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Abstract
This thesis deals with the development of a new empirical model of the hydrodynamic

loads associated with vortex-induced vibrations (VIV) of slender circular cylinders. The
most commonly used VIV analysis tools operate in the frequency domain, and are unable
to account for non-linear structural effects. In addition, these methods cannot handle time
varying flows, and interaction with other loads is difficult to account for.

To dispose of the limitations associated with frequency domain analyses, a new method
for time domain simulation of VIV is proposed in this work. Different load formulations
are explored, and the final version consists of the well-known Morison’s equation for in-
ertia and drag forces, plus an additional term that models the effect of vortex shedding.
A key component is a synchronization model which simulates how the vortex shedding
reacts to structure motion to obtain lock-in. To evaluate the hydrodynamic load model,
numerical simulations of a rigid cylinder subjected to an incoming flow and forced cross-
flow oscillations are performed. Comparison with published experimental results shows
that the proposed model reproduces the basic behavior of the fluctuating lift force.

To predict VIV of flexible cylinders, the hydrodynamic load model is combined with a
finite element structural model. A linear beam model is utilized to simulate VIV of a riser
in uniform and sheared stationary flow. Fatigue damage is calculated based on rainflow
counting and Miner-Palmgren summation, and comparison with experimental data shows
reasonable agreement. The uncertainties associated with VIV fatigue damage are however
significant, and safety factors are necessary in some cases to obtain conservative results.

The proposed model has no restrictions on the time variability of the incoming flow,
and through comparison with experimental data, it is demonstrated that the model accu-
rately predicts the unstable VIV of a flexible cylinder subjected to a sinusoidal oscillating
flow at two different KC-numbers. In the high KC-number case, the VIV response is in-
termittent, with vibrations continuously building up and dying out. It is also shown that
multi-mode response occurs in oscillating flow when the reduced velocity is above a cer-
tain level, and the cylinder mass ratio is found to be important for the mode participation.

Finally, the hydrodynamic load model is implemented in a non-linear finite element
program for dynamic analysis of slender structures. This is used to simulate VIV of a
truncated model scale steel catenary riser in two different conditions: uniform stationary
flow and oscillating relative flow caused by prescribed top-end motion. The predicted
strains show good agreement with experiments, although some discrepancies are seen.
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Chapter 1

Introduction

1.1 Background and motivation
Slender cylindrical structures with circular cross section, such as risers, pipelines, moor-
ing lines and power cables, may experience vortex-induced vibrations (VIV) when ex-
posed to incoming currents [1, 2]. These vibrations occur as a result of the oscillating
drag and lift forces caused by flow separation and vortex shedding. When VIV occurs, the
material is subjected to cyclic bending stresses, causing crack growth over time, which
eventually may lead to fracture. To ensure safe operation, engineers need to predict the
time varying stresses and the associated fatigue damage caused by VIV. In addition, the
vibrations lead to an increase in the mean drag forces, referred to as drag amplification
[3], causing enlarged static displacements and tensile forces.

Figure 1.1: Vortex-induced vibration of riser [4].
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INTRODUCTION

VIV is an example of fluid-structure interaction. The vortex shedding triggers the
vibration, while the cylinder motion alters the flow, thus affecting the fluid forces. This
mix of fluid and structural mechanics makes VIV an interesting topic from an academic
point of view. In addition, the flow around circular cylinders is complicated as a result of
unsteady separation and turbulence. VIV appears in a long list of engineering applications,
and as a result of the combined interest from academia and the industry, the phenomenon
has been subjected to extensive research, as illustrated in several review articles [5–7]. The
oil and gas industry is continuously setting new records in water depth, and presently the
world’s deepest production and drilling platform is at approximately 2 450 meters water
depth [8]. Because wave loads decrease quickly with depth, current loads (i.e. vortex
shedding) may be the most important fatigue design issue for risers in such deep waters.

The flow around a circular cylinder is governed by the Navier-Stokes equation, which
for practical cases can only be solved numerically, at a high computational cost. There-
fore, much of the research on the topic has been experimental. Based on the knowledge
gained from experiments, several researchers have proposed different empirical models
to predict VIV. In the industry, the most common VIV prediction programs are SHEAR7
[9], VIVANA [10] and VIVA [11]. Although these programs differ in several ways, they
all operate in the frequency domain, and use hydrodynamic coefficients that depend on
dimensionless frequency and amplitude parameters. This means that the structure needs
to be linearized, and stationary flow conditions are required.

Due to the linearization, cases involving non-linear structural effects cannot be han-
dled using frequency domain methods. This is not a problem for cases involving simple
geometries and environmental conditions, such as a vertical riser in uniform incoming
flow. However, other cases may include important non-linear effects, such as time varying
boundary conditions (e.g. seabed contact), large displacements, tension variations, stick-
slip behavior in flexible pipes and coupling between lateral and axial vibrations. Another
issue with working in the frequency domain is that the response at each frequency is con-
sidered individually, and interaction between different frequencies is difficult to account
for. This may be a problem for structures in sheared current, because a frequency domain
procedure will find several possible response frequencies, and it is difficult to say if these
frequencies will act simultaneously, consecutively, or in some alternative fashion [12].
Furthermore, it is difficult to account for interaction with other dynamic loads.

To account for non-linear effects, time-varying flows, interaction between different
frequencies and other external loads, one can perform a step-by-step time integration of
the equation of motion, i.e. time domain analysis. With the available finite element tech-
nology and modern computers, this is not a problem, and time domain simulation of risers
subjected to wave loads based on Morison’s equation is standard engineering procedure.
However, because VIV is analyzed in frequency domain, this must be done separately,
and the fatigue contributions from waves and current (VIV) are then added together [13].
This is unphysical, as the influence from waves on the vortex shedding is disregarded. To
capture potentially important interaction effects, waves and current should be considered

2



1.2 Objectives

simultaneously, in one single time domain simulation. Replacing two different simula-
tions with one would also simplify the calculation procedure.

An important feature of VIV is synchronization, or lock-in. For a stationary cylinder,
the vortex shedding frequency increases linearly with the flow velocity. However, cylinder
vibration influences the vortex shedding in such a way that it deviates from the linear rela-
tionship and synchronizes with the cylinder motion (i.e. their frequencies become equal).
Most existing VIV prediction methods rely on empirical force coefficients which are ob-
tained at a constant flow velocity, vibration frequency and amplitude. Such experiments
only provide information on how the fluid force behaves under given constant conditions.
As a result of this, traditional VIV prediction tools distinguish between lock-in and non-
lock-in states, but they are unable to describe the process of moving from one state to the
other. It seems reasonable to believe that, to successfully predict VIV in oscillating flows,
it is necessary to realistically model the synchronization process.

1.2 Objectives

The purpose of this work is to develop a simplified empirical model of the hydrodynamic
loads relevant for vortex-induced vibrations, which can be applied in a time domain simu-
lation. The model should be easy to use, computationally efficient, and provide reasonably
accurate results. Furthermore, the model should be suited for both stationary and time-
varying flows. It is also important that the model contains as few empirical parameters as
possible, and the necessary parameters should be related to the actual physics in a clear
way. Too many parameters will make the model difficult to use and understand, and it can
also be hard to find suitable parameter values.

This thesis focuses on cross-flow VIV, but combined in-line and cross-flow vibrations
are considered in paper II. Prediction of pure in-line VIV (occurring at low reduced veloc-
ities) is considered outside the scope of this work. The overall objective will be completed
through a number of subgoals, as stated below:

• Propose a hydrodynamic damping model sufficiently accurate to represent the neg-
ative energy transfer during VIV. To be applicable in a time domain simulation, the
damping formulation should be independent of frequency.

• Develop a time domain description of the hydrodynamic force associated with vor-
tex shedding. This requires a model of how the vortex shedding reacts to cylinder
motion, i.e. a synchronization model.

• Test and validate the proposed hydrodynamic load model against published experi-
mental results in terms of added mass, lift coefficient in phase with cylinder velocity
(excitation) and mean drag.

3
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• Implement the hydrodynamic load model in a finite element program for structural
analysis.

• Perform VIV simulations using the combined structural and hydrodynamic model.
Different structures will be considered (straight and curved risers) and different flow
conditions shall be tested (uniform, sheared, stationary, oscillating). The accuracy
will be documented through comparison with experiments.

• Investigate the accuracy of the model with respect to fatigue damage prediction, the
associated uncertainties and the importance of higher harmonics.

1.3 Thesis organization
This thesis is written as a collection of articles, which are appended in full-length after
the main section. These articles represent the actual research contribution from this work,
while the main section is meant to provide an overview of vortex-induced vibrations and
previous research in the field, as well as a summary of the present work. The remaining
part of the thesis is organized as follows:

Ch. 2 Contains a review of some of the previous work on vortex shedding and
vortex-induced vibrations. This chapter also serves as an introduction to the
topic.

Ch. 3 Provides an extended summary of the four research papers. This should give
the reader an overview, but it is recommended to study the full-length papers
to get a thorough understanding of the work.

Ch. 4 Presents conclusions and suggestions for future work. A list of original con-
tributions is given, and the limitations of this research are discussed.

4



Chapter 2

Fundamentals of vortex-induced
vibrations
This chapter has two objectives. First of all, it provides a literature survey of some of the
previous work on vortex-induced vibrations. As the topic has been subjected to exten-
sive research for more than half a century, the present chapter will reflect only a small
fraction of the total available literature. The second objective is to provide some basic
understanding to readers who are not already familiar with vortex-induced vibrations.

2.1 Flow around a circular cylinder in steady flow
This section is based on the book by Sumer and Fredsøe [14]. Consider a smooth station-
ary circular cylinder, positioned in a steady incoming flow. When fluid is in contact with
a solid body, the no-slip condition must be satisfied at all times, meaning that the flow ve-
locity is zero at the cylinder surface. This causes the formation of a thin boundary layer,
characterized by a large velocity gradient in the radial direction. Viscous shear forces de-
velop as a result of such velocity gradients. The Reynolds number1 gives the ratio of the
inertial forces to the viscous forces, which is defined as:

Re =
UD

ν
, (2.1)

where U is the velocity of the incoming undisturbed flow, D is the cylinder diameter and
ν is the kinematic viscosity of the fluid. When Re is very low (creeping flow), viscous
forces dominate. In this flow regime, no separation occurs, and the flow remains attached
to the cylinder all the way around.

When Re ≈ 5, the flow begins to separate from the cylinder and forms a free shear
layer, as shown in figure 2.1. The shear layers roll up into vortices which for 5 < Re < 40
remain stable behind the cylinder. For Re ≈ 40, an instability occurs, causing one vor-
tex to grow larger than the other. The larger vortex draws the other one across the wake,
which cuts the large vortex free from the boundary layer. The large vortex is then con-
vected downstream by the flow, and a new vortex starts to form in its place. The previ-
ously smaller vortex eventually grows large enough to draw the new vortex across the

1Osborne Reynolds (1842 - 1912), British engineer and scientist.
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FUNDAMENTALS OF VORTEX-INDUCED VIBRATIONS

stagnation point

separation point

wake

boundary layer

shear layer

Figure 2.1: Flow around a stationary circular cylinder.

wake, and the process repeats itself [15]. This alternating vortex shedding causes the
appearance of two rows of vortices, often referred to as a von Kármán2 vortex street.
For 40 < Re < 200, the vortex street is laminar and two-dimensional, meaning that
the vortex shedding is correlated along the length of the cylinder [16]. As the Reynolds
number is increased above 200, transition to turbulence occurs in the wake [17] and
when Re reaches 300, the wake is completely turbulent. The vortex shedding becomes
three-dimensional, and vortices are shed in distinct cells in the spanwise direction. For
300 < Re < 3 × 105 (known as the subcritical regime) the boundary layer remains lam-
inar. For higher Reynolds numbers, transition to turbulence in the boundary layer starts
to occur. In the range 3 × 105 < Re < 3.5 × 105 (called the critical flow regime),
the boundary layer becomes turbulent at the separation point, but surprisingly only at
one side of the cylinder. The flow at the other separation point remains laminar, caus-
ing an asymmetry in the flow and a non-zero mean lift force. If the Reynolds number is
increased further, the boundary layer separation is turbulent on both sides of the cylin-
der. For 3.5 × 105 < Re < 1.5 × 106 (the supercritical regime), the boundary layer is
not yet completely turbulent, and the transition point is located somewhere between the
stagnation point and the separation point. When 1.5× 106 < Re < 4.5× 106 (the upper-
transitional regime), the boundary layer at one side of the cylinder is completely turbulent,
while the other side is still partly laminar. When Re > 4.5×106 (the transcritical regime),
the boundary layer is turbulent everywhere.

Vortex shedding will occur behind cylinders of any size, provided that the Reynolds
number is larger than approximately 40. Figure 2.2 shows a satellite photo of Alexander
Selkirk Island, located in the southern Pacific Ocean, showing vortex formation in wind
driven clouds. The diameter of the island is about 1.5 km, which means the Reynolds num-
ber may easily be larger than 1× 108. When comparing cylinders of different size and/or
flows with different velocity, a helpful dimensionless number is the Strouhal3 number:

2Theodore von Kármán (1881 - 1963), Hungarian-American engineer and scientist.
3Vincenc Strouhal (1850 - 1922), Czech physicist.
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2.1 Flow around a circular cylinder in steady flow

Figure 2.2: Satellite image showing vortex shedding in the clouds around Alexander Selkirk Island
in the southern Pacific Ocean [18].

St =
fsD

U
. (2.2)

Here, fs is the vortex shedding frequency for the stationary cylinder, which is also referred
to as the Strouhal frequency. A practical consequence of equation (2.2), is that the vortex
shedding frequency for a fixed cylinder of arbitrary diameter and incoming flow veloc-
ity may easily be predicted, provided that the Strouhal number is known. Although the
Strouhal number varies with Reynolds number and the surface roughness of the cylinder
[19], it is virtually constant over a wide range of Re. For instance, in the entire subcritical
range, St ≈ 0.2 [20]. For a smooth cylinder in the critical and supercritical regime, St in-
creases to about 0.45. When Re is increased into the transcritical range, the Strouhal num-
ber drops again to around 0.25-0.3. Note that the vortex shedding process is not always
consistent with a narrow-banded spectrum and a well-defined dominating frequency, but
may consist of several frequency components [21]. In the sub- and supercritical regime,
the frequency spectrum is narrow-banded, corresponding to a well-organized, regular vor-
tex shedding. However, as Re is increased into the upper-transitional range, the vortex
shedding becomes irregular and disordered. When Re goes into the transcritical range,
the narrow-banded regular vortex shedding is established again.

The flow around the cylinder causes varying fluid pressure and shear stress, and the
resulting fluid force acting on the cylinder can be found by integrating the contributions
around the circumference. The force component in the direction of the flow is called drag,
or in-line fluid force (see figure 2.3). The force component normal to the flow is called
lift, or cross-flow fluid force. The forces are commonly expressed as dimensionless drag
and lift coefficients, defined as:

Cx =
Fx

1
2
ρDU2

and Cy =
Fy

1
2
ρDU2

. (2.3)

7



FUNDAMENTALS OF VORTEX-INDUCED VIBRATIONS

Here, x and y denotes the in-line and cross-flow direction respectively, while ρ is the fluid
density. Cx is the drag coefficient and Fx is the in-line fluid force per unit length, while Cy

is the lift coefficient and Fy the cross-flow fluid force per unit length. The drag coefficient
has a significant mean value, which is denoted C̄x. This is mainly due to the low pressure
behind the cylinder (i.e. in the wake region). Because the width of the wake depends on the
Reynolds number and surface roughness, so does C̄x. For a smooth cylinder, C̄x = 1.2 in
the subcritical regime. In the supercritical regime, the separation points move to the rear of
the cylinder, causing a narrower wake and a large drop in C̄x called the drag crisis. There
is also a fluctuating component of the drag force, which oscillates at a frequency of 2fs,
i.e. twice the vortex shedding frequency. The fluctuating drag force is small compared to
the mean drag and the fluctuating lift [22].

x

y

U

Fy (Lift)

Fx (Drag)

Figure 2.3: Cylinder with incoming flow, showing the lift and drag forces and coordinate system.

The mean value of the lift is zero due to symmetry (except in the critical flow regime),
however the instantaneous fluctuating lift is significant and oscillates with the same fre-
quency as the vortex shedding. The root-mean-square of the lift coefficient, (C2

y )1/2, varies
strongly with the Reynolds number. In the upper end of the subcritical range, (C2

y )1/2 is
relatively large and around 0.5 [23]. It drops considerably in the critical and supercritical
range, which is related to the changes in the separation point and the correlation length.
The lift force is only approximately sinusoidal, and the amplitude can vary from one pe-
riod to another [24].

The influence of cylinder surface roughness on the vortex shedding frequency was
investigated by Achenbach and Heinecke [19]. They used cylinders with various degrees
of surface roughness and observed a clear effect on the Strouhal number. Compared with
a smooth cylinder, transition to turbulence occurs at a lower Reynolds number. For cylin-
ders with ks/D > 3 × 10−3 (ks/D is the equivalent sand-grain roughness), the critical,
supercritical and upper transitional flow regime merge into a narrow region, and the flow

8



2.2 Forced oscillation of cylinders in steady flow

switches directly to transcritical as Re is increased. This causes the previously described
drag crisis to become less pronounced. Furthermore, the mean drag coefficient in the tran-
scritical range becomes higher as the surface roughness is increased. Zhou et al. [25] mea-
sured the lift and drag forces on circular cylinders over the range 6×103 < Re < 8×104,
and found that the surface roughness has an effect on both the lift and drag coefficient.

2.2 Forced oscillation of cylinders in steady flow
Bishop and Hassan [26] were the first researchers to measure the fluid forces on a circular
cylinder oscillating in the cross-flow direction with different (controlled) amplitudes and
frequencies. They found that, when the driving frequency of the cylinder is sufficiently
far from fs, the lift force oscillates at the expected Strouhal frequency. However, when
the driving frequency approaches fs, the force becomes synchronized with the cylinder
motion, meaning that the lift force starts oscillating with the driving frequency of the
cylinder, and the Strouhal frequency disappears. Interestingly, this synchronization occurs
over a range of oscillation frequencies.

An important consequence of synchronization is that the spanwise correlation is much
greater for a vibrating cylinder than a stationary cylinder. The spanwise correlation is
quantified in terms of the correlation length, which is defined by the integral

Lcorr =

∫ ∞

0

R(z)dz, (2.4)

where R(z) is the correlation coefficient for e.g. the fluctuating pressure along the cylin-
der. This can be found experimentally as:

R(z) =
p′(ζ)p′(ζ + z)√
p′2(ζ)

√
p′2(ζ + z)

, (2.5)

where ζ is the spanwise location (treated as a variable in the expression above), z is the
separation between two measurement points, and p′ is the fluctuating fluid pressure, or
some other relevant unsteady quantity. Novak and Tanaka [27] have shown experimentally
that the correlation length increases from about 3.5D to more than 40D when the cylinder
is vibrating, and the large increase begins at vibration amplitudes as small as 5 % of the
diameter. The increased correlation means a larger net force along the cylinder, which is
important for the resulting amplitude of a freely vibrating cylinder.

Sarpkaya [28] did experiments with forced cross-flow vibrations, and measured the
mean drag and fluctuating lift force. He found that the mean drag coefficient increases
significantly when the cylinder is oscillating, and proposed an approximate expression
based on the projected area of the cylinder:

9



FUNDAMENTALS OF VORTEX-INDUCED VIBRATIONS

C̄x = C̄x,0

(
1 + 2

y0

D

)
, (2.6)

where C̄x,0 is the drag coefficient for the stationary cylinder and y0 is the cross-flow oscil-
lation amplitude. Sarpkaya decomposed the lift force into a component in phase with the
cylinder velocity (excitation/damping) and a component in phase with the cylinder accel-
eration (added mass). He then showed how the data could be used to predict the vibration
amplitude of an elastically mounted freely vibrating cylinder.

Williamson and Roshko [29] also performed experiments with forced cross-flow os-
cillations, and used flow visualization to construct a map of the different vortex shedding
regimes. They found several distinct vortex modes, such as 2S, 2P and P+S. 2S means
two single vortices are shed every cycle, which is the von Kármán vortex street found for
stationary cylinders. 2P means two pairs of vortices each cycle, while in the P+S regime,
one pair and a single vortex is shed every cycle. They noticed that the sudden change in
the lift force phase occurring around the Strouhal frequency is caused by a transition from
the 2S to the 2P mode.

Gopalkrishnan [30] studied both sinusoidal and beating oscillation in the cross-flow
direction. His contour plots of fluid excitation, added mass and mean drag coefficients
have been widely used for prediction of VIV. Moe and Wu [31] also did experiments with
forced cross-flow oscillation, but made the cylinder spring supported in the in-line direc-
tion. They found that the range of synchronization was wider when the cylinder vibrated
in the in-line direction. In addition, the in-line motion caused a lift force component os-
cillating at three times the cross-flow motion frequency.

Morse and Williamson [32] did pure cross-flow forced oscillation experiments, mea-
suring the fluid forces and using particle image velocimetry (PIV) for flow visualization.
They used a very high resolution in the amplitude-frequency plane, enabling them to
clearly identify the boundaries between different vortex modes. A new mode called 2PO

was discovered, with two pairs of vortices formed during each cycle, where the second
vortex in each pair is much weaker than the other. Two sets of experiments were per-
formed, one at Re = 4 000 and one at Re = 12 000. The results were similar, except
that the region where energy is transferred from the fluid to the cylinder (also known as
the excitation region) is stretched towards higher amplitude when the Reynolds number
is increased.

Aronsen [33] measured the forces on a cylinder with pure in-line motion and pre-
sented plots of the in-line excitation coefficient, added mass and mean drag as a function
of vibration amplitude and frequency. He also performed forced oscillation tests with
combined cross-flow and in-line oscillation, and found that the hydrodynamic forces are
strongly dependent on the phase difference between the cross-flow and in-line motion. In
addition, he found a significant higher harmonic component in the lift force at three times
the cross-flow oscillation frequency. Dahl [34] established a large database for combined
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in-line and cross-flow vibrations. He confirmed the existence of the 3rd harmonic lift
force, and found that it increases almost linearly with the in-line vibration amplitude.

In most of the work done on forced oscillations, the cylinder motion was purely sinu-
soidal. However, when VIV is observed on flexible cylinders, the motion is not perfectly
sinusoidal, but may include amplitude variations and multiple frequency components.
This motivated the research by Aglen [35] and Yin [36] who did forced vibration experi-
ments with realistic cylinder trajectories. More specifically, the prescribed motion used in
their experiments were taken directly from VIV tests of flexible cylinders. These studies
showed that the true trajectory of the cylinder may cause hydrodynamic forces signifi-
cantly different than observed in experiments with sinusoidal motion.

To summarize, some of the most important effects of cylinder oscillation are:

1. The vortex shedding synchronizes with the motion (i.e. the frequencies become
equal) if the frequency of motion is close to the natural Strouhal frequency.

2. The spanwise correlation of the flow increases greatly, even for small vibration
amplitudes.

3. The mean drag is amplified.

4. The synchronization range and the hydrodynamic coefficients are affected by in-
line vibration.

5. In-line vibration causes a third harmonic component in the lift force.

6. Realistic cylinder trajectories (from flexible cylinder tests) give different hydrody-
namic forces than harmonic motion.

2.3 VIV of elastically mounted rigid cylinders
If a rigid cylinder in a flow is mounted on springs or other types of elastic support, it will
respond to the vortex shedding forces by oscillating. This oscillating motion is referred to
as vortex-induced vibrations, or VIV. Depending on the supporting structure, the cylinder
can be restrained to move only in the cross-flow or in-line direction, or it can move in
both. These different set ups are shown in figure 2.4. If the supporting structure acts as a
linear spring and damper, the equation of motion for the cross-flow displacement y(t) is:

mÿ + cẏ + ky = Fy, (2.7)

where m is the cylinder mass, c is the structural damping coefficient and k is the spring
stiffness. In general, the fluid force term Fy may be decomposed into a component in
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phase with the cylinder velocity and a component in phase with the cylinder acceleration.
The first will act as excitation or damping, meaning that it will supply or extract energy
from the oscillation. The component in phase with the cylinder acceleration does not con-
tribute to the energy transfer, but acts as an inertia force, and may therefore be expressed
as an added mass. Denoting the added mass byma, the natural frequency of the oscillating
system can be written as:

ωn =

√
k

m+ma

. (2.8)

The added mass is strongly dependent on the non-dimensional oscillation frequency, f̂ =
foscD/U and the amplitude ratio, y0/D. This causes the natural frequency to change,
which means it is possible to have resonance over a range of excitation frequencies, or
flow velocities. This was verified experimentally by Vikestad et al. [37], who showed that
the vibration frequency is truly a natural frequency when the measured added mass is
taken into account.

U

a) b) c)

Figure 2.4: Typical VIV experiments with rigid cylinders: a) Cross-flow, b) In-line, c) Combined
in-line and cross-flow.

The experiment by Feng [38] serves as a good illustration of pure cross-flow VIV. He
studied how the vortex shedding frequency, vibration frequency and amplitude of a spring
mounted cylinder varied as a function of the reduced velocity, Vr = U/(Dfn), where
fn is the natural frequency of the cylinder. The experiment was conducted in air, which
means the added mass was negligible compared to the actual mass of the cylinder. As a
result of this, the natural frequency of the cylinder was virtually constant. He found that
for low flow velocities, the cylinder did not vibrate, and the vortex shedding frequency
followed the Strouhal relationship, fs = StU/D. When the reduced velocity is increased
to 5, the vortex shedding frequency coincides with the natural frequency of the cylinder,
and the cylinder starts to vibrate. Interestingly, when Vr is increased above 5, the vortex
shedding frequency no longer follows the Strouhal relationship. Instead, it locks on to
the natural frequency of the cylinder, and remains constant until Vr ≈ 7. This is a result
of the synchronization between the vortex shedding and the cylinder motion, which was
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2.3 VIV of elastically mounted rigid cylinders

discussed in section 2.2. When Vr is increased beyond 7, the vortices are no longer able
to lock on to the natural frequency of the cylinder. The cylinder oscillation ceases, and the
vortex shedding starts to follow the Strouhal relationship again. Regarding the vibration
amplitude of the cylinder, this is large when the frequency is close to fn, i.e. for 5 < Vr <
7.

An important difference between air and water is the density. For water, this is so
high that the added mass of the cylinder contributes significantly to the total oscillating
mass. This affects the natural frequency of the cylinder, causing an extension of the syn-
chronization range. The mass ratio is defined as m∗ = m/(0.25ρπD2), which is the ratio
between the cylinder mass and the mass of the displaced fluid. Khalak and Williamson
[39] did experiments with pure cross-flow VIV and found that the synchronization range
is significantly larger when m∗ is reduced. They also show that the peak amplitude is in-
dependent of m∗, but varies with m∗ζ , where ζ is the structural damping ratio. Govardhan
and Williamson [40] found that for mass ratios below a critical value m∗crit = 0.54, the
synchronization region extends to infinitely high frequency, and large amplitude vibra-
tions persists for all flow velocities. The resulting frequency and amplitude of a spring
mounted cylinder with cross-flow motion is illustrated in figure 2.5, which also shows the
effect of changing the mass ratio.

VIV of a rigid cylinder with two degrees of freedom (2-DOF, see figure 2.4c) was
studied by Sarpkaya [41] who found that the cylinder response was influenced by the
ratio between the in-line and cross-flow natural frequency. Jauvtis and Williamson [42]
also did experiments with two degrees of freedom, and focused on the importance of the
mass ratio. They found that the in-line motion affects the cross-flow motion very little for
mass ratios higher than 6. However, for lower m∗ , the maximum cross-flow amplitude
increases significantly. The observed high-amplitude oscillations were associated with a
new wake mode named 3T, where a triplet of vortices are formed each half cycle. Dahl et
al. [43] did similar 2-DOF experiments, and varied the ratio between the in-line and cross-
flow natural frequency. From this study it is apparent that changing the frequency ratio
causes a change in the cylinder trajectory, which in turn alters the flow and corresponding
forces.

Because the Reynolds number is important for the flow around a stationary cylinder,
it also influences the VIV response of elastically mounted rigid cylinders. Based on a
compilation of experiments, Govardhan and Williamson [44] found that the maximum
cross-flow amplitude could be expressed as (y0/D)max = log(0.41Re0.36) in the range
500 < Re < 33 000. Blevins and Coughran [45] did experiments with Re up to 150 000,
and their results show a similar trend, meaning that the maximum cross-flow amplitude
increases as a function of the Reynolds number. Dahl et al. [46] did 2-DOF experiments at
supercritical Reynolds numbers between 320 000 and 710 000 using a roughened cylinder.
Their results show that the maximum amplitude for the rough cylinder at supercritical
Re is reduced compared to a smooth cylinder in the subcritical range. Raghavan and
Bernitsas [47] also investigated the Reynolds number effect on VIV, and found that the
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Figure 2.5: Frequency and amplitude for cross-flow VIV of rigid cylinder with different mass ratio
according to Govardhan and Williamson [40]. The frequency is normalized with respect to the
natural frequency in still-water. The Strouhal frequency fs = StU/D is shown for reference.

synchronization range and the maximum amplitude increases with Re. The experiments
were conducted in the subcritical range, and they observed amplitudes as high as y0/D =
1.9 for Re ≈ 1× 105.

Although it is well known that the surface roughness of the cylinder has an effect on
the fluid flow, there has been a limited amount of research on how the surface roughness
affects the VIV response of elastically mounted rigid cylinders. Kiu et al. [48] ran ex-
periments with an elastically mounted rigid cylinder in the subcritical range of Reynolds
numbers, and found that the maximum response amplitude and the mean drag coefficient
decreased with increasing roughness. They also found that the onset of lock-in was de-
layed for the rougher cylinders, and the width of the lock-in range was reduced. In another
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2.4 VIV of flexible cylinders

study, Yin et al. [49] made a compilation of several experiments with different Reynolds
number and surface roughness, and confirmed the importance of the surface roughness in
the critical and post-critical regime.

The behavior of elastically mounted rigid cylinders subjected to a constant incoming flow
can be summarized as follows:

1. The vortex shedding may lock on to the natural frequency of the cylinder, causing
large amplitude vibrations over a wide range of reduced velocities.

2. The maximum vibration amplitude depends on the combined structural mass and
damping parameter, m∗ζ .

3. The width of the synchronization range increases with decreasing mass ratio.

4. For low mass ratio cylinders, in-line vibrations have an effect on the cross-flow
response.

5. Reynolds number and surface roughness has an effect on the maximum vibration
amplitude and the lock-in range.

2.4 VIV of flexible cylinders
A starting point for understanding the behavior of flexible cylinders is the dynamic equi-
librium equation. As illustrated in figure 2.6, vertical equilibrium of a small segment of
length dz yields the following equation:

T
∂2u

∂z2
+
∂Q

∂z
+ q(z, t) = m

∂2u

∂t2
. (2.9)

Here, u is the lateral displacement of the cylinder, T is the tension, Q is the internal shear
force, q is the external lateral load and m is the mass per unit length of the cylinder. The
shear force can be expressed through the bending moment M , which in turn is related to
the bending stiffness EI and the curvature of the cylinder:

Q =
∂M

∂z
=

∂

∂z
(−EI ∂

2u

∂z2
). (2.10)

Assuming EI is constant, the dynamic equilibrium equation for the cylinder is obtained
by inserting equation (2.10) into equation (2.9):

m
∂2u

∂t2
− T ∂

2u

∂z2
+ EI

∂4u

∂z4
= q(z, t). (2.11)
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Note that equation (2.11) is only valid for small displacements, and shear deformations are
neglected. If the tension T is constant, it can be shown from the above equation, that when
the cylinder vibrates freely, i.e. when q(z, t) = 0, the solution for the lateral displacement
can be written as:

u(z, t) = ψ(z)Y (t) = u0 sin
(nπz
L

)
sinωnt, where n = 1, 2, ... (2.12)

Here it has been assumed that the cylinder is pinned, meaning that the displacement and
curvature are zero in both ends. The first part of the solution, which describes the spatial
variation of the displacement, is called the mode-shape. The first 5 mode-shapes, i.e. for
n = 1−5 are shown in figure 2.7. For each mode, there is an associated natural frequency,
given as:

ωn =
nπ

L

√
T

m
+
(nπ
L

)2EI

m
. (2.13)

From equation (2.13) it is seen that the natural frequency increases with n, meaning that
mode 1 has the lowest natural frequency. Both the tension and the bending stiffness con-
tributes to the natural frequency, and the bending stiffness becomes more important when
n is large.

T

L

α1
α2

T

T

dz
Q

Q+ ∂Q
∂z dz

α2 − α1 = ∂
∂z

(
∂u
∂z

)
dz

z

u

Figure 2.6: Flexible cylinder and internal forces acting on a small segment dz in a displaced
configuration.

To illustrate how a flexible cylinder behaves when subjected to VIV, consider a cylin-
der in a uniform incoming flow. Because there is an infinite number of natural frequen-
cies, the vortex shedding may in principle lock on to any of these. Now, assume the flow
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Figure 2.7: The first 5 mode-shapes for a straight and uniform flexible cylinder with pinned ends.

velocity increases slowly from zero. At first, the vortex shedding frequency follows the
Strouhal relationship, and the cylinder vibrates very little. When the flow velocity is suffi-
ciently high, the vortex shedding frequency comes close to the first natural frequency, ω1,
and locks on to this. Large amplitude vibrations in mode 1 will then quickly develop. As
the flow velocity increases further, the vortex shedding are no longer able to synchronize
with ω1, but ω2 may possibly be within the synchronization range. If this is so, the vortex
shedding frequency will jump to a value close to ω2, and excite mode 2 vibrations. In this
way, the vortex shedding may always find a new natural frequency to lock on to when
the flow velocity is increased, and large amplitude vibrations may therefore continue to
exist for all higher velocities. Figure 2.8 illustrates how the vortex shedding frequency
increases as a function of flow velocity, and shows how the natural frequencies of the
structure may fall within the synchronization range.

The above description is of course simplified and incomplete, as it only takes into
consideration the natural frequencies of the cylinder and the possible vortex shedding
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Figure 2.8: Vortex shedding frequency versus flow velocity. The dashed lines indicate the bound-
aries of the synchronization range. The horizontal lines are natural frequencies of the cylinder, and
the bold lines indicate regions where lock-in is possible.

frequencies. The actual VIV behavior of elastic cylinders is more complicated for sev-
eral reasons. Vandiver [2] gives a thorough discussion of VIV of long flexible cylinders
in ocean currents, with focus on various important dimensionless parameters. He shows
that when the variation in flow velocity over the cylinder length is large, the response is
irregular and contains multiple frequencies. He presents two dimensionless parameters
which can be used to judge whether or not single-frequency lock-in is likely to occur:
the shear fraction, ∆U/Umax, and the number of natural frequencies within the excitation
bandwidth, Ns. He also shows that the mass ratio has a strong effect on the range of re-
duced velocities where lock-in can occur. This effect is also seen for elastically mounted
rigid cylinders, which has already been addressed in section 2.3. Vandiver also discusses
how the response amplitude under lock-in conditions may be predicted using the reduced
damping parameter, SG, which is the damping ratio (including both structural and hydro-
dynamic damping) divided by the mass ratio. He also introduces the parameter nζn, which
is the product between the mode number and the modal damping ratio, and shows that this
parameter is useful in determining whether standing or traveling waves will dominate the
response. In a more recent paper, Vandiver [50] has proposed a dimensionless damping
parameter, c∗ = 2cω/ρU2, where c is the structural damping per unit length and ω is the
response frequency. This parameter captures the dynamic equilibrium between the lift and
structural damping force, and can be used to characterize VIV for all reduced velocities
in the synchronization range.

VIV of flexible cylinders are mainly of concern due to fatigue. For illustration pur-
poses, assume that the in-line and cross-flow displacements of a cylinder can be expressed
as:
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x(z, t) = x0 sin
(nπz
L

)
sin(2ωt), (2.14)

y(z, t) = y0 sin
(mπz

L

)
sin(ωt− θ). (2.15)

The in-line frequency is usually twice the cross-flow, due to the nature of the oscillating
lift and drag forces. By assuming that the displacements are small, the maximum bending
stresses in the two orthogonal directions may be found as:

σx =
1

2
EDx0

(nπ
L

)2

and σy =
1

2
EDy0

(mπ
L

)2

, (2.16)

where E is the Young’s modulus of the cylinder material. The in-line mode is usually
higher than the cross-flow, i.e. n > m, because the in-line frequency is twice the cross-
flow. For a tension-dominated structure, the natural frequencies increase linearly with the
mode number, which means that it is reasonable to assume (for illustration purposes) that
n = 2m. Then, with reference to equation (2.16), the in-line bending stress may become
equally important compared to the cross-flow stress, even though the in-line amplitude
x0 is much smaller than y0. This was demonstrated by Baarholm et al. [51], based on
data from a large-scale model test of a tensioned steel riser. The riser model was 90 m
long, and was exposed to a linear shear flow, increasing from zero current velocity at the
lower end to a maximum at the top. It was found that the in-line induced fatigue damage
was larger than the cross-flow damage for the lowest flow velocities, where the riser was
tension-dominated. For higher flow velocities, the bending stiffness becomes important
and cross-flow fatigue damage is largest.

Trim et al. [52] presented results from the Norwegian Deepwater Programme (NDP)
Riser High Mode VIV tests, where a 38 m long riser was exposed to uniform and sheared
flow. These tests confirmed that the in-line fatigue damage was of the same order of
magnitude as the cross-flow fatigue damage. Different configurations of helical strakes
were also tested, and it was found that VIV could be effectively suppressed. However,
the suppression effectiveness dropped rapidly when the coverage was reduced. Modarres-
Sadeghi et al. [53] used data from the NDP High Mode VIV tests to show that the re-
sponse is essentially stationary (a single, constant dominating frequency) in some time
intervals, and chaotic (broad-banded response) in others. These different response types
are observed in uniform as well as sheared flow.

