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Abstract

Sea ranching of lobster is a sustainable alternative to mere fishing. The method
involves releasing hatchery-reared juveniles into their natural environment, usually
at a geographically delimited area. With this addition to the native populations
one hopes to raise the overall numbers of specimens and increase the catching rates
and financial gain.

Being small the juvenile lobsters are amongst the lower levels of the food chain.
Predators are abundant all year round making the release process a dangerous
affair. But the young lobsters size is not only a disadvantage when it comes to
the food chain hierarchy; ocean dynamics such as currents may largely contribute
to the dispersal, transporting the lobster miles away from the sea ranching site.
These are amongst some challenges that if solved will increase the benefits of sea
ranching. This thesis had the aim of addressing these problems and try to enhance
the process focusing on release strategies.

A literature survey was conducted to gain knowledge on ecology and behaviour
of the European lobster Homarus gammarus and to get familiar with the practise
of sea ranching by reviewing previous experiences and improvement suggestions.
Based on previous research several biological models of juvenile lobster behaviour
were made. These were incorporated with the fine-scale hydrodynamic model SIN-
MOD to look at spatio-temporal spreading patterns. The simulated releases were
conducted at a specific site with environmental data from the period of May 1.-
May 14. 2012. Simulation data were analyzed in terms of biological model used,
time of day and flow fields. Results reveled that the lobsters vertical placement
in the water column (depth) is most influential in terms of the amount of cur-
rent induced transport. Because of the scarce amount of conclusive information
on lobster behaviour, no immediate conclusion could be drawn. Some suggestions
however were made based on the knowledge gathered. Releasing of older stage IV
juveniles, or stage V juveniles is encouraged as more lobsters will settle at the sea
ranching site. Releases should be conducted at night due to predators impaired
vision in darkness.
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Sammendrag

Bruk av hummer i havbeite er et bærekraftig alternativ til fangst alene. Havbeite
går ut på å sette ut oppdrettsyngel i sitt naturlige miljø, sjøen, vanligvis i et
geografisk avgrenset område hvor den ansvarlige har tillatelse og enerett på gjen-
fangst. Håpet med utsettingen er at den skal øke bestanden og dermed gi økonomisk
gevinst i form av økt fangst.

Den utsatte hummeryngelen er liten og hører til blant de lavere nivåene av næringskje-
den. Da rovfisk og skalldyr er å finne året rundt gjør disse utsettelseprosessen ut-
fordrende. Men det er ikke bare risikoen av å bli noen sin middag som påvirkes av
hummerens størrelse. Strømmen i havet er sterk for et dyr på noen titalls milimeter
og kan i værste fall føre til at hummeren blir transportert ut av havbeiteområdet.
Både tap av yngel til rovfisk og transport ut av området er uønsket av økonomiske
årsaker. En løsning på disse utfordringene vil kunne øke fordelene ved havbeite.
Denne oppgavens mål er å prøve å ta tak i noen av disse utfordrigene.

En litteraturstudie ble utført for innhenting av informasjon og hummerens biologi
og ekologi, samt nåverende tanker og praksiser knyttet til havbeite. Observasjoner
fra tidligere forskning ble brukt til å modellere flere mulige oppførselprofiler av
hummer. Disse ble kombinert med den hydrodynamiske modellen SINMOD for å
simulere spredning. Dataene fra simuleringen ble analysert for å se på forskjell i
spredning og bunnslåing av hummeren, og for å se hvilke miljøfaktorer (tid, strøm-
retning og fart) som påvirket resultatene. Et spesifikt område ble brukt i simulerin-
gen, med data fra 1-14 mai 2012. Resultatene av analysen viste at den vertikale
posisjonen, altså dybden, hadde mest å si på hvor stor transporten ut av området
ville være. På grunn av få konkluderende studier å basere den biologiske model-
leringen på var det ikke mulig å konkludere med noe håndfast utifra resultatene.
Noen forbedringer ble foreslått basert på det som ble funnet. Disse går på å slippe
ut hummer i stadium IV som er minst et par dager gamle, da disse naturlig er
å finne nærmere bunnen. Gjerne burde stadium V hummer brukes. Utslipp bør
foregå på bunnen og gjøres på natten for å minske risikoen for rovdyr.
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Preface

Humans often find it necessary to meddle with the ecosystem to straighten the
mistakes of past generations. Technological leaps, growing human populations,
pollution and unsustainable catching rates have led to large changes in the num-
bers of several species. Many marine creatures too, are in deep water, having
suffered from severe population disintegration. The lobster is one of the sea ani-
mals that has been forced upon this uncertain fate as many of the stocks can be
described as collapsed. However a global trend has for a while been turning the
spotlight over to sustainability, enhancement and environment. In another depart-
ment, computing power in combination with mathematical modelling is reaching
areas never considered or possible before. Using technologies that go beyond bi-
ology and classical field work, the world of aquaculture has found an ally in the
control freak driven science of cybernetics.

Working with alcohol and EEG signals on my project thesis last semester, I shrim-
ply could not go with the stream and choose something ordinary and expected this
time either. Looking through the different theme suggestions, amongst the sea of
common cybernetics terms like UAV, robot and drone, one immediately stood out:
“juvenile lobster”. Diving into this project with curiosity I was shore that the work
would be interesting and rewarding. But to be honest, sometimes I felt like a fish
out of water, not being certain if I was to be finished in tide. Regardless working
this semester has been a learning experience, and quite amusing at times, and I
hope that what i have done is somewhat useful, and not just another drop in the
ocean. What I have learned is that the science of cybernetics is like a potato, it
goes with everything, even lobster.

This report presents the work done on the master thesis carried out spring 2016.
Just like the author of this report it is assumed that reader has a technical back-
ground and is lacking a deeper understanding of the biology and ecology of the
lobster, stock enhancement and the more specific details of the ocean’s dynamics.

Trondheim, 2016-06-06

Adelaide Marie Mellem



vi



vii

Acknowledgment

I would like to thank my supervisor Jo Arve Alfredsen for giving me the opportunity
to work with this different yet interesting topic, and for always being helpful and
contributing with good answers and help during my work.

My second supervisor Morten Alver deserves huge thanks for making the model
available for me to use and for providing great help and carrying out the simula-
tions.

I really appreciate the information and input received from Norsk Hummer, and
for the numerous biologists I have bothered over email: thanks for being so helpful
and eager to contribute!

Lastly a little thanks to the great composers Chopin and Yiruma for their calming
music that has kept my concentration at decent levels, protecting me from the
cacophony of the surrounding zoo-like environment that was my office.

A.M.M



viii



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Sammendrag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 Introduction 3
1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Structure of the report . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 A Dive into the World of the Lobster 9
2.1 Lobster life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Sea ranching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Model Description 17
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 SINMOD description . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Modelling Lobster Behaviour 21
4.1 Initial thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Litterature research . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Simulation Details 27
5.1 Biological model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Simulation Analysis 33

ix



CONTENTS 1

6.1 Practicalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.2 How results are presented . . . . . . . . . . . . . . . . . . . . . . . . 34
6.3 Initial trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.3.1 Settlement overview . . . . . . . . . . . . . . . . . . . . . . . 35
6.3.2 Settlement numbers . . . . . . . . . . . . . . . . . . . . . . . 36
6.3.3 Total time spent in sea ranching area . . . . . . . . . . . . . 36

6.4 Increasing vertical migration with different speeds . . . . . . . . . . 37
6.4.1 Settlement overview . . . . . . . . . . . . . . . . . . . . . . . 37
6.4.2 Total time spent in sea ranching area . . . . . . . . . . . . . 38

6.5 Constant behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.5.1 Settlement overview . . . . . . . . . . . . . . . . . . . . . . . 40
6.5.2 Total time spend in sea ranching area . . . . . . . . . . . . . 40

6.6 Passive particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.7 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.7.1 Surface releases vs Bottom releases . . . . . . . . . . . . . . . 43
6.7.2 Early settling and no early settling . . . . . . . . . . . . . . . 44
6.7.3 Increasing vertical vs constant vertical . . . . . . . . . . . . . 46

