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Abstract

A probabilistic fatigue assessment tool, P•FAT, directly applicable to the results
from a standard finite element stress analysis has been developed. The fatigue
assessment tool consist of two deterministic fatigue assessment methods:

• ‘Local stress approach’ – Life prediction based on the equivalence between
the most highly stressed point of a component and a standard smooth
fatigue specimen under the same stress.

• ‘Single defect approach’ – Life prediction based on the growth of a single
‘worst-case’ crack-like defect at the location of maximum stress.

And of two probabilistic fatigue assessment methods:

• ‘Weakest-link approach’ – Assumes the probability of survival of a compo-
nent to be the product of the probabilities of survival of the (small) elements
into which the component has been divided for the purpose of analysis. The
probability of survival of an element is a function of the stress cycle, fatigue
strength and the size of the element.

• ‘Random defect approach’ – The model is based on a finite element stress
analysis and assumptions on the defect distribution as well as a theory for
the growth of short cracks. Each finite element is associated with one or
more defects by ‘drawing’ from a Poisson distribution. The initial posistion
of a defect is obtained from a uniform distribtuion while its size is obtained
from an extreme value distribution. The defects are considered to be crack-
like, and the number of cycles required for each defect to become critical
is determined. By carrying out a large number of such simulations, the
fatigue life distribution of the component is obtained.

This thesis presents the theory behind the above fatigue assessment methods. In
addition, asymptotic K and J solutions for a crack emanating from the root of a
notch have been presented.
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CHAPTER 1

Introduction

1.1 Objective
The primary objective of this work has been to develop, implement and verify
robust and physically consistent fatigue assessment methods for the prediction of
the fatigue life and the fatigue strength of notched components containing defects.

This shall be achieved by:

• Establishing the theoretical basis for robust fatigue assessment methods
that are fully compatible with the result from a standard finite element
stress analysis and permit direct post-processing for obtaining the proba-
bility of fatigue failure.

• Develop, implement and verify a short-crack growth model.

• Create a stand-alone finite-element post-processor.

• Establish simple approximate methods for estimating the stress intensity
factor K and the J integral for surface cracks at stress concentrations.

• Compare fatigue life predictions with experimental test data of some se-
lected specimen types.

1.2 Motivation
Fatigue failure is one of the most common failure mode of mechanical components
and is caused by the growth of cracks. A crack generally starts to grow from the
first load cycle while final failure can occur after thousands (low-cycle fatigue)
or millions of load cycles (high-cycle fatigue). Example of structures that are
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2 Chapter 1. Introduction

loaded in the high-cycle fatigue range are hydraulic turbine runners, aircraft
wings, marine structures, railway shafts and suspension arms in a car. Example
of structure that are loaded in the low-cycle fatigue range are blades, rotors, and
casings in jet engines, gas and steam turbines, as well as other high-temperature
components in thermal power plant and process plant.

A component fatigue assessment evaluation is a prerequisite for obtaining a
sufficiently high inherent reliability with respect to fatigue, i.e., the component
can perform its intended function under given operating conditions for a given
time interval. For instance, a turbine runner must be designed against fatigue due
to start-stop-cycles and flow-induced vibrations. There exist empirical methods to
take the stress field and the size of the component into account, but these methods
are generally not compatible with finite element stress analysis. For instance, the
methods due to Neuber [8] and Peterson [9] for handling notch effects require a
nominal stress, which is generally unavailable from a finite element stress analysis.
This thesis therefore focus on robust fatigue assessment methods that can be used
directly with results from a standard finite element stress analysis to predict the
fatigue life of notched components containing defects.

1.3 Short summary of the thesis

In Paper 1, a non-local stress approach for fatigue assessment based on weakest-
link theory and statistics of extremes is presented. The statistical distribution
of fatigue strength data from smooth standard specimens serves as a starting
point for the computation of the probability of component fatigue failure. It is a
non-local stress approach in the sense that it takes the complete stress field into
account rather than just the highest local stress. The non-local stress approach
can be linked to the probability of finding a fatigue critical defect in the most
highly stressed volume of the component. The weakest-link approach has been
used for predicting the fatigue limit and the fatigue life of several specimen types
and predictions have been compared with test results in Papers 1 and 2.

In Paper 3, the algorithm needed for performing a crack growth analysis of a
three-dimensional component by post-processing results from a standard finite el-
ement stress analysis is given. The prediction is based on the fatigue properties of
the material and their scatter, and on the operating stresses from a finite element
analysis of the component. The post-processing of the stresses includes residual
stresses, which may be imported directly from casting or welding simulations.
By ‘drawing’ the number, size and posistion of crack-like defects from distribu-
tion functions and repating this process for a large number of nominally equal
components (‘Monte Carlo’ simulation), the fatigue life distribution of the com-
ponent can be obtained by means of fatigue crack growth calculations. Important
features of the crack growth approach, such as (i) the determination of the life-
controlling defect, (ii) growth of short and long cracks, (iii) fatigue strength and
fatigue life distribution and (iv) probability of component fatigue failure, have
been presented in Paper 4. The crack growth analysis is carried out by using a
short crack growth model. In Paper 4, the short crack growth model has been
used to collapse da/dn-data for short and long crack measurements of a low-alloy



1.3 Short summary of the thesis 3

steel [10] and an aluminium alloy [11]. In Paper 5, the short crack growth model
has been used for predicting the conditions under which crack initiation, crack
arrest and failure are expected to occur. These predictions have been compared
with the results from the classical fatigue tests by Frost [12].

To be able to perform a fatigue crack growth calculation, the stress intensity
factor K must be determined for the considered cracked configuration. The finite-
element post-processor uses weight functions [13–15] together with the stress
field of the associated crack-free component to obtain the stress intensity fac-
tor. Asymptotic solutions for a crack emanating from the root of a notch have
been presented in Papers 6 and 7. The asymptotic solutions provides an easy-
to-use tool for verification of more advanced numerically based stress intensity
factor solutions. Fatigue life predictions based on the asymptotic solutions have
been compared with lifetime predictions from the finite-element post-processor
in Paper 4.

When the strains in the critical regions of a specimen are elastic-plastic, the
crack growth rate must be characterised in terms of the cyclic J integral, ∆J ,
rather than in terms of the linear elastic stress intensity range, ∆K. Simple
solutions for estimating the J integral have been presented in Paper 8.





CHAPTER 2

Defects

A steel melt usually contains insoluble components in form of particles which
appear as inclusions in the solid material. The main part of these particles (ox-
ides, sulphides and nitrides) are created by reactions of elements resolved in the
steel (endogenous inclusions) or by contaminations from the refractory material
(exogenous inclusions). These are the so-called non-metallic inclusions [16, 17].
Fig. 2.1 shows scanning electron microscopy (SEM) images of cracked globular
calcium inclusions in a AISI 8620 carburising steel. Non-metallic inclusions can
behave as cracks or act as crack initiation sites. They can therefore have a large
effect on the fatigue properties.

a) b)

Figure 2.1: SEM images of a globular calcium aluminate inclusion located (a) at
a free surface and (b) close to a free surface in an AISI 8620 carburising steel [18].

The defect size distribution is related to the manufacturing process. Typical
volume defects are non-metallic inclusions, pores and shrinkage cavities. The list
of surface defects includes machining marks (surface roughness), corrosion pits
welding defects and non-metallic inclusions or pores located close to or at the
surface.

5



6 Chapter 2. Defects

2.1 Inspection methods

Several inspection methods have been used for the characterisation of defects in
metallic materials, e.g., conventional non-destructive testing, optical microscopy,
inclusion concentration method, chemical analysis, fracture methods, oxygen de-
termination and spark emission. A broad review of these methods have been
presented in [19]. When using optical microscopy, the size and number of defects
are determined by inspecting small polished control regions.

There are two different methods based on the statistics of extremes for es-
timating the size of the largest defect in a large volume of material. The first
approach, called the block maximum method, uses the generalised extreme value
distribution [20]. In this method, the largest defect in each of the k control re-
gions is measured. In the second approach, all defects with sizes above a certain
high threshold ath are considered. The difference between the defect size and the
threshold, i.e., a − ath, are fitted to a generalised Pareto distribution [20]. This
approach is therefore often called the peak over threshold method.

2.2 Block maximum method

When using the block maximum method, a polished cross-section is divided into
k equally sized areas of size A0 which are inspected for defects. The observation
set consists then of k measurements of maximum defect sizes, amax1, . . . , amaxk.
The generalised extreme value distribution is fitted to these data, see Papers 1,
3 and 4.

2.3 Peak over threshold method

For the block maximum method, all defects above the detection limit of the
inspection method needs to be measured to decide which is the largest in each of
the k control-regions. Defects smaller than the largest defect is discarded. Hence,
valuable data are set aside. In contrast, the peak over threshold method uses all
defects with sizes above a statistically determined threshold size. The peak over
threshold method was applied to defects in clean steels for the first time by Shi
et al. [21, 22].

When the peak over threshold method is used, all defects larger than a high
threshold ath are measured either from a single inspection region or from k sub-
regions. The observation set then consists of i measurements, a1, . . . , ai. A gen-
eralised Pareto distribution is fitted to these values, see Papers 3 and 4.

2.4 Short crack growth model

The fatigue test by Kitagawa and Takahashi [23] clearly show that the fatigue
limit of a cracked solid can be determined by means of the threshold of the stress
intensity range for long cracks only. For short cracks, however, the fatigue limit
asymptotically approaches the ordinary fatigue limit as determined by means of
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a smooth specimen. Both the long and the short crack fatigue limits are satisfied
by an equation initially given by El Haddad et al. [24] for F0 = 1, and generalised
by Härkegård [25] to an arbitrary geometry factor, F0, viz.

∆σ =
∆Kth

F0

√
π(a + a′)

=
∆σA√
1 + a/a′ . (2.1)

The characteristic crack length, a′, which signifies the transition between short
cracks, a < a′, and long cracks, a > a′, is defined by

a′ =
1

π

(
∆Kth

F0∆σA

)2

. (2.2)

One may interpret a′ as an ‘intrinsic’ crack length, which should be added to
the length of the real crack to yield an ‘effective’ crack length. Fig. 2.2 shows
a Kitagawa-Takahashi diagram together with experimental data for both ferrous
and nonferrous alloys gathered by Tanaka et al. [26] and by Hertzberg [27]. When
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Figure 2.2: Normalised stress range, ∆σ/∆σA, versus normalised crack size
a/a′. The figure is taken from Paper 4.

crack growth behaviour is controlled by linear elastic fracture mechanics, i.e.,
a � a′, ∆σ varies as 1/

√
a. At the other extreme where a � a′, the fatigue

limit asymptotically approaches the (intrinsic) fatigue limit range, of a smooth,
polished fatigue specimen without major defects.

Rewriting equation (2.1) in terms of the stress intensity range yields

∆K =
∆Kth√
1 + a′/a

. (2.3)
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In Fig. 2.3, equation (2.3) is shown as a solid line together with data presented
in [26,27]. For long cracks, ∆K asymptotically approaches the threshold stress in-
tensity range ∆Kth. For short cracks, however, the stress intensity range required
for a crack to grow varies as

√
a.
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Figure 2.3: Normalised stress intensity factor range, ∆K/∆Kth, versus normalised crack
size a/a′. The figure is taken from Paper 4.

The preceding equations explicitly depend on the intrinsic crack length, a′,
which, in its turn, depends on the geometry factor, F0. The latter will not be
constant, if the crack shape changes, or the finite dimensions of the solid must be
considered. This inconvenience can be avoided by eliminating the crack length,
a, between equations (2.1) and (2.3). Thus, one obtains

(
∆K

∆Kth

)2

+

(
∆σ

∆σA

)2

= 1. (2.4)

This equation was originally used by Härkegård et al. [28] to correlate the stress
range, ∆σ, and the stress intensity range, ∆K, below which short cracks did not
propagate in two ferritic steels. In Fig. 2.4 the data points in Figs. 2.2 and 2.3
have been replotted in a diagram with ∆σ/∆σA as the abscissa and ∆K/∆Kth

as the ordinate. The seemingly large scatter in Fig. 2.4 compared with that in
Figs. 2.2 and 2.3 can be explained by the change to linear scales from logarithmic
scales.

By using the characteristic crack length in conjunction with the fatigue crack
growth law by Klesnil and Lukáš [29], one obtains the following crack growth law
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Figure 2.4: Relation between stress range and stress intensity range required to propagate
a crack. The figure is taken from Paper 4.

that accounts for the growth of a short crack [Papers 4 and 5]

da

dn
= C∆Km

th


{(

∆K

∆Kth

)2

+

(
∆σ̄

∆σA

)2
}m/2

− 1


 . (2.5)

To determine the ‘effective’ stress range, ∆σ̄, for a surface crack at the root of a
notch (Fig. 2.5, left), the same surface crack in a semi-infinite body is considered
(Fig. 2.5, right). ∆σ̄ is now defined as the remote stress range that yields the
same ∆K as for the crack at the root of a notch. Hence,

∆σ̄ =
∆K

F0

√
πa

, (2.6)

where F0 is the geometry factor for the current crack in a semi-infinite plate. For
an edge through-crack, F0 = 1.122 [30], and for an elliptic surface crack with
aspect raio a/c = 1, F0 = 0.663 [31] at the deepest point of the crack front.

In Paper 4, the short crack growth model has been used to collapse da/dn-data
for short and long crack measurements of a low-alloy steel [10] and an aluminium
alloy [11]. In Paper 5, equation (2.5) has been used for predicting the conditions
under which crack initiation, crack arrest and failure is expected to occur. These
predictions have been compared with the results from the classical fatigue tests
by Frost [12].
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d a

�

a

K K

a) b)

Figure 2.5: When subjected to the effective stress, σ̄, the edge-crack of the
smooth plate (b) has the same stress intensity factor, K, as that of the crack of
the notched plate (a) subjected to the remote stress σ∞. The figure is taken from
Paper 5.



CHAPTER 3

Finite-element post-processor

At a time when the industry is continuously challenged to come up with better
and less costly products, and this in ever shorter cycles, all product development
processes must be improved, including fatigue design. To comply with this need, a
probabilistic fatigue assessment tool, P•FAT, has been developed that is capable
of predicting the fatigue life of a notched component containing defects. The
prediction is based on the fatigue properties of the material and their scatter, and
on the operating stresses from a finite element analysis of the component. The
post-processing of the stresses includes residual stresses, which may be imported
directely from casting or welding simulations.

Fatigue design is based on standard S −N data or on the explicit calculation
of the number of load cycles required for a crack to grow from an initial size, ai,
to a final size, af. Since S − N data refer to the number of cycles required for a
macroscopic crack to develop in a smooth test bar, the S−N approach to fatigue
design may be considered as an ‘implicit’ analysis of crack growth. Table 3.1
shows the four types of fatigue assessment methods that have been implemented
in the finite-element post-processor, P•FAT. The implicit approaches, i.e., local

Table 3.1: Different approaches to fatigue analysis, all related to fatigue crack growth.

Approaches to fatigue analysis Deterministic Probabilistic

Implicit Local Stress Weakest-Link

Explicit Single Defect Random Defect

11



12 Chapter 3. Finite-element post-processor

stress and weakest-link, use conventional S − N -data as a starting point, and
the fatigue life, N , is usually defined as the number of load cycles required for a
macroscopic crack to develop. The explicit approaches consider the actual growth
of a crack from an initial (defect) size ai to a final size af.

Standard methods for fatigue life predictions are deterministic by nature,
i.e., material properties including defect size are considered as predetermined
quantities. Two of the most widespread deterministic fatigue assessment methods
are:

• ‘Local stress approach’ – Life prediction based on the equivalence between
the most highly stress point of a component and a standard smooth fatigue
specimen under the same stress.

• ‘Single defect approach’ – Life prediction based on the growth of a single
‘worst-case’ crack-like defect at the location of highest local stress.

The probabilistic approaches, assume material properties to be randomly dis-
tributed:

• ‘Weakest-link approach’ – Assumes the probability of survival of a com-
ponent to be the products of the probabilities of survival of the (small)
elements into which the component has been divided for purposes of anal-
ysis. The probability of survival of an element is a function of the stress
cycle, the fatigue strength and the size of the element.

• ‘Random defect approach’ – The model is based on a finite element stress
analysis and assumptions on the defect distribution as well as a theory for
the growth of short cracks. Each finite element is associated with one or
more defects by ‘drawing’ from a Poisson distribution. The initial posistion
of a defect is obtained from a uniform distribution while its size is obtained
from an extreme value distribution. The defects are considered to be crack-
like, and the number of cycles required for each defect to become critical
is determined. By carrying out a large number of such simulations, the
fatigue life distribution of the component is obtained.

Numerical recipes for the weakest-link approach are given in Paper 1. The
weakest-link approach has been used for predicting the fatigue limit and the
fatigue life of several specimen types and predictions have been compared with
test results in Papers 1 and 2.

The reader is referred to Paper 3 for the numerical aspects of the single defect
approach and the random defect approach. Important features such as (i) the de-
termination of the life-controlling defect, (ii) growth of short and long cracks, (iii)
fatigue strength and fatigue life distribution and (iv) probability of component
fatigue failure have been treated and discussed in Paper 4.



CHAPTER 4

Implicit Fatigue Assessment Methods

4.1 Local stress approach

The local stress approach tacitly assumes the fatigue life at a ‘point’ to agree with
that of a standard test specimen subject to the same stress cycle. The local stress
approach has been used for predicting the fatigue limit of several specimen types
and predictions have been compared with test results in Paper 1. In Paper 2, the
local stress approach is used for predicting the fatigue life of the hydro-turbine
blade model shown in Fig. 4.1(a). The blade model simulates the leading-edge
transition between blade and crown/band of a Francis turbine runner, see Fig.
4.1.

leading-edge

crown

band

blade

Figure 4.1: (a) Fatigue test specimen simulating the leading-edge transition zones of (b)
the blade of a Francis turbine runner (leading-edge zones are indicated by squares). The
figure is taken from Paper 2.

13



14 Chapter 4. Implicit Fatigue Assessment Methods

Four hydro-turbine blade models were produced from a G-X5CrNi 13-4 cast-
ing, and were experimentally tested by Huth [32]. The predicted (npred) versus
the measured fatigue lives (nmeas) are shown in Fig. 4.2. Huth’s specimens have
been denoted by R in this figure The local stress approach yields conservative

Figure 4.2: Local stress based fatigue life predictions of the hydro-turbine blade shown
in Fig. 4.1(a). The figure is taken from Paper 2.

lifetime predictions deviating from the observed number of cycles by nearly a
factor of 10.

4.2 Weakest-link approach

Fatigue life predictions by the local stress approach are indifferent to the stress
field as well as to the size of the component, which are known to affect the fatigue
strength of a mechanical component [33]. There exist empirical methods to take
the stress field and the size of the component into account, but these methods
are generally not compatible with finite element stress analysis. For instance, the
methods due to Neuber [8] and Peterson [9] for handling notch effects require a
nominal stress, which is generally unavailable from a finite element stress analysis.
These shortcomings may be eliminated by means of the weakest-link theory and
the statistics of extremes, which may be applied directly to the results from a
finite element stress analysis. The weakest-link theory has the added advantage
of predicting the probability of fatigue failure of the analysed component.

The probability of fatigue failure, Pf, can according to the weakest-link theory
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be expressed as [Paper 1]

Pf,V = 1 − exp


−∫

V

z1(σa, R, n)dV


 . (4.1)

The critical defect density, z1(σa, R, n), is defined as the expected number of
defects per unit volume V of the material that yields a fatigue strength (random
variable) σA ≤ σa at a stress ratio R and fatigue life n.

By using a power-law relationship between the critical defect size and the
applied stress and by assuming that the maximum defect size follows a two-
parameter Fréchet distribution, the probability of component fatigue failure can
be expressed as

Pf,V = 1 − exp


−∫

V

(
σa

σ∗
A0(R, n)

)bσ dV

V0


 , (4.2)

This equation corresponds to a two-parameter Weibull distribution [34, 35]. bσ

and σ∗
A0 are referred to as the Weibull (stress) exponent and the characteristic

fatigue strength, respectively. bσ is given in [1] for several different forged steels,
cast steel and aluminum alloys. The Weibull exponent, bσ, is a measure of the
fatigue limit scatter, and, indirectly, a measure of the scatter of the defect size
distribution. A large bσ implies that the scatter is small.

The probability of fatigue failure of a reference specimen of volume V0 is equal
to that of an arbitrary component, if the homogeneous stress amplitude σ̄a, which
may be referred to as the effective stress amplitude, is defined as

σ̄a =


 1

V0

∫
V

σbσ
a dV




1/bσ

. (4.3)

Introducing this equation into equation (4.2) yields

Pf,V = 1 − exp

[
−

(
σ̄a

σ∗
A0(R, n)

)bσ
]

. (4.4)

In Paper 1, it is shown that equation (4.4) can be transformed into a fatigue life
distribution by means of Basquin’s equation:

Pf,V (n, R, σ̄a) = 1 − exp

[
−

(
n

N∗
0 (R, σ̄a)

)bn
]

. (4.5)

Here, bn denote the Weibull fatigue life exponent and N∗
0 the characteristic fatigue

life of a reference fatigue test specimen of volume V0 subject to a homogeneous
stress cycle of amplitude σ̄a and stress ratio R.

Equation (4.5) was used in Paper 2 for predicting the fatigue life of the hydro-
turbine blade model in Fig. 4.1(a). The weakest-link approach gave the predicted
fatigue lives shown in Fig. 4.3. For each specimen (R1 to R4), the fatigue life
has been predicted for Pf = 10%, 50% and 90%. The weakest-link predictions are
seen to be in satisfactory agreement with the experimentally observed lives.
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Figure 4.3: Weakest-link based fatigue life predictions of the hydro-turbine blade shown
in Fig. 4.1(a). The figure is taken from Paper 2.

4.3 Multiaxial stress criteria
All multiaxial stress criteria aim at translating the local stress state into an
equally damaging uniaxial stress state. Some well known multiaxial stress criteria
are maximum principal stress, Sines [36], Crossland [37], Dang Van [38], Findley
[39], Matake [40] and McDiarmid [41]. These criteria have been implemented in
the finite-element post-processor P•FAT. The critical plane based criteria, i.e.,
Dang Van, Findley and Matake have been implemented by using an adaptive
algorithm [42] that gives a strong reduction of calculation times. A broad review
of multiaxial stress criteria have been presented in [43, 44].



CHAPTER 5

Explicit Fatigue Assessment Methods

When a commerically available finite element code such as ABAQUS is used
for performing a crack growth analysis, the crack is explicitly modelled as an
integrated part of the component. For each crack growth increment, the mesh
surrounding the crack has to be re-meshed. Re-meshing techniques applied to
crack growth problems have been treated in several papers, e.g. [45–47]. Exam-
ples of codes that have implemented re-meshing techniques for handling crack
growth analysis of 3D components are FRANC3D [48], BEASY [49] (both use
the boundary element method) and ADAPCRACK3D [50, 51] (uses the finite
element method). In order to reduce the time required for performing a crack
growth analysis, the component geometry is often simplified so that a standard
handbook solution can be used for performing a fatigue life prediction. Such hand-
book solutions are available in the programs NASGRO [52] and AFGROW [53].
Another approach is to perform the crack growth analysis by assuming a ho-
mogeneous stress field based on the maximum stress acting on the component
surface. This maximum stress approach yields acceptable results provided that
the stress decreases slowly, i.e., the stress gradient is low, and when the geo-
metrical simplification can be justified. An alternative is to use results from a
standard finite element stress analysis and account for a crack by using weight
functions [54,55]. This approach has been implemented in the stand-alone finite-
element post-processor P•FAT. By ‘drawing’ the number, size and position of
crack-like defects from distribution functions and repating this process for a large
number of nominally equal components (‘Monte Carlo’ simulation), the fatigue
life distribution of the component can be obtained by means of fatigue crack
growth calculations. With this, one has a post-processing tool that can estimate
the probability of component failure.

17
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5.1 Single defect approach

In the single defect module, a single crack-like defect can be inserted into the
component at a desired location. It is capable of modeling the growth of an
embedded and a surface crack in the operating and residual stress field of a
generic component. The crack-like defect is assumed to grow on the plane of
maximum principal stress. Weight-functions [56], together with the stress field
of the crack-free component, are used to compute the required stress intensity
factors. Generally, the direction of maximum principal stress in the uncracked
component changes as the crack grows on a specific plane. In the present work, the
change of the crack growth direction is neglected. This is a good approximation
as long as the crack is small compared with the dimensions of the component,
i.e., for a large fraction of the fatigue life.

The crack surface is automatically meshed with plane elements. Subsequently,
numerical integration (Gauss quadrature) is performed for determining the stress
intensity factor at several locations at the crack front. For each incremental step,
this process repeats itself: the crack surface is re-meshed, and updated stress
intensity factors for the current crack are obtained. The program also updates
the location of the crack front relative to the free surface. Hence, if the crack
grows through the component surface, the crack is regarded as a surface crack, see
Fig. 5.3. A crack is treated as a corner crack if it starts from or propagates into
a right-angled corner. Failure of a component is defined to occur when the crack
has reached a predefined size, or if the stress intensity factor K has reached the
fracture toughness KIc. When a surface crack breaks the opposing free surface, it
has to be treated as a through-crack. This may be a most relevant situation, e.g.,
for a crack growing through a thin plate. On the other hand, for initial defects
that are much smaller than the thickness of the plate, a through-crack is only
present during a small fraction of the component life. Thus, instead of explicitly
modelling the through-crack, crack growth is terminated as soon as the surface
crack breaks the opposing free surface.

5.1.1 Example

As a practical example of the use of the single defect module, a welded alu-
minium rectangular hollow section T-joint, see Fig. 5.1(a), has been investi-
gated. The T-joint was tested in four-point bending with a constant stress ratio
R = σmin/σmax = 0.1, resulting in a constant bending moment throughout the
weld region. Details about manufacturing, weld characteristics, test rig arrange-
ment and fatigue test results can be found in Tveiten et al. [57]. A welding
simulation has been carried out in Weldsim [58–60] in order to obtain the resid-
ual stress field. The operating stress field was found by using ABAQUS [61]. The
T-joint was modelled using eight-noded brick elements with reduced integration.
For reasons of symmetry, only one quarter of the T-joint had to be considered.
The load was applied to the chord through cylindrical rods, see Fig. 5.1(a). A
submodel with a highly refined mesh, see Fig. 5.1(b), was used to accurately
capture the peak stress and the adjacent stress field. The boundary conditions
imposed on the submodel are obtained from the global model. The submodel
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Figure 5.1: T-joint configuration: (a) global model and (b) submodel.

was meshed with twenty-noded brick elements with reduced integration. The
weld was modeled with a weld angle of 45◦ and with a weld toe radius of 1 mm,
cf. Tveiten et al. [57]. The operating stress field from the submodel and the
residual stress field from the weld simulation are combined in the finite-element
post-processor to obtain the spatial distribution of the stress amplitude and the
mean stress.

Fatigue crack growth calculations have been performed with a semi-elliptic
surface crack of initial depth ai = 50 µm. The initial aspect ratio has been
assumed to be a/c = 1. The position of the initial crack is shown in Fig. 5.1(b).
The fatigue crack growth analysis was terminated, when the crack had reached a
depth of 95% of the wall thickness, i.e., 2.85 mm. The material properties for the
aluminium alloy are given in Table 5.1. The predicted fatigue life curve is shown

Table 5.1: Mechanical properties of the 6082-T6 aluminium alloy.

Fatigue limit [62] ∆σA(R = 0) = 148 MPa
Stress intensity threshold [63] ∆Kth(R = 0.1) = 2.08 MPa

√
m

Walker exponent [62] γ = 0.78
Crack growth coefficient [62] C(R = 0.1) = 6.1 · 10−12 [MPa,m]
Crack growth exponent [62] m = 5.1

in Fig. 5.2 together with fatigue test results that have been reported in [57].
Even though the steepness of the predicted and the experimental S − N curves
are somewhat different, the overall agreement is good. The predicted curve is
non-conservative at elevated stresses but approaches the expermental curve as
the stress decreases. Eventually, the two curves crosses and the predicted fatigue
limit for the T-joint is obtained at approximately 55 MPa. This is clearly a over
prediction since some of the data points are below the predicted curve. It is
worth mentioning that the fatigue limit of the T-joint is strongly dependent on
the intrinsic fatigue limit of the material [∆σ = 148 MPa at R = 0]. However, the
intrinsic fatigue limit has been calculated based on the ultimate tensile strength
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[62], and thus, the fatigue limit of the T-joint is rather uncertain.
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Figure 5.2: Fatigue test results for the considered T-joint configuration [Fig. 5.1]
together with the finite-element post-processor based prediction curve.

5.2 Random defect approach
The number of defects in each finite element is obtained by ‘drawing’ from a
Poisson distribution. The location of each defect in an element is found by draw-
ing from an uniform distribution while its size is found from an extreme value
distribution. By repeating this process for a large number of nominally equal
components (Monte Carlo simulation) and performing crack growth calculations,
the fatigue life distribution of the component is obtained.

In the present work, the interaction between single cracks and the subsequent
joining of these and the formation of a new, larger crack have been neglected.
Thus, only one single, dominating crack is considered at a time. This assumption
requires that the number of potentially life-controlling defects is small, a situation
that occurs for stress cycles close to the fatigue limit (in the HCF regime) and
for components with a low density of ‘large’ metallurgical defects. Future fatigue
testing and simulation of components with known defect distributions should give
a better understanding of the influence on fatigue life of the interaction between
cracks.

