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Preface

This thesis consists of an introduction and eight papers. Seven papers are either
published or in the process of being published. The work has been carried out in
close cooperation with colleagues at NTNU and SINTEF with supervision from
Professor Gunnar Härkegård.

In Paper 1, the manuscript was developed together with Dr Bård Wathne
Tveiten (SINTEF), while the statistical evaluation was carried out by me. In
Paper 2 and Paper 5 to 8, manuscript and theory were done in cooperation
with Anders Wormsen. In the development of the computer code P•FAT, the
statistical work was largely implemented by Anders Wormsen (NTNU), while the
crack growth modelling was largely implemented by me. This will to some extent
reflect the individual contributions in Paper 6 and 7.

In Paper 2 and 3, I am the main author and solely responsible for the theory,
the calculations and the manuscript.
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Abstract

This thesis consists of an introduction and eight papers [1–8]. Paper 1 presents
simple and flexible methods to enhance the fatigue life of welded aluminium com-
ponents. The key element of the methods is to change residual stresses from
tension to compression at locations vulnerable to fatigue crack growth. This is
accomplished by mechanical pre-stressing using elastic pre-deformation or ther-
mal pre-stressing using induction heating. Based on fatigue test results induction
heating tuned out to be the most promising method.

In Paper 2, an approximate method based on asymptotic solutions for esti-
mating the stress intensity factor for cracks at stress concentrations is presented.
The proposed solution makes use of the near-notch and remote-notch solution to
interpolate over the entire range from shallow to deep cracks. Paper 3 extends
the theory presented in Paper 2 to cover through-cracked plates of finite width
subjected to bending or tension. Paper 4 examines how a decreasing stress field
influences the fatigue crack growth. Even though the stress generally decreases
from a maximum at some critical point, fatigue crack growth analyses are often
performed assuming a homogeneous stress state to avoid the difficulties related
to crack growth analyses in complex components. The degree of conservatism
has been determined by comparing the calculated fatigue life of cracks growing
in a homogeneous stress field with the fatigue life of cracks growing in a gradient
stress field. In Paper 5, an approximate method based on asymptotic solutions for
estimating the stress intensity factor for cracked V-notched plates is presented.
The proposed solutions make use of a reference solution to interpolate from shal-
low to deep cracks. The reference solution is obtained by considering the current
crack emanating from the associated specimen with a sharp notch. It is showed
how the proposed theory can be used for estimating the stress intensity factor for
a crack located at the root of a weld toe in a T-joint.

Paper 6 and 7 presents the probabilistic fatigue assessment tool, P•FAT, for
the fatigue analysis of arbitrary components. General concepts which have to
be considered for the accomplishment of a 3D fatigue crack simulation by post-
processing results from a standard finite element analysis are introduced. General
features such as determination of the life controlling defect, fatigue strength and
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vi Abstract

fatigue life distribution, and probability of component failure, have been pre-
sented. Furthermore, a new short crack growth model that accounts for short
crack growth is presented. In Paper 8, the short crack growth model is used
to predict the arrest of cracks growing in stress gradient fields. The predictions
have been compared with experimentally obtained data for notched specimens
and found to agree well.
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CHAPTER 1

Introduction

At a time when the industry is challenged to come up with better and less costly
products, and this in even shorter cycles, all product development processes must
undergo the same improvements, including fatigue design. This represents an
enormous challenge for the engineers to continuously develop improved solutions.
One example is the automotive industry where saving structural weight is of
utmost importance in order to improve, e.g., the fuel efficiency. At the same time,
the time to market has been drastically reduced. In order to comply with this
development the use of computer simulations has been increasingly important.
This is highly relevant for the fatigue process, where the need for tools that offers
both fast and reliable solutions is evident.

Fatigue is a potential failure mode in virtually all mechanical components,
e.g. turbines, automotive structures and pressure vessels. Regardless of produc-
tion method, e.g. welding, forging or extrusion, fatigue failure is caused by the
same physical process, namely a microscopical damage in the material that after
continued cycling develops into a crack that finally leads to component failure.
It is important to study the growth of fatigue cracks located in stress raisers and
how the decreasing stress field influences the fatigue life. What makes this an
important aspect in the assessment of fatigue damage is that fatigue failure in
real components very often is caused by an initial flaw, in the proximity of a stress
raiser, who ultimately grows to become critical. When assessing fatigue lives it
is important that accurate solutions for the stress intensity factor, K, which is
the main parameter to seek in fatigue crack growth calculations, are available. A
large number of solutions has been proposed, but most have a general weakness
of either being valid only for the near notch area, or that extensive preliminary
analysis is required for establishing the stress intensity factor. Another important
aspect is the growth of physically short cracks that must be taken into account
since the crack during a majority of its lifetime is short.

The main scientific challenge to be addressed in this project is to establish a
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2 Chapter 1. Introduction

robust description of crack growth that can be used in more precise fatigue lifetime
models and simulations of fatigue behaviour. The key elements addressed in this
thesis are

• estimation of the stress intensity factor for cracks at stress concentrations.

• increased fundamental understanding of the growth of physically short cracks.

• finite-element post-processor tool for estimating the fatigue life under ser-
vice conditions for components and more complex structures.

The industrial benefit will be access to a reliable, fast and efficient tool for
the fatigue assessment of critical structures.



CHAPTER 2

Stress intensity factor solutions

The stress intensity factor, K, is an important parameter for characterising the
severity of the stress state and the size of the plastic zone at the crack tip. Linear
elastic fracture mechanics states that the singular stress field ahead of a crack tip
is proportional to the stress intensity factor. K is defined as

K = FS
√

πa, (2.1)

where the geometry factor, F , is dependent on the geometry, crack size and
loading. S is the applied stress and a is the crack depth. Fatigue failure is caused
by repeated cyclic loading. Hence, when a structure is subjected to an alternating
stress ΔS, it follows from equation (2.1) that the stress intensity range can be
defined as

ΔK = FΔS
√

πa. (2.2)

The stress intensity range plays an important role in the analysis of fatigue crack
growth [10–14]. It is therefore of crucial importance that robust and accurate
methods for obtaining K is used when predicting the fatigue life of structures
containing crack-like defects.

As long as the crack is located in a homogeneous stress field, K can be ap-
proximated with good accuracy, cf. [15,16]. However, for complex stress fields the
K solution can be difficult to obtain. A large number of different methods for cal-
culating the stress intensity factor for different cracked configurations exists [17].
In the following, two methods for calculating K are presented.

2.1 Asymptotic solutions

The initiation and growth of a fatigue crack often occurs from stress concentra-
tions. If the crack grows in a gradient stress field, the procedure for obtaining
the stress intensity factor is not necessarily straight forward. However, the use of

3



4 Chapter 2. Stress intensity factor solutions

asymptotic solutions has shown that K can be calculated quite easily. Asymp-
totic solutions make use of the near-notch and the remote-notch solution of K to
interpolate over the entire range from shallow to deep cracks. The near notch so-
lution is obtained by means of the stress concentration factor. For cracks located
in the remote stress field, K is obtained by considering the crack to be located in
a smooth plate with a crack depth equal to the sum of the notch depth and the
actual crack depth. Consider the cracked semi-infinite notched specimen in Fig.
2.1(a). For a crack in the notch stress field, the stress intensity factor solution is
asymptotically the same as for a surface crack in a smooth solid, except that the
remote stress is being amplified by the stress concentration factor Kt = σmax/S,
where σmax is the maximum notch stress. As a → 0,

K = FS
√

πa = F0KtS
√

πa, (2.3)

i.e.,
F = F0Kt, (2.4)

where F0 is the geometry factor for the current crack emanating from a smooth
surface. When the crack grows beyond the notch stress field, the remote stress
field dominates the stress intensity factor

K = F0S
√

π(a + d), (2.5)

where d denotes the notch depth. Identification with equation (2.1) yields

F = F0

√
1 +

d

a
. (2.6)

When a/d � 1, F asymptotically approaches F0. If the shallow and deep crack
solution is known, K can be obtained by interpolating between the two solutions.

2.1.1 Equivalent crack depth

Jergéus [18] and Härkegård [19] introduced a solution for the stress intensity
factor by considering the equivalence between the notched configuration and a
smooth semi-infinite plate with a crack of depth D subjected to the same remote
load. D must be of a certain length such that the two configurations yield the
same K value, i.e.,

K = F0S
√

πD. (2.7)

According to [18,19] the equivalent crack depth can be estimated by

D = a + d
[
1 − exp

(
− a

a′

)]
, (2.8)

where

a′ =
d

K2
t − 1

. (2.9)

The transition crack depth, a′, is defined as the crack depth at which the shallow
crack asymptote and deep crack asymptote in equations (2.3) and (2.5), yield
equal results. For a shallow crack the equivalent crack depth becomes

D = K2

t a, (2.10)
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Figure 2.1: (a) Semi-infinite notched plate under uniform stress and (b) smooth
semi-infinite plate with crack depth a + d.

and, for a deep crack,

D = a + d. (2.11)

In Paper 2, it is showed that the same method can be used for obtaining K for
semi-elliptic cracks located at the root of a semi-circular notch in a semi-infinite
plate subjected to uniaxial tension. Paper 4 further uses the solution to estimate
the degree of conservatism by replacing the notch root crack by a homogeneously
stressed surface crack subjected to the maximum notch stress.

2.1.2 Normalised geometry factor

Calculating K by means of normalised geometry factors is a somewhat different
approach. Here, the geometry factor F , for the current cracked configuration
is normalised by means of a known reference solution, F∞. For the notched
configuration in Fig. 2.1(a), the smooth semi-infinite plate, in Fig. 2.1(b), with
a crack of depth a + d is used as a reference. Hence, F∞ can be obtained from
equation (2.6) where F∞ = F . The shallow crack asymptote of the normalised
geometry factor is given by

F

F∞

= Kt

√
a

d
. (2.12)

For deep cracks, the geometry factor of the cracked notch will approach a smooth
plate solution with crack depth a + d, i.e., F/F∞ = 1. In Paper 2 a simple
expression was proposed which asymptotically agrees with the near notch and
remote field estimates, i.e.

F

F∞

=
√

1 − exp(−a/a∗), (2.13)
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where a∗ denotes the transition crack depth at which the two asymptotes coincide.
Hence, by setting equation (2.12) equal to unity yields

a∗ =
d

K2
t

. (2.14)

Paper 3 shows that equation (2.13) can be used also for obtaining K solutions
for finite width through-cracked notched plates subjected to tension or bending.

The same method is used in Paper 5 to establish solutions for both through-
cracks and semi-elliptic cracks in the root of a V-notched plate. The asymptotic
solutions were further used for estimating K for a T-joint with a fillet-weld-shaped
transition.

2.2 Weight functions

The use of asymptotic solutions has shown to give accurate approximations of K.
However, it has a weakness of being applicable only for specific geometries and is
not preferable for arbitrary geometries. Papers 6 and 7 deal with the principals
behind the finite-element post-processor, P•FAT. For this purpose the theory
of weight functions has shown to have the desired flexibility to handle cracks
subjected to an arbitrary stress field by using the un-cracked stress field. The use
of weight functions in crack mechanics was first proposed by Bueckner [20] and
subsequently generalised by Rice [21].

Consider a two-dimensional crack located in an arbitrary elastic body sub-
jected to the stress field σij(x). The weight function, g(x′, y′), where x′ and y′

are local crack coordinates, is defined as the stress intensity factor value at the

B

C
D

A

P

a) b)

area Acrack

Figure 2.2: (a) Schematic drawing of an embedded elliptical crack and definition of
parameters for obtaining the stress intensity factor. (b) Typical finite element mesh
used for an embedded elliptical crack.

crack front point P , when a pair of symmetrical unit opening forces are applied
at a point P ′ on the crack surface, cf. Fig. 2.2(a). The stress intensity factor is
obtained by integrating the product of the weight function g(x′, y′) and the stress
distribution of the crack free solid σa(x

′, y′) over the crack surface area Acrack:

K(P) =

∫
Acrack

σa(x
′, y′)g(x′, y′)dAcrack. (2.15)
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The integral in equation (2.15) is solved numerically in the finite-element post-
processor by using Gauss-Legendre quadrature integration. An example of the
integration mesh for an embedded crack is shown in Fig. 2.2(b). The finite-
element post-processor can handle the growth of an embedded crack [22], surface
crack [23] and a corner crack [24], see Fig. 2.3. A thorough presentation of weight
functions is given in reference [25].

a
a

2a

2c c

2c

embedded crack

surface crack

corner crack

Figure 2.3: Crack configurations implemented in the finite-element post-processor.





CHAPTER 3

Defects causing fatigue failure

The fatigue lifetime largely depends on material defects, e.g., porosity and inclu-
sions, which form as a natural part of the manufacturing process. A successful
design must consider both the size and the number of large defects as well as the
stress distribution arising from the geometry and loading of the component. A
description of different inspection methods, such as non-destructive testing and
optical microscopy is presented in [26].

3.1 Defect distributions

The reliability and performance of metallic components are greatly affected by
the size of defects contained in the most highly stressed volume. Because defects
are small and mostly inside the material, they are difficult to detect and mea-
sure. Observations using automated optical microscopy can, however, be made
on polished plane regions (control areas), and the maximum defect size in a real
component must be obtained by prediction based on some statistical analysis.
There are two different approaches based on the statistics of extremes for esti-
mating the sizes of large defects in a large volume from those of a small volume.
The first approach, called the block maximum method, is based on the generalised
extreme value distribution [27]. In this method, only the size of the largest defect
in each of the k control areas is measured. The second approach is the peak over

threshold method. Here, all defects with sizes above a certain high threshold are
considered and fitted to a generalised Pareto distribution [27]. Both distributions
can be used to predict the maximum defects size in a large volume.

In Papers 6 and 7, the process of predicting number, size and location of life
controlling defects is described.

9



10 Chapter 3. Defects causing fatigue failure

3.2 Crack growth law

The use of stress intensity factors was extended to fatigue problems by Paris and
Erdogan [10], who suggested a power-law relationship between the crack growth
rate da/dn and the stress intensity range ΔK, viz.,

da

dn
= CΔKm, (3.1)

where C and m are material parameters. Klesnil and Lukáš [11] extended Paris’
law into the near threshold region by including the threshold stress intensity
range, ΔKth:

da

dn
= C(ΔKm − ΔKm

th). (3.2)

The fatigue tests by Kitagawa and Takahashi [28] clearly show that the fa-
tigue limit of a cracked solid can be determined by means of the threshold of
the stress intensity range for long cracks only. For short cracks, however, the
fatigue limit asymptotically approaches the ordinary fatigue limit as determined
by means of a smooth specimen. Fig. 3.1 shows a Kitagawa-Takahashi diagram
with experimental data [29,30]. Both the long and the short crack fatigue limits
are satisfied by an equation initially proposed El Haddad et al. [31] for F = 1,
and generalised by Härkegård [19] to an arbitrary geometry factor, F , viz.

Δσ =
ΔKth

F
√

π(a + a0)
=

ΔσA√
1 + a/a0

. (3.3)

One may interpret a0 as an ‘intrinsic’ crack length, which should be added to the
length of the real crack to yield an ‘effective’ crack length.

By means of the theory proposed by ElHaddad et al. [31], the crack propaga-
tion law presented by Klesnil and Lukáš [11] can be rewritten as

da

dn
= CΔKm

th

⎡
⎣

{(
ΔK

ΔKth

)2

+

(
Δσ̄

ΔσA

)2
}m/2

− 1

⎤
⎦ . (3.4)

Crack growth measurements reported in the literature [32, 33] have been reanal-
ysed in Paper 7 in order to verify the above crack growth law.

3.3 Crack arrest

The short crack growth model in equation (3.4) can be used to predict the arrest
of cracks. The stress field decreases rapidly ahead of a notch and may result
in a decreasing crack growth rate for a propagating crack. Fig. 3.2 shows the
normalised equivalent stress intensity factor, ΔKeq/ΔKth, against the normalised
crack depth, a/d, for a circumferentially notched specimen subject to tension-
compression loading. ΔKeq, presented in Papers 7 and 8, is a quantity that
includes the short crack behaviour. In Fig. 3.2, ΔKeq/ΔKth has been presented
for three different stress ranges. The upper curve illustrates a situation, where the
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crack starts to grow from the notch root and continues to grow until final failure.
The intermediate curve shows crack initiation and growth, until ΔKeq falls below
ΔKth and the crack arrests. The lower curve corresponds to a situation, where
no crack initiates.

In paper 8, the experimental data reported by Frost [34] of self-arresting cracks
has been compared with predictions from equation (3.4) and found to be in good
agreement.



CHAPTER 4

A post-processor for analysis of fatigue

problems

4.1 P•FAT

P•FAT is designed as a stand-alone, finite-element post-processor with the com-
ponent geometry and stresses given by a standard finite element program. Data
needed for the computation are nodal coordinates, element topology and stresses.
It has been developed to perform fatigue life predictions in arbitrary three-
dimensional components.

There is a variety of approaches to the fatigue analysis of mechanical compo-
nents. As emphasised in Chapter 1, all approaches are basically related to the
same physical process, namely fatigue crack propagation. A majority of these
approaches can be categorised according to Table 4.1. The implicit approaches
make use of conventional S − N data, where the number of cycles until failure,
N , usually denotes the number of cycles required for the occurrence of a critical
state, e.g. a defined crack size or a certain loss of the bearing capability. The
explicit approaches, on the other hand, consider the actual growth of a fatigue
crack from its initial size, ai, to a final size, af. Standard methods for fatigue life
predictions are deterministic by nature, i.e., material parameters are considered
as predetermined quantities. On the other hand, the probabilistic approaches
assume the material properties to be randomly distributed. Thus, the fatigue life
distribution is obtained rather than a single fatigue lifetime value.

Table 4.1 shows the four types of fatigue assessment methods that have been
implemented in P•FAT (Papers 6 and 7). In the two following Sections, a short
description of the four fatigue assessment methods will be given.

13



14 Chapter 4. A post-processor for analysis of fatigue problems

Table 4.1: Different approaches to fatigue analysis, all related to fatigue crack growth.

Approaches to fatigue analysis Deterministic Probabilistic

Implicit Local Stress Weakest-Link

Explicit Single Defect Random Defect

4.2 Implicit fatigue assessment methods

The implicit approaches, i.e., local stress and weakest-link, use conventional S−N
data as a starting point, and the fatigue life, N , is usually defined as the number
of load cycles required for a macroscopic crack to develop.

4.2.1 Local stress approach

The local stress approach is based on the assumption that the fatigue life or
strength of an arbitrary component can be obtained by solely regarding the local
stress state at some critical location. The analysis is performed on the basis of a
S−N curve from laboratory experiments of a standard smooth fatigue specimen.
By assuming equivalence between the smooth fatigue specimen and the highly
stressed point of a component, the fatigue life or strength can be determined by
means of the S − N curve. Hence, no fatigue damage occurs if

σa,max ≤ σA, (4.1)

where σa,max is the stress amplitude at the critical location and σA is the char-
acteristic fatigue strength of a smooth reference fatigue test specimen. The local
stress approach does not take into account the stress field or the component size.

Presented on generalised from, equation (4.1) can be expressed by means of
the function f , i.e.,

f (σij) ≤ λ, (4.2)

where σij is the local stress tensor at a critical point and λ is the limiting value
for fatigue to occur. Obviously, the function f is given by the selected criterion.
A large number of multiaxial stress criteria has been proposed. Well known mul-
tiaxial criteria, such as Dang Van [35], McDiarmid [36], Sines [37], Findley [38],
Crossland [39], Matake [40] and maximum principal stress have been implemented
in P•FAT. A review of the presented criteria is given in [41,42].

4.2.2 Weakest-link approach

A widely used analogy for the weakest-link model is by considering a chain con-
sisting of several rings. Just as the chain is no stronger than the weakest-link,
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an arbitrary component can be regarded likewise, i.e., that the component only
survives if all small volume elements, which the component has been divided
into, survives. By dividing the the component into infinitely small volumes, the
probability of failure can be obtained from the two-parameter Weibull distribu-
tion [43,44]:

Pf = 1 − exp

⎡
⎣−∫

V

(
σa

σ∗

A0

)bσ dV

V0

⎤
⎦ . (4.3)

Here, bσ denotes the shape parameter and σ∗

A0
the scale parameter. The shape

parameter is a measure of the fatigue limit scatter. The scale parameter is the
63.2% quantile of the Weibull distribution and is often referred to as the charac-
teristic fatigue strength. See Wormsen et al. [9] for a more detailed description
of the weakest-link theory.

4.3 Explicit Fatigue Assessment Methods

The explicit approaches, i.e., single defect and random defect, consider the phys-
ical damage process. Hence, the fatigue life is determined based on the number
of cycles necessary to propagate a crack from an initial size ai to a final size af.

In order to perform a crack growth analysis at a reasonably low cost, the
component geometry is often simplified so that a standard handbook solution
can be used. This procedure is pursued in the programs NASGRO [45] and
AFGROW [46]. When such simplifications cannot be justified, a fully three-
dimensional analysis can be performed [47–50]. However, three-dimensional crack
modeling has a drawback of being extremely time consuming. Therefore, it is
desirable that an alternative method for standard crack growth analysis is used.

An alternative method used in P•FAT, which gives a CPU efficient post-
processing tool, is to use results from a standard finite element stress analysis
and account for a crack by using weight functions [20, 21]. The initial crack-like
defect is regarded as an embedded, semi-elliptical, or a corner crack, depending on
the location of the crack front relative to the free surface. Failure of a component
occurs when a critical crack depth is reached, or when the stress intensity factor
K has reached the fracture toughness.

4.3.1 Single defect approach

In the single defect approach a crack-like defect is inserted into the component
geometry at a user defined location. The post-processor then calculates the fa-
tigue life of the cracked component based on the stress field from a finite element
stress analysis.

In Subsection 4.4 a practical example of the single defect approach is given.
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4.3.2 Random defect approach

In the random defect approach the number, size and position of crack-like defects
are obtained by ‘drawing’ from distribution functions. This process is repeated for
a large number of nominally equal components (‘Monte Carlo’ simulation). The
fatigue life distribution of the component can then be obtained. Consequently,
one has a post-processing tool that can account for fatigue crack growth and cal-
culate the probability of component failure in the same simulation. An important
industrial case where this is relevant is for cast automotive components.

4.4 A practical example using P•FAT

As a practical example of the use of the finite-element post-processor, a welded
aluminium rectangular hollow section T-joint, see Fig. 4.1(a), has been inves-
tigated. As reported in paper 1 the T-joint was tested in four-point bending
with a constant stress ratio R = σmin/σmax = 0.1, resulting in a constant bend-
ing moment throughout the weld region. A welding simulation was carried out

position of the initial crack

20

30

100

100

a)a) b)

Figure 4.1: T-joint configuration: (a) global model and (b) submodel.

in Weldsim [51–53] in order to obtain the residual stress field. The operating
stress field was found by using ABAQUS [54]. The T-joint was modeled using
eight-noded brick elements with reduced integration. For reasons of symmetry,
only one quarter of the T-joint had to be considered. The load was applied to
the chord through cylindrical rods, see Fig. 4.1(a). A submodel with a highly
refined mesh, see Fig. 4.1(b), was used to accurately capture the peak stress and
the adjacent stress field. The boundary conditions imposed on the submodel are
obtained from the global model. The submodel was meshed with twenty-noded
brick elements with reduced integration. The weld was modeled with a weld angle
of 45◦ and with a weld toe radius of 1 mm. The operating stress field from the
submodel and the residual stress field from the weld simulation are combined in
the finite-element post-processor to obtain the spatial distribution of the stress
amplitude and the mean stress.

Fatigue crack growth calculations have been performed with a semi-elliptic
surface crack of initial depth ai = 50 μm. The initial aspect ratio has been
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assumed to be a/c = 1. The position of the initial crack is shown in Fig. 4.1(b).
The fatigue crack growth analysis was terminated, when the crack had reached a
depth of 95% of the wall thickness, i.e., 2.85 mm. The material properties for the
aluminium alloy are given in Table 4.2. The predicted fatigue life curve is shown

Table 4.2: Mechanical properties of the 6082-T6 aluminium alloy.

Fatigue limit [55] ΔσA(R = 0) = 148 MPa

Stress intensity threshold [56] ΔKth(R = 0.1) = 2.08 MPa
√

m

Walker exponent [55] γ = 0.78

Crack growth coefficient [55] C(R = 0.1) = 6.1 · 10−12 m/cycle

Crack growth exponent [55] m = 5.1

in Fig. 4.2 together with fatigue test results that have been reported in Paper 1.
Even though the steepness of the predicted and the experimental S − N curves
are somewhat different, the overall agreement is good. The predicted curve is
non-conservative at elevated stresses but approaches the experimental curve as
the stress decreases. Eventually, the two curves crosses and the predicted fatigue
limit for the T-joint is obtained at approximately 55 MPa. This is clearly a over
prediction since some of the data points are below the predicted curve. It is
worth mentioning that the fatigue limit of the T-joint is strongly dependent on
the intrinsic fatigue limit of the material (Δσ = 148 MPa at R = 0). However, the
intrinsic fatigue limit has been calculated based on the ultimate tensile strength
[55], and thus, the fatigue limit of the T-joint is rather uncertain.
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Figure 4.2: Fatigue test results for the considered T-joint configuration (Fig. 4.1)
together with the finite-element post-processor based prediction curve.





CHAPTER 5

Suggestions for further work

The objective of this thesis has been to study the growth of cracks growing in
gradient stress fields. Much effort has been put into establishing simple and
robust K-solutions and to describe the growth of short cracks. Furthermore,
a post-processor for the analysis of arbitrary components has been presented.
However, there are still many issues that needs to be addressed. Some suggestions
for further work are:

• Establish stress intensity factor solutions for semi-elliptic cracks in finite
notched plates based on asymptotic solutions.

• Develop a methodology for calculating the J-integral based on asymptotic
solutions.

• Perform crack growth measurements on physically short cracks in notches
for validation of short crack growth model.

• Improve weight functions for surface cracks and near-surface cracks.

• Extend P•FAT to cover fatigue crack growth from initial defects that are
not regarded as cracks.

• Increase the fundamental understanding of the relation between the size
and density of material defects, and the forming of a fatigue crack.

19
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Abstract

This paper presents some simple and flexible methods to enhance the fatigue life of welded aluminium components. Besides enhancing
the fatigue life, the proposed methods can easily be implemented into manufacturing processes. The key element of the methods is to
change residual stresses from tension to compression at locations vulnerable to fatigue. This is accomplished by mechanical prestressing
using elastic pre-deformation or by thermal prestressing using induction heating. The specimens tested are welded aluminium rectangular
hollow section T-joints. Prior to fatigue testing, welding FE-simulations were carried out to verify the magnitude and pattern of the resid-
ual stress fields (through process modeling). Fatigue testing was later carried out on four different batches. One batch was produced using
elastically pre-deformed chords, two batches were treated by means of thermal prestressing (induction heating), and one batch was ‘‘as
welded’’ representing a ‘‘reference case’’. Based on statistical evaluation of S–N data, the introduction of superimposed compressive
stress fields results in a significantly improved fatigue life. Among the different batches, induction heating turned out to be the most
promising method with a fatigue strength improvement factor of 1.5 on stress, compared to ‘‘as welded’’ components.
� 2006 Elsevier Ltd. All rights reserved.

Keywords: Fatigue testing; Induction heating; Residual stress; Weld geometry; Welding simulation

1. Introduction

It is well established that manipulations of residual
stress fields will influence the fatigue life either by retarding
(superimposed compressive stress field) or by accelerating
(superimposed tensile stress field) fatigue crack growth.

Residual stresses are defined as those stresses existing in
a structure or a part of a structure in the absence of exter-
nally applied loads. Residual stresses can be categorised as
short-range or long-range stresses. Short-range stresses
exist in the weld metal and the heat affected zone (HAZ)
of welded components and are self-equilibrating over the
cross section of the local member. They are caused by inho-

mogeneous thermal expansion and contraction of the
material in the weld and HAZ region. It is generally
assumed that short-range stresses in welded built-up mem-
bers may reach a level not far from yield stress both parallel
and transverse to the weld. Long-range stresses are uniform
throughout structural members, but not self-balanced
within local members. They are generally small compared
to the yield stress and exhibit small stress gradients. In
small-scale welded specimens typical of S–N testing, only
short-range residual stresses are present.

Various methods to enhance the fatigue life by introduc-
ing favourable residual stresses have been suggested in the
literature, e.g. peening, overload, and thermal methods [1].
However, common to these methods are that they are gen-
erally time-consuming, costly, and labour-intensive. Thus,
they are not feasible in high-volume productions, e.g.
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engine cradles, or in an early stage of the design process of
single, large structures, e.g. ships, bridges. The methods are
rather used as a last resort against poor fatigue design at
the end of the manufacturing process, when no other
options are available.

This paper suggests some simple and flexible methods
that can be integrated directly into the manufacturing pro-
cess in order to enhance the fatigue strength of aluminium
structures. The basic idea is to change the residual stresses
at locations vulnerable to fatigue from tension to compres-
sion, by elastic pre-deformation of chord members during
welding, or by application of induction heating at some care-
fully selected positions. In the case of the thermal prestress-
ing, the analysis scheme is based on FE-simulations where
the intensity and duration of the heat treatment are varied
systematically. In the case of the mechanical prestressing,
different degrees of elastic bending of the chord are examined
through numerical simulations in order to optimise theweld-
ing with respect to the residual stresses. The manipulation of
the manufacturing process is not straightforward, as the
method requires exact information about the effect of the
external manipulations, which is not known a priori. Thus,
the method requires an accurate tool for the prediction of
residual stresses resulting from the welding process, as well
as for the subsequent induction heat treatment.

The governing factors affecting the fatigue life of welded
structures can be categorised as:

• macro-geometrical features and concentrated loads,
• notch effects (local geometrical features),
• weld defects,
• residual stress field.