Chaplin et al. [54] performed experiments with a vertical tensioned riser in a stepped
current. In these tests, the lower 45 % of the riser was exposed to a uniform incoming
current, while the upper part was in still water. The observed VIV response generally
contained several modes. Some cases were stationary with almost constant amplitude for
each mode, while other cases showed highly modulated amplitudes and a time varying
dominant mode. The drag coefficient was found to increase with the vibration amplitude,
and reached values 120 % higher than that of a stationary cylinder.
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As previously mentioned, the lift force contains a significant higher harmonic com-
ponent at three times the fundamental frequency when the cylinder vibrates in the in-line
direction. This is important for flexible cylinders, because the 3rd harmonic may coincide
with a natural frequency, causing significant high frequency stresses. Vandiver et al. [55]
investigated the fatigue damage caused by the fundamental frequency and the higher har-
monics based on field experiments in uniform and sheared flow. The experiments were
designed to investigate VIV at mode numbers higher than 10. In both sets of experiments,
the existence of higher harmonic vibrations was confirmed. In some cases, the contribu-
tion to the total r.m.s. of stress from the higher harmonics was more than 50 %, which has
a large impact on the fatigue damage. The effect of higher harmonic forces on fatigue life
of risers was also studied by Modarres-Sadeghi et al. [56]. Based on data from the NDP
High Mode VIV tests, they confirmed a significant decrease in fatigue life when higher
harmonic components were considered.

Free spanning pipelines typically vibrate at low modes, and pure in-line VIV can be
dominating. Compared to risers, free spanning pipelines behave differently, due to the
lower L/D and tension, making the bending stiffness more important. For long spans, the
sag due to gravity may be significant, which can cause the mode 1 natural frequency in
the vertical direction to be higher than the mode 2 natural frequency. Because the natural
frequencies and modes in the lateral direction are less affected by the sag, unexpected
behavior such as simultaneous mode 1 vibrations in the cross-flow and in-line direction
can be observed, even though the in-line vibration frequency is twice the cross-flow fre-
quency. A large number of free spanning pipeline model tests and analyses were carried
out in connection with the Ormen Lange field development, as described in Refs. [57–59].

The effect of Reynolds number and surface roughness has previously been discussed,
and applies to the flexible cylinder case as well. Swithenbank et al. [60] made a compi-
lation of experiments with flexible cylinders with Reynolds number ranging from 1 600
to 240 000. Their results show that the dominating non-dimensional vibration frequency
f̂ = foscD/U and the maximum y0/D and x0/D depend on the Reynolds number. The
maximum vibration amplitude is found to increase with Re over the subcritical range,
which is consistent with observations of elastically mounted rigid cylinders. Allen and
Henning [61] performed experiments with a flexible cylinder at critical and supercriti-
cal Reynolds numbers, with different levels of surface roughness. They found that, for a
smooth cylinder, VIV was essentially eliminated when Re was increased above 3.5×105.
However, as the surface roughness was increased, the VIV response increased as well.

Some of the most important features of flexible cylinder VIV are summarized below:

1. Flexible cylinders have an infinite number of natural frequencies, and may expe-
rience lock-in and high amplitude vibrations for almost any flow velocity above a
certain threshold.

2. Variation in flow velocity over the cylinder length may cause multi-frequency re-
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sponse.

3. The response may consist of standing or traveling waves, or a combination of both.

4. Flexible cylinder VIV includes cross-flow and in-line vibrations. The cross-flow
displacements are usually larger (except for the lowest flow velocities), but the fa-
tigue damage caused by the in-line vibrations should not be neglected.

5. Higher harmonic stresses may contribute significantly to the total fatigue damage.

2.5 VIV in time varying flows
To illustrate the difference between VIV in steady and oscillating flows, consider a rigid
cylinder with a cross-flow degree of freedom exposed to a sinusoidal incoming flow,
U(t) = Um sin(2πfwt). For illustrative purposes, assume the Strouhal relation is still
valid, meaning that the vortex shedding frequency will vary with time as:

fs(t) = St
Um

D
| sin(2πfwt)|. (2.17)

The vortex shedding can only synchronize with the natural frequency of the cylinder
when fs is close to fn, which means that excitation (i.e. positive energy transfer) is only
possible at certain time intervals, as indicated in figure 2.9. Outside these intervals, the
fluid force on the cylinder will mainly be damping. As the situation continuously changes
from excitation to damping, the VIV response is expected to be more irregular than in the
case of steady flow. Another complicating fact is that previously shed vortices are present
in the incoming flow.

f

t

fs

fn

excitation excitation excitation excitation

Figure 2.9: Vortex shedding frequency for a cylinder in a sinusoidal flow based on the Strouhal
number and the instantaneous incoming flow velocity. The dashed line indicates the natural fre-
quency of the cylinder, fn.

An important dimensionless parameter in oscillating flows is the Keulegan–Carpenter
number [62]:
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KC =
UmTw
D

, (2.18)

where Tw = 1/fw is the period of the oscillating flow. For sinusoidal flow, the relative
amplitude of motion is Am = UmTw/2π, which means that equation (2.18) can be refor-
mulated as:

KC =
2πAm

D
. (2.19)

From equation (2.19), it is understood that KC is a measure of the distance the flow
travels before it reverses, in terms of the cylinder diameter. For vortex shedding to occur,
KC must be larger than 7 [14].

Sumer and Fredsøe [63] carried out experiments with a 1-DOF elastically mounted
rigid cylinder in a sinusoidal oscillating flow. Their experiments covered the range 5 ≤
KC ≤ 100, as well as stationary current for comparison, and the reduced velocity Vr =
Um/(fnD) was varied from 0 to 16. When plotting the resulting amplitude as a function
of Vr, they found that the response in oscillating flow was very different from that in
stationary flow, except for the cases where KC was very large. In general, lock-in did not
occur once, but several times, causing multiple peaks in the amplitude response.

Maull and Kaye [64] did experiments with a cylinder in waves. Some of their tests had
simultaneous in-line and cross-flow response, and in others the cylinder was restrained in
the in-line direction. They found that the cross-flow response was the same whether the
cylinder was free or fixed in the in-line direction. However, the in-line motion in their
tests was small, as the wave frequency did not coincide with the natural frequency of
the cylinder. Lipsett and Williamson [65] performed tests with a 2-DOF cylinder in an
oscillating flow, and studied how the trajectory varied with KC and the frequency of the
flow. In some of their tests the in-line motion was large enough to influence the transverse
force and response.

Kozakiewicz et al. [66] studied the 1-DOF cross-flow response of a cylinder in ir-
regular oscillating flow. They investigated the effect of bandwidth in the incoming flow
velocity spectrum, and compared the results with regular oscillating flow. They found that
the response is different from the regular oscillating flow case in several ways. Firstly, the
amplitude as a function of reduced velocity does not contain multiple peaks, but remains
almost constant over a wide range. Secondly, the VIV response in irregular flow is signif-
icantly lower, and decreases when the bandwidth is increased. However, for the smallest
reduced velocities, the motion of the cylinder is larger than in regular oscillating flow.

The behavior of long flexible cylinders in sinusoidal oscillating flow has been stud-
ied by Fu et al. [67]. They observed that for higher KC numbers, the VIV response was
intermittent, with vibrations building up and dying out for each half-cycle of the oscillat-
ing flow. A hysteresis effect was also seen, meaning that for a given instantaneous flow
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velocity, the response was largest during flow deceleration. Wang et al. [68] performed
large-scale model tests of a truncated steel catenary riser (SCR) in a relative oscillating
flow which was generated by forced in-plane motions of the riser top end. The observed
cross-flow vibrations depended strongly on the KC number, and tension variations were
found to cause differences in the VIV response during lifting and lowering of the riser.
Flexible cylinder VIV in unsteady flow has also been studied by Liao [69], who proposed
an equivalent reduced damping parameter based on quasi-steady considerations which
can be used to predict the VIV response. More recently, Resvanis [70] proposed an un-
steady flow parameter, γ, which measures how much the flow velocity changes during one
vibration cycle. For very small values of γ, the VIV response approaches steady state con-
ditions. For very high values of γ, VIV is unlikely to occur, because the cylinder does not
have time to react. For intermediate γ-values, the cylinder will vibrate, but the amplitude
depends on the specific duration of excitation.

2.6 Existing methods for VIV prediction

The goal of any VIV prediction method is to compute the vibrations of a given flexi-
ble structure exposed to a given incoming flow. This task can be divided into two sub-
problems: (1) Find the fluid forces acting on the structure, and (2) compute the structural
response (i.e. displacements, velocities and accelerations) as a result of the fluid forces.
The second task can be solved using the basic principles of structural mechanics: equilib-
rium, continuity and the material law. The structure can be discretized as finite elements
(FEM, see e.g. Ref. [71]), resulting in an equation of motion for the structure, which
may be solved using different approaches such as the frequency response method or time
integration [72]. If FEM is used, a slender structure can be modeled as beam elements,
resulting in a relatively low number of structural degrees of freedom. This means that the
equation of motion for the structure can be solved at a low computational cost, at least
if the material behavior is linear. As the finite element technology available for slender
structures can be considered mature, and the computational cost is low, sub-problem 2 is
not a research problem. The fluid dynamic part of the problem is however a challenge,
and although various VIV prediction methods may use different structural models, the
important difference is how the fluid forces are calculated. Over the years, a large number
of methods have been proposed, see for example Refs. [73, 74]. In the following, a short
description of some of the most popular methods is given.

2.6.1 Computational fluid mechanics

The fluid forces acting on a structure can be found by integrating the fluid pressure and
shear stresses around the surface. These are coupled to the fluid velocity field through
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the Navier-Stokes4, 5 equation, which is basically Newton’s6 second law for the fluid [75].
Combined with the law of mass conservation, it is possible to calculate the entire flow field
around the structure. This is the basis for the scientific discipline known as computational
fluid dynamics (CFD).

Figure 2.10: Example of CFD results, from Gallardo [76]. The color indicate vorticity.

Several numerical methods exists, which differ in how the fluid domain is discretized
and in how turbulence is modeled. Some of the most popular discretization methods are
the finite volume method and the finite element method, while available turbulence models
include the Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES)
to name a few. It is also possible to solve the Navier-Stokes equations directly without
any turbulence model, which means that the entire range of space and time scales must
be resolved. This procedure is called direct numerical simulation (DNS) and generally
requires a very fine mesh and small time steps [77].

There has been several attempts to apply CFD methods for simulation of VIV. For
example, four different CFD codes participated in a blind prediction study of a riser in a

4Claude-Louis Navier (1785 - 1836), French engineer and physicist.
5Sir George Gabriel Stokes (1819 - 1903), British mathematician and physicist.
6Sir Isaac Newton (1642 - 1727), English physicist and mathematician.
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stepped current [73]. All of these considered 2-dimensional flow at multiple planes along
the riser, and were less accurate than the semi-empirical methods. From this, it can be
concluded that a 3-dimensional model of the fluid flow is necessary to obtain high-quality
results. Bourget et al. [78] used 3-dimensional direct numerical simulation to simulate
VIV of a long slender cylinder in shear flow at Reynolds numbers up to 1100. Such
analyses provide a highly detailed and realistic picture of both the flow and the structural
response. The required computational resources are however extremely large.

2.6.2 Semi-empirical methods
The first class of semi-empirical methods to be described here are the frequency domain
tools, such as VIVA [11], SHEAR7 [9] and VIVANA [10], which are popular within the
offshore industry. Although there are a number of differences between these methods,
they have two important things in common. First of all, they operate in the frequency
domain, and secondly, they use hydrodynamic coefficients for excitation, damping and
added mass. The coefficients are typically obtained from experiments with forced oscil-
lations of rigid cylinders.

As an example of how the frequency domain semi-empirical methods work, a short
description of the VIVANA analysis procedure is given here. The structure is represented
by finite elements, using beam elements with stiffness matrix contribution from tension
and bending stiffness. The analysis follows these steps:

1. Static non-linear analysis to find the mean position of the structure due to weight,
buoyancy and current.

2. Eigenvalue analysis to find modeshapes and natural frequencies based on the still-
water added mass.

3. Identification of response frequencies when accounting for variation in added mass.
An iteration procedure is necessary as the added mass is frequency dependent (but
assumed to be independent of amplitude).

4. Because several response frequencies may be a part of the solution, the different
frequencies are ranked according to an energy criterion.

5. The response at all possible frequencies are found using the frequency response
method. The excitation forces are based on Gopalkrishnan’s curves [30], with some
modifications. Damping outside the excitation zones are based on Venugopal’s
damping model [79].

6. Fatigue damage is calculated based on assumptions regarding amplitude variations
and combinations of response at selected discrete frequencies.
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A different class of semi-empirical methods are those that operate in time domain,
meaning that they simulate step-by-step forward in time how the structural response and
fluid forces evolve. ABAVIV [80, 81] is one such method. In this method, the vibration
amplitude and frequency must be estimated from the predicted response as the simulation
progresses to decide if lock-in will occur or not. Outside lock-in, the lift force oscillates
with the Strouhal frequency and a random phase angle. When lock-in occurs at some point
along the riser, the lift force is gradually transitioned to be in phase with the cylinder
velocity at that point. Another time domain method was proposed by Lie [82], which
uses hydrodynamic coefficients from experiments that depends on the vibration frequency
and amplitude. These quantities must therefore be estimated for every time step as the
simulation progresses. A completely different time domain approach was developed by
Mainçon [83]. He used a dataset of hydrodynamic force measurements obtained from
oscillating rigid cylinders to train an artificial neural network in predicting the forces.
He showed that the neural network combined with a finite element model of a flexible
cylinder was capable of predicting the VIV response with a high degree of realism in
some cases. Some stability issues were however also observed, perhaps caused by the
limited amount of training data.

Another type of semi-empirical model is the wake-oscillator, which has been studied
by a large number of researchers (see e.g. Ref. [74]). Here, the fluctuating lift force from
vortex shedding is described by a forced van der Pol7 equation:

q̈ + εΩf (q2 − 1)q̇ + Ω2
fq = F, (2.20)

where q(t) is a dimensionless wake variable, Ωf = 2πStU/D is the Strouhal angular fre-
quency and ε is an empirical damping parameter. The relationship between equation (2.20)
and the lift force due to the vortex shedding is given as Fy = 0.25ρDU2CL0q, where CL0

is the reference lift coefficient found on a stationary cylinder. An important property of
equation (2.20) is that in the absence of forcing (i.e. when F = 0) it describes a self-
sustained limit-cycle oscillation with a frequency Ωf . This is seen from the fact that the
second term is essentially a negative damping force when q < 1, which causes the ampli-
tude to increase. If q becomes large, the damping will become positive, and the amplitude
will drop until stable oscillations develop. Hence, the van der Pol equation reproduces the
basic behavior of the oscillating lift force. The coupling between the structure motion and
the lift force is through the forcing term F . Facchinetti et al. [84] studied how different
coupling terms affect the performance, and considered displacement coupling (f = Ay),
velocity coupling (f = Aẏ) and acceleration coupling (f = Aÿ). Here, f = F/(DΩ2

f )
and A is an empirical coupling parameter. They found that acceleration coupling was the
best alternative, as it succeeded in modeling many features of VIV qualitatively, and in
some cases also quantitatively. The wake oscillator models have later been refined by sev-

7Balthasar van der Pol (1889 - 1959), Dutch physicist.
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eral researchers, for instance Srinil and Zanganeh [85], who considered combined in-line
and cross-flow VIV.
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Chapter 3

Extended summary of papers
This chapter contains an extended summary of the research papers, such that the reader
may get an overview of the work without reading through the full papers. The main con-
tribution of this PhD work has been the development of a new simplified hydrodynamic
load model, which was first presented in paper I. Since then, the model has constantly
been evolving, and several changes and improvements have been introduced in papers
II-IV. Paper I, III and IV focus on cross-flow VIV only, while paper II considers in-line
vibrations as well.

Paper I: A simplified method for time domain simulation
of cross-flow vortex induced vibrations
The starting point for developing the hydrodynamic load model was the assumption that
the force on a cross-section of the cylinder consists of three components: lift, damping
and added mass (here, the use of the word ’lift’ is used to describe the force component
resulting from the shedding of vortices. In paper II-IV, this force component is more
appropriately referred to as ’excitation force’ or ’vortex shedding force’). A damping
formulation was proposed, consisting of a linear and a quadratic damping term, where
the quadratic term increases linearly with the vibration amplitude of the cylinder section.
The damping coefficients were found by minimizing the difference between the proposed
model and the damping model by Venugopal [79]. The reason why Venugopal’s model
was not used directly is that it contains frequency-dependent terms, and is therefore not
suited for time domain simulation.

The magnitude of the lift force is given by a dimensionless coefficient,Cl,0, which was
assumed to be a function of the cross-flow vibration amplitude to diameter ratio, A/D.
The values of Cl,0 for differentA/D were found by matching the resulting energy transfer
(power in from vortex shedding minus power out from damping) to the excitation coef-
ficient used in VIVANA. The fluctuations of the lift force is taken into account through
an instantaneous phase angle, φl, which goes from 0 to 2π through one oscillation cycle.
How this phase angle develops as a function of time was described by a synchronization
model. Assuming that the time derivative of the lift force phase (i.e. the instantaneous
frequency of the lift force) is a function of the phase difference between the cross-flow
cylinder velocity and the lift force itself, it was possible to derive the synchronization
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model based on data from VIVANA. Note that data from forced vibration experiments
could have been used instead, and the present formulation is completely independent of
VIVANA. The resulting synchronization model is seen in figure 3.1. The instantaneous
phase of the cross-flow cylinder velocity is denoted φẏ, and the instantaneous frequency
of the lift force (normalized by the Strouhal frequency) is taken as a function of φẏ − φl.
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Figure 3.1: Synchronization model.

The proposed hydrodynamic load model was tested through numerical simulations
and comparison with published experimental results. The first test was to simulate the
hydrodynamic force on a rigid cylinder undergoing forced sinusoidal cross-flow motion.
This was done using different frequencies and amplitudes, and for each simulation, the
resulting time series was post-processed to obtain the cross-flow force component in phase
with the cylinder velocity and acceleration. Comparison with the experimental results of
Gopalkrishnan [30] showed that the model captured the main features, such as positive
power transfer within a specific range of non-dimensional frequencies and below a certain
amplitude. The predicted component in phase with the cylinder acceleration (i.e. the added
mass force) was also in good agreement with experiments, although there were some
minor discrepancies.

Next, the load model was combined with a 1-DOF dynamic equilibrium equation to
simulate cross-flow VIV of a spring supported rigid cylinder. Time domain simulations
of the cylinder response were performed, and the resulting vibration amplitude and fre-
quency were found for different reduced velocities. This was done for two different cylin-
ders, one with a mass ratio of 1.2 and another with mass ratio 10.3. Comparison with the
experiments by Govardhan and Williamson [40] showed good overall agreement, and the
model successfully predicted that large-amplitude vibrations persists for a longer range of
velocities for the low-mass cylinder.

Finally, the hydrodynamic load model was combined with a linear beam finite element
model to simulate VIV of a flexible tensioned cylinder exposed to a linear shear flow. The
High Mode VIV-tests performed by the Norwegian Deepwater Programme (NDP) [52]
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were used for comparison. A typical simulation result is shown in figure 3.2. Simulations
were run for incoming flow velocities ranging from 0.3 m/s to 2.4 m/s, and the results were
compared to the NDP experiments in terms of dominating frequency, mode of vibration
and maximum r.m.s. displacement. The comparison showed good agreement, except for a
slight overestimation of the frequency and mode, which suggests that the synchronization
model can be improved.

Figure 3.2: Simulated cross-flow response of flexible cylinder. The incoming current profile is
shown to the right.

Paper II: Fatigue damage from time domain simulation of
combined in-line and cross-flow vortex-induced vibrations
This paper deals with combined in-line and cross-flow VIV. The cross-flow hydrodynamic
force model is essentially the same as in paper I, except for the introduction of a Reynolds
number dependent factor in the vortex shedding frequency calculation. Based on experi-
mental data, this factor was however found to be almost constant and approximately 0.85,
so the actual effect is a slight reduction of the vortex shedding frequency in general. This
solved the problem of overestimating the vibration frequency which was seen in paper I.

The in-line hydrodynamic force model was based on simplified physical considera-
tions. The starting point for developing the in-line force model was the approximation
that the vortex shedding force acts perpendicular to the instantaneous relative velocity
between the fluid and the cylinder. Hence, cross-flow motion gives rise to an in-line fluc-
tuating component, as illustrated in figure 3.3.

A synchronization model for the oscillating in-line hydrodynamic force was also in-
troduced. Here, the frequency was assumed to be approximately 2 times the frequency
of the cross-flow vortex shedding force, but a small deviation was allowed such that the
in-line force may synchronize with the in-line motion of the cylinder. The in-line synchro-
nization model works in the same way as the cross-flow synchronization model, meaning
that the instantaneous frequency of the in-line vortex shedding force is a function of the
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Figure 3.3: Vortex shedding force with in-line and cross-flow components.

phase difference between the in-line velocity of the cylinder and the force itself. Hydro-
dynamic damping was modeled the same way as for the cross-flow direction, i.e. by fitting
the damping coefficients to Venugopal’s [79] in-line damping model.

The combined in-line and cross-flow hydrodynamic load model was then linked to a
linear beam finite element model to simulate the NDP High-Mode VIV tests [52]. Fatigue
damage was computed using rainflow counting and Miner-Palmgren summation. This was
done with the experimental data as well, and the fatigue damage rates were compared.
The maximum predicted fatigue damage for all cases (22 in uniform flow and 22 in shear
flow) were compared to the experimental results as shown in figure 3.4. The comparison
shows that the model predicts the maximum fatigue damage for cross-flow and in-line
VIV with a reasonable level of realism, although safety factors must be applied to achieve
conservative predictions in some cases.
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Figure 3.4: Simulated versus measured maximum fatigue damage rate (in-line and cross-flow) for
the NDP tests.

Paper III: Time domain simulation of vortex-induced
vibrations in stationary and oscillating flows

The research presented in this paper had two main goals. The first one was to improve the
hydrodynamic force model with respect to the prediction accuracy for stationary flows.
The motivation behind this goal was observations made in paper II, where the predicted
cross-flow vibration amplitude was generally too high in uniform flow and too low in
sheared flow. The improvements consisted of two changes in the model. The first was a
new damping formulation, where the linear damping term was dropped. An amplitude
dependent damping coefficient was found from experiments with a cylinder oscillating in
still water, and it was shown that the derived damping model also gave accurate results for
a cylinder vibrating in a current at high and low reduced velocity. The second improve-
ment to the model was to optimize the excitation force coefficient Cv (this was denoted
Cl,0 in paper I) through a series of simulations and comparison with the NDP High Mode
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VIV test data.
The second goal of this paper was to investigate how the model performed at pre-

dicting cross-flow VIV in oscillating flows. An important point is that no modifications
were introduced in the hydrodynamic load model, meaning that the formulation and the
parameters were the same as in the stationary flow simulations. The hydrodynamic force
model and a linear beam finite element model were used to simulate the cross-flow VIV
of a flexible cylinder subjected to a sinusoidal oscillating flow. The simulated cylinder
was identical to the one tested by Fu et al. [67], which made direct comparison possible.
The maximum reduced velocity was varied between 4 and 6.5, where the higher value
corresponds to the point where the vibration amplitude is expected to be at its largest.
The KC number for the oscillating flow is important, as it describes the distance traveled
between each flow reversal. The model was tested at a moderate value of KC = 31.4 and
a high value of KC = 178. Figure 3.5 shows simulation results at Vr = 4.0 and KC = 178
compared to the experiment. The other cases show similar agreement, indicating that the
model is able to predict VIV in oscillating flows.
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Figure 3.5: Comparison between simulation and experiment with flexible cylinder in oscillating
flow.

Furthermore, the model was used to investigate the effect of increasing the reduced
velocity for the oscillating flow case, and also how the mass ratio affects the mode par-
ticipation when multiple modes may be excited. The results from a simulation with high
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reduced velocity and low mass ratio showed significant contributions from mode 1-4, and
the dominating mode changed continuously as the flow velocity caused the vortex shed-
ding to lock on to different natural frequencies. When this simulation was performed with
a high mass ratio cylinder, the result was a nearly single mode response at mode 3, indi-
cating that the high mass ratio cylinder is more resistant to changes in the vibration state.
It is therefore concluded that, in oscillating flows, mass ratio is important in determining
the mode participation at high reduced velocities.

Paper IV:Non-linear time domain analysis of cross-flow
vortex-induced vibrations
The purpose of this paper was to develop a general tool for simulating the non-linear
dynamic response of risers and other slender structures due to ocean currents in combi-
nation with prescribed motions and other loads. Drag forces should be included, and it
was therefore natural to use Morison’s equation as a starting point. Here, the drag force
on a cylinder cross-section is computed based on the instantaneous relative velocity be-
tween the fluid and the cylinder. The drag term in Morison’s equation causes damping
of vibrations, which means that it cannot be combined with the damping models used in
paper I-III. A new hydrodynamic load model was therefore proposed, consisting of the
original Morison’s equation with inertia and drag forces, plus an additional term describ-
ing the vortex shedding force. The vortex shedding force was modeled similarly as in the
previous papers, except for the synchronization model which was reformulated as a sine
function for simplicity and numerical efficiency. Also, the vortex shedding force coef-
ficient Cv was independent of vibration amplitude, which is in contrast to the previous
papers. The final hydrodynamic force model is then given as:

F = CMρ
πD2

4
u̇n − (CM − 1)ρ

πD2

4
ẍn +

1

2
ρDCD|vn|vn

+
1

2
ρDCv|vn|(j3 × vn) cosφexc.

(3.1)

The predictive capabilities of the new hydrodynamic load model was tested through
comparison with experimental results. Energy transfer was quantified through the lift co-
efficient in phase with the cylinder velocity, and numerical simulations of a rigid cylinder
oscillating with various amplitudes and frequencies were performed. It was demonstrated
that the model gives positive power transfer inside the synchronization range and below a
certain amplitude, and it was shown that the maximum amplitude of the positive excita-
tion zone can be changed by varying Cv. The effective added mass predicted by the model
consists of the original added mass term in Morison’s equation and the part of the vor-
tex shedding force which is in phase with the cylinder acceleration. It was shown that the
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model predicts positive and negative added mass for the correct values of non-dimensional
frequency. The predicted added mass for a spring-mounted rigid cylinder was found by
simulations, and comparison with experiments by Vikestad [86] showed very good agree-
ment over the most important range of reduced velocities. Simulations also show that the
model predicts drag amplification, i.e. an increased mean drag force when the cylinder is
vibrating.

The hydrodynamic force model was implemented into an existing program for non-
linear finite element analysis of slender structures, SIMLA [87]. The dynamic analysis
was based on the incremental equation of motion, which was solved in time domain us-
ing the HHT-α method [88]. To test and demonstrate the applicability of the model, it
was utilized to simulate VIV of a truncated model scale steel catenary riser in two differ-
ent conditions: In the first case, the riser was exposed to a stationary uniform incoming
current, while in the second case there were no current, but the top-end of the riser was
oscillating, creating a relative oscillatory flow. These cases were tested experimentally
by Wang et al. [89], and the simulations were compared to these tests. In the stationary
flow case, the response was almost steady state with a single dominating frequency. The
magnitude and frequency of the bending strain were accurately predicted, but the mode
of vibration was slightly over-predicted (7 peaks along the riser span in the simulation
compared to 6 peaks in the test). In the second case, the relative oscillating flow caused
an irregular response, as seen in figure 3.6. The frequency content and the r.m.s. of strain
were quite accurately captured, although the actual response appears somewhat more ir-
regular than predicted.
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Figure 3.6: Simulation of VIV due to oscillation of riser top end.
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Chapter 4

Conclusions and future work
This thesis has dealt with prediction of vortex-induced vibrations of elastic cylinders. The
overall goal has been to develop a computationally efficient model, which is simple to
use and sufficiently accurate for engineering purposes. The model has been formulated in
time domain, which means that simulations including non-linear effects can be performed.
Hence, this work should be of particular interest to engineers working with design of
slender structures subjected to ocean currents.

4.1 Original contributions
The list below summarizes all the original contributions in this thesis:

1. A cross-flow hydrodynamic damping model was proposed in paper I. The formula-
tion is independent of frequency and therefore suitable for time domain simulations.

2. A model of the cross-flow vortex shedding force (lift) was proposed in paper I, in-
cluding a synchronization model which describes the behavior of the instantaneous
frequency of the force.

3. It was demonstrated that the hydrodynamic force model in paper I provides realistic
results for the lift coefficient in phase with the cylinder velocity (excitation) and ac-
celeration (added mass), for a rigid cylinder with a prescribed cross-flow oscillating
motion.

4. Through simulations and comparison with experimental work, it was also shown
that the model in paper I provides realistic predictions of VIV for a spring mounted
rigid cylinder (1-DOF) as well as an elastic cylinder in sheared flow.

5. A model for the in-line hydrodynamic force was proposed in paper II, which is sim-
ilar to the cross-flow force model. This includes an in-line synchronization model
based on the assumption that the frequency of the oscillating drag force is approxi-
mately two times the frequency of the lift force.

6. It was shown that the model in paper II gives realistic estimates of the in-line
and cross-flow fatigue damage for a flexible cylinder in uniform and sheared flow.
Safety factors are necessary in some cases to ensure conservative results.
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7. The cross-flow damping model was modified in paper III by dropping the linear
damping term. This gave excellent agreement with tests performed in still-water
and in a current, outside the synchronization range.

8. The cross-flow vortex shedding force was modified in paper III by introducing a
new curve for the amplitude dependent coefficient Cv. The new curve was found by
minimizing the prediction error associated with VIV in stationary flow.

9. It was demonstrated that the force model in paper III is able to predict cross-flow
VIV of an elastic cylinder in oscillating flow for different reduced velocities and
KC numbers.

10. Simulations showed that multi-mode response may occur for elastic cylinders in
oscillating flow at high reduced velocities. Mass ratio was identified as an important
parameter in determining the mode participation in oscillating flows.

11. A hydrodynamic force model based on Morison’s equation plus an additional term
for the vortex shedding force was presented in paper IV. A sinusoidal synchroniza-
tion model was introduced for efficiency in the numerical calculation.

12. It was shown that the vortex shedding force coefficient, Cv, could be taken as inde-
pendent of amplitude, without significant loss of accuracy. The Reynolds number
dependency must however be taken into account.

13. It was demonstrated that the load model proposed in paper IV gives reasonable
results in terms of power transfer (damping/excitation), added mass and mean drag
for a rigid cylinder undergoing forced cross-flow oscillation.

14. The load model introduced in paper IV was implemented in a non-linear finite ele-
ment program for analysis of slender structures (SIMLA).

15. A SIMLA model was established to simulate cross-flow VIV of a catenary riser in
two conditions: uniform current and top-end oscillations in still water. In the latter
case, VIV is a result of the relative oscillating flow caused by the movement of the
riser through the fluid. Comparison with experiments showed good agreement in
both cases, although some discrepancies were seen.

4.2 Conclusions
The main contribution of this work is a new mathematical model of the hydrodynamic
forces acting on a vibrating circular cylinder in a fluid flow. The proposed model is empir-
ical, and relies on hydrodynamic coefficients which must be obtained from experimental
data. The formulation has changed slightly during the course of this work, but the basis
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has remained the same: that the total hydrodynamic force can be described as a sum of
inertia, damping and vortex shedding forces. It is well known that the vortex shedding
will synchronize with the cylinder motion if the frequency of motion is close to the vor-
tex shedding frequency for a stationary cylinder (i.e. the Strouhal frequency). To simulate
this, a synchronization model was formulated, which effectively captures how the vortex
shedding may slow down or speed up to synchronize with the motion of the cylinder. Sim-
ilar formulations have previously been used for modeling synchronization in completely
different scientific fields [90], but to the author’s knowledge, this is the first time such a
synchronization model has been used in connection with VIV.

The proposed hydrodynamic force model is formulated in time domain, which means
that it can be utilized in a step-by-step time integration procedure for solving the dy-
namic equilibrium equation for an elastic structure. This is in contrast to the commonly
used frequency domain tools which require a linearized structural model and stationary
conditions. In a time domain simulation, the stiffness, damping and mass matrices are
allowed to vary with time, which means that any type of structural nonlinearity may be
included. The external loads may include multiple frequencies simultaneously, and the
load frequency can vary with time. The hydrodynamic model makes no use of concepts
such as dimensionless frequency or reduced velocity, which means the flow velocity is
allowed to vary with time, making it possible to simulate VIV in oscillating flows. This
was successfully demonstrated in paper III and IV.

When a cylinder is subjected to vortex shedding, the hydrodynamic added mass varies
strongly with the dimensionless frequency (or reduced velocity) as well as amplitude ra-
tio. There are different ways of dealing with this in analysis methods. For instance, in VI-
VANA [10], all the hydrodynamic force in phase with the cylinder acceleration is treated
as added mass, which is placed on the left-hand side of the dynamic equilibrium equa-
tion, together with the structural mass. This results in a dynamic system that is always
at resonance. Another alternative is to keep all the hydrodynamic force on the right-hand
side of the system, as an external force. This will typically be done in a coupled CFD and
structural analysis, resulting in a dynamic system that is not necessarily at resonance. The
model proposed in this thesis does something in between, as the total hydrodynamic force
contains two terms which influence the effective added mass. Firstly, there is a constant
added mass term associated with cylinder acceleration, which is moved to the left-hand
side of the dynamic equilibrium equation together with the structural mass. Secondly, the
vortex shedding force is generally not in phase with the cylinder velocity or accelera-
tion, but somewhere in between (there is a phase difference which is determined by the
synchronization model). Hence, the vortex shedding force will contribute to the effec-
tive added mass, and this contribution will vary depending on the dimensionless vibration
frequency and amplitude. This was clearly demonstrated in paper IV. It should be em-
phasized that the different alternatives for modeling added mass are not in conflict, they
simply represent different options for describing the same physics. However, an advantage
with the present formulation is that the iteration procedure which is needed in frequency
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domain to obtain consistency between added mass and vibration frequency is avoided.
Splitting the total added mass into two contributions is however not a new idea, and the
wake oscillator models (see e.g. Ref. [84]) use a similar approach.

In the fourth and final paper of this thesis, a new hydrodynamic load model was in-
troduced, consisting of the well-known Morison’s equation plus an additional term de-
scribing the vortex shedding force. The main reason for changing the formulation was the
desire to include drag forces. One may then ask, why not keep the model as it was in e.g.
paper III and simply add a static drag force in the direction of the flow? This would work
fine for cases with constant current velocity, and with no dynamic motion except VIV.
However, in general, the relative flow may be a combination of incoming current plus
prescribed motions (as in the case with top-end oscillation), or large amplitude motion
caused by other external loads. Therefore, the drag and the vortex shedding force should
be computed based on the instantaneous relative flow velocity. This was achieved using
Morison’s equation plus the additional vortex shedding term.

To summarize, the final version of the hydrodynamic force model contains the tradi-
tional inertia and drag coefficients, CM and CD, plus the vortex shedding force coefficient
Cv. In addition, the synchronization model, as formulated in the final paper, contains
two empirical parameters: f̂0 which determines the center frequency of the vortex shed-
ding force, and ∆f̂ which gives the range of synchronization. Hence the total hydrody-
namic load model contains 5 empirical parameters, which in general may depend on the
Reynolds number, the cylinder surface roughness, the KC number (if the flow is oscillat-
ing), and possibly also the actual shape of the cylinder trajectory (e.g. in-line amplitude
and phase angle). Hence, the model parameters are associated with significant uncertain-
ties, which have not been fully addressed in this work. Instead of focusing on the specific
choice of parameters, the major achievement of this work has been to demonstrate that a
model based on these parameters can be very useful.

4.3 Limitations

There are several limitations to the proposed hydrodynamic load model. First of all, it
only applies to circular cylinders. As already stated, the model is an approximation of the
real physics, which relies on empirical coefficients. Therefore, experimental data for the
actual Reynolds number and cylinder surface roughness should be available. Although
this has not been investigated, it is possible that the optimal coefficients depend on the
specific cylinder trajectory. However, the results presented in this thesis suggests that this
is of minor importance.

This work has focused on cross-flow VIV and the associated forces. A model of the
in-line hydrodynamic forces was presented in paper II, but this is not compatible with
the final formulation (i.e. paper IV). In addition, the model in paper II was only valid for
combined cross-flow and in-line VIV, and not applicable in cases with pure in-line VIV.
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4.4 Suggestions for future work

Data from VIV tests usually include significant higher harmonic components. It has
been noted that the formulation presented in paper IV gives rise to some higher harmonics
if in-line vibrations at double the cross-flow frequency are present. However, a proper in-
line hydrodynamic force model must be in place before it is possible to say if the arising
higher harmonics are close to observations.

In reality, VIV is not a regular stationary vibration. Particularly for high mode vibra-
tions, amplitude modulations and change in frequency may happen, and riser VIV has
been described as a chaotic phenomenon. In its present form, the proposed model does
not capture this behavior, as simulations with constant incoming flow velocity show an
approximately steady state vibration.

4.4 Suggestions for future work
Before the proposed hydrodynamic load model can be applied in actual engineering de-
sign, more work is necessary to establish guidelines on what coefficients to use. A large
database of test results should be compiled, and comparison with simulations could be
performed to find the best combination of model parameters. Such a study should ideally
take into account the Reynolds number and surface roughness dependency, and possibly
KC number as well. Because VIV is a complicated phenomenon and the model is an ap-
proximation, uncertainties will always be present. These should be treated appropriately
using statistical methods, similar to what Fontaine et al. [91] have done.

In its final form (paper IV), the present model can only predict cross-flow VIV. Future
work should also look at how the fluctuating drag forces can be modeled, with the goal of
establishing a model which is able to predict pure in-line VIV as well as combined in-line
and cross-flow VIV. When the in-line motions are in place, it may also be possible to
model the higher harmonics as previously discussed. However, the understanding of the
higher harmonic components is presently limited, and successful modeling may require a
substantial amount of research.