5.3 Weight-factor solutions
The stress field ahead of a crack in a linear elastic body can be characterised
by means of the stress intensity factor K. This is a function of the geometry of
the component and the crack as well as the stress field. For simple geometries,
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K can be obtained from handbook solutions [30] or from asymptotic solutions
[Papers 6 and 7]. For more complex geometries, the stress intensity factor can
be obtained by using weight functions together with the stress field of the crack-
free component. Weight factor solutions for an embedded crack [13], a surface
crack [14] and a corner crack [15], as shown in Fig. 5.3, have been implemented
in the finite-element post-processor.

surface crack

corner crack

embedded crack

Figure 5.3: Crack configurations implemented in P•FAT. The figure is taken
from Paper 3.

The weight function, g(x′, y′; P), is defined as the stress intensity factor value
at the crack front point P, when a pair of opposite unit opening forces are applied
at an arbitrary point P’ on the crack surface, cf. Fig. 5.4(a). In the case of a
distributed symmetrical loading on the crack surface, the stress intensity factor
K is obtained by integrating the product of the weight function g(x′, y′; P) and
the stress distribution of the crack free solid σa(x

′, y′) over the crack surface area
Acrack:

K(P) =

∫
Acrack

σa(x
′, y′)g(x′, y′; P) dAcrack. (5.1)

The relationship between the weight function and the displacement field is given
in [55]. The integral in equation (5.1) may be solved by means of Gauss-Legendre
quadrature. This procedure subdivides the crack surface into plane elements. A
typical finite element mesh for an embedded crack is shown in Fig. 5.4(b).

5.4 Asymptotic solutions
For a surface crack of depth a in the notch stress field, cf. Fig. 5.5(a), the stress
intensity solution is asymptotically the same as for a surface crack in a smooth
solid, except that the remote stress is being amplified by the stress concentration
factor Kt. Thus, as a → 0,

K = Fσ∞
√

πa = F0Ktσ∞
√

πa, (5.2)

where F0 is the geometry factor for the current surface crack emanating from a
smooth surface. When the crack grows beyond the notch stress field, the remote
stress field dominates the stress intensity factor, which may now be estimated by

K = F0σ∞
√

π(a + d), (5.3)
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Figure 5.4: (a) Schematic drawing of an embedded crack and definition of parameters
for obtaining the stress intensity factor. (b) Typical finite element mesh for an embedded
crack. The figure is taken from Paper 3.

where d denotes the notch depth. An equation for K, which asymptotically agrees
with the near and remote field estimates is given in Paper 6. The asymptotic
expression is given by

K = F0σ∞
√

πD, (5.4)

where D is an ‘equivalent’ surface crack depth, which can be estimated by

D = a + d
[
1 − exp

(
− a

a∗

)]
, (5.5)

and
a∗ =

d

K2
t − 1

. (5.6)

The transition crack depth a∗ is defined as the crack depth at which the asymp-
totic equations (5.2) and (5.3) for the stress intensity factors of shallow and deep
cracks, respectively, yield equal results.

The weight function implementation of a semi-elliptic surface crack is now
compared with the asymptotic solution for the deepest point of the crack front.
A semi-elliptic surface crack located at the root of a semi-circular edge notch
in a semi-infinite plate subjected to uniaxial tension σ∞ perpendicular to the
symmetry plane of the notch is considered. The cracked configuration is shown
in Fig. 5.5(a). The crack is characterised by its depth a and its surface length
2c, as shown in Fig. 5.5(b).

Fig. 5.5(b) shows the geometry factor FA for the deepest point, A(a; 0), for
the aspect ratio a/c = 1. As can be seen, the weight function based FA values
are in good agreement with the asymptotic solution.

In Paper 7, the asymptotic method presented in Paper 6 is extended to cover
cracked V-notched specimens.

5.5 Non-linear crack mechanics
For the full potential of the finite-element post-processor to be realised, it is
important that the single and the random defect modules are extended to cover
non-linear material behaviour. Paper 8 is a preliminary work in this direction.
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Figure 5.5: (a) Semi-infinite notched plate [Kt = 3.1] under uniform remote stress σ∞.
(b) Geometry factors FA for the deepest point A(a; 0) of a semi-elliptic surface crack
emanating from the notch root.

Closed-form stress and strain solutions of elastic-plastic cracked solids are
rare. By idealizing the material behaviour as non-linear elastic, Rice [64] was
able to solve two-dimensional crack problems exhibiting plastic deformation. Rice
derived a path-independent contour integral J , which replaces the stress intensity
factor under plastic deformation.

In Paper 8, an approximate method for estimating the J integral for shallow
cracks has been presented. The proposed equation for estimating J makes use of
the linear elastic and the fully plastic solution to interpolate over the entire range
from small- to large-scale yielding. The elastic geometry factor is obtained by
means of the stress intensity factor. In the fully plastic formulation, the plastic
geometry factor is obtained by considering a pure power-hardening solid, which
reduces at one limit to an incompressible linear elastic solid, and at the other to
a perfectly plastic solid. The solutions are given for three basic configurations:
a double-edge cracked plate under tension and bending; a notched plate under
tension with a crack at the root of the notch; a single-edge-cracked plate under
bending.





CHAPTER 6

Suggestions for further work

There are several items which are left untreated in this thesis. Some suggestions
for further work are:

• Extend the weakest-link approach to non-linear material behaviour.

• Develop a database describing the weakest-link parameters for some com-
mon manufacturing processes.

• Non-proportional loading.

• Review of previous experimental investigations of the growth of short fa-
tigue cracks under constant and variable amplitude loading. Perform a re-
assessment of these test data by means of the suggested short crack growth
model.

• Sub-mm fatigue-crack growth testing on selected steels (forged, cast, welded)
with continuous monitoring (microscopic, potential drop or other tech-
niques); smooth specimens should be used for model development, notched
specimens for validation purposes.

• Modeling of fatigue crack growth from defects that cannot be regarded as
cracks.

• Develop a database describing the density and size distribution of material
defects.

• Extend and improve weight functions for surface cracks.

• Develop a J-integral estimation procedure that is fully compatible with the
results from a standard finite element analysis.
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CHAPTER 7

Summary of appended papers

Paper 1

Non-local stress approach for fatigue assessment based on weakest-
link theory and statistics of extremes

In the present paper a non-local stress approach for fatigue assessment based on
weakest-link theory and statistics of extremes is presented. It is a non-local stress
approach in the sense that it takes the complete stress field into account rather
than just the highest local stress. The statistical distribution of fatigue strength
data from smooth standard specimens serves as a starting point for the computa-
tion of the probability of fatigue failure of a mechanical component under cyclic
loading. The probability of fatigue failure can be obtained by post-processing
results from a standard finite element stress analysis. It is shown that the non-
local stress approach can be linked to the probability of finding the fatigue critical
defect in the most highly stressed volume of the component. A numerical proce-
dure is presented that is fully compatible with the results from a standard finite
element stress analysis. It is further shown how the fatigue strength distribution
can be transformed into a fatigue life distribution by using Basquin’s equation.
Finally, the non-local stress approach is used for predicting the fatigue limit of
several specimens and predictions are compared with test results.

Paper 2

Probabilistic fatigue assessment of a hydro-turbine blade model

The assessment of fatigue is an important design consideration for reliable op-
eration of hydraulic turbine runners. The complex geometry and loading of the
runner makes it difficult to consistently define parameters such as nominal stress
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and notch depth. Hence, it is of great practical interest to be able to use stan-
dard finite element stress analysis directly for performing fatigue assessment of
mechanical components without the need for carrying out a separate notch eval-
uation. In the present paper, Weibull’s weakest-link model has been adopted
and has been extended to multiaxial fatigue and confined plasticity. The present
method can easily be adapted to the post-processing of finite element stress anal-
ysis. The accuracy of the method has been assessed by predicting the fatigue life
of a three-dimensional fatigue test specimen simulating the leading-edge transi-
tion between the blade and the crown/band of a hydraulic turbine runner.

Paper 3

A post-processor for fatigue crack growth analysis based on a finite
element stress field

In this paper the algorithm needed for performing a crack growth analysis of
a three-dimensional component by post-processing results from a standard finite
element stress analysis is given. Weight functions are used for calculating the
stress intensity factor for an embedded crack and a surface crack. Defects are
generated in several nominally equal components, and crack growth calculations
are carried out by using a short crack model to determine the probability of com-
ponent fatigue failure. The algorithm has been implemented in a finite-element
post-processor.

Paper 4

Simulation of fatigue crack growth in components with random defects

The paper presents a probabilistic method for the simulation of fatigue crack
growth from crack-like defects in the combined operating and residual stress field
of an arbitrary component. The component geometry and operating stress dis-
tribution are taken from a standard finite element stress analysis. Number, size
and location of crack-like defects are ‘drawn’ from probability distributions. The
presented fatigue assessment methodology has been implemented in a newly de-
veloped finite-element post-processor, P•FAT, and is useful for the reliability
assessment of fatigue critical components. General features of the finite element
post-processor have been presented. Important features, such as (i) the deter-
mination of the life-controlling defect, (ii) growth of short and long cracks, (iii)
fatigue strength and fatigue life distribution and (iv) probability of component
fatigue failure, have been treated and discussed. Short and long crack growth
measurements have been presented and used for verification of the crack growth
model presented.
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Paper 5

Reanalysis of Frost’s classical fatigue tests on self-arresting cracks at
notches

In this paper, a short crack growth model is presented and used for predict-
ing the arrest of cracks growing in stress gradient fields. The crack growth model
makes use of an effective stress which can be interpreted as the stress that must
be applied to the corresponding smooth semi-infinite cracked plate to obtain the
same value of the stress intensity factor as for the considered notched configura-
tion. The short crack growth model has been used for predicting the conditions,
under which crack initiation, crack arrest and failure are expected to occur. These
predictions have been compared with experimentally obtained data for notched
specimens of mild steel. The predictions are found to be in good agreement with
the experimental data.

Paper 6

The application of asymptotic solutions to a semi-elliptical crack at
the root of a notch

This paper presents an approximate method based on asymptotic solutions for
estimating the stress intensity factor K for semi-elliptic surface cracks at stress
concentrations. The proposed equation for estimating K makes use of the near-
notch and remote-notch solution to interpolate over the entire range from shallow
to deep cracks. The near-notch solution is obtained by means of the stress con-
centration factor. For cracks located in the remote stress field, K is obtained by
considering the crack to be located in a smooth plate with a crack depth equal
to the sum of the notch depth and the actual crack depth. The accuracy of the
predictions is assessed using numerical calculations and solutions found in the
literature.

Paper 7

Approximate stress intensity factors for cracked V-notched specimens
based on asymptotic solutions with application to T-joints

This paper presents an approximate method based on asymptotic solutions for
estimating the stress intensity factor K for semi-elliptic surface cracks at stress
concentrations. The proposed equations make use of a reference solution to inter-
polate over the entire range from shallow to deep cracks. The reference solution
is obtained by considering the current crack emanating from the associated spec-
imen with a sharp notch. It is shown that the proposed formulae satisfy the
shallow and deep crack asymptotes. The asymptotic solutions are applied to a
T-joint with a fillet-weld-shaped transition. The accuracy of the predictions is
assessed using numerical calculations.
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Paper 8

Non-linear analyis of shallow cracks in smooth and notched plates.
Part 1: analytical evaluation

This is the first paper of two that deal with the non-linear analysis of shallow
cracks. Simple formulae are given for estimating the J integral for a power-
hardening elastic-plastic solid. The proposed equation for estimating J makes
use of the linear elastic and the fully plastic solution to interpolate over the
entire range from small- to large-scale yielding. The elastic geometry factor is
obtained by means of the stress intensity factor. In the fully plastic formulation,
the plastic geometry factors are obtained by considering a pure power-hardening
solid, which reduces at one limit to an incompressible linear elastic solid, and at
the other to a perfectly plastic solid. The solutions are given for three basic con-
figurations: a double-edge-cracked plate under tension and bending; a notched
plate under tension with a crack at the root of the notch; a single-edge-cracked
plate under bending. Both force control and displacement control are considered.
The accuracy of the formulae is assessed using the finite calculations in Part 2.
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ABSTRACT 
 
The assessment of fatigue is an important design consideration for reliable operation of hydraulic turbine 
runners. The complex geometry and loading of the runner makes it difficult to consistently define parameters 
such as nominal stress and notch depth. Hence, it is of great practical interest to be able to use standard finite 
element stress analysis directly for performing fatigue assessment of mechanical components without the 
need for carrying out a separate notch evaluation. In the present paper, Weibull’s weakest-link model has 
been adopted and has been extended to multiaxial fatigue and confined plasticity. The present method can 
easily be adapted to the post-processing of finite element stress analyses. The accuracy of the method has 
been assessed by predicting the fatigue life of a three-dimensional fatigue test specimen simulating the 
leading-edge transition between the blade and the crown/band of a hydraulic turbine runner. 
 
 
KEYWORDS 
 
Weibull analysis, effective stress amplitude, finite element analysis, fatigue testing, intermediate-cycle 
fatigue. 
 
 
INTRODUCTION 
 
One of the most critical issues regarding reliable operation of hydraulic turbine runners is fatigue. It is crucial 
that a reliable fatigue assessment can be performed at an early stage in the design process, since the integrity 
of the runner primarily depends on inherent reliability. Further, power plant operators increasingly demand a 
quantification of the reliability of the runner instead of the safe/unsafe - conclusions of classical deterministic 
design methods [1]. 
 
During the last twenty years, computer simulation has become widely used for the design of hydraulic 
turbine runners and has made it possible to obtain the stress field with sufficient accuracy using the finite 
element method. The challenge, then, is to use the stresses from the finite element analysis to make a reliable 
fatigue assessment based on fatigue data from standard test specimens. 
 
In the present work, a probabilistic fatigue evaluation procedure is presented that can be easily adapted to the 
post-processing of finite element stress analysis. The weakest-link theory due to Weibull [2, 3] has been used 
in conjunction with Sines’ effective stress cycle [4].   
 
Data from fatigue tests on a hydro-turbine blade model [5], see Fig. 1, of a G-X5CrNi 13-4 cast steel will be 
used to validate the proposed probabilistic fatigue assessment procedure. 



CLASSICAL FATIGUE ASSESSMENT METHODS 
 
Fatigue life assessment of a hydraulic turbine runner, taking into account start-stop-cycles and flow-induced 
vibrations, is generally based on the local stress approach. Thus, for a given stress ratio R, a turbine runner, 
with the same peak stress amplitude σa,max as a homogeneously stressed test specimen, is assumed to have the 
same fatigue life n as the test specimen, that is 
 
 ( )*

a,max A0 , .R nσ σ=  (1) 
 

The characteristic fatigue strength of the homogeneously stressed test specimen is denoted by *
A0σ . Although 

it lies close at hand to use the local stress approach, this generally gives too conservative results [6]. To 
account for the effect of the notch, Thum and Buchmann [7] introduced the fatigue notch factor Kf, defined as 
the ratio of the characteristic fatigue strength of a smooth reference specimen to the nominal fatigue strength 
of a notched specimen: 
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A number of empirical approaches to estimate Kf has been suggested. A review of these can be found in [8-
10]. Two of the best known empirical equations for estimating Kf are due to Neuber [11] and Peterson [12]. 
However, the use of these equations requires that a nominal stress can be defined. For a simple specimen, 
such as a tension rod with a circumferential notch, this is no problem.  For an arbitrary component, however, 
it is often not obvious or even possible to consistently define a nominal stress. This problem becomes 
evident, if finite element results are employed. Hence, it is of great practical interest to be able to estimate an 
effective stress amplitude directly from a finite element analysis (FEA).  
 
MEAN STRESS EFFECT 
 
Hydraulic turbine runners under in-service fatigue loading exhibit a fatigue strength that depends on the 
mean stress level. A tensile mean stress is usually detrimental and a compressive stress is beneficial. Several 
empirical models are available for taking the mean stress effect on the fatigue strength into account, e.g. 
those developed by Gerber, Goodman, Soderberg, Haigh, Heywood and Walker. A historical review of the 
subject area is given in reference [13]. In the present work, the empirical relation due to Walker is adopted 
[14]. 
 
For a smooth reference fatigue test specimen subjected to the uniaxial stress amplitude σa and stress ratio R0, 
Walker introduced the ‘equivalent’ pulsating stress amplitude 
 

 ( )
( )

a
a,Walker 1

0

0 ,
1

R
R γ
σσ −= =

−
 (3) 

 
where γ denotes a material parameter. 
 
Under multiaxial and proportional loading conditions, the stress amplitude σa can be reduced to an 
‘equivalent’ uniaxial loading by means of Sines’ criterion [4]. Sines uses the equivalent stress due to von 
Mises based on the stress component amplitudes, i.e. 
 

 ' '
a ,a ,a
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2 ij ij i jσ σ σ= =  (4) 

 



where '
,aijσ  denotes the deviatoric stress amplitude tensor. For a multiaxially stressed solid with the loading 

specified by the stress amplitude σa and the stress ratio R,  the ‘equivalent’ stress amplitude, which results in 
the same fatigue life as the actual combination of σa and R, becomes 
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 (5) 

 
with the aid of Eqn. (3). It should be noted that when (confined) plastic flow occurs, the stress ratio R = 
σmin/σmax = (σm-σa)/(σm+σa), is no longer constant in the solid.  
 
Based on multiaxial fatigue tests, Sines [4] suggested that the mean stress equivalent to that of a uniaxial 
tension(-compression) cycle, σm, should be equal to the invariant sum of the mean normal stress components, 
that is  
 
 m ,m.iiσ σ=  (6) 
 
When FEA is performed, the Walker corrected stress amplitude in Eqn. (5) can be calculated at any point in a 
finite element by using the element shape functions.  
 
PROBABILISTIC FATIGUE DESIGN APPROACH 
 
The local stress approach generally yields too conservative results. There are several reasons for this, such as 
the influence of the size of the component or the effect of a stress gradient. A two-parameter weakest-link 
model due to Weibull [2, 3], on the other hand, reproduces these factors in qualitative agreement with 
experimental observations. Weibull’s model uses fatigue data from standard test specimens and takes the 
distribution of stress of the actual component into account. The probability of component failure is predicted 
to increase, as the volume of highly stressed material increases.  
 
Weibull’s weakest-link theory presumes that the scatter of fatigue life or fatigue strength depends on the size 
distribution of the strength-controlling defects (pores, inclusions, etc.). Clearly, the probability of finding a 
material defect above a certain size increases with the volume of highly stressed material. 
 
Fatigue strength distribution 
The probability of fatigue failure in a homogeneously stressed volume V at an amplitude below σA and a 
given stress ratio R and number of cycles n is given by  
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   = − −      
 (7) 

 
bσ and *

A0σ  are generally referred to as the Weibull shape and scale parameters. In this paper, they will be 
called the Weibull fatigue strength exponent and the characteristic fatigue strength, respectively. The 
distribution parameters can be determined from a set of fatigue data from standard smooth reference test 
specimens of volume V0. When *

A0σ  is only known for the stress ratio R0 and the applied stress ratio differs 
from this value, Eqn. (5) can be introduced into Eqn. (7). The probability of fatigue failure corrected to the 
same stress ratio R0 as that of the reference fatigue specimen can then be expressed as: 
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When the state of stress is inhomogeneous, it is appropriate to divide the component, whose overall volume 
is V, into a large number of small volume elements, ∆Vi, each with a nearly constant stress, σai. Just as a 
chain is as strong as its weakest-link, the component will survive, only if each volume element survives. The 
probability of survival of the whole volume is therefore equal to the product of the probabilities of survival of 
all the volume elements. As the volume of each individual element tends to zero, the sum becomes an 
integral and the overall probability of failure can be written as 
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The main advantage of introducing the Walker stress amplitude, σa,Walker, is when (confined) plastic flow 
occurs upon first loading. During unloading of the body, no significant reverse yielding is assumed to occur. 
Under these conditions the subsequent cyclic behaviour will be elastic, but with a stress ratio that is no longer 
constant throughout the body. Hence, σa,Walker enables one to transform the stress amplitudes into a single 
stress ratio R0, that gives the same fatigue strength as any actual combination of σa and R. 
 
If Eqn. (9) is identified with that of a component having the volume V0 and being subjected to a constant 
uniaxial stress amplitude, aσ , 
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and the effective stress amplitude becomes 
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Typical values for bσ lie between 10 and 40 and can be found in reference [15]. For components where a 
stress concentration factor Kt can be defined, the effective stress amplitude may be related to the nominal 
stress amplitude, σa,net, through the linear relationship 
 
 a f a,net ,Kσ σ=  (12) 
 
where Kf denotes the fatigue notch factor and is a measure of the effectiveness of the notch in reducing the 
fatigue strength of a notched component. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Fatigue life distribution 
Consider now the fatigue life N as a random variable, evaluated at the effective stress amplitude aσ  and 
stress ratio R0. In the intermediate cycle regime, i.e. where the fatigue life is given by the sloping part of the 
Wöhler curve, the following relation may be derived 
 
 * *

0 a A0 constant,m mN nσ σ= =  (13) 
 
where *

0N  and m denotes the characteristic fatigue life and Wöhler exponent, respectively. Introducing Eqn. 
(13) into Eqn. (10) yields 
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HYDRO-TURBINE BLADE MODEL 
 
In order to validate the methodology for the probabilistic fatigue design of hydraulic turbine runners, it was 
decided to demonstrate its accuracy and reliability in estimating the fatigue life of a hydro-turbine blade 
model. 
 
Geometry 
The turbine blade model, shown in Fig. 1, simulates the leading-edge transition between blade and 
crown/band of a runner. 
 

leading-edge

crown

band

blade

 
 

Figure 1: (a) Fatigue test specimen simulating the leading-edge transition zones of (b) the blade of a Francis 
turbine runner (leading-edge zones are indicated by squares). 

 
A 3D finite element analysis was carried out by modelling an octant of the hydro-turbine blade model. The 
geometry, displacement constraints and loading conditions (uniaxial tension σnet) are shown in Fig. 2(a), 
while Fig. 2(b) illustrates a typical finite element mesh employed in the present work. Poisson's ratio was 
chosen to be ν = 0.3. 
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Figure 2: Hydro-turbine blade model; (a) boundary conditions and (b) finite element mesh. The mesh 
contains 33956 nodes, forming 7286 elements (element type C3D20R in ABAQUS [16]). 

 
The blade model is characterised by its height l, its width b, its transition radius R and its edge radius r, as 
shown in Fig. 2(a). The elastic stress concentration factor, Kt, of the blade model is defined as the ratio 
between the maximum principal stress, σmax, and the net-section stress, σnet, i.e. 
 

 max
t

net

.K σ
σ

=  (15) 

 
According to FEA, the elastic stress concentration factor Kt = 1.68 for the blade model configuration.  
 
Experimental procedure 
Four test specimens were manufactured with the dimensions shown in Fig. 3 [5]. The specimens were 
produced from a G-X5CrNi 13-4 casting (200 mm x 300 mm x 1500 mm), a ferritic stainless steel frequently 
used for cast runners. Each specimen was manually polished with emery cloth. Table 1 gives the chemical 
composition of the blade steel, Table 2 its mechanical properties. 

 
Table 1: Chemical composition (weight percentage) of the investigated blade steel. 

 
Steel C Si Mn P S Cr Ni Mo 
G-X5CrNi 13-4 0.040 0.17 0.45 0.032 0.024 12.6 3.59 0.50 

 
Table 2: Properties of the investigated blade steel (at ambient conditions). 

 
Steel Rp0.2 [MPa] Rm [MPa] E [GPa] ν R f [Hz]  
G-X5CrNi 13-4 604 806 160 0.3 0.1 1.5-2.5 

 
Specimens in accordance with Fig. 3 were fixed with eight M30 bolts to a 1000 kN Instron test frame and 
cycled in pulsating tension (R = 0.1) at 1.5-2.5 Hz [5]. Finite element analysis showed that ‘ring’ material 
absent in the test specimens due to the presence of Ø33 mm fastener holes has only a minor effect on the 
stress at the transition [5]. The load was chosen so as to yield fatigue lives n between 104 and 105 cycles. The 
occurrence of a visible crack defined the life of a specimen.  
 



 
 

Figure 3: Hydro-turbine blade model; geometry and loading. 
 

Stress redistribution due to confined plasticity occurs upon first loading of the specimen. During unloading 
no significant reverse yielding occurs. Under these conditions, the subsequent cyclic behaviour will be 
elastic. 
 
Fatigue test results 
Fatigue testing of the blade model revealed low fatigue strength of the cast material. Pores of up to 3 mm in 
size (minor axis) and of all kind of shapes were distributed throughout the volume, as shown in Fig. 4. These 
defects turned out to have a more detrimental effect on fatigue life than the geometrical stress concentration. 
Crack initiation occurred simultaneously at various locations in the ‘blade’ section. The experimentally 
observed fatigue lives are listed in Table 3. 
 

Table 3: S-N data from experimental fatigue testing and principal results from probabilistic fatigue 
assessment analyses. 

 
Steel Specimen no. R Fa [kN] n Kf

† Kt 
G-X5CrNi 13-4 R1 0.1 193.4 88 200 1.232 1.68 

 R2 0.1 225.9 45 800 1.226 1.68 
 R3 0.1 225.9 43 251 1.226 1.68 
 R4 0.1 241.7 12 300 1.223 1.68 

                       †Predicted value (bσ = 15). 
 

10 mm

 
 

Figure 4: Cracked surface of cast steel G-X5CrNi 13-4 specimen R1 [5]. 
 

It has been pointed out that the statistical distribution of fatigue life data serves as a starting point for the 
probabilistic fatigue assessment procedure. Such data were taken from the results reported in references [17, 
18], which employed smooth cylindrical test specimens, shown in Fig. 5, with a gauge volume V0 = 12064 
mm3. Fatigue testing of these specimens was performed at a frequency of 35 Hz and at stress ratio R0 = 0 
under uniaxial loading in a standard laboratory environment. For these specimens, the fatigue life associated 
with the stress amplitude σa and R0 = 0 was given by 



 
 * 6.2 20 * 6

0 a 01.15 10 , 10 cycles.N Nσ = ⋅ <  (16) 
 
From the same investigations, it was found that bσ ≈ 15. 
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Figure 5: Smooth reference fatigue test specimen.  
 
 
PROBABILISTIC FATIGUE ASSESSMENT 
 
In the following, the blade specimens (cf. Fig. 3) will be evaluated by means of the probabilistic assessment 
procedure outlined above. 
 
An elastic-plastic finite element analysis was carried out using the finite element program ABAQUS [16]. 
The material in the FEA was given by the measured stress-strain curve of the considered material.  Isotropic 
hardening and small displacement theory were assumed throughout. The finite element model was first 
subjected to the maximum load of the cycle. Subsequently, an elastic unloading of the finite element model 
was performed until the minimum load was reached. From these two stress states, i.e. maximum and 
minimum loads, the amplitude and mean stresses were computed by means of Sines criterion [4]. All stresses 
were subsequently transformed into an ‘equivalent’ pulsating stress amplitude σa,Walker (R0 = 0),  see Eqn. (5). 
The Walker exponent was taken as γ = 0.5, a value representative for a large range of different steels [6]. 
From ABAQUS, stress data were printed out at the nodal points. To be able to compute the effective stress 
amplitude aσ  of Eqn. (11), σa,Walker (R0 = 0) can be interpolated through each element utilizing the element 
shape functions. The integral of Eqn. (11) is in this case evaluated by Gaussian quadrature with 10 x 10 x 10 
Gauss points. The effective stress amplitude has been calculated for the specimen shown in Fig. 3, but 
without fastener holes. 
 
The normalised effective stress amplitude a a,max/σ σ , have been plotted against bσ in Fig. 6 for specimen R1 
(see Table 2). Fig. 6 shows the graph of a a,max/σ σ  against bσ for two different volume ratios V/V0. The solid 
line with a square at each data point is obtained when using the volume of the reference fatigue test specimen 
in Fig. 5. For a low exponent, i.e. bσ < 15, the statistical size effect ‘dominates’. As bσ → ∞, the effective 
stress amplitude asymptotically approaches the maximum stress amplitude σa,max and the two curves 
coincide. In this case, the Weibull procedure coincides with the local stress approach, and there is no size 
effect and no influence of the stress gradient on the fatigue life of the component.  
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Figure 6: Normalised effective stress amplitude as function of the fatigue strength exponent for specimen 

R1. 
 
Fig. 7 compares the predicted fatigue lives with those actually measured for the cast steel blade specimens. 
Fig. 7(a) shows the predicted (npred) versus the measured fatigue lives (nmeas), when the local stress approach 
is used, see Eqn. (1). The predicted fatigue lives correspond to Ps = 50%, since the median Wöhler curve for 
the smooth reference fatigue test specimens is used. This method yields conservative life predictions 
deviating from the observed number of cycles by nearly a factor of 10. The probabilistic fatigue assessment 
procedure yields the predicted fatigue lives as shown in Fig. 7(b). For each specimen (R1 to R4), the fatigue 
life has been predicted for Ps = 10%, 50% and 90%. According to Eqn. (14), the fatigue life at a given 
probability of fatigue failure can be expressed as 
 
 ( ) ( ) /*

0 a 0 f, ln 1 .
m b

n N R P σσ= − −    (17) 
 
The probabilistic predictions are seen to be in satisfactory agreement with the experimentally observed lives. 
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Figure 7: Life predictions by (a) the local stress approach and (b) the probabilistic fatigue assessment 
procedure (bσ = 15) for the G-X5CrNi 13-4 cast test specimens (R1 to R4). 

 
 



CONCLUSIONS 
 
A probabilistic fatigue assessment procedure has been presented, which considers the effect of size, stress 
gradients and stress redistribution due to confined plasticity upon first loading. The weakest-link theory due 
to Weibull has been used in conjunction with Sines’ effective stress cycle. 
 
Fatigue tests have been performed on a hydro-turbine blade model, manufactured from a G-X5CrNi 13-4 cast 
steel slab and representing the leading-edge transition between the blade and the band/crown of a Francis 
turbine runner. The load range was chosen to yield fatigue lives between 104 and 105 cycles. 
 
