
Automatic georeferencing of
Orthophotographs, and Aerial Images

Sindre Nistad

Master of Science in Engineering and ICT

Supervisor: Terje Skogseth, BAT
Co-supervisor: Alexander Nossum, NorKart

Trond Arve Haakonsen, Vegdirektoratet

Department of Civil and Transport Engineering

Submission date: June 2016

Norwegian University of Science and Technology

Soli Deo Gloria

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF CIVIL AND TRANSPORT ENGINEERING

Report Title:

Automatic georeferencing of Orthophotographs and Aerial Images

Date: 10.06.2016

Number of pages (incl. appendices): 232

Master Thesis X Project Work

Name:

Sindre Nistad

Professor in charge/supervisor:

Terje Skogseth

Other external professional contacts/supervisors:

Trond Arve Haakonsen, Statens Vegvesen

Alexander Salveson Nossum, NorKart AS

Abstract:

With the advent of drones, the need for rapid, and accurate georeferencing of orthophotos is expected to grow. Per

now (June 2016) there are no commercial solutions that is capable of automatically georeference an orthophoto to a

set of ground control points. Some semi-automatic solutions exist, but these rely on user interaction, or on having an

already georeferenced orthophoto, which will then be matched to the desired orthophoto.

A prototype for such a fully automatic system has been developed as part of this Master’s thesis to investigate the

possibility, and feasibility of automatic georeferencing of orthophotos, aerial images, with or without a digital

elevation model.

By applying the prototype to a orthophoto with a corresponding surface model over Lerkendal, Trondheim, Norway,

the program was able to calculate the absolute orientation, and georeference the orthophoto in less than 7 minutes.

The root mean square error for the location (Northing-Easting) was as small as 0.0738 meters. Unfortunately, the

elevation was not as good (0.847 meters). If the main purpose of georeferencing the data is to only have a referenced

orthophoto, this prototype comparable with manual referencing in terms of accuracy, and can be even faster than the

manual approach.

The prototype, and it source code is freely available at https://github.com/cLupus/AutoRef/. The source code is

licensed under the Mozilla Public License 2.0, which mean you are free to use, modify and distribute all, or part of

the source code.

During development, the concept, and algorithm of topological point patterns from Li and Briggs (2006) was

adapted to investigate whether it could be used in a different context. It could. However, some faults were found in

the presented algorithm. The faults were fixed, and an implementation is given.

Part of this thesis investigate different algorithms for finding the optimal absolute orientation parameters, in a least-

squares error sense. Between the method presented in Horn (1987), and Horn et.al. (1988) the difference in root

mean square error, and parameters for the absolute orientation was rather small. Umeyama (1991) presents a

different algorithm, which is also claimed to be optimal. In particular, the scaling factor presented in the article is

claimed to give the minimal root mean square error. However, this is proven to be a false statement in this thesis.

The proposed scale factor is sub-optimal compared to using the scale factor proposed in Horn (1987), when

everything else is the same.

Keywords:

1. Automatic georeferencing

2. Automatic extraction of ground control points

3. Least-Squares estimation of absolute orientation

4. Topological point Pattern

Summary

With the advent of drones, the need for rapid, and accurate georeferencing of orthophotos
is expected to grow. Per now (June 2016) there are no commercial solutions that is capa-
ble of automatically georeference an orthophoto to a set of ground control points. Some
semi-automatic solutions exist, but these rely on user interaction, or on having an already
georeferenced orthophoto, which will then be matched to the desired orthophoto.

A prototype for such a fully automatic system has been developed as part of this Mas-
ter’s thesis to investigate the possibility, and feasibility of automatic georeferencing of
orthophotos, aerial images, with or without a digital elevation model. By applying the
prototype to a orthophoto with a corresponding surface model over Lerkendal, Trond-
heim, Norway, the program was able to calculate the absolute orientation, and georefer-
ence the orthophoto in less than 7 minutes. The root mean square error for the location
(Northing-Easting) was as small as 0.0738 meters. Unfortunately, the elevation was not
as good (0.847 meters). If the main purpose of georeferencing the data is to only have
a referenced orthophoto, this prototype comparable with manual referencing in terms of
accuracy, and can be even faster than the manual approach. The prototype, and it source
code is freely available at https://github.com/cLupus/AutoRef/. The source
code is licensed under the Mozilla Public License 2.0, which mean you are free to use,
modify and distribute all, or part of the source code.

During development, the concept, and algorithm of topological point patterns from Li and
Briggs (2006) was adapted to investigate whether it could be used in a different context. It
could. However, some faults were found in the presented algorithm. The faults were fixed,
and an implementation is given.

Part of this thesis investigate different algorithms for finding the optimal absolute orien-
tation parameters, in a least-squares error sense. Between the method presented in Horn
(1987), and Horn et al. (1988) the difference in root mean square error, and parameters for
the absolute orientation was rather small. Umeyama (1991) presents a different algorithm,
which is also claimed to be optimal. In particular, the scaling factor presented in the article
is claimed to give the minimal root mean square error. However, this is proven to be a false
statement in this thesis. The proposed scale factor is sub-optimal compared to using the
scale factor proposed in Horn (1987), when everything else is the same.

Key words: Automatic georeferencing, automatic extraction of ground control points,
Least-Squares estimation of absolute orientation, topological point pattern.

i

https://github.com/cLupus/AutoRef/

ii

Sammendrag

Nå som droner har gjort sin fremtreden, er behovet for hurtig og nøyaktig stedfesting
ventet å øke. Da denne masteroppgaven ble skrevet (juni 2016), var det ingen kommer-
sielt tilgjengelige løsninger som kan stedfeste et ortofoto automatisk basert på innmålte
fastmerker. Det finnes noen halvautomatiske løsninger, men disse er avhengige av men-
neskelig innblanding, eller å ha et ortofoto som allerede er stedfestet. De to ortofotene blir
så matchet mot hverandre.

En prototype av et slikt fullautomatisk system har blitt utviklet som del av denne mas-
teroppgaven. Målet var å utforske om det i det hele tatt er mulig å stedfeste et ortofoto
automatisk ved å finne fastmerkene i bildet automatisk og så stedfeste ortofotoet basert
på de innmålte fastmerkene. Dersom et slik system er mulig, var målet å undersøke hvor
praktisk og anvendbart et slikt system kan være. Systemet kan brukes på både ortofoto
og flyfoto med og uten tilhørende terrengmodell. Et ortofoto, med tilhørende terrengmod-
ell over Lerkendal, Trondheim samt en liste med innmålte fastmerker var gitt som input
til prototype. Den var da i stand til å regne ut den ytre orienteringen av ortofotoet med
en nøyaktighet på 0, 0738 meter for planet i løpet av 7 minutter. Nøyaktigheten for ter-
renghøyden var ikke like bra (0, 847 meter). Om målet er å kun ha et stedfestet ortofoto,
så kan denne prototypen sammenlignes med resultatene en ville fått ved å stedfeste orto-
fotoet manuelt. Tidsmessig, er det muligens hurtigere også. Prototypen og kildekoden til
den er fritt tilgjengelig fra https://github.com/cLupus/AutoRef/. Kildekoden
er lisensiert under «Mozilla Public License 2.0». Det betyr at du er fri til å bruke, endre
og distribuere hele kodebasen, eller deler av den.

Under utviklingen av prototypen, ble konseptet og algoritmen om topologisk punktmøn-
ster fra Li and Briggs (2006) tilpasset for å undersøke om topologiske punktmønstre kan
bli brukt i flere sammenhenger enn det som ble presentert i artikkelen. Det kunne det.
Under implementasjonen av algoritmen, ble det oppdaget noen feil og mangler i selve
algoritmen. Disse ble rettet og er beskrevet.

Å sammenligne forskjellige algoritmer for å finne den (optimale) ytre orienteringen ved
den miste kvadraters metode er en annen del av masteroppgaven. Metodene i Horn (1987)
og Horn et al. (1988) gav stort sett lignede resultater, men ikke identiske. Forskjellen
mellom parameterne for den ytre orienteringen var også liten. Metoden som er presenter
i Umeyama (1991), derimot, gav vesentlig mindre nøyaktige resultater. I artikkelen er det
påstått at skaleringsfaktoren som presenteres er optimal, eller minimerer den totale feilen
(RMSE). I masteroppgaven vises det at dette ikke stemmer; skaleringsfaktoren gitt i Horn
(1987) gir mye bedre resultater (en reduksjon i RMSE på så mye som 99, 917%), når alt
annet holdes likt.

Nøkkelord: Automatisk stedfesting, automatisk ekstrahering av fastmerker fra ortofoto,
minste kvadraters metode for ytre orientering, topologiske punktmønstre.

iii

https://github.com/cLupus/AutoRef/

Date
15.01.2016

Norwegian University of Science and Technology
Faculty of Engineering Science and Technology

Department of Civil and Transport Engineering

MASTER	DEGREE	THESIS	

Course	TBA4925	Geomatics,	master	thesis	
Spring	2016	

for	
Student:	Sindre	Nistad	

	
Automatic	georeferencing	of	Orthophotographs	and	Aerial	Images	

	
BACKGROUND	
An	important	part	of	the	geomatics	industry,	and	geographical	information	science	is	to	have	data	that	is	
georeferenced.	There	exists	some	semi-automatic	solutions,	but	these	require	data	that	is	already	georeferenced.	
With	the	advent	of	drones,	and	airplanes	before	them,	the	need	to	georeference	orthophotos,	and	aerial	images	
in	general,	is	expected	to	increase.	For	high	accuracy	results,	ground	control	points	(GCP)	are	necessary.		To	find	
the	GCPs	in	the	orthophoto	automatically,	and	then	georeference	it	is	therefore	of	interest.	

	
TASK	
The	main	focus	for	the	thesis	is	as	follows:	
To	investigate	the	possibility,	and	feasibility	of	automatically	finding	marked	ground	control	points	in	an	
arbitrary	image,	or	orthophoto,	and	then	calculating	the	absolute	orientation	of	the	given	image,	and	the	
corresponding	digital	surface/elevation	model.	

	
Task	description	
The	task	will	be	accomplished	by	developing	a	working	prototype	for	a	system	that	is	capable	of	detecting	marked	
ground	control	points	in	an	orthophoto,	and	then	applying	the	developed	prototype	to	match	these	locations	with	
the	measured-in	coordinates	of	the	ground	control	points,	and	thus	calculate	the	absolute	orientation	of	the	
orthophoto.		
The	prototype	will	be	applied	to	two	different	orthophotos.	For	both	of	them,	a	digital	surface/elevation	model,	
and	the	measured-in	coordinates	of	the	ground	control	points	are	available.	

	
Objective	and	purpose	
Create	a	prototype	that	is	capable	of	automatically	finding	ground	control	points	that	is	signaled.		
The	prototype,	and	all	accompanying	source	code	is	to	be	open	source,	and	freely	available	at	https://github.com/	
cLupus/AutoRef.	In	addition	to	the	prototype,	another	research	questions	are	if	there	is	a	significant	difference	in	
the	results	obtained	from	different	approaches	to	calculate	the	absolute	orientation,	and	to	investigate	if	the	
algorithm	presented	in	Li	&	Briggs	(2006)	can	be	adapted	to	solve	the	problem	of	matching	the	set	of	candidates	
extracted	from	the	orthophoto	with	the	measured-in	coordinates	of	the	ground	control	points.	

	
Startup	and	submission	deadlines	
Startup:	January	15th	2016.	Submission	date:	Digitally	in	DAIM	at	the	latest	June	10th	2016.	

	

Supervisors	
Supervisor	at	NTNU:	Terje	Skogseth	 											
Co-supervisors:	Trond	Arve	Haakonsen,	Statens	vegvesen	
Co-supervisors:	Alexander	Salveson	Nossum,	Norkart	AS	

	
Department	of	Civil	and	Transport	Engineering,	NTNU.	Date	15.01.2016	(revised	June	2016).	
	
	
	

Terje	Skogseth	(signature)	

Preface

MANY THANKS to Terje Skogseth, Trond Arne Haakonsen, and Alexander Salveson
Nossum for supervision, guidence, and many advice.

Thanks are also due to the Norwegian Public Roads Administration and Norwegian Uni-
versity of Science and Technology for letting me use their images over E6, and Lerkendal,
Trondheim (respectively), along with Trond Arve Haakonse, and Terje Skogseth for es-
tablishing, measuring in, and correcting the ground control points used at Lerkendal and
E6.

Many thanks to my parents, Eilif Nistad, and Marit Elisabeth Nistad for their support and
encouragements through my five years at Norwegian University of Science and Technol-
ogy, and for all the time before that.

Thanks also to friends of old and new.

This work is licensed under a Creative Commons
“Attribution-NonCommercial-NoDerivatives 4.0 Interna-
tional” license.

v

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

Notes
BEFORE UNDERTAKING this thesis, there are some notes, or conventions that the reader

should be aware of.

Note on abbreviations and acronyms
The full name of an abbreviation is repeated at least once per chapter.

If the last word of the abbreviation is a noun, it will not be repeated when that noun
is referred to, or used. Rather, only the abbreviation is used when the acronym is well
known, while the full phrase is used when it is not.

An example would be the use of “Global Navigation Satellite System (GNSS)”. In this
thesis, a particular Global Navigation Satellite System, such as GALILEO, will be referred
to as “The GNSS GALILEO is an European satellite system for navigation”, and not
“The GNSS-system GALILEO ...”. Had GNSS not been well known (in the Surveying
profession), the same sentence could be read as “The Global Navigation Satellite System
GALILEO is an European ...”. Note that the abbreviation is not included in parenthesis.
This will be the case, even if it is the first usage. The abbreviation will be given in the
second instance instead.

Note on Figures
All figures have been exported from the program they were created in to the Portable
Network Graphics format. Any excess margins were removed by using the Trim tool
in Adobe PhotoShop CC (2015). This tool is capable of detecting, and removing the
excess margins automatically. The reason for trimming them automatically, is that images
exported from MATLAB, in particular, had a tendency to include excessive margins.

Any Figure (e.g. photograph or illustration) that is not accredited, is made by the author
for the thesis. Some are made by using programs such as InkScape, Adobe PhotoShop,
MATLAB, and Edraw Max.

The Portable Network Graphics format was chosen because it uses lossless compression,
works well with LATEX, MATLAB, and Portable Document Format-files.

Images that took up more than approximately 100 MB, such as orthophotos were stored
in Tagged Image File Format (TIFF). The reason for this, is flexibility. Images can be
compressed with, or without loss, or with no compression at all. With large images, no
compression can be advantageous, as the image can be loaded into a program faster, then
if the image had to be decompressed first.

Tags, such as location, and absolute orientation can be stored directly in the image, which
allows more convenient storage of the georeference. This can also be done for Joint Pho-
tographics Experts Groups (JPEG) images, but JPEG cannot be stored without the use of
lossy compression.

vi

The standard TIFF does not support file sizes that exceeds 232 bytes, or 4 GB. This can
be amended by using the now standardized BigTIFF, which has a maximum limit of 264

bytes, or 16 777 216 TB. In comparison, the largest hard drive to date (May 2016), is a 16
TB Solid State Disk from Samsung (Zhang, 2015). The largest image that was encountered
during the work on this thesis, was about 21 GB. In practice this limit will not be any
problem for the foreseeable future.

BigTIFF is backwards compatible with TIFF. The reverse need not be true, however. Many
applications does support BigTIFF. MATLAB is one example.

Note on words in the thesis
The words “computer program”, “program”, “application”, “the implementation”, and
“system” will be used interchangeably. They refer to the source code in Appendix A.
However, the word “implementation”, will also be used for implementations of other pro-
grams, or applications.

A working name for the program is “AutoRef”.

The words “geomatics”, “surveying”, and “geography” are used interchangeably for the
profession, and community of surveyors, GIS-analysts, geographers, and more...

Note on mathematical notation
All vectors are assumed to be column vector, and are written as lowercase letters in bold.
When assigning a vector, it is enclosed by square brackets. An example is a = [1, 2, 3, 4]

ᵀ,
where ᵀ is the transpose operator.

The norm, or length of a vector is defined as ||x|| =
√
xᵀx =

(∑n
i=1 (xi · xi)2

) 1
2

.

A point is denoted as the vector pname,index, where name denotes which set it belongs to,
while index is the index of the particular point in a particular set. To differentiate them, a
point will use parenthesis, while vectors use square brackets in assignments. For example,
px,i = (4352, 495, 100.43). When convenient, points are considered vectors that go from
the origin to the points them self.

Matrices will be written as uppercase letters, also in bold. The matrix is enclosed in
parentheses. For example I =

(
1 0 0
0 1 0
0 0 1

)
. A matrix can also be referred to as A = (aij).

The size of the matrix is then given. The element aij is the ith column on the jth.

Scalars are written as lowercase letters, such as a = 4π.

Sets are denoted by a non-bold capital letter, such as A = {1, 3, 4, 2}. They are assumed
to be unordered, and all elements are assumed to be unique.

Collections are or sets of sets, and are denoted by a calligraphy, non-bold capital letter. An
example is P = {∅, {1}, {2}, {1, 2}}.
A sequence is similar to a set, except that it has an order. Both have only unique elements.
Sequences are denoted in capital Gothic letters, and angled brackets. An example is T =

vii

〈1, 2, 3, 4〉.
Sets that are arbitrarily large, such as the real numbers, and the integers, are denoted by
double letters. Examples include Z, and R, which is the set of all integers, and all real
numbers respectively. Z+ will denote all positive integers, not including 0, while N is the
set of all natural numbers, which is all positive integers in addition to 0.

The symbol ∼ is used to denote correspondence. That is, if px,i ∼ py,i, then the point
px,i, which might be a model coordinate, is equivalent to the point py,i, which might be a
measured-in ground control point (GCP).

Angles are assumed to be in radians, unless otherwise noted.

For absolute orientation, t = (xayaza)
ᵀ is the transnational offset of the image, or model

to be orientated. s is the scale factor for the image, or model. R is the rotational matrix,
in which the three rotational parameters φ, θ, and κ (roll, pitch, and yaw respectively).

In this thesis roll is assumed to be rotation about the principal axis of a model, or image.
That is, rotation about the negative y-axis of an image. The negative y-axis is chosen
because it is a very common indexing scheme for image (Gonzalez and Woods, 2008a).

Pitch is assumed to be rotation about the secondary axis of the model, or image. That is,
rotation about the x-axis of an image.

Yaw is rotation about the axis normal to the image, and in the same direction as the digital
elevation model (DEM).

In Kraus (2007), xa is called Xu, ya is Yu, za is Zu, s is m, κ is K, θ is Ω, and φ is Φ.

viii

Contents

Summary i

Sammendrag iii

Preface v

Notes vi
Note on abbreviations and acronyms . vi
Note on Figures . vi
Note on words in the thesis . vii
Note on mathematical notation . vii

Table of Contents xii

Lists xiii
List of Tables . xvi
List of Figures . xix
List of Source Code . xxiii

Glossary xxv

Acronyms xxxi

1 Introduction 1
1.1 Goal of the thesis . 2

1.1.1 Secondary Goals . 2
1.1.1.1 Open source . 2
1.1.1.2 Multiple least-squares estimation (LSE) techniques . . 3
1.1.1.3 Investigate the usability of topological point pattern . . 3
1.1.1.4 Effectiveness . 3
1.1.1.5 Investigate marks for GCPs 3

1.2 Motivation . 3
1.3 The structure of the thesis . 4
1.4 A small history lesson . 4

2 Theory 7

ix

2.1 Existing solutions . 7
2.1.1 Esri ArcGIS . 8
2.1.2 Leica Geosytems IMAGINE AutoSync™ 8
2.1.3 Leica Cyclone REGISTER . 8
2.1.4 Li and Briggs . 9
2.1.5 Bundle adjustment . 9

2.2 Classification . 10
2.2.1 Hypothesis testing . 10

2.3 Color Theory . 10
2.3.1 Color models . 11

2.3.1.1 The red green blue (RGB) model 11
2.3.1.2 Hue, saturation, and value 11
2.3.1.3 The Lab model . 12

2.4 Image processing . 13
2.4.1 Segmentation . 13
2.4.2 Morphology . 15

2.5 Topological Point Pattern . 16
2.5.1 Defining topological point pattern 16

2.5.1.1 Adjustment . 17
2.5.2 Matching Topological Point Patterns 17

2.6 Absolute orientation . 18
2.6.1 Least-Square error estimation 19

2.6.1.1 Kraus . 20
2.6.1.2 Horn . 23
2.6.1.3 Horn-Hilden . 24
2.6.1.4 Umeyama . 25

2.7 Licensing . 27

3 Method 29
3.1 The design of the program . 29

3.1.1 Description of the steps . 30
3.1.1.1 Input parameters . 30
3.1.1.2 Finding GCP candidates in image 30
3.1.1.3 Matching points . 31
3.1.1.4 Finding the absolute orientation 32
3.1.1.5 Generating the output 32

3.2 The development of the program . 33
3.2.1 Choosing a Programming Language 33
3.2.2 Test-driven development . 35

3.3 On the method of testing and verification 35
3.4 Acquiring data . 36

3.4.1 Processing the images . 38
3.4.2 The sample of GCP . 38

3.4.2.1 Directly from the orthophoto 39
3.4.2.2 Capturing a marked GCP 39

x

4 Results 43
4.1 The prototype . 43
4.2 Reference color . 44

4.2.1 Description of sample data . 44
4.3 Finding thresholds, and “arbitrary” values 45
4.4 Georeference Real-World cases . 45

4.4.1 The Lerkendal dataset . 45
4.4.1.1 Reference color . 46
4.4.1.2 Which where found? 47
4.4.1.3 Distribution of the residuals 47

4.4.2 The “E6” dataset . 47
4.4.3 Choice of sample data . 48
4.4.4 Visibility og GCPs . 48

5 Discussion & Analysis 59
5.1 Analysis of placement . 59

5.1.1 Horn and Horn-Hilden . 59
5.1.1.1 Comparing the absolute orientation parameters 60

5.1.2 Umeyama . 60
5.1.2.1 Why not an iterative algorithm? 61

5.1.3 E6 . 62
5.2 Analysis of residuals . 62

5.2.1 Analysis of the magnitudes of the residuals 63
5.2.2 Analysis of the direction of the residuals 63

5.2.2.1 The direction of residuals 63
5.2.2.2 Distance from center 64
5.2.2.3 Direction outward . 64

5.3 On the use of reference colors . 66
5.4 On loading the entire orthophoto into memory 66
5.5 On marking GCPs . 66
5.6 Issues with topological point pattern (TPP) 67
5.7 Issues with the scale factor for Umeyama 67

6 Conclusion 69
6.1 Further . 69

6.1.1 Thoughts . 69
6.1.2 Work . 69

6.2 Recommendation for marking GCPs . 69

Bibliography 70

A Source Code 77
A.1 The program . 77

A.1.1 Miscellaneous scripts . 141

B Data 145

xi

B.1 Sample data . 145
B.2 GCPs of “Lerkendal” . 145
B.3 GCPs of “E6” . 146
B.4 Sample extracted candidate matching (CM) 148
B.5 Matchings . 149
B.6 Residuals . 156
B.7 Similarity transforms . 163

B.7.1 Lerkendal . 163
B.7.1.1 Horn . 164
B.7.1.2 Horn-Hilden . 164
B.7.1.3 Umeyama . 164
B.7.1.4 Umeyama with the scale factor of Horn 165
B.7.1.5 Horn without rematching 165
B.7.1.6 Horn-Hilden without rematching 165
B.7.1.7 Umeyama without rematching 166
B.7.1.8 Umeyama with the scale factor of Horn, but without re-

matching . 166
B.8 Referencing errors, and residuals . 167
B.9 Distance metrics applied to “Lerkendal” 193

C Mozilla Public License Version 2.0 197

xii

List of Tables

4.1 Shows how many times the different GCPs were found in Figure 4.7. . . . 47

4.2 Statistics of the sample data . 49

4.3 Statistics of the sample data . 50

B.1 Coordinates of each GCP in the dataset “Lerkendal” 145

B.2 Coordinates of each GCP in the dataset “E6” 146

B.3 The CM used in Section 5.7 . 148

B.4 A table of the candidate matchings (CMs) from calling Script A.1 with
the parameters ’OrientationAlgorithm’, ’Horn’, ’RadiusThreshold

’, 0.05, ’AngleThreshold’, 0.05, ’UseProbability’, true, and
’Rematch’, true. The sample data is the same as described in
Section 4.2.1. The set of GCPs is those given in Table B.1. The image
points where extracted from the orthophoto “Lerkendal”. 150

B.5 A table of the candidate matchings (CMs) from calling Script A.1
with the parameters ’OrientationAlgorithm’, ’HornHilden’, ’

RadiusThreshold’, 0.05, ’AngleThreshold’, 0.05, ’UseProbability
’, true, and ’Rematch’, true. The sample data is the same as described
in Section 4.2.1. The set of GCPs is those given in Table B.1. The image
points where extracted from the orthophoto “Lerkendal”. 150

B.6 A table of the candidate matchings (CMs) from calling Script A.1 with the
parameters ’OrientationAlgorithm’, ’Umeyama’, ’RadiusThreshold’

, 0.05, ’AngleThreshold’, 0.05, ’UseProbability’, true, ’Rematch
’, true, and ’UseHornScale’, false. The sample data is the same as
described in Section 4.2.1. The set of GCPs is those given in Table B.1.
The image points where extracted from the orthophoto “Lerkendal”. . . . 151

B.7 A table of the candidate matchings (CMs) from calling Script A.1 with the
parameters ’OrientationAlgorithm’, ’Umeyama’, ’RadiusThreshold’

, 0.05, ’AngleThreshold’, 0.05, ’UseProbability’, true, ’Rematch
’, true, and ’UseHornScale’, true. The sample data is the same as
described in Section 4.2.1. The set of GCPs is those given in Table B.1.
The image points where extracted from the orthophoto “Lerkendal”. . . . 152

xiii

B.8 A table of the candidate matchings (CMs) from calling Script A.1 with
the parameters ’OrientationAlgorithm’, ’Horn’, ’RadiusThreshold

’, 0.05, ’AngleThreshold’, 0.05, ’UseProbability’, true, and
’Rematch’, false. The sample data is the same as described in
Section 4.2.1. The set of GCPs is those given in Table B.1. The image
points where extracted from the orthophoto “Lerkendal”. 153

B.9 A table of the candidate matchings (CMs) from calling Script A.1
with the parameters ’OrientationAlgorithm’, ’HornHilden’, ’

RadiusThreshold’, 0.05, ’AngleThreshold’, 0.05, ’UseProbability
’, true, and ’Rematch’, false. The sample data is the same as
described in Section 4.2.1. The set of GCPs is those given in Table B.1.
The image points where extracted from the orthophoto “Lerkendal”. . . . 153

B.10 A table of the candidate matchings (CMs) from calling Script A.1 with the
parameters ’OrientationAlgorithm’, ’Umeyama’, ’RadiusThreshold’

, 0.05, ’AngleThreshold’, 0.05, ’UseProbability’, true, ’Rematch
’, false, and ’UseHornScale’, false. The sample data is the same as
described in Section 4.2.1. The set of GCPs is those given in Table B.1.
The image points where extracted from the orthophoto “Lerkendal”. . . . 154

B.11 A table of the candidate matchings (CMs) from calling Script A.1 with the
parameters ’OrientationAlgorithm’, ’Umeyama’, ’RadiusThreshold’

, 0.05, ’AngleThreshold’, 0.05, ’UseProbability’, true, ’Rematch
’, false, and ’UseHornScale’, true. The sample data is the same as
described in Section 4.2.1. The set of GCPs is those given in Table B.1.
The image points where extracted from the orthophoto “Lerkendal”. . . . 154

B.12 A table of the errors of the CMs from calling Script A.1 with the
parameters ’OrientationAlgorithm’, ’Horn’, ’RadiusThreshold

’, 0.05, ’AngleThreshold’, 0.05, ’UseProbability’, true, and
’Rematch’, true. The sample data is the same as described in
Section 4.2.1. The set of GCPs is those given in Table B.1. The image
points where extracted from the orthophoto “Lerkendal”. These residuals
are displayed graphically in Figure 4.9a, 4.9b, and B.2. The root mean
square error (RMSE) of this table is given in Table B.13. 156

B.13 An overview of the RMSEs of Table B.12. 156

B.14 A table of the errors of the CMs from calling Script A.1 with the pa-
rameters ’OrientationAlgorithm’, ’HornHilden’, ’RadiusThreshold

’, 0.05, ’AngleThreshold’, 0.05, ’UseProbability’, true, and
’Rematch’, true. The sample data is the same as described in
Section 4.2.1. The set of GCPs is those given in Table B.1. The image
points where extracted from the orthophoto “Lerkendal”. These residuals
are displayed graphically in Figure 4.9c, 4.9d, and B.4. The RMSE of this
table is given in Table B.15. 157

B.15 An overview of the RMSEs of Table B.14. 157

xiv

B.16 A table of the errors of the CMs from calling Script A.1 with the parame-
ters ’OrientationAlgorithm’, ’ShinjiUmeyama’, ’RadiusThreshold’,
0.05, ’AngleThreshold’, 0.05, ’UseProbability’, true, ’Rematch’
, true, and ’UseHornScale’, false. The sample data is the same as de-
scribed in Section 4.2.1. The set of GCPs is those given in Table B.1. The
image points where extracted from the orthophoto “Lerkendal”. These
residuals are displayed graphically in Figure 4.9e, 4.9f, and B.6. The
RMSE of this taable is given in Table B.17. 158

B.17 An overview of the RMSEs of Table B.16. 158
B.18 A table of the errors of the CMs from calling Script A.1 with the param-

eters ’OrientationAlgorithm’, ’ShinjiUmeyama’, ’RadiusThreshold’
, 0.05, ’AngleThreshold’, 0.05, ’UseProbability’, true, ’Rematch
’, true, and ’UseHornScale’, true. The sample data is the same as
described in Section 4.2.1. The set of GCPs is those given in Table B.1.
The image points where extracted from the orthophoto “Lerkendal”. These
residuals are displayed graphically in Figure 4.10c, 4.10d, and B.8. The
RMSE of this table is given in Table B.19. 159

B.19 An overview of the RMSEs of Table B.18. 159
B.20 A table of the errors of the CMs from calling Script A.1 with the

parameters ’OrientationAlgorithm’, ’Horn’, ’RadiusThreshold

’, 0.05, ’AngleThreshold’, 0.05, ’UseProbability’, true, and
’Rematch’, false. The sample data is the same as described in
Section 4.2.1. The set of GCPs is those given in Table B.1. The image
points where extracted from the orthophoto “Lerkendal”. These residuals
are displayed graphically in Figure 4.8a, 4.8b, and B.1. The RMSE of this
table is given in Table B.21. 160

B.21 An overview of the RMSEs of Table B.12. 160
B.22 A table of the errors of the CMs from calling Script A.1 with the pa-

rameters ’OrientationAlgorithm’, ’HornHilden’, ’RadiusThreshold

’, 0.05, ’AngleThreshold’, 0.05, ’UseProbability’, true, and
’Rematch’, false. The sample data is the same as described in
Section 4.2.1. The set of GCPs is those given in Table B.1. The image
points where extracted from the orthophoto “Lerkendal”. These residuals
are displayed graphically in Figure 4.8c, 4.8d, and B.3. The RMSE of this
table is given in Table B.23. 161

B.23 An overview of the RMSEs of Table B.12. 161
B.24 A table of the errors of the CMs from calling Script A.1 with the pa-

rameters ’OrientationAlgorithm’, ’Umeyama’, ’RadiusThreshold’,

0.05, ’AngleThreshold’, 0.05, ’UseProbability’, true, ’Rematch’,
false, and ’UseHornScale’, false. The sample data is the same as de-

scribed in Section 4.2.1. The set of GCPs is those given in Table B.1. The
image points where extracted from the orthophoto “Lerkendal”. These
residuals are displayed graphically in Figure 4.8e, 4.8f, and B.5. The
RMSE of this table is given in Table B.25. 162

B.25 An overview of the RMSEs of Table B.12. 162

xv

B.26 A table of the errors of the CMs from calling Script A.1 with the pa-
rameters ’OrientationAlgorithm’, ’Umeyama’, ’RadiusThreshold’,

0.05, ’AngleThreshold’, 0.05, ’UseProbability’, true, ’Rematch’,
false, and ’UseHornScale’, true. The sample data is the same as de-

scribed in Section 4.2.1. The set of GCPs is those given in Table B.1. The
image points where extracted from the orthophoto “Lerkendal”. These
residuals are displayed graphically in Figure 4.10a, 4.10b, and B.7. The
RMSE of this table is given in Table B.27. 163

B.27 An overview of the RMSEs of Table B.12. 163
B.28 A table showing the greatest, and smallest magnitude of errors for location,

elevation, and total. These correspond to Figure 4.8, 4.10a, and 4.10b. In
other words, these have not been rematched. 167

B.29 A table showing the greatest, and smallest magnitude of errors for location,
elevation, and total. These correspond to Figure 4.9, 4.9e, and 4.9f. In
other words, these have been rematched. 167

xvi

List of Figures

2.1 An illustration of the visible electromagnetic spectrum. Adapted from Ro-
nan (2007). 10

2.2 Reflectance of different substances in the visible spectrum 11

2.3 Illustrations of the RGB color model . 12

2.4 An example of a marker for a GCP . 13

2.5 A comparison of distance metrics . 15

2.6 Illustration of a flaw in Li and Briggs (2006) 16

3.1 Legend for the flow charts . 30

3.2 Flow chart of a simple implementation 31

3.3 Flow chart of an implementation which remaps the ground control points
(GCPs) . 33

3.4 Overview of the GCPs for “E6” . 34

3.6 Closeup image of a ground control point 36

3.5 Location of GCPs at Lerkendal . 37

3.7 A closeup of all the GCPs in the “Lerkendal” dataset 38

3.8 The CIE 1931 chromaticity diagram . 39

3.10 The JPEG version of the image that was used to create sample data from
marked GCPs. 39

3.9 Color thresholding for the choice of reference colors 40

3.11 A closeup of all the GCPs in the “E6” dataset 41

3.12 Closer overview of the GCPs . 42

4.1 The orthophoto “Lerkendal” converted into a normalized distance plot.
For both orthophotos, the Mahalanobis distance metric was used. The
reference sample described in Section 3.4.2.1 was used in (a), while (b)
used the sample described in Section 3.4.2.2. The darker areas represents
distances close to zero, while bright areas represents normalized distances
close to 1. 46

4.2 Overview of which GCPs were found consistently, and those that were not 47

xvii

4.3 An illustration of how the choice of method for calculating the scaling
factor, s, affect the placement og GCPs. The scaling factor, s = tr(DS)/σ2

x,
that was proposed by Umeyama (1991) is used in (a). In (b), the scaling
factor, s =

√
σ2
x/σ2

y, as proposed by Horn (1987), is used. Except for
the choice the scaling factor, s, everything is identical between (a), and
(b). The orthophoto “Lerkendal” is used in both instances. Blue crosses
signify the location of a GCP that was extracted by the prototype. Orange
pluses signify where the set of corresponding measured-in GCPs are in the
image when the inverse of the absolute orientation parameters is used to
transform the measured-in GCPs into image coordinates. 48

4.4 Box plot of the reference sample created directly from the orthophoto
“Lerkendal”. The diagonal shows the histogram of the different bands,
while the off-diagonal entries show the scatter plot of the different bands
against each other. Both (a) and (b) display the same data, but in (a), the
data have been converted to the Lab color space. (b) uses the RGB color
space. 49

4.5 Box plot of the reference sample created from the paint of a marked GCP.
The diagonal shows the histogram of the different bands, while the off-
diagonal entries show the scatter plot of the different bands against each
other. Both (a) and (b) display the same data, but in (a), the data have been
converted to the Lab color space. (b) uses the RGB color space. 50

4.6 Placement of GCPs when rematching is turned off 51
4.7 Placement of GCPs when rematching is turned on 52
4.8 Plots of residual errors for location (Northing - Easting) and Ellipsoidal

Height. (a) and (b) shows the residuals by using Horn to calculate the
absolute orientation parameters. (c), and (d) shows the same for Horn-
Hilden, while (e) and (f) used Umeyama. None of them used rematching.
For a larger version of these, see Figure B.1, B.3, and B.5. 53

4.9 Plots of residual errors for location (Northing - Easting) and Ellipsoidal
Height. (a) and (b) shows the residuals by using Horn to calculate the
absolute orientation parameters. (c), and (d) shows the same for Horn-
Hilden, while (e) and (f) used Umeyama. All of them used rematching.
For a larger version of these, see Figure B.2, B.4, and B.6. 54

4.10 Plots of residual errors for location (Northing - Easting) and Ellipsoidal
Height. (a) - (d) shows the residuals by using Umeyama∗ to calculate the
absolute orientation parameters. (a) and (b) did not use rematching, while
(c) - (d) did. For a larger version of these, see Figure B.7 and B.8. 55

4.11 Shows the histograms of the residual errors for the Northing, Easting, and
Elevation component of the data from Figure 4.8 - 4.10. (a), (c), and (e)
shows the histogram of the residuals when 10% of the ends have been cut
off. (b), (d), and (f) shows the same histogram without any pruning. . . . 56

4.12 Shows the resulting placement of the GCPs in the orthophoto “E6”. Re-
matching was turned on. (a) shows the results when using Horn, while (b)
is obtained by using Horn-Hilden. 57

xviii

4.13 Shows the resulting placement of the GCPs in the orthophoto “E6”. Re-
matching was turned on. (a) shows the results when using Umeyama,
while (b) is obtained by using Horn, but the list og GCPs was limited to
only the points visible in the orthophoto. 58

5.1 Histogram of the angle (in radians) of the residuals of location in Fig-
ure 4.8, 4.9, and 4.10. 63

5.3 Scatter-plot of the relationship between direction of residual and displace-
ment from the center . 64

5.2 Plots of the magnitude of residuals as a function of radial distance from
the center og “Lerkendal” . 65

A.1 A dependency graph for the file “main.m” 141

B.1 “Lerkendal” using Horn without rematching, residuals 170
B.2 Lerkendal - Horn - with rematching, residuals 172
B.3 Lerkendal - Horn-Hilden - without rematching, residuals 174
B.4 Lerkendal - Horn-Hilden - with rematching, residuals 176
B.5 Lerkendal - Umeyama - without rematching, residuals 178
B.6 Lerkendal - Umeyama - with rematching, residuals 180
B.7 Lerkendal - Umeyama∗ - without rematching, residuals 182
B.8 Lerkendal - Umeyama∗ - with rematching, residuals 184
B.9 Lerkendal - Horn - with rematching . 185
B.10 Lerkendal - Horn - without rematching 186
B.11 Lerkendal - Horn-Hilden - without rematching, placement 187
B.12 Lerkendal - Horn-Hilden - with rematching, placement 188
B.13 Lerkendal - Umeyama - without rematching, placement 189
B.14 Lerkendal - Umeyama - with rematching, placement 190
B.15 Lerkendal - Umeyama∗ - without rematching, placement 191
B.16 Lerkendal - Umeyama∗ - with rematching, placement 192
B.17 Using reference data from the orthophoto 194
B.18 Using the reference data from a marked GCP 195

xix

xx

List of Source Code

5.1 An exceprt from Script A.1, where a set of candidate matchings (CMs) are
matched with the measured-in ground control points (GCPs) from Lerk-
endal. See Table B.1 for the coordinates. 68

A.1 main.m: The main entry point . 77
A.2 apply_fun2img.m: Applies a given function to all pixels of an image . . . 82
A.3 bounding_box2area.m: Calculates the area of a given bounding box . . . 83
A.4 bounding_box2limits.m: Extracts the extents of a bounding box 83
A.5 bounding_box2points.m: Combines the extents of a bounding box to points 84
A.6 create_mask.m: Creates a binary image based on color limits 84
A.7 divide_image_into_bounding_boxes.m: Divides an image into many

subimages based on a given binary image 85
A.8 extract_parameters_from_similarity_transform.m: Extracts R, t, s 86
A.9 find_signa_color.m: Extracts the location of GCPs in the image 86
A.10 get_area.m: Extracts areas from an image 95
A.11 get_heights.m: Extracts heights from a digital surface model (DSM) . . . 96
A.12 get_pdf.m: Takes the ith component of a probability distribution 97
A.13 horn.m: Implements Horn (1987) . 98
A.14 horn_hilden.m: Implements Horn et al. (1988) 99
A.15 invert.m: Inverts the similarity transform (ST) 100
A.16 is_all_or_one.m: Validation function. Checks if input is “all”, or “one” . . 101
A.17 is_binimg.m: Validation function. Checks if the input is a binary image . . 102
A.18 is_boundary.m: Validation function. Checks if the boundaries are inclu-

sive or exclusive . 102
A.19 is_candidate_point_lists.m: Validation function. Checks that the input is

a valid set of CMs . 102
A.20 is_coordinate_system.m: Validation function. Checks that the given coor-

dinate system is valid. 103
A.21 is_custom.m: Validation function. Checks that a function can be used with

“prune_morphology.m” . 103
A.22 is_dem_or_disabled.m: Validation function. Checks that the input is a

valid digital elevation model (DEM) . 104

xxi

A.23 is_fraction.m: Validation function. Checks if input is a rational number
between 0 and 1 . 105

A.24 is_function.m: Validation function. Checks that the input is a function
handle. 105

A.25 is_image.m: Validation function. Checks if the input is an image 105
A.26 is_image_or_path.m: Validation function. Checks whether the input is an

image, or a path to an image . 106
A.27 is_images.m: Validation function. Checks if the input is a set of images . 106
A.28 is_integer.m: Validation function. Checks that the input is an integer. . . . 106
A.29 is_interval.m: Validation function. Checks if the input is an interval . . . 107
A.30 is_interval_or_disabled.m: Validation function. Checks whether the input

is an interval, or disabled . 107
A.31 is_min_max_std_mean.m: Validation function. Checks if the input is

“min-max” or “std-mean” . 107
A.32 is_number.m: Validation function. Checks that the input is a single number 108
A.33 is_number_or_disabled.m: Validation function. Checks that the input is a

single number, or disabled . 108
A.34 is_point_list.m: Validation function. Checks if the input is a list of points 108
A.35 is_point_list_or_path.m: Validation function. Checks if the input is a list

of points, or a path to such . 109
A.36 is_positive_integer.m: Validation function. Checks that the input is a pos-

itive integer . 109
A.37 is_positive_number.m: Validation function. Checks if the input is a posi-

tive number . 109
A.38 is_properties.m: Validation function. Checks if the input is a valid param-

eter for regionprops . 110
A.39 is_replace_mode.m: Validation function. Checks if the input is a valid

mode for replacing points that are too close 110
A.40 is_sample_data_or_disabled.m: Validation function. Checks if the input

is a set of sample data, a path to it, or disabled 111
A.41 is_structure_element.m: Validation function. Checks if the input is a valid

structure element . 111
A.42 is_valid_mode.m: Validation function. Checks if the input is a valid mode

for “prune_morphology” . 111
A.43 is_valid_orientation_algorithm.m: Validation function. Checks if the in-

put is one of the implemented algorithms for absolute orientation 112
A.44 limits.m: Extracts an interval of limits of a given dataset 112
A.45 limits_mean_std.m: Helper function for Script A.44 113
A.46 limits_min_max.m: Helper function to Script A.44 114
A.47 load_geojson.m: Input of GCP . 114
A.48 mahal_dist.m: Calculates the Mahalanobis distance for an entire image . . 115
A.49 make_outside_interval_checker.m: Creates a function for checking if a

given value is outside an interval with inclusive, or exclusive boundaries . 116
A.50 match_gcps.m: Implements Li and Briggs (2006) 116

xxii

A.51 mirror.m: Mirrors a set of points about a vertical, or horizontal line through
the center . 127

A.52 normalize.m: Normalizes data linearly 127
A.53 num_regions.m: Counts the number of regions in a binary image 128
A.54 plot_TPPs.m: Debugging function. Plots two topological point patterns

(TPPs) for visual inspection . 128
A.55 prune_morphology.m: Removes regions that has the wrong morphology . 128
A.56 remove_areas.m: Removes areas that falls outside an given interval for a

given function . 134
A.57 remove_empty_cells.m: Removes all empty cells from a cell-array 136
A.58 rmse.m: Calculates the root mean square error (RMSE) of any function . . 136
A.59 shinji_umeyama.m: Implements Umeyama (1991) 136
A.60 transform_points.m: Applies an absolute orientation to a set of points . . 138
A.61 verification_algorithm.m: Umbrella function for the different algorithms

for absolute orientation . 138
A.62 write_world_file.m: Takes the ST, and writes into a world file 139
A.63 kof2geojson: Converts a .kof file to .geojson 141
A.64 extract_all_gcp: Extracts the GCPs of a specified orthophoto 142
A.65 extract_values.m: Extracts all values from an image which are true in a

binary mask . 143
A.66 fuse_gcp.m: Fuses all the images in a particular folder together 143

xxiii

xxiv

Glossary

Absolute Orientation is an affine transformation transformation of an image. More
specifically, it is a Similarity Transform that consists of seven parameters (in three
dimensional (3D)); three for translation (x, y, z), three for rotation (φ, θ, κ, known
as roll, pitch, and yaw respectively), and one for scaling, s. Normally the three
rotations are not found explicitly, but rather they are implicit in a rotation matrixR.
The rotations are relative to the model. For a two dimensional orientation, only
4 parameters are required; one rotation, κ, two translations, x and y, and one for
scaling; s. vi, x, xi, xvii, xviii, xxii, xxiii, xxv, xxvi, xxvii, xxviii, 1, 2, 4, 12, 18,
19, 23, 26, 29, 30, 31, 32, 35, 43, 45, 48, 59, 60, 61, 62, 67, 68, 69, 86, 98, 99, 100,
112, 138, 148, 163, 164, 165, 166, 167

Absolute Orientation Parameters is a set of parameters that defines the absolute orien-
tation of an image. In 3D, there are seven parameters; three for translation, three
for rotation, and one for scaling. In two dimensional (2D), there are four; two for
translation, one for rotation, and one for scaling. The parameters are denoted as t,
R, and s respectively. xi, xvii, xviii, xxvii, xxviii, 2, 4, 18, 19, 23, 26, 29, 32, 35,
43, 45, 48, 60, 61, 62, 68, 69, 163, 164, 165, 166, 167

Aerial Image is an image taken of the ground from an aerial vehicle. xxvii, 1, 2, 13, 29,
47, 64

Aerial Vehicle is motorized vehicle that flies, or is otherwise airborne. In this thesis it
will refer to drones, manned helicopters, and planes, whose primary purpose is to
capture images of the ground. xxv, xxvi, xxvii, 3, 9

Affine Transformation is any transformation that conserves linearity, and ratios of dis-
tances. In other words, if three points lie on a line, they will still form a line after the
transformation. If one line is twice as long as another, the first will still be twice as
long after the transformation. Examples of affine transformations include rotation,
reflection, translation, shearing, and scaling (Weisstein, 2016). xxv, xxviii

Bundle Adjustment is an algorithm for simultaneous finding the optimal 3D location of a

xxv

structure as seen in multiple images, and the position, orientation, and calibration of
the different cameras that took the images. This algorithm, and derivatives thereof,
are used to reconstruct a 3D model of what is captured in a set of ground control
points (GCPs). From the model, a true orthophoto can be made (Triggs et al., 2000).
There are many variations of this method. The main difference between them lies in
the choice of error function, and error model (Triggs et al., 2000). x, 7, 9, 29

Candidate Matching is a n × 2m matrix whose first m columns are image coordinates,
while the latter m are Real-World (measured-in) coordinates. One row represents a
single point. Each row, then, is a mapping from image coordinates to measured-in
coordinates of GCPs, and vice versa. xii, xiii, xiv, xxi, xxviii, xxxi, 2, 18, 29, 32,
45, 60, 102, 148, 149, 150, 151, 152, 153, 154

