
Software Design of an Onboard Computer
for a Nanosatellite

Magne Alver Normann

Master of Science in Cybernetics and Robotics

Supervisor: Amund Skavhaug, ITK
Co-supervisor: Roger Birkeland, IET

Department of Engineering Cybernetics

Submission date: July 2016

Norwegian University of Science and Technology

Code as if whoever maintains your program is a violent psychopath who knows where you
live..
-Anonyomous

Executive Summary

This thesis presents the development and implementation of a software architecture for an
Onboard Computer for a nanosatellite. The process of developing the OBC software ar-
chitecture is described in stages from software requirement analysis to test and verification
of an implementation.

Based on the results from the testing, it is believed that the proposed solution, can satisfy
the constraints imposed on the NUTS OBC software through the use of service-oriented
architecture based on the use of CSP for internal as well as external communication. The
architecture enables independent development of services through standardised interfaces.
This can greatly ease system integration as well as the implementation and rerouting of re-
dundant services. The computational overhead as well as the added latency on inter-thread
communication is analysed and the solution considered cost efficient.

Parts of this thesis have been accepted for oral presentation and publication at the Euro-
pean Space Agency (ESA) 4S Symposium 2016. The ESA 4S submitted paper is included
in Appendix E.

i

Sammendrag

Denne avhandlingen beskriver hvordan en programvarearkitektur ble utviklet og imple-
mentert for en Onboard computer (OBC) for en nanosatellitt. Utviklingsprosessen for
programvarearkitekturen blir beskrevet i trinn, fra kravsanalyse til testing og verifisering
av implementasjonen. Basert på resultatene fra testingen, postuleres det at den presenterte
løsningen kan tilfredsstille kravene som er pålagt NUTS OBC programvaren ved å bruke
tjenesteorientert progamvarearkitektur som muliggjøres gjennom bruk av Cubesat Space
Protocol (CSP) for intern så vel som ekstern modulkommunikasjon. Arkitekturen legger
til rette for uavhengig utvikling av tjenester gjennom standardiserte grensesnitt. Dette kan
lette systemintegrasjon samt implementering og omruting av redundante tjenester. Den
ekstra beregningskostnaden, så vel som den ekstra ventetiden som følger bruk av CSP for
kommunikasjon mellom tråder analyseres og den endelige løsningen vureres som en kost-
nadseffektiv realisering av OBC promramvarearkitekturen.

Deler av denne avhandlingen har blitt akseptert for muntlig fremføring og publisering
på Den europeiske romfartsorganisasjons (ESA) 4S symposium 2016. Den innsendte rap-
porten kan sees i Vedlegg E.

ii

Acknowledgements
I would like to thank my supervisor Amund Skavhaug, and co-supervisor Roger Birkeland
for all the help and advice you have offered throughout my project work and master the-
sis. I would also like to express my deep gratitude to my fiancee Martha, and my brother
Morten for their endless support, understanding and rubber ducking.

I also want to thank the members of the NUTS team for all their individual contribu-
tions to this thesis, as well as the entertaining discussions, theories and stories which have
contributed to making my last year at NTNU such an adventure. At last I want to thank all
my friends and family for their encouraging motivation, and the support they have offered
during this semester.

iii

Problem

This work is part of the Norwegian University of Science and Technology(NTNU) Test
Satellite (NUTS) project which aims to bring forth a double CubeSat through the work of
master students at the Norwegian University of Science and Technology.

The task in this assignment is to research and design, given the existing hardware ar-
chitecture of NUTS, a software architecture for the NUTS OBC system, with particular
focus on developing a system that allows isolation of work tasks while maintaining easy
integrability to facilitate further development of the NUTS Satellite computer system.

The OBC is one of the principal components of the satellite, and is able to control the
rest of the system by granting or denying subsystems access to power and the databus.
Other OBC tasks include logging of system parameters in addition to preparing and read-
ing data transmitted to and from the communication systems.

The OBC must be designed to be reliable, as maintenance is impossible after launch.
Challenges related to reliability, maintainability and resource constraints, as well as chal-
lenges related to student-driven development must be identified. In areas where mitigation
of such problems is possible, solutions should be presented. Whether the solutions are to
be implemented should be based on a cost/benefit analysis.

Key tasks for the student:
• The project should explore and determine the requirements for the OBC software in

order for it to meet the requirements for the NUTS mission.
• The project should research different types of software architectures and compare

their strengths and weaknesses, and present a justified choice for the NUTS mission.
• The project should also outline a more detailed design that can be supported by the

software architecture.

In addition to the given tasks, the student is expected to participate in relevant group work.
The NUTS project is a multi disciplinary project, which requires more involvement from
the student than just the completion of the individual task and report.

Supervisor: Amund Skavhaug
Co-supervisor: Roger Birkeland

iv

Table of Contents

Executive Summery i

Sammendrag ii

Acknowledgements iii

Problem iv

Table of Contents ix

List of Tables x

List of Figures xii

1 Introduction 1
1.1 Project Background and Motivation . 1
1.2 The NTNU Test Satellite (NUTS) . 1
1.3 The Purpose of the Onboard Computer (OBC) 2
1.4 The NUTS OBC Hardware . 3
1.5 The Approach Taken in this Thesis . 4

2 Background 5
2.1 Reliability Theory . 5

2.1.1 Reliability, Failures and Errors 5
2.2 Space Environment . 7

2.2.1 Space Radiation . 7
2.2.2 Total Ionizing Dose . 8
2.2.3 Single Event Effects . 8

2.3 Earlier Work . 9

v

3 Software Requirements 11
3.1 Requirement Specifications and Documentation 11
3.2 Detailing the OBC Requirements . 12

3.2.1 Detailing the Functional Requirements 12
3.2.2 Detailing the Non-Functional Requirements 13

3.3 Defining Operational Modes . 16
3.4 Summary . 17

4 Software Architecture 18
4.1 Attributes of Good Software . 18

4.1.1 Platform Selection . 19
4.1.2 Architecture Selection . 23

4.2 Decomposing the System into Modules 26
4.3 Methods for Maintainability . 30
4.4 Methods for Reliability . 30
4.5 Methods for Power Optimization . 31
4.6 Summary . 32

5 Detailed Design 33
5.1 Housekeeper . 33

5.1.1 Error Recovery . 33
5.1.2 Managing the Satellite State . 34
5.1.3 Acquiring the Satellite State . 35
5.1.4 Internal Integrity Check . 36
5.1.5 Satellite Network Check . 36
5.1.6 Module Check . 37
5.1.7 The Error Handler . 38
5.1.8 Interface for the Housekeeper 38

5.2 Timekeeper . 39
5.2.1 Absolute Time vs Relative Time 39
5.2.2 External or Internal timer . 39
5.2.3 Design of the Timekeeper . 40
5.2.4 Interface of the Timekeeper . 41

5.3 Memory Manager . 42
5.3.1 Timestamp Supplier . 42
5.3.2 File System . 42
5.3.3 In-Orbit Programming . 42
5.3.4 Interface for the Memory Manager 43

5.4 Event Manager . 43
5.5 Summary . 43

6 Implementation 45
6.1 Setting up FreeRTOS for SAM V71 . 45

6.1.1 Choosing FreeRTOS version . 45
6.1.2 Choosing Memory Scheme . 47
6.1.3 Configuring FreeRTOS . 48

vi

6.2 Installing FreeRTOS Trace Tool . 49
6.3 Porting CSP for SAMV71 and UC3C 49
6.4 Implementing Sleep Modes and Tickless Idle 51
6.5 Implementing Skeleton Code and Tests 52
6.6 Refactoring . 53

7 Testing and Verification 54
7.1 What is Testing All About? . 54
7.2 Verifying FreeRTOS and Tracelizer . 55

7.2.1 Method . 55
7.2.2 Result . 55

7.3 Memory Footprint . 56
7.3.1 Method . 56
7.3.2 Results . 56

7.4 Investigating CSP Functionality . 57
7.4.1 Request Process List Test . 57
7.4.2 Request Amount of Free Memory Test 58
7.4.3 Request Number of Free Buffer Elements 59

7.5 Analysing CSP Timing . 59
7.5.1 Method . 59
7.5.2 Results and Discussion . 60

7.6 Analysing Power Consumption . 61
7.6.1 Method . 61
7.6.2 Results and Discussion . 62
7.6.3 Power Consumption Summary 66

7.7 Summary and Discussion . 67

8 Reflections 68
8.1 Discussion . 68

8.1.1 Review of the initial Problem and the Contributions Made 68
8.1.2 Further Work for the OBC Software 69

8.2 Conclusion . 70

Bibliography 70

Appendices 75

A OBC Requirement Specification 76
A.1 OBC Functional Requirements . 76

A.1.1 Satellite Initialization . 76
A.1.2 Satellite Housekeeping . 76
A.1.3 OBC Executables . 77
A.1.4 Satellite Executables . 78

A.2 OBC Non-Functional Requirements . 79
A.3 Document Version History . 80

vii

B OBC Service Contracts 81

C OBC Software Requirements Specification 83
1 Introduction . 83

1.1 Purpose . 83
1.2 Scope . 83
1.3 Definitions, acronyms, and abbreviations 84
1.4 References . 84
1.5 Overview . 84

2 Overall description . 84
2.1 Product perspective . 84
2.2 Product function . 86
2.3 User characteristics . 86
2.4 Constraints . 86
2.5 Assumptions and dependencies 86
2.6 Apportioning of requirements 86
2.7 External interface requirements 87
2.8 Classes/Objects . 87
2.9 Performance requirements . 88
2.10 Design constraints . 88
2.11 Software system attributes . 88

3 Supporting information . 88
4 Document Version History . 88

D OBC Software Design Document 89
1 Introduction . 89

1.1 Purpose . 89
1.2 Scope . 89
1.3 Definitions, acronyms, and abbreviations 89

2 References . 90
3 Decomposition description . 90

3.1 Module decomposition . 90
4 Dependency description . 91

4.1 Concurrent process . 91
5 Interface description . 91

5.1 Interface for the Timekeeper . 91
5.2 Interface for the Housekeeper 92
5.3 Interface for the Memory Manager 93
5.4 Interface for the Event Manager 93
5.5 Data decomposition . 93

6 Detailed design . 93
6.1 Timekeeper . 93
6.2 Housekeeper . 94
6.3 Memory Manager . 98

7 Document Version History . 99

viii

E Cubesat Space Protocol for intra-Module Communication 100

ix

List of Tables

2.1 Single Event Effects . 8

3.1 OBC reprogramming requirements . 13
3.2 OBC reprogramming requirements . 13
3.3 OBC Maintainability requirements . 14

4.1 Cubesat Operating System Comparison 21
4.2 FreeRTOS memory footprint . 21

6.1 FreeRTOS malloc implementations, as presented by Jadaan 47

7.1 Memory usage for the OBC application 56
7.2 Latency for for native FreeRTOS queue test application 60
7.3 Memory usage for CSP socket test application 60
7.4 Latency for CSP test application . 61
7.5 Power optimization techniques and improvements 66

A.1 OBC initialization requirements . 76
A.2 OBC Housekeeping requirements . 76
A.3 OBC general requirements . 77
A.4 OBC External interface requirements . 78
A.5 OBC non-functional requirements . 79
A.6 OBC reprogramming requirements . 79
A.7 OBC reprogramming requirements . 80

C.1 UC3C and SAM V71 specification . 86
C.2 OBC SRS Document history . 88

D.1 OBC SDD Document history . 99

x

List of Figures

1.1 The NUTS modules . 2
1.2 The NUTS OBC HW setup . 3

2.1 The fault, error, failure, fault chain . 6
2.2 Sources of errors and service failures as presented in Reliable Computer

Systems [1]. 6
2.3 NUTS satellite as imagined in LEO . 7

3.1 The OBC State Transition Diagram . 17
3.2 The OBC on-orbit internal state diagram 17

4.1 Service supplied from on-chip provider 25
4.2 Service rerouted to off-chip provider . 25
4.3 The Proposed Software Architecture . 28
4.4 Shared driver flash driver between two software components 29
4.5 Architecture layers . 30
4.6 Common way for RTOS to do low power design [2] 31
4.7 FreeRTOS Tickless Feature to do Low Power Design [2] 32

5.1 Previously suggested module check . 34
5.2 Satellite check . 35
5.3 Internal check . 36
5.4 Network check . 37
5.5 Module check . 37
5.6 Adding new alarms . 40
5.7 Alarm triggered . 41

6.1 CSP Repository workflow) . 50

7.1 Trace from FreeRTOS test application 55
7.2 Task list as reported from CSP . 57

xi

7.3 Trace showing the existence of FreeRTOS tasks 58
7.4 CSP Memory and uptime request result 59
7.5 Trace from CSP ping test application (NB: not used for the actual timing,

as the trace tool is intrusive) . 60
7.6 Power Consumption of the OBC MCU at 300MHz 62
7.7 Power Consumption of the OBC MCU at 75MHz 63
7.8 Power Consumption with Active Sleep Mode 63
7.9 Power Consumption with Wait Mode and Tickless Idle 64
7.10 Power Consumption with Wait Mode, Tickless Idle and extended connec-

tion timeout . 64
7.11 Inefficient use of backup sleep mode causes constant MCU soft reset . . . 65
7.12 Power consumption with CPU clocked at 75 MHz 65
7.13 Power consumption with CPU clocked at 300 MHz 66

C.1 OBC Hardware Interfaces . 85

D.1 Satellite check . 95
D.2 Internal check . 96
D.3 Network check . 96
D.4 Module check . 97

xii

Chapter 1
Introduction

In this chapter, the reader will be introduced to the Norwegian University of Science and
Technology (NTNU) Test Satellite project, as well as the scope of this thesis.

1.1 Project Background and Motivation
In 2006, Norwegian Centre for Space-related Education (NAROM), the Norwegian Space
Centre (NSC) and Andøya Space Center (ASC) decided to initiate a student satellite pro-
gram; The Norwegian Student Satellite Project (ANSAT). The goal for this initiative was
to launch three CubeSats within 2014 [3]. Three projects were started, one at Høgskolen
in Narvik (HiN), one at the University in Oslo (UiO) and one at the NTNU [4]. The satel-
lite project at HiN, HiNCube, was completed and launched 21st of November 2013 [5].
Unfortunately, contact could not be established with the satellite after the launch [6]. The
HiNCube is, to date, the only satellite to have been launched from the ANSAT project, and
although the time frame of the initial initiative is done, a successful student satellite has
yet to be launched.

1.2 The NTNU Test Satellite (NUTS)
The satellite is a double CubeSat, measuring 10 cm x 10 cm x 20 cm and weighing less
than 2.66 kg, which conforms to the CubeSat Standard. The satellite will carry a high
definition camera for earth observational purposes.

The satellite consists of:
• Electrical Power System (EPS)
• Altitude Determination and Control System (ADCS)
• Ultra High Frequency (UHF) Radio
• Very High Frequency (VHF) Radio
• On Board Computer (OBC)

1

• Payload Camera
• Communication subsystem
• Antenna
• Mechanical Structure

The EPS is connected to solar panels and batteries, and is responsible for supplying the
power bus with enough electrical power to drive the satellite. The ADCS is entrusted with
the de-tumbling and pointing of the satellite. A communication subsystem is implemented
as a backplane and is used as a power and communication bus so that module cards eas-
ily can be plugged in and out without disassembling the whole satellite. The satellite is
equipped with both a UHF radio and a VHF radio so that failures in one radio will not cause
a mission failure. When it comes to the mechanical structure, this project has decided not
to use the standard aluminium frame but rather aims to utilize composite materials (carbon
fiber/epoxy). Although some minor components have been made of carbon fiber in the
past, launching a CubeSat with an all-composite primary structure has not yet been done.
As a gateway between the radios and the satellite bus, is the OBC.

Figure 1.1: The NUTS modules

1.3 The Purpose of the Onboard Computer (OBC)
The main responsibility of the OBC is to monitor the health of the system and to take
necessary actions when situations demand for it. It monitors the health of the satellite by
periodically requesting health packages from software instances as well as polling sensors
for the different modules’ power consumption. It also monitors the satellite battery power

2

level, and sets the satellite state appropriately. In addition to this the OBC also acts as
a gateway between the satellite bus, and the radio link to ground station. The satellite is
designed as a distributed system with redundant functionalities implemented in different
modules. The OBC has a sister microcontroller at the UHF Radio module, with a very
similar hardware and software setup. OBC functionalities are therefore also implemented
in the UHF Radio module. The two modules rely on cold redundancy, meaning that only
one of the modules will take the role as an OBC at a time. Both OBC microcontrollers
are connected to a Joint Test Action Group (JTAG) standard bus, and have the ability to
reprogram the other Microcontroller Unit (MCU) if necessary.

1.4 The NUTS OBC Hardware
The hardware of the OBC consists of the OBC microcontroller connected to various mem-
ories and communication interfaces. The module containing the UHF Radio is populated
with the ATSAMV71Q21 microcontroller, while the module containing the VHF radio is
populated with the AT32UC3C0512C. For mass-storage a flash bank is connected though
SPI, for storing of critical data, a FRAM memory chip is connected to the External Bus
Interface (EBI). Also connected to the EBI is the SRAM chip allowing the microcontroller
a larger non-volatile memory space. To be able to communicate both with the ground sta-
tion and the rest of the satellite, the OBC MCU is connected to a radio via USART and the
internal sattelite bus though a CAN tranciever. For housekeeping purposes the OBC also
has access to a I2C sensor bus for monitoring of the application, as well as a JTAG bus for
in-orbit reprogramming of faulty modules. The setup of the OBC hardware can be seen in
1.2.

Figure 1.2: The NUTS OBC HW setup

3

1.5 The Approach Taken in this Thesis
This thesis has been structured very similar to the stages used when developing the soft-
ware architecture. This has been done in order not to include too many aspects at once, but
rather to present one stage at a time, starting with the motivation and environment around
the problem. The paper has been sectioned into eight chapters as can be seen below:

• Introduction
• Background
• Software Requirements
• Software Architecture
• Detailed Design
• Implementation
• Testing and Verification
• Reflection

The first two chapters aim to give the reader an understanding of the situation surrounding
this project as well as to define the terminology that will be used throughout the report.
The thesis problem is then approached by analysing the requirements imposed on the OBC
software and formulating a Software Requirement Specification. This SRS is then used as
input for the next stage; Software Architecture. In this chapter, possibilities for satisfying
the requirement specification are explored and a software architecture aiming at this, is
presented. The Software design is discussed in more detail in the next chapter entitled
”Detailed Design”. This is done both to better convey how the system is envisioned as
well as to facilitate the future implementation of parts of the system in isolation, without
endangering the integrability of the system. After the detailed description of the design,
the more practical issues and configurations for the implementation of the software archi-
tecture baseline are discussed and presented. Various functions of the implementation is
then tested and the results discussed in the ”Testing and Verification” chapter. The moti-
vation for this is two-folded, as the tests are used both to gain confidence in the current
implementation as well as to uncover as many defects as early as possible. The thesis ends
with a general discussion of the work that has been done, the lessons learnt, a conclusion
and what the future might hold for this project.

4

Chapter 2
Background

This chapter aims at presenting some of the terms and definitions that will be used when
discussing reliability and space radiation effects on electronics throughout this report.
There is also included a short summery of the most notable contributions to the OBC,
to give the reader an understanding of what work already has been done concerning the
OBC. Much of this chapter was originally published in Normanns ”Hardware Review of
an Onboard Controller”, however some sections have been edited to better fit the scope of
Onboard computer software.

2.1 Reliability Theory
This section aims at presenting some of the terms and definitions relating to reliability
theory.

Reliability is by Randell et al. defined to be a measure of the success with which a system
conforms to some authoritative specification of its behavior [7]. For a satellite launched
into orbit, reliability is of particular importance as repair after launch will not be feasible,
or at least not economically within the budgets for the NUTS satellite. Before proceeding
to how reliability may be achieved, it is important to define some further terms as to avoid
any misconceptions or misunderstandings.

2.1.1 Reliability, Failures and Errors
In reliability theory one usually differentiates between faults, errors and failures. In this
paper these terms will be used as they are defined in Reliable Computer Systems [1, p. 22]

• Fault is an incorrect state of hardware or software resulting from failures of com-
ponents, physical interference from the environment, operator error, or incorrect
design.

• Error is the manifestation of a fault within a program or data structure; errors can
occur some distance from the fault sites.

5

• Failure occurs when the delivered service deviates from the specified service; fail-
ures are caused by errors.

Figure 2.1: The fault, error, failure, fault chain

The relationship between fault, error and failure can be seen in Figure 2.1. In addition to
these terms it is common to distinguish three types of faults; permanent, intermittent or
transient [8]. These terms are defined as below:

• Permanent describes a failure or fault that is continuous and stable; in hardware,
permanent failures reflect an irreversible physical change. An example is a bitflip in
the program memory, a broken wire or a software design.

• Intermittent describes a fault that is only occasionally present due to unstable hard-
ware or varying hardware or software states (e.g. as a function of load or activity)

• Transient describes a fault resulting from temporary environmental conditions. It
only remains in the system for a limited period of time before disappearing. They
can be dormant during all their lifetime (which means that they do not generate an
error), or can activate at some point (inducing an error). An example of such faults
is a bit-flip in a RAM memory.

The different categories of faults and their origins can be seen in Figure 2.2.

Figure 2.2: Sources of errors and service failures as presented in Reliable Computer Systems [1].

6

2.2 Space Environment
This section aims to give the reader a short introduction to some of the important concepts
and definitions concerning space radiation and the effects space radiation can have on
electronics.

2.2.1 Space Radiation
One of the aspects that makes the design of space technologies so challenging is the ex-
treme constraints imposed by the harsh outer space environment [9]. A satellite has to be
carefully designed to contend with void, extreme temperature variations, intense acceler-
ations and space radiation. The NUTS satellite is to enter a Low Earth Orbits (LEO), and
for most LEOs, the radiation environment is harsher compared to Earth’s surface, but not
as harsh as the higher orbits or deep space [10].

Radiation in space is produced by particles emitted from either the sun (solar radiation) or
from outside of the solar system, Galactic Cosmic Rays (GCRs). Radiation effects from
these solar and galactic emitted particles can not only cause degradation, but can also cause
failure of the electronic and electrical systems in space vehicles or satellites.

Figure 2.3: NUTS satellite as imagined in LEO

One can by investigating the radiation toughness of components get an understanding
of the failure rate one might expect. When categorizing components base on radiation
tolerance, three categories are usually used; commercial, rad tolerant, and rad hard. The
characteristics parented in the list below are all gathered from NASA [11].

Commercial:
• Process and Design limit the radiation hardness
• No lot radiation controls
• Hardness levels:

– Total Dose: 2 to 10 krad (typical)
– SEU Threshold LET: 5 MeV/mg/cm2
– SEU Error Rate: 10−5 errors/bit-day (typical)

7

• Customer performs rad testing, and assumes all risk
• Customer evaluation and risk

NUTS, as most CubeSats mostly apply commercial of-the-shelf (COTS) components and
thus faces some serious risks of various radiation induced errors. A short introduction to
the most common effects will now be presented.

2.2.2 Total Ionizing Dose
Total ionizing dose (TID) is the accumulation of ionizing dose deposition over time. This
occurs mainly as an effect of protons and electrons, and the ionization creates charges or
electron-hole pairs in oxides. This could lead to circuit parameter changes and over time
make the circuit ceases to function [12].