Using the local stress approach in the intermediate cycle regime, i.e. where the fatigue life is given by the 
sloping part of the Wöhler curve, yields life predictions nearly a factor of 10 less than those observed 
experimentally. The probabilistic predictions were seen to be in satisfactory agreement with the 
experimentally observed lives. 
 
The probabilistic fatigue assessment procedure should be a useful tool for the quantification of reliability of 
hydraulic turbine runners, as well as other fatigue loaded components. 
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A post-processor for fatigue crack growth analysis based on a finite element stress field

A. Wormsen∗, A. Fjeldstad and G. Härkeg̊ard
Norwegian University of Science and Technology, Trondheim, Norway.

Abstract

In this paper the algorithm needed for performing a crack growth analysis of a three-dimensional component
by post-processing results from a standard finite element stress analysis is given. Weight functions are used for
calculating the stress intensity factor for an embedded crack and a surface crack. Defects are generated in several
nominally equal components, and crack growth calculations are carried out by using a short crack model to
determine the probability of component fatigue failure. The algorithm has been implemented in a finite-element
post-processor.

Keywords: Finite element analysis, fatigue crack growth, weight function, defect size distribution, proba-
bility of component fatigue failure.

NOTATION

A defect size (random variable)
Acrack defect area
a defect size
a′ intrinsic crack length
a0 scale parameter in the extreme

value distribution
a∗
0 characteristic largest defect size

acrit critical defect size
af final defect size
ai initial defect size
ath peak over threshold defect size
C coefficient in crack growth law
c half the surface crack length
F geometry factor
FEA finite element analysis
G(a) generalised extreme value distribution
g weight function
H(a) generalised Pareto distribution
|J| Jacobian determinant
K stress intensity factor
KIc fracture toughness
Kt stress concentration factor = σmax/Snet

∆Kth threshold stress intensity factor range
L distance from a given point to the free surface
m exponent in crack growth law
n number of cycles
N element shape functions
Nels number of elements

∗Corresponding author: Department of Engineering Design
and Materials, Norwegian University of Science and Technology,
Richard Birkelandsvei 2B, Trondheim, NO-7491 , Norway; email:
anders.wormsen@ntnu.no

NGauss number of Gauss points
in one of the coordinate directions

Nnodes number of nodes
Nnodes,el number of nodes per element
n1 eigenvector associated with the

maximum principal stress
nf element face normal
Ps probability of survival
R stress ratio = σmin/σmax

R orthogonal rotation matrix
S translation vector
Snet net-section stress
T transformation matrix
V volume
∆V element volume
Wi weight factor of the ith Gauss point
x, y, z global coordinate system
x′, y′, z′ transformed coordinate system
z1 number of critical defects per unit volume
∆σ stress range = σmax − σmin

σa (equivalent) stress amplitude
σA fatigue limit
σm (equivalent) mean stress
σmax maximum stress
σmin minimum stress
σn stress normal to the crack plane
σij operating stress tensor
σ0

ij residual stress tensor
ξ, η, ζ non-dimensional parent element coordinates
ξ′ shape parameter in the extreme

value distribution

1
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1 Introduction

At a time when the industry is continuously challenged
to come up with better and less costly products, and
this in ever shorter cycles, all product development pro-
cesses must be improved, including fatigue design. In or-
der to comply with this development, it is the authors’
conviction that standard fatigue analysis tools should
reflect that fatigue is caused by the (random) growth of
fatigue cracks from randomly distributed defects. Un-
fortunately, this is bound to make the fatigue design
process much more complex. Hence, a robust fatigue
assessment tool, directly applicable to the results from a
standard finite element stress analysis, would be of great
importance in the process of developing optimised, safe
and reliable structural components.

As shown in Table 1, there is a variety of approaches
to the fatigue analysis of a mechanical component, all
basically related to fatigue crack propagation. The initi-
ation based approaches use conventional S−N -data as a
starting point, and the fatigue life, N , is usually defined
as the number of load cycles required for a macroscopic
crack to develop. The propagation based approaches
consider the actual growth of a crack from an initial
(defect) size ai to a final size af .

Standard methods for fatigue life predictions are de-
terministic by nature, i.e., material properties including
defect size are considered as predetermined quantities.
Two of the most widespread deterministic fatigue as-
sessment methods are:

• ‘Local stress approach’ – Life prediction based on
the equivalence between the most highly stressed
point of a component and a standard smooth fa-
tigue specimen under the same stress.

• ‘Single defect approach’ – Life prediction based on
the growth of a single ‘worst-case’ crack-like defect
at the location of maximum stress.

The probabilistic approaches, on the other hand, assume
material properties to be randomly distributed:

• ‘Weakest-link approach’ – Assumes the probability
of survival of a component to be the product of
the probabilities of survival of the (small) elements
into which the component has been divided for
purposes of analysis. The probability of survival
of an element is a function of the stress cycle, the
characteristic fatigue strength and the size of the
element.

• ‘Random defect approach’ – The model is based
on a finite element stress analysis and assumptions
on the defect distribution as well as a theory for
the growth of short cracks. Each finite element is
associated with one or more defects by ‘drawing’
from a Poisson distribution. The initial posistion

of a defect is obtained from a uniform distribu-
tion while its size is obtained from an extreme
value distribution. The defects are considered to
be crack-like, and the number of cycles required for
each defect to become critical is determined. By
carrying out a large number of such simulations,
the fatigue life distribution of the component is
obtained.

When a commerically available finite element code
such as ABAQUS is used for performing a crack growth
analysis, the crack is explicitly modelled as an inte-
grated part of the component. For each crack growth
increment, the mesh surrounding the crack has to be re-
meshed. Re-meshing techniques applied to crack growth
problems have been treated in several papers, e.g. [1–3].
Examples of codes that have implemented re-meshing
techniques for handling crack growth analysis of 3D com-
ponents are FRANC3D [4], BEASY [5] (both use the
boundary element method) and ADAPCRACK3D [6,7]
(uses the finite element method). In order to reduce the
time required for performing a crack growth analysis,
the component geometry is often simplified so that a
standard handbook solution can be used for perform-
ing a fatigue life prediction. Such handbook solutions
are available in the programs NASGRO [8] and AF-
GROW [9]. Another approach is to perform the crack
growth analysis by assuming a homogeneous stress field
based on the maximum stress acting on the component
surface. This maximum stress approach yields accept-
able results provided that the stress decreases slowly,
i.e., the stress gradient is low, and when the geometrical
simplification can be justified. An alternative is to use
results from a standard finite element stress analysis and
account for a crack by using weight functions [10, 11].
This approach has been implemented in the stand-alone
finite-element post-processor P•FAT. By ‘drawing’ the
number, size and position of crack-like defects from dis-
tribution functions and repating this process for a large
number of nominally equal components (‘Monte Carlo’
simulation), the fatigue life distribution of the compo-
nent could be obtained. With this, one has a post-
processing tool that can estimate the probability of com-
ponent failure by means of fatigue crack growth calcula-
tions. The application of this feature should be of con-
siderable interest in assessing the influence of defects on
the reliability of cast components.

The finite-element post-processor also supports the
local stress approach and the weakest-link approach [12–
14]. The post-processor can perform fatigue crack growth
calculations of embedded cracks and surface cracks, see
Fig. 1. The code strictly handles only homogeneous
mechanical properties. Piecewise homogeneous ‘qual-
ity zones’ may be taken into account in the process of
generating defects, i.e., number, position and size. In
addition, the proposed method is presently restricted to
proportional loading.
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Table 1: Different approaches to fatigue analysis, all related to fatigue crack growth.

Approaches to fatigue analysis Deterministic Probabilistic

Initiation based Local Stress Weakest Link

Propagation based Single Defect Random Defect

surface crack

corner crack

embedded crack

Figure 1: Crack configurations implemented in the finite-element post-processor.

The paper is organised as follows. In Section 2, the
principal features of the finite-element post-processor
are given. Section 3 addresses the basic numerical codes
needed, and in Section 4 it is shown how crack-like de-
fects are propagated. Section 5 describes how defects
are generated, and in Section 6 a flow-chart of the ran-
dom defect module is given. Finally, some conclusions
are drawn in Section 7.

2 Principal features of P•FAT

P•FAT is designed as a stand-alone finite-element post-
processor with the component geometry and stresses
given by a standard finite element program. Data needed
for the computation are nodal coordinates, element topol-
ogy and stresses. In addition to operating stresses, process-
related residual stresses can be taken into account. Such
residual stresses may be imported directly from, e.g.,
casting or welding simulations. The surface elements
are found automatically and are used for defining the
geometry of the component.

In the propagation based approaches, the initial crack-
like defect is regarded as an embedded crack, or as a sur-
face crack, depending on the location of the crack front
relative to the free surface. A crack is treated as a corner
crack, if it starts from or propagates into a right-angled
corner.

Failure of a component occurs, when the crack has
reached a predefined size, or the stress intensity factor
K has reached the fracture toughness KIc. When a sur-

face crack breaks the opposing free surface, it has to be
treated as a through-crack. This may be a most relevant
situation, e.g., for a crack growing through a thin plate.
On the other hand, for initial defects that are much
smaller than the thickness of the plate, a through-crack
is only present during a small fraction of the component
life. Thus, instead of explicitly modelling the through-
crack, crack growth is terminated as soon as the surface
crack breaks the opposing free surface.

P•FAT is compatible with standard finite element
codes such as ABAQUS, ANSYS and NASTRAN. It is
written in standard FORTRAN and can be operated
under Windows and UNIX/LINUX.

3 Post-processing of finite element stress
analysis

3.1 Multiaxial stress criterion

The fatigue crack growth is assumed to be controlled by
the normal stress cycle on the plane perpendicular to the
direction of the maximum principal stress at the crack
origin. Thus, the stress amplitude, σa, at an arbitrary
point on the crack plane is calculated according to

σa = σn,a = n1iσij,an1j , i, j = 1, 2, 3, (1)

and the mean stress, σm, by

σm = σn,m = n1i(σij,m + σ0
ij)n1j . (2)
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n1 is the unit eigenvector of the maximum principal op-
erating stress, and σ0

ij denotes the residual stress tensor.
Generally, the direction of maximum principal stress

in the uncracked component changes as the crack grows
on a specific plane. In the present work, the change of
the crack growth direction is neglected. Generally, this
can be justified as long as the crack is small compared
with the dimension of the component, i.e., for a large
fraction of the fatigue life.

3.2 Numerical formulation

Consider now a defect located in an arbitrary elastic
body subject to the combined operating and residual
stress field σij(x). The origin of the crack-like defect is
given by the reference point x0 = [x0, y0, z0]T. A local
coordinate system, x′, is attached to the crack origin,
x0, as shown in Fig. 2. The local coordinate system is
defined by means of the transformation matrix

T = [R S] =


 R11 R12 R13 x0

R21 R22 R23 y0

R31 R32 R33 z0


 , (3)

where R is a 3 × 3 orthogonal matrix, known as the
rotation matrix, defining the orientation of the local co-
ordinate system. S is a 3× 1 translation vector defining
the origin of the coordinate system. Vectors given in
the local coordinate system are marked with a prime
(′). The rotation matrix is given by the vectors n2, n3,
and n1, respectively, as

R = [n2 n3 n1], (4)

where n1 is perpendicular to the crack surface and is
equal to the eigenvector associated with the maximum
principal stress. The n3 vector is determined as the
vector that gives the shortest length, L, between a free
surface point and the crack origin, see Fig. 2. n2 is
perpendicular to n3 and n1. Since R is an orthogonal
matrix, i.e., R−1 = RT, the transformation from global
to local coordinates, is given by

x′ = RTx − RTS. (5)

To obtain the stress intensity factor, K, the crack
surface is automatically meshed with plane isoparamet-
ric elements in the post-processor. The stress ampli-
tude normal to the crack plane, σa, can be found when
the corresponding parent global element coordinates,
ξ = [ξ, η, ζ]T, and the element number in the un-cracked
component is known. The latter is found by first per-
forming a transformation from ξ′ to x′. ξ′ is the par-
ent element coordinates for the crack elements. With
an isoparametric description of the crack geometry, the
transformation is given by

x′ = N(ξ′)x′
nodes, (6)

where N is the element shape function matrix and x′
nodes

is the local coordinates of the nodes in the crack ele-
ment mesh. The corresponding global point x is found
according to

x = Rx′ + S. (7)

The point x is within an element if the following condi-
tion is satisfied for all element faces

nf · v ≥ 0, v = xs − x, (8)

where nf denotes the surface normal at the point xs, see
Fig. 3.

nf3

nf4

nf1

nf2

1 2

34

x

v
xs

face 1

face 2

face 3

face 4

Figure 3: A point x within an element and definition of
the element face normal nf (a plane four-noded element
is used for illustration).

The parent global element coordinates, ξ, are ob-
tained by using a Newton-Kantorovich iteration algo-
rithm. This algorithm computes a solution of

f(ξ) = x − Nxnodes = 0, (9)

given an initial approximation ξ(0) (starting value of the
iteration). It is appropriate to use ξ(0) = 0 as a starting
value, i.e., the center of the element. For the initial
guess, one has the Taylor series with remainder in the
form

f(ξ) = f(ξ(0)) + f′(ξ(0))(ξ − ξ(0)) + R(ξ). (10)

If one omits the remainder term R(ξ), then

f(ξ(0)) + f′(ξ(0))(ξ − ξ(0)) = 0. (11)

Hence, one could form the iterative sequence of approx-
imations as

ξ(k+1) = ξ(k) − f′(k)(ξ(k))−1f(ξ(k)), k = 0, 1, . . . , (12)

where

f ′
ij = −

(
∂N
∂ξj

)
xnodes,i, i, j = 1, 2, 3. (13)
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z´

z

x´

x

y´

y

n1

n2

n3

x0

crack plane

free surface

crack
L

Figure 2: Definition of the crack plane and the local coordinate system x′.

The iteration is continued until the condition

|ξ(k+1) − ξ(k)| ≤ ε, (14)

is satisfied with the desired accuracy ε.
The stress amplitude normal to the crack plane, σa,

at a given position x, can then be found as [15]

σa =
Nnodes,el∑

i=1

Ni(ξ)σai, (15)

where the index i ranges over the number of nodes in
the element and Ni is the ith element of the element
shape function.

Since the influence of a free surface is included in the
calculation of the stress intensity factor K, the surface
elements of the component must be identified. A free
element surface is characterised by a unique combination
of face nodes.

When the component surface is identified the dis-
tance, L, from the point x to the free surface in a di-
rection e (unit vector) can be calculated, cf. Fig. 4.
However, before L can be found the element surface
which e passes through must be identified. The vec-
tor e passes through a free element surface, if and only
if,

nsf · e ≤ 0, (16)

for all spanned faces, see Fig. 4. Here, nsf is the spanned
face normal as shown in Fig. 4. The distance, L, be-
tween x and an unknown point xs [see Fig. 4] located
on the element surface is found according to

L =
(xnode − x) · nf

e · nf
=

|xnode − x| cosα

cos θ
. (17)

4 Crack growth approach

In the propagation based modules, the fatigue life is ob-
tained by summing up the number of cycles necessary
to propagate an initial crack-like defect to a user defined

e

n

L

xs

xnode

x

x
node

x
-

�

�

x
node -

cos�

|

x| fface
1

face 2

nsf1

nsf2

v

u

Figure 4: Graphical illustration of the distance L be-
tween the point x and a free element face with face normal
nf.
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critical state. For the fatigue life to be properly calcu-
lated, the crack growth law should take the behaviour
of short cracks into account [16, 17]. In the next Sub-
section, the crack growth law is presented, followed by
a short description of the crack growth increment pro-
cedure. Finally, it is shown how the stress intensity
factor, K, is calculated using the stress field from the
un-cracked component.

4.1 Crack growth law

El Haddad et al. [18] defined the ‘effective’ crack length
as the sum of the actual crack length and an intrin-
sic crack length. By using this effective crack length in
conjunction with the fatigue crack growth law by Klesnil
and Lukáš [19], Fjeldstad et al. [20] derived the follow-
ing equation for the growth rate of short fatigue cracks:

da

dn
= C∆Km

th


{(

∆σ

∆σA

)2

+
(

∆K

∆Kth

)2
}m

2

− 1


 .

(18)
In equation (18), ∆σA is the fatigue limit of a smooth,
polished fatigue specimen without (major) defects, ∆σ
is the stress range normal to the crack plane and ∆Kth

is the threshold stress intensity range.
The constant C of the crack growth law, the fatigue

limit and the threshold stress intensity range can all be
transformed to the present R-ratio by using Walker’s
equation [21] as shown in [22]. The exponent m of
the crack growth law generally varies only weakly with
R [22] and can be assumed to be constant.

4.2 Determination of crack growth increments

By rearranging equation (18), the fatigue life, n, is ob-
tained by means of numerical integration with an adap-
tive crack increment control. The maximum allowable
crack increment is controlled in such a way that the as-
pect ratio a/c cannot change more than, say, 2% for each
incremental step. The increment is denoted by δ(A) and
represents the growth of the point A on the crack front
(see Figs. 5(a) and 8(b)). By using δ(A) as a start-
ing point, the incremental growth, δ(P), for an arbirary
point P along the crack front is estimated according to

δ(P) = δ(A)
(

∆K(P)
∆K(A)

)m

. (19)

4.3 Stress intensity factor

The prediction of crack behaviour has always been a
challenge for researchers, and crack propagation repre-
sents a real concern among engineers. In linear elastic
crack mechanics, the stress intensity factor, K, is the
main parameter to seek. In this Subsection, a method
for numerical determination of stress intensity factors

in three-dimensional geometries will be given and veri-
fied. The method is based on the theory of weight func-
tions, which computes the required stress intensity fac-
tor based on the stress field of the crack-free component.
The use of weight functions in crack mechanics was first
proposed by Bueckner [10] and subsequently generalised
by Rice [11]. The reader is referred to the above refer-
ences for a detailed discussion on the theoretical aspects
of the method.

Consider now a two-dimensional crack located in an
arbitrary elastic body subjected to the combined operat-
ing and residual stress field σij(x). The crack is assumed
to grow in a direction perpendicular to the direction of
the maximum principal stress determined at the crack
origin x0, cf. Fig. 2. A local coordinate system x′ is
introduced at x0, see Fig. 2. The transformation from
global to local coordinates is given by equation (5). The
weight function, g(x′, y′; P), is defined as the stress in-
tensity factor value at the crack front point P, when
a pair of symmetrical unit opening forces are applied
at an arbitrary point P′ on the crack surface, cf. Fig.
5(a). In the case of a distributed symmetrical loading
on the crack surface, the stress intensity factor K is ob-
tained by integrating the product of the weight function
g(x′, y′; P) and the stress distribution of the crack free
solid σa(x′, y′) over the crack surface area Acrack:

K(P) =
∫

Acrack

σa(x′, y′)g(x′, y′; P) dAcrack. (20)

The relationship between the weight function and the
displacement field is given in [11].

The integral in equation (20) can be solved numeri-
cally for instance by Gauss-Legendre quadrature. This
procedure subdivides the crack surface into Nels plane
elements with Nnodes nodes. By virtue of the property
of definite integrals, the stress intensity factor is ob-
tained by performing a summation over all elements on
the crack surface:

K ≈
Nels∑
k=1

(
NGauss∑

i=1

NGauss∑
j=1

σa(ξ′i, η
′
j)g(ξ′i, η

′
j ; P

′)×

|J(ξ′i , η
′
j)|WiWj ).

(21)

Here, |J| is the determinant of the Jacobian maxtrix
and (ξ′, η′) the corresponding non-dimensional parent
crack element coordinates at the Gauss points. Wi is
the weight factor of the ith Gauss point and NGauss is
the number of Gauss points in each coordinate direction.

4.3.1 Embedded crack

For an infinite body with an embedded crack under dis-
tributed loading perpendicular to the plane of the crack,
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the weight function is given by [23]

g(x′, y′; P ′) =
√

2s

π3/2ρ2

√
1 − s

8ρ1
− s

8ρ2
− s

8ρ3
− s

8ρ4
,

(22)
where s is the shortest distance between the point P′ and
the crack front, and ρ is the distance between P and P′,
see Fig. 5(a). ρ1 to ρ4 are parameters depending on the
shape of the crack [23].

To obtain the stress intensity factor, the crack sur-
face is meshed with plane elements as shown in Fig.
5(b). K is calculated numerically by using equation
(21). The mesh density and size are adjusted accord-
ing to the local value of the weight function. Since the
weight function becomes singular when P′ approaches
P, a fine mesh is used around P. Fig. 5(b) illustrates a
typical finite element mesh used. In order to obtain a
proper description of the growth of an embedded crack,
K is calculated at four locations, i.e., points A, B, C
and D [see Fig. 5(a)], at the crack front.

The K solution proposed by Wang et al. [23] holds
for an embedded elliptical crack located in an infinite
body. In order to take into account the free surface
effect on K, an empirical ‘stress intensity magnification
factor’ proposed by Fett and Mattheck [24] is used. The
magnification factor is multiplied with the weight func-
tion based K solution. The stress intensity magnifica-
tion factor depends on the distance, L, from the crack
center to the free surface and the aspect ratio a/c, cf.
Fig. 6.

In Fig. 6(a), geometry factors F [see equation (24)]
at four locations on the crack front of an embedded crack
have been plotted against the aspect ratio, a/c. The
crack is located in an infinite body and the crack surface
is subjected to the stress field

σa(y′) = σ0

(
y′

a

)i

. (23)

The geometry factor F is defined as

F =
K

σ0
√

πa
. (24)

The solid and dotted lines are obtained by using the
weight function given in equation (22). Along with
these solutions, analytical results presented by Green
and Sneddon [25] (i = 0) and Shah and Kobayashi
[26](i = 1, 2) are shown as single points. As can be
seen, the weight function based F values are in good
overall agreement with the analytical predictions, with
a maximum deviation of less than 4%. Fig. 6(b) shows
the geometry factor at the same four locations, but now
plotted against a/L. The weight function based F val-
ues, shown as solid lines, are obtained for a crack with
aspect ratio a/c = 0.5 and subjected to a uniform stress
field, i.e., i = 0. Results presented by Noguchi et al. [27]
are shown as squares. For a/L = 0, the geometry factor

solution corresponds to an embedded crack located in an
infinite body. As a/L increases, the influence of the free
surface leads to higher F values. The weight function
based F values are in good agreement with the results
presented by Noguchi et al., with a maximum deviation
of less than 4% when a/L ≤ 0.9.

When the embedded elliptical crack shown in Fig. 7
reaches the free surface, there follows a relatively rapid
crack extension through the cusp-shaped ligaments on
each side of the point of break-through [28]. After this
transitory phase, the depth of the surface crack ≈ 2a,
and the curvature at the deepest point of the crack is
nearly the same as that of the embedded crack. If the
shape of the surface crack is to remain semi-elliptic, its
semi-width ≈ √

2c, i.e., it is about 40% wider than the
crack before break-through. However, in order to com-
pensate for the ‘missing’ cycles of the transitory phase,
the ‘effective’ semi-elliptic surface crack is assumed to
be somewhat smaller and to have the same area as the
embedded crack, as shown in Fig. 7.

2a
ia

2c
i

2c

Free surface

Initial crack

L

Figure 7: Sketch of a near surface crack and how it is assumed
to unfold to a surface crack.

4.3.2 Surface crack

For a semi-elliptical surface crack growing in an arbi-
trary component, the crack will in many cases propa-
gate along an uneven surface. Hence, the local coordi-
nate system of the crack must be updated for each crack
growth increment. The initial coordinate system is de-
noted by x′

s, see Fig. 8(a). The semi-elliptical crack
is growing perpendicularly to the maximum principal
stress. The updated coordinate system is denoted by
x′′

s , as shown in Fig. 8(a). The updated coordinate sys-
tem is determined by the two points where the crack
front and the free surface intersect. The updated co-
ordinate system is rotated until the x′′

s -axis is parallel
with the line between the two surface points, see Fig.
8(a). These are found by stepwise moving along the
crack front until the points are found to be outside the
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B

C
D

A

P

a) b)

area Acrack

Figure 5: (a) Schematic drawing of an embedded elliptical crack and definition of parameters for obtaining the
stress intensity factor. (b) Typical finite element mesh used for an embedded elliptical crack.
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Figure 8: (a) Definition of the crack coordinate system and (b) a two dimensional view of a semi-elliptical crack.
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component geometry, followed by an iterative process in
order to determine the points more accurately.

For an arbitrary body with a semi-elliptic surface
crack of depth a and aspect ratio a/c (cf. Fig. 8(b))
under a loading, σa, perpendicular to the crack surface,
the weight function at the deepest point of the crack
front A(a; 0) is given by

gA(y′′
s ; a/c) =

2 (1 + fA(y′′
s , a/c, a/L))√

2π(a − y′′
s )

. (25)

The function fA(y′′
s , a/c, a/L) is given in [29]. Similarly,

at the intersection between the crack front and the free
surface, C(0; c), the weight function is given by [29]

gC(y′′
s ; a/c) =

2 (1 + fC(y′′
s , a/c, a/L))√
πy′′

s

. (26)

The above weight function for the surface point C
was established by Shen and Glinka [29] from a near
surface point by means of the finite element method.
The reason for this is that the stress singularity at the
surface point is different from 1/

√
r and that the conven-

tional stress intensity factor, therefore, does not apply at
C. There is, however, only a small region in the vicinity
of C, where the stress singularity is different from 1/

√
r.

As can be seen from equations (25) and (26), the un-
derlying weight function only considers the stress gradi-
ent in the depth direction of the crack. To obtain the
stress intensity factor, K, the line from the crack ori-
gin to the deepest point of the crack is meshed with
two noded line elements. The element length is pro-
gressively decreased towards the point where the weight
function becomes singular. The numerical integration is
performed according to equation (21).

Fig. 9(a) shows the geometry factor FA for the deep-
est point, A(a; 0) (cf. Fig. 8(b)), versus a/L when the
crack surface is subjected to four different stress fields,
see equation (23). The solid lines are obtained by us-
ing the weight function of equation (25). Along with
weight function based FA values, finite element results
presented by Nilsson [30] are shown. As can be seen,
the weight function based FA values are in good overall
agreement with the results presented by Nilsson, with a
maximum difference of less than 4%. In Fig. 9(b), the
corresponding geometry factors, FC, for the crack sur-
face point C(0; c) are shown. Also for the crack surface
point, the agreement is found to be good.

5 Defect generation

Scatter plays an eminent role in the prediction of the
fatigue life of a component. There are several possible
sources for the scatter. It may be due to the random
character of the loading. It may also be due to inac-
curacies in how the loading is applied. Deviations from
the nominal dimensions of the component cause scatter

in the stresses. Lacking repeatability in the manufactur-
ing conditions leads to variability of chemical composi-
tion, microstructure and mechanical properties. This in-
cludes fatigue limit and the crack growth rate of the ma-
terial. Last, but not least, metal alloys contain metallur-
gical defects such as non-metallic inclusions and pores.
Fatigue cracks are prone to initiate and grow from such
defects. The present Section presents a methodology
for generating the number, position and size of defects
within a component.

5.1 Number and position of defects

There are two different approaches based on the statis-
tics of extremes for estimating the size of the largest de-
fect in a large volume of material. The first approach,
called the block maximum method, uses the generalised
extreme value distribution [31]. In this method, a pol-
ished cross-section is divided into k equally sized areas
of size A0 that are inspected for defects using optical mi-
croscopy [32]. Hence, the observation set consists of k
measurements of maximum defect sizes, amax1, . . . , amax.
The corresponding sizes in a volume V0 can be esti-
mated by using a stereological approximation as shown
in [33, 34]. The expected number of defects per unit
volume of the material is denoted by z0. In the second
approach, all defects with sizes above a certain (high)
threshold, ath, are considered. The differences between
the defect sizes and the threshold, i.e., ai−ath, are fitted
to a generalised Pareto distribution [31]. This approach
is therefore often called the peak over threshold method.
The expected number of defects with sizes greater than
ath is denoted by z0(ath).

The number of defects in a finite element of volume
∆V is obtained by ‘drawing’ from a Poisson distribution,
i.e.,

Pr(I = i) =
[z0∆V ]i

i!
exp[−z0∆V ], i ∈ {0, 1, 2, . . .}

(27)
where, I is the random number of defects. The element
volume is calculated as

∆V =
NGauss∑

i=1

NGauss∑
j=1

NGauss∑
k=1

|J(ξi , ηj , ζk )|WiWjWk . (28)

It should be noted that the intrinsic property of a Pois-
son process is that the occurrence of a defect at a loca-
tion x ∈ V neither encourages, nor inhibits, the occur-
rence of other defects in a neighborhood of x, or in any
other location, and that defects in separate volumes are
mutually independent [34]. This assumption requires
that the number of potentially life-controlling defects is
small, a situation that occurs for stress cycles close to
the fatigue limit (in the HCF regime) and for compo-
nents with a low density of ‘large’ metallurgical defects.

When assigning the defect location, the parent ele-
ment domain ξ is used. The location of a defect within
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Figure 9: Geometry factors (a) FA for the deepest point A(a; 0) and (b) FC for the surface point C(0; c) of a
semi-elliptical crack with aspect ratio a/c = 1.

an element is obtained according to


 ξ

η
ζ


 = 2


 U1(0, 1)

U2(0, 1)
U3(0, 1)


 − 1, (29)

where U is a uniform random number between 0 and
1. Fig. 10 shows the position of randomly generated
defects within a cube of volume 1000 mm3.
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Figure 10: Example of generated number and position of de-
fects within a 1000 mm3 cube.

