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Summary

The petroleum industry is looking for less expensive solutions regarding Plug
& Abandonment. Earlier studies have shown incidents that shale formation
around a well sometimes deforms and establishes sufficient seal around cas-
ing. This may reduce costs of plugging operations significantly, and it is
therefore valuable to learn more about this time dependent deformation phe-
nomenon.

This thesis investigates creep and plastic strain as possible causes for this
deformation. Analyses on creep are simulated in PFC (Particle Flow Code).
The simulations include calibration of strain from a real shale specimen and
simulations of creep around a borehole. The calibrated parameters are then
applied for the simulations on creep around a borehole to investigate how this
real shale behaves during creep in well-scale. Then, creep threshold stresses
in the code are evaluated, and it is discovered huge uncertainties regarding
this parameter.

The plastic strain deformation part includes a derivation of an expression of
total strain around a borehole using the Mohr-Coulomb criterion with altered
plastic parameters. Due to its effective stress dependency, the Mohr-Coulomb
criterion is well suited to evaluate plastic strain deformation in a borehole
surrounded by a shale subjected to long term drainage. After deriving the
expression, parameter analyses show that the unconfined residual strength
C∗0 has large impact on a rock’s ability to deform around a well.
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Sammendrag

Petroleumsnæringen ønsker å finne billigere løsninger for permanent gjen-
nplugging av brønn. Tidligere studier har vist til hendelser der skiferfor-
masjonen rundt en brønn noen ganger deformeres og oppnår tilstrekkelig
tetning rundt foringsrøret. Dette kan redusere kostnader ved pluggingspros-
esser betydelig, og det er derfor nyttig å lære mer om dette tidsavhengige
deformasjonsfenomenet.

Denne avhandlingen undersøker kryp og plastisk tøyning som mulige årsaker
til denne deformasjonen. Analyser på kryp er simulert i PFC (Particle Flow
Code). Simuleringene inkluderer kalibrering av tøyning fra en ekte skifer-
prøve samt simuleringer av kryp rundt et borehull. De kalibrerte parame-
trene blir brukt i simuleringene på kryp rundt et borehull for å undersøke
hvordan denne virkelige skiferen opptrer i brønnskala. Deretter evalueres
kodens kryp-terskelspenning, og det oppdages store usikkerheter vedrørende
denne parameteren.

Delen om plastisk deformasjon omfatter en utledning av et uttrykk for total
tøyningsdeformasjon rundt et borehull ved hjelp av Mohr-Coulomb-kriteriet
med endrede plastiske parametere. På grunn av at det er effektivitetsavhengig,
er Mohr-Coulomb-kriteriet godt egnet for å evaluere plastisk deformasjon i
et borehull omgitt av en skifer som har vært drenert over lang tid. Etter
utledningen av uttrykket, viser parameteranalyser at enaksiell reststyrke C∗0
har stor innvirkning på en steins evne til å deformere rundt en brønn.
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Abbreviations

NORSOK Norsk sokkels konkurranseposisjon

PFC2D Particle flow code 2D

UCS Uniaxial compressive strength

AFS Axial failure strength

QFP Quartz, feldspar and pyrite

TVD True vertical depth

Nomenclature

β π
4

+ φ
2
.

ε Total strain.

ε1(t) Strain in transient stage as a function of time in creep.

ε3(t) Strain in tertiary stage as a function of time in creep.

εpθ Tangential plastic strain.

εe Elastic strain.

εp Plastic strain.

εpr Radial plastic strain.

εtot Total strain.

λ Lame’s parameter.

µ∗ Friction coefficient.

φ Internal friction angle.
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σθ Total tangential stress.

σ′θ Effective tangential stress.

σh Total horizontal far field stress.

σr Total radial stress.

σ′r Effective radial stress.

σelasticr Radial stress right at the beginning of elastic region.

σplasticr Radial stress at the edge of plastic region.

σz Vertical stress on core specimen.

σ′z Effective vertical stress.

σconf Confining stress on core specimen.

τ Initial shear stress between elements in PFC.

τ ′ Reduced shear stress between elements in PFC.

τ0 Creep shear stress threshold in PFC.

τm Constant.

C0 Uniaxial compressive strength.

C∗0 Unconfined residual strength.

C1 Integration constant.

C2 Integration constant.

C ′2 Constant.

dλp Plastic strain deformation.

G Lame’s parameter.

H Uniaxial compaction modulus.

k Friction constant.
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k∗ Altered friction constant.