As the proposed model is able to predict VIV in oscillating flows, it is tempting to
think that it is equally suited for simulating VIV caused by waves. This is however not
necessarily true, as the flow may be quite different due to e.g. the elliptic orbit of the fluid
particles and the free surface. This needs to be investigated in the future.
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Paper I

A simplified method for time domain
simulation of cross-flow vortex-induced
vibrations
Mats J. Thorsen, Svein Sævik and Carl M. Larsen
Department of Marine Technology, Norwegian University of Science and Technology,
Trondheim, Norway

Journal of Fluids and Structures, Vol. 49, 2014, pp. 135 – 148

Abstract

A new method for time domain simulation of cross-flow vortex-induced vibrations of
slender circular cylindrical structures is developed. A model for the synchronization be-
tween the lift force and structure motion is derived from already established data for the
cross-flow excitation coefficient. The proposed model is tested by numerical simulations,
and the results are compared to experimental observations. When a sinusoidal cross-flow
motion is given as input to the algorithm, the generated force time series are generally
in good agreement with experimental measurements of cross-flow force in phase with
cylinder velocity and acceleration. The model is also utilized in combination with time
integration of the equation of motion to simulate the cross-flow vibration of a rigid cylin-
der. The resulting amplitude and frequency of motion as functions of reduced velocity
are compared to published experimental results. In combination with the finite element
method, the model is used to simulate cross-flow vibrations of a flexible cylinder in shear
flow. Comparison with experiments shows that the model is capable of reproducing im-
portant quantities such as frequency, mode and amplitude, although some discrepancies
are seen. This must be expected due to the complexity of the problem and the simple form
of the present method.

Keywords: Vortex-induced vibrations; Simulation; Time-domain; Synchronization
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PAPER I

1 Introduction

Slender structures such as marine risers and mooring lines are subjected to vortex-induced
vibrations (VIV) when placed in a current flowing around the structure. The vibrations are
a result of the oscillating fluid forces arising from the shedding of vortices. Such vibrations
may lead to rapid accumulation of fatigue damage, and it is therefore important for the
safety of offshore operations such as drilling and hydrocarbon production to be able to
predict the time varying stresses caused by VIV.

The topic of VIV has been subjected to extensive research during the second half of
the 20th century, and much of the work has been reviewed by Bearman [1], Sarpkaya [2],
Williamson and Govardhan [3] and Wu et al. [4]. Studies have traditionally focused on
the cross-flow oscillations and fundamental frequency response, however in more recent
publications, authors have focused on cylinders free to oscillate in both transverse and
in-line directions [5, 6] and higher order force and vibration components [7, 8]. It has
also been recognized that the VIV response of risers can be chaotic, meaning that it is
non-periodic with a broad band spectrum [9].

When it comes to prediction of VIV for slender structures there is a large number of
available methods, which according to Lie et al. [10] can be divided into three classes:
Computational fluid dynamics (CFD), wake oscillator models and semi-empirical mod-
els. As demonstrated by Bourguet et al. [11], CFD methods are promising, but generally
complicated and computationally demanding. Wake oscillator models, as described by
e.g. Facchinetti et al. [12] use a Van der Pol oscillator to describe the wake. Results ob-
tained using this model show a qualitative agreement with experimental observations, but
it is difficult to find a set of parameters such that the model conforms to both free and
forced vibrations [13].

The most commonly used prediction tool in design of marine risers are the semi-
empirical models, such as SHEAR7 [14] and VIVANA [15]. The basis for these programs
is the use of databases for hydrodynamic forces, e.g. added mass, damping and excitation
(lift) coefficients. The formulation restrict these methods to stationary, harmonic response
in the frequency domain, hence only linear structural behavior is allowed, and interaction
between different response frequencies is difficult to account for. Also, these tools are
unable to predict VIV caused by unsteady flows such as waves, and cross-flow and in-line
motion is considered separately, neglecting the interaction between the two.

Semi-empirical time domain methods for simulation of riser VIV have been developed
by Lie [16] and Finn et al. [17]. A challenge with these methods is the need to estimate
the vibration frequency of the riser for every time step, based on the previous time history.
Recently, Mainçon [18] proposed a totally new method for time domain prediction of VIV.
He applied an artificial neural network in order to predict the instantaneous hydrodynamic
force based on a compressed form of the recent velocity history. The results obtained in
the study were promising, but in some cases the model adopted a non-physical pattern of
vibration, indicating that the algorithm has stability issues.
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In this paper, an alternative method for time domain prediction of VIV is presented.
The most important element is the proposed synchronization model, which effectively
simulates how the lift force changes its instantaneous frequency to obtain lock-in. An-
other key component is a new damping model, based on the model by Venugopal [19],
but put in an alternative form to avoid frequency dependence. Combined with a finite el-
ement model of the structure, the hydrodynamic force model makes a powerful tool for
time domain simulation of VIV, and it is shown through numerical investigation that the
method produces results very similar to those observed in various types of experiments.
The formulation includes no restrictions on the time variation of the incoming current ve-
locity, and therefore enables the study of VIV in waves and other unsteady flows, although
this has presently not been investigated. The formulation also has potential for incorpo-
rating the interaction between cross-flow and in-line hydrodynamic forces and motion, as
well as drag amplification and higher order frequency components. However, these issues
will not be addressed further in the present research. In this initial stage of development,
focus will be on cross-flow response in stationary flow.

2 Hydrodynamic force model

2.1 Hydrodynamic forces on circular cylinders

A cylinder placed in a flowing fluid will experience forces in the direction of the flow
as well as perpendicular to the flow. The force component in the direction of the flow is
called drag, while the perpendicular component is usually termed lift. For a single cylin-
der positioned in an otherwise undisturbed flow, the mean of the lift force is zero, while
the drag force oscillates around a non-zero mean value. The case with a fixed cylinder
in uniform incoming flow was thoroughly studied by Bishop and Hassan [20] and many
others since then, see e.g. [21] for a comprehensive review. In summary, the lift forces are
a result of the fluctuating pressure which in turn is related to the vortex shedding process.
It is found to vary almost sinusoidally with the same frequency as the vortex shedding
frequency, fs = St U/D, where St is the Strouhal number, U is the incoming undisturbed
fluid velocity and D is the cylinder diameter. Stochastic variations in amplitude and fre-
quency are seen, hence the forces are only approximately sinusoidal. The drag force has
a significant non-zero mean value, while the fluctuating part oscillates at twice the vor-
tex shedding frequency with a small amplitude, only around 10 % of the lift force [22].
The drag and lift force are usually expressed in terms of the non-dimensional coefficients
Cd = Fd/(

1
2
ρDU2) and Cl = Fl/(

1
2
ρDU2) where ρ is the fluid density and Fd and Fl

are the drag and lift force per unit length. The mean value and the amplitude of the coef-
ficients are found mainly as functions of the Reynolds number and the cylinder’s surface
roughness, while the turbulence level in the incoming flow and specific experimental con-
ditions such as aspect ratio, end terminations and blockage effects have some influence
on measurements as well. Curves for the coefficients and the Strouhal number have been
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established through extensive research (see e.g. [23]), though it should be mentioned that
values for the lift coefficient from various researchers show significant scatter.

The complexity of the problem increases considerably when the cylinder is allowed
to oscillate. This subject has perhaps been studied even more than the stationary cylin-
der case, and typical experiments consist of freely oscillating spring supported cylinders
[24, 25] and cylinders forced to move in specified patterns [26, 27]. The last category
of experiments has served two purposes: To increase the understanding of the vortex-
shedding process as well as to create a database of force coefficients which can be used in
prediction tools. The reason why the moving cylinder case is more challenging to predict
than the fixed case is that the cylinder motion disturbs the flow. The most important effect
is possibly that the frequency of the vortex shedding may adjust itself, and synchronize
with the frequency of the cylinder motion. This is referred to as lock-in, as the vortex
frequency "locks on" to the frequency of oscillation. The fact that the vortex shedding fre-
quency can adjust, makes large amplitude motions possible over a relatively long range
of current velocities. Another effect of the cylinder motion is a significant increase in the
mean drag force [28].

2.2 Model assumptions and simplifications

Consider a circular cylinder positioned in a flowing fluid, while moving in the in-line and
cross-flow direction in an arbitrary fashion, as shown in figure 1. A coordinate system
(x, y, z) is defined such that the x-axis points in the direction of the incoming flow and
the y-axis in the orthogonal direction in the plane of the cylinder. The z-axis is pointing
out of the plane in the longitudinal direction of the cylinder and creates a right handed
coordinate system. The unit base vectors are~i, ~j and ~k. Let the origin be positioned at the
static equilibrium position of the cylinder, such that x and y corresponds to the in-line and
cross-flow displacement of the cylinder respectively. Due to the combination of incoming
current and cylinder motion, the relative velocity between fluid and structure changes both
magnitude and direction continuously. Given the velocity of the cylinder, the relative fluid
velocity vector may be expressed as:

~V = (U − ẋ)~i− ẏ~j. (1)

The force exerted by the fluid on the cylinder cross section is assumed to consist of
three components: Lift, damping and added mass. The lift force is a result of the pressure
field associated with vortex shedding, while the damping force comes from fluid resis-
tance as the cylinder moves through the fluid. The added mass force is due to the pressure
field related to cylinder acceleration. A model for the damping force has been proposed
by Venugopal [19], based on a survey of available results and measurements of damping
of flexible cylinders in still water and uniform flow. Most of the data which the model is
based on is for a Reynolds number around 10 000. He gives two different expressions for
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Figure 1: Moving cylinder in incoming flow. Coordinate system, relative velocity and lift force are
shown.

the damping coefficient, one valid for low reduced velocity (Vr = U/(fD), where f is
the vibration frequency) and one for high reduced velocity:

clow =
ωπρD2

2

[
2
√

2√
Reω

+ 0.25(
A

D
)2

]
+

1

2
ρDUCvl, (2)

chigh =
1

2
Cvh

ρU2

ω
, (3)

where Reω = ωD2/ν and ν is the kinematic viscosity of the fluid. Cvl and Cvh is set to
0.36 and 0.4 respectively, based on measurements. The angular frequency of motion is
given by ω, while A is the oscillation amplitude. These expressions are not suitable for
time domain simulations, as the damping coefficient is a function of oscillation frequency.
Therefore, an alternative damping model is suggested here, which is independent of fre-
quency and hence suitable for the present application. The proposed cross-flow damping
model contains a linear and non-linear term as follows:

Fdamp,y = −1

2
ρDC1Uẏ −

1

2
ρAC2|ẏ|ẏ. (4)

The coefficients C1 and C2 are constants, and are chosen such that the energy extracted
per cycle is approximately the same as in Venugopal’s low reduced velocity model. The
energy transfer is conveniently expressed as a non-dimensional excitation coefficient:

Ce = lim
T→∞

2

T

∫ T

0

Cy(t) cos (ωt)dt, (5)

whereCy(t) is the dimensionless cross-flow force, and the cross flow velocity is ωA cos (ωt).
Inserting the damping force from equation (4) into equation (5) gives the excitation coef-
ficient due to damping only:
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Ce = −C1
ωA

U
− C2

8ω2A3

3πDU2
. (6)

Repeating this calculation using Venugopal’s expression for low reduced velocity gives:

Ce = −clow
2ωA

ρDU2
. (7)

Ideally, the two different damping models should produce the same excitation coefficient
for all combinations of amplitudes, A/D and non-dimensional frequencies, f̂ = fD/U
in the low reduced velocity regime (f̂ > 0.2). This means that equation (6) and (7) can
be set equal to each other, and an infinite number of such equations can be constructed
by varying f̂ and A/D. A finite number of equations are established using f̂ ∈ [0.2, 0.5]
and (A/D) ∈ [0.2, 1.0] which is solved for C1 and C2 using least-squares. This yields
C1 = 0.485 andC2 = 0.936, which gives an average relative difference (over the specified
range of f̂ and (A/D)) between the excitation coefficient from the two models of 1.8 %.
Notice that the amplitude of oscillation is included in the non-linear term of equation (4).
This is in general not constant, and is continuously updated as the time domain simulation
progresses using the following expression:

A =
1

2

∫ T2

T1

|ẏ|dt, (8)

where T1 and T2 are the time of the two latest zero-crossings of the cross-flow velocity, as
shown in figure 2.

T1 T2

t

ẏ

Figure 2: Definition of T1 and T2, the integration limits of equation (8).

As indicated in figure 1 the lift force is assumed to act perpendicular to the instanta-
neous relative velocity vector, and is expressed mathematically as:
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~Fl =
1

2
ρDCl|~V |(~k × ~V ). (9)

The time varying lift coefficient is written as Cl = Cl,0 cosφl. The first part corresponds
to the amplitude of the lift force, and is a function of the non-dimensional oscillation
amplitude, i.e. Cl,0 = Cl,0(A/D). Although the amplitude may vary in time, Cl,0 will
be constant during a single oscillation cycle. This means that the short term variability
of the vortex shedding process is contained in the second term, φl, which is termed the
instantaneous phase of the lift force. To exemplify the concept of instantaneous phase,
consider the special case of a regular sinusoidally varying lift force. Then the lift coef-
ficient is given as Cl = Cl,0 cos(2πft + ϕ). This means the instantaneous phase in this
particular example is φl = 2πft + ϕ and the time rate of change of the instantaneous
phase is dφl/dt = 2πf . In other words, the time derivative of the instantaneous phase
equals the angular frequency if the force signal is sinusoidal. However, the lift force is
in general not purely sinusoidal, and may change its instantaneous frequency to obtain
lock-in. This must be included in the model, and a synchronization algorithm providing
the general behavior of the lift phase is described in the next section.

The values of Cl,0 as a function of A/D can be calculated if one has knowledge of the
cross-flow excitation coefficient. The calculation is based on the assumption that the lift
force is completely in phase with the cylinder velocity for the non-dimensional frequency
at which the excitation coefficient attains its maximum value. Based on experiments by
Gopalkrishnan [29] with an oscillating rigid cylinder, this occurs when f̂ ≈ 0.17. This
makes it possible to find the function Cl,0(A/D) necessary to have a certain excitation
coefficient at f̂ = 0.17. Note that the lift coefficient in the present context is not a function
of frequency, meaning that it is valid for all frequencies even though it is extracted from
the excitation coefficient at f̂ = 0.17. The damping force is also taken into account in the
process, as the actual excitation coefficient is a result of the power input from the lift force
and the power output due to damping. The excitation coefficient curve currently applied
in VIVANA is utilized for the calculation. This curve is based on Gopalkrishnan [29],
with some modifications to include experience from flexible beam tests [15]. It should be
noted that data from other sources might have been used instead. The utilized excitation
coefficient curve is shown in figure 3 together with the resulting lift coefficient curve.

In addition to the lift and damping force, an added mass force is present as a result
of cylinder acceleration. The still water potential theory value is used for the added mass
coefficient, i.e. Ca = 1.0. This means the total fluid force in the cross-flow direction
(assuming no in-line motion) can be written:

Ffluid,y =
1

2
ρD|~V |UCl,0 cosφl

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
lift force, y-component

−1

2
ρDC1Uẏ −

1

2
ρAC2|ẏ|ẏ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
damping force

−ρπD
2

4
Caÿ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
added mass force

. (10)
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Figure 3: Input excitation coefficient at f̂ = 0.17 and resulting Cl,0 as function of amplitude.

Note that the total added mass force is not only the (ρπD2/4)Caÿ-term, but also the part
of the lift force which is in phase with the cylinder acceleration.

2.3 Synchronization

Synchronization may be described as the adjustment of frequencies or phases in a system
of coupled oscillators. This phenomenon is observed in many branches of science, ranging
from mechanical systems to biological issues such as the synchronization of neurons in
the brain and the flashing of fireflies [30].

Theory used to describe weakly coupled oscillators and their synchronization behavior
is presented by Izhikevich and Kuramoto [31]. An important point is that for a dynamical
system,

ẋ = f(x), x ∈ Rm, (11)

having a periodic orbit, there is a continuous transformation between x(t) and the phase
φ(t) defined on the unit circle. Such a transformation removes the amplitude and preserves
the phase of the oscillation. Using this transformation makes it easier to study and describe
the synchronization behavior of coupled oscillator networks.

For the present application, it is of interest to describe the synchronization between
the cylinder motion and the lift force. It is assumed that the force at a given section is
affected only by the motion of the same cylinder strip, which is a common assumption
in other VIV prediction tools. It then follows that the span-wise correlation of the lift
force is determined by the cylinder motion, i.e. 3-dimensional effects are communicated
by the structure alone. Synchronization between force and velocity is necessary in order
to get a positive energy transfer from fluid to body. Hence, the cross-flow velocity of the
cylinder will be used as the physical quantity which the lift force seeks to synchronize
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with. Denoting the instantaneous phase of the cross-flow velocity as φẏ, the following
general form for a lift phase model is assumed valid:

dφl

dt
= 2πfs +H(φẏ − φl), (12)

where the function H(φẏ − φl) provides the synchronization behavior, as it involves the
phase of both lift force and cross-flow velocity. A procedure providing an estimate of the
lift phase model is given in the following section.

2.3.1 Lift phase model

Rosenblum et al. [32] describes methods to reveal synchronization between different pro-
cesses. These are based on applying the Hilbert transform to establish the instantaneous
phase of a given signal. It was however found difficult to get reliable results using the
Hilbert transform on measured vortex shedding forces. The reason is probably that the
Hilbert transform is sensitive to frequency content, and should ideally only be applied
to narrow band signals. Therefore, a more indirect approach is used, which is based
on available results for the cross-flow excitation coefficient. For a sinusoidal oscillation,
ẏ = ωA cos (ωt), in lock-in condition, there is a significant force component at the fre-
quency of oscillation, meaning that it is possible to write

Cy(t) = Cy,0 cos (ωt− θ) + ε(t), (13)

where ε(t) represents higher order frequency terms and noise. Inserting this in equation
(5), the following simple expression for the excitation coefficient is obtained, as ε(t) is
uncorrelated with cos (ωt):

Ce = Cy,0 cos θ. (14)

Recall that the lift force in the present model is not necessarily acting in the cross-flow
direction. Hence it is incorrect to mix the lift force and the cross-flow force in a general
situation, however for small oscillation amplitudes the two will coincide because the angle
between the lift force vector, ~Fl and the y-axis is small. In addition, the damping force
will be negligible. This means that Cy = Cl as long as the oscillation amplitude is small.
It follows that

θ = φẏ − φl, (15)

for small amplitudes. If it is assumed that Cy,0 is constant when the amplitude is kept con-
stant (and small), the phase difference between velocity and force is found as a function
of the oscillation frequency,
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φẏ − φl = cos−1
(Ce(ω)

Cy,0

)
= cos−1

(Ce(ω)

Ce,max

)
, (16)

where it has been inserted that Cy,0 = Ce,max, reflecting that the excitation coefficients at-
tains its maximum when the velocity and force are completely in phase (i.e. when θ = 0),
and that this maximum value must equal the amplitude of the cross-flow force coefficient.

As the main frequency of the lift force is constant and equal to the oscillation fre-
quency when lift and velocity are synchronized, the following statement must be true in
the range of frequencies where excitation is positive:

dφl

dt
= ω. (17)

Utilizing a known excitation coefficient curve, Ce(ω), and combining equation (16) and
(17) makes it possible to construct a point in the (φẏ−φl, dφl/dt)-plane for every ω in the
synchronization range, resulting in a graph of the lift phase model. The VIVANA excita-
tion coefficient curve for A/D = 0.15 is used for this purpose. As previously stated, this
curve is based on experience from a number of tests and is therefore a reasonable choice,
although data from other sources might have been used instead. The curve is smoothed to
give only one local maximum, ensuring that the derived lift phase model is well defined.
Figure 4 shows the original curve, along with the smoothed version. The coefficient is
normalized by its maximum value and is shown as a function of f̂ = ωD/2πU .
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Figure 4: VIVANA excitation coefficient at A/D=0.15, original and smoothed version. The curves
are normalized by their maximum values.

The smoothed curve is used to construct the lift phase model based on equations (16)
and (17) as previously described. The instantaneous frequency, dφl/dt, is normalized by
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ωs = 2πSt U/D, assuming St = 0.2, and plotted versus the phase difference between
cross-flow velocity and lift force, φẏ − φl. The resulting curve is shown in figure 5. The
solid curve is obtained directly from applying equations (16) and (17), which produces
results from −π/2 to π/2 on the unit circle. It is necessary to have results around the
whole unit circle, and the unknown part of the curve is established based on the fact that
dφl/dt should be continuous and 2π-periodic. A proposed curve in the unknown domain
is shown with a dashed line.
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φ l d
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Figure 5: Lift phase model derived from the smoothed Ce curve. The instantaneous frequency of
the lift force is normalized by the Strouhal frequency.

A short discussion regarding the interpretation of the lift phase model presented in fig-
ure 5 is appropriate at this point. The basis of the model is the fact that the time variability
of the cross-flow velocity of the cylinder and the lift force can be described in terms of
their instantaneous phases, φẏ and φl. The phase gives a point on the unit circle which
rotates with a certain angular velocity, which is defined as the instantaneous angular fre-
quency. With this in mind, the cross-flow velocity and the lift force may be visualized as
two individuals running around a field (the unit circle). Synchronization means that the
lift force will speed up if the velocity gets too far ahead, and slow down in the opposite
case. Referring to figure 5, it is seen that the mean instantaneous frequency of the lift force
is approximately the Strouhal frequency, while it can accelerate up to 1.5 this value if the
velocity is π/2 in front of the lift force. It may also slow down to 0.6 times the Strouhal
frequency if the velocity is π/2 behind. In this way, the lift force will continuously up-
date its speed, always trying to match the cross-flow oscillation frequency. However, if
the oscillation frequency is higher than 1.5fs or lower than 0.6fs, the lift force is unable
to synchronize, and will not provide any energy to the oscillation.

2.3.2 Calculating phases

In order to apply the lift phase model, it is necessary to know the instantaneous phase of
the cross-flow velocity, φẏ, and lift force, φl. The lift force phase is found from its initial
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value and the rate of change dφl/dt given by the lift phase model shown in figure 5. The
initial value of φl can in principle be taken arbitrarily, as the motion of the structure will,
after a short transient period, determine the time-evolution of φl. However, for an elastic
cylinder, unphysical transient vibrations will occur if φl(0, z) is taken to be uniformly dis-
tributed along the length of the cylinder because the lift force then will be fully correlated
over the entire structure length at the starting point of the simulation. To avoid this un-
physical transient startup, φl(0, z) is assigned independent random values between 0 and
2π.

In contrast to the lift force phase, the phase of the cross-flow velocity must be esti-
mated from the simulated time series. At a given time step in a time domain simulation,
one has knowledge of the response up to that particular time step only. This means that
methods requiring data for the whole time series, such as the Hilbert transform, are un-
suited. Instead, a phase portrait is constructed as shown in figure 6. The position on the
x-axis is given by the normalized velocity, while the position on the y-axis is given by the
normalized acceleration with a negative sign. The normalization is performed by dividing
the current value of ẏ(t) and ÿ(t) on the maximum value observed between time t − tc
and t, where tc is some characteristic time. This procedure is not necessarily optimal, but
is considered sufficient and easy to implement. In all simulations presented here, tc is set
to 5 times the vortex-shedding period based on the Strouhal frequency.

ẏn(t)

−ÿn(t)

φẏ

Figure 6: Phase portrait providing the phase of the cross-flow velocity.

3 Numerical results

3.1 Rigid cylinder subjected to forced oscillations

The hydrodynamic force model described in section 2 is used to simulate force time series
for a rigid cylinder undergoing sinusoidal cross-flow motions at different frequencies and
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amplitudes. In other words, a prescribed cross-flow motion, y(t) = A sin (ωt), is used
as input to the algorithm, and the hydrodynamic force per unit length is computed. The
simulations resemble the experiments by Gopalkrishnan [29], which makes it possible
verify the model directly. The Strouhal number is taken to be 0.2, which is known to
be approximately true in the subcritical flow regime. All relevant parameters used in the
simulations are shown in table 1.

Table 1: Simulation parameters, forced oscillations

U 0.4 m/s
D 0.0254 m
St 0.2
ρ 1000 kg/m3

For different combinations of f̂ = fD/U and A/D, the simulated time histories are
post-processed to obtain the component of the cross-flow force in phase with velocity and
acceleration respectively. The results are presented in figure 7 as contour plots together
with Gopalkrishnan’s experimental results. The coefficients have been calculated using
the following formulas:

Cy,v = lim
T→∞

2

T

∫ T

0

Cy(t) cos (ωt)dt, (18)

Cy,a = − lim
T→∞

2

T

∫ T

0

Cy(t) sin (ωt)dt, (19)

where the integration is performed over a complete number of cycles. The cross-flow
force coefficient is evaluated based on the total hydrodynamic force and the undisturbed
incoming current velocity:

Cy(t) =
Ffluid,y(t)

1
2
ρDU2

. (20)

Looking at the component in phase with velocity (fig. 7), it is seen that the model cap-
tures the essence of the underlying physics. The synchronization of the lift force ensures
a positive power input to the oscillation at non-dimensional frequencies between approxi-
mately 0.13 and 0.3 at small amplitudes. As the amplitude increases, so does the damping,
and the net power input drops. At a certain combination of amplitude and frequency, the
power input from the lift force balances the damping, and this gives the curve where
Cy,v = 0. This curve is important when predicting free vibrations of a rigid cylinder, as

68



PAPER I

−6−5

−4

−4

−3

−3

−2

−2

−1.5

−1.5

−1.5

−1 −1

−1

−1

−0.6

−0
.6

−0.6

−0.6

−0.6

−0.3

−0.3

−0
.3

−0.3

−0.3

−0.3

0
0

0

0

0

0.
2

0.
2

0.2

0.2

0.4

0.
4

0.4

0.
4

0.6

0.6

0.
6

f̂

A
/
D

0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

(a) Simulated Cy,v (b) Gopalkrishnan’s Cy,v

−9
−8

−7

−6

−6

−5
−5

−4

−4
−4

−3

−3
−3

−
2

−2

−2
−2

−
1.5

−1.5

−1.5 −1.5

−1
−

1
−1

−1

−0.5
−

0.5

−0.50
0

0

0

0.5

0.
5

f̂

A
/
D

0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

(c) Simulated Cy,a (d) Gopalkrishnan’s Cy,a

Figure 7: Simulated force coefficients (left) compared to experimental results by [29] (right).

it will determine the oscillation amplitude in absence of structural damping. Compared
to Gopalkrishnan’s results, the simulated zero-curve is quite similar, although the two
distinct excitation regions seen in the experiments has been merged together to a single
one in the simulated results. This is explained from the fact that the lift phase model is
based on the VIVANA excitation coefficients, where the two regions are arranged as one.
The behavior outside the positive excitation zone is also realistic, showing intermediate
negative values at low f̂ and larger negative values at high f̂ .

Continuing to the component in phase with acceleration, good overall agreement is
seen between the simulated and experimental results, although there are some minor dis-
crepancies. Both have an area of relatively low positive values to the left, and a steep slope
at f̂ ≈ 0.17. At higher non-dimensional frequencies, the simulated and experimental re-
sults show similar behavior, with increasingly negative values as the frequency and am-
plitude is increased. It is interesting that the component in phase with acceleration comes
out this close to the measurements, considering that no information about experimentally
measured Cy,a or added mass have been used to construct the model. This shows that the
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assumptions and simplifications embedded in the model are realistic. In particular, it sup-
ports the assumption that the total added mass force consists of the lift force in phase with
acceleration and the added mass force due to cylinder acceleration, ref. equation (10).

3.2 Free oscillations of a spring supported rigid cylinder

The hydrodynamic force model (ref. equation (10)) is combined with time integration
of the equations of motion to simulate the vibration of a spring supported rigid cylinder
free to move in the cross-flow direction. The only degree of freedom is the transverse
displacement of the cylinder, and the equation of motion reads:

(m+ ρ
πD2

4
Ca)ÿ(t) + ky(t) = F (t), (21)

where the external force term F (t) contains the lift and fluid damping force as given in
equation (10). The still water added mass term has been moved to the left hand side of the
equation. Recall that Ca is constant and equal to 1.0 in all simulations presented in this
paper. Equation (21) is solved using the Newmark-β method with standard parameters and
a time step corresponding to 100 steps per vortex shedding period (based on the Strouhal
frequency). The hydrodynamic force per unit length is evaluated based on the incoming
current speed and the cross-flow velocity of the cylinder. An explicit calculation of the
hydrodynamic force is made, meaning that velocities from the previous time step are used
to calculate the current hydrodynamic force. This is justifiable as the time step is small.
The simulation runs for 200 cycles, and the 100 first are discarded before the oscillation
amplitude and frequency are extracted. This has been done for reduced velocities Vr =
U/(f0D) ranging from 2 to 20. The structure is characterized by its diameter, its natural
frequency in still water f0 and the mass ratiom∗ = m/(ρπD2/4) which is given in table 2.
No structural damping is included. An experimental study by Govardhan and Williamson
[33] is chosen for comparison. The numerical and experimental results are shown in figure
8.

Table 2: Simulation parameters, free oscillations

D 0.0381 m
m∗ 1.2 - 10.3
f0 0.33 Hz
St 0.2
ρ 1000 kg/m3

As seen in figure 8, the overall agreement is good, and several relevant details are
captured by the simulations. For example, high-amplitude vibration is sustained for a
longer range of velocities at low mass ratio compared to high mass ratio, even though
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the peak amplitude remains the same. The largest response is found at Vr ≈ 6, where
the simulated amplitude reaches (A/D) = 0.9. This is slightly lower than seen in the
experiments, which is explained from the fact that the present lift coefficient is derived
from the excitation coefficient used in VIVANA, which in turn is adapted to experiments
with flexible, not rigid cylinders. The simulations do not capture the desynchronization
that occurs around Vr ≈ 18 for the low m∗ case, but maintains a moderate amplitude.

Also for the simulated oscillation frequency, the results are generally similar to the
experiments. At Vr = 5, the oscillation frequency equals the natural frequency in still
water. As the velocity is increased further, the frequency remains nearly constant for the
heavy cylinder, at least for Vr < 10. For the light cylinder, the frequency varies more and
is seen to increase almost linearly. The frequency is a compromise between the Strouhal
frequency and the natural frequency of the cylinder, which is a result of the synchroniza-
tion algorithm where the cylinder response affects the frequency of the lift force. For very
low reduced velocities, the simulated frequency is somewhat high, suggesting that the
present synchronization model may give the lift force a too strong ability to increase its
frequency. There are also some discrepancies at very high reduced velocities.
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Figure 8: Amplitude and frequency of oscillation for rigid cylinder, simulated and experimental
results (exp. from Govardhan and Williamson [33]).
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3.3 Vibrations of a flexible cylinder in shear flow

In this section, the hydrodynamic force model is used in combination with a linear fi-
nite element model to calculate response time series for a tensioned, flexible beam ex-
posed to linearly sheared flow. More specifically, the model is used to simulate high mode
VIV-tests performed by the Norwegian Deepwater Program (NDP) [34, 35], such that the
results may be compared to experiments. The physical properties of the riser model are
given in table 3, while an overview of the set up is shown in figure 9. Many different sce-
narios were investigated in the NDP tests, including bare riser and different configurations
of strakes in both uniform and linear sheared flow. Here, only the bare riser in shear flow
is considered. In these particular tests, the structure was exposed to different maximum
velocities ranging from 0.3 m/s to 2.4 m/s.

Table 3: Physical properties of the NDP riser

L 38 m
D 0.027 m
T 4300 - 4600 N
EI 599 Nm2

m 0.933 kg/m

T m,EI

Umax

U(z)

TD

L

z = 0

Figure 9: Overview of the NDP shear flow tests.

In the present analysis, the structure is divided into 50 beam elements, with elastic
(bending) and initial stress (tension) stiffness. The beam elements have one rotation and
translation degree of freedom in each end. Only cross-flow motion is simulated, and hence
are the degrees of freedom in the cross-flow plane. A consistent mass formulation is used,
and the added mass term (ρπD2/4)Ca is included in the mass matrix. The experimentally
measured structural damping of the riser model (in air) was reported to be 0.4 % of critical
or less, which is negligible compared to the hydrodynamic damping. Therefore, no struc-
tural damping is included in the simulations. The dynamic equilibrium equation is solved
using the Newmark-β method with standard parameters and a time step corresponding to
100 steps per vortex shedding cycle, based on the mean current velocity. As for the rigid
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cylinder, the hydrodynamic forces are evaluated based on velocities in the previous time
step. The dynamic equilibrium equation reads:

Mÿ(t) + Ky(t) = F(t), (22)

where M is the mass, K the stiffness matrix and y(t) a vector containing nodal transla-
tions and rotations. The external force vector F(t) contains lift and damping forces calcu-
lated according to the described procedure and transformed into equivalent point forces
through multiplication with the element length.

Based on the maximum current velocity, the Reynolds number is in the range of 8000
to 65 000. The relatively large variation could make Reynolds number effects important.
Govardhan and Williamson [36] have shown that the response of an elastically mounted
cylinder increases along with the Reynolds number, at least for Re < 105. A study per-
formed by Swithenbank et al. [37] has shown that this is also the case for long flexible
cylinders. This must be a result of either larger lift forces or less damping, which means
that the present model should possibly include a factor on one of these forces, accounting
for the Reynolds number effect. Another possibility is that the variation is so small that
the model performs well over the entire range of Re considered here. The difference be-
tween the experimental and simulated results will reveal if such a factor is necessary or
not. The Strouhal number is also known to vary as a function of Re, but as the variability
is small in the present range, a constant value of 0.19 is used, which is the mean value for
8000 < Re < 65 000 reported by Norberg [23].

Using the model described above, simulations are performed for velocities ranging
from 0.3 m/s to 2.4 m/s with a step of 0.1 m/s, giving a total of 22 simulations. Each
simulation lasts for 200 vortex shedding cycles based on the mean current velocity. The
results are post-processed after removing the first 150 cycles. The dominating cross-flow
frequency is extracted at the point of maximum motion and the root-mean-square (r.m.s.)
value of the cross-flow displacement along the riser is calculated and plotted. The domi-
nating mode is found by modal analysis [38] of the calculated response, utilizing eigen-
modes from the finite element solution. The number of participating modes in the modal
analysis is set to 20, and as 51 data points of displacement are available, the modal weights
are found using least-squares. The dominating frequency and mode is shown in figure 10
and 11 along with the experimental results from the NDP test. The maximum r.m.s. value
of cross-flow displacement along the riser for all current velocities is reported in figure
12, while the entire r.m.s. distribution for cross-flow displacement along the riser for a
few selected cases are given in figure 13. Time series plots of the simulated riser response
for the same cases are presented in figure 14.

Figure 10-12 indicates that the agreement between the simulations and the experimen-
tal results is very good, except for a slight overestimation of the frequency and mode. This
could have been improved by lowering the Strouhal number, however justifying this re-
duction is difficult. Due to inherent experimental errors and the random nature of VIV, it
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Figure 10: Dominating frequency, cross-flow displacement.

cannot be expected to achieve a perfect match between experiments and simulations. Fur-
ther uncertainties are introduced by the modal reconstruction utilized in post-processing
the experimental data [35]. With this in mind, the agreement in terms of the maximum
value of the root-mean-square of the displacement is very good for Umax > 0.5m/s. For
the lowest current velocities the simulated response is somewhat high, which may be a re-
sult of the Reynolds number effect previously discussed. It is however concluded that the
present model produces realistic oscillation amplitudes for 16 000 < Re < 65 000, with-
out any need for a Reynolds number dependent term. The r.m.s. of the response along the
riser as shown in figure 13 shows how the response mostly consists of symmetric stand-
ing waves for low current velocities, while traveling waves become more dominating for
higher velocities. When traveling waves dominate, the response is clearly largest in the
high current velocity region along the structure. All these features are captured by the
model. As seen in figure 14, the waves propagate from the high velocity region towards
the other end, where standing waves are observed due to reflection at the boundary.

4 Conclusions

A new method for time domain simulation of cross-flow VIV has been presented. The
method is based on simple assumptions regarding the physics of the vortex shedding pro-
cess, and includes a synchronization model which simulates how the instantaneous fre-
quency of the lift force reacts to the structure motion. It is shown through numerical ex-
perimentation and comparison with published experimental observations that the method
produces realistic results in a variety of situations, including forced and free cross-flow
vibrations of a rigid cylinder, and also a flexible cylinder in shear flow. The results indicate
that the model is useful for prediction purposes, and since it is formulated in time domain,
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Figure 11: Dominating mode, cross-flow displacement.

it is especially suited for problems involving non-linear structural behavior, or other exter-
nal loads. When combined with a finite element model of the structure, the method may
in principle be used for simulating any type of (circular) cylindrical slender structure in
arbitrary flow conditions, as the formulation is completely general with respect to current
profile and geometry.

Further work should focus on increased understanding of the model, such as how
the response frequency is determined through synchronization between force and motion.
This should be fully understood in order to establish an improved synchronization model.
Numerical issues such as accuracy versus time step size when using an explicit calculation
of forces should also be investigated. When it comes to further enhancement of the model,
a natural step would be to include the fluctuating drag force and in-line motion. The
synchronization model would have to be modified to take in-line motion into account,
such that the model can simulate combined in-line and cross-flow vibrations. The higher
order harmonics of force and response should also be looked into. An interesting fact is
that the present model produces a significant cross-flow force at 3 times the cross-flow
vibration frequency when in-line motion is present. This surely motivates further work on
the model, as the 3rd harmonic is an important contributor to fatigue damage. The model
includes no restriction on the time variation of the incoming current velocity, meaning
that it is possible to simulate VIV in oscillating current or waves. The model performance
in such situations should be investigated in the future.
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Figure 13: Solid lines: r.m.s. of simulated cross-flow response. Diamonds: r.m.s. values from ex-
periments obtained by direct integration of measured accelerations [35].
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(a) Umax = 0.6 m/s

(b) Umax = 1.3 m/s

(c) Umax = 2.0 m/s

Figure 14: Simulated cross-flow response in time and space. The color represents the normalized
cross-flow response, y/D.
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Fatigue damage from time domain
simulation of combined in-line and cross-
flow vortex-induced vibrations
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Trondheim, Norway
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Abstract

A semi-empirical method for time domain simulation of vortex-induced vibrations (VIV)
is used to calculate the in-line and cross-flow fatigue damage of a tensioned riser in uni-
form and sheared flow. Simulations are run for flow velocities ranging from 0.3 m/s to
2.4 m/s, and a detailed comparison with experimental observations is performed. Results
are reported in terms of dominating frequency, mode of vibration and mean of r.m.s. of
displacement, as well as fatigue damage distribution along the length of the structure and
maximum fatigue damage rates for each case. Fatigue damage is calculated by rainflow
counting of the strain time series together with an idealized S-N curve with slope m = 3.
The results show that the model reproduces the measured fatigue damage with a satisfac-
tory level of realism, using a consistent set of parameters. This indicates that the model is
usable for calculation of riser VIV fatigue damage in various current conditions, assuming
the Reynolds number is in the subcritical range.