5.2 Defect size distributions

According to the generalised extreme value (GEV) dis-
tribution the probability that a defect of size Amax ≤
amax is located within an element of volume ∆V is given
by

G(amax) = Pr[Amax ≤ amax]

= exp

{
−

[
1 + ξ′

(
amax − a∗

0

a0

)]−1/ξ′
∆V

V0

}
,

(30)

where a0 > 0 denotes the scale parameter, a∗
0 the loca-

tion parameter and ξ′ the shape parameter. The prob-
ability that a defect of size Amax ≤ a∗

0 is located within
the control region V0 equals exp(−1) ≈ 36.8%. The lo-
cation parameter, a∗

0, is therefore often called the char-
acteristic largest defect size in volume V0 [34]. The GEV
distribution combines the Gumbel (Type I, ξ′ = 0),
Fréchet (Type II, ξ′ > 0) and the reversed Weibull (Type
III, ξ′ < 0) distributions into a single distribution.

The Gumbel, Fréchet and reversed Weibull distribu-
tions have distinctly different forms of tail behaviour.
When ξ′ < 0, i.e., for the reversed Weibull distribution,
the upper limit amax+ = a∗

0 − a0/ξ′. Thus, the proba-
bility of finding defects ≥ amax+ is zero. The Gumbel
(ξ′ = 0) and Fréchet (ξ′ > 0) distributions have no up-
per limit.

When the peak over threshold method is used, all
defects larger than a sufficiently high threshold ath are
measured either from a single inspection region or from
k sub-regions. The observation set then consists of i
measurements, a1, . . . , ai. A generalised Pareto distri-
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bution with distribution function [31]

H(a) = Pr[A ≤ a|A > ath] = 1−
[
1 + ξ′

(
a − ath

ã0

)]−1/ξ′

,

(31)
is fitted to the values ai − ath. The scale parameter ão

is given by
ã0 = a0 + ξ′(ath − a∗

0), (32)

where a0, a∗
0 and ξ′ are equal to those in equation (30).

The range of a − ath is 0 < a − ath < ∞ if ξ′ ≥ 0 and
0 < a − ath < −ã0/ξ′ if ξ′ < 0. The generalised Pareto
distribution was applied to defects in clean steels for the
first time in [35, 36].

The generated sample of defect sizes is converted into
crack dimensions by first assuming that all generated
defects are embedded circular cracks of radius c. If the
drawn defect cuts the free surface of the component, the
‘effective’ surface crack is assumed to be semi-elliptic of
width 2c and a depth a equal to the depth below the
surface of the drawn defect.

5.3 Defect criterion and probability of fatigue
failure

The Kitagawa-Takahashi diagram [37] clearly shows that
the fatigue strength decrease with increasing crack size.
In addition, there exists a critical crack size, acrit, below
which cracks are non-damaging. In the present work,
the Kitagawa-Takahashi diagram [37] is used for find-
ing out whether a crack is potentially damaging or not.
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Figure 11: Kitagawa-Takahasi diagram with experimental
data for both ferrous and nonferrous alloys gathered by Tanaka
et al. [38] and Hertzberg [39].

Consider now a small, homogeneously stressed vol-
ume element ∆V subjected to an equivalent stress am-
plitude σa. The smallest crack initiating failure in ∆V is

denoted by acrit and can be estimated according to [37]

acrit = a′
[(

∆σA

∆σ

)2

− 1

]
, (33)

where the ‘intrinsic’ crack length is given by

a′ =
(

∆Kth∆σ

∆K∆σA

)2

a. (34)

Cracks with sizes less than acrit are removed from the
component. The expected number of remaning cracks
per unit volume is denoted by z1. The critical crack
density, z1, is defined as the expected number of cracks
per unit volume of the material that yields a fatigue
strength (random variable) σA ≤ σa.

6 Flow-chart of the random defect
module

In this Section a flow-chart of the random defect mod-
ule is presented. The flow-chart is shown in Fig. 12.
The flow-chart can be divided into three main parts: (i)
input, (ii) defect generation and (iii) crack growth.

In the input part of the flow-chart, data needed for
the computation are given. In the defect generation
part, the number, size and position of the defects are
generated. The number of critical defects, z1, are sub-
sequently determined by using a Kitagawa-Takahashi di-
agram, see Subsection 5.3.

In the crack growth part, all generated defects are
initially embedded circular cracks of radius c. For de-
fects cutting the free surface of the component, the ‘ef-
fective’ surface crack is assumed to be semi-elliptic of
length 2c and a depth a, equal to the depth below the
surface of the drawn defect. The location of the crack
front relative to the free surface is determined for each
crack growth increment. This enables one to determine
when an embedded crack starts to grow as a surface
crack and when a surface crack breaks the opposing free
surface. Failure of a component occurs, when the crack
has reached a predefined size af, or the stress intensity
factor K has reached the fracture toughness KIc. The
fatigue life of a single component is determined as the
smallest computed life for all crack-like defects.

7 Conclusions

P•FAT is designed as a stand-alone finite-element post-
processor with the component geometry and stresses
given by a standard finite element program. Data needed
for the computation are nodal coordinates, element topol-
ogy and stresses. The surface elements are found auto-
matically and are used for defining the geometry of the
component.

The life-controlling defect is determined by means of
the stress field and the initial crack growth rate. The
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Figure 12: Flow-chart of the procedure for calculating the fatigue life of a single component.
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number of defects in each finite element is obtained by
’drawing’ from a Poisson distribution. The location of
each defect in an element is found by drawing from a
uniform distribution. The defect size is obtained by
drawing from an extreme value distribution.

The life-controlling defect is then regarded as an em-
bedded crack or as a surface crack. Fatigue life predic-
tion is carried out using a short crack growth model.
The defects are considered to be crack-like and to grow
on the plane of maximum principal stress. Weight func-
tions, together with the stress field of the crack-free com-
ponent, are used to compute the required stress intensity
factors. The crack surface is automatically meshed with
plane elements with subsequent numerical integration
(Gauss quadrature) for determining the stress intensity
factor at several locations at the crack front. For each
incremental step, this process repeats itself: the crack
surface is re-meshed, and updated stress intensity fac-
tors for the current crack are obtained. The program
also updates the location of the crack front relative to
the free surfaces. Hence, if the crack grows through the
component surface, the crack is regarded as a surface
crack.

By repeating this process for a large number of nom-
inally equal components (Monte Carlo simulation), the
fatigue life distribution of the component is obtained.
Thus, the designer will be able to estimate the proba-
bility of component fatigue failure.
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[6] Schöllmann, M., Fulland, M., and Richard,
H. A. Development of a new software for adaptive
crack growth simulations in 3D structures. Engi-
neering Fracture Mechanics, 70(2):249–263, 2003.

[7] Fulland, M. and Richard, H. A. Applica-
tion of the FE-method to the simulation of fatigue
crack growth in real structures. Steel Research,
74(9):584–590, 2003.

[8] NASA: Fatigue Crack Growth Computer Program
‘NASGRO’, version 3.0, 2000, (Reference Man-
ual, JSC-22267B, Engineering Directorate, Na-
tional Aeronautics and Space Administration, Lyn-
don B. Johnson Space Center, Houston).

[9] AFGROW Users Guide And Technical Manual. Air
Vehicles Directorate, Air Force Laboratory, Wright-
Patterson Air Force Base, Ohio.

[10] Bueckner, H. F. A novel principle for the com-
putation of stress intensity factors. Z. Angewandte
Math. Mech., 50:529–546, 1970.

[11] Rice, J. R. Some remarks on elastic crack-tip
stress fields. International Journal of Solids and
Structures, 8(6):751–758, 1972.
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Abstract

The paper presents a probabilistic method for the simulation of fatigue crack growth from crack-like defects in the com-
bined operating and residual stress fields of an arbitrary component. The component geometry and stress distribution are
taken from a standard finite element stress analysis. Number, size and location of crack-like defects are ‘drawn’ from prob-
ability distributions. The presented fatigue assessment methodology has been implemented in a newly developed finite-
element post-processor, P • FAT, and is useful for the reliability assessment of fatigue critical components. General
features of the finite element post-processor have been presented. Important features, such as (i) the determination of
the life-controlling defect, (ii) growth of short and long cracks, (iii) fatigue strength and fatigue life distribution and
(iv) probability of component fatigue failure, have been treated and discussed. Short and long crack growth measurements
have been presented and used for verification of the crack growth model presented.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In terms of fatigue design, it is of ultimate importance that computer simulations undergoes the same
improvements regarding accuracy and speed as all the other steps in a product development process. It is
the authors’ conviction that a standard fatigue analysis tool should reflect that fatigue is a probabilistic
phenomenon caused by the (random) growth of small fatigue cracks from randomly distributed defects.
Unfortunately, this is bound to make the fatigue design process much more complex. Hence, a robust fatigue
assessment tool, directly applicable to the results from a standard finite element stress analysis, would be of
great importance in the process of developing optimised, safe and reliable structural components.
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Nomenclature

A defect size (random variable)
a defect size
a 0 intrinsic crack length
a0 scale parameter in the extreme value distribution
a�0 characteristic largest defect size
acrit critical defect size
ath peak over threshold defect size
c half the surface crack length
C coefficient in crack growth law
d notch depth
F geometry factor
G(a) generalised extreme value distribution
H(a) generalised Pareto distribution
DK stress intensity range
DK* stress intensity range associated with R = 0
DKeq equivalent stress intensity range
KIc mode I fracture toughness
Kt stress concentration factor = rmax/S
DKth threshold stress intensity range
m exponent in crack growth law
N fatigue life (random variable)
n number of cycles
n1 unit eigenvector of the maximum principal stress
Pf probability of failure
Ps probability of survival = 1 � Pf

R stress ratio
S remote stress
Snet net-section stress
t thickness of plane specimen
V volume
V0 reference volume
w width of plane specimen
z1 critical defect density
c Walker exponent
n 0 shape parameter in the extreme value distribution
q notch radius
r1 maximum principal stress
ra stress amplitude = Dr/2
rm mean stress
rA fatigue strength (random variable)
r�A0 characteristic fatigue strength
rij operating stress tensor
r0

ij residual stress tensor

2 A. Fjeldstad et al. / Engineering Fracture Mechanics xxx (2007) xxx–xxx
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To comply with thise needs, a probabilistic fatigue assessment tool has been developed that is capable of
predicting the fatigue life of a component. The prediction is based on the fatigue properties of the material
and their scatter, and on the operating stresses from a finite element analysis of the component. The post-
Please cite this article in press as: Fjeldstad A et al., Simulation of fatigue crack growth in components with ..., Eng
Fract Mech (2007), doi:10.1016/j.engfracmech.2007.04.006
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processing of the stresses includes residual stresses, which may be imported directly from casting or welding
simulations.

Scatter plays an eminent role in the prediction of the fatigue life of a component. There are several possible
sources for the scatter. It may be due to the random character of the loading. It may also be due to inaccu-
racies in how the loading is applied. Deviations from the nominal dimensions of the component cause scatter
in the stresses. Lacking repeatability in the manufacturing conditions leads to variability of chemical compo-
sition, microstructure and mechanical properties. This includes fatigue limit and the crack growth rate of the
material. Last, but not least, metal alloys contain metallurgical defects such as non-metallic inclusions and
pores. Fatigue cracks are prone to initiate and grow from such defects. The present work describes a method-
ology for simulating the scatter of the fatigue life based on the statistical distributions of defect density and
defect size. Material parameters of the crack growth law may also be treated as random variables [1].

2. Finite-element post-processor

P • FAT is designed as a stand-alone, finite-element post-processor with the component geometry and stres-
ses given by a standard finite element program. Data needed for the computation are nodal coordinates, ele-
ment topology and stresses. It has been developed to perform predictions of crack growth in arbitrary three-
dimensional components. It supports the simulation of both a single crack-like defect that can be inserted into
the component at a desired location (single defect module) and randomly inserted crack-like defects (random

defect module). The finite element post-processor uses a short crack model to determine the crack growth rate,
see Section 3.1. The reader is referred to Ref. [1] for the numerical aspects of the crack-growth modules.

The number of defects in each finite element is obtained by ‘drawing’ from a Poisson distribution. The loca-
tion of each defect in an element is obtained from a uniform distribution, and the defect size is obtained by
‘drawing’ from an extreme value distribution. The defects are considered to be crack-like, and the number of
cycles required for a given defect to become critical is determined.

The crack-like defects are assumed to grow on the plane of maximum principal stress. Weight-functions [2],
together with the stress field of the crack-free component, are used to compute the required stress intensity
factors. Generally, the direction of maximum principal stress in the uncracked component changes as the
crack grows on a specific plane. In the present work, the change of the crack growth direction is neglected.
Generally, this is a good approximation as long as the crack is small compared with the dimensions of the
component, i.e., for a large fraction of the fatigue life.

The crack surface is automatically meshed with plane elements. Subsequently, numerical integration (Gauss
quadrature) is performed for determining the stress intensity factor at several locations at the crack front. For
each incremental step, this process repeats itself: the crack surface is re-meshed, and updated stress intensity
factors for the current crack are obtained. The program also updates the location of the crack front relative to
the free surfaces. Hence, if the crack grows through the component surface, the crack is regarded as a surface
crack or a corner crack, see Fig. 1. Failure of a component occurs when the crack has reached a predefined
size, or if the stress intensity factor K has reached the fracture toughness KIc.
a
a

2a

2c c

2c

embedded crack

surface crack

corner crack

Fig. 1. Crack configurations implemented in the finite-element post-processor.
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In the present investigation, the interaction between single cracks and the subsequent joining of these and
the formation of a new, larger crack have been neglected. Thus, only one single, dominating crack is consid-
ered at a time. This assumption requires that the number of potentially life-controlling defects is small, a sit-
uation that occurs for stress cycles close to the fatigue limit (in the HCF regime) and for components with a
low density of ‘large’ metallurgical defects. Future fatigue testing and simulation of components with known
defect distributions should give a better understanding of the influence on fatigue life of the interaction
between cracks.

By repeating the foregoing analysis for a large number of nominally equal components (Monte Carlo sim-
ulation), the fatigue life distribution of the component is obtained. Thus, the designer will be able to find the
probability of fatigue failure.

The main steps for obtaining the fatigue life distribution of a component can be summarised as follows:

1. Develop a 3D FE model and perform a stress analysis of a component using a standard finite element pro-
gram, such as ABAQUS, ANSYS, or NASTRAN.

2. The number, size and location of crack-like defects in each finite element are ‘drawn’ from probability
distributions.

3. Calculate the maximum principal stress for all defects.
4. Perform fatigue crack growth calculations.
5. Repeat steps 2–4 for a large number of nominally equal components to obtain the fatigue life distribution

of the component.
3. Crack growth law

The stress field ahead of a crack in a linear elastic body can be characterised by means of the stress intensity
factor K. This is a function of the geometry of the component and the crack [cf. Fig. 1] as well as the stress
field. For simple geometries, K can be obtained from handbook solutions [3] or asymptotic solutions [4,5]. For
more complex geometries, the stress intensity factor can be obtained by using weight functions together with
the stress field of the crack-free component. Weight factor solutions for an embedded crack [6], a surface crack
[7] and a corner crack [8], as shown in Fig. 1, have been implemented. The current crack configuration is auto-
matically identified. The initial crack is assumed to grow on the plane of maximum principal stress [1].

The stress amplitude, ra, at an arbitrary point on the crack plane, is given by
Plea
Frac
ra ¼ n1irij;an1j; i; j ¼ 1; 2; 3: ð1Þ
and the mean stress, rm, by
rm ¼ n1iðrij;m þ r0
ijÞn1j: ð2Þ
n1 is the unit eigenvector of the maximum principal stress, and r0
ij denotes the residual stress tensor.

The use of stress intensity factors was extended to fatigue problems by Paris and Erdogan [9], who sug-
gested a power-law relationship between the crack growth rate da/dn and the stress intensity range DK, viz.,
da
dn
¼ CDKm; ð3Þ
where C and m are material parameters. Klesnil and Lukáš [10] extended Paris’ law into the near threshold
region by including the threshold stress intensity range, DKth:
da
dn
¼ CðDKm � DKm

thÞ: ð4Þ
3.1. An equivalent stress intensity range for short cracks

The fatigue tests by Kitagawa and Takahashi [11] clearly show that the fatigue limit of a cracked solid can
be determined by means of the threshold of the stress intensity range for long cracks only. For short cracks,
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however, the fatigue limit asymptotically approaches the ordinary fatigue limit as determined by means of a
smooth specimen. Both the long and the short crack fatigue limits are satisfied by an equation initially given
by El Haddad et al. [12] for F = 1, and generalised by Härkegård [13] to an arbitrary geometry factor, F, viz.
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Plea
Frac
Dr ¼ DK th

F
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðaþ a0Þ

p ¼ DrAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a=a0

p : ð5Þ
The characteristic crack length, a 0, which signifies the transition between short cracks, a < a 0, and long cracks,
a > a 0, is defined by
a0 ¼ 1

p
DK th

F DrA

� �2

: ð6Þ
By replacing the geometry factor F, a 0 can be written as
a0 ¼ DK thDr
DKDrA

� �2

a: ð7Þ
One may interpret a 0 as an ‘intrinsic’ crack length, which should be added to the length of the real crack to
yield an ‘effective’ crack length. Fig. 2a shows a Kitagawa–Takahashi diagram with experimental data for
both ferrous and nonferrous alloys gathered by Tanaka et al. [14] and Hertzberg [15]. When crack growth
behaviour is controlled by linear elastic fracture mechanics, i.e., a� a 0, Dr varies as 1=

ffiffiffi
a
p

. At the other ex-
treme where a� a 0, the fatigue limit asymptotically approaches the fatigue limit, DrA, of a smooth, polished
fatigue specimen without major defects.

Rewriting Eq. (5) in terms of the stress intensity range yields
DK ¼ DK thffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a0=a

p : ð8Þ
In Fig. 2b, Eq. (8) is shown as a solid line together with the data presented in [14,15]. For long cracks, DK

asymptotically approaches the stress intensity range DKth. For short cracks, however, the stress intensity range
required for a crack to grow varies as

ffiffiffi
a
p

.
The preceding equations explicitly depend on the intrinsic crack length, a 0, which, in its turn, depends on

the geometry factor, F. The latter will not be constant, if the crack shape changes [16], or the finite dimensions
of the solid must be considered. This inconvenience can be avoided by eliminating the crack length, a, between
Eqs. (5) and (8). Thus, one obtains
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Normalised threshold behaviour versus normalised crack size. (a) Normalised stress range and (b) normalised stress intensity
Data points have been gathered by Tanaka et al. [14] and Hertzberg [15].
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Plea
Frac
DK
DK th

� �2

þ Dr
DrA

� �2

¼ 1: ð9Þ
This equation was originally used by Härkegård et al. [17] to correlate the stress range, Dr, and the stress
intensity range, DK, below which short cracks did not propagate in two ferritic steels. In Fig. 3, the data points
of Fig. 2 have been replotted in a diagram with Dr/DrA as the abscissa and DK/DKth as the ordinate. The
seemingly large scatter in Fig. 3 compared with that in Fig. 2a and b can be explained by the change to linear
scales from logarithmic scales.

If Eq. (9) is rewritten as
DK 1þ DK th

DK

� �2 Dr
DrA

� �2
" #1=2

¼ DK th; ð10Þ
the left member may be interpreted as an equivalent stress intensity range for short and long cracks,
DKeq ¼ DK 1þ DK th

DK

� �2 Dr
DrA

� �2
" #1=2

: ð11Þ
By introducing Eq. (7) into the above equation, DKeq can be expressed as
DKeq ¼ DK

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ a0

a

r
: ð12Þ
For a� a 0, DKeq asymptotically approaches the stress intensity range DK.
By introducing Eq. (11) into Eq. (4), the crack growth rate can be expressed as
da
dn
¼ CDKm

th

DK
DK th

� �2

þ D�r
DrA

� �2
( )m=2

� 1

2
4

3
5: ð13Þ
To determine the ‘effective’ stress range, D�r, for a surface crack at the root of a notch (Fig. 4, left), the same
surface crack in a semi-infinite body is considered (Fig. 4, right). D�r is now defined as the remote stress range
that yields the same DK as for the crack at the root of a notch. Hence,
D�r ¼ DK
F
ffiffiffiffiffiffi
pa
p ; ð14Þ
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a et al. [14] and Hertzberg [15].

se cite this article in press as: Fjeldstad A et al., Simulation of fatigue crack growth in components with ..., Eng
t Mech (2007), doi:10.1016/j.engfracmech.2007.04.006



d a

ρ

a

ΔK ΔK

ΔS

ΔS

Δ

Δ
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A. Fjeldstad et al. / Engineering Fracture Mechanics xxx (2007) xxx–xxx 7

ARTICLE IN PRESS
where F is the geometry factor for the current crack in a semi-infinite plate. For an edge through-crack,
F = 1.122 [3], and for an elliptic surface crack with aspect ratio a/c = 1, F = 0.663 [18] at the deepest point
of the crack front.

For a long crack, i.e., a� a 0, Eq. (13) reduces to the crack growth law proposed by Klesnil and Lukáš [10],
see Eq. (4).
3.2. Influence of the load ratio

Several models that address the mean stress dependency of fatigue crack propagation have been presented
in the literature. The different mean stress equations are either crack closure based or empirically based.

By plotting da/dn as a function of the equivalent zero-to-tension stress intensity range, and by suitable
choice of the exponent c
Plea
Frac
DK� ¼ DK

ð1� RÞ1�c ; R ¼ Kmin

Kmax

; ð15Þ
Walker [19] found that he could make crack growth data for R 5 0 fall into a narrow scatter-band corre-
sponding to R = 0. At positive stress ratios, c, usually takes values between 0.2 and 0.8, where c = 0.2 gives
a strong and c = 0.8 a weak dependency on R. The constant C of the crack growth law, the stress range, the
fatigue limit and the threshold stress intensity range can all be transformed to R = 0 by using Walker’s equa-
tion as shown in [20,21]. The exponent m of the crack growth law generally varies only weakly with R [22] and
is assumed to be constant in this work.
3.3. Crack growth measurements

Crack growth measurements obtained from the literature [23,24] have been reanalysed in order to verify the
crack growth law given by Eq. (13). Both studies consider the growth of short cracks in the near-threshold
regime.

Fig. 5 shows crack growth measurements carried out by Breat et al. [23] on A508 steel specimens. The objec-
tive of this investigation was to compare the crack growth behaviour of long cracks, initially 13–16 mm, with
the behaviour of short cracks, initially 0.3–0.5 mm. The short crack measurements were performed on four
point bending specimens. For long crack measurements, compact tension specimens were used. The crack prop-
agation tests were carried out at R = 0.1. The specimens with long cracks were subjected to a nominal stress
range well below that of specimens with short cracks. In both cases, the crack growth rates were measured
se cite this article in press as: Fjeldstad A et al., Simulation of fatigue crack growth in components with ..., Eng
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for increasing DK levels at a constant load level. Fig. 5a clearly shows that short cracks grow at a significantly
higher rate than long cracks when rates are compared on the basis of DK. Tentative reasons for this state of
affairs are:

• A short crack remains open during a larger part of the load cycle than a long crack [25].
• DK is no longer characterising the crack tip stress and strain field because the plastic zone is in the order of

the crack length [26,27].

In Fig. 5b, the same data have been plotted against the equivalent stress intensity factor DKeq [see Eq. (11)].
The short and long crack measurements collapse into one line, which is well described by the solid line,
obtained from Eq. (4).

Fig. 6a shows crack growth data for the aluminium alloy 6082-T6. The crack growth measurements have
been presented by Mann [24] and were carried out at a stress ratio of R = 0.1. According to Borrego et al. [28],
the long crack stress intensity threshold of AA6082-T6 is given by DKth(R = 0.1) = 2.08 MPa

ffiffiffiffi
m
p

. The stress
concentration factor at the starter notch was Kt = 5.7 [24]. Potential drop measurements were carried out to
determine the crack depth, a. The stress intensity factor range, DK, was calculated by using an asymptotic
Fig. 6. Crack growth rates in AA6082-T6 [24] as a function of (a) DK and (b) DKeq.
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solution presented in [4]. The crack growth measurements of the aluminium alloy were carried out by increas-
ing the applied load until a crack had been initiated. The initial crack depth was measured to be approximately
16 lm. Subsequently, the load was reduced stepwise until the crack had reached a depth of approximately
0.5 mm. The load was then kept constant. By applying DKeq to the crack growth data in Fig. 6a, one obtains
the plot shown in Fig. 6b. The (uncorrected) short crack growth data in the range DK = 1 � 2 MPa

ffiffiffiffi
m
p

are
seen to be shifted to DKeq = 2.0 � 2.3 MPa

ffiffiffiffi
m
p

, which is in good agreement with the long crack stress intensity
threshold due to Borrego et al. [28].

To judge from the preceding investigations, the crack growth law given by Eq. (13) is a robust and simple
crack growth model.
4. Verification of fatigue life predictions

Wormsen et al. [1] showed that the K solutions [6,7] implemented in the finite-element post-processor are in
good overall agreement with numerical calculations and solutions found in the literature [29,30]. Based on the
conclusions drawn in [1], it is reasonable to assume that the finite-element post-processor yields accurate fati-
gue life predictions. However, fatigue life predictions may contain errors from other sources than the numer-
ically calculated DK values, such as too large crack growth increments when a crack is growing (i) close to a
free surface, or (ii) in a gradient stress field.

Life predictions reported in [31,32] have been reanalysed by using Paris’ law, see Eq. (3). The mechanical
properties presented in Table 1 will be used throughout this Section.

Dai et al. [31] simulated the growth of near-surface cracks located in a semi-infinite body subjected to a
remote uniform stress range of DS = 500 MPa. The embedded crack grows until it reaches the surface and
continues its growth as a surface crack until the fracture toughness, KIc, is attained. The calculation of K is
based on the eigenstrain procedure [33]. This allows the crack to evolve freely. Hence, the transition from
an embedded crack to a surface crack may be modelled in detail. As described in [1], a simpler approach
has been implemented in the finite-element post-processor. The crack unfolds to a surface crack, once the
embedded crack has reached the surface, see Fig. 7. Presented in Table 2 are fatigue life predictions from
Dai et al. [31] along with results from the finite-element post-processor. The predicted fatigue lives are consis-
tently on the safe side of those reported in [31], with an observed maximum difference of less than 12%. The
predicted number of cycles until breakthrough are in good overall agreement. Thus, the deviation between the
Table 1
Mechanical properties of the investigated steel

Fracture toughness KIc = 150 MPa
ffiffiffiffi
m
p

Coefficient in Paris’ law C = 1.0 Æ 10�11 [MPa,m]
Exponent in Paris’ law m = 3

2aia

2ci

2c

Free surface

Initial crack

L

Fig. 7. Sketch of a near surface crack and how it unfolds to a surface crack.

Please cite this article in press as: Fjeldstad A et al., Simulation of fatigue crack growth in components with ..., Eng
Fract Mech (2007), doi:10.1016/j.engfracmech.2007.04.006



Table 2
Fatigue life predictions presented by Dai et al. [31] and obtained by using P • FAT

Initial crack geometry [mm]a Cycles until breakthrough, n1 Cycles after breakthrough, n2 Total cycles until failure, nf = n1 + n2

ai ci L Dai et al. P • FAT Dai et al. P • FAT Dai et al. P • FAT

1 1 2 8867 8931 14034 11257 22901 20188
1 2 2 3801 4653 12363 11227 16164 15880
2 2 4 3283 3327 8136 6950 11419 10277

a See Fig. 7.
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two lifetimes can be attributed to the surface crack growth. The difference in the predicted number of cycles
after breakthrough is mainly due to the assumption that the embedded crack spontaneously unfolds to a sur-
face crack, cf. Fig. 7.

Fjeldstad et al. [32] simulated the influence of a gradient stress field on the fatigue life using the asymptotic
solution by Wormsen et al. [4]. A surface crack located at the root of a semi-circular edge notch
(d = q = 20 mm) in a semi-infinite plate subjected to uniaxial tension DS = 100 MPa perpendicular to the sym-
metry plane of the notch was considered. The cracked configuration is shown in Fig. 8a. The initial crack is
characterised by its depth ai and its surface length 2ci, cf. Fig. 8b. According to finite element analysis, the
stress concentration factor Kt = 3.1 for the notched configuration. In Table 3, results obtained from the
finite-element post-processor are presented along with results based on the work in [32]. Again, lifetime pre-
dictions from the finite-element post-processor are conservative, with a maximum difference of less than 20%.
The difference in fatigue life is here mainly due to the different methods for obtaining DK. It is found that the
crack aspect ratio a/c in the present analysis is generally beneath that of the analysis described in [32]. A smal-
ler aspect ratio leads to a higher K, which results in a more rapid crack growth, and thus, a shorter fatigue life.
Finding the cause of the slightly different behaviour is however outside the scope of this paper.
c

a

d=

A

A

Section A-A

S

a b

Fig. 8. Schematic drawings of a surface crack emanating from a notch with root radius q = 20 mm: (a) three-dimensional view and
(b) two-dimensional view of the cracked section A–A.

Table 3
Fatigue life predictions of the component shown in Fig. 8 based on Fjeldstad et al. [32] and obtained by the finite-element post-processor

ai [mm] af [mm] Fatigue life

Fjeldstad et al. P • FAT

0.2 200 506780 412963
0.2 20 330260 295800
0.02 20 885150 854129

Here, ai/ci = 1 has been used.
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5. Defects

The fatigue lifetime depends on material defects, e.g., porosity and non-metallic inclusions, which form as a
natural part of the manufacturing processes. The volume fraction of inclusions depends directly on the oxygen
and sulphur content of the steel.

Due to the small volume of steel that can be examined by conventional inspection methods, the number and
size of defects in a large volume have to be estimated by statistical analysis. A description of the different
inspection methods, such as non-destructive testing (e.g. ultrasonic, radiographic, eddy-current) and optical
microscopy, are given in Ref. [34]. Ultrasonic inspection is nowadays used for the inspection of defects, whose
size is greater than approximately 200 lm. The major advantage of this method is that a rather ‘large’ volume
can be inspected. However, in most cases the initial defect size at the failure site is below the detection limit of
the ultrasonic inspection method. By using techniques based on surface analysis and optical microscopy, one
could detect defects as small as, typically 3 lm. The drawback of this method is that only a small area can be
inspected, typically 1 mm2–15 mm2. To obtain a sufficient accuracy in the extrapolation from a small area to a
large area, the number and size of defects should be counted and measured in several separate control regions.