The objective of this study is to enhance the fatigue life
of aluminium components by means of superimposed
residual stress fields. The paper demonstrates how
improvement methods can be combined with ‘‘through
process modeling’’ (TPM). In order to quantify the signif-
icance of the imposed residual stress field on the fatigue
life, other influencing factors must be accounted for. Thus,
influencing factors like notch effects determined by weld toe
radius, weld toe angle and weld leg length, and weld defects
have been quantified during the experiments.

Various methods for fatigue assessment such as the hot
spot stress approach, or other such as the nominal stress
range approach, or crack growth assessment using fracture
mechanics are not within the scope of this paper. These
issues will be dealt with in subsequent studies.

2. Test specimen preparation

2.1. Residual stress simulation

The FE based simulation program WeldSim was used to
simulate the residual stress distribution resulting from
welding and subsequent local induction heating. The simu-
lation tool is described in Myhr et al. [2,3] and Fjær et al.

[4]. No details regarding the FE-model will be given here.
However, details can be found in Myhr et al. [5] and Tve-
iten [6]. WeldSim is a microstructure based FE-program
which consists of three components that are sequentially
coupled, viz. a numerical heat flow model, a microstruc-
tural model and a mechanical model. The temperature field
calculated by the thermal model influences both the micro-
structural evolution at each material point of the solution
domain as well as the stress–strain fields. At the same time,
there is a link between the microstructural model and the
mechanical model to take into account the important effect
of softening due to dissolution of hardening particles as the
temperature increases during welding or heat treatment.

2.2. Test specimen manufacturing description

The rectangular hollow section (RHS) T-joint tested in
this study was produced by means of four different manu-
facturing processes. Batch 1 was manufactured without any
treatment, representing the ‘‘as-welded’’ condition. It was
tested mainly to establish a reference to the proposed treat-
ments. In accordance with the WeldSim analysis of batch 1,
the residual stress pattern is dominated by tensile stresses at
the weld toe region. As opposed to batch 1, the residual
stress pattern experienced in batches 2–4 is dominated by
compressive stresses at the weld toe region.

The batches are produced according to the following
procedures (obtained by TPM simulations) as illustrated
in Fig. 1:

• Batch 1: Brace and chord welded without clamping or
pre-deformation.

• Batch 2: Brace and chord welded with the chord
clamped at both ends and with an elastic pre-deforma-
tion of the chord member with a maximum deformation
at mid-span of 4 mm.

• Batch 3: Brace and chord welded without any clamping
or pre-deformation (production identical to batch 1)
and the chord heated locally at four locations close to
the weld after the welding.

• Batch 4: Brace and chord welded without any clamping
or pre-deformation (production identical to batch 1)
and chord heated locally at 12 locations close to the
weld after the welding.

Chord and brace elements of batches 1–3 were taken
from the same extrusion, while those of batch 4 were from
another extrusion series. However, both extrusions were
produced with the same aluminium alloy (6082-T6) under
comparable conditions at the same production facility.

3. Experimental test program

3.1. Introduction

A total of 41 test specimens were included in the test
program. Twelve specimens from each of batches 1 and
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2, 9 specimens from batch 3, and 8 specimens from batch
4. The welded specimens consist of two identical alumin-
ium RHS profiles. The dimensions of the profiles are
40 mm · 60 mm with a length of 500 mm and a wall
thickness of 3 mm. The end of one profile is welded
against the flat side of the other using fully automatic
welding. The welding was carried out along the circumfer-
ence of the tube at a travelling speed between 9 and
12 mm/s. After welding and local heating, the test speci-
mens were stored at room temperature for more than a
month before the fatigue test program was started. As
the start and stop positions on the weld are characterised
by a rather irregular and unfavourable weld geometry, the
start and stop positions were placed on the long sides of
the RHS (parallel to the load direction, Fig. 2). With
respect to the applied loading (4-point bending, see Sec-
tion 3.3), this was assumed to be an optimum location
where possible irregular weld geometry (and possible weld
defects) would not adversely influence the fatigue strength
of the test specimens.

3.2. Weld characteristics

In order to quantify the notch effects of the four batches,
weld geometry features such as the weld toe radius, q, weld
toe angle, /, and weld leg length, l, were measured (see
Table 1). A local two-parameter description (with q and
/) has been shown to provide a satisfactory description
of the local weld notch effects [7,8]. The current investiga-
tion also measures the weld leg length l as it has been
shown that this may as well influence the notch effect
[6]. Structured light was used to measure the weld geometry
[9].

The measurements were performed at three weld cross-
sections (at the centre line x = 0, Fig. 2, and at locations
x = ±10 mm) for some randomly selected components
from each batch. In order to determine the characteristics
of the weld geometry, definitions of weld toe angle and
radius have been established (Fig. 3). The definition is
based on a circle drawn over the weld toe, which is fixed
at the transition point between the weld and chord, point
A. The circle radius is altered until it fits the weld toe geom-
etry. A second point is defined as the point where the circle
leaves the weld toe contour, point B. Two vectors are
established from the centre of the circle to each of the
two points. The weld toe angle is then defined as the angle
between the two vectors. The radius is defined as the vector
length.

The weld geometry and weld defects were measured
using structured light [9], which makes it possible to detect
crack depths down to 50 lm. The mean values and the
standard deviation of the measured values have been pres-
ent in Table 1.

Statistical analyses of the weld geometry parameters q,
/ and l were carried out on all four batches according to
Walpole et al. [10]. The parameters were assumed to follow
a normal distribution. At a significance level of 95%, there
is no difference between the batches regarding the mean
values of the weld toe radius. Regarding the weld toe angle,
no significant difference was seen between batches 1, 3, and

Side L

Fig. 2. RHS T-joint.

Fig. 1. Description of the different manufacturing methods of the RHS T-joints tested.
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4. However, there is a significant difference between the
weld at side L (see Fig. 2 for definition of sides) where
the weld toe angle of batch 2 is significantly larger than that
of the other batches. Thus, larger weld toe angles
(increased notch effects) at side L of batch 2 may adversely
affect the fatigue strength of batch 2 compared to the other
batches.

In addition to the geometrical measurements presented
above, possible detectable weld defects were quantified by
means of macro-graphs (examples given in Figs. 4 and 5).

From each of the batches 1, 2 and 4, one test specimen
was cut and macro-graphs were produced. The macro-
graphs were taken at several locations along the fillet weld.
Examining the macro-graphs, a lack of fusion can be seen
at the weld toe (also referred to as cold laps). Similar cold
laps were also detected at previously tested RHS T-joints
[11]. Cold laps of aluminium welds are often caused by a
surface oxide layer, which has a considerable higher tem-
perature of fusion than metallic aluminium (2050 and
650 �C, respectively). Since the temperature at the rim of

the weld bead during welding is somewhat lower than the
temperature inside the weld bead, the temperature is prob-
ably not sufficient to break down the oxide layer in order to
obtain complete fusion at the weld toe. As seen from the
macro-graphs, all batches of test specimens experience cold

Table 1
Measured weld toe characteristics, weld toe radius, q; weld leg length, l; and weld toe angle, /

Side R Side L

Radius, q (mm) Weld leg length
(mm)

Angle, / (�) Radius, q (mm) Weld leg length
(mm)

Angle, / (�)

Mean
value

STDV Mean
value

STDV Mean
value

STDV Mean
value

STDV Mean
value

STDV Mean
value

STDV

Batch 1 (4 welds) �10 mm 1.9 0.5 7.4 0.4 48 15 2.0 0.3 7.1 0.5 48 3
Centre line 1.6 0.7 7.3 0.4 53 7 4.9 1.3 8.2 0.6 39 3
+10 mm 1.7 0.2 6.6 0.5 62 9 4.7 0.6 7.5 0.2 43 4

Batch 2 (5 welds) �10 mm 2.1 0.7 6.8 0.4 59 3 1.5 0.6 6.3 0.4 57 5
Centre line 1.8 0.6 6.6 0.6 56 5 1.7 0.6 6.4 0.4 55 10
+10 mm 1.8 0.6 6.3 0.7 58 5 1.9 0.5 6.0 0.6 59 9

Batch 3 (4 welds) �10 mm 1.1 0.7 6.0 0.3 72 1 1.9 1.0 7.1 0.3 48 10
Centre line 1.0 0.3 6.0 0.1 64 6 2.8 1.0 7.2 0.5 42 12
+10 mm 1.0 0.4 5.5 0.1 69 7 2.8 0.6 6.6 0.1 45 10

Batch 4 (5 welds) �10 mm 2.4 0.9 7.2 0.5 46 7 1.7 0.2 7.4 0.2 47 3
Centre line 1.4 0.5 7.2 0.6 49 16 3.1 1.2 7.5 0.4 32 10
+10 mm 1.1 0.1 6.7 0.4 56 10 2.6 1.7 6.7 0.6 36 9

Fig. 4. Example of macro graph, batch 1.

Fig. 5. Example of macro graph, batch 2.

l

B

A

Fig. 3. Weld geometry definition, weld toe radius, q; weld toe angle, /;
and weld leg length, l.

1670 B.W. Tveiten et al. / International Journal of Fatigue 28 (2006) 1667–1676



laps, with a tendency for the largest to appear in batch 2.
Actually, similar features are normally seen in aluminium
production welds, even though the welds meet the
specifications.

In a study on welded cruciform steel joints, cold laps
have been shown to reduce the fatigue strength [12], since
cold laps act as sites for fatigue crack initiation. It has been
shown that a crack growing from a cold lap rapidly reaches
a vertical orientation [13]. Thus, as observed for numerical
simulations and fatigue tests, it is assumed that the
observed cold laps will reduce the fatigue strength of the
test specimens. However, it is assumed that even though
the cold laps are adversely influencing the fatigue strength,
the effect is the same for all batches. It is therefore likely
that the observed cold laps will not distinctly influence
the comparison between the different production methods.
Indeed, as cold laps at the weld toes seem to be an inherent
feature of aluminium production welds, one should ask the
question whether the fatigue strength of aluminium joints
may be considerably improved by new welding methods
that can eliminate lack of fusion at the weld toes. However,
this is beyond the scope of this study.

After welding batch 2, possible weld defects were
observed by means of visual inspection along the fusion
line of the welded RHS T-joints [6]. Fig. 6 shows an exam-
ple of the observed weld defects along the weld toe of a
specimen in batch 2. Similar weld defects were not observed
visually for batches 1, 3, and 4. The weld defects were also
detected in the structured light measurements of batch 2,
whereas no weld defects were detected for batches 1, 3
and 4.

The visible, large weld defects observed for batch 2 may
be a result of the presence of Mg2Si near the fusion line
[14]. Mg2Si reaches solid state at a lower temperature than
the weld and base material. Thus, at a point in time during
cool-down, a layer of liquid Mg2Si is present at grain
boundaries close to the fusion line, while the weld and base
material have already solidified. This leads to cracks form-
ing at, or near the fusion line. The phenomenon affects all
batches. However, since batch 2 is prestrained at the upper

surface, and is therefore experiencing a large tension field
at the weld, the weld defects will grow larger. These weld
defects will, as mentioned, also appear in the other batches,
but are assumed to be smaller. Thus, it is concluded that
even though the welding process of batch 2 will introduce
compressive stresses along the fusion line, which will
enhance the fatigue life, the process will also introduce
rather large weld defects, which are likely to reduce the fati-
gue life of the RHS T-joint.

Based on the discussion above, the following points are
noted:

• larger weld toe angles (increased notch effects) at side L

of batch 2 may affect the fatigue strength of batch 2
compared with the other batches,

• as seen from the macro-graphs, all batches show cold
laps,

• the specimens of batch 2 show large weld defects along
the fusion line, which will most likely affect the fatigue
life.

3.3. Test rig arrangement

The four different batches of the aluminium RHS T-
joints (Fig. 2) were tested in 4-point bending, with a con-
stant bending moment throughout the weld region
(Fig. 7). The axial loading was provided by a servo-hydrau-
lic actuator. Sinusoidal constant amplitude loading was
applied at R = 0.1 and the fatigue testing was performed
in laboratory air at ambient temperature with a loading fre-
quency ranging from 5 to 10 Hz depending on the applied
load level.

In order to verify the actual stress-state experienced in
the test rig and the validity of elastic beam theory applied
to the RHS T-joints, strain gauge measurements were car-
ried out for one welded specimens from each of batches 1
and 4, and one unwelded RHS chord member (without
brace). The measured strain values are presented relative
to elastic beam theory predictions (D�zz/D�beam) in

Fig. 6. Close-up of the weld defect observed along the fusion line, batch 2.

100[mm] 200[mm] 100[mm]

Actuator, fixed to
steel frame

Fixed to
steel frame

RHS T-joint

Steel beam Steel cylinder
(D = 33 mm)

Fig. 7. Schematic outline of test rig.
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longitudinal direction (see Figs. 8 and 9) both at the centre
line and at the sides (approximately 10 mm from the centre
line, x-direction) of the RHS profile. Due to the irregular
geometry at the weld toe and the size of the strain gauges,
these could not be placed closer to the weld toe location
than about 1 mm.

As should be expected from the brace geometry and the
local notch effects, the strain will increase close to the weld
toe as seen in Figs. 8 and 9. The concentrated loads (steel
cylinders, Fig. 7) from the test rig applied to the chord
explains the localised peak strain observed within 50 mm
from the applied load. The strain measurements performed

plain

Fig. 8. Strain gauge measurements from T-joint (batch 1) and plain chord member relative to elastic beam theory predictions.

plain

Fig. 9. Strain gauge measurements from T-joint (batch 4) and plain chord member relative to elastic beam theory predictions.
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on the unwelded chord shows that concentrated loads from
the steel cylinders will not influence the stress field near the
weld of the T-joint. A difference of less than 2.5% is seen
between the measures stains and beam theory. Inhouse
experience shows that differences of this magnitude is nor-
mally expected from strain gage measurements on welded
joints. No significant difference in strain is observed
between the two batches that were produced from different
extrusion series.

Based on the strain gage measurements, it is concluded
that:

• the concentrated loads from the test rig not will influ-
ence the state of stress near the weld toe,

• the test rig arrangement provides a constant bending
moment over the gauge length,

• elastic beam theory is valid for representing the strains.

4. Fatigue test results

4.1. Introduction

Macro-geometrical features and concentrated loads,
notch effects, weld defects and local compressive or tensile
stress fields are factors affecting the fatigue life. The relative
influence on the fatigue life of welded structures will, how-
ever, be highly case sensitive depending on, e.g. the com-
plexity of the joint, the workmanship and the loading
pattern. However, as a general trend, macro-geometrical
features (e.g. brace attachments), irregular geometry (small
weld toe radii, q, and large weld toe angles, /), existing

weld defects (e.g. undercut and cold lap), and local tensile
stress fields will adversely affect the fatigue strength of
welded structures.

4.2. Fatigue test results

The fatigue test results obtained from the fatigue exper-
iments of the four different batches are shown in Fig. 10. In
order to increase the population of batch 1, results from
fatigue tests performed by Haavi [11] and Edvardsen and
Trandum [15] were included in the statistical analysis of
the S–N data. In [11,15] corresponding tests were per-
formed on ‘‘as welded’’ specimens under comparable labo-
ratory conditions. The three test series were subjected to
extensive statistical analyses based on methods described
by Rausand [16] and Guttman et al. [17] in order to verify
if it is statistically reasonable to treat the results as one
pooled population. The analysis showed that given a 95%
significance level, the samples could be regarded as one
population. The test S–N data are plotted using the num-
ber of cycles, N, to a complete loss of the load-bearing
capacity of the RHS T-joint versus the nominal stress
range, Dr, obtained by means of elastic beam theory. The
S–N data were analysed using a linear S–N curve on a
log-log scale, given by

log N ¼ b log Drþ a; ð1Þ
where the intercept parameter a and slope parameter b
were determined through a statistical regression analysis
(see Table 2 for linear regression parameters). Due to shear
lag effects, maximum longitudinal stress is experienced at
the side corners. The welded RHS T-joint tested in this
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Fig. 10. Fatigue results of batches 1–4.
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study has two locations (side L and R, Fig. 2), where fati-
gue failure may initiate subjected to the same nominal
stress state (see Section 3.3) and environment.

The statistical comparison of batches 1–4 was per-
formed according to methods presented by [16,17]. It is
required that the variances of the data sets subjected to
analysis are equal. The variances of the four batches were
tested and found to be equal with a 95% significance level.
The ‘‘coefficient of variance’’ (COV) for the entire test was
found to be 0.3, and this is within what is usually seen for
constant amplitude tests of welded aluminium joints (see
e.g. [18,19,20] where values between 0.23 and 0.33 were
found). Based on a statistical evaluation of the test S–N
data, the introduction of superimposed compressive stres-
ses into the weld and HAZ has been shown to enhance
the fatigue strength. Fig. 11 shows the 95% confidence
region of the parameters a and b for all four batches.
According to [16,17], the confidence region is obtained
from the following expression:

nðâ� aÞ2 þ 2ðâ� aÞðb̂� bÞPn
i¼1

Dri þ ðb̂� bÞ2Pn
i¼1

Dr2
i

2S2
> f�;2;n�2;

ð2Þ

where f�;m1;m2 denotes the upper � percentile of the Fisher dis-
tribution with m1 and m2 degrees of freedom and S is the
sample standard deviation. â and b̂ are estimates for the
current population with sample size n. It is seen from
Fig. 11 that the slopes of batches 2–4 are significantly dif-
ferent from that of batch 1. Thus, as can be seen from
Fig. 10, all prestressing methods presented in this paper re-
sult in an increased fatigue life. Comparing the batches
subjected to mechanical and thermal treatment, batch 4 is
significantly different from batches 2 and 3, while no signif-
icant difference can be seen between batches 2 and 3 due to
the overlap in confidence regions. The most effective treat-
ment regarding the fatigue life is achieved through the ther-
mal prestressing preformed on batch 4 with a 50% higher
characteristic strength at N = 1 · 106 cycles than that of
batch 1. The corresponding values for batches 2 and 3
are 29% and 25%, respectively.

Studying the crack surfaces in a scanning electron
microscope (SEM), it is possible to locate the site of crack
initiation. The origin of crack initiation is found by tracing
the striations backwards. As expected, crack initiation
always takes place at one of the corners (see Fig. 12), which
are experiencing the highest stresses. The crack first devel-
ops in an elliptic manner, while subsequent cracks initiate

f

f

f

f

Fig. 11. The 95% confidence region for the intercept parameter a and the slope parameter b for all four batches.

Table 2
Linear regression parameters

Number of
specimens, n

Slope of S–N
curve, b

Intercept of
log(N)-axis, a

Correlation,
R2

Standard deviation,
STDVlogN

Characteristic strength
(MPa) at N = 106

Batch 1 12 �4.6 14.1 0.98 0.11 57
Batch 2 12 �5.1 15.5 0.94 0.15 73
Batch 3 9 �5.6 16.3 0.93 0.17 71
Batch 4 8 �6.3 18.2 0.96 0.11 85
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along the weld toe beside the elliptic crack. As opposed to
the initial elliptical crack growth, these cracks grow in a
straight crack front (y-direction).

The TPM analyses using WeldSim show residual stresses
that are all-tensile for batch 1, all compressive for batches 2
and 4, and compressive for batch 3 with some areas of low
tensile stresses. Knowing that batch 2 experiences large
weld defects due to the cooling process, which takes place
under large tensile stresses, the general trend of the fatigue
life (Fig. 10) is highly consistent with the predicted residual
stress fields. Thus, the results show that it is possible to rea-
lise methods for the enhancement of fatigue life based on
TPM simulations.

The fatigue tests presented in this study have been based
on constant amplitude loading. However, for ‘‘real struc-
tures’’, it is observed that the magnitude of the residual
stresses can decrease during the load sequence when sub-
jected to variable amplitude loading. The decay is due to
local shake down, i.e. local plastic deformations caused
by peak loads during the cyclic loading which modifies
the local stress distribution [21]. Thus, definitive conclu-
sions regarding the success of FE-simulations together with
optimised prestressing methods under various service-like
loadings need to be confirmed by further testing. However,
the uncertainties related to the long term effect of the fati-
gue strength improvement by means of residual stress
methods is also relevant for existing weld improvement
methods.

5. Conclusions

Based on a statistical evaluation of the S–N data of the
RHS T-joints, the introduction of superimposed residual
stress fields by manipulating the manufacturing process
will improve the fatigue life of the welded aluminium
RHS T-joints. The manufacturing process have been based
on FE-simulations taking into account microstructural and
mechanical models (through process modeling, TPM).
Other factors influencing fatigue life were monitored, and
were found not to play a significant role. Thus, the fatigue
life enhancement seen in this study is solely a consequence
of the superimposed residual stress fields.

Even though the method of modifying residual stresses
by means of elastic pre-deformation of the chord shows
an improvement of the fatigue strength by a factor of
1.3, the method is not considered practicable, since welding
introduces large defects along the fusion line. However, the
induction heating procedures used in this study have great
potential, since a fatigue strength improvement of a factor
of 1.5 on stress for the RHS T-joint has been
demonstrated.

The following main points are noted:

• The fatigue strength of welded aluminium RHS T-joints
can be enhanced by manipulating the residual stresses.

• The fatigue strength of batch 2 is affected by a large
number of weld defects, caused by the subsequent cool-
ing process under a large tensile stress field.

• The fatigue strength of all batches is adversely affected
by a large number of cold laps.

• The difference in fatigue life among the batches can be
solely explained by variation in the residual stress field
(except for batch 2 where a large number of defects is
seen). Other factors affecting the fatigue life are assumed
to influence all batches equally.

• Methods for fatigue life enhancement of welded alumin-
ium joints can be obtained and optimised by means of
through process modeling (TPM).
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Abstract

This paper presents an approximate method based on asymptotic solutions for estimating the stress intensity factor K
for semi-elliptic surface cracks at stress concentrations. The proposed equation for estimating K makes use of the near-
notch and remote-notch solution to interpolate over the entire range from shallow to deep cracks. The near-notch solution
is obtained by means of the stress concentration factor. For cracks located in the remote stress field, K is obtained by con-
sidering the crack to be located in a smooth plate with a crack depth equal to the sum of the notch depth and the actual
crack depth. The accuracy of the predictions is assessed using numerical calculations and solutions found in the literature.
� 2006 Elsevier Ltd. All rights reserved.

Keywords: Stress intensity factor; Geometry factor; Asymptotic solution; Shallow crack; Deep crack; Notch

1. Introduction

For a real component the stress is generally decreasing from a maximum at some critical point at the sur-
face, e.g. in the case of notches or components subjected to bending or torsion. For simplicity and to ensure
conservatism, crack growth analyses are often performed assuming a homogeneous stress field based on the
maximum stress acting on the surface. This local stress approach yields acceptable results provided that the
stress decreases slowly, i.e. the stress gradient is small. However, for steep stress gradients, a crack growth
analysis based on the local stress will lead to over-conservative predictions. Since crack growth prediction
requires the stress intensity factor K to be known, it is of great practical interest to establish simple formulae
for estimating K for a semi-elliptical crack at the root of a notch.

While approximate K estimation procedures are well established for cracks emanating from a smooth sur-
face, the situation is much less satisfactory, when it comes to cracks at the root of a notch. Thus, the present
work focuses on through-cracks and semi-elliptical cracks at the root of a surface notch in a semi-infinite plate.
Systematic computational efforts over the last 50 years have lead to stress intensity factor solutions for many
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different crack geometries [1], but these are often restricted to a few simple stress fields. For more complex
stress fields, only few empirical solutions exist [2–4]. These are mainly given in terms of a set of empirical equa-
tions established by means of curve fitting to numerical results.

The objective of the present investigation is to present simplified solutions for the stress intensity factor K
for semi-infinite notched plates. These formulae make use of asymptotic solutions to interpolate over the
entire range from shallow to deep cracks. Although only semi-infinite notched plates have been considered,
these formulae should be equally applicable to other notched components, since the component geometry does
not markedly affect the stress intensity values for relatively shallow cracks, provided that the stress field in the
vicinity of the crack is the same [4,5]. The present paper shows that asymptotic solutions provide a useful basis
for the analysis of cracked notched solids.

2. Linear crack analysis, general equations

For an arbitrary body with a semi-elliptic surface crack of depth a under uniaxial remote tension r1 per-
pendicular to the plane of the crack, K can be written as

K ¼ Fr1
ffiffiffiffiffiffi
pa

p
; ð1Þ

Nomenclature

A deepest point of crack front
a crack depth
a 0,a* transition crack depth between shallow and deep crack asymptotes
BEA boundary element analysis
C intersection between crack front and free surface
c half the surface crack length
D equivalent surface crack depth
d notch depth
E Young’s modulus
E2 complete elliptic integral of the second kind
F geometry factor
F0 geometry factor for a crack emanating from a smooth surface
FA geometry factor at point A
FC geometry factor at point C
F1 reference geometry factor = F 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d=a

p
FEA finite element analysis
g Green’s function
J J integral
K stress intensity factor = F r1

ffiffiffiffiffiffi
pa

p
Kt stress concentration factor = rmax/r1
w width of plane specimen
di coefficient of ith order term of ry(x)
m Poisson’s ratio
n dimensionless co-ordinate = x/a
q notch root radius
ry normal stress in y-direction
rmax maximum stress
r1 remote stress
/ angle defining location on semi-elliptical crack front
v relative stress gradient
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where F is a dimensionless function of the geometry of the body and the crack. For a crack in the notch stress
field, the stress intensity solution is asymptotically the same as for a surface crack in a smooth solid, except
that the remote stress is being amplified by the stress concentration factor Kt = rmax/r1 (see Fig. 1). Thus,
as a ! 0,

K ¼ F r1
ffiffiffiffiffiffi
pa

p ¼ F 0K tr1
ffiffiffiffiffiffi
pa

p
; ð2Þ

where F0 is the geometry factor for the current surface crack emanating from a smooth surface. Well known
solutions for a surface crack in a finite plate under tension or bending have been presented by Newman and
Raju [6]. For a semi-infinite plate, the geometry factors for tension and bending coincide. For a semi-elliptic
surface crack with aspect ratio a/c (cf. Fig. 3(b)), the geometry factor at the deepest point of the crack front
A(a; 0) can be estimated as

F 0ð/ ¼ p=2; a=cÞ ¼ F A;0 ¼
1:13� 0:09 a

c

E2ða=cÞ : ð3Þ

Similarly, at the intersection between the crack front and the free surface, C(0;c), the geometry factor can be
estimated as

F 0ð/ ¼ 0; a=cÞ ¼ F C;0 ¼
1:243� 0:099 a

c

E2ða=cÞ
ffiffiffi
a
c

r
: ð4Þ

In Eqs. (3) and (4), the aspect ratio, a/c, is limited to the range from 0 to 1, where the complete elliptic integral
of the second kind, E2(a/c), can be approximated by

E2ða=cÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1:464

a
c

� �1:65r
; 0 6 a=c 6 1: ð5Þ

For an edge through-crack, Eq. (3) reduces to

F 0 ¼ F A;0 ¼ 1:13; ð6Þ
in good agreement with the more precise solution F0 = 1.122 [1].
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Fig. 1. Semi-infinite notched plate under uniform remote stress r1: (a) stress concentration and stress gradient, (b) through-crack at the
root of a surface notch, (c) un-notched cracked plate subjected to the notch stress field ry(x).
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For a crack located in the notch stress field, the asymptotic solution for the geometry factor F becomes

F ¼ F 0K t: ð7Þ
When the crack grows beyond the notch stress field, the remote stress field dominates the stress intensity
factor, which may now be estimated by

K ¼ F 0r1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðaþ dÞ

p
; ð8Þ

where d denotes the notch depth. Identification with Eq. (1) yields

F ¼ F1 ¼ F 0

ffiffiffiffiffiffiffiffiffiffiffi
1þ d

a

r
; ð9Þ

where F1 denotes a reference geometry factor. When a/d � 1, F asymptotically approaches the constant
value

F ¼ F 0: ð10Þ
The two preceding asymptotic solutions, i.e. Eqs. (7) and (10), give the upper and lower bound values for the
geometry factor F. By using these asymptotic solutions, simple formulae can be established for the geometry
factor F of an arbitrarily sized semi-elliptic crack emanating from the root of a notch.

In the next section, geometry factors are presented for through-cracks at the root of a notch. Semi-elliptical
cracks will be treated in Section 4.

3. Through-crack at the root of a notch

The configuration considered is a notched semi-infinite plate subjected to a remote stress r1 perpendicular
to the symmetry plane of the notch. The notch is characterised by its depth d, its root radius q and its elastic
stress concentration factor Kt = rmax/r1. Along with the stress concentration comes a stress field with its larg-
est gradient at the notch root, as illustrated in Fig. 1(a). At the root of the notch, a through-crack of depth a is
located as shown in Fig. 1(b). It should be noted that F0 = 1.122 for a through-crack.

3.1. Geometry factors

Several methods are available for determining stress intensity factors [7,8]. In the following, only approxi-
mate methods using the ‘nominal’ stress field equal to the ‘local’ stress field of the crack-free specimen (in the
plane of the subsequent crack) are considered.

3.1.1. Green’s function

One of these methods is based on the solution of an edge through-crack of depth a, where the crack surfaces
are subjected to a pair of symmetrical point forces, the so-called Green function. Once the stress in the plane of
the subsequent crack and the appropriate Green function are known, determination of the geometry factor F
is reduced to a simple integration procedure.

