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Value of information of repair times for offshore wind

farm maintenance planning

Helene Seyr and Michael Muskulus

Department of Civil and Transport Engineering, Norwegian University of Science and
Technology, NO-7491 Trondheim, Norway

E-mail: helene.seyr@ntnu.no

Abstract. A large contribution to the total cost of energy in offshore wind farms is due to
maintenance costs. In recent years research has focused therefore on lowering the maintenance
costs using different approaches. Decision support models for scheduling the maintenance
exist already, dealing with different factors influencing the scheduling. Our contribution deals
with the uncertainty in the repair times. Given the mean repair times for different turbine
components we make some assumptions regarding the underlying repair time distribution. We
compare the results of a decision support model for the mean times to repair and those repair
time distributions. Additionally, distributions with the same mean but different variances are
compared under the same conditions. The value of lowering the uncertainty in the repair time
is calculated and we find that using distributions significantly decreases the availability, when
scheduling maintenance for multiple turbines in a wind park. Having detailed information about
the repair time distribution may influence the results of maintenance modeling and might help
identify cost factors.

1. Introduction
In the offshore wind industry, cost of energy is a lot higher than in its onshore counterpart. This
is partly due to high operations and maintenance cost, accounting for up to 30 % of the cost
of energy [1]. Several approaches to lowering these costs are being pursued by current research.
Specifically, four maintenance cost models for offshore wind farms have been actively developed
recently [2, 3, 4, 5, 6, 7]. These models incorporate different factors influencing the maintenance
cost, like weather, failures and resources. The uncertainty in the weather forecasts used when
planning the maintenance is a commonly known factor that needs to be addressed by the models.
Also the occurrence of a failure is associated with uncertainties and addressed by using annual
failure rates [8] or Markov models. The models cited above however, do not include uncertainties
in the repair time information and instead assume constant repair times for the occurring failures.
Very recently a study on the sensitivity of one of the models to changes in model inputs has been
conducted [9]. In this study, different values for constant repair times have been investigated.
The question we address here is whether it makes a difference to include the uncertainties in the
repair time in the analysis. The success of a maintenance task depends on whether the given
weather window is as long or longer than the time needed to complete the repair. Therefore the
interaction between uncertainties in weather and repair times is the point of interest. A first
approach to variable repair times and their influence on the production loss due to weather delays
has been conducted [17]. The novelty here is to investigate not only the interaction between
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weather and repair times, but additionally include the influence of the maintenance scheduling
in the cost model. Our hypothesis was that including probabilistic variations of the repair time
significantly changes the results observed in the deterministic analysis of the maintenance cost
model and, in particular, leads to less availability compared to using the simplification of a
constant repair time.

2. Methodology
To conduct this analysis we used a simulation model to model the sea states and wind speed.
Three main methods for simulating sea states can be found in the literature. These can be based
on Gaussian statistics, ARMA processes or stochastic processes satisfying the Markov property
[10], where the latter is the most used. We use the model developed by Scheu et al. [2, 11, 12].
It simulates wave-height time series using discrete time Markov chains. Wind speeds are then
calculated with a wave-wind correlation matrix. The transition probabilities for the Markov
chains and the wave-wind correlations are calculated based on 37 year ERA-Interim reanalysis
data from the European Centre for Medium-Range Weather Forecasts (ECMWF) for the site
of the Dogger Bank wind farm (54◦N 2◦E). To process the weather data, generate the Markov
matrices and wind wave correlation matrix, we used the software R [13].

For the mean repair times, we use the repair time data presented by Carroll et al. [14]. From
these mean repair times we calibrated an exponential distribution such that it has the same
mean. Subsequently we fit a log-normal distribution that has the same mean and variance as the
exponential distribution and a log-normal distribution with the same mean and a larger/smaller
variance, in order to investigate how changes in the repair time variability influence the results.
The repair times of the turbine components based on these distributions are drawn randomly for
each simulation step with the integrated functions in MATLAB [15]. The different distributions
for the duration of a major blade repair can be seen in Figure 1. The exponential function is
used as it is the simplest model for a random time to an event, but its variance is fixed. The
log-normal distribution depends on two parameters and is a natural candidate for modeling
non-negative random processes where the variance is known (or assumed).