According to NASA the expected radiation levels in Low Earth Orbit for higher incli-
nations (20-85 degrees) is to be about 1 − 10krad(Si)/year [11], and typical total dose
failure levels of microprocessors at 15-70 krad(Si) [10]

2.2.3 Single Event Effects
Electronic components are vulnerable to a number of effects when exposed to cosmic rays.
The collective term for the different failure mode occurrences is Single Event Phenomena
(SEP) or Single Event Effects (SEE). A brief overview of the most common SEEs can
be seen below. The SEU threshold LET is described as the energy level per amount of

Name Effect
Single Event Transient (SET) Soft intermittent fault Propagating through cir-

cuit.
Single Event Upset (SEU) Soft transient fault State change on latch or

memory.
Single Event Latchup (SEL) Apparent short circuit Can be mitigated with

power cycling Can cause destructive thermal
runaway.

Single Event Gate Rupture (SEGR) Permanent failure.
Single Event Burnout, SEB Permanent failure.

Table 2.1: Single Event Effects

material of the radiation that will trigger SEU events. The energy of most comic rays
range between 100 − 10000MeV · cm2/mg [13], and as seen earlier the expected SEU
error rate for COTS in LEO is by NASA estimated to be around 10−5 error/bit per day.
This s of course a rough number as it doesn’t even mention for what type of memory it
is applicable. It does however give some understanding to in what magnitude errors can
be expected. If we assume this error rate is correct, a 128 kB of RAM would for instance
experience around 10 errors accumulated per day in orbit [10].

8

2.3 Earlier Work
This section will shortly present some of the theses that have contributed to the OBC in
the the past.

Internal Data Bus of a Small Student Satellite - Marius Lind Volstad
Volstad’s master thesis is the first and maybe the most substantiating contribution to the
OBC. In this thesis Volstad designs the inital hardware both for the backplane as well as
the OBC. Both the OBC and the backplane hardware are produced and tested to be mostly
functional. Some test drivers for the OBC hardware was also implemented to verify the
setup. Unfortunately as the thesis covers so much, many of the reasons and discussions
for choosing the various solutions have not been included.

Memory management and error handling in FreeRTOS for a CubeSat project - Diaa
Jadaan
Jadaan explains the different memory management schemes in FreeRTOS, as well as how
stack overflows can be detected. The paper also investigates how an exception handling
framework, Exceptions4c, can be used for exception handling in POSIX-based systems.
Jadaan states that in order for this to be useful in FreeRTOS porting is needed, but that this
is a complicated task that he was not able to finish within the timeframe given. The paper
also states that RAID 4 techniques can be used for error detection for embedded systems,
and a small demonstration is written in C++.

Implementing CSP over I2C for the new repository on the NTNU Test Satellite -
Erlend Riis Jahren
Jahren imports the Cubesat space protocol library into the NUTS project and implements
the NUTS Reliable Protocol on top of it. He also tests the various functionalities rather ex-
tensively and discusses the results. Jahren states in the report that ”almost all of the mem-
ory is already used in the FreeRTOS, CSP and NRP implementations, leaving only the
leftover memory available to be used in testing” [14]. He attempted to solve this by trying
to move the heap into an external SRAM, but it was never completed successfully. Despite
this he was however able to prove that most of the NRP functionalities were succesfully
implemented, where as the only exception was that of multiple concurrent streams, as a
server was not able to receive concurrent streams from two clients.

Mission Event Planning & Error-Recovery for CubeSat Applications - Magnus Haglund
Arnesen and Christian Elias Kiær
Arnesen & Kiær presents the most important system level mission event plans. Their pa-
per investigates the battery charging and discharging and presents a power budget, and a
design for an external watchdog is presented and tested.

Improvement in the Reliability of a Bi-Processing Unit Satellite Subject to Radiation-
Induced Bit-Flips - Mayeul Marcadella
In his thesis Marcadella presents and implements the Resilient System Prototype (RSP).
The RSP is a software project using the same microcontrollers as the OBC and the sister-
OBC. It implements cold dynamic redundancy between the two modules, where one can

9

coop and/or reprogram the other in the event of a failure. The project implements a sim-
ple JTAG controller, a program memory corruption detection and correction facility, and
a bit-flip injector for testing purposes. The setup was tested for 8 hours under a simulated
bit-flip density 250 times higher than the expected on-orbit rate [9]. The downsides are
that the project has not been tested on the actual OBC, the project uses a USART that is
not implemented in the OBC design and there are also quite some work left as the project
only emulates the use of external memories and doesn’t actually interface any external
memories itself.

Error Detection and Correction for Low-Cost Nano Satellites - Kjell Arne Ødegaard
Ødegaard evaluates low-cost measures for dependability and robust Error Detection and
Correction for use in applications such as nano satellites. Different methods are evaluated,
with the main result being the mitigation failures due to bit-flips in system memory by
using BCH codes [15]. An implementation is then made, tested and the result is discussed.

As can be seen form the theses presented above, there has been written multiple papers
on how reliability can be assured for the OBC through the use of various software tech-
niques. This paper therefor focuses on the implementation design of the actual OBC, using
the already documented research of the former theses as a starting point. Before an archi-
tecture can be decided upon, one has to create a requirement specification to ensure that
one solves the correct problem. This will be presented in the next chapter.

10

Chapter 3
Software Requirements

In this chapter the requirements imposed on the OBC software will be analysed and dis-
cussed. The existing functional and non-functional requirement specifications will be up-
dated and a specific software requirements specification in accordance to Institute of Elec-
trical and Electronics Engineers (IEEE) Standard 830 Recommended Practice for Software
Requirements Specification (SRS) will be created and presented.

3.1 Requirement Specifications and Documentation
By far the most common project risks in system development are poor requirements and
poor project planning. Researchers at Hewlett-Packard, IBM, Hughes Aircraft, TRW, and
other organizations have found that purging an error by the beginning of construction al-
lows rework to be done 10 to 100 times less expensively than when it’s done in the last
part of the process, during system test or after release [16]. Requirements are therefor
considered an important part of the development projects and well worth spending some
time on refining.
A general requirement specification for the OBC was presented by Normann in [17]. This
specification outlines the top-level requirements imposed on the OBC system and will be
used as a starting point in which more detailed requirements may be added as they are
explored.

Before diving into the requirement refining process, it is important that one considers the
downstream consequences of one’s action. Engineers and scientists often don’t realize the
downstream complicity (and cost) entailed by their local decisions [18]. Overly stringent
requirements and simplistic hardware interfaces can complicate software. In fact NASA
made a comprehensive inquiry into flight software complexity and published the result in
the report ”NASA Study on Flight Software Complexity” in 2006. In this report one of the
major key lessons learnt was that unsubstantiated requirements have caused unnecessary
complexity in software, either because the requirement was unnecessary or overly strin-
gent [18]. It is therefor considered important not to propose requirements simply for the

11

sake of deciding matters, but rather so that actual, real constraints imposed on the system
can be identified and enunciated in an early stage of the development process.

Wertz and Larson states that analysis and designs are iterative, gradually refining both the
requirements and methods of achieving them. Broad objectives and constraints are the key
to this process. Procurement plans for space systems too often substitute detailed numer-
ical requirements for broad mission objectives. While our overall objectives to communi-
cate, navigate, or observe will generally remain the same, we may achieve these objectives
differently as technology and our understanding of the process and problem evolve. For
this reason it is important to avoid overly stringent or unnecessary requirement specifica-
tions [19].

3.2 Detailing the OBC Requirements
As this thesis focuses on the OBC software, the top-level OBC requirements will be used
to generate a software requirements specification. Standardization is considered impor-
tant, as it can serve as a reminder and helps the developer to consider the most important
aspects that need to be addressed. However as very few developers with the NUTS project
have any experience with established standards, it is not considered important that the
standard is followed strictly, but rather that it can be adopted and modified for the NUTS
project. For the NUTS project no formal standard was chosen for software or design doc-
umentation. The author of this thesis therefore proposes the use of the well established
IEEE Standard 830 Recommended Practice for Software Requirements Specification and
the IEEE 1016 Software Design Document for documentation of software requirements
and design, respectively. The IEEE standards were chosen as they have been popular in
the NTNU computer science course TDT4240 - Software Architecture, and thus most stu-
dents having taken this course will already be familiar with these standards. It is however
important to note that these standards should not be followed blindly. They are meant to
be a tool to help the developer write good requirement and design documentation. The
designer should use the standards as a reminder of what should be included and how it can
be structured in the documentation. The developers are free to make deviations from the
standard if they feel that this will better convey the requirements or design of the software.

3.2.1 Detailing the Functional Requirements
The functional requirements have not changed much since the original specification was
published. There is however one addition to the list of requirements; in-orbit reprogram-
ming. The reprogramming of satellite modules in-orbit is now considered a must after
discussions within the NUTS project. This is much due to the lessons learnt, presented
from other successful CubeSat projects such as the ESTCube-1 [20], GOMX-3 [21] and
PolySat [22]. In the report ”ESTCube-1 In-Orbit Experience and Lessons Learnt” it is
stated that a large portion of ESTCube-1 software was written after launch: ”We consider
this bad practice because it relies on in-orbit software updates and the mission is deployed,
increasing a risk of satellite failure before performing all the planned experiments. How-
ever, we think that functionality of in-orbit software updates of all active subsystems is

12

critical for a CubeSat mission, especially for teams without prior experience. That func-
tionality can, most importantly, save the mission and it also allows using the satellite for
other purposes than initially planned.” [20].] This functionality will have to be imple-
mented in the OBC and thus the OBC must be able to reprogram itself as well as other
modules. The additional requirements induced by this can be seen in Table A.6.

R00-OBC-PRG-000 PRG= PROGRAMMABILITY.
The OBC must be able to reprogram itself as well as other mod-
ules.

R00-OBC-PRG-002 The OBC be able to receive and store at least one additional boot
image from ground station

Table 3.1: OBC reprogramming requirements

As changes now have been made to the initial document, a document revision history
section is added to the document to avoid any mix-ups between different versions.

Revision Date Author Description
1.1 01.03.2016 Magne Normann Included requirements of reprogramming,

refined non-functional requirements.
1.0 05.10.2015 Magne Normann Initial Document Release

Table 3.2: OBC reprogramming requirements

3.2.2 Detailing the Non-Functional Requirements
Non-functional requirements specify system properties [23]. These system properties can
be imperative for mission success and must be analysed before any design can be made.
The top level non-functional requirements for the OBC were presented along with the
functional ones in the ”Hardware Review for an Onboard Controller for a Cubesat” report
by Normann [17]. The following section will now further elaborate on the non-functional
requirements considered to be the most important for the NUTS mission. These include
reliability and maintainability, as well as memory and power requirements that might af-
fect the OBC software.

Maintainability Requirements
Managing complexity is the most important technical topic in software development, and
once you understand that all other technical goals in software are secondary to managing
complexity, many design considerations become straightforward [16].

The NUTS project is student driven, where most contributions come from project works
and master theses. This means that there is a large turnover in the project and that per-
sonnel seldom stay for more than one or two semesters. This constitutes to a constant
brain-drain and poses a serious challenge on the project management, as well as for the
accepted amount of complexity in the project. It is imperative that an engineering student

13

can understand, and contribute to the project within the timeline of one semester. This
poses strict demands to the maintainability of the system, and the allowed complexity. It is
therefor of utmost importance that the OBC software architecture is easy to use, maintain
and further develop by new students joining the program.

Ease of further development is considered part of the maintainability of the project and
with this comes requirements to version control, and ease of testing. The NUTS OBC soft-
ware architecture therefore requires that tools for version control and debugging should be
an inherent part of the software project, together with well documented code.
Reliability Requirements

R00-OBC-MAI-001 MAI= MAINTAINABILITY.
All user written code must be documented in a coherent manner

R00-OBC-MAI-002 Version control shall be used for the code repository
R00-OBC-MAI-003 Software architecture must support tools for debugging

Table 3.3: OBC Maintainability requirements

The reliability requirements are especially important for deployed systems such as Cube-
Sats, as manual maintenance after launch is impossible. The system must be able to re-
cover from any failures that are likely to happen in the life span of the satellite. Care must
be taken to find the simplest and overall most effective way of handling the errors that
might occur. It is important to keep in mind that the enunciation of any strict require-
ments concerning the reliability of the system may have tremendous consequences for the
complexity of the resulting system [18]. The main reliability requirement is R00-OBC-
NON-REL-000 ”The OBC mean time to failure should be greater than the duration of the
space mission.” This is a general, not too stringent and verifiable requirement. It is thus
deemed adequate for this iteration. In requirement R00-OBC-NON-REL-002 however, it
is stated that ”The OBC must be able to recover from failures”. This requirement is both
ambiguous and unspecified and thus a poor requirement. The purpose of the requirement
is to ensure that the system does not go down despite errors occurring. The most likely
error sources are the coding bugs as well as radiation effects such as SEU and SEL. The
coding bugs are not so easily handled by a faulty software, but the radiation induced ef-
fects are more often than not soft errors and can be handled by a simple reset of the OBC
[10]. The requirement is therefor changed to: ”R00-OBC-NON-REL-002 The OBC must
be able to recover from transient errors such as SEL and SEU, no matter where or when
they might occur.” This may sound stringent, but as all soft errors can be resolved by a soft
reset of the module, it is considered an important and cost-effective requirement. The aim
for the system developer should not be to strive to find different solutions for all possible
failure scenarios, but rather to implement the simplest, most general catch-all measures.

Power Requirements
Arnesen & Kiær estimated the normalized charging power to be 3.205 W, while the com-
bined satellite power consumption was estimated to reach as high as 8.791 W [10]. A
maximum power consumption for the OBC module (MCU plus memories) has been esti-
mated to 550 mW [17], however the average power consumption must be much lower if

14

the batteries are not to be drained out. It is therefor imperative that power optimization
techniques are integrated into system design and architecture. The satellite wide power
budget for the NUTS satellite reserves 300mW for the average power consumption of the
OBC and its memories.
The amount of power consumed by the microcontroller effects the heat dissipation. As
the system will be deployed in vacuum, there will not be any air circulation to help con-
duct the heat away from the micrcontroller and heat issues must be addressed as well.
As an example, Estcube-1 using an ARM Cortex-M3 based microcontroller reported that
that microcontroller supported overclocking of up to 128 MHz while remaining stable at
room temperature. However, instabilities of the overclocked microcontroller started to
appear when the operational environment temperature exceeded 50 degrees Celsius. At
nominal 72 MHz frequency the device was able to operate within the ranges set in the
specifications: from –20 up to 80 degrees Celsius. The SAMV71 used for one of the OBC
microcontrollers can be clocked as high as 300 MHz and has it’s operation temperature
range of -40 to 105 degrees Celsius [24]. The UC3C only support clock frequencies up
to 66 MHz and has an operational temperature range between -40 and 85 degrees Celsius
[25]. The temperatures of the microcontrollers should therefore be tested in vacuum at
with different frequencies before a final processor speed is decided upon.

Memory Requirements
Empirically, initial software size and throughput estimates double from System Require-
ments Review to launch because early requirements are uncertain, and changes in software
are easier to make than changes in hardware during late stages of spacecraft development
[26]. These statistics are for regular spacecraft development, and may not be applicable
for cubesat development. However memory constraints should not be taken lightly and to
be on the safe side, this author recommends that the initial design aim to reserve 30% of
the available on-chip non-volatile memory (ROM) for unforeseen expenses, in accordance
with reccomandation from Hansen et al [26]. The SAMV71 embeds 2MB flash while the
UC3C MCU embeds 512 KB Flash. This means that the OBC software should aim at
using less than 512KB ∗ 0.7 = 358.4 KB for its applications.

One should not attempt to use all of the available volatile memory (RAM) or through-
put either. Asynchronous processing, such as interrupt handlers, introduces a level of
uncertainty in throughput. Costs also rise dramatically as we shoe-horn the software into
existing memory [Boehm, 1981]. As a rule of thumb Hansen et al. recommends that
spacecraft computer systems should use 70% or less of available throughput [26]. For the
proposed OBC microcontrollers SAMV71 and UC32C the available onboard RAM is 384
KB and 64 KB, respectively. Due to the small size of the internal RAM of the UC3C,
external RAM is incorporated into the current design of the OBC, yielding an additional
2 MB of memory space. The maximum allowed memory usage when reserving 30% then
becomes 2064KB ∗ 0.7 = 1444.8KB. This may seem like an excessive amount, but one
must remember that the OBC will have to work with both boot images as well as captured
pictures from the camera. It is therefor important that this boundary is established and
respected.

15

Timing Requirements
The OBC must handle incoming packages in a satisfactory fashion. Except for this, there
are no hard timing demands for the OBC. The radio link uses a baudrate of 9600 bits
per second. For the OBC connected to the UHF radio, it is important that the buffer on
the radio microcontroller does not overflow with packages sent from the ground station.
There are many factors, such as packet size and baudrate for the radio communication that
have not yet been decided and thus an accurate estimate of the expected workload cannot
be obtained. However using preliminary values to get an estimate can give an indication
on the requirements posed on the OBC. The microcontroller in charge of controlling the
ADF7021 UHF radio is able to queue up to 5 frames. If 266 bit frames are used at a bau-
drate of 9600 bits/second, this gives a timeslot of (266 ∗ 5)/9600 = 0.139s. The OBC
must therefor be able to receive at least 5 frames of 266 data bits from the UHF radio
microcontroller every 139 ms.

When it comes to the internal data bus, baudrates up to 1Mb/s are supported. The spe-
cific data rate to be used for the internal bus has not yet been decided, but is likely to be
slower than the maximum speed. It is however recommended that the CAN receiving is
interrupt based with a high priority so that lower priority tasks can be preempted to be able
to accommodate the data stream supplied by the internal satellite data bus. The CPU clock
frequency must be considerable faster than the bus baudrate to properly receive the data.
As was described above, Hansen et al. recommends that no more than 70 % of available
throughput shall be used, this serves as a minimum requirement for the speed of the OBC.
The maximum clock frequency for the UC3C microcontroller is 66 MHz, while for the
SAMV71 the maximum frequency is 300 MHz for the CPU clock and 150 MHz for the
internal bus matrix.

3.3 Defining Operational Modes
To define requirements for a computer system, it is convenient to develop a computer sys-
tem state diagram [26]. Arnesen and Kiær proposed three different modes of operations,
depending on the remaining battery capacity:

• Critical mode - less than 25% battery capacity
• Avoidance mode - between 25-50% battery capacity
• Normal mode - between 50-100 % battery capacity

By incorporating these power modes with the typical state transition diagram proposed by
Hansen et al. [26], together with the cold redundancy scheme proposed by Marcadella
in ”Improvement in the Reliability of a Bi-Processing Unit Satellite Subject to Radiation-
Induced Bit-Flips” [9], one receives a state transition diagram for the Onboard Computer
as depicted in Figure 3.1 and Figure 3.2.

16

Figure 3.1: The OBC State Transition Diagram

Figure 3.2: The OBC on-orbit internal state diagram

3.4 Summary
In this chapter the functional requirement specification for the OBC was taken as input,
and a Software Requirement Specification in accordance with the IEEE standard 830 was
outputted. Functional requirements concerning in-orbit reprogramming was added, and
non-functional requirements for the OBC software were analysed and discussed in more
detail. Due to the challenges related to the high turn-over of inexperienced personnel in
the NUTS project, maintainability was considered one of the foremost important non-
functional requirements of the software architecture to be created.

17

Chapter 4
Software Architecture

In this chapter, the various possibilities for satisfying the requirement specification pre-
sented in the previous chapter are explored and a software architecture is presented. The
output of this section will be a design specification, create din accordance with the IEEE
Standard 1016 Software Design Document.

Maintainability was determined to be one of the foremost important non-functional qual-
ities, therefore this chapter will start by presenting the characteristics of good software
design, to show what the design should strive for. Different approaches is then shortly
discussed before one is chosen for this project. After defining an approach, the first stage
of the design process is started as the OBC software is decomposed into software modules.

4.1 Attributes of Good Software
The goal for the OBC software is to satisfy the OBC software requirements specification.
The possibilities of this are many, and it is therefore important to identify what separates a
good design from a bad one. McConnel, the author of Code Complete, states that there are
several general characteristics to high quality design. These can be seen in the list below:

• Minimal complexity
• Ease of maintenance
• Loose coupling/high cohesion
• Extensibility (Extensibility means that you can enhance a system without causing

violence to the underlying structure. You can change a piece of a system without
affecting other pieces. The most likely changes cause the system the least trauma.)

• Reusability (Reusability means designing the system so that you can reuse pieces of
it in other systems.)

• Portability
• Leanness (Leanness means designing the system so that it has no extra parts (Wirth

1995, McConnell 1997).)

18

• Stratification (Stratification means trying to keep the levels of decomposition strat-
ified so that you can view the system at any single level and get a consistent view.
Design the system so that you can view it at one level without dipping into other
levels)

• Standard techniques

Minimal complexity and ease of maintenance is considered to be the foremost important
characteristics of a good design. This holds true for the NUTS project as well. Further-
more, emphasise is put on loose coupling between software modules, while having strong
cohesion inside them, effectively minimizing dependencies between modules [16] [27].
This is important as it minimizes work during integration, testing and maintenance. When
it comes to extensibility, reusability and portability these are not of major importance to
the NUTS project as the mission is specific and it’s considered unlikely that software will
be reused for other missions, or that there will be any major changes in the mission goals.
However Wertz & Larson states that even though the overall objectives to communicate,
navigate, or observe will generally remain the same, we will achieve these objectives dif-
ferently as technology and our understanding of the process and problem evolve [19]. A
good design should therefor anticipate some change, though only changes that are likely
to happen. The cost of preparing for these changes should also only be implemented if
they do not add a considerable amount of complexity. For the NUTS OBC, the most likely
changes are considered to be to hardware changes, such as microcontrollers and memories
as the technology advancements are quite rapid in these areas. In addition it is expected
that the system will have to support the adding of, and changes to, features and services.
Much in the same manner as in-orbit reprogramming was added to the requirements in this
iteration. McConnel also recommends the use of standard techniques. This is deemed es-
pecially important for the NUTS project due to the high turnover of personnel. The more
a system relies on exotic pieces, the more intimidating it will be for someone trying to
understand it for the first time. Trying to give the whole system a familiar feeling by using
standardized, common approaches is therefor considered an important tool for managing
the complexity and easing the maintainability of the system.

4.1.1 Platform Selection
There are many different ways of doing embedded system design. Sommerville states that
platform selection is an activity that is often included in embedded design processes. In
this activity, an execution platform (i.e. the hardware and the real-time operating system
to be used) is chosen for the system. As the hardware already has been decided for the
OBC, the consideration of programming language and operating system seems the natural
next step, as these choices will affect what software mechanisms, and thus what designs
are possible. One could of course argue that in an ideal world, a problem is first solved,
and only then can the language and operating system optimal for the solution be selected.
However, there may be constraints related to the choosing of language and operating sys-
tem, invalidating all designs that does not incorporate these constraints. Therefor, a more
practical approach is chosen, where the constraints and demands for the language and op-
erating system is explored first, so that a design using the available tools can be made.

19

Real-time and embedded programs (such as CubeSat applications) have to control and
interface with real-world entities (thrusters, switches, sensors, etc.) that are inherently par-
allel. Reflecting the parallel nature of the system in the structures of the program makes
for a more readable, maintainable and reliable application [8]. This is one of the main mo-
tivations for writing concurrent programs. For this reason and to minimize dependencies
between different services, concurrency was deemed appropriate for the NUTS OBC.

Some hard real-time systems are still sometimes programmed in assembly language so
that tight deadlines can be met. However, systems-level languages, such as C, which allow
efficient code to be generated are also widely used. The advantage of using a systems
programming language like C is that it allows the development of very efficient programs,
that allows for direct hardware access [28]. As there are no real-time constraints that de-
mands for assembly implementation, the C language is considered the most appropriate
for the NUTS OBC software. Unfortunately, the C language does not include constructs
to support concurrency or the management of shared resources. Concurrency and resource
management must therefore be implemented through calls to primitives provided by the
real-time operating system, such as semaphores for mutual exclusion.