M Moduli.

n Constant.

n∗ Slope of confining stress vs axial failure stress.

Pf Pore pressure.

Pw Well pressure.

Pdiff Differential stress between axial load and confining stress on core spec-
imen.

Q Free energy activation.

R Initial well radius.

r Radial distance from the borehole centre.

Rg Gas constant.

Rp Radius of plastic region around a borehole.

Rdef New radius as a result of deformation.

T Temperature.

u Total radial displacement [m].

uelastic Radial elastic strain displacement.

uplastic Radial plastic strain displacement.

V0 Creep rate.

V t Strain in steady state region in creep.
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1 Introduction

Previous studies on shale as a barrier have shown that the rock may form
a sufficient seal regarding Plug & Abandonment. Results from (Williams et
al, 2009) [1] indicate that the shale has deformed and established sufficient
contact between formation and casing and meets up to standard NORSOK
requirements on P&A. In addition, studies on borehole cement permeability
(McDaniel, 1980) [2] and shale permeability (Torsæter et al, 2014) [3] show
that shale has a significant lower permeability than cement. This means that
less fluid is capable to leak through the plugged section. Shale is also often
located as a cap rock over petroleum reservoirs. This makes the rock type
applicable, as these spots are convenient places to plug wells while still al-
lowing side tracking from shallower sections in the future. Applying shale as
a barrier can be a more efficient way to plug a well compared to the conven-
tional P&A procedures, as it does not need to perforate or mill sections to
establish sufficient sealing with formation. There can be different reasons to
the mechanism behind this deformation around borehole. (Williams et al,
2009) [1] suggests creep and shear failure as the most reasonable explanations.

This thesis will conduct numerical simulations and analytical investigations
on how shale may deform and generate a barrier around a well. The creep
simulations will be conducted in PFC2D (Particle Flow Code 2D), which by
(Folstad, 2015) [4] and (Skomedal, 2015) [5] has proven to be a decent tool in
order to simulate this phenomenon. The creep model in the software is also
based on these previous works, and as for (Folstad, 2015) [4], the simulations
will include mimicking strain rate of a real rock before applying this mimicked
rock to creep simulation around a well. There will then be investigated what
impact the creep threshold τ0 has on the creep results in the simulation. τ0 is
an important parameter as it decides the creep inducement in the simulations.

The analytical part will derive an expression on total strain deformation
around a borehole based on Mohr-Coulomb failure criterion when including
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altered plastic parameters. There will then be conducted sensitivity analy-
ses which will distinguish important parameters to the aspect of plastic and
elastic deformation. In the end, failure analyses by Mohr-Coulomb will inves-
tigate stress distributions around a borehole with and without altered plastic
parameters.
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2 General theory on the creep model

Creep is often referred to as a time dependent deformation which will con-
tinue under constant stress. The deformation rate increases as the applied
stress increases (Fjær et al, 2014) [6], and it is likely to divide the deforma-
tion into three regimes depicted in figure 2.1.

At t = 0, the rock has gone through an elastic deformation. As the time
moves on with constant stress, the deformation increases with a decreasing
rate. This state is referred to the transient stage, and if the stress applied
here suddenly decreases to zero, the strain at this stage also moves back to
zero. The next stage is called steady state. Under constant stress, the rock
will creep with unchanged strain rate. Some of the elastic strain transfers
over to plastic strain, a process referred to as relaxation. This leaves a resid-
ual, permanent deformation. As the time goes by, the rock might move over
to a region where the strain rate increases. This is referred to tertiary stage
or accelerating stage and leads quickly to failure.
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Figure 2.1: (Fjær et al, Ch. 1, 2008) [7] The different stages in creep.

Eq. (2.1) (Jaeger et al, Ch. 9, 2007) [8]) describes the curve in figure 2.1.

ε = εe + ε1(t) + V t+ ε3(t) (2.1)

Where εe represents the initial elastic strain at t = 0, ε1(t) describes the
strain at transient stage, V t is the strain in steady state region while ε3(t)
is referred to strain in tertiary stage. In this thesis the steady state region
will be investigated. This is because the region describes how stable creep
around a borehole behaves. It also correlates to results on previous studies
reagerding creep. (Sone and Zoback, 2014) [9], (Bauer et al, 2014) [10],
(Zhang et al, 2006) [11], (Kuhn and Mitchell, 1993) [12].
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2.1 Description of the numerical creep mecha-

nism

As mentioned in the introduction, PFC is a suitable tool to simulate rock
deformation. With this code, a rock can be mimicked if there are sufficient
bonding, such as tension and rotation resistance between elements. Note
that if enough bonds are broken, failure will occur (Fjær et al, 2016) [13],
(Folstad, 2015) [4].

