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Problem description
Through The NTNU Cyborg initiative, a cybernetic (bio-robotic) organism is currently
under development. Using neural tissue, cultured on a microelectrode array (MEA), the
goal is to use in-vitro biological neurons to control a robotic platform. The objective for
this thesis, is to research and discuss the necessary aspects of developing such a cybernetic
system. A literary search into similar studies is suggested, along with getting acquainted
with the biological sides of the project. The student is free to explore any fields deemed
relevant for the goal of embodying a neuronal culture. The student may contribute to this
discussion with own ideas and suggestions. Part of the objective for this assignment, is to
lay the ground work for a further Phd project as well as for the future development of the
NTNU Cyborg system.
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Sammendrag
Gjennom NTNU Cyborg, er en kybernetisk organisme (en blanding an biologi or robot)
under utvikling. Ved hjelp av nevrale vev, dyrket på toppen av mikroelektroder (MEA),
er målet å bruke biologiske nerveceller til å styre en robot. Denne avhandlingen dan-
ner grunnlaget for denne utviklingen, og fungerer som et forstudium til en Phd oppgave
angående samme tema.

Det har blitt gjennomført en undersøkelse av de nødvendige aspekter ved det å integrere
en nervecellekultur i en robot. Med utgangspunkt i lignende forskning, samt kunnskap fra
fagområdene nevrovitenskap og informatikk, er de nødvendige komponenter for å bygge
et slikt system diskutert.

MEA2100-60 systemet som er grunnlaget for kommunikasjon med nervecellekulturen,
har blitt beskrevet. I tillegg har det blitt foreslått en distribuert MEA-Kyborg infrastruktur
på tvers av de tre hoveddeltagende instituttene: Institutt for teknisk kybernetikk (ITK),
Institutt for nevromedisin (INM), og Institutt for datateknikk og informasjonsvitenskap
(IDI). Robot plattformer, som nervecellene kan integreres i, har også blitt introdusert; fra
Animats og Hybrots til NTNU Cyborg roboten.

Vi har videre sett på hvordan vi kan kode informasjon til nervecellene gjennom elektrisk
stimulering, samt dekode informasjonen fra kulturen gjennom analyseringen av MEA opp-
takene. Gjennom stimulering og opptak foreslår vi å ’lukke sløyfen’ ved å mate sensorisk
data fra roboten plattformen til nervecellekulturen, og bruke opptakene som instruksjoner
til roboten.

Treningen av en nervecellekultur er en av de mer utfordrende oppgaver innenfor prosjektet.
Med inspirasjon fra biologi og kunstige nevrale nett, har vi sett på mulige metoder for å
trene biologiske nevrale nett gjennom undervist trening, ikke undervist trening og premiert
trening.

Det har i tillegg blitt gjennomført en kort diskusjon angående modelleringen av an nerve-
cellekultur. Vi har her sett på hvordan en realistisk modell kan bygges opp, og fordelene
ved en slik modell.

Til slutt, har vi oppsummert temaene i avhandlingen, og presenterer en plan fremover, for
når MEA’en er oppe og går.
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Abstract
Through The NTNU Cyborg initiative, a cybernetic (bio-robotic) organism is currently
under development. Using neural tissue, cultured on a microelectrode array (MEA), the
goal is to use in-vitro biological neurons to control a robotic platform. This thesis forms
the basis for this development, and serves as the preliminary for a further Phd involving
the same topics.

Investigation into the the necessary aspects of embodying a neuronal culture though a ro-
botic platform has been conducted. Building upon similar embodied research, as well as
knowledge from the fields of neuroscience and computer science, the necessary compo-
nents for building such a system are discussed.

Beginning with the more practical issues, the MEA2100-60-System for communicating
with the neuronal culture was presented, along with a proposed infrastructure for dis-
tributing the MEA-Cyborg system across the three main participating departments: The
Department of Engineering Cybernetics (ITK), the Department of Neuroscience (INM),
and the Department of Computer and Information Science (IDI). Robotic bodies, for em-
bodying the culture, have also been introduced; from Animats and Hybrots to The NTNU
Cyborg robot platform.

We have further looked at encoding information to the culture through stimulation, and
decoding information from the culture through analyzing the MEA recordings. Through
stimulation and recording we propose to ’close the loop’ by feeding sensory data from
the robot platform to the neuronal culture, and using the culture recordings as robotic
instructions.

Training a neuronal culture is one of the more challenging tasks within The NTNU Cy-
borg project. With inspiration from biology and artificial neural networks (ANNs), we
have looked at some mechanisms for training neuronal cultures though supervised, unsu-
pervised and reinforcement type training.

For the sake of completion, a brief discussion on some aspects of modeling a neuronal
culture has been included. We have discussed how a realistic model may be constructed
and the benefits of doing so.

Finally, putting together the topics discussed in this thesis, a plan moving forward has been
suggested for when the MEA is up and running.
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Kapittel 1
Introduction

What is a memory? What is a thought? How do we make up our minds about what to do
next? Cognitive scientists and philosophers have been debating such questions for ages.
The brain is arguably the most robust computational platform in existence. It is able to
process complex information quickly, is fault tolerant, and can adapt to noisy inputs[51].
Understanding how circuits of neurons contribute to the complex properties of the brain
and how they break down in disease is one of the biggest scientific challenges of our
time.[61].

Studying how the brain processes and encodes information is however, difficult becau-
se access to it is limited by skin, skull, and the sheer number of cells[51]. For this rea-
son, more and more studies are conducted in-vitro; in a dish outside the body. By using
networks of a few thousand neurons and glia, one has tremendous access to the cells, not
feasible in-vivo. This allows for manipulation and recording at the millisecond and micron
scales, to determine the cell- and network-level morphological correlates of learning and
memory[75]. One particular method for studying these in-vitro networks, is though micro-
electrode technology which enables the recording and stimulation of a neuronal culture
grown on a microelectrode array (MEA). It is this method that the NTNU Cyborg project
will be exploring.

To tie our cell- and network level inquiries to behavior, we reembody our cultured networks
by connecting them to artificial animals/robots, either simulated or real. By combining in-
vitro biological networks with computer software and robotics into new hybrid systems,
we combine the best of both worlds: the adaptive and regenerative properties of living neu-
ral networks and the programmability and computational power of electronic chips.[59]
This task requires efficient hardware, a distributed infrastructure, protocols for analyzing
and stimulating a neuronal culture, methods for training goal behaviour into the culture
and more. All these topics will be discussed in this thesis.

Through embodying our neuronal culture we hope to unravel some of the mysteries of the

1



Kapittel 1. Introduction

brain as well as enable development of functioning hybrid cybernetic systems. If we and
others are successful with this new approach, we may better understand the substrates of
memory, thought, and behavioral control.[75]

2



1.1 The NTNU Cyborg initiative

1.1 The NTNU Cyborg initiative

From The NTNU Cyborg website[29] (Written by the author of this thesis, Jan Onarheim
and Øyvind Stavdahl):

Through NTNU biotechnology initiative, coordinated by Professor Stig W. Omholt, a pro-
ject to develop a Cyborg (cybernetic organism), a combination of machine and living tis-
sue, has been started. In this project, the aim is to enable communication between living
nerve tissue and a robot. The social and interactive cyborg will walk around the campus
raising awareness for biotechnology and ICT, bringing NTNU in the forefront of research
and creating a platform for interdisciplinary collaborations and teaching.

A robot base has been purchased, which will act as the robots transport and navigation
platform. Associate Professor Øyvind Stavdahl, at the Institute of Cybernetics (ITK), has
supervised the selection of the robot base though engaging several students working with
the NTNU Cyborg as master thesis project. Associate Professor Sverre Hendseth (ITK)
also has several students engaged in the same way. The neurological part of the project,
which involves the cultivation of nerve cells, is under development at the medical faculty
(DMF). The project is administrated by project directors Stefano Nichele (IDI) and Jan
Onarheim (IET).

Work on the cyborg is currently being carried out in separate subprojects. The robotics
part is under development and the ambition here is to have an autonomous robot walking
in Glassgården, Elektrobygget by 2016. The robot should then approach people when they
come close, greet them and maybe even invite them to be friends on the robots facebook
page. This will be realized through several projects and master’s theses, as well as through
EiT villages.

In connection with this project, a self-sufficient student organization has been established.
This student group cunnrently consists of upto 30 students who use the robot / cyborg
platform in conjunction with specialization projects, master thesis, EiT villages, as well as
voluntary work. A research assistant, Martinius Knudsen (author of this thesis) is engaged
to help establish and develop this activity, as well as assist in organization of The NTNU
Cyborg project as a whole. This organization will be closely related to the academic acti-
vities of ITK. The ambition is to create an activity that will eventually recruit students from
many disciplines, including non-technical ones. The student organization should eventual-
ly be able to define its own tasks and issues and stand on its own feet.”

As of 01.05.2016 two PhD projects are ongoing, with direct connection to the cyborg-
activity. One in neuroscience supervised by Dr. Ioanna Sanvig (INM) and Dr. Axel Sand-
vig (INM), and one within nanomedicine supervised by Prof. Øyvind Halaas (IKM). Six
student specialization projects, two master thesis and one EiT group project have been
completed (all at ITK). Currently, three master thesis are ongoing and four EiT groups
have been engaged to work with the robotic aspects of the cyborg. Also, The NTNU Cy-
borg as an organization is being further expanded over several faculties, and new relevant
academic staff are participating with research from their respective studies. More students
and Phds are being engaged in the fall.

3



Kapittel 1. Introduction

The NTNU Cyborg connects many different disciplines across departments and faculties.
Some examples of relevant research fields are: biotechnology, neuroscience, cybernetics
and robotics, IT, design and production, electronics, ethics and psychology.

1.1.1 Reasons for the initiative

There are many possible application and research outcomes that we hope will result from
the initiative.

Putting NTNU on the map

The development of a cyborg is not only interesting, but also really cool. We are hoping
that the public will find it cool too. By making a bio-robotic organism in the form of
a social and interactive cyborg, NTNU will be making headlines and leading the way
towards new types of lifeforms. The initiative aims to promote biotechnology through the
cyborg and increase the public interest around NTNU and enabling technologies.

Robotics research

The Cyborg does not only serve as a publicity stunt, but also as a great platform for robotics
research and as a platform for student projects and cooperation. The students are working
on developing a social-interactive robot to wander the campus hallways. Accomplishing
such a feat, is a research goal in and by itself.

Learning about the brain and nervous system

Since we are essentially studying neural cells, we hope to better understand the cell- and
network-level substrates of memory, thought, and behavioral control. We hope this rese-
arch will give us greater insight to how our brains operate and that our results facilitate the
field of neuroscience.

Medical applications

There are many possible medical applications that may result from studying biological
neural networks. A better understanding of the processes leading to biological cognition
can facilitate progress in understanding neural pathologies[9]. E.g. for diseases such as
Alzheimer’s or patients who have suffered strokes, understanding how one may retrain
damaged brain regions could help these patients restore important cognitive functions. For
patients suffering paralysis or patients with amputees, it may be possible to design neurally
controlled bioelectronic prosthetics. Through a better understanding of neural signaling,
one may also possibly aid patients with Parkinson or those suffering epileptical seizures

4



1.2 Thesis goal

by supplying electronic help and warning. The research may also help improve current
brain-computer interface (BCI) technology.

Other applications

Along with medical applications, the project has the possibility to pioneer future hybrid
human-electronic devices, bionic robotics, robust biological computation platforms and
bio-silicon neural networks. With hybrid systems, we may also be creating fundamentally
different types of artificial intelligence.

In addition, the research may aid in the further development of artificial neural network
(ANN) models. ANNs are already heavily inspired by biology and have proved to be quite
efficient solving a wide variety of tasks, Through a better understanding of the workings
within biological networks, new insights may be applied to next generation ANNs, which
may possibly open a new arena for problem solving.

Philosophical satisfaction

Besides its potential applications, research into the workings of the brain is simply fasci-
nating. There is something philosophical satisfying about studying how you and I can find
something philosophically satisfying.

1.2 Thesis goal

This thesis aims to explore and outline the current state-of-the-art research in the area
of embodying neuronal cultures. By doing so, we hope that we may bridge the current
gap between the robotics development conducted at ITK and the culturing of neural cells
conducted at INM.

This thesis may deviate somewhat from a standard technical engineering thesis. The ques-
tions that are attempted answered, border on that of scientific research rather than solving
an engineering problem. Many of the topics covered have yet to be understood in the
scientific arena. Without the ability to conduct experiments (as, during the writing of this
thesis, the MEA system has not yet been set up) it is difficult to answer some of the ques-
tions being asked. What this thesis does however attempt, is to lay the ground work and
foundation for developing the cybenetic system as soon as the MEA hardware is available.
The focus here is on the investigation of similar studies as well as the relevant scientific
fields of research to enable the embodiment of our own neuronal cultures in a closed-loop
robot-MEA hybrid system.
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1.2.1 Research questions

Four main focus areas will be investigated, all of which play an important role for the
in-vitro research we are conducting through the NTNU Cyborg:

How to make a cyborg:

• What hardware is necessary for interfacing the neuronal culture?

• How do we efficiently distribute the MEA-robot setup across the participating labs?

• How do we close the MEA-robot sensory-motor loop?

• What should and can the neuronal culture control on the robot?

Communicating with a neuronal culture:

• How do biological networks signal information?

• How do we encode information into the culture?

• How do we decode information from the culture recordings?

Training a neuronal culture:

• How can we manipulate the behaviour of the embodied culture in its environment?

• How do we train the culture through stimulation?

• What mechanisms are needed for a culture to show signs of learning?

• How can we achieve adaptation and learning in a neuronal culture?

How to model a neuronal culture:

• How may with realistically model a biological neural network?

• What models are available?

These questions are some of those we ask our selves in the NTNU Cyborg project, and
that we wish to give some more insight to in this thesis.

1.3 Recommended reading

Some scientific background knowledge of biology, robotics and computer science is be-
neficial, but not strictly necessary. The background chapters attempt to provide the reader
with the relevant information and concepts to understand the rest of the thesis.

The book ’Neuroscience’ by Purves et al.[129], which is also used in some NTNU neu-
roscience courses, is a great resource to neuroscientific concepts and workings. The book
’Bio-Inspired Artificial Intelligence’ by Dario Floreano and Claudio Mattiussi[59], used
in a NTNU AI course, provides a great introduction to artificial neural networks (ANNs),
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specifically chapter 3. Chapter 3.12 in the same book, also introduces ’Hybrid Neural Sys-
tems’, which describes how biological neural networks may be used through MEAs. Also,
Chapter 18.7 in the book ”Artificial Intelligence A Modern Approach”[137] by Stuart
Russel and Peter Norvig, used in AI courses at NTNU, introduces ANNs as well. Similar
embodied MEA-robotic papers provide great insight into the process of embodying neu-
ronal cultures into artificial systems[162, 164, 163, 8, 9, 37, 50, 51, 128, 130]. Otherwise,
the rest of the papers found in the bibliography, of which are mentioned in the thesis, are
all informative.

For more information regarding The NTNU Cyborg robot development, the reader may
refer to the authors specialization project[95].
For more information about The NTNU Cyborg initiative, please visit our website:
https://www.ntnu.edu/cyborg

1.3.1 Resources in neuroscience

: Here are some great neuroscientific resource-websites which greatly aid the process of
gathering information about the field. The resources include: people in the field, conferen-
ces, journals, papers, databases, societies, laboratories, online tutorials and other educatio-
nal resources.

• Neuroscience on the internet1

• Neurosciences Resource Guide2

• Jim Perlewitz’ Computational Neuroscience on the web3

• Neurotree4

1.4 Thesis structure

A quick introduction to the following chapters is presented here. Although this thesis is
in large part a literature study of similar embodied studies, it is important to note that it is
just as much a discussion. All topics are discussed with regards to their relevance for The
NTNU Cyborg project, and the author also contributes to the discussion with own ideas
and thoughts.

Chapter 2 presents a brief overview of the information/literature gathering process that
supplied the context within this thesis.

Chapter 3 and 4 are background chapters into neuroscience and artificial neural networks
(ANNs) respectively.

1http://www.neuroguide.com/index.html
2http://psychologydegreeguide.org/neuroscience-resource-guide/
3http://home.earthlink.net/ perlewitz/
4http://neurotree.org/neurotree/
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Chapter 3 provides relevant neuroscientific concepts that the reader may be unfamiliar
with. We look at the difference between in-vivo vs in-vitro studies, describes stem cells,
neurons, networks and the cultivation process. We also investigat what machanisms enable
biological networks to learn and adapt to incoming information.

Chapter 4 introduces the concepts of artificial neural networks, with particular focus on
biologically realistic spiking neural networks. We also discuss the training of artificial
networks.

The chapters 5-7 are the authors open discussion around embodiment, communication
and training of the culture, using methods and results from similar projects to guide the
discussion.

Chapter 5 investigates the hardware, interface and robotics aspects of reembodying a neu-
ronal culture. This part discusses the more practical setup for making the cyborg.

Chapter 6 looks at methods to analyze and utilize the culture recordings, as well as how
to stimulate the culture. We also investigate encoding and decoding of information to and
from a neuronal culture.

Chapter 7 discusses training of a neuronal culture with inspiration from the brain, com-
puter science and similar in-vitro MEA research.

Chapter 8 is a very brief chapter about how one might go about modelling a biological
neural network.

Chapter 9 summarizes the previous chapters as a plan moving forward,

Chapter 10 wraps up the thesis.
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Method

A large part of the time used in writing this thesis has been devoted to studying neuro-
scientific concepts, biologically plausible artificial neural networks and studies involving
interfacing, analyzing, embodying and learning in neuronal cultures. Another time consu-
mer has simply been finding appropriate literature in a field that is in its early develop-
ment. There has been much frustration over long hours trying to find answers to questions
that ultimately where found not to have been answered yet. For the vast literature that
was available though, extensive filtering of the most relevant material to include has been
done. The aspects deemed relevant where deemed so, based on methods from similar stu-
dies and other aspects the author found relevant though acquired knowledge in the field of
neuroscience and computer science.

As the MEA is not currently up and running, the focus has not been on implementing
anything physically, but instead laying down the theoretical ground work for when the
MEA is up. During the study, the author investigated setting up a distributed MEA-robot
infrastructure. This was however, difficult to begin with as the majority of this coordi-
nation was sourced to IDI. Also, we are not quite sure how the software we are getting
from MultiChannel systems may be interfaces. Similarly, the author contemplated making
a biologically accurate model of a cultured neural network using spiking networks as a
starting point. It was eventually reasoned that this would be a big enough task for a the-
sis in and by itself. Both setting up the infrastructure and modeling would ultimately take
time away from the prioritized objective; studying the necessary aspects of embodying a
neuronal culture.

2.1 Literature search

The literature in this thesis was gathered largely through Google Scholar, NCBI PubMed
(biomedical literature) and NTNUs research database along with BIBSYS. The books

9



Kapittel 2. Method

Neuroscience by Purves at al.[129] and Bio-Inspired Artificial Intelligence by Floreano
and Mattiussi[59] contributed a great deal to the background chapters. Publications from
labs and people such as Potter Lab[111] and Warwick[161] were also studied. Some thesis
from IDI, regarding biologically plausible neural network models, were also useful as they
covered a great deal of neuroscience theory and described the mathematical workings of
biological neural system (to the extent we currently understand) quite well. Some rese-
arch papers referenced in topic-relevant Wikipedia pages were also a helpful sources of
information.

To give the reader an idea of how the relevant literature was obtained, here are presented
a few (very small percentage of actual) example search terms: cultured neural networks
(CNNs), neuronal cultures, embodiment, bio-robotic systems, embodied cultures, learning
in CNNs, learning in the brain, reinforcement learning, spiking neural networks (SNNs),
learning in SNNs, analyzing neural networks, stimulation of neural networks, dopamine,
mircoelectrode arrays, MEA, neural coding etc.

Papers were evaluated and chosen based on: the author(s) reputation in the field, the
amount of publications of the author(s) in the field, the organization the author(s) came
from (e.g., which institutions and labs), the number of papers that had cited the current
paper, whether the paper referenced to other good papers, and whether the paper had be-
en published in a journal and was peer reviewed. Although some deviations from this
list may occur, the author has tried to gather relevant and decent literature with the best
intentions.

2.1.1 Images and illustrations

Illustrative images where mostly gathered from research papers, the mentioned books and
Wikimedia commons because of their open publicly approved licensing[170]. All images
without reference are created by the author of this thesis.

2.2 Known in the field

During the literature search, the author got familiar with certain names, journals and con-
ferences that seem to be relevant in the field of MEA research.

2.2.1 People

Some frequently occurring researcher were observed. Here follows a short list of some of
the main contributors in the field of reembodied cultured neuronal networks.

People:

• Steve Potter (Laboratory for NeuroEngineering, Georgia Institute of Technology)
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• Kevin Warwick (Emeritus Professor, Coventry University & University of Reading)

• Thomas DeMarse (Department of Biomedical Engineering, University of Florida)

• Douglas J. Bakkum (Research Scientist, ETH Zurich, Department of Bio Systems
Science and Engineering)

• Daniel Wagenaar (Assistant Professor, Department of Biological Sciences, Univer-
sity of Cincinnati, Ohio, USA)

• Karl Dockendorf (Biomedical Engineering Department, University of Florida, Gai-
nesville)

A helpful resource for finding graduate student and postdoctoral connections between most
researchers in the field of neuroscience, is through the website Neurotree[46].

2.2.2 Conferences and journals

The following conferences and journals have been used for publishing several of the MEA
studies.

