturbations were performed (j = 1…3), and for each 
perturbation j, the fixed-step size was set to jt  and the simulation stop time to 2 jt⋅ . Based on 
Equation (46), the results from the simulation in Simulink are shown in Equation (49). 
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As revealed in Equation (49), Kp = 1, Ki = 1 and Kd = 1. These estimated values for Kp, Ki and Kd 
are identical to the actual values for the controller gains of the PID controller, indicating a 
validity of the perturbation technique for such controllers.  
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Since the initial simulation results from Simulink indicate that the perturbation technique is valid 
for PID controllers, three additional tests were performed using the perturbation technique in 
FEDEM. As previously mentioned, the objective of these tests was to establish whether the 
perturbation technique could be used to estimate the controller parameters for any PID-type 
controller during any time step of a nonlinear dynamic time domain simulation. The setup for the 
tests is shown in Figure 10. 

 
Figure 10: SDOF Mass-spring-damper system with position feedback PID controller. 
 
The setup in Figure 10 consists of a SDOF system with mass m, damping c and stiffness k. There 
is only one DOF: position r of the mass. r is the input for the controller, which is of type PID. 
Since the perturbation technique is used to estimate the parameters of the controller, the 
parameters of the mass-spring-damper system are not of relevance in this context. The numerical 
values for the controller gains were arbitrarily chosen, but were deliberately given different 
values in order to more easily distinguish between them. The values for jt  and jy  were given 
by Equation (47), with 0.1δ = . The simulation time increment simt  for all tests in this section 
was set to 0.01 seconds, i.e. 1 0.001t = . 
 
Three different tests were performed on the active mass-spring-damper system shown in Figure 
10. The first test was to insure that the perturbation technique worked for controllers of any 
possible combination of P, I and D. The next test was to insure that the perturbation technique 
worked at any time step of the dynamic time domain simulation and not only at the start-up of 
the simulation. The last test was to insure that the perturbation technique would also work for 
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Since the initial simulation results from Simulink indicate that the perturbation technique is valid 
for PID controllers, three additional tests were performed using the perturbation technique in 
FEDEM. As previously mentioned, the objective of these tests was to establish whether the 
perturbation technique could be used to estimate the controller parameters for any PID-type 
controller during any time step of a nonlinear dynamic time domain simulation. The setup for the 
tests is shown in Figure 10. 
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Table 3: Estimated controller parameters for different combinations of P, I and D controllers. 

 Kp Ki Kd 
PID 100.000000000005 19.999999999069 6.000000000000 
PI 100.000000000000 19.999999999884 0.000000000000 
PD 100.000000000000 0.000000000000 6.000000000000 
ID 0.000000000000 20.000000000000 6.000000000000 
P 100.000000000000 0.000000000000 0.000000000000 
I 0.000000000000 20.000000000000 0.000000000000 
D 0.000000000000 0.000000000000 6.000000000000 
None 0.000000000000 0.000000000000 0.000000000000 

 
The results presented in Table 3 demonstrate that the perturbation technique yields 
approximately correct controller parameter estimations for any PID-type controller. All but the 
PI and PID controller yield correct values up to the 12th decimal. For the PI and PID controller, 
the integral gain Ki is only correct up to the 9th decimal, and the proportional gain Kp for the PID 
controller is incorrect on the 12th decimal. 
 
 
4.3.2. Perturbations on PID Controller during Time Simulation with Sinusoidal Input Signal 
 
The perturbation technique should be able to yield correct estimations of the controller 
parameters for any value of the initial values y0 and u0 for the controller, i.e. yield correct 
estimations of the controller parameters at any time step of the dynamic time domain simulation. 
To verify this, the position r of the mass m in the active system in Figure 10 was given a 
prescribed sinusoidal motion of 1Hz, and the perturbation technique was performed on a PID 
controller at various time steps. The simulation ran for one second with a time increment of 0.01 
seconds. The perturbation technique was performed both at start-up and at time intervals of 0.1 
seconds, giving a total of 11 different perturbations. The gains to the PID controller were set to 

100pK = , 20iK =  and 6dK = . The input signal to the controller is shown in Figure 11. The 
results from the simulation are shown in Table 4. 
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Figure 11: Input signal to the controller. The crosses mark each time the perturbation sequence is performed.  
 
Table 4: Estimated controller parameters at different time steps for sinusoidal input signal. 