Creative Commons Attribution-ShareAlike 3.0 is a free culture license that gives any-
one the right to use and adapt the work, as long as an attribution to the original cre-
ator is given, and that the work is distributed under a similar license. The full license
is available at https://creativecommons.org/licenses/by-sa/3.0/
legalcode. 75

Digital Terrain Model is an elevation model that measures the elevation from a specified
geoide to the bare terrain. That is, trees, houses, and any other structure that is not
the ground is not included in this model. xxvi, xxxi, 2

Digital Surface Model is a superset of digital terrain model (DTM). It also includes ev-
erything that is above ground, such as trees, buildings, and bridges. xxi, xxvi, xxxi,
1

Digital Elevation Model is an umbrella-term for both DTM, and digital surface model
(DSM). viii, xxi, xxxi, 18, 30, 35, 43, 69, 104

Drone is an umbrella term for any unmanned aerial vehicle. The main usage of “drones”
in this thesis, is in the context of relatively small, battery powered micro-planes,
quad-copters, helicopters, and other multi-copters. xxv, 1, 5, 9, 36, 47

Exchangeable Image File Format is a standard for storing meta-data inside an image.
Information that can be stored include location, date, and time, who took it, what
compression algorithm is used, and more. Only Joint Photographics Experts Groups
(JPEG) and Tagged Image File Format (TIFF) support this format. xxxi, 32

GALILEO is an European Global Navigation Satellite System (GNSS). It is a civilian
system, unlike GPS and GLONASS which are owned, and operated by military
agencies. GALILEO aims to be a completely independent system, while still of-
fer full interoperability with GPS and GLONASS. As of this writing (May 2016),
GALILEO is not yet fully operational (European Global Navigation Satelite Sys-
tems Agency, 2016). vi, xxvii

xxvi

https://creativecommons.org/licenses/by-sa/3.0/legalcode
https://creativecommons.org/licenses/by-sa/3.0/legalcode

Georeference is the process of finding the parameters that gives the absolute orientation
of an image. A georeferenced image, or orthophoto is an image for which the abso-
lute orientation is known, and has been applied to the image. In other words, every
pixel of the image has a specific Real-World position associated with it. i, vi, xi, 1,
2, 3, 5, 7, 8, 9, 17, 33, 35, 43, 45, 47, 49, 51, 53, 55, 57, 59, 67, 69

Global Positioning System is a constellation of 31 satellites in 6 different medium Earth
orbits, with an altitude of approximately 20 200 km. This gives global, real-time
3D positioning and navigation, velocity and timing. It is developed, and owned
by the United States Department of Defense. It is operated, and maintained by
the United States Air Force. Global Positioning System (GPS) is one of multiple
implementations of a GNSS (Nahavandchi, 2015; GPS.gov, 2016). xxvii, xxxi, 9

Global Navigation Satellite System is an umbrella term for any system of satellite con-
stellations that gives the user the possibility of finding his, or her 3D position, ve-
locity, and timing that can be used for navigation and positioning, amongst other
applications. The most well-known examples of a GNSS is the United State’s GPS,
the Russian GLONASS, the European GALILEO, and the Chinese BeiDou. The In-
dian Regional Nagivation Satellite System is considered to ba a GNSS, even though
it only covers India (GNSS Asia, 2015). vi, xxvi, xxvii, xxxi, 9

GLONASS is a GNSS developed, owned, and maintained by the Russian Federation.
It consists of 24 satellites in a constellation. Its full name in English is GLObal
NAvigation Satellite System, not to be confused with Global Navigation Satellite
System. The abbreviation GLONASS will therefore be used. If the full name is
refered to, the Russian name will be used in stead to distinguish it from GNSS. The
Russian name is “Globalnaya navigatsionnaya sputnikovaya sistema” xxvi, xxvii

Horn refers to the least-squares estimation (LSE) solution for finding the absolute orien-
tation parameters proposed in Horn (1987). xi, xviii, xix, 35, 43, 45, 48, 59, 60, 61,
167

Horn-Hilden refers to the LSE solution for finding the absolute orientation parameters
proposed in Horn et al. (1988). xi, xviii, xix, 35, 43, 45, 48, 59, 60, 61, 167

Image will, in this thesis, be a collective term for orthophotos and aerial images. Depend-
ing on the context, binary images, and gray-scale images can be any image, and not
just those from an aerial vehicle, or images that are orthophotos. vi, viii, x, xiii, xiv,
xv, xvii, xxi, xxiii, xxv, xxvi, 1, 2, 3, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21,
22, 24, 26, 29, 30, 31, 32, 34, 36, 38, 39, 40, 45, 47, 48, 61, 62, 66, 67, 143, 145,
149, 150, 151, 152, 153, 154, 156, 157, 158, 159, 161, 162, 163

L*a*b* is a color model developed by the International Commission on Illumination in
three dimensions; Lightness, a, and b. a is goes from yellow to blue, while b goes
from red to green. This is because yellow and blue are complementary colors, as is
red and green(Cruse, 2015). x, xviii, 12, 39, 44, 48

xxvii

Least-squares estimation is a method for finding the parameters of a function such that
the total error of the given sample data is minimal. ix, xxvii, xxxii, 1, 12, 19, 43, 67,
69, 98

MATLAB® is a programming language, and an integrated development environment
(IDE) produced by Swedish MathWorks®. vi, vii, 24, 39, 40, 44, 47, 77, 83, 105,
110, 140, 145

Mozilla Public License version 2.0 is an open source license, which encourage other peo-
ple to share, and contribute to a project. It also encourage to modify the project and
include it into other projects, be they open source, or proprietary. For the full license,
see Appendix C. xxxii, 27

NTNU-Geomatics is a group at the Department of Civil and Transport Engineering, Fac-
ulty of Engineering Science and Technology at the Norwegian University of Science
and Technology (NTNU) 36, 38

Orthophoto is an image that was been processed such that it is orthographic, i.e. any
artifacts from a central projection is removed. i, vi, x, xi, xiii, xiv, xv, xvii, xviii,
xix, xxiii, xxv, xxvi, xxvii, 1, 2, 3, 5, 7, 8, 9, 13, 15, 18, 29, 30, 32, 33, 35, 36, 38,
39, 43, 44, 45, 46, 48, 47, 48, 59, 62, 63, 64, 66, 67, 69, 142, 145, 149, 150, 151,
152, 153, 154, 156, 157, 158, 159, 161, 162, 163, 167, 193

RGB is a device dependent color model in three dimensions; red, green and blue. It is
used to display color on most screens, and it is used in most cameras to capture light.
Usually 8 bits are used to encode each color, giving approximately 16.8 million
unique colors (Rouse, 2005). x, xxxii, 8, 11, 39, 44, 145

Root Mean Square Error is a measure of the total error in an estimation. Defined math-

ematically as
√

1
n

∑n
i=1 e

2
i , where n is the number of observations, and ei is the

difference, or error, between the observed value and the estimated value for data
point i. xiv, xxiii, xxxii, 2, 26, 30, 60, 67, 69, 136, 156

Similarity Transform is a linear transformation that allows rotation about an arbitrary
axis, translation, and scaling. A Similarity Transform is an affine transformation.
The reverse need not be true. xii, xxi, xxv, xxxii, 60, 100, 163

Topological Point Pattern is a concept, and an algorithm for finding a candidate match-
ing (CM) between two sets of points. The concept, and the algorithm will be studied
in grater detail in Section 2.5. i, ix, x, xi, xxiii, xxxii, 3, 7, 16, 32, 45, 66, 101

Umeyama refers to the LSE solution for finding the absolute orientation parameters pro-
posed in Umeyama (1991). xi, xviii, xix, 35, 43, 45, 48, 60, 61, 62, 63, 67, 167

xxviii

Umeyama∗ refers to a modified version of the method for finding the absolute orientation
parameters proposed in Umeyama (1991). The scale factor, s, is calculated same
way it is in Horn (1987) and Horn et al. (1988) instead of how it was originally
calculated in Umeyama (1991). xviii, xix, 35, 43, 45, 48, 61, 167

World file is an auxiliary file for any image that describes the placement, and orientation
of the image in a certain coordinate system. The system can be global, such as
UTM, or WGS84, regional, or local. The file name is the same as the image with
the extension .*w, where * is the first two consonants of the image’s file extension.
If an image is a called “ortho.tif”, then the world file is called “ortho.tfw”. xxiii, 32,
139

xxix

xxx

Acronyms

2D two dimensional xxv, 19, 25, 29, 43, 64, 67, 69

3D three dimensional xxv, 2, 5, 11, 19, 20, 29, 30, 31, 43, 64, 67, 69

BAT Department of Civil and Transport Engineering, Faculty of Engineering Science and
Technology at the Norwegian University of Science and Technology xxviii, 4

CM candidate matching Glossary: candidate matching, xii, xiii, xiv, xv, xxi, xxviii, 2,
18, 29, 32, 45, 60, 67, 68, 102, 148, 149, 150, 151, 152, 153, 154, 156, 157, 158,
159, 161, 162, 163, 167

DEM digital elevation model Glossary: Digital Elevation Model, viii, xxi, 18, 30, 35, 38,
43, 69, 104

DSM digital surface model Glossary: Digital Surface Model, xxi, xxvi, 1

DTM digital terrain model Glossary: Digital Terrain Model, xxvi, 2

EXIF Exchangeable Image File Format Glossary: Exchangeable Image File Format, 32

GCP ground control point v, viii, ix, x, xi, xii, xiii, xiv, xv, xvii, xviii, xix, xxi, xxii, xxiii,
xxv, xxvi, 1, 2, 3, 10, 12, 13, 15, 16, 17, 18, 19, 22, 24, 26, 29, 30, 31, 32, 34, 35,
36, 38, 39, 41, 43, 44, 45, 46, 47, 48, 47, 48, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69,
86, 100, 101, 103, 110, 136, 142, 145, 146, 149, 150, 151, 152, 153, 154, 156, 157,
158, 159, 161, 162, 163, 167, 193

GIS geographic information system 3

GNSS Global Navigation Satellite System Glossary: Global Navigation Satellite System,
vi, xxvi, xxvii, 9

GPS Global Positioning System Glossary: Global Positioning System, xxvi, xxvii, 9

xxxi

IDE integrated development environment xxviii

IR infrared 8

JPEG Joint Photographics Experts Groups vi, xvii, xxvi, 32, 39

LSE least-squares estimation Glossary: Least-squares estimation, ix, xxvii, xxviii, 1, 2,
12, 19, 43, 67, 69, 98, 99

MPL 2.0 Mozilla Public License Version 2.0 Glossary: Mozilla Public License, 27

NPRA Norwegian Public Roads Administration v, 1, 36

NTNU Norwegian University of Science and Technology v, xxviii, xxxi, 1, 4, 35

PNG Portable Network Graphics vi

RGB red green blue Glossary: RGB, x, xvii, xviii, 8, 11, 39, 44, 48, 145

RMSE root mean square error Glossary: Root Mean Square Error, xiv, xv, xvi, xxiii, 2,
26, 30, 60, 61, 63, 67, 69, 136, 156, 157, 158, 159, 160, 161, 162, 163

RTK real time kinematics 9

ST similarity transform Glossary: Similarity Transform, xii, xxi, xxiii, 60, 100, 136, 139,
163

SVD sigular value decomposition 25, 26, 136

TIFF Tagged Image File Format vi, vii, xxvi, 32, 40

TPP topological point pattern Glossary: Topological Point Pattern, i, ix, x, xi, xxiii, 3, 7,
9, 12, 16, 17, 18, 32, 45, 66, 67, 101, 116, 128

xxxii

Chapter 1
Introduction

UP UNTIL now, finding, and matching ground control points (GCPs) in an orthophoto
has been a manual process. The same is true for aerial images in general. Much of

this thesis is dedicated to the design and development of such a computer program.

Previously, marked measured-in GCPs had to be found manually in the orthophoto, often
with the help of a map. The user would then assign the a GCP to one in the orthophoto.
The computer on which this was done, would then calculate the absolute orientation of the
orthophoto, and georeference it. ArcGIS is such a program.

Now, by giving an orthophoto, or an aerial image and a set of measured-in GCPs to a
program, the absolute orientation of the image is found completely automatically; the user
need only start the program, and select the input data. The application does the rest.

“Words are wind” is an expression. Therefore, a part of this thesis is dedicated to testing,
and verification. That is also why all source code, and data used is disclosed.

The testing was done with realistic, Real-World data from Norwegian University of Sci-
ence and Technology (NTNU) and the Norwegian Public Roads Administration (NPRA).
The data consists of a multitude of aerial images taken from an FylSense eBee drone. The
images where then stitched together to form two different orthophotos. They where then
given as input along with the measured-in GCPs, and a digital surface model (DSM) when
available.

The goal of this program, and subsequent testing, is to investigate the potential and feasi-
bility of a program that can automatically georeference an image by using the image itself
and the GCPs. For diversity of usage, one of the datasets was collected for purely scientific
purposes, while the other was gathered for government usage.

The experimental setup is discussed in Section 3.3. The development is described in Chap-
ter 3 and 4. Afterward, the results from the experiments are analyzed, and discussed in
Chapter 5.

1

Chapter 1. Introduction

1.1 Goal of the thesis

The overarching goal of this thesis is to investigate the possibility, and feasibility of au-
tomatic georeferencing. More specifically, this will be done by automatically detecting
marked ground control points (GCPs) in a given orthophoto, or aerial image, extracting
these, and matching them to a set of given measured-in GCPs. When a matching is found,
the absolute orientation is found by using a least-squares estimation (LSE) algorithm on
these two sets of points.

As this is an investigative approach, a prototype is developed. It need not be ready for
commercial production, or be blazingly fast, only prove it is possible, and feasible, i.e.
takes a reasonable amount of time to compute. Being a prototype, we limit the amount
of possible ways the GCPs are marked. The marker this thesis will focus on is a square
colored in a safety orange color. An example can be seen in Figure 3.6 and 3.7.

In Section 2.1, we see that some existing solutions claim to be automatic, but require some
user input during the process. This is not the case for the program of this thesis. The only
user interaction required, is to start the program, and select the input. The solution would
then, in a reasonable amount of time, find the absolute orientation of the orthophoto, and
give the user the absolute orientation parameters directly, write it to a file, or write the
parameters directly into the image file. This way other programs, or software packages
can analyze the image further, as spatial information. If the user have a digital terrain
model (DTM), and the GCPs are measured-in with Northing, Easting, and Height, and if
the user wish to, the program can give a three dimensional (3D) absolute orientation.

In summary, in this thesis we want to develop a prototype that is able to automatically
georeference orthophotos and aerial images that have their GCPs marked with an orange
square. This prototype is then to be tested on Real-World data.

Supplementary to this, we also want to make the prototype efficient and open source. We
want to repeat parts of what was done in Li and Briggs (2006), and to compare three
different methods for computing the absolute orientation parameters for the orthophotos.

1.1.1 Secondary Goals

Now that the overarching goals have been formulated, we take a look at some of the minor
objectives of this thesis. These will not be the main emphasis, but rather supplement the
thesis. Additionally, they will contribute to society at large, and science in particular.

1.1.1.1 Open source

In Section 2.1, we see that similar solutions already exist. These cannot georeference an
image to a set of points, but rather to an already georeferenced image, or a to a georefer-
enced vector set of a road network. One of them have published its pseudo-code for the
algorithm, but not the actual source code. The other solutions are proprietary, however. As
such, they are of less use to the public domain. Therefore, another goal of this thesis is to
make the prototype open source, and publicly available.

2

1.2 Motivation

1.1.1.2 Multiple LSE techniques

LSE will be discussed in greater detail, and compared against each one another in Sec-
tion 2.6.1. A selection of implementations of LSE that estimates the absolute orientation
parameter are presented in Section 2.6. These methods will be run on the same candidate
matchings (CMs), and the result will be compared. In particular, the resulting root mean
square error (RMSE) will be compared and analyzed.

1.1.1.3 Investigate the usability of topological point pattern

On of the strongest assets of science, and scientific work is repeatability, and reproducibil-
ity. Li and Briggs presents the concept of topological point pattern (TPP), along with an
algorithm for matching points. The source code, and data that was used in their article,
was not disclosed.

As part of this thesis, aspects of their experiment are repeated; two sets of points are to be
matched. One of the sets comes from an image, while the other has its origin in a vector
set (points). In this case, all the source code, and data used is disclosed to the scientific
community.

1.1.1.4 Effectiveness

If the solution proposed in this thesis, works perfectly, and is incredibly accurate, but takes
many days to run, it is, in many ways, a failure. A solution need to be efficient enough
in order to be useful. In practice, this might mean that it is faster, or near as fast as the
manual alternative.

Even though the solution in this thesis is a prototype, a secondary goal is that it can geo-
reference an orthophoto in a reasonable amount of time.

1.1.1.5 Investigate marks for GCPs

At the time of writing (May 2016), there is no standard for how a GCP should be marked
when it is to be captured from an aerial vehicle in Norway. Since automation becomes
more and more common, it stands to reason that the future for georeferencing also is
automatic. Consequently, it is of interest to investigate what impact the shape, size, and
color has for the ease of detection.

Look at what role the markings have, and come with some thoughts, and experiences about
it.

1.2 Motivation
In Section 1.4, we see that the Geomatics, and Surveying profession has been eager to use,
and adapt new technology, such as drones, and computers when they became available.
Yet, as we see in Section 2.1, there are no commercially available solutions, be they pro-
prietary or open source, to the problem of automatically georeference an orthophoto based
on its GCPs.

Society at large is leading towards ever more automation. First heavily manual work was
automated, then more and more routine tasks were done by machines. Since georeferenc-

3

Chapter 1. Introduction

ing of orthophoto is a fundamental part of geographic information system (GIS), and a
routine task, it is only natural for it to be automated as well.

During the preliminary research for this thesis, and accompanying program, the author
has been in contact with representatives from the geomatics, and surveying professional
community in Norway, professors, and faculty at Department of Civil and Transport Engi-
neering, Faculty of Engineering Science and Technology at the Norwegian University of
Science and Technology (NTNU). All of these was very positive to a system as described
here. It was also their opinion that there is a need for such a system as well.

1.3 The structure of the thesis
In the rest of the introduction, we will take a little look at the history of surveying, and see
that this work is a natural next step in Surveying, and Geomatics.

The next chapter is concerned with the underlying theory that the program is based upon.
The theory is not limited to the program, however. Software packages, and solutions that
are similar to the proposed solution, are presented, discussed, and compared against each
other.

Chapter 3 presents the design process of the prototype along with how that data that was
used was collected and processed. We also go through how the prototype is tested and
verified.

In Chapter 4, the results from two Real-World cases are presented. These results are then
analyzed and discussed in Chapter 5, before a conclusion about the program’s feasibility
and usability is drawn in Chapter 6.

The Appendices contain the source code for the program along with URLs to the public
repository of the code base, to the data that was used in the development and testing of the
program.

1.4 A small history lesson
Surveying has been a part of civilizations since ancient times. One of the first known
uses of surveying equipment is in the Middle East, about 5 000 years ago and in China,
about 3 000 years ago (Skogseth and Norberg, 1998a). The main use for such equipment,
and the corresponding profession, seems to have been much the same as the use is today;
to establish, and maintain borders (Land surveyors, 2010). Up until the 14th Century, the
equipment used did not change much. Leveling techniques and equipment were developed,
and invented in the 16th Century. While Galileo turned his telescope towards the heavens
above, surveyors turned theirs toward bench marks and determined heights. (Skogseth and
Norberg, 1998b; van Helden, 2016)

In the time between 1920 and 1980, the development of surveying equipment saw a large
increase in accuracy, and a drop in both weight and price (Skogseth and Norberg, 1998b).
Before this, the development was rather slow, but steady.

In 1980 - 1990, computers were introduced to the world of surveyors. They could easily

4

1.4 A small history lesson

do the lengthy computations, such as relative, and absolute orientation, faster, more con-
sistent, and with more accuracy than the surveyor could do. This is also when closed-form
solutions for the absolute orientation parameters were first described (Horn, 1987; Arun
et al., 1987; Horn et al., 1988).

Later, in our own decade, we have seen software packages, such as PhotoScan, Pix4D,
and DroneDeploy, becoming publicly available. These software packages are able to take
a number of images and make a 3D model from them. An orthophoto can then be made
from the 3D model. With the availability of such software packages, drones have become
popular in the field. One of the reasons for this, is that the drone can take pictures over a
given area relatively quickly at, almost, any spatial resolution.

If the individual images fed into such software packages have a location associated with it,
the programs are able to georeference the orthophoto (AgiSoft LLC, 2012; startupticker.ch,
2014; Kolodny, 2014). There are certain issues associated with this method of georefer-
encing. These will be discussed in Section 2.1.5.

Considering that a trend in modern history is automation, it then seems natural for an
important routine task to be done automatically. For the geomatic sector, one such ad-
vancement would be the program developed in this thesis (Ramebäck, 2003).

5

Chapter 1. Introduction

6

Chapter 2
Theory

“We are like dwarfs sitting on the shoulders of giants. We see more, and things that are more
distant, than they did, not because our sight is superior or because we are taller than they, but
because they raise us up, and by their great stature add to ours.”

John of Salisbury, Metalogicon

ALL OF the concepts, and theoretical frameworks that were used for the implementa-
tion, and the subsequent testing and validation of the prototype is well-known to the

scientific community at large. Some of it lies outside the normal realm of the geomatics
sector, however.

This chapter intends to lay the foundation of what the prototype is built upon.

2.1 Existing solutions

There are software packages that are, to some extent, capable of automatic georeferenc-
ing, although they do not solve the problem depicted in the introduction. These include
ArcMap, AutoSync, PhotoScan, Pix4D, and DroneDeploy. Another solution was pub-
lished by Li and Briggs (2006). Unlike the other solutions, Li and Briggs (2006) is not (to
the Author’s knowledge) commercially available.

The first two work by using an already georeferenced image. The latter uses topological
point pattern (TPP). The rest uses a combination of bundle adjustment, and the location
associated with its input images.

In the following subsections, the different solutions are presented and discussed.

7

Chapter 2. Theory

2.1.1 Esri ArcGIS

The “Georeference” tool in ArcGIS has the option to georeference a given orthophoto
automatically. The process is not fully automatic, however. In order to start the process,
the user must place the image to be georeferenced approximately where it is supposed to
be in an already georeferenced image. This image can be much larger in extent than the
image to be georeferenced. The two images are then matched (Esri, 2016b).

The tool have some limitations, which are summarized in this tip from the tool’s documen-
tation (Esri, 2016b):

To achieve a higher success rate in [georeferencing], the two images need to
be as similar as possible: geographic location, time and season, image orien-
tation, image scale, and band combination [such as red green blue (RGB), and
infrared].

Two more limitations are mentioned in the same document. One is that the images must
have approximately the same spatial resolution, or that the image already georeferenced
have larger spatial resolution than the other image. The second, is that the aspect ratio of
the pixels must be very similar.

If one is to work with time-series, these limitations might not be a major problem.

2.1.2 Leica Geosytems IMAGINE AutoSync™

IMAGINE AutoSync™is an add-on to the software package Hexagon Geospatial ER-
DAS IMAGINE. It works by generating many (thousands) points for each image, and
then matching these two sets of points. Very few details of the inner workings of this ex-
traction, and matching are disclosed (Leica Geosystem Geospatial Imaging, LLC, 2005;
Erdas, 2008).

Leica’s solution does not have as many, and as strict limitations as Esri’s; the images may
be of different resolution and the bands in the images need not be identical. One image
could, for example, be true color, RGB, while the other image could have a one or more
bands in the infrared (IR) spectrum.

Another advantage is that the image to be georeferenced need not be placed by the user a
priori (Leica Geosystem Geospatial Imaging, LLC, 2005).

Both ArcMap, and AutoSync share a common limitation; another (similar) image must
already be georeferenced.

2.1.3 Leica Cyclone REGISTER

Stitching together laser scans, and can recognize targets automatically similar to Fig-
ure 2.4. 2011/

8

2.1 Existing solutions

2.1.4 Li and Briggs

Unlike the previous two systems, Li and Briggs uses a georeferenced vector set of a road
network instead of another image. This makes it possible to match an orthophoto of a
constricted area, such as a building site, or a city, with the road network of the entire
country in a relatively short time (minutes).

Their method finds intersections in the image, and matches these to a subset of the inter-
sections of the road network by using TPP.

Unfortunately, their exact implementation is not publicly available. Pseudo-code of their
algorithm, and their use of TPP, however, is publicly available in Li and Briggs (2006).
There are not much details on how the pre-processing of the road network, and the image.
As we shall see in Section 2.5.2, the concept of TPP, and the corresponding matching
algorithm is well suited for solving the correspondence (matching) problem.

2.1.5 Bundle adjustment

All the previous methods rely on one dataset being georeferenced in advance. Many meth-
ods that use bundle adjustment are capable of using auxiliary information, such as the
location of where the different images taken, to georeference the resulting orthophoto.

Examples of such software packages include Pix4D, AgiSoft’s PhotoScan, DroneDe-
ploy, and OpenDroneMap (AgiSoft LLC, 2012; Pix4D, 2015; DroneDeploy, 2015;
OpenDroneMap, 2015)

The location of where the different images were taken can either be stored in the image
itself, or in a separate file. Normally this information is gathered by using a code-based
Global Positioning System (GPS) receiver, but can also be gathered with a real time kine-
matics (RTK) system. The latter is able to give an accuracy of the georeference comparable
to manually georeference the image. However, this method gives no indication of the error,
and no means to validate the result (automatically) (Nahavandchi et al., 2015).

The first option have a similar problem, but due to the use of code based GPS, and likely
only a single band (L1), the base accuracy of the position is between 1 - 15 meters (Naha-
vandchi et al., 2015; Nahavandchi, 2015).

With any method that uses geotagged images (i.e. a image with a location associated with
it), there is a problem in determining which exact pixel the geotag is associated with. One
might assume that the location is associated with the center pixel. With an RTK system,
one has to account for where the Global Navigation Satellite System (GNSS) receiver is
in relation to the camera that took the picture. This is because that the receiver, and the
camera might be more than a couple of centimeters away from each other, which is often
the accuracy of a RTK system. This issue will become a greater neusence if the camera
on-board a drone or aerial vehicle is facing the ground perpendicular. This might happen
during some turbulence, or if the aerial vehicle is turning.

Another issue that might arise, is that the camera in the drone or aerial vehicle that took
the image might not be perpendicular to the ground.

9

Chapter 2. Theory

2.2 Classification
Most classifiers require some data that says what is a target, while others also need to
know what is definitively not a target. Some classifiers, however, need no information of
what constitutes different classes. Such classifiers are often categorized as cluster analysis.
These are often used for exploratory analysis, but not often with for automatic categoriza-
tion, as the algorithm do not know what constitute a certain category unless it has been
“told” beforehand (Feldmann, 2015). The classifier that was used in the implementation
is described in Section 2.4.1.

2.2.1 Hypothesis testing
A classifier can be seen as a, hypothesis testing. In our case, we test the hypothesis that a
given pixel, or area a ground control point (GCP). The null hypothesis, then is that an area,
or pixel is part of the background. For any hypothesis testing, there is a certain probability
that the conclusion is false. This happens in one of two ways, Type I, and Type II errors.
A Type I error is to reject the null-hypothesis when it is true, while a Type II error is to
accept, or not reject, the null-hypothesis when it is false (Walpole et al., 2012; Gonzalez
and Woods, 2008b).

Ideally, there would be very few Type I, and Type II errors. Unfortunately, if we want
to decrease the amount of Type I errors, there will be more Type II error under the same
dataset, and method to test the hypothesis (Walpole et al., 2012).

2.3 Color Theory

Figure 2.1: An illustration of the visible electro-
magnetic spectrum. Adapted from Ronan (2007).

Since the prototype of this thesis will deal
with recognizing a particular color, it is
fitting to review some of the theoretical
framework for color.

Color, as we perceive them, is pho-
tons with a particular wavelength reflected
from a surface. The wavelengths humans
are capable of observing range from ap-
proximately 380 nm to 780 nm. For most
people, however, the range is from 400 nm
to 700 nm (Tipler and Mosca, 2008). An

example of this span can be seen in Figure 2.1.

In the human eye, there are two kinds of photo sensitive cells; cones and rods. Of the first,
there are three subcategories; those sensitive to red, green, and blue. Their sensitivity is
approximately Gaussian, with a mean of 575 nm, 535 nm, and 445 nm respectively. All
of these require ample light, or a sufficient number of photons reaching the eye per unit
time. The latter is very sensitive to light, but is not able to sense color. In other words,
rods are capable of detecting tiny amounts of light, but not the color of the light (Gonzalez
and Woods, 2008c).

10

2.3 Color Theory

Figure 2.2: Examples of spectral signatures of
different substances in the visible range of the
electromagnetic spectrum. (Source: Allen (2010).
Colors are inverted to better fit printing on paper.)

A single wavelength is not sufficient to de-
scribe colors as we observe them, how-
ever. In Figure 2.2, we see one of the
reason for this. Here we see how differ-
ent kinds of soil, leafs, and water reflect
different wavelengths in the visible elec-
tromagnetic spectrum, and thus giving of
a certain color. Additionally, some colors
that we can see, are non-spectral, i.e. not a
color we can see in the rainbow (Rodges,
2010; Blackwell, 2013). Such colors in-
clude pink, gold, brown, and purple. An-
other aspect of a color is its brightness, or
luminescence, and the saturation of a color
(Gonzalez and Woods, 2008d). How we
can describe colors is the topic of the next
section.

When an image is taken, some assumptions about the lighting condition is often required.
That is, unless it is taken in a raw format. White balance is another concept that is useful
when dealing with color images. The human brain is very good at determining what white
looks like even when ...

2.3.1 Color models

2.3.1.1 The RGB model

Since the cones of the eye is sensitive to red, green, and blue, the red green blue (RGB)
is a natural color model. As the name suggests, it uses three primary colors to form other
colors in an additive fashion. This model is similar to how light (photons) work; is you
shine a blue light on a surface, and then shine red light on the same surface, the reflected
color is magenta. For green, and blue, the result is cyan, while red and green light gives
a yellow light. The RGB model is often seen as in Figure 2.3a, but is actually a three
dimensional (3D) model, as can be seen in Figure 2.3b. For any color model, or vectors of
color value, the different dimensions are called bands, or channels.

In general, exactly how the colors are encoded, and displayed varies from device to device.
This makes the RGB model device dependent, and not ideal for communicating colors
between applications, screens, or images. Additionally, all colors that the human eye is
capable of seeing, cannot be reproduced by three static primary colors (Gonzalez and
Woods, 2008d).

2.3.1.2 Hue, saturation, and value

The RGB model is very useful for dealing with additive color. The model is not intuitive,
however. A more intitive description of color, is the HS* models. All of them use hue and
saturation. The difference between them is in how lightness, or intensity is modeled. These
models are more intuitive, as one van first select a particular hue of color (e.g. maroon,

11

Chapter 2. Theory

(a) An illustration of the additive property of the
RGB color model. It shows the intersection of the
primary colors to become yellow, cyan, magenta,
and white.

(b) An illustration of the three dimensional (3D)
model of RGB. (Source: Gonzalez and Woods
(2008e).)

Figure 2.3: Illustrations of the RGB color model.

teal, or blue) and then define how saturated the color is, and how much white it should
have (Gonzalez and Woods, 2008d,f).

The main disadvantage for analytic purposes, is that hue is cyclic. A red color that have
a hint of blue, or violet in it have a value for hue that is on the other end of the scale than
pure red.

Another disadvantage is that saturation and lightness, or intensity is often strongly corre-
lated (Kayser et al., 2008).

2.3.1.3 The Lab model

The cyclic nature of hue in HS* is unfortunate. Lab is a color model developed by the
International Commission on Illumination in 1976 that does not have this problem. The
model decouple color from luminance, or lightness. As the previous two model, Lab is
also three dimensional. The dimensions are luminance, or lightness, a, and b. The latter
two are perpendicular color vectors. a goes from red to green, while b goes from blue to
yellow (Cruse, 2015). Unlike the previous two models, Lab uses absolute positioning; a
given vector of Lab values is the same across multiple devices Rys (2015). The Lab color
model is able to represent every color the human eye is capable of seeing in addition to
colors it is not. The main advantage, and purpose of the Lab model is that (euclidean)
distances between colors in the model correspond to perceived differences. That is, if two
color vectors described in Lab are far apart, then they will look very different from each
other. This is an advantage when looking for a particular (signal) color.

12

2.4 Image processing

2.4 Image processing
A large part of the solution proposed in this thesis is concerned with detecting the GCPs
in a given image. The reason for this, is that a large part of the prototype in Appendix A
process the input image. By using TPP, and least-squares estimation (LSE), the absolute
orientations of the image was found from the points extracted from the image quickly.

Most techniques known to, and used in, image processing is concerned with gray-scale,
and binary images. A minority of these techniques are applicable to color images as well.
Some techniques, however, only work on color images. One of the reasons for this, is that
a gray-scale image is essentially an n ×m matrix, while a color image can be treated as
an n×m× 3 matrix.

Gonzalez and Woods (2008g) is an introductory textbook for image processing. Out of its
12 chapters, only one is dedicated to color image processing, while many of the remaining
chapters are dedicated to binary images, and gray-scale images. Much of what is said here,
comes from this book.

2.4.1 Segmentation
The purpose of segmenting an image, is to divide it into different regions that have different
properties. In our case, we want to divide the image in two categories: “ground control
point”, and “background”. This is why tools and techniques from image processing is used
in this thesis.

Figure 2.4: An example of a
marker for a GCP.

GCPs can be difficult to spot. Unless they are marked with
a bright signal color, we normally would not notice them in
our daily lives. They are also quite small. The marked area
in Figure 3.6 is 15 cm × 15 cm. With an spatial resolution
of 3 cm

pixel , the entire GCP is 5pixel × pixel, and the GCP it-
self constitutes approximately a single pixel. Therefore, the
GCPs must be marked in some fashion before the aerial im-
ages are taken. There are generally two ways of marking a
GCP; using a signal color, as was done in Figure 3.6, or us-
ing a specific shape. Often these two are used together with
an emphasis on one of them. For example, the mark can
have a shape as Figure 2.4, or Figure 3.6. In the first case,
the main emphasis is the shape, while in the latter, the color
is the main emphasis. Image processing have methods for
detecting both.

In the orthophotos that were used in the development of
the prototype, the GCPs were marked using a signal color.
Therefore, this thesis will focus on techniques for detecting specific colors.

Since gray-scale images are easier to work with, it would be convenient to convert the
image into a gray-scale. When an image is normally converted into gray-scale, a weighted
average is used . By doing this, however, we loose much of the information of the signal
color, defeating the purpose of using color markers. Assuming the target color is known,

13

Chapter 2. Theory

a distance metric can be used to measure the distance of any pixel from the target instead.

One metric that will convert the color image into a gray-scale image is the Euclidean
distance metric:

dE(z,a) = ((z − a)
ᵀ

(z − a))
1
2 (2.1)

Here z is a color vector in the image, while a is the target color, also a color vector. When
the target color is sampled, a can be set to be the mean of the sample data.

This metric is simple to implement, and simple to compute. If need be, the image can be
normalized to the interval [0, 1].

In Section 4.2.1, and 3.2, we shall see that a single measurement of the target color is
insufficient to represent the color, and the variations in it. Some of this variation can be
seen in Figure 3.7 and 3.6.

A metric that takes the variation of the different channels, and their interplay into account
is the Mahalanobis distance metric (Kyriakidis, 2015; Wicklin, 2012; Orlov, 2011):

dM (z;µ,Σ) =
(
(z − µ)

ᵀ
Σ−1 (z − µ)

) 1
2 (2.2)

Here z is the same as in 2.1, and µ is the mean of the sample data (per channel) and

Σ =


σ2
11 σ2

21 σ2
31

σ2
12 σ2

22 σ2
32

σ2
13 σ2

23 σ2
33


is the covariance matrix of the sample data. σ2

ij is the variance between (color) channel i
and j.

The Mahalnobis distance metric can be seen has a transformation from the Euclidean n-
dimensional space to an n-dimensional ellipsoidal space (Gonzalez and Woods, 2008f).

A compromise between the two, is the standardized Euclidean metric:

dsE(z;µ,Σ) =
(

(z − µ)
ᵀ

diag (Σ)
−1

(z − µ)
) 1

2

=

(
n∑
i=1

(
zi − µi
σii

)2
) 1

2

(2.3)

Here diag (Σ) is the matrix whose only non-zero entries are the diagonal of Σ, while z,
and µ are as in (2.2).

The purpose of these metrics are to convert the image into a gray-scale. The absolute
distance is therefore not of interest. In order to make the computations more efficient, the
square roots can be dropped, and the squaring of numbers can be replaced by an absolute
value. For a prototype these optimizations are not essential, but they will improve the

14

2.4 Image processing

running time of the program.

The metrics will be applied to matrices. In order to make the calculation more efficient (i.e.
avoiding loops), the metrics can be generalized to work with matrices instead of vector,
and return a vector of distances instead of a scalar. By using Script A.48 instead of the
built-in function mahal, the time the calculation took was reduced by 99.6% for (2.2).

Figure 2.5 shows an example of how the different metrics affect the distance measurements
of a dataset.

Originally, the Mahalanobis distance metric, dM , assumes that the data is normally dis-
tributed (Mahalanobis, 1936). In Section 3.4.2, we see that the sample data is not normally
distributed. However, this need not be a major problem, as the absolute distance is not of
interest. Additionally, it is recommended for the purpose of segmenting a color image by
Gonzalez and Woods.

(a) The Euclidean distance
metric, dE(x;µ) for measur-
ing the spread in the data.

(b) The standardized Eu-
clidean distance metric,
dsE(x;µ,Σ) for measuring
the spread in the data, which
account for the standard
deviation of each variable.

(c) The Mahalanobis distance
metric, dM (x;µ,Σ) which
accounts for the entire co-
variance matrix to the sample
data.

Figure 2.5: A comparison of distance metrics. The black star in the middle of the data is its mean,
while the rings, and ellipses represents equidistant contour lines under the different metrics. The
color indicates how far a point is from the middle. The color bar shows the magnitude the different
colors represents. (Source: Kyriakidis (2015))

2.4.2 Morphology
When an image has been segmented into different regions, we need a way of determining
whether a given area can be an actual GCP. Morphology means the study of shapes. One of
its applications is to determine the size and shape of areas, such as the area, and eccentricity
of a shape (Gonzalez and Woods, 2008h).

One particular useful operation is “hole filling”, which does what the name suggest; it
finds “holes” in a shape and fills it. The hole need not be in the middle of the shape, bu can
also be on the side. A shape similar to a horseshoe would be filled, and thus become more
of a circle. The use of this in the context of finding GCPs might not be obvious. When
a threshold is applied to the orthophoto given a certain metric, there is a chance that the

15

Chapter 2. Theory

areas around the GCPs is marked as “ground control point” while the middle is not. This
happened on occasion during development.

Other uses include obtaining certain parameters about each area, such as area, circumfer-
ence, and eccentricity. From these parameters certain criteria can be defined that charac-
terize a GCP. Some of these criteria are given in Script A.9.

2.5 Topological Point Pattern

Figure 2.6: An illustration of the case
of two points that have the same radius,
but different angles from the principal
axis. pj , is the anchor point, p∗ is the
point that corresponds with the princi-
pal axis, pi, and pi+1 are the points that
are considered to be a matching for the
point bk.

One of the goals of this thesis is to investigate
whether topological point pattern (TPP) can be
adapted to the context of matching a image to a
set of measured-in GCPs. The concept and accom-
panying algorithm were first suggested, and devel-
oped by Li and Briggs (2006). Both are called TPP.
The algorithm has been adapted by the author to
better fit the context of the desired prototype.

During the implementation of TPP, some flaws with
the original algorithm was discovered, and cor-
rected. These are detailed in Section 2.5.1.1.

2.5.1 Defining topological point pat-
tern
Given a set of (finitely many) points, say P =
{p1,p2, . . . ,pn}, where pi ∈ Rk, a topological
point pattern relative to the anchor point, pj ∈ P ,
is defined as the ordered sequence:

T(Pj) = 〈p∗1 ≺ p∗2,≺, . . . ,≺ p∗n | p∗i = (rij , θij) ∈ T (Pj)〉
(2.4)

where rij = || pi

pj
|| =

√
pᵀ
i ·pi

pᵀ
j ·pj

and θij is the counter-clockwise angle between pi and

vector defined by pj − p∗, where p∗ is the point closest to the anchor point pj . ≺ defines
the lexicographic ordering (pi = (ri, θi) ≺ pj = (rj , θj) ⇐⇒ ri < rj ∨ ri = rj ∧ θi <
θj), and

T (Pj) =

{
p− pj
s

| s = min
pi∈P\pj

dE(pi,pj) ∧ p ∈ P
}

(2.5)

Here dE is the Euclidean distance metric as defined in (2.1). In words; each point is
moved so that the anchor point defines the origin. All distances are then scaled, such that

16

2.5 Topological Point Pattern

the distance between the anchor point, and its closest neighbor is 1.

Li and Briggs also suggested limiting T , by introducing a maximal distance from the
anchor point. This can be done by defining

T (Pj , d) = {p | ||p|| ≤ d ∧ p ∈ T (Pj)} (2.6)

The TPP of a set of points is defined as a collection:

T (P) = {T (Pi) | 1 ≤ i ≤ |P |} (2.7)

In Li and Briggs (2006), k was assumed to be 2, but their algorithm can easily be extended
to higher dimensions. This follows from the fact that TPP uses polar coordinates.

Since GCPs are not placed on top of each others, two dimensions should sufficient to
match two sets of points.

2.5.1.1 Adjustment
The definition of ≺ from Li and Briggs does not work in every case. Figure 2.6 shows
such a case. In this case, pi ≺ pi+1, and thus pi is considered, and tested for being a
match before pi+1 is. It is assumed that both points are within a predefined threshold for
the radius. From the illustration, it is clear that θ2 = 2π − θi+1 < θ1 = θi

A better sorting scheme would then be ≺∗, which is defined as

pi = (ri, θi) ≺∗ pj = (rj , θj) ⇐⇒
ri < rj ∨ ri = rj ∧min(θi, 2π − θi) < min(θj , 2π − θj)

(2.8)

In other words; the points are sorted first by distance from the anchor point, then by the
absolute angular distance from the principal axis.

2.5.2 Matching Topological Point Patterns
The algorithm for matching the two sets of points is not very specific in Li and Briggs
(2006). Their pseudo-code says:

SET acm to be the set of matching point pairs between tpp(r) and tpp(v).

Here tpp(r) is the set of TPPs from the image, while tpp(v) is the TPPs from the already
georeferenced road network. On this case, however, tpp(v) is equivalent to the set of TPPs
formed by the GCPs.

They then go on to say that “[t]he matching between tpp(r) and tpp(v) is based on their
sorted lists”. There is little explanation beyond this other than using predefined values for
∆θ and ∆r for comparing |ri − rj | and |θi − θj | when the data is not perfect.

The author took this to mean that the algorithm goes through the sorted lists and compares
the radii, and angles with the predefined threshold. If it is a match, it moves successive

17

Chapter 2. Theory

along both lists of points. If it is not a match, however, some work work is required. The
choice of which point to reject depend on how close the two points are, and how close
their successors are. A working implementation is given in Script A.50.

The matching is mainly done by using one index for each of the two TPPs that are being
matched. If the points the indices point at satisfy the ∆r, and ∆θ requirement, both indices
are incremented by one. If the two points of the TPPs do not match, different cases are
considered. These cases are described in Script A.50 on line 418− 447.

On the choice of thresholds Li and Briggs does not offer any indication of what consti-
tutes good values for ∆r and ∆θ. An empirical approach is therefore necessary. By trail
and error, 0.05 was found to be suitable for both thresholds.

2.6 Absolute orientation
After a corresponding/matching between the GCP candidates extracted from the
orthophoto and the measured-in GCPs have been found, the absolute orientation
parameters can be computed. This section will review four methods for how this can be
done. Three of these methods have been implemented in the prototype. They can be seen
in Script A.13, A.14, and A.59.

In addition to these three, a fourth will be reviewed here.

Notation For all the different algorithms, it is assumed that there are two sets of n points;

X =
{
px,i = (x, y, z)

ᵀ | 1 ≤ i ≤ n ∈ Z+ ∧ x, y, z ∈ R
}

(2.9)

These are the points extracted from the image and the digital elevation model (DEM). The
measured-in coordinates of the GCPs are defined similarly:

Y =
{
py,i = (x, y, z)

ᵀ | 1 ≤ i ≤ n ∈ Z+ ∧ x, y, z ∈ R
}

(2.10)

Further, it is assumed that px,i form a candidate matching (CM) with py,i. That is, the
image point px,i has the measured-in coordinate of py,i. The mean values are defined in
(2.11) for X , and (2.12) for Y .

For (2.16), (2.15), and (2.17), p∗x,i ∈ X∗ and p∗y,i ∈ Y ∗.
Since both Horn (1987) and Horn et al. (1988) uses “moved” pointsets, the sets X∗ and
Y ∗ are defined in (2.13), and (2.14) respectively.

The (total) variance of the two sets are given in (2.15) and (2.16). They are primarily used
to calculate the scale factor, s.

The rotation matrix is defined in (2.18) Here yaw is done first, then roll, and finally pitch.
This matrix is consistent with the rotation defined in Kraus (2007).

18

2.6 Absolute orientation

µx =
1

n

n∑
i=1

px,i (2.11)

µy =
1

n

n∑
i=1

py,i (2.12)

X∗ = {px,i − µx | px,i ∈ X} (2.13)
Y ∗ = {py,i − µx | py,i ∈ Y } (2.14)

σ2
x =

1

n

n∑
i=1

||p∗x,i||2 (2.15)

σ2
y =

1

n

n∑
i=1

||p∗y,i||2 (2.16)

Σxy =

n∑
i=1

p∗y,ip
∗ᵀ
x,i

=


Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz

 (2.17)

Finally, the covariance matrix is defined in
(2.17). In this matrix, Sij is the covariance
between the ith dimension ofX , and the jth

dimension of Y .

Conceptually, the points need not be 3D.
They can be any dimension, but in prac-
tice they are usually 3D, or two dimen-
sional (2D). If the points are 2D, many
of the algorithms can be simplified. The
procedure in Horn et al. (1988), however,
breaks down in 2D. A remedy is therefore
provided.

2.6.1 Least-Square error esti-
mation
A technique that is often used when find-
ing an optimal curve through a dataset is
least-squares estimation (LSE), or fitting.
This is a method of regression that finds
the parameters that minimizes the sum of
all squared errors of a parametric function,
given a number of target values and mea-
surements. Mathematically, it is defined in
(2.19), where n is the number of measurements and expected values, yi is the target value
of the function f for the given measurements x. P is the collection of all valid parameters
to the function f , p is a particular set of parameters that makes it possible to evaluate f for
the vector of measurements c. An example of the latter would be two concrete values for
a and b for the function f(x) = ax+ b, such as a = 3, and b = 5, while P , would, in this
case be R2.

Rθφκ =


cosφ sinκ − cosφ sinκ sinφ

cos θ sinκ+ sin θ sinφ cosκ cos θ cosκ− sin θ sinφ sinκ − sin θ cosφ

sin θ sinκ− cos θ sinφ cosκ sin θ cosκ+ cos θ sinφ sinκ cos θ cosφ


(2.18)

For this thesis, the function f is the absolute orientation. It is given by (2.20), where x is
an image point in 2D or 3D, R is a rotation matrix of appropriate size, t is a translation
vector of the same dimension as x, and s is a scaling factor.

