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Abstract

The tendency to "jump to conclusion" and make decisions on basis of little evidence has been

linked with being prone to delusions. This behavior is particularly seen in the "beads task",

where participant are presented with a sequence of beads and asked to decide which jar the

beads are drawn from. In this thesis, we construct statistical models that explain the observed

behavior in the beads task. Our models are based on work previously done by Moutoussis et al..

The models in our thesis contain quantifiable parameters that capture the bias towards making

hasty decisions and the noise in decision-making. Two of the models also incorporate the noise

in subjective probability estimates. We describe how the model parameters can be estimated

through Bayesian analysis and perform a simulation study which shows that the parameters

can be accurately retained. Finally, we fit the models to a real data set. These models may be

utilized to see if there are any group differences between deluded patients and healthy controls.
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Chapter 1

Introduction

The "beads in a jar task" is a psychology experiment that frequently is used in order to access

how human beings make statistical inference. We describe this task in the coming section. It has

been discovered that delusion-proneness is associated with making hasty decisions based on lit-

tle evidence when performing this task. In this report, we construct four alternative models that

describes the decision-making process in the beads task. The report is structured as follows: In

the first chapter, we look at the broader context and explain why it is relevant to make statistical

models that describe how human beings perform the beads task. The second chapter presents

some statistical concepts that are needed later in the report. In the third chapter, we build four

statistical models, while in the fourth chapter, we derive a procedure for estimating the param-

eters in these models. We test our parameter-estimation procedure on simulated data sets with

known parameters in chapter five. In chapter six, we fit the models on actual data sets from hu-

man beings performing the beads task. We also discuss the most important findings. Finally, in

chapter seven, we sum up our findings, discuss the limitations of our models, and present some

suggestions for further work.

1.1 Background

Schizophrenia (SZ) is characterized by positive symptoms such as hallucinations and delusions,

negative symptoms such as lack of motivation, and cognitive symptoms such as trouble focus-

ing. Delusions are considered as one of the key traits of schizophrenia and it occurs in about
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1.1. BACKGROUND 3

three fourths of those diagnosed [9]. A delusion is a fixed belief held by a person in spite of

emergence of strong conflicting evidence [1]. In order to improve treatments of mental disor-

ders in which delusions are present, such as SZ, researchers have attempted to understand the

psychological mechanisms behind delusions. This involves understanding how delusions are

formed and how they are maintained [9]. A number of theories have been suggested [7]. It has

been hypothesized that reasoning biases cause people to arrive at false conclusions which in

turn causes them to form or maintain delusions. The word ’bias’ in this context means the ten-

dency to systematically behave in a way that differs from some reference group. Such reference

groups may be healthy controls or psychiatric controls. In the following, we introduce several

reasoning biases that researchers have suggested to be present in deluded patients. Some of

these biases contradict each other, some elaborate on each other, and some compliment each

other.

A reasoning bias that frequently has been reported is the tendency to making hasty decisions

on the basis of little evidence. In literature, this reasoning bias is referred to as the jumping to

conclusion (JTC) bias [7]. The JTC bias can explain formation of delusions because an implau-

sible hypothesis may be prematurely accepted and therefore prevent more realistic alternatives

from being considered. Probabilistic inference tasks, for example beads in a jar tasks, are often

utilized to observe the JTC behavior. There are many versions of the beads task, but a typical

version designed to capture the JTC bias goes as follows: Participants are told that beads will be

drawn with replacement from one of two jars. Each jar contains black and white beads. One

of the jars contains substantially more white than black beads and the other jar contains the

opposite ratio of white to black beads. This ratio is known to the participants. The beads are

drawn one by one from a hidden jar, and the participants can see another bead until they are

certain about which of the jars the beads are being drawn from. All the participants are given

the same predetermined sequences of beads, and the number of beads drawn before a decision

is made is recorded. The participants are given several such tasks, and the ratios of black to

white beads may vary from tasks to task. This version of the beads task is often called the draws

to decision (DTD) beads task, as the main outcome is the number of beads drawn before a de-

cision is made [7]. Numerous studies have concluded that delusion-prone individuals in fact
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collect less evidence than healthy controls before making a decision in the DTD beads task. A

meta-analysis on the DTD beads task, based on 55 studies, has been performed by Dudley et al.

[5]. They concluded that people with psychosis collect significantly less evidence then controls

before making a decision in the two-jar DTD task.

Recent studies performed by Moritz et al. [12] challenge the idea that deluded patients sys-

tematically gather less evidence than controls before making a conclusion. They agree that a

JTC bias is present in the two-jar DTD beads task, but they claim that deluded patients do not

generally show a tendency to jump to a conclusion. Instead, they suggest the liberal acceptance

(LA) bias. This account claims that deluded patients have a lower threshold for accepting an al-

ternative as viable than controls; however, this does not necessarily imply a premature response

since multiple alternatives may be considered plausible, and no single option can be selected.

In the case of two jars, the LA bias explains the tendency to JTC because one of the options early

surpass the threshold while the other option does not, causing the former to be chosen. Under

ambiguity, however, the LA account predicts that the decision in fact may be delayed. For ex-

ample, in a DTD beads task with four possible jars, the lowered threshold may cause two of the

jars to be deemed plausible in situations where a higher threshold would only have deemed one

as plausible. Here, the person with the high threshold is not ready to conclude, while the person

with the low threshold needs more evidence [12]. Moritz et al. put the LA account to a test by

letting deluded patients and healthy controls perform beads experiments with two jars and with

four jars. Their conclusion was in agreement with the LA account: JTC bias was indeed present

in the two-jar task while there was no group difference in the four-jar task. The LA account may

explain why a delusion is formed: a low acceptance threshold may cause an unlikely hypothesis

to be accepted as tenable.

Yet another reasoning bias that is postulated to be associated with delusion is the so called

overadjustment bias or bias toward disconfirmatory evidence [15]. This bias is the tendency to

be very responsive to disconfirmatory evidence, and it has been reported in the draws to cer-

tainty (DTC) version of the beads task. In the DTC version of the beads task, participants are

shown a predetermined sequence of beads as in the DTD version. However, after each bead
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is drawn, participants are asked to provide a probability estimate for one of the jars being the

source of the beads. A new bead is drawn until all the beads in the predetermined sequence

are displayed. Some studies have found that deluded participants change the probability rating

more than controls when for example a white bead is shown after a long streak of black beads.

This is the bias toward disconfirmatory evidence; the participant reacts strongly when evidence

against their currently favored hypothesis is presented. The overadjustment bias is in contradic-

tion to another bias that frequently is reported, called the bias against disconfirmatory evidence

(BADE). This is a bias where the individuals show a strong commitment to the initially favored

hypothesis even when presented with evidence strongly supporting another hypothesis. This

bias has been discovered in tasks where participants are presented with pictures from a comic

strip, one by one. They are asked to interpret what is going on in the comic strip, and they are

given several alternative interpretations to choose among. The first picture is designed to favor

one or two of the available alternatives, while the subsequent pictures are strongly supporting

one of the other alternatives. It has been discovered that deluded participants are less willing to

move away from the interpretation that initially seemed plausible [16]. The LA account and the

BADE may together explain why delusions are formed and maintained. While the LA account

may explain why delusions are formed, BADE may explain why they are maintained; When an

unlikely idea has been embraced, incoming evidence against this idea is for some reason re-

sisted.

As noted earlier, delusions are beliefs that are held in spite of strong evidence contradicting

them. However, the overadjustment bias, which has been reported in the beads task, says that

deluded patients are easily persuaded by incoming disconfirmatory evidence. This bias seems

to be in disagreement with the very nature of delusions, namely that beliefs are resistant to dis-

confirmatory evidence. Speechley et al. [15] have performed a study to gain more insight into

the overadjustment bias, and they discovered what they refer to as the hypersalience account.

This account may make the overadjustment bias compatible with delusions. Before we explain

this account, we take a look at the experimental procedure that gave data supporting the ac-

count. Instead of the regular DTC procedure with one probability slider, Speechley et al. pro-

vided one slider for each of the jars. These sliders, or likelihood ratings, were on a continous
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scale ranging from "Very Unlikely" to "Very Likely". The experimental data showed that the de-

luded group had an exaggerated increase in likelihood ratings relative to the control group for

whichever jar 1 that matched the current bead; however, there was no exaggerated decrease in

the likelihood ratings for the jar that did not match the current bead. Based on this, Speech-

ley et al. suggest that the overadjustment reported in other studies is not caused by an strong

reaction to the disconfirmatory evidence – instead, they suggest that the overadjustment is a

consequence of the deluded participants giving more faith in the option that is supported by

the newest piece of evidence [7]. Putting greater trust in the hypothesis supported by the most

recent piece of information is what Speechley et al. call the hypersalience account.

As we have seen, several cognitive biases that may explain delusions have been proposed. These

biases have been supported by experimental data, often through variants of the beads task. The

data analyses have mainly been done by calculating trivial summary statistics and then using

for example ANOVA for testing whether there are group differences. Less attention has been

directed towards making statistical models for the decision-making process in the beads task,

containing key parameters that can be quantified. Moutoussis et al. [13], however, have pre-

sented one such statistical model. In this report, we introduce their model - as well as several

tweaked versions of it - and estimate the models parameters based on a data set from a group of

healthy subjects. The model aims to capture parameters that can explain the JTC behavior seen

in the beads task. The goal of this report is to lead the way for building statistical models that

describe the decision-making process in the beads task.

1.2 The Beads Task

As described in the previous section, the classical DTD beads task works as follows: There are

two or more sources/jars of beads, each with a given ratio of white to black beads. The partici-

pants are told that beads will be drawn with replacement from one of the sources and that the

source will remain the same throughout the trial. The color of new bead as well as the previously

drawn beads are shown to the participant at all times. After each bead is drawn, the participant

1Instead of jars and beads, Speechley et al. used lakes and fish. Their computer program looks similar to the one
shown in Figure 1.1.
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Table 1.1: The trials and the proportion white (W), black (B) and red (R) beads in each of the
jars. In the three first taks there are two possible jars. In the fourth task, there are four possible
jars.

Jar A Jar B Jar C Jar D
Task Sequence W B W B W B W B R

1 ���������� 0.2 0.8 0.8 0.2 - - - - -
2 ���������� 0.9 0.1 0.1 0.9 - - - - -
3 ���������� 0.5 0.5 0.8 0.2 - - - - -
4 ���������� 0.1 0.9 0.5 0.5 0.9 0.1 0 0.1 0.9

can either 1) state that he is sure about the source of the bead(s) and which jar this is or 2) state

that he wants to see more beads before deciding. The participants are told that they can see a

maximum of n beads. In the version of the beads task that we are studying in this paper, the par-

ticipants additionally have to provide likelihood estimates for each of the jars being the source

after each bead is drawn, as in the DTC task with one slider for each jar. This is done by having

separate sliders ranging continuously from "Can’t be this lake" to "Must be this lake" for each

of the jars. Prior to the experiment, the participants are instructed that even though they have

decided on a jar, new beads will be drawn and probability estimates must be provided until all

the n = 10 beads are drawn. They do not have to commit to any jar during the sequence; when

10 beads have been drawn, they can state that they still are not sure about which of the jars that

is the source. The experiment is performed on a computer. Instead of jars and beads, the partic-

ipants are confronted with lakes and fish. A screen shot of the interface is displayed in Figure 1.1.

Each participant is given four tasks. These are summarized in Figure 1.1. The tasks are ex-

actly the same for all the participants. In the first three tasks, there are only two possible sources

of beads. In the last task however, there are four possible sources. More specifically, in Task 1,

jar A has 20% white beads and 80% black beads while jar B has 80% white beads and 20% black

beads. The sequence "BBBWBBBBWB" is given to the participants, where "W" and "B" indicate

white and black beads, respectively. This task is the same as task number one in [12]. In Task

2, jar A has 90% white and 10% black beads while jar B has 10% white and 90% black beads.

The sequence provided is "WWWWBWWWWW". This is the same as task number two in [12].

In Task 3, jar A has 50% white and 50% black beads while jar B has 80% white and 20% black
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Figure 1.1: Two screen shots from the experiment. In the left panel, the participant can choose
to commit to one of the jars or to postpone the commitment. No matter which of these actions
the participants chooses, he is asked to provide likelihood estimates for each of the jars. This is
shown in the right panel. Source: Robert Biegler.

beads, and the sequence "BWBWWBWBBW" is drawn. This is the same task as task number

one in [15]. In the last task, there are four possible sources of beads instead of only two. Jar A

contains 10% white and 90% black beads, jar B contains 50% white and 50% black beads, jar

C contains 90% white and 10% black beads and jar D contains 10% black and 90% red beads.