6.8 Dispersal beyond model grid . . . . . . . . . . . . . . . . . . . . . . . 46
6.9 Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.10 Site and release time differences . . . . . . . . . . . . . . . . . . . . . 49

7 Discussion 53
7.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.1.1 Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.1.2 Settlement and time spent in ranching site . . . . . . . . . . 54
7.1.3 Distribution patterns . . . . . . . . . . . . . . . . . . . . . . . 55
7.1.4 Ocean Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.1.5 Sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.1.6 Improvements and further work . . . . . . . . . . . . . . . . . 56

7.2 Strategy improvement . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.2.1 Predation avoidance . . . . . . . . . . . . . . . . . . . . . . . 57
7.2.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . 58

8 Conclusion 59
8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A Acronyms an Glossary 61

Bibliography 62



2 CONTENTS



Chapter 1

Introduction

At a first glance Lobster technology seems like having very little in common with the
science of cybernetics, robotics and control. Today most associations to lobster fishing are
still of old, tired fishermen, taking their boats out at dusk to gather whatever has gone
into their traps during the night. This image however, is not that far from the truth
as 200 years after its invention, the lobster trap is almost exclusively the only method
used to catch lobsters today [1]. The lobster catching process has actually proven to be
almost too effective, as many stocks now are considered to be at critically low levels. But
there are other aspects of lobster fishing worth looking into with both financial growth and
sustainability in mind, and that might be open for improvement and assistance from the
world of cybernetics. This thesis aims to show just how.

1.1 Background and motivation

Accompanied by caviar, foie gras and oysters the lobsters has rested for decades on
the top levels of the culinary world as an emblem of luxury, immortalized in the
pop culture as a red symbol of wealth and fine dining. However being appealing
to humans has historically not been a good trait for a species to possess and has
caused more than one population to suffer towards extinction. The lobster is no
exception; starting out as bountiful, overfishing led to high a demand and growing
prices, further motivating an increase in fishing rates. Now many stocks, including
the Scandinavian, are described as collapsed [2].

3
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Over the years fishing regulations governed by law were introduced to help pro-
tect the stocks of (amongst other marine creatures) the lobster. The first lobster
protective measures were taken in the early 1800 (in the USA), mainly focusing
on prohibiting fishing for foreigners without permission. Subsequently more spe-
cific rules followed, such as introducing a minimum catching size or banning any
catching of egg bearing females [1]. With varying degree the stocks started to re-
populate. Today populations are still far from close to their initial levels, and many
biologists agree that stronger measures need to be taken. Since prohibiting fishing
in total, which seems to be the most effective strategy, is undesirable considering
business, employment and the need to satisfy the market, an idea formed during
the late 1800 involving the release of land-hatched lobsters into the wild.

The Norwegian cybernetics pioneer Jens G. Balchen was an eager contributor to the
combination of cybernetics with the world of aquaculture and fisheries. Amongst
various ideas and work with robotics and modelling in rearing and fishing facilities,
he also speculated in lobster technology combined with automation, focusing on
hatcheries. Successfully hatcheries were built, one of the largest in Kyrkjesæterøra,
Norway, and during and after the midst’s of 1900 many lobsters were released i
Norway, United kingdom, Ireland and USA [1].

Although lobster hatcheries now exist, and stock enhancement by releasing juve-
niles is a common procedure, little is known about the actual impact of these efforts.
The somewhat complicated biology and unknown behavior patterns of young lob-
sters contribute to the uncertainty. The lobsters also grow slowly, making the
process of drawing conclusion from any actions performed taking time accordingly.
Over a growing period of roughly 5-8 years, environmental factors, such as preda-
tors, temperature, currents and fishing affect the distribution and survival rate of
the released lobsters. Therefore most of the research is unable to conclude if the
procedure is to be labeled successful.

But the motivation to develop methods for successful release of lobster juveniles
goes beyond stock enhancement. In 2001 the Act on Sea Ranching [3] was ap-
proved in Norway, giving monopoly to catch a type of specimen in an area given
that stock enhancement is practised. As of today Norsk Hummer is one company
that practises sea ranching of lobsters in Norway, releasing juvenile lobsters during
spring in a ranching site near the mid-west coast of Norway.

The method of sea ranching also suffers from the today unknown fate of the released
juveniles. Apart from predators, Ocean currents could be the most crucial factor
contributing to death and lobsters permanently leaving the sea ranching area. For
population enhancement leaving the area and getting spread out in the ocean is
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perhaps not a disadvantage, but for the financial gain (that comes from re-catching
and is necessary to further invest in the process of stock enhancement) staying in
the area is crucial.

Small adjustments to the releasing strategy, such as choosing the best time of day
related to current and weather induced transport, as well as trying to minimize the
presence of predators, might greatly reduce the number of lobster ending up as fish
food or that are being carried away.

Biological field studies involving tags and re-catching are expensive and time con-
suming to do in large scales. As the computing power and knowledge of the dynam-
ics of the ocean has increased, this has expanded the use of mathematical models.
Ocean models are now used for several purposes, many for studying population dy-
namics, connectivity and dispersal of smaller marine animals. If these techniques
can be applied with lobsters, and give useful answers, the future of lobsters and
sea ranching might be brighter and more certain.

1.2 Objective

This thesis aims to see if one can combine mathematical models of the ocean with
biological and ecological knowledge to gain information and hopefully improve the
current strategies of stock enhancement and sea ranching processes.

The study will look at the time after lobsters have been hatched and are ready to
start a new life at the bottom of the sea. Both the releasing process, including the
stocking device, as well as the time after release will be analyzed.

Firstly the aim is to gain knowledge on the specimens of Homarus gammarus
(European clawed lobster) focusing on behavioural traits. The information is later
to be analyzed and combined to model a behaviour profile intended to be used
in simulations. To inspect possible hydrodynamic transport and estimate ending
locations for settlement, simulations using ocean models will be conducted. The
aim is to look at dispersal not only due to sea dynamics but also the time of day
and location. The information from the simulations will then be analyzed and
discussed, and a release strategy proposed.

The geographical area of study will be connected to the Norwegian company Norsk
Hummer that is currently applying stock enhancement at a sea ranching site in
the mid-west coast of Norway. The focus is therefore mainly to further increase
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the survival rate of their released lobsters and to see if the measures of their stock
enhancement are to be considered beneficial. However the work will also partly
aim towards more generally-applicable result.

1.3 Limitations

As far as the literature search has gone, there have not been many studies resem-
bling the one presented here. Nor has there been a satisfying amount of conclusive
studies about lobster behaviour in the post-larval and EBP stages. Thus the work
will be based on qualifies guessing where no other option is available. The results
should be applied with care accordingly, and perhaps be looked upon more as guid-
ance and inspiration for further work rather than an actual conclusions ready to
be put into practice.

Furthermore this research focuses on biological techniques that very much intend
to (positively) meddle with the ecosystem and environment. Some ethical aspects
arise and will be discussed, however briefly as the aim of this work is of technical
improvement and practical analysis.

The work has been performed over a single semester, and proving to be time con-
suming, the focus shifted to simulation analysis and tuning of behaviours and
parameters, leaving little time to concentrate on stocking device improvement.

1.4 Structure of the report

The rest of the report is structured as follows: Chapter 2 gives a theoretical
overview of the necessities of knowledge on lobsters and stock enhancement. The
model used in the simulations is described in chapter 3. Further chapter 4 takes a
deeper look into the literature about lobster behaviour and includes a description
of the process of defining the biological model. Chapter 5 presents all details of
the simulations as well as explanations for the choices. In chapter 6 the results
of the simulations are presented. Some approach to how they were obtained and
comments are also included for increased readability. The final discussion is saved
for chapter 7 where further improvements also are suggested. Chapter 8 sums up
and concludes the work.
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1.5 Notes

The lobster biologically covers numerous species. This report will use the term
lobster meaning the clawed lobsters that is represented in two closely related species
of the Homarus family, the American Homarus americanus and the European
Homarus gammarus.

The term postlarva refers to a lobster of stage IV. The terms postlarva, stage IV
lobsters and juvenile will be used interchangeably. The stages and life cycle will be
more thoroughly explained in the next chapter.