Keywords: Vortex-induced vibrations; Fatigue; Simulation; In-line; Cross-flow
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1 Introduction

When a circular cylinder is placed in a flowing fluid, flow separation and shedding of
vortices result in oscillating lift and drag forces. If the cylinder is elastic these forces will
cause structural oscillations, referred to as vortex-induced vibrations (VIV). For slender
structures such as marine risers, these vibrations may induce significant dynamic stresses,
which in turn can cause rapid accumulation of fatigue damage. Being able to predict the
stresses and corresponding fatigue damage caused by VIV is therefore important for the
design of safe structures.

Substantial research efforts have been put into increasing the understanding of VIV,
as seen in the reviews by Bearman [1, 2], Sarpkaya [3], Williamson and Govardhan [4]
and Wu et al. [5]. Due to the complexity of the mathematical models describing viscous
fluid flow, experiments have played a central part of this research. This includes experi-
ments with flexibly mounted rigid cylinders [6–8], forced oscillations [9–11] and slender
elastic cylinders in various flow conditions [12–14]. At first, experimenters were mainly
interested in the cross-flow (transverse) response. Although in-line vibrations were known
to occur, these were considered less important due to the smaller amplitude of response.
However, Baarholm et al. [15] have shown that the in-line vibrations may be equally im-
portant for the fatigue life of risers. VIV of cylinders with two degrees of freedom was
studied experimentally by Jauvtis and Williamson [16] and Dahl et al. [17]. An important
consequence of the in-line motion is higher harmonic forces in the cross-flow direction.
As illustrated by Vandiver et al. [18] and Modarres-Sadeghi et al. [19] the higher harmon-
ics may contribute significantly to the total fatigue damage, and should not be neglected.
Another recent finding is that the VIV response of risers continuously alternate between
a chaotic and a stationary state [20].

As the direct solution of the equations governing viscous flow is extremely computa-
tionally demanding, most available engineering tools are based on empirical relationships.
There exist a number of semi-empirical frequency domain tools, such as SHEAR7 [21]
and VIVANA [22], which employ similar techniques to calculate the VIV response. In
the frequency domain tools, the fluid forces are described through excitation (lift), damp-
ing and added mass coefficients which are functions of the amplitude and frequency of
response. These coefficients are typically found from experiments with rigid cylinders
subjected to forced oscillations.

Although the semi-empirical frequency domain tools are efficient, and quite accurate
in some cases [23, 24], these methods have some inherent weaknesses. The formulation
requires a linear structural model, and because the hydrodynamic coefficients are func-
tions of the non-dimensional oscillation frequency (or, equivalently, reduced velocity),
only constant fluid velocity is allowed. This prohibits the inclusion of non-linear struc-
tural effects (such as varying tension) and the study of VIV in non-stationary flows such
as waves. It is also difficult to account for the interaction between the response at differ-
ent frequencies, which may be relevant in cases where the current velocity varies strongly
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along the structure.
To dispose of the above mentioned limitations one must perform a step-by-step in-

tegration of the equations of motion, i.e. time domain simulation. This would allow for
non-linear structural effects, true interaction between competing frequencies, study of
VIV in combination with other external disturbances (e.g. soil interaction and top-end
motions) and time varying currents or waves. An existing method for time domain sim-
ulation of VIV is the wake-oscillator [25]. This method is based on the assumption that
the fluid force may be described by a forced Van der Pol oscillator. It is however difficult
to find a set of parameters suitable for both forced and free vibrations [26]. Mainçon [27]
developed a totally new method for time domain prediction of VIV, training an artificial
neural network to predict the instantaneous hydrodynamic force based on a compressed
form of the recent velocity history. Although promising, the method has some stability
issues.

A novel method for time domain simulation of cross-flow VIV was introduced in [28].
A model for the synchronization between the exciting force and structure motion was
derived, and it was shown that this model gives realistic results for forced as well as free
vibrations of short rigid cylinders. In combination with a finite element structural model
the frequency, amplitude and mode of vibration for a flexible cylinder in linearly sheared
current was accurately predicted. In [29], the model was extended to enable simulation
of combined cross-flow and in-line vibrations. The purpose of the present paper is to
investigate how this model performs with respect to predicting fatigue damage rates for
a flexible cylinder in uniform and shear flow. As fatigue damage is the primary concern
in connection with VIV, a useful model must provide realistic estimates. This highlights
the importance of the present study, as the direct comparison between experiments and
simulations provides a basis for evaluating the accuracy of the model.

2 NDP experimental data

Experimental data from the Norwegian Deepwater Programme (NDP) Riser High Mode
VIV tests [30] have been used for comparison. In this experimental campaign, a 38 meter
long riser model with circular cross section was towed through the Ocean Basin at the
Norwegian Marine Technology Research Institute (MARINTEK). The experiments con-
sist of both uniform and sheared flow cases. In the uniform flow cases, the entire structure
was exposed to a constant flow velocity U . In the sheared flow cases, the current veloc-
ity increased linearly from zero to U along the riser length. The velocity U was varied
from 0.3 m/s to 2.4 m/s with steps of 0.1 m/s. Various configurations of strakes were also
tested, however only the naked riser results are used here. The physical properties of the
riser model are given in table 1.

The uniform flow profile was created by towing the structure in a straight line, while
sheared flow was produced by towing one end in circular arc, keeping the other end fixed.
The riser was equipped with strain gauges and accelerometers measuring the in-line strain
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Table 1: Physical properties of the NDP riser

Length (L) 38 m
Diameter (D) 0.027 m
Mean tension (T ) 4000 - 6000 N
Bending stiffness (EI) 599 Nm2

Mass per unit length (m) 0.933 kg/m

at 40 locations, the cross-flow strain at 24 locations and the acceleration (in-line and cross-
flow) at 8 locations along the length of the model. A pretension of approximately 4000
N was applied before the experiment started, and the actual tension during towing was
measured by force transducers mounted at the riser ends.

3 Hydrodynamic force model

When a circular cylinder is exposed to an incoming fluid flow, the boundary layer sep-
arates from the cylinder surface and rolls up into a vortex on either side of the cylinder
[31]. For Reynolds numbers larger than 40, the vortices become unstable, causing alter-
nating vortex shedding. The shedding frequency is given in non-dimensional form as the
Strouhal number, St = fsD/U , where fs is the frequency, D the cylinder diameter and
U the velocity of the incoming flow. For a stationary cylinder in uniform flow, St is close
to 0.2 for subcritical Reynolds numbers. However, the presence of shear flow causes the
Strouhal number to vary along the cylinder length, as the vortex shedding takes place
in spanwise cells with constant frequency over each cell [32]. Furthermore, a flexible
cylinder affects the flow such that the vortex shedding may lock-on to the frequency of vi-
bration. This effect may cause the vortex shedding frequency to deviate from the expected
Strouhal frequency. In experiments with a flexible riser in uniform flow, St was found to
vary from 0.14 to 0.18, based on the observed frequency of vibration [33].

The model developed in [28] and [29] is used to calculate the dynamic lift and drag
forces in the simulations presented here. This semi-empirical model provides the hydrody-
namic force per unit length on a cylindrical cross section based on the motion of the same
cross-section, corresponding to a strip-theory approach. It is hence implicitly assumed that
the motion of the structure determines the 3-dimensional behavior of the flow. It should be
noted that the empirical parameters are based on data from subcritical Reynolds numbers.
The coordinate system is defined in figure 1, where the x-axis is determined by the di-
rection of the incoming flow. The origin is placed at the static equilibrium position of the
cylinder, such that x and y represents the cylinder displacement in the in-line and cross-
flow direction. The present formulation includes some minor modifications compared to
the original model. Firstly, the incoming fluid velocity is used instead of relative velocity
when calculating excitation forces. Secondly, the magnitude of the in-line excitation force

85



PAPER II

is established by physical instead of pure empirical considerations.

x

y

U

Figure 1: Coordinate system definition

3.1 Cross-flow force

It is assumed that the fluid forces may be decomposed into three components; excitation,
damping and added mass. The excitation force is associated with the fluctuating pressure
field due to vortex-shedding, and the cross-flow component is expressed as:

Fexc,y =
1

2
ρDCvU

2 cosφexc,y, (1)

where ρ is the fluid density, D the cylinder diameter, Cv an empirical coefficient which
is a function of the cross-flow amplitude of vibration Ay (see figure 2) and φexc,y is the
instantaneous phase of the force. In case of a sinusoidal force of constant frequency f , the
instantaneous phase can be written as φexc,y = 2πft + θ, where θ is the phase at t = 0.
Such a representation could have been used for a stationary cylinder, where the vortex-
shedding frequency is given by the relation fs = StU/D [31], where St is the Strouhal
number. It is however well known [34] that cylinder motion will strongly influence the
flow, and the vortex-shedding frequency may synchronize with the frequency of motion.
This effect is included through an equation for the synchronization of the instantaneous
phase of the exciting force:

dφexc,y

dt
= H(φẏ − φexc,y). (2)

Equation (2) is used to calculate the rate of change of φexc,y, which is called the instanta-
neous angular frequency of the exciting force. The instantaneous phase of the cross-flow
velocity of the cylinder is denoted φẏ, and it is assumed that dφexc,y/dt is a function of
the phase difference between the cross-flow cylinder velocity and the exciting force. The
reason why cylinder velocity is used as the quantity which the force seeks to synchronize
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with, is that the force must be in phase with the velocity in order to provide energy to the
oscillation. In [28] it was shown how the function H(φẏ − φexc,y) is found from data for
the cross-flow force component in phase with velocity. The resulting function is shown in
figure 3, normalized by the Strouhal angular frequency ωs = 2πStU/D, using St = 0.2.

0 0.5 1 1.5
0

0.5

1

1.5

Ay/D

C
v

Figure 2: Excitation force coefficient, Cv(Ay/D).

It is elucidating to visualize the synchronization process as two individuals running
around the unit circle. Imagine φẏ is moving with an arbitrary angular velocity, while
φexc,y attempts to synchronize. Intuitively, this means the phase of the force must speed
up if it gets behind, or slow down if it gets ahead. This is exactly what the function
H(φẏ − φexc,y) does. As seen in figure 3, the instantaneous frequency of the force will be
reduced to a minimum of 0.6 times the Strouhal frequency when the cylinder velocity is
π/2 behind, or increased to a maximum of 1.5 times this value if the cylinder velocity is
π/2 ahead. If the frequency of motion is outside this range, the exciting force is unable to
synchronize, and cannot transfer any energy to the oscillation.

There will be fluid resistance, or damping, as the cylinder moves through the water.
By definition, this force will always extract energy from the oscillation. In addition, an
added mass force is present as a result of the cylinder acceleration. The damping and
added mass forces are modeled as in [28], which means the total hydrodynamic force in
the cross-flow direction is calculated as:

Ffluid,y =
1

2
ρDCvU

2 cosφexc,y

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
excitation

−1

2
ρDCy1Uẏ −

1

2
ρAyCy2|ẏ|ẏ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
damping

−ρπD
2

4
Cayÿ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
added mass

, (3)

where Cy1 = 0.485, Cy2 = 0.936 is used in all simulations. This particular choice of
damping coefficients provides approximately the same energy extracted per cycle as the
model by Venugopal [35], which is based on a number of experiments in still water as well
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Figure 3: Normalized instantaneous angular frequency of the cross-flow excitation force as a func-
tion of the phase difference between cross-flow cylinder velocity and excitation force.

as low and high reduced velocities. The still water potential theory value of Cay = 1.0 is
used for the added mass coefficient.

3.2 In-line force

In the model presented here, the in-line excitation force is a direct result of cross-flow
motion. This means the model is only applicable in cases with combined cross-flow and
in-line vibrations. Pure in-line VIV is known to occur at low reduced velocities [36], and
the model should not be applied in such cases. The starting point for deducing an expres-
sion for the in-line excitation force is the fact that the excitation forces in the in-line and
cross-flow direction are both components of the same force vector ~Fexc, as illustrated in
figure 4. A simplifying assumption is introduced, namely that ~Fexc acts perpendicular to
the relative velocity vector, ~V = (U − ẋ)~i − ẏ~j, where ~i and ~j are unit vectors in the
x- and y-direction. The rationale behind this assumption is the fact that, for a stationary
cylinder, the oscillating drag force is small compared to the lift [31]. Thereby, the resul-
tant excitation force is approximately normal to the incoming flow. When the cylinder is
moving, the incoming flow velocity is replaced by the relative fluid velocity felt by the
cylinder, and the force is thereby assumed normal to the relative velocity. This assumption
will not hold in the limiting case of a fixed cylinder, because the small oscillating drag
force is neglected. To simplify the derivation further, it is also assumed that the cylinder
velocity in the x-direction is much smaller than U . For equation (1) to hold under these
assumptions, ~Fexc must be given as:
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Figure 4: Excitation force with in-line and cross-flow components. Also shown are the unit vectors
and relative velocity between fluid and cylinder

~Fexc =
1

2
ρDCvU |~V | cosφexc,y~n, (4)

where ~n is a unit vector normal to the relative velocity as shown in figure 4. This result is
used to find the component in the in-line direction:

Fexc,x = ~Fexc ·~i =
1

2
ρDCvU |~V | cosφexc,y

ẏ

|~V |
=

1

2
ρDCvUẏ cosφexc,y. (5)

When force and motion are synchronized, the frequency is constant and we may write
φexc,y = ωt and ẏ = ẏ0 cos (ωt+ θ). Inserting this in equation (5) and applying a trigono-
metric identity yields:

Fexc,x =
1

2
ρDCvUẏ0 cos (ωt+ θ) cosωt (6)

=
1

2
ρDCvUẏ0

(1

2
cos (2ωt+ θ) +

1

2
cos θ

)
. (7)

The first term in the parenthesis is oscillating with twice the cross-flow frequency. This is
as expected, based on experimental observations as well as physical considerations. The
second term is constant, and will be neglected in the following, as we are presently not in-
terested in the mean drag force. The appearance of a constant term is however interesting,
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and it is believed to be one of the sources to the experimentally observed amplification
of drag forces for oscillating cylinders. The dynamic in-line excitation force is thus ex-
pressed as:

Fexc,x =
1

4
ρDCvUẏ0 cos (2ωt+ θ) =

1

4
ρDCvUẏ0 cosφexc,x. (8)

As for cross-flow, the in-line force must be able to vary its instantaneous frequency to
synchronize with the motion. Simultaneously, the relationship dφexc,x/dt = 2dφexc,y/dt
must be satisfied for the in-line and cross-flow excitation frequencies. However, direct
use of this relationship makes it impossible for the in-line force to synchronize with the
motion. Instead, the frequency relationship is satisfied approximately, i.e. dφexc,x/dt ≈
2dφexc,y/dt. The following equation is used to describe the synchronization of the in-line
excitation force:

dφexc,x

dt
= 2

dφexc,y

dt

(
1 + α sin (φẋ − φexc,x)

)
, (9)

where α is a small positive number and φẋ is the phase of the in-line velocity of the
cylinder. The above formulation allows the in-line excitation force to increase or decrease
its instantaneous frequency slightly to synchronize with the in-line cylinder velocity, while
ensuring that

2(1− α)
dφexc,y

dt
≤ dφexc,x

dt
≤ 2(1 + α)

dφexc,y

dt
, (10)

which shows that the frequency relationship is satisfied approximately as α � 1. In the
numerical simulations, α is set to 0.02.

The in-line fluid damping and added mass force is expressed on the same form as for
cross-flow, and the total in-line fluid force is thereby computed as:

Ffluid,x =
1

4
ρDCvUẏ0 cosφexc,x

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
excitation

−1

2
ρDCx1Uẋ−

1

2
ρAxCx2|ẋ|ẋ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
damping

−ρπD
2

4
Caxẍ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
added mass

, (11)

where Ax is the amplitude of the in-line displacement. The coefficients are set to Cx1 =
0.507 and Cx2 = 0.936, which yields good agreement with the in-line damping model
by Venugopal [35]. Obviously, Cx2 = Cy2 as in-line and cross-flow motion is equivalent
in case of still water. As for cross flow, the potential theory result is used for the in-line
added mass, i.e. Cax = 1.0.
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4 Numerical model

4.1 Finite element model

A numerical model of the NDP riser is established based on the previously described
hydrodynamic force model and a finite element model of the structure. Classical Euler-
Bernoulli beam theory is assumed to be applicable. The structure is divided into 100 finite
elements with 4 degrees of freedom, corresponding to cubic interpolation of the lateral
displacements. Contributions from bending and initial stress (tension) are included in the
element stiffness matrices, using the mean tensile force measured in each test. The mass
matrix is assembled using a consistent mass formulation, including the added mass term
CaρπD

2/4 (Ca = 1). The small static displacements due to gravity and mean drag are
neglected. Linear structural behavior is assumed, which means the in-line and cross-flow
displacements are uncoupled from a structural point of view (although the external forces
are strongly coupled). Hence, for both in-line and cross-flow displacements, the dynamic
equilibrium equation for the structural system reads:

Mr̈(t) + Cṙ(t) + Kr(t) = F(t), (12)

where M is the mass, C the structural damping, K the stiffness matrix and r(t) a vec-
tor containing the nodal displacements (i.e. rotations and translations). The external force
vector F(t) represents the hydrodynamic forces in the in-line or cross-flow direction (de-
pending on which direction we are looking at), and contains the fluid excitation and damp-
ing forces calculated according to the described procedure (see equations (3) and (11)).
The forces are evaluated at every finite element node, i.e. at 99 positions along the length
and transformed into equivalent point forces by multiplication with the element length.
The structural damping (in air) was reported to be less than 0.4 % of critical [30], which is
negligible compared to the hydrodynamic damping. Nevertheless, some structural damp-
ing is included to increase the stability of the solution. The structural damping matrix is
represented as C = α1M + α2K, using α1 = 10−2 and α2 = 10−4.

The analysis is a time integration procedure where the response is calculated step-by-
step based on previous results (displacements, velocities and accelerations) and the pres-
ent hydrodynamic load. The dynamic equilibrium equation is solved using the Newmark-
β method with γ = 0.5 and β = 0.25. The length of the time-step is set to h = D/(20U),
corresponding to approximately 100 steps per oscillation cycle. As the time-step is small,
the hydrodynamic forces are found using the velocity and acceleration of the structure at
the previous time-step.

Each simulation lasts for 200 oscillation cycles, and the first 100 are removed prior
to post-processing to remove any transient effects. The curvature is taken as the second
derivative of the calculated displacement (d2x/dz2 for in-line curvature and d2y/dz2 for
cross-flow) and the strain at the outer fiber is found by multiplying the curvature with the
radius of the riser cross-section. At time t = 0, the instantaneous phases of the exciting
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forces (i.e. φexc,x(0, z) and φexc,y(0, z)) are assigned independent random values between
0 and 2π.

4.2 Amplitudes and phases

As seen in section 3, the hydrodynamic forces depend on the amplitude of vibration. The
amplitude will vary along the structure, and in general also in time. Therefore, it is contin-
uously extracted from the calculated response at every node as the simulation progresses.
For a narrow-banded signal, the amplitude may be taken as half the distance traveled
between two succeeding turning points. The turning points are characterized by zero-
crossings of the velocity. With this in mind, the following expression is used to estimate
the amplitude of vibration:

Ay =
1

2

∫ t2

t1

|ẏ|dt, (13)

where t1 and t2 are the time at the two most recent zero-crossings of the velocity. The
same procedure is used to find the in-line amplitude.

The synchronization models (ref. equation (2) and (9)) require the phase of the cross-
flow and in-line velocity of the cross-section. This is found using the phase portrait con-
cept. In the phase portrait, the position on the horizontal axis is given by the normalized
velocity and the position on the vertical axis by the normalized acceleration with negative
sign. Now, the instantaneous phase equals the angle between the present position and the
horizontal axis as illustrated in figure 5. The normalization consists of dividing the veloc-
ity (or acceleration) on the maximum value observed, i.e. ẋn(t) = ẋ(t)/max(ẋ(ti), ti ∈
[0, t]). The same procedure is used to find the cross-flow phase.

4.3 Adjusting the vortex shedding frequency for Reynolds number effects

Although the Strouhal number for fixed cylinders is known to be almost constant for
300 < Re < 3 × 105 [31], there is a slight reduction as Re is increased from 103 to
105 (see e.g. [37]). This effect is also found in experiments with flexible cylinders [38]
through a reduction in the non-dimensional frequency, f̂ = foscD/U , where fosc is the fre-
quency of oscillation. As the stress level is proportional to the square of the excited mode
number (assuming a single mode dominates the response), it follows that the fatigue life
is extremely sensitive to the excited mode. It is therefore important that the present nu-
merical model produces the correct frequency of excitation, taking the Reynolds number
dependency into account.

In the numerical model, the instantaneous frequency of the cross-flow excitation force
is given by equation (2). The function H(φẏ − φexc,y) was originally obtained from the
VIVANA database [22], [28]. To improve the model, this function is now multiplied with a
Reynolds number dependent factor, meaning we use dφexc,y/dt = Cf (Re)H(φẏ − φexc,y)
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−ẍn(t)

ẋn(t)

φẋ

Figure 5: In-line velocity phase portrait.

to calculate the instantaneous frequency of the cross-flow excitation force. A curve for
Cf (Re) is established using the numerical model and comparison with the experimental
data. The data for uniform flow is utilized, as the Reynolds number is constant along the
length of the riser in these tests. For each experiment, the simulated dominating frequency
is compared to the measured dominating frequency [39], and Cf is varied until the two
values coincide. The result for each Reynolds number is shown in figure 6, along with a
simple linear regression fit. Based on these calculations, Cf is found to be nearly constant
over the whole range of Re considered, although a slight reduction is seen. The linear
curve is used for evaluating Cf in all simulations reported in the remaining part of this
paper.
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Figure 6: Cf as a function of Reynolds number based on comparison of simulated and measured
dominating frequency.
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5 Fatigue analysis

Fatigue damage is calculated using Miner-Palmgren summation:

D =
k∑

i=1

1

N(Si)
, (14)

whereN(Si) is the number of cycles to failure at a stress amplitude Si, and the summation
is done over all cycles in the sample time series. The number of cycles to failure for a
given stress level is found from an idealized S-N curve, N(S) = S−m. According to
[40], m = 3 in seawater under free corrosion conditions, and this value is adopted here.
For irregular time series, the rainflow counting method is considered the most accurate
way of establishing stress ranges from a sample [41], and the WAFO Matlab toolbox [42]
is used for this purpose. As stress is a linear function of strain, the fatigue analysis is
simply carried out on the strain time series. For the measured cross-flow strain, rainflow
counting is carried out on the original and a filtered version of the signal, where higher
harmonics have been removed. The idea of the filtering is to isolate the fatigue damage
from fundamental frequency strain and compare this to the total damage. The filtering is
performed as follows: The frequency spectrum is established by Fourier transformation.
The fundamental frequency f1 is found by visual inspection, and all Fourier components
above 2f1 are removed. The signal is then tranformed back to time domain. A typical
result of the filtering process is shown in figure 7, where the filtered signal is compared to
the original.
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Figure 7: Fourier spectrum of measured strain (left) and original and filtered strain time series
(right).

Each experiment consists of an initial transient phase, a period of fully developed VIV
and a decay period as the towing velocity is reduced. Only the fully developed period is
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of interest here, and the initial and decay periods are removed prior to any data analysis
(e.g. filtering and rainflow counting). A nominal time window is established based on the
time when full towing speed is reached and the time when the speed starts to drop. The
actual time window used in the analyses is taken as the last 2/3 of the nominal.

6 Results and discussion

6.1 Uniform flow

Results for the uniform flow cases are presented first. The dominating frequency and mode
in the experiments were found based on measured strains and accelerations [39]. For the
simulations, the dominating frequency is found from the peak in the frequency spectrum at
the position of max displacement. For a tensioned beam the modes are sinusoids, and the
mode number corresponds to the number of half-waves along the riser. The dominating
mode is found by modal analysis [43] of the simulated response, using modeshapes from
the finite element model. This is done for all current velocities, and the results are reported
and compared to the measurements in figure 8 and 9. The simulated frequency is seen to be
very accurate for in-line as well as cross-flow, indicating that the in-line synchronization
model is good. The dominating mode is also in good agreement, especially for cross-flow.
Note that both the experimental and simulated response consists of multiple modes, and
in some cases two adjacent modes may be almost equal in strength. Hence, a difference
of ±1 between simulation and experiment is a natural result of the inherent stochastic
variations. With this in mind, the simulated cross-flow mode is very good, while the in-
line mode is in general slightly high. One possible explanation for this is that the in-line
added mass is not taken correctly into account, and that the actual added mass in the in-line
direction is lower. A reduction in added mass would result in higher natural frequencies,
hence the observed excitation frequency would activate a lower mode.

As a measure of the amplitude of response, the mean along the riser of the r.m.s. of
the displacement time series is used:

ȳrms =
1

L

∫ L

0

(√
1

T

∫ T

0

y(t, z)2 dt

)
dz. (15)

This is done for both in-line and cross-flow and the results are compared to experiments
in figure 10. It is found that the simulated cross-flow response is somewhat large, on aver-
age 27 % higher than measured. This may be related to the fact that important parameters
in the simulations, such as Strouhal number and excitation force coefficient are constant,
while in reality random variations occur. Such disturbances are likely to decrease the
overall response, and this effect is not included in the simulations. Experimenting with
random parameters in the hydrodynamic force model would be interesting in the future.
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Figure 8: Dominating frequency in uniform flow from experiments and simulations.

In addition, the presence of higher harmonics may reduce the amplitude of the funda-
mental frequency response, which is also not taken into account in the simulations. The
predicted amplitude of the in-line response is seen to be very accurate, which strengthens
the assumptions regarding the source of the in-line excitation force (section 3.2).

As described in section 5, fatigue damage is calculated based on rainflow counting
of the strain time series from simulations and experiments. Hence, for every simulation,
the distribution of fatigue damage rate along the riser is established. In figure 11, results
for the cases U = 0.8 m/s, U = 1.5 m/s and U = 2.3 m/s are compared to the fatigue
damage caused by the actual measured strains. Compared to measurements, the predicted
fatigue damage due to cross-flow vibrations is realistic, while the predicted in-line damage
is too large. This is likely due to the error in the predicted in-line mode. For example, for
U = 1.5 m/s the measured dominating mode is 17 while the predicted is 19. Hence one
will expect the associated predicted strain to be (19/17)2 ≈ 1.25 times larger, which
yields a maximum fatigue damage that is 1.253 ≈ 1.95 times higher than observed. This
number is in reasonable agreement with the ratio between predicted and measured in-line
fatigue damage for this case. When it comes to the variation of the fatigue rate along the
riser, the calculations show harmonic variations with distinct peaks and troughs, while
the measured fatigue rate is more irregular. This indicates that the vibrations are in reality
non-stationary, such that the fatigue damage is dispersed over a larger area. Non-stationary
VIV has been reported by various researchers [20], [44]. This apparently random behavior
is not captured by the model, but may be included in the future, for instance by introducing
random fluctuations in the coefficients. Another interesting observation is that the fatigue
rate in some cases have a maximum value close to one end of the riser, with significantly
lower fatigue rates at the other end (see e.g. figure 11b and 11c). This behavior is also
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Figure 9: Dominating mode in uniform flow from experiments and simulations.

seen in the simulations, even though the incoming current and boundary conditions are
symmetric.

Of particular interest is the maximum fatigue damage rate along the riser. This is
extracted from every simulation and compared to the corresponding measured value in
figures 12 (cross-flow) and 13 (in-line). For the measured cross-flow strain, the analysis
is carried out on the total signals as well as a low-pass filtered version, i.e. with higher
harmonics removed. Hence, the low-pass filtered signals contains only the fundamental
frequency component. This makes it possible to compare the fundamental frequency fa-
tigue damage to the total damage, thereby revealing the importance of the higher harmon-
ics. The difference between the total and the fundamental frequency damage is explored
more thoroughly in section 6.4. Looking at figure 12 it is however seen that the higher
harmonics are important, and the fundamental frequency damage is in some cases below
20 % of the total.

For all current velocities, the prediction bias is calculated as:

bias =
simulated maximum fatigue damage rate

measured maximum fatigue damage rate
. (16)

The average bias for the cross-flow fatigue damage in uniform flow is 0.72, meaning there
is a general tendency to under-predict the fatigue damage. Considering the complexity
of the flow, including higher harmonic forces, and the simplifications introduced in the
present model, the result is considered satisfactory.

It is interesting that the predicted maximum cross-flow fatigue damage is so close
to the measured, even though no higher harmonics are included in the simulations. As
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Figure 10: Mean of r.m.s. of displacement for uniform flow, normalized by diameter.

seen in figure 12, the predicted damage is much closer to the total than the fundamental
frequency damage. A possible explanation follows: The magnitude of the hydrodynamic
forces depends on the kinetic energy density in the incoming current. When more energy
is transferred to higher harmonic vibrations, it is likely that less energy will be found at the
fundamental frequency response, as the energy density in the incoming flow remains the
same. This would result in more irregular vibrations, but the values of the largest maxima
and lowest minima (e.g. for strain) may remain virtually the same as if all energy were
concentrated at the fundamental frequency. The present model assumes that all the energy
goes into the fundamental frequency force, hence it over-predicts the associated funda-
mental frequency response and under-predicts (does not predict) the higher harmonics.
By direct comparison of time series of simulated and total measured strain (see figure 14)
it is illustrated how the model still predicts the strain ranges quite accurately.

Moving on to the maximum predicted in-line fatigue damage rate in uniform flow (see
figure 13), this is found to be reasonably realistic and in some cases quite accurate. How-
ever, the maximum in-line fatigue damage in uniform flow is on average over-predicted
by a factor of 2.44. As the frequency and amplitude of the in-line response is very accurate
(ref. figure 8 and 10), this is mainly due to the over-prediction of the dominating mode,
as previously discussed.
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Figure 11: Predicted and measured fatigue damage rate along riser for three uniform flow cases.
The solid lines are from simulations, while squares are from measurements.
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Figure 12: Comparison between predicted and measured maximum fatigue damage rate due to
cross-flow vibrations in uniform flow. For the experiments, the fatigue damage is calculated based
on the total strain signal (squares), and with higher harmonics removed (circles). The solid line
represents the simulations.
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Figure 13: Comparison between predicted (solid line) and measured (triangles) maximum fatigue
damage rate due to in-line vibrations in uniform flow.
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Figure 14: Direct comparison of simulated and measured cross-flow strain. Results are for uniform
flow with U = 0.8 m/s at the position of maximum fatigue damage.
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6.2 Shear flow

Results for the shear flow cases are presented on the same form as for uniform flow.
It should be noted that the parameters in the numerical model are exactly the same as
for the uniform flow simulations. The only differences are in the current profile and the
mean tension of the riser. The dominating frequency for the various velocities is given in
figure 15. The measured frequencies are more irregular compared to uniform flow, and
in some cases, such as U = 2.2 m/s, the observed frequency is abnormally low. Setting
these exceptional observations aside, the predicted frequencies compare very well with
the experimental results.

Moving on to the dominating mode (figure 16), this is seen to be accurately predicted
both for in-line and cross-flow, although small differences are found due to random varia-
tions in the multi-mode response. The predictions are in this case better than for uniform
flow, particularly for the in-line mode which was generally over-predicted in uniform
flow. This means the natural frequencies of the structure are more accurate for the shear
flow simulations. The main uncertainties in the natural frequencies lie in the added mass,
which points to the conclusion that using potential theory added mass in the in-line direc-
tion (Cax = 1) is more correct in sheared than uniform flow.

The mean of the r.m.s. of the cross-flow and in-line displacement are again used for
evaluating the predicted amplitude of vibration. This is reported and compared to the ex-
perimental results in figure 17. As seen, the average r.m.s. of the cross-flow displacement
is realistic, although slightly low. The magnitude of the simulated in-line displacements
compares well with measurements.

Figure 18 shows the how the simulated fatigue damage rate varies along the length of
the riser for the three selected cases, U = 0.8 m/s, U = 1.5 m/s and U = 2.3 m/s. The
results are in reasonable agreement with measurements, and the predicted cross-flow fa-
tigue damage corresponds accurately to the measured for U = 0.8 m/s and U = 2.3 m/s,
while being slightly low for U = 1.5 m/s. The predicted in-line fatigue damage is in some
cases too high and in others too low. The variations along the riser show similar features
as in the uniform flow case, i.e. the calculations are more regular than the measurements.
This is likely due to the previously discussed non-stationary behavior, which occurs in
reality, but is not captured by the model. It is seen that the cross-flow fatigue rate is sig-
nificantly influenced by traveling waves, both in the calculations and the measurements,
particularly in the region with high current velocity (maximum is at z = 38m). The point
of maximum fatigue damage is typically found close to the middle, slightly towards the
high velocity region.

The maximum simulated fatigue damage rate along the riser is plotted as a function
of the current velocity and compared to experiments in figures 19 (cross-flow) and 20 (in-
line). Again, the cross-flow fatigue analysis for the experimental results is performed on
both the original and filtered strain signals as described in section 5. The results show that
the higher harmonics are less important in sheared than in uniform flow. The prediction
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bias (as defined in equation (16)) is found to be on average 0.91 for cross-flow. This is
better than for uniform flow, and is explained from the fact that the higher harmonics are
less important in shear flow.

The maximum in-line fatigue damage rate is presented in figure 20 and the average
prediction bias is in this case 1.34. The in-line fatigue damage is in most cases slightly
over-predicted, but is significantly under-predicted for the lowest flow velocities. This is
probably because the dominating in-line mode is surprisingly high in the low-velocity
tests (see figure 16).
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Figure 15: Dominating frequency in shear flow from experiments and simulations.
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Figure 16: Dominating mode in shear flow from experiments and simulations.
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Figure 17: Mean of r.m.s. of displacement for shear flow.
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Figure 18: Predicted and measured fatigue damage rate along riser for three sheared flow cases.
The solid lines are from simulations, while squares are from measurements.
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Figure 19: Comparison between predicted and measured maximum fatigue damage rate due to
cross-flow vibrations in shear flow. For the experiments, the fatigue damage is calculated based
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Figure 20: Comparison between predicted (solid line) and measured (triangles) maximum fatigue
damage rate due to in-line vibrations in shear flow.

107



PAPER II

6.3 Assessment of model prediction accuracy

It was established in the preceding sections that the maximum cross-flow fatigue damage
is on average slightly under-predicted, while the in-line damage is over-predicted. Due
to stochastic variations, individual prediction may still be either above or below. The
accuracy of individual predictions (and the associated randomness) is shown graphically
in figure 21, which shows the predicted versus the measured maximum fatigue damage
rate. If the model was perfect, all points would lie on the straight line. A point above the
line indicates that the fatigue damage is over-predicted, while a point below corresponds
to an under-prediction.
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Figure 21: Simulated versus measured maximum fatigue damage rate (in-line and cross-flow) in
uniform and shear flow.

The prediction bias for the maximum fatigue damage rate was defined in equation
(16), and has been calculated for every simulation. The quality of predictions are different
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for cross-flow and in-line as well as sheared and uniform flow, and these groups will
therefore be treated separately. To obtain a conservative estimate for a given simulation,
the predicted fatigue damage can be multiplied with a safety factor, γ = 1/B, where B
is the prediction bias. It is difficult to provide general guidelines on what safety factor to
use based on the available data, however, using the safety factor associated with the most
nonconservative prediction (i.e. γmax = 1/Bmin) yields a conservative result in 21 out
of the 22 cases. Hence, adopting the safety factor γmax is expected to give conservative
results with a probability of 95.5 %. The median of the safety factors within each group
is also of interest, and is assigned the symbol γ̃. This is associated with an equal number
of over- and under-predictions, and can therefore be interpreted as an optimum safety
factor for realistic predictions. The maximum and median safety factor for each group are
presented in table 2.

Table 2: Safety factors necessary for conservative prediction of the maximum fatigue damage in
95.5 % (γmax) and 50 % (γ̃) of the cases, for the various groups.

Uniform flow Shear flow

Cross-flow In-line Cross-flow In-line
γmax 4.42 3.08 5.20 19.84
γ̃ 1.53 0.42 1.15 0.83

The fact that the cross-flow fatigue is on average under-predicted is reflected in the
median safety factor, as this is larger than 1 for both current conditions. The median safety
factor is less than 1 for in-line fatigue, due to the overall tendency to over-predict this.
Furthermore, it is seen that the shear flow simulations are on average more accurate than
the uniform flow simulations. It should however be pointed out that the maximum safety
factor is larger in sheared than uniform flow, meaning that the worst shear flow prediction
is less accurate than the worst uniform flow prediction. For the cross-flow fatigue damage,
the maximum safety factors are 4.42 and 5.20, which is reasonable compared to results
obtained with state-of-the-art software used by the industry [45]. Moving on to γmax for
in-line fatigue, the uniform flow result is consistent with the others, while the shear flow
safety factor is significantly larger. The simulation requiring a safety factor of 19.84 is
the shear flow case with U = 0.5 m/s, which was considerably less accurate than the
other predictions, as seen in figure 20. Looking back at figure 17, it is observed that the
predicted mean r.m.s. in-line displacement was in this case less than half the measured,
which explains the large error in fatigue rate for this case. Future research should attempt
to find out why the in-line amplitude is significantly under-predicted in some cases. A
possible solution is to increase the value of α in equation (9), but this is not considered in
the present paper.
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6.4 Observations on the importance of higher harmonics

This section focuses on some interesting findings in the NDP experimental data. The
maximum cross-flow fatigue damage rate found by rainflow counting of the fundamental
frequency strain (i.e. with higher harmonics filtered out) is denoted D1. Similarly, the
maximum cross-flow fatigue damage rate found by rainflow counting of the original strain
signals is denoted Dtot. The ratio D1/Dtot is calculated for every current velocity, and the
results are shown in figure 22a (uniform flow) and 22b (shear flow). In the absence of
higher harmonic components, D1 and Dtot are equal, and the ratio is one. On the other
hand, if higher harmonics are very important compared to the fundamental frequency
component, the ratio approaches zero.