Time Kp Ki Kd 
0.0 100.000000000005 19.9999999990687 6.00000000000000 
0.1 99.999999986962 20.0000000223517 6.00000000000005 
0.2 100.000000018626 19.9999999795109 5.99999999999996 
0.3 99.999999991618 20.0000000083819 6.00000000000003 
0.4 99.999999997206 20.0000000037253 6.00000000000003 
0.5 100.000000000000 20.0000000018626 6.00000000000000 
0.6 99.999999994412 19.9999999916181 5.99999999999999 
0.7 100.000000019558 20.0000000204891 6.00000000000003 
0.8 99.999999994412 19.9999999944121 6.00000000000002 
0.9 100.000000000000 20.0000000009313 5.99999999999999 
1.0 100.000000000005 19.9999999990687 6.00000000000000 

 
As can be seen in Table 4, the perturbation technique yields correct results up to the 8th decimal 
at any time step for any of the controller parameters for this simulation. Both the Kp and Ki 
estimations are accurate up to about the 8th decimal, while the Kd estimations are accurate up to 
the 13th decimal. For the proportional gain, Kp, the perturbation technique yields the greatest 
errors at time 0.2 and 0.7 seconds, both being approximately 82.0 10−× . For the integral gain, Ki, 
the perturbation technique yields the greatest errors at time 0.1, 0.2 and 0.7 seconds, the 
difference being approximately 82.5 10−×  for 0.1 seconds and approximately 82.0 10−×  for 0.2 
and 0.7 seconds, respectively. For the derivative gain, Kd, the perturbation technique yields the 
greatest errors at time 0.1 and 0.2 seconds, being about 145 10−×  and 144 10−− × , respectively. 
 
 
4.3.3. Perturbations on PID Controller during Time Simulation with Discontinuous Sinusoidal 
Input Signal 
 
To further test the capabilities of the perturbation technique to yield correct estimations of the 
controller parameters for any value of the initial values y0 and u0 for the controller, the system 
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described in Section 4.3.2 was used with a discontinuous input signal. The sinusoidal signal was 
given a switch-to-zero-value at ±0.7, meaning it would go to zero whenever the absolute value of 
the input signal became larger than 0.7. As shown in Figure 12, this should occur at time 0.2, 0.3, 
0.7 and 0.8 seconds. All other parameters were the same as they were in Section 4.3.2. The 
results from the simulation are shown in Table 5. 
 

 
Figure 12: Input signals to the controller. The crosses mark each time the perturbation sequence is performed. The 
input signal is a discontinuous sinusoidal signal with switch-to-zero-value at ± 0.7. 
 
Table 5: Estimated controller parameters at different time steps for discontinuous sinusoidal input signal. 

Time Kp Ki Kd 
0.0 100.00000000000400 19.99999999813740 6.00000000000000 
0.1 100.00000011222400 19.99999981001020 6.00000000000060 
0.2 -0.00000000044409 0.00000000000000 0.00000000000222 
0.3 -0.00000082446987 0.00000086508578 0.00000000000040 
0.4 99.99999936856320 20.00000107102100 6.00000000000230 
0.5 99.99999999535250 20.00000215135510 6.00000000000253 
0.6 99.99999972432850 19.99999952781950 5.99999999999841 
0.7 -0.00000004406638 -0.00000004640732 -0.00000000000005 
0.8 -0.00000004406638 -0.00000004640732 -0.00000000000005 
0.9 100.00000010058300 20.00000017136340 5.99999999999991 
1.0 100.00000000017100 19.99999991711230 5.99999999999981 

 
As can be seen in Table 5, the perturbation technique yields correct results up to the 6th decimal 
at any time step for any of the controller parameters for this simulation. Both the Kp and Ki 
estimations are accurate up to about the 6th decimal, while the Kd estimations are accurate up to 
the 12th decimal. For the Kp estimation, the greatest error is encountered at 0.3 seconds, being 
approximately 78 10−− × . For the Ki estimation, the greatest error is encountered at 0.5 seconds, 
being approximately 62 10−× . For the Kd estimation, the greatest errors are encountered at 0.2, 
0.4 and 0.5 seconds, all being approximately 122.5 10−× . 
 
 

described in Section 4.3.2 was used with a discontinuous input signal. The sinusoidal signal was 
given a switch-to-zero-value at ±0.7, meaning it would go to zero whenever the absolute value of 
the input signal became larger than 0.7. As shown in Figure 12, this should occur at time 0.2, 0.3, 
0.7 and 0.8 seconds. All other parameters were the same as they were in Section 4.3.2. The 
results from the simulation are shown in Table 5. 
 

 
Figure 12: Input signals to the controller. The crosses mark each time the perturbation sequence is performed. The 
input signal is a discontinuous sinusoidal signal with switch-to-zero-value at ± 0.7. 
 
Table 5: Estimated controller parameters at different time steps for discontinuous sinusoidal input signal. 