If the reader encounters any unknown or previously unseen words or terms, please
see to appendix A on page 61, as some needed explanations and acronyms are
included there.
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Chapter 2

A Dive into the World of the
Lobster

Since this thesis mainly concerns the young lobsters, more specifically stage IV postlarvae,
this section will focus on them alike. Some information about grown or older lobsters might
be included when the author finds it necessary knowledge for the reader to be familiar with
in order to better understand some parts of the following sections and results.

2.1 Lobster life

The lobster is born hatching from one of numerous eggs released by a mother lobster
upon maturing. In the following period, the baby lobster lives as a shrimp-looking
larvae, passively floating in the water, usually in the upper levels of the water
column. Being a crustacean, which involves having an exoskeleton, the lobster
grows by molting, a process described as shredding out of its old body when the
skin becomes "too tight". In a period of 3-12 weeks, depending on temperature and
food availability, the lobster goes through three such molts, from stage I to stage
IV [4]. Upon molting into stage IV the lobster, now referred to as a postlarva,
has reached it’s final, characteristic shape, with claws pointing forward. Now it
begins its quest to find a suitable shelter, where it can grow peacefully in many
years without worrying too much about its numerous predators. It is believed that
the lobster engages in bottom-seeking behaviour, diving towards the bottom with
increasing frequency [5] [6].

9
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Upon finding a suitable habitat the lobster takes its last dive towards the bottom.
From now on it is a benthic creature that will spend most of its motion time by
crawling at the bottom or digging tunnels in the sand [7]. It will however never
lose its swimming ability, and will for all time be able to conduct fast tails flapping
movement producing a swimming patterns consisting of backwards rapid bursts. If
it survives the juvenile stages of growing, succeeding in keeping away from predators
and other larger and stronger lobsters, it will continue to grow for up to seven years
before reaching a size fit for the dinner tables.

Figure 2.1: Lobster life cycle
Source: [8].

Americanus vs Gammarus

Research conducted on the European lobster H.gammarus are often based on, or
referring to work done on the American lobster H.americanus. Geographically
isolated in nature the two species are still closely related, both sharing the same
four development stages as larvae [9]. Physiologically the European lobster tends
to be somewhat longer and more narrow than its American cousin who in turn is
heavier [10]. I is suggests that the H.gammarus might be slightly more aggressive
and prone to a higher mortality rate [9]. Other more specific behaviour differences
are probably yet to be discovered, as not everything about the lobster, especially
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concerning early life behaviour, has been fully mapped out.

Distribution and habitat

The Homarus family settlement covers large ranges of the more shallow parts of
ocean waters. The habitat of the European lobster stretches from the northern sea
of Scandinavian shores, as high up as the Lofoten isles, to the Mediterranean sea
and coast of Morocco [11].

While the American juvenile lobster is known to favour cobbled substrata and
rocks on sand [7], this information is not known about the European version. No
specimens of early benthic phase (EBP) European lobster have been found on either
sand, rock or cobble[12]. This suggest that, although similar in physiology and
growth, some differences exist between these cross-Atlantic cousins, probably as a
result of environmental factors like water temperatures and contrasts in predator
abundance.

Early life

Little is known about the early life of young lobsters in the wild. Multiple studies
have been conducted and knowledge gathered about the pelagic larval stages, but
when the lobster molts to stage IV, and starts to look for a benthic habitat, it
simply disappears from the radars of scientists for a good couple of years. Catching
a juvenile lobster in the wild has proven to be a very seldom occurrence and in
Norway no lobster of stage IV has been found in the wild by any type of studies
conducted [12] [13]. Some smaller scale studies involving postlarvae observed by
divers in the ocean short time after release, as well as laboratory studies have been
performed. These will be discussed in the next chapter.

Lobsters are known to show dimorphism between claws. Being born with symmet-
rical claws (cutter), the transformation of one cutter-claw into a crusher claw occurs
some time after moulting into the fourth or fifth stage [14]. Some hatchery reared
specimens have shown a lack of development of the distinct crusher claw, proving
that environment, and interaction with it, is important for the right growth.
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Figure 2.2: H.gammarus, note the anatomical difference between left and right
claw

Source: [15].

Predators

Larger fish such as cod, wrasses and sculpins, as well as other crustaceans like crab,
are among the juvenile lobsters most common predators [16]. However, the lobster
number one enemy, that it will never escape the claws and be fear-free of, no matter
its size, is another lobster. Their highly cannibalistic nature makes them mortal
enemies of each other as the best food a lobster knows is another lobster.

The life and abundance of certain species in the ocean changes with season. Com-
mon predators during the winter are never as abundant as predators during the
summer [16]. These winter predators also usually prefer sandy substrates. A study
done by the Institute of Marine research on predation after release, van der Meeren
[16], suggest that best results occur if the juveniles are released on rocky substrate
during winter. This study also emphasize the need to acclimatize the lobsters to
the new environment and temperature to avoid panic like behaviour and confusion
caused paralysis, which only benefits the predator.

When spring dawns upon the marine environment, in Norway being around March
to April, many larger fish are busy mating and spawning, reducing their behaviour
towards acquiring food. This season therefore makes for a good period for lobster
survival and thus is the recommended time for releasing hatchery reared specimens.
However, as it is still winter on land, with weather at sea tending to be inconvenient,
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the releasing process is usually postponed to May.

2.2 Sea ranching

Sea ranching is a culture method involving the release of (usually) hatchery reared
juveniles into a natural environment. The environment provides everything the
animals need to grow, and has no need for any structure for regulation or contain-
ment [17]. The ones responsible for rearing and releasing the juveniles have the
right to harvest the adult specimens exclusively. At least the latter is the practise
in Norway after the Sea ranching act of 2001 [3].

Practise

Upon reaching stage IV, the lobsters are placed in some transportation devise and
moved to the release site. Norsk Hummer uses cubical containers where the walls
are three dimensional hexagonal cells that make small shelters with just enough
room for one postlarva. The juveniles hiding behaviour makes them seek to hide in
the tiny spaces, thus they are kept separated and aggression and fighting between
specimens is minimized. The cases are lowered into the water and opened at the
bottom, allowing the lobster postlarvae to swim out.

The transportation process has proven to influence the behaviour of the juveniles
[18]. Previous strategies have included transportation in wet newspapers and re-
leasing at the top of the ocean. However the dive towards the bottom is long,
and exposed to predators, thus today’s common practise is to release at bottom.
In hatcheries, the larvae are exposed to high temperatures to boost development.
If released into the ocean without acclimatisation to the low temperature, lobster
have shown panic-like behaviour including immobility and rapid swimming up-
wards (pelagic rush). This can be an reaction to both temperature and pressure as
argued by van der Meeren [18]. Clearly this sort of behaviour increases the lobsters
mortality rate, as motion attracts predator and immobility makes the specimens
easy targets.
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Ethical concerns

Initially looking like a good idea, incorporating sustainability and enhancement,
sea ranching might have some limitations and drawbacks:

Firstly, as mentioned in the beginning of this thesis, not all consequences of re-
leasing juveniles into the wild are fully outlined. Although some studies has found
tagged specimens years after release, no reliable survival rates are available. Thus
the process might as well be a waste of time and money, as it is currently being
practised.

In addition laboratory-reared lobsters have in the past had reported deficiencies,
such as not developing crusher claws, Govind and Pearce [14] and Agnalt et al. [19].
This suggests that the hatchery environment lacks something crucial for the right
development. One might hypothesize that the aggressive nature in combination
with environmental factors that allow letting out on the aggression are strongly
required for proper claw development. Studies such as Rooney and Cobb [20] found
laboratory reared postlarvae to swim significantly slower than the ones captured
in the wild. The lack of predators in their growing surrounding might cause the
juveniles not to learn about danger and danger avoidance. Some differences in
wild and reared specimens might not even be visible and yet to be discovered,
as they might only emerge when the wild environment is encountered. A study
focusing on naive lobster interaction and behaviour to environmental factors such
as predators concluded that reared lobster have some sort of inherited response, but
that both social experience and inherited responses are crucial to make a lobster
well adaptable [21].

Further possible changes in the artificially reared, and later released, lobsters might
lead to certain negative scenarios1:

• The reared postlarvae might simply not be sufficiently adapted to ocean life
and therefore be prone to higher mortality rates.