Theoretically, a minimum of three points are needed for 3D absolute orientation (Arun
et al., 1987). For 2D, only two points are needed to solve for the four absolute orientation
parameters. In practice, however, more points are wanted, and needed in order to say

19

Chapter 2. Theory

something about the goodness-of-fit, and to reduce the error (Horn et al., 1988). Five or
more GCPs are suggested in Skogseth and Norberg (1998c).

2.6.1.1 Kraus

min
p∈P

√√√√ n∑
i=1

(yi − f(x;p))
2 (2.19)

f(p;R, t, s) = t+sR ·p, (2.20)

Unlike the next three methods for estimating R, t,
and s, Kraus suggests using an iterative approach
to solving the least-square estimation problem. The
starting point is to linearize (2.20), which can be
expanded into (2.24).

In this equation, [xℵ, yℵ, zℵ]
ᵀ is the World co-

ordinate of the given point [x, y, z]
ᵀ. Another

name for these coordinates is object coordinates and
measured-in coordinates. Both points are treated as
vectors in order to use linear algebra.

By using Taylor approximation, sR can be approximated by (2.25). The entire lineariza-
tion of (2.24), then becomes (2.26). In these equations, 0 indicate an initial guess, and not
the exponent, e.g. π0 = 1.

Kraus then shows that (2.26) can be rearranged as the linear system of equations (2.21)
by treating it as a least-squares estimation problem. Here vix, viy , and viz is the residuals
of the ith point in x, y, and z direction. x0i , y0i , and z0i are the approximate Real-World
coordinates of the model, or image coordinates of the ith point, and xi, yi, and zi are
measured-in coordinates of the respective points.

vix = dxa + x0i ds + z0i dφ − y0i dκ − (xi − x0i)

viy = dya + y0i ds − z0i dθ + x0i dκ − (yi − y0i)

viz = dza + z0i ds + y0i dθ − x0i dφ − (zi − z0i)

(2.21)

The set of equations is expanded when more points are added to the system. Note that
not all points need to be 3D. Some may contain only longitude and latitude, while others
might only be elevation.

This system can then be written in matrix notation as:

v = Ax̂− l (2.22)

whereA is the design matrix whose rows represents the set of equations from the different

20

2.6 Absolute orientation

points. In other words, assuming all points are known in three dimensions:

A =



1 x01 z01 −y01
1 y01 −z01 x01

1 z01 y01 −x01
1 x02 z02 −y02

1 y02 −z02 x02

1 z02 y02 −x02
...

1 x0n z0n −y0n
1 y0n −z0n x0n

1 z0n y0n −x0n


l is defined similarly for the set of

[
(xi − x0i), (yi − y0i), (zi − z0i)

]ᵀ
, while

x̂ =
[
dx̂a, dŷa, dẑa, dŝ, dθ̂, dφ̂, dκ̂

]ᵀ
.

Kraus then shows that x̂ has the following solution:

x̂ = (AᵀA)−1Aᵀl (2.23)

x0i , y0i , and z0i are given by applying the image coordinates to (2.24).

The results from (2.23) are then applied to (2.24), and the process is repeated until the
accuracy is sufficient.


xℵ

yℵ

zℵ

 =


xa

ya

za

+ sR


x

y

z

 (2.24)

sR ≈ (s0 + ds)dR (2.25)

=


s0 + ds −dκ dφ

dκ s0 + ds −dθ

−dφ dθ s0 + ds


x = dt+ (s0 + ds)Rx0 (2.26)

21

Chapter 2. Theory

A0 =


1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

 (2.27)

Obtaining initial parameters In order
to begin the iteration, an initial guess of
the seven parameters is required. Without
these, initial values for x0i , y0i , and z0i can-
not be obtained. Consequently, neither can
A, nor l. Often this is done manually, but
since the goal of the system and prototype
is to be automatic, some heuristic for the
parameters is needed.

The method suggested in Kraus (2007) requires four pairs of model coordinates, and
measure-in coordinates. Kraus then suggests using the points to find a similarity trans-
form between the two sets. Ironically, then, the unknowns of (2.20) is needed to estimate
the same parameters. By using exactly four points, however, the affine transformation in
(2.28) can be inverted.

The inversion of (2.28) is given by solving the three equations:

A0ax = xℵ A0ay = yℵ A0az = zℵ

where A0 is given in (2.27). It is a matrix of the image coordinates of the four points.
ax = [a10, a11, a12, a13]

ᵀ, ay = [a20, a21, a22, a23]
ᵀ, and az = [a30, a31, a32, a33]

ᵀ

are the unknowns, and the parameters of the affine transformation in (2.28).
xℵ =

[
x1ℵ, x

2
ℵ, x

3
ℵ, x

4
ℵ
]ᵀ

, yℵ =
[
y1ℵ, y

2
ℵ, y

3
ℵ, y

4
ℵ
]ᵀ

, and zℵ =
[
z1ℵ, z

2
ℵ, z

3
ℵ, z

4
ℵ
]ᵀ

are vectors
of the x, y, and z coordinates of the image points’ respective measured-in GCPs.

These systems could be put together in one system of 12 × 12 equations and unknowns
instead of three systems of 4 × 4 equations and unknowns. When computed as three
systems,A0 can be inverted directly, and then applied to xℵ, yℵ, and zℵ directly.

Kraus then suggests that by comparing (2.28) and (2.20), xa ≈ a10, ya ≈ a20, and
za ≈ a30, s2 ≈ 1

3

∑3
i=1

∑3
j=1 aij . The parameters for rotation is somewhat ambigu-

ous; sinφ = r13, tan θ = −r23
r33

, and tanκ = −r12
r11

. r13, r23, r33, r12, and r11 are obtained
from (2.29). The points that constitutes this initial guess should be selected such that they
are spread far from each other, otherwise one might have problems with near singularities.


xℵ

yℵ

zℵ

 =


a10

a20

a30

+


a11 a12 a13

a21 a22 a23

a31 a32 a33



x

y

z

 (2.28)

22

2.6 Absolute orientation

R =
1

s
A0 =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 (2.29)

2.6.1.2 Horn

Horn proposed a closed form solution to the absolute orientation problem in 1987. His
solution uses quaternions to calculate the rotation matrix. Quaternions are mostly used to
prove the correctness of his approach.

Quaternions One way to express rotation about an arbitrary axis is by using quaternions
(groups of four). This concept was first introduced by Hamiltion.

A quaternion, q, is defined as

q = (s, x, y, z) ∈ R4 (2.30)

Here, s is called the scalar part of q, while v = (x, y, z) is called the vector part. A
quaterion can thus also be written as q = (s,v). Another way to view quaterions is in a
four dimensional complex space, where i2 = j2 = k2 = −1 and i, j, k are perpendicular
to each other Theoharis et al. (2008).

The calculation of the absolute orientation parameter The scale factor is the first
parameter to be found in Horn (1987), as it is easily determined without any knowledge
of the rotation of the points in relation to each other. The only information needed, is the
variance for X , and Y , as defined in (2.15) and (2.16). The scale factor, s is given by

s =

√
σ2
x

σ2
y

(2.31)

From the covariance matrix, as defined in (2.17), a new matrix is defined:

N =


Sxx + Syy + Szz Syz − Szy Szx − Sxz Sxy − Syx

Syz − Szy Sxx − Syy − Szz Sxy + Syx Szx + Sxz

Szx − Sxz Sxy + Syx −Sxx + Syy − Szz Syz + Szy

Sxy − Syx Szx + Sxz Syz + Szy −Sxx − Syy − Szz


The next step is to calculate the four eigenvalues, and corresponding eigenvectors.

The eigenvector, say vm = (q0, qx, qy, qz), corresponding to the most positive eigenvalue,
say λm, is the quaternion that represents the optimal rotation (Hamiltion, 1866).

23

Chapter 2. Theory

The quaternion can be converted into a rotational matrix by using the formula:

R =


q20 + q2x − q2y − q2z 2(qxqy − q0qz) 2(qxqz + q0qy)

2(qyqx + q0qz) q20 − q2x + q2y − q2z 2(qyqz − q0qx)

2(qzqx − q0qy) 2(qzqy + q0qx) q20 − q2x − q2y + q2z

 (2.32)

Finally, the translation offset can be found by calculating

t0 = µx − sR · µy (2.33)

The eigenvalues can be found by solving the fourth order polynomial equation det(N −
λI) = 0, where I is the 4 × 4 identity matrix. The corresponding eigenvectors can
then be found by solving the equation Nvi = λivi There are many known methods for
finding eigenvalues, and eigenvectors in general, and for solving fourth order polynomials
in particular. Both analytic, and numerical methods exists Abramowitz (1972); Kreyzsig
et al. (2011); Lay (2012a).

The software package MATLAB offer the function eig, which gives the eigenvalues and
the corresponding eigenvectors.

The algorithm can also be used when one wish to weight the different points differently.
We then define Yw = {wipy,i}, and Xw = {wipx,i}. The vector of weights,w is subject
to the constraint

∑n
i=1 wi = 1. One usage for this it to account for the accuracy of the

different points.

This concludes the review of Horn (1987). The algorithm, and mathematics, except for
weighting, has been implemented in Script A.13. In this review, quaterinons have not
been prevailent because Horn use them mainly to derive the results presented here. The
proof of correctness is given in Hamiltion (1866).

2.6.1.3 Horn-Hilden

The main difference between Horn et al., and Horn is how the rotational matrix is calcu-
lated. Instead of using quaterions, Horn et al. uses orthonormal matrices to calculate the
rotational matrix.

It is assumed that the two point sets X , and Y are given, and consistent with (2.9), and
(2.10) respectively. X is the set of image points, while Y is a set of measured-in GCPs.

{px,i}, and {py,i} denote the measured-in GCPs, and the image coordinates respectively.
As before we define p∗x,i = px,i − µx,i, and p∗y,i = py,i − µy,i, where µx =

∑n
i=1 px,i,

andµx =
∑n
i=1 py,i. The scale factor, s, is identical to (2.31), and the transnational offset,

t0, is the same as (2.33). Instead of (2.17) its transpose, M = Σᵀ
xy =

∑n
i=1 p

∗
y,ip

∗ᵀ
x,i, is

used.

The main emphasis of Horn et al. (1988) is to show that

R = M
(
MTM

)− 1
2 (2.34)

24

2.6 Absolute orientation

Horn et al. then show that this matrix is orthonormal.

This method is not as general as Horn (1987), as this particular solution does not work
when one, or both of the sets X and Y are co-planar i.e. 2D. However, a remedy is
provided:

R = MS+ ± u3v
ᵀ
3 , (2.35)

where λ1, and λ2 are the eigenvalues of MᵀM . u1, and u2 are the eigenvectors that
correspond to λ1, and λ2 respectively,

S+ =
1√
λ1
u1u

ᵀ
1 +

1√
λ2
u2u

ᵀ
2 ,

where u3, and v3 are the third column in the matrices U0, and V0 respectively. These two
matrices are defined by the singular value decomposition of MS+ into U0Σ0V

ᵀ
0 . The

sign of u3v
ᵀ
3 is chosen such that the determinant ofR is positive.

Horn et al. (1988) has been implemented is Script A.14.

2.6.1.4 Umeyama

Umeyama focuses primarily on computer vision application. One of the reasons this article
was written, was to address a problem the previous two solutions have; they may give a
reflection instead of a rotation if the data is severely corrupted (Umeyama, 1991; Horn
et al., 1988). The method is implemented in Script A.59.

This particular algorithm works by computing the singular value decomposition of the
covariance matrix to find the rotation matrix.

The notation from the article has been changed to be consistent with the previous sections.

Sigular value decomposition A particular method for factorizing any n×mmatrix, say
A into, the matrices UΣV ᵀ, is sigular value decomposition (SVD) (Lay, 2012b). Here
Σ is a semi-diagonal matrix having the same size as A. Σ consist of the first r singular
values ofAᵀA:

Σ =



σ1 0 . . . 0 0

0
. . .

...

σr
... . . . 0 0

0 0


The singular values, σi for 1 ≤ i ≤ r are the square roots of the eigenvalues of AᵀA
in descending order. r is the rank of A. V is a matrix of the (normalized) eigenvectors
of AᵀA. Their order is according to the corresponding eigenvalues. For example V =(
v1 v2 v3

)
.

25

Chapter 2. Theory

Finally,U is constructed from Avi

||Avi|| for 1 ≤ i ≤ r in order of eigenvalues corresponding
to the eigenvectors (Lay, 2012b).

Both U , and V are orthonormal. Consequently, UUᵀ = UᵀU = I = V V ᵀ = V ᵀV .
In other words, Uᵀ = U−1, and V ᵀ = V −1 (Lay, 2012c).

Eigenvalues are the solutions to the equation det(A − λI) = 0. Eigenvectors are then
computed from solvingAx = λix, where λi are the eigenvalues (Lay, 2012b).

The calculation of the absolute orientation parameters Umeyama’s solution is a re-
finement of the solutions presented in Horn et al. (1988) and Arun et al. (1987).

The article uses different notation from the previous two articles, and from the convention
set forth in this thesis. It has been changed to fit.

The method of calculating the absolute orientation parameters presented in Umeyama
(1991) also uses X in (2.9) for the points in the image, and Y for the measured-in GCPs
in (2.10).

The covariance matrix, Σxy , in (2.17) is divided by n and then decomposed into UDV ᵀ.
The decomposition is by SVD (as described above).

In order to calculate the rotational matrix, Umeyama creates the matrix

S =

{
I if det(U) det(V) = 1

diag(1, 1, . . . , 1,−1) if det(U) det(V) = −1
(2.36)

The purpose of S is to ensure that R has a positive determinant. S has the same dimen-
sions as U and V .

The rotational matrix, the scale, and the translational offset are then given respectively as:

R = USV ᵀ (2.37)

s =
1

σ2
x

tr(DS) (2.38)

t0 = µy − sRµx (2.39)

Here σ2
x is given by (2.15), µy by (2.12), and µx is given by (2.11). tr is the trace of the

matrix, or the sum of the diagonal.

In his article, Umeyama claims that (2.38) obviously minimizes the total error. His claim
was checked, and found to be false. His algorithm is implemented in Script A.59. This
gave much worse results than by using (2.31) instead of (2.38). Changing the scale factor
to the same as in Horn (1987) and keeping everything else the same, the root mean square
error (RMSE) of the absolute orientation parameters was improved. Section 5.7 and 5.1.2
explains this in more detail.

26

2.7 Licensing

2.7 Licensing
One of the goals of the thesis is to publish the prototype as open source, for anyone to use
has they find convenient or useful. There are many licenses to choose from, all from the
“unlicense”, which waives all rights of the creator, to the GNU General License, which
forces anyone who use the source code to also publish it as open source, and under the
same license. This is called “copyleft”, instead of “copyright”.

The “copyleft” licenses prohibit some of the uses, such as including it into a proprietary
system. A compromise between these two extremes, are licenses such as Mozilla Public
License, which grants the usage of the entire code base, or parts of it for any purpose, as
long as any modifications to the files of the code base is made public. This is the most
important reason for the source code in Appendix A is licensed under the Mozilla Public
License Version 2.0 (MPL 2.0). The license is given in full in Appendix C.

27

Chapter 2. Theory

28

Chapter 3
Method

NOW THAT the theoretical framework is laid down for a program that can accomplish
the goals set forth in Section 1.1. The design process and the design of the program

itself is presented in this chapter.

Along with this, the experimental setup is described.

We first start out with a minimal shell of a design, which is “fleshed-out” as we go along.
The full prototype, with every detail for a functioning computer program is given in Ap-
pendix A.

3.1 The design of the program
Any implementation of the goals in Section 1.1 will need to accomplish these three tasks:

(α) Detect the ground control points (GCPs) in a given orthophoto, or aerial image.

(β) Compute a set of candidate matchings (CMs).

(γ) Calculate the absolute orientation parameters.

These steps need not be done sequentially. It might be possible to tweak bundle adjustment
to accomplish them simultaneously. Since the goal is to investigate the possibility, and
feasibility of such a system, simplicity was chosen over power, and complexity of bundle
adjustment and similar methods.

Figure 3.2 shows a flow chart of what an implementation might look like. This design
forms the basis of the prototype. Each process is described in greater detail throughout
this chapter.

This design has some flexibility built-in; it can give two dimensional (2D) or three dimen-
sional (3D) absolute orientation parameters. These can then be given directly, as four, or

29

Chapter 3. Method

seven parameters respectively, as a transformation matrix, written to an auxiliary image-
file, or be written directly in the image.

Figure 3.1: Legend for the flow charts.

As a consequence of the flexibility, the in-
put “digital elevation model” is optional
in this design. The two other inputs,
“Orthophoto”, and “ground control point
(GCP)” are required.

3.1.1 Description of the steps
Now we take a closer look at the different
steps involved in Figure 3.2.

3.1.1.1 Input parameters

The input “Orthophoto” need not be a true
orthophoto, but can be any image, as long

as the GCPs are visible. If the image is not a orthophoto, however, inaccuracies in the
absolute orientation are likely to occur due to the use of central projection.

“Ground control point (GCP)” is a list of the measured-in coordinates of the GCPs. In the
implementation, this can be either a matrix of points, or a GeoJSON file. The orthophoto
will get the same projection as the GCPs, so an explicit projection is not necessary. If the
projection is known, or included, it can be written to a file, or in the image for external
programs to use.

“digital elevation model ” was chosen to be an optional input because a 3D absolute ori-
entation is not always needed, or available. An example is when using spatial analysis
to look for a geographic pattern. In these cases, it is often assumed that the features of
interest lies on the ground.

3.1.1.2 Finding GCP candidates in image

This step is essentially a classifier. It classifies pixels as either “background”, or “ground
control point”. When every pixel have been classified, areas that satisfy certain extra
criteria are extracted, along with their corresponding elevation of that area (if available).
These criteria include restrictions on size and shape. The centers of these areas are then
calculated, and returned as a set of GCP candidates. Areas that satisfy all constrictions
are then reduced to a single point. This point may be the centroid of the area, or it can be
chosen by a utility function.

In Figure 3.2, no assumptions has been made about what kind of classifier this step is. As
we saw in Section 2.2, we cannot assume that “Find GCP candidates in image” finds all
the GCPs. Nor can we assume that it only found GCPs.

Figure 3.3, shows how this problem can be solved. Assuming that more than three GCPs
were found and matched initially, this design uses the inverse of the absolute orientation
parameters to locate where the remaining GCPs should be in the given orthophoto. An
area around these points is then extracted. More precise methods are then used for these
areas. There are many approches to deciding the size of the area extracted. One method

30

3.1 The design of the program

Figure 3.2: A flow chart of how a relatively simple implementation of the goals in Section 1.1 might
look like. The symbols are explained in Figure 3.1.

is to make the area proportional with the root mean square error (RMSE). Another is to
extract a given proportion of the entire orthophoto. One could have used more precise
methods for finding the GCPs initially, but that would take much more time, which goes
against the goal of the prototype being feasible. Another reason for this approach is that
by examining an area around where a GCP should be, the pixel with the most utility could
be chosen when the GCPs are not easily seen.

In the beginning of the development, more precise methods were used for the entire im-
age. However, doing so made early prototypes run over-night for results, instead of a few
minutes, which later versions are able to.

Extracting elevations In order to get a 3D absolute orientation, the elevation of each
image point is needed. The height of each measured-in GCP is also needed.

In this step, the elevation of each area that was classified as “ground control point” is
extracted, and averaged. The elevations are then appended to the centroid of the respective
area as before. This is then returned as “3D GCP candidates”.

3.1.1.3 Matching points

Now we have two sets of unordered points. Ahead of time, it is not know whether the set
“GCP candidates” contains all the GCPs in the image, nor if all the candidates are GCPs.
In other words, it is not know whether the correspondence between “GCP candidates” and
“ground control point (GCP)” is one-to-one, onto, both, or neither.

If the distances are computed, this problem can be solved as an instance of Subgraph
isomorphism. This problem is known to be NP-Complete, however. Unfortunately, there

31

Chapter 3. Method

are no known algorithm to these problems in polynomial time. That is, the time it takes
to run is a polynomial function of the size of the input, say number of pixels in the image,
and the number of GCPs (Cormen et al., 2009).

By taking advantage of the structure of our problem, the subgraph isomorphism problem
can be avoided completely. Section 2.5 introduced topological point pattern (TPP), which
can be used to match the two sets of points, even when the relation between the two sets
is unknown (i.e. whether the correspondence is one-to-one, onto, both, or neither). This is
accomplished by taking advantage of the pattern that the two sets of points form.

When a matching has been found, the image points and corresponding measured-in coor-
dinates are put together into a candidate matching (CM).

3.1.1.4 Finding the absolute orientation

Now that we know the measured-in coordinate of each GCP in the image, we can calculate
the absolute orientation parameters. There are both iterative, and closed form solutions
to this problem. Since one of the goals of the system is to be completely automatic, a
closed form solution is preferred, as it does not require an initial guess. Some closed form
solutions include Arun et al. (1987), Horn (1987), and Umeyama (1991).

Step (β), and (γ) are sequential, but are shown to be done simultaneously in Figure 3.2 for
compactness.

3.1.1.5 Generating the output

Now that the rotation, translation, and scale factor for the orthophoto is found, they can be
exported. Mathematically, the parameters areR, t, and s respectively.

If the image is a Tagged Image File Format (TIFF), the transformation parameters can be
written as predefined tags directly inside the image. Alternatively, the data can be stored
as a separate world file. Such a file specifies the location, rotation, and spatial resolution,
or scale, of the image in a certain coordinate system. The world files format is quite old,
but the file is still in use by ArcGIS, and PhotoScan, amongst others (Esri, 2009; AgiSoft
LLC, 2012). It was first specified by Esri sometime before 1995 (Environmental Systems
Research Institute. Redlands, 1995; Esri, 2016a).

Unfortunately, the file format does not support an explicit coordinate system. Instead, it
must either be defined by the user when importing the orthophoto into another program,
or stored as a tag in the image as Exchangeable Image File Format (EXIF). This can only
be done with Joint Photographics Experts Groups (JPEG), and TIFF images, however.

Another option, is to simply print the absolute orientation parameter to the screen for the
user to see.

32

3.2 The development of the program

Figure 3.3: A flow char of an implemenatation that uses Figure 3.2, but uses the GCPs twice. The
second time, they are used to get the image location of the GCPs given than the initial absolute
orientation is not too far off. The symbols are explained in Figure 3.1.

3.2 The development of the program
This section covers how the prototype was developed.

The development, testing, and experiment was done on the author’s private computer;
“Tøffen”. It is desktop with a quad core Intel i7-2600K, 16 GB of DDR3 memory, and an
Nvidia GTX 970 graphics card running Windows 10. Both the processor, and the graphics
card where over-clocked.

3.2.1 Choosing a Programming Language
A working prototype must be written in some programming language. There are many
options; C/C++, C#, D, Fortran, Python, Matlab, Java, JavaScript, Haskel, Lisp, and many
more.

From the flow chars in Figure 3.2, and 3.3, we see that the program is mostly procedural,
or sequential. Therefore, the chosen language need not have a strong focus on object
orientated practice.

A large community, and a large collection of relevant external libraries are both desired.
Since the main goal of this thesis is to investigate the possibility, and feasibility of a system
capable of automatic georeferencing an orthophoto, it would be convenient to reuse exist-
ing technology as much as possible. If the methods, and algorithms of image processing
had to be implemented from scratch in the chosen language, much time and energy would
go to waste. This is one of the reasons the language D was not chosen, even though the
author is quite fond of it.

Since the program will deal with large images, some compromise between the ease of use

33

Chapter 3. Method

and prototyping of interpreted languages, and the efficiency of compiled languages must
be made.

E
 564000

E
 566000

E
 568000

N 7020000

N 7022000

N 7024000

N 7026000

Figure 3.4: An overview of the different ground
control points that were established, and measured
in for the “E6” dataset. The rectangle in the up-
per right corner indicates where the dataset called
“E6” is from. From top to bottom the GCPs are
called “20”, “21”, “19”, “18”, “22”, and “17”. The
measured in coordinates of these are given in Ta-
ble B.2, where they are marked with *.

The author is well versed in Python, Mat-
lab, and Java, and have experience with
C/C++, D, and JavaScript. C/C++, and D
are compiled languages, and can thus be
expected to have a much shorter runtime
when the program is executed. Python,
Matlab, and JavaScript are all interpreted
languages. This makes is easy to proto-
type, as one need only write the code, and
then run it with a given input. Java falls
in between, and is compiled to byte code,
which lies closer to machine code than
human-readable code, but is interpreted by
a byte code interpreter at runtime.

Except for D and JavaScript, all the lan-
guages have extensive libraries for image
processing. Those that exist, lack more ad-
vanced features such as morphology (An-
tonAL, 2015; Ludwig et al., 2016).

Both Python and Matlab are capable of
running C/C++ code that have been com-
piled. Thus they can both take advantage
of pre-made, compiled libraries, and get
the same efficiency as compiled languages
when functions in the library are called di-
rectly.

OpenCV is such a library. It implements
many algorithms for image processing in
general, and computer vision in particular.
The library can be used by any language,
as long as there are bindings to it.

In combination with Python, and some of Python’s other libraries for heavy computation
(e.g. NumPy), one can have many of the advantages of compiled languages, while retain-
ing the ease of prototyping that Python offer. Unfortunately, NumPy and OpenCV have
major problems in handling images that are larger than approximately 4GB (Nistad et al.,
2016). This manifested itself in the inability to load a large image into memory.

Due to the author’s unfamiliarity with OpenCV, and NumPy, in addition to time constraint
of this thesis, Matlab was chosen instead. Additionally, OpenCV had problems of opening
images that had a size larger than approximately 4 GB (Nistad et al., 2016). The choice
was also motivated by Matlab being very efficient in dealing with matrices. In Section 2.4,
we saw how an image can be treated as a matrix. Additionally, Matlab has an Image

34

3.3 On the method of testing and verification

Processing Toolbox, which implements most algorithms known in the image processing
literature (MathWorks, 2016).

As a student at Norwegian University of Science and Technology (NTNU), the Author
has access to Matlab, and all Toolboxes, which removes the obstacle of cost of purchase.
Additionally, engineering students at NTNU receives training in the use of Matlab.

Unfortunately, Matlab is proprietary, and the cost can be prohibiting. The standard version
costs 17 500 NOK for commercial use, while the Image Processing Toolbox, and Statistics
and Machine Learning Toolbox costs 9 000 NOK each. This is unfortunate, as one of the
goals is to make the program completely open source.

3.2.2 Test-driven development
The main reason for choosing an interpreted programming language was the ease of pro-
totyping. The program does not have to be recompiled when new functionality is written,
or when a small change to a single file of source code is made. This saves time, and makes
it easier to do test-driven development.

Many of the early prototypes of the program consisted mostly of commands to see how
the GCPs could be easily detected. In these instances, it becomes cumbersome, and im-
practical to use compiled languages.

The main approach to the development of the prototype was to develop a hypothesis for
how the marked GCPs could be detected, based on the literature of image processing. The
hypothesis was then tested against the extracted GCPs from the orthophoto “Lerkendal”
seen in Figure 3.7. If the method the hypothesis formulated worked sufficiently well on
Figure 3.7, it was applied to an excerpt of the orthophoto. If the method was able to
georeference the excerpt, it was applied to the entire orthophoto. After the hypothesized
method would georeference “Lerkendal” consistently and accurately, the method would
be applied to a second orthophoto; “E6”, which the prototype would not have seen before.

The use of a second orthophoto is validation testing. The entire development of the pro-
totype in this thesis can be seen as a form of supervised learning (Kyriakidis, 2015). In
supervised learning, and machine learning in general, it is common to divide a dataset into
two, or three subsets; a training set, a test set, and some times a validation set. In this case,
Figure 3.7 and excerpts from the orthophoto “Lerkendal” can be seen as training data,
while the entire orthophoto can be seen as the test set. The orthophoto “E6”, then is the
validation set; as it is not involved in developing the prototype directly, only to validate it.

3.3 On the method of testing and verification
Different experiments are to be run with a working prototype. The first set is to use the
orthophoto “Lerkendall” along with the corresponding digital elevation model (DEM) and
the reference colors described in Section 3.4.2.1. The algorithm for calculating the ab-
solute orientation parameters is then varied. The algorithms to be used are Horn, Horn-
Hilden, Umeyama, and Umeyama∗. This to see if the choice of algorithm can be made
arbitrarily. The difference between Umeyama and Umeyama∗ is that the fist is a direct im-
plementation from Umeyama (1991), while the latter uses the scale factor defined in Horn

35

Chapter 3. Method

(1987) instead of the original. The reason for this is to check the validity of the claim made
in Umeyama (1991), that (2.38) obviously gives the optimal absolute orientation.

The orthophoto “E6” will be used to check how the prototype fares against a dataset it has
not encountered during development, and to see how it deals with GCPs that are consider-
able smaller than those in “Lerkendal”.

3.4 Acquiring data
Two datasets were used for the experiment, and testing of the prototype. Both consist
of a set of images taken by a drone from FlySense called eBee. The first set was taken
over Lerkendal in Trodheim, Norway. (WGS84: 63.414◦N, 10.408◦E) It consists of 448
images. These images covers a an area of approximately 0.1112 km2. They were taken on
the 13th of October 2014 with a Canon PowerShot ELPH 110 HS at 4608 x 3456 pixels
(15.9 megapixels). NTNU-Geomatics is the owner of these images. An overview of the
area can be seen in Figure 3.5, and 3.5.

The second was taken along the highway E6 south of Trondheim, close to Tiller and Heim-
dal (WGS84: 63.352◦N, 10.369◦E). In total, this dataset consists of 1913 images, but only
197 were used to create an orthophoto. These image were taken on the 26th of November
2015 by the same camera. They are owned by Norwegian Public Roads Administration
(NPRA).

The reason for limiting the number of images used in the creation of the orthophoto “E6”
is that the resulting orthophoto from using all the images was approximately 21 GB, and
close to 91 GB when loaded into memory and converted from 8 bit to double. Additionally,
much of of the image was empty, i.e. black. The set of images consisted of five parts. Each
part was of a particular section of the highway, was was taken in a single flight. The data
from the first flight was then chosen to represent “E6”. One of the reasons for choosing
this part is that it had a good spread of GCPs. Additionally it was not too large so that the
prototype would not be able to run on a normal consumer desktop computer.

Figure 3.6: A closeup of what a ground
control point looks like. It is a square
with sides of 15 cm. The color is called
“flashing orange”

Trond Arve Haakonsen established, measured in,
and post-processed the GCPs for both datasets.
In post-processing, the points were averaged, cor-
rected, and equalized(?) by using... Nahavandchi
et al. (2015) describes how the GCPs were mea-
sured and established for “Lerkendal”. Table B.1
shows the measured-in coordinates of the GCPs
used with “Lerkendal”. The GCPs used in “E6” are
shown in Table B.2. Only the points marked with
an asterisk (*) can be seen the the orthophoto that
was produced.

The location of the different GCPs can be seen
in Figure 3.5 and 3.5 for “Lerkendal”. A similar

overview for “E6” is given in Figure 3.4 and 3.12.

The first dataset, and the corresponding orthophoto will be referred to as “Lerkendal”, or

36

3.4 Acquiring data

Figure 3.5: An overview of where the different GCPs are located in the dataset “Lerkendal”. A
closeup of the different points can be seen in Figure 3.7, while the measured-in coordinates can be
seen in Table B.1. (Source: Nahavandchi et al. (2015))

37

Chapter 3. Method

the dataset “Lerkendal”, while the latter will be referred t as “E6”, or the dataset “E6”.

3.4.1 Processing the images
AgiSoft’s PhotoScan Professional Edition (version 1.2.4 build 2399 (64 bit)) was used to
convert the two sets of images into two orthophotos. The highest possible settings for
quality was used in all steps of the process.

The entire process was run as a batch process. The steps that were carried out was “Align
Photos” with the parameter “Accuracy” set to “Highest”. The remaining parameters were
set to their default value. The process “Optimize Alignment” was then run with the default
values of all the parameters. “Build Dense Cloud” was the next process. “Quality” was
set to “Ultra high”, and “Depth filtering” was set to “mild”. The remaining parameters
had their default values. Next in line was the process “Build Mesh”. The only change in
the parameters was “Surface type”, which was set to “Height field”. The next processes
were “Build Texture”, “Build DEM”, and “Build Orthomosaic”. All of these processes
used their default values. Finally, the DEM and orthophoto were exported to disk as single
images.

Figure 3.7: A closeup of all the GCPs in the
dataset “Lerkendal”. From the top left corner to
the right, the name of the GCPs are “New 1”,
“New 2”, “P1”, “P2”, “P3”. The second row from
the top has the points “P4”, “P5”, “P6”, “P7”, and
“P8”. The third row; “P9”, “P10” “P11”, “P12”,
and “P13”. Finally, the fourth row shows “P14”,
“P15”, “P16”, “P17”, and “P18”. The location of
each of these points are shown in Figure 3.5. The
GCP is in the middle of each “subimage”.

The orthophoto “Lerkendal” is 20 051 ×
22 039 pixels, while “E6” is 47 619 ×
15 828 pixels. The size of the marked
GCPs is approximately 20 pixels across
for “Lerkendal”, while “E6”’s GCPs are
approximately 10 pixels across. These
numbers were obtained by zooming down
to a level where every pixel is visible, and
counting the pixels that constitute the vis-
ible GCP. In other words, these numbers
are effective size of the GCPs.

This process took about 24 hours per set
of images. Both sets of images were sent
through the same process.

All this processing was done at a
photogrmetry workstation at NTNU-
Geomatics. The computer has two Intel
Xeon E2-2670 v2 @ 2.5 GHz, 32 GB of
DDR3 memory (RAM), an Nvidia Quadro
K5000 graphics card with 4 GB dedicated
DDR5 RAM, 1 TB of Solid State Disk

secondary storage, and 3 TB of hard drive. The computer runs Windows 10 Educational.

3.4.2 The sample of GCP
As described in Section 2.4.1, the Mahalanobis distance metric must have a reference
sample to calculate distance from. Ideally the mean, and covariance matrix would be

38

3.4 Acquiring data

found analytically from the reference color. Unfortunately this was not possible. The
retailer (Blinken AS) of the paint that was used to mark the different GCPs does not have
that information.

Two approaches for obtaining sample data of the color are described next.

3.4.2.1 Directly from the orthophoto

Figure 3.8: The CIE 1931 chromaticity diagram.
The numbers along the edge is the wavelength of
that color in nanometers. (Source: Glynn (2009).
Background has inverted color to better fit printing
on paper.)

After the orthophoto “Lerkendal” was pro-
duced, the image coordinates of the GCPs
were found by manually selecting them
with the “Data cursor” tool in MATLAB.
Script A.10 was then used to extract an
area of 201 × 201 pixels from the or-
thophoto “Lerkendal”. These areas where
then fused together into a single image
by using Script A.66. Then the appli-
cation “Color Thresholder” in MATLAB
was used to create a binary image around
the GCPs. This was done by circling a se-
lection of the GCPs, and then clicking on
“Find Thresholds”. The color mode for the
application was set to Lab, since the di-
mensions are less correlated than red green
blue (RGB). The resulting binary image
was then fed into Script A.56 for removal
of areas too small, and too eccentric. Fi-
nally, the binary image and the fused GCPs
are fed into Script A.65 which gives an
n× 3 matrix of sample data.

3.4.2.2 Capturing a marked GCP

Figure 3.10: The JPEG ver-
sion of the image that was
used to create sample data
from marked GCPs.

Since the signal color the GCPs are marked with is not avail-
able as specifications, one might be tempted to simply take
a picture of a marked GCP. For accurate values of the color,
this is not as simple as it sounds. One of the reasons for this
is white-balance. Another reason is chromatic aberration.
Both are described, and dealt with in Section 2.3.

Since the images over “Lerkendal” were taken two years ago,
and they have not been repainted for a year, Terje Skogseth
painted the point “NEW2” anew. This can be seen in Fig-
ure 3.6. It has the same dimensions as all the other GCPs;
15× 15 cm.

Figure 3.6 and similar images were captured by the author using a Canon 7D with a Sigma
17-77 mm F2.8-4 DC MACRO OS HSM lens. The images that were used to extract the
color value were taken in RAW-format @ 5184× 3456 pixels (17.9 megapixels), a F-stop
of f/7.1, ISO-100, exposure time of 1/400 seconds, and at a focal length of 70 mm. The

39

Chapter 3. Method

(a) The color model for thresholding is Lab. (b) The color model for thresholding is RGB.

Figure 3.9: The mask of Figure 3.7 after three representative GCPs were selected (blue circles).
In (a) and (b) the same GCPs were selected, but due to the strong correlation between the different
bands of RGB compared to Lab, many uninteresting areas where also selected in (b). The mosaic of
GCPs is the same as Figure 3.7.

color profile Adobe RGB (1998) was used to define the RGB space. The profile captures
a greater portion of the chromatisity diagram in Figure 3.8 than sRGB, which is normally
used in screens, and cameras (Adobe Systems Inc., 2005). Each band was sampled at 14
bits resolution. With RAW, white-balance can be set in post-processing, along with any
color settings.

Post processing The post processing consists of two steps; “developing the negative”,
and converting it into a set of samples. The first part was done in Camera Raw 9.5.1 for
Adobe PhotoShop CC (2015). Since the image was taken in the RAW format, the image
have to be processed in order to use them in any other context (Cairns, 2013).

In post processing, the color profile was set to “Camera Neutral” in order for no color
to be emphasized. Lens distortion, and chromatic abbreviation was set to be removed
automatically. White balance was set to “daylight” because the image was taken around
noon in summer with a clear sky. The exposure, contrast, highlight, shadows, whites, and
blacks where set automatically, and then adjusted such that non of the data captured by
the camera sensor is cut out when transformed into 8 bits. In other words, no channel is
overexposed, nor underexposed, and stretches across the entire range of allowed colors.

In practice, this was done by setting giving the value of -0.47 to exposure, +27 to contrast,
-100 to highlights, +22 to shadows, +9 to blacks, +9 to whites. The white balance “day-
light” was defined to be at 5500K, and +10 to tonality (i.e. in the direction of magenta).

The image was then exported as a TIFF image with 16 bits per channel and no compres-
sion. This was done because the raw format of Canon is proprietary.

This image was then imported into MATLAB and then into “Color Thresholder”. Areas
that were not entirely covered by the paint were selected, and the resulting mask was
inverted. This was done to remove most outliers. The portion removed was not significant,

40

3.4 Acquiring data

however. 731069 points, 4.0806% were removed.

Figure 3.11: A closeup of all the GCPs in the
dataset “E6”. From the top left corner to the right,
the name of the GCPs are “20” and “21”. The
next row has the GCPs “19” and “18”. The last
row shows “22” and “17”. The location of each of
these points are shown in Figure 3.4. The GCP is
in the middle of each “subimage”.

Script A.65 was then used the same way as
before. This resulted in an n× 3 matrix of
reference colors.

41

Chapter 3. Method

Figure 3.12: An overview of where the differ-
ent GCPs are in the “E6” dataset. This is a
closeup of Figure 3.4. From the top, towards
the bottom of the image, the GCPs are called
“20”, “21”, “19”, “18”, “22”, and “17”.

42

Chapter 4
Results

A PROTOTYPE of a computer program that is able to georeference an orthophoto given
the measured-in ground control points (GCPs) and a dataset of a reference color.

The prototype gives a two dimensional (2D) absolute orientation unless a digital elevation
model (DEM) is supplied as input. In which case it gives a three dimensional (3D) absolute
orientation.

The prototype have been applied to two different orthophotos, and the results from the geo-
referencing are presented in this chapter. Different algorithms for calculating the absolute
orientation parameters were used. Different sets of reference colors where also used.

The larger figures of this chapter are placed at the end of the chapter for readability. These
figures are stitched together to form a mosaic such that they do not take up too much space
in the main part of this thesis. Fine details might be difficult to see in some of these figures.
Enlarged versions of the mosaics are therefore given in Appendix B.8.

4.1 The prototype
The entire code base for the prototype is given in Appendix A. The code base can also be
found at https://github.com/cLupus/AutoRef. In order to function properly,
it needs to know which color the GCPs are marked with. Multiple such datasets where
created, and they are presented in Section 4.2.

The prototype is able to georeference the orthophoto “Lerkendal”

With 12 runs of the prototype with the orthophoto “Lerkendal”, and the set of reference
colors describved in Section 3.4.2.1 took an average of 407.2474 seconds (6.7875 min-
utes). This was with the four least-squares estimation (LSE) algorithms Horn, Horn-
Hilden, Umeyama, and Umeyama∗. The data was run with the option “Rematching”
turned on, and off. The standard deviation of the running time was 48.9237 seconds .
When the reference color described in Section 3.4.2.2, the average time was 769.9± 79.5

43

https://github.com/cLupus/AutoRef

Chapter 4. Results

seconds, or slightly less than 13 minutes.

4.2 Reference color
This section describes the sample data for the Mahalanobis distance metric were produced.
From (2.2) we see than the metric requires a set of reference data. In this case the set is
a reference color, or a set of samples of colors. The entire sample is not necessary to
define the metric, however. Only the covariance matrix, and the mean value of the data
is necessary to define it. Such statistics are given in Table 4.2 and 4.3 for two different
sample sets that were produced.

The two sets are too large to be given here in their entirety. Instead, summary statistics,
histograms, and scatter plots are provided in Section 4.2.1. The datasets are also available
as comma separated values at http://server.nistad.me/AutoRef/. The dataset
from the orthophoto “Lerkendal” is called sample-gcp.csv, while the dataset from
the marked GCP i called extracted-values-from-RAW.csv.

4.2.1 Description of sample data
Figure 4.4 and 4.5 shows the distribution of each color channel and their pairwise corre-
spondence. The first is of the dataset produced by extracting values from the orthophoto
“Lerkendal”, while the latter is of the dataset produced by extracting the color from a
marked GCP.

From Figure 4.4b and 4.5b, we see that the red green blue (RGB) channels are strongly
correlated. The data was converted to the Lab color space in order to decouple chormaticity
and brightness. This was done by using the MATLAB function rgb2lab.

Table 4.2 and 4.3 shows that converting the values to Lab had a significant effect on making
the values less correlated. Green and blue have a correlation coefficient of 0.9657 for the
first set of values. By contrast, a and b have a correlation coefficient of 0.4670. The change
is most substantial between red and blue and between Lightness and b; from close to 1,
to close to 0. Another reason for converting the RGB to Lab is to avoid the spike of 1’s
of reds in the set from the orthophoto. Figure 4.4b also suggests that the green and blue
channel consists of two distributions, as there is a local maxima in the darker colors.

Visualization (mean + std and/or all the data sorted)

Normal distribution In Section 2.4.1, it was assumed that the reverence data used with
the Mahalanobis distance comes from a Gaussian (normal) distribution. The Kolmogoroc-
Smirnov test was therefore used to determine whether the data might come from a standard
normal distribution (Massey, 1951). I.e. µ = 0, σ = 1. Each channel was normalized by
subtracting the mean, and divided by the standard deviation. This was done for both sets
as RGB and Lab.

The Kolmogoroc-Smirnov test is implemented in MATLAB as kstest. As one might
expect from the histograms in Figure 4.4 and 4.5, none of the channels comes from a
Gaussian distribution. For the second set of values (i.e. Figure 4.5 and Table 4.3) the

44

http://server.nistad.me/AutoRef/

4.3 Finding thresholds, and “arbitrary” values

p-value was a plain 0 for both RGB and Lab. The plain 0 is likely a result of the fact that
double precision numbers cannot have an absolute value less than 4.9407 · 10−324. For
the first set, the p-values were many orders of magnitude larger; 1.5892 · 10−90 for the red
channel, 9.1773 · 10−44 for green, and 9.1773 · 10−44. For Lab, the p-values were even
greater; 8.9178 · 10−45 for Lightness, 2.1934 · 10−25 for a∗, and 4.2608 · 10−42 for b∗. In
other words, they do not come from a normal distribution.

4.3 Finding thresholds, and “arbitrary” values
How was ∆r and ∆θ found (to be)? Empirically. 0.05 and 0.05 was found to work suffi-
ciently well, and be a good compromise between ensuring a correct matching, while still
being liberal enough to account for most of the imperfections... Function "Find optimal
parameters.m"

Thresholds for mahal to create binimg.

4.4 Georeference Real-World cases
In the following two sections, the results from running the prototype with various input
and setting are given. In both sections, the reference color described in Section 3.4.2.1
is used. The prototype was then run once for each of the algorithms for calculating the
absolute orientation parameters. The algorithms were Horn, Horn-Hilden, Umeyama, and
Umeyama∗. For “Lerkendal”, this process was done twice; once for the option “rematch-
ing” turned off, and once on.

The orthophoto “Lerkendal”

4.4.1 The Lerkendal dataset
The prototype was run 8 times for the set “Lerkendal” when the sample data from the
orthophoto itself is used. The three different algorithms, and Umeyama∗ where used with
the option “Rematch” was first set to false, and then true. This option determines
whether Figure 3.2, or 3.3 is to be run. By using “Rematch”, the prototype first tries to find
all the GCPs as it does without the potion. After some points are found and the absolute
orientation parameters are found, they are inverted. That is (2.24) is rearranged such that
[x, y, z]

ᵀ is on the left-hand-side of the equation. The set of GCPs are then transformed to
image coordinates. Then, a certain area around that point is examined more thoroughly to
find where the GCP most likely is located.

Figure 4.7 and 4.6 shows the location of the GCP candidates that passed all the morpholog-
ical tests, and matches the topological point pattern (TPP) of the measured-in coordinates
of the GCPs. These are marked with blue x’s.

From the candidate matching (CM), the measured-in coordinates are extracted. Then the
absolute orientation parameters are inverted, and the measured-in coordinates are trans-
formed into image coordinates and plotted as orange pluses. This gives an indication of

45

Chapter 4. Results

(a) Using reference data from the orthophoto (b) Using the reference data from a marked GCP

Figure 4.1: The orthophoto “Lerkendal” converted into a normalized distance plot. For both or-
thophotos, the Mahalanobis distance metric was used. The reference sample described in Sec-
tion 3.4.2.1 was used in (a), while (b) used the sample described in Section 3.4.2.2. The darker
areas represents distances close to zero, while bright areas represents normalized distances close to
1.

how well the absolute orientation is. The significance of these points are explained in Sec-
tion 5.1. For now, notice how the two sets of points line up, except for Figure 4.6c. The
fact that the markings in Figure 4.7c does not match any of the markings in Figure 3.5.

For larger versions of the figures in Figure 4.7 and 4.6 see Appendix B.8.

Figure 4.8, 4.9, and 4.10 shows the direction and relative magnitude of the residuals of
Figure 4.7 and 4.6. The underlying numbers for these figures are given in Table B.12 for
Figure 4.9a and 4.9b. Table B.14 for Figure 4.9c and 4.9d. Table B.16 for Figure 4.9e
and 4.9f. Table B.18 for Figure 4.10a and 4.10b. Table B.20 for Figure 4.8a and 4.8b.
Table B.22 for Figure 4.8c and 4.8d. Table B.24 for Figure 4.8e and 4.8f. Table B.26 for
Figure 4.10a and 4.10b.

Additionally, the magnitude of the GCPs with the smallest, and largest residual is given in
Table B.29 for Figure 4.8, B.6, and B.8, while Table B.28 shows the same for Figure 4.9,
B.5, and B.7.

4.4.1.1 Reference color

Figure 4.1 shows the normalized Mahalanobis distance of the orthophoto “Lerkendal”.
Figure 4.1a used the reference colors extracted from the orthophoto itself, as described in
Section 3.4.2.1, while Figure 4.1b was made from sampling a marked GCP, as described
in Section 3.4.2.2. From this, we see that the sample data from Section 3.4.2.1 gives a
“liberal” estimate of which areas can be considered a GCP. Figure 4.1b, on the other hand,
gives a stricter, or more “conservative” estimate of what areas might be a GCP.