Up until the writing of this thesis, the real-time operating system FreeRTOS has been
used for the OBC software, though no argumentation has been given for why this oper-
ating system was chosen. A short inquiry into this matter will therefore be made in the
follow section.

A comparison between a number of CubeSat satellites was published in the paper ”Fault
Tolerant and Flexible CubeSat Software Architecture” by Manyek, published in 2011. Of
the twelve CubeSats that were investigated only two use a custom operating system. Most
systems rely on two watchdogs to protect against hang-ups that can occur as a result of
radiation events. Most are coded in C, though parts may be coded in assembly. The small
CubeSats (in consideration to the processing power of the OBC) often rely on specialized
solutions and code that is not reusable, while for the CubeSats running Linux OS, Vx-
Works or Windows, more independent programs with few or no inter-dependencies are
being used. Unfortunately this author could not find any comparison that was more up to
date, therefore a comparison of a handful of newer CubeSats was made and is presented
below in Table 4.1.

20

CubeSat Launch Date OBC MCU OS Architecture
AAUSAT3 23.02.2013 AT90CAN128, ARM7 FreeRTOS Distributed
ESTCube-1 07.05.2013 STM32F7 (32-bit) FreeRTOS Centralized
kySAT-2 19.11.2013 C8051 (8-bit) SPARTOS Distributed
delfi-n3xt 21.11.2013 msp430 (16-bit) custom N/A
GOMX-3 19.08.2015 UC3 and ARM A9 (32-bit) Freertos & Linux Distributed
AAUSAT5 19.08.2015 AT90CAN128, ARM7 FreeRTOS Distributed
skCUBE July 2016 msp430 (16-bit) custom N/A
Eye-Sat end of 2017 ARM A9 FreeRTOS & Linux Centralized
EstCube-2 end of 2018 STM32F7 (32-bit) FreeRTOS Centralized

Table 4.1: Cubesat Operating System Comparison

As can be seen from the Table 4.1, Linux, FreeRTOS and custom operating systems
are still popular for CubeSats. However all of these may not be possible for the NUTS
hardware. The choice of OS is often dependent on what can be supported by hardware.
The AVR UC3 devices do not embed a Managment Unit (MMU), which is a prerequisite
for porting most Linuxes on MCUs. However uClinux, a derivative of Linux 2.0 kernel, is
a distribution intended for microcontrollers without Memory Management Units (MMUs)
and is ported to some Atmel SAM microcontrollers through the at91 project, but no offi-
cial ports exist for the samv71 microcontroller [29], nor for the UC3. A master thesis was
written at NTNU in 2008 which ported Linux to the UC3A [30], but this has unfortunately
not been merged into the mainline kernel. Care should be taken before choosing unoffi-
cial distributions as very little can be said about their user community, maintainability and
guarantee of function. Linux is therefore considered unfit for the current OBC hardware,
due to the lack of any official ports. Using home grown RTOS is not recommendable due
to the complexity of developing it, using it, and maintaining it. Getting RTOS right can be
difficult, and even if one gets it right, it can be a lot of work [31]. FreeRTOS thus seems
like a good choice for the NUTS OBC.

FreeRTOS is available as a library of types and functions to build real-time, multi-tasking,
embedded software applications. The Scheduling can be preemptive, cooperative or a hy-
brid configuration. It is mainly written in C, with some parts in assembly. The memory
footprint of FreeRTOS depends on application and hardware, but Real Time Engineers
Ltd, the developers of FreeRTOS, claim the following memory footprint for a fully opti-
mized IAR STR71x ARM7 port with minimal configuration and four priorities [32].

Item Bytes Used
Scheduler 236 bytes
For each task 64 bytes + stack size
For each queues 76 bytes + storage area

Table 4.2: FreeRTOS memory footprint

The ROM space needed for the kernel itself was reported to be between 5 to 10 KBytes.
EstCube-1 reported that for their OBC, FreeRTOS takes about 11 KB of Flash and 64 KB

21

of RAM, most of which is reserved for the heap of dynamic memory management [20].

One can see from this that FreeRTOS will have no problem to fit inside neither of the
proposed microcontrollers and it should only claim a minor part of the system memory.
The FreeRTOS is therefor chosen as the OBC real time operating system, due to it’s sim-
plicity as well as its large user community both in the field of CubeSats as well as other
embedded systems.

Debugging a real time application can be a complex exercise due to multiple task manage-
ment and kernel objects [33]. For this reason, as well as requirement R00-OBC-MAI-003:
”The OBC software architecture must support tools for debugging”, a tool for debugging
FreeRTOS is deemed necessary.

There are multiple ways of debugging FreeRTOS through Atmel Studio. Methods read-
ily available though Atmel Studio include FreeRTOS Viewer and Percepio Streaming
Recorder. Due to its comprehensiveness Percepio Tracelizer (Snapshot) library is chosen
as it in addition to task view allows for analysis of the following [34]:

• CPU Load
• Timing Variation
• Communication Flow
• Synchronized view
• Kernel Object History

One should be aware however that this is an intrusive method, and the timing variations
thus may be different when the trace is disabled. For time critical analyses, Percapio
Stream Recorder can be used. This is based on the J-Link’s Real-Time Transfer feature
(RTT) that allows for transferring data between host and target at high speeds in a non-
intrusive manner [35]. However, one should be aware that the method is not truly non-
intrusive as the internal bus matrix is used for the transfer, and thus the program execution
may be effected by having to wait for bus access. Another possibility is to use the Core-
sight features embedded in the ARMv7 architecture, though these traces are not aware of
kernel objects and may be difficult to interpret. If the importance of doing the time critical
analysis outweighs the time effort, this is however a method that could be used. The Perce-
pio Trace Snapshot Recorder seems to implement the required functions and is considered
sufficient for most development debugging purposes, and thus chosen for implementation
for the OBC Software.

For communication between the satellite subsystems a CAN-bus is used. As CAN is a
multi-master serial bus, this means that hardware supports a distributed massage based
architecture, where any node may initiate interactions. As a communication protocol for
the communications between satellite subsystems (and the ground station) NUTS uses a
small protocol stack called the CubeSat Space Protocol (CSP). The small protocol stack
was formerly known as CAN Space Protocol and has proven flight heritage with satellites
such as AUSAAT3, AAUSAT4 and GOMX-3 [36]. It is written in C and its design fol-
lows the TCP/IP model and includes a transport protocol, a routing protocol and several

22

MAC-layer interfaces [37].

4.1.2 Architecture Selection
Somerville states that the most common architectures for embedded systems is the master-
slave architecture, while for distributed systems it’s a more service-oriented server-client
architecture [28]. Somerville states that master-slave architecture is used in real-time sys-
tems in which guaranteed interaction response times are required. For the NUTS satellite
there are no such hard real-time demands, and thus a distributed architecture may be a
viable option.

As mentioned earlier, NUTS already uses CSP for communication between satellite mod-
ules. Though originally intended for cross-module communication, the protocol does sup-
port loopback mode. Meaning that messages could be sent from one thread to another
running on the same microcontroller via CSP. This facilitates the possibility of a software
component-based architecture without having to implement or add any new middleware
libraries.

Component-Based and Service-Oriented Software

As with most systems in the NUTS satellite, the OBC is being realized through the work of
multiple student developers, working with the NUTS initiative at different times through-
out the satellite project timeline. It is therefor of great importance that software modules
are as independent, or loosely coupled, as possible in order to secure good extensibility
and maintainability. Independent components that are completely specified by their inter-
faces, would greatly simplify the development and maintenance of the software as each
module could be designed, implemented, tested and if necessary replaced without effect-
ing the rest of the system. This idea, of building a “legobox” of interoperable, reusable
services has been a popular goal in software engineering. Object-oriented software engi-
neering, Component-Based Software Engineering (CBSE) and now Service-oriented Ar-
chitecture (SOA) engineering all strive towards this goal in slightly different ways [38].
CBSE seems to be a popular way of constructing software for small satellites and has been
reported as the main software architecture of projects such as NASAs GSFC Open Source
Software Core Flight Executive (cFE) [39], ESAs Space Avionics Open Interface aRchi-
tecture (SAVOIR) project [40], as well as by private actors such as in Bright Ascension’s
GenrationOne Onboard Software product, which was used on UKube-1 [41].

The SOA philosophy is very close to that of CBSE. The SOA term is mostly used for web
services, and has multiple definitions, the one given by Somerville states that a service is
defined as: ”A loosely-coupled, resusable software component that encapsulates discrete
functionality, which may be distributed and programmatically accessed.” [28]. Petritsch
states that in an SOA, resources are made available to other participants in the network
as independent services that are accessed in a standardized way. Most definitions of SOA
identify the use of web services (using SOAP, WSDL and UDDI) in its implementation;
however it is possible to implement SOA using any service-based technology [38].

23

Both component-based and service-oriented software can greatly ease the design, im-
plementation and maintenance of software modules. It alleviates the intricacies of inter
module communication by abstracting the responsibility of gluing modules together onto
the middleware. Implementing this handling in the middleware may however prove to be a
challenging and comprehensive task. Therefor existing solutions should be explored. The
advantages of component-based or service oriented software is desirable, but not deemed
cost-effective if NUTS have to develop the middleware handling of communication from
scratch.

Both NASAs cFE and ESAs SAVOIR could be fun and maybe advantageous to use for
the NUTS satellite, but after further investigation it was discovered that neither of these
systems had official support for the target operating system (FreeRTOS)[42]. Also both of
these projects are quite large and may add a level of complexity that simply isn’t required
for the NUTS mission. The architecture of layered component-based or service-oriented
design does however seem to exhibit many of the characteristics needed for the OBC soft-
ware. The next sections have therefor been reserved for the investigating of pros and cons
of using the already present CSP library to facilitate a service oriented, or component
based architecture for the NUTS satellite.

The Perks of CSP for Inter-Thread Communication

The main arguments for using CSP as a unified interface for both internal and external ser-
vices are that it may minimize system complexity and ease error checking and handling.
CSP uses a service-oriented topology with a Berkley/POSIX socket-like Application Pro-
grammer Interface (API). Most computer developers have at least some experience with
socket programming and are thus already familiar with the basics of how the CSP API is
used. Using this service-oriented architecture also encourages developers to minimize de-
pendencies to other sub-modules and uphold a standard way of communication throughout
the satellite.

If CSP is used not only for inter-module communication but also for intra-module commu-
nication, every internal service becomes (if wanted) accessible to other modules as well.
This means that if a service provider permanently fails, the service can be requested from
any other service provider with similar request-handling, simply by changing the receiver
address. An example of this could be if the logging service of a module goes down due
to some permanent hardware failure. The module would then be able to use the logging
service implemented in another module, by changing the receiver address it sends its log
messages to.

If a housekeeping entity is being used to manage the health of the satellite, then it can be
used to update what sockets should be used in case of any permanent submodule failure,
abstracting any satellite-system error handling away from the submodules. This means
that a submodule developer does not need to check for or implement handling in case of
any failures in other submodules. If other modules go down, the housekeeper will change
the addresses appropriately and the submodule application developer is only responsible

24

of implemented error handling for its own services.

Figure 4.1: Service supplied from on-chip provider

Figure 4.2: Service rerouted to off-chip provider

Concerning congestion control and error checking, CSP supports a handful of Internet
Control Message Protocol (ICMP) calls, as well as services such as requesting memory
and buffer status. It also has support for getting and setting time, retrieving the up-time
of another module, and retrieving a list of the running threads as well as their statuses. In
addition to this, the CSP router task supports Quality of Service (QoS) and can evaluate
its own performance. If CSP is used for inter-thread communication, all these services
become available for submodules as well and may ease the design and implementation of
certain housekeeping functions as the responsiveness and healthiness of any submodule
connected to the network can be investigated through standard CSP-calls.

The Trade-Offs of CSP for Inter-Thread Communication

The main trade-offs for using CSP for inter-thread communication is considered to be the
added overhead resulting in slower execution and more memory needed, and the fact that
the CSP router-task poses a single point of failure for the communication both internally
as well as externally. CSP may also be considered to be an ”exotic piece” an thus can be
intimidating for new developers. Especially so if they are not familiar with socket pro-
gramming.

25

Using CSP for both internal and external communication causes all packages to be han-
dled by the router task. This makes the router task a single point of failure for the entire
module. If the router task suffers a failure, no communication, not even internally to the
module is possible. If one considers the alternative of using native FreeRTOS synchro-
nization techniques for inter-task communication. The module may continue to function
with some degraded performance. However it would be much harder to investigate and
verify the healthiness of the internal communication. It can also be argued that as there
may only be limited value in the internal healthiness of a module that cannot communicate
with the rest of the system, there is only limited value in separating the two communica-
tion schemes as both must work for the satellite to be functional. It may thus be worth the
payoff to join these two single points of failures into one, as this greatly simplifies error
detection and handling.

CSP uses a zero-copy buffer and queue system, meaning that data isn’t actually copied
and moved around, but rather only the address reference is handed from one handler to an-
other. This results in efficient use of memory, but as with most message passing systems,
deciding the buffer size of each queue does pose a challenge. All buffer sizes must be
declared to their maximum capacity. As the maximum capacity is much larger than what
is normally needed, a large portion of the memory will be occupied but very seldom used.
If CSP weren’t used, but instead native FreeRTOS queues directly, each queue would have
to be declared to its maximum capacity. Substituting this with one router task that handles
all communication may then be advantageous as it is unlikely that maximum capacity is
needed for all communication interfaces at the same time. Thus a smaller memory buffer
may be allocated for the router task than if multiple buffers were created separately.

To estimate the additional overhead that comes from using CSP for thread communica-
tion a simple test system was set up and analysed. The tests as well as the results can be
seen under Chapter 7. After preliminary testing proved the feasibility of using CSP for
both inter- and intra-module communication, the next step was to decompose the system
into modules.

4.2 Decomposing the System into Modules
This step is what is often called decomposing or modularizing in traditional software liter-
ature [16], and is considered one of the primary weapons against software complexity [27].

When decomposing the system one must base every design and decision task on require-
ments, and trade studies at any level must take into account all related requirements, while
considering the impact of changes throughout the project and system architecture [43].
There are many different methodologies on how decomposing should be done. By us-
ing the popular top-down approach where one starts with the general problem and then
breaks it down to manageable pieces, one may obtain an adequate design. The oppo-

26

site approach is to compose a system by starting with manageable parts and building the
system bottom-up. These methods both have their strengths and weaknesses and aren’t
necessary competing strategies, but can be mutually beneficial [16]. The OBC software
must necessarily run on the OBC hardware and thus cannot be completely decoupled from
the underlying hardware. The software design for the NUTS OBC is therefor approached
starting at both top and bottom, iterating towards an compliance.

To ensure that the decomposition is true to the OBC software requirements one may try
to create modules mimicking the requirement partitioning. This would constitute to the
following modules:

• Satellite Initialization
– Antenna deployment
– Radio configuration
– ADCS detumble

• Housekeeping
– Telemetry acquisition
– Telemetry logging

• OBC Executables
– Command Handling
– Scheduling of Commands
– Time and alarm management
– Programming

• Satellite Executables
– Payload control
– ADCS control
– EPS control

• Error Handling

The Satellite Initialization differs from the others as it is one-time executable. After it has
been run, it should never be run again and its lifespan is thus very short, and ends as the
others begin. It is therefor not considered a software module like the others, but rather just
an initialization procedure.

If one groups modules together with concern to functionality and underlying drivers rather
than the top level services that must be provided one could make the following partition-
ing:

• Time management (Scheduling):
– RTC

• Memory management (Logging and Programming):
– Flash driver

• Health management (Housekeeping)
– Sensors
– I2C

• Communication management
– Routing commands from ground station to satellite subsystems

27

• Failure management
– Error handling procedures

By looking at the second list it may be easier to understand how the actual system can
be constructed, as the partitioning is closer to what a developer might think a system is
comprised of. From this list one also sees that logging and programming have similar
functionalists as they both need to store and retrieve files from non-volatile memory. In
this list there are no shared drivers between the modules and each module may be con-
sidered more like a software service. This may also be great for failure containment as if
a driver fails, only the module implementing it will go down, not the others. The system
may be able to continue operation if the failed driver functionality can be provided from
elsewhere in the satellite, as was shown earlier.

By investigating the two lists the final modularization was obtained by discussion in the
NUTS group and can be seen below:

• Timekeeper
• Housekeeper
• Memory manager
• Event manager

Figure 4.3: The Proposed Software Architecture

Communications are handled by CSP middleware though the CSP router task. This mod-
ularization was chosen as it inherently supports service rerouting while having minimal
shared drivers, which in turn simplifies error confinement as well as multiple concurrency

28

related issues. The architecture implements memory management as a service. This makes
the memory interface available for calls from ground station, as well as enabling for easy
service rerouting internally in the satellite in the event of flash failures.

Other alternatives were evaluated as well, and the two strongest candidates differed mainly
in the amount of concurrency. One alternative suggested the use of shared memory meth-
ods for drivers as shown in Figure 4.4. This has the advantages of good extendability and
good stratification. However as drivers are shared between services, they must incorporate
mutual exclusion mechanisms. This concurrency can complicate the system design. Also
in the event of hardware failure, all services that use the affected driver will go down, as
driver rerouting is not easily supported. The other alternative represents a simpler archi-

Figure 4.4: Shared driver flash driver between two software components

tecture, where all OBC functions are implemented in one thread. This approach includes
the least amount of concurrency and thus enables easy ”sharing” of information internally
to the OBC. This may simplify how drivers and services are implemented, and may be the
easiest way to structure the OBC. This implementation would contain one big switch case
on incoming packages along with some interrupt handlers. The execution flow would be
easy to comprehend and easy to test. However, there is an issue of throughput and priori-
tization. If there is only one ”consumer” thread receiving the messages from the the radio
and the satellite bus, the buffers may overflow as the thread can only handle packages in
between other procedures. If the OBC is busy doing a low priority but time demanding
procedure, there are no easy ways of notifying the task that it needs to stop doing what it’s
doing and handle the incoming packages first. This can lead to some serious issues espe-
cially considering that whole boot images may be sent to the OBC. Package drop on these
are not acceptable as programming with a faulty boot image will render a module non-
functional. This implementation is also vulnerable to single errors as any error appearing
anywhere in the system may bring the entire OBC and all its functions to a grinding halt.
For this reason, the service-oriented architecture is chosen as a middle point between the
shared rivers and the single thread architecture.

29

4.3 Methods for Maintainability
The suggested architecture uses a service-oriented architecture to enforce loose coupling
and good reusability. No remote function calls are used, and thus every module can easily
be isolated for development and testing. The establishing of service contracts before im-
plementation aims to ease system integration.

To maximize extensibility as well as portability, emphasise is put on stratification through
the use of hardware abstraction layers. This hides the underlying implementations from
the application developer and eases reuse of code between different microcontrollers, such
as the two used for the OBCs. The implementation is both hardware and operating system
independent and can if wanted, be simulated on a Linux desktop if dummy drivers are
implemented. Maybe more important, if future development calls for a shift to a Linux
OS, the application code doesn’t need to change, only the operating system. This applies
for swapping out or restructuring hardware drivers as well. The layered design can be seen
in Figure 4.5.

Figure 4.5: Architecture layers

4.4 Methods for Reliability
As discussed in the requirements section of this thesis, reliability is important for the
OBC. Reliability is mainly supported in the architecture through easy implementation and
rerouting of service redundancy. All OBC services are implemented in both OBCs. In the
event of permanent failure in flash hardware or file system software, services can be routed
from elsewhere in the system by changing the CSP routing tables, this can be done either
automatically by the OBC or manually from the ground station. There are multiple other
reliability measures chosen for the OBC such as the use of multiple watchdog timers. This
will be further discussed in the detailed design section.

30

4.5 Methods for Power Optimization
It is common to reduce the power consumed by the microcontroller on which RTOS is
running by using the idle task hook to place the microcontroller into a low power state.
As the OBC will spend most of it’s time inactive, the power consumption in this inactive
state will dominate the overall power consumption and is therefor of great importance to
minimize the power consumption in such a state.

Both the UC3C and SAMV71 support various low power modes. When deciding upon
an appropriate low power mode, one must consider wake-up time and wake-up source.
For the OBC there are considered to be three wake-up sources that must be able to wake
the microcontroller from sleep. These are:

• Wake on internal timer (scheduling event)
• Wake on received message from radio
• Wake on received message from satellite bus

As different low power modes can be used for different solutions for the radio or the satel-
lite bus communication, it is important that the choice of sleep mode is justified to the
current design of other modules. A robust implementation of sleep modes should therefor
support entering and exiting all viable sleep modes in order not to force later OBC design-
ers to choose bad solutions for how bus or radio communication could be structured.

When using an RTOS, the power saving that can be achieved by this simple sleep method
is limited by the necessity to periodically exit and then re-enter the low power state to
process tick interrupts. Further, if the frequency of the tick interrupt is too high, the en-
ergy and time consumed entering and then exiting a low power state for every tick will
outweigh any potential power saving gains for all but the lightest power saving modes [2].
To mitigate this issue and further optimizing the power consumption, tickless idle mode
is implemented. The FreeRTOS tickless idle mode stops the periodic tick interrupt during
idle periods, then makes a correcting adjustment to the RTOS tick count value when the
tick interrupt is restarted.

Figure 4.6: Common way for RTOS to do low power design [2]

31

Figure 4.7: FreeRTOS Tickless Feature to do Low Power Design [2]

4.6 Summary
In this chapter, an architectural baseline was obtained through analysis and discussion. The
resulting architecture is a layered, service-oriented architecture that aims to support the de-
velopment and testing of services in complete isolation from each other. This was decided
to facilitate a sustainable development environment that addresses the challenges imposed
on projects with high turn-over of inexperienced personnel, such as student-driven Cube-
Sat development projects. This chapter explored how the CSP library, already present in
the OBC software repository, could be used to support this architecture, thus extinguish-
ing the need for any additional third-party software libraries or new in-house developed
frameworks. A decomposition of the system into four modules was then proposed, and
the chapter ended by reviewing to what extent the non-functional requirements set forth
thought the SRS could be satisfied through the given architecture. The outputs of this
chapter forms the first part of the Software Design Document which adheres to the IEEE
Standard 1016 Software Design Document and can be seen in Appendix D. The second
part of this SDD comprises the detailed design for the architecture, which will be discussed
in the next chapter; Detailed Design.

32

Chapter 5
Detailed Design

This chapter presents discussions and decisions made for the design of each of the OBC
software modules. The conclusions as well as a short explanation form the module sections
in the software design document that can be found in Appendix D.

5.1 Housekeeper
The housekeeper module is responsible for managing the health of the satellite. It should
periodically issue tests to verify the correctness and liveliness of the satellite. The house-
keeping tests can be made rather advanced, with individually testing each software module
from multiple other modules. However an effort has been made to keep the error states as
few and general as possible to avoid further complicating the system. Whenever there is
an error discovered inside a sub-module, the entire module will be reset. This is done to
avoid additional errors and complicated failure modes that might follow a single submod-
ule reset/re-initialization. This means that although the system design supports intricate
tests, where single software submodules may be tested with customized tests issued from
various other modules, and the following results discussed among the other modules, the
author emphasizes simplicity and only tests deemed absolutely necessary are to be imple-
mented.