Consider now an edge through-crack of depth a located in a smooth semi-infinite plate subjected to the
notch stress field ry(x), see Fig. 1(c). The geometry factor F can then be estimated according to

F ¼ 1

p

Z 1

0

ryðanÞ
r1

gðnÞdn; ð11Þ

where g(n) is the Green function and n = x/a. According to Hartranft and Sih [9], the Green function for a
crack of depth a subjected to a pair of symmetrical point forces in a semi-infinite plate is given by

gðnÞ ¼ 2ð1þ f ðnÞÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p ; ð12Þ

f ðnÞ ¼ ð1� n2Þð0:2945� 0:3912n2 þ 0:7685n4 � 0:9942n6 þ 0:5094n8Þ: ð13Þ
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3.1.2. Stress gradient method

Another method for estimating the F value for a shallow crack at the root of a notch [10,11] is based on
work by Benthem and Koiter [12]. For an edge-cracked semi-infinite plate subjected to a linear distribution
of stress, one obtains

F ¼ F 0ð1þ 0:609vaÞ: ð14Þ
If x denotes the distance below the surface, the relative stress gradient v is defined as (cf. Fig. 1(c))

v ¼ 1

rmax

oryðxÞ
ox

� �
x¼0

: ð15Þ

For a plate of width w subjected to pure bending, the relative stress gradient is given by

v ¼ � 2

w
: ð16Þ

Eq. (14) may be compared with the geometry factor of a single-edge-cracked plate of width w subjected to
bending [1]:

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2w
pa tan

pa
2w

q
cos pa

2w

0:923þ 0:199 1� sin
pa
2w

� �3� �
: ð17Þ

It turns out that Eq. (14) is accurate for shallow cracks only, and that it should not be extrapolated beyond
a/w = 0.05.

If a shallow crack at the root of a notch is subjected to the same stress gradient, v, as the semi-infinite edge-
cracked plate loaded by a linear distribution of stress, the geometry factors should be asymptotically equal.
Thum et al. [13] found that the relative stress gradient at the root of a semi-elliptic surface notch of root radius
q could be well approximated by

v ¼ � 2

q
: ð18Þ

Eq. (14) then reduces to

F ¼ F 0K t 1� 1:218
a
q

� �
: ð19Þ

According to [14], the stress concentration factor for a semi-infinite notched plate subjected to tension can be
estimated by

K t ¼ 1þ 0:1

d=q
þ 0:13

d=qð Þ1:25
 !�0:5

: ð20Þ

As can be seen from Eqs. (19) and (20), the asymptotic geometry factor, F, for an edge-crack at the root of a
notch is only dependent on the ratios a/q and d/q.

3.1.3. Luká�s and Klesnil’s method

For a shallow through-crack at the root of a notch, Lukáš and Klesnil [15] presented a simple formula for
the geometry factor, viz.

F ¼ F 0K tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4:5ða=qÞp : ð21Þ

Again, q denotes the notch root radius. As a/q ! 0, Eq. (21) simplifies to the shallow crack asymptote
F = F0Kt. Normalising Eq. (21) with respect to the geometry factor, F1, for an edge through-crack in a
smooth plate with the total crack depth a + d, cf. Eq. (9), yields
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F
F1

¼ K tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d=aþ 4:5ða=qÞ þ 4:5ðd=qÞp : ð22Þ

3.2. Geometry factors based on asymptotic solutions

3.2.1. ‘Equivalent’ surface crack depth
For a through-crack located at the root of a notch, the geometry factor F is bounded by a lower and an

upper asymptote, so that 1 6 F/F0 6 Kt. Jergéus [16] and Härkegård [17] introduced an equation for F, which
asymptotically agrees with the near and remote field estimates. Thus, they suggested that the geometry factor
be written as

F ¼ F 0

ffiffiffiffi
D
a

r
; ð23Þ

where D is an ‘equivalent’ surface crack depth, which can be estimated by

D ¼ aþ d 1� exp � a
a0

� �h i
; ð24Þ

and

a0 ¼ d

K2
t � 1

: ð25Þ

The transition crack depth a 0 is defined as the crack depth at which the asymptotic Eqs. (2) and (8) for the
stress intensity factors of shallow and deep cracks, respectively, yield equal results.

For a shallow crack, i.e. a � a 0, the equivalent surface crack depth becomes

D ¼ K2
t a; ð26Þ

and, for a deep crack, i.e. a � a 0,

D ¼ aþ d: ð27Þ
Hence, Eq. (23) is in complete agreement with the asymptotic Eqs. (7) and (9).

3.2.2. Normalised geometry factors

For shallow cracks, a/d � 1, the ratio F/F1 is dominated by the stress field from the notch root, and F

approaches the shallow crack asymptote, see Eq. (7). For a through-cracked notched plate subjected to uni-
axial tension r1 (cf. Fig. 1), the ratio becomes

F
F1

¼ K tffiffiffiffiffiffiffiffiffiffi
1þ d

a

q ; ð28Þ

which simplifies to

F
F1

¼ K t

ffiffiffi
a
d

r
; ð29Þ

when a 0 � d.
For deep cracks, the geometry factor of the cracked notch will approach that of a smooth plate with a crack

depth equal to the sum of the notch depth and the actual crack depth.
A simple expression, which asymptotically agrees with the near and remote field estimates is given by

F
F1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� expð�a=a�Þ

p
; ð30Þ
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where a* denotes the transition crack depth between the shallow and deep crack asymptotes, defined by the
crack depth at which the two asymptotes coincide (cf. Fig. 2). Hence, a* is determined by setting Eq. (29) equal
to unity, which yields

a� ¼ d

K2
t

: ð31Þ

It can be shown that Eq. (30) satisfies the asymptotic expressions for shallow and deep cracks. Eq. (30) is de-
picted in Fig. 2 as a solid line.

4. Semi-elliptic crack at the root of a surface notch

Next, a semi-elliptic crack located at the root of a semi-circular edge notch in a semi-infinite plate subjected
to uniaxial tension r1 perpendicular to the symmetry plane of the notch is considered. The cracked configu-
ration is shown in Fig. 3(a). The crack is characterised by its depth a and its surface length 2c, as shown in
Fig. 3(b).
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Fig. 2. Principle graph of F/F1 against the normalised crack depth a/a*: logarithmic scales.
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Fig. 3. Schematic drawings of a semi-elliptic crack emanating from the notch root: (a) three-dimensional view and (b) two-dimensional
view of the cracked section A–A.
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4.1. Geometry factors

4.1.1. Pommier, Sakae and Murakami

Using the body force method [18], Pommier et al. [3] have derived numerical solutions for the geometry
factor F of a semi-elliptic surface crack located in a semi-infinite plate subjected to mode I loading. The crack
aspect ratio is limited to the interval 0.5 6 a/c 6 2. Their solution is given by a set of empirical equations,
which allow the stress field of the crack-free plate to be fitted to a third-order polynomial.

For the semi-infinite plate, shown in Fig. 1, the normal stress in the y-direction varies with the x-coordinate
only. The normal stress ry(x) is approximated by the third-order polynomial [19]

ryðxÞ ¼
X3
i¼0

di � ðx=dÞi � r1; ð32Þ

where di is the coefficient of the ith order term of ry(x). If Eq. (32) were an exact representation of ry(x), then
d0 = Kt.

The empirical equations due to Pommier et al. [3] yield the geometry factor at the deepest point of the crack
front A(a; 0) (cf. Fig. 3(b))

F A ¼
X3
i¼0

di � ða=dÞi � F ið/ ¼ p=2; a=cÞ; ð33Þ

and at the intersection between the crack front and the free surface C(0;c)

F C ¼
X3
i¼0

di � ða=dÞi � F ið/ ¼ 0; a=cÞ: ð34Þ

Fi is the geometry factor corresponding to the ith order unit stress field.

4.1.2. Luká�s method for semi-elliptical cracks

Based on work by Grandt and Kullgren [20], Lukáš [21] found that Eq. (21) for a through-crack at the root
of a notch could be generalised to a semi-elliptic crack with an arbitrary aspect ratio a/c. It is only necessary to
replace F0 by the geometry factor FA,0 for the deepest point of a semi-elliptic crack emanating from a smooth
surface and having the same aspect ratio as the crack at the notch root. Thus Lukáš estimated the geometry
factor of a semi-elliptic notch crack to be

F A ¼ F A;0K tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4:5ða=qÞp : ð35Þ

4.2. Asymptotic solution

Based on work by Jergéus [16] and Härkegård [17], cf. Eq. (23), it is suggested that the geometry factor at
the deepest point of the crack front A(a; 0) can be written in terms of the crack depth a and the equivalent
crack depth DA as

F ð/ ¼ p=2; a=cÞ ¼ F A ¼ F A;0

ffiffiffiffiffiffiffi
DA

a

r
; ð36Þ

where FA,0 is given by Eq. (3), and DA = D according to Eq. (24). As for the through-cracked specimens, Eq.
(36) asymptotically satisfies the shallow and deep crack estimates FA,0Kt and FA,0.

Similar to the deepest point A(a; 0), the geometry factor at the surface point C(0;c) is characterised by a
shallow and a deep crack asymptote. For shallow cracks, i.e. a/d � 1, the asymptote is given by

F C ¼ F C;0K t; ð37Þ
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where FC,0 is the corresponding geometry factor of a crack in a smooth plate, which can be found by means of
Eq. (4). While the surface point C(0;c), regardless of the crack depth, is influenced by the elevated stress at the
notch root, it may not be obvious that FC asymptotically approaches a ‘deep crack’ solution. However, as the
crack grows deeper, a decreasing part of the crack front will be influenced by the notch stress field. The influ-
ence decreases until the notch depth becomes insignificant compared with the dimensions of the crack. This
can then be regarded as a semi-elliptical surface crack of depth a + d located in a smooth plate. Hence, as
the crack grows deeper, the ratio FC/FC,0 asymptotically approaches unity. Based on numerical results, it will
be shown in Section 5 that the geometry factor FC converges more slowly towards its ‘deep crack’ solution
than FA. Thus, a suitable expression for the equivalent notch depth turns out to be

DC ¼ aþ 4d 1� exp � a
4a0

� �h i
: ð38Þ

With this equivalent notch depth, the geometry factor at the surface point can be estimated as

F ð/ ¼ 0; a=cÞ ¼ F C ¼ F C;0

ffiffiffiffiffiffi
DC

a

r
: ð39Þ

Fig. 4 shows a principle graph of the normalised geometry factors FA/FA,0 and FC/FC,0 versus the normalised
crack depth a/d. As can be seen, both FA and FC satisfy the asymptotic solutions for shallow and deep cracks.

5. Numerical analysis

5.1. Through-cracked specimens

5.1.1. Finite element modelling and evaluation procedures

Linear elastic analyses of the finite element models were performed using the finite element program ABA-
QUS [22]. Fig. 5(a) illustrates a typical finite element mesh employed in the present work. The local mesh in
the crack tip region was identical for all models, with 16 elements around the crack tip. Eight-noded isopara-
metric second-order plane strain elements with reduced integration (2 · 2 Gauss points; element type CPE8R
in ABAQUS [22]) were applied. The finite element models contained 1100–1600 elements. The applied mesh
assured sufficient accuracy in all cases investigated. In these analyses, Poisson’s ratio was chosen to be m = 0.3,
and small displacement theory was assumed throughout.

5.1.2. Geometry factors

The through-crack configuration considered is shown in Fig. 1. The notch is assumed to be semi-circular,
i.e. d/q = 1. According to Eq. (20), and verified by FEA, the stress concentration factor Kt = 3.1 for the

Fig. 4. Principal graph of FA/FA,0 and FC/FC,0 versus the normalised crack depth a/d.
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notched configuration. Subsequently, the different solutions for the geometry factor presented in Section 3 are
compared.

Geometry factors, F, have been plotted against the normalised crack depth, a/d, in Fig. 6. Fig. 6 shows the
FEA graph of F against a/d together with curves based on asymptotic solutions and Green function. For very
shallow cracks, say a/d < 0.001, the geometry factor assumes the constant value F0Kt. As a/d increases, F
decreases in a regular fashion. As the crack grows beyond the notch root stress field, the remote stress field

w

a b

Fig. 5. (a) Finite element mesh for a through-cracked notched specimen (d/q = 1 and q/w = 0.1) with a magnified view of the notch root
region. The mesh contains 4804 nodes, forming 1527 elements. (b) Boundary element mesh of a semi-circular crack (a/c = 1). The mesh
contains 403 nodes forming 374 elements.
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Fig. 6. Geometry factors due to FEA for an edge through-cracked notched plate (d/q = 1, Fig. 1(b)) with Kt = 3.1, together with results
obtained from the solutions based on Jergéus and Härkegård, Green’s function and Benthem and Koiter.
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becomes dominating, and F asymptotically approaches the constant value F0. The expression for the solid line
is given by Eq. (23). As can be seen, the solution is in excellent agreement with the finite element results. The
result obtained with Green function is drawn as a dashed curve, the asymptote of which agrees with those pre-
dicted by Eq. (23). For intermediate crack depths, the Green function yields values of the geometry factor
exceeding those obtained with Eq. (23) by less than 13%.

In Fig. 6, Eq. (19) based on work by Benthem and Koiter [12] is shown as a dash-dotted line. For a/d < 0.1,
F values generated by the Benthem and Koiter formula are slightly to conservative. For somewhat deeper edge
cracks, the Benthem and Koiter values of F fall below the FEA results, since only the tangent of the stress field
at the notch root is used. The difference between the FEA results and Eq. (19) is due to the uncertainties
related to the determination of the relative stress gradient v. The v value from FEA is found to be slightly
greater than Eq. (18). Hence, geometry factors from Eq. (19) exceeds those obtained from FEA.

5.1.3. Normalised geometry factors

In Fig. 7 the finite element F values have been normalised with respect to F1 for an edge through-crack in a
semi-infinite smooth plate with the total crack depth D = a + d. The abscissa is the normalised crack depth
a/a*. The solid line is given by Eq. (30). The finite element results have been obtained from three notched
plates (d = 0.1w) under remote tension with d/q = 0.27, 0.93 and 1.96. According to Eq. (20), and verified
by FEA, the stress concentration factors for these specimens are Kt = 2, 3 and 4, respectively. As can be seen
from Fig. 7, Eq. (30) is in excellent agreement with the finite element results. For comparison, the results
obtained from Eq. (22) according to Lukáš and Klesnil [15] have been depicted as dashed lines in the same
figure. For a/a* < 1 the two solutions nearly coincide. For deeper cracks, Eq. (22) gives non-conservative
values for the geometry factor. This occurs since Eq. (22) does not fulfil the deep crack asymptotic behaviour.

5.2. Semi-elliptically cracked specimens

5.2.1. Boundary element modelling and evaluation procedures

Fig. 5(b) shows the boundary element mesh of a semi-elliptical crack employed in the present work. The
local mesh of the semi-elliptical cracks was similar for all a/c ratios analysed and consisted of 42 elements
around the crack front. Four-noded first-order elements were applied.

Elastic analyses of the boundary element models were performed using the boundary element program
FRANC3D [23–26]. In this program, the stress intensity factor is evaluated at discrete points at the crack front
according to a displacement based method given by Chan et al. [27]. Furthermore, plane strain conditions are
assumed all along the crack front.

Fig. 7. Geometry factors as functions of the normalised crack depth a/a* for through-cracked notched plates subjected to remote uniaxial
tension (Fig. 1(b)).
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5.2.2. Geometry factors

The cracked configuration considered is shown in Fig. 3 and has been analysed under remote uniaxial stress
r1. The notch is assumed to be semi-circular, i.e. d/q = 1. The stress concentration factor Kt = 3.2 at the cen-
ter of the notch. It should be noted that the stress in the three-dimensional case varies from the surface to the
center.

In Figs. 8 and 9, the geometry factors FA and FC have been plotted against the normalised crack depth a/d.
The geometry factors have been obtained by means of the asymptotic solutions for semi-elliptic cracks (Eqs.
(36) and (39)), the solution by Pommier et al. [3] and by Lukáš method (Eq. (35)). Along with these solutions,
finite element results presented by Lin and Smith [28] and boundary element results are shown.

a b

Fig. 8. Geometry factors FA for the deepest point A(a; 0) due to (a) FEA results [28] and (b) BEA results for a semi-elliptically cracked
notched plate (Kt = 3.2, d/q = 1) (Fig. 3(a)).

a b

Fig. 9. Geometry factors FC for the surface point C(0;c) due to (a) FEA [28] and (b) BEA results for a semi-elliptically cracked notched
plate (Kt = 3.2, d/q = 1) (Fig. 3(a)).
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5.2.3. Geometry factors for the deepest point at the crack front

Fig. 8(a) shows the geometry factor FA for the deepest point, A(a; 0), for the aspect ratios a/c = 0.2, 0.4, 0.6,
0.8 and 1.0. The expression for the solid lines is given by Eq. (36). As can be seen, the solution is in good over-
all agreement with the finite element results presented by Lin and Smith [28].

Fig. 8(b) shows the geometry factors, FA, generated by means of the asymptotic solutions, Eq. (36), Pom-
mier et al. and Lukáš method for crack aspect ratios a/c = 0.5 and 1.0 together with boundary element results.
As can be seen, Eq. (36) is in good overall agreement with the boundary element results. For a/d > 1, the
boundary element results fall slightly below the FA values from Eq. (36).

For a/d 6 1, FA values generated by Lukáš solution, i.e. Eq. (35), follow the asymptotic solution. For some-
what deeper cracks, Lukáš solution falls below the deep crack asymptote.

The solution due to Pommier et al. is shown in Fig. 8(b) as a dashed curve and is discontinued at a/d = 0.25,
since this is the maximum range, where the uncracked stress field can be fitted to a third-order polynomial. For
a/c = 0.5, the FA values generated from the Pommier solution fall below those of Eq. (36) even for very shal-
low cracks. This occurs since the FA,0 value due to Pommier for a/c = 0.5 falls below FA,0 due to Newman–
Raju. For deeper cracks, values based on Pommier’s solution fall slightly below BEA data.

5.2.4. Geometry factors for the crack front surface point

In the previous subsection, results of FA were presented. This subsection presents geometry factors, FC, for
the crack front surface point C(0;c).

Finite element results in Fig. 9(a) are from Ref. [28]. The solid lines are given by Eq. (39). For shallow
cracks, say a/d < 0.1, the FEA results exceed the shallow crack asymptote, except for a/c = 0.2. FEA results
tend to fall below those of Eq. (39), but within acceptable limits.

In Fig. 9(b), geometry factors, FC, from Eq. (39) and the Pommier et al. solutions are shown for crack
aspect ratios a/c = 0.5 and 1.0 along with boundary element results. As can be seen, Eq. (39) is in good overall
agreement with the boundary element results. For crack depths a/d < 0.01 and a/c= 0.5 and 1.0, the FC values
generated by the Pommier solution exceed the asymptotic values. This occurs since the Newman–Raju FC,0

value is below the corresponding Pommier value.
In the present paper, the proposed asymptotic method has been used in conjunction with Newman and

Raju’s [6] solution for a surface crack in a finite plate under tension. As can be seen in Fig. 9(b), the New-
man–Raju FC = KtFC,0 value is below the corresponding Pommier value. If the Pommier FC,0 value is used,
a better agreement is achieved between the present approach and the FE-based results of [28]. In addition,
Lin and Smith [28] notes that their FC values might not be sufficiently accurate for shallow and deep cracks
due to the finite element mesh used.

6. Conclusions

Notched specimens with through-cracks or semi-elliptic cracks emanating from the root of the notch have
been analysed by means of the finite element and boundary element methods. Simplified solutions for the
stress intensity factor K have been presented. These solutions use the stress field ahead of the crack-free notch
as the boundary load of an un-notched cracked specimen.

For the through-crack specimens, the solution by Jergéus [16] and Härkegård [17], Eq. (23), is found to be
in excellent agreement with the finite element results. The geometry factors generated by means of Green func-
tion exceed the FEA values by less than 13%. For a/d < 0.2, geometry factors from Eq. (19) slightly exceeds
those obtained from FEA.

A simple equation has been proposed for the geometry factor of a through-crack specimen based on a ref-
erence solution F1. The equation satisfies the shallow and deep crack asymptotes. This solution has been com-
pared with a solution presented by Lukáš and Klesnil [15]. It is found that the two solutions are in good
agreement for shallow cracks.

For a semi-elliptic crack at the root of a notch, it has been shown that the geometry factors FA and FC are
both bounded by a shallow and a deep crack asymptote. The solution by Jergéus and Härkegård for edge
through-cracks has been extended to semi-elliptically cracked specimens. Their solution is found to be in good
agreement with finite element and boundary element results for both FA and FC. For the deepest point A(a; 0)
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of a shallow crack (a/d � 1) it has been found that the proposed solution is in good agreement with solutions
by Pommier et al. [3] and Lukáš [21]. The solution by Pommier et al. for FC was also found to be in good
agreement with the proposed solution for shallow cracks.
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The stress intensity factor for a crack in a finite notched plate based on asymptotic

solutions

A. Fjeldstad∗, G. Härkeg̊ard and A. Wormsen

Norwegian University of Science and Technology, Trondheim, Norway.

Abstract

An approximate method for determining the stress intensity factor K for an edge through-crack at the root of
a notched plate of finite width subjected to tension or bending is presented. The method is an extension of a
previously proposed solution for notched semi-infinite plates subjected to a remote uniaxial stress field. The K
solution makes use of the near-notch and the remote-notch solution to interpolate over the entire range from
shallow to deep cracks. The near-notch solution is obtained by means of the stress concentration factor. The
remote-notch solution is obtained by considering the crack to be located in the corresponding smooth plate with a
crack depth equal to the sum of the notch depth and the actual crack depth. The proposed solution includes the
finite width effect. The accuracy of the solution is assessed using finite element calculations.

Keywords: stress intensity factor, asymptotic solution, geometry factor, shallow crack, deep crack.

NOTATION

a crack depth
a∗ transition crack depth between

shallow and deep crack asymptotes
d notch depth
DENT double-edge-notched tension
F geometry factor
F∞ reference geometry factor
FP geometry factor for a surface crack in a

finite plate
FN notch factor
FEA finite element analysis
K stress intensity factor = FS

√
πa

Kt stress concentration factor = σmax/S
S remote stress
SENB single-edge-notched bending
SENT single-edge-notched tension
w width of plane specimen
α normalised crack depth
ρ notch root radius
σmax maximum stress at the notch root

1 Introduction

The estimation of stress intensity factors for cracks lo-
cated in a notch stress field is a problem of signifi-
cant engineering importance. A great number of solu-
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Arne.Fjeldstad@ntnu.no

tions [1–10] has been proposed, but most have a general
weakness of either being valid only for the near notch
area, or that extensive preliminary analysis is required
for establishing K [11]. Hence, it is still desirable to de-
velop robust methods that can offer solutions over the
entire range from shallow to deep cracks. Wormsen et
al. [12] proposed such a solution for through-cracks and
semi-elliptic cracks at the root a notch. However, the
method only covers semi-infinite specimens under re-
mote uniaxial tension. It would therefore be of consid-
erable practical interest to extend the solution in [12] to
cover finite notched specimens under tension or bending.

The objective of the present investigation is to present
a simplified method for obtaining K for notched plates
of finite width. It is emphasised that only easily acces-
sible values, such as the stress concentration factor of a
notched plate and the stress intensity factor solution of
an un-notched cracked plate [1,2], are needed. Thus, a
minimum of preliminary work is necessary for obtaining
K. In the current study, stress intensity factor solutions
are presented for through-cracked specimens. Based on
the work carried out by Wormsen et al. [12], it is rea-
sonable to believe that the proposed methodology may
also be used for calculating K for a semi-elliptic crack
in a notched finite plate. However, this will not be in-
vestigated here.

1
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2 Linear elastic crack mechanics

2.1 Stress intensity factor

The stress intensity range, ΔK, is the main parameter
to seek when performing fatigue crack growth calcula-
tions. K may be written as

K = FS
√

πa, (1)

where the geometry factor F is a dimensionless function
of the geometry and the loading. S is the remote stress,
e.g., due to a tensile load or a bending moment. Accord-
ing to Fjeldstad et al. [13], F can be written in terms
of the geometry factor, FP, for the associated crack em-
anating from the edge of a smooth finite plate, and a
notch field factor, FN, which takes the notch stress field
into account. Hence,

F = FPFN. (2)

For a smooth plate, cf. Fig. 1(a), the notch factor
FN = 1.

2.2 Notched specimens

Consider now a notched plate of finite width, w, with
notch radius ρ and notch depth d, as shown in Fig. 1(b).
For a shallow crack located in the notch stress field, the
stress intensity factor is asymptotically the same as for
a cracked smooth semi-infinite plate, except that the
remote stress is amplified by the stress concentration
factor Kt = σmax/S, where σmax is the maximum notch
stress. As the crack depth a approaches zero,

K = FS
√

πa = 1.122KtS
√

πa, (3)

that is,
F = FPFN = 1.122Kt. (4)

As the crack grows beyond the notch stress field, the
remote stress field dominates the stress intensify fac-
tor, and the cracked configuration can be regarded as a
smooth plate with crack depth a + d, as illustrated in
Fig 1(c). K can then be obtained as

K = FPS
√

π(a + d). (5)

Identification with equations (1) and (2) yields

F = FPFN = FP

√
1 +

d

a
. (6)

When a/d � 1, FN asymptotically approaches the con-
stant value

FN = 1. (7)

The two preceding asymptotic solutions, i.e., equations
(4) and (7), give the upper and lower bound for the
notch factor, i.e., Kt ≥ FN ≥ 1. By using these asymp-
totes, simple formulae [12,14–16] have been established
for the geometry factor for different cracked configura-
tions.

3 Normalised geometry factors based on

asymptotic solutions

Before normalised geometry factors are presented, it is
convenient to introduce the reference geometry factor,
F∞.

3.1 Reference geometry factor F∞

The reference geometry factor is obtained by considering
a crack of depth a+d in a smooth plate subjected to the
same remote stress field, see Fig. 1(c). Hence, F∞ = F
according to equation (6). This is an appropriate ref-
erence, since the geometry factor F for a crack at the
root of a notch converges towards F∞, when the crack is
sufficiently deep compared with the notch depth. Fur-
thermore, smooth plate solutions are easily accessible,
e.g., in stress intensity factor handbooks [1, 2] . Ac-
cording to Tada et al. [1], FP is given by

FP = 0.265(1 − α)4 +
0.857 + 0.265α

(1 − α)3/2
, (8)

FP =
(
1 + 0.122tan4

πα

2

)√ 2

πα
tan

πα

2
, (9)

and,

FP =

√
2

πα
tan

πα

2

[
0.923 + 0.199(1 − sin πα

2
)4

cosπα
2

]
, (10)

for single-edge-crack tension plates, double-edge-crack
tension plates and single-edge-crack bending plates, re-
spectively. Here,

α =
a + d

w
. (11)

Equations (8) to (10) will be used in the numerical ex-
amples presented in Section 4.

3.2 Semi-infinite plates

A crack located in a semi-infinite plate will evidently
not be affected by finite width effects, i.e. FP = 1.122.
Hence, according to equation (6) the reference geometry
factor is given by

F∞ = 1.122

√
1 +

d

a
. (12)

For shallow cracks, i.e., a � d, F is obtained from equa-
tion (4). The normalised geometry factor

F

F∞

=
Kt√
1 + d

a

, (13)

or, since a � d
F

F∞

= Kt

√
a

d
. (14)

For deep cracks, F/F∞ approaches unity.
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Figure 1: (a) smooth plate with crack depth a, (b) notched plate with a crack of depth a located in the root of
the notch, and (c) reference plate with crack depth a + d.

In [12], Wormsen et al. presented a solution for the
normalised geometry factor. A simple expression that
asymptotically agrees with the two asymptotes is given
by

F

F∞

=

√
1 − exp

(
− a

a∗

)
, (15)

where a∗ denotes the transition crack depth, at which
the two asymptotes intersect (see Fig. 2). a∗ is obtained
by setting equation (14) equal to unity, which yields

a∗ =
d

K2
t

. (16)

In Fig. 2, equation (15) has been plotted as a solid line.

3.3 Finite plates

For plates of finite width, the shallow crack solution of
F is still given by equation (4), and F∞ is obtained from
equation (6). Hence, as a approaches zero the shallow
crack solution becomes

F

F∞

=
1.122

FP

(
d
w

)Kt

√
a

d
. (17)

As for a semi-infinite plate, F tends to F∞ as the crack
grows beyond the notch stress field, and thus, the nor-
malised geometry factor approaches unity. Again, the
transition crack depth is obtained where the two asymp-
totes intersect, i.e., by setting equation (17) equal to
unity:

a∗ =

(
FP

(
d
w

)
1.122

)2

d

K2
t

. (18)

Figure 2: Principle graph of F/F∞ against the normalised
crack depth a/a∗: logarithmic scales.
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When w � d, equation (18) agrees completely with
equation (16). Hence, the solution presented in the pre-
vious Subsection can be regarded as a special case of
the general solution presented here. The expression pre-
sented in equation (15) is used for describing the ratio
F/F∞ for the entire range from shallow to deep cracks.

4 Numerical analysis

The accuracy of the interpolation function given by equa-
tion (15) will now be assessed by finite element analysis
of three basic through-cracked configurations, see Fig.
3:

a. single-edge-notched tension (SENT) plate.

b. double-edge-notched tension (DENT) plate.

c. single-edge-notched bending (SENB) plate.

The notch is described by its depth d and root radius ρ.
A majority of the cracked configurations was modelled
with crack depths around the transition crack depth,
a∗, in order examine the accuracy of equation (15) in
the transition between the two asymptotes. A variety
of notched geometries were modelled in order to assess
the accuracy of the interpolation function.

4.1 Finite element modelling

Linear elastic finite element analyses were performed by
means of ABAQUS [17]. Fig. 4 illustrates a typical
finite element mesh employed in the present work. The
local mesh in the crack tip region was identical for all
models, with 16 elements around the crack tip. Eight-
noded isoparametric second-order plane strain elements
with reduced integration (2 × 2 Gauss points; element
type CPE8R in ABAQUS [17]) were applied. The finite
element models contained 1100-1600 elements. The ap-
plied mesh assured sufficient accuracy in all cases inves-
tigated. In these analyses, Poisson’s ratio was chosen to
be ν = 0.3, and small displacement theory was assumed
throughout.