Time Kp Ki Kd 
0.0 100.00000000000400 19.99999999813740 6.00000000000000 
0.1 100.00000011222400 19.99999981001020 6.00000000000060 
0.2 -0.00000000044409 0.00000000000000 0.00000000000222 
0.3 -0.00000082446987 0.00000086508578 0.00000000000040 
0.4 99.99999936856320 20.00000107102100 6.00000000000230 
0.5 99.99999999535250 20.00000215135510 6.00000000000253 
0.6 99.99999972432850 19.99999952781950 5.99999999999841 
0.7 -0.00000004406638 -0.00000004640732 -0.00000000000005 
0.8 -0.00000004406638 -0.00000004640732 -0.00000000000005 
0.9 100.00000010058300 20.00000017136340 5.99999999999991 
1.0 100.00000000017100 19.99999991711230 5.99999999999981 

 
As can be seen in Table 5, the perturbation technique yields correct results up to the 6th decimal 
at any time step for any of the controller parameters for this simulation. Both the Kp and Ki 
estimations are accurate up to about the 6th decimal, while the Kd estimations are accurate up to 
the 12th decimal. For the Kp estimation, the greatest error is encountered at 0.3 seconds, being 
approximately 78 10−− × . For the Ki estimation, the greatest error is encountered at 0.5 seconds, 
being approximately 62 10−× . For the Kd estimation, the greatest errors are encountered at 0.2, 
0.4 and 0.5 seconds, all being approximately 122.5 10−× . 
 
 

described in Section 4.3.2 was used with a discontinuous input signal. The sinusoidal signal was 
given a switch-to-zero-value at ±0.7, meaning it would go to zero whenever the absolute value of 
the input signal became larger than 0.7. As shown in Figure 12, this should occur at time 0.2, 0.3, 
0.7 and 0.8 seconds. All other parameters were the same as they were in Section 4.3.2. The 
results from the simulation are shown in Table 5. 
 

 
Figure 12: Input signals to the controller. The crosses mark each time the perturbation sequence is performed. The 
input signal is a discontinuous sinusoidal signal with switch-to-zero-value at ± 0.7. 
 
Table 5: Estimated controller parameters at different time steps for discontinuous sinusoidal input signal. 

Time Kp Ki Kd 
0.0 100.00000000000400 19.99999999813740 6.00000000000000 
0.1 100.00000011222400 19.99999981001020 6.00000000000060 
0.2 -0.00000000044409 0.00000000000000 0.00000000000222 
0.3 -0.00000082446987 0.00000086508578 0.00000000000040 
0.4 99.99999936856320 20.00000107102100 6.00000000000230 
0.5 99.99999999535250 20.00000215135510 6.00000000000253 
0.6 99.99999972432850 19.99999952781950 5.99999999999841 
0.7 -0.00000004406638 -0.00000004640732 -0.00000000000005 
0.8 -0.00000004406638 -0.00000004640732 -0.00000000000005 
0.9 100.00000010058300 20.00000017136340 5.99999999999991 
1.0 100.00000000017100 19.99999991711230 5.99999999999981 

 
As can be seen in Table 5, the perturbation technique yields correct results up to the 6th decimal 
at any time step for any of the controller parameters for this simulation. Both the Kp and Ki 
estimations are accurate up to about the 6th decimal, while the Kd estimations are accurate up to 
the 12th decimal. For the Kp estimation, the greatest error is encountered at 0.3 seconds, being 
approximately 78 10−− × . For the Ki estimation, the greatest error is encountered at 0.5 seconds, 
being approximately 62 10−× . For the Kd estimation, the greatest errors are encountered at 0.2, 
0.4 and 0.5 seconds, all being approximately 122.5 10−× . 
 
 

described in Section 4.3.2 was used with a discontinuous input signal. The sinusoidal signal was 
given a switch-to-zero-value at ±0.7, meaning it would go to zero whenever the absolute value of 
the input signal became larger than 0.7. As shown in Figure 12, this should occur at time 0.2, 0.3, 
0.7 and 0.8 seconds. All other parameters were the same as they were in Section 4.3.2. The 
results from the simulation are shown in Table 5. 
 

 
Figure 12: Input signals to the controller. The crosses mark each time the perturbation sequence is performed. The 
input signal is a discontinuous sinusoidal signal with switch-to-zero-value at ± 0.7. 
 
Table 5: Estimated controller parameters at different time steps for discontinuous sinusoidal input signal. 