5.1.1 Error Recovery
As there are no hard deadlines, the added implementation and performance cost of static
redundancy was not deemed cost-effective and thus dynamic redundancy is being used
for fault tolerance. Anderson and Lee states there should be four constituent phases to
dynamic redundancy. These are (1) error detection, (2) damage confinement and assess-
ment, (3) error recovery, and (4) fault treatment and continued service [8]. Arnesen &
Kiær presented a flowchart for high-level error checking and handling for the NUTS satel-
lite in their thesis ”Mission Event Planning & Error-Recovery for CubeSat Application”
[10]. Although this may be a competent way of verifying the module health in most cases,

33

there may be some unintended behaviors as well. As can be seen in the flow chart below,
when an error is detected, the response is to directly go into error recovery by resetting
the module. The second stage in Anderson and Lee’s model is skipped, as no attempt at
damage confinement or assessment is attempted. By skipping this crucial second step, the
procedure becomes vulnerable to errors originating outside the module, and will not be
able so tell propagated error symptoms from the actual error cause. If for instance there
is a network error, this procedure will try to communicate with a module, detect that it is
not responding and try to reset the module, even though the module is perfectly fine. This
will then happen for all the modules as the OBC tests them all individually. To avoid this,
each test would have to be able to decide the proper follow-up tests whenever an error is
discovered, in order to assess and confine it. This quickly becomes complicated as one
must consider how these tests may also fail or warrant further follow-up testing. A better
solution might be for these tests to only report errors, so that another entity, to which all er-
rors are reported, can make the assessment and initiate any error recovery procedures. As
the housekeeper is concerned with the health of the satellite, it seems fitting that such error
handling is to be implemented here. With the argumentation seen above, it is decided that
high-level error handling shall incorporate the three first stages suggested by Anderson and
Lee. Procedures trying to unearth errors will run periodically, and report any errors when
detected so that further investigations can be launched before any measures are taken to
recover from the error.

Figure 5.1: Previously suggested module check

5.1.2 Managing the Satellite State
In order to make the right decisions, the housekeeper will need to at all times know the
current state of the satellite, as well as to have an understanding of previous events that

34

have occurred in the system. This data must survive any module resets and should therefor
be stored in non-volatile memory. Care must be taken however that the system still works
if this non-volatile memory should fail. One solution might be to keep shadow-copies
in various memories in order to have multiple places to get the information if one spe-
cific memory should fail permanently. The implementation and performance costs must
be considered. The author proposes a scheme where a volatile working copy is kept in
non-volatile memory, and is shadowed in MRAM, as well as being logged to non-volatile
memory in the logging module. This way the system should function properly if one of
the non-volatile memories fail permanently, and should be able to continue with a partial
degradation in functionalities even if all external memories are broken. One could also
synchronize the satellite’s state between the OBC and its sister module, however when
further investigating this method one discovers that this may be quite risky. Whenever a
permanent error is detected in the OBC or its sister module, the one which can be consid-
ered the healthiest will be promoted to active state as the other goes into a passive state [9].
This means that if an OBC has a faulty memory and is still active, its sister module must
be even worse off, and care should be taken before relying on services from the passive
sister module.

5.1.3 Acquiring the Satellite State
All errors discovered through normal use shall of course be signaled to the housekeeper.
In addition to this, the housekeeper shall periodically test the different parts of the satellite
in order to uncover any silently failed modules. This periodic checkup should start by
verifying the integrity of the OBC in order to assure that the most vital components are
intact, as well as confirming that the testing facility is indeed functional before starting
to test external modules. If no errors are detected the network should be tested, before
finally, the other modules of the satellite can be tested. It is important that the network
check is done before any external modules are checked as external modules cannot be
tested without the interface being functional.

Figure 5.2: Satellite check

35

5.1.4 Internal Integrity Check
Burns and Wellings states that the major application detection techniques are replication
checks, timing checks, reversal checks, coding checks, reasonableness checks, structural
checks, and dynamic reasonableness checks [8]. Most suited for detecting memory cor-
ruption is the coding checks, and thus this is what shall be used to detect whether the
program data has been corrupted. When it comes to testing the external memories, both
timing checks, as well as code checks could be useful. The timing checks should be made
on the read and write commands, to ensure that an error does not block eternally, but rather
times out and reports the failure. If the timing however checks out one could use coding
checks to verify that not only the access is functional, but also that the contents are intact.

After the various memories have been tested, the different internal software modules can
be tested. These tests can consist of anything from a simple ping-pong routine, to includ-
ing just about every method suggested by Burns and Wellings. The author of this thesis
suggests to not go all overboard with this but only implement simple functional tests. The
memory manager facility can be tested by requesting a write to log, and then a read-back
of the same entry. The timekeeper facility can be tested by adding an alarm that should
be triggered in the immediate future and do a timing check on the response. The event
handler facility can be tested with a simple ping-pong routine.

Figure 5.3: Internal check

5.1.5 Satellite Network Check
The satellite network check can be made by simply pinging all other modules, and wait
for responses for a limited time. If all modules respond within the time limit, the network
is assumed functional. If some modules respond, but not all, the network is considered
partially functional and an exception is thrown. If no responses are received, the network
is assumed to be non-functional.

36

Figure 5.4: Network check

5.1.6 Module Check
As all modules are interfaced through the CSP sockets, performing functional timing tests
are easily implemented as each call to socket receive can be given a timeout period, spec-
ifying how long the socket should block and wait for an incoming message. In fact, one
OBC can perform exactly the same functional tests on the other OBC as it did on itself by
simply addressing the respective socket on the other OBC instead of the one implemented
in itself.

Figure 5.5: Module check

37

For example, to verify the memory manager on the OBC-sister the OBC can request to
write to and read from the log, but instead of using addressing the requests to its own
memory management socket, it can send them to the socket of the memory manager at the
other OBC.

5.1.7 The Error Handler
As error handling code in itself can be a source of errors, the complexity of error handling
code should be minimized if a maintainable system is to be constructed. It is therefore
recommended to implement basic catch-all measures rather than specialized handlers for
complicates error states. As a result of this the author recommends that a complete module
reset is a better response than single submodule repair in the face of soft errors. One of
the main arguments for this is that it makes for easier maintainable code as well as error
propagation may be minimized.

Upon reset, the housekeeper checks the battery level to see if the satellite can enter the
test mode. If the battery power level is sufficient the housekeeper starts a health check.
First it checks its own host-module. The non-volatile memory is checked for any status
information, as well as running an integrity check for the rest of the non-volatile stored
data. If any errors are unearthed in the self test, these must be dealt with before testing the
rest of the system. However, the internal test is still to be completed, even if a previous
step uncovered an error. This is done to get an overview of the situation before making
any decision on what the appropriate counter measures are. This is in turn done to ensure
that multiple errors are registered and handled correctly. If the self test is positive, the
other satellite modules are tested as the flowchart below depicts. Any failed tests, result in
a limited amount of module resets before a module is declared dead.

5.1.8 Interface for the Housekeeper
Call Parameters Reaction
PING RSVP SOCKET Send PONG to RSVP SOCKET
PONG NONE Register response
RUN HEALTH TEST NONE Run a full satellite test
ERROR REPORT error t error Do necessary actions, such as log-

ging the error and saving the state,
before resetting the module

SYNC TIME time t time Synchronize all RTCs in the satel-
lite with the time given, if no time
is given synchronize using the time-
keeper time.

GET SAT STATE RSVP SOCKET Retrieve the current satellite state
and send it to RSVP SOCKET.

38

5.2 Timekeeper
The OBC specification demands that the OBC needs to keep track of time cf. requirement
R01-OBC-EXE-TIM-001. This can be done in multiple ways, some important design
choices are considered to be whether the OBC should keep absolute time or relative time,
and if the timekeeping should be implemented internally or externally to the OBC.

5.2.1 Absolute Time vs Relative Time
Absolute time refers to using a universal time, for instance, the satellite could adhere to
the Greenwich Mean Time (GMT). This would make it easy to compare timelines from
the satellite to that of earth. The downside is that this time would have to periodically
be synchronized via communication to make up for drifting due to inaccurate hardware
components. The alternative is to use relative time, meaning that the time counting in the
satellite is decoupled from that on earth. All that is important is the relative time between
events. For instance if a picture needs to be taken 42 minutes in the future, with relative
time the only thing that matters is that there is 42 minutes between now and the time the
image will be taken. The satellite does not need to know that the time now is 12:55, and
that the picture needs to be taken at 13:37. The advantage of using relative time is that
there is no need to synchronize the clock as the short drift experienced from an event is
planned to the event needs to be executed most likely will be negligible. However, although
using relative time at first glance may seem simple, it quickly becomes more difficult when
considering resets and synchronizing time across the satellite. When a module is reset, it
is not trivial for that module to know how to reset alarms. If the reset was system wide, no
part of the satellite can know when to reset the alarms. It thus seems that no matter if the
satellite uses absolute time or relative time, it will need to compare time with earth. As
this renders the main advantage of using relative time moot, absolute time is chosen for
simplicity of implementation and synchronization. When a system wide reset occurs the
time in the satellite will be reset to a preset time and will be out of synchronization with
earth until it is synchronized from the ground station.

5.2.2 External or Internal timer
The main advantages of using an external Real Time Clock (RTC) is considered to be the
added accuracy that might be obtained, and the fact that the RTC doesn’t necessarily need
to be reset when the OBC is reset. However the RTC will have to be reset when the module
it’s situated on resets, extra batteries are not acceptable as it must be able to disconnect the
RTC from power (in case of latch-ups and other soft errors) and this adds more complexity
to the system than what is warranted for by the payoffs.

The timer will mostly be used for scheduling orientation changes or image capturing,
neither which need to be very accurate in time, a couple of seconds drift are unlikely to
affect the result. High accuracy is thus not considered to be imperative to the satellite
mission. The UC3C microcontroller is equipped with an Asynchronous Timer (AST),
and the SAMV71 with a Real Time Clock (RTC) that can be driven from different clock
sources, according the different needs of power consumption and accuracy. If accuracy is

39

emphasized one can invest into a high performance external 32KHz crystal oscillator, care
must be taken however as temperature effects the frequency and most crystal oscillators
are optimized for room temperature. In any way, the AST/RTC is deemed fit concerning
the accuracy, as a little drift is acceptable, but also can be minimized by using an accurate
external crystal.

Having discussed accuracy, an external RTC still has the advantage that it can be situ-
ated at another module and thus keep time despite OBC resets. However this also holds
true for using the AST implemented in the sister-OBC for timekeeping. As this needs
no extra external components or drivers it may be the more elegant solution. A counter
argument is that the chances of more advanced modules failing is much greater than that
of small simplistic ones such as a stand-alone RTC. If however, the internal AST is used
for timekeeping, and when possible and appropriate, synchronizes with external timing
devices such as the AST/RTC in the sister device, one may get a more robust solution.

As the philosophy of this software design is that as much as possible should function
under the least amount of assumption with the least amount of implementational effort,
the internal AST/RTC will be used to keep time internal to the module, as it is much more
likely that any connection with and external timekeeping device will go down, than that
the internal AST/RTC should malfunction. However the internal AST/RTC should be syn-
chronized with other timekeeping modules as often as appropriate, but it is important that
care is taken so that the time service of the OBC does not seize to function in the event of
lost connection to external timekeeping devices.

5.2.3 Design of the Timekeeper
The internal AST/RCT will be used to keep absolute time, however the OBC specification
demands not only that the OBC needs to keep track of time, but also that it must be able
to set alarms to schedule future executions cf. requirement R01-OBC-EXE-TIM-002.
The AST/RTC only supports two alarms; ALARM0 and ALARM1. Any scheduling thus
needs to reuse alarms. This can be solved by keeping a sorted array of set alarms where
ALARM1 is set to the first one in the array, which will always be the one closest in time.

Figure 5.6: Adding new alarms

40

When the alarm is triggered it resets itself to the next alarm in the array. For memory pur-
poses, the alarm is implemented as a ringbuffer of a fixed size, and new alarms are added
using bubble sort (from back to front). Bubble sort is chosen for its simple implementation
and the fact that if one makes the assumption that most new alarm times are likely to be
further into the future than the ones already present in the buffer, this minimizes sorting
operations. A faster alternative could be to use a dynamically allocated linked list, instead
of the ring buffer and sorting, as this would reduce both the time and memory usage. How-
ever due to the added complexity and the difficulties related to debugging problems linked
to dynamically allocation, the sorted ringbuffer-method is deemed safer. Alarms should
be shadowed in non-volatile memory in case of any resets. The time can be set externally
(the housekeeper is responsible of synchronizing time between the modules.) The time-
keeper module itself should be as simple as possible, and no self-synchronizing should be
implemented. This is done to avoid complex and/or uncontrolled behaviors in the OBC.
All time synchronization should happen on the initiatives of the housekeeper or the event
handler as these modules have a much better image of the satellites situation.

Figure 5.7: Alarm triggered

5.2.4 Interface of the Timekeeper
The Timekeeper is to be implemented with one blocking listening socket
TIMEKEEPER SOCKET RX that shall receive and react to calls concerning time and
alarms. The calls it shall respond to can be seen in the table below.

Call Parameters Reaction
PING RSVP SOCKET Send PONG to RSVP SOCKET
PONG NONE Register response
TIME GET RSVP SOCKET Send current time to the

RSVP SOCKET
TIME SET time t time Update the current time to the one

received
ALARM SET time t time, action t

action
Add alarm to execute ”action” at
”time”

ALARM DEL ALL NONE Delete all alarms

The action type received as parameter in the ALARM SET call is to be from the same
action set that is implemented within the event handler.

In addition to the TIMEKEEPER SOCKET RX the timekeeper shall also use an outgoing

41

socket named TIMEKEEPER SOCKET TX, which is to be used when responding to time
requests and triggered alarms.

5.3 Memory Manager
The memory manager is the software service responsible for storing and retrieving log
entries, boot images, as well as reprogramming other modules. It is implemented as a
single thread with one listening socket, MEMMAN SOCKET RX. The memory manager
will be the only task that has direct access to the hardware keeping the log (i.e. flash
memory) and will thus need to act as a server, responding to the logging requests of the
rest of the system.

5.3.1 Timestamp Supplier
All log entries should be timestamped in order to construct time lines of event. One ques-
tion that arises is then; should the time be supplied by the caller, or by the memory man-
ager? It is not unlikely that some drift will occur between the different clocks in the satel-
lite, despite valiant efforts of synchronizing them. Would it then make more sense to use
the time from the local timekeeper, assuring that all entries are stamped chronologically to
when they are received, or should the caller stamp the log message before sending, assur-
ing that no delays due to packet loss or resending affects the time stamping? One solution
might be to use both, this would effectively mark each log entry both when it was sent, and
when it was received. Making it easier to investigate synchronization or communication
issues in the satellite.

5.3.2 File System
The memory manager should support some sort of file system to categorize different en-
tries. When choosing a file system care must be taken both to the memory footprint of
the system as well as its reliability. It is not unlikely that power outs or outside of spec
voltages may occur. It is therefore important that the memory manager does not corrupt
the memory, even if operations are aborted half finished. For this reason the developer
may want to use a journaling file system, as such file systems can be brought back online
more quickly with lower likelihood of becoming corrupted after power failures [44] [45].
The developer may also want to investigate whether the Reliance Edge fail-safe file system
included in FreeRTOS+ Ecosystem [46] is an appropriate file system or not.

5.3.3 In-Orbit Programming
Due to R00-OBC-PRG-001 requirement, the OBC must be able to program other modules
after launch. This firmware update can be done either by the microcontroller itself or
by another microcontroller. Priority is given to programming of one microcontroller by
another, as this can be forced upon a microcontroller with a faulty firmware. Marcedella
implemented firmware update using the JTAG protocol. However his method is target

42

specific and does not easily port to other microcontrollers or boot images. For this reason
a new programming scheme needs to be implemented, though it is recommended to use
Marcadellas work as guiding.

5.3.4 Interface for the Memory Manager
Call Parameters Reaction
PING RSVP SOCKET Send PONG to RSVP SOCKET
PONG NONE Register response
LOG ADD log t log, time t time Write the log entry into the log.
LOG GET RSVP SOCKET, int

N
Send the N last log entries to
RSVP SOCKET.

LOG DEL N LAST NONE Delete the N last log entries.
LOG INIT NONE Initialize the LOG, any old log en-

tries will be deleted.
BOOT ADD boot image[] Store boot image in flash
BOOT GET RSVP SOCKET,

boot image id
Retrieve boot image from flash

PROG FIRM Module,
boot image id

Reprogram module with firmware
boot image id

5.4 Event Manager
The main responsibilities of the event handler is to execute composed commands, enabling
simple commands from the base station to result in multiple commands to be issued inside
the satellite. Originally it was planned that all messages would be unpacked and inspected
and then routed to the correct module by the event handler, however as the use of CSP
enables routing of packages directly to the correct module, this is alleviated from the event
handler. This means that though all actions could be performed by sending an array of
commands to be executed from the ground station, it is considered to be preferable if these
action sequences were grouped together and triggered by a simple command. This forms
an easier interface where the exact sub-commands and sequences are abstracted from the
user interface presented to the ground station.

Interface for the Event Manager

The Event Handler is implemented as a single thread with one listening socket,
EVENT SOCKET RX. The Event handler will in respond to events or commands that
entails complex or composite actions to be executed. The list is to be made.

5.5 Summary
In this chapter a more detailed discussion for the implementation of each of the OBC soft-
ware modules were made. The discussions aims at presenting the developers with a plan

43

for how the software should behave and what methods that could be used. Some sections,
such as those describing the behavior of the housekeeper are detailed with flowcharts and
activity diagrams to better convey the intended behavior in the face of errors. Other sec-
tions such as the ones describing the logger and the event manager are not as detailed and
leaves the developer free to make choices onto how the needed behavior is implemented.
This reflects the level of freedom the developer has in accordance with the rest of the satel-
lite. While decision on how time should be described will affect the whole satellite, the
choice of implementation behind the file system will be abstracted behind a socket inter-
face, thus granting the developer greater freedom. This chapter forms the second part of
the SDD, that has been made to comply with the IEEE Standard 1016 Software Design
Document and can be seen in Appendix D.

44

Chapter 6
Implementation

To be able to support the development of each of the OBC services, the framework of
the architecture should be implemented. This chapter explains how the operating system
and the communication framework for the OBC were configured and installed, as well as
the tools for RTOS trace debugging and power optimization. The output of this section
is an implementation of the proposed software architecture of Chapter 4. The implemen-
tation aims to provide future NUTS OBC developers with a framework for the isolated
development, debugging and testing of OBC services. Heavy emphasise is made on the
maintainability and ease of use for future developers.

6.1 Setting up FreeRTOS for SAM V71
In Chapter 3 it was decided that the OBC should sport an RTOS. In Chapter 3, FreeRTOS
was chosen as this RTOS. In this chapter the setup and configuration of the OBC RTOS
will be further elaborated upon, starting with choosing the FreeRTOS version, before dis-
cussing the configuration.

6.1.1 Choosing FreeRTOS version
FreeRTOS source code is available from Sourceforge (https://sourceforge.net). The latest
release candidate is v9.0.0rc2, where the RTOS kernel updates compared to the latest
official released version (v8.2.3) can be seen in the list below [47]:

• Major new feature - tasks, semaphores, queues, timers and event groups can now be
created using statically allocated memory, so without any calls to pvPortMalloc().

• Major new features - Added the xTaskAbortDelay() API function which allows one
task to force another task to immediately leave the Blocked state, even if the event
the blocked task is waiting for has not occurred, or the blocked task’s timeout has
not expired.

• Updates necessary to allow FreeRTOS to run on 64-bit architectures.

45

• Added vApplicationDaemonTaskStartupHook() which executes when the RTOS dae-
mon task (which used to be called the timer service task) starts running. This is use-
ful if the application includes initialisation code that would benefit from executing
after the scheduler has been started.

• Added the xTaskGetTaskHandle() API function, which obtains a task handle from
the task’s name. xTaskGetTaskHandle() uses multiple string compare operations,
so it is recommended that it is called only once per task. The handle returned by
xTaskGetTaskHandle() can then be stored locally for later re-use.

• Added the pcQueueGetQueueName() API function, which obtains the name of a
queue from the queue’s handle.

• Tickless idling (for low power applications) can now also be used when confi-
gUSE PREEMPTION is 0.

• If one task deletes another task, then the stack and TCB of the deleted task is now
freed immediately. If a task deletes itself, then the stack and TCB of the deleted task
are freed by the Idle task as before.

• If a task notification is used to unblock a task from an ISR, but the xHigherPriori-
tyTaskWoken parameter is not used, then pend a context switch that will then occur
during the next tick interrupt.

• Heap 1.c and Heap 2.c now use the configAPPLICATION ALLOCATED HEAP
settings, which previously was only used by heap 4.c. This allows the application
writer to declare the array that will be used as the FreeRTOS heap, and in-so-doing,
place the heap at a specific memory location.

• TaskStatus t structures are used to obtain details of a task. TaskStatus t now includes
the bae address of the task’s stack.

• Added the vTaskGetTaskInfo() API function, which returns a TaskStatus t structure
that contains information about a single task. Previously this information could only
be obtained for all the tasks at once, as an array of TaskStatus t structures.

• Added the uxSemaphoreGetCount() API function.
• Replicate previous Cortex-M4F and Cortex-M7 optimisations in some Cortex-M3

port layers.

FreeRTOS v9.0.0rc2 is a release candidate, meaning it is a beta version with potential
to be a final product, which is ready to release unless significant bugs emerge. In this
stage of product stabilization, all product features have been designed, coded and tested
through one or more beta cycles with no known showstopper-class bug [48]. However the
developers of FreeRTOS Real Time Engineers ltd. state that testing is still not finished
[47], and thus, unearthed bugs may still exist and features may still be added or removed.
This makes FreeRTOS v9 a poor choice for high reliability space applications. Luckily
FreeRTOS V9.x.x is drop-in compatible with FreeRTOS V8.x.x [47], meaning that even if
the older, safer official release (v8.2.3) is used, it should be a smooth transition if migration
to FreeRTOS v9.x.x is warranted after its official release. FreeRTOS v8.2.3 is therefor
chosen as the operating system for the OBC as it is the safest option, but also does not
complicate potential future version updates.

46

6.1.2 Choosing Memory Scheme
A real time operating system kernel has to allocate RAM dynamically each time a task,
queue, or semaphore is created [49]. The use of the standard malloc() and free() library
functions can by accompanied with some undesirable side effects for one or more of the
following reasons [50]:

• Their implementation can be relatively large, taking up valuable code space.
• They are rarely thread-safe.
• They are not deterministic; the amount of time taken to execute the functions will

differ from call to call.
• They can suffer from memory fragmentation.
• They can complicate the linker configuration.

To be able to best satisfy the different requirements of different applications, FreeRTOS
allocates memory by calling pvPortMalloc() and frees it by calling vPortFree(), where
the implementations can be decided by the programmer. FreeRTOS v8.x.x contains five
implementations of pvPortMalloc() and vPortFree, each designed to address different ap-
plication requirements. A short comparison of the implementations made by Diaa Jadaan
can be seen in Table 6.1 [49].