46

4.4 Georeference Real-World cases

4.4.1.2 Which where found?

Name NEW1 NEW2 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18

Found 4 3 2 0 3 3 0 0 1 4 4 4 0 4 3 3 3 2 0 4

Table 4.1: Shows how many times the different GCPs were found in Figure 4.7.

Figure 4.2: An overview over which GCPs where
consistently found (blue) and those that were con-
sistently not found (red). The order of the GCPs
is the same as in Figure 3.7; i.e. “New1” at the
top left corner, and “P18” in the lower right corner
with the rest of the points in ascending order. Fig-
ure B.17 and B.18 show larger versions of these
two images.

In the four runs without rematching above,
some points were consistently found,
while others were consistently not found.
The points that were found consistently are
“NEW1”, “P8”, “P9”, “P10”, “P12”, and
“P18”. On the other hand, “P2”, “P5”,
“P6”, “P11”, and “P17” were consistently
not found. Figure 4.2 shows an overview
of what these points look like. Blue
squares represent GCPs that were consis-
tently found, while red squares represent
those that were consistently not found.

There does not seem to be a particular pat-
tern: The least visible are P9, P17, P8, pos-
sibly also P4. 4 0 4 3 On the other hand,
some of the most visible points (P5, P6,
P11) are not detected at all.

4.4.1.3 Distribution of the residuals

When a model is correct, the residuals are
expected to be normally distributed (Kyr-
iakidis, 2015). Figure 4.11 shows his-
tograms of the residuals for Northing, Easing, and Elevation. The first column have had
10% of each tail removed as outliers. No pruning have been done with the second column.
10% was chosen because it removed the small “bumps” seen to the right and left of the
two primary columns in Figure 4.11b and 4.11d. All six of these where then tested to be
normal with the mean value, and the standard deviation being equal to the sample mean
and standard deviation by the one sample Kolmogorov-Smirnov test is MATLAB (Massey,
1951). The null-hypothesis is that the data comes from a normally distributed sample with
mean equal to zeros, and standard deviation equal to 1. The null-hypothesis was rejected
for all, except for the pruned values of elevation (Figure 4.11e). The significance level
(p-value) was 0.0021 for pruned Northing, 0.0040 for pruned Easting, 0.4017 for runed
Elevation, 6.1344 · 10−15 for Northing, 1.3656 · 10−14 for Easing, and 1.1279 · 10−04 for
Elevation.

4.4.2 The “E6” dataset
Calculation of corrections is a trade secret.

47

Chapter 4. Results

(a) Illustrates the placement of image GCPs, and
transformed GCPs when the scale factor proposed
by Umeyama (1991) is used.

(b) Illustrates the placement of image GCPs, and
transformed GCPs when the scale factor proposed
by Horn (1987) is used.

Figure 4.3: An illustration of how the choice of method for calculating the scaling factor, s, affect
the placement og GCPs. The scaling factor, s = tr(DS)/σ2

x, that was proposed by Umeyama (1991)
is used in (a). In (b), the scaling factor, s =

√
σ2
x/σ2

y , as proposed by Horn (1987), is used. Except
for the choice the scaling factor, s, everything is identical between (a), and (b). The orthophoto
“Lerkendal” is used in both instances. Blue crosses signify the location of a GCP that was extracted
by the prototype. Orange pluses signify where the set of corresponding measured-in GCPs are in the
image when the inverse of the absolute orientation parameters is used to transform the measured-in
GCPs into image coordinates.

4.4.3 Choice of sample data
4.4.4 Visibility og GCPs
E6 vs Lerkendal + "gcp.png" / "gcp-E6.png" Should be relatively “big”, some 20 - 40
pixels across after the aerial images have been made into a orthophoto. The aerial images
taken over Lerkendal were taken in two directions. That is, the drone took two passes,
one “vertically”, and one “horizontally”. This makes it possible to super sample the result.
Boucher et al. (2008).

48

4.4 Georeference Real-World cases

(a) Lab (b) RGB

Figure 4.4: Box plot of the reference sample created directly from the orthophoto “Lerkendal”. The
diagonal shows the histogram of the different bands, while the off-diagonal entries show the scatter
plot of the different bands against each other. Both (a) and (b) display the same data, but in (a), the
data have been converted to the Lab color space. (b) uses the RGB color space.

Red Green Blue Lightness a b

Mean 0.9080 0.7426 0.7113 80.1143 14.0786 9.8678

Minimum 0.5725 0.2902 0.2314 42.2719 -1.8771 3.8361

Maximum 1.0000 0.9922 0.9333 99.0975 39.5758 30.8549

Cov. (r/L) 0.0091 0.0099 0.0086 101.0732 -36.8650 -4.7863

Cov. (g/a) 0.0099 0.0138 0.0128 -36.8650 32.6908 13.1508

Cov. (g/b) 0.0086 0.0128 0.0128 -4.7863 13.1508 24.2553

Corr. (r/L) 1.0000 0.8835 0.8026 1.0000 -0.6413 -0.0967

Corr. (g/a) 0.8835 1.0000 0.9657 -0.6413 1.0000 0.4670

Corr. (b/b) 0.8026 0.9657 1.0000 -0.0967 0.4670 1.0000

Number of samples 3710

Table 4.2: A table showing descriptive statistics for the sample values from the orthophoto. Cor-
relation coefficients between the different bands are also included. To the left of the dashed line
are the statistics for the RGB values of the sample. To the right are statistics of the same sample
set when the values were converted into Lab. Cov. stands for covariance, and Corr. for correlation
coefficient. The parentheses indicates which channel the covariance, and correlation coefficients are
relative to. To the left of the dashed line, they are relative to red, green, and blue, while to the left, it
is Lightness, a∗, and b∗.

49

Chapter 4. Results

(a) Lab (b) RGB

Figure 4.5: Box plot of the reference sample created from the paint of a marked GCP. The diagonal
shows the histogram of the different bands, while the off-diagonal entries show the scatter plot of the
different bands against each other. Both (a) and (b) display the same data, but in (a), the data have
been converted to the Lab color space. (b) uses the RGB color space.

Red Green Blue Lightness a b

Mean 0.7047 0.7010 0.7981 73.8650 5.4686 -12.0311

Minimum 0 0.4743 0.4847 47.4435 -35.9723 -24.8647

Maximum 0.9608 0.7569 0.6824 80.5595 48.4793 30.2006

Cov. (r/L) 0.0092 -0.0024 0.0021 4.7691 -8.4675 3.0198

Cov. (g/a) -0.0024 0.0019 -0.0001 -8.4675 169.8797 -41.4681

Cov. (g/b) 0.0021 -0.0001 0.0128 3.0198 -41.4681 12.8809

Corr. (r/L) 1.0000 0.5777 0.7880 1.0000 -0.2975 0.3853

Corr. (g/a) -0.5777 1.0000 -0.1138 -0.2975 1.0000 -0.8865

Corr. (b/b) 0.7880 -0.1138 1.0000 0.3853 -0.8865 1.0000

Number of samples 17 184 835

Table 4.3: A table showing descriptive statistics for the sample values from the image of a marked
GCP. Correlation coefficients between the different bands are also included. To the left of the dashed
line are the statistics for the RGB values of the sample. To the right are statistics of the same sample
set when the values were converted into Lab. Cov. stands for covariance, and Corr. for correlation
coefficient. The parentheses indicates which channel the covariance, and correlation coefficients are
relative to. To the left of the dashed line, they are relative to red, green, and blue, while to the left, it
is Lightness, a∗, and b∗.

50

4.4 Georeference Real-World cases

(a) Horn (b) Horn-Hilden

(c) Umeyama (d) Umeyama∗

Figure 4.6: Shows the resulting placement of the GCPs in the orthophoto “Lerkendal”. Rematch-
ing was turned off for all these. In (a) Horn was used to find the absolute orientation parameters.
Horn-Hilden was used in (b), Umeyama in (c), and (d) used Umeyama∗. For enlarged versions see
Figure B.10, B.11, B.13, and B.15.

51

Chapter 4. Results

(a) Horn (b) Horn-Hilden

(c) Umeyama (d) Umeyama∗

Figure 4.7: Shows the resulting placement of the GCPs in the orthophoto “Lerkendal”. Rematch-
ing was turned on for all these. In (a) Horn was used to find the absolute orientation parameters.
Horn-Hilden was used in (b), Umeyama in (c), and (d) used Umeyama∗. For enlarged versions see
Figure B.9, B.12, B.14, and B.16.

52

4.4 Georeference Real-World cases

(a) Horn, location (b) Horn, elevation

(c) Horn-Hilden, location (d) Horn-Hilden, elevation

(e) Umeyama, location (f) Umeyama, elevation

Figure 4.8: Plots of residual errors for location (Northing - Easting) and Ellipsoidal Height. (a) and
(b) shows the residuals by using Horn to calculate the absolute orientation parameters. (c), and (d)
shows the same for Horn-Hilden, while (e) and (f) used Umeyama. None of them used rematching.
For a larger version of these, see Figure B.1, B.3, and B.5.

53

Chapter 4. Results

(a) Horn, location (b) Horn, elevation

(c) Horn-Hilden, location (d) Horn-Hilden, elevation

(e) Umeyama, location (f) Umeyama, elevation

Figure 4.9: Plots of residual errors for location (Northing - Easting) and Ellipsoidal Height. (a) and
(b) shows the residuals by using Horn to calculate the absolute orientation parameters. (c), and (d)
shows the same for Horn-Hilden, while (e) and (f) used Umeyama. All of them used rematching.
For a larger version of these, see Figure B.2, B.4, and B.6.

54

4.4 Georeference Real-World cases

(a) Umeyama∗, location (b) Umeyama∗, elevation

(c) Umeyama∗ rematched, location (d) Umeyama∗ rematched, elevation

Figure 4.10: Plots of residual errors for location (Northing - Easting) and Ellipsoidal Height. (a) -
(d) shows the residuals by using Umeyama∗ to calculate the absolute orientation parameters. (a) and
(b) did not use rematching, while (c) - (d) did. For a larger version of these, see Figure B.7 and B.8.

55

Chapter 4. Results

(a) Northing 10% (b) Northing, full

(c) Easting 10% (d) Easting, full

(e) Elevation 10% (f) Elevation, full

Figure 4.11: Shows the histograms of the residual errors for the Northing, Easting, and Elevation
component of the data from Figure 4.8 - 4.10. (a), (c), and (e) shows the histogram of the residuals
when 10% of the ends have been cut off. (b), (d), and (f) shows the same histogram without any
pruning.

56

4.4 Georeference Real-World cases

(a) Horn (b) Horn-Hilden

Figure 4.12: Shows the resulting placement of the GCPs in the orthophoto “E6”. Rematching was
turned on. (a) shows the results when using Horn, while (b) is obtained by using Horn-Hilden.

57

Chapter 4. Results

(a) Umeyama (b) Horn with limited GCPs

Figure 4.13: Shows the resulting placement of the GCPs in the orthophoto “E6”. Rematching was
turned on. (a) shows the results when using Umeyama, while (b) is obtained by using Horn, but the
list og GCPs was limited to only the points visible in the orthophoto.

58

Chapter 5
Discussion & Analysis

IN SHORT, the prototype does work. It is capable of finding where the ground control
points (GCPs) are in an orthophoto. The prototype has also been shown to be feasible;

able to georeference an orthophoto in less than 7 minutes. However, the prototype is far
from perfect.

In this chapter, the results are analyzed and discussed. In particular, what the different
results means in practice will be discussed. Possible reason for some of the discrepancies
are presented, along with possible solutions.

5.1 Analysis of placement
Figure 4.7 and 4.6, along with their enlarged couterparts in Figure B.10 - B.16 show that
the choice of algorithm for absolute orientation does not play a major part.

In the following sections, the results from Section 4.4 are discussed and analyzed. The
results from using the orthophoto “Lerkendal” and the sample data from Section 3.4.2.1 is
given first. Then the results from applying the prototype to the orthophoto “E6” with the
same sample data are discussed.

5.1.1 Horn and Horn-Hilden
In particular, Horn, and Horn-Hilden gives very similar results. This is evident when
comparing Figure 4.7a against 4.7b, or their enlarged counterparts. When the GCPs are
rematched, the residual plots in Figure 4.9a - 4.9d are nearly identical.

Their “un-rematched” counterparts in Figure 4.8a - 4.8d, however, are quite dissimilar. The
direction, and magnitude of the residual errors varies quite a bit; “P9” reverses direction,
and “P1” has one of the largest magnitudes of Horn-Hilden (Figure 4.8c), while in Horn
(Figure 4.8a) it is one of the smallest. The reverse is true for “NEW1”. The residual

59

Chapter 5. Discussion & Analysis

of elevation is generally much smaller by using Horn-Hilden (Figure 4.8d) than Horn
(Figure 4.8b).

Horn and Horn-Hilden found the same GCPs. This is to be expected, as points are found
in the matching stage of the prototype. This stage is independent of the choice of absolute
orientation algorithm. The algorithm simply chooses the similarity transform (ST) which
gives the smallest total root mean square error (RMSE). This indicate that both algorithms
agree on what constitute the best absolute orientation parameters. These parameters are
also quite similar, as can be seen by comparing (B.14), (B.15), and (B.16) against (B.17),
(B.18), and (B.19).

The fact that both algorithms found all the GCPs when rematching was turned on suggests
that the initial absolute orientation parameters were close to their optimal values. This is
also evident from the RMSE of the location (Northing-Easting) calculated in Table B.21
and B.23. It is 10.11 cm, and 10.13 cm respectively.

5.1.1.1 Comparing the absolute orientation parameters

Since the scale factor s is calculated the same way in Horn (1987) and Horn et al. (1988),
one would expect them to have the same value. The only way it would be different is if
different sets of candidate matchings (CMs) minimized the total RMSE. Section 2.6.1.2
and 2.6.1.3 shows that they use the same equation for calculating the translation vector t
as well as the scale factor. Thus, it is only for them to give different results if they obtain
different rotational matrices, R. If the RMSE is different for the two algorithms, both
cannot give optimal absolute orientation parameters, which both claim they do.

When rematching is turned on, i.e. all the marked GCPs are found and the absolute orien-
tation parameters are calculated, the difference in total RMSE is a minuscule 0.005993%.
The RMSE in location is much greater, but not significant (0.195074%). When rematch-
ing is turned off, however, differences becomes apparent. The total RMSE shows a
68.358998% difference in favor of Horn-Hilden, while the difference in error of location is
41.450787%. Also in favor of Horn-Hilden. This suggests that the two algorithms favors
different sets of point, or that there is glitches, or bugs in Script A.13 or A.14. Another
explanation for he difference in outputs is numerical accuracy in calculating the rotation
matrix.

5.1.2 Umeyama
In short, Umeyama preformed worse than both Horn and Horn-Hilden. The main reason
for this seem to be due to the scaling factor proposed in Umeyama (1991). The calculated
scale factor is more than twice the size of that obtained by using Horn or Horn-Hilden
(0.0751 vs. 0.0320)

In his article, Umeyama writes

Finally, since ε2(s) is a quadratic form of s, the minimum value of ε2(s) is
obviously achieved when s = tr(DS)

σ2
x

In the article c is used instead of s for the scale factor, and the emphasis has been added.

60

5.1 Analysis of placement

ε2(s) refers to the RMSE caused by the scaling factor. The algorithm is implemented
directly in Script A.59.

Comparing Figure 4.7c, Figure 4.6c, Table B.17, and Table B.25 against Figure 4.7d,
Figure 4.6d, Table B.19, and Table B.27, it becomes plain that his claim is not true. By
using the same scale factor as defined in Horn (1987) and Horn et al. (1988) the total
RMSE can be reduced from 3.49 meters to 2.75 meters. In the same case, the RMSE
for the location has a more drastic reduction; from 2.15 meters to 0.101 meters. That is
a reduction of 95.3%! This was the case when comparing Figure 4.8e and 4.8f against
Figure 4.10a and 4.10b. The RMSEs are given in Table B.25 and B.27 respectively.

The difference between Umeyama and Umeyama∗ is even grater when the rematching
option is turned on. The RMSE of location is then reduced from 89.2 meters to 0.0738
meters. In other words, a 99.917% reduction.

By using Umeyama∗ instead of Umeyama, the algorithm gives results that looks suspi-
ciously similar to that of Horn-Hilden. This is evident when comparing the plot of residual
errors in Figure 4.8c with Figure 4.10a, Figure 4.9c with Figure 4.10c, Figure 4.8d with
Figure 4.10b, and Figure 4.9d with Figure 4.10d.

In fact, the residuals in Table B.14 and Table B.18 are identical. This is a consequence
of the absolute orientation parameters are identical. This can be seen by comparing (B.4)
with (B.11), (B.5) with (B.12), and (B.6) with (B.13). Even when rematching is turned
off, the algorithms gives identical results.

5.1.2.1 Why not an iterative algorithm?

One of the primary reasons why the absolute orientation algorithm given in Kraus (2007)
was not implemented, and compared to the other algorithms is that it uses an iterative
approach. Thus, it needs an initial guess to start the iteration. Initial guesses can be found
automatically, however. One approach is to select some arbitrary values initially. Kraus
suggests a more robust method for finding an initial guess. The method requires at least
four points. Select excatly four of these. The choice cannot be made arbitrary as a poor
choice can cause the iterations to not approach a particular set of values for the absolute
orientation parameters.

Another concern with the iterative approach, is the use of linearizion which may cause the
algorithm to return a sub-optimal solution. This happens if the iteration getting “stuck” in
a local minima in the parameter space. Thus the absolute orientation parameters cannot be
guaranteed to be optimal for any set of GCPs candidates found in the image and measured-
in GCPs.

The main advantage of using an iterative approach, such as the algorithm proposed in
Kraus (2007) is that it is easy to calculate, and implement. Unlike Horn, Horn-Hilden,
and Umeyama, eigenvalues and eigenvectors are not necessary for the algorithm in Kraus
(2007). If done by hand, or if there are no functions or libraries available for computing
eigenvalues and eigenvectors, this is a major advantage. However, since the matrices are
small (3 × 3 and 4 × 4), and there are ready made programming libraries that calculates
eigenvalues and eigenvector, this is not a major advantage.

The majority of the running time of the prototype is dedicated to finding GCP candidates

61

Chapter 5. Discussion & Analysis

(7, or more minutes), while matching the candidates to the measured-in GCPs and finding
the absolute orientation parameters is done in approximately 2 seconds. Thus, simplicity
and computational efficiency for the algorithm that finds the optimal absolute orientation
parameters is not important towards how feasible, or efficient the prototype is. A consistent
and accurate method for matching the two sets of points, and finding optimal absolute
orientation parameters is of greater importance to the feasibility of the prototype, and
future production-ready systems.

5.1.3 E6
Figure 4.13 and 4.12 shows where the prototype placed the different GCPs, and where
the measured-in GCPs are in the orthophoto by using the calculated absolute orientation
parameters. Comparing the placement of the blue x’s with the placement in Figure 3.4 and
3.12, and considering that some GCPs are placed outside the limits of the orthophoto, it
becomes obvious that the prototype does not work perfectly. The reason for these results
seem to stem from the prototype’s failed attempt at locating where the GCPs are in the
orthophoto. The reverence values used in the generation of these results is the same as was
used with the results from “Lerkendal”.

Figure 4.1a and B.17 shows the Mahalanobis distance metric used applied to the or-
thophoto “Lerkendal” with the same reference color. From this, one can see that the
reference color favors concrete and worn asphalt as well as roofs.

From Section 3.4.1, we know that the signalized area around the GCPs in “E6” is smaller
than those of “Lerkendal” (≈ 10 pixels across versus ≈ 20 pixels). Visually, this is even
clearer; Figure 3.11 and 3.7 shows a closeup mosaic of the GCPs of the orthophotos “E6”
and “Lerkendal” respectively. The parts of the two mosaics have the same image resolu-
tion; 201×201 pixels. Even though Figure 3.11 has been enlarged compared to Figure 3.7,
the markings in Figure 3.11 are not as easy to spot as the markings in Figure 3.7.

Combined, these two aspects give a plausible explanation for the prototype not being fully
able to find the GCPs in “E6”. Another reason might be that the prototype uses fixed, hard
thresholds for converting a distance-image into a binary image. This binary image is then
put through different morphological tests.

A possible solution to this problem is to use soft thresholds, and adaptive limits for creating
binary images. Another option is to carefully design the reference color and the distance
metric to better describe what constitute a GCP.

5.2 Analysis of residuals
In this section, the residuals from “Lerkendal” are analyzed. The residuals from “E6”
were not included because, as seen in Figure 4.12 and 4.13, the prototype was unable to
extract the marked GCPs. Thus, the residuals are major outliers. The largest magnitude for
“E6” occurred when using Umeyama. It is 2020.99 meters, and occurs at the point “22”,
which is a GCP that is visible in the orthophoto “E6”. Interestingly, the smallest error
also occurred when using Umeyama; 167,19 meters, supposedly at point “13”, which is

62

5.2 Analysis of residuals

not one of the GCPs in “E6”. The rest of the residuals tend to lie between 100 and 1000
meters in magnitude.

The reason the residuals from using the reference color described in Section 3.4.2.2 is
similar; the prorotype was unable to locate the marked GCPs.

5.2.1 Analysis of the magnitudes of the residuals
On first viewing, the residuals of Figure 4.8, 4.9, and 4.10, along with their enlarged
counter parts in Figure B.2 - B.8, does not seem to follow a particular pattern. However,
the results from Umeyama are all outliers, having a RMSE far grater than any other of the
approaches.

Section 4.4.1.3 showed that the residuals are mostly not normally distributed. Conse-
quently, some aspects of the model used to describe a GCP is not close enough to reality
(Kyriakidis, 2015). The model is the use of reference color for the Mahalanobis metric,
the Mahalanobis distance metric itself, and any morphological tests applied to the GCPs
candidates.

When the residuals are pruned of clear outliers (Figure 4.11a, 4.11c, and 4.11e) the dis-
tributes are not very far from being normally distributed.

5.2.2 Analysis of the direction of the residuals
In this section, the direction of the residuals is analyzed. The goal is to find any trends that
might suggest a bias, and thus how the prototype can be improved.

5.2.2.1 The direction of residuals

Figure 5.1: Histogram of the angle (in radians)
of the residuals of location in Figure 4.8, 4.9, and
4.10.

Based on Figure 4.8, 4.9, and 4.10, and
their enlarged counterparts, there does not
seem to be a clear and obvious trend in
the direction of the residuals. Figure 5.1
shows that the angle of the residual vec-
tors of the location in Figure 4.8, 4.9, and
4.10 generally comes from a uniform dis-
tribution. The orientation of these angles
is counter clockwise from the x-axis (East-
ing). There is a bias towards southeast (the
peak between −1 and 0). Since the x-axis
of the histogram is cyclic (radians from
a specific axis), the small sample size is
likely responsible for the slight elevation
towards the left-hand side of the figure and
the small dip towards the right-hand side.
Some of the values close to π could have
been slightly larger, or smaller, and then received a negative value. One explanation for
this bias is that the rotational matrixR have a slight clockwise bias.

63

Chapter 5. Discussion & Analysis

5.2.2.2 Distance from center

Figure 5.2 shows that there is no apparent correlation between the distance from the center
of the orthophoto and the magnitude of the residual. For Figure 5.2a the correlation coef-
ficient was slightly positive (0.2554), while for Figure 5.2b, 5.2c, and 5.2d, the correlation
was insignificant (−0.0137, 0.1068, and 0.0017 respectively).

One explanation for the slight correlation between distance from the center and the mag-
nitude of the residual is that the scale factor is a little bit too great. Another explanation
is that when aerial images are made into a orthophoto, the edges of the orthophoto tend to
be less accurate than the center due to more overlap between aerial images. However, the
GCPs are mostly located toward the the center in the orthophoto “Lerkendal”.

5.2.2.3 Direction outward

Figure 5.3: A scatter-plot of the angle of the (2D)
residuals against the angle of the (2D) distance of
the same point from the center.

Now we examine whether there is a con-
nection between the placement of the GCP
relative to the center of the GCPs and the
direction of the residual. In other words,
how strongly does the residuals outward?
The trend is clearly visible in Figure 4.8e.
Figure 4.8a and 4.8c also show tendencies
for this. However, as can be seen in in
Figure 5.3, there is no strong correlation
between them. The correlation coefficient
between the angle of the (2D) residual, and
angle of the vector formed by subtracting
the center from the different GCPs’ loca-
tion is 0.1570.

64

5.2 Analysis of residuals

(a) Magnitude of residual location vs. two dimen-
sional (2D) distance from center, 10%.

(b) Magnitude of residual location vs. 2D distance
from center, full.

(c) Magnitude of residual vs. three dimensional
(3D) distance from center, 10%.

(d) Magnitude of residual vs. 3D distance from
center, full.

Figure 5.2: Plots of the relation between the magnitude of residuals and the distance from the center
of the GCPs. The smallest, and greatest 10% quantiles have been removed (a) and (c). No data have
been removed in (b) and (d). (a) and (b) show relationship between the magnitude of the residual
in location (Northing-Easting) and 2D distance from the center of the GCPs. In (c) and (d) the
Elevation component have been included in the magnitude and the distance.

65

Chapter 5. Discussion & Analysis

5.3 On the use of refer-
ence colors
The results from using the reference color

described in Section 3.4.2.2 are not included in this thesis. The reason for this is that it
did not work as expected; none of the GCPs were found in “Lerkendal”, nor in “E6”. In
some runs, the prototype was unable to match more than three of the candidates to the
measured-in GCPs. By using topological point pattern (TPP), a three point matching is
almost arbitrary; the first two points are, by definition, a match. The first coordinate always
have the polar coordinate (r, θ) = (0, 0), while thee second always is (r, θ) = (1, 0).

For this, and other reasons, a matching proposed by TPP was not considered proper unless
it had 5 - 7, or more points in it. Figure 4.1a and 4.1b shows that the reference color defined
in Section 3.4.2.2 is more strict than the reference color defined in Section 3.4.2.1. That
is, more areas in Figure 4.1a are considered to be close to a GCP. Therefore, the threshold
values have to be stricter, or closer to zero in order to seperate potential GCPs from areas
that are not. Since the hard coded thresholds for what constitutes a probable GCP are
based on the fist set of reference color, it is likely too strict for the distances obtained from
the Mahalanobis metric using the reference colors defined in Section 3.4.2.2.

5.4 On loading the entire orthophoto into memory
In the beginning of this thesis, the prototype was limited to loading the entire orthophoto
into memory. The reason for this is that makes it easier to process the orthophoto, and
keep track of where different GCP candidates are located. In theory, there is no limitation
that a similar prototype, or system must load the entire orthophoto into memory (RAM).

The entire orthophoto “E6” is approximately 21 GB. In this case, and likely many others in
the near future, processing only a portion of the orthophoto at a time would be beneficial.
That way, the system need not run on a computer with enormous amounts of RAM (When
the “E6” was converted to double, it took about 91 GB of RAM).

Programs such as PhotoScan and Pix4D are capable of exporting the orthophoto as a mo-
saic with an eXtended Markup Language file that shows where the different tiles are in
relation to each other. By using a mosaic instead, the process becomes naturally parallel;
the tiles can be processed mostly independent of each other. However, there are some edge
cases that must be dealt with: What if a GCP is along the edge of a tile, and thus in two
different tiles?

5.5 On marking GCPs
From the results in Section 4.4.2, Section 4.4.1, Figure 3.7, and Figure 3.11 one can infer
that the marked area should be at least 20 pixels wide in the final orthophoto. The images
taken over Lerkendal consisted of two passes. In these images, the signalized area was
approximately 5 pixels across (3cm/pixel).

Figure 4.2 shows which GCPs were found consistently, and those that were consistently
not found. One possible explanation for the most visible GCPs not being found is that the

66

5.6 Issues with TPP

reference color is a compromise between all the GCPs, and thus by using the Mahalnobis
distance metric, the GCPs that have a color close to the average value is more likely to
be found, instead of the GCPs with the strongest color. One possible solution to this is to
paint, or lay down a black border around the different GCPs. The exact size of it needs
more research to be determined, but one suggestion would be about the same size as the
side length of the signalized area around the GCPs.

A round shape for the signalized area might be more appropriate than squares. The reason
for this is that, as can be seen in Figure 3.7 and 3.11, the signalized areas tend to look
like circles when viewed from some distance. With circles, the points could more easily
be matched to a template, or small binary image. Using template can also be used with
squares, but then the templates might have to be rotated to ensure detection, with will take
more processing power.

5.6 Issues with TPP
One of the goals of this thesis is to investigate the applicability of the algorithm of TPP
presented in Li and Briggs (2006). Additionally, no source code was supplied in the article.
Nor was there any links to the working program Li and Briggs made, or the data used. Thus
verification of their results can be difficult.

Even though TPP was designed around 2D georeferencing, it works well with 3D data as
well. The fact that the TPP algorithm was not extend to 3D might be one of the reasons
for why the elevation was generally poorer modeled than that of Northing and Easting.

During implementation, and use of the algorithm, some flaws in the original design were
discovered. The first issue lies in how the point patters are sorted. The sorting and the
issue is described in Section 2.5. In short, the angles are sorted by radial distance counter
clockwise from a given axis. This causes a problem is a point lies just below the axis, and
have an absolute radial distance which is smaller than the point before it. In this case, the
point that is further away is chosen, in contrary to what is desired; the closest match.

Another issue was that, although Li and Briggs claims that a single, arbitrary point can
be selected as the anchor point from the set points from the image. However, depending
on the point that was chosen, the set of CMs than minimized the RMSE varied in size
and accuracy. The solution to this problem was to calculate a TPP for each point in the
set of GCP candidates and matching each of them against all of the TPP made from the
measured-in GCPs.

5.7 Issues with the scale factor for Umeyama
In his article, Umeyama, claims that the scale factor (2.38) obviously minimizes the root
mean square error (RMSE). No proof is given. Figure 4.8, 4.9, and 4.10 show that other
least-squares estimation (LSE) algorithms that does a better job. Alternatively, the im-
plementation developed in this thesis is flawed. The article Umeyama (1991) was used
extensively during the development, and the implementation was written as directly into
code as possible.

67

Chapter 5. Discussion & Analysis

Script 5.1 gives an absolute orientation with RMSE of 89.2561. The script was run with
location being a list of candidate GCP extracted from the orthophoto “Lerkendal”. These
points are given in Table B.3. The parameter gcp the measured-in GCPs given in Table B.1.
When ’UseHornScaling’, false was changed to true, the RMSE of the absolute orien-
tation became 0.8474.

The absolute orientation parameters from using the scale factor (2.31) from Horn (1987)
and Horn et al. (1988) is given by (B.23) - (B.25). When the scale factor proposed in the
original article, the absolute orientation parameters are given by (B.20) - (B.22). The scale
factor proposed in Umeyama (1991), (2.38) is more than twice that of the scale factor
obtained when using (2.31) (0.0746 against 0.0320).

Script 5.1: An exceprt from Script A.1, where a set of CMs are matched with the measured-in GCPs
from Lerkendal. See Table B.1 for the coordinates.

1 [CM, ST, RMSE] = match_gcps(location, gcp, ...
2 ’GetOptimal’, true, ...
3 ’ImageTPPMode’, ’all’, ...
4 ’MinimumMatches’, 7, ...
5 ’OrientationAlgorithm’, ’ShinjiUmeyama’, ...
6 ’AngleThreshold’, 0.05, ...
7 ’RadiusThreshold’ , 0.05, ...
8 ’UseHornScaling’, false);

68

Chapter 6
Conclusion

THE PROTOTYPE presented in this thesis shows that an orthophoto can be georeferenced
automatically based solely on the orthophoto itself, the measured-in coordinates of

the ground control points (GCPs), and a set of reference color values that depict the color
used to signalize, or mark the different GCPs.

Not only is it possible to georeference a orthophoto automatically, but it is feasible; a
medium sized orthophoto (20 051 x 22 039 pixels) was georeferenced in less than 7 min-
utes with a root mean square error (RMSE) of as little as 0.0738 meters. The prototype is
capable of georeference an orthophoto by itself to give a two dimensional (2D) absolute
orientation and to give a three dimensional (3D) absolute orientation if a digital elevation
model (DEM) is supplied.

The accuracy in elevation is not as accurate as the Northing-Easting. In the best case in
this thesis the smallest total RMSE was 0.847 meters.

This thesis have also showed that the choice of algorithm to calculate the optimal absolute
orientation parameters in a least-squares estimation (LSE) fashion is not arbitrary.

6.1 Further
6.1.1 Thoughts
6.1.2 Work
New implementation in C/C++ and/or Python. Thus a completely open source project.

6.2 Recommendation for marking GCPs

69

70

Bibliography

Abramowitz, M. (1972). Handbook of Mathematical Functions With Formulas,
Graphs, and Mathermatical Tables. pages 17–18. National Bureau of Standards,
10 edition. Available from: http://people.math.sfu.ca/~cbm/aands/
abramowitz_and_stegun.pdf.

Adobe Systems Inc. (2005). Adobe RGB (1998) Color Image Encoding. Technical report,
Adobe Systems Incorporated, 345 Park Avenue, San Jose, CA 95110-2704. Available
from: https://www.adobe.com/digitalimag/pdfs/AdobeRGB1998.pdf.

AgiSoft LLC (2012). Agisoft PhotoScan User Manual: Professional Edition. AgiSoft
LLC.

Allen, J. Spectral signatures of earth features [online]. Science Mission Directorate. (2010)
[cited 2016-05-24]. Available from: http://missionscience.nasa.gov/ems/
09_visiblelight.html. Image.

AntonAL. What is the best javascript image processing library? [closed]
[online]. StackOverflow. (2015) [cited 2016-05-20]. Available from:
https://stackoverflow.com/questions/3351122/what-is-the-
best-javascript-image-processing-library.

Arun, K. S., Huang, T. S., and Blostein, S. D. (1987). Least-squares fitting of two 3-d
point sets. Pattern Analysis and Machine Intelligence, IEEE Transactions on, PAMI-
9(5):698–700.

Blackwell, C. Color vision 3: Color map [online]. (2013) [cited 2016-05-24]. Available
from: https://www.youtube.com/watch?v=KDiTxWcD3ZE.

Boucher, A., Kyrakidis, P. C., and Cronkite-Ratcliff, C. (2008). Geostatistical solutions
for super-resolution land cover mapping. IEEE Transactions on Geoscience and Remote
Sensing, 46(1).

Cairns, G. (2013). Digital Photo Professional: Canon’s image processing soft-
ware. Available from: http://cpn.canon-europe.com/content/product/
canon_software/inside_digital_photo_professional.do.

71

http://people.math.sfu.ca/~cbm/aands/abramowitz_and_stegun.pdf
http://people.math.sfu.ca/~cbm/aands/abramowitz_and_stegun.pdf
https://www.adobe.com/digitalimag/pdfs/AdobeRGB1998.pdf
http://missionscience.nasa.gov/ems/09_visiblelight.html
http://missionscience.nasa.gov/ems/09_visiblelight.html
https://stackoverflow.com/questions/3351122/what-is-the-best-javascript-image-processing-library
https://stackoverflow.com/questions/3351122/what-is-the-best-javascript-image-processing-library
https://www.youtube.com/watch?v=KDiTxWcD3ZE
http://cpn.canon-europe.com/content/product/canon_software/inside_digital_photo_professional.do
http://cpn.canon-europe.com/content/product/canon_software/inside_digital_photo_professional.do

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction to
algorithms, pages 1078–1100. The MIT Press, 3 edition.

Cruse, P. [online]. (2015) [cited 2016-04-27]. Available from: http://
www.colourphil.co.uk/lab_lch_colour_space.shtml.

DroneDeploy. Getting started [online]. (2015) [cited 2015-12-16]. Available from: http:
//support.dronedeploy.com/docs/frequently-asked-questions.

Environmental Systems Research Institute. Redlands, C. (1995). ARC/INFO Version 7.0.4
- Data Conversion and Regions. GIS by ESRI. Environmental Systems Research Inst.
Available from: https://books.google.no/books?id=6snBPgAACAAJ.

Erdas (2008). IMAGINE AutoSync™User’s Guide. ERDAS, Inc., Manager, Technical
Documentation. ERDAS, Inc. 5051 Peachtree Corners Circle Suite 100 Norcross, GA
30092-2500 USA.

Esri. Understanding world files [online]. (2009) [cited 2016-05-19]. Avail-
able from: http://webhelp.esri.com/arcims/9.3/General/topics/
author_world_files.htm#aboutAnchor.

Esri. Faq: What is the format of the world file used for georeferencing images? [on-
line]. (2016) [cited 2016-05-31]. Available from: http://support.esri.com/
technical-article/000002860.

Esri. Georeferencing a raster automatically [online]. ArcGIS for Desktop 10.3. (2016)
[cited 2016-04-25]. Available from: http://desktop.arcgis.com/en/
arcmap/10.3/manage-data/raster-and-images/georeferencing-
a-raster-automatically.htm.

European Global Navigation Satelite Systems Agency. Galileo is the european global
satellite-based navigation system [online]. GSA Virtual Library, The. (2016) [cited
2016-05-01]. Available from: http://www.gsa.europa.eu/galileo/why-
galileo.

Feldmann, R. (2015). PSTAT 231: Data mining. Lecture notes at the University of Cali-
fornia, Santa Barbara.

Glynn, E. F. Chromaticity diagrams [online]. (2009) [cited 2016-06-10]. Available from:
http://www.efg2.com/Lab/Graphics/Colors/Chromaticity.htm.

GNSS Asia. India [online]. GNSS.asia. (2015) [cited 2016-05-14]. Available from:
http://www.gnss.asia/india.

Gonzalez, R. C. and Woods, R. E. (2008a). Digital Image Processing, chapter 2, pages
52–58. PEARSON.

Gonzalez, R. C. and Woods, R. E. (2008b). Digital Image Processing, pages 861–907.
PEARSON.

72

http://www.colourphil.co.uk/lab_lch_colour_space.shtml
http://www.colourphil.co.uk/lab_lch_colour_space.shtml
http://support.dronedeploy.com/docs/frequently-asked-questions
http://support.dronedeploy.com/docs/frequently-asked-questions
https://books.google.no/books?id=6snBPgAACAAJ
http://webhelp.esri.com/arcims/9.3/General/topics/author_world_files.htm#aboutAnchor
http://webhelp.esri.com/arcims/9.3/General/topics/author_world_files.htm#aboutAnchor
http://support.esri.com/technical-article/000002860
http://support.esri.com/technical-article/000002860
http://desktop.arcgis.com/en/arcmap/10.3/manage-data/raster-and-images/georeferencing-a-raster-automatically.htm
http://desktop.arcgis.com/en/arcmap/10.3/manage-data/raster-and-images/georeferencing-a-raster-automatically.htm
http://desktop.arcgis.com/en/arcmap/10.3/manage-data/raster-and-images/georeferencing-a-raster-automatically.htm
http://www.gsa.europa.eu/galileo/why-galileo
http://www.gsa.europa.eu/galileo/why-galileo
http://www.efg2.com/Lab/Graphics/Colors/Chromaticity.htm
http://www.gnss.asia/india

Gonzalez, R. C. and Woods, R. E. (2008c). Digital Image Processing, chapter 2, pages
35–46. PEARSON.

Gonzalez, R. C. and Woods, R. E. (2008d). Digital Image Processing, chapter 6, pages
394–460. PEARSON.

Gonzalez, R. C. and Woods, R. E. Digital image processing [online].
(2008). Available from: http://www.imageprocessingplace.com/DIP-3E/
dip3e_book_images_downloads.htm.

Gonzalez, R. C. and Woods, R. E. (2008f). Digital Image Processing, chapter 6, pages
443–450. PEARSON.

Gonzalez, R. C. and Woods, R. E. (2008g). Digital Image Processing. PEARSON.

Gonzalez, R. C. and Woods, R. E. (2008h). Digital Image Processing, chapter 9, pages
627–680. PEARSON.

GPS.gov. Space segment [online]. (2016) [cited 2016-05-01]. Available from: http:
//www.gps.gov/systems/gps/space/#generations.

Hamiltion, Sir W. R. (1866). Elements og Quaternions. Longmans, Green, & Co.

Horn, B. K. (1987). Closed-form solution of absolute orientation using unit quaternions.
JOSA A, 4(4):629–642.

Horn, B. K., Hilden, H. M., and Negahdaripour, S. (1988). Closed-form solution of abso-
lute orientation using orthonormal matrices. JOSA A, 5(7):1127–1135.

Kayser, K., Görler, J., Metze, K., Goldmann, T., Vollmer, E., Mireskandari, M., Kosjerina,
Z., and Kayser, G. (2008). How to measure image quality in tissue-based diagnosis
(diagnostic surgical pathology). Diagnostic Pathology, 3(11).

Kolodny, L. DroneDeploy Raises $2M to Make Drones Easy to Fly for Any Business
[online]. Venture Capital Dispatch. (2014) [cited 2015-12-09]. Available from:
http://blogs.wsj.com/venturecapital/2014/09/19/dronedeploy-
raises-2m-to-make-drones-easy-to-fly-for-any-business/.

Kraus, K. (2007). Photogrammetry - Geomatry from Images and Laser Scans, volume 1.
Walter de Gruyter, 2 edition.

Kreyzsig, E., Kreyszig, H., and Norminton, E. J. (2011). Advanced Engineering Mathe-
matics, pages 322–354, 873–875. John Wiley & Sons, inc.

Kyriakidis, P. (2015). Analytical Methods in Geography III. Lecture notes at the Univer-
sity of California, Santa Barbara.

Land surveyors. History of land surveying [online]. (2010) [cited 2016-04-25]. Avail-
able from: http://www.landsurveyors.com/resources/history-of-
land-surveying/.

73

http://www.imageprocessingplace.com/DIP-3E/dip3e_book_images_downloads.htm
http://www.imageprocessingplace.com/DIP-3E/dip3e_book_images_downloads.htm
http://www.gps.gov/systems/gps/space/#generations
http://www.gps.gov/systems/gps/space/#generations
http://blogs.wsj.com/venturecapital/2014/09/19/dronedeploy-raises-2m-to-make-drones-easy-to-fly-for-any-business/
http://blogs.wsj.com/venturecapital/2014/09/19/dronedeploy-raises-2m-to-make-drones-easy-to-fly-for-any-business/
http://www.landsurveyors.com/resources/history-of-land-surveying/
http://www.landsurveyors.com/resources/history-of-land-surveying/

Lay, D. C. (2012a). Linear Algebra and Its Applications, chapter 5, pages 265–327. Pear-
son, 4 edition.

Lay, D. C. (2012b). Linear Algebra and Its Applications, chapter 7, pages 414–423. Pear-
son, 4 edition.

Lay, D. C. (2012c). Linear Algebra and Its Applications, chapter 6, pages 338–344. Pear-
son, 4 edition.

Leica Geosystem Geospatial Imaging, LLC (2005). Imagine autosync™: Au-
tomated georeferencing for highly accurate data production. Available from:
ftp://ftp.ecn.purdue.edu/jshan/proceedings/asprs2006/files/
L1-5-0.pdf.

Li, Y. and Briggs, R. (2006). Automated georeferencing based on topological point
pattern matching. In The International Symposium on Automated Cartography (Au-
toCarto), Vancouver, WA. Available from: http://www.cartogis.org/docs/
proceedings/2006/li_briggs.pdf.

Ludwig, S., Nowak, M., Wilzbach, S., Cullen, C., mdondorff, JakobOvrum, Anderson, B.,
and Jost, D. Find, use and share dub packages [online]. DUB - The D package regestry.
(2016) [cited 2016-05-20]. Available from: https://code.dlang.org/.

Mahalanobis, P. C. (1936). On the Generalized Distance in Statistics. Proceedings of the
National Institute of Science of India, 12:49–55.

Massey, Jr, F. J. (1951). The kolmogoroc-smirnov test for goodness of fit. Jour-
nal of the American Statistical Assosiation, 46(253):68–78. Available from: http:
//www.jstor.org/stable/2280095.

MathWorks. Perform image processing, analysis, and algorithm development [on-
line]. (2016) [cited 2016-05-20]. Available from: https://se.mathworks.com/
products/image/?s_tid=srchtitle.

Nahavandchi, H. (2015). TBA4565: Geomatics, Specialization Course; GPS. Lecture
notes at the Norwegian University of Science and Technoloy.

Nahavandchi, H., Haakonsen, T. A., and Aas, H. (2015). Accuracy investigations of uav
photomapping over a test area in norway. Kart og Plan.

Nistad, S., BEGUERADJ, B., and Hexaholic. Opencv will not load a big image (4gb) [on-
line]. (2016) [cited 2016-05-20]. Available from: http://stackoverflow.com/
questions/35666761/opencv-will-not-load-a-big-image-4gb.

OpenDroneMap. Opendronemap [online]. (2015) [cited 20115-15-15]. Available from:
https://github.com/OpenDroneMap/OpenDroneMap.

Orlov, A. Mahalanobis distance [online]. Encyclopedia of Mathematics. (2011)
[cited 2016-05-05]. Available from: http://www.encyclopediaofmath.org/
index.php?title=Mahalanobis_distance&oldid=17720.

74

ftp://ftp.ecn.purdue.edu/jshan/proceedings/asprs2006/files/L1-5-0.pdf
ftp://ftp.ecn.purdue.edu/jshan/proceedings/asprs2006/files/L1-5-0.pdf
http://www.cartogis.org/docs/proceedings/2006/li_briggs.pdf
http://www.cartogis.org/docs/proceedings/2006/li_briggs.pdf
https://code.dlang.org/
http://www.jstor.org/stable/2280095
http://www.jstor.org/stable/2280095
https://se.mathworks.com/products/image/?s_tid=srchtitle
https://se.mathworks.com/products/image/?s_tid=srchtitle
http://stackoverflow.com/questions/35666761/opencv-will-not-load-a-big-image-4gb
http://stackoverflow.com/questions/35666761/opencv-will-not-load-a-big-image-4gb
https://github.com/OpenDroneMap/OpenDroneMap
http://www.encyclopediaofmath.org/index.php?title=Mahalanobis_distance&oldid=17720
http://www.encyclopediaofmath.org/index.php?title=Mahalanobis_distance&oldid=17720

Pix4D (2015). Pix4D mapper manual. Pix4D.

Ramebäck, C. (2003). Process automation systems - history and future. Emerging Tech-
nologies and Factory Automation, 1:3–4.

Rodges, C. (2010). Physics 1230: Light and Color. Lecture notes at the University of
Colorado, Boulder.

Ronan, P. File:em spectrum.svg [online]. - Wikimedia Commons. (2007)
[cited 2016-05-24]. Available from: https://commons.wikimedia.org/w/
index.php?curid=2521356. Licensed under the CC BY-SA 3.0.

Rouse, M. Rgb (red, green, and blue) [online]. (2005) [cited 2016-04-27]. Available
from: http://whatis.techtarget.com/definition/RGB-red-green-
and-blue.

Rys, R. (2015). What is Lab color space? HiDefColor.

Skogseth, T. and Norberg, D. (1998a). Grunnleggende Landmåling, pages 9–13. Univer-
sitetsforlaget, Postboks 6860 St. Olavs plass, 0130 Oslo, 1 edition.

Skogseth, T. and Norberg, D. (1998b). Grunnleggende Landmåling. Universitetsforlaget,
Postboks 6860 St. Olavs plass, 0130 Oslo, 1 edition.

Skogseth, T. and Norberg, D. (1998c). Grunnleggende Landmåling, pages 290–299. Uni-
versitetsforlaget, Postboks 6860 St. Olavs plass, 0130 Oslo, 1 edition.

startupticker.ch. Pix4d launches pix4dmapper [online]. Start up ticker. (2014) [cited
2015-12-09]. Available from: http://www.startupticker.ch/en/news/
january-2014/pix4d-launches-pix4dmapper.

Theoharis, T., Papaioannou, G., Platis, N., and Patrikalakis, N. M. (2008). Graphics &
Visualization : Principles and Algorithms, chapter 3, pages 108–114. A K Peters, Ltd.