Conferences:

• Annual International Conference of the IEEE Engineering in Medicine and Biology

• IEEE International Conference on Neural Networks

• IEEE Transactions on Biomedical Engineering

• International IEEE EMBS Conference on Neural Engineering

• International Joint Conference on Neural Networks

Journals:

• BMC Neuroscience

• BioSystems

• Defence Science Journal

• Frontiers in Neural Circuits

• Journal of bioscience and bioengineering

• Journal of Biotechnology & Biomaterials

• Journal of neural engineering

• Journal of Neuroscience Methods

• Neurocomputing

• PLoS Computational Biology

• PLoS One
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• The Journal of neuroscience
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Kapittel 3
Background: Biology

Since we are ultimately using a neuronal culture in our bio-robotic/cybernetic system,
it is appropriate to introduce some relevant biological concepts, as to allow the reader
better understanding of the topics to come. We will here briefly introduce neurological
concepts such as stem cells, neurons and neural structures in the brain. We will also discuss
the current theories on how neural networks code information and learn. Lastly, we shall
summarize the cultivation process of making a neuronal culture.

3.1 In-vivo vs in-vitro

In-vivo (Latin: ’within the living’) studies are those in which the effects of various bio-
logical entities are tested on whole, living organisms usually animals (including humans),
and plants as opposed to a partial or dead organism.[90] In-vitro (Latin: ’within the glass’)
studies are typically conducted with microorganisms, cells or biological molecules outside
their normal biological context, using test tubes and petridishes.[90]

The advantage of using in-vitro methods, is that it permit simpler, more convenient and
more detailed analysis than can be done with the whole organism. In terms of a neuro-
nal culture, it allows for non-invasive stimulation and recording of the neuronal network,
unhindered by skin, skull and other tissue.[164]

The primary disadvantage of in-vitro experimental studies, is that it is challenging to extra-
polate from experimental results back to the biology of the intact organism. Investigators
must be careful not to over-interpret their results, which can lead to erroneous conclusions
about organism and systems biology.[135] In the case of a neuronal culture, one must con-
sider that this neural network usually operates in a highly organized brain hierarchy (see
chapter 3.4) that is likely very important in its correct functioning.
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The NTNU Cyborg project will be conducting in-vitro experiments in its studies. A neu-
ronal culture provides a good biological platform for interfacing with the robot platform.
For this reason, in-vitro neuronal cultures are the main focus of this thesis.

Figur 3.1: In-vitro dish. From huffingtonpost.com

3.2 Stem cells

Stem cells are undifferentiated biological cells that can differentiate into specialised cells
and divide (through mitosis) to produce more stem cells.[158]. Thus, the stem cells have
the ability to grow into the neuronal cells needed for a neuronal culture. Stem cells grow
into adult neurons in about one month, developing all the essential properties of functional
CNS neurons[122]. Furthermore, stem cells allow the development of several phenoty-
pes (not only neurons but also astrocytes and oligodendrocytes) that ensure the correct
contribution of trophic substances and cellular junctions for the better and more physiolo-
gical functionality of neurons in culture.[158] Figure 3.2 shows the process of a stem cell
becoming a specialised cell.

Figur 3.2: Process of stem cell becoming specific tissue By Mike Jones via Wikimedia Commons
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3.3 Neurons

A neuron (or nerve cell) is an electrically excitable cell that processes and transmits infor-
mation through electrical and chemical signals. These signals between neurons occur via
synapses: specialized connections with other cells. When neurons connect to each other
they form what we call neural networks. Neurons are the core components of the brain
and spinal cord of the central nervous system (CNS), and of the ganglia of the peripheral
nervous system (PNS).[129, 59]

3.3.1 Anatomy

The composition of a neuron is illustrated in figure 3.3. Here follows a short description
of its main components[129, 59]:

• Soma: the body of the neuron which contains the nucleus.

• Dendrites: cellular branched extensions from where the majority of inputs to the
neuron, from other neurons, occur.

• Axon: a finer, cable-like projection that can extend tens, hundreds, or even tens of
thousands of times the diameter of the soma in length. The axon propagates nerve
signals, in the form of action potentials, away from the soma (and also carries some
types of information back to it). Many neurons have only one axon, which usually
has many branches to target cells.

• Axon hillock: the part of the axon where it emerges from the soma. The axon hillock
has the greatest density of voltage-dependent sodium channels, making it the most
easily excited part of the neuron. This contributes to it very often initiating the action
potential down the axon.

• Axon terminals: the endpoint of the axon which contains synapses, specialized
structures where neurotransmitter chemicals are released to communicate with other
neurons.

Figur 3.3: Illustration of the neuron anatomy by LadyofHats via Wikimedia Commons
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3.3.2 Action potentials

An action potential (AP) is a short-lasting event in which the electrical membrane potential
of a cell rapidly rises and falls, following a consistent trajectory. The AP in a neuron occurs
when the cell potential surpasses a certain threshold, usually around -55mV, and acts as
an all-or-nothing event. The AP causes the axon hillock to ’fire’ a wave of potential down
the axon, causing the release of neurotransmitters, which further effect the potential of the
post-synaptic neurons. The membrane potential of a cell rises due to upstream cells firing
APs or other extracellular potential changes (e.g., through microelectronic stimulation).
The connection strength between two neurons (the amount of branches between the cells,
the amount of neurotransmitter released, and the amount of receptors located on the post-
synaptic cell) will affect how much of a potential rise will occur. During the AP the cell
goes through an absolute and relative refractory period. During the absolute refractory
period (from the threshold is reached until after hyperpolarization), the cell is unaffected
by stimuli. During the relative refractory period, the cell is harder to excite. In neurons,
APs play a central role in cell-to-cell communication. APs are also known as ’spikes’, and
the temporal sequence of APs generated by a neuron is referred to as its ’spike train’. The
whole AP lasts about 1ms.[129, 59]

Phases

The action potential consists of five main phases (figure 3.4):

• Increasing potential: the potential increases from the ’resting potential’ (around -
70mV) due to pre-synaptic (upstream) neurons firing or changes in the extracellular
environment.

• Threshold: once the membrane potential threshold is reached, the axon hillock fires
an AP down the axon.

• Depolarization: when the neuron fires, the potential increases due to the opening of
voltage-gated sodium channels, which allows sodium ions to rush into the cell. The
potential increases until the it reaches around 40mV.

• Repolarization with hyperpolarization: voltage gated potassium channels open
when the potential is positive, causing potassium to rush out of the cell, which de-
creases the potential. The potential drops slightly below the resting potential: hyper-
polarization.

• The relative refractory period: After hyperpolarization comes a refractory period
where the potential is below the resting potential until the sodium-potassium pump
is able to pump the sodium back into the cell and the potassium out; restoring the
cells original state. During this period, the cell is more difficult to excite.
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Figur 3.4: Action potential by Chris 73 via Wikimedia Commons

3.3.3 Synapse

A synapse is a structure that permits a neuron to pass an electrical or chemical signal to
another neuron. In a chemical synapse, electrical activity in the pre-synaptic neuron is con-
verted into the release of a chemical called a neurotransmitter that binds to receptors on
the post-synaptic cell. Synaptic communication usually occurs from the axon terminals of
the pre-synaptic neuron, to the dendrites of the post-synaptic neuron. The neurotransmit-
ter may initiate an electrical response or a secondary messenger pathway that may either
excite or inhibit the post-synaptic neuron. There are a large variety of neurotransmitters,
each effecting the receiving neuron differently. In an electrical synapse, the pre-synaptic
and post-synaptic neurons are connected by special channels called “gap junctions” or
“synaptic clefts” that are capable of passing the electric current directly (without the use
of neurotransmitters). The main advantage of an electrical synapse is the rapid transfer of
signals from one cell to the next. Electric synapses however, do not allow the same control
and diversity as chemical synapses.[129, 59]

Figur 3.5: Synapse by Thomas Splettstoesser via Wikimedia Commons
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Neurotransmitters

Neurotransmitters, also known as chemical messengers, are chemicals that enable trans-
mission of signals across chemical synapses, from one cell to another. They are received by
receptors on the target cells. Neurotransmitters play a major role in shaping everyday life
and functions. Their exact numbers are unknown, but more than 100 chemical messengers
have been identified.[129]

Neuromodulation

Neuromodulation is the physiological process by which a given neuron uses one or more
neurotransmitters to regulate diverse populations of neurons. This is in contrast to classical
synaptic transmission, in which one pre-synaptic neuron directly influences a single post-
synaptic partner. Neuromodulators, secreted by a small group of neurons, diffuse through
large areas of the nervous system, affecting multiple neurons. Major neuromodulators in
the CNS include dopamine, serotonin, acetylcholine, histamine, and norepinephrine.[129]
Neuromodulation seems to play a large role in learning. E.g., numerous studies link dopa-
mine secretion to reinforcement learning and motivation[34, 115].

3.3.4 Classification

Neurons exist in a number of different shapes and sizes and can be classified by their
morphology and function.[31].

Functional classification:

• Afferent neurons: convey information from tissues and organs into the central ner-
vous system and are sometimes also called sensory neurons.

• Efferent neurons: transmit signals from the central nervous system to the effector
cells and are sometimes called motor neurons.

• Interneurons: connect neurons within specific regions of the central nervous system.

Within these groups there are again many types of neurons, but we will not go into further
detail on thess here. In the NTNU Cyborg, we will be experimenting with different cultures
built up by varying mixtures of neurons.

3.3.5 Excitatory vs inhibitory neurons

The neocortex contains both excitatory ( 80%) and inhibitory ( 20%) neurons, named for
their effect on other neurons.[21] Excitatory neurons are the information processing work-
horses of cognition and receive around 10,000 inputs each from other neurons (excitatory
and inhibitory). Activated collections of millions of these neurons represent thoughts and
perceptions.
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3.4 Structure of the brain

The nervous system coordinates voluntary and involuntary actions and transmits signals to
and from different parts of the animal body. In vertebrate species it consists of two main
parts: the central nervous system (CNS) and the peripheral nervous system (PNS). At the
cellular level, the nervous system is defined by the presence of neurons.[129]

The CNS comprises the brain (cerebral hemispheres, diencephalon, cerebellum, and brain-
stem) and the spinal cord. The CNS handles all analysis and integration of sensory and
motor information.[129]

The PNS consists mainly of nerves that connect the CNS to the rest of the body. The
PNS includes sensory and motor components. The motor components are further divided
into somatic and visceral systems, also called the automic nervous system. Somatic ner-
ves mediate voluntary movement, while the visceral systems controls involuntary motor
function though the sympathetic (fight or flight) and the parasympathetic (rest and digest)
nervous systems.[129]

Figur 3.6: CNS and PNS[129]

3.4.1 Brain hierarchy

The nervous system is highly structured and complex. Neurons don’t just connect random-
ly with each other, as they may do in a culture neuronal network. The brain is organised in
a hierarchical fashion, such that all incoming sensory information first enters the low-
er parts (the brainstem) going upwards to the higher parts (the neocortex), see figure
3.7.[129, 69, 94]

Description of each layer[6]:
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Figur 3.7: Brain hierarchy.[6]

• The Brainstem: this primitive brain, essentially common in function in all crea-
tures, processes billions of pieces of incoming information and directs them to the
right locations. In humans, it controls basic functions such as body temperature,
heart rate and blood pressure. Hard wired into it are the instantaneous ‘fight or flight’
instincts of self-preservation over which we have no control.

• The Diencephalon: deals with (still relatively basic) functions such as sleep, appe-
tite, arousal and motor function.

• The Limbic: deals with emotional reactivity, sexual behaviour and attachment. The
Limbic is part of the bigger ’limbic system’ controlling hormone activity in the body.

• The Neocortex: the most recently evolved part of the brain, which handles affilia-
tion, concrete thought and abstract thought.

Neocortex

The neocortex is the seat of intelligent thought in the mammalian brain. High level vision,
hearing, touch, movement, language, and planning are all performed by the neocortex.
In the human brain, it is the largest part, and top layer, of the cerebral cortex, with the
allocortex making up the rest. The neocortex is 2-4 mm thick and made up of six layers
(as shown in figure 3.8, labelled from the outermost inwards: I to VI.[94]

Given such a diverse suite of cognitive functions, one might expect the neocortex to imple-
ment an equally diverse suite of specialized neural structures. This is not the case. Viewed
under a microscope, the physical characteristics of the different cognitive regions look
remarkably similar, revealing a complex replicated circuit pattern. Similar regions of the
neocortex can learn to represent entirely different things in reaction to different inputs.[69]
In one study by Roe et al.[134], the visual projections in ferrets were routed to their audi-
tory pathway. They found that the auditory cortex can accept and process visual input in a
similar way as the visual cortex. They reasoned that the sensory neocortex is not uniquely
specified to process inputs of a single modality.

Another benefit that is believed to come from such a layered and hierarchical organiza-
tion of the neocortex, is the ability to represent complex patterns through simpler ones.
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Figur 3.8: The 6 layers, I-VI, seen found in the neocortex. Henry Vandyke Carter via Wikimedia
Commons

For illustration, let’s consider vision. At the lowest level of the hierarchy, your brain sto-
res information about tiny sections of the visual field such as edges and corners. These
low-level patterns are recombined at mid-levels into more complex components such as
curves and textures, which are further combined to represent high-level object features,
such as heads, cars or houses. To learn a new high level object you don’t have to relearn
its components.[69] This concept is illustrated in figure 3.9.

3.5 Neural communication

The study of neural coding involves measuring and characterizing how stimulus attributes,
such as light, sound or touch, are represented by neuron APs. Neurons are remarkable in
their ability to propagate signals rapidly over large distances and, in this way, communica-
te with one another. We have already seen how they do this by the use of action potentials.
Although APs can vary somewhat in duration, amplitude and shape, they are typically
treated as identical all-or-nothing stereotyped events. Since all APs are treated identical,
there can’t be any information encrypted in the AP itself. Instead, neurons are thought to
communicate through the series of spikes they produce and the spike patterns that emerge
across neuron populations. There is however, an ongoing debate to just how these coding
mechanisms work. These theories include rate coding, temporal coding, population (den-
se) coding and sparse coding. With the development of large-scale neural recording and
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decoding technologies, researchers are beginning to crack the code[82].

3.5.1 Encoding and decoding

Neural encoding is understanding how neurons respond to a wide variety of stimuli, and
to construct models that attempt to predict responses to stimuli. The ultimate measure of
success is the ability to make testable predictions.

Neural decoding is the reverse of neural encoding: mapping from response to stimulus.
The challenge is to reconstruct a stimulus, or certain aspects of that stimulus, from the
spike sequences it evokes.

3.5.2 Coding schemes

There are in principle two categories of coding schemes; those based on the sequence
of spikes (such as rate-based and temporal coding) and those based on the spike pat-
terns emerging from the ensemble of spikes (such as population (dense) and sparse co-
ding).

Rate coding

Rate (frequency) coding is a traditional coding scheme assuming that information about
the stimulus is contained in the firing rate of the neuron, rather than as specific spike
sequences. The rate-based model states that as the intensity of a stimulus increases, the fi-
ring rate increases, generally non-linearly[83]. In motor neurons, for example, the strength
at which an innervated muscle is flexed depends solely on the ’firing rate’; the average
number of spikes per unit time[26]. When analyzing activity using rate coding, precisely
calculating firing rate is important.

Temporal coding

Until recently, scientists had put the most emphasis on rate encoding as an explanation
for post-synaptic potential patterns. However, functions of the brain are more temporally
precise than the use of only rate encoding seems to allow[147]. When precise spike timing
or high-frequency firing-rate fluctuations are found to carry information, the neural code
is often identified as a temporal code. A number of studies have found that the temporal
resolution of the neural code indicate that precise spike timing is a significant element in
neural coding.[154, 28, 153, 7].

To illustrate the idea of temporal coding, we look at how spike sequences that may appear
similar using rate-based coding, contain different information temporally: Say we record
the activity of a neuron over 12 ms (remember that one AP lasts 1 ms). We indicate this
using though a binary representation where a 1 indicates an AP, and a 0 indicates no
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AP. Temporal coding allows the sequence 000111000111 to contain different information
from the sequence 001100110011. However, using rate-based coding, they both display 6
spikes/12 ms which means they are equal in information.

Temporal coding may also be rational to assume, due to the time dependency of the neu-
rons membrane potentials. E.g., the spike train 1000100010, may not cause an AP as the
membrane potential will have time to sink between spikes and never reach the threshold.
However, the spike train 1110000000, may cause an AP as the three consecutive spikes
don’t allow the membrane potential to sink in between, and thus pushes the membrane
potential over the threshold.

Population coding

Population coding communicates information through the joint activities of a number of
neurons. In population coding, each neuron has a distribution of responses over some set
of inputs. Essentially, if a neuron is connected to several upstream neurons, the different
spiking patterns formed by the upstream neurons will effect the neuron differently. Popu-
lation coding is found to occur in the motor cortex, premotor cortex, and other cortical
areas[62, 8].

Population coding has a number of advantages, including reduction of uncertainty due to
neuronal variability and the ability to represent a number of different stimulus attributes
simultaneously. Population coding is also much faster than rate coding and can reflect
changes in the stimulus conditions nearly instantaneously.[73]

Sparse coding

While population coding may be referred to as ’dense’ coding sparse coding is well, ’spar-
se’. Both however, indicate coding by means of an active population of neurons at a given
time. We refer to sparse coding when each particular representation is encoded by a rela-
tively small percentage of active neurons.[69]

Sparse coding is easiest explained through an example: the very large set of English sent-
ences may be encoded by a small number of symbols (i.e. letters, numbers, punctuation,
and spaces) combined in a particular order for a particular sentence. Therefor, sparse co-
ding for English would be those symbols.

Here is another example to illustrate the difference between dense and sparse coding: In a
1 megapixel image (1000 x 1000 pixels), each pixel is contributing to encoding the image.
This is a ’dense’ representation. In a sparse representation, we instead have e.g. neurons
that become active for horizontal lines and others vertical lines, each at different locations
in the image. If there are no horizontal lines, those neurons are silent and do nothing.
Thus, what is encoded are the features rather than the space, and only those features that
are present activate the neuron. The code becomes ’sparse’ since contradictory features
cannot be simultaneously present. One can think of this as each neuron looking for a
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particular feature. When the feature is seen, the neuron fires. Most will not fire, because
there are more features being looked for than there are features in the image.[85]

The observant reader may have noticed the similarity with sparse coding, and how the
neocortex works. This is because it is theorized that the neocortex codes features through
its layers in a sparse manner.[165, 13] In the Neocortex, inhibitory neurons guarantee that
only a small percentage of the neurons are active at one time. The hierarchy, or layers
described the previous chapter, will first look for low level features (lines, angles etc) in
the first layers and higher level features (faces, cars, animals etc) in the top layers (see
figure 3.9. Thus, information in the brain is always represented by a small percentage of
active neurons within a large population of neurons.[165, 13, 69] This arguments for the
biologically plausibility of sparse coding.

(a) Simple features (b) More complex feutures

Figur 3.9: Sparse coding: Each square represents a feature a neuron may be looking for. (a) simple
features such as lines and curves spotted in the earlier layers of the neocortex. (b) more complex
features such as faces spotted in later layers. Image form Stanford wiki

3.5.3 Combing schemes

Are the different coding schemes mutually exclusive? When we talk about which coding
scheme to utilize, it is important to note that one mechanism does not necessarily exclude
the other. E.g., temporal coding, in a way, entail rate-based coding (the same does not
apply the other way around). Temporal and rate coding can also be used, and likely are, in
conjunction with population or sparse coding. Also, dense population coding and sparse
coding seem to operate on slightly different mechanisms. Where population coding is a
local process, being the pattern of active neurons into a downstream neuron, sparse coding
takes advantage of the structure of the network.

3.6 Learning

In neuroscience, learning is the process by which new information is acquired by the ner-
vous system and is observable through changes in behaviour.[129] Memory refers to the
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encoding, storage, and retrieval of learned information.[129] Memory is essential to all
learning, because it lets you store and retrieve the information that you learn. Learning de-
pends on memory, because the knowledge stored in your memory provides the framework
to which you link new knowledge, by association.[23]

Evolution has developed some amazing and complex learning mechanisms in the brain,
which we gain to learn from. Since a cultured neural network (CNN) replicates networks
in the brain, its natural environment, it is natural to look here for clues on how to efficiently
train a CNN. The exact mechanisms for how learning comes about is however not fully
understood. Here we present some of the basic mechanisms important for learning, and
some theories to how learning is enforced.

3.6.1 Synaptic plasticity, Hebbian learning and STDP

We begin first with the lower level mechanisms.

Synaptic plasticity

Synaptic plasticity is the synapses ability to strengthen or weaken over time in response
to increases or decreases in activity.[74] There are several underlying mechanisms that
cooperate to achieve synaptic plasticity, including changes in the quantity of neurotrans-
mitters released into a synapse and changes in how effectively cells respond to those neu-
rotransmitters. Cells may increase response to neurotransmitters by alteration of the num-
ber of neurotransmitter receptors located on a synapse and/or by neuromodulation. Since
memories are postulated to be represented by vastly interconnected networks of synapses
in the brain, synaptic plasticity is one of the important neurochemical foundations of lear-
ning and memory.[129, 59]

Hebbian learning

Hebbian theory proposes an explanation for the occurence of synaptic plasticity. Introdu-
ced by Donald Hebb in 1949 in his book ’The Organization of Behavior’,[152] Hebb states
the ’Hebb’s rule’ as follows:

When an axon of cell A is near enough to excite a cell B and repeatedly or
persistently takes part in firing it, some growth process or metabolic change
takes place in one or both cells such that A’s efficiency, as one of the cells
firing B, is increased.[152]

Hebb emphasized that cell A needs to ’take part in firing’ cell B, and such causality can on-
ly occur if cell A fires just before, not at the same time as, cell B. This important aspect of
causation in Hebb’s work foreshadowed what is now known about spike-timing-dependent
plasticity (STDP), which requires temporal precedence.[32]
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Spike-timing dependent plasticity

Building further upon Hebb’s rule, spike-timing-dependent plasticity (STDP) is a biolo-
gical process that adjusts the synaptic strength between neurons according to the relative
firing times of the pre-synaptic and post-synaptic neurons[19]: if an input spike to a neuron
occurs immediately before that neuron’s output spike, then that particular input is made
stronger. If an input spike occurs immediately after an output spike, then that particular
input is made weaker. Also, the amount of time in between the pre-synaptic and post-
synaptic spike will have an effect on how much the connection strength is adjusted. Closer
intervals equal greater adjustment (see figure 3.10).[129, 59]

Figur 3.10: Spike-time dependant plasticity (STDP). Cell A spikes before cell B: increased synaptic
strength. Cell A spikes after cell B: decreased synaptic strength.[4]

3.6.2 Memory

In order to learn, there must be some recollection of previous experience. It is widely
accepted that the synaptic connections between neurons and neural pathways form the
foundation for memories[20]. Memories that are recollected become further strengthened
by the firing of those neural pathways, through Hebbian learning. On the other hand, mem-
ories that are not often recollected, may fade away[20]. Memory follows the ’use it or lose
it’ principle. This is, for example, why when studying for an exam, it helps to repeat the
curriculum many times.