As seen in figure 22a, the importance of the higher harmonics in uniform flow are
rather stable, and the ratio D1/Dtot is usually around 0.2, meaning that the contribution
from fundamental frequency strain is approximately 20 %. Moving on to the results for
shear flow (figure 22b), something quite different is seen. At low velocities, D1/Dtot

is close to 0.2, however, the ratio clearly rises when the current velocity is increased. At
U = 2.0 m/s, the fundamental frequency fatigue damage is around 80 % of the total. This
shows that in sheared flow, the higher harmonics become less important (with respect to
fatigue) as the velocity is increased.

The observed differences can be explained by a gradual change from tension- to
bending-dominated vibrations. The tensioned riser behaves like a string for the lower
modes, meaning that the natural frequencies increase linearly with mode, n. For higher
modes, the bending stiffness dominates, and the natural frequencies are proportional to
n2. Also, the riser tension increases together with current velocity as a result of drag
forces. These forces are significantly higher in uniform than sheared flow, which means
the bending stiffness is more important in shear flow. The higher harmonics are usually
dominated by a frequency 3 times higher than the fundamental frequency, and if the nat-
ural frequencies increase linearly with mode (as for a tension-dominated riser), the mode
excited by the higher harmonic forces will be nh = 3n1, where n1 is the mode excited
by the fundamental frequency forces. However, for a bending dominated riser, the higher
harmonic mode will be nh =

√
3n1. Hence, the ratio n1/nh is larger for bending- than

tension-dominated risers, which may explain the observed differences. At present, this is
only a hypothesis, and more research is necessary to conclude whether or not the ratio
between tension and bending stiffness is important for the higher harmonic stress.

The observed differences may also be related to the flow around the structure. The
reduced velocity, Vr = U/(fD), is known to be of critical importance to the flow. In
uniform flow (assuming mono-frequency response), this is constant along the riser length,
while in sheared flow it will vary from zero in one end to a maximum value in the other.
It is possible that the higher harmonic components are less pronounced in low reduced
velocities, either because the higher harmonic exciting force is diminished, or because the
high frequency damping is larger. This does however not explain why the ratio D1/Dtot
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varies so strongly in sheared current when the velocity is changed.
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Figure 22: Ratio of maximum fundamental frequency fatigue damage to maximum total fatigue
damage, D1/Dtot, from measured cross-flow strain.

7 Conclusions

Fatigue damage due to vortex-induced vibrations have been numerically predicted, and
a detailed comparison with experimental observations have been performed. This is the
first time this numerical model, which includes both in-line and cross-flow vibrations,
has been used for fatigue damage calculations. Results obtained by rainflow counting of
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simulated and measured strain time series show that the model is capable of reproducing
the actual fatigue damage with satisfactory accuracy through time domain simulation of
hydrodynamic forces and structural response. Some discrepancies are seen, which must
be expected due to the chaotic nature of VIV and the simplifications embedded in the
model. Riser fatigue damage in uniform and shear flow have been calculated for current
velocities ranging from 0.3 m/s to 2.4 m/s, and the fact that a constant set of parameters
have been used for all simulations indicates that the hydrodynamic force model is appli-
cable to arbitrary (planar) current profiles and structural configurations, assuming that the
Reynolds number is within the subcritical range and the cross-section is circular. The ac-
curacy of individual predictions has been assessed, and safety factors necessary to ensure
conservative predictions in 50 % and 95.5 % of the cases have been given. This is mainly
to illustrate the accuracy of the method, but also serves as an indication of the uncertain-
ties associated with VIV. When it comes to computational cost, the running-time for a
200 cycle simulation (i.e. 20 000 time steps) is approximately 20 seconds on a standard
lap-top. All calculations are performed with the software MATLAB.

Some observations on the importance of higher harmonics have also been made. Based
on strain signals from experiments, it is found that the fatigue damage contribution from
fundamental frequency and higher harmonic strain are almost constant in uniform flow,
while the relative importance of the fundamental frequency contribution increases to-
gether with current velocity in the shear flow cases. A possible explanation which should
be investigated in the future is related to the characteristic behavior of natural frequencies
for tension- versus bending-dominated risers.

Acknowledgments

The authors are very grateful to the Norwegian Deepwater Programme (NDP) Riser and
Mooring Project for making the results from the Riser High Mode VIV tests available.

References

[1] Bearman PW. Circular cylinder wakes and vortex-induced vibrations. Journal of Fluids and
Structures 2011;27(5–6):648 – 658.

[2] Bearman PW. Vortex shedding from oscillating bluff bodies. Annual Review of Fluid Me-
chanics 1984;16(1):195–222.

[3] Sarpkaya T. A critical review of the intrinsic nature of vortex-induced vibrations. Journal of
Fluids and Structures 2004;19(4):389 – 447.

[4] Williamson C, Govardhan R. Vortex-induced vibrations. Annual Review of Fluid Mechanics
2004;36(1):413–455.

[5] Wu X, Ge F, Hong Y. A review of recent studies on vortex-induced vibrations of long slender
cylinders. Journal of Fluids and Structures 2012;28(0):292 – 308.

112



PAPER II

[6] Sarpkaya T. Hydrodynamic damping, flow-induced oscillations, and biharmonic response.
Journal of offshore Mechanics and Arctic engineering 1995;117(4):232–238.

[7] Vikestad K. Multi-frequency response of a cylinder subjected to vortex shedding and support
motions. Ph.D. thesis; Norwegian University of Science and Technology, Department of
Marine Technology; 1998.

[8] Govardhan R, Williamson C. Modes of vortex formation and frequency response of a freely
vibrating cylinder. Journal of Fluid Mechanics 2000;420:85–130.

[9] Sarpkaya T. Fluid forces on oscillating cylinders. NASA STI/Recon Technical Report A
1978;78.

[10] Moe G, Wu ZJ. The lift force on a cylinder vibrating in a current. Journal of Offshore
Mechanics and Arctic Engineering 1990;112(4):297–303.

[11] Yin D. Experimental and numerical analysis of combined in-line and cross-flow vortex
induced vibration. Ph.D. thesis; Norwegian University of Science and Technology, Centre
for Ships and Ocean Structures; 2013.

[12] Vandiver JK. Dimensionless parameters important to the prediction of vortex-induced vi-
bration of long, flexible cylinders in ocean currents. Journal of Fluids and Structures
1993;7(5):423 – 455.

[13] Chaplin J, Bearman P, Huera Huarte F, Pattenden R. Laboratory measurements of vortex-
induced vibrations of a vertical tension riser in a stepped current. Journal of Fluids and
Structures 2005;21(1):3–24.

[14] Huera-Huarte F, Bangash Z, González L. Towing tank experiments on the vortex-induced
vibrations of low mass ratio long flexible cylinders. Journal of Fluids and Structures
2014;48(0):81 – 92.

[15] Baarholm GS, Larsen CM, Lie H. On fatigue damage accumulation from in-line and cross-
flow vortex-induced vibrations on risers. Journal of Fluids and Structures 2006;22(1):109–
127.

[16] Jauvtis N, Williamson C. The effect of two degrees of freedom on vortex-induced vibration
at low mass and damping. Journal of Fluid Mechanics 2004;509(6):23–62.

[17] Dahl J, Hover F, Triantafyllou M. Two-degree-of-freedom vortex-induced vibrations using
a force assisted apparatus. Journal of Fluids and Structures 2006;22(6):807–818.

[18] Vandiver JK, Swithenbank SB, Jaiswal V, Jhingran V. Fatigue damage from high mode
number vortex-induced vibration. In: Proc. 25th OMAE Conf. 2006,.

[19] Modarres-Sadeghi Y, Mukundan H, Dahl J, Hover F, Triantafyllou M. The effect of
higher harmonic forces on fatigue life of marine risers. Journal of Sound and Vibration
2010;329(1):43–55.

[20] Modarres-Sadeghi Y, Chasparis F, Triantafyllou M, Tognarelli M, Beynet P. Chaotic re-
sponse is a generic feature of vortex-induced vibrations of flexible risers. Journal of Sound
and Vibration 2011;330(11):2565 – 2579.

[21] Vandiver JK, Li L. SHEAR7 V4.4 Program Theoretical Manual; 2005.

113



PAPER II

[22] Larsen CM, Lie H, Passano E, Yttervik R, Wu J, Baarholm G. VIVANA - Theory Manual,
Version 3.7; 2009.

[23] Chaplin J, Bearman P, Cheng Y, Fontaine E, Graham J, Herfjord K, et al. Blind predictions
of laboratory measurements of vortex-induced vibrations of a tension riser. Journal of Fluids
and Structures 2005;21(1):25–40.

[24] Passano E, Larsen CM, Lie H. Comparison of calculated in-line vortex induced vibrations to
model tests. In: ASME 2012 31st International Conference on Ocean, Offshore and Arctic
Engineering. American Society of Mechanical Engineers; 2012, p. 705–712.

[25] Facchinetti M, de Langre E, Biolley F. Coupling of structure and wake oscillators in vortex-
induced vibrations. Journal of Fluids and Structures 2004;19(2):123 – 140.

[26] Ogink R, Metrikine A. A wake oscillator with frequency dependent coupling for the model-
ing of vortex-induced vibration. Journal of Sound and Vibration 2010;329(26):5452–5473.

[27] Mainçon P. A Wiener-Laguerre Model of VIV Forces Given Recent Cylinder Velocities.
Mathematical Problems in Engineering 2011;2011.

[28] Thorsen MJ, Sævik S, Larsen CM. A simplified method for time domain simulation of cross-
flow vortex-induced vibrations. Journal of Fluids and Structures 2014;49(0):135 – 148.

[29] Thorsen MJ, Sævik S, Larsen CM. Time domain simulation of cross-flow and in-line vortex-
induced vibrations. In: Proceedings of the 9th International Conference on Structural Dy-
namics, EURODYN. 2014,.

[30] Braaten H, Lie H. NDP riser high mode VIV tests, main report. Tech. Rep.; Norwegian
Marine Technology Research Institute; Trondheim, Norway; 2004.

[31] Sumer BM, Fredsøe J. Hydrodynamics around cylindrical structures; vol. 12. World Scien-
tific Publishing Company; 1997.

[32] Griffin OM. Vortex shedding from bluff bodies in a shear flow: a review. Journal of Fluids
Engineering 1985;107(3):298–306.

[33] Li L, Fu S, Yang J, Ren T, Wang X. Experimental investigation on vortex-induced vibration
of risers with staggered buoyancy. In: ASME 2011 30th International Conference on Ocean,
Offshore and Arctic Engineering. American Society of Mechanical Engineers; 2011, p. 51–
59.

[34] Bishop R, Hassan A. The lift and drag forces on a circular cylinder oscillating in a flowing
fluid. Proceedings of the Royal Society of London Series A Mathematical and Physical
Sciences 1964;277(1368):51–75.

[35] Venugopal M. Damping and response prediction of a flexible cylinder in a current. Ph.D.
thesis; Massachusetts Institute of Technology; 1996.

[36] King R, Prosser M, Johns D. On vortex excitation of model piles in water. Journal of Sound
and Vibration 1973;29(2):169 – 188.

[37] Norberg C. Fluctuating lift on a circular cylinder: review and new measurements. Journal of
Fluids and Structures 2003;17(1):57–96.

[38] Swithenbank SB, Vandiver JK, Larsen CM, Lie H. Reynolds number dependence of flexible

114



PAPER II

cylinder VIV response data. In: ASME 2008 27th International Conference on Offshore
Mechanics and Arctic Engineering. American Society of Mechanical Engineers; 2008, p.
503–511.

[39] Kristiansen T, Lie H. NDP riser high mode VIV tests, modal analysis. Tech. Rep.; Norwegian
Marine Technology Research Institute; Trondheim, Norway; 2005.

[40] NORSOK Standard . Design of Steel Structures, Annex C - Fatigue Strength Analysis. Tech.
Rep.; Norwegian Technology Standards Institution; 1998.

[41] Watson P, Dabell B. Cycle counting and fatigue damage. In: Statistical aspects of fatigue
testing: papers presented at a symposium of the Society of Environmental Engineers, War-
wick, UK. 1975,.

[42] Brodtkorb PA, Johannesson P, Lindgren G, Rychlik I, Rydén J, Sjö E, et al. Wafo—a matlab
toolbox for analysis of random waves and loads. In: Proceedings of the 10th international
offshore and polar engineering conference; vol. 3. 2000, p. 343–350.

[43] Lie H, Kaasen K. Modal analysis of measurements from a large-scale VIV model test of a
riser in linearly sheared flow. Journal of Fluids and Structures 2006;22(4):557–575.

[44] Larsen CM, Zhao Z, Lie H. Frequency components of vortex induced vibrations in sheared
current. In: ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engi-
neering. 2012,.

[45] Tognarelli M, Fontaine E, Beynet P, Santosa M, Marcollo H. Reliability-based factors of
safety for vortex induced vibration fatigue using field measurements. Journal of Offshore
Mechanics and Arctic Engineering 2013;135(4).

115



PAPER II

116



Paper III

Time domain simulation of vortex-induced
vibrations in stationary and oscillating
flows
Mats J. Thorsen, Svein Sævik and Carl M. Larsen
Department of Marine Technology, Norwegian University of Science and Technology,
Trondheim, Norway

Journal of Fluids and Structures, Vol. 61, 2016, pp. 1 – 19

Abstract

This paper focuses on the further development of a previously published semi-empirical
method for time domain simulation of vortex-induced vibrations (VIV). A new hydrody-
namic damping formulation is given, and the necessary coefficients are found from exper-
imental data. It is shown that the new model predicts the observed hydrodynamic damping
in still water and for cross-flow oscillations in stationary incoming flow with high accu-
racy. Next, the excitation force model, which is one component of the total hydrodynamic
force model, is optimized by simulating the VIV response of an elastic cylinder in a series
of experiments with stationary flow. The optimization is performed by repeating the sim-
ulations until the best possible agreement with the experiments is found. The optimized
model is then applied to simulate the cross-flow VIV of an elastic cylinder in oscillating
flow, without introducing any changes to the hydrodynamic force modeling. By compari-
son with experiment, it is shown that the model predicts the frequency content, mode and
amplitude of vibration with a high level of realism, and the amplitude modulations occur-
ring at high Keulegan-Carpenter numbers are well captured. The model is also utilized to
investigate the effect of increasing the maximum reduced velocity and the mass ratio of
the elastic cylinder in oscillating flow. Simulations show that complex response patterns
with multiple modes and frequencies appear when the maximum reduced velocity is in-
creased. If, however, the mass ratio is increased by a factor of 5, a single mode dominates.
This illustrates that, in oscillating flows, the mass ratio is important in determining the
mode participation at high maximum reduced velocities.

Keywords: Vortex-induced vibrations; Elastic cylinders; Oscillating flow; Time domain;
Simulation
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1 Introduction

Slender structures such as pipelines and risers experience vortex-induced vibrations (VIV)
when exposed to external fluid flow [1]. The vibrations are a result of the fluctuating lift
and drag forces associated with flow separation and vortex shedding. Depending on the
incoming flow and structural properties, significant dynamic stress may occur, causing fa-
tigue damage accumulation which over time may lead to structural failure. Understanding
and being able to predict VIV in realistic environmental conditions is therefore important
to ensure the safety of slender structures.

A considerable amount of work has been done to increase the understanding of VIV,
as reflected in the reviews by Sarpkaya [2], Williamson and Govardhan [3], Bearman
[4] and Wu et al. [5]. As the equations of motion governing viscous flow are difficult
to solve, experiments have been the most important source of new insight. Examples of
typical experiments are free vibration of elastically mounted rigid cylinders [6–9] and
cylinders undergoing forced motions [10–14]. Experiments with long flexible structures
have also been performed, both under controlled laboratory conditions [15–17] and in
field environments [18, 19]. These experiments focused on various flow situations such as
uniform, sheared and stepped current, and in all cases the incoming flow was essentially
stationary, i.e. constant in time.

In some situations, the relative current velocity may be non-stationary, either due to
movement of the structure or oscillations in the incoming flow itself. For example, a riser
connected to a floating platform will oscillate as a result of the wave-induced motions of
the floater. The relative flow velocity caused by the riser moving back and forth in the
water may cause vortex shedding and VIV if the motion amplitude is sufficiently large.
VIV of an elastic cylinder in oscillating flow was studied experimentally by Fu et al. [20].
They found that the structure vibrated significantly due to vortex shedding, and noted
some important differences compared to stationary flow VIV. For instance, they observed
a characteristic developing process with vibrations continuously building up and dying
out. VIV of spring mounted rigid cylinders in oscillating flow has previously been studied
by several researchers such as Sarpkaya [21] and Sumer and Fredsøe [22].

In light of these experimental studies, and the fact that oscillating flows are relevant in
several practical applications, the need for a mathematical model able to predict VIV in
oscillating flows becomes evident. One possibility is to solve the Navier-Stokes equations
numerically, but the required computational effort is generally large. The semi-empirical
frequency domain methods VIVA [23], SHEAR7 [24] and VIVANA [25] are more effi-
cient, but can only predict VIV in stationary flows. As illustrated by Chang and Isherwood
[26], the wake-oscillator can be used to simulate VIV in time domain for unsteady flow
situations, but no comparison with experiment was included in this study. Liao [27] was
able to predict VIV in unsteady flow based on a relationship between an equivalent re-
duced damping and the resulting vibration amplitude. Recently, Resvanis [28] proposed a
dimensionless parameter which can be used to determine if the response in unsteady flow
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will be similar to the response in steady flow.
An alternative method for simulating VIV in time domain was proposed by Thorsen

et al. [29]. In this semi-empirical method, the fluid forces are calculated based on the
incoming flow velocity and the motion of the cross-section. The special feature is how
synchronization between the vortex shedding and cylinder motion is taken into account.
It has been shown that the model provides realistic results for several different cases,
including flexible cylinders in uniform, sheared and stepped current [30, 31]. The formu-
lation includes no restriction on the time variability of the incoming flow velocity, which
means it is theoretically suited for simulating VIV in oscillating flows. With this in mind,
the outline of the present paper is as follows: Firstly, the original model [29] is slightly
modified to improve the prediction accuracy in stationary flows. Secondly, the improved
model is used to simulate a flexible cylinder in oscillating flow. The experiment by Fu
et al. [20] is used for comparison, allowing for direct assessment of the prediction accu-
racy. Finally, the model is used to explore the effect of changing certain key parameters.
For instance, the reduced velocity is increased beyond what was considered in the actual
experiment, resulting in the appearance of complex vibration patterns.

2 Time domain VIV model

2.1 Hydrodynamic force model

A stationary cylinder in an incoming undisturbed flow is subjected to time varying forces.
The force component parallel to the flow is called drag, while the perpendicular com-
ponent is named lift. Due to the vortex shedding process, the lift force oscillates with
a frequency fs = StU/D called the Strouhal frequency, where D is the cylinder diam-
eter and U is the velocity of the flow. The Strouhal number St is generally a function
of the Reynolds number and the surface roughness of the cylinder, but in the subcriti-
cal Reynolds number range, St is nearly constant and close to 0.2 [32]. If the cylinder is
flexible, it will vibrate as a result of the oscillating fluid forces, and the movement of the
cylinder alters the surrounding flow and the corresponding fluid forces. One of the most
important effects is that the vortex shedding may synchronize with the cylinder motion,
such that the frequency of the lift force deviates from the expected Strouhal frequency.
In addition, there will be fluid resistance (damping) and added mass effects due to the
velocity and acceleration of the cylinder.

The hydrodynamic force model used here was first presented by Thorsen et al. [29].
Some minor modifications were introduced [31], providing the starting point for the pre-
sent paper. In these previous studies, hydrodynamic damping was modeled using a linear
and quadratic term, and the empirical coefficients were found by minimizing the differ-
ence between this model and the model given by Venugopal [33]. Although this was quite
successful, a tendency to over-predict the cross-flow vibration amplitude in uniform flow
and under-predict it in linearly sheared flow was seen [31], which indicates that the model
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can still be improved. With this in mind, a new damping model is developed here, using
actual measurements to adjust the empirical coefficients. As the total energy transfer be-
tween fluid and structure is determined from the energy delivered by the vortex shedding
process and the energy subtracted by the hydrodynamic damping, altering the damping
model will require a change in the excitation model to ensure that the net power transfer
is physically correct. This is addressed further in section 3.

It should be pointed out that the new developments described in this section are based
on data from experiments performed in stationary incoming flow. Hence, the model is di-
rectly tuned to accurately predict vortex-induced vibrations in stationary flows. As there
are no mathematical restrictions on the time-variability of the incoming flow, it is straight-
forward to apply the model in oscillating flows as well. However, an oscillating flow will
introduce some physical changes which are not taken into account in the model. Most im-
portantly, the flow meeting the cylinder is no longer undisturbed, but contains previously
shed vortices. In this context, an interesting question is: Can VIV in oscillating flows be
predicted based on data from stationary flow VIV? An attempt to answer this question is
made in section 4.

2.1.1 Cross-flow hydrodynamic force

Hydrodynamic damping of circular cylinders has been extensively studied, see e.g. Sarp-
kaya [34]. For the present application, trying to develop a model which reproduces the
true damping exactly in every situation would be disadvantageous, because such a model
would be very complicated, and perhaps unrealizable without resorting to direct numer-
ical simulation of the Navier-Stokes equations. A pragmatic point of view is therefore
adopted, trying to find a damping model which is sufficiently accurate to represent the en-
ergy extraction in vortex-induced vibrations, while being applicable in a computationally
efficient time domain simulation.

Consider a cylinder cross-section with diameterD in an incoming undisturbed flow of
velocity U and density ρ. Let the x-axis point in the direction of the flow, and the y-axis in
the direction normal to the flow, as seen in figure 1. The origin is positioned at the center
of the undisturbed cylinder, such that y corresponds to the cross-flow displacement away
from the position of static equilibrium. In the previous papers on this model, hydrody-
namic damping was modeled using a linear and quadratic term. However, the accuracy is
found to increase if the linear term is dropped, and the cross-flow hydrodynamic damping
force per unit length is now expressed as

Fd,y = −1

2
ρDCd,y|ẏ|ẏ, (1)

where ẏ is the cross-flow velocity of the cylinder. A crucial step is to find an appropriate
Cd,y. If U = 0, the problem reduces to an oscillating cylinder in still water, which with
respect to the damping force is equivalent to a fixed cylinder in an oscillating flow. This
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Figure 1: Cylinder with incoming flow and coordinate system definition.

case has been studied by Sarpkaya [35], and it is found that Cd,y depends strongly on
the Keulegan-Carpenter number (KC), i.e. the ratio between the oscillation amplitude and
the cylinder diameter. For simplicity, it is assumed that the damping coefficient can be
expressed as a linear function of y0/D over the relevant range, i.e. Cd,y = a0 + a1y0/D,
where y0 is the cross-flow amplitude of vibration.

To find the appropriate values of a0 and a1, experimental data is necessary. Vikestad
[36] reports results from decay tests in still-water which is used here. In that paper, the
damping force was expressed as a linear function of velocity, i.e. Fd,y = −cẏ, and the
damping coefficient was given as a function of y0/D, meaning that c = c(y0/D). Be-
cause of the differences in formulation, these results cannot be used directly in the pres-
ent quadratic damping model. However, the damping coefficients given by Vikestad [36]
reflects the experimentally measured energy loss. Therefore, the strategy used to find the
damping parameters a0 and a1 is to minimize the difference between the predicted energy
loss (based on equation (1)) and the energy loss observed in experiment. The average
power extracted by the damping force over one oscillation period is used as a measure of
energy loss. This can be expressed as:

Ẇ d,y =
1

T

∫ T

0

Fd,y ẏ dt, (2)

where T = 2π/ω is the period. Inserting the damping force from equation (1) using
Cd,y = a0 + a1y0/D and ẏ = ωy0 cosωt, the following result is obtained:

Ẇ d,y = − 1

2T
ρD(a0 + a1

y0

D
)

∫ T

0

|ẏ|ẏ2dt = − 8

12π
ρD(a0 + a1

y0

D
)ω3y3

0. (3)

122



PAPER III

Using the linear damping formulation (as Vikestad [36] did) in equation (2) gives

Ẇ d,y = − 1

T

∫ T

0

cẏ2dt = −1

2
cω2y2

0. (4)

To summarize, equation (3) gives the average extracted power predicted by the pres-
ent damping model, while equation (4) gives the average extracted power measured by
Vikestad [36]. Ideally, these should be equal for all oscillation amplitudes. The method of
least squares is used to find the values of a0 and a1 that minimize the sum of the square
differences, resulting in a0 = 0.31 and a1 = 0.89. The power loss based on Vikestad’s
measurements and the present model is shown in figure 2. The results from the old damp-
ing model [29] is also shown, and it is seen that the new model provides much better
agreement with the experiment. The value of a0 and a1 reported here is expected to be
valid in other cases as well, provided that the flow regime is the same. The Reynolds
number for the oscillating cylinder in still-water can be expressed as ẏmaxD/ν, where
ẏmax is the maximum cylinder velocity and ν is the kinematic viscosity. In the experi-
ments [36], this was between 0 and 10 000 approximately. The amplitude ratio y0/D was
varied between 0 and 0.6 (see figure 2). For significantly larger vibration amplitudes, the
present damping model will not be accurate.

To investigate the performance when U 6= 0, the model is used to simulate the hy-
drodynamic damping force on a cylinder oscillating in the cross-flow direction with fre-
quency f at a reduced velocity, Ur = U/(fD) of 3 and 10, which is below and above the
positive excitation zone respectively. The resulting lift coefficient in phase with cylinder
velocity is compared to forced vibration experiments by Morse and Williamson [12] in
figure 3. It is seen that the agreement between the model and experiments is very good,
which is somewhat surprising due to the absence of the incoming flow velocity in the
model. It is also seen that the new formulation gives a much better description of the hy-
drodynamic damping than the old model [29]. Based on the results in figures 2 and 3 it
is concluded that equation (1) combined with Cd,y = 0.31 + 0.89y0/D yields a good ap-
proximation of the hydrodynamic damping in still water as well as for cross-flow motion
at low and high reduced velocities. It should be emphasized that the comparison shown in
figure 3 is for non-lock-in cases only, meaning that for the reduced velocities shown, the
vortex shedding is uncorrelated with the motion. These cases where selected specifically
because of this, such that the damping model can be tested separately. For lock-in cases,
the vortex shedding force (called excitation force in the present paper) must be taken into
account.

The cross-flow excitation and added mass force is modeled according to Thorsen et
al. [31], and the total cross-flow hydrodynamic force (i.e. the final hydrodynamic force
model), is thereby given as:
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Figure 2: Average power loss (in Watts per unit length of cylinder) due to hydrodynamic damping
in still water as a function of non-dimensional vibration amplitude y0/D. The dots represent the
measurements from still-water decay tests (performed by Vikestad [36]) and the solid line is the
present model. The power loss predicted by the old damping model [29] is shown with a dashed
line.

Fy =
1

2
ρDU2Cv cosφexc,y

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
excitation

− 1

2
ρDCd,y|ẏ|ẏ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

damping

− ρπD
2

4
ÿ

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
added mass

. (5)

It is assumed that the potential theory added mass term can be used to describe the force
due to cylinder acceleration. However, the total hydrodynamic inertia force is the potential
theory added mass plus the part of the excitation force which is in phase with the cylinder
acceleration. The latter generally depends on the vibration frequency and amplitude, and
the effective added mass is therefore not constant. The magnitude of the excitation force
is determined by the dimensionless coefficient Cv, which is a function of the cross-flow
amplitude ratio, y0/D. The fluctuations of the excitation force due to the vortex shedding
process is taken into account through the time variability of the phase φexc,y, which is
coupled to the motion of the cylinder through the equation:

dφexc,y

dt
= H(φẏ − φexc,y). (6)

Here, φẏ is the instantaneous phase of the cylinder’s cross-flow velocity, and H is the
instantaneous angular frequency of the excitation force, which is a function of φẏ−φexc,y,
i.e. the phase difference between the velocity and the excitation force itself. Equation
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Figure 3: Lift coefficient in phase with cylinder velocity as a function of y0/D. The circles and
squares are from experiments by Morse and Williamson [12], with Ur = 3 and Ur = 10 respec-
tively. The corresponding values predicted by the present damping model are shown with solid
lines, and the results obtained with the old damping model are shown with dashed lines.

(6) allows the frequency of the force to vary such that the force may synchronize with
the velocity of the cylinder, provided that the frequency of motion is within the right
range. The function H was first given by Thorsen et al. [29]. The database from the
VIV analysis tool VIVANA [25] was used to find this function, but data from forced
vibration experiments could also have been used. The function was slightly adjusted for
increased performance [31], and this version is also used here. It is shown in figure 4 in
non-dimensional frequency form, f̂ = HD/(2πU). It is seen that the non-dimensional
frequency of the excitation force may vary between approximately 0.1 and 0.26, which
means that synchronization between the excitation force and motion can occur only if the
frequency of motion is within this range.

2.2 Structural model

The elastic cylinder is modeled using finite elements. An example structural model and
coordinate system definition is shown in figure 5. Only cross-flow (y-direction) displace-
ments are considered, and the structure is modeled using linear beam elements based on
classical beam theory. The stiffening effect from tension is included, such that the element
stiffness matrix consists of an elastic (bending) and an initial stress (tension) contribution.
The element mass matrix is established using a consistent mass formulation, including

125



PAPER III

−3 −2 −1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3
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Figure 4: Non-dimensional frequency of the excitation force as a function of the phase difference
between the cross-flow velocity and the excitation force.

both the structural and the hydrodynamic added mass term 0.25ρπD2 (see equation 5).
Assembling the element contributions, the equation of motion for the structural system
reads

Mr̈ + Cṙ + Kr = F (7)

where M is the mass, C is (structural) damping, K is stiffness, F is the hydrodynamic
force vector and r is the structural degrees of freedom. The vector F is established by
evaluating the hydrodynamic force per unit length at the individual nodes (as described
in section 2.1, see equation (5)). Note that the added mass term is included in the mass
matrix, and not in F. As the hydrodynamic force at any node is calculated based on the
local flow velocity and the velocity and acceleration of the node, there is no hydrodynamic
coupling in the longitudinal direction. This corresponds to a strip-theory approach, where
the 3-dimensional effects are determined by the motion of the structure. Equation (7)
is solved step by step in time domain using the Newmark-β method with coefficients
γ = 0.5 and β = 0.25 [37]. This choice of parameters leads to zero numerical damping
and constant average acceleration during each time step. The time step length corresponds
to 100 steps per oscillation cycle, based on the expected vibration frequency. This is found
to be sufficient, as increasing the resolution to 200 steps per cycle gives a change of less
than 0.1 % in the dominating frequency and root-mean-square of the displacement. The
number of finite elements is 100 for the simulations presented in section 3 and 30 in
section 4. Convergence is checked by doubling the number of elements, which gives a
change of less than 0.1 % in the dominating frequency and the root-mean-square of the
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Figure 5: Example of finite element model showing the coordinate system definition and incoming
current.

2.3 Amplitude estimation

The hydrodynamic excitation and damping forces depend on the amplitude of vibration.
This will generally vary along the structure and in time, and must be extracted from the
simulated response as the solution progresses. The vibration amplitude at any node is
initially calculated as:

y0 =
1

2

∫ t2

t1

|ẏ|dt, (8)

where ẏ is the cross-flow velocity of the node, and t1 and t2 is the time of the two previous
zero-crossings of ẏ. The rationale behind equation (8) is that the cylinder travels a distance
of 2y0 in the cross-flow direction between each zero-crossing of ẏ, assuming that the
vibration signal is narrow-banded. A problem with this method is that the amplitude (at a
given node) is not a smooth function of time. It can only be updated when a zero-crossing
of the velocity occurs, and remains constant between zero-crossings. The sudden change
occurring when y0 is updated may in turn cause a spurious impulse load on the structure,
as the hydrodynamic forces change. To overcome this numerical problem, a smoothed
amplitude y∗0 is calculated according to the following differential equation:
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dy∗0
dt

= ka(y0 − y∗0), (9)

using y∗0(0) = 0. According to equation (9), if y∗0 is different from y0, then y∗0 will change
such that the difference decreases, and y∗0 will thereby converge to y0 over time. The
rate of change is proportional to the difference between y0 and y∗0 along with a factor,
ka, which determines how rapidly the smoothed amplitude is allowed to change. Hence,
y∗0 will be a smoothed version of y0. The smoothed amplitude is then used to evaluate
the hydrodynamic coefficients, ensuring that the resulting forces along the structure are
smooth, continuous functions of time. In this paper, the value of ka is taken as 0.1/∆t,
where ∆t is the time step length. This means that the change in y∗0 over one time step
is ∆y∗0 = (dy∗0/dt)∆t = 0.1(y0 − y∗0), which was found to be reasonable by numerical
experimentation. When selecting a value for ka one must keep in mind that the amplitude
should not be smoothed too much (such that variations are missed), or too little (such that
spurious impulse loads occur).

3 Optimizing hydrodynamic excitation force model

In the present hydrodynamic force model, the magnitude of the cross-flow excitation force
depends on the dimensionless coefficient Cv, which is a function of the amplitude ratio
y0/D. In the previous papers [29–31], this function was found using the excitation coef-
ficient from the VIVANA database [25]. However, a better approach may be to directly
utilize data from experiments. Therefore, the strategy used here is to simulate the vortex-
induced response of an elastic cylinder in a series of experiments and modify Cv(y0/D)
until the agreement between the simulations and experiments is as good as possible. For
this purpose, data from the Norwegian Deepwater Programme (NDP) Riser High Mode
VIV tests [16, 38] is utilized. In this experimental campaign, a 38 meter long riser model
was towed through the Ocean Basin Laboratory at the Norwegian Marine Technology
Research Institute (MARINTEK). The riser was tested in both uniform and sheared flow,
where the effective current velocity increased linearly from zero to maximum along the
riser length. The maximum velocity was varied from 0.3 m/s to 2.4 m/s. The physical
properties of the riser model are given in table 1. The riser was equipped with strain
gauges measuring the cross-flow strain at 24 locations along the model, and these mea-
surements are used for comparison with the present model. The riser was connected to a
towing rig with universal joints in both ends, which allows for free rotation. Accordingly,
the boundary conditions of the present model are zero translation and free rotation in both
ends.

It is important to recall that the actual vortex-induced response consists of a fundamen-
tal frequency component, as well as higher harmonic frequencies [19, 39]. As the model
includes only the fundamental frequency response, the higher harmonic components in
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Table 1: Physical properties of the NDP riser

Length (L) 38 m
Diameter (D) 0.027 m
Mean tension (T ) 4000-6000 N
Bending stiffness (EI) 599 Nm2

Mass per unit length (m) 0.933 kg/m

the experimental data are removed by filtering, such that the simulations are compared to
the measured fundamental frequency response only. An example of the measured cross-
flow strain before and after removing the higher harmonic components is shown in figure
6. To quantify the prediction error for a given measurement, the maximum value of the
root-mean-square (r.m.s.) of strain in each test is used. Thereby, the prediction error for a
specific test is

ei = σ̂max,i − σmax,i, (10)

where σmax,i is the maximum r.m.s. of the fundamental frequency strain in test number i,
and σ̂max,i is the corresponding prediction.
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Figure 6: Example of measured strain before and after removal of higher harmonic components.
The time series is from a uniform flow test with U = 2.0 m/s, measured at the position of maxi-
mum r.m.s. strain.

To find the best possible Cv(y0/D), the curve is parametrized such that the problem
is reduced to finding the optimal set of parameters. The parameters are the coordinates of
the maximum point (p1) and the zero-crossing point (p2). Between the specified points,
the curve is described by second order polynomials. It is also assumed that Cv(y0/D) is
either positive or zero (not negative). An optimization task may then be formulated, where
the goal is to minimize the sum of the square errors,

∑
e2
i . This is done by simulating all

the NDP test cases (22 uniform and 22 sheared flow tests), and systematically varying
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the coordinates of p1 and p2 until the minimum error sum is found. The MATLAB im-
plementation of the Nelder-Mead simplex method [40] is used to search for the optimal
parameters. The curve which is found to provide the minimum prediction error is shown
in figure 7. This curve reflects the strength of the vortex shedding force, which generally
depends on the Reynolds number, and the optimized curve presented here is therefore only
valid in the range of Re which was seen in the NDP experiments, i.e. between 8000 and
65 000. The predicted maximum r.m.s. of the cross-flow strain in the NDP tests obtained
using the optimized Cv(y0/D) is compared to the measurements in figure 8a (uniform
flow) and 8b (sheared flow). The maximum r.m.s. of the measured total strain (including
higher harmonics) is also shown for comparison.
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v

Figure 7: Optimal Cv as a function of y0/D.