The sequence "WWWBWWWWWW" is provided. This is the same as task number three in [12].

Researchers at the Department of Psychology at respectively the "Norwegian University of Sci-

ence and Technology" and the "Arctic University of Norway" have designed this experiment and

gathered experimental data.



Chapter 2

Statistical Theory

In this chapter, we introduce some statistical concepts that are utilized in this report. In par-

ticular, we discuss hierarchical Bayesian mode, the Metropolis-Hastings algorithm and Markov

chain Monte Carlo diagnostics.

2.1 Hierarchical Bayesian Models

Hierarchical models or multilevel models are useful in statistical applications where the is be-

lieved to be some dependency between the parameters. Figure 2.1 shows a typical hierarchical

structure. Let us use this figure and an example to illustrate the idea behind hierarchical models.

For instance, let us say we have n individuals, and each of these individuals are characterized by

some parameter τi , where i denotes the index of the individual. This parameter is not observed

itself, but there is a known stochastic model that maps τi to some observed output of the indi-

vidual, yi . That is, the density function p(yi |τi ) is known or specified. The observable output

constitutes the first level of the hierarchical structure. The unobserved individual-parameters

τi make up the second level of the model. Let us say that all the individuals are expected to be

somewhat similar. We can model this by imposing a common prior distribution on the parame-

ters τi , namely a population distribution [10]. The population distribution is specified by some

hyper-parameter, let us call it α. In other words, we have the density function p(τi |α) which is

common for all i ’s. At this point, the model is specified such that the likelihood p(y1, ..., yn |α) can

be expressed by integrating over the τi parameter for each individual. In order for this model to

9
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• Knowing something about one “experiment” tells us something about another.

– Multiple similar experiments

– Similar measurements from different locations

– Several tasks to perform on the same set of images

• “Sharing statistical strength.” The idea here is that something we can infer well in one
group of data can help us with something we cannot infer well in another. For example,
we may have a lot of data from California but much less data from Oregon. What we
learn from California should help us learn in Oregon.

• Key idea: Inference about one unobserved quantity affects inference about another
unobserved quantity.

– Includes some traditional hierarchical models

– Does not include calling a prior/likelihood a hierarchical model

– Includes models not necessarily thought of as hierarchical, such as HMMs, Kalman
filters, mixtures of Gaussians.

– (As such, it might be too forgiving a “definition.”)

3 The classical hierarchical model

• The classical hierarchical model looks like this:

Multiple groups of observations

Per-group parameters

Shared hyperparameter

Fixed hyperparameter

• We observe multiple groups of observations, each from its own parameter.

• The distribution of the parameters is shared by all the groups. It too has a distribution.

2

Figure 2.1: A typical hierarchical structure. Credit: David M. Blei.

be fully Bayesian, however, we need to view the hyperparameter as a random variable by putting

a prior on it, i.e. a hyperprior p(α). The parameters of the hyperprior are known and they make

up the top level of the hierarchical structure. Then, we have a probability model on the entire

set of parameters. The joint posterior distribution of all the model parameters can be written

out as

p(τ1, ...,τn ,α|y1, ..., yn) = p(α)
∏n

i=1 p(τi |α)p(yi |τi )

p(y1, ..., yn)
(2.1)

After having obtained the posterior distribution in a hierarchical model, it may be desirable

to look at some elements that summarize its information. One may for example be interested

in location parameters, e.g. median and mode, and dispersion parameters, e.g. variance and

precision [8]. These measures give us information about the parameters in the model. We can

look at each individual in the group by investigating the measures concerned with the marginal

distribution of the τi ’s, but we can also say something about the group as a unit by looking at

the meaures concerned with the marginal distribution of the hyperparameter α.

If one believes that there is some similarity across the individuals, constructing a Bayesian

hierarchical model is advantageous. A hierarchical structure provides borrowing strength across

individuals. This means that observation from one individual contributes with information
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to the individual-specific parameter of another individual, through the hyper-parameter. The

individual-specific parameters are shrunken towards a common mean, and this common mean

is itself driven by the observations. As a consequence, we may make better inference about the

individual-parameters than in the case where the individual-specific parameters are based only

on the observations from the individual in question. This is particularly advantageous if there

are few observations per individual.

2.2 The Metropolis-Hastings Algorithm

Markov chain Monte Carlo (MCMC) methods are powerful tools for sampling from high-dimensional

probability distributions. These methods rely on constructing a Markov chain whose stationary

distribution is the target density function that we wish to sample from. The Monte Carlo part

refers to utilizing random sampling to obtain empirical result, while the Markov chain part refers

to the fact that the sample is obtained by simulating a Markov chain. MCMC methods are useful

for numerically calculating high dimensional integrals that are difficult to solve analytically, for

example the expected value or variance of a multidimensional random variables [8].

The Metropolis-Hastings (M-H) algorithm is a MCMC procedure that we utilize in this report.

We do not go into the theory behind the algorithm, but instead we introduce how the algo-

rithm works and refer to [8] for a more profound introduction. Let us denote the target density

function from which we want to sample as π(θ). This may for example be the posterior density

function in (2.1). Also, let θ(t ) be the t-th value sampled by the M-H algorithm. The algorithm

goes as follows: First, choose an arbitrary1 initial state for the chain, θ(0). Also, choose an arbi-

trary proposal distribution q(·|θ(t )) from which the candidate states will be sampled, given the

current state. The only requirement for the proposal distribution is that is must ensure that

the resulting Markov chain is aperiodic and irreducible, as these are sufficient conditions for

convergence to a unique stationary distribution [11]. Then, for each iteration t , sample a can-

didate value θ̃ from the proposal distribution q(·|θ(t )). Calculate the Metropolis-Hastings Ratio,

R(θ̃|θ(t )) = π(θ̃)q(θ(t )|θ̃)

π(θ(t ))q(θ̃|θ(t ))
. Set θ(t+1) = θ̃ with probability α = min{1,R(θ̃|θ(t ))}, called the accep-

1The initial state must be chosen such that π(θ(0)) > 0
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tance probability. If the suggested parameter is not accepted, set θ(t+1) = θ(t ). The draws θ(t )

become increasingly close to being draws from the limiting distribution π(θ) as t gets larger [8].

In the case where θ is a vector, one can use component-wise updating, which means that only

one of the components of the parameter vector θ may change value at each iteration while the

other components remain as they were in the previous time step. One can either cycle through

the components of the parameters vector or choose a component randomly weighted by how

often we would like the different components to be sampled [8]. This is a special case of block

updating.

2.3 MCMC Diagnostics

In MCMC procedures, the draws become increasingly close to draws from the stationary distri-

bution as t increases [8]. In order to obtain a sample that represents the target distribution, the

sample should be taken from the chain after it has converged to its equilibrium distribution [8].

The word converged in this context means that the draws produced by the chain approximates

the target density well enough. A poorly chosen starting point for the chain may cause the chain

to take long to converge. For that reason, it is crucial to know whether the chain has converged.

There exists some theory on how to obtain quantitative bounds on number of iterations needed

for convergence, but it has had little impact on practical work [4]. Instead, one usually has to

rely on diagnostic tools to get some idea of whether convergence is reached. This involves ap-

plying graphical techniques and calculating statistical properties of the output of the chain.

The samples generated by a MCMC algorithm are dependent by construction, since the next

state in the chain depends on the current state. The mixing of a chain is concerned with how

far apart in the chain two sampled values must be in order to be considered approximately in-

dependent [11]. If the values that are sampled by the MCMC procedure are strongly correlated,

the sample needs to be large in order to represent the target density well. The mixing of a chain

has a say in how quickly the chain forgets its starting value and explores the support of the tar-

get density [11]. For this reason, the rate of convergence in a MCMC algorithm is affected by
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the mixing property of the chain. It is common practice to discard some burn-in period in the

beginning of the chain in order to exclude the draws that are generated before convergence is

reached.

As noted above, obtaining a good sample through MCMC simulations requires the user to have

control of two properties of the chain, namely the rate of convergence and the mixing. The first

of these governs the burn-in period, and the latter governs the the run-length (and the burn-in

period). The user must 1) have an idea of whether convergence is reached so that representative

values can be collected, and 2) know how good the mixing of the chain is, so that he knows how

large the sample should be. The rate of convergence and the mixing of a chain are properties

that overlap. Therefore, many techniques can be used to access both these properties at once.

In the following, we introduce some of these techniques.

The trace plot shows the sample number t plotted against a component of the sampled value

θ(t ). These plots can provide a hint of whether convergence is reached, as convergence is charac-

terized by rapid fluctuation around a stable mean [3]. Bad mixing can also be revealed through

a trace plot. A chain that is mixing poorly maintains the same - or nearly the same - values over

many successive iterations [11]. Another graphical tools that may be useful in reveling potential

problems with MCMC algorithm is auto-correlation plots. This plots shows the correlation in

the sequence of θ(t ) at different lags. If θ(t ) is a vector, the autocorrelation-plot can be plotted

for each parameter. A slow decay may suggest bad mixing [11]. Monitoring the cross-correlation

of the chain, namely the correlation between parameters, may also be useful . If two parameters

are strongly correlated, it may suggest a poor choice of parameterization or overparameteriza-

tion [4] and that the convergence is slow. The cross-correlations can be presented through scat-

ter plots of pairs of parameters in the parameter vector θ(t ). It can also be visualized through a

correlogram, which is a image of the correlation matrix.

For the Metropolis-Hastings algorithm, the acceptance rate of the suggestions from the proposal

distribution should be monitored. This is because the acceptance rate says something about

whether the spread of the proposal distribution is appropriate, and the spread of the proposal
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influences the mixing and the convergence of the chain. A spread that is too large causes many

proposals to be rejected and the chain will move slowly because the same state is visited many

times in a row (causing slow convergence), but a spread that is too small will cause the chain

to explore the support of the target distribution slowly because each step taken in the chain is

small [2]. Literature suggest an acceptance rate between 20% and 50% as a rule of thumb [8].

There exists a number of convergence diagnostics that are more formal and that do not rely

on visual inspection, e.g. the Gelman and Rubin diagnostics. However, for the analysis in this

report, the visual techniques introduced above will suffice. We refer to [4] for an introduction of

other convergence diagnostics.



Chapter 3

The Optimal Stopping Framework

The DTD experiment is a task in which the agent has to determine when to stop collecting ev-

idence and instead make a decision about the source of the beads. This can be viewed as an

optimal stopping problem. When we talk about the optimal strategy for this problem, we mean

the strategy that maximizes the expected utility. So what is the utility in the DTD task? In the ex-

periment instructions, no information is provided about the reward (r ) of answering correctly,

the cost of answering incorrectly (cw ), nor the cost of sampling another bead (c s). However,

we may assume that each participant has his own internal values for these parameters. For ex-

ample, some participants may be very concerned about answering incorrectly, and thus have

a large reward for correct answers, large cost for incorrect answers and small cost of sampling.

The utility in this framework is the units gained by answering correctly minus the units spent

on sampling and answering incorrectly. Given a set of parameters (r,cw ,c s) there is an optimal

strategy for the DTD task. The optimal stopping framework for the DTD problem is introduced

by Moutoussis et al. in [13]. In the following sections we present, elaborate on and make some

modifications to his work.