To simulate the maintenance of the wind farm we use a maintenance cost model based on
Scheu’s model [2]. The simulation models an offshore wind farm with a given number of turbines
in steps of 6 hours, due to the limited resolution of the weather data. The changes in wave height
are calculated according to the Markov matrices, which in turn are based on the site data. The
wind speed is then simulated according to the wind wave correlation matrix as explained in [2].
The wave height and time series data generated by the weather simulation tool is then further
used in the maintenance model. The inputs for the scheduling simulation include failure rates
[14], different wind turbine parameters [16], the assumed number of available crew transport
vessels and cranes, the assumed number of persons needed for the repair of different components
and a wave height restriction for access to the turbines. The information about the turbine, like
rated power, cut in wind speed, wind speed at the rated power output and cut-out wind speed,
is used in the model to calculate the production losses due to downtime based on an assumed
power curve.

The information about the annual failure rate [14], is used to model the occurrence of a
failure independently for each component in each turbine. If a failure occurs, the repair time
of the specific component is set to the mean time to repair in the original model. Here, we
draw random numbers according to the different distributions for each occurring failure. The
scheduling of the repair crews and vessels is modeled according to the strategy presented by
Scheu et al. in [2, Figure 2, p.284]. Apart from the production losses for each simulation run,
the availability of the wind farm is also calculated.
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Figure 1: Density functions for different repair time distributions
for a major blade repair. The mean time to repair of 21 hours is
marked with a black asterisk.

3. Value of information of repair time
The repair time data used in this study was presented for 19 different turbine components
and three different repair types each in Carroll et al. [14]. For modeling the failures in the
maintenance cost model, we use the annual failure rates for the same 19 components. We
assumed a wind farm with 100 turbines of the NREL 5 MW type [16] and two different access
vessels. For both minor and major repair actions, we assume a repair crew size of 2 persons and
the transport with a crew transport vessel (CTV). For major replacements, which constitute
the third repair type in [14], we assume a crew size of 10 persons and the need for a crane. The
transit time for the CTV is assumed to be 6 hours, which corresponds to a maximal speed of 18
knots for a distance to shore of 200 km. Most crew transport vessels (CTVs) can reach a speed
between 20 and 25 knots. The transition time for the crane is assumed to be 12 h, corresponding
to a speed of 9 knots at the same distance from shore. The coordinates of the location used
for the weather model are 132 km from Withernsea on the English coast and thus assuming a
distance to shore of 200 km already includes some conservatism. For our simulation, we first
consider a fleet of 20 CTVs and 5 crane vessels and a maximum wave height restriction of 1.5
m for both vessel types in a first run. We use these high numbers of vessels, to separate the
influence of the repair time from effects due to different scheduling strategies. In a second step,
we reduce the analysis to 5 CTVs and 1 crane vessel. This does not significantly change the
results and we present the results for the case with only 5 CTVs and 1 crane here, as a more
realistic scenario. The results presented here are based on 25 simulations of one year of wind
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Table 1: This table shows the mean annual lost production in MWh per turbine for 13 different
scenarios of repair time distributions. In all scenarios, the mean is equal to the mean time
to repair. The variance of the log-normal distribution is set equal to the variance of the
exponential distribution (σ2 = (1/MTTR)2). For the log-normal distributions with increased
and decreased variances, the variance is doubled for the increased variance and halved for the
decreased variance.

Repair time distribution
for CTV components

Repair time distribution
for crane components

Mean lost production
in MWh

Deterministic Deterministic 139.5
Exponential Exponential 323.4
Log-normal Log-normal 289.9
Log-normal, increased variance Log-normal, increased variance 340.7
Log-normal, decreased variance Log-normal, decreased variance 249.6
Deterministic Exponential 134.3
Deterministic Log-normal 131.0
Deterministic Log-normal, increased variance 136.6
Deterministic Log-normal, decreased variance 138.1
Exponential Deterministic 325.1
Log-normal Deterministic 296.5
Log-normal, increased variance Deterministic 333.7
Log-normal, decreased variance Deterministic 262.5

farm operation, resulting in a total of 36500 time steps for each scenario.
Table 1 shows the mean values for the annual lost production in MWh per turbine over 25

simulation years for different simulation scenarios. The most important observation is that the
production losses increase, when uncertainty in the repair times is included. The leading cause
seem to be those turbine components, where the repair does not require a crane vessel. It can be
seen, that the production losses increase for an increase in the variance of the repair times, and
analogously decrease for a decrease in repair time variance. Similar observations can be made
for the mean annual availability of the wind farm as shown in Table 2. Again, the main influence
comes from the components with higher failure rates (that can be repaired by a maintenance
crew accessing the turbine with a CTV). This result differs from the analysis presented in [17],
where the largest influence on the delay was shown to come from the components with the
longest repair times (which correspond to components with low annual failure rates). It can
therefore be assumed, that the influence of delay in scheduled maintenance outweighs the delays
due to sea state in this model.