Deterministic Code size Segmentation
heap 1 Yes Small No
heap 2 No Small High
heap 3 No Large Target dependent
heap 4 No Moderate Moderate
heap 5 No Moderate Low

Table 6.1: FreeRTOS malloc implementations, as presented by Jadaan

Generally speaking, it is not recommended to use dynamic memory in embedded sys-
tems, for such systems the heap 1 implementation would be the most appropriate. How-
ever as NUTS communication system needs to dynamically allocate queues and buffers
depending on the various communication channels that are opened and closed, a more
sophisticated memory scheme is needed. In the paper ”Memory management and error
handling in FreeRTOS for a CubeSat project” Diaa Jadaan evaluates the different mem-
ory schemes with the NUTS project in mind. He concludes that heap 4 is the best fit
for its compromise between the required overhead and segmentation level. He adds that
heap 5 might be desired in some cases for its additional support of heap spanning multiple
non-contagious memory regions, but that the additional code size and operation overhead
should be evaluated against the actual usability. By inspecting the source code for the dif-
ferent implementations one finds that for FreeRTOS v8.x.x heap 4 contains 473 code lines
in its C implementation file, while heap 5 contains 522. However if lines only containing
comments are removed, one is left with 246 and 254 lines, respectively. Though this is
not an exact metric for the code size, there are no additional calls to external functions in
heap 5 compared to those in heap 4, and thus the code size differences are considered to

47

only be minimal. As the NUTS satellite will spend most of its time sleeping, and dynamic
memory is only used when justified, calls to allocate and free memory are considered to
occur quite seldom. It thus seems unlikely that the small computational differences in
heap 4 and heap 5 will have much of an impact on the system as a whole. However, since
heap 4 is the only heap implementation for v8.2.4 that supports the use of configAPPLI-
CATION ALLOCATED HEAP, it is considered the best alternative as this is a prerequisite
for placing the heap on external RAM.

6.1.3 Configuring FreeRTOS
FreeRTOS is customised using a configuration file called FreeRTOSConfig.h. Every FreeR-
TOS application must have a FreeRTOSConfig.h header file in its pre-processor include
path [51]. For the OBC application the configuration file is included into the config folder
along with all the other configuration files. There are many settings one can configure for
FreeRTOS, the most important will be shortly discussed below.

Scheduling
Preemptive scheduling is being used as this is the only mode that supports tickless sleep
for FreeRTOS v8.2.3.

Heap Size
FreeRTOS heap is configured to be 384Kb ∗ 50% = 198KB. This way, whenever an
application developer violates the memory constraint, the malloc fail will be caught in the
respective FreeRTOS hook and notify the programmer of the violation. If this happens due
to some last minute fix, the heap size can safely be increased. However if it happens in
normal design situation, the developer should further investigate the memory usage of the
application and try to optimize the memory usage before proceeding.

Memory Violation and Debugging
FreeRTOS has support for stack overflow checking. This can be done in two ways. The
first method (method one) is the fastest, but only checks that the processor stack pointer is
within legal range when a task is switched out of the running state. To catch past overflows
method two can be used, which includes the same check as method one, but also checks
the last 16 bytes of the valid stack range, to see if they have been overwritten. This last
method is very similar to that of using stack canaries. If a stack overflow is detected, the
stack overflow hook is fired. Malloc fail hook is also enabled. As well as the use of trace
facility (needed for hooks used by Percepio Trace Snapshot library).

FreeRTOS does include two ports for ARM Cortex-M3 microcontrollers and two ports for
ARM Cortex-M4F microcontrollers - the standard FreeRTOS port and FreeRTOS-MPU.
FreeRTOS-MPU includes integrated memory protection. As both OBC microcontrollers
embeds a Memory Protection Unit (MPU), finding a FreeRTOS port that supports this
would be preferable. Unfortunately FreeRTOS does currently not include any such port
for the OBC MCUs, and thus the regular port is used [52].

48

6.2 Installing FreeRTOS Trace Tool
In the architecture chapter it was decided that Percepio Trace Recorder should be imple-
mented as part of the OBC software architecture. Percepio Trace Recorder consists of two
components - a PC application with a Graphical User Interface (GUI) and a trace logging
library. The trace logging library is provided as C source code. The library uses the stan-
dard FreeRTOS trace macros, which are empty macros that application can redefine for
purpose of providing application specific trace facilities. It has an adjustable RAM foot-
print (uses a ring buffer) 5-10 KB gives about 50-200 ms at normal rates for an ARM-M
[53]. For the NUTS application a 10KB buffer was allocated, this size was chosen some-
what arbitrary and any future developers should feel free to increase or decrease its size.
It should be remembered though, that the trace library is intrusive and that it shall not be
used in-orbit. Timings of all operating system calls will be different when trace is enabled.
It is therefore important that it is used as a tool for debugging, but should be switched off
for testing.

6.3 Porting CSP for SAMV71 and UC3C
The existing NUTS repository already contained a compiled version of the CSP library.
However this library was compiled for the UC3A3256 microntroller, with I2C support and
no additional CSP features enabled. As the NUTS project has upgraded the satellite bus
from I2C to CAN, as well as the OBC MCUs from two UC3A3, to one UC3C and one
SAMV71, the library needed to be recompiled.

There isn’t much documentation available for the public concerning CSP. Getting started
can therefor be challenging, as for the most part, the only documentation you have is the
source code. However, the source code is not compilable as is, and needs to be config-
ured before it can be built and installed. GomSpace uses a Python-based framework called
waf for configuring, compiling and installing CSP applications [37]. Jahren focused his
project work and master thesis on getting CSP and reliable message passing to work on
the UC3A3 microcontroller. He states that the waf system is not very intuitive, and there
is not much useful information about how to use it for the CSP system online either [14].
He therefor made a step-by-step guide on how to install CSP for the UC3A3256 micro-
controller. However this guide does not describe why or how the different commands were
determined, but rather just lists a series of steps and specific configuration commands used
to build CSP for this specific microcontroller and application. In addition to this, there has
been made some update changes to the waf library. These changes seem to change how
the toolchain input string is tried executed as a program. Trying to build CSP using the
procedures suggested by GomSpace (not updated since 2011) or by Jahren does not work.
Using the old waf system does work, but only for the UC3A3256 microcontroller and with
older versions of CSP.

Since all the source code for both CSP and waf are publicly available, it was decided
that it should be possible to manually build and install CSP without using waf. After in-
vestigating the source code behind the configuration script, CSP and waf, the CSP source

49

code was downloaded and a manual configuration process started. The result is a CSP
distribution that is not prebuilt, and thus easily reconfigurable between each build of the
application project. A header file, including defines for the different CSP options was
created and named conf csp.h. The csp library can thus be configured without having to
perform the whole step-by-step building procedure, but rather by changing a couple of de-
fines in the conf csp.h file. This includes settings such as endianess and freeRTOS version,
thus making the source code easily portable to different microcontroller projects, includ-
ing SAMV71 and UC3C.

As all satellite subsystems communicate through the use of CSP, it would be of great
advantage if each module ran the same CSP code to avoid any version mismatch. A sepa-
rate git repository was therefore made to track changes to the CSP code. All CSP files are
included in this repository, the only exception is the conf csp.h file as this may need to be
configured differently for different microcontrollers. Having a git repository tracking the
changes made to CSP files, makes it easy to integrate any CSP features on a satellite-wide
basis. If for instance a developer working on the OBC software defines a new packet struc-
ture for a specific service and needs all other modules to recognize this structure, he’d need
only to implement support into the CSP code used by the OBC, verify it, and then push the
changes to the remote CSP repository. The next time any developer of any other module
would pull the changes from CSP remote, his module would automatically incorporate the
changes implemented by the OBC developer. Also, if any coding errors were detected, all
submodules could revert to an older safer commit.

Figure 6.1: CSP Repository workflow)

Another advantage of not precompiling the CSP library and keeping it in a separate git
repository, is that changes to the original GomSpace repository can be pulled into the
NUTS CSP repository if needed. This is especially important when errors are detected
and fixes implemented in the original repository. These bugfixes may need to be imple-
mented for the NUTS project and thus, pulling these commits is a desirable feature. One
should however be careful when pulling commits from the GomSpace repository, as all

50

updates may not be applicable to the nuts project. Care should therefor be taken before
pulling changes from the original repository.

After comparing the manual configuration with the step-by-step guide made by Jahren
it became clear that the build method for the UC3A3256 microcontroller did not enable
for resending of packages. The option of enabling this has now been included in the
conf csp.h file, and testing will show if the new CSP configuration supports detection and
resending of lost packages or not. If this feature proves functional, the added layer for-
merly called NUTS Realiable Protocol (NRP), will be redundant and can be excluded,
freeing up precious memory, and minimizing complexity.

The only downside of not precompiling the CSP library is considered to be the added
warnings related to CSP source code, that now are displayed upon building of the sub-
module application. The warnings are considered to be harmless, as most of them are due
to the use of ”packed” keyword for various CSP package structs. The keyword packed
tells the compiler to not use any padding between the variables, thus mitigating any prob-
lems related to compilers choosing different amount of padding for different architectures.
This struct layout does however cause inefficient memory alignment, which produces a
compiler warning. The keyword is kept as it serves a purpose, but having 150 compiler
warnings is not ideal, especially not for high reliability applications. It is however consid-
ered to be an acceptable price to pay for the various advantages described above.

6.4 Implementing Sleep Modes and Tickless Idle
The sleep modes and Tickless Idle is implemented in the middleware folder, as they are
considered an extension of the operating system. A configuration file conf sleepmgr.h is
used to choose what sleep modes should be used, as well as some other configuration set-
tings such as shortest allowable sleep time. A timer/counter must be used in order for the
CPU to wake up on scheduling events. The timer used for the FreeRTOS tick is the SY-
STICK timer embedded in the ARM Cortex. This timer is however unpowered in all low
power modes except the lightest one. Therefor an additional timer must be used to allow
for deep sleep. For the UC3C the AST timer can be used as a wake-up source from all
sleep modes, the same goes for the RTC and the RTT implemented in SAMV71. Unfor-
tunately both OBCs will run their AST/RTC in calender mode, meaning that the smallest
time step for sleep is one second. For the UC3C OBC this cannot be avoided, but for the
SAMV71 OBC, the RTT can be used in free running mode, resulting in a better precision.
As prescaler values 1 and 2 are forbidden prescaling value of 3 is used. As the input clock
is 32768 Hz, this results in a 32768/3 = 10922Hz frequency. This gives a time step of
0.092 ms, far more accurate than needed for the 1 ms tick OS. The longest possible sleep
with this setting is (232/(32768/3))/(60 ∗ 60) = 109hours which is considered to be
longer than needed. The settings are therefor considered to adequately support both short
and long periods of sleep.

The power consumption analysis with the results for different power modes can be found
in the testing chapter.

51

6.5 Implementing Skeleton Code and Tests
The command and data handling subsystem (C&DH, OBC) is often one of the last on the
spacecraft to be defined. It is a tool used to configure control, or program the payload and
other spacecraft subsystems. C&DH equipment cannot be completely defined until the
requirements of other systems have been established [19]. This is true for the NUTS OBC
as well, neither of the other modules are at a point in development that they are connected
to the databus or that they have detailed requirements for their interfaces. This makes
it highly impractical to implement specific functionality in the OBC as the interface and
service contracts of other modules may still change. However to facilitate further develop-
ment of the OBC software, a series of steps have been made through this thesis. As part of
this, skeleton code was structured to convey the design philosophy as well as to give new
developers a quick understanding of how the code should be structured when the process
allows for it. The purpose of this is to supply later developers with a finished framework
for what needs to be done, and how it should be done. The skeleton code implements
the different modules and hopefully makes it easier for later developers to focus on their
specific task rather than the whole OBC system.

It takes significant effort and awareness to write a software component that is effectively
reusable. The component needs to be [54]:

• Fully documented
• Thoroughly tested
• Robust - with comprehensive input-validity checking able to pass back appropriate

error messages or return codes
• Designed with an awareness that it will be put to unforeseen uses

The skeleton code implements the different services and shows how they can use sockets
to communicate. In addition to this, the folder structure is implemented, with specific
readme files in each folder which are to describe the purpose of its contents. When no
implementation files have been made yet, the folder and its readme is still created to ensure
that the layered approach is upheld. The folder structure can be seen below:

• docs/
– obc sw.txt
– service contracts.txt
– todo.txt
– README.txt

• lib/
• include/
• src/

– services/
– middleware/
– drivers/
– ASF/
– config/
– main.c
– README.txt

52

• obc v71.cproj
• README.txt

6.6 Refactoring
As the final step of any software implementation, the code should be reviewed and re-
structured for eased maintainability. Passing tests show correct behavior, but there’s more
to software than correct behavior. Code has to be kept clean and well structured, show-
ing professional pride in workmanship and an investment in future ease of modification
[16].In Martin Fowler’s book Refactoring: Improving the Design of Existing Code [55],
he describes refactoring like this: refactoring is the activity of changing a program’s struc-
ture without changing its behavior. The purpose is to make less work by creating code
that is easy to understand, easy to evolve, and easy to maintain by others and ourselves.
This refactoring was the final step of the implementation section, and is a recommended
practice for all later OBC developers.

53

Chapter 7
Testing and Verification

This chapter presents the performance tests that were made for the OBC software archi-
tecture. Each test has been designed to investigate a specific matter or function of the
architecture framework, and will be presented along with the results of the test. Each test
and result section includes a discussion on what can and cannot be deducted from the ac-
quired results.

7.1 What is Testing All About?
Testing accounts for more than half of the time spent on projects. The reward for finding a
defect early in the process is at least a tenfold saving compared to finding it at integration
time, or worse, after delivery. Consequently, one must test early and often.” [27].

It is important that what has been implemented reflects what was stated in the software re-
quirements. From the discussions in Chapter 3, one could see that the main non-functional
requirements were related to:

• Maintainability
• Reliability
• Power consumption
• Memory constraints

To investigate the implementation, tests for each of these non-functional requirements
were performed. It is important to note that the purpose of testing is not to show that
the application is satisfactory, but to vigorously determine where the application is not
satisfactory” [27].

54

7.2 Verifying FreeRTOS and Tracelizer
Maintainability is considered one of the foremost important non-functional requirements
for the NUTS OBC. As means to facilitate a maintainable architecture, it was decided
that concurrency as well as debugging tools should be an inherent part of the architecture.
FreeRTOS was chosen as OS and Percepio Trace as the OS debugging tool. To investigate
the implementation and installment of these, a test application was made.

7.2.1 Method
The application consists of two threads communicating through two queues. The imple-
mentation toggled a LED, as well as printing status massages to debug USART connected
to a desktop to give visible signs of workflow. To further investigate whether the FreeR-
TOS implementation actually allowed multiple threads to run, as well as to evaluate the
functioning of the trace debugging tool, the trace was recorded and transferred to the desk-
top for inspection.

7.2.2 Result
A part of the resulting trace can be seen in Figure 7.1. The periodic blinking of the LED,

Figure 7.1: Trace from FreeRTOS test application

as well as the debug messages printed to screen could be observed as the code was running
on the microcontroller. This proved that the implementation and installment exhibited the
characteristics that were expected from the test setup. This should give some confidence

55

in the installment of FreeRTOS and Percepio Trace, though the test does not in any way
prove that they are free from defects, it does however prove that at a subset of FreeRTOS
and Percepio Trace functionlities, (i.e. those tested in the test setup) is supported by the
application.

7.3 Memory Footprint
Jahren reports encountering issues due to running out of internal memory of the UC3A3
while testing the former CSP implementation [14]. Though his test setup was not op-
timized for size, it is not unlikely that memory constraints may be challenging in this
implementation as well. An inquiry was therefor made into the memory usage of the
architecture proposed in this thesis.

7.3.1 Method
The GCC build process reports the memory use after building the project, this can be used
to obtain the ROM needed for the program code. The data memory is also reported and
can be used to investigate further into the memory usage.

7.3.2 Results
The memory usage reported from the build process of the OBC can be seen in Table 7.1.

Communication form Program Memory Usage Data Memory Usage
OBC 110176 bytes (5.3%) 2539404 bytes (64.6%)

Table 7.1: Memory usage for the OBC application

As all task stack sizes and queue buffer lengths can be configured by the application de-
signer, the memory footprint can be highly optimizable. The reason for the rather large
program memory usage is the fact that the total FreeRTOS heap size is configured to use
half of the available memory (198KB).

56

7.4 Investigating CSP Functionality
To investigate the functioning of CSP, multiple tests were implemented. All of the follow-
ing tests were performed using the skeleton code for the OBC. The test setup thus consisted
of an ARM M7 microcontroller (ATSAMV71-Xult, situated on a SAMv71 Xplained Ultra
Evaluation Kit) running the currently last official release of FreeRTOS (version 8.2.3) with
a system frequency (CPU and bus) of 75 MHZ and 1 ms RTOS ticks. The setup was tested
using preemptive scheduling, with stack overflow checking enabled. The application was
the OBC skeleton code, consisting of four user threads communicating through CSP. The
following procedures were tested by sending a request to the OBC CSP node from the
housekeeper task:

• Send a single ping/echo packet
• Request process list
• Request amount of free memory
• Request number of free buffer elements
• Reboot subsystem
• Request subsystem uptime

Each of these tests are now presented in more detail in the following sections.

7.4.1 Request Process List Test
CSP implements a specific function for requesting a list of running processes on any mi-
crocontroller or computer connected to the CSP network. As there is an undergoing change
from using I2C to using CAN for the internal satellite bus, the request function was routed
for the OBC (the same microcontroller) effectively returning information on the threads
running on the same microcontroller. However, when the CAN bus drivers have been im-
plemented, the call would look exactly the same from the application programmer view-
point. The routing of the request to another microcontroller and back would be handled by
the CSP middleware.

Figure 7.2: Task list as reported from CSP

The retrieved information can be seen in Figure 7.2, while a small trace obtained by the
Percepio trace tool for the same application can be seen in Figure 7.3.

57

Figure 7.3: Trace showing the existence of FreeRTOS tasks

CSP Memory Leak When Receiving csp ps

The csp read() function allocates buffers for packets, the memory is then handed over to
the caller through the returned pointer. This means that the caller is responsible of freeing
the buffer. This was not handled correctly in csp ps() implemented in csp services.c. There
is a clean up section at the bottom of the function. However this only frees packets if their
pointers are non-NULL. As the last call to csp read() always returns a NULL pointer when
there is no more to receive, the packet buffer fails the if(packet != NULL) test and is never
freed. A workaround was therefor constructed and the issue reported to GomSpace. This
workaround has now been implemented in the official GomSpace repository as well.

7.4.2 Request Amount of Free Memory Test
The initial test failed due to an assert forced by the vApplicationMallocFailedHook. Upon
further investigation on how exactly the allocation failed, it was discovered that the amount
of free memory is determined through trial and error with how much memory malloc can
allocate. The procedure starts by trying to allocate 10 KB, when this fails, it tries to al-
locate half of that (5 KB), and so on. It basically does a binary search by trial and error
through repeated calls to dynamically allocate different sized memory blocks. As the OBC
application implements freeRTOS hooks for detection of malloc fails and stack overflows,
this procedure resulted in a forced assert from the vApplicationMallocFailedHook. How-
ever when removing the forced assertion from the vApplicationMallocFailedHook, the
procedure successfully returned the available amount of memory, as shown in Figure 7.4

58

Figure 7.4: CSP Memory and uptime request result

7.4.3 Request Number of Free Buffer Elements
When CSP buffer system is initiated with 10 packets, the call to buffer left will return
9, due to the one buffer in use for the transaction. When the buffer system is initiated
with 20 packets, the reported number of free buffers change to 19. To further verify the
buffer request procedure, it was combined with the erroneous implementation of process
list request discussed above. The procedure for obtaining the number of free buffers then
successfully reported the decreasing number of buffers available until there were none left
and no more requests could be sent, the procedure then reported network error.

7.5 Analysing CSP Timing
To investigate the functioning of the CSP middleware as well as to estimate the additional
overhead that comes from using CSP for thread communication, a simple test system was
set up and analysed. The test system consists of three threads; two user threads (one
client and one server) and the CSP router task (RTE). To test the CPU overhead the client
constructs and sends a packet with a payload of 100 bytes to the server. The server does any
necessary check for the integrity of the package before sending it back to the client. The
client then verifies the content of the package and records the time the transaction took.
The average execution time is obtained by calculating the average over 100 iterations.
Each iteration is measured by reading the ARM SYSTICK timer, effectively yielding how
many CPU cycles were spent on the procedure.

7.5.1 Method
The test setup consisted of an ARM M7 microcontroller (ATSAMV71-Xult, situated on
a SAMv71 Xplained Ultra Evaluation Kit) running the currently last official release of
FreeRTOS (version 8.2.3) with a system frequency (CPU and bus) of 75 MHZ and 1 ms
RTOS ticks. The setup was tested using preemptive scheduling, with stack overflow check-
ing enabled. The test was performed for various optional CSP features enabled such as the
Reliable Data Protocol (RDP), check-sums (CRC32), encryption (XTEA) and authentica-
tion (HMAC-SHA1). The trace from one of these tests can be seen in Figure 7.5

59

Figure 7.5: Trace from CSP ping test application (NB: not used for the actual timing, as the trace
tool is intrusive)

First a small application using only FreeRTOS queues to communicate directly from the
client task to the server and back was tested. The application was compiled with GCC and
uploaded to the microcontroller using an Atmel-Ice debugger. The application ran for 100
iterations and the average execution time was calculated from these 100 samples. This was
done to be able to compare the CSP latancy, to that of using FreeRTOS queues directly.

7.5.2 Results and Discussion
The result can be seen in Table 7.2.

Enabled Features Duration
[ticks]

Duration at 75 MHz [ms]

No features 30 231 0.403

Table 7.2: Latency for for native FreeRTOS queue test application

Communication form Program Memory Usage Data Memory Usage
CSP sockets 89440 bytes (4.3%) 62040 bytes (15.8%)

Table 7.3: Memory usage for CSP socket test application

After testing the regular FreeRTOS queues, a small application running CSP was
tested with various features enabled. The memory usage can be seen in table 7.3, while
the duration for the setup and communication of each iteration can be seen in table 7.4. For

60

Enabled Features Duration
[ticks]

Duration at 75 MHz [ms]

No features 134 586 1.795
CRC32 149 374 1.992
RDP 297 681 3.969
HMAC-SHA1 251 271 3.350
XTEA 291 829 3.891
RDP + CRC32 316 042 4.214
ALL 785 040 10.467

Table 7.4: Latency for CSP test application

connection-less communication with no CRC or encryption there is a 345.19% workload
increase, which at 75 MHz corresponds to an additional 1.392 milliseconds of execution
time. If connection oriented communication with resending of lost packages is being used,
the overhead is an additional 163095 cycles compared to the connection-less option. This
corresponds to about 2.174 ms extra computation time for the round-trip when running at
75 MHz.

As a comparison; The Polysat project analysed the latency of UDP for inter-process
communication in their CubeSat application. They were running Linux at 400MHz on a
AT91SAM9G20 microcontroller and reported average time of 7.2 ms one way [56]. If one
makes the assumption there are no wait-states used for this procedure, the 7.2 ms oneway-
trip at 400MHz would correspond to 76.8 ms round-trip at 75 MHz. Compared to using
FreeRTOS and CSP that is more than 40 times as long!

7.6 Analysing Power Consumption
As was discussed in Chapter 3, it is imperative that the power consumption of the OBC
is sustainable by the satellite power budget. To investigate the power consumption of the
OBC SAMV71 microcontroller, the skeleton code mimicking the activity of the OBC was
uploaded and the power consumption of the application measured.

7.6.1 Method
The power consumption of the SAMV71 microcontroller was obtained by measuring the
power consumption of the SAMV71 microcontroller situated on an Atmel SAM V71
Xplained Ultra kit, while it ran the OBC skeleton example code. Measurements were
made for different power optimization techniques as to inspect the effect of each of the
techniques. The power consumption was measured using the Atmel Power Debugger and
plotted through the Atmel Studio extension Data Visualizer.