• Postlarvae that normally would not survive the development of the first stages
in the wild environment, do so because of the highly suitable conditions, and
by that bring worse genes into the gene pool when released, overall weakening
the population.

Being researched to some degree, scientist for now agree that hatchery reared lob-
1Other scenarios might also exist. These are the ones considered most important by the author.
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sters are fit for the ocean. [21] and [22]
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Chapter 3

Model Description

Influenced by weather and winds, tides, currents, the in and out flow of fresh water,
salinity, pressure and mineral contents, modelling the ocean dynamics makes for quite a
staggering task. Fortunately the large usefulness of these tools has driven the development
to a point where several high resolution models exist. This section will present the model
later to be used for the simulations.

3.1 Motivation

When concerning biology and population mechanics, ocean models can answer
questions and reinforce hypotheses of genetic distribution due to current trans-
portation or predict the spreading of diseases. In the ocean, most species live their
early life as small pelagic creatures, many helpless against the force of currents,
tides and winds. Thus, these small particles that are larvae, eggs or even smaller
planktonic creatures can be transported over large distances, eventually populating
areas miles from where they originated. For example, the salmon lice, now being
a large problem for the salmon industry, might be released into the sea from any
rearing facility and cause troubles to salmons large distances away. It is interesting
and informative (and might even be preventive) to see where the current might
carry them, and ocean models are perfect for this purpose.

Similarly for this thesis, we want to know if the released small postlarva lobster
stay at the sea ranching site, or if they get spread out on to the open seas. The
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latter case would not giving the desired growth in population for the sea ranching
owners and their investors. Using a model like this might also answer questions
concerning releasing strategies. For instance it might answer if the transport could
be controlled in some way, for example by releasing the lobsters at a specific time.

Particle tracking models have successfully been applied in several research studies:
Pedersen et al. [23], Pedersen et al. [24], Incze and Naimie [25]. Three components
are required for proper functioning. Mainly a hydrodynamic model supplying the
flow field is needed. The second component is a biological model describing pa-
rameters such as growth and behaviour of particles. Last a advection scheme is
necessary to model the transport mechanism of the particles due to the flow fields.

3.2 SINMOD description

The numerical model used for the simulations is called SINMOD. This is a nested
3D model system coupling physical and biological processes in the ocean. The term
nested means that larger scale models create boundary conditions that are used
in smaller domain models with higher resolution. These again create boundary
conditions for even smaller, higher resolution models. Along the coast of Norway
160 m resolution models now exist. [26]

SINMOD is leveled, which means it consist of fixed but permeable layers i the z
(depth) direction. Each layer except the upper (at the surface) and the lowest (at
the bottom) are of fixed size (because of level variations due to tidal activity, and
bottom topography.

The details of the model setup can be found in table 3.1.

Horizontal resolution 160m

Vertical resolution
(surface to bottom)

3m, 7×1m, 2m,
3m, 5 × 5m, 10m,
11× 25m, 11× 50m

Number of grid points (xy) 325 × 405
Time step 10 seconds
Samples stored every 30 minutes

Table 3.1: SINMOD setup parameters

The model is defined by the equations 3.1-3.4 (from Pedersen et al. [23]):
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Momentum equation:
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Continuity equation:
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Hydrostatic equation:
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Salinity and temperature equation:
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Particle Tracking model (Pedersen et al. [24]):

H(R,v;p)
v1/Rp

1 v2/Rp
2 v3/Rp

3 v4/Rp
4

1/Rp
1 1/Rp

2 1/Rp
3 1/Rp

4
(3.5)

The flow field is interpolated separately in the horizontal and vertical dimensions.

The state variables and parameters are as follows(Pedersen et al. [24]:

• −→u - horizontal velocity vector

• w - vertical velocity

• Ah - horizontal eddy diffusion

• Kh - horizontal eddy diffusivity

• ϕ - state variable (temperature or salinity)

• f - coriolis parameter

• p - pressure

• ρ - density

• v - vertical eddy viscosity and diffusivity
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• δϕ - heat exchange between sea surface and the atmosphere



Chapter 4

Modelling Lobster Behaviour

Not long after starting the search for information on lobster behaviour it was clear that
this would be a difficult task. Few conclusive studies had been conducted and those who did
have some results to present were usually restricted to laboratory and tank environments,
which are hard to compare with the ocean. Many theories on lobster behaviour turned
out to be from diver observations and anecdotes. For this reason this work ended up
being much of tuning and trying different things to find out what matters and what does
not. The aim primary to find a realistic model, but also to look at worst case scenarios.
Thoughts and ideas emerged all through the working period. For example, as pointed out
by Norsk hummer towards the end, older lobsters tend to stay more at the bottom after
release, could it be profitable to release older stage IV lobster when considering transport
out of area? What would be the difference of a young postlarva and an old, and how could
this be represented in the model?

4.1 Initial thoughts

Before starting simulations, various aspects and details had to be determined. In
order to establish the biological facts, such as behaviour, growth period and pre-
dation numerous sources had to be researched and evaluated. This section will
present, explain and discuss these specifications.

Prior knowledge, intuition and information gathered along the way, as well as some
trial and error has strongly guided the choices of parameters for simulation and
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analysis of this work. For this reason a short discussion is presented in the following
paragraphs to line out the thinking process and perhaps clarify some of the choices
that were made and that are described later in this chapter:

Firstly lobster larvae are small, but not that small. Hence initial assumptions were
that the ocean mechanics would significantly influence the transport, however not
exclusively, as the lobster are able to swim against some currents. Furthermore,
tidal activity was suspected of being the most influenceable variable. Mainly be-
cause appearing twice a day, it is the most permanent yet changing environmental
factor.

Since little information was available, and not conclusive enough to be directly
applied without care, the work turned towards trying different variables in the
behaviour domain. It was looked upon as an interesting result to see if it would
matter if the lobster swam or were passive. Similarly information about how dif-
ferent speeds contribute to the end result and how locations and/or depth affects
the spreading of lobsters were all considered useful knowledge to obtain, mostly to
gain more insight to the credibility of the work presented here.

4.2 Litterature research

What is known and tediously documented about the lobsters nature is that they
change their habitat from pelagic to benthic sometime after molting to the fourth
stage. The exact details of how this happens are however not known. Research has
been conducted to reveal swimming action and stage IV lobsters reaction to dif-
ferent substrates, temperatures and other environmental conditions, such as light.
The aim of this review is to find material worth using as a base for simulation
specifications and strategy enhancement.

Mobility

Stage IV postlarvae are quite functional swimmers, capable of rapid, directional
swimming [20]. One study found that wild H. americanus postlarvae can accommo-
date swimming speeds of about 13 cm/s, Rooney and Cobb [20]. Further, the same
study suggest that higher temperatures lead to increased swimming behaviour but
found no evidence for difference in total time spent swimming during day or night
in lower temperatures. The observations were done in a tank and with relatively
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high temperatures (15-21 degrees Celsius). European waters tend to be colder and
it is possible that the swimming speeds and time spent swimming are consequently
lower. Activity of larvae also decreased with water velocity. Another study found
that average swimming speeds (of H. americanus) were 18 cm/s observed in the
wild, 13 cm/s for wild juveniles in the laboratory and 10 cm/s for reared juveniles
[27].

Bottom seeking and settling

The bottom seeking behaviour involving short dives towards the bottom is described
and observed in amongst other, Annis [5] and Lillis and Snelgrove [6]. It is pos-
tulated to be transition phase behaviour, from swimming to bottom dwelling, the
hypothesis being that the lobster is "testing" the bottom to find suitable habitat.
Annis [5] describes a sounding behaviour observed by divers releasing postlarvae
in ocean waters. Postlarvae released near bottom, as well as older postlarvae re-
mained near bottom when released there, while young and those released at top
preferred the upper levels of the water column. This study does not suffer from the
artificial conditions that arise in a lab, but the presence of divers might influence
the behaviour of the postlarvae. Although the study argues that escape behaviour
was rarely exhibited, the divers influence cannot be entirely ruled out. The study
further proposes that larvae avoid the lowest temperatures, rarely descending into
waters below 12 degrees.