3.1 Ideal Bayesian Agent’s Approach

In this section, we introduce the optimal strategy for the DTD problem. We call an agent fol-

lowing this strategy an ideal Bayesian agent (IBA). We provide detailed derivations for the case

where there are only two possible sources of beads, and where these sources contain white and

15



16 CHAPTER 3. THE OPTIMAL STOPPING FRAMEWORK

black beads only. However, the calculations are similar for the case where there are more than

two sources and more than two colors. We define the rules to be such that the agent has to com-

mit to a jar at some point during the course of the ten beads. This is different from the rules

given to the participants in the data set that we study; however, in Section 6.2 we describe how

we can handle this difference. Let r A and rB be the proportions of white beads in jar A and B,

respectively. Furthermore, let xi denote the color of the i th bead drawn, taking the value 0 if the

bead is black and 1 if the bead is white. Furthermore, let x = {x1, ..., xn} be the whole sequence

given in the task. Then, the set {x,r A,rB } defines the task. Given the parameters (r,cw ,c s), the

task has a optimal solution, namely the pair (d ,m), where d ∈ {d A,d B } is the urn chosen and

m ∈ {1, ...,n} is the number of beads displayed before deciding on the jar. Let us denote the so-

lution strategy of an individual as S, and in particualar, let SI B A be the solution strategy of the

IBA. Furthermore, let us define the utility (U ) as the reward (R) minus the cost (C ) in the task,

namely

U = R −C . (3.1)

Next, let us define a state as si = nw for 0 ≤ nw ≤ i ≤ n, where i is the total number of beads

drawn and nw is the number among these that are white. Since only white or black beads are

drawn, it is implicitly given that the number of black beads are i −nw . Also, let di denote the

action taken by the agent after the i th bead is drawn. di can take on values among d A (decide jar

A), d B (decide jar B), and d S (decide to sample one more bead) depending on how many beads

i that have been drawn; d S is only an available choice when strictly less than n beads have been

drawn. LetDi denote the set of available actions for a given task when i beads have been drawn.

Now, we define the action value, Q, for taking an action d in the state si = nw under strategy S

as the expected additional utility of taking action d in state si = nw under strategy S; that is,

Q(d , i ,nw ,S) = E [U |Si = nw ,Di = d ,S]. (3.2)

The optimal strategy for the DTD problem,SI B A, is to calculate the action values in state si = nw

(knowing that you behave as an IBA) and deterministically choose the action that has the largest

action value. This is the strategy that in the long run will yield the largest gain (or smallest cost).

We proceed by deriving the expression for the action values in (3.2) under the IBA strategy. We
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start by looking at the action values for deciding on each of the jars. Let V ∈ {A,B} be the jar

that is being drawn from. We use the letter V for vase. Then, the action value for choosing jar

v ∈V= {A,B} in any state si = nw can be written as

Q(d v , i ,nw ,S) = E [U |Si = nw ,Di = d v ,S]

= E [U |Si = nw ,Di = d v ]

= r ·P (V = v |Si = nw )− cw ·P (V 6= v |Si = nw )

= r ·P (V = v |Si = nw )− cw · (1−P (V = v |Si = nw ))

= (r + cw )P (V = v |Si = nw )− cw . (3.3)

We note that the action value for choosing a jar does not depend on the strategy of the agent. Let

us take a look at the posterior probability of the source being jar v , which is the second term in

the expression above. In the experiment, the prior probability for each of the jars are equal, so

we have P (V = A) = P (V = B) = 1
2 in task number one through three. Let rv be the ratio of white

beads in jar v . Then, we have that the probability of the source of beads being jar v ∈V= {A,B},

when i ∈ {1, ..,n} beads are drawn and nw ∈ {0, ..., i } of these are white, is

P (V = v |Si = nw ) = P (V = v) ·P (Si = nw |V = v)

P (Si = nw )

= P (V = v) ·P (Si = nw |V = v)∑
ṽ∈VP (V = ṽ) ·P (Si = nw |V = ṽ)

= P (Si = nw |V = v)∑
ṽ∈VP (Si = nw |V = ṽ)

= r nw
v (1− rv )i−nw∑

ṽ∈V r nw
ṽ (1− r ṽ )i−nw

, (3.4)

where we in the third equality used that the prior probabilities for each jar are equal. Equations

(3.3) and (3.4) are what we need in order to calculate the action values for choosing jar A and

jar B in any given state. Now, let us move on to deriving the expression for the action value

of sampling another bead. This action value depends on the strategy of the agent, since the

expected future return depends on the behavior of the agent. As we will see, the agent must

"search" through all the future outcomes to calculate this quantity. Define the probability of
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choosing action d in state si = nw under the strategy S as the weight

w(d , i ,nw ,S) = P (Di = d |Si = nw ,S). (3.5)

The IBA agent deterministically chooses the action with the largest action value, so all the weight

is given to the action with the largest action value, and we have

w(d , i ,nw ,SI B A) =


1 if d = argmax

a∈Di

Q(a, i ,nw ,SI B A),

0 otherwise.

(3.6)

If there are two or more actions with equal action values and these are larger than all the other

action values, it does not matter which of these the an agent chooses in order to be ideal; there-

fore, we define the IBA to choose randomly among the two jars if the action values for these are

equal and larger than the action value for sampling. If the action value for choosing one of the

jars is equal to the action value for sampling, and this value is larger than the action value for

choosing the other jar, we define the IBA to decide on the jar instead of sampling. Thus, the IBA

will choose as quickly as possible. Next, we note that the expected utility of an agent in state

si = nw given that the true source is jar v ∈ {A,B} can be written as

E [U |Si = nw ,V = v,S] = ∑
d∈Di

P (Di = d |Si = nw ,V = v,S) ·E [U |Si = nw ,V = v,Di = d ,S]

= ∑
d∈Di

P (Di = d |Si = nw ,S) ·E [U |Si = nw ,V = v,Di = d ,S]

= ∑
d∈Di

w(d , i ,nw ,S) ·h(i ,nw , v,d ,S), (3.7)

where we have defined the function h(·) = E [U |Si = nw ,V = v,Di = d ,S] because it later will

turn up recursively in the expression of the action value of sampling. We have

h(i ,nw , v,d ,S) = E [U |Si = nw ,V = v,Di = d ,S]

=


r · I[v=A] − cw · I[v 6=A] if d = d A,

r · I[v=B ] − cw · I[v 6=B ] if d = d B ,
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and for the case where d = d S , we have

h(i ,nw , v,d S ,S)

= E [U |Si = nw ,V = v,Di = d S ,S]

=−c s + ∑
s∈{nw ,nw+1}

P (Si+1 = s|V = v,Si = nw ,Di = d S ,S) ·E [U |V = v,Si = nw ,Di = d S ,Si+1 = s,S]

=−c s + ∑
s∈{nw ,nw+1}

P (Si+1 = s|Si = nw ,V = v) ·E [U |V = v,Si+1 = s,S]

=−c s + ∑
s∈{nw ,nw+1}

P (Si+1 = s|Si = nw ,V = v)
∑

d∈Di+1

P (Di+1 = d |V = v,Si+1 = s,S)E [U |V = v,Si+1 = s,Di+1 = d ,S]

=−c s + ∑
s∈{nw ,nw+1}

P (Si+1 = s|Si = nw ,V = v)
∑

d∈Di+1

w(d , i +1, s,S) ·h(i +1, s, v,d ,S). (3.8)

Here, we see a recursive pattern; in every state where there is an option of sampling another

bead, the function h(i ,nw , v,d S ,S) makes use of h(i +1,nw , v,d S ,S) and h(i +1,nw +1, v,d S ,S).

This recursion terminates when n beads are drawn, because at this point it is not possible to

sample another bead. The agent is forced to choose a jar. When i = n in (3.7), d S is no longer

contained in the sum, so the recursive part stops.

Finally, the action value for sampling another bead in state si = nw where 0 < nw ≤ i < n can

be written out as

Q(d S , i ,nw ,S) = E [U |Si = nw ,Di = d S ,S]

= ∑
v∈V

P (V = v |Si = nw ,Di = d S ,S) ·E [U |Si = nw ,Di = d S ,V = v,S]

= ∑
v∈V

P (V = v |Si = nw ) ·h(i ,nw , v,d S ,S). (3.9)

The optimal stopping strategy for an agent that assumes the game parameters (r,cw ,c s) is to cal-

culate the action values Q(d , i ,nw ,SI B A) for each of the available actions d , and then to choose

the action that yields the largest value. This model is in fact a one-parameter model. We can

fix two of the parameters, and let the last one be flexible. We choose r = 0 and cw = 100 as a

reference for the model.
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3.2 Agent with Behavioral Uncertainty

Human beings do certainly not follow the strategy of the IBA. First of all, the strategy requires

heavy computations that involve searching through all possible future states. It is unlikely that

human beings are able to perform these. Secondly, humans do not choose as deterministically

as an ideal agent; provided with the same information several times, the choices may still vary.

To account for the behavioral uncertainty, we need to introduce some noise in the model. This

can be done by for example assuming that the human agents pick an action randomly, but that

the probability of picking each action is weighted based on the magnitude of the action value.

We use the same weight function that is used in [13], namely the the Softmax function with an

individual-specific parameter τ that specifies how arbitrary the choices tend to be. With Softmax

weighting, the probability of choosing action d in state si = nw becomes

w(d , i ,nw ,S) = eQ(d ,i ,nw ,S)/τ∑
d̃∈Di

eQ(d̃ ,i ,nw ,S)/τ
. (3.10)

We can see that as τ goes to zero, the probability of choosing the action with the largest action

value goes to 1, and the agent gets closer to being an IBA. On the other hand, as τ goes to infin-

ity, the probabilities for each of the actions become equal, namely one divided by the number

of possible actions, and the agent makes arbitrary choices.

As we can see in (3.10), the probability of some agent choosing an action d depends on the

action values for choosing the different actions. The action values for choosing actions d A and

d B are calculated straightforwardly as shown in (3.3). Calculating the action value for sampling

another bead, however, requires the agent to iterate through all possible future outcomes. These

outcomes are not only related to what color the future beads have - they are also related to what

action the agent chooses to perform when the beads appear. Therefore, in order to calculate the

action value for sampling, the agent must have some idea - which may be correct or incorrect -

of how he behaves. That is, he must have an idea of his own strategy, which may or may not co-

incide with his true strategy. Under behavioral uncertainty, the agent can either 1) know that he

makes choices according to the softmax choice function or 2) think that he behaves as an IBA.

Therefore we get two alternative models. In the first model, the agent takes into account that
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he in fact behaves stochastically, when calculating the action value for sampling another bead.

Then, the choice is made stochastically based on the action values. We can refer to this model as

the CB model, for Costed Bayesian model. In the second model, the agent calculates the action

values for sampling as if he were an IBA, and then an action is chosen stochastically based on

the weight of each action. We can all this the CBU model, for Costed Bayesian Unaware model,

since the agent is unaware of his own decision noise. We stress that these models do not use the

probability estimates provided by the participants in any manner. The only observations taken

into account are the DTD’s and the final jar chosen. In Section 3.3.3, we incorporate the sub-

jective probability estimates into the framework already introduced above. When incorporating

these estimates, we will arrive at two new models for how an agent acts in the beads task. We

call these the CBP and the CBUP models. For now, however, we omit the subjective probability

estimates in the models.

In the model(s) described above, each agent has the two parameters c s and τ. The sampling

cost parameter captures the eagerness to stop collecting evidence and instead make a decision.

It may be seen as an equivalent to a decision threshold; a large sampling cost corresponds to a

small decision threshold and vice versa. The noise parameter accounts for the randomness in

the decision-making. If each individual provides responses for a large number of sequences, we

are able to accurately estimate the specific parameters for each individual, for example through

maximum likelihood estimation. However, for the data that we analyze in this report, there are

only a few trials for each participant. As a consequence, there will be a large uncertainty asso-

ciated with each individual’s parameter estimates. We can alleviate this issue by constructing a

hierarchical model, as done by Moutoussis et al. In the next section, we describe this model.

3.3 Hierarchical Costed Bayesian Models

In line with Moutoussis et al., let us call the sampling costs (c s
k ) and noise parameters (τk ) micro-

parameters. These are individual-specific parameters. Within one population1, it is reasonable

to assume that the individuals are somewhat similar, so we expect some similarities between

1A population may for example be a group of schizophrenic individuals or a group of healthy individuals.
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the individuals’ micro-parameters. Thus, we can view the pairs of of micro-parameters (c s
k ,τk )

as stochastic variables drawn independently from some common prior distribution governed by

some unknown hyper-parameters. This hierarchical structure allows us to investigate the hyper-

parameters instead of - or in addition to - the micro-parameters.

In the hierarchical structure, the sampling costs and noise parameters are considered to be

drawn from some prior. As done by Moutoussis et al., we can assume that the sampling costs are

drawn independently from the gamma distribution with parameters α and β and that the noise

parameters are drawn independently from the gamma distribution with parameters η and δ,

namely

cS
k ∼ Gamma(α,β),

τk ∼ Gammma(η,δ), k = 1, ..., Nind,

where Nind is the number of individuals. Thus, the expected value of the sampling cost is

µ1 = E [c s
k ] = αβ and the standard deviation (SD) is σ1 = SD(c s

k ) =p
αβ. Similarly, for the noise

parameters, we have µ2 = ηδ and σ2 =p
ηδ. Under this hierarchical structure, we can estimate

the hyperparameters α,β,η, and δ to infer about the population as a whole. The hierarchical

structure is illustrated in Figure 3.1.