61

7.6.2 Results and Discussion
The unoptimized power consumption of the OBC microcontroller was measured to be
around 73 mA at 3.3V, as can be seen in Figure 7.6

Figure 7.6: Power Consumption of the OBC MCU at 300MHz

The exact execution speed for OBC MCUs will be decided through later tests and analysis
of power consumption, heat dissipation and throughput needed. As the SAMV71 proces-
sor is the only part of the microcontroller (or satellite for that matter) which supports a 300
MHz frequency it may be induced that it may not be efficient to run at this frequency as
wait states must be included for all communication. This includes memory access for the
internal RAM as well as the peripherals and external memory. USART and CAN commu-
nications may also result in unnecessary high power consumption as their baudrates will
be much slower than the clock of the CPU. Because of this, a slower speed is chosen for
the test setup. The exact speed should however be decided through extensive testing and
analyses when the system is more mature. The clock frequency for the SAMV71 OBC
was in this setup divided by 4 to obtain the frequency of 75 MHz, a frequency more re-
latable to the 66 MHz of the UC3C OBC. This reduction of frequency reduced the power
consumption by about half, as can be seen in Figure 7.7.

62

Figure 7.7: Power Consumption of the OBC MCU at 75MHz

By enabling sleep, the power consumption could be further reduced by about 31% as
can be seen in Figure 7.8.

Figure 7.8: Power Consumption with Active Sleep Mode

As the SYSTICK timer of the ARM Processor is used to generate the RTOS tick, the
system would only support active sleep mode. To support deeper sleep modes Tickless
Idle had to be implemented using an asynchronous timer to keep track on time while the
CPU sleeps. This reduced the power consumption substantially, as can be seen in Figure
7.9. Connection oriented communication is implemented in CSP in such a way that the
router task repeatedly wakes up to check whether any of the connections have timed out.
This causes the router task to wake up every 100 ms (the default timeout period) to check

63

Figure 7.9: Power Consumption with Wait Mode and Tickless Idle

for timeouts even when there are no active connections. By extending the timeout of the
connections to 10 seconds, an even smaller power consumption can be obtained, as seen
in Figure 7.10. However as this may make the system more unstable and only account
for the saving of less than one milliampere, the timeout was reset to 100 ms after the
measurements were made.

Figure 7.10: Power Consumption with Wait Mode, Tickless Idle and extended connection timeout

The deepest sleep mode supported by the SAMV71 is the backup mode, however in
this mode the internal SRAM is unpowered. Unless the internal backup RAM is used, ex-
iting backup mode will be similar to a soft reset. The wake-up time from this sleep mode
can be up to 2 ms [?], and any states not stored and retrieved form non-volatile memory

64

will be reset. Using this mode was attempted without the use of intern backup RAM and
can be seen in Figure 7.11. The constant reseting of the MCU proves power inefficient
compared to using the wait mode.

Figure 7.11: Inefficient use of backup sleep mode causes constant MCU soft reset

The tickless idle sleep using wait mode with a CPU frequency of 75MHz as seen in Figure
7.12 was also compared to that of the same setup running at 300 MHz, as can be seen
in Figure 7.13. It can then be seen at with this setup the system running at 75 MHz was
indeed more power efficient than that running at 300 MHz, despite the shorter bursts of
workload that is needed at the faster execution speed.

Figure 7.12: Power consumption with CPU clocked at 75 MHz

65

Figure 7.13: Power consumption with CPU clocked at 300 MHz

7.6.3 Power Consumption Summary
In this section different techniques for power optimization were presented and their result-
ing power consumptions were plotted and compared. It was discovered that for the current
setup, the average power consumption was reduced when running at 75 MHz compared to
running at 300 MHz. It was also discovered that the implementation of connection time out
may not be ideal, however as the energy savings for implementing a fix for this is unlikely
to be more than 1 mA, it is at this time not deemed to be a cost efficient improvement. The
results obtained in this chapter are summarised in Table 7.5

Method Energy consumption
Reduction from
previous method(%)

Reduction from
before optimization(%)

300 MHz 72.9 mA 0 0
75 MHz 33.1 mA 54.6 54.6
Active Sleep 22.6 mA 31.7 69.0
Tickless Idle 2387.3 µA 89.4 96.8
Extended timeout 1700.2 µA 28.8 97.7

Table 7.5: Power optimization techniques and improvements

66

7.7 Summary and Discussion
In this chapter, different aspects of the architecture implementation has been tested and
analysed. Many functions were observed to behave as expected, however some bugs and
undesired features in the CSP code were encountered as well. One of the heavier argu-
ments of using CSP in the core of the architecture, was the fact that it had flight heritage
with multiple CubeSats, and was thus considered safer than having a student made imple-
mentation. The testing of the CSP functions for retrieving the list of threads running on a
CSP node, did however unearth a bug in the software that resulted in a buffer leak and net-
work failure. The fact that this bug existed proves that despite the library’s flight heritage,
one cannot assume that it is bug free. The successful use of CSP in other satellite missions,
does suggest that most parts of CSP are tested and considered safe, but the functioning of
the complete system should not be assumed.

As mentioned in the beginning of this chapter it is important to remember that tests cannot
prove that an application is free of defects, as proofs of correctness can. Testing can only
show the presence of defects.” [27]. Despite the tests proving the framework functional,
they do not prove that it is defect-free. Ideally, the testing of code should be performed
by people other than those who developed it. When an engineer develops code, he forms
a vision of what the code is meant to do, and, at the same time, he develops typical cir-
cumstances in which the code must execute. It is safe to assume that the code shows few
problems in those particular circumstances. Consciously or not, these circumstances form
the developer’s test cases. Thus, when an individual tests his own code he tends to hide the
very defects that need uncovering.” [27]. As no bugs were detected related to the install-
ment of FreeRTOS, Percepio Trace, CSP, and power optimization techniques, all of which
this author was responsible for, the framework of the software architecture is considered
functional, but not necessarily optimal. It is recommended that the testing of the different
architectural features are continued through the next iteration in order to try to uncover
any defects as early as possible.

67

Chapter 8
Reflections

In this chapter the work done in this thesis is reviewed and discussed.

8.1 Discussion
Through this thesis, a software architecture for the NUTS OBC has been proposed. To
arrive at the software architecture, the software requirements for the OBC were analysed,
features of good software design were discussed and an architecture as well as its imple-
mentation was suggested. Details of the intended design were further elaborated, to outline
how they could be realised. The implementation of the OBC was begun through the con-
struction of the OS and communication frameworks and debugging tools. The setup was
then tested to verify the implementation, as well as to try and uncover any defects. The
results of these tests were then presented.

Discussions have been made under each chapter, where relevant data has been presented
and compared. The OBC is entrusted with many tasks and is dependent on many factors.
This makes for a complex system that is not easily comprehensible and the author therefor
believed it to be necessary to structure the thesis so that individual discussions are made
for each problem, rather than one huge discussion section at the end of the thesis.

8.1.1 Review of the initial Problem and the Contributions Made
As there are multiple development steps between the implementation and the mission goals
that were to be satisfied (where each stage is based on the one before), it may be advanta-
geous to review the result in light of the initial problem.

In this thesis, the OBC hardware, and an OBC functional and non-functional requirement
specification were put in, and the assignment was to identify software requirements for
the system as well as to research and design a software architecture for the NUTS OBC
system, with particular focus on developing a system that allows isolation of work tasks

68

while maintaining easy integrability to facilitate further development of the NUTS Satel-
lite computer system.

The output of the work in this thesis has been an implementation of a service-oriented
software architecture, including middleware for communication handling and trace debug-
ging. As steps towards this architecture both a SRS and a SDD were created in accordance
with IEEE recommended practises. The porting of CSP from a library that had to be re-
configured and built for a target specific application, to that of being a more portable, fully
featured, reconfigurable library that is configurable through regular precompiler defines in
each application program, is considered to be a major contribution of this thesis. CSP is
used on all nodes connected to the satellite bus, including both OBCs, the ADCS and the
Payload camera module, in addition to also being used on the ground station. Having a
functional, easy reconfigurable, fully featured and extensible port for CSP on each of these
satellite submodules is considered important for the successful integration of the satellite
system. A list of the most important contributions can be seen below.

• Port of CSP with all features enabled supported for all NUTS microcontrollers
• Software Architecture discussion and design
• SRS
• SDD
• FreeRTOS project with Percepio Trace library implementation
• Sleep and tickless idle implementation
• Setup of repositories for application and CSP with satellite-wide integration in mind
• CSP timing analysis for inter thread communication.
• Port of Marcedellas RSP to the UC3C microcontroller

Testing was done both to verify some functions as well as to uncover defects in the imple-
mentation. Many CSP functions were tested functional, while some undesirable features of
the implementation were discovered as well. A bug resulting in a buffer leak and network
failure as well as a power-inefficient implementation of connection-oriented communica-
tion was unearthed and discussed.

8.1.2 Further Work for the OBC Software
As the goal for this thesis was to present a software architecture for the NUTS OBC,
no drivers except for the ones needed for the architectural frameworks have been imple-
mented. If the contributions in this these are accepted into the NUTS project, the next
natural steps would be to start the development and implementation of the submodules
described in the detailed design section of this thesis. Further specifying of interfaces and
service contracts (i.e. deciding upon he design of each data structure that is passed) should
be done before any implementation is begun as to facilitate later integration. It is also
suggested that as soon as a prototype for the new CAN-based backplane is constructed,
CAN drivers should be made and connected to the CSP library to start the testing of the
communication between the satellite modules to discover any defects as early as possible.

69

8.2 Conclusion
Based on the results from the testing, it is believed that a service-oriented architecture,
satisfying the constraints imposed on the NUTS OBC software can be realised through
the use of CSP for internal as well as external communication. Such an architecture is
considered to be ideal for the development of a university CubeSat such as NUTS, as SOA
enables the independent development of services through standardised interfaces. This can
greatly ease system integration as well as the implementation and rerouting of redundant
services. The computational overhead as well as the added latency on inter-thread commu-
nication is analysed and the solution considered cost efficient. The architecture proposed
in this thesis is therefor recommended for further implementation and use in the NUTS
project.

70

Bibliography

[1] Daniel Siewiorek and Robert Swarz. Reliable Computer Systems: Design and Eval-
uatuion. Digital Press, 1992.

[2] Atmel Corp. Atmel at03289: Sam4l low power design with freertos. http://www.
atmel.com/Images/Atmel- 42204- SAM4L- Low- Power- Design- with- FreeRTOS
AP-Note AT03289.pdf, 2013.

[3] The Norwegian Student Satellite Program ansat. http://andoyaspace.no/?page id=
254. Accessed: 2015-28-10.

[4] Nasjonalt studentsatellittprogram narom. https://www.narom.no/artikkel.php?aid=
2&bid=56&oid=813. Accessed: 2015-28-10.

[5] Space SkyRocket gunters space page. http://space.skyrocket.de/doc sdat/hincube.
htm. Accessed: 2015-28-10.

[6] HiNCubesat is it up there? http://hincube.cubesat.no/wp. Accessed: 2015-28-10.

[7] B. Randell, P. Lee, and P. C. Treleaven. Reliability issues in computing system
design. ACM Comput. Surv., 10(2):123–165, June 1978.

[8] Wellings Andy Burns, Alan. Real-Time Systems and Programming Languages. Pear-
son Education Limited, 2009, 4. edition, 2009.

[9] Mayeul Marcadella. Improvement in the reliability of a bi-processing unit satellite
subject to radiation-induced bit-flips. 2014.

[10] Magnus Haglund Arnesen and Christian Elias Kiær. Mission event planning & error-
recovery for cubesat applications. 2014.

[11] Space Radiation Effects on Electronic Components in Low-Earth Orbit nasa. http:
//llis.nasa.gov/lesson/824. Accessed: 2015-23-11.

[12] Radiation effects on space electronics uio. http:/ /www.uio.no/studier/emner/
matnat/fys/FYS4220/h11/undervisningsmateriale/forelesninger- vhdl/Radiation%
20effects%20on%20space%20electronics.pdf. Accessed: 2015-24-11.

71

http://www.atmel.com/Images/Atmel-42204-SAM4L-Low-Power-Design-with-FreeRTOS_AP-Note_AT03289.pdf
http://www.atmel.com/Images/Atmel-42204-SAM4L-Low-Power-Design-with-FreeRTOS_AP-Note_AT03289.pdf
http://www.atmel.com/Images/Atmel-42204-SAM4L-Low-Power-Design-with-FreeRTOS_AP-Note_AT03289.pdf
http://andoyaspace.no/?page_id=254
http://andoyaspace.no/?page_id=254
https://www.narom.no/artikkel.php?aid=2&bid=56&oid=813
https://www.narom.no/artikkel.php?aid=2&bid=56&oid=813
http://space.skyrocket.de/doc_sdat/hincube.htm
http://space.skyrocket.de/doc_sdat/hincube.htm
http://hincube.cubesat.no/wp
http://llis.nasa.gov/lesson/824
http://llis.nasa.gov/lesson/824
http://www.uio.no/studier/emner/matnat/fys/FYS4220/h11/undervisningsmateriale/forelesninger-vhdl/Radiation%20effects%20on%20space%20electronics.pdf
http://www.uio.no/studier/emner/matnat/fys/FYS4220/h11/undervisningsmateriale/forelesninger-vhdl/Radiation%20effects%20on%20space%20electronics.pdf
http://www.uio.no/studier/emner/matnat/fys/FYS4220/h11/undervisningsmateriale/forelesninger-vhdl/Radiation%20effects%20on%20space%20electronics.pdf

[13] Cosmic Rays cosmic rays. http://www.srl.caltech.edu/personnel/dick/cos encyc.
html, 1996. Accessed: 2015-16-12.

[14] Erlend Riis Jahren. Design and implementation of a reliable transport layer protocol
for nuts. 2015.

[15] Kjell Arne Odegaard. Error detection and correction for low-cost nano satellites.
2013.

[16] Steven McConnell. Code Complete. Microsoft Press, 2004, 2. edition, 2004.

[17] Magne Normann. Hardware review of an on board controller for a cubesat. 2015.

[18] Daniel L Dvorak et al. Nasa study on flight software complexity. 2009.

[19] Wiley J Larson and James Richard Wertz. Space mission analysis and design. Tech-
nical report, Microcosm, Inc., Torrance, CA (US), 1992.

[20] Andris Slavinskis et al. Estcube-1 in-orbit experience and lessons learned. http:
//ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7286959&tag=1, 2015.

[21] David Gerhardt et al. Rapid results: The gomx-3 cubesat path to orbit. 2016.

[22] Greg Manyak. Fault tolerant and flexible cubesat software architecture. http:
//digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1600&context=theses,
2011.

[23] Ralph Rowland Young. The requirements engineering handbook. Artech House,
2004.

[24] Atmel. Sam v71, smart arm-based flash mcu. http://www.atmel.com/images/Atmel-
44003-32-bit-Cortex-M7-Microcontroller-SAM-V71Q-SAM-V71N-SAM-V71J
Datasheet.pdf, 2016.

[25] Atmel Corp. Atmel avr uc3c 32-bit flash microcontrollers. http://www.atmel.com/
Images/32187B AVR%20UC3C E US-0912 LR.pdf, 2012.

[26] L Jane Hansen and Robert W Hosken. Spacecraft computer systems. In Wiley J
Larson and James Richard Wertz, editors, Space mission analysis and design, chap-
ter 16, pages 645–684. Microcosm, Inc., Torrance, CA (US), 1992.

[27] Eric J Braude. Software engineering: an object-oriented perspective. John Wiley &
Sons, Inc., 2000.

[28] Ian Sommerville. Software engineering. international computer science series. ed:
Addison Wesley, 2004.

[29] Embedded linux/microcontroller project. http://www.uclinux.org/ports/. Accessed:
2016-24-02.

[30] Linux support for avr32 uc3a. https://daim.idi.ntnu.no/masteroppgaver/004/4637/
masteroppgave.pdf. Accessed: 2016-07-04.

72

http://www.srl.caltech.edu/personnel/dick/cos_encyc.html
http://www.srl.caltech.edu/personnel/dick/cos_encyc.html
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7286959&tag=1
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7286959&tag=1
 http://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1600&context=theses
 http://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1600&context=theses
http://www.atmel.com/images/Atmel-44003-32-bit-Cortex-M7-Microcontroller-SAM-V71Q-SAM-V71N-SAM-V71J_Datasheet.pdf
http://www.atmel.com/images/Atmel-44003-32-bit-Cortex-M7-Microcontroller-SAM-V71Q-SAM-V71N-SAM-V71J_Datasheet.pdf
http://www.atmel.com/images/Atmel-44003-32-bit-Cortex-M7-Microcontroller-SAM-V71Q-SAM-V71N-SAM-V71J_Datasheet.pdf
http://www.atmel.com/Images/32187B_AVR%20UC3C_E_US-0912_LR.pdf
http://www.atmel.com/Images/32187B_AVR%20UC3C_E_US-0912_LR.pdf
http://www.uclinux.org/ports/
https://daim.idi.ntnu.no/masteroppgaver/004/4637/masteroppgave.pdf
https://daim.idi.ntnu.no/masteroppgaver/004/4637/masteroppgave.pdf

[31] Philip Koopman. Better embedded system software. Drumnadrochit Education, 2010.

[32] Freertos faq - memory usage, boot times & context switch times. http://www.freertos.
org/FAQMem.html. Accessed: 2016-01-04.

[33] Atmel Corp. At04056: Getting started with freertos on atmel sam flash mcus. http://
www.atmel.com/Images/Atmel-42382-Getting-Started-with-FreeRTOS-on-Atmel-
SAM-Flash-MCUs ApplicationNote AT04056.pdf.

[34] Tracealyzer for freertos. http://percepio.com/docs/FreeRTOS/manual/index.html#
Tracealyzer for FreeRTOS.

[35] Improved J-Link trace streaming, percepio. http: / /percepio.com/2015/10/27/
improved-j-link-trace-streaming/.

[36] GomSpace CubeSat Space Protocol(CSP) gomspace. http://www.gomspace.com/
documents/GS-CSP-1.1.pdf. Accessed: 2015-22-11.

[37] GomSpace libcsp github. https://github.com/GomSpace/libcsp. Accessed: 2015-22-
11.

[38] Helmut Petritsch. Service-oriented architecture (soa) vs. component based architec-
ture. Vienna University of Technology, Vienna, 2006.

[39] Core Flight Executive nasa. http://opensource.gsfc.nasa.gov/projects/cfe/index.php.
Accessed: 2016-08-03.

[40] Space avionics open interface architecture. http://savoir.estec.esa.int/.

[41] Generationone onboard software. http : / /www.brightascension .com/products /
generation1/.

[42] Operating system abstraction layer. https://github.com/nasa/osal. Accessed: 2016-
12-03.

[43] I Stanley Weiss and Michael S Williams. Requirements definition. In Wiley J Larson
and James Richard Wertz, editors, Space mission analysis and design, chapter 4,
pages 73–94. Microcosm, Inc., Torrance, CA (US), 1992.

[44] Anatomy of Linux journaling file systems, ibm. http : / / www. ibm . com /
developerworks/library/l-journaling-filesystems/index.html. Accessed: 2016-17-02.

[45] Crash consistency: Fsck and journaling. http://pages.cs.wisc.edu/∼remzi/OSTEP/
file-journaling.pdf. Accessed: 2016-17-02.

[46] Reliance Edge Fail-Safe File System freertos. http://www.freertos.org/FreeRTOS-
Plus/Fail Safe File System/Reliance Edge Fail Safe File System.shtml. Accessed:
2016-01-02.

[47] Freertos version 9. http://www.freertos.org/FreeRTOS-V9.html. Accessed: 2016-
01-02.

73

http://www.freertos.org/FAQMem.html
http://www.freertos.org/FAQMem.html
http://www.atmel.com/Images/Atmel-42382-Getting-Started-with-FreeRTOS-on-Atmel-SAM-Flash-MCUs_ApplicationNote_AT04056.pdf
http://www.atmel.com/Images/Atmel-42382-Getting-Started-with-FreeRTOS-on-Atmel-SAM-Flash-MCUs_ApplicationNote_AT04056.pdf
http://www.atmel.com/Images/Atmel-42382-Getting-Started-with-FreeRTOS-on-Atmel-SAM-Flash-MCUs_ApplicationNote_AT04056.pdf
http://percepio.com/docs/FreeRTOS/manual/index.html#Tracealyzer_for_FreeRTOS
http://percepio.com/docs/FreeRTOS/manual/index.html#Tracealyzer_for_FreeRTOS
http://percepio.com/2015/10/27/improved-j-link-trace-streaming/
http://percepio.com/2015/10/27/improved-j-link-trace-streaming/
http://www.gomspace.com/documents/GS-CSP-1.1.pdf
http://www.gomspace.com/documents/GS-CSP-1.1.pdf
https://github.com/GomSpace/libcsp
http://opensource.gsfc.nasa.gov/projects/cfe/index.php
http://savoir.estec.esa.int/
http://www.brightascension.com/products/generation1/
http://www.brightascension.com/products/generation1/
https://github.com/nasa/osal
http://www.ibm.com/developerworks/library/l-journaling-filesystems/index.html
http://www.ibm.com/developerworks/library/l-journaling-filesystems/index.html
http://pages.cs.wisc.edu/~remzi/OSTEP/file-journaling.pdf
http://pages.cs.wisc.edu/~remzi/OSTEP/file-journaling.pdf
http://www.freertos.org/FreeRTOS-Plus/Fail_Safe_File_System/Reliance_Edge_Fail_Safe_File_System.shtml
http://www.freertos.org/FreeRTOS-Plus/Fail_Safe_File_System/Reliance_Edge_Fail_Safe_File_System.shtml
http://www.freertos.org/FreeRTOS-V9.html

[48] Jez Humble and David Farley. Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation (Adobe Reader). Pearson Educa-
tion, 2010.

[49] Diaa Jadaan. Memory management and error handling in freertos for a cubesat
project. 2013.

[50] Richard Barry. Using the FreeRTOS real time kernel: a practical guide. Real Time
Engineers, 2010.

[51] The freertos reference manual. http://www.freertos.org/a00110.html. Accessed:
2016-01-03.

[52] Memory protection unit (mpu) support. http://www.freertos.org/FreeRTOS-MPU-
memory-protection-unit.html. Accessed: 2016-01-03.

[53] Percepio faq. http://percepio.com/tz/faq/. Accessed: 2016-20-02.

[54] Component-based software engineering wikipedia. https://en.wikipedia.org/wiki/
Component-based software engineering. Accessed: 2016-08-03.

[55] Martin Fowler. Refactoring: Improving the design of existing code. In 11th European
Conference. Jyväskylä, Finland, 1997.

[56] Fault tolerant and flexible cubesat software architecture. http://digitalcommons.
calpoly.edu/theses/550/. Accessed: 2016-10-06.

74

http://www.freertos.org/a00110.html
http://www.freertos.org/FreeRTOS-MPU-memory-protection-unit.html
http://www.freertos.org/FreeRTOS-MPU-memory-protection-unit.html
http://percepio.com/tz/faq/
https://en.wikipedia.org/wiki/Component-based_software_engineering
https://en.wikipedia.org/wiki/Component-based_software_engineering
http://digitalcommons.calpoly.edu/theses/550/
http://digitalcommons.calpoly.edu/theses/550/

Appendices

75

Appendix A
OBC Requirement Specification

A.1 OBC Functional Requirements

A.1.1 Satellite Initialization

R00-OBC-INI-000 INI=INITIALIZATION.
The OBC must run an initiation of the satellite upon de-
ployment

R00-OBC-INI-001 The OBC must issue an antenna deployment signal
R00-OBC-INI-002 The OBC must start beacon transmission from the radios
R00-OBC-INI-003 The OBC must issue a de-tumble command to the ADCS

upon initial deployment
R00-OBC-INI-004 The OBC must enter normal operation mode

Table A.1: OBC initialization requirements

A.1.2 Satellite Housekeeping

R04-OBC-HKP-000 HKP=HOUSEKEEPING.
The OBC must monitor and maintain the health of the satellite.