In the simulation in this thesis, all elements are initially bonded and all in-
teractions between elements are directly related to the displacement between
elements. Creep is induced by implementing a time dependent plastic part in
the bonds between elements. The displacement between elements are now de-
composed in both plastic and elastic parts. If the displacement between two
elements maintains constant, the creep implementation increases the plastic
part, while the elastic part of the decomposition and the associated stresses
decreases. This is related to the term relaxation.

A rock will creep if the shear stress between elements exceed the creep thresh-
old τ0. The shear stress in the bonds between all the elements are denoted
as τ . By allowing stress relaxation and no displacement, τ becomes τ ′ after
a time period ∆t. If τ ′ reduces to less than τ0, creep will cease (eq. (2.2) and
figure 2.2).

15



Figure 2.2: Graphical interpretation of relaxation where plastic strain εp
and reduced stress τ ′ are functions of time t.

Figure 2.2 describes the development on plastic strain and stresses between
elements as a function of time. The plastic deformation ceases when the
reduced shear stresses τ ′ approach the creep threshold τ0. Creep will occur
when following:

τ > τ ′ > τ0 (2.2)

The ratio of stresses after and before relaxation is:

α =
τ ′

τ
(2.3)

The stress when there is only elastic strain is written as:

16



τ = M∆εe (2.4)

Where M is a moduli.

Further, the creep mechanism is induced and the deformation between the
elements, which is constant, is decomposed to both elastic and plastic strain
as a function of time. Figure 2.3 denotes this decomposition and the corre-
sponding reduced stresses τ ′ with a red bar bond.

Figure 2.3: Two elements bonded together with stresses τ ′. The red bar
bond denotes the partially induced plastic strain as well as stresses τ ′.

The stresses after relaxation is:

τ ′ = M∆εtot (2.5)

Hence:

α =
τ ′

τ
=

M∆εe
M∆εtot

(2.6)
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The total displacement term:

∆εe = ∆εtot −∆εp (2.7)

Which yields:

α =
τ ′

τ
= 1− M∆εp

M∆εtot
(2.8)

Combining eq. (2.7) with eq. (2.4) gives:

α =
τ ′

τ
= 1− M∆εp

τ
(2.9)

The following equation describes the creep strain through ∆t (Jaeger et al,Ch.
9, 2007) [8]:

∆εp = V0e
−Q/RgT

( τ
τm

)n
∆t (2.10)

Where V0 is related to the strain rate, Q is the free energy activation, T is
the absolute temperature, Rg is the gas constant and τm and n are constants.
This is a general way to explain the creep strain through the period ∆t in a
micro scale. It can therefore be adapted into PFC since the code relates to
bondings in grain dimension.

Inserting eq. (2.10) into eq. (2.9) yields:

α = 1− MV0e
−Q/RgT

τnm
τn−1∆t (2.11)

Eq. (2.11) explains how to determine the contact force reduction after the
time period ∆t due to the stress relaxation. Note that the equation only ap-
plies when the reduced contact stresses τ ′ are greater than the creep threshold
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τ0 (figure 2.2 and eq. 2.2).

3 Simulations

The simulations in this thesis will involve creep around a borehole and cali-
bration. The calibration part is a 2D simulation biaxial test which will, by
changing different parameters, mimic a real shale core specimen by matching
creep strain rate. The shale will be based on Haynesville (Sone and Zoback,
2014) [9], which is a rather stiff type of rock. A 2D well-scaled simulation will
then use these parameters to investigate stress distribution around a borehole
during creep. The threshold stresses will be evaluated in both calibration test
and well-scale simulation.

3.1 Biaxial calibration test

The biaxial test calibrates the numerical 2D specimen in order to mimic
the real specimen from a stiff shale called Haynesville (Sone and Zoback,
2014) [9]. The next section is going to describe the triaxial test conducted
on the real specimen, Haynesville.