As noted in the previous section, the optimal stopping problem with behavioral uncertainty

gives rise to two alternative models. We get the first model by assuming that the agents them-

selves know that they choose between the actions based on Softmax weights instead of choosing

deterministically. In this case, the agent will calculate the action values for sampling another

bead, knowing that he behaves stochastically. The agent is behaving ideally in the sense that

he maximizes the expected reward in the setting where there is decision noise present. This is

the same model as the one introduced in [13]. We will from now on refer to this model as the

HCB model, for Hierarchical Costed Bayesian model. We get the second model by assuming

that the agents are unaware of the fact that they behave stochastically, when calculating actions

values for sampling. In this case, the agents calculate the action values as if they were IBA’s but
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λ1 λ2

µ1 µ2 σ2σ1

c s
1 c s

N τ1 τN

y1 yN

Figure 3.1: The structure of the HCB and the HCBU models. Instead of considering the param-
eters α,β,η, and δ, we consider µ1,σ1,µ2, and σ2. The constants λ1 and λ2 are concerned with
the hyper-prior that is used in the Bayesian analysis discussed in section 4.2.

still choose randomly among the actions based on Softmax weights. This model will be referred

to as the HCBU model, which is short for Hierarchical Costed Bayesian Unaware. Let us take a

closer look at these two models.

3.3.1 The HCB Model

In the HCB model, the agent is aware of the fact that he has decision noise when choosing an

action. Therefore, when he calculates the action value of sampling (i.e. the expected additional

gain if he chooses to sample), he takes into account his stochastic behavior in the future. This

means that he uses (3.10) when calculating (3.8). Consequently, his action value for sampling

will be lower than an IBA’s action value for sampling. As τ increases, the action value for sam-

pling will decrease while the action values for each of the jars remain the same. Therefore, the

probability of choosing to sample will decrease as τ increases, and it is converging to one over

the number of possible actions. Thus, we see that increasing noise implies a greater probability

of committing to a jar. The probability of committing to the jar that is posteriorly more likely

of being the source is always greater than the probability of committing to any of the other jars.

We know that the action value of sampling increases as c s increases. As a result, early decisions

in this model can be caused by having a large c s and/or by having a large τ. If there are a great
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Figure 3.2: HCB vs HCBU model. The IBA with c s would have chosen to sample until the 9th
bead was drawn. There, he would have chosen jar A. In the HCBU model, the relativeness of
the actions are preserved. If the IBA thinks that sampling is the best option, choosing jar A is
the second best, and choosing jar B is the worst alternative, then the agent in the HCBU model
will have largest probability of choosing to sample, second largest probability of choosing jar A,
and smallest probability of choosing jar B. In the HCB model however, the noise may cause the
probability of choosing jar A to move beyond the probability of sampling. So in the HCB model,
large noise provoke faster decisions.

number of instances of choosing the wrong2 jar, however, it can only be explained by a large τ.

This model is the same as the one introduced by Moutoussis et al..

3.3.2 The HCBU Model

In the HCBU model, the agent assumes that he is an IBA when he calculates the additional gain

expected to be obtained when sampling another bead. He uses (3.6) when calculating (3.8),

which does not involve τ. Therefore, two agents with different τ will obtain the exact same ac-

tion values for sampling another bead. As τ increases, the probability of choosing each of the

available actions get closer to each other as we can see from (3.10). This may cause the probabil-

ity of sampling to decrease. However, in contrast to the agent in the HCB model, the probability

of sampling does not decrease as a consequence of the action value for sampling decreasing. In

this manner, the HCBU model removes some of the "overlap" between the parameters c s and τ

that exists in the HCB model.

2Wrong here means choosing a jar that is not the posteriorly more likely jar.
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Figure 3.3: The structure of the HCBP and HCBUP models. Instead of considering the parame-
ters α,β,η, and δ, we consider µ1,σ1,µ2, and σ2. The constants λ1 and λ2 are concerned with
the hyper-prior that is used in the Bayesian analysis as discussed in section 4.2. The y ’s and ω̃’s
are observations, the λ’s are chosen constants, and the rest of the parameters are latent vari-
ables.

3.3.3 Incorporating the Likelihood Ratings - The HCBP and HCBUP Models

The model(s) we have built so far tries to account for the participants’ eagerness to make a de-

cision as well as their randomness in choosing between options. Now, we would like to extend

the model so that it also captures the participant’s noise in estimating probabilities. We do this

by incorporating the likelihood ratings, which the participants provide after each bead is drawn,

in the model. Let us denote the likelihood ratings for jar A and jar B as L A and LB , respectively.

These estimates are provided by the participants through sliders ranging from "Can’t be this

lake" to "Must be this lake". There are no constraints regarding the relationship between the

likelihood ratings; for example, both ratings may be set to the value "Must be this lake". There-

fore, it is not obvious how we should interpret these ratings. Some participants may assume

that the sliders range from 0 to 1, and that they represent the posterior probability of the corre-

sponding jar being the source of the beads. In this case, the likelihood ratings provided should

sum to 1. In order for us to incorporating these ratings in the model, we need to transform them
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to something meaningful. We cannot simply let them range from 0 to 1 and say that they rep-

resent the posterior probability of each of the jars. This is because the ratings provided by the

participants rarely sum to one, and this does not make sense theoretically. Instead, we define

the posterior probability estimate for jar v to be

p̃v = Lv∑
ṽ∈{A,B} L ṽ

, v ∈ {A,B}. (3.11)

We see that for the individuals that in fact interpreted the slider values as posterior probability

estimates for jar v , we get p̃v = Lv . Under this transformation, a person who rates the two jars

as "Can’t be this lake" and a person who rates the two jars as "Must be this lake" are both saying

that there is a 50% chance of each of the jars being the source. The person that rates both jars as

very unlikely may do so because he thinks that both jars are equally likely of being the source,

but at the same time he thinks that the displayed beads are not very representative for any of

the two jars. The person who rates both as very likely may do so because he thinks that they are

equally likely, and that the displayed beads are very representative for both of the jars.

In contrast to the IBA, participants are not able to correctly calculate the posterior probabil-

ity of a jar being the source of the beads. Participants’ probability estimates are subject to noise.

As noted in Chapter 2, we can add normally distributed noise to the log-odds transformation of

the true probability of jar A. Let p A be the true probability that jar A is the source of the beads in

a given state, and let p̃ A the individual’s estimate of this probability. Then, we get

log(
p̃ A

1− p̃ A
) = log(

p A

1−p A
)+ω ·U , (3.12)

where U ∼ N (0,1). This is equivalent to

p̃ A = p A

p A + (1−p A)e−ω·U

The probability estimate of jar B being the source is p̃B = 1− p̃ A. The parameter ω says how

much the probability estimate provided by a participant tends to deviate from the true prob-

ability. The IBA has ω = 0, while an individual that has difficulties in estimating the posterior
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probability has a large ω. In the case where there are more than two jars, we can make a similar

transformation by setting one of the jars as baseline, and use the fact that the probabilities for

the jars sum to one. This is the same technique that is used in the multinomial logit model, and

we refer to [6] for the technical details.

So how should we incorporate the noise in probability estimates in the model? As noted ear-

lier, the process of calculating the action value of sampling another bead requires the agent to

calculate the expected gain in all the future states that may be visited. When performing these

calculations, the IBA utilizes the value of p A for the current state and all the possible future

states. Originally, we wanted to construct a model where there is noise every time the agent

calculates a p A. However, this requires us to integrate out all the unobserved U ’s, which turns

out to be a non-trivial task. Instead, we simplify the model by letting the agent have noise only

when calculating p A for the current state that he finds himself within. These estimates are actu-

ally "observed" as p̃ A. We write observed in quotation mark because they are strictly speaking

not observed; instead, L A and LB are observed, and these are utilized to find the individual’s

estimates of p A. The structure is illustrated in Figure 3.3 Under this model, when an agent is in

state si = nw , he calculates the action value for choosing a jar v ∈ {A,B} as

Q(d v , i ,nw ,S) = (r + cw ) · p̃v − cw , (3.13)

where the p̃ A corresponds to the estimate the participant provides in state si = nw . This is a

modified version of (3.3). Furthermore, an agent in state si = nw calculates the action value for

sampling another bead as

Q(d S , i ,nw ,S) = ∑
v∈{A,B}

p̃v ·h(i ,nw , v,d S ,S), (3.14)

which is (3.9) where P (V = v |Si = nw ) has been replaced by the subjective estimate p̃v . This set-

ting gives rise to two alternative models, as for the HCB and HCBU models. In the first model,

the agents know that they have decision noise. We call this model HCBP, where the "P" is there

to denote that the subjective probability estimates are taken into account. In the second model,

the agents are unaware that they have decision noise. We refer to this model as the HCBUP
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model.



Chapter 4

Parameter Estimation

So far, we used the IBA as a reference and constructed four models that describe the behavior

of human beings performing the beads task. Two of these models, the HCB and HCBU models,

account for bias towards making a hasty conclusion (through c s) and decision noise (through

τ). The two other models, the HCBP and HCBUP models, additionally try to capture the noise in

estimating probabilities (through ω). In this chapter, we describe how we estimate the parame-

ters in these models. First, we only look at the HCB and HCBU models. We start off by looking at

how the parameters can been obtained through maximum likelihood estimation (MLE). How-

ever, for reasons that we discuss later, we do not carry out the MLE estimation in practice. Then,

we move on to Bayesian parameter estimation. In this setting, we view the model parameters

as stochastic variables instead of fixed parameters. We make inference about the parameters

based on the resulting posterior density, by calculating the marginal means and variances. As

we cannot perform the integration of the posterior density analytically, we utilize the M-H algo-

rithm as a tool for numerical integration. We round off this chapter by showing how we estimate

the parameters in the HCBP and HCBUP models.

Before we look at the parameter estimation, we need to make a couple of modifications to the

models so that they are compatible with the experimental data we posses. In the models we

have looked at so far, the participants must make a decision at some point in the task. As noted

earlier, however, the participants in the experiment are not required to make a commitment to

a jar during the task. They can sample through all the n beads and say that they are still not

29
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sure regarding the source of the beads when the n-th bead is drawn. We handle this by imagin-

ing that when the participants calculate the action values, they assume that there is no limit on

the number of beads they can see before making a decision. In the existing models, we can let

the individuals assume that they can see nassumed number of beads instead of only n number of

beads in the task. As nassumed goes to infinity, the individuals assume that there is no limit on

the number of beads they are allowed to see before making a decision, and they act accordingly.

In theory, we can choose nassumed as large as we want in order to approximate that there is no

limit to the number of beads that can be seen. In practice, however, the parameter estimation

becomes very computationally expensive as nassumed increases. Therefore, we need to give it

moderately large value. In the following, the action values for sampling, Q(d S , ·, ·, ·, ·), are calcu-

lated as if nassumed number of beads can be drawn instead of only n. We also need to make a

modification to the data set; some participants provide probability estimates pv that are zero or

one. Our model for how these are generated does not allow for these to actually reach zero or 1,

since the logit function only approach 0 and 1 asymptotically. We handle this by adding 104 to

the instances that are 0, and subtracting this value to instances that are 1.

4.1 Maximum Likelihood Estimation

In this section, we derive the likelihood function of the hyper-parameters in the HCB model. Let

us first look at the likelihood function for the parameters of a single individual under these two

models. We use the notation introduced earlier, but we add an extra t to the subscript to denote

which task we are considering, ranging from 1 to Ntasks . That is, we denote xt i as the color of

bead i in task t and xt = {xt1, ..., xtn} as the entire displayed sequence in task t . Additionally, we

introduce x = {xt } as the collection of all the displayed sequences that are given to the agents.