In the following, methods for the prediction of the size of fatigue critical defects based on the statistics of
extremes will be presented.
5.1. Defect distributions

The reliability and performance of metallic components are greatly affected by the size of defects contained
in the most highly stressed volume. With improvements in steel-making, the amount and size of defects are
being progressively reduced. The likely size of the largest defect within a cast of steel is an important indicator
of the quality of the cast. It is of interest both to the manufacturer, for reasons of process control, and to the
user, who may wish to use the information on defects to undertake defect-tolerant design and safety assess-
ment of components. Because defects are small and are mostly inside the material, they are difficult to detect
and measure. Observations using automated optical microscopy can, however, be made on polished plane
regions (control areas), and the maximum defect size in a real component must be obtained by prediction
based on some statistical analysis. There are two different approaches based on the statistics of extremes
for estimating the sizes of large defects in a large volume from those of a small volume. The first approach,
called the block maximum method, is based on the generalised extreme value distribution [35]. In this method,
only the size of the largest defect in each of the k control areas is measured. The second approach is the peak

over threshold method. Here, all defects with sizes above a certain high threshold are considered. The over-
shoot of the defect size above the threshold is fitted to a generalised Pareto distribution [35]. Both methods
allow the data on defect sizes in the small control regions to be used for prediction of the maximum defect
size in a large volume of steel. And they avoid difficulties in measuring small defects, particularly from a re-
solution point of view.
5.1.1. Block maximum method

For the block maximum method, the total inspection area is divided into k equally sized, polished control
areas, each of size A0. The three-dimensional size distribution of defects can be estimated from the two-dimen-
sional size distribution by using a stereological approximation as shown in [36,37]. Hence, in the following a
control region of volume V0 is considered. For each of the k control regions, all the defects above the detection
limit would need to be measured, to decide which is the largest, i.e., amax = max{a1, . . . ,ai}. The result of the
block maximum method is a set of k observations of maximum defect sizes, amax1, . . . ,amaxk. The generalised
extreme value (GEV) distribution is fitted to these data. The GEV distribution for a controll region of volume,
V0, is given by
Plea
Frac
GðamaxÞ ¼ Pr½Amax 6 amax� ¼ exp � 1þ n0
amax � a�0

a0

� �� ��1=n0
( )

; ð16Þ
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where a0 > 0 denotes the scale parameter, a�0 the location parameter and n 0 the shape parameter. The location
parameter, a�0, is the exp(�1) � 36.8% quantile of the generalised extreme value distribution and is often called
the characteristic largest defect size in volume V0. The GEV distribution combines the Gumbel (Type I,
n 0 = 0), Fréchet (Type II, n 0 > 0) and the reversed Weibull (Type III, n 0 < 0) distributions into a single distri-
bution. The remarkable feature of the generalised extreme value distribution is that Eq. (16) is the only pos-
sible limit for the distribution of the maximum defect size [35].

The Gumbel, Fréchet and reversed Weibull, have distinctly different forms of tail behaviour. When n 0 < 0,
i.e., for the reversed Weibull distribution, its upper end-point amaxþ ¼ a�0 � a0=n

0. Thus, the probability of find-
ing defects Pamax+ is zero. The Gumbel (n 0 = 0) and Fréchet (n 0 > 0) distributions are unlimited upwards.

Consider a homogeneously stressed volume, V0, subjected to an (equivalent) stress amplitude ra. The small-
est defect initiating failure in V0 is denoted by acrit. For long fatigue lives close to the fatigue limit, acrit can be
estimated by means of the Kitagawa-Takahashi model [11], cf. Eq. (5), as
Fig. 9.
the int

Plea
Frac
acrit ¼ a0
rA

ra

� �2

� 1

" #
; ð17Þ
where the intrinsic crack length, a 0, is given by Eq. (6). If the largest defect within V0 exceeds acrit, then V0 will
fail. This is the same as stating that the applied stress ra is above the fatigue limit (random variable), rA, for
the volume element V0. Hence,
Pr½Amax P acrit� ¼ 1� GðacritÞ ¼ Pr½ra P rA�: ð18Þ
In Fig. 9, a Kitagawa–Takahashi diagram is shown together with a probability density curve of the maximum
defect size. The critical defect density, z1, is defined as the expected number of defects per unit volume of the
material that yields a fatigue limit (random variable) rA 6 ra. The shaded area in Fig. 9 is equal to the prob-
ability that at least one defect has a size greater than acrit. The probability of failure under homogeneous stress
is given by
P f ;V 0
¼ Pr½Amax P acrit� ¼ Pr½ra P rA� ¼ z1V 0: ð19Þ
From Fig. 9 it can be seen that the expected number of critical defects decreases with decreasing stress level.
Clearly, this has a large effect on the probability of failure. A similar shift could arise from uncertainty in the
Kitagawa–Takahashi model. Also a small reduction in maximum defect size by increasing the steel cleanliness,
[M
Pa

]

Illustration of the block maximum method for estimating the fatigue failure probability of a homogeneously stressed volume due to
eraction between the defect size distribution and the applied loading.
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which shifts the density curve to the left, has a similar, large effect. According to Eqs. (19) and (16), the prob-
ability of survival, P s;V 0

¼ 1� P f ;V 0
, is given by
Fig. 10
Gumb

Plea
Frac
P s;V 0
¼ 1� z1V 0 ¼ Pr½Amax 6 acrit� ¼ exp � 1þ n0

acrit � a�0
a0

� �� ��1=n0
( )

: ð20Þ
For an arbitrary volume, V, under homogeneous stress, the probability of survival of the whole volume is
equal to the product of the probabilities of survival of all the volume elements. Since, the number of volume
elements is V/V0, one obtains
P s;V ¼ P V =V 0
s;V 0
¼ exp � 1þ n0

acrit � a�0
a0

� �� ��1=n0 V
V 0

( )
: ð21Þ
Fig. 10 shows the probability of survival versus the applied stress assuming the maximum defect size to be
Gumbel distributed. A homogeneously stressed bearing steel [38] with an intrinsic fatigue limit rA = 550 MPa
and a 0 = 9.5 lm is considered. From the figure, it is seen that Eq. (21) takes the size of the specimen into
account.

When the state of stress is inhomogeneous, it is appropriate to divide the component, whose overall volume
is V, into a large number of small volume elements, DVi, each with a nearly constant (equivalent) stress ampli-
tude, rai. Under inhomogeneous stress, acrit will depend on the location x = [x,y,z]T of the volume element.
Thus, the probability of survival of the ith element is given by
P s;DV i ¼ exp � 1þ n0
acritðxÞ � a�0

a0

� �� ��1=n0 DV i

V 0

( )
: ð22Þ
Again, the probability of survival of the component equals the product of the probabilities of survival of all
the volume elements, i.e.,
P s;V ¼ exp �
XV =DV

i¼1

1þ n0
acritðxÞ � a�0

a0

� �� ��1=n0 DV i

V 0

( )
: ð23Þ
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As the volume of each individual element tends to zero, the overall probability of survival becomes
Plea
Frac
P s;V ¼ exp �
Z

V
1þ n0

acritðxÞ � a�0
a0

� �� ��1=n0
dV
V 0

( )
: ð24Þ
This equation can either be solved by means of numerical integration or by ‘drawing’ defect sizes from the
generalised extreme value distribution [see Eq. (16)].

5.1.2. Peak over threshold method
For the block maximum method, all the defects above the detection limit would need to be measured to

decide which is the largest. The rest of the data are then discarded. This can be a wasteful process that sets
aside valuable data. In contrast, for the peak over threshold method, all defects above a certain size are mea-
sured, giving more data to the parameter estimation of the defect size distribution. The peak over threshold
method was applied to defects in clean steels for the first time by Shi et al. [39,40].

For the peak over threshold method, either a single inspection volume or k sub-volumes are chosen for
counting and measuring defects larger than a sufficiently high threshold ath. The result is a set of i observa-
tions, a1, . . . ,ai. The statistical analysis is made on the excesses of these sizes over the threshold, that is on
the values ai � ath. A generalised Pareto distribution is given by [35]
HðaÞ ¼ Pr½A 6 ajA > ath� ¼ 1� 1þ n0
a� ath

~a0

� �� ��1=n0

; ð25Þ
is fitted to these excesses. The scale parameter ão is given by [35]
~a0 ¼ a0 þ n0ðath � a�0Þ; ð26Þ

where a0, a�0 and n 0 coincide with the parameters of the associated generalised extreme value distribution for
block maxima, see Eq. (16). The range of a � ath is 0 < a � ath <1 if n 0 P 0 and 0 < a � ath < � ã0/n 0 if
n 0 < 0. When n 0 = 0, the maximum defect size follows a Gumbel distribution [37]. For n 0 > 0, the maximum
defect size follows a Fr�echet distribution and for n 0 < 0, a reversed Weibull distribution [37].

The expected number of defects with sizes greater than ath in the inspection volume V0 is assumed to be
Poisson distributed with mean z0(ath)V0, where z0(ath) is the expected number of defects of size greater than
ath per unit volume. The expected number of critical defects in V0 is Poisson distributed with mean [37]
z1V 0 ¼ z0ðathÞV 0Pr½A P acritjA > ath�: ð27Þ

The homogeneously stressed volume, V0, will survive only if all defects have a size smaller than acrit, i.e.,
z1V0 = 0. Hence, from the Poisson distribution,
P s;V 0
¼ Pr½A 6 acrit� ¼ Pr½z1V 0 ¼ 0� ¼ exp �z0ðathÞV 0Pr½A P acritjA > ath�f g; ð28Þ
and from Eq. (25), one obtains
P s;V 0
¼ exp �z0ðathÞV 0 1þ n0

acrit � ath

~a0

� �� ��1=n0
( )

: ð29Þ
If z0(ath) = 1/V0 and ath ¼ a�0, the above equation becomes identical to Eq. (20). It is this fact that connects the
peak over threshold method and the block maximum method.

6. A simplified procedure for determining the life-controlling defect

When performing a Monte Carlo simulation for obtaining the fatigue life distribution of a component, one
must generally perform a crack growth analysis of all defects located in each one of the nominally equal com-
ponents. Since a fatigue crack growth calculation is a computer intensive task, it would be of interest to see
whether it is possible to directly identify the life-controlling defect from the stress field and the initial crack
growth rate. If this is possible, one could greatly reduce the simulation time. A crude simplified defect selection
procedure has been implemented in the finite-element post-processor. This procedure is presented below.
se cite this article in press as: Fjeldstad A et al., Simulation of fatigue crack growth in components with ..., Eng
t Mech (2007), doi:10.1016/j.engfracmech.2007.04.006



A. Fjeldstad et al. / Engineering Fracture Mechanics xxx (2007) xxx–xxx 15

ARTICLE IN PRESS
Non-propagating defects are removed from the component by means of the Kitagawa–Takahashi dia-
gram [11]. The remaining defects are sorted based on their initial crack growth rate. In order to determine
the life-controlling defect, the stress field in the proximity of the defect must be taken into account. This is
done by using a crude correction of the initial crack growth rate with respect to the stress gradient acting on
the crack surface. The method is described in Ref. [32]. Here, the fatigue life of cracked specimens subjected
to a gradient stress field is compared with the fatigue life of cracked specimens subjected to a homogeneous
stress field.

To see how well the defect selection procedure works, a double-edge-notched-tension plate subjected to a
nominal stress range DS = 450 MPa at R = 0 has been considered. The investigated configuration is shown in
Figs. 11a and 12. The largest notch is semi-circular with a radius q = 20 mm and a stress concentration factor
Kt = 3.5. The smallest notch is U-shaped with a radius q = 2 mm and depth d = 7 mm. The stress concentra-
tion factor for the U-shaped notch is Kt = 4.8. The notched configuration is an interesting example due to the
two different notch geometries which both suit as potential locations for the life controlling defect. The mate-
rial parameters used are given in Table 4.

Fig. 11a shows the locations of the potential life-controlling defects contained in one component. The num-
ber of critical defects is clearly highest in the proximity of the semi-circular notch, while only a few defects are
located near the U-notch. This occurs since the semi-circular notch has a larger highly stressed volume than
the U-notch. In order to validate the defect selection procedure, crack growth calculations have been per-
formed for all the defects shown in Fig. 11a. Fig. 11b shows the a priori ranking of the fatigue critical defects
due to the selection procedure against the a posteriori ranking obtained by means of crack growth calcula-
tions. The figure clearly shows that the defect selection procedure manages to identify the life controlling
defect, i.e., the defect that gives the shortest life. However, one can not rule out the possibility that a somewhat
less severe defect will be chosen occasionally.
Table 4
Material parameters for a high strength steel [38]

Coefficient in crack growth law C(R = 0) = 2.08 Æ 10�14 [MPa,m]
Exponent in crack growth law m = 4.8
Threshold stress intensity factor range DKth(R = 0) = 4.4 MPa

ffiffiffiffi
m
p

Fatigue limit rA(R = 0) = 550 MPa
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Fig. 11. (a) Potential life-controlling defects in one component, and (b) the a posteriori ranking of the life-controlling defects versus the a
priori ranking from P • FAT.
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Fig. 12 shows the location of the life-controlling defect in 500 components. As can be seen, most of these
defects are located in the highly stressed volume of the semi-circular notch, while only a few are located near
the more highly stressed U-notch.
7. Simulations

7.1. Geometry

Two different configurations have been investigated: (a) a smooth tension plate and (b) a double-edge-
notched tension plate. Both configurations have the volume V = 6.9 Æ 106 mm3 and are subjected to the
net-section stress amplitude, Sa,net = 320 MPa at R = 0. The specific numerical data employed in the present
calculations are given in Table 4.

The first configuration is a smooth plate of width w, height h and thickness t, as shown in Fig. 13a. The
double-edge-notched tension plate is shown in Fig. 13b. The notch is semicircular with radius q = w/7.
According to FEA, the elastic stress concentration factor Kt = r1,max/S = 3.1 for the notched plate.

One thousand simulations have been carried out for each of the configurations under the assumption that
the defect size is Gumbel or Fréchet distributed. The number of crack-like defects in each finite element is
‘drawn’ from a Poisson distribution. The initial defect locations are given by a uniform distribution [1].
7.2. Results

The different ways of modelling the defect size distributions are separately used to estimate the fatigue limit
distribution and the fatigue life distribution of the two investigated configurations. In Table 5, the distribution
parameters are presented along with mean and standard deviation values of the size of the life-controlling
defect, fatigue limit and fatigue life. Beretta and Murakami [41] found that the distribution functions of inher-
h h

ww

ρ

ρthickness t thickness t d=

SSSSa b

Fig. 13. Specimens considered. (a) A smooth tension plate and (b) a double-edge-notched tension plate.
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Table 5
Mean values and standard deviations of the simulated life-controlling defect size, fatigue limit and fatigue life

Distribution Parameters Defect size [lm] Fatigue limit [MPa] Fatigue life [k cycles]

Amax� a�0
[lm]

a0

[lm]
n0 Smooth mean

(std.a)
Notched mean
(std.a)

Smooth mean
(std.a)

Notched mean
(std.a)

Smooth mean
(std.a)

Notched mean
(std.a)

Gumbel 20 2 0 38.9 (2.6) 23.0 (3.1) 244 (6.3) 148 (8.0) 110 (11) 4.9 (1.4)
Fr�echet 20 0 11.4 46.2 (5.6) 23.2 (3.9) 228 (11) 148 (8.1) 86 (13) 4.9 (1.5)

a std: Standard deviation.
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ent material inhomogeneities (graphite flakes or nodules, inclusions) have a shape ratio, a0=a�0, typically less
than 0.5. Under the assumption that the defect size is Gumbel distributed, a shape ratio a0=a�0 ¼ 0:1 has been
used in the simulations, cf. Table 5.

Size distributions for the life-controlling defects are shown in Fig. 14. Fig. 14a shows the defects size dis-
tribution under the assumption that the defect size follows a Gumbel distribution and Fig. 14b shows the asso-
ciated plot when the defects are ‘drawn’ from a Fr�echet distribution. The mean value and the standard
deviation of the life-controlling defect size are given in Table 5. As can be seen, the life-controlling defect
in the smooth plate is larger under a Fréchet assumption than under a Gumbel assumption. This occurs since
the Fréchet distribution has a heavier upper tail than the Gumbel distribution. Furthermore, the size of the
life-controlling defect is much smaller in the notched configuration compared to the smooth plate due to
the smaller highly stressed volume. From Fig. 14 and Table 5, it can be seen that the type of the defect dis-
tribution has nearly no influence on the size of the life-controlling defect in the notched plate.

The size distributions of the life-controlling defect shown in Fig. 14 have been converted into fatigue limit
distributions by using the Kitagawa–Takahashi diagram. The resulting fatigue limit data have been plotted in
a Weibull probability chart in Fig. 15. The dashed lines are drawn by using a three-parameter Weibull distri-
bution. The three-parameter (cumulative) Weibull distribution is given by
a

Fig. 14
follow

Plea
Frac
Pr½rA 6 ra� ¼ 1� exp � ra � r�A0

r0

� �br
" #

; ð30Þ
where r0 denotes the scale parameter, r�A0 the location parameter and br the shape parameter. The parameters
are given in Table 6 and have been estimated using the maximum likelihood method [35]. Since the simulated
data follow the dashed lines rather well, it can be accepted that the fatigue limit for both configurations and
defect size distributions are well described by the Weibull distribution. From Fig. 15 and Table 5 it can be seen
b

. Simulated life-controlling defect sizes in the two investigated configurations [see Fig. 13] under the assumption that the defect size
s (a) a Gumbel distribution and (b) a Fréchet distribution.
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Fig. 15. Fatigue limit distribution for the two investigated configurations [see Fig. 13] under the assumption that the defect size follows
(a) a Gumbel distribution and (b) a Fréchet distribution.

Table 6
Weibull distribution parameters of the simulated fatigue limit [Fig. 15] and fatigue life [Fig. 16]

Distribution Amax � Parameters Fatigue limit Fatigue life

a�0 [lm] a0 [lm] n0 r�A0 [MPa] r0 [MPa] br n�0 n0 bn

Gumbel Smooth 20 2 0 42 204 38.6 588330 551945 5.3
Notched 20 2 0 123 27 3.3 10018 43429 2.9

Fréchet Smooth 20 0 11.4 39 194 22.5 244470 664680 5.3
Notched 20 0 11.4 120 31 3.7 10208 43539 2.8
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that the fatigue limit distribution for the notched plate is nearly unaffected by the type of the defect size dis-
tribution, as could be expected from Fig. 14.

Fig. 16 shows the fatigue life distribution for the two investigated configurations for Sa,net = 320 MPa. The
simulated data are again plotted in a Weibull probability chart. The dashed lines are drawn by using the three-
parameter Weibull distribution:
Fig. 16. Fatigue life distribution for the two investigated configurations [see Fig. 13] under the assumption that the defect size follows (a) a
Gumbel distribution and (b) a Fréchet distribution.
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Plea
Frac
Pr½N 6 n� ¼ 1� exp � n� n�0
n0

� �bn
" #

: ð31Þ
Here, n0 denotes the scale parameter, n�0 the location parameter and bn the shape parameter. The parameters
are given in Table 6. It can be seen from Fig. 16 that the simulated data are well described by the Weibull
distribution. Fig. 16 and Table 6 show that the fatigue life for the notched plate is nearly unaffected by the
choice of the defect size distribution.

8. Conclusions

The probability of component fatigue failure can be estimated from an extreme value distribution for large
defects and the stress distribution within the component. The fatigue life distribution of a component is
obtained by performing crack growth simulations for a large number of randomly distributed defects. The
simulations are carried out by using a proposed short crack growth model. An analysis of short and long
crack data demonstrated that the short crack model describes the crack growth data very well. Fatigue life
predictions have been compared with predictions presented by Dai et al. [31] and Fjeldstad et al. [32]. The
fatigue life predictions have been found to be in good agreement with the latter investigations. Further, it
has been shown that the presented procedure takes into account the influence of the stress distribution as well
as the size of a component on the probability of component fatigue failure. The method can also estimate the
reduction in the probability of fatigue failure due to improvements in steel cleanliness and by careful compo-
nent design.

Simulations of two configurations have been performed. Their fatigue limit and fatigue life distributions
have separately been obtained, and found to be well described by a three-parameter Weibull distribution.
For the notched configuration, it was found that the fatigue limit and fatigue life were nearly unaffected by
the choice of the defect size distribution.
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A reanalysis of Frost’s classical fatigue tests on self-arresting cracks at notches
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Abstract

In this paper, a short crack growth model is presented and used for predicting the arrest of cracks growing in
stress gradient fields. The crack growth model makes use of an effective stress which can be interpreted as the
stress that must be applied to the corresponding smooth semi-infinite cracked plate to obtain the same value of
the stress intensity factor as for the considered notched configuration. The short crack growth model has been
used for predicting the conditions, under which crack initiation, crack arrest and failure are expected to occur.
These predictions have been compared with experimentally obtained data for notched specimens of mild steel. The
predictions are found to be in good agreement with the experimental data.
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NOTATION

a crack depth
a′ crack depth at transition between

shallow and deep crack asymptotes
a0 intrinsic crack depth
C coefficient of crack growth law
d notch depth
F0 geometry factor for a crack emanating

from a smooth surface
K stress intensity factor
∆Kth threshold stress intensity range
∆Keq equivalent stress intensity range
Kt gross stress concentration factor = σmax/σ∞

m exponent of crack growth law
ρ notch root radius
σA intrinsic fatigue limit
σ∞ remote gross stress
σ̄ effective stress

1 Introduction

In the late fifties, Frost [1] carried out a celebrated series
of fatigue tests on notched specimens of mild steel. He
noticed that cracks, which initiated at the root of the
notch, either continued to grow to failure or arrested
at some depth below the notch. Thus, in agreement
with later observations by Kitagawa and Takahashi [2]
on smooth specimens, cracks were consistently observed
in specimens, where the notch strss amplitude exceeds
the ordinary, ‘intrinsic’ fatigue limit, σA. However, in
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severely notched specimens, Frost observed that fatigue
cracks were arrested and became ‘non-propagating’, when
the applied stress amplitude fell below some critical level.
By plotting the fatigue limit of a smooth specimen with
a (short) surface crack against the depth of the crack,
Kitagawa and Takahashi [2] found the fatigue limit to
be a steadily decreasing function of the depth, with the
intrinsic fatigue limit given by the short crack asymp-
tote. The results by Kitagawa and Takahashi are in
good qualitative agreement with a fracture mechanics
model by El Haddad et al. [3] for a through-crack in
a homogeneous stress field. According to El Haddad et
al., the long crack asymptote is given by the threshold
for crack growth, ∆Kth.

In an attempt to understand the mechanisms behind
Frost’s observations, Smith and Miller [4]used ∆Kth to
predict the critical level, below which a fatigue crack
becomes non-propagating. This gave acceptable agree-
ment for relatively deep cracks (a > 1.3 mm) inves-
tigated by Frost. However, for smaller cracks, with a
depth approaching the intrinsic crack depth, the direct
use of ∆Kth would overpredict the critical level. More-
over, since fatigue crack growth was not modelled by
Smith and Miller, they could not explicitly treat the
transition from initial crack growth to crack arrest.

In [5], the present authors generalised El Haddad’s
model to cover the case of a crack of arbitrary shape in
an inhomogeneous stress field, e.g., a semi-elliptic crack
at the root of a notch. In conjunction with the fatigue-
crack-growth law by Klesnil and Lukas [6], the gener-
alised model was found to agree well with the growth of
short (and long) surface cracks observed in a steel and
in an aluminium alloy. In the following it will be shown
that the short-crack-growth model of [5] is able to model
the transition from initial crack growth to crack arrest.
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Predictions of crack initiations and crack arrest will be
compared with the results from the classical fatigue tests
by Frost [1].

2 Modelling the arrest of fatigue cracks

2.1 A model for the growth of short fatigue
cracks

The use of stress intensity factors was extended to fa-
tigue problems by Paris and Erdogan [7], who suggested
a power-law relationship between the crack growth rate
da/dn and the stress intensity range ∆K. Klesnil and
Lukáš [6] suggested the following equation to extend
Paris’ law into the near-threshold region:

da

dn
= C(∆Km − ∆Km

th). (1)

C and m are material parameters, and ∆Kth is the
threshold stress intensity range. For a crack in a ho-
mogeneous, normal stress field, σ, the stress intensity
factor may be expressed in terms of the crack depth, a,
and the geometry, F0, as

K = F0σ
√

πa. (2)

A compilation of fatigue tests by Kitagawa and Taka-
hashi [2] clearly shows that the fatigue limit of a cracked
solid can be determined by means of the threshold of
the stress intensity range, ∆Kth, for long cracks only.
Thus, for short cracks, the fatigue limit asymptotically
approaches the ordinary fatigue limit, ∆σA = 2σA, as
determined by means of a smooth specimen. Both the
long and the short crack fatigue limits are asymptoti-
cally satisfied by an equation proposed by El Haddad et
al. [3] for F0 = 1, and generalised by Härkeg̊ard [8] to
an arbitrary geometry factor F0, viz.

∆σ =
∆Kth

F0

√

π(a + a0)
=

∆σA
√

1 + a/a0

. (3)

The characteristic crack length, a0, which signifies the
transition between short cracks, a < a0, and long cracks,
a > a0, is defined by

a0 =
1

π

(

∆Kth

F0∆σA

)2

. (4)

One may interpret a0 as an ‘intrinsic’ crack length, which
should be added to the length of the real crack to yield
an ‘equivalent’ crack length.

Based on the observation [9, 10] that short cracks
grow faster than long cracks at a given stress inten-
sity level, El Haddad et al. [3] introduced an equiva-
lent stress intensity range that accounts for the elevated
crack growth rate of short cracks, viz.

∆Keq = F0∆σ
√

π(a + a0) (5)

Strictly speaking, equations (3) and (5) are only valid for
a crack growing in a homogeneous stress field. It would
therefore be of great interest to extend the theory by El
Haddad et al. to handle crack growth in inhomogeneous
stress fields. This can be done by replacing the homo-
geneous stress range ∆σ with an effective stress range,
∆σ̄. This is defined as the stress range that must be
applied to the corresponding smooth semi-infinite plate
to obtain the same stress intensity range as that of the
crack at the root of the notch, cf. Fig. 1. The effective
stress range is defined as

∆σ̄ =
∆K

F0

√
πa

. (6)

For a shallow edge through-crack, F0 = 1.122 [11],
and for a semi-elliptic surface crack with aspect ratio
a/c = 1, the geometry factor at the deepest point of the
crack front has the value F0 = 0.663 [12].

The preceding equations explicitly depend on the
characteristic crack length, a0, which, in its turn, de-
pends on the crack geometry factor, F0. The latter will
not be constant, if the crack shape changes. This incon-
venience can be avoided by substituting F 2

0 a0 and F 2
0 a

from equations (6) and (4), respectively, into equation
(5). After some rearrangement, one obtains

∆Keq = ∆Kth

[

(

∆K

∆Kth

)2

+

(

∆σ̄

∆σA

)2
]1/2

. (7)

By replacing ∆K in equation (1) by the equivalent stress
intensity range of equation (7), one obtains a crack-
growth law that accounts for the growth of a short crack
in an inhomogeneous stress field, viz.

da

dn
= C∆Km

th





{

(

∆K

∆Kth

)2

+

(

∆σ̄

∆σA

)2
}m/2

− 1



 .

(8)
This equation predicts a finite crack-growth rate as soon
as ∆σ̄ > ∆σA, even for a crack of vanishing depth.
Using equation (8), Fjeldstad et al. [5] were able to
unify da/dn-data for long and short crack in a low-alloy
steel [13] and in an aluminium alloy [14].

2.2 Crack arrest at notches

The stress field decreases rapidly ahead of a notch and
may cause a decreasing crack growth rate for a propagat-
ing crack. Fig. 2 shows the normalised equivalent stress
intensity factor, ∆Keq/∆Kth, against the normalised
crack depth, a/d, for a circumferentially notched speci-
men subject to tension-compression. The effective stress
range ∆σ̄ has been calculated as [15]

∆σ̄ = ∆σ∞

√

1 +
d

a

[

1 − exp
(

−
a

a′

)]

, (9)
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Figure 1: When subjected to the effective stress, σ̄, the edge-crack of the smooth plate (b) has the same stress intensity factor,
K, as that of the crack of the notched plate (a) subjected to the remote stress σ∞.
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Figure 2: ∆Keq/∆Kth versus a/d at three dif-
ferent stress ranges. The curves are obtained by
using ∆σA = 430 MPa and ∆Kth = 13 MPa

√

m
for R = −1.

where the transition crack depth a′ is defined by

a′ =
d

K2
t − 1

; Kt =
σmax

σ∞

. (10)

The stress intensity range, ∆K, is then found by means
of equation (6) using F0 = 1.122, i.e., assuming a cir-
cumferencial crack of constant depth. In Fig. 2, ∆Keq/∆Kth

has been presented for three different stress ranges. The
upper curve illustrates a situation, where the crack starts
to grow from the notch root and continues to grow until
final failure. The intermediate curve shows crack initia-
tion and growth, until ∆Keq falls below ∆Kth and the
crack arrests. The lower curve corresponds to a situa-
tion, where no crack is initiated.