4.2 Normalised geometry factors

Fig. 5 shows the normalised geometry factor, F/F∞,
plotted against the normalised crack depth, a/a∗, for
the three configurations. As anticipated, F/F∞ closely
follows the shallow crack asymptote as long as a/a∗ is
small. As a approaches the transition crack depth, the
normalised geometry factor deviates from the shallow
crack asymptote and approaches that of a deep crack.
Finally, when a/a∗ � 1, the deep crack asymptote dom-
inates and the geometry factor closely agrees with a
smooth plate with crack depth a + d. The expression
for the solid curve in Fig. 5 is given by equation (15).
The figure clearly shows that the proposed interpola-
tion function is in excellent agreement with the finite

w

Figure 4: Finite element mesh for a through-cracked
notched specimen (d/ρ = 1 and ρ/w = 0.1) with a mag-
nified view of the notch root region.

element results. The data of Fig. 5 have been tabulated
in Table 1. The results show that predictions based on
equation (15) deviate by less than 3.5% from the finite
element results, and the majority of the predictions by
less than 2%. It is worth mentioning that the estimated
geometry factors are generally on the conservative side.

5 Conclusions

SENT, DENT and SENB plates with an edge through-
crack located at the root of the notch, have been inves-
tigated. A solution, originally proposed by Wormsen et
al. [12] for obtaining the geometry factor, F , for semi-
infinite specimens under homogeneous stress, has been
extended to cover finite-width plates under tension or
bending. The method only requires the stress concen-
tration factor of the notch and the stress intensity factor
of an edge crack in a smooth plate plate subjected to the
same remote stress field to be known. Predictions based
on the proposed formulae have been compared with fi-
nite element analyses and found to be in excellent agree-
ment.
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Table 1: Results for the geometry factor F obtained from FEA along with predictions of F/F∞ according to
equation(15).

d/w ρ/d Kt a/d a/a∗ F (FEA) F †
P

√
1 + d

a
F∞ F/F∞ Equation (15) Deviation [%]

SENT: 0.003 3.4 2.0 0.034 0.14 2.25 1.12 5.48 6.15 0.365 0.359 -1.8
0.003 3.4 2.0 0.172 0.69 2.09 1.12 2.61 2.93 0.713 0.705 -1.1
0.003 3.4 2.0 0.345 1.38 1.89 1.12 1.97 2.22 0.854 0.864 1.2
0.02 0.5 4.0 0.5 0.78 3.74 1.13 4.58 5.20 0.720 0.737 2.3
0.02 0.5 4.0 0.25 3.92 2.46 1.14 2.24 2.44 0.970 0.990 2.1
0.02 1 3.06 0.1 0.92 2.86 1.13 3.32 3.76 0.760 0.775 2.0
0.02 1 3.06 0.5 4.59 1.93 1.14 1.73 1.97 0.976 0.995 1.9
0.02 1 3.06 1.0 9.18 1.61 1.15 1.41 1.62 0.989 1.0 1.0
0.02 1 3.06 2.0 18.4 1.39 1.16 1.22 1.43 0.976 1.0 2.4
0.1 1 3.28 0.1 0.92 3.10 1.22 3.32 4.05 0.765 0.777 1.5
0.1 1 3.28 0.3 2.77 2.46 1.25 2.08 2.60 0.946 0.968 2.3
0.1 1 3.28 0.5 4.62 2.22 1.28 1.73 2.22 1.0 0.995 -0.5
0.3 1 4.98 0.033 0.38 5.22 1.70 5.57 9.46 0.552 0.560 1.3
0.3 1 4.98 0.1 1.13 4.73 1.78 3.32 5.89 0.804 0.822 2.3
0.3 1 4.98 0.233 2.63 4.24 1.95 2.30 4.49 0.946 0.963 1.8
0.6 1 16.0 0.0033 0.066 17.8 4.06 17.3 70.4 0.254 0.254 0.0
0.6 1 16.0 0.033 0.66 16.6 4.37 5.57 24.3 0.683 0.697 2.1
0.6 1 16.0 0.067 1.33 15.9 4.76 4.0 19.0 0.836 0.858 2.6
0.6 1 16.0 0.167 3.33 16.4 6.35 2.65 16.8 0.978 0.982 0.4
0.9 1 260 0.011 0.79 297 40.7 9.54 388 0.766 0.739 -3.4
0.9 1 260 0.022 1.58 295 48.6 6.78 330 0.893 0.891 -0.2

DENT: 0.3 1 3.05 0.033 0.31 3.20 1.12 5.57 6.24 0.513 0.517 0.7
0.3 1 3.05 0.1 0.93 2.86 1.12 3.32 3.72 0.768 0.779 1.5
0.3 1 3.05 0.233 2.18 2.41 1.13 2.30 2.59 0.93 0.94 1.2
0.6 1 3.55 0.0033 0.035 3.96 1.23 17.3 21.3 0.186 0.186 0.0
0.6 1 3.55 0.033 0.35 3.75 1.24 5.57 6.93 0.542 0.544 0.4
0.6 1 3.55 0.067 0.70 3.56 1.26 4.0 5.06 0.704 0.710 0.8
0.6 1 3.55 0.167 1.76 3.20 1.34 2.65 3.55 0.90 0.91 1.1
0.9 1 10.7 0.011 0.36 11.7 2.22 9.54 21.2 0.555 0.549 -1.1
0.9 1 10.9 0.022 0.72 11.5 2.34 6.78 15.9 0.726 0.716 -1.4

SENB: 0.1 1 2.81 0.01 0.092 3.10 1.04 10.1 10.5 0.296 0.296 0.0
0.1 1 2.81 0.1 0.92 2.64 1.04 3.32 3.44 0.766 0.775 1.1
0.1 1 2.81 0.3 2.75 2.07 1.03 2.08 2.15 0.961 0.968 0.6
0.1 1 2.81 0.5 4.59 1.78 1.03 1.73 1.78 1.0 0.995 -0.6
0.3 1 3.14 0.033 0.34 3.29 1.11 5.57 6.17 0.533 0.539 1.0
0.3 1 3.14 0.1 1.03 2.94 1.13 3.32 3.75 0.785 0.802 2.2
0.3 1 3.14 0.233 2.41 2.58 1.18 2.30 2.72 0.946 0.954 0.8
0.6 1 7.27 0.0033 0.032 8.08 1.91 17.3 33.1 0.244 0.244 0.0
0.6 1 7.27 0.033 0.62 7.46 2.02 5.57 11.2 0.664 0.678 2.2
0.6 1 7.27 0.067 1.23 7.11 2.16 4.0 8.63 0.824 0.842 2.1
0.6 1 7.27 0.167 3.08 6.99 2.72 2.65 7.19 0.972 0.977 0.5
0.9 1 103 0.011 0.95 107 14.5 9.54 139 0.771 0.784 1.7
0.9 1 103 0.022 1.90 107 17.2 6.78 117 0.916 0.923 0.7

† SENT: equation(8), DENT: equation(9), SENB: equation(10).
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Figure 3: Boundary conditions applied to the cracked specimens: (a) SENT, (b) DENT, and (c) SENB.
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FATIGUE CRACK 
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Trondheim, Norway 

ABSTRACT 

This paper examines how a decreasing stress field influences the fatigue crack growth. Even though the 
stress generally decreases from a maximum at some critical point at the surface for real components, fatigue 
crack growth analyses are often performed assuming a homogeneous stress state to avoid the difficulties 
related to crack growth analyses in complex components. By comparing the calculated fatigue life of cracks 
growing in a homogeneous stress field with the fatigue life of cracks growing in a gradient stress field, the 
degree of conservatism has been determined for several stress gradients. It has been found that a high stress 
gradient has a significant influence on the fatigue life of a component. Hence, using a homogeneous stress 
field based on the maximum stress on the surface to calculate the lifetime may lead to overconservative 
predictions. Stress gradients lead to more conservative predictions for edge through-cracks than for semi-
elliptical cracks located in the same stress field.  

KEYWORDS 

Fatigue crack growth, Stress gradient, Paris’ law, Lifetime prediction 

INTRODUCTION 

For simplicity and to ensure conservatism, crack growth analyses are often performed assuming a 
homogeneous stress field based on the maximum stress acting at the surface. This simplified approach yields 
acceptable results provided that the stress decreases slowly, i.e. the stress gradient is low. However, for high 
stress gradients, a crack growth analysis based on the maximum stress will lead to overconservative 
predictions. It is therefore of great practical interest to determine under which circumstances it is permissible 
to replace the gradient stress field with a homogeneous stress field when calculating the fatigue life of a real 
component. 

Both an un-notched semi-infinite specimen subjected to a linearly decreasing stress field and a notched semi-
infinite specimen under a remote uniform stress will be treated. Assuming Paris’ law to be valid, crack 
growth analyses of edge through-cracks and semi-elliptical surface cracks located in a semi-infinite body 
will be carried out to predict the influence of a stress gradient on the number of cycles N required to 
propagate a crack from a = ai to a = af. The dependence of the normalised lifetime N/N0, where N0 denotes 
the lifetime of a homogeneously stressed fatigue specimen, on the relative stress gradient, (dσ/dx)/σmax, and 
the notch curvature, 1/ρ, will be examined. 



GENERAL EQUATIONS 

For an arbitrary body with a surface crack of depth a under remote stress σ perpendicular to the plane of the 
crack, the stress intensity factor, K, can be written as 

K F aσ π= ,  (1) 

where σ denotes the remote nominal stress. In equation (1), F denotes the geometry factor and is a 
dimensionless  function of the geometry and the type of loading. Based on work by Benthem and Koiter [1], 
F can be written in terms of the geometry factor F0 for a crack emanating from a smooth surface and Fχ,
referred to as the gradient factor, which takes into account the influence of the stress gradient field: 

0 .F F Fχ=  (2) 

For a cracked specimen subjected to a homogeneous stress field, Fχ = 1. The characteristics of Fχ will be 
treated in the subsequent Sections. F0 is determined by means of the well known solution of Newman and 
Raju [2] for smooth finite plates under tension or bending. For a semi-infinite plate, i.e. a/t → 0, the 
geometry factors for tension and bending are both equal to F0. For a semi-elliptical surface crack with a 
crack aspect ratio a/c (cf. Figure 1), the geometry factor at the deepest point of the crack front ( )A ;0a  can 
be estimated as [2] 

( )0 A,0 1.65

1.13 0.09
2; /

1 1.464

a
cF a c F

a
c

φ π
−

= = =
⎛ ⎞+ ⎜ ⎟⎝ ⎠

, 0 / 1a c≤ ≤ . (3) 

c

a

A

C

Figure 1: Two-dimensional view of a semi-elliptical crack.

In the case of an edge through-crack, i.e. a/c = 0, equation (3) reduces to F0(φ = π/2; 0) = 1.13, in good 
agreement with the more precise solution F0 = 1.122 [3]. At the intersection between the crack front and the 
free surface C(0;c), FC,0 can be estimated as 

( )0 C,0 1.65

1.243 0.099
0; /

1 1.464

a
acF a c F
ca

c

φ
−

= = =
⎛ ⎞+ ⎜ ⎟⎝ ⎠

, 0 / 1a c≤ ≤ . (4) 

In the two following Sections, the gradient factor Fχ will be presented for surface cracks growing in a 
linearly decreasing stress field and a notch stress field, respectively. 



CRACKS IN LINEARLY DECREASING STRESS FIELDS 

A smooth semi-infinite specimen with a surface crack of depth a is considered. The specimen is subjected to 
a linearly decreasing stress field with the maximum stress σmax at the surface as shown in Figure 2. 

a

max

Figure 2: Semi-infinite notched plate with a surface crack of depth a subjected to a linearly decreasing stress 
field. 

Edge through-cracks
For an edge through-crack in a semi-infinite body subjected to a linearly decreasing stress field, Benthem 
and Koiter [1] obtained 

max

1 d1 0.61
d

F a
xχ
σ

σ
= + , (5) 

where x denotes the distance below the surface, dσ/dx the constant stress gradient.  

Semi-elliptical cracks 
For semi-elliptical cracks, the empirical solutions proposed by Newman and Raju [2] are applied. Newman 
and Raju [2] presented a solution for specimens with finite thickness. Assuming the crack to be shallow, the 
expression for FA,χ simplifies to: 

( ) A,2; 1 1.22 0.12 a aF a c F
c tχ χφ π ⎛ ⎞= = = − +⎜ ⎟⎝ ⎠

. (6) 

For a plate subject to pure bending, the relative stress gradient is implicitly known through the plate 
thickness and the maximum surface stress.  

max
d 2
dx t
σ σ= − . (7) 

Hence, by substituting the thickness t in equation (6) by means of equation (7), the gradient factor FA,χ is 
obtained as a function of the relative stress gradient. Thus, the use of equation (7) allows the empirical K
solutions by Newman and Raju [2] to be applied to semi-infinite specimens subjected to a linearly 
decreasing stress field. Introducing equation (7) into equation (6) yields 

A,
max

1 d1 0.61 0.06
d

aF a
c xχ

σ
σ

⎛ ⎞= + +⎜ ⎟⎝ ⎠
. (8) 



If a/c = 0, which corresponds to an edge through-crack, equation (8) is in full agreement with equation (5). 

According to Newman and Raju [1], the gradient factor FC,χ at the intersection between the crack front and 
the free surface C(0;c) can be written as 

( ) C,0; 1 0.34 0.11a aF a c F
c tχ χφ ⎛ ⎞= = = − +⎜ ⎟⎝ ⎠

, (9) 

if the crack is assumed to be shallow. Substitution of equation (7) yields 

C,
max

1 d1 0.17 0.055
d

aF a
c xχ

σ
σ

⎛ ⎞= + +⎜ ⎟⎝ ⎠
. (10) 

As observed from equations (8) and (10), the gradient factors will decrease more rapidly with higher stress 
gradients. This supports the argument that fatigue life predictions based on maximum stresses are 
increasingly conservative for higher stress gradients. 

CRACKS IN NOTCHED SPECIMENS 

A notched semi-infinite specimen with notch depth d and notch radius ρ loaded by a nominal stress,σ∞ , is 
considered. The stress concentration factor of the notch is Kt. A crack of depth a is located at the root of a 
notch, as shown in Figure 3. 

a

d

Figure 3: Semi-infinite notched plate with a crack of depth a at the root of the notch subjected to a uniform 
remote stress σ∞ .

Edge through-cracks
The gradient factor solution for the current problem is based on work by Jergéus [4] and Härkegård [5]. By 
introducing an equivalent crack depth, D, the gradient factor may be written as 

,DF
aχ = t1 ,F Kχ≤ ≤  (11) 

for the entire range of crack depths. The equivalent crack depth is given by  

1 exp
'

aD a d
a

⎡ ⎤⎛ ⎞= + − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
, (12) 



and 

2
t

'
1

da
K

=
−

. (13) 

The transition crack depth a’ is defined as the crack depth at which the asymptotic stress intensity factors of 
shallow and deep cracks become equal. 

Semi-elliptical cracks 
Wormsen et al. [6] extended the above asymptotic solution for through-cracks to semi-elliptical surface 
cracks at the root of the notch. As for edge through-cracks, it was found that the gradient factor Fχ could be 
expressed in terms of the crack depth a and an equivalent crack depth AD  as 

A
A, ,DF

aχ =  (14) 

where DA = D according to equation (12). Even though the surface point C(0;c) is located in the notch stress 
field, Wormsen et al. [6] were able to show that FC,χ  approaches unity as the crack becomes sufficiently 
deep, i.e. a >> d. Similar to FA,χ, FC,χ was found to be in the range t C, 1K F χ≥ ≥ . The gradient factor at the 
surface point can be written as  

C
C, ,DF

aχ =  (15) 

where the equivalent crack depth DC is given by  

C 4 1 exp
4 '
aD a d
a

⎡ ⎤⎛ ⎞= + − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
. (16) 

Due to the somewhat different expressions for the equivalent crack depths D, the gradient factor FC,χ
converges more slowly towards the deep crack asymptote than FA,χ. However, due to the far field solutions, 
where both FA,χ and FC,χ → 1, the semi-elliptical crack eventually will behave as a crack in a homogeneous 
stress field.  

NUMERICAL CRACK GROWTH ANALYSIS 

Crack growth analyses of a smooth specimen with a linearly decreasing stress field and a specimen with a 
semi-circular notch (d = ρ) loaded by a remote nominal stress are performed. Two cases are considered 
where the number of cycles, N, required to propagate a crack from an initial crack depth of ai = 0.015mm 
and ai = 0.15mm, respectively, to a critical crack depth of af = 1.5mm is calculated. The lifetimes are 
normalised by means of the lifetime N0 of a homogeneously stressed semi-infinite specimen with 
corresponding initial and critical crack depths. The homogeneous stress is equal to the maximum stress 
acting on the surface (σmax and tK σ∞ , respectively). All the semi-elliptical cracked configurations have an 
initial crack aspect ratio a/c = 1. 

Numerical integration routine 
The fatigue life estimation is performed by means of Paris’ law [7], which describes the relationship between 
the crack growth rate da/dN and the stress intensity range KΔ , viz, 



( )d
d

ma C K
N

= Δ . (17) 

The constants C and m are crack growth parameters. According to equation (17), the fatigue lifetime is 
obtained through the following expression 

( )
f

i

2

d
,

a

m m
a

aN k
F a a c a

= ∫ , (18) 

where all quantities independent of a are represented by the constant k, given by  

2

1
m mk

Cπ σ
=

Δ
. (19) 

Since both N and N0 are obtained from equation (18), it can be shown that N/N0 is independent of the applied 
nominal stress range, σ, and the crack growth parameter C.

The numerical integration is performed by means of Simpson’s rule, where the integration intervals are 
defined by 

( )
i10 j

ja a λ= , ( )f i0 logj a a λ≤ ≤ . (20) 

The parameter λ states the number of integration intervals for each decade. In this study, λ  is set to 1000, 
which has proven to be sufficient for achieving convergence of the fatigue life N.

Crack growth analyses are performed for both the deepest point of the crack front A(0;c) and the surface 
point C(0;c). The integration intervals of a are already determined through equation (20). Thus, by applying 
the already known incremental growth of a, the incremental growth of c is determined through the following 
expression 

C C

A A

.
m m

K Fc a a
K F

⎛ ⎞ ⎛ ⎞ΔΔ = Δ = Δ⎜ ⎟ ⎜ ⎟Δ⎝ ⎠ ⎝ ⎠
 (21) 

Normalised lifetimes for specimens with linearly decreasing stress fields 
A large number of crack growth analyses has been performed with different stress gradients. Figure 4 shows 
the normalised lifetimes against the relative stress gradient for both edge through-cracks and semi-elliptical 
cracks. As expected, the normalised lifetime is equal to one for a relative stress gradient approaching zero, 
i.e. (dσ/dx)/σmax = 0. Furthermore, the normalised lifetimes increase as the stress gradient increases. By 
investigating the normalised lifetimes for the two initial crack depths, i.e. ai = 0.015mm and ai = 0.15mm, it 
is clear that the deep initial crack (ai = 0.15) yields a longer normalised life than the shallow crack (ai = 
0.015). Furthermore, the normalised lifetimes for semi-elliptical cracks are generally shorter than for edge 
through-cracks. 

Figure 5 shows the crack aspect ratio a/c against the crack depth, a, describing the evolution of a/c
throughout the fatigue life. The crack aspect ratio is presented for two different stress gradients. The dashed 
lines represent the homogeneously stressed specimen which quickly settles at a/c ≈ 0.9. For cracks growing 
in a gradient stress field, the crack aspect ratio decreases continuously, and it is seen that a/c decreases more 
rapidly for higher stress gradients. 

Edge through-cracks generally yield more conservative results than semi-elliptical cracks. This can be 
explained by studying the a/c ratio throughout the fatigue life of semi-elliptical cracks. As can be seen from 
Figure 5, the a/c ratio decreases for semi-elliptical cracks in stress gradient fields, while a/c of a crack in a 



homogeneous stress field is constant around 0.9. Due to the lower a/c ratio, the geometry factor FA,0
becomes higher for a crack growing in a stress gradient field compared to a corresponding crack growing in 
a homogeneous stress field. This is not the case for edge through-cracks, where F0 is equal to 1.122 in both 
cases. In terms of crack growth, this means that the growth rate of a crack in a stress gradient field 
normalised with respect to the growth rate of a crack of equal depth in a homogeneous stress field is larger 
for semi-elliptical cracks than for edge through-cracks. Thus, due to the higher relative growth rates, the 
normalised lifetimes of semi-elliptical cracks are shorter than those of edge through-cracks. 

Figure 4: Normalised lifetimes as functions of the relative stress gradient for specimens with a linearly 
decreasing stress field. 

Figure 5: Development of the semi-elliptic crack aspect ratio from the initial to the final crack depth for 
specimens with a linearly decreasing stress field. 



Normalised lifetimes for notched specimens 
Similar analyses were performed on notched specimens with different notch curvatures 1/ρ. The lifetimes 
were normalised with respect to the lifetime of a smooth homogeneously stressed body with tKσ σ∞= . The 
normalised lifetimes are shown in Figure 6 as functions of the notch curvature. As expected, the normalised 
lifetimes approach unity as 1/ρ approaches zero. The general features observed in Figure 4 also apply to 
notched specimens. Thus, deeper initial crack depths result in longer normalised lives, and edge through-
cracks yield longer normalised lives than semi-elliptical cracks.  
Figure 7 shows the crack aspect ratio throughout the fatigue lifetime. a/c is presented for two different notch 
curvatures as solid lines, and the dashed lines represent the homogeneously stressed specimen. According to 
Thum et al. [8], the notch curvature is related to the relative stress gradient through  

0t

2 1 d
d xK x
σ

ρ σ =∞

= − . (22) 

Hence, the same characteristics as shown in Figure 5 can be seen for the current specimen, where an 
increased notch curvature, i.e. a higher relative stress gradient, causes the crack aspect ratio to decrease more 
rapidly. Contrary to the specimen with a linearly decreasing stress field, the stress in the notched specimen 
approaches the remote uniform stressσ∞ . Wormsen et al. [6] found that a crack growing from the root of a 
notch will behave as a crack in a homogeneously stressed body after it has grown out of the notch root stress 
field. Thus, after reaching a minimum, the a/c ratio will begin to increase and converge towards 0.9 as the 
crack grows out of the notch root stress field. 

Figure 6: Normalised lifetimes as functions of notch curvature for specimens subjected to a uniform remote 
stress. 



Figure 7: Development of the crack aspect ratio from the initial to the final crack depth for notched 
specimens subjected to a remote stress. 

CONCLUSIONS

This paper treats the influence of a stress gradient of smooth and notched components on the fatigue life. 
Due to the difficulties related to crack growth analyses in real components, fatigue lives are often predicted 
by means of the maximum stress at the component surface. In many instances, this approach may yield 
satisfactory solutions, especially since life estimates will always be on the safe side. However, the maximum 
stress approach may sometimes lead to overconservative estimates. This paper has quantified the degree of 
conservatism and identified features influencing the normalised lifetime by performing crack growth 
analyses both on the real and the smooth specimens. Two cases were considered: a semi-infinite smooth 
specimen subjected to a linearly decreasing stress and a semi-infinite notched specimen subjected to a 
uniform remote stress. The degree of conservatism of the maximum stress approach was quantified by 
normalising the lifetime calculated for the actual specimen with respect to the lifetime of a smooth 
homogeneously stressed specimen subjected to the same maximum stress. The normalised lifetimes were 
presented for various initial crack depths as a function of the relative stress gradient and notch curvature. 
Generally, there are two main features influencing the degree of conservatism: (i) the initial crack depth, ai,
and (ii) the stress field in the plane of the crack, quantified by the stress gradient or the notch curvature. 
Deep initial crack depths, ai, and high relative stress gradients lead to overconservative estimates, especially 
for edge through-cracks. Using the maximum stress approach gives the best results for semi-elliptical cracks 
with shallow initial cracks ai, where good lifetime estimates are achieved even for relatively high stress 
gradients. 
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Abstract

This paper presents an approximate method based on asymptotic solutions for estimating the stress intensity factor K
for semi-elliptic surface cracks at stress concentrations. The proposed equations make use of a reference solution to inter-
polate over the entire range from shallow to deep cracks. The reference solution is obtained by considering the current
crack emanating from the associated specimen with a sharp notch. It is shown that the proposed formulae satisfy the shal-
low and deep crack asymptotes. The asymptotic solutions are applied to a T-joint with a fillet-weld-shaped transition. The
accuracy of the predictions is assessed using numerical calculations.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Stress intensity factor; Geometry factor; Asymptotic solution; Shallow crack; Deep crack; V-notch; T-joint

1. Introduction

A potential failure mode of welded components is fatigue crack propagation of shallow surface cracks
from the weld toe. These cracks, which are roughly semi-elliptic, often grow in stress fields that decrease rap-
idly, i.e., the stress gradient is high. Hence, a crack growth analysis assuming a homogeneous stress field
equal to the maximum stress acting at the surface may lead to overconservative predictions of the lifetime
of the component [1]. Since crack growth predictions require the stress intensity factor K to be known, it
is of great practical interest to establish simple formulae for estimating K for a semi-elliptical crack at the
root of the weld toe.
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While K estimation procedures are well established for cracks emanating from a smooth surface, the situ-
ation is much less satisfactory, when it comes to cracks at the root of a notch. Wormsen et al. [2] presented an
approximate method based on asymptotic solutions for estimating the stress intensity factor K for a semi-ellip-
tical crack at the root of a semi-circular notch. Based on numerical calculations and solutions found in the
literature, the accuracy of the approximate method was found to be very good. In the present paper, the
asymptotic method presented in [2] is extended to cover cracked V-notched specimens.

During the last few years, empirical stress intensity factors for more complex stress fields have been estab-
lished. Bowness and Lee [3] presented equations for estimating K for semi-elliptical surface cracks in T-butt
joints. The proposed solutions include parameters like crack depth and aspect ratio, attachment footprint
and weld angle. Using the body force method [4], Pommier et al. [5] derived a set of emprical equations for esti-
mating the stress intensity factor for a semi-elliptical surface crack located in a semi-infinite plate subjected to
mode I loading. Their solution uses the stress field ahead of the crack-free notch as the boundary load on the
crack surfaces. The ‘notch stress intensity factor’ was first introduced by Verreman and Nie [6,7] and further
developed by Lazzarin et al. [8–12]. It represents the magnitude of the singular stress field ahead of a V-notch.

The objective of the current investigation is to present simplified solutions for the stress intensity factor K
for cracked V-notched specimens. These formulae make use of a reference solution to interpolate over the
entire range from shallow to deep cracks. This investigation is restricted to K at the deepest point of the
semi-elliptical crack front.

Nomenclature

A deepest point of crack front
a crack depth
a* transition crack depth between shallow and deep crack asymptotes
C intersection between crack front and free surface
c half the surface crack length
d notch depth
E Young’s modulus
E2 complete elliptic integral of the second kind
F(a/c) geometry factor for a surface crack
F0(a/c) geometry factor for a surface crack emanating from a smooth surface
F1(a/c) reference geometry factor for a sharply notched specimen
FP(a/c) geometry factor for a surface crack in a finite plate
FEA finite element analysis
g weight function
K stress intensity factor ¼ F r1

ffiffiffiffiffiffi
pa

p
Kt stress concentration factor = rmax/r1
k0 parameter of the singular stress field
wb semi-width of brace
wc width of chord
C(v) gamma function ¼ R10 expð�tÞtv�1 dt
k � 1 exponent of singular stress field
m Poisson’s ratio
n dimensionless co-ordinate =x/a
q notch root radius
ry normal stress in y-direction
rmax maximum stress at crack initiation point
r1 remote stress
/ angle defining location at semi-elliptical crack front
x notch opening angle

2 A. Fjeldstad et al. / Engineering Fracture Mechanics xxx (2007) xxx–xxx

ARTICLE IN PRESS

Please cite this article in press as: Fjeldstad A et al., Approximate stress intensity factors for cracked ..., Eng Fract Mech
(2007), doi:10.1016/j.engfracmech.2007.04.028



2. V-notches without cracks

The configuration considered is a V-notched plate as shown in Fig. 1. The V-notch is characterised by its
depth d, its root radius q, its opening angle x and its elastic stress concentration factor Kt = rmax/r1. The
V-notched plate is loaded by a remote stress r1 perpendicular to the symmetry plane of the notch.

Based on the theory of linear elasticity, Williams [13] was able to show that the asymptotic normal stress in
the y-direction, see Fig. 1a, is given by

lim
x!0

ryðxÞ ¼ Kffiffiffiffiffiffiffiffi
2px

p ; ð1Þ

as q/d ! 0 and x ! 0.
Williams [13] further demonstrated that singularites less severe than 1=

ffiffiffi
x

p
arise when the notch opens, i.e.,

x > 0. In this case, the near-stress-field depends on the notch opening angle x and may be expressed as [14]

lim
x!0

ryðxÞ ¼
~Kffiffiffiffiffiffi

2p
p

x1�k
; ð2Þ

where eK denotes a generalised stress intensity factor. In the limit when x! 0, Eq. (2) reduces to Eq. (1) and eK
coincides with the standard stress intensity factor K. The eigenvalue ki, which determines the order of the stress
singularity, is given by

ki sin 2aþ sin 2kia ¼ 0; i ¼ 1; 2; . . . ; ð3Þ
where a = p-x/2. As x goes from 0 (cracked body) to p (smooth body), k varies from 1/2 to 1.

Based on dimensional considerations, it should be possible to rewrite Eq. (2) as [7,15,16]

lim
x!0

ryðxÞ
r1

¼ k0
x
d

� �k�1

; ð4Þ

where k0 is a dimensionless parameter, which in the case of a semi-infinite cracked V-notched specimen de-
pends only on the opening angle x.

cba

Fig. 1. Semi-infinite V-notched plate under remote uniform stress r1; (a) sharp notch and stress field, (b) unnotched cracked plate
subjected to the singular notch stress field ry(x), (c) through-crack at the root of a blunt notch.
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In the following section, stress intensity factors are presented for arbitrarily shaped surface cracks at the
root of a notch.