Also, we let r = {(rt A,rtB )} contain the ratio of white beads in each of the jars in each of the

trials. Now, we let the subscript k ∈ {1, ..., Nind} denote the agent in question. Then, we denote

dt i k as the action taken by agent k in trial t after i beads have been drawn. Furthermore, we

let yk = {(mtk ,dtk )} denote the responses of individual k on each of the tasks, containing mtk

which is the number of beads displayed before a decision was made in task t , and dtk which

says which jar that was chosen eventually in task t . If the individual did not commit to a jar in
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the task, we define mtk to take the value n +1 for the sake of notation and dtk to take the value

0. Finally, let y = {yk : k = 1, ..., Nind} be the collection of the responses from all the individuals.

Then, the likelihood function for the micro-parameters of one single individual can be written

as

p(yk |c s
k ,τk , x,r,S) =

Ntasks∏
t=1

(
P (D tmtk = dtk |x,r,S)

)I [mtk 6=n+1]
mtk−1∏

i=1
P (D t i k = d S |x,r,S)

=
Ntasks∏

t=1

(
w(dtk ,mtk ,

mtk∑
s=1

xt s ,r,S)

)I [mtk 6=n+1] mtk−1∏
i=1

w(d S , i ,
i∑

s=1
xt s ,r,S)

=
Ntasks∏

t=1

 eQ(dtk ,mtk ,
∑mtk

s=1 xt s ,S)/τk∑
d∈Dtmtk

eQ(d ,mtk ,
∑mtk

s=1 xt s ,S)/τk

I [mtk 6=n+1]
mtk−1∏

i=1

eQ(d S ,i ,
∑i

s=1 xt s ,S)/τk∑
d∈Dt i

eQ(d ,i ,
∑i

s=1 xt s ,cS
k ,S)/τk

,

where we have used the indicator function I [·] in order to remove the first term from the product

if the participant does not commit to any jar in the task. In the hierarchical model, the contri-

bution to the likelihood function from a single individual becomes

LHC B
k (α,β,η,δ|yk , x,r ) = p(yk |α,β,η,δ, x,r )

LT P=
∫

cS
p(cS |α,β,η,δ, yk , x,r ) ·p(yk |cS ,α,β,η,δ, x,r )dcS

=
∫

cS
p(cS |α,β) ·p(yk |cS ,η,δ, x,r )dcS

LT P=
∫

cS
p(cS |α,β)

∫
τ

p(τ|η,δ)p(yk |cS ,τ, x,r )dτdcS

=
∫

cS

∫
τ

p(cS |α,β)p(τ|η,δ)p(yk |cS ,τ, x,r )dτdcS

where p(cS |α,β) and p(τ|η,δ) are the probability density functions of the gamma distribution,

respectively. The full likelihood function is the product of the likelihood functions for each in-

dividual, and it can be evaluated by using numerical integration to evaluate the double inte-

grals. The MLE estimates can be found by maximizing this function with respect to α,β,η, and

δ through numerical maximization. However, as the integrands are computationally expensive

to evaluate, it turns out that maximizing this function numerically takes is to time consuming.

Instead, we would like to impose an estimation procedure that does not require integrating out

the latent individual-specific parameters c s and τ. Moutoussis et al. rely on the Expectation-

maximization algorithm to obtain the MLE parameters. We, on the other hand, turn to Bayesian
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estimation and look at the posterior distribution of all the model parameters.

4.2 Bayesian Parameter Estimation

In the Bayesian setting, we treat the model parameters as random variables. We set a prior on

the model parameters and from this prior we obtain their posterior distribution. Then, we can

make inference about the parameters by calculating the mean and variance of the posterior dis-

tribution. Before performing the Bayesian analysis, we make a convenient re-parametrization of

the model: instead of dealing withα and β as the parameters of the gamma distribution, we use

the mean and standard deviation (SD) of the gamma distribution, i.e. µ1 = αβ and σ1 = p
αβ.

Similarly, we work with µ2 = ηδ and σ2 =p
ηδ instead of η and δ. These are more intuitive pa-

rameters to deal with because they represent the mean and SD of the sampling costs and the

mean and SD of the noise parameters and we have some understanding of what these parame-

ters mean.

4.2.1 Choice of Hyperprior

Let us treat the hyper-parameters µ1,σ1,µ2 and σ2 as random variables. We need to choose

a prior for the hyper-parameters, i.e. a hyperprior. There is no obvious choice for this prior.

We could use a diffuse hyperprior that gives vague information about the parameters. In this

case, the posterior is mainly driven by the observations. However, as Moutoussis et al. has per-

formed a similar analysis before us, we possess some prior knowledge about the parameters.

We may use this information when constructing our hyperprior. In particular, we may choose a

hyperprior with a mean that has a value close to the value of the MLE parameters obtained by

Moutoussis et al. Furthermore, there is no reason to believe that there is a dependency between

the governing parameters for the sampling cost and the governing parameters for the noise pa-

rameter, so we choose a prior such that (µ1,σ1) and (µ2,σ2) are independent. Additionally, we

note that the sampling costs and the noise parameters are non-negative. With this in mind, we

choose that the mean of the sampling cost (µ1) is exponentially distributed with a mean equal
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to some chosen constant λ1. That is,

µ1 ∼ Exp

(
1

λ1

)
, (4.1)

so that the parameter is positive with an expected value 1
λ1

. We use results obtained Moutoussis

et al. to set a value for λ1. Also, we would like the SD of the sampling cost (σ1) to be of the same

magnitude as the mean of the sampling cost (µ1). Therefore, we choose

σ1|µ1 ∼ Exp

(
1

kµ1

)
, (4.2)

so that E [σ1|µ1] = kµ1 where we can set a constant 0 < k < 1. We use the same reasoning to

obtain the hyper-prior related to µ2 and σ2, and we get

µ2 ∼ Exp

(
1

λ2

)
(4.3)

and

σ2|µ2 ∼ Exp

(
1

kµ2

)
. (4.4)

The equations (4.1) to (4.4) give us the prior density function of the hyperparameters, namely

p(µ1,σ1,µ2,σ2) = p(µ1)p(σ1|µ1)p(µ2)p(σ2|µ2), (4.5)

where all the densities are the PDF of the exponential distribution. Now, let us write out the

expression for the joint posterior density of all the parameters in the model, p(θ|y, x,r ), where

θ = (µ1,σ1,µ2,σ2,c s
1, ...,c s

Nind
,τ1, ...,τNind ) is the vector containing all the model parameters. By
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Bayes Rule (BR) and by the construction of the model, we have

p(θ|y, x,r )
BR= p(θ|x,r )p(y |θ, x,r )

p(y |x,r )

=
p(θ)p(y |c s

1, ..,c s
Nind

,τ1, ...,τNind , x,r )

p(y |x,r )

=
p(µ1,σ1,µ2,σ2)p(c s

1, ...,c s
Nind

|µ1,σ1)p(τ1, ...,τNind |µ2,τ2)p(y |c s
1, ..,c s

Nind
,τ1, ...,τNind , x,r )

p(y |x,r )

= p(µ1)p(σ1|µ1)p(µ2)p(σ2|µ2)
∏Nind

i=1 p(c s
i |µ1,σ1)p(τi |µ2,σ2)p(yi |c s

i ,τi , x,r )

p(y |x,r )

∝ p(µ1)p(σ1|µ1)p(µ2)p(σ2|µ2)
Nind∏
i=1

p(c s
i |µ1,σ1)p(τi |µ2,σ2)p(yi |c s

i ,τi , x,r ), (4.6)

where all the densities involved already have been presented. This density function provide us

with posterior information about the model parameters. Ideally, we would calculate sample

mean and variance analytically by integrating this function. However, analytical solutions can-

not be obtained in this case. Instead, we choose to utilize the M-H algorithm in order sample

from the distribution. Through this sample, we empirically obtain information about the pos-

terior distribution of the parameters in the model. For example, the mean of the distribution is

estimated by calculating the sample average. We have omitted the normalizing constant in the

last line in (4.6) since the M-H algorithm only needs the ratio of the posterior densities, causing

the normalizing constant to cancel.

4.2.2 Choice of Proposal Distribution for M-H

We use the H-M algorithm to sample from the posterior in (4.6). As noted in Section 2.2, the

algorithm requires us to choose a proposal distribution, which together with the acceptance

probability generates the next state of the Markov chain. Though this function can be chosen

arbitrarily, the choice may strongly affects the rate of convergence and the mixing of the chain.

We recall that rate of convergence means how many iterations it takes for the chain to reach the

stationary distribution from an arbitrary starting point. The mixing concerns how quickly the

chain explores the support of the target distribution and how correlated the samples produces
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by the chain are. Both the rate of convergence and the mixing are influenced by the spread of

the proposal distribution. Therefore, we should construct a proposal distribution for which the

spread can be tuned. A way of checking whether the spread of the proposal density seems to be

appropriate is by calculating the acceptance rate of the proposals. We bear this in mind when

selecting a proposal distribution for our implementation.

As we would like to sample from the posterior density of θ, we set π(θ) = p(θ|y, x,r ) in the H-M

algorithm described in Section 2.2. We use component-wise updating. This means that only

one of the components of the parameter vector θ may change value at each iteration while the

other components remain as they were in the previous time step. This is convenient because it

allows us to work with univariate distributions. Since all the parameters in the parameter vector

by definition are non-negative, we would like to have proposal distributions that only sample

positive candidates; a candidate with negative value is guaranteed to be rejected as the poste-

rior density is zero, which in turn causes the acceptance probability to be zero. Letting θk be the

k-th parameter in the parameter vector and θ̃k be the k-th element of the candidate vector (with

the rest of the elements in this candidate vector being equal to the the corresponding element

in θ(t )), we use a uniform proposal distributions that covers the current point,

θ̃k |θ(t )
k ∼ Unif

(
θ(t )

k

1+εk
,θ(t )

k (1+εk )

)
, εk > 0, k = 1, ..,2 ·Nind +4. (4.7)

Thus, we have the proposal density functions

qk (θ̃|θ(t )) =


1(

1+εk− 1
1+εk

)
θ(t )

k

if 1
1+εk

θ(t )
k < θ̃k < (1+εk )θ(t )

k ,

0 otherwise.

(4.8)

In other words, the candidate parameters are sampled uniformly within the interval (
θ(t )

k
1+εk

,θ(t )
k (1+

εk )), which covers the current parameter value, θ(t )
k . These proposals will 1) ensure that the can-

didate parameters always are positive, and 2) allow for adjusting the spread through the tuning

parameters εk . As εk increases, the spread/variance of the proposal gets larger since the support

of the uniform proposal increases.
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We proceed by writing out the Metropolis-Hastings ratio we get when using the proposal dis-

tributions given in (4.7). By inserting the posterior density given in (4.6), we get

Rk (θ̃|θ) = p(θ̃|y, x,r,S)qk (θ|θ̃)

p(θ|y, x,r,S)qk (θ̃|θ)

= p(µ̃1)p(σ̃1|µ̃1)p(µ̃2)p(σ̃2|µ̃2)
∏Nind

i=1 p(c̃ s
i |µ̃1, σ̃1)p(τ̃i |µ̃2, σ̃2)p(yi |c̃ s

i , τ̃i , x,r,S)

p(µ1)p(σ1|µ1)p(µ2)p(σ2|µ2)
∏Nind

i=1 p(c s
i |µ1,σ1)p(τi |µ2,σ2)p(yi |c s

i ,τi , x,r,S)
· θk

θ̃k
.

Since only parameter number k is sampled in each iteration, all the terms that do not involve

this parameter cancel. Therefore, if k = 1 then θ1 = µ1 is the parameter that is sampled, and all

the terms that do not involve this parameter vanish. Thus, we get

R1(θ̃|θ) = p(µ̃1)

p(µ1)

p(σ1|µ̃1)

p(σ1|µ1)

Nind∏
i=1

p(c s
i |µ̃1,σ1)

p(c s
i |µ1,σ1)

· µ1

µ̃1

When k = 2, the parameter θ2 =σ1, is sampled and the M-H ratio is

R2(θ̃|θ) = p(σ̃1|µ1)

p(σ1|µ1)

Nind∏
i=1

p(c s
i |µ1, σ̃1)

p(c s
i |µ1,σ1)

· σ1

σ̃1
.

For k = 3, the parameter θ3 =µ2 is sampled and we get

R3(θ̃|θ) = p(µ̃2)

p(µ2)

p(σ2|µ̃2)

p(σ2|µ2)

Nind∏
i=1

p(τi |µ̃2,σ2)

p(τi |µ2,σ2)
· µ2

µ̃2
.

For k = 4, the parameter θ4 =σ2 is sampled, and we get

R4(θ̃|θ) = p(σ̃2|µ2)

p(σ2|µ2)

Nind∏
i=1

p(τi |µ2, σ̃2)

p(τi |µ2,σ2)
· σ2

σ̃2
.