Tipler, P. A. and Mosca, G. (2008). Physics for Scientists and Engineers - with modern
physics, pages 1055–1096. W. H. Freeman and Company, W. H. Freeman and Comapny,
41 Madison Avenue, New York, 10010, 6 edition.

Triggs, B., McLauchlan, P. F., Hartley, R. I., and Fitzgibbon, A. W. (2000). Bundle ad-
justment — a modern synthesis. Available from: http://dx.doi.org/10.1007/
3-540-44480-7_21.

Umeyama, S. (1991). Least-squares estimation of transformation parameters between
two point patterns. IEEE Transactions on Pattern Analysis & Machine Intelligence,
13(4):376–380.

van Helden, A. Galileo [online]. Encyclopaedia Britannica. Britannica Academic. (2016)
[cited 2016-04-25]. Available from: http://academic.eb.com/EBchecked/
topic/224058/Galileo.

75

https://commons.wikimedia.org/w/index.php?curid=2521356
https://commons.wikimedia.org/w/index.php?curid=2521356
http://whatis.techtarget.com/definition/RGB-red-green-and-blue
http://whatis.techtarget.com/definition/RGB-red-green-and-blue
http://www.startupticker.ch/en/news/january-2014/pix4d-launches-pix4dmapper
http://www.startupticker.ch/en/news/january-2014/pix4d-launches-pix4dmapper
http://dx.doi.org/10.1007/3-540-44480-7_21
http://dx.doi.org/10.1007/3-540-44480-7_21
http://academic.eb.com/EBchecked/topic/224058/Galileo
http://academic.eb.com/EBchecked/topic/224058/Galileo

Walpole, R. E., Myers, R. H., Myers, S. L., and Ye, K. (2012). Probability & Statistics -
for engineers and scientists, pages 321–324. PEARSON, 9 edition.

Weisstein, E. W. Affine transformation. [online]. MathWorld–A Wolfram Web Resource.
(2016) [cited 2016-04-28]. Available from: http://mathworld.wolfram.com/
AffineTransformation.html.

Wicklin, R. What is the mahalanobis distance [online]. DO Loop, The. (2012) [cited
2016-05-05]. Available from: http://blogs.sas.com/content/iml/2012/
02/15/what-is-mahalanobis-distance.html.

Zhang, M. Samsung 16TB SSD is the World’s Largest Hard Drive [online]. PetaPixel.
(2015) [cited 2016-01-02]. Available from: http://petapixel.com/2015/08/
15/samsung-16tb-ssd-is-the-worlds-largest-hard-drive/.

76

http://mathworld.wolfram.com/AffineTransformation.html
http://mathworld.wolfram.com/AffineTransformation.html
http://blogs.sas.com/content/iml/2012/02/15/what-is-mahalanobis-distance.html
http://blogs.sas.com/content/iml/2012/02/15/what-is-mahalanobis-distance.html
http://petapixel.com/2015/08/15/samsung-16tb-ssd-is-the-worlds-largest-hard-drive/
http://petapixel.com/2015/08/15/samsung-16tb-ssd-is-the-worlds-largest-hard-drive/

Appendix A
Source Code

A.1 The program
Here is all the source code necessary to run the program in MATLAB®R2016a.
In addition to MATLAB, the toolboxes “Image Processing Toolbox” version 9.4,
“Statistics and Machine Learning Toolbox” version 10.2, and ‘JSONlab‘”. The
first two can be purchased by MathWorks, while the latter is freely available at
https://www.mathworks.com/matlabcentral/fileexchange/33381-
jsonlab--a-toolbox-to-encode-decode-json-files.

Listing A.1 is the main entry point of the application, and, for convenience, the first file of
source code included. Afterwards follows the other custom m-scripts that are required by
Listing A.1. They are listed alphabetically.

Figure A.1 shows how the different functions depend on each other.

Script A.1: main.m: The main entry point of the program.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function [CM, ST, RMSE, mirrored] = main(orthophoto, gcp, varargin)
6 %% Discription
7 % MAIN is the main entery point for extracting ground controll points in
8 % the given ortophoto, and then georeference the image and rectify it.
9

10 %% Parse input
11

12 i_p = inputParser;
13 i_p.FunctionName = ’MAIN’;
14

15 % Requiered
16 i_p.addRequired(’orthophoto’, @is_image_or_path);
17 i_p.addRequired(’gcp’, @is_point_list_or_path);

77

https://www.mathworks.com/matlabcentral/fileexchange/33381-jsonlab--a-toolbox-to-encode-decode-json-files
https://www.mathworks.com/matlabcentral/fileexchange/33381-jsonlab--a-toolbox-to-encode-decode-json-files

18

19 % Optional:
20 %Digital elevation model
21 i_p.addParameter(’DigitalElevationModel’, false, @is_dem_or_disabled);
22 i_p.addParameter(’ElevationModel’, false, @is_dem_or_disabled);
23 i_p.addParameter(’DEM’, false, @is_dem_or_disabled);
24

25 % Sample of ground control points
26 i_p.addParameter(’GCPSample’, ’../../data/gcp_vals.mat’,

@is_sample_data_or_disabled);
27

28 % Area of a single ground control point in pixles.
29 i_p.addParameter(’GCPArea’, 9, @is_positive_integer);
30

31 % The maximum allowed root mean square error before mirroring the
32 % coordinates.
33 i_p.addParameter(’MaxRMSE’, 10^5, @is_positive_number);
34

35 % The distance function to be used.
36 i_p.addParameter(’DistanceFunction’, false, @is_function_or_logical);
37

38 % Max normalized distance. Used as a upper threshold.
39 i_p.addParameter(’MaxDistance’, 0.01, @is_number);
40

41 % Fraction of ground control points that need to match on the first run
42 i_p.addParameter(’FractionMatched’, 1/3, @is_fraction);
43

44 % Write world file
45 % Writes the wf iff the orthophoto was given by path.
46 i_p.addParameter(’WriteWorldFile’, true, @islogical);
47

48 % Rematch all points
49 i_p.addParameter(’Rematch’, true, @islogical);
50 % Which algorithm is to be used to find the absolute orientation?
51 i_p.addParameter(’OrientationAlgorithm’, ’Horn’,

@is_valid_orientation_algorithm);
52

53 i_p.addParameter(’MinimumMatches’, 5, @is_number);
54 i_p.addParameter(’RadiusThreshold’, 0.05, @is_number);
55 i_p.addParameter(’AngleThreshold’, 0.05, @is_number);
56

57 i_p.addParameter(’UseProbability’, true, @islogical);
58

59 i_p.addParameter(’UseHornScale’, false, @islogical);
60

61 i_p.parse(orthophoto, gcp, varargin{:});
62

63 %% Deal with the input
64 input = i_p.Results;
65

66 % Required
67 orthophoto = input.orthophoto;
68 gcp = input.gcp;
69

70 % Optional
71 dem = get_dem(input);
72 gcp_sample = input.GCPSample;

78

73 gcp_area = input.GCPArea;
74 max_rmse = input.MaxRMSE;
75 distance_fun = input.DistanceFunction;
76 max_distamce = input.MaxDistance;
77 min_fraction = input.FractionMatched;
78 rematch = input.Rematch;
79 use_probability = input.UseProbability;
80 absor_alg = input.OrientationAlgorithm;
81 min_matches = input.MinimumMatches;
82 rad_thresh = input.RadiusThreshold;
83 ang_thresh = input.AngleThreshold;
84 use_horn_scale = input.UseHornScale;
85

86 %% Initializing
87

88 % Orthophoto
89 orthophoto_path = ’’;
90 if ischar(orthophoto)
91 orthophoto_path = orthophoto;
92 orthophoto = im2double(imread(orthophoto));
93 elseif ~isa(orthophoto, ’double’)
94 orthophoto = im2double(orthophoto);
95 end
96 if size(orthophoto, 3) == 4
97 % Remove trasnparencey / used it to mask the image
98 orthophoto = orthophoto(:,:,1:3);
99 end

100

101 % Ground control points
102 if ischar(gcp)
103 [gcp, crc, names] = load_geojson(gcp);
104 elseif is_point_list(gcp)
105 warning(’No datum of the coordinates was given!’);
106 end
107

108 % Digitial elevation model
109 if ischar(dem)
110 dem = imread(dem);
111 end
112

113 % Sample data of ground control points
114 if ischar(gcp_sample)
115 gcp_sample = open(gcp_sample);
116 fn = fieldnames(gcp_sample);
117 gcp_sample = gcp_sample.(fn{1});
118 end
119 gcp_sample_lab = rgb2lab(gcp_sample);
120

121 if ~isa(distance_fun, ’function_handle’)
122 % Mahalanobis distance
123 distance_fun = @(x) mahal_dist(x, gcp_sample_lab);
124 end
125

126 mirrored = false;
127

128 %% Get ground control points and match them
129 [location, ~, ~] = find_signal_colors(orthophoto, gcp_sample, ’

79

UseProbability’, use_probability);
130

131 if dem
132 heights = get_heights(dem, location, gcp_area);
133 location = [location, heights];
134 end
135

136 min_matches = ceil(size(gcp, 1) * min_fraction);
137

138 [CM, ST, RMSE] = match_gcps(location, gcp, ...
139 ’GetOptimal’, true, ...
140 ’ImageTPPMode’, ’all’, ...
141 ’MinimumMatches’, min_matches, ...
142 ’OrientationAlgorithm’, absor_alg, ...
143 ’UseHornScale’, use_horn_scale, ...
144 ’AngleThreshold’, ang_thresh, ...
145 ’RadiusThreshold’ , rad_thresh);
146

147 %% Check if the points have to be mirrored
148 if RMSE > max_rmse
149 location = mirror(location, ’Vertical’);
150 mirrored = true;
151 % Alt. gcp = [gcp(:,2), gcp(:,1) gcp(:,3)];
152 [CM, ST, RMSE] = match_gcps(location, gcp, ...
153 ’GetOptimal’, true, ...
154 ’ImageTPPMode’, ’all’, ...
155 ’MinimumMatches’, min_matches);
156 end
157

158 %% Find where all the ground control points are
159 if rematch
160 [R_inv, t_inv, c_inv] = invert(ST);
161

162 gcp_in_orthophoto = transform_points(gcp, R_inv, t_inv, c_inv);
163 gcp_in_orthophoto = gcp_in_orthophoto(:,1:2);
164

165 % Remove those that are outside of the image
166 ortho_size = size(orthophoto);
167 outside = gcp_in_orthophoto(:, 1) > ortho_size(2) | ...
168 gcp_in_orthophoto(:, 2) > ortho_size(1) | ...
169 gcp_in_orthophoto(:, 1) <= 0 | ...
170 gcp_in_orthophoto(:, 2) <= 0;
171 gcp_in_orthophoto(outside, :) = [];
172

173 area = max([RMSE / 2, gcp_area * 4]);
174

175 gcp_imgs = get_area(orthophoto, gcp_in_orthophoto, area);
176

177 % Remove empty cells
178 n_before = numel(gcp_imgs);
179 gcp_imgs = remove_empty_cells(gcp_imgs);
180

181 n_after = numel(gcp_imgs);
182

183 if n_before ~= n_after
184 warning(’There are ground control points that falls outside the

image. Consider increasing the minimum number of matched points.’);

80

185 end
186 %% Get centres of each ground control point in images
187

188 n = numel(gcp_imgs);
189 image_coordinates = zeros(n, 2);
190 for i = 1:n
191 img = gcp_imgs{i};
192 img = rgb2lab(img);
193 distance_img = distance_fun(img);
194 distance_img = normalize(distance_img);
195 BW = distance_img <= max_distamce;
196 image_coordinates(i, :) = get_centroid_of_largest_area(BW);
197 end
198

199 %% Calculate offsets
200 centre_of_images = ceil(size(gcp_imgs{1}) / 2);
201 centre_of_images = centre_of_images(1:2);
202

203 offset = bsxfun(@minus, image_coordinates, centre_of_images);
204

205 location = round(gcp_in_orthophoto + offset);
206

207 %% Rematch all points
208 if dem
209 heights = get_heights(dem, location, gcp_area);
210 location = [location, heights];
211 end
212

213 [CM, ST, RMSE] = match_gcps(location, gcp, ...
214 ’GetOptimal’, true, ...
215 ’ImageTPPMode’, ’all’, ’MinimumMatches’, size(location, 1));
216 end
217

218 if ~strcmp(orthophoto_path, ’’)
219 C = strsplit(orthophoto_path, ’.’);
220 ext = C{end};
221 ext = strcat(ext(1), ’wf’);
222 path = cell((numel(C) - 1) * 2, 1);
223 for i = 1:2:2*(numel(C) - 1)
224 path{i} = C{i};
225 path{i + 1} = ’.’;
226 end
227 path = strjoin(path, ’’);
228 worldfile_path = strcat(path, ext);
229

230 write_world_file(worldfile_path, ST);
231 end
232

233 end
234

235 %===
236 %% ADDITIONAL FUNCTIONS
237 %===
238

239 %% GET_DEM
240 %===
241 function res = get_dem(input)

81

242

243 if input.DEM
244 res = input.DEM;
245 elseif input.ElevationModel
246 res = input.ElevationModel;
247 elseif input.DigitalElevationModel
248 res = input.DigitalElevationModel;
249 else
250 res = false;
251 end
252

253 end
254

255 %% GET_CENTROID_OF_LARGEST_AREA
256 %===
257 function res = get_centroid_of_largest_area(BW)
258

259 stats = regionprops(BW, ’Area’, ’Centroid’);
260

261 n = numel(stats);
262

263 if n == 0
264 % There are no areas
265 warning(’One of the ground control points have been placed outside the

image.’);
266 res = ceil(size(BW));
267 return
268 end
269

270 areas = zeros(n, 1);
271

272 for i = 1:n
273 stat = stats(i);
274 areas(i) = stat.Area;
275 end
276

277 [~, I] = max(areas);
278 biggest = stats(I);
279

280 res = biggest.Centroid;
281

282 end

Script A.2: apply_fun2img.m: Applies a given function to all pixels of an image.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function res = apply_fun2img(fun, image)
6 %% Discription
7 % APPLY_FUN2IMG applies the given function to each color of the given
8 % image, if the image has 3 bands, otherwise, it is assumed that the
9 % function takes a single column vector as input that has the same size as

10 % the number of bands.
11

12 %% Error checking

82

13 if ~isa(fun, ’function_handle’)
14 error(’The given function is not a function handle’);
15 end
16

17 %% Initializing
18 dims = size(image);
19

20 %% Apply function
21 res = fun(reshape(image, [dims(1) * dims(2), dims(3)]));
22 res = reshape(res, [dims(1), dims(2)]);
23

24 end

Script A.3: bounding_box2area.m: Calculates the area of a bounding box. The format can be
MATLAB’s format, or [min_x, max_x, min_y, max_y].

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function area = bounding_box2area(BB)
6 %% BOUNDING_BOX2AREA: Calculates the area of a given bounding box
7

8 %% Initializing
9 if iscell(BB)

10 BB = BB{:};
11 end
12

13 [x_min, x_max, y_min, y_max] = bounding_box2limits(BB);
14

15

16 %% Calculate area
17

18 area = (x_max - x_min + 1) * (y_max - y_min + 1);
19

20 end

Script A.4: bounding_box2limits.m: Converts a bounding box, as returned from the built-in func-
tion regionprops to the extents; [min_x, max_x, min_y, max_y].

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function [x_min, x_max, y_min, y_max] = bounding_box2limits(BB)
6 %% Discription
7 % A function that converst the BoundingBox given by regionprops to the
8 % vector [x_min, x_max, y_min, y_max].
9 % The output can be a matrix, a vector, or 4 scalars

10

11 %% Type checking
12 if isstruct(BB) && numel(BB) == 1
13 BB = BB.BoundingBox;
14 elseif isstruct(BB)
15 error(’There are multiple bounding boxes.’);
16 end
17

83

18 %% Extracting values
19 x_start = BB(1); % double (start.5000)
20 y_start = BB(2); % double (start.5000)
21

22 width = BB(3); % int
23 height = BB(4); % int
24

25 %% Computing the limits
26 x_min = ceil(x_start);
27 y_min = ceil(y_start);
28

29 x_max = x_min + width - 1; % The width includes the start
30 y_max = y_min + height - 1; % The height includes the start
31

32 %% Generating outputs
33 if nargout <= 1 && numel(BB) == 1
34 x_min = [x_min, x_max, y_min, y_max];
35 end

Script A.5: bounding_box2points.m: Converts a bounding box, as defined by the extents of each
axis to a list of points that represents the extents of the bounding box.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function BB_points = bounding_box2points(BB)
6 %% Description
7 % A simple function that converts a list of bounding boxes that are

defined
8 % as [x_min x_max y_min y_max] to a list of points of the form
9 % x_min y_min

10 % x_min y_max
11 % x_max y_min
12 % x_max y_max
13

14 %%
15 BB_points = [BB(:,1) BB(:,3) ;
16 BB(:,1) BB(:,4) ;
17 BB(:,2) BB(:,3) ;
18 BB(:,2) BB(:, 4)];
19 end

Script A.6: create_mask.m: Creates a binary image, or mask, based on given limits for each color
band.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function BW = create_mask(img, limits)
6 %% Discription
7 % Creates a mask of the image based on the limits given for each band. It
8 % is in the form:
9 % [min_band_1, max_band_1

10 % min_band_2, max_band_2
11 % .

84

12 % .
13 % .
14 % min_band_n, max_band_n]
15 % It is not neccessary that they are ordered by minimun first, and then
16 % maximum, but the bands must be in that order.
17

18 %% Initializing
19 img_size = size(img);
20 num_bands = img_size(3);
21 BW = ones(img_size(1:2));
22

23 %% Creating the mask, band for band
24 for i = 1:num_bands
25 min_val = min(limits(i, :));
26 max_val = max(limits(i, :));
27 BW = BW & min_val <= img(:,:, i) & img(:,:,i) <= max_val;
28 end
29

30 end

Script A.7: divide_image_into_bounding_boxes.m: Takes an image, and a mask, or binary image,
and gives a cell-array of smaller images whose extent is the same as the bounding box of each sepa-
rate object in the mask. Useful to drastically reduce the computational time, and memory needed.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function [images, locations] = divide_image_into_bounding_boxes(img, BW)
6 %% Discription
7 % This function divides an image up into ounding boxes of the areas as
8 % specified by the binary image BW.
9 % If only a binary image is given, images will consist of binary images.

10 % The function also returns the locations of the different images. This is
11 % done by giving the respective bounding boxes as a matrix, ’locations’,
12 % whose rows are vectors of the form [x_min, x_max, y_min, y_max].
13 %
14 % Usage:
15 % [images, locations] = divide_image_into_bounding_boxes(img, BW)
16 % [images, locations] = divide_image_into_bounding_boxes(BW)
17 %
18

19 %% Check consistencies
20 if nargin == 2
21 img_size = size(img);
22 BW_size = size(BW);
23

24 if img_size(1:2) ~= BW_size
25 error(’The image and the mask have different sizes’);
26 end
27 elseif nargin == 1
28 % Matlab hack
29 BW = img;
30 end
31

32 %% Extracting bounding boxes
33 res = regionprops(BW, ’BoundingBox’, ’PixelList’);

85

34 num_obj = numel(res);
35

36 images = cell(num_obj, 1);
37 locations = zeros(num_obj, 4);
38

39 for i=1:num_obj
40 element = res(i);
41 boundingBox = element.BoundingBox;
42

43 [x_min, x_max, y_min, y_max] = bounding_box2limits(boundingBox);
44

45 if nargin == 2
46 % Matices are indexed col, row
47 images(i) = {img(y_min:y_max, x_min:x_max, :)};
48 else
49 images(i) = {BW(y_min:y_max, x_min:x_max)};
50 end
51 locations(i, :) = [x_min, x_max, y_min, y_max];
52 end
53

54 end

Script A.8: extract_parameters_from_similarity_transform.m: Extracts the rotation matrix, R, the
translation, t, and the scale factor c from a Similarity Transform object, as returned by the absolute
orientation functions.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function [R, t, s] = extract_parameters_from_similarity_transform(ST)
6 %% Discription
7 % EXTRACT_PARAMETERS_FROM_SIMILARITY_TRANSFORM extracts the rotational
8 % matrix R, the translation vector t, and the scale factor s from the
9 % similarity transform, ST, cell array.

10 % Usefull when dealing with the results from match_gcps.m, and others.
11

12 %% Extraction
13 R = ST{1};
14 t = ST{2};
15 s = ST{3};
16

17 end

Script A.9: find_signal_colors.m: detects the location of candidates for the ground control points
(GCPs). In addition to these positions, it also gives an estimate of the probability of each of the
candidates. The output is sorted so that the most likely candidates come first.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function [location, probability, imgs] = find_signal_colors(image,

gcp_data, varargin)
6 %% Discription
7 % A function that finds candidates for ground control points that have a
8 % signal color (orange), and an estimate of how likely each point is to be

86

9 % a ground control point. The lists are sorted byr probability in
decending

10 % order, i.e. the most likely candidate is first and the least likely
11 % candidate is last.
12

13 %% Parse input
14

15 i_p = inputParser;
16 i_p.FunctionName = ’FIND_SIGNAL_COLOR’;
17

18 % Requiered
19 i_p.addRequired(’image’, @is_image_or_path);
20 i_p.addRequired(’gcp_data’, @is_point_list);
21

22 % Optional:
23 % Method to be used to reduce data
24 i_p.addParameter(’LimitsMode’, ’min-max’, @is_min_max_std_mean);
25 % What is to be used with points that are too close to eachother?
26 % remove, average or probable.
27 i_p.addParameter(’ReplacePointsTooClose’, ’probable’, @is_replace_mode);
28 % Toggle whether or not to use a median filter
29 i_p.addParameter(’MedianFilter’, false, @islogical);
30 % Toggle whether or not areas that are of size [1 x n] or [n x 1] is to be

removed.
31 i_p.addParameter(’VectorFilter’, true, @islogical);
32 i_p.addParameter(’UseMorphology’, true, @islogical);
33 % How large does an area have to be before it is considered?
34 % Areas less than or equal to this value will be removed. If strictly
35 % larger than 1, no areas will be removed.
36 i_p.addParameter(’MinmumArea’, 0, @is_number);
37 % The (totatl) procentile to be GCP samples to be discarted when
38 % initial rough selection is done.
39 i_p.addParameter(’PercentileRoughSelection’, 0.25, @is_fraction);
40 % The wheight given to the standard deviation when selecting a quantile
41 % for the samples to be ignored when the rough selection is done.
42 i_p.addParameter(’StandardDeviationWeight’, 1, @is_number);
43 % This sais how much of an image can have 0 probability.
44 i_p.addParameter(’ProbabilityPortion’, 0.25, @is_fraction);
45 % Used to eliminate images that have too much clutter.
46 i_p.addParameter(’MaximumClutter’, 2, @is_number);
47 % The minimum allowed likelyhood for an area to be considered probable.
48 i_p.addParameter(’MinimumProbability’, 10^-07, @is_fraction);
49 % This is the smallest side length that is allowed for a sub_image.
50 i_p.addParameter(’MinimumSideLength’, 3, @is_integer);
51 % The minimum distance allowed between two points
52 i_p.addParameter(’MinimumDistanceBetweenPoints’, 30, @is_number);
53 % The disatance in each direction from the centre of a candidate point
54 % that is sampled in order to determin if it is a homogenious area.
55 i_p.addParameter(’SampleArea’, 40, @is_integer);
56 % Specifies the maximum allowed standard deviation of a sub image.
57 i_p.addParameter(’MaximumSpread’, 0.03, @is_number);
58 % The maximum squared distance for a color to be away from the
59 % signal color sample. Max distance using emperical values:
60 % RGB: 19.821439604735122, Lab: 24.060660742824890.
61 i_p.addParameter(’MaximumRoughDistance’, 20, @is_number);
62 i_p.addParameter(’MaximumFineDistance’, 6, @is_number);
63 % Toggles whether the image is to be sharpened before processed.

87

64 i_p.addParameter(’SharpenImage’, false, @islogical);
65

66 i_p.addParameter(’StructureElement’, strel(’Disk’, 10),
@is_structure_element);

67 % Toggles whether probability is to be used. If gcp_sample is very large,
68 % turning it on may cause the program to be VERY slow.
69 i_p.addParameter(’UseProbability’, true, @islogical);
70 % By what means are the center of the candidate GCP chosen?
71 i_p.addParameter(’SelectCenter’, ’Centroid’, @is_center);
72

73 i_p.addParameter(’MinimumMatches’, -1, @is_number);
74

75 i_p.parse(image, gcp_data, varargin{:});
76

77 %% Deal with the input
78 input = i_p.Results;
79

80 % Required
81 image = input.image;
82 gcp_data = input.gcp_data;
83

84 % Optional
85 limits_method = input.LimitsMode;
86 points_too_close = input.ReplacePointsTooClose;
87 use_median = input.MedianFilter;
88 remove_vectors = input.VectorFilter;
89 use_morphology = input.UseMorphology;
90 % Internal parameters
91 remove_areas_leq = input.MinmumArea;
92 percentile_rough_selection = input.PercentileRoughSelection / 2;
93 std_weight = input.StandardDeviationWeight;
94 zero_probability_ratio = input.ProbabilityPortion;
95 max_elements = input.MaximumClutter;
96 min_probability = input.MinimumProbability;
97 min_side = input.MinimumSideLength;
98 min_distance = input.MinimumDistanceBetweenPoints;
99 sample_area = input.SampleArea;

100 max_spread = input.MaximumSpread;
101 max_rough_distance = input.MaximumRoughDistance;
102 max_fine_distance = input.MaximumFineDistance;
103 sharpen = input.SharpenImage;
104 SE = input.StructureElement;
105 use_probability = input.UseProbability;
106 select_center = input.SelectCenter;
107

108 %% Initializing
109 if ~isa(image, ’double’)
110 image = im2double(image);
111 end
112

113 if sharpen
114 image = imsharpen(image);
115 end
116

117 if ~use_probability
118 % The default option for removing points that
119 % are too close to each other, is incopatible

88

120 % with not using probability.
121 points_too_close = ’average’;
122 warning(’The option probable for ’’ReplacePointsTooClose’’ is

incompatible ’’UseProbability’’ set to false.’);
123 end
124

125 % Convert data to Lab
126 gcp_lab = rgb2lab(gcp_data);
127

128 % Distance metric
129 % RGB
130 C = cov(gcp_data)\eye(size(gcp_data, 2));
131 m = mean(gcp_data);
132 distance_metric = @(x) mahal_dist(x, C, m);
133 % Lab
134 C = cov(gcp_lab)\eye(size(gcp_lab, 2));
135 m = mean(gcp_lab);
136 distance_metric_lab = @(x) mahal_dist(x, C, m);
137

138 % Probability distributions
139 if use_probability
140 [PD_L, PD_a, PD_b] = get_most_likely_distribution(gcp_lab);
141 pd_L = get_pdf(PD_L); pd_a = get_pdf(PD_a); pd_b = get_pdf(PD_b);
142 prob_dist = @(x) pd_L(x(:, 1)) .* pd_a(x(:, 2)) .* pd_b(x(:, 3));
143 aggregate_probability = @(img) min(quantile(img(:), 0.95));
144 end
145 spread_function = @(img) std(img(:));
146

147 %% Reducing the amount of data
148

149 % Getting limits of color for the signal colors
150 if strcmp(limits_method, ’min-max’)
151 lim = limits(gcp_data, limits_method, percentile_rough_selection);
152 elseif strcmp(limits_method, ’mean-std’)
153 lim = limits(gcp_data, limits_method, std_weight);
154 else
155 lim = limits(gcp_data);
156 end
157

158 % Creating a binary image of the
159 BW = create_mask(image, lim);
160

161 if use_median
162 BW = medfilt2(BW, ’symmetric’);
163 end
164

165 if remove_areas_leq > 0
166 BW = remove_areas(BW, ’Area’, [remove_areas_leq, Inf], ’MinBoundary’,

’Exclusive’);
167 end
168

169

170 %% Split data into smaler chuncks
171 [images, locations] = divide_image_into_bounding_boxes(image, BW);
172 n_img = numel(images);
173 if remove_vectors
174 too_small = false(n_img, 1); % Instead of logical(zeros)

89

175 for i=1:n_img
176 if size(images{i}, 1) < min_side || size(images{i}, 2) < min_side
177 too_small(i) = true;
178 end
179 end
180 images = images(~too_small);
181 locations = locations(~too_small, :);
182 end
183

184 %% Finer selection
185 [candidate_images, distance_images] = threshold_distance(images,

distance_metric, max_rough_distance);
186 images = images(candidate_images);
187 locations = locations(candidate_images, :);
188

189 %% Remove morthological incorrect images
190 right_morphology = prune_morphology(images, distance_metric,

max_rough_distance, ’Area’, true, ’Eccentricity’, true, ’AreaPerimeter
’, true);

191

192 % Remove wrong images
193 distance_images = distance_images(right_morphology);
194 images = images(right_morphology);
195 locations = locations(right_morphology, :);
196

197

198 %% Even finer selection
199 % Uses Lab color space, and takes some of the area round the image intop
200 % account.
201 lab_images = convert_elements(images, @rgb2lab);
202 [candidate_images, distance_images] = threshold_distance(lab_images,

distance_metric_lab, max_fine_distance);
203

204 images = images(candidate_images);
205 lab_images = lab_images(candidate_images);
206 locations = locations(candidate_images, :);
207

208 large_images = get_area(image, locations, sample_area);
209 large_images = convert_elements(large_images, @rgb2lab);
210 right_morphology = prune_morphology(large_images, distance_metric_lab,

max_fine_distance, ’Eccentricity’, true, ’Area’, true, ’AreaPerimeter’
, true, ’Tightness’, true, ’Median’, true, ’Fill’, true);

211

212 images = images(right_morphology);
213 lab_images = lab_images(right_morphology);
214 locations = locations(right_morphology, :);
215 large_images = large_images(right_morphology);
216 distance_images = distance_images(right_morphology);
217

218 %% Calculate probabilities
219 if use_probability
220 n_img = numel(images);
221

222 prob_imgs = cell(n_img, 1);
223

224 for i = 1:n_img
225 prob_imgs{i} = apply_fun2img(prob_dist, lab_images{i});

90

226 end
227 end
228

229

230 %% Remove the (impossibly) unlikely candidates
231 if use_probability
232 n_img = numel(images);
233 no_chance = false(n_img, 1);
234 for i = 1:n_img
235 prob_img = prob_imgs{i};
236 if max(max(prob_img)) < min_probability
237 no_chance(i) = true;
238 else
239 area = prod(size(prob_img));
240 zero_chance = sum(sum(prob_img == 0));
241 if zero_chance / area >= zero_probability_ratio
242 no_chance(i) = true;
243 end
244 end
245 end
246

247 % Remove the unlikely candidates
248 distance_images = distance_images(~no_chance);
249 images = images(~no_chance);
250 lab_images = lab_images(~no_chance);
251 locations = locations(~no_chance, :);
252 prob_imgs = prob_imgs(~no_chance);
253 large_images = large_images(~no_chance);
254

255 end
256

257 %% Calculate probabilities
258 if use_probability
259 n_img = numel(images);
260 probability = zeros(n_img, 1);
261 for i = 1:n_img
262 prob_img = prob_imgs{i};
263 probability(i) = aggregate_probability(prob_img);
264 end
265 end
266

267 %% Compute output
268 n_img = numel(images);
269

270 location = zeros(n_img, 2);
271 % This can be done earlier; when we look for
272 % images that have morphological errors
273 if strcmpi(select_center, ’Probability’)
274 probability = zeros(n_img, 1);
275 for i = 1:n_img
276 prob_img = prob_imgs{i};
277 [row, col] = find(prob_img == max(max(prob_img)));
278 if numel(row) >= 2 || numel(col) >= 2
279 row = round(mean(row));
280 col = round(mean(col));
281 end
282 bounding_box = locations(i, :);

91

283 x_min = bounding_box(1);
284 y_min = bounding_box(3);
285 location(i, :) = [x_min + col, y_min + row];
286 probability(i) = aggregate_probability(prob_img);
287 end
288 elseif strcmpi(select_center, ’Mahalanobis’)
289 for i = 1:n_img
290 dist_img = distance_images{i};
291 [row, col] = find(dist_img == min(dist_img(:)));
292 if numel(row) >= 2 || numel(col) >= 2
293 row = round(mean(row));
294 col = round(mean(col));
295 end
296 bounding_box = locations(i, :);
297 x_min = bounding_box(1);
298 y_min = bounding_box(3);
299 location(i, :) = [x_min + col, y_min + row];
300 end
301 elseif strcmpi(select_center, ’Centroid’)
302 for i = 1:n_img
303 BW = distance_images{i} <= max_fine_distance;
304 res = regionprops(BW, ’Centroid’);
305 centroid = res.Centroid;
306 col = round(centroid(1)); row = round(centroid(2));
307 bounding_box = locations(i, :);
308 x_min = bounding_box(1);
309 y_min = bounding_box(3);
310 location(i, :) = [x_min + col, y_min + row];
311 end
312 end
313

314 %% Deal with points that are too close
315 n_img = numel(images);
316

317 Z = squareform(pdist(location));
318 if strcmp(points_too_close, ’off’)
319 % Do nothing
320 elseif strcmp(points_too_close, ’remove’)
321 [row, col] = find(Z < min_distance & Z ~= 0);
322 elseif strcmp(points_too_close, ’average’)
323 row = false(n_img, 1);
324 for i = 1:n_img
325 if row(i) == 1
326 % We have already decided to remove this
327 continue
328 end
329 too_close = find(Z(i, :) < min_distance & Z(i, :) ~= 0);
330 if numel(too_close) > 0
331 too_close = [too_close i];
332 mean_position = mean(location(too_close, :));
333 D = sqrt((bsxfun(@minus, location(too_close, :), mean_position

)).^2);
334 min_D = min(D);
335 keep = find(D(:, 1) == min_D(1) & D(:, 2) == min_D(2));
336 if numel(keep) > 1
337 keep = keep(1); % In case multiple are as close.
338 end

92

339 row(too_close) = true;
340 row(too_close(keep)) = false;
341 end
342 end
343 elseif strcmp(points_too_close, ’probable’)
344 row = false(n_img, 1);
345 for i = 1:n_img
346 if row(i) == 1
347 % We have already decided to remove this
348 continue
349 end
350 too_close = find(Z(i, :) < min_distance & Z(i, :) ~= 0);
351 if numel(too_close) > 0
352 too_close = [too_close i];
353 keep = find(probability == max(probability(too_close)));
354 if numel(keep) > 1
355 keep = keep(1); % In case multiple are as close.
356 end
357 row(too_close) = true;
358 row(keep) = false;
359 end
360 end
361 end
362

363 distance_images(row) = [];
364 images(row) = [];
365 location(row, :) = [];
366 if use_probability
367 prob_imgs(row) = [];
368 probability(row) = [];
369 end
370 large_images(row) = [];
371

372 %% Calculate how "close" the areas are to a circle
373 n_img = numel(images);
374 closeness = zeros(n_img, 1);
375

376 for i = 1:n_img
377 img = large_images{i};
378 BW = distance_metric_lab(img) < max_fine_distance;
379 BW = imclose(BW, SE);
380 BW = imfill(BW, ’Holes’);
381 stats = regionprops(BW, ’Area’, ’BoundingBox’);
382 n_stats = numel(stats);
383 areas = zeros(n_stats, 1);
384 temp_closeness = zeros(n_stats, 1);
385 for j = 1:n_stats
386 stat = stats(j);
387 region_area = stat.Area;
388 bounding_box = stat.BoundingBox;
389 [x_min, x_max, y_min, y_max] = bounding_box2limits(bounding_box);
390 width = x_max - x_min + 1;
391 height = y_max - y_min + 1;
392 side = max([width, height]);
393

394 areas(j) = region_area;
395 temp_closeness(j) = abs(region_area / side^2 - pi / 4);

93

396 end
397 [~, I] = max(areas); % Ascending order
398 closeness(i) = temp_closeness(I(end));
399 end
400

401 [~, I] = sort(closeness);
402

403 %% Sort the candidates
404 %[probability, I] = sort(probability, ’descend’);
405 if use_probability
406 probability = probability(I);
407 else
408 probability = 0;
409 end
410 location = location(I, :);
411

412 imgs = images(I);
413

414 end
415

416 %% Additional functions
417

418 %%
419 %===
420 function [within, distimgs] = threshold_distance(images, distance_metric,

threshold)
421 n_img = numel(images);
422 candidate_images = false(n_img, 1);
423 distance_images = cell(n_img, 1);
424

425 for i = 1:numel(images)
426 image_part = images{i};
427 dist_part = distance_metric(image_part);
428 BW_part = dist_part <= threshold;
429 BW_part = medfilt2(BW_part, ’symmetric’); % Removes images that only

have a pixel or two.
430 if any(any(BW_part))
431 candidate_images(i) = true;
432 distance_images{i} = dist_part;
433 end
434 end
435

436 % Remove empty cells
437 distimgs = remove_empty_cells(distance_images);
438 within = candidate_images;
439 end
440

441 %%
442 %===
443 function [PD_band1, PD_band2, PD_band3] = get_most_likely_distribution(

data)
444

445 PD_band1 = fitdist(data(:, 1), ’Kernel’, ’Kernel’, ’Normal’);
446

447 PD_band2 = fitdist(data(:, 2), ’Kernel’, ’Kernel’, ’Normal’);
448

449 PD_band3 = fitdist(data(:, 3), ’Kernel’, ’Kernel’, ’Normal’);

94

450 end
451

452 %%
453 %===
454 function cellarray = convert_elements(images, fun)
455 n = numel(images);
456 cellarray = cell(n, 1);
457

458 for i = 1:n
459 e = images{i};
460 cellarray{i} = fun(e);
461 end
462 end
463

464 %%
465 %===
466 function output_arg = is_center(input_arg)
467 %% Discription
468 % IS_CENTER checks if the given argument is a valid method of selecting
469 % the center of a candidate GCP.
470

471 %% Check
472 output_arg = strcmpi(input_arg, ’Centroid’) || ...
473 strcmpi(input_arg, ’Probability’) || ...
474 strcmpi(input_arg, ’Mahalanobis’);
475

476 end

Script A.10: get_area: Extracts an area around a given point of a given image. A user, or program
can specify the dimension of the area to be returned.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function imgs = get_area(image, locations, area)
6 %% Discription
7 % GET_AREA extracts an area around the points in location from the given
8 % image. The size of the area is given by *area*. The point in location
9 % will then be in the middle of the area.

10

11 %% Initialization
12 if iscell(image)
13 error(’The image must be the original image, and NOT a set of images’)

;
14 end
15

16 if area < 0
17 area = 0;
18 end
19

20 image_size = size(image);
21 n = size(locations, 1);
22 imgs = cell(n, 1);
23

24 %% Extracting areas
25 for i = 1:n

95

26 [x, y] = extract_location(image_size, locations(i, :), area);
27 imgs{i} = image(y, x, :);
28 end
29

30 if n == 1
31 imgs = imgs{1};
32 end
33

34 end
35

36 %===
37 %% ADDITIONAL FUNCTIONS
38 %===
39

40 %% EXTRACT_LOCATION
41 %===
42 function [x, y] = extract_location(image_size, location, area)
43 %% Calculating centrum of area
44

45 location = round(location);
46 area = round(area);
47

48 if numel(location) == 2 || numel(location) == 3
49 x = location(1) - area : location(1) + area;
50 y = location(2) - area : location(2) + area;
51 elseif numel(location) == 4
52 x_centrum = floor((location(2) - location(1)) / 2) + location(1);
53 y_centrum = floor((location(4) - location(3)) / 2) + location(3);
54

55 x = x_centrum - area : x_centrum + area;
56 y = y_centrum - area : y_centrum + area;
57 else
58 error(’The numer of elements in location is wrong. It must be 2 or 4’)

;
59 end
60

61 %% Error checking
62 if max(x) > image_size(2)
63 x = min(x) : image_size(2);
64 end
65 if max(y) > image_size(1)
66 y = min(y) : image_size(1);
67 end
68 if min(x) < 1
69 x = 1 : max(x);
70 end
71 if min(y) < 1
72 y = 1 : max(y);
73 end
74

75 end

Script A.11: get_heights.m: Extracts the heights at certain locations and samples a given area
around the location. Returns the average elevation of the area.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this

96

3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function heights = get_heights(dem, points, area)
6 %% Discription
7 % GET_HEIGHS takes a digital elevation model and a set of points as input,
8 % and gives out the heights of each point in order. Area is an optinal
9 % argument that specifies the side length of the sample area for each

10 % point. The defalut is 1.
11 % The dem argument can be either the full elevation model, or it can be

the
12 % path to the model.
13

14 %% Initiliazation
15 if nargin == 2
16 area = 1;
17 end
18

19 if ischar(dem)
20 dem = imread(dem);
21 end
22

23 n = size(points, 1);
24 heights = zeros(n, 1);
25

26 %%
27

28 height_cells = get_area(dem, points, round(sqrt(area) / 2 - 1));
29 for i = 1:n
30 height_area = height_cells{i};
31 heights(i) = mean(height_area(:));
32 end
33

34 end

Script A.12: get_pdf.m: Extracts the ith component of a probability density function, and the cor-
responding cumulative probability function. Useful when dealing with cell-arrays of probability
distribution objects.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function [pdf, cdf] = get_pdf(PD, i)
6 %% Discription
7 % A function to extract the i-th probability denisity function and the
8 % cummulative distributiuon function of the collection PD. If i is not
9 % given, the pdf will be extracted from PD, as it is assumed that PD is a

10 % single element.
11

12 %% Check number of parameters
13 if nargin == 2
14 Dist = PD(i);
15 else
16 Dist = PD;
17 end
18

19 %% Get the probability density function

97

20 if isstruct(Dist)
21 params = num2cell(Dist.Params);
22 Dist = makedist(Dist.DistName, params{:});
23 end
24 pdf = @(x) Dist.pdf(x);
25 cdf = @(x) Dist.cdf(x);
26

27 end

Script A.13: horn.m: An implementation of Horn (1987). It is an algorithm for computing the abso-
lute orientation with a least-squares estimation (LSE) technique. It uses the concept of quaternions
for computing the rotation matrix R.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function [R, t, s, RMSE] = horn(A, B)
6 %% Discription
7 % HORN implements the algorithm for absolute orientation given by Berthold
8 % K. P. Horn in the article "Closed-form solution of absolute orientation
9 % using unit quaternions" (1986).

10 % The input is two sets of points, *A*, and *B*. *A* is the set of point
11 % that is to be transformed into the same coordinate system as the points
12 % in *B*.
13 % The output is the rotation matrix *R*, the translation *t*, and the

scale
14 % factor *s*.
15 %
16

17 %% Initialization
18

19 dim = min([size(A, 2), size(B, 2)]);
20 A = A(:, 1:dim);
21 B = B(:, 1:dim);
22

23 r_to = bsxfun(@minus, B, mean(B)); % Equivilent to r_r
24 r_from = bsxfun(@minus, A, mean(A)); % Equivilent to r_l
25

26 norm = @(x) dot(x, x, 2);
27

28 %% Scale factor
29

30 s = sqrt(sum(norm(r_to)) / sum(norm(r_from)));
31

32 %% Rotation
33

34 M = r_from’ * r_to;
35 if all(size(M) == [2 2])
36 tmp = zeros(3);
37 tmp(1:2,1:2) = M;
38 M = tmp;
39 end
40

41 S_xx = M(1, 1); S_xy = M(1, 2); S_xz = M(1, 3);
42 S_yx = M(2, 1); S_yy = M(2, 2); S_yz = M(2, 3);
43 S_zx = M(3, 1); S_zy = M(3, 2); S_zz = M(3, 3);

98

44

45 N = [S_xx + S_yy + S_zz S_yz - S_zy S_zx - S_xz
S_xy - S_yx; ...

46 S_yz - S_zy S_xx - S_yy - S_zz S_xy + S_yx
S_zx + S_xz; ...

47 S_zx - S_xz S_xy + S_yx -S_xx + S_yy - S_zz
S_yz + S_zy;...

48 S_xy - S_yx S_zx + S_xz S_yz + S_zy -S_xx
- S_yy - S_zz];

49

50 [V, D] = eig(N);
51 e = D(1:size(D, 1) + 1: end); % Extract the eigen values.
52

53 [~, I] = max(e);
54 q = V(:, I);
55

56 R = quat2rotmat(q);
57 R = R(1:dim, 1:dim);
58

59 %% Translation
60

61 t = bsxfun(@minus, mean(B)’, s * R * mean(A)’);
62

63 %% Root mean square error
64

65 RMSE = rmse(B, A, @(x) transform_points(x, R, t, s));
66

67 end
68

69 function R = quat2rotmat(q)
70 q_0 = q(1); q_x = q(2); q_y = q(3); q_z = q(4);
71

72 R = [q_0^2 + q_x^2 - q_y^2 - q_z^2 2* (q_x *q_y - q_0 * q_z) 2

* (q_x * q_z + q_0 * q_y); ...
73 2 * (q_y * q_x + q_0 * q_z) q_0^2 - q_x^2 + q_y^2 - q_z^2 2

* (q_y * q_z - q_0 * q_x); ...
74 2 * (q_z * q_x - q_0 * q_y) 2 * (q_z * q_y + q_0 * q_x)

q_0^2 - q_x^2 - q_y^2 + q_z^2];
75 % Q = [q_0 -q_x -q_y -q_z; ...
76 % q_x q_0 -q_z q_y;...
77 % q_y q_z q_0 -q_x;...
78 % q_z -q_y q_x q_0];
79 %
80 % Q_bar = [q_0 -q_x -q_y -q_z; ...
81 % q_x q_0 q_z -q_y;...
82 % q_y -q_z q_0 q_x;...
83 % q_z q_y -q_x q_0];
84 % R = Q_bar’ * Q;
85 % R = R(2:end, 2:end);
86 end

Script A.14: horn_hilden.m: An implementation of Horn et al. (1988). It is an algorithm for com-
puting the absolute orientation with a LSE technique. It uses an orthonormal matrix for computing
the rotation matrix R.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this

99

3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function [R, t, s, RMSE] = horn_hilden(A, B)
6 %% Discription
7 %
8

9 %% Initilaization
10 if size(A, 2) == 2
11 A = [A zeros(size(A, 1), 1)];
12 end
13

14 if size(B, 2) == 2
15 B = [B zeros(size(B, 1), 1)];
16 end
17

18 %% Scale factor
19 r_from_mean = mean(A);
20 r_to_mean = mean(B);
21

22 r_from = bsxfun(@minus, A, r_from_mean);
23 r_to = bsxfun(@minus, B, r_to_mean);
24

25 s = sqrt(sum(dot(r_to, r_to, 2)) / sum(dot(r_from, r_from, 2)));
26

27 %% Rotaion
28

29 M = r_from’ * r_to;
30

31 %S = (M’ * M)^(1/2);
32

33 if rank(M) == 2
34 [V, D] = eig(M’ * M);
35 e = diag(D);
36

37 [~, I] = sort(abs(e), ’descend’);
38 e_1 = e(I(1)); e_2 = e(I(2));
39 u_1 = V(:,I(1)); u_2 = V(:,I(2));
40 S_plus = 1/sqrt(e_1) .* u_1 * u_1’ + 1/sqrt(e_2) .* u_2 * u_2’;
41 [U_0, ~, V_0] = svd(M * S_plus);
42 u_3 = U_0(:, 3); v_3 = V_0(:, 3);
43

44 R = M * S_plus + u_3 * v_3’;
45 if sign(det(R)) == -1
46 R = M * S_plus - u_3 * v_3’;
47 end
48 else
49 R = (M / (sqrtm(M’ * M)))’;
50 end
51 %% Translation
52 t = r_to_mean’ - s * R * r_from_mean’;
53

54 %% Root mean square error
55 RMSE = rmse(B, A, @(x) transform_points(x, R, t, s));
56

57 end

100

Script A.15: invert.m: Inverts the absolute orientation parameters, similarity transform (ST). Then
one has a transformation from a real world coordinate system to image coordinates. Useful when
checking where the rest of the GCPs are in the image.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function varargout = invert(varargin)
6 %% Discription
7 % INVERT inverts the the rotation matrix, translation and the scaling
8 % factor. It can also take a set of similarity transform, ST = {R, t, s}.
9 %

10 % Uses:
11 % ST = invert(ST)
12 % ST = invert(R, t, s)
13 % [R, t, s] = invert(ST)
14 % [R, t, s] = invert(R, t, s)
15

16 %% Initialization
17 if nargin == 1
18 ST = varargin{1};
19 R = ST{1};
20 s = ST{3};
21 t = ST{2};
22 elseif nargin == 3
23 R = varargin{1};
24 t = varargin{2};
25 s = varargin{3};
26 end
27

28 %% Inversion
29

30 R_inv = R \ eye(size(R));
31 c_inv = 1 / s;
32 t_inv = - 1 / s * R_inv * t;
33

34 if nargout <= 1
35 varargout{1} = {R_inv, t_inv, c_inv};
36 else
37 varargout{1} = R_inv;
38 varargout{2} = t_inv;
39 varargout{3} = c_inv;
40 end
41

42 end

Script A.16: is_all_or_one.m: A validation function, that checks if the input equals “all”. or “one”.
It is used by “match_gcps.m” to determine if all, or just one of the GCP candidates are to be used to
create topological point patterns (TPPs).