Potentiation and depression

We learned that synapses can be strengthened or weakened, however this was not the whole
story. The lasting effect of this strengthening and weakening is also an important factor.
When synapses are strengthened we say that they are potentiated, when they are weake-
ned they are depressed. When the lasting effect is long-term (minutes to hours, days etc)
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we have long-term potentiation (LTP) or long-term depression (LTD). On the other hand,
if the effect is short-term (a few ms to a few minutes) we have short-term potentiation
(STP) or short-term depression (STD). Short-term effects are usually due to a short-time
increased release on neurotransmitters between the communicating neurons.[129] Long-
term effects are usually due to molecular changes like growing of new dendrites or axon
terminals between cells which make for a stronger long-term connection.[129] It has be-
en shown that high-frequency (tetanic) electrical stimulation causes LTP in synapses in
the hippocampus.[129]. In contrast, low-frequency stimulation and prolonged inactivity of
synapses in the hippocampus may weaken them[16].

The mechanism behind LTP may be described as such (courtesy of a video presentation
by Carleton University[155]): High-frequency firing causes sodium to rush into the post-
synaptic cells, which is followed by more sodium channels being transported to the dend-
ritic wall of the target cell. This in turn, allows for even more sodium uptake from the
pre-synaptic cell. If this continues further, neuromodulation comes into play by growth of
more dendritic branches between the neurons. This leads to the post-synaptic neuron be-
coming increasingly sensitive to pre-synaptic APs, which means that the synaptic strength
has been increased and we have achieved LTP.

Figur 3.11: Demonstrating LTP though tetanic stimulation. After tetanus, the response to a single
stimulation is significantly increased.[129]

3.6.3 Associative learning (unsupervised)

Associative memory is one of the most common forms of memory used in everyday
situations[149]. Through unsupervised learning, sensory such as sound, vision, taste, smell
and touch are ’associated’ to each other creating a complete ’picture’ of the environment.
E.g., the sound of a car along with how it smells and looks. This is why the smell of a
certain dish can invoke childhood memories, or a song takes you back to a road trip of
your past.

Unsupervised learning in the brain stems from the simultaneous firing of neurons which,
according to Hebbs theory, makes the connections between them stronger. When one sees
a car, neurons in the visual cortex fire the neural code that represents the car. At the same
time, the sound of the engine elicits neurons dedicated to hearing to fire according to the
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engine rumble. This simultaneous firing at both places serves to make connections, and
thereby associations, between them.

Classical conditioning

Classical conditioning. also known as Pavlovian conditioning, is an associative learning
process in which a non-rewarding stimuli is learned to be associated with a rewarding sti-
muli. The basic facts about classical conditioning were discovered by Ivan Pavlov through
experiments with dogs. In his classical ’Pavlovian conditioning’ experiment, he studied
how dogs would respond to a conditioned stimulus (CS). He measured when dogs would
produce salvia in anticipation of food. He trained the dogs to associate the ring of a bell
(the CS) to be followed by a treat, which is the unconditioned stimulus (US). The food is
the reward, but the question was if the dogs would salivate by just hearing the bell go off.
What happened was that dogs eventually began to produce saliva when the bell rang. The
bell became a predicative conditioned signal that food was on its way. This indicated not
only associative memory, but also that the brain predicts events to come, which will be
discussed later in this chapter.[17]

3.6.4 Concept learning (supervised)

Concept learning, also known as category learning, is a form of supervised learning me-
chanism. Concepts are the mental categories that help us classify objects, events, or ideas,
building on the understanding that each have a set of common relevant features. Concept
learning may refer to a learning task in which a human or machine learner is trained to
classify objects by being shown a set of example objects along with their class labels.
The model that emerges is then applied to future categorization without known examples.
Consequently, the task is known as learning from examples.[89, 172]

One could argue that supervised learning is yet another form of unsupervised learning.
When someone tells a child that what they are looking at is a car, their associative me-
mory is associating the sound of the word ’car’ with the visual input of that car. The brain
simply learns to correlate people’s words highly with the objects of attention. The distinc-
tion between supervised and unsupervised learning in human examples is thus; supervised
learning suggests a teacher or some example-solution correlate being involved.

3.6.5 Operant conditioning and reinforcement

Operant conditioning, or conditioning through reinforcement, is a type of learning where
the consequences of actions, such as reward or punishment, result in a modification of futu-
re behaviour.[124, 59] Operant conditioning is distinguished from Pavlovian conditioning
in that it uses this reinforcement to alter an action-outcome association in contrast to a
stimulus-outcome association (the agent must actually perform an action). The exact me-
chanism that implements reinforcement learning in biological neural systems is the subject
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of much research and is not yet completely understood.[59] There are however, some me-
chanisms that are believed to play an important role.

The reward system

The reward system consists of a group of neural structures responsible for desire, pleasure
and positive reinforcement.[142] Research has shown that brains in humans and animals
rely heavily on reward pathways when learning new tasks[142]. Reward pathways are neu-
ral pathways that are associated with reinforcement learning. A neural pathway connects
one part of the nervous system to another via a bundle of axons[129].

Dopaminergic pathway: Some neurotransmitters are particularly associated with reward,
such as dopamine. Dopamine participates in motivation and incentive drive by controlling
plasticity processes in the brain[119, 11, 66]. Dopamine strengthens the neural activity
leading to rewards and tells the memory centers to pay attention to all features of the
rewarding experience.[124] In the context of reward-related learning, dopamine also func-
tions as a reward prediction error signal: the degree to which the value of a reward is
unexpected.[141]

Dopamine is released in the brain through dopaminergic pathways, which the brain inclu-
des several off[40]. The majority of dopaminergic cell bodies are found in the the Ventral
Tegmental Area (VTA) in the Basal Ganglia. The VTA neurons project to numerous areas
of the brain, from the prefrontal cortex to the caudal brainstem and several regions in
between (figure 3.12)[40]. In essence, the VTA releases dopamine though its neural pat-
hways to different regions in the brain, as a reinforcement mechanism.[17, 124]

Figur 3.12: Dopaminergic pathways.[]

While dopamine is critical to many learning and behavioral processes in the brain, animals
can learn to select actions correctly even in the absence of dopamine[18]. Indicating mul-
tiple reinforcement learning systems in the brain[54]. Interestingly, dopamine also does
not seem to be involved in the signaling or prediction errors for aversive outcomes.[115]
One theory is that the Habenula plays an important role in punishment.[2]
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The distal reward problem

In experiments involving rewards, dopamine is typically released some time after the beha-
vior that caused the reward being obtained. This gives rise to the ’distal reward problem’:
how does the brain know which neurons and synapses are responsible for bringing about
the reward? The firing patterns are obviously long gone, and the neurons and synapses
involved might have seen significant activity in the interim period, between action and
reward.[4] This process in not yet fully understood, though a study by Nitz et al.[114] sug-
gest that DA signaling through D1 receptors impacts brain processes linking actions and
their temporally distal consequences.

3.6.6 Prediction and temporal difference learning

The brain is a real time predicting machine[24, 69], and learning has been proposed to stem
from prediction errors known as temporal difference (TD)[115]. TD, which is actually a
term from machine learning, has received attention from neuroscientists because it has
been discovered that the firing rate of dopaminergic neurons in the VTA and Substantia
nigra (SNc) seem to play a role in prediction error like TD[157]. Through prediction error
based learning, learning means trying to improve future predictions and tends to occur
especially when reality doesn’t match the prediction.[157]

In the Pavlovian conditioning experiment explained above, we saw that the dogs predict
food when the bell rang. In a similar experiment, measuring the firing rate of dopaminergic
neurons in monkeys[140], it was observed that:[4]

• when an unexpected reward (US) was received the firing rate was high

• when an expected reward (due to CS) was received the firing rate remained un-
changed.

• when an expected reward (due to CS) was withheld the firing rate fell below normal.

When a CS appeared, the dopamine fired to the CS but not the US. The dopamine re-
sponded to the unexpected and not in the reward itself. This indicates that dopamine is
involved in error prediction and motivation maybe more than reward. If we continue this
pattern further, we may apply a new CS prior to the former CS, e.g. having a light go
of before the bell. Now the light may trigger a dopamine response, and we see how the
occurrence of events leading up to a reward may enable prediction of that reward.

3.7 Cultivation of nerve cells

Neural cultures propose a non-invasive and efficient way of analyzing living neuronal
networks with much of the anatomical complexity and dynamics of real brain circuits[53],
but with a manageable size of only a few thousand neurons and glial cells.[75]. A cultured
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Figur 3.13: Pavlovian dopamine neuron firing[115]

neural network will form the biological computational unit for the NTNU Cyborg. It is
also, in this culture, that the main scientific research will be conducted.

The exact cultivation process is the responsibility of INM, who will be experimenting
with different neurons and networks topologies. Here we summarize the fairly standard
methodology described in similar neuronal culture studies[162, 163, 49, 51, 44, 50, 122,
75, 127, 9]:

Cortical tissue, from embryonic rats, is dissociated using enzymes. Neurons from this
process are cultured, in-vitro, onto the surface of microelectrode arrays (MEAs) (chapter
5.1). Neurons that are grown on the MEAs are covered with a gas-permeable membrane
which permits repeated observations without risk of infection from bacteria. The MEA al-
so needs to be filled with a conventional cell culture medium containing nutrients, growth
hormones, and antibiotics. An incubation chamber must also be used to mimic the biolo-
gical environment (the animal body) in which the cells usually live. This involves regu-
lating temperature, humidity, gas (nitrogen, oxygen, CO2) concentrations etc. Dissociated
neurons begin forming connections within a few hours in culture (even left to themselves
without external input other than nutrients), and within a few days establish an elaborate
and spontaneously active living neural network. After one month, the culture matures, and
the development of these networks becomes relatively stable and is characterized by spon-
taneous bursts of activity. A great video summarizing the cultivation process may be found
here: [35] courtesy of Chadwick M. Hales, John D. Rolston and Steve M. Potter.

Important variables to consider when growing a neuronal culture are; cell density, number
of cells, types of cells and topology. Several studies report 10,000–50,000 cortical neurons
on an MEA.[143, 160, 128]. Potter et al.[128] reported a density of 5000-10,000 cells per
square millimeter in their cultures.
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Figur 3.14: Neural cells grown on a MEA. Scale: 200 µm between electrodes.[128]

3.7.1 Spontaneous activity

A very general observation about neural networks cultured over MEAs is that, regardless
of their origin, they all develop some sort of synchronous and spontaneous bursting activity
when they mature.[106] Depending on the cell culture used, a consistent bursting activity
is likely to dominate after 18 to 25 days in-vitro.[49] One of the most common patterns of
this spontaneous activity takes the form of network-wide bursts. In one study by DeMarse
et. al[49], these bursts are reported to be semi-periodic, occurring every 5 to 15 seconds
and typically 100 to 1000 ms in duration. The study also showed that stimulation pulses
delivered to a network of cultured cortical or hippocampal neurons primarily tend to result
in the production of a network wide burst of activity rather than eliciting responses from
only a few neurons.

While it is not completely understood why these network-wide bursts appear, it is sug-
gested that the spontaneous firing may be due to not having enough inhibiting neurons
in the culture[12]. It may also be that bursting might be due to no more than a patholo-
gical manifestation of the fact that the culture conditions in-vitro interfere with biological
processes[106].

3.7.2 Challenges using neuronal cultures

Keeeping the neurons alive
The key challenges in using neuronal cultures is that they are very fragile and need very
specific conditions to be held alive. The primary cause of death of neuronal cultures is
either infection or changes in osmolarity[127]. Potter et al.[127] developed a system for
keeping cultures alive for possibly over two years, by sealing them in a gas-permeable
MEA culture chamber that keeps insects out and the water in. This setup enables much
longer-term experiments to be conducted than before[75].

Lack of structure
Compared with the highly organized structure of the brain, such as in the neocortex,
randomly grown neural networks may not possess the same abilities when taken out of
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this structure. Instead, the cultures topology is highly random, and it’s difficult to steer the
connections formed by the neurons. In addition, sensory deprivation in culture makes them
less good in forming good networks[162]. At INM, there is currently research being con-
ducted attempting to guide some of the neural axons, which would be helpful in enabling
a more organized network.

2D vs 3D
Neuronal cultures are typically grown in a monolayer (2D) fashion.[75] The brain, on the
other hand, operates in a 3-dimensional world. We don’t now quite how this dimensionality
reduction effects the network.
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Background: Artificial neural
networks

ANNs are computational models that attempt to capture the behavioral and adaptive fe-
atures of biological nervous systems. A wide variety of ANNs exist, most of which do
not attempt to replicate the full complexity of biological neural networks (BNNs). Doing
so, is both computationally expensive and not necessary for many of the AI tasks in which
ANNs are employed. Also, scientists have yet to figure out the full complexity of how neu-
ral networks operate in the brain. Instead, ANNs replicate the gist of what is observed in
the brain. There has however, been a recent rise in more biologically correct ANNs, stem-
ming from advances in neuroscience and more powerful computers enabling the complex
modeling.[59]

An ANN can be summarized by its most important parts (and their biological representa-
tion):

• Nodes (neurons)

• Weighted connections between nodes (synapses)

• An integration function summing the inputs from upstream nodes x their input
weights (4.1) (total depolarization of cell soma caused by each presynaptic (upstre-
am) neuron).

ai =

N∑
j=1

wijxj (4.1)

• An activation function which calculates an output value using the sum from the
integration function.

– 2nd generation models: output represents firing rate of neuron
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– 3rd generation models: output represents all-or-none AP of neuron

ANNs have been shown to be able to model complex non-linear mathematical expressions
using basic principles found in BNNs[22, 65]. However, the learning algorithms are usu-
ally quite simple. The complexity of the trained algorithm comes from the data, not the al-
gorithm. ANNs are often utilized in artificial intelligent agent systems, where hard-coding
all state-action pairs may be infeasible. ANNs are in addition great at pattern recognition
and may be used in a wide variety of classification problems.[137] One great thing about
ANNs and SNNs: is that the models allow us to experiment with different topologies and
training algorithms, which we in turn can be compared with biology and see if our hy-
pothesis are correct. In this way, not only does neuroscience inspire computer science, but
computer science may also aid neuroscientific research and understanding.

In chapter 6 we will look at how ANNs may be utilized in analyzing the culture recordings.
In chapter 7 we will look at how some of these protocols may be applied for training a cul-
tured neural network. In chapter 8 we look at how we may model a neuronal network using
biologically plausible neuron models. In the following chapter, we will first introduce the
main categories of neuron models, moving on to network organization, before diving into
the training of ANNs.

4.1 Neuron model generations

An artificial neuron is characterized by a set of connection strengths, a threshold, and an
activation function[59] (figure 4.1). The types of neurons used in a neural network are of-
ten categorized into three different generations according to their computational units (i.e.
neurons and synapses)[47] and their input/output correlations[96]: binary signals, con-
tinuous values and spike events. The models also display varying degrees of biological
realism, with spiking networks being the most plausible.

4.1.1 1st: Perceptrons

The first generation of ANNs have computational units that are called perceptrons or thres-
hold gates. They are called threshold gates because this class of artificial neurons fire when
their total input reaches, or surpasses, some threshold value ϑ. These neurons are only ca-
pable of digital output (they either fire or they do not). The neurons are composed each of
two computations: a sum and an activation function (in this case, the threshold). The sum
receives and sums the inputs from a set of weighted synapses while the activation function
uses this sum to determine to fire or not. Equations 4.2 shows how this works.

Φ(ai) =

{
1 :
0 :

∑N
j=1 wijxj > ϑi
otherwise

(4.2)

where Φ is the activation function, wij the weight of a synapse and xj the value of
the synapse (the output of the upstream neuron). Both the inputs and the outputs have
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Figur 4.1: Different generations of neurons used in ANNs.[47]

values that may be equal to either 0 or 1 (discrete values). For this reason, perceptron
networks are sometimes called bit-networks. Bit-networks are universal in the sense that
any boolean function can be approximated by some multilayer perceptron with a single
hidden layer.[47, 4, 59]

4.1.2 2nd: Rate-based

The second class of artificial neural networks also perform two computations: a summation
of the weighted input synapses, and an activation function using that synaptic sum. This
time the activation function is a continues function of type f : R→ R, mapping the inputs
of a neuron to a continuous output value. A common activation function choice is the
sigmoidal, or logistic function (equation 4.3).

Φ(ai) =
1

1 + e−kai
(4.3)
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where ai is the input sum, and k is a scaling factor that determines the inclination of the
slope shown in figure 4.2. Sigmoid functions limit outputs to [0;1], whereas the hyperbolic
functions produce outputs in the range [-1;1]. The output is sometimes called the ’spike-
rate’ or ’firing-rate’, which refers to its biological equivalent. The coding scheme used to
encode information in these networks are therefore rate-based (chapter 3.5).[47, 4, 47, 4,
59]

Second generation ANNs are more efficient than first generation networks, and are also
universal for analog, as well as digital, computations: they can approximate, arbitrarily
well, any continuous function with a compact domain and range, using only a single hidden
layer.[59]

Figur 4.2: a) linear function Φ(ai) = kai with k=1; b) threshold function with ϑ=0; c= sigmoid
function with k =1[59]

4.1.3 3rd: Spiking neurons

While 2nd generations neurons can be said to output a variable spike-rate, spiking neu-
rons output all-or-nothing spikes (like biological neurons). These spikes, model the action
potentials (APs) found in biological neurons. Spiking neural networks (SNNs) also model
the biological membrane potential within each neuron (which acts as the internal state of
the neuron). This introduces the concept of time into the simulation, while earlier the neu-
ral networks were based on abstract steps of simulation. Neurons of the 3rd generation are
thus more biologically plausible than those of the previous generations. In addition, they
take advantage of temporal coding by utilizing the time dimension; hence, these networks
may compute functions using less neurons.[47, 4, 59].

SNNs have shown great promise in the field neuroscience as they are able to model bio-
logical neurons to a much greater degree than its predecessors. However, SNNs have been
shown to be harder to apply to classical problem solving tasks in which 2nd generation
ANNs are widely used. This is due to their increased complexity and because efficient
training algorithms have yet to be developed for this newer generation.

Spiking neuron models

There have been developed numerous neuron models ranging from the biologically plau-
sible but computationally complex, to the computationally simple but less realistic. These
spiking models, model the biological neuron action potential (AP). The models incorpo-
rate the resting membrane potential, the threshold potential, depolarization, repolarization,
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hyperpolarization and the absolute and relative refractory periods to some degree (figure
4.3). These AP phases were described in chapter 3.3.2.

Figur 4.3: Modeled action potential[4]

In [77], Izhikevich does a thorough review of various spiking neuron models. 11 models
for spiking neurons are evaluated on their ability to reproduce the 20 most prominent featu-
res of biological neurons and the models computational cost in doing so. Some of the most
popular models of spiking neurons are (ranging from most complex and realistic to sim-
plistic): Hodge-Huxley, Izhikevich’s and leaky integrate and Fire (LIF). For comparison,
he found that the Hodgkin-Huxley model (which could model all features) required 1200
FLOPS (floating point operations). The Izhikevich model (which could also model all fe-
atures) required only 13 FLOPS. Lastly, the LIF model (which was limited in modeling all
features) required only 5 FLOPS.[78]

Leaky integrate and fire
The leaky integrate-and-fire (LIF) model is a bit more limited when it is evaluated on its
ability to simulate biological neurons, but updates each neuron efficiently.[78] The model
equation is displayed in 4.4.

dV

dt
= − 1

RC
(V (t)− J(t)R (4.4)

where R is the resistance of the membrane, C is the membrane capacitance, and V (t) is
the voltage at time t. This equation may be recognized as the linear differential equation
for RC circuits, with the bilipid membrane of the cell acting as a capacitor accumulating
electric charge from the dendrites, and the ion channels acting as resistors. Because the
bilipid membrane is not a perfect insulator, current ’leaks’ out of the cell at a speed defined
by the membrane resistance and voltage, hence ’leaky’.[17]

Izhikevich
The model by Izhikevich[77] strikes a good balance between simulation detail and com-
putational costs. Izhikevich’s model is able to reproduce all the 20 features evaluated in
[78]. Equation 4.7 shows the model.
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Figur 4.4: Izhikevich model showing effects of the various parameters on the shape of the pulse and
recovery of membrane potential.[17]

v̇ = 0.04v2 + 5v + 140− u+ I (4.5)

u̇ = a(bv − u) (4.6)

and the following equation for after-spike resetting:

ifv ≥ 30mV, then

{
v ← c

u← u+ d
(4.7)

Where a, b, c and d are dimensionless parameters, and v̇ = dv/dt where t is time. The
variable v represents the membrane potential of the neuron and u is a variable describing
the recovery of the membrane potential with respect to the resting potential. I represents
the input to the neuron from other neurons.[17]

Figur 4.5: Izhikevich model showing effects of the various parameters on the shape of the pulse and
recovery of membrane potential.[77]
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In figure 4.5 we can get a sense for what the various parameters does to the shape of the
spike and its recovery.

• The parameter a affects the time scale of the recovery variable u, lower values yields
slower recovery.

• Larger values for b gives a higher coupling between v and u making it possible to
have subthreshold oscillations.

• c describes the after-spike reset value.

• d is the after-spike reset value for u.