These four first elements are the hyper-parameters. For k ∈ {5, ...,4+Nind} one of the sampling

cost micro-parameters is sampled. So θk = c s
i , where i = k −4, and we get

Rk (θ̃|θ) = p(c̃ s
i |µ1,σ1)

p(c s
i |µ1,σ1)

p(yi |c̃ s
i ,τi , x,r,S)

p(yi |c s
i ,τi , x,r,S)

· c s
i

c̃ s
i

.
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For k ∈ {5+ Nind, ...,2Nind}, one of the noise micro-parameters are sampled. So θk = τi where

i = k −4−Nind, and we get

Rk (θ̃|θ) = p(τ̃i |µ2,σ2)

p(τi |µ2,σ2)

p(yi |c s
i , τ̃i , x,r,S)

p(yi |c s
i ,τi , x,r,S)

· τi

τ̃i
,

where i = k −4−Nind. The M-H ratios R1,R2,R3 and R4 are relatively computationally inexpen-

sive to calculate as they only involve the gamma and exponential PDF’s. For k > 4, however,

Rk involves calculating p(yi |c s
i ,τi , x,r,S) which requires some computation time. When im-

plementing the M-H algorithm, we use two ’tricks’ to make the algorithm as efficient as possi-

ble. First of all, we make sure that θ1,θ2,θ3 and θ4 are sampled more frequently than θk , k > 4.

Specifically, we have chosen that 50% of the iterations are designated the first four parameters.

Secondly, we continually store the likelihood values p(yi |c s
i ,τi , x,r,S) for each of the individu-

als. Then, we only have to evaluate the computationally expensive likelihood value once instead

of twice every time we calculate the M-H ratio for k > 4. We also note that we always work on

logarithmic scale when calculating the probabilities, ratio of probabilities and product of prob-

abilities in the implementations. We do this to avoid problems caused by numerical instability.

In the next chapter, we perform a simulation study and sensitivity analysis to see how well the

algorithm works.

4.3 Parameter Estimation in the HCBP and HCBUP Models

As we recall from section 3.3.3, the HCBP model adds yet another individual-specific parameter

to each individual. In order for the HCBP model to be fully Bayesian, we need to put a prior

1 on the parameter vector θ∗ = (ω1, ...,ωNind ), and write out the posterior density of the model

parameters. As before, we let y be the collection of all the observations that have to do with the

DTD responses, and θ = (µ1,σ1,µ2,σ2,c s
1, ...,c s

Nind
,τ1, ...,τNind ). Furthermore, we let ρ̃k be all the

probability estimates provided by participant k and ρ̃ be the collection of all the participants’

1Alternatively, we could build an hierarchical structure by having a prior with unknown parameters and putting
a hyperprior with known parameters on top.
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estimates. Then, the posterior density in this model can be written as

p(θ,θ∗|y, ρ̃, x,r ) ∝ p(y, ρ̃|θ,θ∗, x,r )p(θ,θ∗)

= p(ρ̃|θ,θ∗, x,r )p(y |θ,θ∗, ρ̃, x,r )p(θ,θ∗)

= p(ρ̃|θ∗, x,r )p(y |θ, ρ̃, x,r )p(θ)p(θ∗)

= p(ρ̃|θ∗, x,r )p(θ∗) ·p(y |θ, ρ̃, x,r )p(θ).

As the posterior density can be written as a product of one function that involves θ∗ and one

that involves θ, these parameter vectors are posteriorly independent. As a consequence, we can

make inference on these parameter vectors separately. The estimate of θ∗ obtain the exact same

value in the HCBP and HCBUP models. We perform a Bayesian analysis on θ, using the same

prior as we did for the HCB and HCBU models in section 4.2.1. To access information about the

posterior density, we utilize the M-H algorithm with the same proposal distribution as for the

HCB and HCBU models. To infer about θ∗, on the other hand, we use MLE. We could have es-

timated this vector as Bayesians, but we find MLE more convenient because the estimates have

a simple analytical solution in this case. Next, we write out the expression for the MLE estimate

of ω2 for a single individual. Let ρA,l be the probability of jar A being the source of the beads,

where l ranges over all the N states where the participant provides a probability estimate. Sim-

ilarly, let ρ̃A,l be the probability estimate that the particular individual actually provides. Then,

define zl = log(
ρA,l

1−ρA,l
) and z̃l = log(

ρ̃A,l
1−ρ̃A,l

), which are the probabilities mapped to the real line.

In our model, we have z̃l ∼ N (zl ,ω2). By writing out the log-likelihood function, differentiating

with respect to ω2 and setting the expression equal to zero, we obtain

ω̂2 = 1

N

N∑
l=1

(z̃l − zl )2. (4.9)

This expression gives us the estimates of ω for each of the individuals in the data set.

In this chapter, we have proposed a procedure of estimating the parameters in the four mod-

els. Before applying these estimation procedures on the actual data set, we would like to see

how well they work. In order to do so, we perform a simulation study. We implicitly also get to



4.3. PARAMETER ESTIMATION IN THE HCBP AND HCBUP MODELS 39

check whether there seems to be any programming errors. In the next chapter, we carry out the

simulation study.



Chapter 5

Simulation Study

In this chapter, we simulate some experiment responses under the model(s) built in Chapter 3

and use our implementation of the H-M algorithm to sample from the resulting posterior dis-

tribution. There are two main purposes of performing this analysis. First of all, we would like

to see whether our choice of proposal distribution in the algorithm works well. This involves

investigating the convergence and the mixing of the Markov chain. Secondly, we aim to figure

out how accurately we are able to retain the parameters in the model when using data from a

reasonable number of participants and tasks per participant. This involves checking how sensi-

tive the algorithm is to the choice of hyperprior. However, we implicitly also get to confirm that

the implementation is made correctly. If there are any major programming errors, these should

be detected during this analysis. We have carried out a simulation study on all the four models,

but as the results are fairly similar, we only present the simulation study on the HCB model in

this report.

5.1 M-H Simulations Under Different Scenarios

We run a total of seven simulations in this study. Each simulation consists of two steps. The

first step is response generation. The responses are generated by first choosing some hyper-

parameters, then sampling micro-parameters for a chosen number of individuals, and finally

simulating responses to some chosen tasks for each of these individuals. The second step is

parameter estimation. Here, we specify some parameters for the hyperprior, and run H-M algo-

40
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rithm with some chosen tuning parameters on the responses that were generated.

The setup for each of the simulations is summarized in table 5.1. They all have in common

that n = nassumed = 10. Hence, ten beads can be drawn, and the participants know that they

must make a commitment to a jar at some point in the sequence of ten beads. As we recall from

Section 4.2.2, the proposal distribution is tuned by the εk parameters, each of these specifying

the possible step size when there is a proposal for component k of θ(t ). It is not necessary to

tune the proposal distributions for the c s parameters individually, so we set ε5 = ... = ε4+Nind .

The same goes for the τ parameters, so we give all of them the same tuning by setting ε4+Nind =
... = ε4+2·Nind . Now, we define the vector ε = (ε1,ε2,ε2,ε4,ε4,ε5,ε5+Nind ), which contains all the

information about the tuning of the proposal distribution.

Each of the simulations serves to illustrate some point, either by itself or when compared to

another simulation. From one simulation to another, we modify only one component in order

to see the effect of changing that particular component. Before we go into the details of each

simulation, let us give a brief overview of what points we are trying to bring forth through these

simulations. Simulation 1 and simulation 2 aim to illustrate the effect of tuning the proposal

distribution. Simulation 1 and simulation 3 are designed to show the impact of including more

individuals in the data set. Simulation number 1 and 4 show the consequence of giving more

tasks per individual. Simulation number 1 and 5 aim to illustrate how sensitive the parameter

estimation is to the choice of hyperprior parameters λ1 and λ2.

In the first scenario, we have chosen some moderately 1 large values for hyperparameters,

namely µ1 = 2,σ1 = 1,µ2 = 5, and σ2 = 3. We sample 100 individuals based on these hyper-

parameters, and let them respond to the four tasks given in Table 1.1. The "average individual"

generated under this scenario has parameters c s =µ1 = 2 and τ=µ2 = 5. With these parameters,

the probability of committing to jar A, jar B, and choosing to continue sampling are respectively

14%, 0.0001%, and 86% after one beads is drawn in task 1. In Figure 5.1, we present the re-

sponses/observations that were produced. For the parameter estimation, we choose the values

1Recall that we have chosen r = 0 and cw 100 as references for the model.
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Table 5.1: The scenarios in the simulation study. The symbol ’*’ Means that ε = (1,1,1,1,1,1),
and ’**’ means that ε== (0.5,0.5,0.5,0.5,2,2)

Data Generation Experiment Hyperprior Metropolis-Hasings

SIM # µ1 σ1 µ2 σ2 Nind ntrials n = nassumed λ1 λ2 k ε θ(0) Ni t

1 2 1 5 3 100 4 10 0.25 0.25 0.5 * 10 1.0 ·106

2 2 1 5 3 100 4 10 0.25 0.25 0.5 ** 10 1.0 ·106

3 2 1 5 3 200 4 10 0.25 0.25 0.5 * 10 1.2 ·106

4 2 1 5 3 100 8 10 0.25 0.25 0.5 * 10 1.0 ·106

5 2 1 5 3 100 4 10 0.1 0.1 0.5 * 10 1.0 ·106

λ1 = λ2 = 0.25 in the hyperprior. Therefore, hyperprior says that E [µ1] = E [µ2] = 1/0.25 = 4,

which is reasonably close to the true values. To study how fast the M-H algorithm converges,

we choose to let all the components of θ(0) have the value 10 so that they are reasonably far

away from the values that were used to generate the responses. Let us take a look at the M-H

simulation for this scenario. In Figure 5.2, we show trace plots of the Markov chain for some

selected parameters. One the first row, we have trace plots of the hyperparameters governing

the sampling costs (namely µ1 and σ1) as well as the trace plot of an individual-specific sam-

pling cost parameter (c s
1). Similarly, on the second row, we have the trace plots of µ2, σ2, and

τ1. We ran 1 ·106 iterations of the M-H algorithm. From these trace plots, it seems that it takes

a while before convergence is reached. The chain makes some large leaps in the first iterations,

and then it gradually moves towards a state where the parameters have values that are close to

those used for response generation. It looks like about 5 ·104 iterations are needed before all the

parameters seem to fluctuate randomly about some value. These plots also give us an indica-

tion of bad mixing; we can see that the samples fluctuate about some mean in a cyclic pattern

with low frequency. In other words, the samples seem to have a large auto-correlation. This is

particularly seen for the hyper-parameters. As we recall, we have decided that as much as 50%

of the iterations of the M-H algorithm should perturb one of the hyperparameters components

of θ. Lowering this percentage may decrease the auto-correlation of the hyper-parameters.

In Figure 5.3, we have plotted the acceptance rate for each parameters. The acceptance rate for

a parameter is the proportion of times the candidate was accepted when there was a proposal

for that particular parameter. As we recall, the rule of thumb is that acceptance rates should lie
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Figure 5.1: SIM1. The responses in simulation number 1. The plot shows how many individuals
that responded after the first, second, etc bead was shown. There were in total 100 individuas in
the generated data set. The true probability of each of the jars being the the source is displayed
on the right y-axis. Table 1.1 shows the ratios of black, white, and red beads in each of these tasks.
Since the participants had to make a commitment during each task, the ’No Commitment’ bar
is empty.
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Figure 5.2: SIM1. Trace plots for some of the parameters in simulation study number 1. In the
first row, the trace plots of the hyperparameters of c s and one of the c s parameters are plotted.
The plots on the second row show the traces of the hyperparameters of τ as well as one of the τ
parameters. We have chosen a burn-in period of 2 ·105 iterations.
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Figure 5.3: SIM1. Acceptance rates for the parameters in simulation study number 1.



5.1. M-H SIMULATIONS UNDER DIFFERENT SCENARIOS 45

between 20% and 50%. In this simulation, the acceptance rates are about 10% for the hyper-

parameters and 50% for the individual-specific parameters. Therefore, tuning the proposal by

decreasing ε’s for the hyperparameter proposals and increasing them for the proposals of c s ’s

and τ’s should be considered.