Figure 2 shows the distributions of production losses for the scenarios presented in Table
1. Here, the influence of the different distributions of the repair time on the distribution of
the production losses can be seen in (a). The repair times follow the presented distributions
for all turbine components, both components that require a crane vessel for a repair and those
components that can be repaired by a repair team alone. In (b), the effect of the stochastic
variations for repair times of different component types on the total production loss can be seen.
As mentioned previously, the components requiring only a CTV access dominate the production
losses. This is most likely due to the higher annual failure rates in these turbine components
and the resulting higher number of necessary repair actions.

In order to investigate how the size of a wind farm influences the production losses and
availability, we additionally used the model to simulate a wind farm with one single turbine.
The distribution of the production losses per turbine are shown in Figure 3 for a wind farm with
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Table 2: This table shows the mean wind farm availability in percent for 13 different scenarios
of repair time distributions. In all scenarios, the mean is equal to the mean time to repair. The
variance of the log-normal distribution is set equal to the variance of the exponential distribution
(σ2 = (1/MTTR)2). For the log-normal distributions with increased and decreased variances,
the variance is doubled for the increased variance and halved for the decreased variance.

Repair time distribution
for CTV components

Repair time distribution
for crane components

Mean wind farm availability
in percent

Deterministic Deterministic 76.7
Exponential Exponential 43.7
Log-normal Log-normal 49.1
Log-normal, increased variance Log-normal, increased variance 40.7
Log-normal, decreased variance Log-normal, decreased variance 57.8
Deterministic Exponential 77.6
Deterministic Log-normal 78.2
Deterministic Log-normal, increased variance 76.9
Deterministic Log-normal, decreased variance 76.8
Exponential Deterministic 42.6
Log-normal Deterministic 47.9
Log-normal, increased variance Deterministic 40.8
Log-normal, decreased variance Deterministic 55.1
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Figure 2: The distribution of the annual production loss per turbine in MWh for different
distributions for the repair time. (a) shows the production loss for stochastic distributed repair
times for both CTV and crane components. (b) shows the production loss due to exponentially
distributed repair times and the effect of the ship and crane components.

100 turbines and for a wind farm with 1 turbine. In both simulations, we assume 5 CTVs and
1 crane. For the mean repair time, the larger wind farm has higher average production losses,
which might be due to the limitations of vessels or due to the lack of sufficient weather conditions.
In the case of a single turbine, the influence of the variation in repair times is more pronounced
than in the wind farm with 100 turbines. This shows the influence of the maintenance scheduling
on the production losses and availability. For the exponentially distributed repair times, having
multiple turbines in the wind farm reduces the mean production losses as well as the variance
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in the losses. This is probably due to the possibility to group repairs. Maintenance crews that
are already offshore in order to repair one component of one turbine in the wind farm can stay
offshore and conduct repairs on other turbines in the wind farm. This can reduce the downtime
of the second turbine, since the transit to the park drops out of the analysis and will be especially
pronounced for short repair times.
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Figure 3: The distribution of the production losses per turbine for
a wind farm with 100 turbines, and for a wind farm with one single
turbine.

4. Conclusion
The presented analysis shows the influence of uncertainties in the repair time on both the wind
farm availability and on the production losses due to down time. This effect is significant.
In order to schedule the corrective maintenance of a wind farm optimally, accurate information
about the real repair times is a crucial factor. Here, the repair times for turbine components that
can be repaired by a small repair team accessing the turbine from a crew transport vessel should
be addressed first, since a variation in these repair times has more influence on the outcome than
the repair time of other components, where a crane vessel and larger crew is necessary. Further
analysis of the interaction of repair times, annual failure rates, uncertain weather conditions
and scheduling of tasks is highly recommended. One goal of this analysis will be to investigate
the difference between the analysis presented here and the previously presented analysis on the
weather delays. The analyses use different methods and include a different number of factors
into the models. However, both show the significant influence of a variable repair time on the
production losses and suggest that maintenance costs can be lowered if these are investigated
further.
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