3 Analysis of Frost’s classical fatigue test

data

3.1 Comparison of predictions with test data

The existence of crack arrest for short cracks growing
from the root of a notch has been experimentally con-
firmed by Frost [1]. The experimental data reported
in [1] will be compared with predictions from equation
(8). The mild steel specimens tested are shown in Fig.
3. The specimen in Fig. 3(a) was subjected to fully re-
versed tension-compression, while the specimen in Fig.
3(b) was subjected to rotating bending. Both speci-
mens were machined with different notch root radii in
order to obtain different Kt values. The plain tension-
compression fatigue limit of the mild steel was reported
to be ∆σA = 430 MPa [1]. According to Smith and
Miller [4], the threshold stress intensity range, ∆Kth(R =
−1), for the mild steel considered is 13 MPa

√
m. Based
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Figure 4: Fatigue regimes in notched components according to the short crack growth model [equation (8)]. The experimental
data are from cylindrical specimens of mild steel with notch depth (a) d = 5.1 mm [Fig. 3(a)] and (b) d = 1.3 mm [Fig.
3(b)] [1, 16].
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Figure 3: Cylindrical fatigue test specimens sub-
jected to (a) fully reversed tension-compression and
(b) rotating bending [1, 16].

on a metallographic examination, Frost [1] found that
the cracks initiated with an approximately uniform depth
around the complete periphery for both types of speci-
mens. Frost’s data [1] are presented in Fig. 4 together
with curves predicted by equation (8). The predictions
are carried out by assuming a crack of constant depth
around the complete periphery. Fig. 4 is divided into
three regions [4]: (i) one in which no crack will be
formed, (ii) one in which crack arrest will occur, and
(iii) one in which a crack will be formed and propa-
gate to failure. As can be seen, the proposed crack
growth model agrees very well with the experimental
data. Moreover, the crack growth model reveals the
change in fatigue limit of notched specimens of the same
notch depth d but different notch root radii ρ. Note that
the stress level separating the propagation and crack ar-
rest regimes is independent of the stress concentration
factor Kt above a certain value of Kt. It is clearly seen
that the threshold stress level, at which no crack arrest
will occur, is higher for the specimen with notch depth
d = 1.3 mm than for the specimen with d = 5.1 mm.

3.2 Some remarks

The peak stress level needed to form a crack at the root
of the notch is low and the degree of notch root plasticity
is therefore so small that it could be neglected.

The solid line that defines the boundary between
crack arrest and complete failure in Fig. 4 has been
obtained by neglecting the effect of notch root plastic-
ity.

The following points summarises the present Section:

• Crack arrest can be predicted by the short crack
growth model.
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• A crack emanating from the root of a notch, below
a certain stress concentration factor, will propa-
gate to failure if the stress range exceeds the fa-
tigue limit.

• Above a certain Kt value the stress level separat-
ing the propagation and crack arrest regimes are
nearly independent of the stress concentration fac-
tor.

• Although no effect of notch plasticity is taken into
account in the analysis, the crack growth predic-
tions agrees very well with Frost’s experimental
data.

4 Conclusions

A short crack growth model has been used to predict
the conditions for crack initiation, crack arrest and fail-
ure for notched cylindrical specimens of mild steel. The
crack growth model uses an effective stress, which is
interpreted as the stress that must be applied to the
corresponding semi-infinite cracked plate to obtain the
same stress intensity factor value as for the notched con-
figuration considered. These analyses show that crack
arrest is expected to occur below a certain stress range,
which depends on the notch geometry. The predictions
are found to be in good agreement with experimental
data reported by Frost [1].
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Abstract

This paper presents an approximate method based on asymptotic solutions for estimating the stress intensity factor K

for semi-elliptic surface cracks at stress concentrations. The proposed equation for estimating K makes use of the near-
notch and remote-notch solution to interpolate over the entire range from shallow to deep cracks. The near-notch solution
is obtained by means of the stress concentration factor. For cracks located in the remote stress field, K is obtained by con-
sidering the crack to be located in a smooth plate with a crack depth equal to the sum of the notch depth and the actual
crack depth. The accuracy of the predictions is assessed using numerical calculations and solutions found in the literature.
� 2006 Elsevier Ltd. All rights reserved.

Keywords: Stress intensity factor; Geometry factor; Asymptotic solution; Shallow crack; Deep crack; Notch
1. Introduction

For a real component the stress is generally decreasing from a maximum at some critical point at the sur-
face, e.g. in the case of notches or components subjected to bending or torsion. For simplicity and to ensure
conservatism, crack growth analyses are often performed assuming a homogeneous stress field based on the
maximum stress acting on the surface. This local stress approach yields acceptable results provided that the
stress decreases slowly, i.e. the stress gradient is small. However, for steep stress gradients, a crack growth
analysis based on the local stress will lead to over-conservative predictions. Since crack growth prediction
requires the stress intensity factor K to be known, it is of great practical interest to establish simple formulae
for estimating K for a semi-elliptical crack at the root of a notch.

While approximate K estimation procedures are well established for cracks emanating from a smooth sur-
face, the situation is much less satisfactory, when it comes to cracks at the root of a notch. Thus, the present
work focuses on through-cracks and semi-elliptical cracks at the root of a surface notch in a semi-infinite plate.
Systematic computational efforts over the last 50 years have lead to stress intensity factor solutions for many
0013-7944/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

A deepest point of crack front
a crack depth
a 0,a* transition crack depth between shallow and deep crack asymptotes
BEA boundary element analysis
C intersection between crack front and free surface
c half the surface crack length
D equivalent surface crack depth
d notch depth
E Young’s modulus
E2 complete elliptic integral of the second kind
F geometry factor
F0 geometry factor for a crack emanating from a smooth surface
FA geometry factor at point A
FC geometry factor at point C
F1 reference geometry factor = F 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d=a

p
FEA finite element analysis
g Green’s function
J J integral
K stress intensity factor = F r1

ffiffiffiffiffiffi
pa
p

Kt stress concentration factor = rmax/r1
w width of plane specimen
di coefficient of ith order term of ry(x)
m Poisson’s ratio
n dimensionless co-ordinate = x/a
q notch root radius
ry normal stress in y-direction
rmax maximum stress
r1 remote stress
/ angle defining location on semi-elliptical crack front
v relative stress gradient
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different crack geometries [1], but these are often restricted to a few simple stress fields. For more complex
stress fields, only few empirical solutions exist [2–4]. These are mainly given in terms of a set of empirical equa-
tions established by means of curve fitting to numerical results.

The objective of the present investigation is to present simplified solutions for the stress intensity factor K

for semi-infinite notched plates. These formulae make use of asymptotic solutions to interpolate over the
entire range from shallow to deep cracks. Although only semi-infinite notched plates have been considered,
these formulae should be equally applicable to other notched components, since the component geometry does
not markedly affect the stress intensity values for relatively shallow cracks, provided that the stress field in the
vicinity of the crack is the same [4,5]. The present paper shows that asymptotic solutions provide a useful basis
for the analysis of cracked notched solids.

2. Linear crack analysis, general equations

For an arbitrary body with a semi-elliptic surface crack of depth a under uniaxial remote tension r1 per-
pendicular to the plane of the crack, K can be written as
K ¼ F r1
ffiffiffiffiffiffi
pa
p

; ð1Þ
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where F is a dimensionless function of the geometry of the body and the crack. For a crack in the notch stress
field, the stress intensity solution is asymptotically the same as for a surface crack in a smooth solid, except
that the remote stress is being amplified by the stress concentration factor Kt = rmax/r1 (see Fig. 1). Thus,
as a! 0,
Fig. 1.
root o
K ¼ F r1
ffiffiffiffiffiffi
pa
p

¼ F 0K tr1
ffiffiffiffiffiffi
pa
p

; ð2Þ

where F0 is the geometry factor for the current surface crack emanating from a smooth surface. Well known
solutions for a surface crack in a finite plate under tension or bending have been presented by Newman and
Raju [6]. For a semi-infinite plate, the geometry factors for tension and bending coincide. For a semi-elliptic
surface crack with aspect ratio a/c (cf. Fig. 3(b)), the geometry factor at the deepest point of the crack front
A(a; 0) can be estimated as
F 0ð/ ¼ p=2; a=cÞ ¼ F A;0 ¼
1:13� 0:09 a

c

E2ða=cÞ : ð3Þ
Similarly, at the intersection between the crack front and the free surface, C(0;c), the geometry factor can be
estimated as
F 0ð/ ¼ 0; a=cÞ ¼ F C;0 ¼
1:243� 0:099 a

c

E2ða=cÞ

ffiffiffi
a
c

r
: ð4Þ
In Eqs. (3) and (4), the aspect ratio, a/c, is limited to the range from 0 to 1, where the complete elliptic integral
of the second kind, E2(a/c), can be approximated by
E2ða=cÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1:464

a
c

� �1:65
r

; 0 6 a=c 6 1: ð5Þ
For an edge through-crack, Eq. (3) reduces to
F 0 ¼ F A;0 ¼ 1:13; ð6Þ

in good agreement with the more precise solution F0 = 1.122 [1].
d

ρ
x x

y

σy

max

max

max

d da

ρ

a

ρ

1

1

-

-
y

σ
σ

σ

σa b c

Semi-infinite notched plate under uniform remote stress r1: (a) stress concentration and stress gradient, (b) through-crack at the
f a surface notch, (c) un-notched cracked plate subjected to the notch stress field ry(x).
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For a crack located in the notch stress field, the asymptotic solution for the geometry factor F becomes
F ¼ F 0K t: ð7Þ
When the crack grows beyond the notch stress field, the remote stress field dominates the stress intensity
factor, which may now be estimated by
K ¼ F 0r1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðaþ dÞ

p
; ð8Þ
where d denotes the notch depth. Identification with Eq. (1) yields
F ¼ F1 ¼ F 0

ffiffiffiffiffiffiffiffiffiffiffi
1þ d

a

r
; ð9Þ
where F1 denotes a reference geometry factor. When a/d� 1, F asymptotically approaches the constant
value
F ¼ F 0: ð10Þ

The two preceding asymptotic solutions, i.e. Eqs. (7) and (10), give the upper and lower bound values for the
geometry factor F. By using these asymptotic solutions, simple formulae can be established for the geometry
factor F of an arbitrarily sized semi-elliptic crack emanating from the root of a notch.

In the next section, geometry factors are presented for through-cracks at the root of a notch. Semi-elliptical
cracks will be treated in Section 4.

3. Through-crack at the root of a notch

The configuration considered is a notched semi-infinite plate subjected to a remote stress r1 perpendicular
to the symmetry plane of the notch. The notch is characterised by its depth d, its root radius q and its elastic
stress concentration factor Kt = rmax/r1. Along with the stress concentration comes a stress field with its larg-
est gradient at the notch root, as illustrated in Fig. 1(a). At the root of the notch, a through-crack of depth a is
located as shown in Fig. 1(b). It should be noted that F0 = 1.122 for a through-crack.

3.1. Geometry factors

Several methods are available for determining stress intensity factors [7,8]. In the following, only approxi-
mate methods using the ‘nominal’ stress field equal to the ‘local’ stress field of the crack-free specimen (in the
plane of the subsequent crack) are considered.

3.1.1. Green’s function

One of these methods is based on the solution of an edge through-crack of depth a, where the crack surfaces
are subjected to a pair of symmetrical point forces, the so-called Green function. Once the stress in the plane of
the subsequent crack and the appropriate Green function are known, determination of the geometry factor F

is reduced to a simple integration procedure.
Consider now an edge through-crack of depth a located in a smooth semi-infinite plate subjected to the

notch stress field ry(x), see Fig. 1(c). The geometry factor F can then be estimated according to
F ¼ 1

p

Z 1

0

ryðanÞ
r1

gðnÞdn; ð11Þ
where g(n) is the Green function and n = x/a. According to Hartranft and Sih [9], the Green function for a
crack of depth a subjected to a pair of symmetrical point forces in a semi-infinite plate is given by
gðnÞ ¼ 2ð1þ f ðnÞÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p ; ð12Þ

f ðnÞ ¼ ð1� n2Þð0:2945� 0:3912n2 þ 0:7685n4 � 0:9942n6 þ 0:5094n8Þ: ð13Þ
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3.1.2. Stress gradient method

Another method for estimating the F value for a shallow crack at the root of a notch [10,11] is based on
work by Benthem and Koiter [12]. For an edge-cracked semi-infinite plate subjected to a linear distribution
of stress, one obtains
F ¼ F 0ð1þ 0:609vaÞ: ð14Þ
If x denotes the distance below the surface, the relative stress gradient v is defined as (cf. Fig. 1(c))
v ¼ 1

rmax

oryðxÞ
ox

� �
x¼0

: ð15Þ
For a plate of width w subjected to pure bending, the relative stress gradient is given by
v ¼ � 2

w
: ð16Þ
Eq. (14) may be compared with the geometry factor of a single-edge-cracked plate of width w subjected to
bending [1]:
F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2w
pa tan pa

2w

q
cos pa

2w

0:923þ 0:199 1� sin
pa
2w

� �3
� �

: ð17Þ
It turns out that Eq. (14) is accurate for shallow cracks only, and that it should not be extrapolated beyond
a/w = 0.05.

If a shallow crack at the root of a notch is subjected to the same stress gradient, v, as the semi-infinite edge-
cracked plate loaded by a linear distribution of stress, the geometry factors should be asymptotically equal.
Thum et al. [13] found that the relative stress gradient at the root of a semi-elliptic surface notch of root radius
q could be well approximated by
v ¼ � 2

q
: ð18Þ
Eq. (14) then reduces to
F ¼ F 0K t 1� 1:218
a
q

� �
: ð19Þ
According to [14], the stress concentration factor for a semi-infinite notched plate subjected to tension can be
estimated by
K t ¼ 1þ 0:1

d=q
þ 0:13

d=qð Þ1:25

 !�0:5

: ð20Þ
As can be seen from Eqs. (19) and (20), the asymptotic geometry factor, F, for an edge-crack at the root of a
notch is only dependent on the ratios a/q and d/q.

3.1.3. Luká�s and Klesnil’s method

For a shallow through-crack at the root of a notch, Lukáš and Klesnil [15] presented a simple formula for
the geometry factor, viz.
F ¼ F 0K tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4:5ða=qÞ

p : ð21Þ
Again, q denotes the notch root radius. As a/q! 0, Eq. (21) simplifies to the shallow crack asymptote
F = F0Kt. Normalising Eq. (21) with respect to the geometry factor, F1, for an edge through-crack in a
smooth plate with the total crack depth a + d, cf. Eq. (9), yields
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F
F1
¼ K tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ d=aþ 4:5ða=qÞ þ 4:5ðd=qÞ
p : ð22Þ
3.2. Geometry factors based on asymptotic solutions

3.2.1. ‘Equivalent’ surface crack depth
For a through-crack located at the root of a notch, the geometry factor F is bounded by a lower and an

upper asymptote, so that 1 6 F/F0 6 Kt. Jergéus [16] and Härkegård [17] introduced an equation for F, which
asymptotically agrees with the near and remote field estimates. Thus, they suggested that the geometry factor
be written as
F ¼ F 0

ffiffiffiffi
D
a

r
; ð23Þ
where D is an ‘equivalent’ surface crack depth, which can be estimated by
D ¼ aþ d 1� exp � a
a0

� �h i
; ð24Þ
and
a0 ¼ d

K2
t � 1

: ð25Þ
The transition crack depth a 0 is defined as the crack depth at which the asymptotic Eqs. (2) and (8) for the
stress intensity factors of shallow and deep cracks, respectively, yield equal results.

For a shallow crack, i.e. a� a 0, the equivalent surface crack depth becomes
D ¼ K2
t a; ð26Þ
and, for a deep crack, i.e. a� a 0,
D ¼ aþ d: ð27Þ
Hence, Eq. (23) is in complete agreement with the asymptotic Eqs. (7) and (9).

3.2.2. Normalised geometry factors

For shallow cracks, a/d� 1, the ratio F/F1 is dominated by the stress field from the notch root, and F

approaches the shallow crack asymptote, see Eq. (7). For a through-cracked notched plate subjected to uni-
axial tension r1 (cf. Fig. 1), the ratio becomes
F
F1
¼ K tffiffiffiffiffiffiffiffiffiffi

1þ d
a

q ; ð28Þ
which simplifies to
F
F1
¼ K t

ffiffiffi
a
d

r
; ð29Þ
when a 0 � d.
For deep cracks, the geometry factor of the cracked notch will approach that of a smooth plate with a crack

depth equal to the sum of the notch depth and the actual crack depth.
A simple expression, which asymptotically agrees with the near and remote field estimates is given by
F
F1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� expð�a=a�Þ

p
; ð30Þ
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Fig. 2. Principle graph of F/F1 against the normalised crack depth a/a*: logarithmic scales.
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where a* denotes the transition crack depth between the shallow and deep crack asymptotes, defined by the
crack depth at which the two asymptotes coincide (cf. Fig. 2). Hence, a* is determined by setting Eq. (29) equal
to unity, which yields
Fig. 3.
view o
a� ¼ d

K2
t

: ð31Þ
It can be shown that Eq. (30) satisfies the asymptotic expressions for shallow and deep cracks. Eq. (30) is de-
picted in Fig. 2 as a solid line.

4. Semi-elliptic crack at the root of a surface notch

Next, a semi-elliptic crack located at the root of a semi-circular edge notch in a semi-infinite plate subjected
to uniaxial tension r1 perpendicular to the symmetry plane of the notch is considered. The cracked configu-
ration is shown in Fig. 3(a). The crack is characterised by its depth a and its surface length 2c, as shown in
Fig. 3(b).
c

a

A

C

d

A

A

Section A-A

a b

Schematic drawings of a semi-elliptic crack emanating from the notch root: (a) three-dimensional view and (b) two-dimensional
f the cracked section A–A.
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4.1. Geometry factors

4.1.1. Pommier, Sakae and Murakami

Using the body force method [18], Pommier et al. [3] have derived numerical solutions for the geometry
factor F of a semi-elliptic surface crack located in a semi-infinite plate subjected to mode I loading. The crack
aspect ratio is limited to the interval 0.5 6 a/c 6 2. Their solution is given by a set of empirical equations,
which allow the stress field of the crack-free plate to be fitted to a third-order polynomial.

For the semi-infinite plate, shown in Fig. 1, the normal stress in the y-direction varies with the x-coordinate
only. The normal stress ry(x) is approximated by the third-order polynomial [19]
ryðxÞ ¼
X3

i¼0

di � ðx=dÞi � r1; ð32Þ
where di is the coefficient of the ith order term of ry(x). If Eq. (32) were an exact representation of ry(x), then
d0 = Kt.

The empirical equations due to Pommier et al. [3] yield the geometry factor at the deepest point of the crack
front A(a; 0) (cf. Fig. 3(b))
F A ¼
X3

i¼0

di � ða=dÞi � F ið/ ¼ p=2; a=cÞ; ð33Þ
and at the intersection between the crack front and the free surface C(0; c)
F C ¼
X3

i¼0

di � ða=dÞi � F ið/ ¼ 0; a=cÞ: ð34Þ
Fi is the geometry factor corresponding to the ith order unit stress field.

4.1.2. Luká�s method for semi-elliptical cracks

Based on work by Grandt and Kullgren [20], Lukáš [21] found that Eq. (21) for a through-crack at the root
of a notch could be generalised to a semi-elliptic crack with an arbitrary aspect ratio a/c. It is only necessary to
replace F0 by the geometry factor FA,0 for the deepest point of a semi-elliptic crack emanating from a smooth
surface and having the same aspect ratio as the crack at the notch root. Thus Lukáš estimated the geometry
factor of a semi-elliptic notch crack to be
F A ¼
F A;0K tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4:5ða=qÞ
p : ð35Þ
4.2. Asymptotic solution

Based on work by Jergéus [16] and Härkegård [17], cf. Eq. (23), it is suggested that the geometry factor at
the deepest point of the crack front A(a; 0) can be written in terms of the crack depth a and the equivalent
crack depth DA as
F ð/ ¼ p=2; a=cÞ ¼ F A ¼ F A;0

ffiffiffiffiffiffiffi
DA

a

r
; ð36Þ
where FA,0 is given by Eq. (3), and DA = D according to Eq. (24). As for the through-cracked specimens, Eq.
(36) asymptotically satisfies the shallow and deep crack estimates FA,0Kt and FA,0.

Similar to the deepest point A(a; 0), the geometry factor at the surface point C(0; c) is characterised by a
shallow and a deep crack asymptote. For shallow cracks, i.e. a/d� 1, the asymptote is given by
F C ¼ F C;0K t; ð37Þ



Fig. 4. Principal graph of FA/FA,0 and FC/FC,0 versus the normalised crack depth a/d.
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where FC,0 is the corresponding geometry factor of a crack in a smooth plate, which can be found by means of
Eq. (4). While the surface point C(0; c), regardless of the crack depth, is influenced by the elevated stress at the
notch root, it may not be obvious that FC asymptotically approaches a ‘deep crack’ solution. However, as the
crack grows deeper, a decreasing part of the crack front will be influenced by the notch stress field. The influ-
ence decreases until the notch depth becomes insignificant compared with the dimensions of the crack. This
can then be regarded as a semi-elliptical surface crack of depth a + d located in a smooth plate. Hence, as
the crack grows deeper, the ratio FC/FC,0 asymptotically approaches unity. Based on numerical results, it will
be shown in Section 5 that the geometry factor FC converges more slowly towards its ‘deep crack’ solution
than FA. Thus, a suitable expression for the equivalent notch depth turns out to be
DC ¼ aþ 4d 1� exp � a
4a0

� �h i
: ð38Þ
With this equivalent notch depth, the geometry factor at the surface point can be estimated as
F ð/ ¼ 0; a=cÞ ¼ F C ¼ F C;0

ffiffiffiffiffiffi
DC

a

r
: ð39Þ
Fig. 4 shows a principle graph of the normalised geometry factors FA/FA,0 and FC/FC,0 versus the normalised
crack depth a/d. As can be seen, both FA and FC satisfy the asymptotic solutions for shallow and deep cracks.

5. Numerical analysis

5.1. Through-cracked specimens

5.1.1. Finite element modelling and evaluation procedures

Linear elastic analyses of the finite element models were performed using the finite element program ABA-
QUS [22]. Fig. 5(a) illustrates a typical finite element mesh employed in the present work. The local mesh in
the crack tip region was identical for all models, with 16 elements around the crack tip. Eight-noded isopara-
metric second-order plane strain elements with reduced integration (2 · 2 Gauss points; element type CPE8R
in ABAQUS [22]) were applied. The finite element models contained 1100–1600 elements. The applied mesh
assured sufficient accuracy in all cases investigated. In these analyses, Poisson’s ratio was chosen to be m = 0.3,
and small displacement theory was assumed throughout.

5.1.2. Geometry factors

The through-crack configuration considered is shown in Fig. 1. The notch is assumed to be semi-circular,
i.e. d/q = 1. According to Eq. (20), and verified by FEA, the stress concentration factor Kt = 3.1 for the



w

a b

Fig. 5. (a) Finite element mesh for a through-cracked notched specimen (d/q = 1 and q/w = 0.1) with a magnified view of the notch root
region. The mesh contains 4804 nodes, forming 1527 elements. (b) Boundary element mesh of a semi-circular crack (a/c = 1). The mesh
contains 403 nodes forming 374 elements.
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notched configuration. Subsequently, the different solutions for the geometry factor presented in Section 3 are
compared.

Geometry factors, F, have been plotted against the normalised crack depth, a/d, in Fig. 6. Fig. 6 shows the
FEA graph of F against a/d together with curves based on asymptotic solutions and Green function. For very
shallow cracks, say a/d < 0.001, the geometry factor assumes the constant value F0Kt. As a/d increases, F

decreases in a regular fashion. As the crack grows beyond the notch root stress field, the remote stress field
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Fig. 6. Geometry factors due to FEA for an edge through-cracked notched plate (d/q = 1, Fig. 1(b)) with Kt = 3.1, together with results
obtained from the solutions based on Jergéus and Härkegård, Green’s function and Benthem and Koiter.
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becomes dominating, and F asymptotically approaches the constant value F0. The expression for the solid line
is given by Eq. (23). As can be seen, the solution is in excellent agreement with the finite element results. The
result obtained with Green function is drawn as a dashed curve, the asymptote of which agrees with those pre-
dicted by Eq. (23). For intermediate crack depths, the Green function yields values of the geometry factor
exceeding those obtained with Eq. (23) by less than 13%.

In Fig. 6, Eq. (19) based on work by Benthem and Koiter [12] is shown as a dash-dotted line. For a/d < 0.1,
F values generated by the Benthem and Koiter formula are slightly to conservative. For somewhat deeper edge
cracks, the Benthem and Koiter values of F fall below the FEA results, since only the tangent of the stress field
at the notch root is used. The difference between the FEA results and Eq. (19) is due to the uncertainties
related to the determination of the relative stress gradient v. The v value from FEA is found to be slightly
greater than Eq. (18). Hence, geometry factors from Eq. (19) exceeds those obtained from FEA.

5.1.3. Normalised geometry factors

In Fig. 7 the finite element F values have been normalised with respect to F1 for an edge through-crack in a
semi-infinite smooth plate with the total crack depth D = a + d. The abscissa is the normalised crack depth
a/a*. The solid line is given by Eq. (30). The finite element results have been obtained from three notched
plates (d = 0.1w) under remote tension with d/q = 0.27, 0.93 and 1.96. According to Eq. (20), and verified
by FEA, the stress concentration factors for these specimens are Kt = 2, 3 and 4, respectively. As can be seen
from Fig. 7, Eq. (30) is in excellent agreement with the finite element results. For comparison, the results
obtained from Eq. (22) according to Lukáš and Klesnil [15] have been depicted as dashed lines in the same
figure. For a/a* < 1 the two solutions nearly coincide. For deeper cracks, Eq. (22) gives non-conservative
values for the geometry factor. This occurs since Eq. (22) does not fulfil the deep crack asymptotic behaviour.

5.2. Semi-elliptically cracked specimens

5.2.1. Boundary element modelling and evaluation procedures

Fig. 5(b) shows the boundary element mesh of a semi-elliptical crack employed in the present work. The
local mesh of the semi-elliptical cracks was similar for all a/c ratios analysed and consisted of 42 elements
around the crack front. Four-noded first-order elements were applied.

Elastic analyses of the boundary element models were performed using the boundary element program
FRANC3D [23–26]. In this program, the stress intensity factor is evaluated at discrete points at the crack front
according to a displacement based method given by Chan et al. [27]. Furthermore, plane strain conditions are
assumed all along the crack front.
Fig. 7. Geometry factors as functions of the normalised crack depth a/a* for through-cracked notched plates subjected to remote uniaxial
tension (Fig. 1(b)).
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5.2.2. Geometry factors

The cracked configuration considered is shown in Fig. 3 and has been analysed under remote uniaxial stress
r1. The notch is assumed to be semi-circular, i.e. d/q = 1. The stress concentration factor Kt = 3.2 at the cen-
ter of the notch. It should be noted that the stress in the three-dimensional case varies from the surface to the
center.

In Figs. 8 and 9, the geometry factors FA and FC have been plotted against the normalised crack depth a/d.
The geometry factors have been obtained by means of the asymptotic solutions for semi-elliptic cracks (Eqs.
(36) and (39)), the solution by Pommier et al. [3] and by Lukáš method (Eq. (35)). Along with these solutions,
finite element results presented by Lin and Smith [28] and boundary element results are shown.
a b

Fig. 8. Geometry factors FA for the deepest point A(a; 0) due to (a) FEA results [28] and (b) BEA results for a semi-elliptically cracked
notched plate (Kt = 3.2, d/q = 1) (Fig. 3(a)).

a b

Fig. 9. Geometry factors FC for the surface point C(0;c) due to (a) FEA [28] and (b) BEA results for a semi-elliptically cracked notched
plate (Kt = 3.2, d/q = 1) (Fig. 3(a)).
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5.2.3. Geometry factors for the deepest point at the crack front

Fig. 8(a) shows the geometry factor FA for the deepest point, A(a; 0), for the aspect ratios a/c = 0.2, 0.4, 0.6,
0.8 and 1.0. The expression for the solid lines is given by Eq. (36). As can be seen, the solution is in good over-
all agreement with the finite element results presented by Lin and Smith [28].

Fig. 8(b) shows the geometry factors, FA, generated by means of the asymptotic solutions, Eq. (36), Pom-
mier et al. and Lukáš method for crack aspect ratios a/c = 0.5 and 1.0 together with boundary element results.
As can be seen, Eq. (36) is in good overall agreement with the boundary element results. For a/d > 1, the
boundary element results fall slightly below the FA values from Eq. (36).

For a/d 6 1, FA values generated by Lukáš solution, i.e. Eq. (35), follow the asymptotic solution. For some-
what deeper cracks, Lukáš solution falls below the deep crack asymptote.

The solution due to Pommier et al. is shown in Fig. 8(b) as a dashed curve and is discontinued at a/d = 0.25,
since this is the maximum range, where the uncracked stress field can be fitted to a third-order polynomial. For
a/c = 0.5, the FA values generated from the Pommier solution fall below those of Eq. (36) even for very shal-
low cracks. This occurs since the FA,0 value due to Pommier for a/c = 0.5 falls below FA,0 due to Newman–
Raju. For deeper cracks, values based on Pommier’s solution fall slightly below BEA data.

5.2.4. Geometry factors for the crack front surface point

In the previous subsection, results of FA were presented. This subsection presents geometry factors, FC, for
the crack front surface point C(0;c).

Finite element results in Fig. 9(a) are from Ref. [28]. The solid lines are given by Eq. (39). For shallow
cracks, say a/d < 0.1, the FEA results exceed the shallow crack asymptote, except for a/c = 0.2. FEA results
tend to fall below those of Eq. (39), but within acceptable limits.