Time Kp Ki Kd 
0.0 100.00000000000400 19.99999999813740 6.00000000000000 
0.1 100.00000011222400 19.99999981001020 6.00000000000060 
0.2 -0.00000000044409 0.00000000000000 0.00000000000222 
0.3 -0.00000082446987 0.00000086508578 0.00000000000040 
0.4 99.99999936856320 20.00000107102100 6.00000000000230 
0.5 99.99999999535250 20.00000215135510 6.00000000000253 
0.6 99.99999972432850 19.99999952781950 5.99999999999841 
0.7 -0.00000004406638 -0.00000004640732 -0.00000000000005 
0.8 -0.00000004406638 -0.00000004640732 -0.00000000000005 
0.9 100.00000010058300 20.00000017136340 5.99999999999991 
1.0 100.00000000017100 19.99999991711230 5.99999999999981 

 
As can be seen in Table 5, the perturbation technique yields correct results up to the 6th decimal 
at any time step for any of the controller parameters for this simulation. Both the Kp and Ki 
estimations are accurate up to about the 6th decimal, while the Kd estimations are accurate up to 
the 12th decimal. For the Kp estimation, the greatest error is encountered at 0.3 seconds, being 
approximately 78 10−− × . For the Ki estimation, the greatest error is encountered at 0.5 seconds, 
being approximately 62 10−× . For the Kd estimation, the greatest errors are encountered at 0.2, 
0.4 and 0.5 seconds, all being approximately 122.5 10−× . 
 
 



5. Discussion  
 
The main motivation behind this work is to make engineers working in an FE environment able 
to perform accurate modal analyses of active mechanisms. Today, FEDEM has the capability of 
performing accurate time domain simulations by using the controllers to drive the FE model with 
applied loads based on the given controller algorithms. These controller algorithms can be 
created either in FEDEM’s Control Editor or in an external software system, such as for instance 
Simulink. Therefore, the controller algorithms are not required to be known for the engineer 
working in the FE environment. As stated in the introduction, a major obstacle for modal 
analysis of the closed-loop system is that in free vibration analysis all loads are set to zero, 
thereby resulting in a decoupling of the controller and mechanical model. By identifying the 
controller parameters, the controller’s mechanically equivalent properties can be added to the FE 
model for the modal analyses, thus including both controller and mechanical properties and 
hence improving the accuracy of the modal analysis. The method derived in this work is intended 
to be implemented in FEDEM, though as presented here, it is not dependent on any particular 
software system. 
 
The results presented in Sections 4.1 and 4.2 show that the perturbation technique yields correct 
estimations for systems containing single, double and triple integration, as well as single and 
double derivation compared to results derived using Simulink. This indicates validity of the 
perturbation technique for such systems. Controllers containing either triple integration or double 
derivation are not a very common type of controllers; however, in this work they do serve the 
purpose of testing the robustness of the perturbation technique, which only strengthens the 
validity of the derived method for its intended use. 
 
The validity of the perturbation technique for PID controllers was briefly tested in Simulink. The 
results from that initial test demonstrated that the perturbation technique is able to correctly 
estimate such controllers in Simulink. More thorough tests of the technique were conducted in 
FEDEM, and as can be seen from the results presented in Section 4.3, the perturbation technique 
yields estimations for controller parameters with a highly satisfactory accuracy for any PID-type 
controller during any time step of a nonlinear dynamic time domain simulation in FEDEM. The 
greatest estimation error in any of the tests still yielded correct results up to the sixth decimal. 
This should be more than sufficient since a requirement for satisfactory accuracy should be 
correct results up to the second decimal with regard to the intended usage of the perturbation 
technique. Hence, for PID-type controllers, the derived method should be able to provide 
accurate estimations of the controller parameters. 
 
Still, one note about the perturbation technique should be made. There has to be a correlation 
between the state variables of the perturbed system and those used in the perturbation technique. 
For instance, it can be tempting to believe that the perturbation technique is able to accurately 
predict the effective mass, stiffness and damping values for an active system containing a 
position feedback PID controller by perturbing the active system and deriving the system 
parameters only with respect to mass, stiffness and damping, and not including the integral gain 
from the controller. By ignoring some of the state variables of the perturbed system, critical and 
vital system information can either be lost or estimated to incorrect values, rendering the 
technique virtually useless for its intended use. However, when used properly, the technique has 
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the potential of being of great assistance in identifying the unknown parameters of a controller, 
such as when performing modal analysis of active mechanisms in an FE environment.  
 
 
6. Conclusion 
 
In this paper, a method for controller parameter estimation by the use of perturbations has been 
presented. The theory for perturbation of systems containing single, double or triple integral 
functions, single or double derivative functions or a combination of proportional, integral and 
derivative functions has been derived and tested using commercial software systems. The results 
from the tests reveal that the derived theory works well for all the mentioned controller variants.  
 
If used properly, the presented technique, with its capabilities of accurate controller parameter 
estimation, has the potential of being a powerful tool for engineers who are conducting modal 
analysis of active flexible multibody systems in a finite element environment.  
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