Hodgkin-Huxley
At the more complex end of the spectrum we find the Hodgkin-Huxley model[71]. This
model is incredibly detailed, describing the membrane potential and the currents of Na+
and K+ ions. It is one of the most important models of neuroscience. This level of detail,
however, comes at a computational cost. Since the model i computationally inefficient for
modeling a large scale neuronal culture, we will not go into further detail on this model
here.

STDP model

We looked at how the synaptic strengths between neurons adjust through STDP in chapter
3.6.1. A model for the STDP process was formulated by Song et al.[144] as shown in
equation 4.8 (with slight modification).

∆wji =

{
Ae(x/∆t)

−Ae(x/∆t)

: if∆t > 0
: if∆t < 0

where∆t = (ti − tj) (4.8)

where ∆wij is the synaptic weight change between the pre-synaptic neuron i and the post-
synaptic neuron j. A is the magnitude of the weight change. ∆t = (ti − tj) represents the
relative firing times of the pre-synaptic and post-synaptic neurons.

4.2 Architectures

A neural network is simply a group of interconnected neurons. An ANN is typically com-
prised of an input layer, a (optional) hidden computational layer and an output layer (figure
4.6.[59, 137] There are many ways to design ANNs: numbers of neurons to use in each
layer, selection of neuron model to use, and how the connections between neurons are ma-
de to name a few. Here, we we look at the most important model concepts and introduce
some relevant models for this thesis.

An artificial neural network is composed of several interconnected units, or neurons. Some
of these units receive information directly from the environment (input layer), some have
a direct effect on the environment (output layer), and others communicate only with units
within the network (internal, or hidden, layer).[59, 137]
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Figur 4.6: Illustration of an artificial neural network.[59]

4.2.1 Network concepts

Feed-forward networks

A simple example of a feed-forward neural network can be expressed by the three-layer
network depicted in figure 4.7. The group of neurons on the left make up the input layer,
whose task is to collect stimuli from the external world; similar to the sensory neurons in
animals. The middle layer is the computational layer; similar to inter-neurons in the brain.
Finally, the output layer on the right, generates the output stimuli of the network; similar
to motor neurons.[59, 137]

Recurrent networks

More complex structures of neural networks may include recurrent connections: connec-
tions between neurons of the same layer or propagating backwards. Figure 4.8 illustrates
a recurrent network.[59, 137]

Deep neural networks

Deep neural networks are identified by the use of many hidden layers. They are often
used in conjunction with ’deep learning’, a branch of machine learning, which attempts
to model high-level abstractions in data through multiple processing layers composed of
multiple non-linear transformations.[64, 52]
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Figur 4.7: Illustration of a feedforward network.[47]

Figur 4.8: Illustration of a feedforward network.[47]

4.2.2 Reservoir computing

Reservoir computing is a framework for computation using a ’reservoir’; often a type of
neural network. Input data is fed to the reservoir in which the feedback weights between
nodes inside the reservoir have random values and are not tuned during training. Instead,
only the weights from the reservoir to the output layer are trained. The benefit or this is
that the non-linear nature of the reservoir is exploited while only needing to tune the linear
feed-forward weights from the reservoir to the output layer. Essentially, this allows us
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to compute a non-linear function using linear training.[139] Figure 4.9 demonstrates the
principle of reservoir computing.

Liquid-state machines and echo state networks are two major types of reservoir compu-
ting. Echo state networks use recurrent neural networks, typically using 2nd generation
sigmoidal models in their reservoir. Liquid state machines use spiking neural networks.
Since SNNs model CNNs better (discussed in chapter 8), we will continue our discussion
here on LSMs.

Figur 4.9: Reservoir computing: Input is fed into the reservoir, which outputs to the output layer.
Only the weights between the reservoir and the output layer are trained.[112, 139]

Liquid state machine

A Liquid state machine (LSM), initially developed by Wolfgang Maass[97], consists of
a large collection of spiking neurons/nodes. Each node receives time varying input from
external sources (the inputs) as well as from other nodes. Nodes are randomly connected
to each other. The recurrent nature of the connections, turns the time varying input into a
spatio-temporal pattern of across the nodes. These patterns are read out by linear discrimi-
nant units.[97, 27] A STDP learning rule may also be applied to the liquid, as to have the
network adapt to the data.

4.2.3 Kohonen - self organizing maps

A Kohonen network[86], invented by Teuvo Kohonen, is a type of self-organizing map
(SOM) capable of clustering and dimensionality reduction of data. SOMs lie within the
category of competitive learning algorithms: a form of unsupervised learning in which no-
des compete for the right to respond to a subset of the input data.[86, 5] Kohonen networks
provide a way of representing multidimensional data in much lower dimensional spaces:
usually one or two dimensions. Kohonen networks have the ability to cluster and adapt to
data in real-time.[86, 3, 5]
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A common example[3] used to help teach the principals behind SOMs is the mapping
of colours from their three dimensional components: red, green and blue, into two di-
mensions. Figure 4.10 shows an example of a SOM trained to recognize eight different
colours. The colours have been presented to the network as 3D vectors, one dimension
for each of the colour components, and the network has learnt to represent them in the
2D space. Notice that in addition to clustering the colours into distinct regions, regions of
similar properties are usually found adjacent to each other.

Figur 4.10: 3 vectored colors represented in 2D.[3]

General algorithm for SOMs[3]:

1. Randomize the map’s nodes’ weight vectors

2. Grab an input vector D(t)

3. Traverse each node in the map

4. Use the Euclidean distance formula to find the similarity between the input vector
and the map’s node’s weight vector

5. Track the node that produces the smallest distance (this node is the best matching
unit (BMU))

6. Update the nodes in the neighborhood of the BMU (including the BMU itself) by
pulling them closer to the input vector

Figur 4.11: Example of Kohonen network.[3]

45



Kapittel 4. Background: Artificial neural networks

4.2.4 Hierarchical temporal memory

Hierarchical temporal memory (HTM), developed by Numenta[117], is a very interesting
type of machine learning technology that aims to capture the structural and algorithmic
properties of the neocortex (chapter 3.4.1). HTMs model neurons (called cells in HTM),
which are arranged in columns, layers, regions and in a neocortical inspired hierarchy
(figure 4.12). The full overview of HTM may be found in their own paper[69], but the
main idea of the model will be presented here.

Figur 4.12: Hierarchical Temporal Memory (HTM). The hierarchical layered structuring inspired
by the neocortex.[69]

How it works: HTM builds on the sparse coding principle, as described in chapter 3.5.2.
HTMs are organized in a layered fashion, like the neocortex, where the top layers look
for simple features that come together to form more complex features in lower layers
(figure 4.12). For example, if the HTM is to recognize a face, Features may start in the
first as lines, then curves, then ears/nose, then parts of a face and finally whole faces
such as demonstrated in figure 3.9. Another property of sparse coding is that it allows
incomplete representations, or slightly different representation of the same object to still
be recognized.

The role of time: The time aspect in biological networks is very important. Inn ’the real
world’ there is no pattern recognition without time. Even looking at an image is an opera-
tion in time as the visual data, even if static, is still continuous and our eyes are constantly
moving. In the same way, HTMs demand a continues stream of data, in contrary with most
ANNs which can e.g. classify a static image with no aspect of time.

Training: HTMs are trained through exposure to a stream of (sensory) data. Learning in-
volves incrementing or decrementing the synaptic weights on a dendrite segment (the input
to a neuron). The rules for doing this follow Hebbian learning. Synapses that are active and
contributed to the cell being active, have their weights increased. Synapses that are inacti-
ve and did not contribute, have their weights decreased. The exact conditions under which
synapses weights are updated differ in the ’spatial and temporal poolers’ (which are not
necassary to decribe here, but may are well described in the paper[69]). Like a biological
system, the learning algorithms in an HTM region are capable of ’on-line learning’, i.e.
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they continually learn from each new input. There isn’t a need for a learning phase sepa-
rate from an inference phase, though inference improves after additional learning. As the
patterns in the input change, the HTM region will gradually adapt.[69]

Figur 4.13: HTM: from input to prediction. The encoder converts the data stream into the correct
input format.[116]

4.3 Training protocols

In ANNs, and as we assume in the brain, learning happens by the modification of syna-
ptic weights between neurons/nodes. Basically, the algorithms that concern the training
of ANNs, try to modify these weights as to achieve the correct input-output mapping.[59,
137] We categorize learning into three main forms: supervised, unsupervised and reinfor-
cement learning.[59, 137] There are many algorithms developed for training ANNs within
these protocols. We shall her primarily look at those training mechanisms that hold some
biological plausibility. In chapter 7 we will look at how some of these protocols might be
applied for training a cultured neural network.

4.3.1 Unsupervised

Unsupervised learning is the machine learning task of inferring a function to describe hid-
den patterns from unlabeled data.[59, 137] Since the examples given to the algorithm are
unlabeled, there is no error or reward signal to evaluate a potential solution. This distin-
guishes unsupervised learning from supervised learning and reinforcement learning. With
unsupervised learning in ANNs, the synaptic weights ’adjust themselves’ to the inputs,
often through a hebbian/STDP mechanism described earlier, or through some sort of clus-
tering network (such as self-organizing Maps).

4.3.2 Supervised

Supervised learning, or learning by ’teacher’, is the machine learning task of inferring a
function from labeled training data.[76, 59, 137] The training data contains a set of training
examples, consisting of an input object and the desired output value. With the given set of
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example pairs (x, y), x ∈ X, y ∈ Y , the aim is to find a function f : X → Y that approxi-
mates the examples. This function can then be used for mapping new examples.[59, 137]
Optimally, the trained ANN is capable of correctly classifying new unseen instances. Tasks
that fall within the paradigm of supervised learning are pattern recognition (classification)
and regression (function approximation).

A commonly used supervised learning algorithm is error backpropagation. This algorithm
attempts to minimize the average mean-square error between the networks output f(x)
and desired target output y over all example pairs, using gradient descent.[59, 137] The
ANN is tuned, through training, by adjusting the weights between nodes as to minimize the
error. This is done by propagating from the output of the network backwards, and adjusting
the weights according to how much they contribute to the error. While backpropagation
has been a successful algorithm in standard ANNs, there is little evidence of its biological
plausibility. In the brain learning occurs locally in each synapse; there is only available
local information, not any backpropagated measure of global error.[56]

4.3.3 Reinforcement

While supervised learning is a problem initially posed and solved in computer science,
reinforcement learning (RL) is inspired by animal behaviour. RL differs from supervised
learning in that no example input/output pairs are given, nor are sub-optimal actions expli-
citly corrected. This is typically due to incomplete information (about the environment).
Instead, pairs are generated, on-line, by an agent’s interactions with the environment. At
each point in time t, the agent performs an action yt and the environment generates an
observation xt and an instantaneous cost ct, according to some (usually unknown) dyna-
mics. The aim is to discover a policy for selecting actions that minimizes some measure of
a long-term cost, or by maximizing some accumulative reward. This also involves finding
a balance between exploration (of uncharted territory) and exploitation (of current know-
ledge), in order to not get stuck in a local maxima. An example application would be in
a AI agent simulation where the agent, operating in some environment, has objectives to
complete; e.g. a world full of food and poison where the agents objective is to eat food and
steer away from poison.[148, 59, 137]

In 2nd generation ANNs

While most RL algorithms are table based; updating an action-state table such as in Q-
learning[137]. ANNs are also frequently used in place of this table because the action-
value table can become very large.

One method, is to train ANNs though some sort of value function in conjunction with
error backpropagation.[137, 59] Another interesting method, that has become increasingly
popular, is training the ANN using a genetic algorithm; where the synaptic weights evolve
threw genetic evolution. In this method, individuals/agents compete to procreate and pass
on there genes to the next generations. Agents are given ’fitness scores’ based on there
performance and ability to solve tasks in their environment. Efficient agents are more
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likely to procreate. Good ’genes’ (in ANNs, the genes represent synaptic weights) are than
passed to improved child generations. Mutation of genes are also involved to increase the
search space. Through evolution, individuals become more and more efficient at solving
the task at hand for each generation.[137, 59]

In spiking neural networks; reward-modulated STDP

Genetic algorithms may also be applied to spiking neural networks (SNNs). Of more bio-
logically inspired methods though, the majority of SNN models use a reward-modulated
STDP rule to reinforce more strongly those neurons active in a certain desirable state.[4,
17]

The reward-modulated STDP rule, proposed by Izhikevich[79], sets out to solve the distal
reward problem (chapter 3.6.5). This is achieved through there being left a trace whenever
a synapse is updated according to the STDP rule (chapter 4.1.3). Using this STDP trace,
combined with the release of dopamine in the presence of reward, allows the recently
active synapses (leading to the reward) to be further strengthened or weakened depending
on their contributed to the reward. This STDP trace, which we call the eligibility trace,
models the theorized activity of some enzyme important for neuroplasticity.[4, 17]

Izhikevich[79] uses the following model of the extracellular dopamine concentration d in
the network:

ḋ = −d/τd +DA(t) (4.9)

τd is a time constant of dopamine uptake, reducing the total amount of available dopamine.
DA(t) models the production of dopamine by dopaminergic neurons in the midbrain,
specifically in the areas VTA and SNc.

The eligibility trace model[79]:

ċ = −c/τc + STDP (τ)δ(t− tpre/post)) (4.10)

c is the STDP eligibility trace, which decays to c = 0 in an exponential manner, and τc is
the variable manipulating the rate of decay. The effect of changing τc is thus to increase
or decrease the sensitivity of plasticity to delayed rewards. A typical value for τc = 1s
means that the synaptic plasticity will be negligible about 5 seconds after the STDP event.
δ(t) is the Dirac delta function which ensures that the value of c only updates if one of the
neurons fired during the current simulation time step.[4]

Finally, we have the update rule, which updates the synaptic strength[79]:

ṡ = cd (4.11)

d and c are the dopamine concentration and eligibility trace, respectively. Thus, the update
rule is dependant on the amount of dopamine available, and the time since last STDP
update in a given synapse.
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Kapittel 5
Embodying the neuronal culture

Why bother to create the hardware and software necessary to enable a network of neurons
to interact with the real world? Because neural systems evolved to control a body and
thereby interact with the world[41]. Nervous systems evolved to aid the survival of motile
organisms, by directing their interactions with their environment.[128] In animals, neural
output is expressed continuously, while being modulated by a continuous stream of sensory
input. This tight sensory-motor loop is likely to be important for learning and functional
behavior.[128]

In the attempt to study in-vitro networks closer to their natural environment, several studies
have conducted research with embodied in-vitro neuronal cultures:

• Reger et al.[130] connected a lamprey brain bi-directionally to a mobile robot. The
robot was presented light stimuli and the brain reacted to this stimuli by telling the
robot to follow or escape the light source.

• DeMarse et al.[51] interfaced a neuronal network cultured on a micro-electrode ar-
ray to a computer emulated animal, coined an ’Animat’, moving inside a virtual
world.

• DeMarse et al.[50] used a neural culture as a flight controller, controlling a planes
pitch and roll.

• Potter et al.[75] used neural cells to control a mobile robot which they coined a
’Hybrot’.

• Bakkum et al.[8] used neural cells to control their robotic drawing arm, MEART.

• Warwick et al.[162] used neural cells to control a small sized mobile robot.

Others have been successful in sending control commands to the nervous system of live
animals, such as cockroaches[72] or rats[151] as if they were robots. These studies can
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inform us about information processing and encoding in the brains of living animals[39],
but do however raise some ethical questions.

Following these approaches, with the aim of establishing general interfacing techniques
and computational methods, we to shall interface a robot with a population of neurons
cultured on a micro-electrode array (MEA). In this chapter, we approach embodiment by
looking at the hardware and infrastructure necessary for developing a closed-loop MEA-
robot system. We shall also look at some artificial bodies which may be candidates for
reembodying our neuronal cultures; Animats, Hybrots and The NTNU Cyborg.

5.1 Hardware

In order to do anything useful with the neural culture, we need to be able to interface it.
For this, we need a variety of specialized hardware. First, we need an electrode petri dish
to grow the neural network on, such as a microelectrode array (MEA). Second, we need a
recording system sensitive to the cultures low intracellular voltage spikes and tolerant to
electrical interference. Third, we need a stimulation device in the form of a spike generator
that can induce appropriate voltages into the neural culture without damaging the neurons.
Finally, computers must be set up to run the analyzing software, send stimulation signals to
the culture, to interface with the rest of the hardware, to distribute the MEA-robot system,
and to log all data. In addition to this, but not exactly part of the interfacing system, the
delicate culture also requires a special incubator regulating temperature, humidity and gas
concentrations (oxygen, nitrogen, CO2) to mimic the environment in which the neurons
normally operate: the animal body.

As of March 2016, the Department of Computer and Information Science (IDI) at NT-
NU was approved the funds for purchasing the MEA2100-60-system from Multi Channel
Systems[166]. Multi Channel Systems provide a relatively niche product that is used in
many in-vitro neuroscience projects similar to the one of The NTNU Cyborg[75, 51, 9,
164, 163, 162]. As of June 2016, the MEA2100-system was ordered and to be shipped
June 16.

5.1.1 MEA2100-60-system

The MEA2100-System[168] enables the possibility to record from neuronal or cardiac
cultures, stem cells, or brain or cardiac slices. The system is a compact solution with
integrated data acquisition for recording from 60 MEA electrodes (upgradeable to 120
electrodes according to MulitChannel Systems[168]) and 8 additional analog channels. It
has an integrated filter amplifier and 3-channel current or voltage stimulus generator, as
well being complete with headstage, MCS-interface board 3.0 multiboot, 5 MEAs, data
acquisition and analysis software, 1-channel temperature controller, power supply, and
accessories.[168]

In the following, the hardware components that make up the MEA2100-60-system are
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Figur 5.1: Overview of the MEA2100-system from MultiChannel Systems[168]

summarized. For the more detailed specification of the MEA2100-60-system, the reader is
referred to appendix A.

Micro-electrode array

Microelectrode arrays (MEAs) are specialized tissue culture dishes, in which living neu-
rons can be grown over multiple bidirectional electrodes for stimulation and recording.
These electrodes permit the investigator to measure the activity of the small living neural
network as well as manipulate that activity to study how information is processed, enco-
ded, and translated into the network’s outputs. Each electrode can detect the extracellular
activity (action potentials) of several nearby neurons and can stimulate activity by passing
a voltage or current through the electrode and across nearby cell membranes. These extra-
cellular electrodes are not harmful to the cells, and thus allow continuous recording and
stimulation for as long as the culture is maintained.[49] MEAs allow relatively high reso-
lution, long term, and continuous studies on the role of embodiment throughout the life of
a cultured neural network.[9] NTNU Cyborg has purchased 5 MEAs (60MEA200/30iR-
Ti-gr).

Figur 5.2: The MEA
from MultiChannel
Systems[168]

A note on MEA resolution:
The 60 electrodes is far from single cell resolution when we con-
sider the thousands of cells in a culture (though through spike
sorting (chapter 6.2) we achieve higher resolution). Ideally, we
would have single cell resolution or close too. Higher resolu-
tion enables for a more detailed spatio-temporal network ana-
lysis. The MEA2100 is upgradable to 120 electrodes resolu-
tion, doubling that of the standard 60. However, there is rese-
arch being conduction greatly increasing these numbers. Ballini
et al.[10] are, for example, experimenting with a 1024-channel
CMOS MEA with 26,400 electrodes.

Headstage with stimulator

The headstage (MEA2100-HS60) is the core element of the system. It houses and heats
the MEA, amplifies and digitizes the signals and has an integrated stimulus generator. The
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lid of the headstage can be opened easily and the MEA is placed in the headstage from
the top. By closing the lid, the contact pads surrounding the MEA connect to the contact
pins. The built-in amplifier makes sure that the recorded signals are amplified close to the
signal source, thereby minimizing noise. The data is then sampled at 50 kHz/channel on
all channels simultaneously, ensuring excellent data quality.[168]

Interface board

The interface board (MCS-IFB 3.0 Multiboot) (figure 5.3) receives data from the headstage
via a High Speed eSATA cable. In the interface board, there is a programmable digital
signal processor, which can be used for real-time signal detection and feedback. The board
is also equipped with various analog and digital in- and outputs for synchronization with
other instruments. The interface board connects to the computer via USB.[168]

Figur 5.3: The interface board[168]

Real-time signal detection and feedback:
Real-time signal detection and feedback is integrated into the Digital Signal Processor
(DSP) within the interface board. This enables fast and predictable reactions related to
recorded analog signals with minimum time delay (1ms as opposed to over 100ms if
a PC is to perform the same job). The real-time detection loop is illustrated in figure
5.4.[168]

TC01 temperature controller

In the MEA2100-headstage, there is a heating element right beneath the MEA. It is con-
trolled by the included temperature controller, so the temperature of the sample is observed
and kept stable at all times. The desired temperature may be selected on the device itself
or using the included control software TCx-Control.[168]

Stimulation generator

The stimulus generator, integrated in the headstage, offers 3 different stimulation patterns:
monophasic, biphasic and bursts. One can choose between current and voltage stimulation
and also select the electrode. All configurations (stimulation patterns, output, and electro-
des) are defined via the included MC Rack data acquisition software.[168]
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Figur 5.4: Real-time spike detection within the interface board.[168]

Software

The MEA2100-system also includes the software package MC Rack. The software al-
lows combining virtual instruments, such as oscilloscope, filter, event detector, spike sor-
ter, sound output, or signal-triggered TTL pulse, with the rest of the hardware. MC Rack
controls the stimulation patterns and when to stimulate the culture. The program can al-
so be used for offline analysis of data, which can be further exported and analyzed with
Neuroexplorer, Matlab or a custom program.