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function output_arg = is_all_or_one(input_arg)
6 %% Discription

101

7 % IS_ALL_OR_ONE checks if the input is equal to the strings ’all’ or ’one
’.

8 % The case does not matter.
9

10 %% Check
11

12 output_arg = strcmpi(input_arg, ’all’) || strcmpi(input_arg, ’one’)’;
13

14 end

Script A.17: is_binimg.m: A validation function that checks if the given input is a valid binary
image.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function output_arg = is_binimg(input_arg)
6 %% Discription
7 % A function that checks is the given input matches the criteria of a
8 % binary image, i.e. a two dimentinal matrix that consists only of logical
9 % enteries.

10 %
11

12 %% Check
13 output_arg = islogical(input_arg) && ...
14 numel(size(input_arg)) == 2;
15

16 end

Script A.18: is_boundary.m: A validation function, that checks if the boundaries are inclusive or
exclusive.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function output_arg = is_boundary(input_arg)
6 %% Discription
7 % Checks is the given input is a valid mode for a boundary condition;
8 % ’Inclusice’ or ’Exclusive’.
9

10 %% Check
11 output_arg = strcmp(input_arg, ’Inclusive’) || ...
12 strcmp(input_arg, ’Exclusive’);
13

14 end

Script A.19: is_candidate_point_lists.m: A validation function, that checks that the input is a cell-
array of candidate matchings (CMs).

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function output_arg = is_candidate_point_lists(input_arg)
6 %% Discription

102

7 % IS_CANDIDATE_POINT_LISTS checks is the given input is a cell array of
candidate

8 % points. That is, a cell array whose elements are matrices of size n x 4
9 % or n x 6 of numerical data.

10

11 %% Check
12 output_arg = iscell(input_arg);
13 dims = size(input_arg{1}, 2);
14 if mod(dims, 2) ~= 0
15 output_arg = false;
16 return
17 end
18

19 for i = 1:numel(input_arg)
20 if size(input_arg{i}, 2) ~= dims
21 output_arg = false;
22 return
23 end
24 A = input_arg{i};
25 AA = A(:, 1:dims / 2);
26 BB = A(:, dims / 2 + 1 : dims);
27 output_arg = output_arg && is_point_list(AA) && is_point_list(BB);
28 end
29

30

31 end

Script A.20: is_coordinate_system.m: A validation function, that checks whether the given coordi-
nate system is valid.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function output_arg = is_coordinate_system(input_arg)
6 %% Discription
7 % IS_COORDINATE_SYSTEM checks if the coordinate system of a point set is
8 % valid.
9

10 %% Check
11 output_arg = strcmpi(input_arg, ’xy’) || ... % cartesian x-y
12 strcmpi(input_arg, ’yx’) || ... % cartesian y-x
13 strcmpi(input_arg, ’ne’) || ... % Projection Northing-

Easting
14 strcmpi(input_arg, ’en’); % Projection Easting-

Northing
15

16 end

Script A.21: is_custom.m: A validation function that checks if the input is a function that can be
used to constrain the morphology of a GCP candidate.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function output_arg = is_custom(input_arg)

103

6 %% Discripption
7 % Checks if the given input is a valid custom input for
8 % "prune_morphology.m". It must contain which properties it should
9 % extract from regionprops, a function to act on these properties, and an

10 % interval for which the output from the function should be within in
order

11 % to be considered OK. If the field ’Outside’ is set to true, the oposite
12 % is true.
13

14 %% Check structure
15 if ~isstruct(input_arg)
16 output_arg = false;
17 return
18 end
19

20 if isstruct(input_arg) && isempty(input_arg)
21 output_arg = true;
22 return
23 end
24

25 output_arg = any(strcmp(’Interval’, fieldnames(input_arg))) && ...
26 any(strcmp(’Properties’, fieldnames(input_arg))) && ...
27 any(strcmp(’Function’, fieldnames(input_arg))) && ...
28 any(strcmp(’NecessaryProperties’, fieldnames(input_arg))) &&

...
29 any(strcmp(’Mode’, fieldnames(input_arg)));
30 if ~output_arg
31 return
32 end
33

34

35 %% Check content
36 if any(strcmp(’Outside’, fieldnames(input_arg)))
37 output_arg = islogical(input_arg.Outside);
38 return
39 end
40

41 output_arg = is_interval(input_arg.Interval) && ...
42 is_properties(input_arg.Properties) && ...
43 is_function(input_arg.Function) && ...
44 is_properties(input_arg.NecessaryProperties) && ...
45 is_valid_mode(input_arg.Mode);
46

47 end

Script A.22: is_dem_or_disabled.m: A validation function that checks whether the input can be
considered a digital elevation model (DEM).

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function output_arg = is_dem_or_disabled(input_arg)
6 %% Discription
7 % IS_DEM_OR_DISABLED checks if the input argument is a digital elivation
8 % model, or disabled, i.e. false.
9

104

10 %% Check
11 output_arg = (islogical(input_arg) && input_arg == false) || ...
12 ischar(input_arg) || ismatrix(input_arg);
13 end

Script A.23: is_fraction.m: A validation function that checks if the input is scalar (single number)
between 0 and 1 inclusive.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function output_arg = is_fraction(input_arg)
6 %% Discription
7 % IS_FRACTION chekcs that the given argument is a real number between 0

and
8 % 1.
9

10 %% Check
11 output_arg = is_number(input_arg) && 0 <= input_arg && input_arg <= 1;
12

13 end

Script A.24: is_function.m: A validation function that checks whether the input is a function handle
in MATLAB.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function output_arg = is_function(input_arg)
6 %% Discription
7 % Checks is the given input is a function handle.
8

9 %% Check
10 output_arg = isa(input_arg, ’function_handle’);
11

12 end

Script A.25: is_image: A validation function that checks if the input is a valid image, or an n×m×3
matrix.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function output_argument = is_image(input_argument)
6 %% Discription
7 % Checks that the given input is a 3 banded image.
8

9 %% Initializing
10

11 img_size = size(input_argument);
12 dims = numel(img_size);
13

14 %% Check
15

105

16 output_argument = dims == 3 && (img_size(3) == 3 || img_size(3) == 4); %
There might be an alpha chanel

17

18 end

Script A.26: is_image_or_path.m: A validation function that checks whether the input is an image,
or a path to an image.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function output_arg = is_image_or_path(input_arg)
6 %% Discription
7 % IS_IMAGE_OR_PATH checks if the input is a valid image or that it is a
8 % path to an image.
9

10 %% check
11 output_arg = ischar(input_arg) || is_image(input_arg);
12

13 end

Script A.27: is_images: A validation function that tests whether the input is a valid cell-array of
images, as defined in Script A.25.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function output_arg = is_images(input_arg)
6 %% Discription
7 % IS_IMAGES checks that the given input is a cell array of 3 banded images

.
8

9 %% Initializing
10

11 num_images = numel(input_arg);
12

13 %% Check
14 output_arg = iscell(input_arg);
15 for i = 1:num_images
16 output_arg = output_arg && is_image(input_arg{i});
17 end
18

19 end

Script A.28: is_integer.m: A validation function, that tests whether the input is a scalar integer. This
works with any number type (e.g. double, float, int, uint8), which the built-in function does not.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function output_arg = is_integer(input_arg)
6 %% Discription
7 % IS_INTEGER checks that the given input is a positive scalar integer.
8

106

9 %% Check
10 output_arg = mod(input_arg, 1) == 0 && all(size(input_arg) == [1 1]);
11

12 end

Script A.29: is_interval.m: A validation function that tests whether the input is an interval such as
[2, 7].

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function output_arg = is_interval(input_arg)
6 %% Discription
7 % Checks that the given input is an interval, i.e. There are only two
8 % elements in the vector, and that the first element is smaller than the
9 % last element.

10

11 %% Check
12 output_arg = isvector(input_arg) && ...
13 numel(input_arg) == 2 && ...
14 input_arg(1) < input_arg(2);
15

16 end

Script A.30: is_interval_or_disabled: A validation function that tests whether the input is an in-
terval, as defined in Script A.29, or disabled, i.e. set to false. If the input is true, however, the
default value will be used.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function output_arg = is_interval_or_disabled(input_arg)
6 %% Discription
7 % Checks that the given input is an interval, i.e. there are only two
8 % elements in the vector, and that the first element is smaller than the
9 % last element, or if it is disabled, i.e. false. If it is set to be true,

10 % it will later be assumed that the default values are to be used.
11

12 %% Check
13 output_arg = is_interval(input_arg) || islogical(input_arg);
14

15 end

Script A.31: is_min_max_std_mean.m: A validation function that tests whether the input is one of
the modes “min-max” or “std-mean”. The first says the mode is to use the minimum and maximum
value as limits In some cases it also indicates the use of quantiles. The latter specifies a mode using
the mean value and the standard deviation as the interval to be used. In some cases, the standard
deviation van be given a weight, so that the interval is extended or contracted.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function output_arg = is_min_max_std_mean(input_arg)

107

6 %% Discription
7 % Checks is the given input is a ’min-max’, ’max-min’, ’std-mean’, or
8 % ’mean-std’; valid modes.
9

10 %% Check
11 output_arg = strcmpi(input_arg, ’min-max’) || ...
12 strcmpi(input_arg, ’std-mean’) || ...
13 strcmpi(input_arg, ’max-min’) || ...
14 strcmpi(input_arg, ’mean-std’);
15

16 end

Script A.32: is_number.m: A validation function that tests whether the input is a single number, i.e.
a scalar.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function output_arg = is_number(input_arg)
6 %% Discription
7 % IS_NUMBER checks if the given input is a single number, or a vector of
8 % size [1 1].
9

10 %% Check
11 output_arg = isnumeric(input_arg) && all(size(input_arg) == [1 1]);
12

13 end

Script A.33: is_number_or_disabled.m: A validation function that tests whether the input is a single
number (i.e. scalar), or disabled, (i.e. true, in which case a default value is used, or true).

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function output_arg = is_number_or_disabled(input_arg)
6 %% Discription
7 % IS_NUMBER_OR_DISABLED checks if the input argument is a single number,

or
8 % that it is logical. For later use, if the input argument is set to ture,
9 % it will be assumed that the default values are to be used, whereas if it

10 % is false, it will be assumed that it is disabled.
11

12 %% Check
13 output_arg = (isnumeric(input_arg) && all(size(input_arg) == [1 1])) ||

...
14 islogical(input_arg);
15

16 end

Script A.34: is_point_list.m: A validation function that tests whether the input is a valid list of
points, e.i. an n× 3, or n× 2 matrix.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.

108

4 % Copyright (c) 2016 Sindre Nistad
5 function output_arg = is_point_list(input_arg)
6 %% Discription
7 % IS_POINT_LIST checks is the given input is an n x 2 or n x 3 matrix of
8 % numerical data.
9

10 %% Check
11 output_arg = isnumeric(input_arg) && (size(input_arg, 2) == 2 || size(

input_arg, 2) == 3);
12

13 end

Script A.35: is_point_list_or_path.m: A validation function that tests whether the input is a valid
list of points, as defined in Script A.34. The input can also be a path to such a list.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function output_arg = is_point_list_or_path(input_arg)
6 %% Discription
7 % IS_POINT_LIST_OR_PATH checks is the given input is an n x 2 or n x 3
8 % matrix of numerical data, or that is a path to such a list.
9

10 %% Check
11 output_arg = is_point_list(input_arg) || ischar(input_arg);
12

13 end

Script A.36: is_positive_integer: A validation function that tests whether the input is a positive
integer, as defined in Script A.28.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function output_arg = is_positive_integer(input_arg)
6 %% Discription
7 % IS_POSITIVE_INTEGER checks that the given input is a positive scalar
8 % integer.
9

10 %% Check
11 output_arg = is_integer(input_arg) && input_arg > 0;
12

13 end

Script A.37: is_positive_number.m: A validation function that tests whether the given input is a
positive number, as defined in Script A.32.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function output_arg = is_positive_number(input_arg)
6 %% Discription
7 % IS_POSITIVE_NUMBER checks if the given input is a single number, or a
8 % vector of size [1 1], and that is greater or equal to 0.

109

9

10 %% Check
11 output_arg = is_number(input_arg) && input_arg >= 0;
12

13 end

Script A.38: is_properties.m: a validation function that tests whether the given input matches one
or more of the legal parameters for the MATLAB function regionprops.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function output_arg = is_properties(input_arg)
6 %% Discription
7 % IS_PROPERTIES checks whether or not the given input can be considered a
8 % list of valid properties to be used in regionprops. It does this by
9 % checking that the input is either a cell array of string, or a single

10 % string.
11 %
12

13

14 %% List of valid strings:
15 properties = {’all’, ’basic’, ’Area’, ’Centroid’, ’BoundingBox’, ...
16 ’SubarrayIdx’, ’MajorAxisLength’, ’MinorAxisLength’, ’Eccentricity’,

...
17 ’Orientation’, ’ConvexHull’, ’ConvexImage’, ’ConvexArea’, ’Image’, ...
18 ’FilledImage’, ’FilledArea’, ’EulerNumber’, ’Extrema’, ...
19 ’EquivDiameter’, ’Solidity’, ’Extent’, ’PixelIdxList’, ’PixelList’,

...
20 ’Perimeter’, ’PerimeterOld’, ’PixelValues’, ’WeightedCentroid’, ...
21 ’MeanIntensity’, ’MinIntensity’, ’MaxIntensity’, ’’};
22

23 %% Check
24

25 if iscellstr(input_arg)
26 output_arg = true;
27 for i = 1:numel(input_arg)
28 output_arg = output_arg && ...
29 any(strcmp(input_arg(i), properties));
30 end
31 elseif ischar(input_arg)
32 output_arg = any(strcmp(input_arg, properties));
33 else
34 output_arg = false;
35 end
36

37

38 end

Script A.39: is_replace_mode.m: A validation function that tests whether the given input is a valid
mode for what to do with GCP candidates that are too close to each other.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad

110

5 function output_arg = is_replace_mode(input_arg)
6 %% Discription
7 % Checks is the given input is a valid mode for what to do with points

that
8 % are too close to eachother.
9

10 %% Check
11 output_arg = strcmpi(input_arg, ’probable’) || ...
12 strcmpi(input_arg, ’average’) || ...
13 strcmpi(input_arg, ’remove’);
14

15 end

Script A.40: is_sample_data_or_disabled.m: A validation function that tests whether the given input
is an n× 3 matrix, a path to it, or disabled. If it is disabled, a default value will be used instead.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function output_arg = is_sample_data_or_disabled(input_arg)
6 %% Discription
7 % IS_SAMPLE-DATA_OR_DISABLED checks that the input data is a valid sample
8 % of RGB vales, or a path, or disabled.
9

10 %% Check
11 output_arg = (isnumeric(input_arg) && size(input_arg, 2) == 3) || ...
12 ischar(input_arg) || ...
13 (islogical(input_arg) && input_arg == false);
14

15 end

Script A.41: is_structure_element.m: A validation function that tests whether the given input is a
structure element in the form of a “strel” class, or a template (i.e. a binary image).

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function output_arg = is_structure_element(input_arg)
6 %% Discription
7 % IS_STRUCTURE_ELEMENT checks if the input argument is a structure element

.
8 % It can either be a strel or a binary image.
9

10 %% Check
11 output_arg = isa(input_arg, ’strel’) || is_binimg(input_arg);
12

13 end

Script A.42: is_valid_mode.m: A validation function that tests whether the given input is a valid
mode for Script A.55.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad

111

5 function output_arg = is_valid_mode(input_arg)
6 %% Discription
7 % IS_VALID_MODE checks that the given (set of) string(s) is a valid mode
8 % for the function "prune_morphology.m".
9

10 %% Define valid modes
11 modes = {’Interval’, ’Function’, ’IntervalFunction’};
12

13 %% Check
14 output_arg = any(strcmp(input_arg, modes));
15

16 end

Script A.43: is_valid_orientation_algorithm.m: A validation function that tests whether the given
input is a valid algorithm for finding the absolute orientation parameters.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function output_arg = is_valid_orientation_algorithm(input_arg)
6 %% Discription
7 % IS_VALID_ORIENTATION_ALGORITHM cheks that the input is a valid choise of
8 % algorithm for the absolute positioning problem.
9

10 %% Check
11 output_arg = strcmpi(input_arg, ’ShinjiUmeyama’) || ...
12 strcmpi(input_arg, ’Horn’) || ...
13 strcmpi(input_arg, ’HornHilden’) ;
14 end

Script A.44: limits.m: Creates an interval of limits from a given dataset by using quantiles, or the
mean and a multiple of the standard deviation. All the limits are per column, or band, of the sample
data.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function res = limits(values, mode, opt)
6 %% Discrition
7 % This is a function that gathers the limits_min_max and limits_mean_std
8 % functions into one umbrella function.
9 % The values are a collection of values (a matrix) where each column

10 % represents a sepearate band. The mode specifies how the limits are to be
11 % computed: ’min-max’ or ’mean-std’. The opt argument specifies any
12 % auxillary information that is requiered. For min-max, it is the
13 % percentile of quantiles to be used. 0 or 1 gives min/max, while for
14 % ’mean-std’ the option is the weight to be given to the standard
15 % deviation.
16

17 %% Initializing
18 default = ’min-max’;
19

20 if nargin < 2
21 mode = default;
22 elseif nargin < 3

112

23 if strcmp(mode, ’min-max’)
24 opt = 0;
25 elseif strcmp(mode, ’mean-std’)
26 opt = 1;
27 else
28 warning(strcat(’Invalid mode, using default, (’, default, ’).’));
29 end
30 end
31

32 %% Getting limits
33

34 if strcmp(mode, ’min-max’)
35 res = limits_min_max(values, opt);
36 elseif strcmp(mode, ’mean-std’)
37 means = mean(values);
38 stds = std(values);
39 res = limits_mean_std(means, stds, opt);
40 else
41 res = limits(values, default);
42 end
43

44 end

Script A.45: limits_mean_std.m: A helper function for Script A.44 that creates an interval of size
±aσ around the mean of the sample data. a ∈ R, and σ is the standard deviation of the data. All the
limits are per column, or band, of the sample data.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function res = limits_mean_std(means, stds, weights)
6 %% Description
7 % A function that creates minimum and maximum values for each of the bands

.
8 % It gives a matrix with minimum and maximum values. The paramters is
9 % means, which is a vector of means for each band, while stds is a vector

10 % for the standard deviation of each band, while weights is a scalar or
11 % vector of weights for the standard deviation.
12 % The result will be in the form
13 % mean(1) - wheights(1) * stds(1), means(1) + wheights(1) * stds(1)
14 % mean(2) - wheights(2) * stds(2), means(2) + wheights(2) * stds(2)
15 % .
16 % .
17 % .
18

19 %% Checking consistency
20 if ~(isvector(means) && isvector(stds) && ...
21 (isvector(weights) || isscalar(weights)))
22 error(’The means, standard deviations, and the weights are not vecotrs

, or weights is not a scalar’);
23 elseif numel(means) ~= numel(stds)
24 error(’The number of means and standard deviations is not the same’);
25 elseif numel(means) ~= numel(weights) && numel(weights) ~= 1
26 error(’The number of weights is not the same as the means and standard

deviations, and weights is not a scalar’);
27 end

113

28

29 %% Initializing
30 res = zeros(numel(means), 2);
31 if isscalar(weights)
32 temp = zeros(size(means));
33 temp(:) = weights;
34 weights = temp;
35 end
36

37 for i = 1:numel(means)
38 variance = weights(i) * stds(i);
39 res(i,:) = [means(i) - variance, means(i) + variance];
40 end

Script A.46: limits_min_max.m: A helper function to Script A.44 that creates an interval. The
interval can either be the minimum and maximum of the sample data, or it can be an arbitrary
quantile of the data. All the limits are per column, or band, of the sample data.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function res = limits_min_max(vals, p)
6 %% Discription
7 % Creates a matrix of minimum and maximum values if p is not given. If p

is
8 % between 0 - 1, then the function will return the p and 1 - p quantiles

of
9 % the data for each band.

10

11 %% Initializatinon
12 if ~exist(’p’, ’var’)
13 p = 0;
14 elseif p > 1
15 p = 1;
16 elseif p < 0
17 p = 0;
18 end
19

20 size_vals = size(vals);
21 num_bands = size_vals(2);
22 res = zeros(num_bands, 2);
23

24 %% Getting values
25 for i = 1:num_bands
26 % A little MATLAB hack to get the values into a 1 x 2 vector.
27 q = quantile(vals(:,i), [p, 1 - p]);
28 res(i, :) = [q(1), q(2)];
29 end

Script A.47: load_geojson.m: A function that loads the content of a GeoJSON file and returns a list
of points, the coordinate system used and the names of the points.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad

114

5 function [points, crc, names] = load_geojson(path)
6 %% Discription
7 % Loads the geojson object located at *path*. It returns a matrix of
8 % points; each row is a point of the form [x y z] or [E N H] for a propper
9 % projection. The *crc* output is the reference coordinate system used in

10 % the given file.
11 % This function is dependent on JSONlab.
12

13 %% Load JSON object
14 json = loadjson(path);
15

16 num_points = numel(json.features);
17 points = zeros(num_points, 3);
18 names = cell(num_points, 1);
19

20 crc = json.crs.properties.name;
21

22 %% Fill the matriex
23 for i = 1:num_points
24 point = json.features{i};
25 coordinates = point.geometry.coordinates;
26 name = point.properties.name;
27 points(i, :) = coordinates;
28 names{i} = name;
29 end
30

31 end

Script A.48: mahal_dist.m: A customized version of the built-in function mahal to effectively
calculate the Mahalanobis distance of an entire image.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function res = mahal_dist(Y, X, m)
6 %% Disctiption
7 % MAHAL_DIST runs the bulit in function mahal for an image, instead of

just
8 % an array of points. X is the reference sample, while Y is the points to
9 % whish we wish to get the distances.

10 % If the input Y is an image, the output will be an image of distances.
11 % This should hopefully be faster on larger data than using the

mahalanobis
12 % distance per element.
13

14 %% Creating the function
15 img_size = size(Y);
16 if img_size(2) == 3 && size(img_size, 2) == 2
17 res = mahal(Y, X);
18 elseif nargin == 2
19 res = mahal(reshape(Y, [prod(img_size(1:2)), 3]), X);
20 res = reshape(res, [img_size(1), img_size(2)]);
21 else
22 % It is assumed that X is the invers of the covariance matrix
23 % and that m is the mean
24 val = reshape(Y, [img_size(1) * img_size(2), img_size(3)]);

115

25 res = sum((bsxfun(@minus, val, m) * X) .* bsxfun(@minus, val, m),2);
26 res = reshape(res, [img_size(1), img_size(2)]);
27 end
28

29 end

Script A.49: make_outside_interval_checker.m: Creates a function that checks if a given value is
inside, or outside a specified interval. The boundaries can be chosen to be inclusive, or exclusive
independently.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function outside = make_outside_interval_checker(min_boundary,

max_boundary)
6 %% Discription
7 % MAKE_OUTSIDE_INTERVAL_CHECKER creates a function that checjs if a value
8 % is inside an interval with inclusive, or exclusive bounderies.
9

10 %% Initilaizing
11 if strcmp(min_boundary, ’Exclusive’)
12 outside_min = @(value, minimum) value <= minimum;
13 elseif strcmp(min_boundary, ’Inclusive’)
14 outside_min = @(value, minimum) value < minimum;
15 else
16 error(’Not a valid maximum boundary. Use ’’Exclusive’’ or ’’Inclusive’

’’);
17 end
18

19 if strcmp(max_boundary, ’Exclusive’)
20 outside_max = @(value, maximum) value >= maximum;
21 elseif strcmp(max_boundary, ’Inclusive’)
22 outside_max = @(value, maximum) value > maximum;
23 else
24 error(’Not a valid maximum boundary. Use ’’Exclusive’’ or ’’Inclusive’

’’);
25 end
26

27 %% Create function
28 outside = @(value, minimum, maximum) outside_min(value, minimum) || ...
29 outside_max(value, maximum);
30 end

Script A.50: match_gcps.m: An implementation of the TPP algorithm for finding the correspon-
dence between two sets of points. Adapted from Li and Briggs (2006).

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function varargout = match_gcps(image_points, gcps, varargin)
6 %% Description
7 % This function matches ground controll points from a orthophoto with the
8 % actual coordinates ground controll points. The input points is the
9 % relative coordinates of the ground controll points in the orthophoto /

10 % image. Not all of these points needs to be actual coordinates. The

116

11 % function is able to handle missing points, and false positives.
12 % The Input prameter gcps is a list of the world coordinates of the ground
13 % controll points.
14 %
15 % USAGE:
16 % matches = match_gcps(image_points, gcps)
17 % matches = match_gcps(image_points, gcps, options)
18 % [CM, ST, RMSE] = match_gcps(image_points, gcps, ’GetOptimal’, true, ___)
19 %
20 %
21 %
22 % Valid options
23 % ’ImageTPPMode’ The mode of how the topological point pattern is

to
24 % be used. The valid modes area ’all’, ’one’, If
25 % ’one’ is selected, a single point will be chosen

as
26 % an anchor point. Unless ’ImageTPPIndex’ is given

as
27 % well, this point will be chosen at random. If ’all

’
28 % is given insted, the algorithm will choose the
29 % point pattern for the image that gives the best
30 % RMSE with all the possible point patterns in the
31 % ground controll point set. This is slower than
32 % selecting ’one’.
33 % Default is ’one’.
34 % ’ImageTPPIndex’ The index of which point to be used as the anchor
35 % point in the set of points from the image. If the
36 % index is negative or beyond the number of points

in
37 % the set, a point will be chosen at random.
38 % Default is -1 (random).
39 % ’MinimumMatches’ The minimum points necessary for a set of matching
40 % points to be considered for a true matching.
41 % Default is the number of unknowns in the absolute
42 % matching problem plus one, e.g. is the points are
43 % in 2D, this value will be 2, while if the points
44 % are in 3D, it will be 3.
45 % ’RadiusThreshold’ The threshold used when comparing radiuses. If the
46 % difference in radia between the point pattern in
47 % the image and the point pattern in the ground
48 % control points is less than the given threshold,

it
49 % will be considered a match.
50 % Default is 0.1.
51 % ’AngleThreshold’ The threshold used when comparing angles. If the
52 % difference in angles between the point pattern in
53 % the image and the point pattern in the ground
54 % control points is less than the given threshold,

it
55 % will be considered a match.
56 % Default is 0.1.
57 % ’DegreesFreedom’ The number of points that is desireable beyond

what
58 % is necessary to get a unique solution to the
59 % absolute orientation problem. Default is 1.

117

60 % ’MinMatchedPoints’ The minimum number of points that are to matched.
61 % Default is the number of points to get a uniqe
62 % solution.
63 % ’GetIndices’ A boolean falg toggeling wether or not just the
64 % indices of matching points are to be returned. If
65 % true, only the indices of the points that are
66 % matching eachother will be returned. If false, the
67 % full coordinates will be returned in an n x 2 * d
68 % matrix where d is the dimentionality of the points

.
69 % Default is false.
70 % ’GetOptimal’ A boolean flag that toggles wether the output is
71 % the best candidate matching, along with the
72 % transformation parameters and the root mean square
73 % error of the transformation.
74 % Default is false.
75 % NB: When using this option, ’GetIndices’ will not
76 % be a valid argument, and will be ignored.
77 %
78 % ’OrientationAlgorithm’ The algorithm to be used when computing the
79 % optimal absolute orientation. This option is anly
80 % applicable when the ’GetOptimal’-flag is set to
81 % true. The valid options are ’ShinjiUmeyama’ and
82 % ’Horn’.
83 % Default is ’Horn’.
84 %
85 % ’MaxDistance’ Specifies the maximum allowed scaled distance
86 % between the different points in the pattern.
87 % Default is Inf, i.e. no limit.
88 %
89 % ’ImageLimit’ Toggles whether the set of topological points
90 % from the image are limited to the maximum
91 % distance of the topological points of the
92 % ground control points.
93 % Default is false.
94 %
95 % ’GCPLimit’ Toggles whether the set of topological points
96 % from the ground control points are limited to
97 % the maximum distance of the topological
98 % points of the image.
99 % Default is false.

100 %
101 % ’UseHornScale’ Toggles whether the scale factor suggested in
102 % Horn (1986), and Horn et. al. (1988) is to be
103 % used instead of the scale factor suggested in
104 % Umeyama (1991) for the algorithm
105 % ’ShinjiUmeyama’.
106 % Default is false.
107 %
108 % If ’GetIndices’ is set to true matches will be a cell array of

cellarrays
109 % of matrices having rows [i, j] where the indices is the points in of
110 % *image_points* and *gcps* respectively. If it is set to false, however,
111 % it will return a cell array each containing a n x 2 * d matrix of the
112 % points in image_points and gcps. The points in the first is in the first
113 % two columns of the cell array, while the latter is in the latter two.
114 % I.e. [x_i y_i N_j E_j]. d is the number of dimention in the points.

118

115 %
116 % NB: If *image_points* and *gcps* have different dimentions, the lowest
117 % dimention will be used, i.e. id on is 2D and the other is 3D, the output
118 % will only be 2D.
119

120 %% Parse input
121

122 i_p = inputParser;
123 i_p.FunctionName = ’MATCH_GCPS’;
124

125 % Requiered
126 i_p.addRequired(’image_points’, @is_point_list);
127 i_p.addRequired(’gcps’, @is_point_list);
128

129 % Optional: What to remove
130 i_p.addParameter(’ImageTPPMode’, ’one’, @is_all_or_one);
131 i_p.addParameter(’ImageTPPIndex’, -1, @is_number);
132 i_p.addParameter(’MinimumMatches’, -1, @is_number); %

Default is a 5 if the points are 2D, and 7 if they are 3D
133 i_p.addParameter(’RadiusThreshold’, 0.21, @is_number);
134 i_p.addParameter(’AngleThreshold’, 0.21, @is_number);
135 i_p.addParameter(’DegreesFreedom’, 1, @is_positive_integer);
136 i_p.addParameter(’GetIndices’, false, @islogical);
137 i_p.addParameter(’GetOptimal’, false, @islogical);
138 i_p.addParameter(’ImageCoordinateSystem’, ’xy’, @is_coordinate_system);
139 i_p.addParameter(’GCPCoordinateSystem’, ’NE’, @is_coordinate_system);
140 i_p.addParameter(’OrientationAlgorithm’, ’Horn’,

@is_valid_orientation_algorithm);
141 i_p.addParameter(’MaxDistance’, Inf, @is_positive_number);
142 i_p.addParameter(’GCPLimit’, false, @islogical);
143 i_p.addParameter(’ImageLimit’, false, @islogical);
144 i_p.addParameter(’UseHornScale’, false, @islogical);
145

146

147 i_p.addParameter(’Debug’, false, @islogical);
148 i_p.addParameter(’DebugPath’, ’D:\Users\sindr\Dropbox\Dokumenter\Skole\

NTNU\Master\Masteroppgave\data\resultater\kandidater\’, @ischar);
149

150

151 i_p.parse(image_points, gcps, varargin{:});
152

153 %% Deal with the input
154 input = i_p.Results;
155

156 % Required
157 image_points = input.image_points;
158 gcps = input.gcps;
159

160 % Optional
161 i = input.ImageTPPIndex;
162 mode = input.ImageTPPMode;
163 image_coor = input.ImageCoordinateSystem;
164 gcp_coor = input.GCPCoordinateSystem;
165

166 sufficient_points = input.MinimumMatches;
167

168 delta_r = input.RadiusThreshold;

119

169 delta_theta = input.AngleThreshold;
170

171 dof = input.DegreesFreedom;
172

173 use_indices = input.GetIndices;
174 use_verification = input.GetOptimal;
175

176 max_distance = input.MaxDistance;
177 image_limit = input.ImageLimit;
178 gcp_limit = input.GCPLimit;
179 use_horn_scale = input.UseHornScale;
180

181 % Debug
182 debug_mode = input.Debug;
183 debug_path = input.DebugPath;
184

185 orientation_algorithm = input.OrientationAlgorithm;
186

187 %% Initialization
188 dim = min([size(image_points, 2), size(gcps, 2)]);
189

190 % Determining the minimum needed points to get unique solution
191 minimum_num_points = ceil(((dim - 1) + dim + 1) / dim); % Angles,

translation and scaling, and there are *dim’ number of equations per
point

192 if sufficient_points <= 0
193 sufficient_points = (minimum_num_points * dim + dof) / dim;
194 elseif sufficient_points <= minimum_num_points
195 warning(’The number of minimum matches is lower or equal to the number

of points requiered to solve the absolute orientation problem’);
196 end
197

198 if use_verification
199 % We need the actual points.
200 use_indices = false;
201 end
202

203 if strcmpi(image_coor, ’yx’)
204 image_points = [image_points(:, 2) image_points(:, 1)];
205 end
206 if strcmpi(gcp_coor, ’NE’)
207 % gcps = [gcps(:, 2) gcps(:, 1)];
208 end
209

210 image_points = image_points(:, 1:dim);
211 gcps = gcps(:, 1:dim);
212

213

214 if use_verification
215 varargout = cell(3, 1);
216 else
217 varargout = cell(1);
218 end
219

220 if gcp_limit && image_limit
221 TPPs_image = create_TPPs_for_image(image_points, i, max_distance, mode

);

120

222 TPPs_gcp = create_TPPs_for_gcp(gcps, max_distance);
223 d = min([find_maximum_distance(TPPs_image), ...
224 find_maximum_distance(TPPs_gcp), max_distance]);
225 TPPs_image = prune_tpp(TPPs_image, d);
226 TPPs_gcp = prune_tpp(TPPs_gcp, d);
227 elseif gcp_limit
228 % The GCPs are limited by the maximum distance of image TPP
229 TPPs_image = create_TPPs_for_image(image_points, i, max_distance, mode

);
230 d = find_maximum_distance(TPPs_image);
231 TPPs_gcp = create_TPPs_for_gcp(gcps, min([max_distance, d]));
232 elseif image_limit
233 TPPs_gcp = create_TPPs_for_gcp(gcps, max_distance);
234 d = find_maximum_distance(TPPs_gcp);
235 TPPs_image = create_TPPs_for_image(image_points, i, min([max_distance,

d]), mode);
236 else
237 TPPs_gcp = create_TPPs_for_gcp(gcps, max_distance);
238 TPPs_image = create_TPPs_for_image(image_points, i, max_distance, mode

);
239 end
240

241 %% Matching
242

243 matches = match_points(TPPs_image, TPPs_gcp, sufficient_points, delta_r,
delta_theta, mode, debug_mode, debug_path);

244

245 %% Finallizing the output
246

247 n_matches = numel(matches);
248

249 for ii = 1:n_matches
250 CM = matches{ii};
251 acm = CM{1};
252 idx_gcp = CM{2}; idx_img = CM{3};
253 matches{ii} = [TPPs_image{idx_img}.Indices(acm(:, 1)), TPPs_gcp{

idx_gcp}.Indices(acm(:, 2))];
254 end
255

256 if ~use_indices
257 for ii = 1:n_matches
258 CM = matches{ii};
259 matches{ii} = [image_points(CM(:, 1), :), gcps(CM(:, 2), :)];
260 end
261 end
262 if use_verification
263 [CM, ST, RMSE] = verification_algorithm(matches, orientation_algorithm

, use_horn_scale);
264 varargout{1} = CM; varargout{2} = ST; varargout{3} = RMSE;
265 else
266 varargout{1} = matches;
267 end
268

269

270 end
271

272 %% TOPOLOGICAL_POINT_PATTERN

121

273 %===
274 function TPP = topologival_point_pattern(points, i, d)
275 %% Discription
276 % TOPOLOGICAL_POINT_PATTERN computes the topological point pattern (TPP)

of
277 % the given set of points, using the i-th point as an anchor point.
278 % The output is a struct with the fields ’TPP’, ’Indices’, ’AnchorPoint’,
279 % ’AnchorPointIndex’, and ’ScalingFactor’.
280 % More specifically:
281 % ’TPP’ is a sorted list of polar cooredinates for each
282 % point in the input set. The set is sorted lexicographically (r, theta).
283 % ’Indices’ is a set of indices for a one-to-one correspondence with the
284 % points in the given set. They are indexed by their order in TPP. I.g. if
285 % the i-th element of I is j, that means that the i-th element in *TPP* is
286 % equivelent to the j-th point in *points*.
287 % ’AnchorPoint’ is the absolute position of the anchor point.
288 % ’AnchorPointIndex is the index that was used when computing the
289 % topological point pattern.
290 % ’ScalingFactor’ is the unit distance of r, i.e. the distance between

the
291 % anchor point and its closest neighbor.
292

293 %% Initialization
294 n = size(points, 1) - 1;
295

296 anchor_point = points(i, :);
297 if nargin == 2
298 d = Inf;
299 end
300

301 %% Procedure
302 % Translate all points relative the anchor point
303 points = bsxfun(@minus, anchor_point, points);
304

305 % Calculate distances
306 D = sqrt(sum(points.^2, 2));
307

308 % Find the closest point to the anchor point
309 D(D == 0) = Inf; % Hack to avoid getting the same point when using min(

D(D ~= 0)) or min(nonzero(D))
310 [~, I] = min(D);
311 D(D == Inf) = 0; % Hack to avoid getting the same point when using min(

D(D ~= 0)) or min(nonzero(D))
312

313 % Since the points have been translated, the vector of the prixipal axis
314 % coincides with the closest point, when we treat it as a vector
315 principal_axis = points(I, :);
316 principal_angle = atan2(principal_axis(2), principal_axis(1));
317

318 scaling = sqrt(principal_axis(1)^2 + principal_axis(2)^2);
319

320 r = D / scaling;
321 theta = rem(atan2(points(:, 2), points(:, 1)) - principal_angle, pi);
322

323 % Remove those that are too far away
324 I = r <= d;
325 r = r(I);

122

326 theta = theta(I);
327

328 % Make the angle interval [0 2pi] instead of [-pi, pi]
329 theta(theta < 0) = theta(theta < 0) + 2*pi;
330

331 %% Computing outputs
332 % Topoligical point pattern
333 [~, I] = sortrows([r min([theta, 2 * pi - theta], [], 2)]);
334 pattern = [r(I), theta(I)];
335 pattern(1, 2) = 0; % Ensure that the angle of the anchor point is zero.
336

337 % Anchor point
338 ap = anchor_point;
339

340 % Scaling factor
341 s = scaling;
342

343 % Gather it all together in a struct
344 TPP = struct(...
345 ’TPP’, pattern, ...
346 ’Indices’, I, ...
347 ’AnchorPoint’, ap, ...
348 ’AnchorPointIndex’, i, ...
349 ’ScalingFactor’, s);
350

351 end
352

353 %% IS_SUBSET
354 %===
355 function res = is_subset(TPPa, TTPb)
356 %% Discription
357 % Checks if TPPa is a subset of TTPb
358

359 %%
360 res = true;
361

362 end
363

364 %% PRUNE_TPPs
365 %===
366 function TPP = prune_tpp(TPP, max_distance)
367 %% Discription
368 % Removes all points that are further away from the anchor point than
369 % the given distance.
370

371 %% Prune
372 for i = 1:numel(TPP)
373 tpp = TPP{i};
374 pattern = tpp.TPP;
375 I = pattern(:, 1) <= max_distance;
376 tpp.TPP = pattern(I, :);
377 tpp.Indices = tpp.Indices(I);
378 TPP{i} = tpp;
379 end
380

381 end
382

123

383

384 %% EXTRACT_MATCHING_PAIRS
385 %===
386 function matches = extract_matching_pairs(TPPa, TPPb, delta_r, delta_theta

)
387 %% Discription
388 % Extract the points that matches in the two given sets
389 % Input: Two sets of Topological Point Patterns; TPPa and TPPb, along with
390 % a set of thresholds; $\Delta{} r$ and $\Delta{} \theta$ for the minimal
391 % accepted difference between the radius and angle in polar coordinates
392 % respectively.
393

394 %% Initialization
395 n_a = size(TPPa, 1);
396 n_b = size(TPPb, 1);
397

398 matches = zeros(max([n_a, n_b]), 2);
399

400 i = 1;
401 j = 1;
402

403 %% Look for matching pairs
404

405 while i <= n_a && j <= n_b
406

407 theta_a = TPPa(i, 2);
408 theta_b = TPPb(j, 2);
409

410 diff_r = abs(TPPa(i, 1) - TPPb(j, 1));
411 diff_theta = min([abs(theta_a - theta_b), ...
412 theta_a + (2*pi - theta_b), ...% b is bellow the

axis
413 theta_b + (2*pi - theta_a)]); % a is bellow the axis
414 if diff_r <= delta_r && diff_theta <= delta_theta
415 matches(i, :) = [i j];
416 i = i + 1;
417 j = j + 1;
418 elseif TPPa(i, 1) > TPPb(j, 1)
419 j = j + 1;
420 elseif TPPa(i, 1) < TPPb(j, 1)
421 i = i + 1;
422 elseif i + 1 <= n_a && j + 1 <= n_b
423 % This means the points are close enough, but the angle is off
424 if abs(TPPa(i + 1, 1) - TPPb(j, 1)) <= diff_r && ...
425 abs(TPPa(i, 1) - TPPb(j + 1, 1)) <= diff_r && ...
426 abs(TPPa(i + 1, 2) - TPPb(j, 2)) < diff_theta && ...
427 abs(TPPa(i, 2) - TPPb(j + 1, 2)) < diff_theta
428 % Both next candidates are closer than the previous, and both
429 % are within the theresholds of r and θ, so we choose
430 % the one with the smallest angle
431 if abs(TPPa(i + 1, 2) - TPPb(j, 2)) < abs(TPPa(i, 2) - TPP(j +

1, 2))
432 i = i + 1;
433 else
434 j = j + 1;
435 end
436 elseif abs(TPPa(i + 1, 1) - TPPb(j, 1)) <= diff_r && abs(TPPa(i +

124

1, 2) - TPPb(j, 2)) < diff_theta
437 i = i + 1;
438 elseif abs(TPPa(i, 1) - TPPb(j + 1, 1)) <= diff_r && abs(TPPa(i,

2) - TPPb(j + 1, 2)) < diff_theta
439 j = j + 1;
440 else
441 i = i + 1;
442 j = j + 1;
443 end
444 else
445 i = i + 1;
446 j = j + 1;
447 end
448 end
449

450 % Removes the empty rows
451 matches(~any(matches, 2), :) = [];
452

453 end
454

455 %% MATCH_POINTS
456 %===
457 function matches = match_points(TPPs_image, TPPs_gcp, sufficient_points,

delta_r, delta_theta, mode, debug_mode, debug_path)
458

459 n_gcp = numel(TPPs_gcp);
460 n_img = numel(TPPs_image);
461

462 if strcmpi(mode, ’all’)
463 n = n_img;
464 else
465 n = 1;
466 end
467

468 CCM = cell(n_gcp, n);
469

470 for ii = 1:n_gcp
471 for jj = 1:n
472 TPP_image = TPPs_image{jj};
473 TPP_gcp = TPPs_gcp{ii};
474 if is_subset(TPP_image, TPP_gcp)
475 acm = extract_matching_pairs(TPP_image.TPP, TPP_gcp.TPP,

delta_r, delta_theta);
476 if debug_mode
477 plot_TPPs(TPP_image.TPP, TPP_gcp.TPP);
478 saveas(gcf, strcat(debug_path, num2str(ii), ’-’, num2str(

jj)), ’png’);
479 close all
480 end
481 if size(acm, 1) >= sufficient_points
482 CCM{ii, jj} = {acm, ii, jj};
483 end
484 end
485 end
486 end
487

488 matches = remove_empty_cells(CCM);

125

489

490 if numel(matches) == 0 && sufficient_points >= 2
491 warning(strcat(’The number of maching points is too much (’, ...
492 num2str(sufficient_points), ’). Trying again with’, ’ ’, ...
493 num2str(sufficient_points - 1), ’ matching points.’));
494 matches = match_points(TPPs_image, TPPs_gcp, sufficient_points - 1,

delta_r, delta_theta, mode, debug_mode, debug_mode);
495 elseif numel(matches) == 0
496 error(’There are no matching points.’);
497 end
498

499 end
500

501 %% CREATE_TPPS_FOR_IMAGE
502 %===
503 function TPPs_image = create_TPPs_for_image(image_points, i, max_distance,

mode)
504 %% Discription
505 % Creates a collection of TPP from the image
506 n_img = size(image_points, 1);
507

508 if strcmpi(mode, ’one’)
509 if i <= 0 || i > n_img
510 % Discrete Uniform from 1 to n_img inlusive
511 i = random(’unid’, n_img);
512 end
513 TPPs_image = {topologival_point_pattern(image_points, i, max_distance)

};
514 else
515 TPPs_image = cell(n_img, 1);
516 for ii = 1:n_img
517 TPPs_image{ii} = topologival_point_pattern(image_points, ii,

max_distance);
518 end
519 end
520

521 end
522

523 %% CREATE_TPPS_FOR_GCP
524 %===
525 function TPPs_gcp = create_TPPs_for_gcp(gcps, max_distance)
526 %% Discription
527 % Creates a collection of topological point patterns from the points
528 % in the set of ground control points.
529

530 %% Initialization
531 n_gcp = size(gcps, 1);
532

533 TPPs_gcp = cell(n_gcp, 1);
534

535 %% Compute TPPs
536 for ii = 1:n_gcp
537 TPPs_gcp{ii} = topologival_point_pattern(gcps, ii, max_distance);
538 end
539

540 end
541

126

542 %% FIND_MAXIMUM_DISTANCE
543 %===
544 function d = find_maximum_distance(TPP)
545 %% Discription
546 % Finds the maximum distance in the given topological point pattern.
547

548 %% Find trhe distnace
549 d = 0;
550 for ii = 1:numel(TPP)
551 if iscell(TPP)
552 pattern = TPP{ii}.TPP;
553 else
554 pattern = TPP{ii};
555 end
556

557 tmp_d = pattern(end,1);
558 if tmp_d > d
559 d = tmp_d;
560 end
561 end
562

563 end

Script A.51: mirror.m: Mirrors a set of points about a vertical, or horizontal line that goes through
the center of the points.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function reflected_points = mirror(points, direction)
6 %% Discription
7 % REFLECT reflects all the points in the set *points* about a line trough
8 % the centre of the points. The direction of the line the points are to be
9 % reflected about can either be ’Horizontal’, or ’Vertical’.