Yet another way to monitor the Markov chain is by checking the correlation between the pa-

rameters in θ(t ). The correlation matrix with the correlation between all pairs of parameters is

visualized in the left panel in Figure 5.4. In the right panel of this figure, we can see the correla-

tion between the hyperparameters only. These plots show that there is some positive correlation

betweenµ1 andσ1, and betweenµ2 andσ2. These sample correlations are 0.64 and 0.55, respec-

tively. The correlation seen for these parameters is caused by the construction of the model. We

chose µ1 and σ1 to be a priori dependent, as we recall from Figure 3.1. This dependency is re-

flected in the posterior distribution. The same holds for µ2 and σ2. Furthermore, it appears to

be some positive correlation between µ1 and several of the c s
k parameters, and between µ2 and

several of the τk parameters. These correlations are also caused by the structure of the model.

Looking at the left panel in Figure 5.4, we see that there generally is some negative correlation

between c s
i and τi . Since the c s and τ are a priori independent, the correlation seen in the pos-

terior must be caused by the likelihood function of θ. We recall that the model parameters c s

and τ explain some of the same observed behavior. As c s increases, the individual will tend to

commit to a jar early. But as τ increases, the person will also tend to commit earlier. Therefore,

a person that exhibits many early commitments can either have a large c s and a moderate τ, or

he can have a large τ and a moderate c s . This may cause some negative correlation between c s
i

and τi in the posterior density. In Figure 5.5, we show scatter plots of some selected pairs of pa-

rameters. We can clearly see the positive correlation between µ1 andσ1 and between µ2 andσ2.

We also see that there is some negative correlation between c s and τ, especially for individual

100.

Let us look at the parameter estimates we obtain from this sample. We remove the first 2 ·105

iterations as a burn-in period. The histograms of the remaining sample are displayed in Figure

5.6. These histograms show the (empirical) marginal distribution of the parameters. By taking
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Figure 5.4: Simulation 1: The left panel visualizes the correlation matrix for all the parameters.
The right panel has zoomed in on the top left corner of the correlation plot in the left panel. It
shows the correlation matrix of the hyperparameters only.

Figure 5.5: SIM1. Scatter plot of pairs of parameters. In the top left panel we have µ1 versus σ1

and in the top right we have µ2 versus σ2. In the bottom left and bottom right we have c s
1 versus

τ1 and c s
100 versus τ100, respectively.
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Figure 5.6: SIM1. Histograms of some of the parameters after removing the burn-in period.
The true parameter values that were used to generate the individuals and their responses are
plotted as red horizontal lines. These histograms represent the shape of estimated marginal
distributions of the posterior p(θ|y, x,r ) given in (4.6).

Table 5.2: Summary statistics for some marginal posterior distribution in simulation study 1, 3,
and 4. From simulation 1 to simulation 3, we double the number of individuals. From simula-
tion 1 to simultion 3, we double the number of taks per individual.

Sample Mean (Sample SD))

θk True SIM 1 SIM 3 SIM 4

µ1 2.0000 1.9517 (0.2209) 1.8543 (0.1379) 1.8811 (0.1779)
σ1 1.0000 1.0904 (0.2850) 0.9678 (0.1727) 1.0995 (0.2118)
µ2 5.0000 4.4157 (0.4221) 4.9354 (0.3647) 4.9321 (0.3536)
σ2 3.0000 2.0387 (0.4709) 2.6645 (0.4154) 2.5256 (0.3475)
c s

1 0.3178 1.2755 (0.5765) 1.1225 (0.5081) 1.1570 (0.5664)
τ1 3.8371 3.7476 (1.4606) 3.8785 (1.5321) 3.8673 (1.1590)

Sample Size - 0.8 ·106 0.6 ·106 0.8 ·106
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the sample averages, we get the empirical Bayes estimates of the parameters. These estimates

and the estimates of the SD of the marginal distributions are shown in Table 5.2. Based on this

table and the histograms in Figure 5.6, it seems that by using 100 individuals and four tasks

per individual, we are able to estimate the hyperparameters reasonably accurately. In order to

visualize how well we are able to retain all the model parameters, we have plotted the true pa-

rameters versus the estimates in Figure 5.7. From this plot, we can clearly see the "shrinkage

towards the mean" effect of the hierarchical model. The estimates are somewhat squeezed ver-

tically towards the estimated hyperparameter that specifies the mean of the prior distribution.

In Figure 5.8, we see a scatter plot of the individuals in the data set; the true c s is plotted against

the true τ for each individual. In the same plot, we have also included the a scatter plot of the in-

dividuals based on their estimated parameters. This figure also clearly illustrates the shrinkage

effect. The individuals that have extreme parameters are pulled towards the estimated mean of

the prior. So individuals with a large c s tend to get strongly pulled towards µ̂1, and those with

large τ are likely to be pulled towards µ̂2. We note that the sample size probably is somewhat

slim. Even though it contains 8 · 105 values, many of these are duplicates or nearly duplicates

that give little extra information. Since the mixing is reasonably bad, it takes a very large sample

to represent the distribution well.

Now, we move on to simulation number 2. As we saw in simulation number 1, the acceptance

rates were somewhat small for the hyperparameters and somewhat large for the individual-

specific parameters. Let us tune the M-H algorithm by decreasing the spread of the former

and increasing the spread of the latter. Specifically, we set ε = (0.5,0.5,0.5,0.5,2,2) instead of

ε = (1,1,1,1,1,1) . We run the M-H algorithm on the exact same data as in simulation study

number 1. That is, we have the same individuals 2 and the same responses for each individual.

We want to see how this affects the the acceptance rate, mixing and convergence of the algo-

rithm. We start the chain in the same state as for simulation 1 and we run the same number of

iterations. The resulting trace plots are shown in Figure 5.9. This tuning does change the accep-

tance rates. For µ1,σ1,µ2, and σ2 they have increased to 0.16, 0.25, 0.12, and 0.26 respectively.

The average acceptance rate for c s and τ have decreased to 0.44 and 0.31, respectively. Com-

2An individual in this context means a pair (c s ,τ)
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Figure 5.7: SIM1. The true parameters that generated the responses versus the estimates ob-
tained through the Bayesian analysis in simulation study number 1. We can clearly see the
"shrinkage" effect on the c s parameters. All the individuals’ sampling costs estimates have a
value that is close to the estimated mean of the prior.
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Figure 5.9: SIM2. Trace plots for some of the parameters in simulation study number 2.

paring the trace plots of simulation 1 and 2 in Figure 5.2 and 5.9 respectively, it does not seem

like the tuning improved the mixing. On the other hand, it turns out that the "improvement" in

the tuning actually slowed down the rate of convergence. It takes about 4 ·105 iterations before

stationarity appears to be reached. What we take home from these two simulations, is that the

tuning may greatly affect the rate of convergence. However, we should be careful drawing gen-

eral conclusion from this single example.

In simulation 3, we extend the generated data set from simulation 1. We include the same

100 individuals and their responses as in simulation 1, but we also add another 100 individu-

als sampled with the same hyperparameters as in simulation 1. We would like to see how this

improves the parameters estimation. In advance, we expect an improvement in the hyperpa-

rameter estimates. This is because we include more individuals in the data set, and this should

give us more information about the distribution from which they are sampled. At the same time,

we may expect the rate of convergence to decrease in the M-H algorithm, since the number of

parameters are almost doubled. The trace plots for the M-H samples obtained from this data set

look reasonable similar to those of simulation 1. It appears that it takes longer for the chain to



5.1. M-H SIMULATIONS UNDER DIFFERENT SCENARIOS 51

0 2 4 6 8 10 12 14
True θk

0

2

4

6

8

10

12

14

E
st
im

a
te
d
θ
k

True vs. Estimated Parameters

µ1

σ1

µ2

σ2

Hyperparameters

c
s

τ

Figure 5.10: SIM4. The true parameters that generated the responses versus the estimates ob-
tained through the Bayesian analysis in simulation study number 4. The shrinkage is less than
in simulation number 1.

converge, as anticipated. The estimates of the marginal sample means and SD, after removing

an appropriate burn-in period, are printed in Table 5.2. We can see that the estimate of µ1 actu-

ally is somewhat further away from the true value in simulation 3 than in simulation 1. However,

we can see that the sample SD of the marginal distribution has decreased, as we expect. For the

other hyperparameters we see that the estimates have improved and the SD’s have decreased as

we move from simulation 1 to simulation 3. This coincides with what we expect.

In simulation 4, we would like to see what happens if we increase the number of tasks per

individual. We use the same individuals, tasks and responses as in simulation 1, but we give the

individuals four additional tasks and record their responses. In three of these additional tasks,

there are two sources of beads, and each with some ratio of white to black beads. In the last

additional task, there are four possible sources, where three of the sources have black and white

beads, and the fourth has red and black beads. The fourth jar is not the true source in the last

task, so no red beads are displayed. The four extra tasks are the same for all the individuals. With

respect to the rate of convergence and mixing, the trace plots of simulation 4 look fairly similar

to those of simulation 1. We expect an improvement in the individual-specific parameters since
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more information is gathered from each individual. In turn, we may expect this to improve the

hyperparameter estimates, because the more precise information about the individuals should

lead to more precise information about the population they come from. The values for some

of the parameters estimates are printed in Table 5.2. The estimates of the hyperparameters are

reasonably similar as those in simulation 1, and the sample SDs are slightly smaller than in sim-

ulation 1. In Figure 5.10, we have plotted the true parameters versus the estimates. We can

clearly see that the shrinkage effect is smaller than in simulation 1, especially for the τ parame-

ters. It appears that the individual-specific parameters in general are attained more accurately

in simulation 4 than in simulation 1, as expected when more information is gathered from each

individual.

In simulation 5, we want to check how sensitive the model is to the hyperprior. We use the

same individuals and responses as in simulation 1. However, we make changes to the Bayesian

analysis by changing the values of the parameters in the hyperprior. More specifically, we de-

crease λ1 from 0.25 to 0.1 and λ2 from 0.25 to 0.1. This makes the hyperprior less informative,

as the variance is increased. It turns out that this modification has very little effect on the pa-

rameter estimates. As seen in Figure 5.11, the marginal posterior densities are almost identical

in simulation 1 and simulation 5.

This simulation study has given us an impression of how well the H-H algorithm works and

how accurately we are able to retain the true model parameters. We have seen that the mixing is

reasonably bad. Consequently, we need to perform many iterations of the M-H algorithm. The

bad mixing may be due to a poor choice of proposal distribution for the M-H algorithm. We

have also seen that we can make good inference about the hyperparameters when the data set

consists of 100 individuals with four tasks per individual. The real data set that we analyze in this

paper consists of 73 individuals who have performed four tasks each. There is reason to believe

that this is enough data to make good inference about the population. However, with only four

tasks per participants, the individuals with extreme parameters are not so easily detected. We

are now ready to take a look at the data set of real human beings performing the beads task.
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Figure 5.11: Simulation 1 versus simulation 5. We can see that the change in the parameters in
the hyperprior have very little effect on the posterior distribution.



Chapter 6

Data Set and Results

In this chapter, we fit the models to experimental data from the Department of Psychology at the

"Norwegian University of Science and Technology". The data set consists of the responses of 73

participants performing the tasks in Table 1.1. To our knowledge, none of these participants

have been diagnosed with psychosis. We start by looking at the raw data set. Then, we proceed

by estimating the parameters under the four models and dicuss what we observe.

6.1 The Raw Data

In this section, we present the raw data from a group of people performing the experiment. We

recall that there are two types of responses that are recorded in this experiment. The first type

has to do with the DTD part of the experiments, i.e. the number of beads drawn before a com-

mitment to a jar is made and which jar that is chosen. The second type has to do with the DTC

part of the experiment, and it consists of the likelihood estimates for each of the jars after each

bead is drawn.

Figure 6.1 visualizes the all DTD responses for each of the four tasks. The x-axis shows the

i -th bead that is drawn in the task. The left y-axis represents how many participants that re-

sponded after seeing the i -th bead, and the vertical bars are associated with this axis. The color

of the bars provide information about which of the jars that was chosen. The right y-axis is asso-

ciated with the solid lines, which are the true probabilities for each of the jars being the source

54
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Figure 6.1: DTD responses in the data set. The plot shows how many individuals that responded
after the first, second, etc bead was shown. There were in total 73 individuas in the data set. The
true probability of each of the jars being the the source is displayed on the right y-axis. Table 1.1
shows the ratios of black, white, and red beads in each of these tasks.
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Figure 6.2: DTC responses in the data set. The solid line is the posterior probability of the jar
being the source of the beads. The dashed line is the probability estimate, p̃, averaged over all
the individuals.[Rewrite this caption!]

when the first i beads have been drawn. The color of the drawn bead is indicated on the x-axis.