During the writing of this thesis, MC Rack was downloaded and tested from MultiChann-
el Systems website[167], as to get a feel of the software though their available demos.
For further information on the software, the reader may be interested in the MC Rack
manual[108], or the ’MEA Application Note: Neuronal Cell Culture – Cultivation, Recor-
ding and Data Analysis’.[150]

Figur 5.5: MC Rack software from MultiChannel Systems[168]

In addition to MultiChannel Systems MC Rack, it is worth mentioning the MEABench[88]
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software, as it has shown up in many in-vitro neural culture related papers[163, 160, 75,
8, 128]. MEABench is a set of interacting Linux programs for recording data from MEAs
and for real time processing. The software can be used to acquire and visualize data from
MultiChannel Systems MEA hardware in real time. The software offers on-line spike de-
tection, as well as suppression of artifacts[88].

5.1.2 Optogenetics

While MEAs are great for both the analyzing and stimulation of a neuronal culture, the
resolution (60 electrodes vs thousands of neurons) is limited. Also, the recording artifacts
which stem from electrical stimulation are a problem. There is however, a very promising
technology that seems to solve these issues; optogenetics. Optogenetics is a biological
technique which involves the use of light to control cells in living tissue, typically neu-
rons, that have been genetically modified to express light-sensitive ion channels. It is a
neuromodulation method employed in neuroscience that uses a combination of techniques
from optics and genetics to control and monitor the activities of individual neurons in
real-time.[48]

Welkenhuysen et al.[169], developed a silicon-based multi-electrode-optrode array (ME-
OA) for in vitro optogenetics, enabling the best of borth worlds. They demonstrated that
their device allows for artifact-free electrical recording, as well as reliably eliciting spi-
king activity in neurons. They achieved an astonishing single cell resolution stimulation
capability, enabling them to determine the full spatial and temporal activation patterns and
spike latencies of the neuronal network. This results are very impressive and demonstrate
the improvement through this technology.

We won’t dive further into the full working of this technology here, as it is not something
we have plans to implement in the NTNU Cyborg project quite yet. It is however, included
in the discussion as a promising and exciting method we may want to look into in the
future. The ability to increase the recording resolution to the cell level would give us a
much greater insight to the network behaviour. Also, enabling direct neuron stimulation,
verses the ced by the extracellular multi-cell stimulation performed in MEAs, enables
much more sensory information to be encoded into the network.

5.2 Infrastructure

Now that we’ve covered the necessary hardware, we can begin to design the infrastructure
for our embodied system. Using the recording and stimulation hardware described in the
previous section, we wish to build a real-time, closed-loop structure. A key part of this
feedback loop, is a system for reembodying the in-vitro network through some simula-
tion or robotic platform, as will be discussed in chapter 5.3. Recordings from the neural
network can be considered as motor outputs to a robotic system, which act to change the
state of the environment in which it operates. Stimulation on the other hand, can be con-
sidered sensory input from the robotic environment to the neuronal culture. In this section,
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we first let ourselves inspire by similar projects and look at how they organized their expe-
riments. Then, we propose an architectural distributed solution for our own project, The
NTNU Cyborg.

5.2.1 Setups from similar experiments

Bakkum et al.[8] used a distributed bi-directional neural interface for controlling a robotic
drawing arm as shown in figure 5.6.

Figur 5.6: Closed-loop system for the MEART drawing robot by Bakkum et al.[8]

Warwick et al.[162] also used a distributed setup where computers perform dedicated tasks
and communicate via TCP/IP protocols between them. Their setup is depicted in figure
5.7.

Figur 5.7: Closed-loop setup for controlling a miniature robot by Warick et al.[162]

57



Kapittel 5. Embodying the neuronal culture

As a last example, introduced by the Department of Neuroscience (INM), NTNU during
our NTNU Cyborg workshop (05.02.2016), the closed loop setup from Li et al.[92] is
shown in figure 5.8.

Figur 5.8: Closed-loop infrastructure by Li et al.[92]

All these setups demonstrate the closed-loop MEA-robot organization of embodied sys-
tems, and serve as good inspiration for our own project. We see that there are similarities
between different projects, and that there seems to be a pretty standard way of setting up
the distributed system infrastructure using specific task computers at each node.

5.2.2 Distributing The NTNU Cyborg between 3 institutes

With inspiration from the projects above, we are now ready to design our own setup.
The first difference we are to make, compared to the above, is that we will be distributed
our system across the three main institutes involved in the project: The Department of
Neuroscience (INM), the Department of Computer and Information Science (IDI), and the
Department of Engineering Cybernetics (ITK). This calls for some sort of coordinating
module, to enable multi-client access to data logs, as well as enable MEA experimentation
from external locations.

Figure 5.9 drawn by Tufte and Nichele[112] as discussed with the core NTNU Cyborg
team (there along the author of this thesis), drafts a possible setup. The proposal is divided
into three main nodes that are placed individually at each of the three main institutes.
In this way, all have responsibilities and ownership in the common platform, and also
enables all partners to use the infrastructure individually. An IP protocol would serve as
communication between nodes. As such, all communication is done over the Internet. The
IP protocol also allows for new nodes to easily be incorporated in the future. Here follows
a short description of each node:

Node 1, placed at the Department of Neuroscience (INM), serves as the host server which
connects the MEA2100-60-System[168] to the rest of the distributed system. The MEA
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Figur 5.9: Proposed infrastructure for the NTNU Cyborg by project members Gunnar Tufte and
Stefano Nichele[112]

can be accessed by standard (MEA) software[167] locally, or through the IP protocol ex-
ternally. This host server will make MEA recordings and stimulation requests available to
clients.

Node 2, placed at the Department of Computer and Information Science (IDI), serves as
the interpreter of the RAW MEA data, which it receives from the Node 1 server. The
data can then be used by any interpretation software (artificial neural networks, artificial
development, generative system, AI learning, self-organization etc) on any platform. In
figure 5.9, an FPGA, super computer or any desktop computer is shown as possible devices
handling the RAW data. Node 2 will thus receive the RAW data, process it and forward
the result via TCP/IP to Node 3.

Node 3, placed at the Department of Engineering Cybernetics (ITK), serves as the node
which interacts with the robotic platform. Node 3 receives the processed MEA data from
node 2 and uses this data to further control a real world robot (such as the NTNU Cyborg
platform) or simulation. The sensor data from the robot is sent back to Node 2, where
Node 2 processes and sends this data back as stimulation requests to the MEA driver at
Node 1.

Logging: While the system is up and running, it is suggested that all data from all nodes
should be logged and stored in a database. The database can then be used for offline expe-
riments and gives us possibility to mine and analyze this data. Mining the data could give
us insight into unseen network properties.

5.2.3 The two-servers setup

Building upon the setup above, we offer a slight modification to enable a little more flex-
ibility from the point of view of ITK and INM. The system mostly relies on two main
servers: one for communication with the MEA (at INM), and one for communication with
the robotic platform (at ITK). Processing data at IDI could be achieved by using a client
instead of a server. This does not make the role of processing data by IDI any less im-
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portant, but may make for a more flexible design as it enables INM and ITK to conduct
experiments directly with the MEA server. This is beneficial for testing purposes. In ad-
dition, one would be able to conduct experiments with either MEA or robot separately, e.g.
INM will not likely be interested in using the robot platform in their studies. The parts of
this two-server setup may be described as such:

MEA server: Recording from and stimulating to the MEA

The MEA server represents node 1, described in the above section. It will naturally be
located at INM, as it will connect to the MEA hardware. This server will handle spike
detection and spike sorting locally, and may share recorded spike data to clients. Clients
may set voltage and current stimulation parameters through the server, as well as which
electrodes to stimulate and how. It may also be natural to include the logging database as
part of the setup at INM.

Robot server: Robot motor control and sensory data

The robot server represents node 3 in [112]. It will communicate with the robot platform.
The role of the server is to send sensory data from the robot to clients, and receive motor
commands.

Clients: Processing data and requesting operations

A client can be located anywhere. The client requests the RAW data from the MEA server
and processes this data using some processing algorithm (see chapter 6.2). The result of
this processing may then be used as motor function requests to the robot server. Back from
the robot server, the client receives sensory data. The sensory data is converted to some
stimulation sequence by the client, which it passes on to the MEA server. The MEA server
in turn, uses these instructions to stimulate the neural culture with spikes.

Figur 5.10: The proposed two-server setup
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5.2.4 MQTT coordinator

As a final (and as of June 2016 most recent) proposal, IDI (Tufte and Nichele) has sugge-
sted a setup using a global coordinator. This coordinator is to be developed and maintained
at IDI along with the logging database. The argument for this setup, is to enable an effi-
cient messaging system between nodes and to better coordinate activities. Also, as it is
primarily IDI that will be maintaining servers and the database, it is natural that these are
located at their department. This solution is not very different from the two-servers setup.
Here, the coordinator at IDI is simply an extension of the MEA server, and should allow
great flexibility and cooperation.

The idea is to implement a MQTT-based coordinator: MQTT (MQ Telemetry Transport)
is a lightweight messaging protocol originally developed for small sensors and mobile
devices. It is a simple and lightweight publish/subscribe messaging protocol, designed for
constrained devices and low-bandwidth, high-latency or unreliable networks[107]. Figure
5.11 shows an idea of the design for this setup. The coordinator node would make logged
data available to clients and also allow clients communicate with the MEA.

Figur 5.11: Architecture with coordinator node.

5.2.5 Challenges using a distributed setup

One challenge with all these configurations is to enable full functionality though the ser-
vers and coordinators. The MEA2100-60-System includes the MC Rack software which
might only be configured to be used locally. If this is the case, we will either lose a lot of
functionality using the system through a server-client setup, or we will have a big job in
front of us making an API that enables full functionality externally. Either way, this is a
challenge we must solve as only using the MEA locally is not an option if we are to use it
to control a The NTNU Cyborg robot platform.

Another issue with all these setups, which we unfortunately can’t do anything about, is
the fact that the culture cannot, according to INM, be out of its incubation chamber for
more than four hours at a time. The headstage is not fitted within the incubation chamber
and therefor, the MEA must be placed on the headstage each time we want to conduct
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experiments. This means IDI and ITK Have to call INM and have them place the MEA
on the headstage every time there is an experiment to be conducted. This is a bit impracti-
cal, but solvable through a phone call. There are options for fitting a headstage within an
incubation chamber, but this option is beyond our budget for now.

5.3 Embodiment: The robotic body

There is a necessity for interaction with the environment[41], something that cultured neu-
rons are virtually incapable of without sensory systems. Therefor. when the hardware is up
and running, we want to embody our neuronal culture. In the development of a Cyborg, it
will be natural to test our system and training algorithms in different environments before
connecting the cultured network directly to the NTNU Cyborg robot platform. These tes-
ting environments should allow for gradually increasing complexity, as to make the culture
work in simpler settings first, before going on to the more difficult tasks. Here, several en-
vironments are proposed, from virtual environments to real world robots. The suggestions
are listed in increasing order of complexity. The culture should pass certain tests in the
lesser complex environments before moving on to the more complex.

5.3.1 Animat

Though their research with bio-robotic systems, DeMarse et al.[51] developed a virtual
creature as the body for their CNN which they coined ’Animat’. An Animat operates in a
virtual environment. The Animats ’brain’ however, is biological and real in the form of a
neuronal culture. The culture can be given senses through electrode stimulation and motor
functions through reading the culture recordings, which operate the Animats actuators in
the virtual environment.

A virtual creature, or simulation, provides an easy and safe setup for testing the distributed
bio-robotic system. It also allows much more determinism than operation in the real world.
Experiments may include tasks such as wall and obstacle avoidance[163], following of
other virtual creatures, locating food etc.

5.3.2 Hybrot

As a step up from the Animat, we may start to experiment with a real-world small-scale
robot. Such a hybrid-robot organism has been termed a ’Hybrot’[9]. A hybrot is a a robot
given biological properties, making it part machine part biology. A Hybrot is kind of the
opposite of what we traditionally call a cyborg; while a cyborg is usually referred to as
something biological becoming more machine (like a human with bionic arms), a Hybrot
is a machine becoming more biological (like a robot interfacing with a neuronal culture).
Using this definition, The NTNU Cyborg may actually be better called The NTNU Hybrot.
However, people tend be more familiar with the term Cyborg (through movies such as
Terminator) rather than the term Hybrot.
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Utilizing real sensors and motor actuators, the testing environment is more complex than
that of the Animat, and a step closer to the NTNU Cyborg platform. The benefit of using a
small scale robot is the safer and more controlled environment than that of a larger system.
It is also a fairly cheap solution. Even when the NTNU Cyborg bio-robotic system is up
and running, it will probably still be more convenient to perform scientific experiments
with a smaller robot.

There are several providers of such small-scale mobile robots. Bakkum et al.[9], used
a Koala robot[132] from K-Team Mobile Robotics[133] in their studies. The koala has
several sensors and is mobile by wheels. K-Team also provides a slightly smaller Khepera
robot[131], which also is a good alternative. In general K-Team delivers several good
solutions which we might consider purchasing as test vehicles.

As with the Animat, the same experimental tasks apply for the Hybrot.

Figur 5.12: Hybrot setup by [9], using a Koala[133] small-scale mobile robot.

5.3.3 The NTNU Cyborg

The biological control of the NTNU Cyborg robot platform is our main gaol. Although
exactly what the neuronal culture will control is yet to be decided. One option, following
the theme of Animats and Hybrots above, is to have the culture control the robots mobile
base: the Pioneer LX[105] by MobileRobots[103]. However, in this large system, highly
dependent on safe and accurate operation within its environment (the campus hallways), it
may be hazardous to have a neuronal culture take full control. In addition, the base includes
the necessary navigational abilities for autonomous operation. For these reasons, we may
consider other options when it comes to the biological control of the NTNU Cyborg robot.
Some ideas are having the culture control the cyborgs mood, likes and dislikes, troll face
or arms.

Sensory feedback to the neuronal culture

The Pioneer LX includes laser, sonar and bumper sensors and the Cyborg also has a Kinect
mounted with included microphone. All this sensory information may be converted and
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mapped as sensory input stimulation into the neuronal culture. The data will naturally
need to be compressed into a much simpler form. One possibility with the Kinect sensor,
is to utilize its ability to recognize gestures, and feedback these gestures to the culture.
This way, the culture may be able to respond to a smile or an angry face in an interactive
manner.

Figur 5.13: The NT-
NU Cyborg as of May
2016. The base is the
Pioneer LX[105] from
MobileRobots[103]

MobileSim simulator

MobileSim[104] is a simulator software for the Pioneer LX navi-
gational base, and may be used as a sort of advanced Animat. It
may also serve as a testing base for controlling the Pioneer LX,
if we choose to have the neuronal culture operate this. Mobile-
Sim simulates all sensors and motors as those of the real Pioneer
LX.

Figur 5.14: Screenshot of the Pioneer LX simulator: MobileSim[104]
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Once the necessary hardware and software is set up, and the neural network is cultured on
the MEA, it is time to start talking to our newborn organism and listen to its first words.
There is a challenge though, this newborn of ours doesn’t speak any language we are
familiar with in our day to day lives. This newborn only understands neural code, a lan-
guage we have yet to fully understand. Understanding this language is certainly extremely
important in establishing better bi-directional interactions between the brain and external
devices. In addition, for neurological disorders, establishing improved knowledge about
the fundamental basis of the inherent neuronal activity is critical.[163]

Using our knowledge of neural coding from chapter 3.5, we attempt to communicate with
our culture through electrical stimulation. We shall also try to understand the answers
we get, through analyzing the culture recordings. We shall further look at how we may
go about using stimulation and recording for closing the loop in our closed-loop sys-
tem.

6.1 Stimulating the neural network

The stimulation of an embodied neuronal culture is essentially ’sensory’ information from
the robotic environment. Stimulation is important as it is the only information the culture
receives from the outside world. Speaking in terms of embodied networks, the input side
of MEA technology is not as technically well-developed as the output or ’motor’ side. But
it is equally important in our closed-loop paradigm.[128] There are two main aspects to
consider when it comes to stimulation: the stimulation parameters used (voltage, current,
frequency etc.) and the coding mechanism (rate-based, temporal, population coding etc.)
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We need to understand which of these speak the neural language most efficiently, and also
take care not to harm the culture by incorrect stimulation.

6.1.1 Stimulation parameters

There are several stimulation parameters to consider:

• Frequency: the stimulation spike frequency used, i.e. the amount of spikes over some
time interval.

• Voltage amplitude: the pulse voltage used.

• Pulse current: the stimulation current (one can choose between voltage or current
stimulation)

• Pulse duration: the duration of the input voltage pulse.

• Pulse type: monopolar, bipolar, burst

• Interstimulus interval (ISI): the time between successive inputs.

• Duration of the whole stimuli: how long the successive stimulation is continued.

A general observation is that cells respond differently to different stimulation protocols[57,
159]. For voltage controlled stimulation paradigms, for example, parameters such as the
amplitude, polarity, waveform and duration of the voltage pulse(s) affect the number of
cells responding to the stimulation and the possible generation of bursts.[106] Care must
be taken to use voltages and/or current densities that do not harm the surrounding cells or
damage the electrodes themselves, especially when very long-term stimulation is envisioned[106]

Voltage vs current stimulation

Researchers traditionally preferred current controlled stimuli due to simpler calculation
of the electric field and potentials in the medium surrounding the electrode resulting from
stimulation. These are directly proportional to the current passing through an electrode.[25,
128]

Potter et al.[128] however, argue that there are significant advantages to using voltage con-
trolled stimulation: voltage control avoids electrochemical reactions. Current controlled
stimuli can easily exceed voltages that can damage electrodes and harm neurons (such as
voltages exceeding one volt). They further argue that; the key advantage of current con-
trol, the ability to calculate the electric field an potential, is compromised in MEAs due
to leakage currents through the insulation layer. This, they claim, may reduce the current
passing through the electrode by as much as 30% (depending on the insulation). Due to
these arguments, they use voltage-controlled positive-first biphasic pulses of less than 1
volt. We will see in the next section that most studies have adopted this voltage-controlled
paradigm.
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6.1.2 Single pulses and their network response

Single electrode stimulation pulses can consist of several parameters. We wish to know
how to set these parameters as to obtain responsive and non-harming stimulation. We have
here investigated the stimulation procedures of several studies employing MEAs:

DeMarse et al.[50], in their study using a neural culture to set the proportionate weights of
an autopilot, used 200 µs/600 mV bipolar pulses. In another study by DeMarse et al.[51],
where they controlled an Animat, they used 200 µs /±400 mV pulses. Pizzi et al.[122]
used pulses composed by 10% negative voltage (-35mV), 90% positive voltage (35mV).
In order to experiment the cells reactivity to electrical stimulation, they stimulated the
cells with frequency bursts varying from 40 to 800 Hz. Warwick et al.[162, 163] used an
electrical stimulus consisting of a +/- 400 µs/600 mV bipolar pulses that were delivered at
varying interstimulus intervals (ISI). Bakkum et al.[8] used 400 µs/500 mV bipolar pulses
and Dockendorf et al.[55] used bipolar 200 µs/500 mV pulses. Wegenaar et al.[159] found
that the pulse amplitude is the main determinant of stimulus efficacy. Potter et al.[128]
found that positive-first bipolar voltage-controlled pulses were the most effective stimuli
in their repertoire. They further found that the width (time) of voltage pulses are less
important. They concluded: the voltage effects the number of cells directly stimulated,
and this number grows linearly with the amplitude of that pulse. The width of the pulse,
however, only needs to be wide enough to allow the cell membrane and all the parasitic
capacitances in the system time to charge. Potter et al. further found that there was no
benefit in stimulation times above 400 µs.

Looking at the network response of these stimulation pulses, it was found by DeMarse et
al.[50, 49] that there was an increase in bursts for approximately 100 to 200 ms following
the pulse. They also showed that high-frequency stimulation of pulses reduced the number
of APs following stimulation, while low-frequency increased the number of APs. Similar-
ly Dockendorf et al.[55] concluded that stimulation of most channels consistently induced
population bursts lasting longer than 100ms. Shahaf et al.[143] also registered ’a rich re-
pertoire of reverberating electrical activities, lasting 100 ms or more’. Warwick et al.[163]
stated that the typical behaviour of their cultures was generally a period of low-frequency
activity prior to stimulus, followed by heightened network activity induced within few
ms after stimulus. This activity decayed typically after 100 ms, to baseline pre-stimulus
activity. Because of this network wide response to stimuli, most studies choose to wait
200 ms after stimulation before analyzing the responding recordings as to let the network
settle.[50, 49, 55, 163] DeMarse et al.[49] stated that ’it is difficult to elicit responses from
these networks within a few seconds due to an inherent refractory period following each
burst’. This they said, created an upper limit on the rate at which information can be input
or read out from the network, which is problematic during experiments requiring real-time
control.

From these studies, it can be summarized that the common single stimulation protocol is
to use bipolar pulses consisting of 200/400 µs width and 500/600 mV amplitude. These
pulses propagate through the network and evoke a responsive burst of activity for approxi-
mately 100 to 200 ms. This information is a great starting point for our own study. We will
however, need to conduct our own tests verifying the effects of these parameters in our
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neuronal cultures.

6.1.3 The effect of stimulation frequency

While the parameters used for a single pulse are important, the frequency effect of succes-
sive pulses is also very interesting:

The study “Adaptive Flight Control With Living Neuronal Networks on Microelectro-
de Arrays”[50], suggests (following the findings of Eytan et al.[57]) that one can modi-
fy the neuronal weights in a network using high (1/5 Hz) and low (1/50 Hz) frequency
stimulation. They showed that high frequencies seem to reduce the number of evoked
APs following a stimulation pulse, while low frequencies would gradually increase the
number of evoked APs. Similarly, Dockendorf et al.[55] demonstrated that low frequency
stimulation would induce bursts while high frequency would suppress these bursts. Se-
veral other studies also confirm these results, showing low-frequency stimuli can evo-
ke bursting[98, 45], while high frequency through causes activity to fade after a few
minutes[57]. Morin et al.[106] state that the exact mechanism behind this fade is uncle-
ar, but argues that it may be due to exhaustion of the resources of the network or to an
unidentified mechanism of adaptation.