3. V-notches with cracks

As stated in the introduction, cracks frequently initiate at the root of a notch and propagate perpendicu-
larly to the free surface under the influence of a fatigue loading. In order to carry out calculations of fatigue
crack growth, it is necessary to know the stress intensity factors for such cracks.

For an arbitrary body with a surface crack of depth a under remote uniaxial tension r1 perpendicular to
the plane of the crack, K can be written as

K ¼ F ð/; a=cÞr1
ffiffiffiffiffiffi
pa

p
; ð5Þ

where F(/;a/c) is a dimensionless function of the geometry of the body and the crack. / is an angle defining
the location at a semi-elliptical crack front, see Fig. 2. For a surface crack emanating from a smooth surface,
i.e., x = p and d = 0, F(/;a/c) = F0(/;a/c).

Solutions for a semi-elliptical surface crack in a finite plate under tension and bending have been presented
by Newman and Raju [17]. For a semi-elliptic surface crack with aspect ratio a/c, cf. Fig. 2, the geometry fac-
tor of the deepest point of the crack front A(a; 0) can be estimated as

F 0ð/ ¼ p=2; a=cÞ ¼ F A;0 ¼
1:13� 0:09 a

c

E2ða=cÞ ; ð6Þ

where the complete elliptic integral of the second kind, E2(a/c), can be approximated by

E2ða=cÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1:464

a
c

� �1:65r
; 0 6 a=c 6 1: ð7Þ

For an edge through-crack, i.e., a/c = 0, Eq. (6) reduces to F0 = FA,0 = 1.13, in good agreement with the more
precise solution F0 = 1.122 [18]. It should be noted that F0 = 1.122 is used in this paper.

In the following sections, / is set to / = p/2, i.e., the deepest point of the crack front. The geometry factor
for an arbitrary surface crack is in the following denoted by F(a/c), while the geometry factors for an edge
through-crack and a semi-elliptical crack are denoted by F and FA, respectively.

3.1. Stress intensity factors for cracks in regular stress fields

For a shallow crack in the notch stress field, the stress intensity solution is asymptotically the same as for a
surface crack in a smooth solid, except that the remote stress is being amplified by the stress concentration
factor Kt = rmax/r1, see Fig. 1c. Thus, as a! 0,

K ¼ F ða=cÞr1
ffiffiffiffiffiffi
pa

p ¼ F 0ða=cÞK tr1
ffiffiffiffiffiffi
pa

p
: ð8Þ

c

a

A

C

Fig. 2. Two-dimensional view of a semi-elliptical crack.
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Neuber [19] found that the stress concentration factor Kt for a semi-infinite V-notched plate under uniform
tension is nearly independent of the opening angle x in the range 0 6 x < p/2. This is in agreement of the
observation by Nowell et al. [20] that a V-notch with x < p/2 may be regarded as a U-shaped notch with
the same depth d and root radius q.

When the crack grows beyond the notch stress field, the remote stress field dominates the stress intensity
factor, which may be estimated by

K ¼ F 0ða=cÞr1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðaþ dÞ

p
: ð9Þ

Identification with Eq. (5) yields

F ða=cÞ ¼ F 0ða=cÞ
ffiffiffiffiffiffiffiffiffiffiffi
1þ d

a

r
: ð10Þ

3.2. Stress intensity factors for cracks in singular stress fields

The overall geometry is now as shown in Fig. 1a, where the notch is considered sharp, i.e., q/d ! 0, and
there is a crack of depth a emanating from the root of the notch. The geometry factor of the sharply V-notched
specimen is denoted by F1.

Before introducing stress intensity factor solutions for cracks in singular stress fields, it would be convenient
to present the weight function method used for deriving a closed form solution of K.

3.2.1. Weight function

When solutions for F(a/c) are not available, the so called weight function may give the geometry factor for
an arbitrary crack. A crack of depth a, whose surfaces are subjected to a pair of opposite point forces is con-
sidered. Once the stress in the plane of the subsequent crack and the appropriate weight function are known,
determination of F(a/c) is reduced to a simple integration procedure.

Consider now a crack of depth a located in a smooth plate subjected to the notch stress field ry(x), cf.
Fig. 1b. The geometry factor F1 can then be estimated according to

F1ða=cÞ ¼ 1

p

Z 1

0

ryðanÞ
r1

gðn; a=cÞdn; ð11Þ

where g(n,a/c) is the weight function and n = x/a.

3.2.2. Weight function for edge through-cracks

For a shallow crack, a/d � 1, Eq. (11) is used as a starting-point. According to Hartranft and Shih [21], the
weight function for a crack of depth a, whose surfaces are subjected to a pair of opposite point forces in a
semi-infinite plate is given by

gðnÞ ¼ 2ð1þ f ðnÞÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p ; ð12Þ

f ðnÞ ¼ ð1� n2Þð0:2945� 0:3912n2 þ 0:7685n4 � 0:9942n6 þ 0:5094n8Þ: ð13Þ
As was concluded earlier, a sharply notched configuration gives rise to a stress singularity, cf. Eq. (4). This
singular term dominates when a/d � 1, and thus, r1k0(x/d)

k�1 is used as the stress acting on the crack sur-
face. The geometry factor F1 is then obtained from Eq. (11) as

F1 ¼ 2

p
k0

Z 1

0

1þ f ðnÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p an
d

� �k�1

dn: ð14Þ

In order to obtain a closed form expression for F1, Eq. (14) can be rewritten as

F1 ¼ 2

p
k0~g0

Z 1

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p an
d

� �k�1

dn; ð15Þ

A. Fjeldstad et al. / Engineering Fracture Mechanics xxx (2007) xxx–xxx 5

ARTICLE IN PRESS

Please cite this article in press as: Fjeldstad A et al., Approximate stress intensity factors for cracked ..., Eng Fract Mech
(2007), doi:10.1016/j.engfracmech.2007.04.028



where the factor 1 + f(n) has been replaced by the constant value ~g0. The value of ~g0 will obviously depend on
the stress distribution ry, which, in the case of a singular stress field, depends on the notch opening angle x.
The constant ~g0 can be expressed as

~g0 ¼ F 0g0 ¼ 1:122g0: ð16Þ
From Table 1 can be seen that g0 is only weakly dependent on x, with a maximum difference of less than 5%.

Solving the integral in Eq. (15) and introducing Eq. (16) give

F1 ¼ F 0g0k0l0
a
d

� �k�1

; ð17Þ

where

l0 ¼ 1ffiffiffi
p

p Cðk=2Þ
Cðk=2þ 1=2Þ ; ð18Þ

and C(Æ) denotes the gamma function. Eq. (17) can now be rewritten as

F1 ¼ F 0g0k0l0
a
d

� �k�1

¼ F 0F 0 a
d

� �k�1

; ð19Þ

where F 0 is given by

F 0 ¼ g0k0l0: ð20Þ

3.2.3. Weight function for semi-elliptical cracks

According to Shen and Glinka [23], the weight function for the deepest point of a semi-elliptical surface
crack is given by

gðnÞ ¼ 2ð1þ f ðn; a=cÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� nÞp ; ð21Þ

where f(n,a/c) can be found in Ref. [23]. By introducing Eq. (21) into Eq. (11), the reference geometry factor,
FA,1, for a semi-elliptical crack located in a singular stress field can be calculated as

F A;1 ¼ 2

p
k0

Z 1

0

1þ f ðn; a=cÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� nÞp an

d

� �k�1

dn: ð22Þ

As in the previous subsection, the expression given in Eq. (22) can be rewritten in order to simplify the inte-
gration procedure.

F A;1 ¼ 2

p
k0~gA;0

Z 1

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� nÞp an

d

� �k�1

dn; ð23Þ

Table 1
Values of k, g0, k0, l0, F 0 and F 0/k0 for a V-shaped through-cracked notch with q/d = 0 and a/d! 0

Notch opening angle x

0� 20� 40� 60� 80� 90� 100� 120� 140� 160� 180�

k 0.5 0.501 0.504 0.512 0.530 0.544 0.563 0.616 0.697 0.819 1
g0 1.048 1.048 1.047 1.046 1.044 1.042 1.040 1.034 1.025 1.014 1
k0 0.572 0.578 0.586 0.611 0.660 0.670 0.744 0.863 1.018 1.148 1
l0 1.669 1.666 1.659 1.639 1.595 1.563 1.522 1.421 1.295 1.151 1
F 0 1 1.009 1.020 1.047 1.098 1.133 1.176 1.268 1.351 1.340 1
F 0/k0 1.749 1.744 1.740 1.714 1.665 1.629 1.582 1.469 1.328 1.167 1

The parameters k0 and F 0 are from Ref. [22].
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where the factor 1 + f(n,a/c) is replaced by the constant value ~gA;0, which depends on both the opening angle x
and the aspect ratio a/c. ~gA;0 can further be expressed as

~gA;0 ¼ F A;0gA;0: ð24Þ
Fig. 3a shows gA,0 against x for different values of a/c.

Solving the integral in Eq. (23) and introducing Eq. (24) give

F A;1 ¼ F A;0gA;0k0lA;0

a
d

� �k�1

; ð25Þ

where

lA;0 ¼
ffiffiffi
2

p

r
CðkÞ

Cðkþ 1=2Þ : ð26Þ

Finally, FA,1 can be presented on the same form as Eq. (19):

F A;1 ¼ F A;0gA;0k0lA;0

a
d

� �k�1

¼ F A;0F 0
A

a
d

� �k�1

: ð27Þ

Fig. 3b shows gA,0lA,0 and g0l0 versus the opening angle x. The product gA,0lA,0 is obtained using the aspect
ratio a/c = 0. From the figure it can be seen that the weight function solution for semi-elliptic cracks presented
by Shen and Glinka [23] is in good agreement with the edge through-crack solution by Hartranft and Shih [21],
with a maximum difference of less than 4%.

4. Geometry factors

4.1. Reference geometry factor F1(a/c)

In the present Section, simple expressions for the geometry factors of through-cracks and semi-elliptical
cracks emanating from the root of a notch are presented. These expressions have been based on the reference
geometry factor F1(a/c) for a sharply cracked V-notched specimen.

In Fig. 4, the geometry factor F1(a/c) has been drawn as a dashed curve. For a shallow crack, i.e., a/d ! 0,
the singular notch stress field tends to dominate as expressed by Eq. (27). Hence, F1(a/c) asymptotically tends
to infinity. As the normalised crack depth a/d increases, F1(a/c) continuously decreases. For sufficiently deep
cracks, F1(a/c) asymptotically approaches the geometry factor F0(a/c) for the current surface crack emanating
from a smooth surface.

Fig. 3. (a) gA,0 as a function of the notch opening angle x for different values of a/c, (b) g0l0 and gA,0lA,0 for a/c = 0 plotted against the
notch opening angle, x.
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4.2. Geometry factors for cracks in regular stress fields

Geometry factors, F(a/c), have been plotted against the normalised crack depth a/d in Fig. 4 for three
notched plates. For shallow cracks, the geometry factor assumes the constant value F0(a/c)Kt. As a increases,
F(a/c) continuously decreases and asymptotically approaches F1(a/c). As the crack grows beyond the notch
root stress field, the remote stress becomes dominating and both approach the constant value F0(a/c).

4.3. Normalised geometry factors

Normalising the shallow crack geometry factor solution obtained from Eq. (8) with respect to the geometry
factor, F1(a/c), for a surface crack emanating from the root of a sharp notch, i.e., q/d ! 0, cf. Eq. (27),
yields

F ða=cÞ
F1ða=cÞ ¼

K t

F 0ða=cÞ
a
d

� �1�k
: ð28Þ

As the crack grows deeper, the above F1(a/c) becomes less sensitive to the singular stress field. Hence, the
above fraction asymptotically approaches

F ða=cÞ
F1ða=cÞ ¼ 1; ð29Þ

as shown in Fig. 5a for the notched plate in Fig. 1c. In addition, normalising the crack depth a with respect to
a transition crack depth a* yields a single curve, as shown in Fig. 5b. Wormsen et al. [2] introduced an equa-
tion for the normalised geometry factor F/F1, which asymptotically agrees with the near and remote field esti-
mates. They suggested that the normalised geometry factor could be written as

F ða=cÞ
F1ða=cÞ ¼ 1� exp � a

a�

� �h i1�k
; ð30Þ

where a* is defined as the crack depth at which the shallow and deep crack asymptotes given by Eqs. (28) and
(29), intersect. Hence, a* is determined by

a� ¼ d
F 0ða=cÞ

K t

� � 1
1�k

: ð31Þ

( )

(
)

( )

( )

( )

( )

Fig. 4. Principle graphs of geometry factors against the normalised crack depth a/d.
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For a notch with x < p/2 and q � d, the stress concentration factor is approximately given by

K t � 2

ffiffiffi
d
q

s
ð32Þ

With F 0 = 1, see Table 1, the transition crack depth a* for an edge through-crack becomes

a� � q
4
: ð33Þ

An alternative equation that satisfies the shallow and deep crack asymptotes is given by

F ða=cÞ
F1ða=cÞ ¼ 1þ a�

a

� �b
" #k�1

b

; ð34Þ

where a* is given by Eq. (31). It has been found that Eq. (34) gives F(a/c) values in somewhat better agreement
with numerical values over a wider range of notch opening angles x and q/d values than Eq. (30), provided
that the parameter b is chosen properly. With b = 1.35, Eqs. (30) and (34) differ by less than 3.5%.

5. T-joint configuration

The expressions for the semi-infinite V-notched specimen can be used as a basis for establishing approxi-
mate closed form solutions for the geometry factor F(a/c) for finite width T-joints (see Fig. 6). The notch
geometry for the T-joints is very similar to the V-notch geometry, both characterised by an opening angle
x and a notch root radius q. For both cases, the shallow crack asymptote is given by Eq. (8). However,
for the stress raisers shown in Fig. 6, there is no notch depth d that will ‘add’ to the crack depth, when the
crack becomes deeper. Therefore, the deep crack asymptote of the stress intensity factor is given by

K ¼ F 0

a
c

� �
r1

ffiffiffiffiffiffi
pa

p
; a � q: ð35Þ

5.1. Geometry

The accuracy of the formulae presented in Section 4.3 will now be assessed by numerical analyses of a
T-joint with a fillet-weld-shaped transition as shown in Fig. 6. The T-joint has a chord width wc and a brace
semi-width wb = 3/4wc. Its stress concentration factors have been summarised in Table 2. Both edge through-
cracked and semi-elliptically cracked specimens will be considered.

The T-joint has a weld-shaped transition as shown in Fig. 6. The transition can be described by a straight
line creating a 135� angle with the longitudinal direction of the chord. A circular arc of radius q connects the

)

)

(
)

(
)

(
)

Fig. 5. Principle graphs of normalised geometry factors against (a) the crack depth a, (b) the normalised crack depth a/a*.
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weld and the chord as shown in Fig. 6c. The weld leg length is set to l = 0.2wc. The weld geometry parameters
q, x and l are defined according to Tveiten et al. [24]. A surface crack of depth a emanates from the point,
where the chord enters the weld toe. The cracked T-joint was subjected to two different loading conditions,
namely tension and bending, as shown in Fig. 6a and b, respectively. Symmetry about the vertical centre-line,
i.e., x = 0, makes it sufficient to model only one half of the T-joint.

6. Geometry factors for T-joint configurations

6.1. Edge through-cracks

In Section 3, simple expressions for the geometry factor, F, for cracks emanating from the root of a V-notch
were introduced, which asymptotically agree with the shallow and deep crack asymptotes. These expressions
were based on the reference solution F1, for a sharply notched specimen, i.e., q/w! 0. Next, the expressions
for the V-notched plate will be used as a basis for estimating the geometry factor F of a cracked T-joint.

For the V-notched plate in Fig. 1, the geometry factor was given as a function of a/d. However, a charac-
teristic notch depth, d, cannot be defined for a T-joint. Instead, it is suggested that the width, w, of the cracked
part of the T-joint to be used as the characteristic length parameter. The geometry factor of the cracked
T-joint can then be obtained from Eq. (34), with the transition crack depth given by

a� ¼ w
F 0

K t

� � 1
1�k

: ð36Þ

The effect of finite width is taken into account by means of the reference geometry factor F1. Hence, for deep
cracks, F1 asymptotically approaches the geometry factor for the current edge through-crack emanating from
the smooth surface of a plate of finite width w. For a single-edge-cracked plate of width w under uniform ten-
sion, the geometry factor is given in [18].

σ

L

L

a

L

σ

L

a

135

a

x

y y

x

Chord

Brace

ww bb

ww cc

l

a b c

Fig. 6. Boundary conditions applied to the cracked specimens: (a) chord subjected to homogeneous stress, (b) chord subjected to pure
bending and, (c) close-up of the notch geometry.

Table 2
Summary of FEA based stress concentration factors for the investigated T-joint

Specimen number Normalised notch radius q/w Stress concentration factor Kt

1. Fig. 6a 0.0125 2.86
0.025 2.32
0.0625 1.84

2. Fig. 6b 0.0125 3.20
0.025 2.56
0.0625 1.98
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6.2. Semi-elliptical cracks

For the semi-elliptically cracked T-joints, the geometry factor FA for the deepest point at the crack front,
A(a; 0), can be estimated by means of Eq. (27), see Fig. 2. As for the edge through-cracked specimens, the effect
of finite width is taken into account by means of the reference geometry factor FA,1. Hence, for deep surface
cracks, FA,1 asymptotically approaches the geometry factor for a surface crack in a finite plate of width w.
Solutions for surface cracks in a finite plate under tension and bending have been presented by Newman
and Raju [17], see Section 3.

The weight-function can be used to compute the reference geometry factor, F1 for a through-crack of
arbitrary depth. For a semi-elliptical crack, the weight-function is expected to yield accurate results as long
as the crack depth is small compared with the notch radius. When the crack grows and become comparable
with the root radius, the use of Eq. (6) is questionable for arbitrary notch angles since the used weight-func-
tion, see Eq. (21), is strictly speaking only valid for smooth plates. As a consequence, the accuracy of the K

approximation in the intermediate regime can be expected to be higher for through-cracks than for semi-ellip-
tical cracks. To increase the accuracy of FA,1 one could use finite element results instead of the weight-func-
tion method.

7. Numerical analysis

The observation that the geometry factor F(a/c) for various specimens can be estimated by means of Eq.
(34), if the geometry factor F1(a/c) is known, is an important aspect of the use of crack mechanics in design.
It is therefore of great interest to study the influence on F(a/c)/F1(a/c) of parameters such as crack depth a,
aspect ratio a/c, T-joint geometry, and applied loading (actual force or bending moment). The cracked spec-
imens considered are shown in Fig. 6. For each specimen, the geometry factor was evaluated for three q/w
ratios, cf. Table 2. In the following Subsections, the accuracy of Eq. (34) is assessed by using b = 1.35.

7.1. Evaluation procedures

Linear elastic plane strain analyses of the edge through-cracked specimens were performed using the finite
element program ABAQUS [25]. Eight-noded isoparametric second order plane strain elements with reduced
integration were used. Poisson’s ratio was chosen to be m = 0.3 and small displacement theory was assumed
throughout. The geometry factors, FA, for the semi-elliptically cracked specimens were obtained using a set
of empirical equations presented by Pommier et al. [5].

F(a/c) is for both edge through-cracks and semi-elliptical cracks normalised by means of the reference solu-
tion F1(a/c). Appendix A describes in detail how F1(a/c) can be obtained.

7.2. Geometry factors

7.2.1. Edge through-cracks

The cracked configurations are shown in Fig. 6. Representative finite element solutions are those of the T-
joint with a weld-shaped transition under uniform tension, i.e., the specimen shown in Fig. 6a. Finite element
geometry factors, F, have been plotted against the normalised crack depth a/w in Fig. 7a. For shallow cracks,
say a/w < 0.001, the notch stress field dominates and the geometry factor assumes the constant value F0Kt,
while F1 asymptotically tends to infinity. As the crack depth increases, F continuously decreases and asymp-
totically approaches F1. As the crack grows beyond the notch stress field, the remote stress becomes domi-
nating and F and F1 asymptotically approach the geometry factor for the current surface crack emanating
from a smooth surface in a finite plate.

In Fig. 7b, the finite element F values have been normalised with respect to F1. As can be seen, F/F1
approaches the deep crack asymptote in a similar fashion for all q/w ratios. In fact, by normalising the crack
depth a with respect to the transition crack depth a*, F/F1 reduces to a single curve as shown in Fig. 8a. The
expression for the solid curve is given by Eq. (34). As can be seen from Fig. 8a, Eq. (34) is in excellent agree-
ment with the finite element results. As shown in Fig. 8b, this is also true for the specimen in Fig. 6b.
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7.2.2. Semi-elliptical cracks

In the previous Subsection, finite element results of F/F1 for edge through-cracked specimens were pre-
sented. This subsection presents results of FA/FA,1, when the crack is semi-elliptic, cf. Fig. 2.

Numerical results in Fig. 9a are for the specimen in Fig 6a with an aspect ratio a/c = 0.5 and three (cf.
Table 2) different relative notch root radii, q/w. Initially, the geometry factor FA for the deepest point
A(a; 0) is equal to FA,0Kt. For the specimen with a sharp notch, i.e., q/w! 0, the geometry factor FA,1 tends
to infinity as a/w! 0, cf. Eq. (27) with d replaced by w. The geometry factor FA,1 is shown as a dashed line in
Fig. 9a. When a/w increases, FA and FA,1 continuously decrease.

In Fig. 9b, the geometry factors, FA, for the specimens with a finite notch root radius, i.e., q/w > 0, are nor-
malised with respect to the associated factors for a specimen with a sharp notch. Results from analyses carried
out on semi-elliptical cracks with aspect ratios a/c = 0.2 and 1 are also included. As can be seen, the ratio
FA/FA,1 asymptotically approaches the deep crack asymptote in a similar fashion for all q/w ratios. Hence,

Fig. 7. Geometry factors due to FEA for specimen in Fig. 6a with a through-crack emanating from the chord transition: (a) F and F1
against a/w, (b) F/F1 against a/w.

Fig. 8. F/F1 finite element results as a function of the normalised crack depth a/a* for the edge through-cracked (a) specimen in Fig. 6a,
(b) specimen in Fig. 6b.

12 A. Fjeldstad et al. / Engineering Fracture Mechanics xxx (2007) xxx–xxx

ARTICLE IN PRESS

Please cite this article in press as: Fjeldstad A et al., Approximate stress intensity factors for cracked ..., Eng Fract Mech
(2007), doi:10.1016/j.engfracmech.2007.04.028



by normalising the crack depth a with respect to the transition crack depth a*, FA/FA,1 reduces to a single
curve as shown in Fig. 10a. The expression for the solid curve is given by Eq. (34). As also can be seen from
Fig. 10b, Eq. (34) is in excellent agreement with the numerical results.

8. Conclusions

Notched specimens with through-cracks or semi-elliptical cracks emanating from the root of the notch have
been investigated. Simplified formulae for obtaining the stress intensity factor K have been presented. The pro-
posed equations for estimating K make use of a reference solution to interpolate over the entire range from
shallow to deep cracks. The reference solution is obtained by considering the current crack emanating from
the corresponding specimen with a sharp notch. The formulae satisfy the shallow and deep crack asymptotes.

An important aspect of the work has been to apply the solutions to a T-joint configurations. The aim was to
calculate K as a function of the normalised crack depth a/w. These results were used to obtain values of the
geometry factors F(a/c) and F1(a/c). Once F1(a/c) has been determined, the geometry factor, F(a/c), for spec-

Fig. 9. Geometry factors for the crack front A(a; 0) (Fig. 2) for specimen in Fig. 6a: (a) FA and FA,1 against a/w, (b) FA/FA,1 against a/w.

Fig. 10. FA/FA,1 results as a function of the normalised crack depth a/a* for the semi-elliptically cracked (a) specimen in Fig. 6a, (b)
specimen in Fig. 6b.
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imens with a finite notch root radius, i.e., q/w > 0, can be estimated using simplified interpolation functions
(see Section 4). Moreover, the proposed method and numerical calculations, covering different geometries
and applied loading conditions, showed excellent agreement both for edge through-cracks and semi-elliptical
cracks.

The procedure for the approximate determination of K should be a useful tool for the life assessment of
cracked V-notched specimens and T-joints subject to fatigue loading.
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Appendix A

Presented in this appendix is a set of formulae for establishing the reference geometry factor F1(a/c). In this
work, F1(a/c) is expressed by

F1
a
c
;
a
w

� �
¼ F 0 a

c

� �
� a

w

� �k�1

þ f
a
c
;
a
w

� �� �
F P

a
c
;
a
w

� �
; ð37Þ

where FP(a/c) is the geometry factor for the current surface crack emanating from a smooth surface. Fig. 11
shows the geometry factor for a smooth plate, FP(a/c), along with the reference solution F1(a/c) for a sharp
notch (q = 0) and the geometry factor F(a/c) for a notched specimen with q/w > 0. The geometry factor for a
notched specimen asymptotically approaches FP(a/c), when the crack has grown beyond the notch root stress
field. FP(a/c) is used in Eq. (37) for describing the deep crack behaviour, since F1(a/c)/FP(a/c) = 1 when
a/w ! 1. Hence, for deep cracks the following condition applies:

lim
a=w!1

F 0 a
c

� �
� a

w

� �k�1

þ f
a
w

� �
¼ 1: ð38Þ

In Eqs. (37) and (38), F 0(a/c) Æ (a/w)k�1 accounts for the behaviour of shallow cracks located in singular stress
fields, while f(a/w) describes the transition between shallow and deep crack behaviour.

Fig. 11. Principle graphs of the geometry factors for a smooth plate, FP, sharp-notched plate (q = 0), F1, and a notched plate with a finite
notch radius (q/w > 0), F.
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For shallow cracks, f(a/w) approaches zero and FP(a/c) assumes the constant value F0(a/c). Hence, Eq. (37)
is in total agreement with Eq. (19). Rearranging Eq. (37) gives

f
a
c
;
a
w

� �
¼ F1ða=cÞ

F Pða=cÞ � F 0 a
c

� �
� a

w

� �k�1

: ð39Þ

Thus, f(a/w) is bounded between 0 and 1 � F 0(a/c). Based on numerical results, it is found that f(a/w) can be
well approximated by

f
a
w

� �
¼ 10gða=wÞ; ð40Þ

where the exponent g(a/w) is given by the polynomial

g
a
w

� �
¼ b0 þ

X3
i¼1

bi log10
a
w

� �h ii
: ð41Þ

The parameters bi (i = 0, . . . , 3) of all specimens considered have been collected in Table 3. The associated val-
ues of the factor F 0(a/c) of Eq. (39) have also been listed in Table 3. For the through-cracked specimens the
parameters have been found by means of the finite element method. The parameters for semi-elliptical cracked
specimens have been obtained from a set of empirical equations presented by Bowness and Lee [3].
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[20] Nowell D, Dini D, Duó P. Stress analysis of V-notches with and without cracks, with application to foreign object damage. J Strain

Anal Engng Des 2003;38(5):429–41.
[21] Hartranft RJ, Sih GC. Alternating method applied to edge and surface crack problems. Methods of analysis and solutions of crack

problems. Mechanics of fracture. Leyden: Nordhoff; 1973 [chapter 4].
[22] Hasebe N, Iida J. A crack originating from a triangular notch on a rim of a semi-infinite plate. Engng Fract Mech 1978;10(4):773–82.
[23] Shen G, Glinka G. Weight functions for a surface semi-elliptical crack in a finite thickness plate. Theor Appl Fract Mech

1991;15(3):247–55.
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A post-processor for fatigue crack growth analysis based on a finite element stress field

A. Wormsen∗, A. Fjeldstad and G. Härkeg̊ard
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Abstract

In this paper the algorithm needed for performing a crack growth analysis of a three-dimensional component
by post-processing results from a standard finite element stress analysis is given. Weight functions are used for
calculating the stress intensity factor for an embedded crack and a surface crack. Defects are generated in several
nominally equal components, and crack growth calculations are carried out by using a short crack model to
determine the probability of component fatigue failure. The algorithm has been implemented in a finite-element
post-processor.

Keywords: Finite element analysis, fatigue crack growth, weight function, defect size distribution, proba-
bility of component fatigue failure.

NOTATION

A defect size (random variable)
Acrack defect area
a defect size
a′ intrinsic crack length
a0 scale parameter in the extreme

value distribution
a∗
0 characteristic largest defect size

acrit critical defect size
af final defect size
ai initial defect size
ath peak over threshold defect size
C coefficient in crack growth law
c half the surface crack length
F geometry factor
FEA finite element analysis
G(a) generalised extreme value distribution
g weight function
H(a) generalised Pareto distribution
|J| Jacobian determinant
K stress intensity factor
KIc fracture toughness
Kt stress concentration factor = σmax/Snet

ΔKth threshold stress intensity factor range
L distance from a given point to the free surface
m exponent in crack growth law
n number of cycles
N element shape functions
Nels number of elements

∗Corresponding author: Department of Engineering Design
and Materials, Norwegian University of Science and Technology,
Richard Birkelandsvei 2B, Trondheim, NO-7491 , Norway; email:
anders.wormsen@ntnu.no

NGauss number of Gauss points
in one of the coordinate directions

Nnodes number of nodes
Nnodes,el number of nodes per element
n1 eigenvector associated with the

maximum principal stress
nf element face normal
Ps probability of survival
R stress ratio = σmin/σmax

R orthogonal rotation matrix
S translation vector
Snet net-section stress
T transformation matrix
V volume
ΔV element volume
Wi weight factor of the ith Gauss point
x, y, z global coordinate system
x′, y′, z′ transformed coordinate system
z1 number of critical defects per unit volume
Δσ stress range = σmax − σmin

σa (equivalent) stress amplitude
σA fatigue limit
σm (equivalent) mean stress
σmax maximum stress
σmin minimum stress
σn stress normal to the crack plane
σij operating stress tensor
σ0

ij residual stress tensor
ξ, η, ζ non-dimensional parent element coordinates
ξ′ shape parameter in the extreme

value distribution

1
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1 Introduction

At a time when the industry is continuously challenged
to come up with better and less costly products, and
this in ever shorter cycles, all product development pro-
cesses must be improved, including fatigue design. In or-
der to comply with this development, it is the authors’
conviction that standard fatigue analysis tools should
reflect that fatigue is caused by the (random) growth of
fatigue cracks from randomly distributed defects. Un-
fortunately, this is bound to make the fatigue design
process much more complex. Hence, a robust fatigue
assessment tool, directly applicable to the results from a
standard finite element stress analysis, would be of great
importance in the process of developing optimised, safe
and reliable structural components.