In Fig. 9(b), geometry factors, FC, from Eq. (39) and the Pommier et al. solutions are shown for crack
aspect ratios a/c = 0.5 and 1.0 along with boundary element results. As can be seen, Eq. (39) is in good overall
agreement with the boundary element results. For crack depths a/d < 0.01 and a/c= 0.5 and 1.0, the FC values
generated by the Pommier solution exceed the asymptotic values. This occurs since the Newman–Raju FC,0

value is below the corresponding Pommier value.
In the present paper, the proposed asymptotic method has been used in conjunction with Newman and

Raju’s [6] solution for a surface crack in a finite plate under tension. As can be seen in Fig. 9(b), the New-
man–Raju FC = KtFC,0 value is below the corresponding Pommier value. If the Pommier FC,0 value is used,
a better agreement is achieved between the present approach and the FE-based results of [28]. In addition,
Lin and Smith [28] notes that their FC values might not be sufficiently accurate for shallow and deep cracks
due to the finite element mesh used.

6. Conclusions

Notched specimens with through-cracks or semi-elliptic cracks emanating from the root of the notch have
been analysed by means of the finite element and boundary element methods. Simplified solutions for the
stress intensity factor K have been presented. These solutions use the stress field ahead of the crack-free notch
as the boundary load of an un-notched cracked specimen.

For the through-crack specimens, the solution by Jergéus [16] and Härkegård [17], Eq. (23), is found to be
in excellent agreement with the finite element results. The geometry factors generated by means of Green func-
tion exceed the FEA values by less than 13%. For a/d < 0.2, geometry factors from Eq. (19) slightly exceeds
those obtained from FEA.

A simple equation has been proposed for the geometry factor of a through-crack specimen based on a ref-
erence solution F1. The equation satisfies the shallow and deep crack asymptotes. This solution has been com-
pared with a solution presented by Lukáš and Klesnil [15]. It is found that the two solutions are in good
agreement for shallow cracks.

For a semi-elliptic crack at the root of a notch, it has been shown that the geometry factors FA and FC are
both bounded by a shallow and a deep crack asymptote. The solution by Jergéus and Härkegård for edge
through-cracks has been extended to semi-elliptically cracked specimens. Their solution is found to be in good
agreement with finite element and boundary element results for both FA and FC. For the deepest point A(a; 0)
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of a shallow crack (a/d� 1) it has been found that the proposed solution is in good agreement with solutions
by Pommier et al. [3] and Lukáš [21]. The solution by Pommier et al. for FC was also found to be in good
agreement with the proposed solution for shallow cracks.
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Abstract

This paper presents an approximate method based on asymptotic solutions for estimating the stress intensity factor K

for semi-elliptic surface cracks at stress concentrations. The proposed equations make use of a reference solution to inter-
polate over the entire range from shallow to deep cracks. The reference solution is obtained by considering the current
crack emanating from the associated specimen with a sharp notch. It is shown that the proposed formulae satisfy the shal-
low and deep crack asymptotes. The asymptotic solutions are applied to a T-joint with a fillet-weld-shaped transition. The
accuracy of the predictions is assessed using numerical calculations.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Stress intensity factor; Geometry factor; Asymptotic solution; Shallow crack; Deep crack; V-notch; T-joint
1. Introduction

A potential failure mode of welded components is fatigue crack propagation of shallow surface cracks
from the weld toe. These cracks, which are roughly semi-elliptic, often grow in stress fields that decrease rap-
idly, i.e., the stress gradient is high. Hence, a crack growth analysis assuming a homogeneous stress field
equal to the maximum stress acting at the surface may lead to overconservative predictions of the lifetime
of the component [1]. Since crack growth predictions require the stress intensity factor K to be known, it
is of great practical interest to establish simple formulae for estimating K for a semi-elliptical crack at the
root of the weld toe.
0013-7944/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

A deepest point of crack front
a crack depth
a* transition crack depth between shallow and deep crack asymptotes
C intersection between crack front and free surface
c half the surface crack length
d notch depth
E Young’s modulus
E2 complete elliptic integral of the second kind
F(a/c) geometry factor for a surface crack
F0(a/c) geometry factor for a surface crack emanating from a smooth surface
F1(a/c) reference geometry factor for a sharply notched specimen
FP(a/c) geometry factor for a surface crack in a finite plate
FEA finite element analysis
g weight function
K stress intensity factor ¼ F r1

ffiffiffiffiffiffi
pa
p

Kt stress concentration factor = rmax/r1
k0 parameter of the singular stress field
wb semi-width of brace
wc width of chord
C(v) gamma function ¼

R1
0 expð�tÞtv�1 dt

k � 1 exponent of singular stress field
m Poisson’s ratio
n dimensionless co-ordinate =x/a
q notch root radius
ry normal stress in y-direction
rmax maximum stress at crack initiation point
r1 remote stress
/ angle defining location at semi-elliptical crack front
x notch opening angle
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While K estimation procedures are well established for cracks emanating from a smooth surface, the situ-
ation is much less satisfactory, when it comes to cracks at the root of a notch. Wormsen et al. [2] presented an
approximate method based on asymptotic solutions for estimating the stress intensity factor K for a semi-ellip-
tical crack at the root of a semi-circular notch. Based on numerical calculations and solutions found in the
literature, the accuracy of the approximate method was found to be very good. In the present paper, the
asymptotic method presented in [2] is extended to cover cracked V-notched specimens.

During the last few years, empirical stress intensity factors for more complex stress fields have been estab-
lished. Bowness and Lee [3] presented equations for estimating K for semi-elliptical surface cracks in T-butt
joints. The proposed solutions include parameters like crack depth and aspect ratio, attachment footprint
and weld angle. Using the body force method [4], Pommier et al. [5] derived a set of emprical equations for esti-
mating the stress intensity factor for a semi-elliptical surface crack located in a semi-infinite plate subjected to
mode I loading. Their solution uses the stress field ahead of the crack-free notch as the boundary load on the
crack surfaces. The ‘notch stress intensity factor’ was first introduced by Verreman and Nie [6,7] and further
developed by Lazzarin et al. [8–12]. It represents the magnitude of the singular stress field ahead of a V-notch.

The objective of the current investigation is to present simplified solutions for the stress intensity factor K

for cracked V-notched specimens. These formulae make use of a reference solution to interpolate over the
entire range from shallow to deep cracks. This investigation is restricted to K at the deepest point of the
semi-elliptical crack front.
Please cite this article in press as: Fjeldstad A et al., Approximate stress intensity factors for cracked ..., Eng Fract Mech
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2. V-notches without cracks

The configuration considered is a V-notched plate as shown in Fig. 1. The V-notch is characterised by its
depth d, its root radius q, its opening angle x and its elastic stress concentration factor Kt = rmax/r1. The
V-notched plate is loaded by a remote stress r1 perpendicular to the symmetry plane of the notch.

Based on the theory of linear elasticity, Williams [13] was able to show that the asymptotic normal stress in
the y-direction, see Fig. 1a, is given by
Fig. 1.
subject

Plea
(200
lim
x!0

ryðxÞ ¼
Kffiffiffiffiffiffiffiffi
2px
p ; ð1Þ
as q/d! 0 and x! 0.
Williams [13] further demonstrated that singularites less severe than 1=

ffiffiffi
x
p

arise when the notch opens, i.e.,
x > 0. In this case, the near-stress-field depends on the notch opening angle x and may be expressed as [14]
lim
x!0

ryðxÞ ¼
~Kffiffiffiffiffiffi

2p
p

x1�k
; ð2Þ
where eK denotes a generalised stress intensity factor. In the limit when x! 0, Eq. (2) reduces to Eq. (1) and eK
coincides with the standard stress intensity factor K. The eigenvalue ki, which determines the order of the stress
singularity, is given by
ki sin 2aþ sin 2kia ¼ 0; i ¼ 1; 2; . . . ; ð3Þ

where a = p-x/2. As x goes from 0 (cracked body) to p (smooth body), k varies from 1/2 to 1.

Based on dimensional considerations, it should be possible to rewrite Eq. (2) as [7,15,16]
lim
x!0

ryðxÞ
r1
¼ k0

x
d

� �k�1

; ð4Þ
where k0 is a dimensionless parameter, which in the case of a semi-infinite cracked V-notched specimen de-
pends only on the opening angle x.
cba

Semi-infinite V-notched plate under remote uniform stress r1; (a) sharp notch and stress field, (b) unnotched cracked plate
ed to the singular notch stress field ry(x), (c) through-crack at the root of a blunt notch.

se cite this article in press as: Fjeldstad A et al., Approximate stress intensity factors for cracked ..., Eng Fract Mech
7), doi:10.1016/j.engfracmech.2007.04.028



4 A. Fjeldstad et al. / Engineering Fracture Mechanics xxx (2007) xxx–xxx

ARTICLE IN PRESS
In the following section, stress intensity factors are presented for arbitrarily shaped surface cracks at the
root of a notch.
3. V-notches with cracks

As stated in the introduction, cracks frequently initiate at the root of a notch and propagate perpendicu-
larly to the free surface under the influence of a fatigue loading. In order to carry out calculations of fatigue
crack growth, it is necessary to know the stress intensity factors for such cracks.

For an arbitrary body with a surface crack of depth a under remote uniaxial tension r1 perpendicular to
the plane of the crack, K can be written as
Plea
(200
K ¼ F ð/; a=cÞr1
ffiffiffiffiffiffi
pa
p

; ð5Þ
where F(/;a/c) is a dimensionless function of the geometry of the body and the crack. / is an angle defining
the location at a semi-elliptical crack front, see Fig. 2. For a surface crack emanating from a smooth surface,
i.e., x = p and d = 0, F(/;a/c) = F0(/;a/c).

Solutions for a semi-elliptical surface crack in a finite plate under tension and bending have been presented
by Newman and Raju [17]. For a semi-elliptic surface crack with aspect ratio a/c, cf. Fig. 2, the geometry fac-
tor of the deepest point of the crack front A(a; 0) can be estimated as
F 0ð/ ¼ p=2; a=cÞ ¼ F A;0 ¼
1:13� 0:09 a

c

E2ða=cÞ ; ð6Þ
where the complete elliptic integral of the second kind, E2(a/c), can be approximated by
E2ða=cÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1:464

a
c

� �1:65
r

; 0 6 a=c 6 1: ð7Þ
For an edge through-crack, i.e., a/c = 0, Eq. (6) reduces to F0 = FA,0 = 1.13, in good agreement with the more
precise solution F0 = 1.122 [18]. It should be noted that F0 = 1.122 is used in this paper.

In the following sections, / is set to / = p/2, i.e., the deepest point of the crack front. The geometry factor
for an arbitrary surface crack is in the following denoted by F(a/c), while the geometry factors for an edge
through-crack and a semi-elliptical crack are denoted by F and FA, respectively.
3.1. Stress intensity factors for cracks in regular stress fields

For a shallow crack in the notch stress field, the stress intensity solution is asymptotically the same as for a
surface crack in a smooth solid, except that the remote stress is being amplified by the stress concentration
factor Kt = rmax/r1, see Fig. 1c. Thus, as a! 0,
K ¼ F ða=cÞr1
ffiffiffiffiffiffi
pa
p

¼ F 0ða=cÞK tr1
ffiffiffiffiffiffi
pa
p

: ð8Þ
c

a

A

C

Fig. 2. Two-dimensional view of a semi-elliptical crack.
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Neuber [19] found that the stress concentration factor Kt for a semi-infinite V-notched plate under uniform
tension is nearly independent of the opening angle x in the range 0 6 x < p/2. This is in agreement of the
observation by Nowell et al. [20] that a V-notch with x < p/2 may be regarded as a U-shaped notch with
the same depth d and root radius q.

When the crack grows beyond the notch stress field, the remote stress field dominates the stress intensity
factor, which may be estimated by
Plea
(200
K ¼ F 0ða=cÞr1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðaþ dÞ

p
: ð9Þ
Identification with Eq. (5) yields
F ða=cÞ ¼ F 0ða=cÞ
ffiffiffiffiffiffiffiffiffiffiffi
1þ d

a

r
: ð10Þ
3.2. Stress intensity factors for cracks in singular stress fields

The overall geometry is now as shown in Fig. 1a, where the notch is considered sharp, i.e., q/d! 0, and
there is a crack of depth a emanating from the root of the notch. The geometry factor of the sharply V-notched
specimen is denoted by F1.

Before introducing stress intensity factor solutions for cracks in singular stress fields, it would be convenient
to present the weight function method used for deriving a closed form solution of K.

3.2.1. Weight function

When solutions for F(a/c) are not available, the so called weight function may give the geometry factor for
an arbitrary crack. A crack of depth a, whose surfaces are subjected to a pair of opposite point forces is con-
sidered. Once the stress in the plane of the subsequent crack and the appropriate weight function are known,
determination of F(a/c) is reduced to a simple integration procedure.

Consider now a crack of depth a located in a smooth plate subjected to the notch stress field ry(x), cf.
Fig. 1b. The geometry factor F1 can then be estimated according to
F1ða=cÞ ¼ 1

p

Z 1

0

ryðanÞ
r1

gðn; a=cÞdn; ð11Þ
where g(n,a/c) is the weight function and n = x/a.

3.2.2. Weight function for edge through-cracks

For a shallow crack, a/d� 1, Eq. (11) is used as a starting-point. According to Hartranft and Shih [21], the
weight function for a crack of depth a, whose surfaces are subjected to a pair of opposite point forces in a
semi-infinite plate is given by
gðnÞ ¼ 2ð1þ f ðnÞÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p ; ð12Þ

f ðnÞ ¼ ð1� n2Þð0:2945� 0:3912n2 þ 0:7685n4 � 0:9942n6 þ 0:5094n8Þ: ð13Þ
As was concluded earlier, a sharply notched configuration gives rise to a stress singularity, cf. Eq. (4). This
singular term dominates when a/d� 1, and thus, r1k0(x/d)k�1 is used as the stress acting on the crack sur-
face. The geometry factor F1 is then obtained from Eq. (11) as
F1 ¼
2

p
k0

Z 1

0

1þ f ðnÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p an
d

� �k�1

dn: ð14Þ
In order to obtain a closed form expression for F1, Eq. (14) can be rewritten as
F1 ¼
2

p
k0~g0

Z 1

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p an
d

� �k�1

dn; ð15Þ
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where the factor 1 + f(n) has been replaced by the constant value ~g0. The value of ~g0 will obviously depend on
the stress distribution ry, which, in the case of a singular stress field, depends on the notch opening angle x.
The constant ~g0 can be expressed as
Table
Values

k
g0

k0

l0
F 0

F 0/k0

The pa

Plea
(200
~g0 ¼ F 0g0 ¼ 1:122g0: ð16Þ
From Table 1 can be seen that g0 is only weakly dependent on x, with a maximum difference of less than 5%.
Solving the integral in Eq. (15) and introducing Eq. (16) give
F1 ¼ F 0g0k0l0

a
d

� �k�1

; ð17Þ
where
l0 ¼
1ffiffiffi
p
p Cðk=2Þ

Cðk=2þ 1=2Þ ; ð18Þ
and C(Æ) denotes the gamma function. Eq. (17) can now be rewritten as
F1 ¼ F 0g0k0l0

a
d

� �k�1

¼ F 0F 0
a
d

� �k�1

; ð19Þ
where F 0 is given by
F 0 ¼ g0k0l0: ð20Þ
3.2.3. Weight function for semi-elliptical cracks

According to Shen and Glinka [23], the weight function for the deepest point of a semi-elliptical surface
crack is given by
gðnÞ ¼ 2ð1þ f ðn; a=cÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� nÞ

p ; ð21Þ
where f(n,a/c) can be found in Ref. [23]. By introducing Eq. (21) into Eq. (11), the reference geometry factor,
FA,1, for a semi-elliptical crack located in a singular stress field can be calculated as
F A;1 ¼
2

p
k0

Z 1

0

1þ f ðn; a=cÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� nÞ

p an
d

� �k�1

dn: ð22Þ
As in the previous subsection, the expression given in Eq. (22) can be rewritten in order to simplify the inte-
gration procedure.
F A;1 ¼
2

p
k0~gA;0

Z 1

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� nÞ

p an
d

� �k�1

dn; ð23Þ
1
of k, g0, k0, l0, F 0 and F 0/k0 for a V-shaped through-cracked notch with q/d = 0 and a/d! 0

Notch opening angle x

0� 20� 40� 60� 80� 90� 100� 120� 140� 160� 180�

0.5 0.501 0.504 0.512 0.530 0.544 0.563 0.616 0.697 0.819 1
1.048 1.048 1.047 1.046 1.044 1.042 1.040 1.034 1.025 1.014 1
0.572 0.578 0.586 0.611 0.660 0.670 0.744 0.863 1.018 1.148 1
1.669 1.666 1.659 1.639 1.595 1.563 1.522 1.421 1.295 1.151 1
1 1.009 1.020 1.047 1.098 1.133 1.176 1.268 1.351 1.340 1
1.749 1.744 1.740 1.714 1.665 1.629 1.582 1.469 1.328 1.167 1

rameters k0 and F 0 are from Ref. [22].
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Fig. 3. (a) gA,0 as a function of the notch opening angle x for different values of a/c, (b) g0l0 and gA,0lA,0 for a/c = 0 plotted against the
notch opening angle, x.
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where the factor 1 + f(n,a/c) is replaced by the constant value ~gA;0, which depends on both the opening angle x
and the aspect ratio a/c. ~gA;0 can further be expressed as
Plea
(200
~gA;0 ¼ F A;0gA;0: ð24Þ
Fig. 3a shows gA,0 against x for different values of a/c.
Solving the integral in Eq. (23) and introducing Eq. (24) give
F A;1 ¼ F A;0gA;0k0lA;0

a
d

� �k�1

; ð25Þ
where
lA;0 ¼
ffiffiffi
2

p

r
CðkÞ

Cðkþ 1=2Þ : ð26Þ
Finally, FA,1 can be presented on the same form as Eq. (19):
F A;1 ¼ F A;0gA;0k0lA;0

a
d

� �k�1

¼ F A;0F 0A
a
d

� �k�1

: ð27Þ
Fig. 3b shows gA,0lA,0 and g0l0 versus the opening angle x. The product gA,0lA,0 is obtained using the aspect
ratio a/c = 0. From the figure it can be seen that the weight function solution for semi-elliptic cracks presented
by Shen and Glinka [23] is in good agreement with the edge through-crack solution by Hartranft and Shih [21],
with a maximum difference of less than 4%.

4. Geometry factors

4.1. Reference geometry factor F1(a/c)

In the present Section, simple expressions for the geometry factors of through-cracks and semi-elliptical
cracks emanating from the root of a notch are presented. These expressions have been based on the reference
geometry factor F1(a/c) for a sharply cracked V-notched specimen.

In Fig. 4, the geometry factor F1(a/c) has been drawn as a dashed curve. For a shallow crack, i.e., a/d! 0,
the singular notch stress field tends to dominate as expressed by Eq. (27). Hence, F1(a/c) asymptotically tends
to infinity. As the normalised crack depth a/d increases, F1(a/c) continuously decreases. For sufficiently deep
cracks, F1(a/c) asymptotically approaches the geometry factor F0(a/c) for the current surface crack emanating
from a smooth surface.
se cite this article in press as: Fjeldstad A et al., Approximate stress intensity factors for cracked ..., Eng Fract Mech
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4.2. Geometry factors for cracks in regular stress fields

Geometry factors, F(a/c), have been plotted against the normalised crack depth a/d in Fig. 4 for three
notched plates. For shallow cracks, the geometry factor assumes the constant value F0(a/c)Kt. As a increases,
F(a/c) continuously decreases and asymptotically approaches F1(a/c). As the crack grows beyond the notch
root stress field, the remote stress becomes dominating and both approach the constant value F0(a/c).

4.3. Normalised geometry factors

Normalising the shallow crack geometry factor solution obtained from Eq. (8) with respect to the geometry
factor, F1(a/c), for a surface crack emanating from the root of a sharp notch, i.e., q/d! 0, cf. Eq. (27),
yields
Plea
(200
F ða=cÞ
F1ða=cÞ ¼

K t

F 0ða=cÞ
a
d

� �1�k
: ð28Þ
As the crack grows deeper, the above F1(a/c) becomes less sensitive to the singular stress field. Hence, the
above fraction asymptotically approaches
F ða=cÞ
F1ða=cÞ ¼ 1; ð29Þ
as shown in Fig. 5a for the notched plate in Fig. 1c. In addition, normalising the crack depth a with respect to
a transition crack depth a* yields a single curve, as shown in Fig. 5b. Wormsen et al. [2] introduced an equa-
tion for the normalised geometry factor F/F1, which asymptotically agrees with the near and remote field esti-
mates. They suggested that the normalised geometry factor could be written as
F ða=cÞ
F1ða=cÞ ¼ 1� exp � a

a�

� �h i1�k
; ð30Þ
where a* is defined as the crack depth at which the shallow and deep crack asymptotes given by Eqs. (28) and
(29), intersect. Hence, a* is determined by
a� ¼ d
F 0ða=cÞ

K t

� � 1
1�k

: ð31Þ
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For a notch with x < p/2 and q� d, the stress concentration factor is approximately given by
Plea
(200
K t � 2

ffiffiffi
d
q

s
ð32Þ
With F 0 = 1, see Table 1, the transition crack depth a* for an edge through-crack becomes
a� � q
4
: ð33Þ
An alternative equation that satisfies the shallow and deep crack asymptotes is given by
F ða=cÞ
F1ða=cÞ ¼ 1þ a�

a

� �b
" #k�1

b

; ð34Þ
where a* is given by Eq. (31). It has been found that Eq. (34) gives F(a/c) values in somewhat better agreement
with numerical values over a wider range of notch opening angles x and q/d values than Eq. (30), provided
that the parameter b is chosen properly. With b = 1.35, Eqs. (30) and (34) differ by less than 3.5%.

5. T-joint configuration

The expressions for the semi-infinite V-notched specimen can be used as a basis for establishing approxi-
mate closed form solutions for the geometry factor F(a/c) for finite width T-joints (see Fig. 6). The notch
geometry for the T-joints is very similar to the V-notch geometry, both characterised by an opening angle
x and a notch root radius q. For both cases, the shallow crack asymptote is given by Eq. (8). However,
for the stress raisers shown in Fig. 6, there is no notch depth d that will ‘add’ to the crack depth, when the
crack becomes deeper. Therefore, the deep crack asymptote of the stress intensity factor is given by
K ¼ F 0

a
c

� �
r1

ffiffiffiffiffiffi
pa
p

; a� q: ð35Þ
5.1. Geometry

The accuracy of the formulae presented in Section 4.3 will now be assessed by numerical analyses of a
T-joint with a fillet-weld-shaped transition as shown in Fig. 6. The T-joint has a chord width wc and a brace
semi-width wb = 3/4wc. Its stress concentration factors have been summarised in Table 2. Both edge through-
cracked and semi-elliptically cracked specimens will be considered.

The T-joint has a weld-shaped transition as shown in Fig. 6. The transition can be described by a straight
line creating a 135� angle with the longitudinal direction of the chord. A circular arc of radius q connects the
se cite this article in press as: Fjeldstad A et al., Approximate stress intensity factors for cracked ..., Eng Fract Mech
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Fig. 6. Boundary conditions applied to the cracked specimens: (a) chord subjected to homogeneous stress, (b) chord subjected to pure
bending and, (c) close-up of the notch geometry.

Table 2
Summary of FEA based stress concentration factors for the investigated T-joint

Specimen number Normalised notch radius q/w Stress concentration factor Kt

1. Fig. 6a 0.0125 2.86
0.025 2.32
0.0625 1.84

2. Fig. 6b 0.0125 3.20
0.025 2.56
0.0625 1.98
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weld and the chord as shown in Fig. 6c. The weld leg length is set to l = 0.2wc. The weld geometry parameters
q, x and l are defined according to Tveiten et al. [24]. A surface crack of depth a emanates from the point,
where the chord enters the weld toe. The cracked T-joint was subjected to two different loading conditions,
namely tension and bending, as shown in Fig. 6a and b, respectively. Symmetry about the vertical centre-line,
i.e., x = 0, makes it sufficient to model only one half of the T-joint.

6. Geometry factors for T-joint configurations

6.1. Edge through-cracks

In Section 3, simple expressions for the geometry factor, F, for cracks emanating from the root of a V-notch
were introduced, which asymptotically agree with the shallow and deep crack asymptotes. These expressions
were based on the reference solution F1, for a sharply notched specimen, i.e., q/w! 0. Next, the expressions
for the V-notched plate will be used as a basis for estimating the geometry factor F of a cracked T-joint.

For the V-notched plate in Fig. 1, the geometry factor was given as a function of a/d. However, a charac-
teristic notch depth, d, cannot be defined for a T-joint. Instead, it is suggested that the width, w, of the cracked
part of the T-joint to be used as the characteristic length parameter. The geometry factor of the cracked
T-joint can then be obtained from Eq. (34), with the transition crack depth given by
Plea
(200
a� ¼ w
F 0

K t

� � 1
1�k

: ð36Þ
The effect of finite width is taken into account by means of the reference geometry factor F1. Hence, for deep
cracks, F1 asymptotically approaches the geometry factor for the current edge through-crack emanating from
the smooth surface of a plate of finite width w. For a single-edge-cracked plate of width w under uniform ten-
sion, the geometry factor is given in [18].
se cite this article in press as: Fjeldstad A et al., Approximate stress intensity factors for cracked ..., Eng Fract Mech
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6.2. Semi-elliptical cracks

For the semi-elliptically cracked T-joints, the geometry factor FA for the deepest point at the crack front,
A(a; 0), can be estimated by means of Eq. (27), see Fig. 2. As for the edge through-cracked specimens, the effect
of finite width is taken into account by means of the reference geometry factor FA,1. Hence, for deep surface
cracks, FA,1 asymptotically approaches the geometry factor for a surface crack in a finite plate of width w.
Solutions for surface cracks in a finite plate under tension and bending have been presented by Newman
and Raju [17], see Section 3.

The weight-function can be used to compute the reference geometry factor, F1 for a through-crack of
arbitrary depth. For a semi-elliptical crack, the weight-function is expected to yield accurate results as long
as the crack depth is small compared with the notch radius. When the crack grows and become comparable
with the root radius, the use of Eq. (6) is questionable for arbitrary notch angles since the used weight-func-
tion, see Eq. (21), is strictly speaking only valid for smooth plates. As a consequence, the accuracy of the K

approximation in the intermediate regime can be expected to be higher for through-cracks than for semi-ellip-
tical cracks. To increase the accuracy of FA,1 one could use finite element results instead of the weight-func-
tion method.

7. Numerical analysis

The observation that the geometry factor F(a/c) for various specimens can be estimated by means of Eq.
(34), if the geometry factor F1(a/c) is known, is an important aspect of the use of crack mechanics in design.
It is therefore of great interest to study the influence on F(a/c)/F1(a/c) of parameters such as crack depth a,
aspect ratio a/c, T-joint geometry, and applied loading (actual force or bending moment). The cracked spec-
imens considered are shown in Fig. 6. For each specimen, the geometry factor was evaluated for three q/w
ratios, cf. Table 2. In the following Subsections, the accuracy of Eq. (34) is assessed by using b = 1.35.

7.1. Evaluation procedures

Linear elastic plane strain analyses of the edge through-cracked specimens were performed using the finite
element program ABAQUS [25]. Eight-noded isoparametric second order plane strain elements with reduced
integration were used. Poisson’s ratio was chosen to be m = 0.3 and small displacement theory was assumed
throughout. The geometry factors, FA, for the semi-elliptically cracked specimens were obtained using a set
of empirical equations presented by Pommier et al. [5].

F(a/c) is for both edge through-cracks and semi-elliptical cracks normalised by means of the reference solu-
tion F1(a/c). Appendix A describes in detail how F1(a/c) can be obtained.

7.2. Geometry factors

7.2.1. Edge through-cracks

The cracked configurations are shown in Fig. 6. Representative finite element solutions are those of the T-
joint with a weld-shaped transition under uniform tension, i.e., the specimen shown in Fig. 6a. Finite element
geometry factors, F, have been plotted against the normalised crack depth a/w in Fig. 7a. For shallow cracks,
say a/w < 0.001, the notch stress field dominates and the geometry factor assumes the constant value F0Kt,
while F1 asymptotically tends to infinity. As the crack depth increases, F continuously decreases and asymp-
totically approaches F1. As the crack grows beyond the notch stress field, the remote stress becomes domi-
nating and F and F1 asymptotically approach the geometry factor for the current surface crack emanating
from a smooth surface in a finite plate.

In Fig. 7b, the finite element F values have been normalised with respect to F1. As can be seen, F/F1
approaches the deep crack asymptote in a similar fashion for all q/w ratios. In fact, by normalising the crack
depth a with respect to the transition crack depth a*, F/F1 reduces to a single curve as shown in Fig. 8a. The
expression for the solid curve is given by Eq. (34). As can be seen from Fig. 8a, Eq. (34) is in excellent agree-
ment with the finite element results. As shown in Fig. 8b, this is also true for the specimen in Fig. 6b.
Please cite this article in press as: Fjeldstad A et al., Approximate stress intensity factors for cracked ..., Eng Fract Mech
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Fig. 7. Geometry factors due to FEA for specimen in Fig. 6a with a through-crack emanating from the chord transition: (a) F and F1
against a/w, (b) F/F1 against a/w.

Fig. 8. F/F1 finite element results as a function of the normalised crack depth a/a* for the edge through-cracked (a) specimen in Fig. 6a,
(b) specimen in Fig. 6b.
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7.2.2. Semi-elliptical cracks

In the previous Subsection, finite element results of F/F1 for edge through-cracked specimens were pre-
sented. This subsection presents results of FA/FA,1, when the crack is semi-elliptic, cf. Fig. 2.