Several studies have also showed that stimulation frequency has effects on the synaptic
weights within the culture. Jimbo et al.[81] used repetitive tetanic (high frequency) stimu-
lation when training their cultured networks. They found that stimulating just one of the 60
electrodes with the tetanic pulse train, resulted in complex changes in the strength of the
underlying connectivity in which both enhancement and depression of synaptic strength
were observed.[30] Likewise, Van Steveren et al.[156] concluded that tetanic training
experiments did significantly change the network response on some of their electrodes.
They found this using 20 Hz tetanic stimulation and two different spike-train protocols:
10 trains of 11 pulses with an interpulse interval (IPI) of 50 ms (20 Hz) and an intertrain
interval (ITI) of 5 seconds, and 20 trains of 10 pulses with an IPI of 50 ms and an ITI of 5
s. These findings, demonstrating potentiation with high-frequency training and depression
with low, have been noted in several other studies[44, 163, 136] as well, and has also been
confirmed by the neuroscientists at INM during Cyborg related discussions. Thus, we con-
clude that electrical stimulation can be an artificial source of neuronal plasticity.[8]

These effects of frequency based stimulation will be of great importance when training our
neuronal culture, which is further discussed in chapter 7.2.

6.1.4 Some issues regarding stimulation

One problem with artificial activation of neural tissue is that a single electrode affects a
number of cells that are not necessarily close to it.[45] The anatomy and tight circuitry
of the network puts neuronal cell bodies and axonal fiber tracts in close proximity.[146]
As a result, there is a loss of specification, and the responses obtained within the first ms
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after stimulation thus might be attributed to the stimulation itself rather than to synaptic
transmission through the network.[106]

Another issue is that recording is usually impossible for the duration of the stimulation,
since the amplitude of the stimulus itself is usually at least one order of magnitude big-
ger than the neuronal signals.[106] This, along with the network wide bursting responses
mention above, poses challenges for our real-time embodied system.

Potter et al.[128] argue that methods for stimulating a neuronal culture may be better
served by communicating through chemical (i.e. neurotransmitters) stimulation rather than
electrical. They argue that it would be more natural to communicate with the cells via the
very chemicals that neurons use to communicate with each other. Some advances have be-
en made in this direction. One approach is to include a microfluidic system into the MEA
for the localized delivery of neurotransmitters or other neuroactive compounds[70]. Anot-
her approach is to apply neuroactive compounds via a micromanipulated puffer pipette[93].
Also, the use of optogenetics was discussed in chapter 5.1. For now though, we will make
due with our electrical MEA.

6.2 Analyzing the culture recordings

Analyzing the neural activity is a very important aspect in The NTNU Cyborg project, as
we want to use the output of the neuronal culture to control a robotic platform. One of
the difficulties of studying neural computation within these dissociated cortical networks,
is the lack of a sound model with which to investigate their computational properties.[49]
Better understanding the neural output may additionally lead to huge scientific and medical
impacts. In this chapter, we investigate different methods for analyzing the neural activity
and how this output may be applied in an embodied environment. Some of these techniques
are inspired by other similar studies involving embodiment of neural cultures, while the
rest are suggestions of the author.

6.2.1 Increasing the MEA resolution using spike-sorting

When recording from neuronal cell cultures, the signals of interest are the electrical spikes
recorded from the neurons when they activate. Spike-sorting is useful when using MEAs
as it can increase the resolution of the neural culture recordings and thus tell us more
about the network activity. Spike-sorting is the grouping of spikes into clusters based on
the similarity of their shapes. Given that, in principle, each individual neuron tends to fire
spikes of a particular shape, the resulting clusters correspond to the activity of different
neurons. The end result of spike-sorting is the determination of which spike corresponds
to which of these neurons[138]. This allows for the detection and separation of action
potentials from different neurons, or groups of neurons, around an individual electrode.
As a result, MEA recordings across the culture permit a picture of the global activity of
the entire neuronal network to be formed.[91]. Thus, the activity of multiple neurons can
be observed in parallel and network phenomena can be studied. As an example, if we say
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that each electrode is sensitive to 5 nearby neurons, then we could theoretically increase
the resolution from 60 electrodes to 60 x 5 = 300.

Basic spike sorting-capability is included in the MC Rack software[150] provided by Mul-
tiChannel Systems, described in chapter 5.1. MC Rack can detect spikes either by an indi-
vidual threshold on each electrode, or by a combination of the slope and amplitude of the
signal.

6.2.2 Utilizing the networks stimulation response

Because of the highly spontaneous and bursting properties of a neuronal culture (chapter
3.7.1 and 6.1.2), assigning robot instructions from the recordings is a challenge and very
much up to the imagination of the experimenters. Studies involving embodiment have
chosen to tackle this problem in various ways:

Demarse et al.[50] used the networks response to stimulation as an indication of the
weights for a proportional controller. They used the average number of APs 150 ms
following each stimulation, and calculated the difference between the current amount of
APs and the initial amount. This difference became the proportionate weight of their flight
controller. With high-frequency stimulation, they decreased the amount of responding APs
from a stimuli, which caused a bigger difference between initial and current APs; hence
increased proportionate control to the pitch and roll of the aircraft controller. Warwick et
al.[162, 163] used the characteristic response curve they witnessed when stimulating two
electrodes with varying time delay (termed inter-probe interval (IPI)). These response cur-
ves formed the basis for deciding the movement of their robot (forward, backward, left and
right). DeMarse et al.[51] clustered the spike patterns observed across all the electrodes of
the MEA, and assigned different robotic functions to different clusters. Bakkum et al.[8]
used the Center of neural Activity (CA) (analogous to the center of mass), as a form of
population coding, which they used as instructions for their Animat.

6.2.3 Spatial spike-pattern sorting

In many bio-robotic studies using neuronal cultures, the spatial spike-patterns occurring
over the electrodes across the culture are used as motor inputs to a robot (e.g. [51, 8]). A
spike-pattern is defined as all the spikes (APs) observed over the network during a short
instant of time. As an AP is a very short-lived firing of the neuron, and as the neuron either
fires or not, we may represent this pattern as a 1s and 0s matrix (60-bit in the case of
our MEA). Figure 6.1 illustrates this type of spike-pattern map. Through pattern sorting,
one can dedicate different spike-patterns, or clusters, to represent different motor controls
in the robot[50]. We may categorize these spike-patterns by use of pattern recognition
algorithms such as clustering or self-organizing maps.

From section 3.5, we learned about the different coding schemes. Pattern-sorting is a good
example of using a population coding scheme, where patterns across the network popula-
tion contain the information.
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Figur 6.1: Raster plot showing the spike activity for each channel/electrode over time[106]

Clustering

Data clustering is a popular method of extracting motor signals from the neuronal culture[51,
109, 123, 101]. Clustering is the process of classifying data elements by sorting similar ele-
ments close to each other (or within the same class) and dissimilar elements far from each
other (or in different classes). Different measures of similarity may be used for sorting.
Some examples include distance (nearest neighbor method), connectivity, and intensity.
There are many types of clustering algorithms, some of the most widely used being k-
means, mixture models, fuzzy clustering (where cluster borders are not as hardly defined)
and hierarchical clustering. These algorithms are described well in literature[171] and will
not be discussed further here.

For our neuronal culture, clustering can be used to group similar spatial spike-patterns.
These clusters can then be correlated with different robotic instructions. This way, when
the system is monitoring the culture output, it can associate the different firing patterns to
different instructions using real-time cluster categorization. In most clustering algorithms,
one can choose how many clusters one wishes to create. For a robotic system then, one
could for example chose as many clusters as needed motor inputs.

In DeMarse et. al[51], a clustering algorithm was trained to recognize spatio-temporal
patterns in the spike train, to use as motor commands for an Animat. They accomplished
this using the following procedure:

1. Without stimulation, record from the MEA and register new patterns until no new

71



Kapittel 6. Communicating with the neuronal culture

Figur 6.2: Example of K-means clustering. By Chire, Wikipedia Commons

patterns emerge

2. With stimulation, register any new occurring patterns until no new patterns emerge

3. Cluster the recorded patterns into N clusters using some clustering algorithm.

Figure 6.3 shows the result of this process.

Figur 6.3: Left: The frequency that different patterns would recur. Right: Number of novel patterns
that the clustering algorithm detected as the session progressed (total 51). The arrow indicates the
plateau reached when no stimulation was provided. When stimulation was provided, the number of
patterns increased.[51]

In their study, activity on each channel was integrated and decayed following each spike,
i, by:

An(ti) = An(ti−1)e−β(ti−ti−1) + 1 (6.1)
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where n is the MEA channel number from 1 to 60, ti is the time of the current spike, ti−1

is the time of the previous spike on that channel n, β is a decay constant. This produced a
vector, A, representing the current spatial activity on the MEA. The activity vector was sent
through a squashing function, Pn(ti) = tanh(δAn(ti)) which limited the contribution of
channels with extremely high spike rates. They clustered this activity by:

Mk ⇐ ( Nk

Nk+1 )Mk + ( P
Nk+1 )

Nk ⇐ Nk + 1
(6.2)

where Mk is are the clusters. A pattern was grouped to the nearest cluster using the
Euclidean distance that had to be less than a threshold ∆, where ∆ = 0.9. Nk is the
number of occasions this pattern was matched, gradually freezing Mk as Nk became lar-
ge. If P was not close to any cluster in Mk, a new cluster was constructed at position
P .

In a talk by Emre Yaksi (Phd), Kavli Institute for Systems Neuroscience, named ’Sen-
sory processing in zebrafish’ at NTNU, it was shown through their studies, that neurons in
networks like to stay within their clusters (fire with the same neurons) during both spon-
taneous activity and stimulation. This displays the deterministic behaviour one gets by
utilizing clusters as robotic operations.

Self organizing maps

Self-organizing maps (SOMs), a particular group of ANNs utilizing unsupervised lear-
ning, were introduced in chapter 4.2.3. The SOM is a sort of clustering algorithm with the
advantage of providing continuous real-time clustering; the clusters are constantly adap-
ting to the incoming data, unlike conventional clustering algorithms which have predefined
clusters. As with clustering algorithms, SOMs can be configured with a predefined number
of clusters.

6.2.4 Liquid state machine

The liquid state machine (LSM) was introduced in chapter 4.2.2. Training a neuronal cul-
ture is challenging. One way for us to implement a culture in a robotic system is to not
train the CNN directly, but instead utilize its intrinsic non-linear dynamics in a system
we can train linearly. This may be done using a LSM (figure 6.4), as done in a similar
approach where neurons in the primary visual cortex of cats were utilized[113]. Using a
CNN as a liquid in such a system has been verified as possible[55]. DeMarse et al.[49]
stated that a LSM is ’capable of producing stable outputs even though the liquid state is a
high-dimensional continuously varying pulse train’. A LSM requires only training of the
feed-forward weights to an artificial neural output layer.

The feed-forward network may be trained as any ANN; using backpropagation, genetic
algorithms etc. The ANN will essentially be trained to classify the response from the bio-
logical network to control the robot according to the target task.[112] The output of this
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Figur 6.4: Example of a liquid state machine in a closed-loop NTNU Cyborg system.[112]

network is forwarded to the motor controllers of the robot. An interesting alternative to the
conventional rate-based ANN, is to use a spiking network as the output layer. This would
allow for better incorporation of the time aspect; the sequence of spikes. After training the
desired behaviour into our LSM, it will be interesting to observe any change in behaviour
over time, indicating the adaptation of the CNN.

6.2.5 Prediction and anomaly detection using HTM

In chapter 4.2.4 we introduced Hierarchical temporal memory (HTM). We found that HTM
is efficient at analyzing and decoding unlabeled high velocity time-based data streams,
which is exactly what we get from the neural recordings of the CNN. Also, HTM con-
tinuously updates to the incoming data stream[69] which, with the constantly adapting
neuronal culture, is a great feature. HTM may be useful in the following tasks: Pattern pre-
diction; prediction of next spike pattern based on previous pattern sequences, and anomaly
detection; detecting if the current spike-pattern deviates from the expectations.

Prediction may be useful for predicting the single or series of next firing sequences. A
simple simulation of HTM’s prediction capabilities may be viewed in this video: [58].
Prediction could, for example, enable us to take action (through necessary stimulation) if
we see a network wide burst is about to occur. There is also scientific interest in finding
out exactly how predictable a CNN really is, telling us something about the degree of
spontaneity of the network. If the internal state of the CNN is indeed deterministic, one
may ask what this means for networks in our own brain and whether our thoughts may be
predicted.

Anomaly detection is sort of the opposite of prediction. It comes into play when the pre-
diction fails to be true. Anomaly detection could alert us when something unexpected
occurs in the culture, and will let us further analyze the cause of such an anomaly by going
through the log records.

HTM also allows for the merging of senses, meaning that one could use one HTM network
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with the spike-patterns recorded form the MEA as input, and another with the sensory
data from the robot as input. Then one could merge the two into a single HTM network,
which would allow prediction dependent not only on internal state, but also of the external
sensory information. This is illustrated in figure 6.5.

Figur 6.5: Converging networks from different sensors. Modified from [69]

6.2.6 Mining the data

In chapter 5.2, we proposed an infrastructure where all stimulation to, and recordings from,
the MEA are logged to a database. With all the data that will accumulate, it is interesting
too investigate whether there exist some unseen dependencies within the neural activity.
This is where mining comes into the picture.

The overall goal of the data mining process is to extract knowledge and patterns from
large amounts of data[67], through methods such as principal component analysis (PCA)
and multivariate analysis. Mining involves several classes of tasks:[60]

• Anomaly detection: the identification of unusual data records, or sequence of records.
Used to anticipate behavior patterns and trends.

• Association rule learning: eearches for relationships between variables..

• Clustering: discovering groups and structures in the data that are in some way or
another similar.

• Classification: generalizing known structure to apply to new data. E.g. classifying
a neuronal spike pattern as a particular movement.

• Dimensionality reduction: Representing multivariate data through less fewer di-
mensions. Such as SOMs attempt to do.

• Regression: find a function which models the data with the least error. A property
of e.g. ANNs.
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• Summarization: providing a more compact representation of the data set, including
visualization and report generation. This may for example be done by dimensiona-
lity reduction.

The reader may notice that some methods described earlier in this chapter also fall into the
data mining category. Usually, we talk about mining when we are analyzing logged data,
in contrary to the real time data.

The question when conducting any data mining procedure, is if we can actually expect
any informative results from mining the MEA recordings. We mentioned the spontaneous
activity of the network in chapter 3.7.1. This spontaneous and seemingly random activity
may not be much else than just that; spontaneous and random. Or, there could possibly be
unseen correlations that we have yet to discover. This is just one of the many things in this
project we will have to find out.

We will not go into further detail here about the workings of each mining algorithm, as the
topic includes a vast set of methods and algorithms well documented elsewhere[67]. The
topic of mining is however, included in the discussion to aware the reader of our intentions
with logging data, and what we mean when we say this data is to be mined.

6.3 Neural coding

In order to make our Cyborg, we need to better understand how neurons use electrical
signals to encode complex information about the world around us. Understanding how
neurons encode information is highly important when it comes to analysing and stimu-
lating our neuronal culture. We have to speak the cultures neural language if we hope to
communicate with it.

However, this is no trivial task. In the field of neuroscience, unlocking the true mechanisms
of this neural brain code remains one of the biggest puzzles yet to solve[99]. Hopefully,
the research we are now conducting in the NTNU Cyborg project, may help towards furt-
her understanding some of the brains secrets. Developments in this area may contribute
to better understanding how brains work, help with rehabilitating brain disorders, help
people with spinal injuries, enable us to model the brain, replicate the brain or at least
some aspects of functionality. Using neural signals, we may also be able to improve brain-
computer interfaces (BCIs).

We discussed neural coding mechanisms in chapter 3.5, such as rate-based, temporal, po-
pulation and sparse coding. Here, we investigate how we may communicate with our cul-
ture is a closed-loop bio-robotic system. Basically, we need to implement two subsystems:
(a) culture-to-robot, in which we decode the culture output as robot instructions, and (b)
robot-to-culture, in which we feedback sensory information from the robot to the cultu-
re.
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6.3.1 Encoding sensory input to the neural culture

We have talked about the stimulation parameters, but have not yet discussed how we should
encode the sensory information about the environment to the neuronal culture. For this, we
need to convert sensory information from the sensors on the robot (and maybe even feed-
back from the robots own movements[51]), into electrical stimulation to the neuronal cul-
ture. Most embodied studies accomplish this through the use of dedicated input electrodes
together with a rate-based coding scheme. The frequency of the stimulation rate encodes
such things as how far a wall is from the robot[163], or how fast the robot is moving[51].
There have been few attempts in using temporal or population based coding as input, in
contrary to the opposite mapping; reading from the culture, where population based coding
is often applied.

Here are some examples of how others solved this task: DeMarse et al.[51], in their study
using an Animat. provided feedback for each movement within the Animats virtual world
(four channels; one for each movement) as well as the effects of those movements, such
as collisions with walls or barriers (one channel). Feedback into the neuronal network was
accomplished by inducing neural activity near one of five possible electrodes that delive-
red four pulses. Stimulated, or ‘sensory’ channels were chosen to be spatially distributed
across the MEA, and capable of eliciting a reproducible response when stimulated. War-
wick et al.[163], using a hybrot, stimulated the culture through a dedicated electrode every
time a laser sensor registered an obstacle 30 cm in front of it. In a follow-up experiment,
they used sonar information to directly control (proportionally) the stimulating frequency
of two sensory/input electrodes.

Initially, for our own culture, applying the same coding mechanisms as the above studies
is certainly a good starting point. We would however, benefit from experimenting with
several coding mechanisms, also those that are population based (dense and sparse). E.g,
instead of encoding the distance to a wall through frequency, we could use the number
of stimulated electrodes as a code for the distance. It would be interesting to see how
different coding mechanisms may be used to solve the same problems, and how the culture
reacts and adapts to these differences. We may also use a combination of schemes such as
population and frequency stimulation. In addition, as we have seen in chapter 3.5, temporal
coding may be applied to describe the environment to a much greater degree; assuming that
the culture is able to distinguish the temporal pattern from just being a spike-rate.

6.3.2 Decoding the output from the neural culture

The RAW MEA data must somehow be converted into robotic instructions. Here too, we
must decide upon a coding mechanism. As mentioned above, the popular choice is a po-
pulation based method, such as clustering, such as in [51]. Other methods were described
in chapter 6.2. Essentially, a population based scheme, derives information from the spike-
patterns emerging from the culture. After clustering these patterns, one may assign each
cluster a robotic function. In another study, Bakkum et al.[8] used a population calculation
of the Center of neural Activity. Chao et al.[37] similarly employed population coding for
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motor mapping. This popularity of population based coding, may be due to this scheme
being known as a robust means to represent movement directions in the primary motor
cortex.[63]

There have been a few other methods also though: Cozzi et al.[44] used an average neural
activity function between two sets of 8 elctrode outputs, while Warwick et al.[163], in their
Hybrot study, used one dedicated output electrode to make their robot turn. This electrode
was chosen for its ability to become active when the Hybrot sensed a wall (essentially, the
input stimulation resulting from the wall being detected, evoked a response on the output
electrode).

As with encoding, we gain to experiment with different schemes for decoding as well.
While population coding seems efficient, we could also use dedicated output electrodes to
control motor behaviour. E.g., we could use the firing rate of two electrodes as the left and
right wheel motor velocities. According to Jeff Hawkins (Numenta - developer of HTM)
though, this may be a fragile option and the brain does not code this way. With our tool set
from chapter 6.2, we do now however have a good starting point to decode the neuronal
activity.

6.3.3 Why encoding and decoding is difficult

Encoding and decoding were defined in chapter 3.5.1. Both are highly interesting to achie-
ve in our neuronal culture, and also in the brain. In the CNN, encoding would enable us
to predict the CNNs behaviour when stimulating the culture, giving us better intuition on
how to stimulate efficiently. Decoding would enable us to better understand the CNNs out-
put and use its spiking activity in our robotic system. In the brain, encoding would allow
us to stimulate senses directly into the brain, e.g. by connecting a camera directly to the
visual cortex, which could enable blind people to see. Decoding, on the other hand could,
for example, enable people with paralysis to control bionic prostheses, and through enco-
ding again, perceive touch and feeling. Some attempts have been made at decoding neural
networks using Brain-computer interfaces (BCIs):

In 1999, Stanley et al.[145] decoded neuronal firings to reproduce images seen by cats. The
team embedded an array of electrodes into the thalamus (which integrates all of the brain’s
sensory input) of the cats. They targeting 177 brain cells in the thalamus lateral genicula-
te nucleus area, which decodes signals from the retina. The cats were shown eight short
movies, and their neural activity was recorded. Using mathematical filters, the researchers
decoded the signals to generate movies of what the cats saw and were able to reconstruct
recognizable scenes and moving objects. Similar results in humans have since been achie-
ved by researchers in Japan[102]. In another study, Carmena et al.[33] developed BCIs
to decode the brain activity of monkeys. The monkeys learned to control a robotic arm
by viewing its movements. In 2011, O’Doherty ey al.[118] took this one step further and
closed the loop with the BCI sending sensory feedback, through intracortical stimulation
(ICMS) in the arm representation area of the sensory cortex, to the monkeys.

These are all impressive feats, however the studies are not necessarily universal in that the
mapping functions they developed would be applicable to other cats/monkeys/humans.
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They simply made a correlation between the neural signals recorded, and the task at hand,
e.g. the images seen by cats. What would be truly interesting would be if we, for example,
could tap into the visual cortex of any brain and see exactly what the individual is seeing.
The issue here though, is that such a global code may not exist, as no brain is equal.
From chapter 3.4.1 we learned that the neocortex shapes itself and learns representations
by adaptation. The exact structure and synaptic strengths between neurons is not going
to be the exact same across different brain. This definitely causes great challenge for the
universal decoding of neural activity. However, encoding may actually be somewhat more
approachable. In the study discussed in chapter 3.4.1, we saw how Roe et al.[134] were
able to reroute the visual pathway to the auditory pathway of ferrets, demonstrating an
inherent property of the brain to process consistent patterns rather than just specific brain
region dependent codes.