As shown in Table 1, there is a variety of approaches
to the fatigue analysis of a mechanical component, all
basically related to fatigue crack propagation. The initi-
ation based approaches use conventional S−N -data as a
starting point, and the fatigue life, N , is usually defined
as the number of load cycles required for a macroscopic
crack to develop. The propagation based approaches
consider the actual growth of a crack from an initial
(defect) size ai to a final size af .

Standard methods for fatigue life predictions are de-
terministic by nature, i.e., material properties including
defect size are considered as predetermined quantities.
Two of the most widespread deterministic fatigue as-
sessment methods are:

• ‘Local stress approach’ – Life prediction based on
the equivalence between the most highly stressed
point of a component and a standard smooth fa-
tigue specimen under the same stress.

• ‘Single defect approach’ – Life prediction based on
the growth of a single ‘worst-case’ crack-like defect
at the location of maximum stress.

The probabilistic approaches, on the other hand, assume
material properties to be randomly distributed:

• ‘Weakest-link approach’ – Assumes the probability
of survival of a component to be the product of
the probabilities of survival of the (small) elements
into which the component has been divided for
purposes of analysis. The probability of survival
of an element is a function of the stress cycle, the
characteristic fatigue strength and the size of the
element.

• ‘Random defect approach’ – The model is based
on a finite element stress analysis and assumptions
on the defect distribution as well as a theory for
the growth of short cracks. Each finite element is
associated with one or more defects by ‘drawing’
from a Poisson distribution. The initial posistion

of a defect is obtained from a uniform distribu-
tion while its size is obtained from an extreme
value distribution. The defects are considered to
be crack-like, and the number of cycles required for
each defect to become critical is determined. By
carrying out a large number of such simulations,
the fatigue life distribution of the component is
obtained.

When a commerically available finite element code
such as ABAQUS is used for performing a crack growth
analysis, the crack is explicitly modelled as an inte-
grated part of the component. For each crack growth
increment, the mesh surrounding the crack has to be re-
meshed. Re-meshing techniques applied to crack growth
problems have been treated in several papers, e.g. [1–3].
Examples of codes that have implemented re-meshing
techniques for handling crack growth analysis of 3D com-
ponents are FRANC3D [4], BEASY [5] (both use the
boundary element method) and ADAPCRACK3D [6,7]
(uses the finite element method). In order to reduce the
time required for performing a crack growth analysis,
the component geometry is often simplified so that a
standard handbook solution can be used for perform-
ing a fatigue life prediction. Such handbook solutions
are available in the programs NASGRO [8] and AF-
GROW [9]. Another approach is to perform the crack
growth analysis by assuming a homogeneous stress field
based on the maximum stress acting on the component
surface. This maximum stress approach yields accept-
able results provided that the stress decreases slowly,
i.e., the stress gradient is low, and when the geometrical
simplification can be justified. An alternative is to use
results from a standard finite element stress analysis and
account for a crack by using weight functions [10, 11].
This approach has been implemented in the stand-alone
finite-element post-processor P•FAT. By ‘drawing’ the
number, size and position of crack-like defects from dis-
tribution functions and repating this process for a large
number of nominally equal components (‘Monte Carlo’
simulation), the fatigue life distribution of the compo-
nent could be obtained. With this, one has a post-
processing tool that can estimate the probability of com-
ponent failure by means of fatigue crack growth calcula-
tions. The application of this feature should be of con-
siderable interest in assessing the influence of defects on
the reliability of cast components.

The finite-element post-processor also supports the
local stress approach and the weakest-link approach [12–
14]. The post-processor can perform fatigue crack growth
calculations of embedded cracks and surface cracks, see
Fig. 1. The code strictly handles only homogeneous
mechanical properties. Piecewise homogeneous ‘qual-
ity zones’ may be taken into account in the process of
generating defects, i.e., number, position and size. In
addition, the proposed method is presently restricted to
proportional loading.
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Table 1: Different approaches to fatigue analysis, all related to fatigue crack growth.

Approaches to fatigue analysis Deterministic Probabilistic

Initiation based Local Stress Weakest Link

Propagation based Single Defect Random Defect

surface crack

corner crack

embedded crack

Figure 1: Crack configurations implemented in the finite-element post-processor.

The paper is organised as follows. In Section 2, the
principal features of the finite-element post-processor
are given. Section 3 addresses the basic numerical codes
needed, and in Section 4 it is shown how crack-like de-
fects are propagated. Section 5 describes how defects
are generated, and in Section 6 a flow-chart of the ran-
dom defect module is given. Finally, some conclusions
are drawn in Section 7.

2 Principal features of P•FAT

P•FAT is designed as a stand-alone finite-element post-
processor with the component geometry and stresses
given by a standard finite element program. Data needed
for the computation are nodal coordinates, element topol-
ogy and stresses. In addition to operating stresses, process-
related residual stresses can be taken into account. Such
residual stresses may be imported directly from, e.g.,
casting or welding simulations. The surface elements
are found automatically and are used for defining the
geometry of the component.

In the propagation based approaches, the initial crack-
like defect is regarded as an embedded crack, or as a sur-
face crack, depending on the location of the crack front
relative to the free surface. A crack is treated as a corner
crack, if it starts from or propagates into a right-angled
corner.

Failure of a component occurs, when the crack has
reached a predefined size, or the stress intensity factor
K has reached the fracture toughness KIc. When a sur-

face crack breaks the opposing free surface, it has to be
treated as a through-crack. This may be a most relevant
situation, e.g., for a crack growing through a thin plate.
On the other hand, for initial defects that are much
smaller than the thickness of the plate, a through-crack
is only present during a small fraction of the component
life. Thus, instead of explicitly modelling the through-
crack, crack growth is terminated as soon as the surface
crack breaks the opposing free surface.

P•FAT is compatible with standard finite element
codes such as ABAQUS, ANSYS and NASTRAN. It is
written in standard FORTRAN and can be operated
under Windows and UNIX/LINUX.

3 Post-processing of finite element stress
analysis

3.1 Multiaxial stress criterion

The fatigue crack growth is assumed to be controlled by
the normal stress cycle on the plane perpendicular to the
direction of the maximum principal stress at the crack
origin. Thus, the stress amplitude, σa, at an arbitrary
point on the crack plane is calculated according to

σa = σn,a = n1iσij,an1j , i, j = 1, 2, 3, (1)

and the mean stress, σm, by

σm = σn,m = n1i(σij,m + σ0
ij)n1j . (2)
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n1 is the unit eigenvector of the maximum principal op-
erating stress, and σ0

ij denotes the residual stress tensor.
Generally, the direction of maximum principal stress

in the uncracked component changes as the crack grows
on a specific plane. In the present work, the change of
the crack growth direction is neglected. Generally, this
can be justified as long as the crack is small compared
with the dimension of the component, i.e., for a large
fraction of the fatigue life.

3.2 Numerical formulation

Consider now a defect located in an arbitrary elastic
body subject to the combined operating and residual
stress field σij(x). The origin of the crack-like defect is
given by the reference point x0 = [x0, y0, z0]T. A local
coordinate system, x′, is attached to the crack origin,
x0, as shown in Fig. 2. The local coordinate system is
defined by means of the transformation matrix

T = [R S] =

⎡
⎣ R11 R12 R13 x0

R21 R22 R23 y0

R31 R32 R33 z0

⎤
⎦ , (3)

where R is a 3 × 3 orthogonal matrix, known as the
rotation matrix, defining the orientation of the local co-
ordinate system. S is a 3× 1 translation vector defining
the origin of the coordinate system. Vectors given in
the local coordinate system are marked with a prime
(′). The rotation matrix is given by the vectors n2, n3,
and n1, respectively, as

R = [n2 n3 n1], (4)

where n1 is perpendicular to the crack surface and is
equal to the eigenvector associated with the maximum
principal stress. The n3 vector is determined as the
vector that gives the shortest length, L, between a free
surface point and the crack origin, see Fig. 2. n2 is
perpendicular to n3 and n1. Since R is an orthogonal
matrix, i.e., R−1 = RT, the transformation from global
to local coordinates, is given by

x′ = RTx − RTS. (5)

To obtain the stress intensity factor, K, the crack
surface is automatically meshed with plane isoparamet-
ric elements in the post-processor. The stress ampli-
tude normal to the crack plane, σa, can be found when
the corresponding parent global element coordinates,
ξ = [ξ, η, ζ]T, and the element number in the un-cracked
component is known. The latter is found by first per-
forming a transformation from ξ′ to x′. ξ′ is the par-
ent element coordinates for the crack elements. With
an isoparametric description of the crack geometry, the
transformation is given by

x′ = N(ξ′)x′
nodes, (6)

where N is the element shape function matrix and x′
nodes

is the local coordinates of the nodes in the crack ele-
ment mesh. The corresponding global point x is found
according to

x = Rx′ + S. (7)

The point x is within an element if the following condi-
tion is satisfied for all element faces

nf · v ≥ 0, v = xs − x, (8)

where nf denotes the surface normal at the point xs, see
Fig. 3.

nf3

nf4

nf1

nf2

1 2

34

x

v
xs

face 1

face 2

face 3

face 4

Figure 3: A point x within an element and definition of
the element face normal nf (a plane four-noded element
is used for illustration).

The parent global element coordinates, ξ, are ob-
tained by using a Newton-Kantorovich iteration algo-
rithm. This algorithm computes a solution of

f(ξ) = x − Nxnodes = 0, (9)

given an initial approximation ξ(0) (starting value of the
iteration). It is appropriate to use ξ(0) = 0 as a starting
value, i.e., the center of the element. For the initial
guess, one has the Taylor series with remainder in the
form

f(ξ) = f(ξ(0)) + f′(ξ(0))(ξ − ξ(0)) + R(ξ). (10)

If one omits the remainder term R(ξ), then

f(ξ(0)) + f′(ξ(0))(ξ − ξ(0)) = 0. (11)

Hence, one could form the iterative sequence of approx-
imations as

ξ(k+1) = ξ(k) − f′(k)(ξ(k))−1f(ξ(k)), k = 0, 1, . . . , (12)

where

f ′
ij = −

(
∂N
∂ξj

)
xnodes,i, i, j = 1, 2, 3. (13)
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z´

z

x´

x

y´

y

n1

n2

n3

x0

crack plane

free surface

crack
L

Figure 2: Definition of the crack plane and the local coordinate system x′.

The iteration is continued until the condition

|ξ(k+1) − ξ(k)| ≤ ε, (14)

is satisfied with the desired accuracy ε.
The stress amplitude normal to the crack plane, σa,

at a given position x, can then be found as [15]

σa =
Nnodes,el∑

i=1

Ni(ξ)σai, (15)

where the index i ranges over the number of nodes in
the element and Ni is the ith element of the element
shape function.

Since the influence of a free surface is included in the
calculation of the stress intensity factor K, the surface
elements of the component must be identified. A free
element surface is characterised by a unique combination
of face nodes.

When the component surface is identified the dis-
tance, L, from the point x to the free surface in a di-
rection e (unit vector) can be calculated, cf. Fig. 4.
However, before L can be found the element surface
which e passes through must be identified. The vec-
tor e passes through a free element surface, if and only
if,

nsf · e ≤ 0, (16)

for all spanned faces, see Fig. 4. Here, nsf is the spanned
face normal as shown in Fig. 4. The distance, L, be-
tween x and an unknown point xs [see Fig. 4] located
on the element surface is found according to

L =
(xnode − x) · nf

e · nf
=

|xnode − x| cosα

cos θ
. (17)

4 Crack growth approach

In the propagation based modules, the fatigue life is ob-
tained by summing up the number of cycles necessary
to propagate an initial crack-like defect to a user defined

e

n

L

xs

xnode

x

x
node

x
-

�

�

x
node -

cos�

|

x| fface
1

face 2

nsf1

nsf2

v

u

Figure 4: Graphical illustration of the distance L be-
tween the point x and a free element face with face normal
nf.
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critical state. For the fatigue life to be properly calcu-
lated, the crack growth law should take the behaviour
of short cracks into account [16, 17]. In the next Sub-
section, the crack growth law is presented, followed by
a short description of the crack growth increment pro-
cedure. Finally, it is shown how the stress intensity
factor, K, is calculated using the stress field from the
un-cracked component.

4.1 Crack growth law

El Haddad et al. [18] defined the ‘effective’ crack length
as the sum of the actual crack length and an intrin-
sic crack length. By using this effective crack length in
conjunction with the fatigue crack growth law by Klesnil
and Lukáš [19], Fjeldstad et al. [20] derived the follow-
ing equation for the growth rate of short fatigue cracks:

da

dn
= CΔKm

th

⎡
⎣{(

Δσ

ΔσA

)2

+
(

ΔK

ΔKth

)2
}m

2

− 1

⎤
⎦ .

(18)
In equation (18), ΔσA is the fatigue limit of a smooth,
polished fatigue specimen without (major) defects, Δσ
is the stress range normal to the crack plane and ΔKth

is the threshold stress intensity range.
The constant C of the crack growth law, the fatigue

limit and the threshold stress intensity range can all be
transformed to the present R-ratio by using Walker’s
equation [21] as shown in [22]. The exponent m of
the crack growth law generally varies only weakly with
R [22] and can be assumed to be constant.

4.2 Determination of crack growth increments

By rearranging equation (18), the fatigue life, n, is ob-
tained by means of numerical integration with an adap-
tive crack increment control. The maximum allowable
crack increment is controlled in such a way that the as-
pect ratio a/c cannot change more than, say, 2% for each
incremental step. The increment is denoted by δ(A) and
represents the growth of the point A on the crack front
(see Figs. 5(a) and 8(b)). By using δ(A) as a start-
ing point, the incremental growth, δ(P), for an arbirary
point P along the crack front is estimated according to

δ(P) = δ(A)
(

ΔK(P)
ΔK(A)

)m

. (19)

4.3 Stress intensity factor

The prediction of crack behaviour has always been a
challenge for researchers, and crack propagation repre-
sents a real concern among engineers. In linear elastic
crack mechanics, the stress intensity factor, K, is the
main parameter to seek. In this Subsection, a method
for numerical determination of stress intensity factors

in three-dimensional geometries will be given and veri-
fied. The method is based on the theory of weight func-
tions, which computes the required stress intensity fac-
tor based on the stress field of the crack-free component.
The use of weight functions in crack mechanics was first
proposed by Bueckner [10] and subsequently generalised
by Rice [11]. The reader is referred to the above refer-
ences for a detailed discussion on the theoretical aspects
of the method.

Consider now a two-dimensional crack located in an
arbitrary elastic body subjected to the combined operat-
ing and residual stress field σij(x). The crack is assumed
to grow in a direction perpendicular to the direction of
the maximum principal stress determined at the crack
origin x0, cf. Fig. 2. A local coordinate system x′ is
introduced at x0, see Fig. 2. The transformation from
global to local coordinates is given by equation (5). The
weight function, g(x′, y′; P), is defined as the stress in-
tensity factor value at the crack front point P, when
a pair of symmetrical unit opening forces are applied
at an arbitrary point P′ on the crack surface, cf. Fig.
5(a). In the case of a distributed symmetrical loading
on the crack surface, the stress intensity factor K is ob-
tained by integrating the product of the weight function
g(x′, y′; P) and the stress distribution of the crack free
solid σa(x′, y′) over the crack surface area Acrack:

K(P) =
∫

Acrack

σa(x′, y′)g(x′, y′; P) dAcrack. (20)

The relationship between the weight function and the
displacement field is given in [11].

The integral in equation (20) can be solved numeri-
cally for instance by Gauss-Legendre quadrature. This
procedure subdivides the crack surface into Nels plane
elements with Nnodes nodes. By virtue of the property
of definite integrals, the stress intensity factor is ob-
tained by performing a summation over all elements on
the crack surface:

K ≈
Nels∑
k=1

(
NGauss∑

i=1

NGauss∑
j=1

σa(ξ′i, η
′
j)g(ξ′i, η

′
j ; P

′)×

|J(ξ′i , η
′
j)|WiWj ).

(21)

Here, |J| is the determinant of the Jacobian maxtrix
and (ξ′, η′) the corresponding non-dimensional parent
crack element coordinates at the Gauss points. Wi is
the weight factor of the ith Gauss point and NGauss is
the number of Gauss points in each coordinate direction.

4.3.1 Embedded crack

For an infinite body with an embedded crack under dis-
tributed loading perpendicular to the plane of the crack,
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the weight function is given by [23]

g(x′, y′; P ′) =
√

2s

π3/2ρ2

√
1 − s

8ρ1
− s

8ρ2
− s

8ρ3
− s

8ρ4
,

(22)
where s is the shortest distance between the point P′ and
the crack front, and ρ is the distance between P and P′,
see Fig. 5(a). ρ1 to ρ4 are parameters depending on the
shape of the crack [23].

To obtain the stress intensity factor, the crack sur-
face is meshed with plane elements as shown in Fig.
5(b). K is calculated numerically by using equation
(21). The mesh density and size are adjusted accord-
ing to the local value of the weight function. Since the
weight function becomes singular when P′ approaches
P, a fine mesh is used around P. Fig. 5(b) illustrates a
typical finite element mesh used. In order to obtain a
proper description of the growth of an embedded crack,
K is calculated at four locations, i.e., points A, B, C
and D [see Fig. 5(a)], at the crack front.

The K solution proposed by Wang et al. [23] holds
for an embedded elliptical crack located in an infinite
body. In order to take into account the free surface
effect on K, an empirical ‘stress intensity magnification
factor’ proposed by Fett and Mattheck [24] is used. The
magnification factor is multiplied with the weight func-
tion based K solution. The stress intensity magnifica-
tion factor depends on the distance, L, from the crack
center to the free surface and the aspect ratio a/c, cf.
Fig. 6.

In Fig. 6(a), geometry factors F [see equation (24)]
at four locations on the crack front of an embedded crack
have been plotted against the aspect ratio, a/c. The
crack is located in an infinite body and the crack surface
is subjected to the stress field

σa(y′) = σ0

(
y′

a

)i

. (23)

The geometry factor F is defined as

F =
K

σ0
√

πa
. (24)

The solid and dotted lines are obtained by using the
weight function given in equation (22). Along with
these solutions, analytical results presented by Green
and Sneddon [25] (i = 0) and Shah and Kobayashi
[26](i = 1, 2) are shown as single points. As can be
seen, the weight function based F values are in good
overall agreement with the analytical predictions, with
a maximum deviation of less than 4%. Fig. 6(b) shows
the geometry factor at the same four locations, but now
plotted against a/L. The weight function based F val-
ues, shown as solid lines, are obtained for a crack with
aspect ratio a/c = 0.5 and subjected to a uniform stress
field, i.e., i = 0. Results presented by Noguchi et al. [27]
are shown as squares. For a/L = 0, the geometry factor

solution corresponds to an embedded crack located in an
infinite body. As a/L increases, the influence of the free
surface leads to higher F values. The weight function
based F values are in good agreement with the results
presented by Noguchi et al., with a maximum deviation
of less than 4% when a/L ≤ 0.9.

When the embedded elliptical crack shown in Fig. 7
reaches the free surface, there follows a relatively rapid
crack extension through the cusp-shaped ligaments on
each side of the point of break-through [28]. After this
transitory phase, the depth of the surface crack ≈ 2a,
and the curvature at the deepest point of the crack is
nearly the same as that of the embedded crack. If the
shape of the surface crack is to remain semi-elliptic, its
semi-width ≈ √

2c, i.e., it is about 40% wider than the
crack before break-through. However, in order to com-
pensate for the ‘missing’ cycles of the transitory phase,
the ‘effective’ semi-elliptic surface crack is assumed to
be somewhat smaller and to have the same area as the
embedded crack, as shown in Fig. 7.

2a
ia

2c
i

2c

Free surface

Initial crack

L

Figure 7: Sketch of a near surface crack and how it is assumed
to unfold to a surface crack.

4.3.2 Surface crack

For a semi-elliptical surface crack growing in an arbi-
trary component, the crack will in many cases propa-
gate along an uneven surface. Hence, the local coordi-
nate system of the crack must be updated for each crack
growth increment. The initial coordinate system is de-
noted by x′

s, see Fig. 8(a). The semi-elliptical crack
is growing perpendicularly to the maximum principal
stress. The updated coordinate system is denoted by
x′′

s , as shown in Fig. 8(a). The updated coordinate sys-
tem is determined by the two points where the crack
front and the free surface intersect. The updated co-
ordinate system is rotated until the x′′

s -axis is parallel
with the line between the two surface points, see Fig.
8(a). These are found by stepwise moving along the
crack front until the points are found to be outside the
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B

C
D

A

P

a) b)

area Acrack

Figure 5: (a) Schematic drawing of an embedded elliptical crack and definition of parameters for obtaining the
stress intensity factor. (b) Typical finite element mesh used for an embedded elliptical crack.

‘

‘

L

‘

‘

L

Figure 6: Geometry factors for an embedded crack (a) in an infinite body and (b) in a semi-infinite body. In (b)
the aspect ratio a/c = 0.5.

2c

a

initial crack

y’s
y’’s

x’s

x’’s

a) b)

y’’s

x’’s

L

free surface

Figure 8: (a) Definition of the crack coordinate system and (b) a two dimensional view of a semi-elliptical crack.
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component geometry, followed by an iterative process in
order to determine the points more accurately.

For an arbitrary body with a semi-elliptic surface
crack of depth a and aspect ratio a/c (cf. Fig. 8(b))
under a loading, σa, perpendicular to the crack surface,
the weight function at the deepest point of the crack
front A(a; 0) is given by

gA(y′′
s ; a/c) =

2 (1 + fA(y′′
s , a/c, a/L))√

2π(a − y′′
s )

. (25)

The function fA(y′′
s , a/c, a/L) is given in [29]. Similarly,

at the intersection between the crack front and the free
surface, C(0; c), the weight function is given by [29]

gC(y′′
s ; a/c) =

2 (1 + fC(y′′
s , a/c, a/L))√
πy′′

s

. (26)

The above weight function for the surface point C
was established by Shen and Glinka [29] from a near
surface point by means of the finite element method.
The reason for this is that the stress singularity at the
surface point is different from 1/

√
r and that the conven-

tional stress intensity factor, therefore, does not apply at
C. There is, however, only a small region in the vicinity
of C, where the stress singularity is different from 1/

√
r.

As can be seen from equations (25) and (26), the un-
derlying weight function only considers the stress gradi-
ent in the depth direction of the crack. To obtain the
stress intensity factor, K, the line from the crack ori-
gin to the deepest point of the crack is meshed with
two noded line elements. The element length is pro-
gressively decreased towards the point where the weight
function becomes singular. The numerical integration is
performed according to equation (21).

Fig. 9(a) shows the geometry factor FA for the deep-
est point, A(a; 0) (cf. Fig. 8(b)), versus a/L when the
crack surface is subjected to four different stress fields,
see equation (23). The solid lines are obtained by us-
ing the weight function of equation (25). Along with
weight function based FA values, finite element results
presented by Nilsson [30] are shown. As can be seen,
the weight function based FA values are in good overall
agreement with the results presented by Nilsson, with a
maximum difference of less than 4%. In Fig. 9(b), the
corresponding geometry factors, FC, for the crack sur-
face point C(0; c) are shown. Also for the crack surface
point, the agreement is found to be good.

5 Defect generation

Scatter plays an eminent role in the prediction of the
fatigue life of a component. There are several possible
sources for the scatter. It may be due to the random
character of the loading. It may also be due to inac-
curacies in how the loading is applied. Deviations from
the nominal dimensions of the component cause scatter

in the stresses. Lacking repeatability in the manufactur-
ing conditions leads to variability of chemical composi-
tion, microstructure and mechanical properties. This in-
cludes fatigue limit and the crack growth rate of the ma-
terial. Last, but not least, metal alloys contain metallur-
gical defects such as non-metallic inclusions and pores.
Fatigue cracks are prone to initiate and grow from such
defects. The present Section presents a methodology
for generating the number, position and size of defects
within a component.

5.1 Number and position of defects

There are two different approaches based on the statis-
tics of extremes for estimating the size of the largest de-
fect in a large volume of material. The first approach,
called the block maximum method, uses the generalised
extreme value distribution [31]. In this method, a pol-
ished cross-section is divided into k equally sized areas
of size A0 that are inspected for defects using optical mi-
croscopy [32]. Hence, the observation set consists of k
measurements of maximum defect sizes, amax1, . . . , amax.
The corresponding sizes in a volume V0 can be esti-
mated by using a stereological approximation as shown
in [33, 34]. The expected number of defects per unit
volume of the material is denoted by z0. In the second
approach, all defects with sizes above a certain (high)
threshold, ath, are considered. The differences between
the defect sizes and the threshold, i.e., ai−ath, are fitted
to a generalised Pareto distribution [31]. This approach
is therefore often called the peak over threshold method.
The expected number of defects with sizes greater than
ath is denoted by z0(ath).

The number of defects in a finite element of volume
ΔV is obtained by ‘drawing’ from a Poisson distribution,
i.e.,

Pr(I = i) =
[z0ΔV ]i

i!
exp[−z0ΔV ], i ∈ {0, 1, 2, . . .}

(27)
where, I is the random number of defects. The element
volume is calculated as

ΔV =
NGauss∑

i=1

NGauss∑
j=1

NGauss∑
k=1

|J(ξi , ηj , ζk )|WiWjWk . (28)

It should be noted that the intrinsic property of a Pois-
son process is that the occurrence of a defect at a loca-
tion x ∈ V neither encourages, nor inhibits, the occur-
rence of other defects in a neighborhood of x, or in any
other location, and that defects in separate volumes are
mutually independent [34]. This assumption requires
that the number of potentially life-controlling defects is
small, a situation that occurs for stress cycles close to
the fatigue limit (in the HCF regime) and for compo-
nents with a low density of ‘large’ metallurgical defects.

When assigning the defect location, the parent ele-
ment domain ξ is used. The location of a defect within
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a) b)
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x’’s

L

y’’s

x’’s

L

Figure 9: Geometry factors (a) FA for the deepest point A(a; 0) and (b) FC for the surface point C(0; c) of a
semi-elliptical crack with aspect ratio a/c = 1.

an element is obtained according to

⎡
⎣ ξ

η
ζ

⎤
⎦ = 2

⎡
⎣ U1(0, 1)

U2(0, 1)
U3(0, 1)

⎤
⎦ − 1, (29)

where U is a uniform random number between 0 and
1. Fig. 10 shows the position of randomly generated
defects within a cube of volume 1000 mm3.
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Figure 10: Example of generated number and position of de-
fects within a 1000 mm3 cube.

5.2 Defect size distributions

According to the generalised extreme value (GEV) dis-
tribution the probability that a defect of size Amax ≤
amax is located within an element of volume ΔV is given
by

G(amax) = Pr[Amax ≤ amax]

= exp

{
−

[
1 + ξ′

(
amax − a∗

0

a0

)]−1/ξ′
ΔV

V0

}
,

(30)

where a0 > 0 denotes the scale parameter, a∗
0 the loca-

tion parameter and ξ′ the shape parameter. The prob-
ability that a defect of size Amax ≤ a∗

0 is located within
the control region V0 equals exp(−1) ≈ 36.8%. The lo-
cation parameter, a∗

0, is therefore often called the char-
acteristic largest defect size in volume V0 [34]. The GEV
distribution combines the Gumbel (Type I, ξ′ = 0),
Fréchet (Type II, ξ′ > 0) and the reversed Weibull (Type
III, ξ′ < 0) distributions into a single distribution.

The Gumbel, Fréchet and reversed Weibull distribu-
tions have distinctly different forms of tail behaviour.
When ξ′ < 0, i.e., for the reversed Weibull distribution,
the upper limit amax+ = a∗

0 − a0/ξ′. Thus, the proba-
bility of finding defects ≥ amax+ is zero. The Gumbel
(ξ′ = 0) and Fréchet (ξ′ > 0) distributions have no up-
per limit.

When the peak over threshold method is used, all
defects larger than a sufficiently high threshold ath are
measured either from a single inspection region or from
k sub-regions. The observation set then consists of i
measurements, a1, . . . , ai. A generalised Pareto distri-
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bution with distribution function [31]

H(a) = Pr[A ≤ a|A > ath] = 1−
[
1 + ξ′

(
a − ath

ã0

)]−1/ξ′

,

(31)
is fitted to the values ai − ath. The scale parameter ão

is given by
ã0 = a0 + ξ′(ath − a∗

0), (32)

where a0, a∗
0 and ξ′ are equal to those in equation (30).

The range of a − ath is 0 < a − ath < ∞ if ξ′ ≥ 0 and
0 < a − ath < −ã0/ξ′ if ξ′ < 0. The generalised Pareto
distribution was applied to defects in clean steels for the
first time in [35, 36].

The generated sample of defect sizes is converted into
crack dimensions by first assuming that all generated
defects are embedded circular cracks of radius c. If the
drawn defect cuts the free surface of the component, the
‘effective’ surface crack is assumed to be semi-elliptic of
width 2c and a depth a equal to the depth below the
surface of the drawn defect.

5.3 Defect criterion and probability of fatigue
failure

The Kitagawa-Takahashi diagram [37] clearly shows that
the fatigue strength decrease with increasing crack size.
In addition, there exists a critical crack size, acrit, below
which cracks are non-damaging. In the present work,
the Kitagawa-Takahashi diagram [37] is used for find-
ing out whether a crack is potentially damaging or not.
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Figure 11: Kitagawa-Takahasi diagram with experimental
data for both ferrous and nonferrous alloys gathered by Tanaka
et al. [38] and Hertzberg [39].