As we can see, the participants choose the jar with the largest posterior probability of being the

in most of the cases where a commitment is made. There are only a few instances where a jar

that is not the most likely is chosen. It is also worth noticing that for each of the tasks, there is

a large proportion of the individuals that do not commit to any jar during the course of the ten

beads. For the first task, we can see that the probability of jar A being the true jar is 0.9 already

after the firs bead, and the probability only gets larger as more beads are drawn. Still, as much

as 21% of the participants do not commit to any jar in this task.

In Figure 6.2, we present the DTC responses in the data set. The solid line shows the poste-

rior probability of the source being a certain jar. The dashed line, on the other hand, shows

the average of the probability estimates provided by the participants. We can see that on aver-
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Table 6.1: The empirical Bayes estimates of some of the model parameters. The sample SD’s are
shown in parenthesis.

Model
HCB HCBU HCB-P HCBU-P

µ̂1 0.0004 (0.0007) 0.0201 (0.0148) 0.0149 (0.0034) 2.9378 (1.3144)
σ̂1 0.0008 (0.0012) 0.0511 (0.0397) 0.0055 (0.0030) 8.6428 (4.2397)
µ̂2 11.4663 (2.4699) 16.2805 (3.6602) 9.4664 (1.3642) 10.0232 (1.0897)
σ̂2 19.3062 (4.6289) 30.9884 (7.4775) 8.9336 (1.8960) 7.3853 (1.3855)
ĉ s

1 0.0001 (0.0004) 0.0028 (0.0081) 0.0158 (0.0072) 0.2825 (0.3585)
τ̂1 2.8622 (1.2025) 3.8465 (2.0799) 6.2683 (1.0397) 9.8286 (2.9514)

age, the probabilities provided by the participants are less extreme than the true probabilities.

Furthermore, the participants tend to react strongly when a bead of a different color than its

preceding beads shows up. This is for example seen when the fourth bead is drawn in Task 1.

6.2 Model Results and Discussion

We fit model parameters under the HCB, HCBU, HCB-P, and HCBU-P models. To account for

the fact that the participants are not required to make a commitment to any jar during the task,

we have used that nassumed = 20. We use the M-H algorithm with the tuning parameters as in

simulation 1 in Table 5.1. The resulting (empirical) mean and SD of the marginal distribution of

some selected parameters are shown in Table 6.1.

Let us start by analyzing the posterior distribution of the model parameters attained under

the HCB model. This is the same model as the one introduced by Moutoussis et al.. In Figure

6.3, we present the trace plots for the hyperparameters µ1, σ1, µ2, and σ2, and the trace plots

for c s and τ for one of the individuals. After checking the trace plot of every single parameter, it

looks like convergence is attained after about 4 ·105 iterations. The corresponding histograms

after removing the burn-in period are shown in Figure 6.4. In agreement with Moutoussis et al.,

we find that the mean of the sampling costs (µ1) is near zero. Furthermore, we find that the

mean of the decision noise parameters (µ2) is of the same magnitude as the one obtained by

Moutoussis et al.. Specifically, we find µ̂2 ≈ 11.47, while Moutoussis et al. obtained the value
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Figure 6.3: Trace plot for HCB model results.

5.09 for the control group and the value 12.07 for the paranoid group.

Even though each individual only responds to four tasks, it is interesting to take a look at the

estimates of the individual-specific parameters. In Figure 6.5, we show the histograms of the ĉ s

and τ̂. All the individuals get an estimated sampling cost that is less than 1.3 ·10−3, which is ba-

sically zero since it has negligible effect on the action value for sampling . For the decision noise

parameter τ, the estimates are ranging from 0.0011 to 60. We can see that there is a large group

of individuals that obtain a τwhich is very close to zero. 11 individuals have τ̂with a magnitude

around 0.0011. A person with τ= 0.0011 is basically behaving as an IBA. Taking a closer look at

the 11 individuals with smallest τ parameters, we find that all these individuals sampled 10 all

beads without committing to any jar in the end, in each of the four tasks. It makes sense that

these get very small estimates of τ, because an IBA with c s = 0 would with probability 1 sample

through all the beads without making any commitment to a jar. The prior, however, is prevent-

ing these individuals from obtaining τ̂= 0.

The individuals have estimated sampling costs that are virtually zero. The decision noise pa-
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Figure 6.4: HCB model restult. Histograms of some of the parameters after removing the burn-in
period.
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Figure 6.5: HCB model results. From left to right, the plots respectively show histogram of the
estimated sampling costs and histogram of estimated decision noise parameters.
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Figure 6.6: Action probabilities for different individuals under the HCB model. The task is Task
3 in Table 1.1. These plots help us interpret the values of τ̂ that we obtain in the data set.

rameters are ranging from 0.0011 to 60. So what does this imply on the individuals’ behavior?

We are curious to know if τ= 60 is so large that the agent gives a weight of 1/3 to each action and

therefore makes arbitrary choices. We recall that an agent chooses stochastically between each

action, and the probability of each action is weighted based on the action values. Let us take a

closer look at the expected behavior of agents with c s = 0 for different values of τ. In Figure 6.6,

we have plotted the action probabilities in Task 3 for individuals with τ= 0.0011, τ= 10, τ= 30,

and τ = 60. As we can see, the agent with τ = 0.0011 deterministically chooses to sample an-

other bead in each state. As τ increases, the agent becomes less prone to sampling. Instead, the

probability of choosing a jar increases. The probability of choosing the more likely jar is always

larger than the probability of choosing the less likely jar, as we known theoretically from 3.10.

For an individual with τ = 60, the probability of sampling after the first bead is shown (in Task

3) is about 0.35, which means that the probability of committing is about 0.65. This probability
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Figure 6.7: In the left panel, we see the ω̂2 as well as their 95% confidence intervals. In the right
panel, we have plotted a histogram of the esimated ω̂2.

remains reasonable stable throughout the task. However, the weight given to each of the jars

fluctuates as new beads are drawn. After the first bead is drawn, the probability of choosing the

jar that is more likely of being the source is about 0.45. These plots give us some understanding

of the τ̂ that we obtain in the data set.

Next, we look at the MLE estimate we obtain for θ∗ = (ω1, ...,ωNind ) in the HCB-P and HCBU-P

models. In the left panel in Figure 6.7, we have plotted each ω̂2
i and their estimated 95% confi-

dence intervals based on the observed Fisher information. All ω̂ lie within the range (3.24,7.19).

As we recall from (3.12), we have assumed that the noise term is additive and normally dis-

tributed. Therefore, if the assumption is reasonable, we should see that the residuals are nor-

mally distributed with a mean equal to zero and an variance equal toωi for each individual i . In

Figure 6.8, we show residual plots for two arbitrary individuals. The residual plots for the rest of

the individuals are reasonably similar to these. We can see that the normality assumption is not

very appropriate. The grey vertical lines show where a new trial starts. For the two first trials,

we can see that the residuals increase in absolute value as more beads are drawn. This trend is

caused by our choice of using the log-odds function for mapping the ρ to the real line; when ρ

departs from 0.5 towards 0 or 1, the difference between log( ρ
1−ρ ) and log( ρ−∆

1−(ρ−∆) ) increases. As a

result, an individual that for example underestimates the probability ρ with ∆= 0.05, the effect

of this error is much larger (on the transformed scale) if the ρ = 0.90 than if ρ = 0.5. Therefore,
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Figure 6.8: Residual plots.

the error in probability estimate that is made when the true probability is close to 0 and 1 has a

very large impact on ω̂.

Let us compare the results obtained in the four models. Comparing the hyperparameter es-

timates in Table 6.1, we note the following. First of all, we see that when moving from the HCB

model to the HCB-P model, µ̂2 decreases. The same is seen when moving from the HCBU to the

HBCU-P model. In other words, the expected value of the noise parameter decreases. This may

be because the decisions made by the participants are more reasonable when we consider how

likely they think that each jar is. Secondly, we note thatσ2 hat is reasonably large in all the mod-

els, especially for the HCB and HCBU models. This suggest that there is a large variety within

the population. Thirdly, is appears that the sampling costs actually play a role in the HCBUP

model, in contrast to the other three models.



Chapter 7

Conclusion and Future Work

In this report, we have introduced four alternative models that attempt to explain the decision-

making process for individuals performing the beads task. These models use the IBA as a ref-

erence and adds noise to his behavior. In two of the models, the HCB and the HCBU models,

there is one parameter (c s) that captures the eagerness to make a commitment to a jar and one

parameter (τ) that accounts for the randomness in choice for each individual. The two other

models, the HCBUP and the HCBP models, additionally tries to take into consideration that the

individuals have noise when they calculate the posterior probability of each of the jars being the

source of the displayed beads. This is done by imposing yet another individual-specific param-

eter in the model (ω).

In the Background section, we discussed several reasoning biases that may explain why delu-

sions are formed and maintained. Now, let us take a look at how the models we have introduced

in this report may account for - or fail to account for - two of these reasoning biases. We recall

that the JTC bias is the tendency to make hasty decisions. The models we have introduced may

explain why some people make hasty decisions by the fact that they have a large c s . However, a

large decision noise parameter may also boost hasty decisions, since the probability of choosing

to sample another bead decreases as τ increases. When a large decision noise parameter is the

cause of hasty decisions, the models predict that there should be more wrong commitments.

Here, when we say "wrong commitment", we refer to choosing a jar that is not the more likely

for being the source of the drawn beads. We suggest modifying these models such that large
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decision noise has a less impact on hastiness. Perhaps there should be separate procedures for

determining 1) whether or not to decide on a jar or keep sampling and 2) which of the jars to

pick. The LA account, in contrast to the JTC account, says that the hastiness relative to a control

group may vanish under ambiguity. This is because multiple alternatives may seem plausible

enough, causing none of them to be chosen and instead more evidence to be sought. Our mod-

els, however, do not justify the LA bias by design. If a person has a greater tendency of making

a fast decision than another person in the two-jar case (either as a result of larger c s or τ), the

models predict that he will have a greater tendency of making a faster decision than the other

person in the four-jar case as well.

When applying our model of the probability estimates, p(ρ̃|ω), to the real data set, we discov-

ered that it had some flaws. First of all, we discovered that it had some undesirable effects when

the true probability for either of the jars was close to 0 or 1. Secondly, it appeared that we should

include a parameter that takes bias into account; it seemed like the participants were conser-

vative in their probability ratings. Therefore, we suggest making a new model which includes a

bias parameter that systematically pulls the probability estimate towards 0.5.

In our report, we did not compare the fit of the four models. We suggest performing model selec-

tion to figure out which of the four models that is better at accounting for the decision-making

process of human beings. Lastly, we suggest fitting the models to a healthy control group and a

group of deluded patients in order to see if there are any significant group differences.



Appendix A

Results

In this appendix, we present some plots of the results ob applying the HCBU, HCBP, and HCBUP

models to the real data set. These plots are equivalent to those presented for the HCB model in

the main text.

A.1 HCBU Model

A.2 HCBP Model

A.3 HCBUP Model
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Figure A.1: HCBU model reuslts.

Figure A.2: HCBU model restult. Histograms of some of the parameters after removing the burn-
in period.
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Figure A.3: HCBP model results.
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Figure A.4: HCBP model reuslts.



68 APPENDIX A. RESULTS

Figure A.5: HCBP model restult. Histograms of some of the parameters after removing the burn-
in period.
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Figure A.6: HCBP model results.
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Figure A.7: HCBP model reuslts.

Figure A.8: HCBU-P model restult. Histograms of some of the parameters after removing the
burn-in period.
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Figure A.9: CAPTION. HCBUP model results.



Appendix B

Acronyms

BADE Bias Against Disconfirmatory Evidence

BR Bayes’ Rule

DTD Draws to Decision

IBA Ideal Bayesian Agent

JTC Jumping to Conclusion

LA Liberal Acceptance

MCMC Markov chain Monte Carlo

M-H Metropolis-Hastings

MLE Maximum Likelihood Estimation

SZ Schizophrenia

HCB Hierarchial Costed Bayesian

HCBU Hierarchial Costed Bayesian, Unaware

HCBP Hierarchial Costed Bayesian with Probability estimates

HCBUP Hierarchial Costed Bayesian, Unaware with Probability estimates
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