In the context of neural cultures, we meet some challenges: first of all, the network is
highly dynamic, always changing due to synaptic plasticity and neuromodulation (chapter
3.6). This may benefit us when it comes to the input stimulation (as the culture will adapt to
the sensory information) but creates a challenge when trying to decode the ever-changing
recordings. Even without stimulation, the culture is spontaneously active, which makes it
hard to create a map or a transfer function between input stimulation and output response.
Lastly, the output of the network is highly dependent on the sequence of states up to the
measuring point. This internal state is difficult to replicate in a transfer model.

6.3.4 Decoding neural activity across individuals

One might imagine that, one day we will be able to read the thoughts or intentions of anot-
her human being, simply by reading their neural activity. In this, we assume that the neural
activity is equally coded across individual brains; that the firing patterns and sequences are
global. We talk about neural coding as if the brain talks a universal language and that this
language is transferable. But is this really the situation?

Looking back at our introduction of the neocortex in chapter 3.4.1, we talked about how
the neocortex displays a self-organizing behaviour when decoding sensory input via its
several cortical layers. Now lets do a little thought experiment. Imagine that we have two
neocortical networks in two different individuals. through the top layer, comes the sen-
sory input form the outside world, e.g. sound. Now these networks have the same general
topology, but looking closer, the weights between neurons don’t necessarily have to be
identical in both networks. This is due to there being ’more than one way to Rome’; the
same functionality may be achieved though different routes. This gives rise to different
records of activity in the same regions of different brains but meaning the same things.
This would further imply, that the further down we get in the neocortical layers, the more
distinguished the patterns become form individual to individual. After all, for what we
know, neurons themselves are not aware of other neurons existence. In the same way,
decoding the language of one neuronal culture may not help us decode another.
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Training a cultured neural
network

In the previous chapter, we looked at how we may utilize the cultures responses to stimu-
lation as robotic actions. However, this is simply a mapping problem; mapping a neural
spike-pattern to a convenient robotic behaviour. In this process,the neuronal culture is not
being taught how to behave in its environment, but instead the robot is being programmed
to behave according to certain firing patterns. In this chapter we would like to investigate
the ability of neuronal cultures to learn.

To begin, we should define what is meant by learning. According to Ruaro et al.[136],
’learning in neurons is associated with changes in synaptic efficacy, leading to a persistent
increase in amplitude of the response to the learnt stimulus.’ They refer to this as long-
term potentiation (LTP). For learning to be distinguished from plasticity, the change in
network response must be lasting.[156] In the context of an embodied culture however, we
may define learning as: the ability to acquire new behaviour through some form of trai-
ning procedure. This training procedure also entails unsupervised training, which implies
learning by experience.

In this chapter, we will take inspiration from the brains learning mechanisms to inspire
learning in our culture. Through experiments with our culture, we may in return inspire
new understanding to the learning mechanisms in the brain. We will also investigate how
learning algorithms, developed for artificial neural networks (ANNs), may be applied to
training the culture.
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7.1 The ability for neuronal cultures to learn

The ability to train the culture to predefined behaviour would improve performance and
possibilities greatly. Training the cultured neural network (CNN) to obtain some prede-
termined behavior would be highly desirable. However, there is some controversy in the
field of neuroscience surrounding whether or not a CNN can learn complex behaviour.
Experiments have had limited success in demonstrating a definition of learning that is
widely agreed upon. Nevertheless, plasticity in neuronal networks is a phenomenon that
is well-established in the neuroscience community, and one that is thought to play a very
large role in learning.[160] Several studies have shown adaptive beheviour through plastic
modulation using CNNs:

Pizzi et al.[122], who designed their cultures to behave like Kohonen and Hopfield networks,
showed the CNN was able to distinguish input bit-map patterns. They showed that the in-
troduction of organized stimuli modified the network structure and increased the informa-
tion content even after the end of stimulation, which they concluded suggested a form of
learning and memorization.

DeMarse et al.[51], in their Animat study, found that over the course of there simulation,
there occurred changes in the Animat’s behavior due to interaction with its surroundings.
They suggested that this change was due to the adapting network due to biological proces-
ses such as plasticity. The study did not however attempt to reinforce specific behaviour in
their Animat.

Warwick et al.[163] reported that their Hybrot appeared to improve its performance over
time in terms of its wall avoidance ability. They hypothesized that neuronal structures/-
pathways that bring about a satisfactory action tend to strengthen purely though a process
being habitually performed; learning due to habit. Such a mechanism has also beed ob-
served elsewhere[84].

Ruaro et al.[136], in their study to see if neural culture can perform tasks such as those
often performed by ANNs, successfully trained a neuronal culture to discriminate between
an ’L’ and an inverted ’L’ pattern using cells from the hippocampus. They showed LTP
through tetanic stimulation using frequencies of 100 Hz and higher. Lower frequencies
did not show the same effect.

Jimbo et al.[81] observed potentiation and depression of activity in particular pathways
when training their CNNs with repetitive stimulation using tetanic stimulation.

Bakkum et al.[8] created a robotic drawing arm controlled by a neuronal culture, which
they termed MEART (MEA + art). For training, plasticity was induced by repetitive sti-
mulation of paired electrodes, termed Patterned Background Stimulation (PBS). A PBS
was constructed by pairing the probe electrode with another active electrode (one that
evokes network responses) at an inter-pulse-interval of 20 ms, repetitively stimulated for
3 sec. They found that Meart’s PBS did induce directional neuronal plasticity, but in an
uncontrolled manner. They determined that since neurons at different electrodes can be
connected through multiple intermediate neurons and pathways, the effect of a given PBS
could not be predicted.
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Jackson et al.[80], in a primate motor cortex, repetitively stimulated a neuron 5 ms after the
occurrence of an action potential on a different neuron using an electronics implant. After
halting the stimulation, subsequent activity of the recorded neuron caused an increase in
the firing rates in the vicinity of the stimulated neuron.[8]

Bi and Poo[19] found that for mono-synaptically connected neurons firing within a few
10s of ms of each other, directional spike timing dependent plasticity occurred at the level
of the synapse.

Shalaf and Marom[143] defined a criteria for large random in.vitro cortical networks to
display general capability of learning: numerous connections, stability of connections, and
modifiability by external stimuli. They concluded that these criterias were fullfilled in
their study by use of repetitive stimulation. They also showed that the magnitude of such
modifications increases with stimulation time.

Other studies have attempted to imprint signal patterns onto the networks via artificial
stimulation.[15] This can be done by inducing network bursts[126] or by inputting specific
patterns to the neurons, from which the network is expected to derive some meaning (as
in experiments with animats, where an arbitrary signal to the network indicates that the
simulated animal has run into a wall or is moving in a direction, etc.).[51, 123] The latter
technique attempts to take advantage of the inherent ability of neuronal networks to make
sense of patterns.[160]

Although the above studies do show results of neural plasticity and a response to training,
some studies have had a hard time achieving a lasting effect. Van Staveren et al.[156]
trained their cultures with two protocols, i.e. the tetanic stimulation method from the report
by Jimbo et al.[81] and a selective adaptation protocol[143]. Tetanic stimulation training
changed the network response significantly, but they did not find it to have a lasting effect,
neither did the selective adaptation protocol. This, they concluded, could therefor not be
called learning. Potter et al.[128] also did not observe any evidence of lasting (above 30
min) changes in the open-loop behavior (driven by spontaneous activity) in their Animat,
as a result of closed-loop sessions/training.

In conclusion, these studies demonstrate that there is a possibility for learning in neuronal
cultures. To which extent, and the complexity of behaviour one can achieve, is yet to be
understood.

7.1.1 Discussing the ’learning’ seen in similar in-vitro studies

While most of these studies supply good evidence of neural adaptation to input stimula-
tion through synaptic plasticity, they lack to have actually trained their cultures to perform
predefined tasks. This is by no means criticizing the studies, they do exactly what they are
meant to do: demonstrate the embodiment of a neuronal culture and investigate the adap-
tation of behaviour to its environment. Through the adaptation of behaviour, these studies
demonstrate a form of unsupervised learning. What they do not demonstrate however, is
any form of reinforcement learning. They do not train the cultures to distinguish between
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good and bad actions, or have them work towards some behavioral gaol. Instead the be-
haviour of the Animat/Hybrot is pretty much programmed: instead of training a behaviour
into the culture, they are simply taking the existing behavior of the network and selectively
choosing which patterns should be assigned to which motor signal. This is demonstrated in
the study by DeMarse et al.[51], where the existing spike patterns are clustered and these
clusters are then made to represent actions. In another study by Warwick et al.[162], they
used a Klephora robot with laser sensors, with the goal of avoiding walls. Through the
use of a electrode that responds to a certain stimuli (when the wall is closer than 30 cm)
they assigned this electrode a robotic turn, as to have the robot avoid the wall. Now to be
fair, and as mentioned, the fact that the CNN does display a change in behaviour is truly
interesting and demonstrates the synaptic plasticity in the network and the adaptive chan-
ges that occur due to the form of unsupervised learning. However, for incorporating more
gaol directed behaviour in our bio-robotic system, there is a need to solve the mystery of
reinforcement learning and utilize this mechanism into our culture.

7.2 Training methods

We saw in chapter 3.6 how the brains learns through mechanisms such as association,
reward and prediction errors. In chapter 4.3 we looked at machine learning mechanisms
for training artificial networks. Here we discuss some possible ways to train a neuronal
culture inspired by biology and from algorithms developed for artificial neural networks
(ANNs).

7.2.1 Beginning early

Neurons and neural systems are designed to change in a ‘use-dependent’ fashion: if they
aren’t stimulated properly they won’t develop, and if they’re used abusively they will
develop abnormally.[162] The brain develops in a sequential fashion and most rapidly
early in life[121]. The CNN also shows signs of increased plasticity in the early stages of
development (chapter 3.7). For this reason, it is important to embody our neuronal culture
as soon as possible, and begin feeding it with sensory input while it is developing. This is
important so that the CNN does not develop bad circuitry which continues on in its mature
life.[162]

7.2.2 Frequency training

We saw in chapter 6.1.3 that tetanic stimulation can induce long-term potentiation (LTP).
This property could be used for tasks such as pattern imprinting, accusative learning
through the feedback sensory information and reinforcement. Further, we may be ab-
le to use frequency to train the neuronal culture to achieve some predefined goal beha-
viour.
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7.2.3 Learning through embodiment

Re-embodiment of the neuronal culture is not only a cool way to make a Cyborg, but
also an important aspect in studying learning. Bakkum et al.[9] suggest that environmental
interaction is needed to expose the underlying mechanisms for learning and intelligent
behavior. The same notion is implied by Potter et al.[128]. Through embodiment, we are
able to observe the behavioral adaptations that we define necessary for it to be called
learning. Even without a specific training protocol, simply embodying a neuronal culture
and watching how the network adapts to its environment, is essentially a live model of
learning by adaptation.

7.2.4 The importance of network topology

Looking at the nervous system discussed in chapter 3.4, it is important to note that neural
networks function in highly organized and hierarchical structures. In particular, we looked
at the neocortex which consists of multiple layers, which are thought to play an impor-
tant role in decoding incoming sensory information[69]. In fact, it is also thought that the
structure of the network is more important than the mere quantity of neurons.[69] E.g., the
C. Elegans (roundworm) only has 302 neurons[87], which is far less than the number of
neurons often used in in-vitro studies, yet still displays simple behaviour. In ANNs also,
network organization is very important for the functionality of the ANN. This begs the
question whether our neuronal culture should/must be structured to a much greater degree
than simply having it grow into a random network. It would be highly interesting to expe-
riment with different network topologies, and see their effect. Specifically, implementing a
neocortical inspired structure would be exciting. By utilizing such a structure, it may also
be of less importance how we encode information into the network as long as the inputs
are consistent and sufficient. The neocortical structure might be able to, in an unsupervised
manner, extract information from any type sort of coding. (chapter 3.4.1).

The CNN inspired by the neocortex

The neuroscientists at INM have stated that research is currently being conducted to enable
the possibility of organizing cultures to a much higher degree than done previously. This
will enable the culture to be organized in sections/chambers. By having more control of
the network topology, than the randomized networks used today, it would be highly intere-
sting to organize the neuronal culture in a layered, neocortical inspired, fashion. With this
emerging technology, this may be possible in the foreseeable future.

The CNN organized in an artificial neocortex

Another possibility, closely related to organizing the CNN itself, is to incorporate the
CNN, as one layer, in an artificial neocortex. With this solution, there is no need for sec-
tioning the culture itself. The artificial layers can consist of spiking networks, which we
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learned in chapter 4.1.3 simulate biological networks quite well. This setup is not depen-
dent in the research mentioned above, and enables better understanding of the importance
of network topology. One method would also be to use a HTM network as a structure
around the CNN. A simple schematic of such an artificial neocortex network is depicted
in figure 7.1.

Figur 7.1: Spiking neural networks and cultured network form layers of the neocortex inspired
network. Feed forward neurons between the layers forward the signal the the next layer in the hie-
rarchy.

7.2.5 The possibility of supervised training

It was argued in chapter 3.6 that supervised learning in the brain, may just be another
unsupervised form of learning through association. However, in algorithms developed for
ANNs, there is a more clear distinction between those methods that involve supervised
training (such as the error back propagation algorithm) and those that involve unsupervised
learning (such as incorporation of Hebbian learning). The reason this distinction may be
done with ANNs is that, unlike biological systems, artificial systems may implement the
notion of a global supervisor. E.g., with the back propagation algorithm, one finds the
global error value between the ANN output and the wanted output and changes values of
the ANN synapses accordingly. In biological systems, this process must take place locally
and be self-organizing.

We are however, not confined to operate exactly as the brain does in our neuronal culture.
One advantage we have, is that we are in fact able to make some sort of global super-
visor, and could potentially incorporate our own quasi error back propagation algorithm.
Supervised Hebbian Learning (SHL) offers a straightforward solution. According to this
approach a spike-based Hebbian process is supervised by an additional ’teaching’ signal
that reinforces the postsynaptic neuron to fire at the target times and to remain silent at
other times.[124] This teaching may be transmitted to the neuron through intracellular
stimulation with an MEA.

7.2.6 Learning by association: Unsupervised training

In chapter 3.6 we discussed how the brain is constantly being moulded by plasticity though
the firing and interconnection of neural pathways. As the CNN is a biological network,
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we assume the same functionality, which has also been conformed in several studies (see
chapter 7.1). So how can we exploit this inherent property of biological networks?

One way of utilizing this property, is to combine several types of sensory input to the neural
network, as to allow the CNN to get a ’bigger picture’ of the environment in which it is
operating. For example, we may encode laser feedback from the robot to the CNN as well
a sonar sensor. When the laser input is showing signs that a wall is in close approximation,
this will be associated with the sonar input being active. Eventually, it would be interesting
to see if a form of prediction occurs in the network; we would like to see if the pathways
that are usually activated when the sonar input is active, also fire when the sonar is turned of
but the laser sensors are indicating that the wall is close. If so, this could lead to a further
understanding (inspired by associative memory) of the predictive nature of the brain, as
discussed in chapter 3.6.

Another way to utilize the network plasticity is, as mentioned already, to organize the
culture like the neocortex and let the CNN derive meaning from the inputs though its
layers.

7.2.7 Rewarding the culture: Reinforcement learning

4.3.3 For our Cyborg, reinforcement learning, along with associative memory, is the most
attractive learning protocol to employ. In an embodied environment, the ability to enforce
good behaviour and steer away from bad, is necessary for the proper functionality of the
Cyborg. This type of training also may be the most natural for the biological system com-
pared to the more artificial supervised method. Reinforcement learning gives the Cyborg
a goal; a specification to fulfill. In the following, we suggest mechanisms for achieving
reinforcement learning in the CNN.

Rewarding using tetanic stimulation

We have already talked about how tetanic stimulation strengthens neural pathways. We
may use this property when reinforcing certain behaviour patterns into the culture. One
way of doing so, would be to track the activity of the CNN leading up to some (good)
action to be rewarded (e.g. an Animat obtaining food in a virtual environment). When
this event occurs, the neural activity (the sequence of firing pathways) leading up to this
occurrence may be replicated with tetanic stimulation of the network: basically stimulating
the same pattern sequence, that was recorded, leading to the rewarding event. The hope
here is to strengthen the neural pathways leading to the desired behaviour.

Utilizing dopamine

When the brain receives an unpredicted reward, or on unpredicted indication of reward
(such as in Pavlov conditioning), dopaminergic neurons fire and release dopamine though
dopaminergic pathways (chapter 3.6.5). This process is theorized to be highly important in
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the animals ability to be trained through reinforcement. Therefor, it would be highly inter-
esting to include dopaminergic neurons into the culture. These neurons can be activated
(stimulated) when some behaviour to be rewarded has been performed by the CNN.

The author has not found any embodiment studies utilizing dopaminergic neurons in their
studies. Incorporating such neurons into our system, paves the way for a lot of interesting
scientific research, and the potential of much more advanced Animat/Hybrot behaviours.
As most studies employing embodiment of neuronal cultures have had limited results when
it comes to efficient training, this could be theorized to be due to them not utilizing biolo-
gys own reinforcement mechanism; dopamine.

Actor-critic using a SNN-CNN hybrid system

Actor-critic models[14] belong to the field of reinforcement learning[148]. More speci-
fically, they are members of the set of temporal-difference (TD) methods[148, 157]. In
chapter 3.6 we discussed how it is believed that TD plays an important role in the brain.
The actor-critic theory is one of the more popular hypothesised TD mechanisms[125, 157].
In its theory, the critic consists of brain areas contributing to the production and release
of dopamine, while the actor consists of brain areas responsible for action selection[157,
115]. The exact mechanisms in which this is employed is still not well understood, but re-
search in this area promises exciting new understanding into how animals learn and adapt
their behaviour through reinforcement.

There have been several attempts at modelling (at least certain aspects) the actor-critic
though biologically plausible artificial networks[157, 125]. These models are a bit out of
the scope of this text, but are mentioned as they may be interesting to investigate further
in the NTNU Cyborg project. One possibility would to arrange the CNN to be the actor
in such a system, and build an artificial critic around the CNN. In this way, we would be
placing the CNN in a configuration more like home; in the structures of the brain. This may
yield a better mechanism for teaching the culture new tasks in its embodied environment,
and the scientific value is certainly significant.

Solving the distal reward problem

Although this problem is not yet understood in the brain, the problem may be solved in
our CNN since we log the firing history and can replicate the firing sequences leading to
reward as suggested above.

As a more biologically plausible method, one hypothesis by Izhikevich[78] (as we saw in
chapter 4.3.3), is that the STDP process leaves a eligibility trace that dopamine may use
to find and strengthen the synapses contributing to a reward. If this hypothesis holds true,
utilizing dopamine in our cultures would naturally solve the distal reward problem.
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Here follows a very brief chapter on the topic of modeling a neuronal culture. The mo-
deling of a culture could very well be a thesis in and by its own, and deserves a much
larger focus than as a mere sub-chapter here. The topic is however added, for the sake of
completion; complimenting our discussion on the necessary aspects of creating a system
of an embodied neurons.

Modeling a CNN, is an important task in the NTNU cyborg project, and is highly advan-
tages to achieve. When the culture is up and running it will most likely by heavily used,
and not readily available whenever someone wishes to use it. Also, there will be a lot of
downtime as growing the network takes time and the culture must spend a certain amount
of time in its incubation chamber. A simulation of the culture would be beneficial in that
it would be available at all times and allows more people to experiment at once.

Naturally, making a 1-to-1 model replication, incorprating all the dynamics and processes
of a biological culture is not something we are likely to have up and running any time
soon. For this reason, a model will serve more as a testing ground for investigating aspects
such as the bio-robotic infrastructure and the closed-loop system where the simulation can
control the robot.

Models also have another advantage; they tend to increase our knowledge about the object
we are modeling. The mere fact of being able to model a system requires a thorough
understanding of its workings. When creating a model, there is a continuous trial and
error process occurring, where one compares how one thinks the object works, with how
it actually works. For each iteration, the model becomes closer to the real object. We are
essentially learning how our original assumption may or may not have been correct.

In this chapter, we suggest a very simple spiking neural network to test our interface, and
discuss some of the challenges that come from modeling the neuronal culture. We also
supply the reader with some information regarding existing modeling frameworks. The
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reader may also find interest in studying literature on biologically plausible spiking neural
network models which there is quite a bit of.

8.1 Modeling and simulation frameworks

We are far from the first to explore modeling biological neural networks. There is a great
deal of literature covering the topic, some coming from the perspective of computer scien-
tists and others from the field of neuroscience. Luckily for us, a lot of the models and
frameworks developed over the years, are openly available for use. The models range
from the highly neurologically detailed but somewhat computationally slow (such as NEU-
RON), to the more efficient but somewhat simplistic (such as Brian (python)). Some mo-
dels are better at describing the behaviour of the network at whole, while others focus on
the interacting between pairs of neurons. Here are listed some of the most popular fram-
eworks:

• NEURON

• GENISIS

• HTM (numenta)

• Brian and Brian2

• NEST

• Nengo - Neural Engineering Framework (NEF)

• GeNN

• SpikeFun

These models could potentially serve as a basis for the models of our neuronal cultures.
Of these, the Brian and NEURON models where tested. Brian, with its realistic spiking
outputs (see figure 8.1) seems to be a good and efficient starting point for testing the
Cyborg infrastructure. Brian and Brian2, are written in python, making them easy to use for
most programmers and have a short learning curve. Further investigation of the different
frameworks must however be conducted.

For a complete overview of modeling and simulation software, the reader is directed to
the following sites: ’Comparison of Neural Network Simulators’ by the University of
Colorado Boulders Computational Cognitive Neuroscience Lab[43] and Jim Perlewitz’s
’Computational Neuroscience’ page[120].

8.2 Developing a model

An alternative to using a framework is to make the model from scratch. Using a framework
enables a quick setup, however we may require a more personalized model to replicate
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Figur 8.1: Raster plot from the Brian simulator, showing a very similar output as seen in real cultured
networks.

our neuronal cultures. Also, we wish to include a model of the MEA interface; we want
to stimulate and record from our model through an MEA and not directly at the neuron
level as many models incorporate. Here follow a short discussion on the thing we need to
consider. As mentioned before, no actual model will be presented.