Consider now a small, homogeneously stressed vol-
ume element ΔV subjected to an equivalent stress am-
plitude σa. The smallest crack initiating failure in ΔV is

denoted by acrit and can be estimated according to [37]

acrit = a′
[(

ΔσA

Δσ

)2

− 1

]
, (33)

where the ‘intrinsic’ crack length is given by

a′ =
(

ΔKthΔσ

ΔKΔσA

)2

a. (34)

Cracks with sizes less than acrit are removed from the
component. The expected number of remaning cracks
per unit volume is denoted by z1. The critical crack
density, z1, is defined as the expected number of cracks
per unit volume of the material that yields a fatigue
strength (random variable) σA ≤ σa.

6 Flow-chart of the random defect
module

In this Section a flow-chart of the random defect mod-
ule is presented. The flow-chart is shown in Fig. 12.
The flow-chart can be divided into three main parts: (i)
input, (ii) defect generation and (iii) crack growth.

In the input part of the flow-chart, data needed for
the computation are given. In the defect generation
part, the number, size and position of the defects are
generated. The number of critical defects, z1, are sub-
sequently determined by using a Kitagawa-Takahashi di-
agram, see Subsection 5.3.

In the crack growth part, all generated defects are
initially embedded circular cracks of radius c. For de-
fects cutting the free surface of the component, the ‘ef-
fective’ surface crack is assumed to be semi-elliptic of
length 2c and a depth a, equal to the depth below the
surface of the drawn defect. The location of the crack
front relative to the free surface is determined for each
crack growth increment. This enables one to determine
when an embedded crack starts to grow as a surface
crack and when a surface crack breaks the opposing free
surface. Failure of a component occurs, when the crack
has reached a predefined size af, or the stress intensity
factor K has reached the fracture toughness KIc. The
fatigue life of a single component is determined as the
smallest computed life for all crack-like defects.

7 Conclusions

P•FAT is designed as a stand-alone finite-element post-
processor with the component geometry and stresses
given by a standard finite element program. Data needed
for the computation are nodal coordinates, element topol-
ogy and stresses. The surface elements are found auto-
matically and are used for defining the geometry of the
component.

The life-controlling defect is determined by means of
the stress field and the initial crack growth rate. The
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Figure 12: Flow-chart of the procedure for calculating the fatigue life of a single component.
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number of defects in each finite element is obtained by
’drawing’ from a Poisson distribution. The location of
each defect in an element is found by drawing from a
uniform distribution. The defect size is obtained by
drawing from an extreme value distribution.

The life-controlling defect is then regarded as an em-
bedded crack or as a surface crack. Fatigue life predic-
tion is carried out using a short crack growth model.
The defects are considered to be crack-like and to grow
on the plane of maximum principal stress. Weight func-
tions, together with the stress field of the crack-free com-
ponent, are used to compute the required stress intensity
factors. The crack surface is automatically meshed with
plane elements with subsequent numerical integration
(Gauss quadrature) for determining the stress intensity
factor at several locations at the crack front. For each
incremental step, this process repeats itself: the crack
surface is re-meshed, and updated stress intensity fac-
tors for the current crack are obtained. The program
also updates the location of the crack front relative to
the free surfaces. Hence, if the crack grows through the
component surface, the crack is regarded as a surface
crack.

By repeating this process for a large number of nom-
inally equal components (Monte Carlo simulation), the
fatigue life distribution of the component is obtained.
Thus, the designer will be able to estimate the proba-
bility of component fatigue failure.
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Norwegian University of Science and Technology, Richard Birkelandsvei 2B, NO-7491 Trondheim, Norway

Received 18 December 2006; received in revised form 22 March 2007; accepted 3 April 2007

Abstract

The paper presents a probabilistic method for the simulation of fatigue crack growth from crack-like defects in the com-
bined operating and residual stress fields of an arbitrary component. The component geometry and stress distribution are
taken from a standard finite element stress analysis. Number, size and location of crack-like defects are ‘drawn’ from prob-
ability distributions. The presented fatigue assessment methodology has been implemented in a newly developed finite-
element post-processor, P • FAT, and is useful for the reliability assessment of fatigue critical components. General
features of the finite element post-processor have been presented. Important features, such as (i) the determination of
the life-controlling defect, (ii) growth of short and long cracks, (iii) fatigue strength and fatigue life distribution and
(iv) probability of component fatigue failure, have been treated and discussed. Short and long crack growth measurements
have been presented and used for verification of the crack growth model presented.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Fatigue; Crack growth; Short crack; Probability of failure; Defect size distribution; Finite-element post-processor

1. Introduction

In terms of fatigue design, it is of ultimate importance that computer simulations undergoes the same
improvements regarding accuracy and speed as all the other steps in a product development process. It is
the authors’ conviction that a standard fatigue analysis tool should reflect that fatigue is a probabilistic
phenomenon caused by the (random) growth of small fatigue cracks from randomly distributed defects.
Unfortunately, this is bound to make the fatigue design process much more complex. Hence, a robust fatigue
assessment tool, directly applicable to the results from a standard finite element stress analysis, would be of
great importance in the process of developing optimised, safe and reliable structural components.

0013-7944/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.engfracmech.2007.04.006

* Corresponding author. Present address: Department of Engineering Design and Materials, Norwegian University of Science and
Technology, Richard Birkelandsvei 2B, NO-7491 Trondheim, Norway.

E-mail address: Arne.Fjeldstad@ntnu.no (A. Fjeldstad).

Engineering Fracture Mechanics xxx (2007) xxx–xxx

www.elsevier.com/locate/engfracmech

ARTICLE IN PRESS

Please cite this article in press as: Fjeldstad A et al., Simulation of fatigue crack growth in components with ..., Eng
Fract Mech (2007), doi:10.1016/j.engfracmech.2007.04.006



To comply with thise needs, a probabilistic fatigue assessment tool has been developed that is capable of
predicting the fatigue life of a component. The prediction is based on the fatigue properties of the material
and their scatter, and on the operating stresses from a finite element analysis of the component. The post-

Nomenclature

A defect size (random variable)
a defect size
a 0 intrinsic crack length
a0 scale parameter in the extreme value distribution
a�0 characteristic largest defect size
acrit critical defect size
ath peak over threshold defect size
c half the surface crack length
C coefficient in crack growth law
d notch depth
F geometry factor
G(a) generalised extreme value distribution
H(a) generalised Pareto distribution
DK stress intensity range
DK* stress intensity range associated with R = 0
DKeq equivalent stress intensity range
KIc mode I fracture toughness
Kt stress concentration factor = rmax/S
DKth threshold stress intensity range
m exponent in crack growth law
N fatigue life (random variable)
n number of cycles
n1 unit eigenvector of the maximum principal stress
Pf probability of failure
Ps probability of survival = 1 � Pf

R stress ratio
S remote stress
Snet net-section stress
t thickness of plane specimen
V volume
V0 reference volume
w width of plane specimen
z1 critical defect density
c Walker exponent
n 0 shape parameter in the extreme value distribution
q notch radius
r1 maximum principal stress
ra stress amplitude = Dr/2
rm mean stress
rA fatigue strength (random variable)
r�A0 characteristic fatigue strength
rij operating stress tensor
r0ij residual stress tensor
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processing of the stresses includes residual stresses, which may be imported directly from casting or welding
simulations.

Scatter plays an eminent role in the prediction of the fatigue life of a component. There are several possible
sources for the scatter. It may be due to the random character of the loading. It may also be due to inaccu-
racies in how the loading is applied. Deviations from the nominal dimensions of the component cause scatter
in the stresses. Lacking repeatability in the manufacturing conditions leads to variability of chemical compo-
sition, microstructure and mechanical properties. This includes fatigue limit and the crack growth rate of the
material. Last, but not least, metal alloys contain metallurgical defects such as non-metallic inclusions and
pores. Fatigue cracks are prone to initiate and grow from such defects. The present work describes a method-
ology for simulating the scatter of the fatigue life based on the statistical distributions of defect density and
defect size. Material parameters of the crack growth law may also be treated as random variables [1].

2. Finite-element post-processor

P • FAT is designed as a stand-alone, finite-element post-processor with the component geometry and stres-
ses given by a standard finite element program. Data needed for the computation are nodal coordinates, ele-
ment topology and stresses. It has been developed to perform predictions of crack growth in arbitrary three-
dimensional components. It supports the simulation of both a single crack-like defect that can be inserted into
the component at a desired location (single defect module) and randomly inserted crack-like defects (random
defect module). The finite element post-processor uses a short crack model to determine the crack growth rate,
see Section 3.1. The reader is referred to Ref. [1] for the numerical aspects of the crack-growth modules.

The number of defects in each finite element is obtained by ‘drawing’ from a Poisson distribution. The loca-
tion of each defect in an element is obtained from a uniform distribution, and the defect size is obtained by
‘drawing’ from an extreme value distribution. The defects are considered to be crack-like, and the number of
cycles required for a given defect to become critical is determined.

The crack-like defects are assumed to grow on the plane of maximum principal stress. Weight-functions [2],
together with the stress field of the crack-free component, are used to compute the required stress intensity
factors. Generally, the direction of maximum principal stress in the uncracked component changes as the
crack grows on a specific plane. In the present work, the change of the crack growth direction is neglected.
Generally, this is a good approximation as long as the crack is small compared with the dimensions of the
component, i.e., for a large fraction of the fatigue life.

The crack surface is automatically meshed with plane elements. Subsequently, numerical integration (Gauss
quadrature) is performed for determining the stress intensity factor at several locations at the crack front. For
each incremental step, this process repeats itself: the crack surface is re-meshed, and updated stress intensity
factors for the current crack are obtained. The program also updates the location of the crack front relative to
the free surfaces. Hence, if the crack grows through the component surface, the crack is regarded as a surface
crack or a corner crack, see Fig. 1. Failure of a component occurs when the crack has reached a predefined
size, or if the stress intensity factor K has reached the fracture toughness KIc.

a
a

2a

2c c

2c

embedded crack

surface crack

corner crack

Fig. 1. Crack configurations implemented in the finite-element post-processor.

A. Fjeldstad et al. / Engineering Fracture Mechanics xxx (2007) xxx–xxx 3

ARTICLE IN PRESS

Please cite this article in press as: Fjeldstad A et al., Simulation of fatigue crack growth in components with ..., Eng
Fract Mech (2007), doi:10.1016/j.engfracmech.2007.04.006



In the present investigation, the interaction between single cracks and the subsequent joining of these and
the formation of a new, larger crack have been neglected. Thus, only one single, dominating crack is consid-
ered at a time. This assumption requires that the number of potentially life-controlling defects is small, a sit-
uation that occurs for stress cycles close to the fatigue limit (in the HCF regime) and for components with a
low density of ‘large’ metallurgical defects. Future fatigue testing and simulation of components with known
defect distributions should give a better understanding of the influence on fatigue life of the interaction
between cracks.

By repeating the foregoing analysis for a large number of nominally equal components (Monte Carlo sim-
ulation), the fatigue life distribution of the component is obtained. Thus, the designer will be able to find the
probability of fatigue failure.

The main steps for obtaining the fatigue life distribution of a component can be summarised as follows:

1. Develop a 3D FE model and perform a stress analysis of a component using a standard finite element pro-
gram, such as ABAQUS, ANSYS, or NASTRAN.

2. The number, size and location of crack-like defects in each finite element are ‘drawn’ from probability
distributions.

3. Calculate the maximum principal stress for all defects.
4. Perform fatigue crack growth calculations.
5. Repeat steps 2–4 for a large number of nominally equal components to obtain the fatigue life distribution

of the component.

3. Crack growth law

The stress field ahead of a crack in a linear elastic body can be characterised by means of the stress intensity
factor K. This is a function of the geometry of the component and the crack [cf. Fig. 1] as well as the stress
field. For simple geometries, K can be obtained from handbook solutions [3] or asymptotic solutions [4,5]. For
more complex geometries, the stress intensity factor can be obtained by using weight functions together with
the stress field of the crack-free component. Weight factor solutions for an embedded crack [6], a surface crack
[7] and a corner crack [8], as shown in Fig. 1, have been implemented. The current crack configuration is auto-
matically identified. The initial crack is assumed to grow on the plane of maximum principal stress [1].

The stress amplitude, ra, at an arbitrary point on the crack plane, is given by

ra ¼ n1irij;an1j; i; j ¼ 1; 2; 3: ð1Þ
and the mean stress, rm, by

rm ¼ n1iðrij;m þ r0
ijÞn1j: ð2Þ

n1 is the unit eigenvector of the maximum principal stress, and r0
ij denotes the residual stress tensor.

The use of stress intensity factors was extended to fatigue problems by Paris and Erdogan [9], who sug-
gested a power-law relationship between the crack growth rate da/dn and the stress intensity range DK, viz.,

da
dn

¼ CDKm; ð3Þ

where C and m are material parameters. Klesnil and Lukáš [10] extended Paris’ law into the near threshold
region by including the threshold stress intensity range, DKth:

da
dn

¼ CðDKm � DKm
thÞ: ð4Þ

3.1. An equivalent stress intensity range for short cracks

The fatigue tests by Kitagawa and Takahashi [11] clearly show that the fatigue limit of a cracked solid can
be determined by means of the threshold of the stress intensity range for long cracks only. For short cracks,
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however, the fatigue limit asymptotically approaches the ordinary fatigue limit as determined by means of a
smooth specimen. Both the long and the short crack fatigue limits are satisfied by an equation initially given
by El Haddad et al. [12] for F = 1, and generalised by Härkegård [13] to an arbitrary geometry factor, F, viz.

Dr ¼ DK th

F
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðaþ a0Þp ¼ DrAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a=a0
p : ð5Þ

The characteristic crack length, a 0, which signifies the transition between short cracks, a < a 0, and long cracks,
a > a 0, is defined by

a0 ¼ 1

p
DK th

FDrA

� �2

: ð6Þ

By replacing the geometry factor F, a 0 can be written as

a0 ¼ DK thDr
DKDrA

� �2

a: ð7Þ

One may interpret a 0 as an ‘intrinsic’ crack length, which should be added to the length of the real crack to
yield an ‘effective’ crack length. Fig. 2a shows a Kitagawa–Takahashi diagram with experimental data for
both ferrous and nonferrous alloys gathered by Tanaka et al. [14] and Hertzberg [15]. When crack growth
behaviour is controlled by linear elastic fracture mechanics, i.e., a � a 0, Dr varies as 1=

ffiffiffi
a

p
. At the other ex-

treme where a � a 0, the fatigue limit asymptotically approaches the fatigue limit, DrA, of a smooth, polished
fatigue specimen without major defects.

Rewriting Eq. (5) in terms of the stress intensity range yields

DK ¼ DK thffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a0=a

p : ð8Þ

In Fig. 2b, Eq. (8) is shown as a solid line together with the data presented in [14,15]. For long cracks, DK
asymptotically approaches the stress intensity range DKth. For short cracks, however, the stress intensity range
required for a crack to grow varies as

ffiffiffi
a

p
.

The preceding equations explicitly depend on the intrinsic crack length, a 0, which, in its turn, depends on
the geometry factor, F. The latter will not be constant, if the crack shape changes [16], or the finite dimensions
of the solid must be considered. This inconvenience can be avoided by eliminating the crack length, a, between
Eqs. (5) and (8). Thus, one obtains
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Fig. 2. Normalised threshold behaviour versus normalised crack size. (a) Normalised stress range and (b) normalised stress intensity
range. Data points have been gathered by Tanaka et al. [14] and Hertzberg [15].
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DK
DK th

� �2

þ Dr
DrA

� �2

¼ 1: ð9Þ

This equation was originally used by Härkegård et al. [17] to correlate the stress range, Dr, and the stress
intensity range, DK, below which short cracks did not propagate in two ferritic steels. In Fig. 3, the data points
of Fig. 2 have been replotted in a diagram with Dr/DrA as the abscissa and DK/DKth as the ordinate. The
seemingly large scatter in Fig. 3 compared with that in Fig. 2a and b can be explained by the change to linear
scales from logarithmic scales.

If Eq. (9) is rewritten as

DK 1þ DK th

DK

� �2 Dr
DrA

� �2
" #1=2

¼ DK th; ð10Þ

the left member may be interpreted as an equivalent stress intensity range for short and long cracks,

DKeq ¼ DK 1þ DK th

DK

� �2 Dr
DrA

� �2
" #1=2

: ð11Þ

By introducing Eq. (7) into the above equation, DKeq can be expressed as

DKeq ¼ DK

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ a0

a

r
: ð12Þ

For a� a 0, DKeq asymptotically approaches the stress intensity range DK.
By introducing Eq. (11) into Eq. (4), the crack growth rate can be expressed as

da
dn

¼ CDKm
th

DK
DK th

� �2

þ D�r
DrA

� �2
( )m=2

� 1

24 35: ð13Þ

To determine the ‘effective’ stress range, D�r, for a surface crack at the root of a notch (Fig. 4, left), the same
surface crack in a semi-infinite body is considered (Fig. 4, right). D�r is now defined as the remote stress range
that yields the same DK as for the crack at the root of a notch. Hence,

D�r ¼ DK
F
ffiffiffiffiffiffi
pa

p ; ð14Þ
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Fig. 3. Relation between the stress range and the stress intensity range required to propagate a crack. Data points have been gathered by
Tanaka et al. [14] and Hertzberg [15].
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where F is the geometry factor for the current crack in a semi-infinite plate. For an edge through-crack,
F = 1.122 [3], and for an elliptic surface crack with aspect ratio a/c = 1, F = 0.663 [18] at the deepest point
of the crack front.

For a long crack, i.e., a � a 0, Eq. (13) reduces to the crack growth law proposed by Klesnil and Lukáš [10],
see Eq. (4).

3.2. Influence of the load ratio

Several models that address the mean stress dependency of fatigue crack propagation have been presented
in the literature. The different mean stress equations are either crack closure based or empirically based.

By plotting da/dn as a function of the equivalent zero-to-tension stress intensity range, and by suitable
choice of the exponent c

DK� ¼ DK

ð1� RÞ1�c ; R ¼ Kmin

Kmax

; ð15Þ

Walker [19] found that he could make crack growth data for R 5 0 fall into a narrow scatter-band corre-
sponding to R = 0. At positive stress ratios, c, usually takes values between 0.2 and 0.8, where c = 0.2 gives
a strong and c = 0.8 a weak dependency on R. The constant C of the crack growth law, the stress range, the
fatigue limit and the threshold stress intensity range can all be transformed to R = 0 by using Walker’s equa-
tion as shown in [20,21]. The exponent m of the crack growth law generally varies only weakly with R [22] and
is assumed to be constant in this work.

3.3. Crack growth measurements

Crack growth measurements obtained from the literature [23,24] have been reanalysed in order to verify the
crack growth law given by Eq. (13). Both studies consider the growth of short cracks in the near-threshold
regime.

Fig. 5 shows crack growth measurements carried out by Breat et al. [23] on A508 steel specimens. The objec-
tive of this investigation was to compare the crack growth behaviour of long cracks, initially 13–16 mm, with
the behaviour of short cracks, initially 0.3–0.5 mm. The short crack measurements were performed on four
point bending specimens. For long crack measurements, compact tension specimens were used. The crack prop-
agation tests were carried out at R = 0.1. The specimens with long cracks were subjected to a nominal stress
range well below that of specimens with short cracks. In both cases, the crack growth rates were measured

d a

ρ

a

ΔK ΔK

ΔS

ΔS

Δ

Δ

Fig. 4. Definition of the effective stress range D�r. The smooth edge-cracked plate has the same DK value as the notched plate when
subjected to D�r.
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for increasing DK levels at a constant load level. Fig. 5a clearly shows that short cracks grow at a significantly
higher rate than long cracks when rates are compared on the basis of DK. Tentative reasons for this state of
affairs are:

• A short crack remains open during a larger part of the load cycle than a long crack [25].
• DK is no longer characterising the crack tip stress and strain field because the plastic zone is in the order of
the crack length [26,27].

In Fig. 5b, the same data have been plotted against the equivalent stress intensity factor DKeq [see Eq. (11)].
The short and long crack measurements collapse into one line, which is well described by the solid line,
obtained from Eq. (4).

Fig. 6a shows crack growth data for the aluminium alloy 6082-T6. The crack growth measurements have
been presented by Mann [24] and were carried out at a stress ratio of R = 0.1. According to Borrego et al. [28],
the long crack stress intensity threshold of AA6082-T6 is given by DKth(R = 0.1) = 2.08 MPa

ffiffiffiffi
m

p
. The stress

concentration factor at the starter notch was Kt = 5.7 [24]. Potential drop measurements were carried out to
determine the crack depth, a. The stress intensity factor range, DK, was calculated by using an asymptotic

eq

Fig. 5. Crack growth rates in A508 steel [23] as a function of (a) DK, and (b) DKeq.

Fig. 6. Crack growth rates in AA6082-T6 [24] as a function of (a) DK and (b) DKeq.
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solution presented in [4]. The crack growth measurements of the aluminium alloy were carried out by increas-
ing the applied load until a crack had been initiated. The initial crack depth was measured to be approximately
16 lm. Subsequently, the load was reduced stepwise until the crack had reached a depth of approximately
0.5 mm. The load was then kept constant. By applying DKeq to the crack growth data in Fig. 6a, one obtains
the plot shown in Fig. 6b. The (uncorrected) short crack growth data in the range DK = 1 � 2 MPa

ffiffiffiffi
m

p
are

seen to be shifted to DKeq = 2.0 � 2.3 MPa
ffiffiffiffi
m

p
, which is in good agreement with the long crack stress intensity

threshold due to Borrego et al. [28].
To judge from the preceding investigations, the crack growth law given by Eq. (13) is a robust and simple

crack growth model.

4. Verification of fatigue life predictions

Wormsen et al. [1] showed that the K solutions [6,7] implemented in the finite-element post-processor are in
good overall agreement with numerical calculations and solutions found in the literature [29,30]. Based on the
conclusions drawn in [1], it is reasonable to assume that the finite-element post-processor yields accurate fati-
gue life predictions. However, fatigue life predictions may contain errors from other sources than the numer-
ically calculated DK values, such as too large crack growth increments when a crack is growing (i) close to a
free surface, or (ii) in a gradient stress field.

Life predictions reported in [31,32] have been reanalysed by using Paris’ law, see Eq. (3). The mechanical
properties presented in Table 1 will be used throughout this Section.

Dai et al. [31] simulated the growth of near-surface cracks located in a semi-infinite body subjected to a
remote uniform stress range of DS = 500 MPa. The embedded crack grows until it reaches the surface and
continues its growth as a surface crack until the fracture toughness, KIc, is attained. The calculation of K is
based on the eigenstrain procedure [33]. This allows the crack to evolve freely. Hence, the transition from
an embedded crack to a surface crack may be modelled in detail. As described in [1], a simpler approach
has been implemented in the finite-element post-processor. The crack unfolds to a surface crack, once the
embedded crack has reached the surface, see Fig. 7. Presented in Table 2 are fatigue life predictions from
Dai et al. [31] along with results from the finite-element post-processor. The predicted fatigue lives are consis-
tently on the safe side of those reported in [31], with an observed maximum difference of less than 12%. The
predicted number of cycles until breakthrough are in good overall agreement. Thus, the deviation between the

Table 1
Mechanical properties of the investigated steel

Fracture toughness KIc = 150 MPa
ffiffiffiffi
m

p
Coefficient in Paris’ law C = 1.0 Æ 10�11 [MPa,m]
Exponent in Paris’ law m = 3

2aia

2ci

2c

Free surface

Initial crack

L

Fig. 7. Sketch of a near surface crack and how it unfolds to a surface crack.
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two lifetimes can be attributed to the surface crack growth. The difference in the predicted number of cycles
after breakthrough is mainly due to the assumption that the embedded crack spontaneously unfolds to a sur-
face crack, cf. Fig. 7.

Fjeldstad et al. [32] simulated the influence of a gradient stress field on the fatigue life using the asymptotic
solution by Wormsen et al. [4]. A surface crack located at the root of a semi-circular edge notch
(d = q = 20 mm) in a semi-infinite plate subjected to uniaxial tension DS = 100 MPa perpendicular to the sym-
metry plane of the notch was considered. The cracked configuration is shown in Fig. 8a. The initial crack is
characterised by its depth ai and its surface length 2ci, cf. Fig. 8b. According to finite element analysis, the
stress concentration factor Kt = 3.1 for the notched configuration. In Table 3, results obtained from the
finite-element post-processor are presented along with results based on the work in [32]. Again, lifetime pre-
dictions from the finite-element post-processor are conservative, with a maximum difference of less than 20%.
The difference in fatigue life is here mainly due to the different methods for obtaining DK. It is found that the
crack aspect ratio a/c in the present analysis is generally beneath that of the analysis described in [32]. A smal-
ler aspect ratio leads to a higher K, which results in a more rapid crack growth, and thus, a shorter fatigue life.
Finding the cause of the slightly different behaviour is however outside the scope of this paper.

Table 2
Fatigue life predictions presented by Dai et al. [31] and obtained by using P • FAT

Initial crack geometry [mm]a Cycles until breakthrough, n1 Cycles after breakthrough, n2 Total cycles until failure, nf = n1 + n2

ai ci L Dai et al. P • FAT Dai et al. P • FAT Dai et al. P • FAT

1 1 2 8867 8931 14034 11257 22901 20188
1 2 2 3801 4653 12363 11227 16164 15880
2 2 4 3283 3327 8136 6950 11419 10277

a See Fig. 7.

c

a

d=

A

A

Section A-A

S

a b

Fig. 8. Schematic drawings of a surface crack emanating from a notch with root radius q = 20 mm: (a) three-dimensional view and
(b) two-dimensional view of the cracked section A–A.

Table 3
Fatigue life predictions of the component shown in Fig. 8 based on Fjeldstad et al. [32] and obtained by the finite-element post-processor

ai [mm] af [mm] Fatigue life

Fjeldstad et al. P • FAT

0.2 200 506780 412963
0.2 20 330260 295800
0.02 20 885150 854129

Here, ai/ci = 1 has been used.
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5. Defects

The fatigue lifetime depends on material defects, e.g., porosity and non-metallic inclusions, which form as a
natural part of the manufacturing processes. The volume fraction of inclusions depends directly on the oxygen
and sulphur content of the steel.

Due to the small volume of steel that can be examined by conventional inspection methods, the number and
size of defects in a large volume have to be estimated by statistical analysis. A description of the different
inspection methods, such as non-destructive testing (e.g. ultrasonic, radiographic, eddy-current) and optical
microscopy, are given in Ref. [34]. Ultrasonic inspection is nowadays used for the inspection of defects, whose
size is greater than approximately 200 lm. The major advantage of this method is that a rather ‘large’ volume
can be inspected. However, in most cases the initial defect size at the failure site is below the detection limit of
the ultrasonic inspection method. By using techniques based on surface analysis and optical microscopy, one
could detect defects as small as, typically 3 lm. The drawback of this method is that only a small area can be
inspected, typically 1 mm2–15 mm2. To obtain a sufficient accuracy in the extrapolation from a small area to a
large area, the number and size of defects should be counted and measured in several separate control regions.

In the following, methods for the prediction of the size of fatigue critical defects based on the statistics of
extremes will be presented.

5.1. Defect distributions

The reliability and performance of metallic components are greatly affected by the size of defects contained
in the most highly stressed volume. With improvements in steel-making, the amount and size of defects are
being progressively reduced. The likely size of the largest defect within a cast of steel is an important indicator
of the quality of the cast. It is of interest both to the manufacturer, for reasons of process control, and to the
user, who may wish to use the information on defects to undertake defect-tolerant design and safety assess-
ment of components. Because defects are small and are mostly inside the material, they are difficult to detect
and measure. Observations using automated optical microscopy can, however, be made on polished plane
regions (control areas), and the maximum defect size in a real component must be obtained by prediction
based on some statistical analysis. There are two different approaches based on the statistics of extremes
for estimating the sizes of large defects in a large volume from those of a small volume. The first approach,
called the block maximum method, is based on the generalised extreme value distribution [35]. In this method,
only the size of the largest defect in each of the k control areas is measured. The second approach is the peak
over threshold method. Here, all defects with sizes above a certain high threshold are considered. The over-
shoot of the defect size above the threshold is fitted to a generalised Pareto distribution [35]. Both methods
allow the data on defect sizes in the small control regions to be used for prediction of the maximum defect
size in a large volume of steel. And they avoid difficulties in measuring small defects, particularly from a re-
solution point of view.

5.1.1. Block maximum method

For the block maximum method, the total inspection area is divided into k equally sized, polished control
areas, each of size A0. The three-dimensional size distribution of defects can be estimated from the two-dimen-
sional size distribution by using a stereological approximation as shown in [36,37]. Hence, in the following a
control region of volume V0 is considered. For each of the k control regions, all the defects above the detection
limit would need to be measured, to decide which is the largest, i.e., amax = max{a1, . . . ,ai}. The result of the
block maximum method is a set of k observations of maximum defect sizes, amax1, . . . ,amaxk. The generalised
extreme value (GEV) distribution is fitted to these data. The GEV distribution for a controll region of volume,
V0, is given by

GðamaxÞ ¼ Pr½Amax 6 amax� ¼ exp � 1þ n0
amax � a�0

a0

� �� ��1=n0
( )

; ð16Þ
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where a0 > 0 denotes the scale parameter, a�0 the location parameter and n 0 the shape parameter. The location
parameter, a�0, is the exp(�1) � 36.8% quantile of the generalised extreme value distribution and is often called
the characteristic largest defect size in volume V0. The GEV distribution combines the Gumbel (Type I,
n 0 = 0), Fréchet (Type II, n 0 > 0) and the reversed Weibull (Type III, n 0 < 0) distributions into a single distri-
bution. The remarkable feature of the generalised extreme value distribution is that Eq. (16) is the only pos-
sible limit for the distribution of the maximum defect size [35].