R00-OBC-HKP-001 The OBC must periodically check and act upon its own integrity.
R00-OBC-HKP-002 The OBC must periodically check and act upon the health of

other modules.
R04-OBC-HKP-003 The OBC must keep a log of the satellite’s health

Table A.2: OBC Housekeeping requirements

76

A.1.3 OBC Executables

R01-OBC-EXE-000 EXE=EXECUTABLES.
The OBC must be able to execute commands on demand
from ground station

R01-OBC-EXE-CMD-000 CMD=COMMANDS.
The OBC must support a set of commands.

R00-OBC-EXE-CMD-001 The OBC must be able to perform a full, and/or partial
reset of the satellite.

R01-OBC-EXE-TIM-000 The OBC must be able to schedule commands to be exe-
cuted later.

R01-OBC-EXE-TIM-001 The OBC must keep track of time.
R01-OBC-EXE-TIM-002 The OBC must be able to set alarms to schedule future

executions.
R00-OBC-EXE-PRG-000 PRG= PROGRAMMABILITY.

The OBC must be able to reprogram itself as well as other
modules.

R00-OBC-EXE-PRG-002 The OBC be able to receive and store at least one addi-
tional boot image from ground station

Table A.3: OBC general requirements

77

A.1.4 Satellite Executables

R04-OBC-EXT-000 EXT=EXTERNAL.
The OBC must interface with the other modules

R00-OBC-EXT-PRG-000 PRG= PROGRAMMABILITY.
The OBC must be able to reprogram itself as well as other
modules.

R00-OBC-EXT-PRG-002 The OBC be able to receive and store at least one addi-
tional boot image from ground station

R04-OBC-EXT-RAD-000 The OBC must interface with the on-board radio
R03-OBC-EXT-ADC-000 ADC=Altitude Determination and Control System.

The OBC must be able to configure and control the
ADCS.

R03-OBC-EXT-ADC-001 Module reset, module power down.
R03-OBC-EXT-ADC-002 Start de-tumbling.
R03-OBC-EXT-ADC-003 Stop de-tumbling.
R03-OBC-EXT-ADC-004 Point in a given direction.
R07-OBC-EXT-CAM-000 CAM=CAMERA PAYLOAD.

The OBC must be able to configure and control the cam-
era.

R07-OBC-EXT-CAM-001 Module reset, module power down/up, request statistics.
R07-OBC-EXT-CAM-002 Schedule image capturing
R07-OBC-EXT-CAM-003 Retrieve images, and send to ground station
R08-OBC-EXT-CAM-004 Retrieve thumbnail images and send to ground station
R08-OBC-EXT-CAM-005 Delete images
R07-OBC-EXT-CAM-006 Set; gain, frame rate, frame size, and exposure time.

Table A.4: OBC External interface requirements

78

A.2 OBC Non-Functional Requirements

ID Description
R00-OBC-NON-DUR-000 DUR=DURATION

Mission operation is 3 months.
R00-OBC-NON-AVA-000 AVA=AVAILABILITY

The mission capable rate should be ass high as possible, and
should not be less than 50%

R00-OBC-NON-AVA-001 The OBC must be able to handle multiple concurrent requests.
R00-OBC-NON-SUR-000 SURVIVABILITY

The OBC must survive its natural environment (space)
R00-OBC-NON-REL-000 REL=RELIABILITY

The OBC mean time to failure (MTTF) should be greater than
the duration of the space mission.

R00-OBC-NON-REL-001 No single failing task or component shall end the satellite mis-
sion.

R00-OBC-NON-REL-002 The OBC must be able to recover from transient errors such as
SEL and SEU, no matter where or when they might occur.

R00-OBC-NON-REL-003 Execution of less-important tasks shall not affect the timeliness
of higher-prioritised tasks.

R00-OBC-NON-TES-000 TES=TESTABILITY
A formal test procedure with measurable results must be enun-
ciated and performed.

R00-OBC-NON-MAI-000 MAI=MAINTAINABILITY
Code and documentation must be made easy to understand

R00-OBC-NON-MAI-001 All user written code must be documented in a coherent manner
R00-OBC-NON-MAI-002 Version control shall be used for the code repository
R00-OBC-NON-MAI-003 Software architecture must support tools for debugging

Table A.5: OBC non-functional requirements

R00-OBC-PRG-000 PRG= PROGRAMMABILITY.
The OBC must be able to reprogram itself as well as other mod-
ules.

R00-OBC-PRG-002 The OBC be able to receive and store at least one additional boot
image from ground station

Table A.6: OBC reprogramming requirements

79

A.3 Document Version History

Revision Date Author Description
1.1 01.03.2016 Magne Normann Included requirements of reprogramming,

refined non-functional requirements.
1.0 05.10.2015 Magne Normann Initial Document Release

Table A.7: OBC reprogramming requirements

80

Appendix B
OBC Service Contracts

Interface of the Timekeeper
The Timekeeper is to be implemented with one blocking listening socket TIMEKEEPER SOCKET RX
that shall receive and react to calls concerning time and alarms. The calls it shall respond
to can be seen in the table below.

Call Parameters Reaction
PING RSVP SOCKET Send PONG to RSVP SOCKET
PONG NONE Register response
TIME GET RSVP SOCKET Send current time to the

RSVP SOCKET
TIME SET time t time Update the current time to the one

received
ALARM SET time t time, action t

action
Add alarm to execute ”action” at
”time”

ALARM DEL ALL NONE Delete all alarms

Interface for the Housekeeper
The housekeeper module is responsible for managing the health of the satellite. It is to
be implemented with one blocking listening socket HOUSEKEEPER SOCKET RX that
shall receive and react to calls concerning satellite health and telemetry. The calls it shall
respond to can be seen in the table below.

81

Call Parameters Reaction
PING RSVP SOCKET Send PONG to RSVP SOCKET
PONG NONE Register response
RUN HEALTH TEST NONE Run a full satellite test
ERROR REPORT error t error Do necessary actions, such as log-

ging the error and saving the state,
before resetting the module

SYNC TIME time t time Synchronize all RTCs in the satel-
lite with the time given, if no time
is given synchronize using the time-
keeper time.

GET SAT STATE RSVP SOCKET Retrieve the current satellite state
and send it to RSVP SOCKET.

Interface for the Logger
The logger is the software service responsible for maintaining the log. It is implemented
as a single thread with one listening socket, LOGGER SOCKET RX. The logger will be
the only task that has direct access to the hardware keeping the log (i.e. flash memory) and
will act as a server, responding to logging requests of the rest of the system. The calls it
shall respond to can be seen in the table below.

Call Parameters Reaction
PING RSVP SOCKET Send PONG to RSVP SOCKET
PONG NONE Register response
LOG ADD log t log, time t time Write the log entry into the log.
LOG GET RSVP SOCKET, int

N
Send the N last log entries to
RSVP SOCKET.

LOG DEL N LAST NONE Delete the N last log entries.
LOG INIT NONE Initialize the LOG, any old log en-

tries will be deleted.

Interface for the Event handler
The main responsibilities of the event handler is to execute composed commands, en-
abling simple commands from the base station to result in multiple commands to be is-
sued inside the satellite. It is implemented as a single thread with one listening socket,
EVENT SOCKET RX. The Event handler will in general respond to events or commands
that entails complex or composite actions to be executed. The list is to be made.

82

Appendix C
OBC Software Requirements
Specification

1 Introduction
The OBC is one of the principal components of the satellite, and is able to control the rest
of the system by granting or denying subsystems access to power and the databus. Other
OBC tasks include logging of system parameters in addition to preparing and reading data
transmitted to and from the communication systems.

The OBC must be designed to be reliable, as maintenance is impossible after launch.

1.1 Purpose
This document provides all the requirements for the On Board Computer for the NUTS
satellite. Parts 1 and 2 are intended primarily for users of the OBC (other satellite mod-
ules), but will also be of interest to software engineers maintaining the OBC software. Part
3 is intended primarily for software engineers of the OBC, but will also be of interest to
users.

1.2 Scope
This document covers the requirements that must be met by the on board computer soft-
ware. The purpose of this is to guide developers in selecting a design that will be able to
accommodate the full-scale NUTS OBC requirements.

83

1.3 Definitions, acronyms, and abbreviations

1.4 References
NUTS mission goals NUTS Power Budget 2015 OBC functional requirements OBC non-
functional requirements

1.5 Overview
The OBC is one of the principal components of the satellite, and is able to control the rest
of the system by granting or denying subsystems access to power and the databus. Other
OBC tasks include logging of system parameters in addition to preparing and reading data
transmitted to and from the communication systems.

2 Overall description
The main responsibility of the OBC is to monitor the health of the system and to take
necessary actions when situations demand for it. It monitors the health of the satellite by
periodically requesting health packages from software instances as well as polling sensors
for the different modules’ power consumption. It also monitors the satellite battery power
level, and sets the satellite state appropriately. In addition to this the OBC also acts as
a gateway between the satellite bus, and the radio link to ground station. The satellite is
designed as a distributed system with redundant functionalities implemented in different
modules. The OBC has a sister microcontroller at the UHF Radio module, with a very
similar hardware and software setup. OBC functionalities are therefore also implemented
in the UHF Radio module.

2.1 Product perspective
The NUTS satellite is intended to be an earth observational satellite. It’s main goal how-
ever is to raise awareness and build competence related to space development with students
enrolled in studies at NTNU. There are many other observational satellites that have had
similar mission goals as the NUTS satellite, among these are ESTCube-1.

System interfaces

User interface Concepts

The user interface for the NUTS OBC software are reachable though the ground station
GUI. All requests must conform to the Cubesat Space Protocol.

Hardware interfaces

The OBC software runs on the main OBC microcontroller. A sketch of the OBC hardware
setup can be seen in figure C.1. A detailed pinout description can be found in the OBC
Hardware Schematics hosted on the internal wiki.

84

Figure C.1: OBC Hardware Interfaces

Software interfaces

All Communication with the OBC are expected to conform to the CubeSat Space Protocol.

Communications interfaces

The OBC must be able to communicate with all satellite subsystems, these entail:
• ADCS
• Payload
• Radio (ground station)
• Backplane
• Sister-OBC

Memory constraints

The OBC software design shall aim at using no more than 70 % of the available system
memory and throughput.

Operations

The OBC software shall be constructed for operation in space, but must also support run-
ning software in the lab.

Site adaption requirements

The OBC software shall be easily portable to other 32-bit ARM-based microcontrollers.
In particular, the software must be able to run on both the UC3C and the SAMV71 micro-
contollers from Atmel.

85

2.2 Product function
The functional requirements of the OBC is captured in the OBC Function Requirement
Specification.

2.3 User characteristics
The system will be further developed, maintained and used by master students enrolled
in engineering sciences at NTNU. In particular, student related enrolled in electronics,
cybernetics, computer sciences and communication sciences are expected to be the users
of this system. The user is thus expected to be technically proficient, but inexperienced.

2.4 Constraints
The software must be able to run on the OBC hardware. The currently used microcon-
trollers and their internal specifications can be seen in Table C.1, while their external
memories can be seen in the list below:

• 4 Mbit FeRAM B85R4001
• 16 Mbit SRAM IS61wv102416BLL-10TLI
• 32 GB NAND FLASH (MT29F16G08ABACAWP-ITZ:C)

Value UC3C SAM V71
Frequency [MHz] 66 300

Flash [MHz] 512 2048
SRAM [KB] 64 384

Power Consumption Active [mA] 40 100
Power Consumption Sleep [µA] 31-100 5.8-24000

Table C.1: UC3C and SAM V71 specification

The OBC is on a power budget. Its power consumption should therefor not exceed the set
limit of 300 mW average power consumption.

2.5 Assumptions and dependencies
It is to be expected that the hardware as well as the software may be subjected to change
and thus measures must be taken so that change can be handled as elegantly as possible.

This documents assumes the NUTS hardware version 4/Engineering model 2. The use
of CSP for communication between satellite systems is also assumed.

2.6 Apportioning of requirements
The requirements described in Sections 1 and 2 of this document are referred to as ”C-
requirements”; thise in Section 3 are referred to as ”D-requirements.” The primary audi-
ence for C-requirements is the user community (non-OBC developers), and the secondary

86

audiance is the OBC developer community. The reverse is true for the D-requirements.
These two levels of requirements are intended to be consistent. Inconsistencies are to be
logged as defects. In the event that a requirement is stated within both the C-requirements
and the D-requirements, the applications shall be built from the D-requiremen version
since it is more detailed. ”Essential” requirements (referred to in section 2) are to be im-
plemented for this version of the OBC. ”Desirable” requirements are to be implemented
in thir release if possible, but not committed to by the developers. It is anticipated that
they will be part of a future release. ”Optional” requirements will be implemented at the
discretion of the developers.

2.7 External interface requirements
The OBC user interface consists of CSP packets arriving on either the USART link from
the Radio microcontroller or the CAN tranciever connected to the Satellite communication
bus.

User interfaces

All communication with the OBC is done through CSP, which uses a Berkley socket-like
API.

Hardware interfaces

The OBC hardware setup can be seen in figure C.1. The OBC microcontroller interfaces
with the UHF/VHF radio via USART. External flash bank via SPI. External SRAM and
FRAM connected to the External Memory Bus of the microcontroller. The OBC is also
connected to a JTAG bus, I2C based sensor bus and a CAN transceiver.

Software interfaces

All software interfaces uses CSP. All communication is handled by the CSP middleware.

Communications interfaces

All communication with the OBC must adhere to the service contract described in the
OBC Service Contracts.

2.8 Classes/Objects
The OBC is considered to comprise of four software modules:

• Scheduler
• Housekeeper
• Memory manager
• Event manager

87

2.9 Performance requirements
The OBC must handle incoming packages in a satisfactory fashion. Except for this, there
are no hard timing demands for the OBC.

2.10 Design constraints
The NUTS project is student driven with a high turn-over of inexperienced personnel. It is
therefor imperative that the software is easy maintainable and user friendly. An engineer-
ing student should be able to understand what is necessary to contribute to the project in
less than one semester.

2.11 Software system attributes
McConnel, the author of Code Complete, states that there are several general characteris-
tics to high quality design. These can be seen in the list below:

• Minimal complexity
• Ease of maintenance
• Loose coupling/high cohesion
• Extensibility (Extensibility means that you can enhance a system without causing

violence to the underlying structure. You can change a piece of a system without
affecting other pieces. The most likely changes cause the system the least trauma.)

• Reusability (Reusability means designing the system so that you can reuse pieces of
it in other systems)s

• Portability
• Leanness (Leanness means designing the system so that it has no extra parts).
• Stratification (Stratification means trying to keep the levels of decomposition strat-

ified so that you can view the system at any single level and get a consistent view.
Design the system so that you can view it at one level without dipping into other
levels)

• Standard techniques

3 Supporting information
OBC pages on NUTS’ internal Wiki pages.

4 Document Version History

Revision Date Author Description
1.0 05.04.2016 Magne Normann Initial Document Release

Table C.2: OBC SRS Document history

88

Appendix D
OBC Software Design Document

1 Introduction
The OBC is one of the principal components of the satellite, and is able to control the rest
of the system by granting or denying subsystems access to power and the databus. Other
OBC tasks include logging of system parameters in addition to preparing and reading data
transmitted to and from the communication systems.

The OBC must be designed to be reliable, as maintenance is impossible after launch.

1.1 Purpose
This document describes the NTNU Test Satellite On Board Computer software design
architecture.

1.2 Scope
This design is the first full scale design for the OBC. It describes the software architecture
of the OBC as well as the detailed design of each of the modules.

1.3 Definitions, acronyms, and abbreviations
OBC - Onboard Computer
RTC - Real Time Clock
AST - Asynchronous Timer
CSP - Cubesat Space Protocol

89

2 References
”Software Design of an Onboard Computer for a Nanosatellite”, by Magne Normann

3 Decomposition description
The decomposition of the system has been obtained by discussion in the NUTS group and
can be seen below:

• Timekeeper
• Housekeeper
• Memory manager
• Event manager

Communications are handled by CSP middleware though the CSP router task. This mod-
ularization was chosen as it inherently supports service rerouting while having minimal
shared drivers, which in turn simplifies error confinement as well as multiple concurrency
related issues. The architecture implements memory management as a service. This makes
the memory interface available for calls from ground station, as well as enabling for easy
service rerouting internally in the satellite in the event of flash failures.

3.1 Module decomposition
This section describes each of the modules that make up the OBC software architecture.

Timekeeper

The timekeeper module is responsible for keeping track of time and the scheduling of
events to be initiated by the passing of time. The timekeeper is the only module using the
RTC/AST driver.

Housekeeper

The housekeeper module is responsible for managing the health of the satellite. It should
periodically issue tests to verify the correctness and liveliness of the satellite. The house-
keeping tests can be made rather advanced, with individually testing each software module
from multiple other modules. However an effort has been made to keep the error states as
few and general as possible to avoid further complicating the system. Whenever there is
an error discovered inside a sub-module, the entire module will be reset. This is done to
avoid additional errors and complicated failure modes that might follow a single submod-
ule reset/re-initialization. This means that although the system design supports intricate
tests, where single software submodules may be tested with customized tests issued from
various other modules, and the following results discussed among the other modules, the
author emphasizes simplicity and only tests deemed absolutely necessary are to be imple-
mented.

90

Memory Manager

The memory manager is the software service responsible for storing and retrieving log
entries, boot images, as well as reprogramming other modules. It is implemented as a
single thread with one listening socket, MEMMAN SOCKET RX. The memory manager
will be the only task that has direct access to the hardware keeping the log (i.e. flash
memory) and will thus need to act as a server, responding to the logging requests of the
rest of the system.

Event Manager

The main responsibilities of the event handler is to execute composed commands, enabling
simple commands from the base station to result in multiple commands to be issued inside
the satellite. Originally it was planned that all messages would be unpacked and inspected
and then routed to the correct module by the event handler, however as the use of CSP
enables routing of packages directly to the correct module, this is alleviated from the event
handler. This means that though all actions could be performed by sending an array of
commands to be executed from the ground station, it is considered to be preferable if these
action sequences were grouped together and triggered by a simple command. This forms
an easier interface where the exact sub-commands and sequences are abstracted from the
user interface presented to the ground station.

4 Dependency description
The implementation must be made on an OS that supports CSP such as Linux or FreeR-
TOS.

4.1 Concurrent process
All the four modules are implemented as concurrent processes, effectively functioning as
servers in the satellite network. In additino to the four OBC threads there is a fifth tread
implemented by csp, named the router task. This task is responsible for the delivering of
CSP packages between modules and threads.

5 Interface description
The following section describes the interface for each of the OBC software modules.

5.1 Interface for the Timekeeper
The Timekeeper is to be implemented with one blocking listening socket TIMEKEEPER SOCKET RX
that shall receive and react to calls concerning time and alarms. The calls it shall respond
to can be seen in the table below.

91

Call Parameters Reaction
PING RSVP SOCKET Send PONG to RSVP SOCKET
PONG NONE Register response
TIME GET RSVP SOCKET Send current time to the

RSVP SOCKET
TIME SET time t time Update the current time to the one

received
ALARM SET time t time, action t

action
Add alarm to execute ”action” at
”time”

ALARM DEL ALL NONE Delete all alarms

The action type received as parameter in the ALARM SET call is to be from the same
action set that is implemented within the event manager.

In addition to the TIMEKEEPER SOCKET RX the timekeeper shall also use an outgoing
socket named TIMEKEEPER SOCKET TX, which is to be used when responding to time
requests and triggered alarms.

5.2 Interface for the Housekeeper
Call Parameters Reaction
PING RSVP SOCKET Send PONG to RSVP SOCKET
PONG NONE Register response
RUN HEALTH TEST NONE Run a full satellite test
ERROR REPORT error t error Do necessary actions, such as log-

ging the error and saving the state,
before resetting the module

SYNC TIME time t time Synchronize all RTCs in the satel-
lite with the time given, if no time
is given synchronize using the time-
keeper time.

GET SAT STATE RSVP SOCKET Retrieve the current satellite state
and send it to RSVP SOCKET.

92

5.3 Interface for the Memory Manager
Call Parameters Reaction
PING RSVP SOCKET Send PONG to RSVP SOCKET
PONG NONE Register response
LOG ADD log t log, time t time Write the log entry into the log.
LOG GET RSVP SOCKET, int

N
Send the N last log entries to
RSVP SOCKET.

LOG DEL N LAST NONE Delete the N last log entries.
LOG INIT NONE Initialize the LOG, any old log en-

tries will be deleted.
BOOT ADD boot image[] Store boot image in flash
BOOT GET RSVP SOCKET,

boot image id
Retrieve boot image from flash

PROG FIRM Module,
boot image id

Reprogram module with firmware
boot image id

5.4 Interface for the Event Manager
The Event Handler is implemented as a single thread with one listening socket, EVENT SOCKET RX.
The Event handler will in respond to events or commands that entails complex or compos-
ite actions to be executed. The list is to be made.

5.5 Data decomposition
TBD.

6 Detailed design

6.1 Timekeeper
The internal AST/RCT will be used to keep absolute time, however the OBC specifica-
tion demands not only that the OBC needs to keep track of time, but also that it must be
able to set alarms to schedule future executions cf. requirement R01-OBC-EXE-TIM-002.
The AST/RTC only supports two alarms; ALARM0 and ALARM1. Any scheduling thus
needs to reuse alarms. This can be solved by keeping a sorted array of set alarms where
ALARM1 is set to the first one in the array, which will always be the one closest in time.
When the alarm is triggered it resets itself to the next alarm in the array. For memory pur-
poses, the alarm is implemented as a ringbuffer of a fixed size, and new alarms are added
using bubble sort (from back to front). Bubble sort is chosen for its simple implementation
and the fact that if one makes the assumption that most new alarm times are likely to be
further into the future than the ones already present in the buffer, this minimizes sorting
operations. A faster alternative could be to use a dynamically allocated linked list, instead
of the ring buffer and sorting, as this would reduce both the time and memory usage. How-
ever due to the added complexity and the difficulties related to debugging problems linked

93

to dynamically allocation, the sorted ringbuffer-method is deemed safer. Alarms should
be shadowed in non-volatile memory in case of any resets. The time can be set externally
(the housekeeper is responsible of synchronizing time between the modules.) The time-
keeper module itself should be as simple as possible, and no self-synchronizing should be
implemented. This is done to avoid complex and/or uncontrolled behaviors in the OBC.
All time synchronization should happen on the initiatives of the housekeeper or the event
handler as these modules have a much better image of the satellites situation.

6.2 Housekeeper
Error Recovery

As there are no hard deadlines, the added implementation and performance cost of static
redundancy was not deemed cost-effective and thus dynamic redundancy is being used for
fault tolerance. Anderson and Lee states there should be four constituent phases to dy-
namic redundancy. These are (1) error detection, (2) damage confinement and assessment,
(3) error recovery, and (4) fault treatment and continued service [8]. Tests should only
report errors, so that another entity, to which all errors are reported, can make the assess-
ment and initiate any error recovery procedures. As the housekeeper is concerned with the
health of the satellite, it seems fitting that such error handling is to be implemented here.It
is decided that high-level error handling shall incorporate the three first stages suggested
by Anderson and Lee. Procedures trying to unearth errors will run periodically, and re-
port any errors when detected so that further investigations can be launched before any
measures are taken to recover from the error.