10

11 %%
12 means = mean(points);
13 r = bsxfun(@minus, points, means);
14

15 if strcmpi(direction, ’Horizontal’)
16 r = [r(:, 1) r(:,2) * -1];
17 elseif strcmpi(direction, ’Vertical’)
18 r = [r(:, 1) * -1 r(:,2)];
19 end
20 if size(points, 2) == 3
21 r = [r, points(:, 3)];
22 end
23

24 reflected_points = bsxfun(@plus, r, means);
25

26 end

Script A.52: normalize.m: A utility function that normalizes a dataset linearly, so that the maximum
has a value of 1, while the minimum gets a vale of 0.

1 % This Source Code Form is subject to the terms of the Mozilla Public

127

2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function output_arg = normalize(input_arg)
6 %% Discription
7 % NORMALIZE normalizes the input in a linear fashion.
8

9 %% Normalize the data
10 output_arg = (input_arg - min(input_arg(:))) / (max(input_arg(:)) - min(

input_arg(:)));
11

12 end

Script A.53: num_regions.m: A function that counts the number of regions in a binary image. Areas
with a value of 1, are counted as foreground.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function num = num_regions(BW)
6 %% Discription
7 % NUM_REGIONS computes the number of seperated regions there are in the
8 % given binary image.
9

10 %% Compute number of regions
11 CC = bwconncomp(BW, 8);
12 num = CC.NumObjects;
13

14 end

Script A.54: plot_TPPs.m: A debugging, and inspection function that plots two sets of TPPs on top
of each other, so that one can visually inspect if two sets should be a match. Useful when trying to
find good parameters for the difference in radius and angle.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function plot_TPPs(TPPa, TPPb)
6 %% Discription
7 % PLOT_TPPS creates a scatter plot of the two topological point patterns,
8 % making it easy to compare them.
9

10 %% Plot
11

12 [x,y] = pol2cart(TPPa(:,2), TPPa(:,1));
13 scatter(x,y);
14 hold on
15 [x,y] = pol2cart(TPPb(:,2), TPPb(:,1));
16 scatter(x,y, ’x’);
17

18

19 end

128

Script A.55: prune_morphology.m: A function that detects areas that does not conform to the
specified limits for certain morphological features. An example would be areas that are too eccentric,
or have the wrong area.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function right_morphology = prune_morphology(images, dist_fun,

max_distance, varargin)
6 %% Discription
7

8 % Options:
9 % Eccentricity: Uses the option ’Eccesntricity’ in regionprops. The

10 % pramameters is an interval [min, max]. If
11

12 %% Parse input
13

14 i_p = inputParser;
15 i_p.FunctionName = ’PRUNE_MORPHOLOGY’;
16

17 % Requiered
18 i_p.addRequired(’images’, @is_image_or_images); % Image
19 % Not required
20 % dist_fun requires max_distance
21 i_p.addOptional(’dist_fun’, @is_function); % Distance function
22 % max_distance can be given without dist_fun
23 i_p.addOptional(’max_distance’, @isnumeric); % Max distance / threshold
24

25 % Optional: What to remove
26 i_p.addParameter(’Area’, false, @is_interval_or_disabled);
27 i_p.addParameter(’Eccentricity’, false, @is_interval_or_disabled);
28 i_p.addParameter(’Solidity’, false, @is_interval_or_disabled);
29 i_p.addParameter(’AreaPerimeter’, false, @is_interval_or_disabled);
30 i_p.addParameter(’IgnoreArea’, false, @is_interval_or_disabled);
31 i_p.addParameter(’Tightness’, false, @is_interval_or_disabled); % Area /

Bounding box
32 i_p.addParameter(’Smoothing’, false, @is_number_or_disabled); %

Gaussian smoothing with sigma equal to the given number
33 i_p.addParameter(’Median’, false, @islogical);
34 i_p.addParameter(’NumElements’, false, @is_number_or_disabled);
35 i_p.addParameter(’Fill’, false, @is_structure_element);
36 % Add
37 i_p.addParameter(’Custom’, struct([]), @is_custom);
38

39 i_p.parse(images, dist_fun, max_distance, varargin{:});
40

41 %% Dealing with the given input data
42 inputs = i_p.Results;
43

44 parameters = struct(...
45 ’Area’, create_parameter_structure(inputs.Area, {’Area’}, @(x)

x, ’Interval’), ...
46 ’Eccentricity’, create_parameter_structure(inputs.Eccentricity, {’

Eccentricity’}, @(x) x, ’Interval’), ...
47 ’Solidity’, create_parameter_structure(inputs.Solidity, {’Solidity

’}, @(x) x, ’Interval’), ...
48 ’AreaPerimeter’,create_parameter_structure(inputs.AreaPerimeter, {’

129

Area’, ’Perimeter’},@(area, perimeter) area / perimeter, ’Interval’),
...

49 ’IgnoreArea’, create_parameter_structure(inputs.IgnoreArea, {’Area’
}, @(x) x, ’Interval’), ...

50 ’Tightness’, create_parameter_structure(inputs.Tightness, {’Area’,
’BoundingBox’}, @(area, BB) area / bounding_box2area(BB), ’Interval’),
...

51 ’Smoothing’, create_parameter_structure(inputs.Smoothing, ’’,
@imgaussfilt3, ’Function’), ...

52 ’Median’, create_parameter_structure(inputs.Median, ’’,
@medfilt2, ’Function’), ...

53 ’NumElements’, create_parameter_structure(inputs.NumElements, ’’,
@num_regions , ’IntervalFunction’), ...

54 ’Fill’, create_parameter_structure(inputs.Fill, ’’, @imclose ,
’Function’), ...

55 ’Custom’, inputs.Custom);
56

57 %% Defaults
58 defaults = struct(...
59 ’Area’, [10, 300], ...
60 ’Eccentricity’, [0, 0.9], ...
61 ’AreaPerimeter’, [1, 5], ...
62 ’Solidity’, [0.6471, 0.9670], ... % Experimental data

suggests values around here
63 ’IgnoreArea’, [40, 300], ... % Biggest area using

the gcp-s from mosaikk was a little lss than 250 and smalles was a
little bigger than 70.

64 ’Tightness’, [0.4, 0.9], ...
65 ’Smoothing’, 1, ...
66 ’NumElements’, [0, 10], ...
67 ’Median’, true, ...
68 ’Fill’, strel(’Disk’, 5));
69

70 parameters = apply_deafults(parameters, defaults);
71

72 % allowed_properties = {’all’, ’basic’, ’Area’, ’Centroid’, ’BoundingBox’,
...

73 % ’SubarrayIdx’, ’MajorAxisLength’, ’MinorAxisLength’, ’Eccentricity’,
...

74 % ’Orientation’, ’ConvexHull’, ’ConvexImage’, ’ConvexArea’, ’Image’,
...

75 % ’FilledImage’, ’FilledArea’, ’EulerNumber’, ’Extrema’, ...
76 % ’EquivDiameter’, ’Solidity’, ’Extent’, ’PixelIdxList’, ’PixelList’,

...
77 % ’Perimeter’, ’PerimeterOld’, ’PixelValues’, ’WeightedCentroid’, ...
78 % ’MeanIntensity’, ’MinIntensity’, ’MaxIntensity’, ’’};
79

80

81 %% Initialization
82 necessary_properties = [extract_necessary_properties(parameters), {’Area’

}];
83 % This is the properties that will be fetched from regionprops
84 n_img = numel(images);
85 right_morphology = false(n_img, 1);
86

87 %% Remove morthological incorrect images
88 if is_images(images)

130

89 for i = 1:n_img
90 img = images{i};
91

92 fields = fieldnames(parameters);
93 if in_use(parameters.Smoothing)
94 fun = parameters.Smoothing.Function;
95 img = fun(img, parameters.Smoothing.Values);
96 end
97

98 BW = dist_fun(img) <= max_distance;
99

100 if in_use(parameters.Median)
101 fun = parameters.Median.Function;
102 BW = fun(BW, ’symmetric’);
103 end
104 if in_use(parameters.Fill)
105 BW = parameters.Fill.Function(BW, parameters.Fill.Values);
106 BW = imfill(BW, ’Holes’);
107 end
108 satisfies_all = true;
109 props = regionprops(BW, necessary_properties);
110 for j = 1:numel(fields)
111 property = parameters.(fields{j});
112 if in_use(property) && usable(property)
113 satisfies_all = satisfies_all && apply_constraint(BW,

property, props);
114 end
115 end
116 right_morphology(i) = satisfies_all;
117 end
118 else % Binary image
119 fields = fieldnames(parameters);
120 BW = images; clear images;
121 if in_use(parameters.Median)
122 fun = parameters.Median.Function;
123 BW = fun(BW, ’symmetric’);
124 end
125 if in_use(parameters.Fill)
126 BW = parameters.Fill.Function(BW, parameters.Fill.Values);
127 BW = imfill(BW, ’Holes’);
128 end
129 props = regionprops(BW, [necessary_properties, ’PixelIdxList’]);
130 satisfies_all = true(numel(props), 1);
131 for j = 1:numel(fields)
132 property = parameters.(fields{j});
133 if in_use(property) && usable(property)
134 [~, s] = apply_constraint(BW, property, props);
135 satisfies_all = satisfies_all & s;
136 end
137 end
138 for i = 1:numel(props)
139 if ~satisfies_all(i)
140 p = props(i);
141 idx = p.PixelIdxList;
142 BW(idx) = false;
143 end
144 end

131

145 right_morphology = BW;
146 end
147 end
148

149 %%
150 %===
151 function res = in_use(prop)
152 res = ~isempty(prop) && prop.Use;
153 end
154

155 %%
156 %===
157 function res = usable(prop)
158 res = strcmp(prop.Mode, ’Interval’) || strcmp(prop.Mode, ’IntervalFunction

’);
159 end
160

161 %%
162 %===
163 function structure = create_parameter_structure(property_value,

necessary_properties, fun, mode)
164 structure = struct(...
165 ’Use’, will_be_used(property_value), ...
166 ’Values’, property_value, ...
167 ’NecessaryProperties’, {necessary_properties}, ...
168 ’Function’, fun, ...
169 ’Mode’, mode);
170 end
171

172 %%
173 %===
174 function structure = apply_deafults(properties, defaults)
175

176 structure = properties;
177 fields = fieldnames(properties);
178 n = numel(fields);
179 for i = 1:n
180 property = fields{i};
181 property_structure = properties.(property);
182 if ~isempty(property_structure) && ...
183 property_structure.Use && ...
184 islogical(property_structure.Values) && ...
185 property_structure.Values
186

187 structure.(property).Values = defaults.(property);
188 end
189 end
190

191 end
192

193 %%
194 %===
195 function output_arg = will_be_used(input_arg)
196

197 output_arg = ~islogical(input_arg) || (islogical(input_arg) && input_arg);
198

199 end

132

200

201 %%
202 %===
203 function [satisfy, satisfies] = apply_constraint(BW, property, stats)
204

205 if strcmp(property.Mode, ’Interval’)
206 % NB: Looks only at the largest area
207 n = numel(stats);
208 if n == 1
209 val = evaluate(property, stats);
210 satisfy = is_inside(val, property.Values);
211 elseif n == 0
212 satisfy = false;
213 else
214 vals = zeros(n, 1);
215 satisfies = zeros(n, 1);
216 areas = zeros(n, 1);
217 for i = 1:n
218 vals(i) = evaluate(property, stats(i));
219 satisfies(i) = is_inside(vals(i), property.Values);
220 areas(i) = stats(i).Area;
221 end
222 [~, I] = max(areas);
223 satisfy = satisfies(I(1));
224 end
225 elseif strcmp(property.Mode, ’IntervalFunction’)
226 val = property.Function(BW);
227 satisfy = is_inside(val, property.Values);
228 else
229 satisfy = false;
230 end
231

232 end
233

234 %%
235 %===
236 function val = evaluate(property, stats)
237 necessary_properties = property.NecessaryProperties;
238 num_props = numel(necessary_properties);
239 field_values = cell(num_props, 1);
240 for i = 1:num_props
241 field_values(i) = {(stats.(necessary_properties{i}))};
242 end
243 val = property.Function(field_values{:});
244 end
245

246 function res = is_inside(val, interval)
247 res = val >= interval(1) && val <= interval(2);
248 end
249

250

251 %%
252 %===
253 function res = extract_necessary_properties(parameters)
254

255 res = {};
256 fields = fieldnames(parameters);

133

257

258 for i = 1:numel(fields)
259 property = parameters.(fields{i});
260 if ~isempty(property) && property.Use
261 necessary = property.NecessaryProperties;
262 res = [res, necessary];
263 end
264 end
265 res(strcmp(’’, res)) = []; % Remove empty strings
266

267 end
268

269 %%
270 %===
271 function output_arg = is_image_or_images(input_arg)
272 output_arg = is_binimg(input_arg) || is_image(input_arg) || is_images(

input_arg);
273 end

Script A.56: remove_areas.m: A function that applies a given function to all foreground areas of
a given binary image. All areas that gets a value which falls outside a given interval is removed.
Unlike Script A.55, this operates on binary images only, and outputs only binary images.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function BW = remove_areas(binimg, properties, interval, varargin)
6 %% Description
7 % The function removes all areas in the binary image whose areas, or
8 % regions are outside a certain interval relative to a certain property,
9 % or properties. If there is only one property, there is no need to

10 % specify a function, but if there are multiple properties, then a
11 % ’Function’ must be specified. The function must take as input a vector
12 % of the same size as there are properties in the cellarray *properties*.
13 % Note, if a single property is given, it can be a normal string.
14 % The flags ’MinBoundary’ and ’MaxBoundary’ can be set to ’Inclusive’ or
15 % ’Exclusive’ independent of eachother. The default is ’Inclusive’. This
16 % means that the given *interval* includes the boundaries, and will be
17 % cunted as inside the interval. If ’Exclusive’ is chosen for ether end,
18 % the value at the end of the interval will be counted as outside the
19 % allowed interval.
20 %
21 % Leagal calls:
22 % BW = remove_areas(binimg, property, interval)
23 % BW = remove_areas(binimg, property, interval, options)
24 % BW = remove_areas(binimg, properties, interval, ’Function’, @(x) ...,

options)
25 % options are ’MinBoundary’, ’MaxBoundary’, both of wich have ’Inclusive’
26 % and ’Exclusive’ as parameters, while ’Function’ takes an arbitrary
27 % function that is subject to two (2) constraints:
28 % 1. The input must be a single vector, whose length is the same as the
29 % number of properties (can also be one, if there is only one property)

.
30 % 2. The output of the function must be a scalar.
31

32 %%

134

33 % f : Rn → R
34

35

36

37 %% Checking input arguments
38 default = ’Inclusive’;
39

40 % Defining validation functions
41

42 i_p = inputParser;
43 i_p.FunctionName = ’REMOVE_AREAS’;
44

45 % Requiered
46 i_p.addRequired(’binimg’, @is_binimg); % Binary image
47 i_p.addRequired(’properties’, @is_properties); % Property / Properties
48 i_p.addRequired(’interval’, @is_interval); % interval to be used
49

50 % Optional
51 i_p.addParameter(’MinBoundary’, default, @is_boundary);
52 i_p.addParameter(’MaxBoundary’, default, @is_boundary);
53 i_p.addParameter(’Function’, @(x) x, @is_function);
54

55 i_p.parse(binimg, properties, interval, varargin{:});
56

57 %% Dealing with the given input data
58 inputs = i_p.Results;
59

60 min_val = interval(1);
61 max_val = interval(2);
62

63 min_boundary = inputs.MinBoundary;
64 max_boundary = inputs.MaxBoundary;
65 fun = inputs.Function;
66

67 % Is there multiple properties, or a single property?
68 if ~iscellstr(properties)
69 % There is only one property.
70 properties = {properties};
71 end
72

73 %% Defining the comperation criteria
74

75 outside_interval = make_outside_interval_checker(min_boundary,
max_boundary);

76

77 %% Getting properties
78 vars = properties;
79 vars{end + 1} = ’PixelIdxList’;
80

81 props = regionprops(binimg, vars);
82

83 BW = binimg;
84

85 for i = 1:numel(props)
86 field_vals = zeros(numel(properties), 1);
87 element = props(i);
88

135

89 for j = 1:numel(properties)
90 field_vals(j) = element.(cell2mat(properties(j)));
91 end
92

93 val = fun(field_vals);
94

95 if outside_interval(val, min_val, max_val)
96 pixels = element.PixelIdxList;
97 BW(pixels) = 0;
98 end
99 end

100

101 end

Script A.57: remove_empty_cells.m: A helper function that removes all empty cells from a cell-
array.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function reduced = remove_empty_cells(cellarray)
6 %% Discription
7 % REMOVE_EMPTY_CELLS removes all empty cells from a cell array.
8

9 %%
10 reduced = cellarray(~cellfun(’isempty’,cellarray));
11

12 end

Script A.58: rmse.m: A utility function that calculates the root mean square error of a given func-
tion, usually the transformation of the GCPs in an image by using a ST.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function RMSE = rmse(target, x, fun)
6

7 n = size(target, 1);
8

9 RMSE = sqrt(1 / n * sum(sum((target - fun(x)).^2)));
10

11 end

Script A.59: shinji_umeyama.m: An implementation of Umeyama (1991), which uses the sigular
value decomposition (SVD) of the covariance matrix.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function [R, t, s, RMSE] = shinji_umeyama(A, B, use_horn_scale)
6 %% Discription
7 % SHINJI_UMEYAMA implements the algorithm described by Shinji & Umeyama in
8 % their article "Least-Squares Estimation of Transformation Parameters
9 % Betweeen Two Point Patterns.

136

10 % It takes as input two n x m matrices of points, and matches the points
in

11 % A to the points in B.
12 % It then gives the optimal Rotation matrix (R), along with the optimal
13 % translation vector (t) and the optimal scaling factor (s).
14 % This method constricts the avilable solution space to rotations,
15 % translations, and scaling. This method does NOT considere reflection.
16

17 %% Error checking
18 if ~all(size(A) == size(B))
19 error(’The matrices are of different size. They MUST BOTH be of the

size n x m’);
20 end
21

22 %% Threshold
23 % Because floating point numbers are not entielry accurate.
24

25 thresh = 1e-5;
26

27 %% Decomposition
28 mu_A = mean(A);
29 mu_B = mean(B);
30

31 n = size(A, 2);
32

33 covariance_matrix = 1 / n * bsxfun(@minus, B, mu_B)’ * bsxfun(@minus, A,
mu_A);

34

35 [U, D, V] = svd(covariance_matrix);
36

37 n = size(A, 1);
38 m = size(A, 2);
39

40 d = det(U) * det(V);
41 if sign(d) == 1 && abs(d - 1) < thresh
42 S = eye(m);
43 elseif sign(d) == -1 && abs(d + 1) < thresh
44 S = eye(m);
45 S(end, end) = -1;
46 else
47 error(’There was an error with the decomposition: det(U) * det(V) ~=

[-1, 1]’);
48 end
49

50 %% Compute statistics
51 mu_a = mean(A)’;
52 mu_b = mean(B)’;
53

54 variance_a = 1 / n * sum(sum(bsxfun(@minus,A’, mu_a)’.^2));
55 variance_b = 1 / n * sum(sum(bsxfun(@minus,B’, mu_b)’.^2));
56

57

58 %% Compute outputs
59 R = U * S * V’;
60 s = 1 / variance_a * trace(D * S);
61 if nargin == 3 && use_horn_scale
62 s = sqrt(variance_b/variance_a);

137

63 end
64 t = mu_b - s * R * mu_a;
65

66 RMSE = sqrt(1 / n * sum(sum((B’ - bsxfun(@plus, s * R * A’, t)).^2)));
67

68 end

Script A.60: transform_points.m: Implements the function p′ = t + cRp, where p′ is the trans-
formed points, p is the points to be transfored,R is a rotation matrix, t is the translation vector, and
c is the scale factor.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function transformed = transform_points(p, R, t, c)
6

7 if nargin == 2
8 [R, t, c] = extract_parameters_from_similarity_transform(R);
9 end

10

11 if size(R, 1) == 2
12 p = p(:,1:2);
13 end
14

15 transformed = bsxfun(@plus, t, c * R * p’)’;
16

17 end

Script A.61: verification_algorithm.m: An umbrella function for the different algorithms for finding
the absolute orientation parameters.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function [CM, ST, RMSE] = verification_algorithm(CCM, alg, use_horn_scale

)
6 %% Discription
7 % VERIFICATION_ALGORITH implements the verification lagorithm given by Yan
8 % Li & Ronald Briggs in "Automated Georeferencing Based on Topological
9 % Point Pattern Matching".

10 % It takes as input a Collection of Candidate Matchings (the outpu from
11 % "match_gcps.m", which implements the matching algorithm in the same
12 % paper.
13 % The output is the best Candidate Matching along with is Similarity
14 % Transfom, i.e. the parameters to apply to the image the points was
15 % extracted from in order to georeference it.
16 %
17 % The option *alg* chooses the algorithm to be used when computing the
18 % optimal absolute orientation. This option is only applicable when
19 % the ’GetOptimal’-flag is set to true. The valid options are
20 % ’ShinjiUmeyama’, ’Horn’, and ’HornHilden’.
21 % Default is ’Horn’.
22

23

24 i_p = inputParser;

138

25 i_p.FunctionName = ’VERIFICATION_ALGORITHM’;
26

27 % Requiered
28 i_p.addRequired(’CCM’, @is_candidate_point_lists);
29

30 % Optional
31 i_p.addOptional(’OrientationAlgorithm’, ’Horn’,

@is_valid_orientation_algorithm);
32

33 i_p.parse(CCM, alg);
34

35 %% Deal with the input
36 input = i_p.Results;
37

38 algorithm = input.OrientationAlgorithm;
39

40 %% Initialization
41

42 n = size(CCM, 1);
43 RMSEs = zeros(n, 1);
44 parameters = cell(n, 1);
45 %% Compute RMSE
46

47 for i = 1:n
48 CM = CCM{i};
49 m = size(CM, 2) / 2;
50 A = CM(:, 1:m);
51 B = CM(:, m + 1: 2 * m);
52 if strcmpi(algorithm, ’ShinjiUmeyama’)
53 [R, t, c, RMSE] = shinji_umeyama(A, B, use_horn_scale);
54 elseif strcmpi(algorithm, ’HornHilden’)
55 [R, t, c, RMSE] = horn_hilden(A, B);
56 elseif strcmpi(algorithm, ’Horn’)
57 [R, t, c, RMSE] = horn(A, B);
58 else
59 error(’Invalid choise of algorithm’);
60 end
61 parameters{i} = {real(R), real(t), c};
62 RMSEs(i) = real(RMSE);
63 end
64

65 [RMSE, I] = min(RMSEs);
66 CM = CCM{I, :};
67 ST = parameters{I, :};
68

69 end

Script A.62: write_world_file.m: The script writes a world file to a user specified location based on
the given ST.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function write_world_file(path, ST)
6 %% Discription
7 % WRITE_WORLD_FILE writes the world file (*.twf, *.jwf, etc.) of the

139

8 % orthophoto. The inputs are the path to where to file is to be written,
9 % along with its name, the Similarity Transform (ST), e.i. how to get from

image
10 % coordinates to world coordinates, and the size of the image, as returned
11 % from size(orthophoto).
12

13 %% Initialization
14 % Similarity transform parameters, extracted
15 R = ST{1};
16 t = ST{2};
17 s = ST{3};
18

19 % Creating a transfomation matrix
20 n = size(R, 1);
21 transformation_matrix = eye(4);
22 transformation_matrix(1:n, 1:n) = R;
23 transformation_matrix = s * transformation_matrix;
24 transformation_matrix(1:n, 4) = t;
25

26

27 % Opening the file
28 fileID = fopen(path, ’w’);
29

30 % Internal parameter
31 numer = ’%.20f\n’;
32

33 %% World file contetnt
34 % Based on the discription from
35 % http://webhelp.esri.com/arcims/9.3/General/topics/author_world_files.htm

.
36

37 % upper_left_corner = transform_points([1 1 0], R, t, s);
38 % x_dist = pdist([transform_points([1 2 0], R, t, s); upper_left_corner]);
39 % y_dist = pdist([transform_points([2 1 0], R, t, s); upper_left_corner]);
40

41 A = transformation_matrix(1, 1);
42 B = transformation_matrix(1, 2);
43 C = transformation_matrix(2, 4);
44 D = transformation_matrix(2, 1);
45 E = transformation_matrix(2, 2); % Pixels are downward
46 F = transformation_matrix(1, 4);
47

48 %% Write the content to file
49

50 fprintf(fileID, numer, abs(A));
51 fprintf(fileID, numer, D);
52 fprintf(fileID, numer, B);
53 fprintf(fileID, numer, -abs(E));
54 fprintf(fileID, numer, C);
55 fprintf(fileID, numer, F);
56

57 fclose(fileID);
58 end

140

main

transform_points

find_signal_colors

get_area

get_heights

load_geojson

match_gcps

remove_empty_cells

write_world_file

invert

mahal_dist

mirror

normalize

is_dem_or_disabled

is_fraction

is_image_or_path

is_number

is_point_list

is_point_list_or_path

is_positive_integer

is_positive_number

is_sample_data_or_disabled

extract_parameters_from_similarity_transform

bounding_box2limits

divide_image_into_bounding_boxes

get_pdf

prune_morphology

limits

is_min_max_std_mean

is_replace_mode

apply_fun2img

create_mask

remove_areas

JSONlab Toolbox

plot_TPPs

is_all_or_one

is_coordinate_system

is_valid_orientation_algorithm

verification_algorithm

is_image

is_integer

is_function

bounding_box2area

num_regions

is_custom

is_images

is_interval_or_disabled

is_number_or_disabled

is_structure_element

limits_mean_std

limits_min_max

make_outside_interval_checker

is_binimg

is_boundary

is_interval

is_properties

is_candidate_point_lists

horn

horn_hilden

shinji_umeyama

rmse

Figure A.1: Shows the dependency graph of “main.m”. A directed arrow indicates that the script
depends on the script the arrow points at.

A.1.1 Miscellaneous scripts
In this section, the MATLAB scripts that are not used by “main.m” presented. These are
included because they where used during the development, and or during testing of the
application.

Script A.63: kof2geojson: Converts a set of points in the KOF-format to a set of points in GeoJSON.

1 # -*- coding: utf-8 -*-
2 """
3 This Source Code Form is subject to the terms of the Mozilla Public
4 License, v. 2.0. If a copy of the MPL was not distributed with this
5 file, You can obtain one at http://mozilla.org/MPL/2.0/.
6 Copyright (c) 2016 Sindre Nistad
7

8 This scipt reads a KOF file, and return a geoJSON file with
9 all the coordinates, and their names of the KOF file.

10 """

141

11 __author__ = ’Sindre Nistad’
12

13

14 def kof2geojson(path, crs="EPSG:32632"):
15 points = _get_points(path)
16 return _geojson_feature_collection(points, crs)
17

18

19 def _get_points(path):
20 points = {}
21 with open(path, ’r’) as f:
22 lines = f.readlines()
23 for line in lines:
24 [num, name, north, east, height] = line.split()
25 points[name] = [float(north), float(east), float(height)]
26 f.close()
27 return points
28

29

30 def _geojson_point(point):
31 return "{\"coordinates\": " + str(point) + ", \"type\": \"Point\"}"
32

33

34 def _geojson_feature_collection(points, crs):
35 string = "{ \"type\": \"FeatureCollection\", \"features\": ["
36 for name in points.keys():
37 point = points[name]
38 string += _geojson_feature_point(point, name) + ", "
39 string += "]"
40 if crs != "":
41 string += ", \"crs\" : {\"type\": \"name\", \"properties\": {\"

name\": \"" + crs + "\"}}"
42 string += "}"
43 return string
44

45

46 def _geojson_feature_point(point, name):
47 return "{ \"type\": \"Feature\", \"geometry\": " + _geojson_point(
48 point) + ", \"properties\": {\"name\": \"" + name + "\"}}"
49

50

51 def run():
52 path = input(’Please give the path to the KOF-file: ’)
53 geojson = kof2geojson(path)
54 save_path = input(’Please give the path (and name) of where you would

like to store the result: ’)
55 f = open(save_path, ’w’)
56 f.write(geojson)
57 f.close()
58

59 run()

Script A.64: extract_all_gcp: Extracts all the listed GCPs of a specified orthophoto along with a
given area around the points. This was used when creating Figure 3.7.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this

142

3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function extract_all_gcp(img, path, coordinates, area)
6 if ischar(img)
7 img = imread(img);
8 end
9

10

11 for i = 1:max(size(coordinates))
12 name = strcat(path, ’P’, num2str(i), ’.png’);
13 extract_area_around_point(img, coordinates(i,:), area, name);
14 end
15

16 end

Script A.65: extract_values.m: Extracts all color values from an image that is in a binary mask.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 function RGB_values = extract_values(image, BW)
6 %% Discription
7 % Extracts all values that are not 0 when the given image is masked over
8 % with the mask BW. The result is per band; it gives a matrix of size n x
9 % m, where m is the number of bands in the image.

10

11 %% Consitency check
12 img_size = size(image);
13 if any(img_size(1:2) ~= size(BW))
14 error(’The dimentions of the image and the mask, is inconsistent’);
15 end
16

17 %% Initializing
18 num_bands = img_size(3);
19 RGB_values = zeros(sum(sum(BW)), num_bands);
20 idx = BW == 1;
21

22 %% Extracting the values
23 masked_img = mask_image(image, BW);
24 for i = 1:num_bands
25 band = masked_img(:,:, i);
26 RGB_values(:, i) = band(idx);
27 end

Script A.66: fuse_gcp.m: A script used to fuse together all the images in a particular folder, and
then write the fused image to disk.

1 % This Source Code Form is subject to the terms of the Mozilla Public
2 % License, v. 2.0. If a copy of the MPL was not distributed with this
3 % file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 % Copyright (c) 2016 Sindre Nistad
5 img_size = 101;
6

7 gcd = zeros(img_size * 4, img_size * 5, 3);
8 ext = ’.png’;
9

143

10 a = ls(strcat(path, ’*’, ext));
11 % a = setdiff(strsplit(a, ’\n’), ’’);
12 tmp = cell(size(a, 1), 1);
13 for i = 1:size(a, 1)
14 tmp{i} = strtrim(a(i, :));
15 end
16 a = tmp;
17 a = sort_nat(a); % Sorts in a natural order, i.e. file1, file2, file10
18 location = ’’;
19

20 for i = 1:max(size(a))
21 % Using ls, we get a more natural order than dir, but it gives a

single
22 % string wich then must be split. The splitting creates a cell array.
23 img_path = strcat(path, cell2mat(a(i)));
24 img = im2double(imread(img_path));
25

26 r = ceil(i / 5);
27 c = mod(i, 5);
28 if c == 0
29 c = 5;
30 end
31

32 start_row = 1 * r + (img_size - 1) * (r - 1);
33 end_row = start_row + (img_size - 1);
34

35 start_col = 1 * c + (img_size - 1) * (c - 1);
36 end_col = start_col + (img_size - 1);
37

38 gcd(start_row:end_row, start_col:end_col, :) = img;
39

40

41 parts = strsplit(img_path, ’/’);
42 name = cell2mat(parts(end));
43 location = strcat(location, ’Row ’, num2str(r), ’, Col ’, num2str(c),’

: ’, name, ’, ’);
44 end
45

46 imwrite(gcd, strcat(path, ’gcp.png’));

144

Appendix B
Data

This appendix list all the data that was used in the thesis. Orthophotos are not included
here directly as they are quite large (approximately 4 GB each). Instead, links to where
they can be downloaded are provided.

All numbers are in meters, except for indices of images.

B.1 Sample data
The sample data for ground control points that was used by the program in this thesis is
available as a .mat file for MATLAB from https://server.nistad.me/AutoRef/
sample-data.mat, and as a comma separated values (CSV) file from https://
server.nistad.me/AutoRef/sample-data.csv.

For both of these files, the data is in three columns; red, blue, and green (from left to
right), and both sets are normalized with respect to an 8-bit color. That is, an red green
blue (RGB) value of 255 is encoded as 1, while an RGB value of 0.

B.2 Ground control points (GCPs) of “Lerkendal”

Table B.1: The measured-in coordinates of the GCPs in the dataset “Lerkendal” in EUREF89-UTM
zone 32N (EPSG:32632). All number are in meters.

Name Northing Easting Ellipsoidal height

P1 7032516.8044 570406.8605 80.3184

P2 7032503.4822 570413.3669 80.1282

P3 7032512.5002 570431.9676 80.4122

145

https://server.nistad.me/AutoRef/sample-data.mat
https://server.nistad.me/AutoRef/sample-data.mat
https://server.nistad.me/AutoRef/sample-data.csv
https://server.nistad.me/AutoRef/sample-data.csv

P4 7032526.0900 570425.3519 80.6571

P5 7032602.5627 570269.4359 79.5778

P6 7032582.0400 570205.1985 83.7770

P7 7032563.9401 570214.1377 83.7857

P8 7032526.8019 570292.1450 75.8363

P9 7032501.2022 570282.1595 75.7164

P10 7032482.3970 570380.5116 78.9091

P11 7032593.3495 570290.8682 79.5930

P12 7032470.1271 570200.9196 72.2874

P13 7032374.9648 570326.0843 78.1933

P14 7032399.5143 570408.4605 81.1564

P15 7032444.1352 570414.4474 81.0613

P16 7032375.5267 570300.6873 77.3698

P17 7032577.5537 570477.3667 87.4470

P18 7032513.9047 570348.3729 75.7412

NEW2 7032518.1030 570306.0950 75.9270

NEW1 7032492.1900 570484.2030 85.8140

B.3 GCPs of “E6”

Table B.2: The measured-in coordinates of the GCPs in the dataset “E6” in EUREF89-UTM zone
32N (EPSG:32632). The heights uses the vertical reference NN2000. The GCPs marked “GUL” All
number are in meters. All GCPs marked with an asterisk (*) are visible in the dataset “E6”.

Name Northing Easting Elevation

1 7023477.515 567927.403 150.595

2 7023455.334 568050.074 152.457

3 7023439.758 568138.951 155.682

4 7023499.217 567827.957 149.137

5 7023251.634 567773.382 135.246

6 7023075.583 567621.455 126.821

146

7 7022893.260 567379.524 120.093

8 7023311.913 567934.724 142.198

9 7023076.764 567791.525 135.378

10 7022863.719 567614.554 120.439

11 7022640.446 567114.808 88.714

12 7023791.602 568012.023 147.629

13 7024111.921 568136.486 154.732

14 7024164.922 568246.363 158.950

15 7023985.359 568165.713 154.643

16 7024359.283 568211.297 162.606

17* 7024963.927 568470.017 162.202

18* 7025385.438 568381.806 159.754

19* 7025890.905 568536.054 157.253

20* 7026037.329 568595.910 158.998

21* 7025971.650 568639.709 151.466

22* 7025166.985 568609.088 153.926

31 7020767.614 564722.506 19.827

32 7019831.582 564520.837 14.634

33 7019967.487 564500.424 12.025

34 7020105.317 564600.959 19.438

35 7020536.896 564688.200 20.074

36 7021522.691 564957.402 21.089

37 7021620.448 564970.565 20.968

41GUL 7022331.719 564898.005 32.813

42GUL 7022371.247 564891.686 29.137

43 7022536.074 565430.822 30.527

44 7022105.009 565667.994 34.494

45 7022183.190 565676.518 32.959

46GUL 7022485.984 566052.290 40.534

48 7022505.642 566441.434 44.684

147

49 7022566.553 566426.561 44.976

B.4 Sample extracted candidate matching (CM)
Table B.3: The set of CMs that were extracted from “Lerkendal” and used to examine the difference
between using (2.31) and (2.38) for the scale factor in the algorithm for absolute orientation proposed
by Umeyama (1991).

Northing Easting Elevation Northing Easting Elevation Northing Easting Elevation

2393 12879 75.3148117065430 4282 8770 79.8811492919922 12215 9568 79.0053024291992

16276 11578 86.5648040771484 7293 9639 84.4234695434570 18797 8927 82.6201324462891

15965 6863 93.6623840332031 3489 12737 75.0250778198242 8985 13657 81.6264801025391

10142 4255 104.263183593750 15876 2021 96.8410186767578 6149 10757 81.5795745849609

10138 4292 104.271095275879 5645 13951 73.7352905273438 6806 5894 111.660209655762

16268 11531 86.5881042480469 7963 11230 90.3935394287109 8883 13164 82.5342712402344

10908 14483 79.6116027832031 18109 6593 90.9093170166016 12302 12353 83.6191711425781

18609 11588 93.2391128540039 16236 7095 89.7911605834961 4931 10045 72.1892547607422

16272 11479 86.6482620239258 10964 12218 83.1198654174805 5561 12436 75.0390243530273

14008 9759 82.6606140136719 18792 10392 87.4193420410156 18765 10216 93.8134841918945

15956 9217 88.5000839233398 7861 11617 78.4655609130859 4407 9876 71.5133361816406

13482 13715 82.5921325683594 18769 13109 86.7559890747070 5735 5369 112.980842590332

13668 12319 82.8011550903320 7965 11267 94.5992050170898 18725 8206 87.1003799438477

12607 11122 80.9617614746094 5610 5086 106.274963378906 8695 18022 69.0536651611328

16283 11682 86.4423217773438 6128 9488 75.5858078002930 3396 8424 69.6841354370117

16282 11577 86.5587539672852 14417 2551 95.7217025756836 5752 5408 113.090118408203

3933 6031 89.6924972534180 2820 10353 76.7904586791992 13181 3902 102.745635986328

10115 14465 78.7550277709961 14467 2353 95.9849853515625 15198 12956 84.8037109375000

13429 10047 82.3789978027344 8192 4613 116.050262451172 9958 3771 93.1218414306641

18894 9680 92.0177307128906 2901 11433 74.7353744506836 4414 10174 75.2216796875000

17804 12517 90.6737136840820 3300 12678 76.5004577636719 5999 12293 72.4692611694336

5615 11202 72.3039245605469 19351 8685 89.2225494384766 15524 2110 96.4769210815430

15955 2734 98.8096084594727 15989 6972 89.2949829101563 19240 13822 83.5533142089844

14216 10184 82.3425598144531 13969 2150 96.7252502441406 2933 11424 75.3316040039063

2548 9088 70.0598068237305 19162 13442 88.1330413818359 19064 9763 96.3775329589844

11602 10141 78.0420074462891 5089 12492 74.3332519531250 6546 5207 113.764297485352

18061 7187 90.1903915405273 7307 9876 76.9713439941406 17001 10490 87.8917083740234

9845 9739 78.1014709472656 5226 13992 75.8305664062500 7062 10956 74.0719299316406

10278 10007 78.2061462402344 8854 6496 85.3871765136719 4220 4544 91.9881286621094

18760 12128 87.1573333740234 3038 10369 77.2260437011719 2838 10583 69.9070510864258

9534 10539 77.9017105102539 10209 4536 103.556655883789 3994 14119 72.3313293457031

9043 6095 112.749824523926 6065 14240 74.3455505371094 11468 13187 91.7329788208008

6998 11510 73.9162368774414 13929 2190 96.4683685302734 5927 5809 111.346710205078

16230 11435 86.6813583374023 20072 9790 88.5048828125000 16543 8232 88.2557449340820

2124 12073 68.3991622924805 4848 12520 75.1215972900391 4804 10138 73.3374938964844

18912 9671 93.1954345703125 2926 10386 77.3064575195313 3586 8752 72.7491073608398

11666 13249 93.2966232299805 9155 11863 76.1839218139648 18192 10096 89.7292709350586

3300 14071 71.1626892089844 2739 10522 75.0227050781250 2155 10599 67.6751480102539

16323 11619 86.5317535400391 8108 11497 93.2735290527344 4285 4726 93.3028259277344

5239 4884 96.3418502807617 8651 13827 87.2548141479492 9026 3319 91.9000473022461

13617 7887 86.8157958984375 19501 13236 92.7191390991211 13231 3906 102.737976074219

5599 9264 74.6714324951172 13811 2262 93.4580383300781 14642 13267 83.8819885253906

14942 15094 79.5860748291016 7797 11684 77.9755477905273 16943 10511 85.5704498291016

2574 9206 67.8175888061523 20043 9810 88.3042297363281 7728 16294 67.1657257080078

1691 9821 66.6543197631836 12428 12330 83.6968765258789 11761 13115 90.9020004272461

17725 10884 90.0289459228516 11273 13596 82.7702102661133 18363 7178 91.2479095458984

148

15944 7887 89.9497451782227 10625 13962 76.8690567016602 11281 7789 81.8172531127930

12610 12427 81.6225433349609 11378 13577 83.7250442504883 14529 13336 83.7233047485352

6008 9460 77.7750625610352 15889 1823 97.1462478637695 11988 12457 85.5822372436523

5185 12496 71.6276245117188 12036 9412 85.5272293090820 11717 13006 89.5093078613281

17113 10736 92.8106842041016 5673 14210 73.8860778808594 2299 12682 73.1396026611328

19211 13287 88.1136474609375 12032 13152 93.2754745483398 3468 8793 76.6776428222656

14917 13183 84.3668441772461 6554 3859 94.1248855590820 13904 9229 83.6322402954102

5607 12023 74.1959381103516 16810 9269 86.3732147216797 14981 13127 84.4817657470703

10172 4252 104.240760803223 5581 5042 105.905517578125 15801 2515 96.2978820800781

16869 6205 90.8216857910156 6436 12072 81.3563232421875 7941 11621 78.4559783935547

15851 10818 87.1995773315430 2148 10675 69.1641311645508 8009 6330 106.374130249023

9886 4746 93.1878738403320 14197 3290 93.1219482421875 13099 3896 102.777763366699

14027 2631 92.4377975463867 7613 4995 113.842025756836 18222 9991 89.7305755615234

2976 10464 75.4521636962891 18709 13615 83.9602355957031 8041 6309 106.816543579102

5035 12474 75.3373031616211 2122 12126 68.4417266845703 8591 18583 72.5687866210938

6497 7676 78.0138397216797 11447 13550 82.3288345336914 17755 12693 91.3447418212891

4230 14266 72.0984573364258 2322 9167 68.1504135131836 11120 7733 81.7401809692383

2820 9071 68.0557022094727 2449 10098 67.9443817138672 19523 8960 88.7379760742188

16324 11651 86.4955596923828 16882 6177 91.3350830078125 14655 13368 83.9432601928711

4027 18335 64.2794342041016 19326 8645 89.2252883911133 11431 5169 102.284179687500

18322 11848 92.6246871948242 19347 9810 95.4623336791992 8090 4651 115.435508728027

5171 10846 74.0400619506836 18289 5463 95.5608596801758 16706 10641 88.2966003417969

19598 12247 87.6185531616211 3123 10430 75.6277389526367 18323 10321 87.3389587402344

11768 16606 78.2864837646484 16837 4552 102.615432739258 12370 12351 85.3164138793945

8692 13829 87.1853408813477 2447 8683 77.2466735839844 7442 8504 85.9225769042969

16987 11208 87.8041839599609 15754 10260 88.4813232421875 13962 2190 96.8417510986328

8953 13510 83.2455139160156 11481 13543 83.9155807495117 18355 10392 91.9160003662109

2413 12942 74.9886856079102 12608 12277 86.6295471191406 2424 8920 75.1625442504883

19045 13371 89.1412124633789 9564 10265 78.3708953857422 14474 13372 83.6405639648438

5707 5279 109.991546630859 17013 4105 102.640609741211 2444 12757 76.0265808105469

1891 7089 71.2564315795898 3872 6046 89.0002212524414 10928 3038 91.6831970214844

4157 12443 78.4530334472656 3144 8853 69.8021163940430 3009 10429 76.0832901000977

8903 13594 89.8434753417969 8027 11348 87.5963516235352 4598 11454 75.1763000488281

3142 9174 69.1649017333984 11693 13487 84.3211364746094 4916 8638 77.3755187988281

8755 18584 70.8093414306641 13710 2551 91.9933547973633 3728 6083 87.1908264160156

15014 13589 84.1516876220703 2429 8874 75.6179122924805 3232 14193 70.8361206054688

17047 6307 94.0834121704102 20066 14216 83.3313903808594 3570 8823 71.0979232788086

11065 13669 83.9059066772461 7886 11664 78.3092727661133 2541 9617 74.9198913574219

8710 13873 80.6368103027344 5160 10791 75.5828247070313 15873 1973 96.9096984863281

19201 13412 89.9259643554688 17119 7075 90.2743301391602 7114 5724 112.710449218750

3829 6076 88.0997314453125 3099 14123 70.8812942504883 8942 5769 113.857978820801

17058 4143 102.843299865723 7320 9905 77.3464965820313 7360 9886 92.2328109741211

11855 13459 86.0473937988281 16076 6993 91.2548980712891 15876 1923 96.9973602294922

3384 12719 75.5810165405273 13718 2585 91.9732894897461 8010 11647 78.6041336059570

4340 13974 72.0028610229492 6213 12297 76.5137939453125 6843 6938 90.1780090332031

9299 15521 76.9986572265625 9564 10229 78.4080963134766 3447 12733 75.2401657104492

17114 4174 102.527954101563 12157 12413 86.7376327514648 5612 13965 73.7983093261719

7145 6810 91.9332580566406 2648 14447 69.6886215209961 7487 10230 78.2862014770508

8208 4648 115.648628234863 15491 2114 96.4255828857422 4884 12617 71.1123962402344

4835 12343 79.6679306030273 3884 13923 72.0226135253906 4517 13957 72.5306777954102

19524 14185 82.9745788574219 9143 6257 112.785842895508 16199 8274 91.9279022216797

15764 2006 96.6410369873047 19483 9941 87.4673614501953 8250 3064 91.3441238403320

B.5 Matchings

149

Table B.4: A table of the candidate matchings (CMs) from calling Script A.1 with the parame-
ters ’OrientationAlgorithm’, ’Horn’, ’RadiusThreshold’, 0.05, ’AngleThreshold’
, 0.05, ’UseProbability’, true, and ’Rematch’, true. The sample data is the same as
described in Section 4.2.1. The set of GCPs is those given in Table B.1. The image points where
extracted from the orthophoto “Lerkendal”.

Name Image row Image column Model elevation Northing Easing Ellipsoidal height

P5 9129 7371 81.4823837280273 7032602.5627 570269.4359 79.5778

P11 9803 7660 81.6351394653320 7032593.3495 570290.8682 79.593

P6 7129 8011 85.2321929931641 7032582.0400 570205.1985 83.777

P7 7404 8582 85.3965759277344 7032563.9401 570214.1377 83.7857

P8 9845 9737 78.0984497070313 7032526.8019 570292.1450 75.8363

NEW2 10283 10010 78.1958770751953 7032518.1030 570306.0950 75.927

P9 9532 10537 77.8993301391602 7032501.2022 570282.1595 75.7164

P18 11598 10138 78.0417556762695 7032513.9047 570348.3729 75.7412

P12 6997 11508 73.9162368774414 7032470.1271 570200.9196 72.2874

P1 13427 10046 82.3829345703125 7032516.8044 570406.8605 80.3184

P10 12603 11127 80.9545211791992 7032482.3970 570380.5116 78.9091

P4 14009 9756 82.6503906250000 7032526.0900 570425.3519 80.6571

P2 13632 10466 82.1482391357422 7032503.4822 570413.3669 80.1282

P3 14215 10182 82.3428039550781 7032512.5002 570431.9676 80.4122

P17 15636 8148 88.9027709960938 7032577.5537 570477.3667 87.447

P15 13668 12319 82.8011550903320 7032444.1352 570414.4474 81.0613

P16 10114 14464 78.7565765380859 7032375.5267 570300.6873 77.3698

P13 10907 14482 79.6084289550781 7032374.9648 570326.0843 78.1933

NEW1 15849 10817 87.1946792602539 7032492.1900 570484.203 85.814

P14 13481 13714 82.5927429199219 7032399.5143 570408.4605 81.1564

Table B.5: A table of the candidate matchings (CMs) from calling Script A.1 with
the parameters ’OrientationAlgorithm’, ’HornHilden’, ’RadiusThreshold’, 0.05, ’
AngleThreshold’, 0.05, ’UseProbability’, true, and ’Rematch’, true. The sample
data is the same as described in Section 4.2.1. The set of GCPs is those given in Table B.1. The
image points where extracted from the orthophoto “Lerkendal”.