It is not known when during the stage the postlarva settles. Some might settle early
on, others at the end of stage four, with a smaller part even postponing settlement
after molting to stage V [7].

Phototaxis

It is known that grown lobsters are influenced by light. Being nocturnal animals,
their activity levels are highest after dusk [4]. The activity levels at night increase
with the age of the lobster, starting in the later juvenile stages [28]. It is suggested
that the behavioural patterns of larvae also are affected by light, however in the
opposite way. Larvae during the first three stages are, as mentioned earlier, pelagic,
and thought to have a positively phototactic response (attraction towards light).
When and how the change from positive to negative phototaxis happens during the
fourth stage is not fully understood. It was hypothesized that lobster postlarvea
might be more active during the night, or merge lower into the water column at day.
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However several studies conducted in laboratorial environments found incremental
or no changes in behaviour due to different light conditions [29] [30]. der Meeren
[21] found no significant difference in reaction to predators or fighting activity due
to light intensity.

Habitat selection

Grown lobsters are known to seek shelters during the day. These consist of natural
caves and burrows formed by rock and ocean bottom structures. The time before
this , during the early benthic phase, is somewhat of a mystery. Theories have
been presented, one of them involving the lobster engaging in burrowing behav-
ior, digging tunnels in the bottom substrate that work as shelter. [7]. There is
probably a difference between gammarus and americanus habitat preference [9] as
americanus postlarvae and older juveniles are actually found in the wild contrary
to the European version [12].

However, since a lot research remain to be done on the matter of habitat selection
and H. gammarus distribution, this has not been accounted for in the biological
models.

4.3 Approach

It was proposed from the start of the work to include a passive behaviour, i.e none
behaviour by the particles in the simulation. The reasoning behind this thought
was to gain a comparable possibly "worst case scenario", as it was hypothesized
that this would cause the most extensive transportation of lobsters.

For horizontal movement, based on the lack of of information on the matter, it was
decided to apply a behaviour with equal probability of moving in each direction
(random). Trial simulations showed that this had no overall impact, and was thus
left out of the model.

The vertical behaviour was chosen to apply downwards (towards bottom), with an
increasing length where the maximum move distance is determined by speed. The
distance increases with the age of the lobster. This was the most easy and agreeable
interpretation with reference to previously described thoughts and observations
from earlier research of stage IV lobsters searching for the bottom. It is also
agreeable with the earlier mentioned thoughts and observations of older stage IV
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lobsters keeping more to the bottom layers.

Initially four variations of behaviour were simulated. The first was the worst case
passive particle profile. The next three would have the described vertical bias down-
wards with different speeds, and the last profile would also include the possibility
of early settling.

Looking through the results of this analysis drove the work further to try the last
of the described behaviours with different speeds, and to include two more settling
locations. This last behaviour seemed like the most realistic one, but with too large
speed. Further early settling was removed from the behaviour specification, as one
wanted to look at total time spent in the sea ranching area.

Later constant vertical behaviour was chosen, as well as a profile where the lobster
would have a constant position near the bottom to representing a older stage IV
lobster. The reason behind this was to investigate the speculation that older lobster
tend to stay closer to the bottom.
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Chapter 5

Simulation Details

Practical elements such as time of year, location within sea ranching area and release
numbers had to be decided with practicality and credibility in mind. This chapter presents
all details and aspects of the simulations, both of the biological models and practical details.
Reasons for choices are also included.

5.1 Biological model

The work from 4 is further described and specified here. Other biological details
used in the simulations will also be specified.

The different lobster behaviour profiles are as follows:

• Particle, no behaviour, all movement is due to passive drifting (PP)

• Vertical movement with increasing distance downwards (VI)

• Vertical movement with increasing distance downwards, and the possibility
of early settling (VI+ES)

• Vertical movement with constant bias downwards (VC)

• Constant distance over bottom (PC)
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Stage duration/Degree days

Growth of marine creatures is often represented in degree days. Higher tempera-
tures often result in higher enzymatic reaction rates [31], causing the development
time, especially in the larval stages, to be temperature dependent. Degree day
is a measurement of temperature-over-time requirements for growth into the new
stage. No publications of H.gammarus degree days were found, thus an estimation
was used. In rearing conditions with water temperatures of about 18-20 degrees,
stage IV to V durations are observed to be 3-5 days with food being plentiful. This
accounts for about 19 ·4 76 degree days (using the means).

Settling

The simulations include early settling as well as no settling. Lobsters in stage V
are usually bottom dwelling. Presumably, the settling occurs sometime close to the
molt, when suitable habitat has been found [7]. Since the details are not known,
simulations will assume the following:

1. When the lobster has accumulated enough degree days, it molts to stage V.
This is represented in the simulation as an instant drop to the bottom by the
lobster particle upon reaching the right amount of degree days. The lobster
then does not move into the water column, as it is assumed to be bottom
dwelling from now on.

2. In some simulations the possibility of early settlement will be used. This has a
chance of occurring when the lobster is close to the bottom. This probability
of a lobster to settle early increases with time. The maximum early settling
probability is 10% per hour.

Vertical movement

Particles represented with this behaviour have the possibility of vertical movement
with a maximum distance determined by different speeds and the time spent in
the fourth stage. The distance is either increasing based on development stage
(calculated by degree days accumulated) or constant (determined only by the speed
used).
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Speed

Because of the limitation of the speed measuring studies presented earlier in this
section, particularly concerning temperature differences between the ocean and
laboratory tanks, as well as lobster size differences, the results are only used as a
guidance. To see what impact speed has on the transportation different numbers
were chosen. All based on observations and studies mentioned in section 4.2 in
chapter 4. Speeds used in the simulations are: 0.05m

s and 0.10m
s and 0.20m

s .

5.2 Model parameters

When deciding the more practical specifications such as release locations, time and
period, several choices existed. In this section they are presented and explained.

Location

The simulated releases were conducted at the sea ranching site used by Norsk
Hummer, at three different stations, depicted in figure 5.1 and further described
in table 5.1. The sites were chosen to be a selection covering different parts of the
ranching site, all with different depths. Most simulations included particles to be
released 1m over ocean floor. Some simulations were done with surface releases for
comparison (1m below sea level).

Table 5.1: Release site depth distribution

Site Depth [m]
1 6
2 11
3 15

Time

Lobster are released over a period of 24 hours, at two hour intervals, from 1st of may
at 00:00. The simulation period stretches from 1-14 may, the weather and current
data being gathered from 1st of may to 14th of May from the year 2012. May is a
natural choice as spring is a practical period regarding weather and temperatures



30 CHAPTER 5. SIMULATION DETAILS

Figure 5.1: Sea ranching area with release sites
rendering and contouring is included to illustrate depth.

and therefore a commonly used time to release reared lobsters. Stretching the
releases over a 24 hour period ensures that possible effects due to tidal activity are
included. 14 days sufficient time for particles to molt to stage V.

Data acquisition

The model runs with a time-step of 10 seconds. Current data is recorded every 10
minutes while simulation data, such as coordinates of particles, is recorded every
30 minutes.
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Amount at release

The amount of lobster released at each time is 500. Currently the practice by
Norsk Hummer is to stock about 200 lobsters per release pod, although the pod’s
carrying capacity is roughly 2-3 thousand.

Limitations

Apart from the obvious and already mentioned fact of the "educated guessing", as
well as the inadequacy of essential knowledge on behaviour, some other points have
to be mentioned:

• Some studies suggest that lobsters are able to postpone the molting process
when no suitable habitat has been found [7]. This has not been accounted
for.

• The degree day calculations is by no means scientifically suitable. However it
is based on observations and experience, and count for a qualified guess and
the best option as no other information on this is available.

• Horizontal movement has not been incorporated as a result of initial simu-
lation trials revealing that this has no impact on the resulting transport. A
study resembling the work done in this thesis has used a horizontal movement
towards magnetic North [32]. It is however not explained why.

• Some researchers have estimated that as many as between 10 and 20 % of
released juvenile lobsters are killed during the first minutes of release [18].
Although predators are a high factor contributing to lobster death and there-
fore determining success or failure of stock enhancement, it was chosen not
to be incorporated in the simulations. A more detailed discussion on the
predation avoidance together with suggested solutions will be conducted in a
later chapter.