With reference to figures 8a and 8b it is evident that the model is not perfect, even
though an optimal excitation curve has been applied. The optimization of Cv(y0/D) was
performed considering 44 cases simultaneously, but the resulting curve is not necessarily
the best for each case. This suggests that the underlying physical process may be viewed
as stochastic, such that the optimal excitation curve found here represents an average, or
expected value of Cv(y0/D). However, considering the simple formulation of the model
and the complicated problem at hand, the overall agreement is satisfactory. To illustrate
more thoroughly how the model performs, the r.m.s. of the cross-flow strain along the riser
is shown for three selected cases in figure 9 (uniform flow) and 10 (sheared flow). The
spectrum of the measured and simulated strain (at the location of the maximum r.m.s. of
strain) is also shown. It is seen that the measurements contain higher harmonics around 3
times the fundamental frequency. These are not included in the model, but the fundamen-
tal frequency is predicted with good accuracy. The lack of higher harmonics in the model
means that the total strain ranges are under-estimated, which is seen in figure 9 and 10. As
a result of this, safety factors must be applied if e.g. fatigue damage is to be predicted. The
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(a) Uniform flow
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(b) Sheared flow

Figure 8: Maximum r.m.s. of cross-flow strain for all NDP cases, shown as a function of the
incoming flow velocity (for shear flow, U is the maximum flow velocity). The results based on
measured total strain are shown as circles and those based on fundamental frequency strain as
squares. The simulated results are shown as dots connected with a solid line.
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ratio between the fundamental frequency fatigue damage and the total damage has been
discussed in detail by Thorsen et al. [31]. It is also seen that the predicted r.m.s. of strain
is not always accurate at every point along the riser. VIV of risers is chaotic [41], which
means it is impossible to predict the motion at every point with absolute certainty. How-
ever, quantities such as the average or maximum strain along the whole riser are easier
to predict. For example, in the three uniform flow cases shown in figure 9, the maximum
r.m.s. strain is 75 %, 94 % and 124 % of the corresponding test result (comparing with the
fundamental frequency strain), and this level of accuracy is comparable to existing VIV
analysis tools [42]. An interesting effect is that even in the uniform flow cases, where the
boundary conditions and the incoming flow is symmetric, the VIV response is not sym-
metric. Typically, the strain is larger in one end than the other, which is also seen in the
simulations.
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(a) U = 0.5 m/s
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(b) U = 1.0 m/s
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(c) U = 2.0 m/s

Figure 9: Uniform flow results: To the left is the r.m.s. of cross-flow strain along the riser for three
different cases. Red circles: total measured strain, blue squares: measured fundamental frequency
strain, solid line: strain from simulation. To the right is the power spectrum of cross-flow strain
at the location of maximum r.m.s. strain. Red is measured and blue is simulated. Note that the
location of maximum strain is not necessarily the same in simulation and experiment.
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(a) U = 0.5 m/s
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(b) U = 1.0 m/s
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Figure 10: Sheared flow results: To the left is the r.m.s. of cross-flow strain along the riser for three
different cases. Red circles: total measured strain, blue squares: measured fundamental frequency
strain, solid line: strain from simulation. To the right is the power spectrum of cross-flow strain
at the location of maximum r.m.s. strain. Red is measured and blue is simulated. Note that the
location of maximum strain is not necessarily the same in simulation and experiment.
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4 Flexible cylinder in oscillating flow

4.1 Overview

An experimental investigation of VIV in oscillating flow was performed by Fu et al. [20].
These experiments were conducted in the ocean basin at Shanghai Jiao Tong University
(SJTU), and consisted of a flexible cylinder being towed horizontally with a prescribed
oscillating motion. The oscillation amplitude and period was varied, such that the cylinder
experienced oscillating flow with different combinations of KC numbers and maximum
reduced velocities, Ur,max. Denoting the amplitude of the prescribed oscillating motion as
Am, the KC number may be defined as

KC =
UmaxT

D
=

2πAm

D
, (11)

where Umax is the maximum velocity of the incoming oscillating flow and T is the corre-
sponding period. The maximum reduced velocity may then be expressed as

Ur,max =
Umax

f1D
=

2πAm

Tf1D
=

KC

Tf1

, (12)

where f1 is the lowest natural frequency of the cylinder in still water. Key properties of
the test cylinder are given in table 2, and a simplified overview of the experimental set
up is shown in figure 11. At both ends, the cylinder was attached to universal joints, al-
lowing free rotation around the x- and y-axis (ref. figure 5). A large number of cases
were included in the experiments, with KC numbers between 26 and 178 and maximum
reduced velocities between 4 and 7.9. The model was equipped with strain gauges mea-
suring the cross-flow strain at 7 equally spaced positions along the length. As only lower
modes (mode 1-2) were excited, the number of measuring points are sufficient to perform
modal reconstruction of the displacements, as described by e.g. Lie and Kaasen [43]. The
Reynolds number in these experiments was close to 104, which is within the range of the
NDP tests used to optimize the simulation model.

4.2 Simulation and comparison with experiment

To test how the present simulation model performs at predicting VIV in oscillating flows,
the model is used to recreate the SJTU experiments. Some simplifications are introduced:
The small displacements due to mean drag and weight are neglected (the actual displace-
ment due to mean drag is estimated to less than 1% of the cylinder length). Furthermore,
the oscillatory motion is transformed to an oscillating incoming current, meaning that the
boundary conditions of the model is zero displacement (but free rotation) at both ends.
This is possible because the inertial forces associated with the oscillatory motion are small
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Table 2: Physical properties of the test cylinder

Length, L 4 m
Diameter, D 0.024 m
Mass per unit length, m 0.69 kg/m
Mass ratio, m/(0.25ρπD2) 1.53
Bending stiffness, EI 10.5 Nm2

Pretension, T 500 N
Structural damping (in air) 1.5 %

x = Am sin(2πt/T )

L

D

Figure 11: Simplified overview of the SJTU experimental set up.

compared to the vortex-induced forces. In addition, the small fluctuations in tension are
neglected and a constant T = 500 N is used. Recall that the model was tuned to station-
ary flow measurements, and no changes in the hydrodynamic modeling are introduced.
The results will therefore clearly show whether or not it is reasonable to predict VIV in
oscillating flow based on data from stationary flow VIV.

To investigate the model performance at different KC numbers and reduced velocities,
four cases are considered as shown in table 3. In Case 1 and 2 the KC number is low,
meaning the cylinder travels a relatively short distance in one direction, before it turns
back into its own wake. Hence it is expected that previously shed vortices are still present
in the wake, which will affect the lift force on the cylinder. Also, the number of generated
vortices per flow period is low. In case 3 and 4 the KC number is increased to 178. In
these cases, the cylinder travels significantly longer between each flow reversal, meaning
the situation is more similar to a steady flow. In addition, different values of the reduced
velocity are considered. The higher value (Ur = 6.5) corresponds to the point where
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the maximum vibration amplitude is expected, based on stationary flow observations (see
e.g. Sumer and Fredsøe [44]). The lower value is included to see how the model performs
when the lock-in situation is less perfect.

Table 3: Test cases used for comparison.

Case No. Am T KC Ur,max

1 0.12 m 2.5 s 31.4 4.7
2 0.12 m 1.8 s 31.4 6.5
3 0.68 m 16.5 s 178 4.0
4 0.68 m 10.2 s 178 6.5

The simulation results are shown in figures 12-15 together with the corresponding ex-
perimental results. Starting with case 1, it is seen that the cylinder vibrates at mode 1, i.e.
one half-wave along the cylinder span. The measured response consists mainly of a single
dominating frequency component at approximately 2.5 Hz, but lower frequencies are also
present, causing the overall response to appear slightly irregular. A possible explanation
for these irregularities is that previously shed vortices are still present in the incoming
flow, causing disturbances in the lift force. The simulated response is more regular, but
the dominating frequency and amplitude is well captured. Due to the low KC number,
there is not much time for the vibration amplitude to diminish between periods with high
flow velocity. Therefore, the response appears almost stationary, which is also seen in the
simulation.

For case 2, the response is similar to case 1, but the amplitude is larger as a result
of the increased reduced velocity. As the reduced velocity is close to the ideal value for
synchronization between the vortex shedding and the natural frequency of the structure,
the measured response is more regular than in case 1, and contains essentially only a
single frequency component around 2.8 Hz. This is also seen in the simulations, which
reproduces both the amplitude and frequency with good accuracy. Again, the response
is almost stationary in time, as the flow velocity increases to a level sufficiently high for
positive power transfer between the fluid and structure, before the vibration amplitude has
decreased notably.

Moving on to case 3, the effect of increasing the KC number is clearly illustrated. The
flow velocity now changes slowly compared to the vibration frequency, causing the am-
plitude to decay significantly during periods of low incoming flow velocity. This is seen
both in the experiment and the simulation. The frequency and amplitude are rather accu-
rately predicted, although the amplitude is slightly larger than measured. The building-up
and dying-out effect is realistically reproduced in the simulations.

In case 4, the KC number is the same as for case 3, but the maximum reduced velocity
is closer to the point of maximum vibration amplitude. This means the incoming flow
velocity is large enough to cause positive excitation a larger fraction of the time. It is

137



PAPER III

seen that as the flow velocity increases, the vibration amplitude builds up rapidly, before
a maximum value is reached. The vibration continues at this constant amplitude for some
time, before the flow velocity reduces to a level where vortex shedding no longer can
excite the structure. The ongoing process of "building-up", "lock-in" and "dying out" was
described by Fu et al. [20], and is clearly seen in both the experiment and simulation.
An interesting feature is that the amplitude builds up faster than it decays, which is also
captured by the model.

To summarize the comparison in figures 12-15, it has been shown that the model is
able to predict cross-flow VIV of a flexible cylinder for KC numbers 31 and 178. For
KC = 31, the number of vortex shedding periods between flow reversals is low, approx-
imately 3. Hence, one would expect the incoming flow to be significantly disturbed by
previously shed vortices. It is therefore somewhat surprising that the simulations are seen
to reproduce the observed behavior quite accurately, even though the hydrodynamic force
model was initially adjusted according to data from stationary flow VIV experiments.
This suggests that the effect of the disturbed incoming flow is small (at least for the KC
numbers considered here), and that the relevant hydrodynamic forces can be found using
the same mathematical description as in stationary flows, if the time variability of the
incoming flow velocity is taken properly into account.
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Figure 12: Case 1 results. The top row shows the incoming current velocity U as a function of
time. The row below shows the normalized cross-flow displacement y/D in time and space. The
next row shows y/D at the mid-span, i.e. at z = 2 m. At the bottom is a wavelet contour plot of
the vibration energy at the mid-span, showing the frequency content over time.
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Figure 13: Case 2 results. The top row shows the incoming current velocity U as a function of
time. The row below shows the normalized cross-flow displacement y/D in time and space. The
next row shows y/D at the mid-span, i.e. at z = 2 m. At the bottom is a wavelet contour plot of
the vibration energy at the mid-span, showing the frequency content over time.
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Figure 14: Case 3 results. The top row shows the incoming current velocity U as a function of
time. The row below shows the normalized cross-flow displacement y/D in time and space. The
next row shows y/D at the mid-span, i.e. at z = 2 m. At the bottom is a wavelet contour plot of
the vibration energy at the mid-span, showing the frequency content over time.
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Figure 15: Case 4 results. The top row shows the incoming current velocity U as a function of
time. The row below shows the normalized cross-flow displacement y/D in time and space. The
next row shows y/D at the mid-span, i.e. at z = 2 m. At the bottom is a wavelet contour plot of
the vibration energy at the mid-span, showing the frequency content over time.
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4.3 Effect of reduced velocity and mass ratio

The comparison in the previous section indicates that the hydrodynamic force model in-
cludes the most relevant physical effects, and it is therefore fair to assume that this remains
true when external parameters such as incoming flow velocity and structural mass are
changed. In the experiments by Fu et al. [20], the magnitude of the relative flow velocity
was such that mainly the first natural mode of the structure was excited by vortex shedding
(some participation of mode 2 was also seen). Increasing the velocity further could reveal
some interesting phenomena. For instance, if the maximum flow velocity corresponds to
excitation of a high mode, then a number of lower modes may be excited before the max-
imum flow velocity is reached. In such cases it is not clear what the response will look
like, and the present model is utilized to investigate this.

4.3.1 Example 1: High reduced velocity

The KC number and other parameters are the same as in the previously shown case 3
and 4, except the maximum reduced velocity, which is increased to Ur,max = 32 to excite
higher modes of vibration. Before moving on to the simulation results, it is illustrated how
the expected excitation frequency varies with time, due to the oscillating flow velocity.
A simple way to estimate the excitation frequency would be to assume a constant non-
dimensional frequency, and according to experiments [45], the energy transfer is largest
around f̂ = fD/U ≈ 0.17. Hence, the expected vibration frequency can be found from
the instantaneous flow velocity as f(t) = 0.17|U(t)|/D. This is shown in figure 16, where
the 5 first natural frequencies of the structure (in still water) are shown with dashed lines.
As the flow velocity increases, it is seen that the expected vibration frequency passes the
three lowest natural frequencies, and finally exceeds the fourth before it starts reducing.
Hence one would expect the response to consist of modes 1-4.

17 17.5 18 18.5 19 19.5 20
0

10

time (s)

F
re
q
u
en
cy

(H
z)

Figure 16: Expected vibration frequency, f = 0.17|U |/D, as a function of time (solid line). The
dashed lines are the first 5 natural frequencies of the cylinder.

The simulation results are shown in figure 17. The complex pattern resulting from
the continuously changing mode and frequency is easily seen. The modal weight factors
wn(t) for the first 5 modes are also shown, giving a clearer picture of how the dominating
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mode varies with time. The modal weights are related to the cross-flow displacement
through the following equation:

y(z, t) =
∞∑

n=1

wn(t)ψn(z) =
∞∑

n=1

wn(t) sin(nπz/L). (13)

As seen in figure 17, mode 1 dominates in periods of low flow velocity. When the velocity
increases, a transition to mode 3 is seen, before mode 4 finally takes over. When the
velocity has decreased sufficiently, mode 3 and 4 dies out, and mode 1 starts to dominate
once more. It is also seen that each oscillation cycle (from one flow reversal to the next)
is slightly different from the previous, meaning the response is not periodic. Because the
duration of one flow cycle is short relative to the first natural frequency, the response
at mode 1 does not have time to decay significantly, even when the flow velocity is too
high to excite this mode. Hence, the response in periods with high flow velocity is a
superposition of the previously activated mode 1 together with mode 3 or 4 which is
currently being excited. This causes the maximum cross-flow displacement to become
somewhat larger than in the previously considered cases containing only mode 1. It is
somewhat surprising that mode 2 never dominates the response, but with reference to the
modal weights shown in figure 17, it is seen that mode 2 is clearly present. The reason why
mode 2 is weaker than the others may be related to the time it takes for the mode to change,
and also that the higher modes (3 and 4) are associated with a higher flow velocity, and
are thus more energetic. As the flow velocity increases, there is only a short time interval
where the expected vibration frequency is close to the second natural frequency, and if the
structure does not change from mode 1 to 2 inside this interval, it is more likely to jump
to mode 3. In addition, the excitation force gets stronger when the flow velocity increases,
hence favoring mode 3 over mode 2.

4.3.2 Example 2: High reduced velocity combined with high mass ratio

The mass ratio m∗ = m/(0.25ρπD2) of the cylinder studied by Fu et al. [20] was 1.53.
As mass ratio is identified as one of the dimensionless parameters important to the VIV
response of cylinders in stationary flow [3], it is of interest to investigate how this param-
eter affects VIV in oscillating flows. With this in mind, another simulation is performed,
where the mass of the cylinder is increased by a factor of 5. This gives a mass ratio of
7.65, corresponding to a solid steel cylinder in water. The KC number and maximum
reduced velocity are kept the same as in example 1, meaning that the flow may still po-
tentially excite modes 1-4, as illustrated in figure 16 (although the numerical values of the
frequencies are changed due to the increased mass).

The simulation results are shown in figure 18. In comparison to the low mass ra-
tio case, the response appears less complicated. The cross-flow displacement is almost
single-moded with mode 3 clearly dominating. The amplitude varies only slightly, with
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maximum values occurring around the time of maximum flow velocity, and minimum val-
ues when U is close to zero. The frequency content as seen in the wavelet contour plot is
nearly constant in time, with the energy concentrated around 4.7 Hz, which is close to the
3rd natural frequency. The maximum vibration amplitude is smaller than in the previous
example, and the maximum y/D is approximately 0.7. These results, and particularly the
differences between example 1 and 2 can be qualitatively explained as follows. Due to the
increased mass and inertia, the cylinder is more resistant to change in the vibration state,
and therefore continues at the same mode and frequency even when this is no longer being
excited by vortex shedding. Furthermore, as the vibration frequency is almost constant,
there will be periods of time when the vortex shedding is unable to synchronize with the
cylinder motion, and the energy transfer from fluid to structure will hence be reduced
compared to example 1. This explains why the maximum vibration amplitude is smaller
for the high mass ratio case.
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Figure 17: Simulation results for example 1. At the top: incoming flow velocity U as a function of
time. Below is a contour plot of the normalized cross-flow displacement y/D in time and space.
The next figure shows the modal weight factors, wn(t), for mode 1 to 5. At the bottom is the
wavelet contour plot of the energy-density of the cross-flow displacement at z = 0.5 m.
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Figure 18: Simulation results for example 2. At the top: incoming flow velocity U as a function of
time. Below is a contour plot of the normalized cross-flow displacement y/D in time and space.
The next figure shows the modal weight factors, wn(t), for mode 1 to 5. At the bottom is the
wavelet contour plot of the energy-density of the cross-flow displacement at z = 0.5 m.
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5 Conclusions

The hydrodynamic force model developed by Thorsen et al. [29] has been improved by in-
troducing a new damping formulation, with parameters obtained from experimental data.
It is demonstrated that the predicted damping corresponds well with actual measurements
in still water and for cross-flow oscillations in stationary flow at low and high reduced
velocity. Furthermore, the excitation force model is optimized through comparison with
a series of tests with a flexible cylinder in uniform and sheared flow. In these tests, the
incoming flow was stationary, meaning that no information from VIV in oscillating flow
was used to construct the hydrodynamic force model.

The optimized model was used to simulate the cross-flow VIV of an elastic cylinder in
oscillating flow at different KC numbers and maximum reduced velocities. Comparison
with experiments shows that the model provides realistic results in terms of important
characteristics such as frequency content, mode and amplitude of vibration. For high KC
numbers, the vibrations continuously build up and die out, which is well captured by the
simulations. This indicates that the relevant hydrodynamic forces in oscillating flow can
be found from empirical relationships obtained from experiments in stationary flow, at
least for the KC numbers considered in this study (31 and 178).

The model was also used to investigate the effect of increasing the maximum reduced
velocity and mass ratio of the flexible cylinder. When Ur,max = 32 and m∗ = 1.53, the
dominating mode and frequency changes continuously as the vortex shedding excites dif-
ferent natural frequencies depending on the velocity of the incoming flow. This results
in the appearance of a complex response pattern. In contrast, when the mass ratio is in-
creased by a factor of 5, the response is almost stationary with a single dominating mode.
A possible explanation is that the heavy cylinder is more resistant to change in the vibra-
tion state due to the larger inertia.
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Abstract

A previously proposed hydrodynamic load model for time domain simulation of cross-
flow vortex-induced vibrations (VIV) is modified and combined with Morison’s equation.
The resulting model includes added mass, drag and a cross-flow vortex shedding force
which is able to synchronize with the cylinder motion within a specified range of non-
dimensional frequencies. It is demonstrated that the hydrodynamic load model provides
a realistic representation of the cross-flow energy transfer and added mass for different
values of the non-dimensional frequency and amplitude. Furthermore, it gives a reason-
able approximation of the experimentally observed drag amplification. The load model is
combined with a non-linear finite element model to predict the cross-flow VIV of a steel
catenary riser in two different conditions: VIV due to a stationary uniform flow and VIV
caused by periodic oscillation of the riser top end. In the latter case, the prescribed motion
leads to an oscillating relative flow around the riser, causing an irregular response. The
simulation results are compared to experimental measurements, and it is found that the
model provides highly realistic results, although some discrepancies are seen.

Keywords: Vortex-induced vibrations; Dynamic time domain analysis; Nonlinear finite
element model
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1 Introduction

Elastic cylinders in fluid flow experience structural oscillations caused by vortex shed-
ding, known as vortex-induced vibrations (VIV) [1]. The classic example is the elastically
mounted rigid cylinder in a steady incoming flow, free to oscillate in the cross-flow direc-
tion [2]. In the offshore industry however, one is typically concerned with VIV of long
slender structures such as risers and free spanning pipelines. Here, the VIV response may
consist of several higher modes, in-line and cross-flow oscillations, and a combination of
traveling and standing waves [3]. In addition, the incoming undisturbed flow may vary
along the cylinder span.

To accurately predict riser VIV, two things must be in place. The first is a mathemat-
ical model that, given the hydrodynamic forces acting on the structure, can accurately
predict the structural response. Secondly, one must be able to calculate the hydrodynamic
forces along the structure, which will depend on the motion of the riser. The first part of
the problem can be handled using the finite element method (FEM). If non-linear FEM is
utilized, potentially important effects such as large displacements, time-varying geomet-
ric stiffness and changing boundary conditions may also be dealt with. The second part
of the problem is possible to solve using computational fluid dynamics [4], but the nec-
essary computer resources are large. Therefore, alternative semi-empirical methods have
been developed, such as VIVANA, VIVA and SHEAR7 [5–7]. These are based on hydro-
dynamic coefficients measured in experiments, which is combined with a structural model
to predict the VIV response in the frequency domain. Because the analysis is performed
in the frequency domain, these methods require a linear structural model and stationary
conditions (i.e. constant current velocity in time).

The limitations of the frequency domain methods prohibit realistic modeling of some
problems. As an example, consider a steel catenary riser (SCR) suspended from a floating
platform. The top end will be subjected to wave induced motions, which will cause the
riser tension, and hence the geometric stiffness, to vary with time. Close to the bottom, a
segment of the riser will go in and out of contact with the seabed, causing time-varying
boundary conditions. If the wave induced motions are sufficiently large, vortex shedding
will initiate due to the relative oscillatory flow [8]. Hence, the VIV response can be sta-
tionary in some parts (due to current) while in other parts it may be intermittent (due to
relative oscillatory flow). In addition, internal slug flow may also cause riser vibrations
[9], which will interact with the VIV response. To capture all these effects, a non-linear
time domain analysis is required.

Several models exists which can be used to simulate VIV in time domain. One such
model is the wake-oscillator, which is based on the assumption that the lift coefficient
can be described by a forced Van der Pol oscillator. This idea was first suggested by
Bishop and Hassan [10], and has been modified by many others since then (see e.g. [11]
for a review). Such models have been used in a large number of studies, for instance to
investigate the behavior of flexible structures with geometric nonlinearities [12]. However,
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it is difficult to find a consistent set of wake-oscillator parameters suitable for both forced
and free vibrations. [13]. Other time domain models have been developed by Lie [14],
Finn et al. [15], Mainçon [16] and Xue et al. [17].

An alternative semi-empirical model for time domain simulation of VIV has been
under development by Thorsen et al. [18–22], and the present paper is a continuation of
this work. In combination with a finite element model, it has been shown that the model
can be used to predict VIV of elastic cylinders in various current conditions, including
oscillating flow. In these previous studies, the structural model was linear, and the mean
in-line drag force was not included. The purpose of the present paper is to introduce a
non-linear finite element model (including non-linear soil contact) for the structure, and
to include the mean in-line drag forces (and the associated displacements). This should
enable highly realistic prediction of the dynamic response of risers and other slender
structures due to ocean currents in combination with prescribed oscillatory motions and
possibly other loads (ocean waves are not considered here). To illustrate the applicability
of the proposed model, it is utilized to simulate the cross-flow VIV of an SCR in two
different conditions. The first is VIV due to a stationary incoming uniform flow. Secondly,
VIV caused by periodic oscillation of the riser top end is considered. The results are
compared to experiments.

2 Hydrodynamic load modeling

2.1 Morison’s equation

This paper considers the dynamic response of slender circular structures exposed to cur-
rents. In addition, the structure can have velocities and accelerations induced by other
loads or prescribed motions. A strip theory approach is used, such that the hydrodynamic
force on a cylinder cross-section is calculated from velocities and accelerations at the
same cross-section only. The relevant velocity vectors and coordinate system for comput-
ing the hydrodynamic force on a cylinder segment is shown in figure 1. The relative flow
velocity is v = u− ẋ, where u is the incoming flow velocity and ẋ is the velocity of the
cylinder cross-section. The relative flow is not necessarily perpendicular to the cylinder,
and v is therefore decomposed into a tangential component vt and a normal component
vn. Similarly, the normal component of the flow and structure acceleration is denoted
u̇n and ẍn respectively. The hydrodynamic drag and inertia forces (per unit length) on a
cylinder cross-section is described using the generalized Morison’s equation:

Fn = CMρ
πD2

4
u̇n − (CM − 1)ρ

πD2

4
ẍn +

1

2
ρDCD|vn|vn. (1)

Here, ρ is the water density and D is the cylinder diameter. CM and CD are the inertia
and drag coefficients in the normal direction, which depend on a number of parameters
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(see e.g. [23]). Note that equation (1) only gives forces normal to the cylinder, and any
tangential forces are neglected.

ẋ

j1

j2

j3

u

v

vtvn

Figure 1: A cylinder segment with local coordinate system and velocity vectors.

2.2 Vortex shedding

A cylinder in a current will be excited by vortex shedding, even if the incoming flow is
steady [24]. The flow separates from the cylinder surface and rolls up into vortices on
either side, which for Reynolds numbers larger than 40 are unstable, causing alternating
vortex shedding and the formation of a vortex street. For a stationary cylinder in a steady
flow with velocity U , the vortex shedding frequency is given as fs = StU/D, where St
is the Strouhal number. This depends on the Reynolds number and the cylinder surface
roughness, but in the subcritical Reynolds number range, St is fairly constant and close to
0.2. [25]. The fluctuating pressure field associated with the vortex shedding causes oscil-
lating forces both in the direction of the flow (drag) and perpendicular to the flow (lift). In
the case of an elastic cylinder, the vortex shedding forces will cause structural vibrations,
which in turn alters the surrounding flow and the hydrodynamic forces. An important
interaction effect is that the vortex shedding frequency may deviate from the Strouhal
frequency (i.e. the frequency for a stationary cylinder), and lock on to the frequency of
motion. The synchronization between the cylinder motion and vortex shedding has been
experimentally observed and discussed by several researchers, for instance Williamson
and Roshko [26].

To represent the vortex shedding forces, a simple empirical model is applied. The
present model is based on the work by Thorsen et al. [18–22], with some modifications.
The main reason for modifying the model is that the drag term in Morison’s equation will
cause damping of vibrations. To illustrate this, consider as an example a cylinder in an
incoming steady flow, U . Let the y-axis point in the direction perpendicular to the flow
and assume the cylinder is oscillating in the cross-flow direction with a velocity ẏ, as
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shown in figure 2. Taking only the drag term from equation (1) into account, the cross-
flow component of the drag force is:

Fy = −1

2
ρDCD|vn|2 sin θ = −1

2
ρDCD|vn|ẏ

= −1

2
ρDCD

√
U2 + ẏ2ẏ. (2)

ẏ

U

−ẏ

|vn| =
√

U2 + ẏ2

θ

Figure 2: A cylinder in an incoming flow, moving in the cross-flow direction with velocity ẏ.

It is seen from equation (2) that the cross-flow component of the drag force is always in the
direction opposite of the cross-flow cylinder velocity, and will therefore cause damping
of vibrations. The previous investigations by Thorsen et al. [18–22] did not include drag
forces, and hydrodynamic damping was introduced by a separate damping model. This
damping model is not applicable in the present work, because damping is already included
through the drag term in Morison’s equation. The question is then if the drag term in
Morison’s equation is able to represent damping of vortex-induced vibrations? For the
sake of simplicity, it will be assumed in the following that this is true. Although it is
easy to criticize this assumption, one should remember that it is the net flow of energy
between the fluid and structure which is important. This is determined by the power-in
from vortex excitation minus the power-out from damping (drag in this case). Therefore,
the properties of the damping model is not necessarily important, it is only required that
the sum of excitation and damping is correct.

Based on [18], the vortex shedding force on a cylinder strip is expressed as:

Fexc =
1

2
ρDCv|vn|(j3 × vn) cosφexc. (3)

The force given by equation (3) is perpendicular to vn and j3 (see figure 1), which means
that Fexc points in the direction normal to the relative flow velocity. The magnitude of
the force is determined by a dimensionless coefficient, Cv, and the oscillatory behavior is
taken into account through the time varying instantaneous phase φexc. Note that a fluctuat-
ing drag force (i.e. an excitation force parallel to vn) is generally also present. This force
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will cause in-line vibrations of the cylinder, but these are significantly smaller than the
cross-flow vibrations [27]. In the present research, focus will be on cross-flow vibrations,
and the fluctuating drag is neglected.

As the vortex shedding force oscillates, the phase φexc changes continuously, and goes
from 0 to 2π in one complete cycle. If the frequency of the force was some constant
fexc, the rate of change of the phase angle would be φ̇exc = 2πfexc. This is however not
the case, as the frequency is influenced by, and will in some cases synchronize with the
cylinder motion. A synchronization model was presented by Thorsen et al. [18], where the
instantaneous frequency of the excitation force was expressed as a function of the phase
difference between the cylinder cross-flow velocity and the force itself. This type of model
is also adopted here, but for simplicity and efficiency in the numerical calculations, the
non-dimensional frequency curve is now described analytically as:

f̂exc = f̂0 + ∆f̂ sin(φẏrel − φexc) = f̂0 + ∆f̂ sin θ. (4)

This type of synchronization model is known as the Kuramoto model, which was origi-
nally used to study collective synchronization in large systems of oscillators [28]. In the
present context, φẏrel is the instantaneous phase of the relative cross-flow velocity of the
cylinder (to be defined in section 2.2.1), and θ = φẏrel − φexc is the phase difference
between the relative cross-flow cylinder velocity and the vortex excitation force. f̂0 cor-
responds to the non-dimensional frequency at the center of the synchronization range,
while ∆f̂ describes how much the vortex shedding frequency is allowed to deviate from
f̂0. This means that the vortex shedding will synchronize with the cylinder motion for
non-dimensional frequencies between f̂0−∆f̂ and f̂0 +∆f̂ . The present synchronization
model is compared to the curve previously used by [22] in figure 3. The parameters in the
model is taken as f̂0 = 0.18 and ∆f̂ = 0.08, as these values give approximately the same
synchronization range as the previously used curve, i.e. from f̂ = 0.10 to f̂ = 0.26. When
the non-dimensional excitation frequency is found, the rate of change of φexc is computed
as:

φ̇exc = 2πfexc =
2π|vn|
D

f̂exc. (5)

The idea behind the synchronization model is that the phase difference φẏrel − φexc gives
information about who is "leading" the oscillation. For example, if the phase difference
is positive, the cylinder velocity is ahead, which means the excitation force must increase
its frequency to catch up.
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Figure 3: Non-dimensional frequency of the excitation force as a function of the phase differ-
ence between the relative cross-flow cylinder velocity and the vortex excitation force. The present
analytical model is shown together with the previously used curve [22].

2.2.1 Computing the phase of the relative cross-flow cylinder velocity

The instantaneous phase of the relative cross-flow velocity of the cylinder strip appears in
equation (4), and must be computed for every time step of the simulation (and for every
cylinder strip/element in the model). The relative cross-flow cylinder velocity is defined
as:

ẏrel = ẋ ·n, (6)

where n is a unit vector normal to vn, which is found as

n =
j3 × vn

|vn|
. (7)

Similarly, the relative cross-flow cylinder acceleration is found as

ÿrel = ẍ ·n. (8)

The phase of ẏrel is calculated using the phase portrait concept [18]. This can be vi-
sualized by plotting the normalized relative cross-flow velocity on a horizontal axis and
the normalized relative cross-flow acceleration with a negative sign on a vertical axis,
as shown in figure 4. The velocities/accelerations are normalized by their respective root
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ẏrel/σẏrel

−ÿrel/σÿrel

φẏrel

Figure 4: The phase diagram illustrates how the instantaneous phase of the relative cross-flow
velocity is found.

mean square (r.m.s.) values. For generality, the r.m.s. is allowed to vary with time and is
hence calculated over a finite interval backwards in time. Let nm be the number of time
steps in the interval, such that Tm = (nm − 1)∆t is the length of the interval. Then, the
r.m.s. of ẏrel at time ti may be found from the following expression:

σẏrel(ti) =

√√√√ 1

nm

i∑

j=i−nm+1

(ẏrel(tj))2, (9)

Because computing the sum in equation (9) every time step would be time consuming, a
more efficient approximate method is used. By splitting the sum in two parts, the r.m.s.
can be written as:

σẏrel(ti) =

√√√√ 1

nm

i−1∑

j=i−nm+1

(ẏrel(tj))2 +
1

nm

(ẏrel(ti))2. (10)

By introducing the approximation

i−1∑

j=i−nm+1

(ẏrel(tj))
2 ≈ (nm − 1)(σẏrel(ti−1))2, (11)

the new r.m.s. value can be calculated from the previous, in combination with the new
relative velocity:

σẏrel(ti) ≈
√
nm − 1

nm

(σẏrel(ti−1))2 +
1

nm

(ẏrel(ti))2. (12)
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To verify that the approximate expression (12) provides satisfactory accuracy, a test is
performed where the time varying r.m.s. of a given time series are compared to the exact
result (i.e. calculated by performing the sum over all the data points in the time interval).
The results are shown in figure 5. The time series is taken from a simulation with the
present model. It is seen that the curves calculated using the approximate expression fol-
low the exact results closely, and it is concluded that the approximate expression provides
sufficient accuracy.

0 1000 2000 3000 4000 5000 6000

−0.4

−0.2

0

0.2

0.4

0.6

 

 
time series
excact r.m.s.
approximate r.m.s.

Figure 5: Comparison between the exact and approximate expression for the moving r.m.s. of a
time series. In this example, nm = 500.

2.3 Total hydrodynamic force

To summarize the above, the total hydrodynamic force per unit length on a cylinder sec-
tion is given as the sum of equation (1) and (3):

F = CMρ
πD2

4
u̇n − (CM − 1)ρ

πD2

4
ẍn +

1

2
ρDCD|vn|vn

+
1

2
ρDCv|vn|(j3 × vn) cosφexc.

(13)

The above equation is referred to as "the hydrodynamic force model". The first term
is the force due to water particle acceleration, the second term is added mass, the third
term is drag and the last is due to vortex shedding.
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3 Testing the hydrodynamic force model

3.1 Introduction

As the proposed hydrodynamic force model is semi-empirical, it is important to test its
predictive capabilities. To accurately predict VIV, it is necessary to have a good descrip-
tion of the energy transfer (between the fluid and the oscillating cylinder) and the added
mass variations. The mean drag force is also of interest due to its role in determining the
static deflection and tension in a slender structure such as a riser. It should be kept in mind
that the goal of this research has been to develop a model which is as simple as possible,
but still able to include the most important effects. Although it is certainly desirable to
include every physical effect, it is recognized that reaching such a goal would probably
require a very complex model. Because of this, it is assumed here that the hydrodynamic
coefficients CM , CD and Cv (ref. equation (13)) can be considered constant when the
Reynolds number is constant. In other words, the coefficients do not depend on e.g. the
VIV frequency or amplitude. This is in contrast to the previous work by Thorsen et al.
[18–22], where Cv was a function of y0/D (but not frequency). However, the Reynolds
number dependency must be accounted for, which is discussed in section 5. In the fol-
lowing, some basic examples are used to demonstrate that the model provides reasonable
results compared to experimental observations, and also how the choice of Cv influences
the results.

3.2 Energy transfer

The energy transfer between the fluid and structure during VIV is important to the re-
sponse amplitude. A useful dimensionless measure of the cross-flow energy transfer is
the lift coefficient in phase with the cylinder velocity, defined as:

Cy,v = lim
T→∞

2

T

∫ T

0

Cy(t) cos(ωt)dt, (14)

where Cy(t) = Fy/(0.5ρDU
2) is the (total) lift coefficient. Here it has been assumed that

the cross-flow displacement of the cylinder is y = y0 sin(ωt). If there is no in-line motion
and the incoming flow velocity is U , the cross-flow hydrodynamic force is according to
the present model:

Fy =
1

2
ρDCv

√
U2 + ẏ2U cosφexc −

1

2
ρDCD

√
U2 + ẏ2ẏ − (CM − 1)ρ

πD2

4
ÿ. (15)

To investigate the performance of the model, simulations have been performed, where
a rigid cylinder is oscillated in the cross-flow direction with different y0/D and f̂ =
fD/U = ωD/(2πU). The resulting lift coefficient in phase with cylinder velocity is
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shown in figure 6. For these simulations, CD = Cv = 1.2 and CM = 2. Note however that
the inertia force is always out of phase with ẏ, and does not contribute to Cy,v. It is seen
that for small amplitudes, Cy,v is positive between approximately f̂ = 0.1 and f̂ = 0.26.
In the present model, the range of positive excitation is determined by the parameters f̂0

and ∆f̂ (ref. equation (4)). When the amplitude increases, so does the energy loss due to
drag, andCy,v drops. The excitation zone extends up to a maximum of y0/D ≈ 0.8. Above
this level, Cy,v is negative, which means that vibrations will be damped. To demonstrate
how the choice of Cv affects the results, the above simulations are repeated with Cv = 1.0
and Cv = 1.4. The zero excitation curve (i.e. Cy,v = 0) for the different realizations
are shown and compared to the experimental results by Gopalkrishnan [29] in figure 7.
Clearly, an increase inCv causes the positive excitation region to extend upwards to higher
amplitude. However, the frequency range for synchronization remains unchanged.
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Figure 6: Lift coefficient in phase with cylinder velocity predicted by the model, using CD =
Cv = 1.2.