Numerical results in Fig. 9a are for the specimen in Fig 6a with an aspect ratio a/c = 0.5 and three (cf.
Table 2) different relative notch root radii, q/w. Initially, the geometry factor FA for the deepest point
A(a; 0) is equal to FA,0Kt. For the specimen with a sharp notch, i.e., q/w! 0, the geometry factor FA,1 tends
to infinity as a/w! 0, cf. Eq. (27) with d replaced by w. The geometry factor FA,1 is shown as a dashed line in
Fig. 9a. When a/w increases, FA and FA,1 continuously decrease.

In Fig. 9b, the geometry factors, FA, for the specimens with a finite notch root radius, i.e., q/w > 0, are nor-
malised with respect to the associated factors for a specimen with a sharp notch. Results from analyses carried
out on semi-elliptical cracks with aspect ratios a/c = 0.2 and 1 are also included. As can be seen, the ratio
FA/FA,1 asymptotically approaches the deep crack asymptote in a similar fashion for all q/w ratios. Hence,
Please cite this article in press as: Fjeldstad A et al., Approximate stress intensity factors for cracked ..., Eng Fract Mech
(2007), doi:10.1016/j.engfracmech.2007.04.028



Fig. 9. Geometry factors for the crack front A(a; 0) (Fig. 2) for specimen in Fig. 6a: (a) FA and FA,1 against a/w, (b) FA/FA,1 against a/w.

Fig. 10. FA/FA,1 results as a function of the normalised crack depth a/a* for the semi-elliptically cracked (a) specimen in Fig. 6a, (b)
specimen in Fig. 6b.
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by normalising the crack depth a with respect to the transition crack depth a*, FA/FA,1 reduces to a single
curve as shown in Fig. 10a. The expression for the solid curve is given by Eq. (34). As also can be seen from
Fig. 10b, Eq. (34) is in excellent agreement with the numerical results.
8. Conclusions

Notched specimens with through-cracks or semi-elliptical cracks emanating from the root of the notch have
been investigated. Simplified formulae for obtaining the stress intensity factor K have been presented. The pro-
posed equations for estimating K make use of a reference solution to interpolate over the entire range from
shallow to deep cracks. The reference solution is obtained by considering the current crack emanating from
the corresponding specimen with a sharp notch. The formulae satisfy the shallow and deep crack asymptotes.

An important aspect of the work has been to apply the solutions to a T-joint configurations. The aim was to
calculate K as a function of the normalised crack depth a/w. These results were used to obtain values of the
geometry factors F(a/c) and F1(a/c). Once F1(a/c) has been determined, the geometry factor, F(a/c), for spec-
Please cite this article in press as: Fjeldstad A et al., Approximate stress intensity factors for cracked ..., Eng Fract Mech
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imens with a finite notch root radius, i.e., q/w > 0, can be estimated using simplified interpolation functions
(see Section 4). Moreover, the proposed method and numerical calculations, covering different geometries
and applied loading conditions, showed excellent agreement both for edge through-cracks and semi-elliptical
cracks.

The procedure for the approximate determination of K should be a useful tool for the life assessment of
cracked V-notched specimens and T-joints subject to fatigue loading.
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Appendix A

Presented in this appendix is a set of formulae for establishing the reference geometry factor F1(a/c). In this
work, F1(a/c) is expressed by
Fig. 11
notch
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where FP(a/c) is the geometry factor for the current surface crack emanating from a smooth surface. Fig. 11
shows the geometry factor for a smooth plate, FP(a/c), along with the reference solution F1(a/c) for a sharp
notch (q = 0) and the geometry factor F(a/c) for a notched specimen with q/w > 0. The geometry factor for a
notched specimen asymptotically approaches FP(a/c), when the crack has grown beyond the notch root stress
field. FP(a/c) is used in Eq. (37) for describing the deep crack behaviour, since F1(a/c)/FP(a/c) = 1 when
a/w! 1. Hence, for deep cracks the following condition applies:
lim
a=w!1

F 0
a
c

� �
� a

w

� �k�1

þ f
a
w

� �
¼ 1: ð38Þ
In Eqs. (37) and (38), F 0(a/c) Æ (a/w)k�1 accounts for the behaviour of shallow cracks located in singular stress
fields, while f(a/w) describes the transition between shallow and deep crack behaviour.
. Principle graphs of the geometry factors for a smooth plate, FP, sharp-notched plate (q = 0), F1, and a notched plate with a finite
radius (q/w > 0), F.
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Table 3
Summary of curve fit parameters for F1(a/c)

Cracked configuration a/c F 0(a/c) Regression parameters a/w 6

b0 b1 b2 b3

Fig. 6aa 0 0.392 �0.1580 0.4690 0 0 0.9
Fig. 6ab 0.2 0.383 �0.4614 0.0356 0.0594 0.0410 0.2

0.5 0.369 �0.3729 0.0906 0.0560 0.0326 0.2
1.0 0.340 0.0988 1.4277 1.0177 0.2249 0.2

Fig. 6ba 0 0.451 �0.1510 0.8310 0.1590 0.0264 0.9
Fig. 6bb 0.2 0.441 �0.4107 0.5193 0.5529 0.1691 0.2

0.5 0.424 �0.5348 0.1251 0.2237 0.0850 0.2
1.0 0.391 �1.0548 �0.6227 �0.0543 0.0533 0.2

Here, k = 0.674 (x = 135�) for the configurations considered.
a Edge through-crack.
b Semi-elliptical crack.
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For shallow cracks, f(a/w) approaches zero and FP(a/c) assumes the constant value F0(a/c). Hence, Eq. (37)
is in total agreement with Eq. (19). Rearranging Eq. (37) gives
Plea
(200
f
a
c
;

a
w

� �
¼ F1ða=cÞ

F Pða=cÞ � F 0
a
c

� �
� a

w

� �k�1

: ð39Þ
Thus, f(a/w) is bounded between 0 and 1 � F 0(a/c). Based on numerical results, it is found that f(a/w) can be
well approximated by
f
a
w

� �
¼ 10gða=wÞ; ð40Þ
where the exponent g(a/w) is given by the polynomial
g
a
w

� �
¼ b0 þ

X3

i¼1

bi log10

a
w

� �h ii
: ð41Þ
The parameters bi (i = 0, . . . , 3) of all specimens considered have been collected in Table 3. The associated val-
ues of the factor F 0(a/c) of Eq. (39) have also been listed in Table 3. For the through-cracked specimens the
parameters have been found by means of the finite element method. The parameters for semi-elliptical cracked
specimens have been obtained from a set of empirical equations presented by Bowness and Lee [3].
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Abstract: This is the first paper of two that deal with the non-linear analysis of shallow cracks.
Simple formulae are given for estimating the J integral for a power-hardening elastic–plastic
solid. The proposed equation for estimating J makes use of the linear elastic and the fully
plastic solution to interpolate over the entire range from small- to large-scale yielding. The
elastic geometry factor is obtained by means of the stress intensity factor. In the fully plastic
formulation, the plastic geometry factors are obtained by considering a pure power-hardening
solid, which reduces at one limit to an incompressible linear elastic solid, and at the other to a
perfectly plastic solid. The solutions are given for three basic configurations: a double-edge-
cracked plate under tension and bending; a notched plate under tension with a crack at the
root of the notch; a single-edge-cracked plate under bending. Both force control and
displacement control are considered. The accuracy of the formulae is assessed using the finite
element calculations in Part 2.

Keywords: J integral, geometry factor, constraint factor, force control, displacement control,
shallow crack, notch, elastic–plastic, reference stress

1 INTRODUCTION

The non-linear finite element analysis of a mechani-
cal component is a computer-intensive task. Thus,
approximate methods for analysing non-linear
notched and cracked bodies are of great practical
interest.
Neuber’s rule [1] is one of the best-known models

for an approximate calculation of stress and strain
at the root of a notch in an elastic–plastic solid. It
has been generalized to cover creep, i.e. time-depen-
dent plasticity, by Härkegård and Sørbø [2]. Based on
finite element analysis, the accuracy of Neuber’s rule
was studied by Härkegård and Mann [3].
In the limiting case, where a sharp notch can be

regarded as a crack, the contour integral J has been
much used for the prediction of failure in pressure

vessels and piping. These are components where
the loading can be regarded as force controlled.
Another situation occurs when a crack is growing in
a component, where the loading is displacement
controlled. This is the case for components subject
to thermally induced stress. Examples are blades,
rotors, and casings in jet engines, gas and steam tur-
bines, as well as other high-temperature components
in thermal power plant and process plant. According
to Eslami and Shariyat [4], the general definition of
the primary and secondary stresses can be defined
as stresses due to force and displacement control
respectively.

While approximate J estimation procedures are
well established for long cracks under elastic–plastic
conditions [5], the situation is less satisfactory for
shallow cracks. Thus, the present work is focused on
shallow surface cracks, since these are common
flaws in many structural components. For a body
exhibiting plastic deformation, the applicability of
simplified methods to the analysis of cracked compo-
nents is of great practical interest.
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The objective of the present paper is to present
simplified solutions for the J integral of shallow
cracks in smooth and notched specimens. Formulae
have been established for several basic configura-
tions. While comprehensive theoretical and experi-
mental investigations have been carried out for a
wide range of different components under force con-
trol [6–8], structural integrity assessment of compo-
nents under displacement control is still an open
issue [9]. This paper will treat both force control
and displacement control.

2 CONTOUR INTEGRAL J

Closed-form stress and strain solutions of elastic–
plastic cracked solids are rare. By idealizing the
material behaviour as non-linear elastic, Rice [10]
was able to solve two-dimensional crack problems
exhibiting plastic deformation. Rice derived a path-
independent contour integral J , which may be esti-
mated as the sum of an elastic term and a plastic
term [11]

J ¼
ð
�

�
W dx2 � Ti

qui
qx1

ds

�
� Je þ Jp ð1Þ

The strain energy density W is given by

W ¼
ð"ij
0
�ij d"ij ‚ i‚ j ¼ 1‚ 2‚ 3 ð2Þ

In equation (1) the arc length along the integration
contour � is denoted by s, and Ti is the traction
exerted on the solid bounded by � and the crack sur-
faces. The traction vector Ti can be written as

Ti ¼ �ijnj ð3Þ

where nj is the outward unit normal to � .
The elastic component of J is related to the stress

intensity factor K as

Je ¼ K2

E0
ð4Þ

where E 0 ¼ E and E 0 ¼ E=ð1� �2Þ under plane stress
and plane strain respectively.

3 NON-LINEAR CRACK ANALYSIS:
GENERAL EQUATIONS

3.1 Approximate solutions for the J integral

Based on dimensional considerations, it should be
possible to write the path-independent contour
integral J for a body with a crack of depth a as

J ¼ g�e"ea ð5Þ

where g is a dimensionless function of the specimen
geometry and (dimensionless) material parameters. If
g is assumed to be a constant for a given geometry,
the elastically calculated J becomes

J� ¼ g��e"
�
ea ð6Þ

and the ratio of the two integrals is

J

J�
¼ �e"e
��e"

�
e

ð7Þ

where elastically calculated quantities have been
denoted by an asterisk.

If this ratio is known, it is possible to predict J by
means of a linear elastic analysis. An example of this
is given by the R6 procedure [12]. Under stress con-
trol, which is illustrated in Fig. 1, ��e ¼ �e and

J

J�
¼ "e
"�e

5 1 ð8Þ

i.e. the elastically calculated J � is on the unsafe side.
This situation is reflected in the R6 failure assessment
diagram, where K =Kc ¼

ffiffiffiffiffiffiffiffiffiffiffi
J �=Jc

p
is given by a decreas-

ing function of the applied stress. If, however, the dis-
placement or strain is controlled (see Fig. 1), "�e ¼ "e
and the ratio becomes

J

J�
¼ �e
��e

4 1 ð9Þ

The elastically calculated J � now yields a conservative
prediction of J . An intermediate situation is given by a
shallow crack at the root of a notch. Under small-
scale yielding, Neuber’s rule [3]

�e"e ¼ ��e"�e ð10Þ

can be used to predict the actual stress and strain at
the notch root from the elastically calculated values.

Fig. 1 Graphical interpretation of stress control, strain
control and Neuber’s rule
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The associated graphical solution is shown in Fig. 1.
In this case

J

J�
¼ 1 ð11Þ

For deep cracks, the J solution of the cracked notch
will approach that of stress or strain control depend-
ing on the prescribed external loading. Principle
graphs of J=J � versus normalized load [see equation
(19)] are shown in Fig. 2. The preceding solutions
can only give a qualitative idea about the actual J .
In fact, the geometry factor g is not a constant
(even for a given geometry). Based on work by
Webster and Ainsworth [13], the J integral of a
power-hardening material can be written in terms
of the equivalent nominal stress and strain as

J ¼ g

�
a

w
; n

�
�ne"nea ð12Þ

Thus, for an elastic–plastic material, which varies
from linear elastic behaviour as �ne ! 0 to power-
hardening behaviour as �ne !1, it is natural to
assume that the J integral can be calculated as the
sum of an elastic term and a plastic term according to

J ¼ Je þ Jp ¼ ge�ne"
e
neaþ gp�ne"

p
nea ð13Þ

The elastically calculated J integral now becomes

J� ¼ ge��ne"
�
nea ð14Þ

Under displacement control, i.e. "ne ¼ "�ne ¼ "ene þ "pne,
the ratio J=J � becomes

J

J�
¼ gp

ge
�ne
��ne
þ
�
1� gp

ge

��
�ne
��ne

�2
ð15Þ

while the corresponding expression under force con-
trol, i.e. �ne ¼ ��ne and "ene ¼ "�ne, yields

J

J�
¼ gp

ge
"ne
"�ne
þ 1� gp

ge
ð16Þ

Under uniaxial tension, the material is characterized
by the Ramberg–Osgood equation

"1 ¼ "e1 þ "p1 ¼
�1
E
þ A�n1 ð17Þ

Under multiaxial stress and proportional loading,

"e ¼ "ee þ "pe ¼
�e
3G
þ A�ne ð18Þ

where the equivalent stress and equivalent strain are
denoted by �e and "e respectively. Härkegård and
Sørbø [2] assumed the equivalent nominal stress to
be equal to the reference stress [13] according to

�ne ¼
Q

QL

�Y ð19Þ

whereQ denotes a generalized load (force P, moment
M , pressure p, etc.) and QL the associated limit load
of the component, which is assumed to be perfectly
plastic with yield stress �Y (QL ¼ PL for membrane
force, QL ¼ ML for bending, etc.). If u denotes the
generalized displacement associated with Q, the
limit load is defined by

QL ¼ lim
dQ=du!0

Q ð20Þ

According to equation (18), the equivalent nominal
strain may be expressed as

"ne ¼ "ene þ "pne ¼
�ne
3G
þ A�nne ð21Þ

3.2 Constraint factor

The J integral, as defined by equation (13), requires
the determination of an equivalent nominal stress
�ne. The equivalent nominal stress can be calculated
from the load and the limit load bymeans of equation
(19). Limit load analysis calculates the maximum load
that a given component made of a perfectly plastic
solid can sustain. It is further appropriate to present
the limit load solution in a non-dimensional form �
by referring it to the limit load of the net cross-
sectional area Anet. Under uniform tension, the con-
straint factor � is defined as

� ¼ PL

�YAnet

ð22Þ

By combining equations (22) and (19), the equivalent
nominal stress can be expressed as

�ne ¼
�net
�

ð23Þ

where �net ¼ P=Anet denotes the net section stress.

Fig. 2 Principle graphs of J=J � against normalized load
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Under pure bending the constraint factor � is
defined by

� ¼ 4ML

�Yl
2B

ð24Þ

where l and B are the ligament width and thickness
respectively of the specimen. Closed-form solutions
for the constraint factor are available in the literature.
Selected solutions are given below for the cracked
specimens (see Fig. 1 of Part 2 [14]) considered in
this work.

3.2.1 Double-edge-cracked tension plate

For double-edge-cracked tension specimens, of width
2w and with symmetrically located edge cracks of
depth a, Webster and Ainsworth [13] stated the
following constraint factors

Plane strain

a

w

4 0:884‚

5 0:884‚
� ¼ 2ffiffiffi

3
p

1þ ln

�
1� a=2w

1� a=w

�

1þ p
2

8>><
>>:

8>><
>>:

ð25Þ

Plane stress

a

w

4 0:286‚

5 0:286‚
� ¼

1þ 0:54
a

w
2ffiffiffi
3
p

8><
>:

8><
>: ð26Þ

3.2.2 Double-edge-notched tension plate

A pair of symmetrically located edge notches of depth
D shown in Fig. 4 in a plate of width 2w under simple
tension contains a through-thickness crack of length
a at the root of each notch. Provided that a is replaced
by D þ a the constraint factor can be found from
equations (25) and (26).

3.2.3 Single-edge-cracked bending plate

For a single-edge-cracked bending specimen with
crack depth a and width w, Webster and Ainsworth
[13] stated the following constraint factors

Plane strain

a

w

4 0:295‚

5 0:295‚
� ¼ 2ffiffiffi

3
p 1:26� 2:72

�
0:31� a

w

�2
1:261

8<
:

8<
:

ð27Þ

Plane stress

a

w
4 0:154‚ � ¼ 1:072 ð28Þ

3.2.4 Double-edge-cracked bending plate

Based on work by Green [15] and Miller [16], the con-
straint factor under plane strain bending can be
expressed as

a

w

4 0:336‚

5 0:336‚
� ¼ 2ffiffiffi

3
p 1þ 1:13095

a

w
1:38

((
ð29Þ

The constraint factor under plane stress bending is
not known, but must satisfy 1 < � < 2=

ffiffiffi
3
p

.
When the constraint factor is known for the

considered component, �ne and "ne can be calculated
from equations (19) and (21) respectively. To be able
to establish J values according to equation (13) as a
function of the applied load requires additional infor-
mation about the elastic and plastic geometry factors.
In the following sections, closed-form solutions are
given for g e and gp.

4 DOUBLE-EDGE-CRACKED PLATE
UNDER PURE TENSION

A pair of symmetrically located edge cracks of depth a
in a plate of width 2w under uniaxial tension �1 is
considered. The cracked configuration is shown in
Fig. 3.

4.1 Elastic geometry factor

The elastic geometry factor g e can be determined by
means of the stress intensity factor K . For a crack in
a solid under uniaxial tension �1 perpendicular to

Fig. 3 Double-edge-cracked plate under uniform stress �1
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the plane of the crack, K can be estimated by

K ¼ f�1
ffiffiffiffiffiffi
pa
p

ð30Þ

The stress at infinity, �1, is related to the net section
stress �net through

P ¼ �1A1 ¼ �netAnet ð31Þ

Introduction of the area ratio � ¼ Anet=A1 yields

�1 ¼ ��net ð32Þ

By combining equations (32) and (23), the stress at
infinity can be expressed as �1 ¼ ���ne, and the
stress intensity factor as

K ¼ f���ne
ffiffiffiffiffiffi
pa
p

ð33Þ

According to equations (4) and (13), the elastic com-
ponent of J is

Je ¼ K2

E0
¼ ge�ne"

e
nea ð34Þ

With "ene ¼ �ne=ð3GÞ, the elastic geometry factor g e

becomes

ge ¼ 3E

2E0ð1þ �Þ ð f��
ffiffiffi
p
p
Þ2 ð35Þ

Under plane strain conditions, equation (35) reduces
to

ge ¼ 3ð1� �Þ
2

ðf��
ffiffiffi
p
p
Þ2 ð36Þ

and under plane stress to

ge ¼ 3

2ð1þ �Þ ðf��
ffiffiffi
p
p
Þ2 ð37Þ

4.2 Plastic geometry factor

4.2.1 Edge crack in an infinite plate

Next an infinite solid is considered, i.e. w !1, with
the equivalent stress and plastic strain related by
the power law "

p
e ¼ A�ne. Based on work by He and

Hutchinson [17, 18], Webster and Ainsworth [13] pro-
posed an approximate solution of the geometric
factor g. Under plane strain conditions

J ¼ ð1:122Þ1þ1=np
ffiffiffi
n
p

�1e"
p
1ea ¼ gp1�1e"

p
1ea ð38Þ

Guided by this solution and finite element results
[14], a plane stress approximation is given by

J ¼ ð1:122Þ2p
ffiffiffi
n
p

�1e"
p
1ea ¼ gp1�1e"

p
1ea ð39Þ

Thus, the geometry factors become

Plane strain

gp1 ¼ ð1:122Þ1þ1=np
ffiffiffi
n
p

ð40Þ

Plane stress

gp
1 ¼ ð1:122Þ2p

ffiffiffiffi
n
p

ð41Þ

For an incompressible linear elastic solid, i.e. n ¼ 1,
equations (40) and (41) yield

gp1 ¼ ð1:122Þ2p ð42Þ

With � ¼ 1
2, f ¼ 1:122, � ¼ 2=

ffiffiffi
3
p

(plane strain) or � ¼ 1
(plane stress) and � ¼ 1, the K -based geometry factor
as defined in equation (35) becomes

ge1 ¼ ð1:122Þ2p ð43Þ

which is in complete agreement with equation (42).

4.2.2 Edge cracks in a finite plate

In section 3.2 it was stated that �ne ¼ �net=�. The
equivalent stress at infinity is given by

�1e ¼
�1
�1

ð44Þ

where �1 is equal to 1 and 2=
ffiffiffi
3
p

under plane stress
and plane strain respectively. By combining equa-
tions (44), (32), and (23), the equivalent stress at
infinity becomes

�1e ¼ �
�

�1
�ne ð45Þ

In a similar manner, the equivalent plastic strain at
infinity can be related to the plastic term of the
equivalent nominal strain, since "

p
1e ¼ A�n1e and

"
p
ne ¼ A�nne, and is given by

"p1e ¼
�1e

�ne

� �n
"pne ¼ �

�

�1

� �n
"pne ð46Þ

Introducing equations (45) and (46) into equations
(38) and (39) yields

Plane strain

J ¼ ð1:122Þ1þ1=np
ffiffiffi
n
p

�
�

�1

� �nþ1

�ne"
p
nea ð47Þ

Plane stress

J ¼ ð1:122Þ2p
ffiffiffi
n
p

�
�

�1

� �nþ1

�ne"
p
nea ð48Þ

It follows from equations (13), (47), and (48) that the
fully plastic geometry factor gp can be written

Plane strain

gp ¼ ð1:122Þ1þ1=np
ffiffiffi
n
p

�
�

�1

� �nþ1

ð49Þ

Plane stress

gp ¼ ð1:122Þ2p
ffiffiffi
n
p

�
�

�1

� �nþ1

ð50Þ
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5 CRACK AT THE ROOT OF A SURFACE NOTCH

The second configuration considered is a notched
plate. The notch is characterized by its depth D and
its elastic stress concentration factor Ktg ¼ ��1=�1. A
through-crack of depth a is located at the root of
the notch as shown in Fig. 4. The notched plate is
loaded by a remote stress �1 perpendicular to the
symmetry plane of the notch.

5.1 Geometry factors

For an edge crack in the near-notch-root stress field,
the stress intensity solution is the same as for an edge
crack in a smooth solid, except that the remote stress
is being amplified by the stress concentration factor
Ktg; thus

K ¼ 1:122Ktg�1
ffiffiffiffiffiffi
pa
p

ð51Þ

Thus, according to equation (35), the elastic geometry
factor g e can be expressed as

ge ¼ 3E

2E0ð1þ �Þ ð fKtg��
ffiffiffi
p
p
Þ2 ð52Þ

which is valid as long as the crack is sufficiently
small, say a=D < 0:01. As the crack grows beyond
the notch root stress field, the remote stress field
dominates the stress intensity factor, which can be
estimated by

K ¼ f�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðDþ aÞ

p
ð53Þ

By introducing an equivalent crack length L, Jergéus
[19] and Härkegård [20] obtained an equation for K ,
which asymptotically agrees with the near and

remote field estimates. The expression for L is given
by

L ¼ aþD

�
1� exp

�
� a

a�

��
ð54Þ

where

a� ¼ D

ð1:122Ktg=f Þ2 � 1
ð55Þ

The transition crack length a� is defined as the crack
length at which the stress intensity factors of shallow
and deep cracks yield equal results; i.e. equations (51)
and (53) are equal. Thus, the stress intensity factor
can be estimated by

K ¼ f�1
ffiffiffiffiffiffi
pL
p

ð56Þ

This expression is also found to be in good agreement
for intermediate crack depths [20]. Expressing the
proposed equation for J in terms of the equivalent
crack length L makes it possible to calculate g e from
equation (35) and gp from equations (49) and (50).

6 EDGE CRACK IN A PLATE UNDER BENDING

For a machine component, it is commonly found that
the stress is decreasing from a maximum at some
critical point at the surface. The simplest case
corresponds to pure bending, i.e. linearly decreasing
stress. It is therefore desirable to establish geometry
factors for an edge-cracked plate under plane strain
bending. A rectangular plate of width w with an
edge crack of depth a is considered.

6.1 Linear elastic geometry factor

The cracked plate carries the momentM . Introducing
the limit moment ML and the associated yield stress
�Y yields the expression of the equivalent nominal
stress as

�ne ¼
M

ML

�Y ð57Þ

By combining equations (57) and (24), the equivalent
nominal stress can be rewritten as

�ne ¼
4M

�l2B
ð58Þ

where the ligament width is given by l ¼ w � a . The
elastic geometry factor g e is determined by means
of the stress intensity factor K . For an edge-cracked
plate subjected to a linearly varying stress perpendi-
cular to the plane of the crack

K ¼ f�max

ffiffiffiffiffiffi
pa
p

¼ f
6M

w2B

ffiffiffiffiffiffi
pa
p

ð59Þ
Fig. 4 Through-crack at the root of a surface notch
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and thus

K ¼ 3

2
f�

�
w� a

w

�2
�ne

ffiffiffiffiffiffi
pa
p

¼ 3

2
f��2�ne

ffiffiffiffiffiffi
pa
p

ð60Þ

It follows then from equation (34) that

ge ¼ 27E

8ð1þ �ÞE0 ð f�
2�

ffiffiffi
p
p
Þ2 ð61Þ

which under plane strain conditions can be rewritten
as

ge ¼ 27ð1� �Þ
8

ðf�2�
ffiffiffi
p
p
Þ2 ð62Þ

An expression for the K -based geometry factor f has
been given by Tada et al. [21].
For a pair of symmetrically located edge cracks of

depth a in a plate of width 2w under pure bending,
the elastic geometry factor can also be obtained
from equation (61). This can easily be verified from
equation (59), provided that w is replaced by 2w.

6.2 Plastic geometry factor

Once the plastic geometry factor gp is known, the J
integral can be found from equation (13), which inter-
polates over the range from small-scale yielding to
large-scale yielding. For an incompressible linear
elastic solid, the elastic geometry factor as defined
in equation (62) becomes

ge ¼ 1:6875ðf�2�
ffiffiffi
p
p
Þ2 ð63Þ

Guided by this expression, finite element results [14],
and equation (49), a convenient approximation for
the plastic geometry factor for an edge-cracked
plate subjected to a linearly varying stress field and
plane strain conditions is

gp ¼ 1:6875ðf�2�
ffiffiffi
p
p
Þ2n1=4

�
�
�

�1

�nþ1

ð64Þ

7 CONCLUSIONS

An equation for estimating the J integral has been
formulated in terms of equivalent nominal stress
and strain with the equivalent nominal stress set
equal to the reference stress. It is necessary to
separate the J integral into an elastic term and a plas-
tic term. The elastic geometry factor was determined
by means of the stress intensity factor K . For several
basic finite configurations the fully plastic geometry
factor was established for specimens with shallow
edge cracks, since they are common flaws in many
structural components. When the elastic and plastic
geometry factors are known, J can be estimated in
the range from small-scale yielding to large-scale

yielding. It is further pointed out that J is dependent
on the type of loading, i.e. displacement or force
control. The accuracy of the proposed formulae has
been assessed by finite element analysis of some
specific configurations in Part 2 [14].
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APPENDIX

Notation

a crack depth
a� transition crack depth
A Ramberg–Osgood coefficient
Anet net cross-sectional area
A1 gross cross-sectional area
B thickness of plate
D notch depth
E Young’s modulus
E 0 ¼ E=ð1� �2Þ for plane strain,

¼ E for plane stress
f K -based geometry factor
g e elastic geometry factor
gp plastic geometry factor
G shear modulus ¼ E=2ð1þ �Þ
J J integral

J � elastically calculated J
J e elastic component of J
J p plastic component of J
Jc fracture toughness
K stress intensity factor
Kc fracture toughness
Ktg elastically calculated stress concentration

factor ¼ ��1=�1
l semiwidth or width of ligament ¼ w � a
L equivalent surface crack depth
M bending moment
ML limit moment of perfectly plastic specimen
n Ramberg–Osgood stress exponent
nj unit normal vector
P tensile force
PL limit load of perfectly plastic specimen
Q generalized load
QL generalized limit load of perfectly plastic

specimen ¼ limdQ=du!0 Q
Ti traction vector ¼ �ijnj

u displacement
w semiwidth or width of plane specimen
W strain energy density ¼

Ð "ij
0 �ij d"ij

� ratio of the net area to the gross cross-
sectional area ¼ Anet=A1

"� elastically calculated strain
"e elastic strain
"p plastic strain
"e equivalent strain

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3 "
0
ij"
0
ij

q
¼ �e=ð3GÞ þ A�ne

"ne equivalent nominal strain
¼ �ne=ð3GÞ þ A�nne

"ij strain tensor
"0ij deviatoric strain tensor
"1 uniaxial strain ¼ �1=E þ A�n1
"1 strain at infinity
� constraint factor
�1 constraint factor for an infinite body
� Poisson’s ratio
� notch tip radius
�� elastically calculated stress

�e equivalent stress ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2 �
0
ij�
0
ij

q
�ne equivalent nominal stress¼ reference stress

¼ ðQ=QLÞ�Y
�ij stress tensor
�0ij deviatoric stress tensor
�Y yield stress of a perfectly plastic solid
�1 uniaxial stress
�1 stress at infinity
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