• Some research hypothesize that lobsters might use thermoclines to their ad-
vantage in order to avoid currents [16]. The model used in this work is not
of a high enough resolution to make this possible to be accounted for.
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Table 5.2: Simulation Overview
Site Speed

[m/s] Released Early settling Behavior Distance over bottom
[m]

1 - Top No Passive -
1 0.20 Top No Increasing Vertical -
1 0.10 Top No Increasing Vertical -
1 0.20 Top Yes IncreasingVertical -
1 - Bottom No Passive -
2 - Bottom No Passive -
3 - Bottom No Passive -
1 0.20 Bottom No IncreasingVertical -
1 0.10 Bottom No IncreasingVertical -
1 0.05 Bottom No Increasing Vertical -
2 0.10 Bottom No Increasing Vertical -
2 0.05 Bottom No Increasing Vertical -
3 0.10 Bottom No Increasing Vertical -
3 0.05 Bottom No Increasing Vertical -
1 0.20 Bottom Yes IncreasingVertical -
1 0.10 Bottom Yes IncreasingVertical -
1 0.05 Bottom Yes IncreasingVertical -
2 0.10 Bottom Yes IncreasingVertical -
2 0.05 Bottom Yes IncreasingVertical -
3 0.10 Bottom Yes IncreasingVertical -
3 0.05 Bottom Yes Increasing Vertical -
1 0.10 Bottom No Constant Vertical -
1 0.05 Bottom No Constant Vertical -
1 - Bottom No Constant Position 1.0
1 - Bottom No Constant Position 0.5
2 0.10 Bottom No Constant Vertical -
2 0.05 Bottom No Constant Vertical -
2 - Bottom No Constant Position 1.0
2 - Bottom No Constant Position 0.5
3 0.10 Bottom No Constant Vertical -
3 0.05 Bottom No Constant Vertical -
3 - Bottom No Constant Position 1.0
3 - Bottom No Constant Position 0.5

5.3 Overview

Table 5.2 shows an overview over all particle types used in the simulations.



Chapter 6

Simulation Analysis

In this section the main findings of the simulation analysis are presented and explained. In
addition the author has chosen to include some approach and comments to the results as it
is found to increase readability and comprehensibility. A more detailed overall discussion
can be found in chapter 7. Only the most informative and interesting plots are included
in this section.

Figure 6.1: Area of desired settlement with release sites marked
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6.1 Practicalities

A polygon area roughly covering the whole sea ranching site was defined to be used
in the analysis. This polygon is depicted in figure 6.1. This area will be referred
to as the polygon throughout this section.

In the simulations lobsters are represented as particles with different behaviours,
therefore when using the term particle the author is referring to one instance of
a lobster and not the passive-drifter particle behaviour profile (unless otherwise
specified).

The analysis was conducted using matlab-scripts, and built in functions and ana-
lyzing tools provided by SINMOD.

6.2 How results are presented

The first sections in this chapter present the results of simulations with different
behaviour profiles. They will include some or all of the following analyse methods:

Settlement overview

Initially simulation data was investigated by viewing plots and animations, focusing
on the end position of the particles. Every plot shows the end positions of particles
released at one release site (specified in the plot description). Lobsters are presented
as black dots and the background is colored by depth, see figure 6.2.

Figure 6.2: Color to depth. [m]

Settlement numbers

Some plots presents the results of further inspecting the amount of particles that
ended up settling in the polygon area. These show the percent of particles settled
at the sea ranching site.
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Table 6.1: Simulation 1 details
Name Behavior Max speed Site
Type1 PP - 1
Type2 VI 0.10 1
Type3 VI 0.20 1
Type4 VI + ES 0.20 1

Time spent in sea ranching area

To get more informative and reliable answers it was decided to look at the total
time spent in the polygon. Particles might move in and out of the area, but longer
time spent in the polygon increases chances of settling which makes it is a good
measure of dispersal.

To get the time estimate, the position of each particle is checked at each sample
(every 30 minutes) from the time of release. If the particle is inside the polygon
borders, the time step is added to the total time. The simulations length is 13 days
or 312 hours.

Some plots show the time spent in polygon in hours. When examining plots,
remember that the total time of simulation (when all particles are settled) is 312
hours.

6.3 Initial trials

The four behaviours used in the first simulation are described in table 6.1. It was
decided to try profiles with different vertical migration patterns to get an initial
look of how they would differ. Only site 1 was used.

6.3.1 Settlement overview

The end positions of all particles are shown in figure 6.3.

It can be seen from the plot (figure 6.3) that close to no particles of type 1 (passive)
stay in the polygon, most leaving the model grid area. The seemingly increase of
black dots in the polygon with increased speed (from type 2 to type 3) suggest that
speed and vertical behaviour has an influence on the total transport, deeper vertical
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Figure 6.3: End position, four behaviours
See table 6.1

placement resulting in less current induced transport. Type 4, which includes early
settling, clearly has the most particles staying in the desired area.

6.3.2 Settlement numbers

Figure 6.4 presents how much the different behaviour profiles influence the number
of particles that ended up settling in the polygon. Particles are colored after type
and grouped after release. The largest difference, between type 3 and type 4 is
expected, as it is natural to assume that early settling will result in more particles
in settled in area. Passive particles from all releases seem to drift out of the sea
ranching site.

6.3.3 Total time spent in sea ranching area

Simulations were analyzed with respect to total time spent in polygon. Figure 6.5
show the result given in average time spent in area for all released particles.

Again type 4 show the most promising result, having the largest part of the
simulation-time spent in the polygon. Type 1 particles, which are passive drifters,
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Figure 6.4: Percentage of settled particles
See table 6.1

spend on average 20 hours in the sea ranching site.

6.4 Increasing vertical migration with different speeds

Seeming like the most realistic behaviour. Types 3 and 4 from table 6.1 (increasing
vertical behaviour with and without early settling) were chosen for further inspec-
tion. Different (smaller) speeds were chosen as well as two additional release sites.
Simulations both with and without early settling were conducted, however this
section includes only analyse of the trials without early settling. An overview of
the types is given in table 6.2).

6.4.1 Settlement overview

Table 6.2: Simulation 2 details
Name Behavior Max speed Site
Type1 VI 0.05 1,2,3
Type2 VI 0.10 1,2,3
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Figure 6.5: Average time spent in polygon
See table 6.1

Figure 6.6 shows the end positions of the particles from table 6.2. Just from visual
inspection one can see that the speed of 0.10 m/s result in a bit more particles
settling in the desired area. Again suggesting that the deeper the lobster are, the
less the impact of ocean dynamics. If one compares the plot from section 6.3.1,
figure 6.3, it is clear that including early settling greatly increases the number of
particles settled in polygon.

6.4.2 Total time spent in sea ranching area

Figure 6.7 show the difference of time spent in ranching site by the two particle
types.

Higher speed result in a larger amount of time spent in polygon.

6.5 Constant behaviour

To get a representation on older stage IV lobsters, on the hypothesis that they
stay closer to the bottom, behaviours that would migrate to the bottom quicker
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Figure 6.6: End positions
See table 6.2

Figure 6.7: Average time spent in polygon [hours]
See table 6.2
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were introduced. These were represented in constant vertical migrating(i.e non
increasing) and with a fixed distance over the bottom. The behaviour simulation
details are described in table 6.3. The speeds are the same as in section 6.4, while
distances are chosen be 1m and 0.5m over bottom covering both the the deepest
and second deepest layer of the model. Note that these simulations were conducted
without early settling.

Table 6.3: Simulation 3 details
Name Behavior Max speed

[m/s]
Distance over

bottom [m] Site

Type1 VC 0.05 - 1,2,3
Type2 VC 0.10 - 1,2,3
Type3 PC - 1.0 1,2,3
Type4 PC - 0.5 1,2,3

6.5.1 Settlement overview

Figure 6.8 shows the end positions of particles with constant vertical movement
and figure 6.9 shows the end positions particles with constant height over ocean
floor.

Undoubtedly the vertical profile with lobsters that keep a constant distance of 0.5m
over the bottom result in the most particles settled at the sea ranching site. The
constant vertical migration seem far better in terms of settlement at ranching site
than the behaviour of increasing migration observed in figure 6.6.