Managing the Satellite State

In order to make the right decisions, the housekeeper will need to at all times know the
current state of the satellite, as well as to have an understanding of previous events that
have occurred in the system. This data must survive any module resets and should therefor
be stored in non-volatile memory. Care must be taken however that the system still works
if this non-volatile memory should fail. One solution might be to keep shadow-copies
in various memories in order to have multiple places to get the information if one spe-
cific memory should fail permanently. The implementation and performance costs must
be considered. The author proposes a scheme where a volatile working copy is kept in
non-volatile memory, and is shadowed in MRAM, as well as being logged to non-volatile
memory in the logging module. This way the system should function properly if one of
the non-volatile memories fail permanently, and should be able to continue with a partial
degradation in functionalities even if all external memories are broken. One could also
synchronize the satellite’s state between the OBC and its sister module, however when
further investigating this method one discovers that this may be quite risky. Whenever a
permanent error is detected in the OBC or its sister module, the one which can be consid-
ered the healthiest will be promoted to active state as the other goes into a passive state [9].
This means that if an OBC has a faulty memory and is still active, its sister module must be
even worse off, so care should be taken before relying on services from the passive sister

94

Figure D.1: Satellite check

module.

Acquiring the Satellite State

All errors discovered through normal use shall of course be signaled to the housekeeper.
In addition to this, the housekeeper shall periodically test the different parts of the satellite
in order to uncover any silently failed modules. This periodic checkup should start by
verifying the integrity of the OBC in order to assure that the most vital components are
intact, as well as confirming that the testing facility is indeed functional before starting
to test external modules. If no errors are detected the network should be tested, before
finally, the other modules of the satellite can be tested. It is important that the network
check is done before any external modules are checked as external modules cannot be
tested without the interface being functional.

Internal Integrity Check

Burns and Wellings states that the major application detection techniques are replication
checks, timing checks, reversal checks, coding checks, reasonableness checks, structural
checks, and dynamic reasonableness checks [8]. Most suited for detecting memory cor-
ruption is the coding checks, and thus this is what shall be used to detect whether the
program data has been corrupted. When it comes to testing the external memories, both
timing checks, as well as code checks could be useful. The timing checks should be made
on the read and write commands, to ensure that an error does not block eternally, but rather
times out and reports the failure. If the timing however checks out one could use coding
checks to verify that not only the access is functional, but also that the contents are intact.

After the various memories have been tested, the different internal software modules can
be tested. These tests can consist of anything from a simple ping-pong routine, to includ-
ing just about every method suggested by Burns and Wellings. The author of this thesis
suggests to not go all overboard with this but only implement simple functional tests. The
memory manager facility can be tested by requesting a write to log, and then a read-back
of the same entry. The timekeeper facility can be tested by adding an alarm that should

95

Figure D.2: Internal check

Figure D.3: Network check

be triggered in the immediate future and do a timing check on the response. The event
handler facility can be tested with a simple ping-pong routine.

Satellite Network Check

The satellite network check can be made by simply pinging all other modules, and wait
for responses for a limited time. If all modules respond within the time limit, the network
is assumed functional. If some modules respond, but not all, the network is considered
partially functional and an exception is thrown. If no responses are received, the network
is assumed to be non-functional.

Module Check

As all modules are interfaced through the CSP sockets, performing functional timing tests
are easily implemented as each call to socket receive can be given a timeout period, spec-
ifying how long the socket should block and wait for an incoming message. In fact, one
OBC can perform exactly the same functional tests on the other OBC as it did on itself by
simply addressing the respective socket on the other OBC instead of the one implemented
in itself. For example, to verify the memory manager on the OBC-sister the OBC can
request to write to and read from the log, but instead of using addressing the requests to its
own memory management socket, it can send them to the socket of the memory manager

96

Figure D.4: Module check

at the other OBC.

The Error Handler

As error handling code in itself can be a source of errors, the complexity of error handling
code should be minimized if a maintainable system is to be constructed. It is therefore
recommended to implement basic catch-all measures rather than specialized handlers for
complicates error states. As a result of this the author recommends that a complete module
reset is a better response than single submodule repair in the face of soft errors. One of
the main arguments for this is that it makes for easier maintainable code as well as error
propagation may be minimized.

Upon reset, the housekeeper checks the battery level to see if the satellite can enter the
test mode. If the battery power level is sufficient the housekeeper starts a health check.
First it checks its own host-module. The non-volatile memory is checked for any status
information, as well as running an integrity check for the rest of the non-volatile stored
data. If any errors are unearthed in the self test, these must be dealt with before testing the
rest of the system. However, the internal test is still to be completed, even if a previous
step uncovered an error. This is done to get an overview of the situation before making

97

any decision on what the appropriate counter measures are. This is in turn done to ensure
that multiple errors are registered and handled correctly. If the self test is positive, the
other satellite modules are tested as the flowchart below depicts. Any failed tests, result in
a limited amount of module resets before a module is declared dead.

6.3 Memory Manager
The memory manager is the software service responsible for storing and retrieving log
entries, boot images, as well as reprogramming other modules. It is implemented as a
single thread with one listening socket, MEMMAN SOCKET RX. The memory manager
will be the only task that has direct access to the hardware keeping the log (i.e. flash
memory) and will thus need to act as a server, responding to the logging requests of the
rest of the system.

Timestamp Supplier

All log entries should be timestamped in order to construct time lines of event. One ques-
tion that arises is then; should the time be supplied by the caller, or by the memory man-
ager? It is not unlikely that some drift will occur between the different clocks in the satel-
lite, despite valiant efforts of synchronizing them. Would it then make more sense to use
the time from the local timekeeper, assuring that all entries are stamped chronologically to
when they are received, or should the caller stamp the log message before sending, assur-
ing that no delays due to packet loss or resending affects the time stamping? One solution
might be to use both, this would effectively mark each log entry both when it was sent, and
when it was received. Making it easier to investigate synchronization or communication
issues in the satellite.

File System

The memory manager should support some sort of file system to categorize different en-
tries. When choosing a file system care must be taken both to the memory footprint of
the system as well as its reliability. It is not unlikely that power outs or outside of spec
voltages may occur. It is therefore important that the memory manager does not corrupt
the memory, even if operations are aborted half finished. For this reason the developer
may want to use a journaling file system, as such file systems can be brought back online
more quickly with lower likelihood of becoming corrupted after power failures [44] [45].
The developer may also want to investigate whether the Reliance Edge fail-safe file system
included in FreeRTOS+ Ecosystem [46] is an appropriate file system or not.

In-Orbit Programming

Due to R00-OBC-PRG-001 requirement, the OBC must be able to program other modules
after launch. This firmware update can be done either by the microcontroller itself or
by another microcontroller. Priority is given to programming of one microcontroller by
another, as this can be forced upon a microcontroller with a faulty firmware. Marcedella

98

implemented firmware update using the JTAG protocol. However his method is target
specific and does not easily port to other microcontrollers or boot images. For this reason
a new programming scheme needs to be implemented, though it is recommended to use
Marcadellas work as guiding.

7 Document Version History

Revision Date Author Description
1.0 30.04.2016 Magne Normann Initial Document Release

Table D.1: OBC SDD Document history

99

Appendix E
Cubesat Space Protocol for
intra-Module Communication

100

Cubesat Space Protocol for intra-Module Communication

Magne Normann

M.Sc Student, Department of Cybernetics and Robotics
NTNU, Norwegian University of Science and Technology

O.S. Bragstad plass 2D, N-7491 Trondheim - Norway
magnealv@stud.ntnu.no
Phone: +47 97005173

Abstract

When designing for embedded systems, the communication model used for internal commu-
nication plays a vital role to the system complexity. A suited communication model assures mod-
ularization and greatly eases system development and maintainability. While an unsuited commu-
nication model can make system development challenging, often forcing the developer to write
complicated code, resulting in added complexity and lowered maintainability. This paper suggests
the Cubesat Space Protocol (CSP) as a viable solution for both inter- and intra-satellite commu-
nication. This enables for a seamless distributed system, where submodules can communicate
with other submodules in a unified manner, no matter if the other submodules are implemented
inside the same microcontroller or at the ground station. There are some unnecessary added over-
head, as not all communications need checksums or congestion control, but if the added overhead
and communication time is acceptable, the CSP layers can abstract the underlying interfaces and
routing, thus easing system design, as subsystem developers only need to think about defining a
service-contract, and a set of port-numbers her/his system will be responding to. In this paper the
advantages and disadvantages of using CSP for inter-task communication are discussed. A small
test application is analysed to measure the computational overhead of different CSP features in
order to evaluate it for satellite applications. It is concluded that using CSP can be very advan-
tageous for non-time critical communication but is not recommendable where synchronization is
highly time sensitive.

The 4S Symposium 2016 - M Normann 1

1 Introduction
Cubesats are becoming more and more popular, yet failure rates are very high with less than

50% success rate [1]. One of the many challenges of cubesat development is keeping the system
complexity at a manageable level. Real-time and embedded programs (such as cubesat applica-
tions) have to control and interface with real-world entities (thrusters, switches, sensors, etc.) that
are inherently parallel. Reflecting the parallel nature of the system in the structures of the pro-
gram makes for a more readable, maintainable and reliable application. This is one of the main
motivations for writing concurrent programs [2]. However, communication and synchronization
in concurrent programs are far from trivial and can be really difficult to understand for humans.
There may be the risk of oversights, even after very rigorous code inspections [3]. For this rea-
son, software with proven flight heritage is often preferred. The Cubesat Space Protocol (CSP),
formerly known as CAN Space Protocol, is a small protocol stack with proven flight heritage.
It is written in C and its design follows the TCP/IP model and includes a transport protocol, a
routing protocol and several MAC-layer interfaces [4]. It was developed at Aalborg University in
2008, and is now maintained by GomSpace. An implementation of the basic CSP functionality is
released by GomSpace as a software library under GNU Lesser General Public Licence (LGPL),
allowing the material to be copied and used by the public. The protocol supports up to 16 mod-
ules, whereas each module can have up to 64 ports. The protocols supports next-hop routing as
well as loopback mode. According to GomSpace, known satellites or organizations that uses CSP
include GomSpace GATOSS GOMX-1, AAUSAT-3, EgyCubeSat, EuroLuna, Hawaiian Space
Flight Laboratory, GomSpace GOMX-3, and NUTS-1.

Though originally intended for cross-module communication, the protocol does support loop-
back mode. Meaning that messages could be sent from one thread to another running on the same
microcontroller via CSP. This report will discuss and test the possibility of using CSP as a unified
communication interface for satellite services regardless of whether they are implemented inside
the same module or not.

2 The perks of CSP for inter-thread communication
The main arguments for using CSP as a unified interface for both internal and external services

are that it may minimize system complexity and ease error checking and handling. CSP uses a
service oriented topology with a Berkley/POSIX socket-like Application Programmer Interface
(API). Most computer developers have at least some experience with socket programming and are
thus already familiar with the basics of how the CSP API is used. Using this service oriented ar-
chitecture also encourages developers to minimize dependencies to other sub-modules and uphold
a standard way of communication throughout the satellite.

If CSP is used not only for inter-module communication but also for intra-module communica-
tion, every internal service becomes (if wanted) accessible to other modules as well. This means
that if a service provider permanently fails, the service can be requested from any other service
provider with similar request-handling, simply by changing the receiver address. An example of
this could be if the logging service of a module goes down due to some permanent hardware fail-
ure. The module would then be able to use the logging service implemented in another module,
by changing the receiver address it sends its log messages to.

If a housekeeping entity is being used to manage the health of the satellite, then it can be used
to update what sockets should be used in case of any permanent submodule failure, abstracting
any satellite-system error handling away from the submodules. This means that a submodule

The 4S Symposium 2016 - M Normann 2

developer does not need to check for or implement handling in case of any failures in other sub-
modules. If other modules goes down, the housekeeper will change the addresses appropriately
and the submodule application developer is only responsible of implemented error handling for
its own services.

Concerning congestion control and error checking, CSP supports a handful of Internet Control
Message Protocol (ICMP) calls, as well as services such as requesting memory and buffer status.
It also has support for getting and setting time, retrieving the up-time of another module, and
retrieving a list of the running threads as well as their statuses. In addition to this, the CSP router
task supports Quality of Service (QoS) and can evaluate it’s own performance. If CSP is used for
inter-thread communication, all these services becomes available for submodules as well and may
ease the design and implementation of certain housekeeping functionalities as the responsiveness
and healthiness of any submodule connected to the network can be investigated thought standard
CSP-calls.

3 The trade-offs of CSP for inter-thread communication
The main trade offs for using CSP for inter-thread communication is considered to be the added

overhead resulting in slower execution and more memory needed, and the fact that the CSP router-
task poses a single point of failure for the communication both internally as well as externally.

Using CSP for both internal and external communication causes all packages to be handled
by the router task. This makes the router task a single point of failure for the entire module. If
the router task suffers a failure, no communication, not even internally to the module is possible.
If one considers the alternative of using native FreeRTOS synchronization techniques for inter-
task communication. The module may continue to function with some degraded performance.
However it would be much harder to investigate and verify the healthiness of the internal commu-
nication. It can also be argued that as there may only be limited value in the internal healthiness
of a module that cannot communicate with the rest of the system, there is only limited value in
separating the two communication schemes as both must work for the satellite to be functional.
It may thus be worth the payoff to join these two single point of failures into one, as this greatly
simplifies error detection and handling.

CSP conforms to the TCP/IP model with multiple layers. This means that the underlying drivers
and low level details are abstracted away for the application designer. This simplifies design
and implementation, but comes at a cost. Added abstraction means added overhead. Whether
or not the additional computational overhead of using CSP is acceptable or not depends on the
application requirements. To investigate how much overhead computation CSP imposes on the
application a test bench was created. The test bench, the results from the tests and a discussion of
the results will be presented in the following sections.

The 4S Symposium 2016 - M Normann 3

4 Testing the build
To estimate the additional overhead that comes from using CSP for thread communication a

simple test system was set up and analyzed. The test system consists of three threads; two user
threads (one client and one server) and the CSP router task (RTE). To test the CPU overhead the
client constructs and sends a packet with a payload of 100 bytes to the server. The server does
any necessary check for the integrity of the package before sending it back to the client. The
client then verifies the content of the package and records the time the transaction took. The
average execution time is obtained by calculating the average over 100 iterations. Each iteration
is measured by reading the ARM SYSTICK timer, effectively giving how many CPU cycles was
spent on the procedure.

The test setup consisted of an ARM M7 microcontroller (ATSAMV71-Xult, situated on a
SAMv71 Xplained Ultra Evaluation Kit) running the currently last official release of FreeRTOS
(version 8.2.3) with a system frequency (CPU and bus) of 75 MHZ and 1 ms RTOS ticks.The
setup was tested using preemptive scheduling, with stack overflow checking enabled. The test was
performed for various optional CSP features enabled such as the Reliable Data Protocol (RDP),
check-sums (CRC32), encryption (XTEA) and authentication (HMAC-SHA1).

5 Results
First a small application using only FreeRTOS queues to communicate directly from the client

task to the server and back was tested. The application was compiled with GCC and uploaded
to the microcontroller using an Atmel-Ice debugger. The memory usage reported from the build
process can be seen in table 1. The application ran for 100 iteration and the average execution
time was calculated from these 100 samples. The result can be seen in table 2.

Communication form Program Memory Usage Data Memory Usage
FreeRTOS queues 37572 bytes (1.8%) 60304 bytes (15.8%)

Table 1: Memory usage for native FreeRTOS queue test application

Enabled Features Duration
[ticks]

Duration at 75 MHz
[ms]

No features 30 231 0.403

Table 2: Latency for for native FreeRTOS queue test application

After testing the regular FreeRTOS queues, a small application running CSP was tested with
various features enabled. The memory usage can be seen in table 3, while the duration for the
setup and communication of each iteration can be seen in table 4.

Communication form Program Memory Usage Data Memory Usage
CSP sockets 89440 bytes (4.3%) 62040 bytes (15.8%)

Table 3: Memory usage for CSP socket test application

The 4S Symposium 2016 - M Normann 4

Enabled Features Duration
[ticks]

Duration at 75 MHz
[ms]

No features 134 586 1.795
CRC32 149 374 1.992
RDP 297 681 3.969
HMAC-SHA1 251 271 3.350
XTEA 291 829 3.891
RDP + CRC32 316 042 4.214
ALL 785 040 10.467

Table 4: Latency for CSP test application

For connection-less communication with no CRC or encryption there is a 345.19 % workload
increase, which at 75 MHz corresponds to an additional 1.392 milliseconds of execution time. If
connection oriented communication with resending of lost packages is being used, the overhead
is an additional 163095 cycles compared to the connection-less option. This corresponds to about
2.174 ms extra computation time for the round-trip when running at 75 MHz.

6 Discussion
From the results one can see that when comparing using CSP with no features enabled, it uses

more than 1000 execution cycles more than the native FreeRTOS queue setup. For a microcon-
troller running at 75 MHz this means an additional 1.4 millisecond of execution time. For many
application this may be affordable, but for others it may prove CSP unsuitable. CSP packets can be
prioritized and thus important packages will be prioritized in front of lower priority ones, however
on a system wide level they will still only be handled when the router task is allowed to run. If any
higher prioritized thread is running, additional delay for the package handling must be expected.
For native FreeRTOS queues, package prioritization is not supported, but it is rather the priority
of the receiver task that dictates whether or not the package handling gets precedence. Neither
one of these methods are ideal for urgent synchronization, and may suffer from extra delays if
the system is not constructed properly. However as CSP communicates though FreeRTOS queues
(when running on FreeRTOS), the added delay can be considered as a trade-off for the prioritized
handling, and may in some cases lead to faster execution with CSP if the workload is large.

With additional features enabled, the CPU load increases. CSP does support any combination
of the features mentioned above for each socket separately. The handling of resending of missed
packets proved functional, though time characterization for this was not attempted as both timeout
and number of resending is user configurable. The different CSP calls for ping, thread listing
(ps) requesting of up-time and memory statuses were verified functional as well, and can ease
monitoring and error handling in the communication system.

The memory usage of a CSP application is highly configurable through enabling and disabling
features as well as customizing the amount of memory allocated for both tasks and queues. The
memory usage of the system using CSP sockets and the system using native FreeRTOS queues
directly can be seen in table 1 and 3. These memory consumptions are only meant to be indicative
as neither one is optimized for size as this is a question of maximum capacity and load handling.

CSP uses a zero-copy buffer and queue system, meaning that data isn’t actually copied and
moved around, but rather only the address reference is handed from one handler to another. This

The 4S Symposium 2016 - M Normann 5

results in efficient use of memory, but as with most message passing systems, deciding the buffer
size of each queue does pose a challenge. All buffer sizes must be declared to their maximum
capacity. As the maximum capacity is much larger than what is normally needed, a large portion
of the memory will be occupied but very seldom used. If CSP weren’t used, but instead native
FreeRTOS queues directly, each queue would have to be declared to its maximum capacity. Sub-
stituting this with one router task that handles all communication may then be advantageous as it
is unlikely that maximum capacity is needed for all communication interfaces at the same time,
thus a smaller memory buffer may be allocated for the router task than if multiple buffers were
created separately.

7 Conclusion
In this report CSP has been evaluated for inter-thread communication. A test application was

developed to test the computational overhead that comes from using CSP. The results were then
discussed and when applicable compared to that of using FreeRTOS queues directly. It was con-
cluded that CSP can be advantageous, but only if speed is not of critical importance. The latency
of CSP calls may be non-deterministic and thus unsuited for hard real-time application such as
time sensitive calculations.

CSP does however enable a seamless distributed system architecture, though the use of sockets,
where submodules can communicate with other submodules in a unified manner, no matter if the
other submodules are implemented inside the same microcontroller or at the ground station. CSP
also includes tools for congestion control and common network requests such as ping, buffer
status, getting and setting of time as well as listing of running tasks and their statuses. This makes
CSP an attractive alternative for both internal and external module communication as it greatly
eases the monitoring and management of the entire satellite communication.

References
[1] M. Swartwout. Cubesat database. https://sites.google.com/a/slu.edu/swartwout/home/

cubesat-database#plots, 2016.

[2] Wellings Andy Burns, Alan. Real-Time Systems and Programming Languages. Pearson Education
Limited, 2009, 4. edition, 2009.

[3] Peter Marwedel. Embedded system design: Embedded systems foundations of cyber-physical systems.
Springer Science & Business Media, 2010.

[4] GomSpace libcsp github. https://github.com/GomSpace/libcsp. Accessed: 2015-22-11.

The 4S Symposium 2016 - M Normann 6

	Executive Summery
	Sammendrag
	Acknowledgements
	Problem
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Project Background and Motivation
	The NTNU Test Satellite (NUTS)
	The Purpose of the Onboard Computer (OBC)
	The NUTS OBC Hardware
	The Approach Taken in this Thesis

	Background
	Reliability Theory
	Reliability, Failures and Errors

	Space Environment
	Space Radiation
	Total Ionizing Dose
	Single Event Effects

	Earlier Work

	Software Requirements
	Requirement Specifications and Documentation
	Detailing the OBC Requirements
	Detailing the Functional Requirements
	Detailing the Non-Functional Requirements

	Defining Operational Modes
	Summary

	Software Architecture
	Attributes of Good Software
	Platform Selection
	Architecture Selection

	Decomposing the System into Modules
	Methods for Maintainability
	Methods for Reliability
	Methods for Power Optimization
	Summary

	Detailed Design
	Housekeeper
	Error Recovery
	Managing the Satellite State
	Acquiring the Satellite State
	Internal Integrity Check
	Satellite Network Check
	Module Check
	The Error Handler
	Interface for the Housekeeper

	Timekeeper
	Absolute Time vs Relative Time
	External or Internal timer
	Design of the Timekeeper
	Interface of the Timekeeper

	Memory Manager
	Timestamp Supplier
	File System
	In-Orbit Programming
	Interface for the Memory Manager

	Event Manager
	Summary

	Implementation
	Setting up FreeRTOS for SAM V71
	Choosing FreeRTOS version
	Choosing Memory Scheme
	Configuring FreeRTOS

	Installing FreeRTOS Trace Tool
	Porting CSP for SAMV71 and UC3C
	Implementing Sleep Modes and Tickless Idle
	Implementing Skeleton Code and Tests
	Refactoring

	Testing and Verification
	What is Testing All About?
	Verifying FreeRTOS and Tracelizer
	Method
	Result

	Memory Footprint
	Method
	Results

	Investigating CSP Functionality
	Request Process List Test
	Request Amount of Free Memory Test
	Request Number of Free Buffer Elements

	Analysing CSP Timing
	Method
	Results and Discussion

	Analysing Power Consumption
	Method
	Results and Discussion
	Power Consumption Summary

	Summary and Discussion

	Reflections
	Discussion
	Review of the initial Problem and the Contributions Made
	Further Work for the OBC Software

	Conclusion

	Bibliography
	Appendices
	OBC Requirement Specification
	OBC Functional Requirements
	Satellite Initialization
	Satellite Housekeeping
	OBC Executables
	Satellite Executables

	OBC Non-Functional Requirements
	Document Version History

	OBC Service Contracts
	OBC Software Requirements Specification
	Introduction
	Purpose
	Scope
	Definitions, acronyms, and abbreviations
	References
	Overview

	Overall description
	Product perspective
	Product function
	User characteristics
	Constraints
	Assumptions and dependencies
	Apportioning of requirements
	External interface requirements
	Classes/Objects
	Performance requirements
	Design constraints
	Software system attributes

	Supporting information
	Document Version History

	OBC Software Design Document
	Introduction
	Purpose
	Scope
	Definitions, acronyms, and abbreviations

	References
	Decomposition description
	Module decomposition

	Dependency description
	Concurrent process

	Interface description
	Interface for the Timekeeper
	Interface for the Housekeeper
	Interface for the Memory Manager
	Interface for the Event Manager
	Data decomposition

	Detailed design
	Timekeeper
	Housekeeper
	Memory Manager

	Document Version History

	Cubesat Space Protocol for intra-Module Communication