8.2.1 The neuronal culture

For the neuronal culture we can use a networks comprised by spiking neurons. In chapter
4.1 we looked at some example neuron models. We found that the Izhikevich model is
able to replicate the mathematical dynamics of real neurons well, with good efficiency (13
FLOPS). We also found the leaky integrate and fire neurons (LIF) to be particularly effici-
ent, although they lacked some correctness. For this reason we propose using Izehikevich
neurons in our model.

The number of neurons to be used in the model is yet to be decided, but looking back
at chapter 3.7 we can assume 5000-50000 neurons (excitatory and inhibitory) must be
modeled. We also need to incorporate plasticity. For this, the STDP model presented in
chapter 4.1 may be applied. The effect of STDP may also be varied, as to incorporate the
higher placidity observed in younger cultures; make STDP changes greater during early
simulation. In terms of network topology, we can either initiate a random full network or
we can attempt to model the growth the network, as done in the Master thesis of Riikka
Havela[68]. We may also experiment with more organized structures (such as neocortical
layering) to experiment with the effects of these. We also presented a model for incorpo-
rating dopamine into the system in chapter 4.3.3, which may be used to experiment with
reward modulated dopamine effects. The Master thesis ’Dopamine modulated STDP and
reinforcement learning in an embodied context’ by Lars Andersen and Tormund Sandve
Haus (IDI, NTNU) implements such a model in which is a good inspiration.
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This, off course, is the proposal of a fairly simple model compared to the complexity
of a biological network which incorporates effects in which we have yet to truly under-
stand (such as the effects of different stimulation frequencies, LTP, LTD etc.). The model
is however, sufficiently accurate for some simpler infrastructure and control-loop related
tests, and is a starting point to a more complex model.

8.2.2 The MEA

A model of the microelectrode array (MEA) would also be beneficial. The MEA model
should be connected to the above network model. It should incorporate 8x8 (optionally
experiment with higher resolution) bidirectional electrodes, and use these electrodes to
stimulate and record from the extracellular environment of the neural model.

8.2.3 A study using a SNN to simulate an embodied CNN

Chao et al.[37] used a very similar setup to the one suggested above. They had a spiking
network simulate a cultured network embodied through an animat (closed-loop setup in
figure 8.2). They used the Neural Circuit SIMulator[110] to produce three artificial neural
networks[38]. Their models incorporate 1,000 leaky integrate-and-fire (LIF) neurons, with
a total of 50,000 synapses. All synapses were frequency-dependent to model synaptic de-
pression. 70% of the neurons were excitatory and utilized STDP. They also modeled the
MEA by an 8x8 grid of electrodes, 60 of these were used for recording and stimulation as
in a typical real MEA.

In a previous study[38], they showed that a 1000-neuron LIF model and living MEA cul-
tures expressed similar spontaneous and evoked activity patterns, demonstrating the use-
fulness of the LIF model for representing the activity of biological networks. In another
study, they successfully used the simulated network to find a statistic to detect network
functional plasticity in living MEA cultures and to demonstrate region-specific properties
of stimulus-induced network plasticity[36]. These results clearly demonstrate the potential
and advantage of developing and working with a model.
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Figur 8.2: The closed-loop setup in [37], where a SNN was used to simulate an animat embodied
CNN.

93



Kapittel 8. Modelling a neuronal culture

94



Kapittel 9
Putting it all together

We have discussed a wide range of topics in this thesis; from the the necessary hardware
and design aspects for developing the cybernetic system, setting up communication betwe-
en robotics and neuronal culture, as well as training and modeling the culture. Here, we
summarize these chapter by proposing a plan moving forward with The NTNU Cyborg
project.

This chapter is a summary and a proposed plan moving with The NTNU Cyborg pro-
ject.

9.1 Cultivation

Cultivation of neurons has already begun at Department of Neuroscience (INM), and this
first point is left in their hands. When the MEA is up and running, they will be in charge of
culturing and growing the networks and keeping them alive. Once we are up and running,
we may play around with different network configurations such as:

• incorporating different types of neurons: cortical, dopaminergic, motor etc.

• experiment with different network topologies (when this is possible)

• experiment with different concentrations of excitatory vs inhibitory neurons

• experiment with different network densities

to name a few. There are many variables to consider when growing these networks, but
again, this is mostly in the hands of INM.
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9.2 Setting up the MEA and infrastructure

9.2.1 The MEA

The MEA was shipped by MultiChannel Systems 16.06.2016. Once the MEA2100-60-
system has arrived, the system is to be set up in an appropriate lab at St. Olav’s University
Hospital. The setup will be supported by the manufacturer. The users of the system must
become acquainted with the included software, such as the MC Rack program. From here
the initial trials recording and stimulating a neuronal culture may begin. We may also now
implement and use the built-in spike-sorting functionality of MC Rack to increase the
recorded resolution.

9.2.2 The ditributed infrastructure

Once the MEA2100-60-system is set up and a culture has been cultured on an MEA, it
will be possible to use the system locally. Now comes the time to set up the distributed
interface across the three institutes (ITK, IDI and INM) and to begin embodying.

Hardware:

• Set up servers/computers at the three institutes

• Set up the logging database at IDI

Software:

• IDI: make the MQTT coordinator handling requests by clients. The MQTT coordi-
nator communicates directly through to the MEA-server at St. Olav

• ITK: make the server to control the Cyborg platform. Since the Cyborg is operating
ROS[], a port into ROS must be developed

• Define protocols for data (RAW, robot, etc)

Testing the interface:

• Test each node (alternatively use a SNN for testing)

• Check if real-time closed-loop system works

9.3 Closing the loop

encode sensory information into the culture as well as feedback its own robotic instruc-
tions.
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9.3.1 The robot platform

The robotic body to embody the neuronal culture was discussed in chapter 5.3. It is natural
to begin our embodied experiments with a software Animat, then scaling up to a real
small-scale robot/Hybrot until finally beginning work on the NTNU Cyborg platform. Here
follows a plan of what must be developed:

Animat:

• Develop a simple software robot, ’Animat’, and a simulated environment for it to
operate.

• The Pioneer LX simulator, MobileSim, may be used as an Animat to simulate the
NTNU Cyborg navigation platform.

• Develop sensory feedback from the Animat to the MEA. E.g laser/sonar distance
telemetry. Also, incorporate feedback of the robots own movements (forward, back-
wards, turns, etc)

• Control Animat by converting MEA recordings to movements (through methods
mentioned in chapter 6.2)

• Use the Animat to test the distributed real-time infrastructure.

Hybrot:

• Purchase a small scale robot for testing purposes, e.g. the Khepera or Koala robot
from K-Teams Mobile Robot.

• Transform sensory from the Hybrot to be used as feedback to the MEA. (extension
of that made for the Animat)

• Control Hybrot by converting MEA recordings to movements. (extension of that
made for the Animat)

• Use the Hybrot to further test the distributed real-time system working with a real
robot.

NTNU Cyborg platform:

• Continue development of Cyborg though student projects. [cite my project]

• Decide upon which operation to control on the NTNU Cyborg. (E.g., motor control,
troll face, the emotional state of the Cyborg etc.)

• Transform sensory or state of the Cyborg to be used as feedback to the MEA.

• Control Cyborg by converting MEA recordings.

For the application where the CNN is controlling robot movement, we may set some be-
haviour goals to try to achieve:

• Avoidance of walls and obstacles.

• Avoidance of other bots.
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• Following other bots.

• Avoidance of simulated poison and trying to obtain food (rewards).

It is not absolutely necessary to follow this progression, as we may choose to incorporate
the culture into the NTNU Cyborg platform right away. The Animat and Hybrot solutions
are however, important tools for the more scientific investigations that will be conducted,
as apposed to the more showcase functionality of the NTNU Cyborg platform.

9.3.2 Single spike stimulation

From the studies we looked at in chapter 6.1 we found the stimulation protocol for single
spikes to typically be performed using bipolar pulses consisting of 200/400 µs width and
500/600 mV amplitude. We further found that these pulses propagate through the network
and evoke a responsive burst of activity for approximately 100 to 200 ms. As this stimu-
lation protocol is fairly standard in the studies, we suggest adopting the same protocol.
We will however, conduct our own tests verifying the effects of these parameters in our
cultures.

9.3.3 Feeding the neuronal culture with sensory input

We should attempt to feedback both single- and multi-sensory information to the cultu-
re, to see if more senses allow the CNN better ’understanding’ of the environment. We
may also feedback proprioceptive information such as the movement of the robotic body
itself.

We would benefit from trying out different coding schemes (rate, temporal and popula-
tion) and also combinations of these. We found that the use of dedicated input electrodes
using single spike and rate-based encoding was the most widely used method in similar
studies.

9.3.4 Using the neural recordings as input to the robot

Following our discussion on in chapter 6.2, we may choose the following methods to map
the neuronal outputs to robotic input by using the:

• networks responses to single site stimulation

• populations spike-pattern through methods such as clustering algorithms or SOMs.

• neuronal culture as a liquid in a liquid state machine. This enables us to utilize the
non-linearity of the culture by simple training of a feed-forward artificial network.

Here too, we benefit from testing several coding schemes.
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Based on population coding

Based on the spike pattern occurring in the network, we may choose to derive meaning
from these patterns through the following methods:

• Clustering:

– Cluster the occurring patterns as done in [51]: register all observed patterns
(with and without stimulation) and then cluster these patterns.

– Choose as many clusters as needed robot instructions (maybe more if we want
some clusters to not lead to instructions).

– Map spike-patterns in real-time into input instructions for the robot.

• Self-organizing maps (SOM):

– Make a Kohonen network for clustering the neuronal output.

– Choose as many clusters/nodes as needed robot instructions (maybe more if
we want some clusters to not lead to instructions).

– Map spike-patterns in real-time into input instructions for the robot.

– The SOM allows for on-line adaptation to the incoming data.

• Liquid state-machine:

– Develop a feed forward ANN which may be trained to assign robot instructions
to different spike-patterns.

– Train the ANN using genetic algorithms or error back propagation in order to
develop an individual displaying good behaviour according to a set goal.

Based on rate coding and single-site spike responses

It is also possible to dedicate electrodes as output electrodes and have them control some
robot instructions based on the firing frequency of these electrodes. One example, is to
have the frequency control the velocity of the robots wheels. Different relative frequencies
between the electrodes allows the robot to turn. The output electrodes may be further
chosen according to their response to certain stimuli; e.g. if a certain electrode responds
to the stimulation meaning a wall is in front of the robot, this electrode can be chosen
to correspond to a left/right turn of the robot and the frequency of this electrode the turn
rate.

Combining methods

Rate-based coding may be used in conjunction with population coding. For example, one
could integrate the occurring patterns and clusters.For example, instead of a cluster just
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indicating a constant rate left turn, we could use the number of times that cluster has fired,
within some time frame, to also control the turn rate.

9.4 Further understanding the culture output

To further understand our neuronal culture we propose to mine the data logs once experi-
mental data has accumulated. We also wish to investigate the predictability of the cultu-
re.

9.4.1 Mining

We wish to mine the logged data as to investigate the existence of unseen dependencies
and correlations within the culture. Methods for doing so include anomaly detection, as-
sociation rule learning, clustering, classification, dimensionality reduction, regression and
summarization.

9.4.2 Prediction and anomaly detection

Hierarchical Temporal Memory (HTM) was a proposed method for predicting the next
firing pattern/sequence of the neuronal culture. Through this method we hope to test the
predictability of the culture, and whether we can use these predictions to steer away from
undesired neural behaviour (such as network wide spike bursts). HTM also allows for
anomaly detection, which may give us insight to when the culture is behaving abnormally.
This allows us to investigate what factors cause the abnormality.

9.5 Training our culture

Here follows a short description of possible future training experiments to be conducted
when the MEA is up and running. This section builds upon chapter 7.2.

9.5.1 ’Proof of concept’ training experiments

Besides embodying our neuronal culture, it may be fruitful to conduct some ’out of body’
training experiments. The following experiments serve as a ’proof of concept’ of neural
plasticity, and may also further be used for testing training mechanisms; such as frequency
based stimulation.
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Pattern imprinting

This gaol of this experiment is to imprint predefined spiking patterns into the culture.
From chapter 6.1.3 we saw that the network responds to tetanic stimulation by increasing
the strength of the stimulated neural pathway, while decreasing its connections with the
rest of the network. The test may be conducted as such:

Training phase:

• Whole pattern spikes: imprint a spike pattern using tetanic stimulation

– optimal frequencies and durations to be investigated as well as the effect of
spike timing

• Single electrode stimulation: imprint a spike pattern using tetanic stimulation of a
single electrode, strengthening the evoked neural pathway

Testing phase:

• without stimulation: see if the pattern imprinted in the training phase emerges during
spontaneous activity of the network.

• with stimulation: stimulate a single electrode (which is part of the pattern) and see
if the rest of the pattern spikes.

If pattern imprinting works out, we may take this a step further by imprinting pattern
sequences: We follow one firing pattern with others until we loop around back to the
first pattern. We continue these loops for the whole training phase. After the training, it
would be interesting to see if this firing sequence has been imprinted into the culture. For
example, we could imprint the patterns of the numbers 0 to 9 as one loop.

Further still, we may try to have the culture classify input spiking patterns. By, for example,
choosing 5 dedicated output electrodes, we can attempt to get one electrode associated to
each of 5 different patterns (or more patterns if we attempt to have the culture cluster
the incoming patterns); that is, one electrode responds to one input pattern. This video
demonstrates the principle well (the video is using adaptive resonance theory and not using
a CNN, but illustrates the idea): [42].

9.5.2 Logic gate

Another useful experiment is to achieve the functionality of a logic gate, such as AND, OR
or XOR. Here, we wish to use two dedicated input electrodes and one dedicated output.
Using tetanic stimulation for strengthening the neural pathways, and low-frequency for
decreasing the strengths of others, we hope to manipulate the culture in order to achieve
our goal. If this goal is reached, it will show that some form of learning in the culture can be
achieved. It will also demonstrate that we are able to manipulate the synaptic connections
to produce some pre-determined functionality.

101



Kapittel 9. Putting it all together

9.5.3 Unsupervised training of the embodied culture

Proceeding to our embodied environment, we will primarily look at unsupervised and
reinforcement forms of learning in our Animat/Hybrot/NTNU Cyborg.

Monkey see monkey do: Apprenticeship learning

Apprenticeship learning[1] is learning by imitation/demonstration. What we would like to
achieve here, is to have the culture replicate the behaviour of a pre-programmed bot opera-
ting in some environment. While this bot is performing some task in its environment, e.g.
staying clear of obstacles, sensory data and motor instructions are fed back to the neuronal
culture. The hope is that the neuronal culture, when taking over the motor control of the
bot, will conform to the same behaviour as the pre-programmed bot. This is taking advan-
tage of the unsupervised Hebbian nature of the culture. The variables to be experimented
with, for this sort of training, is the feedback stimulation frequencies and patterns to be
used, as well as the duration of the learning phase.

Incorporating structure: Layering like the neocortex

We discussed the importance of network structure in chapter 7.2.4. Following this discus-
sion, we would like to experiment with different network topologies in our culture. Espec-
ially, we would like to emulate the structure of the neocortex to the extent possible. This
however, will be something we will do down the road, when the research enables it.

Until we can structure the culture by itself, We may investigate using a CNN-SNN hybrid
system, where the CNN acts as a layer surrounded by artificial layers in a neocortex layered
fashion as suggested in chapter 7.2.4

9.5.4 Training the embodied culture though reinforcement

Frequency reinforcement

Using inspiration from the back propagation algorithm in chapter 4.3.2, we would like
to enforce ’good’ actions (actions fulfilling the specification of the agent) and punish the
’bad’. This was discussed in chapter 4.3.3, and may possibly be done by replicating the
spike sequence leading to a good action, and using this spike sequence as tetanic stimu-
lation into the culture. The patterns closest to the rewarding behaviour may be repea-
ting more times than those more distant, following a decay evaluation found in temporal-
difference algorithms (chapter subsec:annreinforcement).
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Introducing dopaminergic neurons to the culture

Ultimately, when this is possible in our culture, we would like to utilize dopaminergic
neurons as discussed in chapter 4.3.3, to train the network.

9.6 Modeling

To create a model of the biological culture and MEA, we should develop a mathematically
realistic spiking neural network (SNN) that is interfaced via a simulated MEA. Once a
basic model has been created, we may further experiment with various network topologies
(such a neocortical layering), the introduction of dopamine and other mechanisms we wish
to explore.

We may first use this model to test out the infrastructure and closed-loop control of the
robot. However, we also wish to make the model biologically accurate as possible for
simulated experiments. This model will most likely be in continuous development, incor-
porating any new properties we, or others, may discover in cultured networks.

Chao et al.[37] provided a great setup for modeling a culture and MEA in an embodied
system which we may use for inspiration. Otherwise, we may also want to investigate the
use of the established modeling frameworks.
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Kapittel 10
Discussion

We have, in this thesis, discussed the the necessary (and some additional) aspects for devel-
oping a bio-robotic system of embodied neural cultures. With a background study into the
working of the neuronal cultures home; the brain, and through mechanisms developed for
artificial networks, we have tackled the problem from the middle-ground between neuro-
science and computer science. We have discussed the MEA hardware needed to interface
with our cultures, and also the distributed environment through which it will operate a
robot body. We have looked at different bodies; from the virtual Animat to the real Hy-
brot and NTNU Cyborg platform. We have further discussed how me may communicate
with the culture and close-the-loop of our bio-robotic system through the encoding and
decoding of information. We also discussed the training of a culture, to achieve more com-
plex and goal-oriented behaviour. As an additional point, we briefly discussed how we
may model a neuronal culture, and the benefits of doing so. Finally, we summarized our
discussion and proposed a plan moving forward. Looking back at the research questions
in the beginning of this thesis, we have attempted to answer these questions to the degree
possible without the possibility of conducting our own experiments (yet).

It has been a challenges, in writing this thesis, to find all the answers to the questions
that have been asked. Hours-long sessions have been spent trying to find relevant litera-
ture to subjects, only to find that the research is ’still out’. This especially applies for the
mechanisms of learning and training, neural coding, and the effects of neural stimulation.
These are among the many unsolved mysteries in the field of neuroscience. An article from
Discovery Magazine sums up the questions we have yet to answer, quite well[99]:

• How is information coded in neural activity?

• How are memories stored and retrieved?

• What does the baseline activity in the brain represent?

• How do brains simulate the future?
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• What are emotions?

• What is intelligence?

• How is time represented in the brain?

• Why do brains sleep and dream?

• How do the specialized systems of the brain integrate with one another?

• What is consciousness?

It is in these questions that, through the study of neuronal cultures, we ultimately hope
the NTNU Cyborg initiative may provide further insight. The applications are vast, ran-
ging from medical contributions to improved artificial intelligent models. In addition, and
finally, studying the workings of the brain also gives us little more insight into oursel-
ves.
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[65] a Grüning and Sander M Bohte. Spiking Neural Networks: Principles and Challen-
ges. In European Symposium on Artificial Neural Networks, Computational Intelli-
gence and Machine Learning., number April, pages 23–25, 2014.

[66] H Gurden, M Takita, and T M Jay. Essential role of D1 but not D2 receptors in
the NMDA receptor-dependent long-term potentiation at hippocampal-prefrontal
cortex synapses in vivo. The Journal of neuroscience : the official journal of the
Society for Neuroscience, 20(22):RC106, 2000.

[67] Jiawei Han, Micheline Kamber, and Pei. Jian. Data Mining: Concepts and Techni-
ques, volume 3. Morgan Kaufmann, 2012.

[68] Riikka Havela. Modeling growth of cultured neocortical neuronal networks :
Comparison of the simulation tools. PhD thesis, University of Tampere, 2011.

[69] Jeff Hawkins, Subutai Ahmad, and Donna Dubinsky. Cortical Learning Algorithm
and Hierarchical Temporal Memory. Technical report, 2011.
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Appendix A:
MEA2100-60-System

The MEA2100-60-System specification may be found at:
http://www.multichannelsystems.com/systems/mea2100-60-system
The MEA-2100 user manual: [100].

Data acquisition and analysis software:

• Including a 2 years maintenance package (software updates and support)

MEA2100-HS60 headstage:

• Pre- and filter amplifier with integrated data acquisition and analog-digital converter

• Gain and bandwidth adjustable via software

• Data resolution: 24 bit

• Direct access to each electrode for stimulation via internal stimulus generator.

• Control of stimulator via the included data acquisition software MC Rack

• Integrated blanking circuit for stimulus artifact suppression

• 3 independent stimulus generators

• Current stimulation at max. +/-1 mA

• Voltage stimulation at max. +/-10 V

• Sampling rate max. 50 kHz per channel

• Integrated heating element (20Ω, PT 100 sensor)

• With installed metal plate for fixing perfusion equipment

MCS-IFB 3.0 multiboot interface board - with signal processor for real-time signal
detection and feedback:

• 4x Digital Out: Interface for output bit 0-3 of the 16-bit digital input / output chann-
els (Lemo connector)

• 4x Digital In for synchronization with other instruments (bit 0-3) (Lemo connector)

• Digital IN / OUT: Interface for 16-bit digital input / output channels. Generates or
accepts TTL-pulses.
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• 1x Stereo Out: Possibility to export 2 channels (e.g on an oscilloscope or headphones
making the signals audible)

• 2x Analog IN: Interface for 2 additional analog inputs (channel 1 and 2) (Lemo
connector)

• Analog IN: 8-channel Analog input (channel 1-8)

• 1x Ground

• 1x Universal Serial Bus High Speed for transferring digitally converted data to any
data acquisition computer with a sampling rate of up to 50 kHz (USB High Speed
cable)

• 1x USB Serial Bus High Speed for programing the integrated signal processor

• External power supply: 100-240 V input voltage range
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