6.5.2 Total time spend in sea ranching area

Total average time in polygon for the four constant particles types is shown i figure
6.10. These behaviour profiles have over 100 hours spent in polygon, more than
any of the other, earlier simulated profiles. Again higher speed results in more
hours spent in the desired area, while there is little difference between 1m or 0.5m
over ocean floor. This is better illustrated in figures 6.11 and 6.12

Average times in polygon are shown in figure 6.11 for constant migration and 6.12
for constant position. The bars in the plot are grouped by releases and colored
after speed/distance.
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Figure 6.8: End position, constant vertical migration
See table 6.3

Figure 6.9: End position, constant position
See table 6.3
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Figure 6.10: Average time in polygon, sorted by type
See table 6.3

Figure 6.11: Average time spent in polygon, constant vertical
See table 6.3
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Figure 6.12: Average time spent in polygon, constant position over bottom
See table 6.3

6.6 Passive particles

Passive particles were released on all three sites. Figure 6.13 show the results.

These results are more positive than the ones presented in section 6.3. While
figure 6.3 shows that close to none particles of passive behaviour are settled in the
polygon, figure 6.13 show that the particles at least spend som time in the sea
ranching area(on average about 20 hours).

6.7 Comparisons

This section presents some comparisons between different hebaviours.

6.7.1 Surface releases vs Bottom releases

The difference between surface and bottom releases were investigated. The release
site used was 1(see figure 6.1 on page 33). The four different behaviours are shown
in table 6.1. Figure 6.14 show percentage of total particles in polygon at the end
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Figure 6.13: Average time spent in polygon, passive particles

of simulation. Because of the low percent values maximum y value in the plot is
50 % for increased visibility. Different behaviours are grouped together, depicted
with the same color, top releases first. Data is also grouped into releases, 7 in this
simulation (conducted every two hours from 1. May 0:00).

The figure 6.14 show that bottom releases, overall result in some more particles
in the polygon. The trend is clear for Type 4, but the differences are smaller for
particles with lesser vertical activity. One can also see that from most releases none
of the passive particles stay in the area (presented as the darkest green color in the
figure).

6.7.2 Early settling and no early settling

Figure 6.15 show the difference between early settling and no early settling for the
vertical increasing behaviour profiles (VI), with speed 0.05 and 0.10.

There is a difference in time spent in polygon, but it is rather small.
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Figure 6.14: Top Vs Bottom releases
See table 6.1

Figure 6.15: Vertical Increasing: early settling vs no early settling
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6.7.3 Increasing vertical vs constant vertical

Figure 6.16 show the difference between vertical increasing and vertical constant
behaviour, with speed 0.05 and 0.10 and no early settling.

Figure 6.16: Increasing Vertical vs Constant Vertical

The differece between these two profiles is quite significant, at some releases re-
sulting in 50% more time spent in desired area. The differences are strongest at
release site 3.

6.8 Dispersal beyond model grid

Particles can leave the model grid area through four borders.

Figure 6.17 show where passive particles end up. Clearly most drift out of the
model grid at the upper border. This trend is similar for all three sites.

Figure 6.8 show the number of particles leaving through each border for the vertical
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Figure 6.17: Border distribution: Passive

behaviour described in table 6.2.

In this case, less particles leave the grid area, but when they do it is usually through
the right border.

6.9 Current

The following plots show current speed and angle at each site during the 24 hour
period of releases. Red crosses mark the time the new release is conducted.

Figure 6.19 show the current angle and figure 6.19 show current speed in the bottom
layer

Station 1 seem to have the smallest variation in angle as well as the lowest speeds.
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Figure 6.18: Border distribution: VI
See table 6.2

Figure 6.19: Station Angles
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Figure 6.20: Station Speeds

6.10 Site and release time differences

Figure 6.21 shows the average hours spent in polygon by particles released at
different sites. behaviours are passive, VI and VC, the last two with speeds of 0.05
m/s.

Passive and vertical increasing particles released at site 1 have the most time spent
in the polygon. For the constant behaviour, site 3 is the best. The differences are
however very small.

Figures 6.22,6.23 and 6.24 show the average time spent in polygon by particles of
type passive and vertical increasing for each release.

There seem to be a small trend that is different for each release site. Release 7, 10
and 11 (conducted 12 pm, 6pm and 8pm respectively) at station 3 are exceptionally
bad, resulting in far less hours spent in polygon that the other releases. Release
10 at station 1 does also give less good results. Station 2 seems to have its "worst"
releases at time 2am, 4am, 14pm and 16pm (release 2,3,8 and

Similar plots for constant vertical behavior were examined, but reveled no large
differences in releases. One plot is included, figure 6.25, showing constant vertical
movement and constant position for release site 1.
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Figure 6.21: Station time in polygon averages

Figure 6.22: Station 1 time in polygon averages
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Figure 6.23: Station 2 time in polygon averages

Figure 6.24: Station 3 time in polygon averages
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Figure 6.25: Station 1 time in polygon averages



Chapter 7

Discussion

The first section in this chapter will further discuss the results presented in chapter 6.
In section two previously presented knowledge and research will be merged with the in-
formation gained by the simulations to suggest improvements for the stock enhancement
strategy.

7.1 Simulations

Mainly the simulations have shown that there is a considerable difference between
being a passive drifter and having the possibility to actively swim. The site differ-
ences have proven to be small, and the tidal effects elusive. This section presents
an overall discussion to the different parameters from the simulations.

7.1.1 Behaviour

Different types of behaviours were chosen for the simulations to get some insight
in to which parameters would affect the transport the most. The result show
that staying close to the bottom result in the most desired scenario: with both
most time spent in sea ranching site and most particles settled in the sea ranching
site. But how does this compare to real life behaviour? Some studies already
mentioned describe stage IV lobsters as pelagic, with sounding behaviour towards
the bottom. One can argue that the increasing bias of downwards migration (VI) is
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a fair assumption. Further it is hypothesised that older stage IV lobsters are more
bottom-seeking than newly-molted stage IV lobsters, leading to the argument of
waiting with the release until lobsters have accumulated some days into stage IV. In
simulation terms the behaviour profile of constant height over bottom or constant
vertical migration seems like an adequate simplification. Studies were lobsters have
been released and recatched successfully have involved larger juveniles, usually
stage 6, and it is argued that successfully releases should include older juveniles
[33]. But rearing lobsters for a longer period result in higher costs, and as time
to molt into older stages is longer for each stage, it increases the cost by a large
amount. This increase of cost has to be weighted against survival rate increase of
older juveniles contra young.

If the assumptions made in the simulations are somewhat correct, and the behaviour
simplification realistic enough, it seems like releasing older stage IV lobsters is far
better than releasing newly hatched. This period of elongated hatchery life is
without doubt far less costly than rearing to stage V or VI.

7.1.2 Settlement and time spent in ranching site

The time spent by lobsters in the sea ranching site varied a lot between the different
behaviour types. From about 5-25 hours as passive drifters to upto 200 hours with
constant position over bottom. The behaviour of increased vertical movement,
which as argued seems like the most realistic interpretation of a young stage IV
lobster, resulted in roughly 30 hours on average for 0.05m/s speed and about 45
hours for speeds of 0.10 m/s. The constant vertical migration behavior resulted in
close to 150 hours.

With Botero and Atema [34] and Cobb et al. [27] arguing that settlement occurs
after 2-6 days in 20 degree water, 40 hours might be to little time. Then again,
observations have been done of lobsters temporarily crawling at the bottom, as
if to test the substrate, before swimming upwards again. If this is the case, the
simulations are to some degree pessimistic as a stay at the bottom would reduce
current-transport time.

Further the accuracy of the calculations of time spent in polygon is limited by the
model recording rate. At 30 minute intervals, the accuracy of time is not great.
For instance if a particle stayed most of the 30 minutes in the area, but moved
out just at the last minute, this time would not be accounted for. Similarly if
a particle has just drifted into the area the time spent in are would be largely
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overestimated. Increasing the rate at which data is recorded would better the
accuracy, but greatly increase the size of the data and cause troubles with memory
and computation time. Therefore the time computations should be interpreted as
an overall view and coarse estimate.