The Gumbel, Fréchet and reversed Weibull, have distinctly different forms of tail behaviour. When n 0 < 0,
i.e., for the reversed Weibull distribution, its upper end-point amaxþ ¼ a�0 � a0=n

0. Thus, the probability of find-
ing defects Pamax+ is zero. The Gumbel (n 0 = 0) and Fréchet (n 0 > 0) distributions are unlimited upwards.

Consider a homogeneously stressed volume, V0, subjected to an (equivalent) stress amplitude ra. The small-
est defect initiating failure in V0 is denoted by acrit. For long fatigue lives close to the fatigue limit, acrit can be
estimated by means of the Kitagawa-Takahashi model [11], cf. Eq. (5), as

acrit ¼ a0
rA

ra

� �2

� 1

" #
; ð17Þ

where the intrinsic crack length, a 0, is given by Eq. (6). If the largest defect within V0 exceeds acrit, then V0 will
fail. This is the same as stating that the applied stress ra is above the fatigue limit (random variable), rA, for
the volume element V0. Hence,

Pr½Amax P acrit� ¼ 1� GðacritÞ ¼ Pr½ra P rA�: ð18Þ

In Fig. 9, a Kitagawa–Takahashi diagram is shown together with a probability density curve of the maximum
defect size. The critical defect density, z1, is defined as the expected number of defects per unit volume of the
material that yields a fatigue limit (random variable) rA 6 ra. The shaded area in Fig. 9 is equal to the prob-
ability that at least one defect has a size greater than acrit. The probability of failure under homogeneous stress
is given by

P f ;V 0
¼ Pr½Amax P acrit� ¼ Pr½ra P rA� ¼ z1V 0: ð19Þ

From Fig. 9 it can be seen that the expected number of critical defects decreases with decreasing stress level.
Clearly, this has a large effect on the probability of failure. A similar shift could arise from uncertainty in the
Kitagawa–Takahashi model. Also a small reduction in maximum defect size by increasing the steel cleanliness,

[M
Pa

]

Fig. 9. Illustration of the block maximummethod for estimating the fatigue failure probability of a homogeneously stressed volume due to
the interaction between the defect size distribution and the applied loading.
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which shifts the density curve to the left, has a similar, large effect. According to Eqs. (19) and (16), the prob-
ability of survival, P s;V 0

¼ 1� P f ;V 0
, is given by

P s;V 0
¼ 1� z1V 0 ¼ Pr½Amax 6 acrit� ¼ exp � 1þ n0

acrit � a�0
a0

� �� ��1=n0
( )

: ð20Þ

For an arbitrary volume, V, under homogeneous stress, the probability of survival of the whole volume is
equal to the product of the probabilities of survival of all the volume elements. Since, the number of volume
elements is V/V0, one obtains

P s;V ¼ PV =V 0
s;V 0

¼ exp � 1þ n0
acrit � a�0

a0

� �� ��1=n0 V
V 0

( )
: ð21Þ

Fig. 10 shows the probability of survival versus the applied stress assuming the maximum defect size to be
Gumbel distributed. A homogeneously stressed bearing steel [38] with an intrinsic fatigue limit rA = 550 MPa
and a 0 = 9.5 lm is considered. From the figure, it is seen that Eq. (21) takes the size of the specimen into
account.

When the state of stress is inhomogeneous, it is appropriate to divide the component, whose overall volume
is V, into a large number of small volume elements, DVi, each with a nearly constant (equivalent) stress ampli-
tude, rai. Under inhomogeneous stress, acrit will depend on the location x = [x,y,z]T of the volume element.
Thus, the probability of survival of the ith element is given by

P s;DV i ¼ exp � 1þ n0
acritðxÞ � a�0

a0

� �� ��1=n0 DV i

V 0

( )
: ð22Þ

Again, the probability of survival of the component equals the product of the probabilities of survival of all
the volume elements, i.e.,

P s;V ¼ exp �
XV =DV
i¼1

1þ n0
acritðxÞ � a�0

a0

� �� ��1=n0 DV i

V 0

( )
: ð23Þ
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Fig. 10. Probability of survival for a smooth uniaxial loaded specimen versus the applied stress assuming the maximum defect size to be
Gumbel distributed (n 0 = 0, a�0 ¼ 20 lm and a0 = 2 lm).
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As the volume of each individual element tends to zero, the overall probability of survival becomes

P s;V ¼ exp �
Z
V

1þ n0
acritðxÞ � a�0

a0

� �� ��1=n0
dV
V 0

( )
: ð24Þ

This equation can either be solved by means of numerical integration or by ‘drawing’ defect sizes from the
generalised extreme value distribution [see Eq. (16)].

5.1.2. Peak over threshold method
For the block maximum method, all the defects above the detection limit would need to be measured to

decide which is the largest. The rest of the data are then discarded. This can be a wasteful process that sets
aside valuable data. In contrast, for the peak over threshold method, all defects above a certain size are mea-
sured, giving more data to the parameter estimation of the defect size distribution. The peak over threshold
method was applied to defects in clean steels for the first time by Shi et al. [39,40].

For the peak over threshold method, either a single inspection volume or k sub-volumes are chosen for
counting and measuring defects larger than a sufficiently high threshold ath. The result is a set of i observa-
tions, a1, . . . ,ai. The statistical analysis is made on the excesses of these sizes over the threshold, that is on
the values ai � ath. A generalised Pareto distribution is given by [35]

HðaÞ ¼ Pr½A 6 ajA > ath� ¼ 1� 1þ n0
a� ath
~a0

� �� ��1=n0

; ð25Þ

is fitted to these excesses. The scale parameter ão is given by [35]

~a0 ¼ a0 þ n0ðath � a�0Þ; ð26Þ
where a0, a�0 and n 0 coincide with the parameters of the associated generalised extreme value distribution for
block maxima, see Eq. (16). The range of a � ath is 0 < a � ath < 1 if n 0 P 0 and 0 < a � ath < � ã0/n 0 if
n 0 < 0. When n 0 = 0, the maximum defect size follows a Gumbel distribution [37]. For n 0 > 0, the maximum
defect size follows a Fr�echet distribution and for n 0 < 0, a reversed Weibull distribution [37].

The expected number of defects with sizes greater than ath in the inspection volume V0 is assumed to be
Poisson distributed with mean z0(ath)V0, where z0(ath) is the expected number of defects of size greater than
ath per unit volume. The expected number of critical defects in V0 is Poisson distributed with mean [37]

z1V 0 ¼ z0ðathÞV 0Pr½A P acritjA > ath�: ð27Þ
The homogeneously stressed volume, V0, will survive only if all defects have a size smaller than acrit, i.e.,
z1V0 = 0. Hence, from the Poisson distribution,

P s;V 0
¼ Pr½A 6 acrit� ¼ Pr½z1V 0 ¼ 0� ¼ exp �z0ðathÞV 0Pr½A P acritjA > ath�f g; ð28Þ

and from Eq. (25), one obtains

P s;V 0
¼ exp �z0ðathÞV 0 1þ n0

acrit � ath
~a0

� �� ��1=n0
( )

: ð29Þ

If z0(ath) = 1/V0 and ath ¼ a�0, the above equation becomes identical to Eq. (20). It is this fact that connects the
peak over threshold method and the block maximum method.

6. A simplified procedure for determining the life-controlling defect

When performing a Monte Carlo simulation for obtaining the fatigue life distribution of a component, one
must generally perform a crack growth analysis of all defects located in each one of the nominally equal com-
ponents. Since a fatigue crack growth calculation is a computer intensive task, it would be of interest to see
whether it is possible to directly identify the life-controlling defect from the stress field and the initial crack
growth rate. If this is possible, one could greatly reduce the simulation time. A crude simplified defect selection
procedure has been implemented in the finite-element post-processor. This procedure is presented below.
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Non-propagating defects are removed from the component by means of the Kitagawa–Takahashi dia-
gram [11]. The remaining defects are sorted based on their initial crack growth rate. In order to determine
the life-controlling defect, the stress field in the proximity of the defect must be taken into account. This is
done by using a crude correction of the initial crack growth rate with respect to the stress gradient acting on
the crack surface. The method is described in Ref. [32]. Here, the fatigue life of cracked specimens subjected
to a gradient stress field is compared with the fatigue life of cracked specimens subjected to a homogeneous
stress field.

To see how well the defect selection procedure works, a double-edge-notched-tension plate subjected to a
nominal stress range DS = 450 MPa at R = 0 has been considered. The investigated configuration is shown in
Figs. 11a and 12. The largest notch is semi-circular with a radius q = 20 mm and a stress concentration factor
Kt = 3.5. The smallest notch is U-shaped with a radius q = 2 mm and depth d = 7 mm. The stress concentra-
tion factor for the U-shaped notch is Kt = 4.8. The notched configuration is an interesting example due to the
two different notch geometries which both suit as potential locations for the life controlling defect. The mate-
rial parameters used are given in Table 4.

Fig. 11a shows the locations of the potential life-controlling defects contained in one component. The num-
ber of critical defects is clearly highest in the proximity of the semi-circular notch, while only a few defects are
located near the U-notch. This occurs since the semi-circular notch has a larger highly stressed volume than
the U-notch. In order to validate the defect selection procedure, crack growth calculations have been per-
formed for all the defects shown in Fig. 11a. Fig. 11b shows the a priori ranking of the fatigue critical defects
due to the selection procedure against the a posteriori ranking obtained by means of crack growth calcula-
tions. The figure clearly shows that the defect selection procedure manages to identify the life controlling
defect, i.e., the defect that gives the shortest life. However, one can not rule out the possibility that a somewhat
less severe defect will be chosen occasionally.

Table 4
Material parameters for a high strength steel [38]

Coefficient in crack growth law C(R = 0) = 2.08 Æ 10�14 [MPa,m]
Exponent in crack growth law m = 4.8
Threshold stress intensity factor range DKth(R = 0) = 4.4 MPa

ffiffiffiffi
m

p
Fatigue limit rA(R = 0) = 550 MPa
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Fig. 11. (a) Potential life-controlling defects in one component, and (b) the a posteriori ranking of the life-controlling defects versus the a
priori ranking from P • FAT.
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Fig. 12 shows the location of the life-controlling defect in 500 components. As can be seen, most of these
defects are located in the highly stressed volume of the semi-circular notch, while only a few are located near
the more highly stressed U-notch.

7. Simulations

7.1. Geometry

Two different configurations have been investigated: (a) a smooth tension plate and (b) a double-edge-
notched tension plate. Both configurations have the volume V = 6.9 Æ 106 mm3 and are subjected to the
net-section stress amplitude, Sa,net = 320 MPa at R = 0. The specific numerical data employed in the present
calculations are given in Table 4.

The first configuration is a smooth plate of width w, height h and thickness t, as shown in Fig. 13a. The
double-edge-notched tension plate is shown in Fig. 13b. The notch is semicircular with radius q = w/7.
According to FEA, the elastic stress concentration factor Kt = r1,max/S = 3.1 for the notched plate.

One thousand simulations have been carried out for each of the configurations under the assumption that
the defect size is Gumbel or Fréchet distributed. The number of crack-like defects in each finite element is
‘drawn’ from a Poisson distribution. The initial defect locations are given by a uniform distribution [1].

7.2. Results

The different ways of modelling the defect size distributions are separately used to estimate the fatigue limit
distribution and the fatigue life distribution of the two investigated configurations. In Table 5, the distribution
parameters are presented along with mean and standard deviation values of the size of the life-controlling
defect, fatigue limit and fatigue life. Beretta and Murakami [41] found that the distribution functions of inher-

w=250mm

t=100mmS

S

Fig. 12. Example of generated life-controlling defects of 500 components.

h h

ww

ρ

ρthickness t thickness t d=

SSSSa b

Fig. 13. Specimens considered. (a) A smooth tension plate and (b) a double-edge-notched tension plate.
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ent material inhomogeneities (graphite flakes or nodules, inclusions) have a shape ratio, a0=a�0, typically less
than 0.5. Under the assumption that the defect size is Gumbel distributed, a shape ratio a0=a�0 ¼ 0:1 has been
used in the simulations, cf. Table 5.

Size distributions for the life-controlling defects are shown in Fig. 14. Fig. 14a shows the defects size dis-
tribution under the assumption that the defect size follows a Gumbel distribution and Fig. 14b shows the asso-
ciated plot when the defects are ‘drawn’ from a Fr�echet distribution. The mean value and the standard
deviation of the life-controlling defect size are given in Table 5. As can be seen, the life-controlling defect
in the smooth plate is larger under a Fréchet assumption than under a Gumbel assumption. This occurs since
the Fréchet distribution has a heavier upper tail than the Gumbel distribution. Furthermore, the size of the
life-controlling defect is much smaller in the notched configuration compared to the smooth plate due to
the smaller highly stressed volume. From Fig. 14 and Table 5, it can be seen that the type of the defect dis-
tribution has nearly no influence on the size of the life-controlling defect in the notched plate.

The size distributions of the life-controlling defect shown in Fig. 14 have been converted into fatigue limit
distributions by using the Kitagawa–Takahashi diagram. The resulting fatigue limit data have been plotted in
a Weibull probability chart in Fig. 15. The dashed lines are drawn by using a three-parameter Weibull distri-
bution. The three-parameter (cumulative) Weibull distribution is given by

Pr½rA 6 ra� ¼ 1� exp � ra � r�
A0

r0

� �br
" #

; ð30Þ

where r0 denotes the scale parameter, r�
A0 the location parameter and br the shape parameter. The parameters

are given in Table 6 and have been estimated using the maximum likelihood method [35]. Since the simulated
data follow the dashed lines rather well, it can be accepted that the fatigue limit for both configurations and
defect size distributions are well described by the Weibull distribution. From Fig. 15 and Table 5 it can be seen

Table 5
Mean values and standard deviations of the simulated life-controlling defect size, fatigue limit and fatigue life

Distribution Parameters Defect size [lm] Fatigue limit [MPa] Fatigue life [k cycles]

Amax	 a�0
[lm]

a0
[lm]

n0 Smooth mean
(std.a)

Notched mean
(std.a)

Smooth mean
(std.a)

Notched mean
(std.a)

Smooth mean
(std.a)

Notched mean
(std.a)

Gumbel 20 2 0 38.9 (2.6) 23.0 (3.1) 244 (6.3) 148 (8.0) 110 (11) 4.9 (1.4)
Fr�echet 20 0 11.4 46.2 (5.6) 23.2 (3.9) 228 (11) 148 (8.1) 86 (13) 4.9 (1.5)

a std: Standard deviation.

a b

Fig. 14. Simulated life-controlling defect sizes in the two investigated configurations [see Fig. 13] under the assumption that the defect size
follows (a) a Gumbel distribution and (b) a Fréchet distribution.
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that the fatigue limit distribution for the notched plate is nearly unaffected by the type of the defect size dis-
tribution, as could be expected from Fig. 14.

Fig. 16 shows the fatigue life distribution for the two investigated configurations for Sa,net = 320 MPa. The
simulated data are again plotted in a Weibull probability chart. The dashed lines are drawn by using the three-
parameter Weibull distribution:

Fig. 15. Fatigue limit distribution for the two investigated configurations [see Fig. 13] under the assumption that the defect size follows
(a) a Gumbel distribution and (b) a Fréchet distribution.

Fig. 16. Fatigue life distribution for the two investigated configurations [see Fig. 13] under the assumption that the defect size follows (a) a
Gumbel distribution and (b) a Fréchet distribution.

Table 6
Weibull distribution parameters of the simulated fatigue limit [Fig. 15] and fatigue life [Fig. 16]

Distribution Amax 	 Parameters Fatigue limit Fatigue life

a�0 [lm] a0 [lm] n0 r�A0 [MPa] r0 [MPa] br n�0 n0 bn

Gumbel Smooth 20 2 0 42 204 38.6 588330 551945 5.3
Notched 20 2 0 123 27 3.3 10018 43429 2.9

Fréchet Smooth 20 0 11.4 39 194 22.5 244470 664680 5.3
Notched 20 0 11.4 120 31 3.7 10208 43539 2.8
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Pr½N 6 n� ¼ 1� exp � n� n�0
n0

� �bn
" #

: ð31Þ

Here, n0 denotes the scale parameter, n�0 the location parameter and bn the shape parameter. The parameters
are given in Table 6. It can be seen from Fig. 16 that the simulated data are well described by the Weibull
distribution. Fig. 16 and Table 6 show that the fatigue life for the notched plate is nearly unaffected by the
choice of the defect size distribution.

8. Conclusions

The probability of component fatigue failure can be estimated from an extreme value distribution for large
defects and the stress distribution within the component. The fatigue life distribution of a component is
obtained by performing crack growth simulations for a large number of randomly distributed defects. The
simulations are carried out by using a proposed short crack growth model. An analysis of short and long
crack data demonstrated that the short crack model describes the crack growth data very well. Fatigue life
predictions have been compared with predictions presented by Dai et al. [31] and Fjeldstad et al. [32]. The
fatigue life predictions have been found to be in good agreement with the latter investigations. Further, it
has been shown that the presented procedure takes into account the influence of the stress distribution as well
as the size of a component on the probability of component fatigue failure. The method can also estimate the
reduction in the probability of fatigue failure due to improvements in steel cleanliness and by careful compo-
nent design.

Simulations of two configurations have been performed. Their fatigue limit and fatigue life distributions
have separately been obtained, and found to be well described by a three-parameter Weibull distribution.
For the notched configuration, it was found that the fatigue limit and fatigue life were nearly unaffected by
the choice of the defect size distribution.
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A reanalysis of Frost’s classical fatigue tests on self-arresting cracks at notches

A. Fjeldstad∗, A. Wormsen and G. Härkeg̊ard.

Norwegian University of Science and Technology, Trondheim, Norway.

Abstract

In this paper, a short crack growth model is presented and used for predicting the arrest of cracks growing in
stress gradient fields. The crack growth model makes use of an effective stress which can be interpreted as the
stress that must be applied to the corresponding smooth semi-infinite cracked plate to obtain the same value of
the stress intensity factor as for the considered notched configuration. The short crack growth model has been
used for predicting the conditions, under which crack initiation, crack arrest and failure are expected to occur.
These predictions have been compared with experimentally obtained data for notched specimens of mild steel. The
predictions are found to be in good agreement with the experimental data.

Keywords: short crack growth model, effective stress, crack arrest.

NOTATION

a crack depth
a′ crack depth at transition between

shallow and deep crack asymptotes
a0 intrinsic crack depth
C coefficient of crack growth law
d notch depth
F0 geometry factor for a crack emanating

from a smooth surface
K stress intensity factor
ΔKth threshold stress intensity range
ΔKeq equivalent stress intensity range
Kt gross stress concentration factor = σmax/σ∞

m exponent of crack growth law
ρ notch root radius
σA intrinsic fatigue limit
σ∞ remote gross stress
σ̄ effective stress

1 Introduction

In the late fifties, Frost [1] carried out a celebrated series
of fatigue tests on notched specimens of mild steel. He
noticed that cracks, which initiated at the root of the
notch, either continued to grow to failure or arrested
at some depth below the notch. Thus, in agreement
with later observations by Kitagawa and Takahashi [2]
on smooth specimens, cracks were consistently observed
in specimens, where the notch strss amplitude exceeds
the ordinary, ‘intrinsic’ fatigue limit, σA. However, in
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severely notched specimens, Frost observed that fatigue
cracks were arrested and became ‘non-propagating’, when
the applied stress amplitude fell below some critical level.
By plotting the fatigue limit of a smooth specimen with
a (short) surface crack against the depth of the crack,
Kitagawa and Takahashi [2] found the fatigue limit to
be a steadily decreasing function of the depth, with the
intrinsic fatigue limit given by the short crack asymp-
tote. The results by Kitagawa and Takahashi are in
good qualitative agreement with a fracture mechanics
model by El Haddad et al. [3] for a through-crack in
a homogeneous stress field. According to El Haddad et
al., the long crack asymptote is given by the threshold
for crack growth, ΔKth.

In an attempt to understand the mechanisms behind
Frost’s observations, Smith and Miller [4]used ΔKth to
predict the critical level, below which a fatigue crack
becomes non-propagating. This gave acceptable agree-
ment for relatively deep cracks (a > 1.3 mm) inves-
tigated by Frost. However, for smaller cracks, with a
depth approaching the intrinsic crack depth, the direct
use of ΔKth would overpredict the critical level. More-
over, since fatigue crack growth was not modelled by
Smith and Miller, they could not explicitly treat the
transition from initial crack growth to crack arrest.

In [5], the present authors generalised El Haddad’s
model to cover the case of a crack of arbitrary shape in
an inhomogeneous stress field, e.g., a semi-elliptic crack
at the root of a notch. In conjunction with the fatigue-
crack-growth law by Klesnil and Lukas [6], the gener-
alised model was found to agree well with the growth of
short (and long) surface cracks observed in a steel and
in an aluminium alloy. In the following it will be shown
that the short-crack-growth model of [5] is able to model
the transition from initial crack growth to crack arrest.

1
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Predictions of crack initiations and crack arrest will be
compared with the results from the classical fatigue tests
by Frost [1].

2 Modelling the arrest of fatigue cracks

2.1 A model for the growth of short fatigue
cracks

The use of stress intensity factors was extended to fa-
tigue problems by Paris and Erdogan [7], who suggested
a power-law relationship between the crack growth rate
da/dn and the stress intensity range ΔK. Klesnil and
Lukáš [6] suggested the following equation to extend
Paris’ law into the near-threshold region:

da

dn
= C(ΔKm − ΔKm

th
). (1)

C and m are material parameters, and ΔKth is the
threshold stress intensity range. For a crack in a ho-
mogeneous, normal stress field, σ, the stress intensity
factor may be expressed in terms of the crack depth, a,
and the geometry, F0, as

K = F0σ
√

πa. (2)

A compilation of fatigue tests by Kitagawa and Taka-
hashi [2] clearly shows that the fatigue limit of a cracked
solid can be determined by means of the threshold of
the stress intensity range, ΔKth, for long cracks only.
Thus, for short cracks, the fatigue limit asymptotically
approaches the ordinary fatigue limit, ΔσA = 2σA, as
determined by means of a smooth specimen. Both the
long and the short crack fatigue limits are asymptoti-
cally satisfied by an equation proposed by El Haddad et
al. [3] for F0 = 1, and generalised by Härkeg̊ard [8] to
an arbitrary geometry factor F0, viz.

Δσ =
ΔKth

F0

√
π(a + a0)

=
ΔσA√

1 + a/a0

. (3)

The characteristic crack length, a0, which signifies the
transition between short cracks, a < a0, and long cracks,
a > a0, is defined by

a0 =
1

π

(
ΔKth

F0ΔσA

)2

. (4)

One may interpret a0 as an ‘intrinsic’ crack length, which
should be added to the length of the real crack to yield
an ‘equivalent’ crack length.

Based on the observation [9, 10] that short cracks
grow faster than long cracks at a given stress inten-
sity level, El Haddad et al. [3] introduced an equiva-
lent stress intensity range that accounts for the elevated
crack growth rate of short cracks, viz.

ΔKeq = F0Δσ
√

π(a + a0) (5)

Strictly speaking, equations (3) and (5) are only valid for
a crack growing in a homogeneous stress field. It would
therefore be of great interest to extend the theory by El
Haddad et al. to handle crack growth in inhomogeneous
stress fields. This can be done by replacing the homo-
geneous stress range Δσ with an effective stress range,
Δσ̄. This is defined as the stress range that must be
applied to the corresponding smooth semi-infinite plate
to obtain the same stress intensity range as that of the
crack at the root of the notch, cf. Fig. 1. The effective
stress range is defined as

Δσ̄ =
ΔK

F0

√
πa

. (6)

For a shallow edge through-crack, F0 = 1.122 [11],
and for a semi-elliptic surface crack with aspect ratio
a/c = 1, the geometry factor at the deepest point of the
crack front has the value F0 = 0.663 [12].

The preceding equations explicitly depend on the
characteristic crack length, a0, which, in its turn, de-
pends on the crack geometry factor, F0. The latter will
not be constant, if the crack shape changes. This incon-
venience can be avoided by substituting F 2

0
a0 and F 2

0
a

from equations (6) and (4), respectively, into equation
(5). After some rearrangement, one obtains

ΔKeq = ΔKth

[(
ΔK

ΔKth

)2

+

(
Δσ̄

ΔσA

)2
]1/2

. (7)

By replacing ΔK in equation (1) by the equivalent stress
intensity range of equation (7), one obtains a crack-
growth law that accounts for the growth of a short crack
in an inhomogeneous stress field, viz.

da

dn
= CΔKm

th

⎡
⎣

{(
ΔK

ΔKth

)2

+

(
Δσ̄

ΔσA

)2
}m/2

− 1

⎤
⎦ .

(8)
This equation predicts a finite crack-growth rate as soon
as Δσ̄ > ΔσA, even for a crack of vanishing depth.
Using equation (8), Fjeldstad et al. [5] were able to
unify da/dn-data for long and short crack in a low-alloy
steel [13] and in an aluminium alloy [14].

2.2 Crack arrest at notches

The stress field decreases rapidly ahead of a notch and
may cause a decreasing crack growth rate for a propagat-
ing crack. Fig. 2 shows the normalised equivalent stress
intensity factor, ΔKeq/ΔKth, against the normalised
crack depth, a/d, for a circumferentially notched speci-
men subject to tension-compression. The effective stress
range Δσ̄ has been calculated as [15]

Δσ̄ = Δσ∞

√
1 +

d

a

[
1 − exp

(
− a

a′

)]
, (9)
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Figure 1: When subjected to the effective stress, σ̄, the edge-crack of the smooth plate (b) has the same stress intensity factor,
K, as that of the crack of the notched plate (a) subjected to the remote stress σ∞.
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Figure 2: ΔKeq/ΔKth versus a/d at three dif-
ferent stress ranges. The curves are obtained by
using ΔσA = 430 MPa and ΔKth = 13 MPa

√
m

for R = −1.

where the transition crack depth a′ is defined by

a′ =
d

K2
t − 1

; Kt =
σmax

σ∞

. (10)

The stress intensity range, ΔK, is then found by means
of equation (6) using F0 = 1.122, i.e., assuming a cir-
cumferencial crack of constant depth. In Fig. 2, ΔKeq/ΔKth

has been presented for three different stress ranges. The
upper curve illustrates a situation, where the crack starts
to grow from the notch root and continues to grow until
final failure. The intermediate curve shows crack initia-
tion and growth, until ΔKeq falls below ΔKth and the
crack arrests. The lower curve corresponds to a situa-
tion, where no crack is initiated.

3 Analysis of Frost’s classical fatigue test

data

3.1 Comparison of predictions with test data

The existence of crack arrest for short cracks growing
from the root of a notch has been experimentally con-
firmed by Frost [1]. The experimental data reported
in [1] will be compared with predictions from equation
(8). The mild steel specimens tested are shown in Fig.
3. The specimen in Fig. 3(a) was subjected to fully re-
versed tension-compression, while the specimen in Fig.
3(b) was subjected to rotating bending. Both speci-
mens were machined with different notch root radii in
order to obtain different Kt values. The plain tension-
compression fatigue limit of the mild steel was reported
to be ΔσA = 430 MPa [1]. According to Smith and
Miller [4], the threshold stress intensity range, ΔKth(R =
−1), for the mild steel considered is 13 MPa

√
m. Based
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Figure 4: Fatigue regimes in notched components according to the short crack growth model [equation (8)]. The experimental
data are from cylindrical specimens of mild steel with notch depth (a) d = 5.1 mm [Fig. 3(a)] and (b) d = 1.3 mm [Fig.
3(b)] [1, 16].
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Figure 3: Cylindrical fatigue test specimens sub-
jected to (a) fully reversed tension-compression and
(b) rotating bending [1, 16].

on a metallographic examination, Frost [1] found that
the cracks initiated with an approximately uniform depth
around the complete periphery for both types of speci-
mens. Frost’s data [1] are presented in Fig. 4 together
with curves predicted by equation (8). The predictions
are carried out by assuming a crack of constant depth
around the complete periphery. Fig. 4 is divided into
three regions [4]: (i) one in which no crack will be
formed, (ii) one in which crack arrest will occur, and
(iii) one in which a crack will be formed and propa-
gate to failure. As can be seen, the proposed crack
growth model agrees very well with the experimental
data. Moreover, the crack growth model reveals the
change in fatigue limit of notched specimens of the same
notch depth d but different notch root radii ρ. Note that
the stress level separating the propagation and crack ar-
rest regimes is independent of the stress concentration
factor Kt above a certain value of Kt. It is clearly seen
that the threshold stress level, at which no crack arrest
will occur, is higher for the specimen with notch depth
d = 1.3 mm than for the specimen with d = 5.1 mm.

3.2 Some remarks

The peak stress level needed to form a crack at the root
of the notch is low and the degree of notch root plasticity
is therefore so small that it could be neglected.

The solid line that defines the boundary between
crack arrest and complete failure in Fig. 4 has been
obtained by neglecting the effect of notch root plastic-
ity.

The following points summarises the present Section:

• Crack arrest can be predicted by the short crack
growth model.
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• A crack emanating from the root of a notch, below
a certain stress concentration factor, will propa-
gate to failure if the stress range exceeds the fa-
tigue limit.

• Above a certain Kt value the stress level separat-
ing the propagation and crack arrest regimes are
nearly independent of the stress concentration fac-
tor.

• Although no effect of notch plasticity is taken into
account in the analysis, the crack growth predic-
tions agrees very well with Frost’s experimental
data.

4 Conclusions

A short crack growth model has been used to predict
the conditions for crack initiation, crack arrest and fail-
ure for notched cylindrical specimens of mild steel. The
crack growth model uses an effective stress, which is
interpreted as the stress that must be applied to the
corresponding semi-infinite cracked plate to obtain the
same stress intensity factor value as for the notched con-
figuration considered. These analyses show that crack
arrest is expected to occur below a certain stress range,
which depends on the notch geometry. The predictions
are found to be in good agreement with experimental
data reported by Frost [1].
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