3.3 Added mass

The added mass is a measure of the hydrodynamic force component in phase with the
acceleration of the cylinder. The added mass is especially important in VIV, as exper-
iments have shown that the VIV response occurs at a true natural frequency when the
added mass is taken into account [30]. This means that the oscillation frequency can be
calculated if the added mass is known, and this fact is utilized in other VIV prediction
tools such as VIVANA [5]. Solving for the unknown vibration frequency is however not
straight forward because the added mass depends on both y0/D and f̂ . Using the present
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Figure 7: The curve corresponding to zero energy transfer, i.e.Cy,v = 0, calculated usingCv = 1.0
(the smallest region), Cv = 1.2 (the intermediate region) and Cv = 1.4 (the largest region). The
thick curve is from experiments by Gopalkrishnan [29].

method, this problem is circumvented because the response is computed directly in the
time domain, without any prior knowledge of the vibration frequency. With reference to
equation (13), there are two terms contributing to the total added mass: the added mass
term from Morison’s equation, and the vortex shedding force. The latter may be partially
in phase with the cylinder acceleration (the actual phase difference will be determined by
the synchronization model, ref. equation (4)), and will influence the total added mass. The
added mass is usually expressed as a dimensionless coefficient Ca = Ma/(0.25ρπD2),
where Ma is the total added mass of the cylinder. When the time series of the force and
acceleration are known (from experiment or simulation), the added mass coefficient may
be found as:

Ca = − 8

ρπD2ω4y2
0

lim
T→∞

1

T

∫ T

0

Fy(t)ÿ(t)dt. (16)

The added mass predicted by the present model was found by simulating a rigid cylin-
der with a prescribed cross-flow oscillation, using different y0/D and f̂ , and the results
are shown in figure 8. It is seen that the model predicts positive added mass for non-
dimensional frequencies higher than 0.15 approximately, while for lower frequencies, the
added mass is negative. This is in agreement with the observations made by Gopalkrish-
nan [29]. However, the model predicts large negative values of added mass when both the
frequency and amplitude is low, and this is not seen in experiments. This discrepancy may
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be unimportant, because the resulting added mass force is small when the frequency and
amplitude is small. To investigate this further, the model is used to simulate the cross-flow
VIV of a spring mounted cylinder, which means solving the 1-DOF dynamic equilibrium
equation:

mÿ + cẏ + ky = Fy(t), (17)

where m is the cylinder (structural) mass per unit length, c is the structural damping and
k is the spring stiffness. The mass ratio is set to m/(0.25ρπD2) = 1.66 and the damping
ratio (in air) to 0.1 %, which is the same as in the free vibration experiment performed
by Vikestad [30]. A number of simulations are run, with increasing reduced velocity,
Ur = U/(f0D), where f0 is the natural frequency of the cylinder in still water. For each
simulation, the transient is removed before the total added mass coefficient are computed
according to equation (16). The results are shown and compared to Vikestad’s in figure 9.
It is seen that the model predicts the total added mass coefficient with a very high accuracy
for Ur > 5. As cross-flow VIV is known to initiate around Ur = 4, the results indicate
that the model predicts the correct added mass over the most important range of reduced
velocities.
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Figure 8: Added mass coefficient predicted by the model, using CD = Cv = 1.2 and CM = 2.
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Figure 9: Added mass coefficient for free cross-flow vibration of spring mounted cylinder. The
dotted line is predicted by the model, using CD = Cv = 1.2 and CM = 2, while the squares are
from the experiments by Vikestad [30].

3.4 Amplitude and phase of lift coefficient

The preceding sections focused on the lift coefficient components in phase with the cylin-
der velocity and acceleration. However, the lift coefficient may also be expressed in terms
of its total magnitude and a phase angle. This approach was used by Carberry et al. [31] ,
who expressed the total lift force as:

Fy =
1

2
ρDU2CL sin(2πft+ φlift). (18)

The cross-flow displacement was taken as y = y0 sin(2πft), such that φlift is the phase
angle between the cross-flow displacement of the cylinder and the lift force component
at the frequency of oscillation. Carberry et al. presents how the phase angle and total lift
coefficient varies with the oscillation frequency at a constant y0/D = 0.5, and compares
their result to those of Sarpkaya [32], Gopalkrishnan [29], Mercier [33] and Staubli [34].
The purpose here is to investigate how the present hydrodynamic load model predicts the
total lift coefficient and phase angle compared to all these experiments. To do this, sim-
ulation of forced cross-flow vibration is performed as previously. The initial transient is
removed, and the lift coefficient in phase with the cylinder velocity is calculated accord-
ing to equation (14). Similarly, the component in phase with the cylinder displacement is
found as:
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Cy,d = lim
T→∞

2

T

∫ T

0

Cy(t) sin(ωt)dt. (19)

The total lift coefficient is then found as CL =
√
C2

y,v + C2
y,d and the phase angle is

found from tanφlift = Cy,v/Cy,d. The results are plotted and compared to the mentioned
experiments in figure 10 and 11, where the frequency of vibration has been normalized
by the Strouhal frequency. From figure 10, it is seen that there is a transition in the phase
angle as the oscillation frequency approaches the Strouhal frequency. When the oscillation
frequency is low, φlift is approximately 225◦, and for high frequencies the phase angle is
close to zero. Looking at the experimental results, the change in phase angle happens quite
suddenly around f/fs = 0.8, while the model predicts a smoother transition, beginning
around f/fs = 0.6. Moving on to figure 11, the magnitude of the lift coefficient is small
for the lower frequencies. This is because the vortex shedding force is not synchronized
with the cylinder motion. In addition, the cross-flow component of the drag force is small.
As the frequency is increased towards fs, synchronization causes CL to rise. When the
frequency is increased further, the drag and added mass forces increase, causing very
high values of CL. Taking the scatter in the experimental results into account, the present
model gives a good approximation of how the phase angle and the total lift coefficient
changes as the oscillation frequency is varied around the Strouhal frequency.

3.5 Mean drag

For a cylinder oscillating with a cross-flow motion y = y0 sinωt, the force per unit length
in the flow direction may generally be expressed as Fx = F̄x + F̃x, where F̄x is the mean
and F̃x is the fluctuating drag. The magnitude of the mean drag is usually given as a
dimensionless mean drag coefficient, defined as:

C̄D =
F̄x

0.5ρDU2
. (20)

According to the present model, the in-line component of the hydrodynamic force is in
this situation (from equation (13)):

Fx =
1

2
ρDCD

√
U2 + ẏ2U +

1

2
ρDCv

√
U2 + ẏ2ẏ cosφexc. (21)

The first term in the above equation is the in-line component of the drag force in Morison’s
equation, and it is seen that this term increases with the cross-flow velocity. The second
term is due to the vortex shedding force, which is also seen to increase with the cross-
flow velocity. However, the mean value of the second term will be zero if cosφexc is
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Figure 10: Phase angle between the total lift force and the cross-flow cylinder displacement as a
function of frequency at y0/D = 0.5. The solid line is predicted by the model using CD = Cv =
1.2 and CM = 2, while the symbols represent the experiments by Sarpkaya [32], Gopalkrishnan
[29], Mercier [33], Staubli [34] and Carberry et al. [31]. The experimental data was taken from
[31].

uncorrelated with ẏ. In other words, the vortex shedding force only contributes to the
mean drag if it is synchronized with the cylinder velocity.

The mean drag coefficient predicted by the present model was found by simulating a
rigid cylinder with a prescribed cross-flow oscillation, using different y0/D and f̂ , and the
results are shown in figure 12. In this example, CD = Cv = 1.2. This value of CD agrees
with that of a stationary cylinder at Re ≈ 10 000. With reference to figure 12, it is seen
that the mean drag is essentially equal to 1.2 for small amplitudes and/or frequencies. This
is because the cylinder velocity is small compared to the incoming flow, which means that
C̄D → CD, according to equation (21). When y0/D or f̂ is increased, so does the mean
drag, and for cases where both y0/D and f̂ are large, C̄D can reach very high values.
This behavior is also seen in experiments, and figure 13 shows a comparison between the
simulated results and experimental observations by Gopalkrishnan [29] for y0/D = 0.75.
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Figure 11: Total lift coefficient amplitude as a function of frequency at y0/D = 0.5. The solid line
is predicted by the model using CD = Cv = 1.2 and CM = 2, while the symbols represent the
experiments by Sarpkaya [32], Gopalkrishnan [29], Mercier [33], Staubli [34] and Carberry et al.
[31]. The experimental data was taken from [31].

3.6 Summary

Some of the most important points illustrated above is summarized as follows:

i) The energy transferred to the vibrating cylinder (quantified through the lift coeffi-
cient in phase with the cylinder velocity) depends on CD and Cv. The drag coeffi-
cient determines the damping, which increases together with the vibration ampli-
tude and frequency. With reference to figure 6, the drag force has an impact on Cy,v

for all values of y0/D and f̂ . The vortex shedding force on the other hand, only af-
fects Cy,v in the region where the vortex shedding is synchronized with the cylinder
motion. Increasing Cv extends the positive excitation region to higher amplitudes.
For an elastically mounted rigid cylinder, stable oscillations occur when Cy,v = 0
(neglecting structural damping). This means that if the model is to predict the cor-
rect free vibration amplitude, Cv should be chosen so that Cy,v = 0 at the correct
y0/D.

ii) The total added mass coefficient predicted by the model is a result of the added
mass term in Morison’s equation and the vortex shedding force. The first term gives
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Figure 12: Mean drag coefficient predicted by the model, using CD = Cv = 1.2.

a constant contribution equal to Ca = CM − 1, while the latter will vary depending
on the phase difference between the vortex shedding force and the cylinder acceler-
ation.

iii) The mean drag coefficient C̄D depends on both CD and Cv. When the cylinder is
stationary, C̄D = CD, and CD should be chosen accordingly. When the cylinder
vibrates, two effects contribute to increasing the mean drag. Firstly, the average
relative velocity increases. Secondly, the vortex shedding force has a component in
the direction of the flow which will have a non-zero mean value when the vortex
shedding is synchronized with the cylinder motion.

iv) Although this has not been considered here, the parameters f̂0 and ∆f̂ in equation
4 can be changed, thereby altering the synchronization range of the vortex shedding
force.
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Figure 13: Mean drag coefficient for y0/D = 0.75. The solid line are predicted by the model using
CD = Cv = 1.2, while the crosses are from experiments by Gopalkrishnan [29].

4 Structure modeling and dynamic analysis

The hydrodynamic force model has been implemented into the finite element software
Simla [35], which is a tool developed for pipe-laying analyses including very large defor-
mations, non-linear material behavior and contact. 2-node 3 dimensional beam elements
are used, with 3 translational and 3 rotational degrees of freedom at each node. The beam
element is based on classical theory for slender beams, assuming planes normal to the
neutral axis to remain plane, as well as neglecting shear deformations due to lateral loads
and lateral contraction due to axial elongation. In addition, the strains are assumed to be
small. A corotational formulation is used to account for large displacements and rotations.
Based on the principle of virtual work on incremental form, the element stiffness matrix
contains contributions from geometric and material stiffness. The geometric contribution
is the influence of axial force on the lateral stiffness of the beam. The nonlinear dynamic
analysis in Simla is based on the incremental equation of motion, which is solved in time
domain using the HHT-α method [36].

5 Results

5.1 Case 1: SCR in uniform current

Wang et al. [8] performed model tests to study VIV on steel catenary risers (SCRs). In
these experiments, the top end of a truncated SCR model was suspended from a towing
carriage, while the lower end was resting on an fake seabed made of aluminium. The
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riser was terminated in both ends with universal couplings, which were moment-free and
torsion restricted. Strain sensors were installed at 25 equidistant points to measure the
dynamic response. Important physical properties of the model riser are given in table
1. The experimental campaign consisted of two parts: Uniform current VIV and heave
induced VIV. Uniform current was obtained by moving the top end and the seabed with a
constant speed (on tracks).

Table 1: Properties of the riser model [8].

Riser length 23.71 m
Depth 9 m

Horizontal length 21.0425 m
Outer diameter 0.024 m

Mass per length (dry) 0.69 kg/m
Bending stiffness (EI) 10.5 Nm2

Tensile stiffness (EA) 6.66 · 105 N

The experimental campaign contained cases with current velocities ranging from 0.1
to 0.5 m/s. However, due to the restricted track length, the test duration was relatively short
for the high velocity cases. With this in mind, a case with a current velocity of 0.2 m/s is
chosen for the present comparison. The current direction is in the riser plane, as indicated
in figure 14, which means that the VIV motion is mainly out of the riser plane (i.e. the
cross-flow direction). As previously stated, this study focuses on the prediction of cross-
flow VIV, and for this reason only the cross-flow strains are analyzed. Figure 15 shows the
dynamic part of the measured cross-flow strain from the experiment by Wang et al. [8].
Note that the strain sensors were mounted at a diameter D = 19.5 mm, and the measured
values have been adjusted to show the strain at the outer surface (D = 24 mm). The
initial transient has been removed, and the data in figure 15 is from the time window with
fully developed VIV. Waves are seen traveling towards the bottom end (which is located
at x = 0), and the vibration pattern is relatively stationary, although some irregularities
are seen. It is also quite clear that a single frequency dominates.

A finite element model of the SCR is established using the previously described soft-
ware, Simla. The SCR is discretized into 500 beam elements (a convergence test was
performed by doubling the number of elements). An initial static analysis is performed,
including weight, buoyancy and a prescribed top-end displacement in the x-direction to
obtain the desired static configuration. The FE model after the completion of the static
analysis is seen in figure 14. Seabed contact is modeled using nonlinear springs with a
vertical stiffness of 1 (kN/m)/m in compression. This is very stiff compared to the SCR,
and represents a nearly rigid surface. The seabed spring stiffness in tension is zero, which
means the SCR is allowed to lift freely from the seabed. When a node of the SCR is
in contact with the seabed, it will also experience friction forces in the axial and lateral
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Figure 14: Finite element model in the static configuration.

directions, which will restrain the riser from sliding until the friction force exceeds the
vertical contact force multiplied by a friction coefficient. In the analysis, the seabed-riser
friction coefficient is set to 0.2. The exact number is not known, but 0.2 is a reasonable
value for plastic and aluminium in water. For the dynamic analysis, a time step of 0.005 s
is applied, which was found to be sufficient (i.e. reducing the time step gave no change in
the results).

The hydrodynamic forces are calculated according to the described model (equa-
tion (13)). The Reynolds number for the case considered here is approximately 3 000,
based on the maximum normal flow velocity. Swithenbank et al. [37] have shown that
the VIV response amplitude for flexible cylinders depends on the Reynolds number, and
this must be kept in mind when choosing a value for Cv. As stated in section 3, a suit-
able strategy would be to choose Cv such that the maximum amplitude of the positive
excitation zone (i.e. the region where Cy,v is positive) is correct, compared to experi-
ments. For Re = 10 000, the maximum y0/D which gives positive excitation is approx-
imately 0.85, according to Gopalkrishnan [29]. Based on [37], the maximum amplitude
at Re = 3 000 is reduced to 60% compared to Re = 10 000. Assuming that the maxi-
mum response amplitude for a flexible cylinder is linearly related to the maximum y0/D
of the positive excitation zone, it follows that the positive excitation zone extends up to
y0/D = 0.85 · 0.6 ≈ 0.5 for Re = 3 000. This corresponds to Cv = 0.7 (found by plotting
figure 6 using different values for Cv), which is used in the subsequent simulations. The
drag and inertia coefficients are set to CD = 1.2 and CM = 2.

The dynamic cross-flow strain from the simulation is shown in figure 16. Compared
to the experimental results, the same type of traveling waves are seen. 7 distinctive peaks
are seen along the riser span, while in the experimental results, there are only 6 peaks.
This indicates that the predicted mode of vibration is one number higher than in the ex-
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Figure 15: From experiment by Wang et al. [8] (constant uniform flow): Dynamic cross-flow strain
along the riser as a function of time.

periment, which may be caused by a mismatch in the added mass. This is however a small
error, and some uncertainty in the predicted mode must be expected. Furthermore, the
predicted vibration pattern is more regular than in the experiment, which is also unsur-
prising, due to the simplifications embedded in the model. The magnitude of the predicted
strains are compared to the experimental results in figure 17, in terms of the r.m.s. of the
dynamic cross-flow strain along the riser. The agreement along the riser span is reason-
able, although some discrepancies are seen. The maximum r.m.s. of strain predicted by
the model is 99.6 % of the experimentally observed value. However, the point of maxi-
mum strain in the simulation is not the same as in the experiment. The power spectrum of
the strain signals from the experiment and simulation are shown and compared in figure
18. It is seen that the dominating frequencies are almost exactly the same, although the
predicted spectrum is slightly more narrow-banded.
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Figure 16: From simulation (constant uniform flow): Dynamic cross-flow strain along the riser as
a function of time.
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Figure 17: Comparison between predicted (solid line) and measured (squares) r.m.s. of dynamic
cross-flow strain along the riser (constant uniform flow).
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Figure 18: Frequency spectrum of dynamic cross-flow strain from simulation and experiment (con-
stant uniform flow) 8.25 meters from the lower end.
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5.2 Case 2: Heave induced VIV of SCR

Wang et al. [8] used the same experimental set up to study heave induced VIV, caused by
a forced oscillating movement of the upper end of the riser, as indicated in figure 14. The
SCR model was oscillating in still water, and the relative velocity between the riser and
the surrounding water caused vortex shedding and VIV. The cross-flow strains measured
in the test are shown in figure 19 together with the x (horizontal) and z (vertical) displace-
ment of the top point. Note that the strain signal has been band-pass filtered to remove
high-frequency noise and the low-frequency component associated with the heave mo-
tion. The top-end motion is approximately sinusoidal with a period of 5.96 s. Compared
to the constant current case, the VIV response appears more irregular, which is expected
due to the relative oscillating flow. Although the spatial resolution is limited, it is possible
to see how the touch-down point of the SCR (located close to x = 0) is moving as the
lower end of the riser lifts up and falls down towards the bottom repeatedly.

The r.m.s. of the in-plane velocity (i.e. the relative flow velocity causing VIV) along
the riser according to the simulation model is shown in figure 20. When the flow velocity
varies both in time and space, there is no unique Reynolds number, which can make
it difficult to choose a single value for Cv. However, the maximum of the r.m.s. of the
in-plane velocity may be a reasonable choice for a characteristic velocity. From figure
20, this is found to be 0.16 m/s, which means the Reynolds number is approximately 4
000. This is slightly larger than in the preceding case, and based on [37], the maximum
response is expected to be around 70 % of the value at Re = 10 000. Following the same
way of thinking as for the previous case, this means that Cv = 0.8 approximately, and this
value is adopted in the simulations. As in the previous case, CD = 1.2 and CM = 2. Apart
from the boundary conditions at the top, the structural model is also the same as before.

The cross-flow bending strains found from the simulation are shown in figure 21,
together with the x (horizontal) and z (vertical) displacement of the top end node. The
prescribed motion of the top node is exactly the same as measured in the experiment.
The predicted vibration pattern looks qualitatively similar to the experimental results, and
consists of irregular traveling waves. It is seen that the peak close to the touch-down
point moves back and forth due to the variation in bottom contact. The predicted r.m.s.
of the cross-flow strains are compared to the experiment in figure 22, and the comparison
shows that the magnitude of the strain is somewhat over-predicted for the lower part
and under-predicted for the upper half. Compared to the experiment, the maximum r.m.s.
of strain predicted by the model is 6 % too high. To get a better understanding of the
frequency content in the response, the measured and predicted cross-flow strain at a point
8.25 meters from the lower end are shown in figure 23 and 24 together with a wavelet plot
of the strain signals. The wavelet plot shows the frequency content as a function of time,
and from figure 23 it is seen that the dominating frequency in the experiment is close
to 1 Hz. Less pronounced frequencies are seen at all times, both below and above the
dominating ones. It is also noted that the amplitude in the experiment is relatively small
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at t = 30 s, but increases around t = 36 s for some unknown reason. The amplitude of the
predicted strain shown in figure 24 is more stable. The predicted dominating frequency
is also close to 1 Hz, and other frequency components are present at lower and higher
frequencies, as in the experiment.
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Figure 19: From experiment by Wang et al. [8] (heave induced VIV): Dynamic cross-flow strain
along the riser as a function of time. The top figure shows the x (red) and z (blue) displacement
of the riser’s upper end. Note that the strain signal has been band-pass filtered to remove high-
frequency noise and the low-frequency component associated with the heave motion.
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Figure 20: R.m.s. of riser in-plane velocity (calculated).
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Figure 21: From simulation (heave induced VIV): Dynamic cross-flow strain along the riser as a
function of time. The top figure shows the x (red) and z (blue) displacement of the riser’s upper
end.
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Figure 22: Comparison between predicted (solid line) and measured (squares) r.m.s. of dynamic
cross-flow strain along the riser (heave induced VIV).
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Figure 23: From experiment by Wang et al. [8] (heave induced VIV): The top figure shows the
dynamic cross-flow strain 8.25 meters from the lower end. The bottom figure shows the wavelet
contour plot of the strain signal.
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Figure 24: From simulation (heave induced VIV): The top figure shows the dynamic cross-flow
strain 8.25 meters from the lower end. The bottom figure shows the wavelet contour plot of the
strain signal.
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6 Conclusions

A method for time domain analysis of cross-flow VIV of slender structures exposed to cur-
rents and prescribed motions has been presented, which is able to account for non-linear
structural effects such as large displacements and time varying contact conditions. The
hydrodynamic loading is computed based on Morison’s equation and a semi-empirical
formulation of the cross-flow vortex shedding force [18]. It is shown that the model pro-
vides a realistic description of the cross-flow energy transfer and added mass as well
as the experimentally observed drag amplification, using constant hydrodynamic coeffi-
cients. Next, the combined hydrodynamic and structural model is applied to simulate VIV
of the model scale SCR tested by Wang et al. [8]. Two different conditions are considered,
namely uniform stationary current and heave induced VIV. In the first case, the response
is almost stationary with a single dominating frequency. Both the magnitude and the fre-
quency content of the dynamic cross-flow strain is accurately predicted by the model.
In the second case, the relative fluid velocity is oscillating, due to the sinusoidal motion
prescribed at the top end of the riser. This causes an irregular response pattern with mul-
tiple frequencies and varying amplitudes. Similar behavior is seen in the simulation and
the experiment, and the dominating frequency and the r.m.s. of strain is quite accurately
captured. This indicates that the present hydrodynamic load model provides a good ap-
proximation of the relevant loads, which makes it possible to simulate riser VIV with a
high degree of realism, when combined with a non-linear finite element program.

Acknowledgments

The authors gratefully acknowledge Statoil for permission to use the data from the experi-
ments performed at Shanghai Jiao Tong University. We would also like to thank Elizabeth
Passano, Jie Wu, Decao Jin, Shixiao Fu and Halvor Lie at MARINTEK for contributing
with valuable discussions regarding VIV in general, as well as sharing their knowledge
about the SCR experiment.

References

[1] Blevins RD. Flow-Induced Vibration. 2 ed.; Van Nostrand Reinhold; 1990.

[2] Feng C. The measurement of vortex induced effects in flow past stationary and oscillating
circular and D-section cylinders. Master’s thesis; University of British Columbia; 1968.

[3] Vandiver JK, Jaiswal V, Jhingran V. Insights on vortex-induced, traveling waves on long
risers. Journal of Fluids and Structures 2009;25(4):641–653.

[4] Bourguet R, Karniadakis GE, Triantafyllou MS. Vortex-induced vibrations of a long flexible
cylinder in shear flow. Journal of Fluid Mechanics 2011;677:342–382.

[5] Larsen CM, Lie H, Passano E, Yttervik R, Wu J, Baarholm G. VIVANA - Theory Manual,
Version 3.7. MARINTEK; 2009.

184



PAPER IV

[6] Triantafyllou M, Triantafyllou G, Tein Y, Ambrose BD, et al. Pragmatic riser VIV analysis.
In: Offshore Technology Conference. 1999,.

[7] Vandiver JK, Li L. SHEAR7 V4.4 Program Theoretical Manual. Department of Ocean
Engineering, Massaccusetts Institute of Technology; 2005.

[8] Wang J, Fu S, Baarholm R, Wu J, Larsen CM. Fatigue damage of a steel catenary riser from
vortex-induced vibration caused by vessel motions. Marine Structures 2014;39:131–156.

[9] Ortega A, Rivera A, Nydal OJ, Larsen CM. On the dynamic response of flexible risers caused
by internal slug flow. In: ASME 2012 31st International Conference on Ocean, Offshore and
Arctic Engineering. American Society of Mechanical Engineers; 2012, p. 647–656.

[10] Bishop R, Hassan A. The lift and drag forces on a circular cylinder oscillating in a flowing
fluid. Proceedings of the Royal Society of London Series A Mathematical and Physical
Sciences 1964;277(1368):51–75.

[11] Gabbai R, Benaroya H. An overview of modeling and experiments of vortex-induced vibra-
tion of circular cylinders. Journal of Sound and Vibration 2005;282(3):575–616.

[12] Srinil N. Multi-mode interactions in vortex-induced vibrations of flexible curved/straight
structures with geometric nonlinearities. Journal of Fluids and Structures 2010;26(7):1098–
1122.

[13] Ogink R, Metrikine A. A wake oscillator with frequency dependent coupling for the model-
ing of vortex-induced vibration. Journal of Sound and Vibration 2010;329(26):5452–5473.

[14] Lie H. A time domain model for simulation of vortex induced vibrations on a cable. In:
Proc. Sixth Int. Conf. on Flow Induced Vibrations. London, UK; 1995, p. 455–466.

[15] Finn L, Lambrakos K, Maher J. Time domain prediction of riser VIV. In: Proceedings of
the Fourth International Conference on Advances in Riser Technologies. 1999,.

[16] Mainçon P. A Wiener-Laguerre Model of VIV Forces Given Recent Cylinder Velocities.
Mathematical Problems in Engineering 2011;2011.

[17] Xue H, Wang K, Tang W. A practical approach to predicting cross-flow and in-line VIV
response for deepwater risers. Applied Ocean Research 2015;52:92 – 101.

[18] Thorsen MJ, Sævik S, Larsen CM. A simplified method for time domain simulation of
cross-flow vortex-induced vibrations. Journal of Fluids and Structures 2014;49:135–148.

[19] Thorsen MJ, Sævik S, Larsen CM. Time domain simulation of cross-flow and in-line vortex-
induced vibrations. In: Proceedings of EURODYN 2014. Porto, Portugal; 2014,.

[20] Thorsen MJ, Sævik S, Larsen CM. Fatigue damage from time domain simulation of com-
bined in-line and cross-flow vortex-induced vibrations. Marine Structures 2015;41:200–222.

[21] Thorsen MJ, Sævik S, Larsen CM. Time domain simulation of vortex-induced vibrations
based on phase-coupled oscillator synchronization. In: ASME 2015 34th International Con-
ference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engi-
neers; 2015,.

[22] Thorsen MJ, Sævik S, Larsen CM. Time domain simulation of vortex-induced vibrations in
stationary and oscillating flows. Journal of Fluids and Structures 2016;61:1 – 19.

185



PAPER IV

[23] Faltinsen O. Sea loads on ships and offshore structures; vol. 1. Cambridge university press;
1993.

[24] Sumer BM, Fredsøe J. Hydrodynamics around cylindrical structures; vol. 12. World Scien-
tific Publishing Company; 1997.

[25] Norberg C. Fluctuating lift on a circular cylinder: review and new measurements. Journal of
Fluids and Structures 2003;17(1):57–96.

[26] Williamson C, Roshko A. Vortex formation in the wake of an oscillating cylinder. Journal
of Fluids and Structures 1988;2(4):355–381.

[27] Jauvtis N, Williamson C. The effect of two degrees of freedom on vortex-induced vibration
at low mass and damping. Journal of Fluid Mechanics 2004;509(6):23–62.

[28] Strogatz SH. From Kuramoto to Crawford: exploring the onset of synchronization in popu-
lations of coupled oscillators. Physica D: Nonlinear Phenomena 2000;143(1–4):1 – 20.

[29] Gopalkrishnan R. Vortex-induced forces on oscillating bluff cylinders. Ph.D. thesis; Mas-
sachusetts Institute of Technology; 1993.

[30] Vikestad K. Multi-frequency response of a cylinder subjected to vortex shedding and support
motions. Ph.D. thesis; Norwegian University of Science and Technology, Department of
Marine Technology; Trondheim, Norway; 1998.

[31] Carberry J, Sheridan J, Rockwell D. Controlled oscillations of a cylinder: forces and wake
modes. Journal of Fluid Mechanics 2005;538:31–69.

[32] Sarpkaya T. Hydrodynamic damping, flow-induced oscillations, and biharmonic response.
Journal of offshore Mechanics and Arctic engineering 1995;117(4):232–238.

[33] Mercier JA. Large amplitude oscillations of a circular cylinder in a low-speed stream.
Stevens Institute of Technology, PhD 1973;.

[34] Staubli T. Calculation of the vibration of an elastically mounted cylinder using experimental
data from forced oscillation. Journal of Fluids Engineering 1983;105(2):225–229.

[35] Sævik S. SIMLA Theory Manual; 2008.

[36] Hilber HM, Hughes TJ, Taylor RL. Improved numerical dissipation for time integra-
tion algorithms in structural dynamics. Earthquake Engineering & Structural Dynamics
1977;5(3):283–292.

[37] Swithenbank SB, Vandiver JK, Larsen CM, Lie H. Reynolds number dependence of flexible
cylinder VIV response data. In: ASME 2008 27th International Conference on Offshore
Mechanics and Arctic Engineering. American Society of Mechanical Engineers; 2008, p.
503–511.

186



1 

 
Previous PhD theses published at the Departement of Marine Technology 

(earlier: Faculty of Marine Technology) 
NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY 

 
Report 
No. 

Author Title 

 Kavlie, Dag Optimization of Plane Elastic Grillages, 1967 

 Hansen, Hans R. Man-Machine Communication and Data-Storage 
Methods in Ship Structural Design, 1971 

 Gisvold, Kaare M. A Method for non-linear mixed -integer 
programming and its Application to Design 
Problems, 1971 

 Lund, Sverre Tanker Frame Optimalization by means of SUMT-
Transformation and Behaviour Models, 1971 

 Vinje, Tor On Vibration of Spherical Shells Interacting with 
Fluid, 1972 

 Lorentz, Jan D. Tank Arrangement for Crude Oil Carriers in 
Accordance with the new Anti-Pollution 
Regulations, 1975 

 Carlsen, Carl A. Computer-Aided Design of Tanker Structures, 1975 

 Larsen, Carl M. Static and Dynamic Analysis of Offshore Pipelines 
during Installation, 1976 

UR-79-01 Brigt Hatlestad, MK The finite element method used in a fatigue 
evaluation of fixed offshore platforms. (Dr.Ing. 
Thesis) 

UR-79-02 Erik Pettersen, MK Analysis and design of cellular structures. (Dr.Ing. 
Thesis) 

UR-79-03 Sverre Valsgård, MK Finite difference and finite element methods 
applied to nonlinear analysis of plated structures. 
(Dr.Ing. Thesis) 

UR-79-04 Nils T. Nordsve, MK Finite element collapse analysis of structural 
members considering imperfections and stresses 
due to fabrication. (Dr.Ing. Thesis) 

UR-79-05 Ivar J. Fylling, MK Analysis of towline forces in ocean towing systems. 
(Dr.Ing. Thesis) 

UR-80-06 Nils Sandsmark, MM Analysis of Stationary and Transient Heat 
Conduction by the Use of the Finite Element 
Method. (Dr.Ing. Thesis) 

UR-80-09 Sverre Haver, MK Analysis of uncertainties related to the stochastic 
modeling of ocean waves. (Dr.Ing. Thesis) 

UR-81-15 Odland, Jonas On the Strength of welded Ring stiffened 
cylindrical Shells primarily subjected to axial 
Compression 

UR-82-17 Engesvik, Knut Analysis of Uncertainties in the fatigue Capacity of 



2 

Welded Joints 

UR-82-18 Rye, Henrik Ocean wave groups 

UR-83-30 Eide, Oddvar Inge On Cumulative Fatigue Damage in Steel Welded 
Joints 

UR-83-33 Mo, Olav Stochastic Time Domain Analysis of Slender 
Offshore Structures 

UR-83-34 Amdahl, Jørgen Energy absorption in Ship-platform impacts 

UR-84-37 Mørch, Morten Motions and mooring forces of semi submersibles 
as determined by full-scale measurements and 
theoretical analysis 

UR-84-38 Soares, C. Guedes Probabilistic models for load effects in ship 
structures 

UR-84-39 Aarsnes, Jan V. Current forces on ships 

UR-84-40 Czujko, Jerzy Collapse Analysis of Plates subjected to Biaxial 
Compression and Lateral Load 

UR-85-46 Alf G. Engseth, MK Finite element collapse analysis of tubular steel 
offshore structures. (Dr.Ing. Thesis) 

UR-86-47 Dengody Sheshappa, MP A Computer Design Model for Optimizing Fishing 
Vessel Designs Based on Techno-Economic 
Analysis. (Dr.Ing. Thesis) 

UR-86-48 Vidar Aanesland, MH A Theoretical and Numerical Study of Ship Wave 
Resistance. (Dr.Ing. Thesis) 

UR-86-49 Heinz-Joachim Wessel, MK Fracture Mechanics Analysis of Crack Growth in 
Plate Girders. (Dr.Ing. Thesis) 

UR-86-50 Jon Taby, MK Ultimate and Post-ultimate Strength of Dented 
Tubular Members. (Dr.Ing. Thesis) 

UR-86-51 Walter Lian, MH A Numerical Study of Two-Dimensional Separated 
Flow Past Bluff Bodies at Moderate KC-Numbers. 
(Dr.Ing. Thesis) 

UR-86-52 Bjørn Sortland, MH Force Measurements in Oscillating Flow on Ship 
Sections and Circular Cylinders in a U-Tube Water 
Tank. (Dr.Ing. Thesis) 

UR-86-53 Kurt Strand, MM A System Dynamic Approach to One-dimensional 
Fluid Flow. (Dr.Ing. Thesis) 

UR-86-54 Arne Edvin Løken, MH Three Dimensional Second Order Hydrodynamic 
Effects on Ocean Structures in Waves. (Dr.Ing. 
Thesis) 

UR-86-55 Sigurd Falch, MH A Numerical Study of Slamming of Two-
Dimensional Bodies. (Dr.Ing. Thesis) 

UR-87-56 Arne Braathen, MH Application of a Vortex Tracking Method to the 
Prediction of Roll Damping of a Two-Dimension 
Floating Body. (Dr.Ing. Thesis) 



3 

UR-87-57 Bernt Leira, MK Gaussian Vector Processes for Reliability Analysis 
involving Wave-Induced Load Effects. (Dr.Ing. 
Thesis) 

UR-87-58 Magnus Småvik, MM Thermal Load and Process Characteristics in a 
Two-Stroke Diesel Engine with Thermal Barriers 
(in Norwegian). (Dr.Ing. Thesis) 

MTA-88-
59 

Bernt Arild Bremdal, MP An Investigation of Marine Installation Processes – 
A Knowledge - Based Planning Approach. (Dr.Ing. 
Thesis) 

MTA-88-
60 

Xu Jun, MK Non-linear Dynamic Analysis of Space-framed 
Offshore Structures. (Dr.Ing. Thesis) 

MTA-89-
61 

Gang Miao, MH Hydrodynamic Forces and Dynamic Responses of 
Circular Cylinders in Wave Zones. (Dr.Ing. Thesis) 

MTA-89-
62 

Martin Greenhow, MH Linear and Non-Linear Studies of Waves and 
Floating Bodies. Part I and Part II. (Dr.Techn. 
Thesis) 

MTA-89-
63 

Chang Li, MH Force Coefficients of Spheres and Cubes in 
Oscillatory Flow with and without Current. (Dr.Ing. 
Thesis 

MTA-89-
64 

Hu Ying, MP A Study of Marketing and Design in Development 
of Marine Transport Systems. (Dr.Ing. Thesis) 

MTA-89-
65 

Arild Jæger, MH Seakeeping, Dynamic Stability and Performance of 
a Wedge Shaped Planing Hull. (Dr.Ing. Thesis) 

MTA-89-
66 

Chan Siu Hung, MM The dynamic characteristics of tilting-pad bearings 

MTA-89-
67 

Kim Wikstrøm, MP Analysis av projekteringen for ett offshore projekt. 
(Licenciat-avhandling) 

MTA-89-
68 

Jiao Guoyang, MK Reliability Analysis of Crack Growth under 
Random Loading, considering Model Updating. 
(Dr.Ing. Thesis) 

MTA-89-
69 

Arnt Olufsen, MK Uncertainty and Reliability Analysis of Fixed 
Offshore Structures. (Dr.Ing. Thesis) 

MTA-89-
70 

Wu Yu-Lin, MR System Reliability Analyses of Offshore Structures 
using improved Truss and Beam Models. (Dr.Ing. 
Thesis) 

MTA-90-
71 

Jan Roger Hoff, MH Three-dimensional Green function of a vessel with 
forward speed in waves. (Dr.Ing. Thesis) 

MTA-90-
72 

Rong Zhao, MH Slow-Drift Motions of a Moored Two-Dimensional 
Body in Irregular Waves. (Dr.Ing. Thesis) 

MTA-90-
73 

Atle Minsaas, MP Economical Risk Analysis. (Dr.Ing. Thesis) 

MTA-90-
74 

Knut-Aril Farnes, MK Long-term Statistics of Response in Non-linear 
Marine Structures. (Dr.Ing. Thesis) 

MTA-90-
75 

Torbjørn Sotberg, MK Application of Reliability Methods for Safety 
Assessment of Submarine Pipelines. (Dr.Ing. 