Settlement of lobsters in sea ranching site is correlated to the time spent in the
polygon. Since most of the analysis was done on the particle-types without pos-
sibility of early settlement, one might argue that the settlement numbers in the
desired area will be higher in reality.

7.1.3 Distribution patterns

As an observation to be drawn from the initial inspections of settlement plots from
chapter 6, the end positions of particles in most of the simulations seem to cluster
in an area north of the sea ranching site.

The plots showing where particles leave the model grid area show that Release site
3 seem to have less particles leaving through the upper left border than the other
sites, but in turn more leaving through the right border.

7.1.4 Ocean Dynamics

Despite different behaviour profiles, there seem to be a common trend in the dif-
ferent release sites. For example, particles released at times 02:00, 12:00, 18:00 and
20:00 at site 3 seem to have the lowest time spent in polygon. Similarly releases at
time 12:00 and 18:00 at site 1 are equally bad. Occurring twice a day, tidal activity
might be the reason for this. It was hard to find evidence for any parameter (such
as current angle or speed) being solely responsible.

7.1.5 Sites

The three sites show small differences in terms of how many particles that leave
the area. For the particles that spend more time in the water column(passive
and vertical increasing, site 1 seems to be better, although the differences are
small. For constant vertical migration and constant position, sites have even smaller
differences.
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The results also revealed that releases at bottom instead of at surface are a little
more beneficial in terms of reducing transport due to currents.

7.1.6 Improvements and further work

Initially it was hoped for the simulations to reveal something significant to be
used as a inspiration for a improved release-pod. This could have been a current
direction, time of day or something similar, yet it was not found. This section
suggests what could have been done differently or in addition to get more functional
results.

An option would be to chose more release sites to strengthen or invalidate the
current results. At least two of each depths and/or placement relative to center or
border of area should be tried.

The time period, stretching over two weeks is just enough for all particles to molt
and settle at the bottom. However other periods could have been used in addition.
The releasing period stretching from march to June gives a fair amount of days to
choose from. Varying the simulation period could reveal patterns in the different
release sites while increasing the release period could reveal that there indeed is a
correlation of time of day and the number of particles settled in desired are.

Botero and Atema [34] observed behaviour where the lobster would stay at the
bottom crawling for a short amount of time before returning to the water column.
The study was done in a relatively shallow tank, and of the H.americanus species,
so the results suffer from somewhat unrealistic conditions. However, this type
of behaviour is not unthinkable. Regarding the simulations, one could chose a
behaviour that had a possibility of temporal settlement at bottom. As mentioned
earlier, this would probably reduce the amount of current transport.

Still one has to consider time against valid results. And since no clear parameter,
like day or site, immediately stood out one can question the need of further simu-
lations. If in the future more research on lobster behaviour will be available, more
comprehensive simulations can be done with more concluding results.
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7.2 Strategy improvement

Being observed numerous times, death by predators within the first half hour of
release seem to be the biggest problem of the stock enhancement process as it is
conducted today. This section will describe some ideas that might be worth looking
into. Further suggestions based on the simulation results will be presented later in
this section.

7.2.1 Predation avoidance

When it comes to predator-solutions the most important thing is cost specially
since it cannot be said with certainty where the lobsters actually end up (carried
far away in worst case), too much capital cannot be spent on predator-avoidance
alone.

Solutions such as lowering a cage with a large cod together with the lobster pods
would probably be a good solution in terms of predator avoidance, as it would scare
away smaller fish. Ethically however it is challenging, and since one cod would be
needed for each pot it is expensive and time-consuming.

All at once

Current practise is to open release pods at bottom, allowing lobsters to swim
out when desired. This makes the emptying of the pod somewhat quick at start
(limited by the opening size), and slower as the more indecisive lobsters are left
inside. Previous trials have also shown larger fish, such as cod, swimming up to
the opening of the release pod and consuming most of the released larvae.

One of natures great defence mechanisms is in the strength of numbers, seen in
phenomenons such as swarms and schooling. The more lobsters released at once,
the higher the number of survivors should be. Developing a mechanism for releasing
juveniles all at once, could increase their chances of survival.

Impairing visual feeders by night releases

Mentioned earlier most of the young lobster’s predators are diurnal. Many of these,
being visual feeders, struggle more at finding food at night. The lobsters freezing
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response when introduced to a predator (as observed in Johns and Mann [35] and
argued for in Lawton [7]) might be a good solution in darkness, as it weakens the
predators probability of spotting the lobster. One could imagine a mechanism that
releases lobsters some time after dark, enabling the pods to be placed at day, to be
gathered again later.

Predator intimidation

A master thesis, Trengereid [36], looked at lobster reaction when exposed to preda-
tor odors. More research is needed, yet the study found some increased shelter
seeking reaction in lobsters exposed to odors in contrary to naive lobsters. The
study suggest to train lobsters in the rearing facility, something that would be an
inexpensive solution.

Sound is used to scare away fish from generators and turbines at sea to avoid killings
and damaged equipment. One can imagine a similar solution where the lobster pods
include som device for playing the sound. However intimidating sound might be
specific to only one type of species, and harmless to another.

It is documented that fish learn, and adaptability to any intimidation method
would occur after a while. But if used only at release, the lobsters would have time
to find shelter long before any predator would learn the none threatening nature of
the intimidation mechanism. However little research have been conducted on both
sound and odors, making this could only only possible in the future

7.2.2 Simulation results

Clearly, more research is about biology and ecology of the lobster is needed in
order to successfully and conclusively be able to improve stock enhancement and
sea ranching processes. Based on the simulation results lobsters staying close to the
bottom will spend more time in the sea ranching area. Releasing older postlarvae
might therefore be a good solution. Releases at bottom seem to be advantageous
in terms of transport out of area and should be practised in the future as well. Also
night seems to be the best time in terms of predator avoidance
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Conclusion

It cannot be emphasized enough how much this work relies on research and data that itself
is not satisfyingly conclusive. Clearly the main limitation of this study are the lack of
biological data and behaviour observations. With this chink in ones armour (or shell if
you want) exposed one also has to see the value of the results produced. Having one specific
area to study, greatly reduces the problem and allows one to focus on something concrete.
The dynamical model used has been applied to numerous similar studies, showing reliable
results when compared to recorded data. Thus, if in the future any more knowledge on
ecology and biology of the lobster is added to the pool of information currently available,
simulations can be done far more accurately.

8.1 Conclusion

This thesis has described the process of using hydrodynamic models to gain infor-
mation on the processes of sea ranching. Literature and previous research was used
to create several plausible behaviour models of stage IV lobsters. These models
were used together with a fine-scale hydrodynamic model to conduct several sim-
ulations. Results were analysed in terms of spreading patterns, settlement rates
and time, with the aim of trying to correlate the patterns to some environmental
parameter such as time of day or current speed.

The information gathering process revealed that little research on the matter of
lobster behaviour existed. The amount information available resulted in simula-
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tions that mainly suggested that the transport of lobsters is depended on depth,
and that keeping close to the bottom result in less lobsters transported out of the
sea ranching site. This suggest that lobster should be released at an older age, at
least a couple of days into stage IV, but preferably after reaching stage V.

The simulations have enhanced the perception that the practise of releasing lobsters
at the bottom is advantageous to releases at surface. Bottom releases seem to be
preferable not only due to reduction of predator intervention, but also in terms of
less hydrodynamic transport.

As for the release sites little differences were observed. In most simulations site 1
was better than site 2 which again was better than site 3, but these variations were
small. The average time spent in polygon varied over the 24 hour release period,
suggesting that some ocean mechanism is responsible.

More research and simulations are needed to draw a certain conclusion. Simula-
tions with different time periods as well as more release sites should be conducted
to further investigate the trends observed at different release times. When more
information on lobster behaviour is available, more authentic simulations can be
done.



Appendix A

Acronyms an Glossary

Benthic Of or relating to or happening on the bottom under a body of water

EBP Early benthic phase

Pelagic Living at or near the surface of the ocean

Postlarva Stage in the development of Crustaceans. Here referring to the fourth
stage of lobster development

Phototaxis The movement of an organism or a cell toward or away from a source
of light
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