Name Image row Image column Model elevation Northing Easing Ellipsoidal height

P5 9130 7371 81.4818649291992 7032602.5627 570269.4359 79.5778

P11 9803 7660 81.6351394653320 7032593.3495 570290.8682 79.593

P6 7130 8010 85.2291336059570 7032582.04 570205.1985 83.777

P7 7404 8582 85.3965759277344 7032563.9401 570214.1377 83.7857

150

P8 9845 9737 78.0984497070313 7032526.8019 570292.145 75.8363

NEW2 10283 10010 78.1958770751953 7032518.103 570306.095 75.927

P9 9532 10538 77.8995895385742 7032501.2022 570282.1595 75.7164

P18 11598 10138 78.0417556762695 7032513.9047 570348.3729 75.7412

P12 6997 11508 73.9162368774414 7032470.1271 570200.9196 72.2874

P1 13427 10046 82.3829345703125 7032516.8044 570406.8605 80.3184

P10 12603 11127 80.9545211791992 7032482.397 570380.5116 78.9091

P4 14009 9756 82.650390625 7032526.09 570425.3519 80.6571

P2 13632 10466 82.1482391357422 7032503.4822 570413.3669 80.1282

P3 14215 10183 82.3423461914063 7032512.5002 570431.9676 80.4122

P17 15636 8148 88.9027709960938 7032577.5537 570477.3667 87.447

P15 13668 12319 82.8011550903320 7032444.1352 570414.4474 81.0613

P16 10114 14464 78.7565765380859 7032375.5267 570300.6873 77.3698

P13 10907 14482 79.6084289550781 7032374.9648 570326.0843 78.1933

NEW1 15849 10817 87.1946792602539 7032492.19 570484.203 85.814

P14 13481 13714 82.5927429199219 7032399.5143 570408.4605 81.1564

Table B.6: A table of the candidate matchings (CMs) from calling Script A.1 with the parameters
’OrientationAlgorithm’, ’Umeyama’, ’RadiusThreshold’, 0.05, ’AngleThreshold’
, 0.05, ’UseProbability’, true, ’Rematch’, true, and ’UseHornScale’, false. The
sample data is the same as described in Section 4.2.1. The set of GCPs is those given in Table B.1.
The image points where extracted from the orthophoto “Lerkendal”.

Name Image row Image column Model elevation Northing Easing Ellipsoidal height

NEW1 12382 10449 78.9866409301758 7032492.19 570484.203 85.814

P3 11690 10215 78.1325378417969 7032512.5002 570431.9676 80.4122

P4 11573 9985 77.9596786499023 7032526.09 570425.3519 80.6571

P2 11430 10336 78.1380920410156 7032503.4822 570413.3669 80.1282

P10 11008 10571 78.1371612548828 7032482.397 570380.5116 78.9091

P14 11369 11674 79.2441864013672 7032399.5143 570408.4605 81.1564

P18 10557 10182 78.0570907592773 7032513.9047 570348.3729 75.7412

NEW2 9989 10133 78.1413116455078 7032518.103 570306.095 75.927

P8 9844 9973 83.1458282470703 7032526.8019 570292.145 75.8363

P13 10260 12048 77.9012908935547 7032374.9648 570326.0843 78.1933

P9 9679 10339 77.9041824340820 7032501.2022 570282.1595 75.7164

P16 9926 12014 78.4390716552734 7032375.5267 570300.6873 77.3698

P11 9747 9130 78.1569137573242 7032593.3495 570290.8682 79.593

P5 9495 9029 89.6136169433594 7032602.5627 570269.4359 79.5778

151

P7 8771 9468 89.1512069702148 7032563.9401 570214.1377 83.7857

P12 8616 10795 78.6597671508789 7032470.1271 570200.9196 72.2874

P6 8664 9298 90.2215881347656 7032582.04 570205.1985 83.777

Table B.7: A table of the candidate matchings (CMs) from calling Script A.1 with the parameters
’OrientationAlgorithm’, ’Umeyama’, ’RadiusThreshold’, 0.05, ’AngleThreshold’
, 0.05, ’UseProbability’, true, ’Rematch’, true, and ’UseHornScale’, true. The
sample data is the same as described in Section 4.2.1. The set of GCPs is those given in Table B.1.
The image points where extracted from the orthophoto “Lerkendal”.

Name Image row Image column Model elevation Northing Easing Ellipsoidal height

P5 9130 7371 81.4818649291992 7032602.5627 570269.4359 79.5778

P11 9803 7660 81.6351394653320 7032593.3495 570290.8682 79.593

P6 7130 8010 85.2291336059570 7032582.04 570205.1985 83.777

P7 7404 8582 85.3965759277344 7032563.9401 570214.1377 83.7857

P8 9845 9737 78.0984497070313 7032526.8019 570292.145 75.8363

NEW2 10283 10010 78.1958770751953 7032518.103 570306.095 75.927

P9 9532 10538 77.8995895385742 7032501.2022 570282.1595 75.7164

P18 11598 10138 78.0417556762695 7032513.9047 570348.3729 75.7412

P12 6997 11508 73.9162368774414 7032470.1271 570200.9196 72.2874

P1 13427 10046 82.3829345703125 7032516.8044 570406.8605 80.3184

P10 12603 11127 80.9545211791992 7032482.397 570380.5116 78.9091

P4 14009 9756 82.650390625 7032526.09 570425.3519 80.6571

P2 13632 10466 82.1482391357422 7032503.4822 570413.3669 80.1282

P3 14215 10183 82.3423461914063 7032512.5002 570431.9676 80.4122

P17 15636 8148 88.9027709960938 7032577.5537 570477.3667 87.447

P15 13668 12319 82.8011550903320 7032444.1352 570414.4474 81.0613

P16 10114 14464 78.7565765380859 7032375.5267 570300.6873 77.3698

P13 10907 14482 79.6084289550781 7032374.9648 570326.0843 78.1933

NEW1 15849 10817 87.1946792602539 7032492.19 570484.203 85.814

P14 13481 13714 82.5927429199219 7032399.5143 570408.4605 81.1564

152

Table B.8: A table of the candidate matchings (CMs) from calling Script A.1 with the parame-
ters ’OrientationAlgorithm’, ’Horn’, ’RadiusThreshold’, 0.05, ’AngleThreshold’
, 0.05, ’UseProbability’, true, and ’Rematch’, false. The sample data is the same as
described in Section 4.2.1. The set of GCPs is those given in Table B.1. The image points where
extracted from the orthophoto “Lerkendal”.

Name Image row Image column Model elevation Northing Easing Ellipsoidal height

P4 14008 9759 82.6606140136719 7032526.09 570425.3519 80.6571

P3 14216 10184 82.3425598144531 7032512.5002 570431.9676 80.4122

P1 13429 10047 82.3789978027344 7032516.8044 570406.8605 80.3184

P10 12607 11122 80.9617614746094 7032482.397 570380.5116 78.9091

NEW1 15851 10818 87.1995773315430 7032492.19 570484.203 85.814

P18 11602 10141 78.0420074462891 7032513.9047 570348.3729 75.7412

P15 13668 12319 82.8011550903320 7032444.1352 570414.4474 81.0613

NEW2 10278 10007 78.2061462402344 7032518.103 570306.095 75.927

P14 13482 13715 82.5921325683594 7032399.5143 570408.4605 81.1564

P8 9845 9739 78.1014709472656 7032526.8019 570292.145 75.8363

P9 9534 10539 77.9017105102539 7032501.2022 570282.1595 75.7164

P13 10908 14483 79.6116027832031 7032374.9648 570326.0843 78.1933

P16 10115 14465 78.7550277709961 7032375.5267 570300.6873 77.3698

P12 6998 11510 73.9162368774414 7032470.1271 570200.9196 72.2874

Table B.9: A table of the candidate matchings (CMs) from calling Script A.1 with
the parameters ’OrientationAlgorithm’, ’HornHilden’, ’RadiusThreshold’, 0.05, ’
AngleThreshold’, 0.05, ’UseProbability’, true, and ’Rematch’, false. The sample
data is the same as described in Section 4.2.1. The set of GCPs is those given in Table B.1. The
image points where extracted from the orthophoto “Lerkendal”.

Name Image row Image column Model elevation Northing Easing Ellipsoidal height

P4 14008 9759 82.6606140136719 7032526.09 570425.3519 80.6571

P3 14216 10184 82.3425598144531 7032512.5002 570431.9676 80.4122

P1 13429 10047 82.3789978027344 7032516.8044 570406.8605 80.3184

P10 12607 11122 80.9617614746094 7032482.397 570380.5116 78.9091

NEW1 15851 10818 87.1995773315430 7032492.19 570484.203 85.814

P18 11602 10141 78.0420074462891 7032513.9047 570348.3729 75.7412

P15 13668 12319 82.8011550903320 7032444.1352 570414.4474 81.0613

NEW2 10278 10007 78.2061462402344 7032518.103 570306.095 75.927

P14 13482 13715 82.5921325683594 7032399.5143 570408.4605 81.1564

P8 9845 9739 78.1014709472656 7032526.8019 570292.145 75.8363

153

P9 9534 10539 77.9017105102539 7032501.2022 570282.1595 75.7164

P13 10908 14483 79.6116027832031 7032374.9648 570326.0843 78.1933

P16 10115 14465 78.7550277709961 7032375.5267 570300.6873 77.3698

P12 6998 11510 73.9162368774414 7032470.1271 570200.9196 72.2874

Table B.10: A table of the candidate matchings (CMs) from calling Script A.1 with the parameters
’OrientationAlgorithm’, ’Umeyama’, ’RadiusThreshold’, 0.05, ’AngleThreshold’
, 0.05, ’UseProbability’, true, ’Rematch’, false, and ’UseHornScale’, false. The
sample data is the same as described in Section 4.2.1. The set of GCPs is those given in Table B.1.
The image points where extracted from the orthophoto “Lerkendal”.

Name Image row Image column Model elevation Northing Easing Ellipsoidal height

P8 9845 9739 78.10147095 7032526.802 570292.145 75.8363

NEW2 10278 10007 78.20614624 7032518.103 570306.095 75.927

P9 9534 10539 77.90171051 7032501.202 570282.1595 75.7164

P18 11602 10141 78.04200745 7032513.905 570348.3729 75.7412

P7 7442 8504 85.9225769 7032563.94 570214.1377 83.7857

P10 12607 11122 80.96176147 7032482.397 570380.5116 78.9091

P12 6998 11510 73.91623688 7032470.127 570200.9196 72.2874

Table B.11: A table of the candidate matchings (CMs) from calling Script A.1 with the parameters
’OrientationAlgorithm’, ’Umeyama’, ’RadiusThreshold’, 0.05, ’AngleThreshold’
, 0.05, ’UseProbability’, true, ’Rematch’, false, and ’UseHornScale’, true. The
sample data is the same as described in Section 4.2.1. The set of GCPs is those given in Table B.1.
The image points where extracted from the orthophoto “Lerkendal”.

Name Image row Image column Model elevation Northing Easing Ellipsoidal height

P3 14216 10184 82.3425598144531 7032512.5002 570431.9676 80.4122

P4 14008 9759 82.6606140136719 7032526.09 570425.3519 80.6571

P1 13429 10047 82.3789978027344 7032516.8044 570406.8605 80.3184

NEW1 15851 10818 87.1995773315430 7032492.19 570484.203 85.814

P10 12607 11122 80.9617614746094 7032482.397 570380.5116 78.9091

P15 13668 12319 82.8011550903320 7032444.1352 570414.4474 81.0613

P18 11602 10141 78.0420074462891 7032513.9047 570348.3729 75.7412

P14 13482 13715 82.5921325683594 7032399.5143 570408.4605 81.1564

NEW2 10278 10007 78.2061462402344 7032518.103 570306.095 75.927

P8 9845 9739 78.1014709472656 7032526.8019 570292.145 75.8363

154

P9 9534 10539 77.9017105102539 7032501.2022 570282.1595 75.7164

P13 10908 14483 79.6116027832031 7032374.9648 570326.0843 78.1933

P16 10115 14465 78.7550277709961 7032375.5267 570300.6873 77.3698

P12 6998 11510 73.9162368774414 7032470.1271 570200.9196 72.2874

155

B.6 Residuals

Table B.12: A table of the errors of the CMs from calling Script A.1 with the parame-
ters ’OrientationAlgorithm’, ’Horn’, ’RadiusThreshold’, 0.05, ’AngleThreshold’
, 0.05, ’UseProbability’, true, and ’Rematch’, true. The sample data is the same as
described in Section 4.2.1. The set of GCPs is those given in Table B.1. The image points where
extracted from the orthophoto “Lerkendal”. These residuals are displayed graphically in Figure 4.9a,
4.9b, and B.2. The root mean square error (RMSE) of this table is given in Table B.13.

Name Northing Easing Ellipsoidal height

P5 0.0214254427701235 -0.196248529246077 0.582648358354632

P11 -0.0302738044410944 -0.0565632960060611 0.854232372430857

P6 0.0980576416477561 0.0181017303839326 -5.37759045585759

P7 -0.0850275037810206 -0.122028775978833 -5.58203892606279

P8 0.0364821236580610 0.00214479281567037 3.07917905610474

NEW2 -0.0123542640358210 0.0702689943136647 3.11536531995753

P9 0.0358328493312001 -0.0352342003025115 2.41018784435950

P18 0.0611559208482504 -0.117142360075377 4.15022737520420

P12 0.0866151964291930 0.0608434207970277 3.21605242492076

P1 0.0646319817751646 -0.0639430579030886 1.08809408617043

P10 -0.111164638772607 -0.0948854762827978 1.10661771076551

P4 0.0491308197379112 0.0749581315321848 1.37770673822074

P2 -0.0610577240586281 -0.0107493613613769 1.12488470303381

P3 -0.000982397235929966 0.0508796758949757 1.46339710445081

P17 0.0169860003516078 0.142192959552631 -2.92345764038875

P15 -0.0277092205360532 0.0504293909762055 -1.05396206790390

P16 -0.000384650193154812 0.0437309731496498 -1.53737546343288

P13 -0.0319798085838556 0.0287024816498160 -1.77733687057577

NEW1 -0.0542941614985466 0.110284932423383 -3.05395174527419

P14 -0.0550897903740406 0.0442575748311356 -2.26287992447749

Table B.13: An overview of the RMSEs of Table B.12.

RMSE Northing Easing Ellipsoidal height

Per dimension 0.0561114854125187 0.0841350974071215 2.74818778032700

Location 0.101129686101091

Total RMSE 2.75004787037417

156

Table B.14: A table of the errors of the CMs from calling Script A.1 with the
parameters ’OrientationAlgorithm’, ’HornHilden’, ’RadiusThreshold’, 0.05, ’

AngleThreshold’, 0.05, ’UseProbability’, true, and ’Rematch’, true. The sample
data is the same as described in Section 4.2.1. The set of GCPs is those given in Table B.1. The
image points where extracted from the orthophoto “Lerkendal”. These residuals are displayed graph-
ically in Figure 4.9c, 4.9d, and B.4. The RMSE of this table is given in Table B.15.

Name Northing Easing Ellipsoidal height

P5 0.021392125 -0.17360657 0.583439343

P11 -0.029444232 -0.065066816 0.854355048

P6 0.126592642 0.040469204 -5.376444755

P7 -0.088424392 -0.130633105 -5.582247778

P8 0.036073914 -0.003164913 3.079070878

NEW2 -0.012267631 0.065650636 3.115268718

P9 0.002437494 -0.039524675 2.409270525

P18 0.06316189 -0.120739725 4.150242733

P12 0.08076667 0.056446082 3.215469488

P1 0.069476134 -0.066532408 1.088298263

P10 -0.108250962 -0.096343778 1.106620692

P4 0.055041724 0.072292029 1.37799951

P2 -0.056165135 -0.012569503 1.125061385

P3 -0.027034465 0.048988937 1.462949502

P17 0.026378098 0.138096152 -2.922824438

P15 -0.023923715 0.051457454 -1.053989104

P16 -0.003347485 0.045798352 -1.53798693

P13 -0.033748235 0.031295245 -1.777873599

NEW1 -0.046251245 0.110391949 -3.053598138

P14 -0.052463189 0.047295453 -2.263081344

Table B.15: An overview of the RMSEs of Table B.14.

RMSE Northing Easing Ellipsoidal height

Per dimension 0.0582707643834677 0.0828955461579780 2.74801559911539

Location 0.101326963611188

Total RMSE 2.74988306779328

157

Table B.16: A table of the errors of the CMs from calling Script A.1 with the param-
eters ’OrientationAlgorithm’, ’ShinjiUmeyama’, ’RadiusThreshold’, 0.05,
’AngleThreshold’, 0.05, ’UseProbability’, true, ’Rematch’, true, and ’

UseHornScale’, false. The sample data is the same as described in Section 4.2.1. The
set of GCPs is those given in Table B.1. The image points where extracted from the orthophoto
“Lerkendal”. These residuals are displayed graphically in Figure 4.9e, 4.9f, and B.6. The RMSE of
this taable is given in Table B.17.

Name Northing Easing Ellipsoidal height

NEW1 0.298024974 0.815555897 -3.825745861

P3 -2.108291289 1.17517128 0.76968837

P4 1.634812217 -0.895613756 0.631639583

P2 -2.058016484 0.191907824 0.50610372

P10 1.57164172 1.243837651 0.785949409

P14 1.425235148 -0.078322244 -2.254661854

P18 -0.502424667 -0.322618163 3.768764962

NEW2 -0.753562932 -0.689422867 2.795767124

P8 2.628481224 2.431960387 3.249771481

P13 -1.598759569 -1.170220902 -1.546790031

P9 0.817986789 -0.13101498 2.255647272

P16 0.549382042 -0.847950649 -1.142831471

P11 -0.540288381 -3.196484601 0.058046847

P5 -2.062759472 -0.666211403 0.683775932

P7 3.921826009 0.053686198 -5.216306625

P12 -1.864580263 1.056641346 3.550771919

P6 -1.358707055 1.029098982 -5.069590776

Table B.17: An overview of the RMSEs of Table B.16.

RMSE Northing Easing Ellipsoidal height

Per dimension 1.75649408491151 1.23377868222613 2.75405656862744

Location 2.14650443909273

Total RMSE 3.49174868658166

158

Table B.18: A table of the errors of the CMs from calling Script A.1 with the param-
eters ’OrientationAlgorithm’, ’ShinjiUmeyama’, ’RadiusThreshold’, 0.05,
’AngleThreshold’, 0.05, ’UseProbability’, true, ’Rematch’, true, and ’

UseHornScale’, true. The sample data is the same as described in Section 4.2.1. The
set of GCPs is those given in Table B.1. The image points where extracted from the orthophoto
“Lerkendal”. These residuals are displayed graphically in Figure 4.10c, 4.10d, and B.8. The RMSE
of this table is given in Table B.19.

Name Northing Easing Ellipsoidal height

P5 0.021392125 -0.17360657 0.583439343

P11 -0.029444232 -0.065066816 0.854355048

P6 0.126592642 0.040469204 -5.376444755

P7 -0.088424392 -0.130633105 -5.582247778

P8 0.036073914 -0.003164913 3.079070878

NEW2 -0.012267631 0.065650636 3.115268718

P9 0.002437494 -0.039524675 2.409270525

P18 0.06316189 -0.120739725 4.150242733

P12 0.08076667 0.056446082 3.215469488

P1 0.069476134 -0.066532408 1.088298263

P10 -0.108250962 -0.096343778 1.106620692

P4 0.055041724 0.072292029 1.37799951

P2 -0.056165135 -0.012569503 1.125061385

P3 -0.027034465 0.048988937 1.462949502

P17 0.026378098 0.138096152 -2.922824438

P15 -0.023923715 0.051457454 -1.053989104

P16 -0.003347485 0.045798352 -1.53798693

P13 -0.033748235 0.031295245 -1.777873599

NEW1 -0.046251245 0.110391949 -3.053598138

P14 -0.052463189 0.047295453 -2.263081344

Table B.19: An overview of the RMSEs of Table B.18.

RMSE Northing Easing Ellipsoidal height

Per dimension 0.0582707643834677 0.0828955461579780 2.74801559911539

Location 0.101326963611188

Total RMSE 2.74988306779328

159

Table B.20: A table of the errors of the CMs from calling Script A.1 with the parame-
ters ’OrientationAlgorithm’, ’Horn’, ’RadiusThreshold’, 0.05, ’AngleThreshold’
, 0.05, ’UseProbability’, true, and ’Rematch’, false. The sample data is the same as
described in Section 4.2.1. The set of GCPs is those given in Table B.1. The image points where
extracted from the orthophoto “Lerkendal”. These residuals are displayed graphically in Figure 4.8a,
4.8b, and B.1. The RMSE of this table is given in Table B.21.

Name Northing Easing Ellipsoidal height

P4 0.012924368 -0.010407407 0.18675861

P3 -0.006570171 0.018034978 0.843267924

P1 0.083604109 -0.048597412 -0.149163553

P10 0.081140718 -0.020975207 0.500091133

NEW1 -0.010006686 0.066202858 -2.02331403

P18 -0.008975131 -0.005441681 1.907362091

P15 0.008825574 -0.04598224 0.222628556

NEW2 0.096613973 -0.080774212 -0.069207165

P14 -0.063579268 -0.043459098 0.357581435

P8 -0.017427854 0.023771937 -0.646713961

P9 -0.027863315 0.040628701 -0.667669827

P13 -0.077383894 -0.027457092 0.089194672

P16 -0.055130178 0.002119996 -0.168899121

P12 -0.016172243 0.132335881 -0.381916764

Table B.21: An overview of the RMSEs of Table B.12.

RMSE Northing Easing Ellipsoidal height

Per dimension 0.0801574235541654 0.0972993741020905 2.67544063741710

Location 0.126064986223378

Total RMSE 2.67840903991424

160

Table B.22: A table of the errors of the CMs from calling Script A.1 with the
parameters ’OrientationAlgorithm’, ’HornHilden’, ’RadiusThreshold’, 0.05, ’

AngleThreshold’, 0.05, ’UseProbability’, true, and ’Rematch’, false. The sample
data is the same as described in Section 4.2.1. The set of GCPs is those given in Table B.1. The image
points where extracted from the orthophoto “Lerkendal”. These residuals are displayed graphically
in Figure 4.8c, 4.8d, and B.3. The RMSE of this table is given in Table B.23.

Name Northing Easing Ellipsoidal height

P4 0.010277015 -0.008416093 0.186692525

P3 -0.009477677 0.019493797 0.843195284

P1 0.081682321 -0.046967569 -0.149211511

P10 0.08024961 -0.020693462 0.500068856

NEW1 -0.014961432 0.066868708 -2.023437966

P18 -0.008608422 -0.003931431 1.907371391

P15 0.006606658 -0.047199717 0.222572928

NEW2 0.098639092 -0.079097158 -0.069156349

P14 -0.065563822 -0.046426384 0.357531527

P8 -0.014860599 0.0257845 -0.646649549

P9 -0.024905702 0.041638328 -0.667595729

P13 -0.076143474 -0.031389296 0.089225389

P16 -0.052896452 -0.001790375 -0.168843545

P12 -0.010037108 0.132126153 -0.38176325

Table B.23: An overview of the RMSEs of Table B.12.

RMSE Northing Easing Ellipsoidal height

Per dimension 0.0515579187392759 0.0528176635450803 0.844255142341283

Location 0.0738100573572944

Total RMSE 0.847475468634218

161

Table B.24: A table of the errors of the CMs from calling Script A.1 with the parameters ’

OrientationAlgorithm’, ’Umeyama’, ’RadiusThreshold’, 0.05, ’AngleThreshold’,
0.05, ’UseProbability’, true, ’Rematch’, false, and ’UseHornScale’, false. The

sample data is the same as described in Section 4.2.1. The set of GCPs is those given in Table B.1.
The image points where extracted from the orthophoto “Lerkendal”. These residuals are displayed
graphically in Figure 4.8e, 4.8f, and B.5. The RMSE of this table is given in Table B.25.

Name Northing Easing Ellipsoidal height

P8 20.1727687 3.283412569 4.15472517

NEW2 9.147260046 21.79401123 2.641725851

P9 -13.86443001 -9.518241636 -1.0953322

P18 4.010592187 78.40811232 2.850472558

P7 73.68178166 -98.7256117 3.100910771

P10 -36.97357112 121.8000502 -5.727913987

P12 -56.17440146 -117.041733 -5.924588162

Table B.25: An overview of the RMSEs of Table B.12.

RMSE Northing Easing Ellipsoidal height

Per dimension 39.0064711142310 80.1827863713129 3.98373109899465

Location 89.1671689527762

Total RMSE 89.2561153788469

162

Table B.26: A table of the errors of the CMs from calling Script A.1 with the parameters ’

OrientationAlgorithm’, ’Umeyama’, ’RadiusThreshold’, 0.05, ’AngleThreshold’,
0.05, ’UseProbability’, true, ’Rematch’, false, and ’UseHornScale’, true. The

sample data is the same as described in Section 4.2.1. The set of GCPs is those given in Table B.1.
The image points where extracted from the orthophoto “Lerkendal”. These residuals are displayed
graphically in Figure 4.10a, 4.10b, and B.7. The RMSE of this table is given in Table B.27.

Name Northing Easing Ellipsoidal height

P3 0.010277015 -0.008416093 0.186692525

P4 -0.009477677 0.019493797 0.843195284

P1 0.081682321 -0.046967569 -0.149211511

NEW1 0.08024961 -0.020693462 0.500068856

P10 -0.014961432 0.066868708 -2.023437966

P15 -0.008608422 -0.003931431 1.907371391

P18 0.006606658 -0.047199717 0.222572928

P14 0.098639092 -0.079097158 -0.069156349

NEW2 -0.065563822 -0.046426384 0.357531527

P8 -0.014860599 0.0257845 -0.646649549

P9 -0.024905702 0.041638328 -0.667595729

P13 -0.076143474 -0.031389296 0.089225389

P16 -0.052896452 -0.001790375 -0.168843545

P12 -0.010037108 0.132126153 -0.38176325

Table B.27: An overview of the RMSEs of Table B.12.

RMSE Northing Easing Ellipsoidal height

Per dimension 0.0515579187392759 0.0528176635450803 0.844255142341283

Location 0.0738100573572944

Total RMSE 0.847475468634218

B.7 Similarity transforms
All the equations listed in this section are the absolute orientation parameters obtained from the experiments of
this thesis.

B.7.1 Lerkendal
Here the absolute orientation parameters obtained from the dataset “Lerkendal” is given. These were obtained
by running Script A.1 with the parameters described in Section 4.4.1.

163

B.7.1.1 Horn

These are the absolute orientation parameters that were used to compute the residuals in Table B.12.

R =


−0.000659401553904870 −0.999762650880823 −0.0217762965937669

0.999748766362255 −0.000171188703487313 −0.0224137201636997

0.0224046724309807 −0.0217856052974617 0.999511589755258

 (B.1)

t =


7032838.77104514

569977.133606464

76.1458026023388

 (B.2)

s = 0.0320164691627896 (B.3)

B.7.1.2 Horn-Hilden

These are the absolute orientation parameters that were used to compute the residuals in Table B.14.

R =


−0.000611895883722124 −0.999762590978035 −0.0217804330607695

0.999748739150053 −0.000123557683519682 −0.0224152470737923

0.0224072343520523 −0.0217886762880635 0.999511465384118

 (B.4)

t =


7032838.76178280

569977.107271249

76.1457901642686

 (B.5)

s = 0.0320170981741677 (B.6)

B.7.1.3 Umeyama

These are the absolute orientation parameters that were used to compute the residuals in Table B.16.

R =


−0.00624108258281825 −0.999835608364521 −0.0170236639576743

0.999779029528619 −0.00589718478167606 −0.0201770990596946

0.0200733904213614 −0.0171458291721382 0.999651479036065

 (B.7)

t =


7033283.33399041

569559.672962777

70.8421482896873

 (B.8)

(B.9)

s = 0.0751333059427311 (B.10)

164

B.7.1.4 Umeyama with the scale factor of Horn

These are the absolute orientation parameters that were used to compute the residuals in Table B.18.

R =


−0.000611895883722124 −0.999762590978035 −0.0217804330607695

0.999748739150053 −0.000123557683519682 −0.0224152470737923

0.0224072343520523 −0.0217886762880635 0.999511465384118

 (B.11)

t =


7032838.76178280

569977.107271249

76.1457901642686

 (B.12)

s = 0.0320170981741677 (B.13)

B.7.1.5 Horn without rematching

These are the absolute orientation parameters that were used to compute the residuals in Table B.20.

R =


−0.000992564168106669 −0.999683843351235 −0.0251242543944417

0.999825192564730 −0.000522987255943797 −0.0186898581383686

0.0186708095505903 −0.0251384133714631 0.999509610280908

 (B.14)

t =


7032839.17912822

569976.903298537

78.8635042871018

 (B.15)

s = 0.0320405154962622 (B.16)

B.7.1.6 Horn-Hilden without rematching

These are the absolute orientation parameters that were used to compute the residuals in Table B.22.

R =


−0.000360186361295802 −0.999941399656667 0.0108197746994134

0.999147844811569 −0.000806422198091359 −0.0412666206977161

0.0412729266503872 0.0107956906173952 0.999089610095500

 (B.17)

t =


7032838.68297593

569977.572377809

56.3147215300379

 (B.18)

s = 0.0320184544688913 (B.19)

165

B.7.1.7 Umeyama without rematching
These are the absolute orientation parameters that were used to compute the residuals in Table B.24.

R =


0.00636101140034986 −0.996256633387222 −0.0862105444010420

0.999938589704258 0.00711945335835071 −0.00849295026120099

0.00907492998461047 −0.0861512264325802 0.996240739896706

 (B.20)

t =


7033267.02554816

569555.491552381

130.141591409152

 (B.21)

s = 0.0746425653342246 (B.22)

B.7.1.8 Umeyama with the scale factor of Horn, but without rematching
These are the absolute orientation parameters that were used to compute the residuals in Table B.24.

R =


−0.000360186360855989 −0.999941399656625 0.0108197744216394

0.999147844809866 −0.000806422198252350 −0.0412666196221286

0.0412729266903225 0.0107956906211634 0.999089584865355

 (B.23)

t =


7032838.68297593

569977.572377807

56.3147215784003

 (B.24)

s = 0.0320184544688913 (B.25)

166

B.8 Referencing errors, and residuals

Table B.28: A table showing the greatest, and smallest magnitude of errors for location, elevation,
and total. These correspond to Figure 4.8, 4.10a, and 4.10b. In other words, these have not been
rematched.

Algorithm Point Error in Min/max Error

Horn NEW1 Location max 0.267771

Horn P18 Location min 0.028309

Horn P18 Elevation max 4.394115

Horn P18 Elevation min 1.12447

Horn P18 Total max 4.394206

Horn P1 Total min 1.126991

Horn-Hilden P12 Location max 0.132507

Horn-Hilden P18 Location min 0.009464

Horn-Hilden NEW1 Elevation max 2.023438

Horn-Hilden NEW2 Elevation min 0.069156

Horn-Hilden NEW1 Total max 2.024598

Horn-Hilden P13 Total min 0.121426

Umeyama P12 Location max 129.824187

Umeyama P9 Location min 16.817069

Umeyama P12 Elevation max 5.92488

Umeyama P9 Elevation min 1.095332

Umeyama P12 Total max 129.959302

Umeyama P9 Total min 16.852702

Umeyama∗ P12 Location max 0.132507

Umeyama∗ P18 Location min 0.009464

Umeyama∗ NEW1 Elevation max 2.023438

Umeyama∗ NEW2 Elevation min 0.69156

Umeyama∗ NEW1 Total max 2.024598

Umeyama∗ P13 Total min 0.121426

Table B.29: A table showing the greatest, and smallest magnitude of errors for location, elevation,
and total. These correspond to Figure 4.9, 4.9e, and 4.9f. In other words, these have been rematched.

Algorithm Point Error in Min/max Error

Horn P5 Location max 0.197415

Horn P8 Location min 0.036545

167

Horn P7 Elevation max 5.582039

Horn P5 Elevation min 0.582648

Horn P7 Total max 5.58402

Horn P5 Total min 0.615184

Horn-Hilden P5 Location max 0.17492

Horn-Hilden P8 Location min 0.036212

Horn-Hilden P7 Elevation max 5.582248

Horn-Hilden P5 Elevation min 0.583439

Horn-Hilden P7 Total max 5.584476

Horn-Hilden P5 Total min 0.609096

Umeyama P7 Location max 3.922193

Umeyama P18 Location min 0.597087

Umeyama P7 Elevation max 5.21637

Umeyama P11 Elevation min 0.058047

Umeyama P7 Total max 6.526366

Umeyama P16 Total min 1.52542

Umeyama∗ P5 Location max 0.17492

Umeyama∗ P8 Location min 0.036212

Umeyama∗ P7 Elevation max 5.582248

Umeyama∗ P5 Elevation min 0.583439

Umeyama∗ P7 Total max 5.584476

Umeyama∗ P5 Total min 0.609096

168

(a) An illustration of the residuals of the location of the GCPs. The largest error in the location is at the point NEW1,
and has magnitude 0.267771 meters. The smallest error occur at the point P18, with a magnitude of 0.028309 meters.

169

(b) An illustration of the residual error of the elevation of the GCPs. The largest error in elevation occur at the point
P18, and have a magnitude of 4.394115 meters. The smallest has a magnitude of 1.124470 meters at the point P1.

Figure B.1: Lerkendal - Horn - without rematching: An illustration of the residuals for the location,
and elevation of the absolute orientation when R is given in (B.14), t by (B.15), and s is given by
(B.16). The exact numerical data is given in Table B.20. The arrows point in the direction of the
placement of the estimated Real-World coordinate of the GCP relative to the measured-in coordinate.
The largest magnitude of the residuals is 4.394206 meters, and occur at the point P18. The smallest,
by contrast, has a magnitude of 1.126991 meters, and occur at the point P1.

170

(a) An illustration of the residuals of the location of the GCPs. The largest error in the location is at the point P5, and
has magnitude 0.197415 meters. The smallest error occur at the point P8, with a magnitude of 0.036545 meters.

171

(b) An illustration of the residual error of the elevation of the GCPs. The largest error in elevation occur at the point P7,
and have a magnitude of 5.582039 meters. The smallest has a magnitude of 0.582648 meters at the point P5.

Figure B.2: Lerkendal - Horn - with rematching: An illustration of the residuals for the location,
and elevation of the absolute orientation whenR is given in (B.1), t by (B.2), and s is given by (B.3).
The exact numerical data is given in Table B.12. The arrows point in the direction of the placement
of the estimated Real-World coordinate of the GCP relative to the measured-in coordinate. The
largest magnitude of the residuals is 5.584020 meters, and occur at the point P7. The smallest, by
contrast, has a magnitude of 0.615184 meters, and occur at the point P5.

172

(a) An illustration of the residuals of the location of the GCPs. The largest error in the location is at the point P12, and
has magnitude 0.132507 meters. The smallest error occur at the point P18, with a magnitude of 0.009464 meters.

173

(b) An illustration of the residual error of the elevation of the GCPs. The largest error in elevation occur at the point
NEW1, and have a magnitude of 2.023438 meters. The smallest has a magnitude of 0.069156 meters at the point NEW2.

Figure B.3: Lerkendal - Horn-Hilden - without rematching: An illustration of the residuals for the
location, and elevation of the absolute orientation when R is given in (B.17), t by (B.18), and s is
given by (B.19). The exact numerical data is given in Table B.22. The arrows point in the direction
of the placement of the estimated Real-World coordinate of the GCP relative to the measured-in
coordinate. The largest magnitude of the residuals is 2.024598 meters, and occur at the point NEW1.
The smallest, by contrast, has a magnitude of 0.121426 meters, and occur at the point P13.

174

(a) An illustration of the residuals of the location of the GCPs. The largest error in the location is at the point P5, and
has magnitude 0.174920 meters. The smallest error occur at the point P8, with a magnitude of 0.036212 meters.

175

(b) An illustration of the residual error of the elevation of the GCPs. The largest error in elevation occur at the point P7,
and have a magnitude of 5.582248 meters. The smallest has a magnitude of 0.583439 meters at the point P5.

Figure B.4: Lerkendal - Horn-Hilden - with rematching: An illustration of the residuals for the
location, and elevation of the absolute orientation when R is given in (B.4), t by (B.5), and s is
given by (B.6). The exact numerical data is given in Table B.14. The arrows point in the direction
of the placement of the estimated Real-World coordinate of the GCP relative to the measured-in
coordinate. The largest magnitude of the residuals is 5.584476 meters, and occur at the point P7.
The smallest, by contrast, has a magnitude of 0.609096 meters, and occur at the point P5.

176

(a) An illustration of the residuals of the location of the GCPs. The largest error in the location is at the point P12, and
has magnitude 129.824187 meters. The smallest error occur at the point P9, with a magnitude of 16.817069 meters.

177

(b) An illustration of the residual error of the elevation of the GCPs. The largest error in elevation occur at the point
P12, and have a magnitude of 5.924588 meters. The smallest has a magnitude of 1.095332 meters at the point P9.

Figure B.5: Lerkendal - Umeyama - without rematching: An illustration of the residuals for the
location, and elevation of the absolute orientation when R is given in (B.20), t by (B.21), and s is
given by (B.22). The exact numerical data is given in Table B.24. The arrows point in the direction
of the placement of the estimated Real-World coordinate of the GCP relative to the measured-in
coordinate. The largest magnitude of the residuals is 129.959302 meters, and occur at the point P12.
The smallest, by contrast, has a magnitude of 16.852702 meters, and occur at the point P9.

178

(a) An illustration of the residuals of the location of the GCPs. The largest error in the location is at the point P7, and
has magnitude 3.922193 meters. The smallest error occur at the point P18, with a magnitude of 0.597087 meters.

179

(b) An illustration of the residual error of the elevation of the GCPs. The largest error in elevation occur at the point P7,
and have a magnitude of 5.216307 meters. The smallest has a magnitude of 0.058047 meters at the point P11.

Figure B.6: Lerkendal - Umeyama - with rematching: An illustration of the residuals for the loca-
tion, and elevation of the absolute orientation whenR is given in (B.20), t by (B.21), and s is given
by (B.22). The exact numerical data is given in Table B.24. The arrows point in the direction of
the placement of the estimated Real-World coordinate of the GCP relative to the measured-in coor-
dinate. The largest magnitude of the residuals is 6.526366 meters, and occur at the point P7. The
smallest, by contrast, has a magnitude of 1.525420 meters, and occur at the point P16.

180

(a) An illustration of the residuals of the location of the GCPs. The largest error in the location is at the point P12, and
has magnitude 0.132507 meters. The smallest error occur at the point P18, with a magnitude of 0.009464 meters.

181

(b) An illustration of the residual error of the elevation of the GCPs. The largest error in elevation occur at the point
NEW1, and have a magnitude of 2.023438 meters. The smallest has a magnitude of 0.069156 meters at the point NEW2.

Figure B.7: Lerkendal - Umeyama∗ - without rematching: An illustration of the residuals for the
location, and elevation of the absolute orientation when R is given in (B.23), t by (B.24), and s is
given by (B.25). The exact numerical data is given in Table B.26. The arrows point in the direction
of the placement of the estimated Real-World coordinate of the GCP relative to the measured-in
coordinate. The largest magnitude of the residuals is 2.024598 meters, and occur at the point NEW1.
The smallest, by contrast, has a magnitude of 0.121426 meters, and occur at the point P13.

182

(a) An illustration of the residuals of the location of the GCPs. The largest error in the location is at the point P5, and
has magnitude 0.174920 meters. The smallest error occur at the point P8, with a magnitude of 0.036212 meters.

183

(b) An illustration of the residual error of the elevation of the GCPs. The largest error in elevation occur at the point P7,
and have a magnitude of 5.582248 meters. The smallest has a magnitude of 0.583439 meters at the point P5.

Figure B.8: Lerkendal - Umeyama∗ - with rematching: An illustration of the residuals for the
location, and elevation of the absolute orientation when R is given in (B.11), t by (B.12), and s is
given by (B.13). The exact numerical data is given in Table B.18. The arrows point in the direction
of the placement of the estimated Real-World coordinate of the GCP relative to the measured-in
coordinate. The largest magnitude of the residuals is 5.584476 meters, and occur at the point P7.
The smallest, by contrast, has a magnitude of 0.609096 meters, and occur at the point P5.

184

Figure B.9: Lerkendal - Horn - with rematching: Shows the orthophoto “Lerkendal” . The blue
crosses indicate the areas considered to be a GCP by the prototype when the algorithm proposed
by Horn (1987) was used to find the absolute orientation. The orange pluses were calculated from
the inverse absolute orientation parameters obtained from Horn. The measured-in coordinates of the
CM where then inverted to image coordinates and displayed as orange pluses.

185

Figure B.10: Lerkendal - Horn - without rematching: Shows the orthophoto “Lerkendal”. The blue
crosses indicate the areas considered to be a GCP by the prototype when the algorithm proposed
by Horn (1987) was used to find the absolute orientation. The orange pluses were calculated from
the inverse absolute orientation parameters obtained from Horn. The measured-in coordinates of the
CM where then inverted to image coordinates and displayed as orange pluses.

186

Figure B.11: Lerkendal - Horn-Hilden - without rematching: Shows the orthophoto “Lerkendal” .
The blue crosses indicate the areas considered to be a GCP by the prototype when the algorithm pro-
posed by Horn et al. (1988) was used to find the absolute orientation. The orange pluses were calcu-
lated from the inverse absolute orientation parameters obtained from Horn-Hilden. The measured-in
coordinates of the CM where then inverted to image coordinates and displayed as orange pluses.

187

Figure B.12: Lerkendal - Horn-Hilden - with rematching: Shows the orthophoto “Lerkendal”. The
blue crosses indicate the areas considered to be a GCP by the prototype when the algorithm proposed
by Horn et al. (1988) was used to find the absolute orientation. The orange pluses were calculated
from the inverse absolute orientation parameters obtained from Horn-Hilden. The measured-in co-
ordinates of the CM where then inverted to image coordinates and displayed as orange pluses.

188

Figure B.13: Lerkendal - Umeyama - without rematching: Shows the orthophoto “Lerkendal” .
The blue crosses indicate the areas considered to be a GCP by the prototype when the algorithm
proposed by Umeyama (1991) was used to find the absolute orientation. The orange pluses were
calculated from the inverse absolute orientation parameters obtained from Umeyama. The measured-
in coordinates of the CM where then inverted to image coordinates and displayed as orange pluses.

189

Figure B.14: Lerkendal - Umeyama - with rematching: Shows the orthophoto “Lerkendal” . The
blue crosses indicate the areas considered to be a GCP by the prototype when the algorithm proposed
by Umeyama (1991) was used to find the absolute orientation. The orange pluses were calculated
from the inverse absolute orientation parameters obtained from Umeyama. The measured-in coordi-
nates of the CM where then inverted to image coordinates and displayed as orange pluses.

190

Figure B.15: Lerkendal - Umeyama∗ - without rematching: Shows the orthophoto “Lerkendal” .
The blue crosses indicate the areas considered to be a GCP by the prototype when the algorithm
proposed by Umeyama (1991) was used to find the absolute orientation. Instead od using the por-
posed scale factor, however, the scale factor is calculated as proposed in Horn (1987). The orange
pluses were calculated from the inverse absolute orientation parameters obtained from Umeyama∗.
The measured-in coordinates of the CM where then inverted to image coordinates and displayed as
orange pluses.

191

Figure B.16: Lerkendal - Umeyama∗ - with rematching: Shows the orthophoto “Lerkendal” . The
blue crosses indicate the areas considered to be a GCP by the prototype when the algorithm pro-
posed by Umeyama (1991) was used to find the absolute orientation. Instead od using the porposed
scale factor, however, the scale factor is calculated as proposed in Horn (1987). The orange pluses
were calculated from the inverse absolute orientation parameters obtained from Umeyama∗. The
measured-in coordinates of the CM where then inverted to image coordinates and displayed as or-
ange pluses.

192

B.9 Distance metrics applied to “Lerkendal”

193

Figure B.17: Using reference data from the orthophoto

194

Figure B.18: Using the reference data from a marked GCP

195

196

Appendix C
Mozilla Public License Version 2.0

197

	Summary
	Sammendrag
	Preface
	Notes
	Note on abbreviations and acronyms
	Note on Figures
	Note on words in the thesis
	Note on mathematical notation
	Table of Contents
	Lists
	List of Tables
	List of Figures
	List of Source Code

	Glossary
	Acronyms

	Introduction
	Goal of the thesis
	Secondary Goals
	Open source
	Multiple lse techniques
	Investigate the usability of tpp
	Effectiveness
	Investigate marks for gcp

	Motivation

	The structure of the thesis
	A small history lesson
	Theory
	Existing solutions
	Esri ArcGIS
	Leica Geosytems IMAGINE AutoSync™
	Leica Cyclone REGISTER
	li2006automated
	ba

	Classification
	Hypothesis testing

	Color Theory
	Color models
	The rgb model
	Hue, saturation, and value
	The lab model

	Image processing
	Segmentation
	Morphology

	Topological Point Pattern
	Defining tpp
	Adjustment

	Matching Topological Point Patterns

	Absolute orientation
	Least-Square error estimation
	Kraus
	Horn
	Horn-Hilden
	Umeyama

	Licensing
	Method
	The design of the program
	Description of the steps
	Input parameters
	Finding gcp candidates in image
	Matching points
	Finding the absor
	Generating the output

	The development of the program
	Choosing a Programming Language
	Test-driven development

	On the method of testing and verification
	Acquiring data
	Processing the image
	The sample of gcp
	Directly from the orthophoto
	Capturing a marked gcp

	Results
	The prototype
	Reference color
	Description of sample data

	Finding thresholds, and ``arbitrary'' values
	georef Real-World cases
	The Lerkendal dataset
	Reference color
	Which where found?
	Distribution of the residuals

	The ``E6'' dataset
	Choice of sample data
	Visibility og gcp

	Discussion & Analysis
	Analysis of placement
	horn and horn-hilden
	Comparing the absorparam

	umeyama
	Why not an iterative algorithm?

	E6

	Analysis of residuals
	Analysis of the magnitudes of the residuals
	Analysis of the direction of the residuals
	The direction of residuals
	Distance from center
	Direction outward

	On the use of reference colors
	On loading the entire orthophoto into memory
	On marking gcp
	Issues with tpp
	Issues with the scale factor for umeyama

	Conclusion
	Further
	Thoughts
	Work

	Recommendation for marking gcp

	Bibliography
	Source Code
	The program
	Miscellaneous scripts
	Data
	Sample data
	gcp of ``Lerkendal''
	gcp of ``E6''
	Sample extracted cm
	Matchings
	Residuals
	st
	Lerkendal
	Horn
	Horn-Hilden
	Umeyama
	Umeyama with the scale factor of Horn
	Horn without rematching
	Horn-Hilden without rematching
	Umeyama without rematching
	Umeyama with the scale factor of Horn, but without rematching

	Referencing errors, and residuals

	Distance metrics applied to ``Lerkendal''

	Mozilla Public License Version 2.0