4 

Thesis) 

MTA-90-
76 

Zeuthen, Steffen, MP SEAMAID. A computational model of the design 
process in a constraint-based logic programming 
environment. An example from the offshore 
domain. (Dr.Ing. Thesis) 

MTA-91-
77 

Haagensen, Sven, MM Fuel Dependant Cyclic Variability in a Spark 
Ignition Engine - An Optical Approach. (Dr.Ing. 
Thesis) 

MTA-91-
78 

Løland, Geir, MH Current forces on and flow through fish farms. 
(Dr.Ing. Thesis) 

MTA-91-
79 

Hoen, Christopher, MK System Identification of Structures Excited by 
Stochastic Load Processes. (Dr.Ing. Thesis) 

MTA-91-
80 

Haugen, Stein, MK Probabilistic Evaluation of Frequency of Collision 
between Ships and Offshore Platforms. (Dr.Ing. 
Thesis) 

MTA-91-
81 

Sødahl, Nils, MK Methods for Design and Analysis of Flexible 
Risers. (Dr.Ing. Thesis) 

MTA-91-
82 

Ormberg, Harald, MK Non-linear Response Analysis of Floating Fish 
Farm Systems. (Dr.Ing. Thesis) 

MTA-91-
83 

Marley, Mark J., MK Time Variant Reliability under Fatigue 
Degradation. (Dr.Ing. Thesis) 

MTA-91-
84 

Krokstad, Jørgen R., MH Second-order Loads in Multidirectional Seas. 
(Dr.Ing. Thesis) 

MTA-91-
85 

Molteberg, Gunnar A., MM The Application of System Identification 
Techniques to Performance Monitoring of Four 
Stroke Turbocharged Diesel Engines. (Dr.Ing. 
Thesis) 

MTA-92-
86 

Mørch, Hans Jørgen Bjelke, MH Aspects of Hydrofoil Design: with Emphasis on 
Hydrofoil Interaction in Calm Water. (Dr.Ing. 
Thesis) 

MTA-92-
87 

Chan Siu Hung, MM Nonlinear Analysis of Rotordynamic Instabilities in 
Highspeed Turbomachinery. (Dr.Ing. Thesis) 

MTA-92-
88 

Bessason, Bjarni, MK Assessment of Earthquake Loading and Response 
of Seismically Isolated Bridges. (Dr.Ing. Thesis) 

MTA-92-
89 

Langli, Geir, MP Improving Operational Safety through exploitation 
of Design Knowledge - an investigation of offshore 
platform safety. (Dr.Ing. Thesis) 

MTA-92-
90 

Sævik, Svein, MK On Stresses and Fatigue in Flexible Pipes. (Dr.Ing. 
Thesis) 

MTA-92-
91 

Ask, Tor Ø., MM Ignition and Flame Growth in Lean Gas-Air 
Mixtures. An Experimental Study with a Schlieren 
System. (Dr.Ing. Thesis) 

MTA-86-
92 

Hessen, Gunnar, MK Fracture Mechanics Analysis of Stiffened Tubular 
Members. (Dr.Ing. Thesis) 



5 

MTA-93-
93 

Steinebach, Christian, MM Knowledge Based Systems for Diagnosis of 
Rotating Machinery. (Dr.Ing. Thesis) 

MTA-93-
94 

Dalane, Jan Inge, MK System Reliability in Design and Maintenance of 
Fixed Offshore Structures. (Dr.Ing. Thesis) 

MTA-93-
95 

Steen, Sverre, MH Cobblestone Effect on SES. (Dr.Ing. Thesis) 

MTA-93-
96 

Karunakaran, Daniel, MK Nonlinear Dynamic Response and Reliability 
Analysis of Drag-dominated Offshore Platforms. 
(Dr.Ing. Thesis) 

MTA-93-
97 

Hagen, Arnulf, MP The Framework of a Design Process Language. 
(Dr.Ing. Thesis) 

MTA-93-
98 

Nordrik, Rune, MM Investigation of Spark Ignition and Autoignition in 
Methane and Air Using Computational Fluid 
Dynamics and Chemical Reaction Kinetics. A 
Numerical Study of Ignition Processes in Internal 
Combustion Engines. (Dr.Ing. Thesis) 

MTA-94-
99 

Passano, Elizabeth, MK Efficient Analysis of Nonlinear Slender Marine 
Structures. (Dr.Ing. Thesis) 

MTA-94-
100 

Kvålsvold, Jan, MH Hydroelastic Modelling of Wetdeck Slamming on 
Multihull Vessels. (Dr.Ing. Thesis) 

MTA-94-
102 

Bech, Sidsel M., MK Experimental and Numerical Determination of 
Stiffness and Strength of GRP/PVC Sandwich 
Structures. (Dr.Ing. Thesis) 

MTA-95-
103 

Paulsen, Hallvard, MM A Study of Transient Jet and Spray using a 
Schlieren Method and Digital Image Processing. 
(Dr.Ing. Thesis) 

MTA-95-
104 

Hovde, Geir Olav, MK Fatigue and Overload Reliability of Offshore 
Structural Systems, Considering the Effect of 
Inspection and Repair. (Dr.Ing. Thesis) 

MTA-95-
105 

Wang, Xiaozhi, MK Reliability Analysis of Production Ships with 
Emphasis on Load Combination and Ultimate 
Strength. (Dr.Ing. Thesis) 

MTA-95-
106 

Ulstein, Tore, MH Nonlinear Effects of a Flexible Stern Seal Bag on 
Cobblestone Oscillations of an SES. (Dr.Ing. 
Thesis) 

MTA-95-
107 

Solaas, Frøydis, MH Analytical and Numerical Studies of Sloshing in 
Tanks. (Dr.Ing. Thesis) 

MTA-95-
108 

Hellan, Øyvind, MK Nonlinear Pushover and Cyclic Analyses in 
Ultimate Limit State Design and Reassessment of 
Tubular Steel Offshore Structures. (Dr.Ing. Thesis) 

MTA-95-
109 

Hermundstad, Ole A., MK Theoretical and Experimental Hydroelastic 
Analysis of High Speed Vessels. (Dr.Ing. Thesis) 

MTA-96-
110 

Bratland, Anne K., MH Wave-Current Interaction Effects on Large-Volume 
Bodies in Water of Finite Depth. (Dr.Ing. Thesis) 

MTA-96-
111 

Herfjord, Kjell, MH A Study of Two-dimensional Separated Flow by a 
Combination of the Finite Element Method and 



6 

Navier-Stokes Equations. (Dr.Ing. Thesis) 

MTA-96-
112 

Æsøy, Vilmar, MM Hot Surface Assisted Compression Ignition in a 
Direct Injection Natural Gas Engine. (Dr.Ing. 
Thesis) 

MTA-96-
113 

Eknes, Monika L., MK Escalation Scenarios Initiated by Gas Explosions on 
Offshore Installations. (Dr.Ing. Thesis) 

MTA-96-
114 

Erikstad, Stein O., MP A Decision Support Model for Preliminary Ship 
Design. (Dr.Ing. Thesis) 

MTA-96-
115 

Pedersen, Egil, MH A Nautical Study of Towed Marine Seismic 
Streamer Cable Configurations. (Dr.Ing. Thesis) 

MTA-97-
116 

Moksnes, Paul O., MM Modelling Two-Phase Thermo-Fluid Systems 
Using Bond Graphs. (Dr.Ing. Thesis) 

MTA-97-
117 

Halse, Karl H., MK On Vortex Shedding and Prediction of Vortex-
Induced Vibrations of Circular Cylinders. (Dr.Ing. 
Thesis) 

MTA-97-
118 

Igland, Ragnar T., MK Reliability Analysis of Pipelines during Laying, 
considering Ultimate Strength under Combined 
Loads. (Dr.Ing. Thesis) 

MTA-97-
119 

Pedersen, Hans-P., MP Levendefiskteknologi for fiskefartøy. (Dr.Ing. 
Thesis) 

MTA-98-
120 

Vikestad, Kyrre, MK Multi-Frequency Response of a Cylinder Subjected 
to Vortex Shedding and Support Motions. (Dr.Ing. 
Thesis) 

MTA-98-
121 

Azadi, Mohammad R. E., MK Analysis of Static and Dynamic Pile-Soil-Jacket 
Behaviour. (Dr.Ing. Thesis) 

MTA-98-
122 

Ulltang, Terje, MP A Communication Model for Product Information. 
(Dr.Ing. Thesis) 

MTA-98-
123 

Torbergsen, Erik, MM Impeller/Diffuser Interaction Forces in Centrifugal 
Pumps. (Dr.Ing. Thesis) 

MTA-98-
124 

Hansen, Edmond, MH A Discrete Element Model to Study Marginal Ice 
Zone Dynamics and the Behaviour of Vessels 
Moored in Broken Ice. (Dr.Ing. Thesis) 

MTA-98-
125 

Videiro, Paulo M., MK Reliability Based Design of Marine Structures. 
(Dr.Ing. Thesis) 

MTA-99-
126 

Mainçon, Philippe, MK Fatigue Reliability of Long Welds Application to 
Titanium Risers. (Dr.Ing. Thesis) 

MTA-99-
127 

Haugen, Elin M., MH Hydroelastic Analysis of Slamming on Stiffened 
Plates with Application to Catamaran Wetdecks. 
(Dr.Ing. Thesis) 

MTA-99-
128 

Langhelle, Nina K., MK Experimental Validation and Calibration of 
Nonlinear Finite Element Models for Use in Design 
of Aluminium Structures Exposed to Fire. (Dr.Ing. 
Thesis) 

MTA-99- Berstad, Are J., MK Calculation of Fatigue Damage in Ship Structures. 



7 

129 (Dr.Ing. Thesis) 

MTA-99-
130 

Andersen, Trond M., MM Short Term Maintenance Planning. (Dr.Ing. Thesis) 

MTA-99-
131 

Tveiten, Bård Wathne, MK Fatigue Assessment of Welded Aluminium Ship 
Details. (Dr.Ing. Thesis) 

MTA-99-
132 

Søreide, Fredrik, MP Applications of underwater technology in deep 
water archaeology. Principles and practice. (Dr.Ing. 
Thesis) 

MTA-99-
133 

Tønnessen, Rune, MH A Finite Element Method Applied to Unsteady 
Viscous Flow Around 2D Blunt Bodies With Sharp 
Corners. (Dr.Ing. Thesis) 

MTA-99-
134 

Elvekrok, Dag R., MP Engineering Integration in Field Development 
Projects in the Norwegian Oil and Gas Industry. 
The Supplier Management of Norne. (Dr.Ing. 
Thesis) 

MTA-99-
135 

Fagerholt, Kjetil, MP Optimeringsbaserte Metoder for Ruteplanlegging 
innen skipsfart. (Dr.Ing. Thesis) 

MTA-99-
136 

Bysveen, Marie, MM Visualization in Two Directions on a Dynamic 
Combustion Rig for Studies of Fuel Quality. 
(Dr.Ing. Thesis) 

MTA-
2000-137 

Storteig, Eskild, MM Dynamic characteristics and leakage performance 
of liquid annular seals in centrifugal pumps. 
(Dr.Ing. Thesis) 

MTA-
2000-138 

Sagli, Gro, MK Model uncertainty and simplified estimates of long 
term extremes of hull girder loads in ships. (Dr.Ing. 
Thesis) 

MTA-
2000-139 

Tronstad, Harald, MK Nonlinear analysis and design of cable net 
structures like fishing gear based on the finite 
element method. (Dr.Ing. Thesis) 

MTA-
2000-140 

Kroneberg, André, MP Innovation in shipping by using scenarios. (Dr.Ing. 
Thesis) 

MTA-
2000-141 

Haslum, Herbjørn Alf, MH Simplified methods applied to nonlinear motion of 
spar platforms. (Dr.Ing. Thesis) 

MTA-
2001-142 

Samdal, Ole Johan, MM Modelling of Degradation Mechanisms and 
Stressor Interaction on Static Mechanical 
Equipment Residual Lifetime. (Dr.Ing. Thesis) 

MTA-
2001-143 

Baarholm, Rolf Jarle, MH Theoretical and experimental studies of wave 
impact underneath decks of offshore platforms. 
(Dr.Ing. Thesis) 

MTA-
2001-144 

Wang, Lihua, MK Probabilistic Analysis of Nonlinear Wave-induced 
Loads on Ships. (Dr.Ing. Thesis) 

MTA-
2001-145 

Kristensen, Odd H. Holt, MK Ultimate Capacity of Aluminium Plates under 
Multiple Loads, Considering HAZ Properties. 
(Dr.Ing. Thesis) 

MTA-
2001-146 

Greco, Marilena, MH A Two-Dimensional Study of Green-Water 



8 

Loading. (Dr.Ing. Thesis) 

MTA-
2001-147 

Heggelund, Svein E., MK Calculation of Global Design Loads and Load 
Effects in Large High Speed Catamarans. (Dr.Ing. 
Thesis) 

MTA-
2001-148 

Babalola, Olusegun T., MK Fatigue Strength of Titanium Risers – Defect 
Sensitivity. (Dr.Ing. Thesis) 

MTA-
2001-149 

Mohammed, Abuu K., MK Nonlinear Shell Finite Elements for Ultimate 
Strength and Collapse Analysis of Ship Structures. 
(Dr.Ing. Thesis) 

MTA-
2002-150 

Holmedal, Lars E., MH Wave-current interactions in the vicinity of the sea 
bed. (Dr.Ing. Thesis) 

MTA-
2002-151 

Rognebakke, Olav F., MH Sloshing in rectangular tanks and interaction with 
ship motions. (Dr.Ing. Thesis) 

MTA-
2002-152 

Lader, Pål Furset, MH Geometry and Kinematics of Breaking Waves. 
(Dr.Ing. Thesis) 

MTA-
2002-153 

Yang, Qinzheng, MH Wash and wave resistance of ships in finite water 
depth. (Dr.Ing. Thesis) 

MTA-
2002-154 

Melhus, Øyvin, MM Utilization of VOC in Diesel Engines. Ignition and 
combustion of VOC released by crude oil tankers. 
(Dr.Ing. Thesis) 

MTA-
2002-155 

Ronæss, Marit, MH Wave Induced Motions of Two Ships Advancing 
on Parallel Course. (Dr.Ing. Thesis) 

MTA-
2002-156 

Økland, Ole D., MK Numerical and experimental investigation of 
whipping in twin hull vessels exposed to severe wet 
deck slamming. (Dr.Ing. Thesis) 

MTA-
2002-157 

Ge, Chunhua, MK Global Hydroelastic Response of Catamarans due 
to Wet Deck Slamming. (Dr.Ing. Thesis) 

MTA-
2002-158 

Byklum, Eirik, MK Nonlinear Shell Finite Elements for Ultimate 
Strength and Collapse Analysis of Ship Structures. 
(Dr.Ing. Thesis) 

IMT-
2003-1 

Chen, Haibo, MK Probabilistic Evaluation of FPSO-Tanker Collision 
in Tandem Offloading Operation. (Dr.Ing. Thesis) 

IMT-
2003-2 

Skaugset, Kjetil Bjørn, MK On the Suppression of Vortex Induced Vibrations 
of Circular Cylinders by Radial Water Jets. (Dr.Ing. 
Thesis) 

IMT-
2003-3 

Chezhian, Muthu Three-Dimensional Analysis of Slamming. (Dr.Ing. 
Thesis) 

IMT-
2003-4 

Buhaug, Øyvind Deposit Formation on Cylinder Liner Surfaces in 
Medium Speed Engines. (Dr.Ing. Thesis) 

IMT-
2003-5 

Tregde, Vidar Aspects of Ship Design: Optimization of Aft Hull 
with Inverse Geometry Design. (Dr.Ing. Thesis) 

 
 
IMT-

 
 
Wist, Hanne Therese 

 

Statistical Properties of Successive Ocean Wave 



9 

2003-6 Parameters. (Dr.Ing. Thesis) 

IMT-
2004-7 

Ransau, Samuel Numerical Methods for Flows with Evolving 
Interfaces. (Dr.Ing. Thesis) 

IMT-
2004-8 

Soma, Torkel Blue-Chip or Sub-Standard. A data interrogation 
approach of identity safety characteristics of 
shipping organization. (Dr.Ing. Thesis) 

IMT-
2004-9 

Ersdal, Svein An experimental study of hydrodynamic forces on 
cylinders and cables in near axial flow. (Dr.Ing. 
Thesis) 

IMT-
2005-10 

Brodtkorb, Per Andreas The Probability of Occurrence of Dangerous Wave 
Situations at Sea. (Dr.Ing. Thesis) 

IMT-
2005-11 

Yttervik, Rune Ocean current variability in relation to offshore 
engineering. (Dr.Ing. Thesis) 

IMT-
2005-12 

Fredheim, Arne Current Forces on Net-Structures. (Dr.Ing. Thesis) 

IMT-
2005-13 

Heggernes, Kjetil Flow around marine structures. (Dr.Ing. Thesis 

IMT-
2005-14 

Fouques, Sebastien Lagrangian Modelling of Ocean Surface Waves and 
Synthetic Aperture Radar Wave Measurements. 
(Dr.Ing. Thesis) 

IMT-
2006-15 

Holm, Håvard Numerical calculation of viscous free surface flow 
around marine structures. (Dr.Ing. Thesis) 

IMT-
2006-16 

Bjørheim, Lars G. Failure Assessment of Long Through Thickness 
Fatigue Cracks in Ship Hulls. (Dr.Ing. Thesis) 

IMT-
2006-17 

Hansson, Lisbeth Safety Management for Prevention of Occupational 
Accidents. (Dr.Ing. Thesis) 

IMT-
2006-18 

Zhu, Xinying Application of the CIP Method to Strongly 
Nonlinear Wave-Body Interaction Problems. 
(Dr.Ing. Thesis) 

IMT-
2006-19 

Reite, Karl Johan Modelling and Control of Trawl Systems. (Dr.Ing. 
Thesis) 

IMT-
2006-20 

Smogeli, Øyvind Notland Control of Marine Propellers. From Normal to 
Extreme Conditions. (Dr.Ing. Thesis) 

IMT-
2007-21 

Storhaug, Gaute Experimental Investigation of Wave Induced 
Vibrations and Their Effect on the Fatigue Loading 
of Ships. (Dr.Ing. Thesis) 

IMT-
2007-22 

Sun, Hui A Boundary Element Method Applied to Strongly 
Nonlinear Wave-Body Interaction Problems. (PhD 
Thesis, CeSOS) 

IMT-
2007-23 

Rustad, Anne Marthine Modelling and Control of Top Tensioned Risers. 
(PhD Thesis, CeSOS) 

IMT-
2007-24 

Johansen, Vegar Modelling flexible slender system for real-time 
simulations and control applications 

IMT-
2007-25 

Wroldsen, Anders Sunde Modelling and control of tensegrity structures. 
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(PhD Thesis, CeSOS) 

IMT-
2007-26 

Aronsen, Kristoffer Høye An experimental investigation of in-line and 
combined inline and cross flow vortex induced 
vibrations. (Dr. avhandling, IMT) 

IMT-
2007-27 

Gao, Zhen Stochastic Response Analysis of Mooring Systems 
with Emphasis on Frequency-domain Analysis of 
Fatigue due to Wide-band Response Processes 
(PhD Thesis, CeSOS) 

IMT-
2007-28 

Thorstensen, Tom Anders Lifetime Profit Modelling of Ageing Systems 
Utilizing Information about Technical Condition. 
(Dr.ing. thesis, IMT) 

IMT-
2008-29 

Refsnes, Jon Erling Gorset Nonlinear Model-Based Control of Slender Body 
AUVs (PhD Thesis, IMT) 

IMT-
2008-30 

Berntsen, Per Ivar B. Structural Reliability Based Position Mooring. 
(PhD-Thesis, IMT) 

IMT-
2008-31 

Ye, Naiquan Fatigue Assessment of Aluminium Welded Box-
stiffener Joints in Ships (Dr.ing. thesis, IMT) 

IMT-
2008-32 

Radan, Damir Integrated Control of Marine Electrical Power 
Systems. (PhD-Thesis, IMT) 

IMT-
2008-33 

Thomassen, Paul Methods for Dynamic Response Analysis and 
Fatigue Life Estimation of Floating Fish Cages. 
(Dr.ing. thesis, IMT) 

IMT-
2008-34 

Pákozdi, Csaba A Smoothed Particle Hydrodynamics Study of 
Two-dimensional Nonlinear Sloshing in 
Rectangular Tanks. (Dr.ing.thesis, IMT/ CeSOS) 

IMT-
2007-35 

Grytøyr, Guttorm A Higher-Order Boundary Element Method and 
Applications to Marine Hydrodynamics. 
(Dr.ing.thesis, IMT) 

IMT-
2008-36 

Drummen, Ingo Experimental and Numerical Investigation of 
Nonlinear Wave-Induced Load Effects in 
Containerships considering Hydroelasticity. (PhD 
thesis, CeSOS) 

IMT-
2008-37 

Skejic, Renato Maneuvering and Seakeeping of a Singel Ship and 
of Two Ships in Interaction. (PhD-Thesis, CeSOS) 

IMT-
2008-38 

Harlem, Alf An Age-Based Replacement Model for Repairable 
Systems with Attention to High-Speed Marine 
Diesel Engines. (PhD-Thesis, IMT) 

IMT-
2008-39 

Alsos, Hagbart S. Ship Grounding. Analysis of Ductile Fracture, 
Bottom Damage and Hull Girder Response. (PhD-
thesis, IMT) 

IMT-
2008-40 

Graczyk, Mateusz Experimental Investigation of Sloshing Loading 
and Load Effects in Membrane LNG Tanks 
Subjected to Random Excitation. (PhD-thesis, 
CeSOS) 

IMT-
2008-41 

Taghipour, Reza Efficient Prediction of Dynamic Response for 
Flexible amd Multi-body Marine Structures. (PhD-
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thesis, CeSOS) 

IMT-
2008-42 

Ruth, Eivind Propulsion control and thrust allocation on marine 
vessels. (PhD thesis, CeSOS) 

IMT-
2008-43 

Nystad, Bent Helge Technical Condition Indexes and Remaining Useful 
Life of Aggregated Systems. PhD thesis, IMT 

IMT-
2008-44 

Soni, Prashant Kumar Hydrodynamic Coefficients for Vortex Induced 
 Vibrations of Flexible Beams,  PhD 
thesis, CeSOS 

IMT-
2009-45 

Amlashi, Hadi K.K. Ultimate Strength and Reliability-based Design of 
Ship Hulls with Emphasis on Combined Global and 
Local Loads. PhD Thesis, IMT 

IMT-
2009-46 

Pedersen, Tom Arne Bond Graph Modelling of Marine Power Systems. 
PhD Thesis, IMT 

IMT-
2009-47 

Kristiansen, Trygve Two-Dimensional Numerical and Experimental 
Studies of Piston-Mode Resonance. PhD-Thesis, 
CeSOS 

IMT-
2009-48 

Ong, Muk Chen Applications of a Standard High Reynolds Number   
Model and a Stochastic Scour Prediction Model for 
Marine Structures. PhD-thesis, IMT 

IMT-
2009-49 

Hong, Lin Simplified Analysis and Design of Ships subjected 
to Collision and Grounding. PhD-thesis, IMT 

IMT-
2009-50 

Koushan, Kamran Vortex Induced Vibrations of Free Span Pipelines, 
PhD thesis, IMT 

IMT-
2009-51 

Korsvik, Jarl Eirik Heuristic Methods for Ship Routing and 
Scheduling. PhD-thesis, IMT 

IMT-
2009-52 

Lee, Jihoon Experimental Investigation and Numerical in 
Analyzing the Ocean Current Displacement of 
Longlines. Ph.d.-Thesis, IMT. 

IMT-
2009-53 

Vestbøstad, Tone Gran A Numerical Study of Wave-in-Deck Impact usin a 
Two-Dimensional Constrained Interpolation Profile 
Method, Ph.d.thesis, CeSOS. 

IMT-
2009-54 

Bruun, Kristine Bond Graph Modelling of Fuel Cells for Marine 
Power Plants. Ph.d.-thesis, IMT 

IMT 
2009-55 

Holstad, Anders Numerical Investigation of Turbulence in a Sekwed 
Three-Dimensional Channel Flow, Ph.d.-thesis, 
IMT. 

IMT 
2009-56 

Ayala-Uraga, Efren Reliability-Based Assessment of Deteriorating 
Ship-shaped Offshore Structures, Ph.d.-thesis, IMT 

IMT 
2009-57 

Kong, Xiangjun A Numerical Study of a Damaged Ship in Beam 
Sea Waves. Ph.d.-thesis, IMT/CeSOS. 

IMT 
2010-58 

Kristiansen, David Wave Induced Effects on Floaters of Aquaculture 
Plants, Ph.d.-thesis, CeSOS. 
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IMT 
2010-59 

Ludvigsen, Martin An ROV-Toolbox for Optical and Acoustic 
Scientific Seabed Investigation. Ph.d.-thesis IMT. 

IMT 
2010-60 

Hals, Jørgen Modelling and Phase Control of Wave-Energy 
Converters. Ph.d.thesis, CeSOS. 

 

IMT 
2010- 61 

Shu, Zhi Uncertainty Assessment of Wave Loads and 
Ultimate Strength of Tankers and Bulk Carriers in a 
Reliability Framework. Ph.d. Thesis, IMT/ CeSOS 

IMT 
2010-62 

Shao, Yanlin Numerical Potential-Flow Studies on Weakly-
Nonlinear Wave-Body Interactions with/without 
Small Forward Speed, Ph.d.thesis,CeSOS.  

IMT 
2010-63 

Califano, Andrea Dynamic Loads on Marine Propellers due to 
Intermittent Ventilation. Ph.d.thesis, IMT. 

IMT 
2010-64 

El Khoury, George Numerical Simulations of Massively Separated 
Turbulent Flows, Ph.d.-thesis, IMT 

IMT 
2010-65 

Seim, Knut Sponheim Mixing Process in Dense Overflows with Emphasis 
on the Faroe Bank Channel Overflow. Ph.d.thesis, 
IMT 

IMT 
2010-66 

Jia, Huirong Structural Analysis of Intect and Damaged Ships in 
a Collission Risk Analysis Perspective. Ph.d.thesis 
CeSoS. 

IMT 
2010-67 

Jiao, Linlin Wave-Induced Effects on a Pontoon-type Very 
Large Floating Structures (VLFS). Ph.D.-thesis, 
CeSOS. 

IMT 
2010-68 

Abrahamsen, Bjørn Christian Sloshing Induced Tank Roof with Entrapped Air 
Pocket. Ph.d.thesis, CeSOS. 

IMT 
2011-69 

Karimirad, Madjid Stochastic Dynamic Response Analysis of Spar-
Type Wind Turbines with Catenary or Taut 
Mooring Systems. Ph.d.-thesis, CeSOS. 

IMT -
2011-70 

Erlend Meland Condition Monitoring of Safety Critical Valves. 
Ph.d.-thesis, IMT. 

IMT – 
2011-71 

Yang, Limin Stochastic Dynamic System Analysis of Wave 
Energy Converter with Hydraulic Power Take-Off, 
with Particular Reference to Wear Damage 
Analysis, Ph.d. Thesis, CeSOS. 

IMT – 
2011-72 

Visscher, Jan Application of Particla Image Velocimetry on 
Turbulent Marine Flows, Ph.d.Thesis, IMT. 

IMT – 
2011-73 

Su, Biao Numerical Predictions of Global and Local Ice 
Loads on Ships. Ph.d.Thesis, CeSOS. 

IMT – 
2011-74 

Liu, Zhenhui Analytical and Numerical Analysis of Iceberg 
Collision with Ship Structures. Ph.d.Thesis, IMT. 

IMT – 
2011-75 

Aarsæther, Karl Gunnar Modeling and Analysis of Ship Traffic by 
Observation and Numerical Simulation. 
Ph.d.Thesis, IMT. 
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Imt – 
2011-76 

Wu, Jie Hydrodynamic Force Identification from Stochastic 
Vortex Induced Vibration Experiments with 
Slender Beams. Ph.d.Thesis, IMT. 

Imt – 
2011-77 

Amini, Hamid Azimuth Propulsors in Off-design Conditions. 
Ph.d.Thesis, IMT. 

 

 

IMT – 
2011-78 

Nguyen, Tan-Hoi Toward a System of Real-Time Prediction and 
Monitoring of Bottom Damage Conditions During 
Ship Grounding. Ph.d.thesis, IMT. 

IMT- 
2011-79 

Tavakoli, Mohammad T. Assessment of Oil Spill in Ship Collision and 
Grounding, Ph.d.thesis, IMT. 

IMT- 
2011-80 

Guo, Bingjie Numerical and Experimental Investigation of 
Added Resistance in Waves. Ph.d.Thesis, IMT. 

IMT- 
2011-81 

Chen, Qiaofeng Ultimate Strength of Aluminium Panels, 
considering HAZ Effects, IMT 

IMT- 
2012-82 

Kota, Ravikiran S. Wave Loads on Decks of Offshore Structures in 
Random Seas, CeSOS. 

IMT- 
2012-83 

Sten, Ronny Dynamic Simulation of Deep Water Drilling Risers 
with Heave Compensating System, IMT. 

IMT- 
2012-84 

Berle, Øyvind Risk and resilience in global maritime supply 
chains, IMT. 

IMT- 
2012-85 

Fang, Shaoji Fault Tolerant Position Mooring Control Based on 
Structural Reliability, CeSOS. 

IMT- 
2012-86 

You, Jikun Numerical studies on wave forces and moored ship 
motions in intermediate and shallow water, CeSOS. 

IMT- 
2012-87 

Xiang ,Xu Maneuvering of two interacting ships in waves, 
CeSOS 

IMT- 
2012-88 

Dong, Wenbin Time-domain fatigue response and reliability 
analysis of offshore wind turbines with emphasis on 
welded tubular joints and gear components, CeSOS 

IMT- 
2012-89 

Zhu, Suji Investigation of Wave-Induced Nonlinear Load 
Effects in Open Ships considering Hull Girder 
Vibrations in Bending and Torsion, CeSOS 

IMT- 
2012-90 

Zhou, Li Numerical and Experimental Investigation of 
Station-keeping in Level Ice, CeSOS 

IMT- 
2012-91 

Ushakov, Sergey Particulate matter emission characteristics from 
diesel enignes operating on conventional and 
alternative marine fuels, IMT 

IMT- 
2013-1 

Yin, Decao Experimental and Numerical Analysis of Combined 
In-line and Cross-flow Vortex Induced Vibrations, 
CeSOS 
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IMT- 
2013-2 

Kurniawan, Adi Modelling and geometry optimisation of wave 
energy converters, CeSOS 

IMT- 
2013-3 

Al Ryati, Nabil Technical condition indexes doe auxiliary marine 
diesel engines, IMT 

IMT-
2013-4 

Firoozkoohi, Reza Experimental, numerical and analytical 
investigation of the effect of screens on sloshing, 
CeSOS 

IMT- 
2013-5 

Ommani, Babak Potential-Flow Predictions of a Semi-Displacement 
Vessel Including Applications to Calm Water 
Broaching, CeSOS 

IMT- 
2013-6 

Xing, Yihan Modelling and analysis of the gearbox in a floating 
spar-type wind turbine, CeSOS 

IMT-7-
2013 

Balland, Océane Optimization models for reducing air emissions 
from ships, IMT 

IMT-8-
2013 

Yang, Dan Transitional wake flow behind an inclined flat 
plate-----Computation and analysis,  IMT 

IMT-9-
2013 

Abdillah, Suyuthi Prediction of Extreme Loads and Fatigue Damage 
for a Ship Hull due to Ice Action, IMT 

IMT-10-
2013 

Ramìrez, Pedro Agustìn Pèrez Ageing management and life extension of technical 
systems- 
Concepts and methods applied to oil and gas 
facilities, IMT 

IMT-11-
2013 

Chuang, Zhenju Experimental and Numerical Investigation of Speed 
Loss due to Seakeeping and Maneuvering. IMT 

IMT-12-
2013 

Etemaddar, Mahmoud Load and Response Analysis of Wind Turbines 
under Atmospheric Icing and Controller System 
Faults with Emphasis on Spar Type Floating Wind 
Turbines, IMT 

IMT-13-
2013 

Lindstad, Haakon Strategies and measures for reducing maritime CO2 
emissons, IMT 

IMT-14-
2013 

Haris, Sabril Damage interaction analysis of ship collisions, IMT 

IMT-15-
2013 

Shainee, Mohamed Conceptual Design, Numerical and Experimental 
Investigation of a SPM Cage Concept for Offshore 
Mariculture, IMT 

IMT-16-
2013 

Gansel, Lars Flow past porous cylinders and effects of 
biofouling and fish behavior on the flow in and 
around Atlantic salmon net cages, IMT 

IMT-17-
2013 

Gaspar, Henrique Handling Aspects of Complexity in Conceptual 
Ship Design, IMT 

IMT-18-
2013 

Thys, Maxime Theoretical and Experimental Investigation of a 
Free Running Fishing Vessel at Small Frequency of 
Encounter, CeSOS 

IMT-19-
2013 

Aglen, Ida VIV in Free Spanning Pipelines, CeSOS 
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IMT-1-
2014 

Song, An Theoretical and experimental studies of wave 
diffraction and radiation loads on a horizontally 
submerged perforated plate, CeSOS 

IMT-2-
2014 

Rogne, Øyvind Ygre Numerical and Experimental Investigation of a 
Hinged 5-body Wave Energy Converter, CeSOS 

IMT-3-
2014 

Dai, Lijuan  Safe and efficient operation and maintenance of 
offshore wind farms ,IMT 

IMT-4-
2014 

Bachynski, Erin Elizabeth Design and Dynamic Analysis of Tension Leg 
Platform Wind Turbines, CeSOS 

IMT-5-
2014 

Wang, Jingbo Water Entry of Freefall Wedged – Wedge motions 
and Cavity Dynamics, CeSOS 

IMT-6-
2014 

Kim, Ekaterina Experimental and numerical studies related to the 
coupled behavior of ice mass and steel structures 
during accidental collisions, IMT 

IMT-7-
2014 

Tan, Xiang Numerical investigation of ship’s continuous- mode 
icebreaking in leverl ice, CeSOS 

IMT-8-
2014 

Muliawan, Made Jaya Design and Analysis of Combined Floating Wave 
and Wind Power Facilities, with Emphasis on 
Extreme Load Effects of the Mooring System, 
CeSOS 

IMT-9-
2014 

Jiang, Zhiyu Long-term response analysis of wind turbines with 
an emphasis on fault and shutdown conditions, IMT 

IMT-10-
2014 

Dukan, Fredrik ROV Motion Control Systems, IMT 

IMT-11-
2014 

Grimsmo, Nils I. Dynamic simulations of hydraulic cylinder for 
heave compensation of deep water drilling risers, 
IMT 

IMT-12-
2014 

Kvittem, Marit I. Modelling and response analysis for fatigue design 
of a semisubmersible wind turbine, CeSOS 

IMT-13-
2014 

Akhtar, Juned The Effects of Human Fatigue on Risk at Sea, IMT 

IMT-14-
2014 

Syahroni, Nur Fatigue Assessment of Welded Joints Taking into 
Account Effects of Residual Stress, IMT 

IMT-1-
2015 

Bøckmann, Eirik Wave Propulsion of ships, IMT 

IMT-2-
2015 

Wang, Kai Modelling and dynamic analysis of a semi-
submersible floating vertical axis wind turbine, 
CeSOS 

IMT-3-
2015 

Fredriksen, Arnt Gunvald A numerical and experimental study of a two-
dimensional body with moonpool in waves and 
current, CeSOS 

IMT-4-
2015 

Jose Patricio Gallardo Canabes Numerical studies of viscous flow around bluff 
bodies, IMT 
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IMT-5-
2015 

Vegard Longva Formulation and application of finite element 
techniques for slender marine structures subjected 
to contact interactions, IMT 

IMT-6-
2015 

Jacobus De Vaal Aerodynamic modelling of floating wind turbines, 
CeSOS 

IMT-7-
2015 

Fachri Nasution Fatigue Performance of Copper Power Conductors, 
IMT 

IMT-8-
2015 

Oleh I Karpa Development of bivariate extreme value 
distributions for applications in marine 
technology,CeSOS 

IMT-9-
2015 

Daniel de Almeida Fernandes An output feedback motion control system for 
ROVs, AMOS 

IMT-10-
2015 

Bo Zhao Particle Filter for Fault Diagnosis: Application to 
Dynamic Positioning Vessel and Underwater 
Robotics, CeSOS 

IMT-11-
2015 

Wenting Zhu Impact of emission allocation in maritime 
transportation, IMT 

IMT-12-
2015 

Amir Rasekhi Nejad Dynamic Analysis and Design of Gearboxes in 
Offshore Wind Turbines in a Structural Reliability 
Perspective, CeSOS 

IMT-13-
2015 

Arturo Jesùs Ortega Malca Dynamic Response of Flexibles Risers due to 
Unsteady Slug Flow, CeSOS 

IMT-14-
2015 

Dagfinn Husjord Guidance and decision-support system for safe 
navigation of ships operating in close proximity, 
IMT 

IMT-15-
2015 

Anirban Bhattacharyya Ducted Propellers: Behaviour in Waves and Scale 
Effects, IMT 

IMT-16-
2015 

Qin Zhang Image Processing for Ice Parameter Identification 
in Ice Management, IMT 

IMT-1-
2016 

Vincentius Rumawas Human Factors in Ship Design and Operation: An 
Experiential Learning, IMT 

IMT-2-
2016 

Martin Storheim Structural response in ship-platform and ship-ice 
collisions, IMT 

IMT-3-
2016 

Mia Abrahamsen Prsic Numerical Simulations of the Flow around single 
and Tandem Circular Cylinders Close to a Plane 
Wall, IMT 

IMT-4-
2016 

Tufan Arslan Large-eddy simulations of cross-flow around ship 
sections, IMT 
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IMT-5-
2016 

Pierre Yves-Henry Parametrisation of aquatic vegetation in hydraulic 
and coastal research,IMT 

IMT-6-
2016 

Lin Li Dynamic Analysis of the Instalation of Monopiles 
for Offshore Wind Turbines, CeSOS 

IMT-7-
2016 

Øivind Kåre Kjerstad Dynamic Positioning of Marine Vessels in Ice, IMT 

IMT-8-
2016 

Xiaopeng Wu Numerical Analysis of Anchor Handling and Fish 
Trawling Operations in a Safety Perspective, 
CeSOS 

IMT-9-
2016 

Zhengshun Cheng Integrated Dynamic Analysis of Floating Vertical 
Axis Wind Turbines, CeSOS 

IMT-10-
2016 

Ling Wan Experimental and Numerical Study of a Combined 
Offshore Wind and Wave Energy Converter 
Concept 

IMT-11-
2016 

Wei Chai Stochastic dynamic analysis and reliability 
evaluation of the roll motion for ships in random 
seas, CeSOS 

IMT-12-
2016 

Øyvind Selnes Patricksson Decision support for conceptual ship design with 
focus on a changing life cycle and future 
uncertainty, IMT 

IMT-13-
2016 

Mats Jørgen Thorsen Time domain analysis of vortex-induced vibrations, 
IMT 

                         
 
           
             
        