3.1.1 Creep strain rate on a real specimen

(Sone and Zoback, 2014) [9] conducted several tests on different shale spec-
imens. This thesis will focus on mimicking Haynesville 1. Figure 3.1 shows
the mineral composition of the shale determined by powder XDC analysis. It
tells that it contains approximately 35 % quartz, feldspar, and pyrite (QFP),
45 % clay+kerogen and 20 % carbonates. The cylindrical sample had a 1"
diameter and a length on 2,1" perpendicular to the bedding plane.
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Figure 3.1: (Sone and Zoback, 2014) [9] Ternary plot of the mineral com-
positions of the different specimens tested.

The triaxial test of Haynesville 1 was conducted with differential pressure
Pdiff increasing step-wise in the vertical direction where each step lasted for
60 seconds. This thesis will focus on the first step on vertical strain on a the
Haynesville with a differential stress on Pdiff = 32 MPa. The experiment
was conducted in room-temperature, and drained pore pressure in order to
avoid poroelastic effects. The strain results are presented in figure 3.2
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Figure 3.2: (Sone and Zoback, 2014) [9] Strain vs time. The aluminium
alloy is shown as a reference for pure elastic behaviour. H and V stand for
vertical and horizontal orientation to the bedding plane.

The specimens are exposed for increasing different stresses denoted as PDiff
the first 60 seconds, and the rocks show an elastic strain behaviour. The
strain rate becomes constant as time moves on. This indicates that the
rock has reached the steady state stage for creep. The creep strain rate for
Haynesville-1V can then be calculated schematically:

strainRate =
∆ε

∆t
=
ε2 − ε1
t1 − t0

=
1, 5 ∗ 10−4

1 ∗ 104
= 1, 5 ∗ 10−8 s−1 (3.1)

The next section is going to discuss how to achieve this strain rate for a
numerical specimen in PFC.
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3.1.2 Creep strain rate from numerical simulation

The calibration is conducted with simulated 2D core specimen which is sup-
posed to mimic a cross section of a real core specimen. Different parameters
such as porosity and density are set according to real values. The procedure
is based on (Folstad, 2015) [4], who conducted similar work.

Figure 3.3: 2D ball plot of the initial core specimen.

Figure 3.3 presents the 2D balls bonded together in a cluster shaped as
a real core specimen. All walls have an initial applied stress on 30 MPa
and bond strength is induced. Then, differential vertical wall stress Pdiff is
applied incrementally and the numerical core specimen undergoes an elastic
deformation. When the differential stress Pdiff has reached 32 MPa, the creep
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mechanism is induced. The resulting strain rate from the creep mechanism
is then recorded and the parameters are presented in figure 3.4. Figure 3.5
presents a flow chart of the calibration method used in order to achieve the
desired strain rate.

Figure 3.4: Key parameters in the core specimen simulation are presented
as well as the PFC-notation and explanations.
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Figure 3.5: A simplified flowchart of the numerical calibration process.
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All key parameters from the biaxial numerical calibration test are presented
in figure 3.4. The bond strength between the elements is set to the lowest
possible value before sufficient bonds in the specimen are broken. Such failure
makes the numerical analysis invalid. It is also important to note that the
creep threshold for both tensile and shear stress is set to 1 MPa in this initial
simulation. The calibration of creep rates is presented in figure 3.6, and the
grey figure denotes the creep rate 0,000033, which is required in order to
achieve the real core specimen strain rate 1, 5 ∗ 10−8s−1.

Figure 3.6: Strain as a function of time for different creep rates during the
numerical strain rate calibration.
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3.1.3 Evaluation of creep threshold for biaxial test

As described in section 2.1, the creep threshold stresses are important param-
eters for the numerical creep mechanism. It is therefore desided to investigate
the impact this parameter has in the biaxial calibration test. The initial cali-
bration test conducted in the previous section, calibrated the strain rate with
a creep threshold on 1 MPa for both tensile strength and shear strength. By
reducing threshold stresses to zero figure 3.7 shows there is no significant
change in strain rate.

Figure 3.7: Different threshold stresses and corresponding strain rates.
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3.2 Simulation of creep around a well

This section simulates a formation creeping around a borehole during a time
period of approximately 1000 days. The simulations will involve visual mon-
itoring and analysis on the stress distribution around the borehole through
the development of the creep deformation. The parameters used and cal-
ibrated in section 3.1 apply in this borehole simulation. This includes of
course the creep rate, 0,000033. Figure 3.8 presents the state right after the
casing is set in a drilled borehole.

Figure 3.8: 2D ball plot of a vertical borehole right after casing is set.
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3.2.1 Assumptions and simulation methodology

The following describes the downhole conditions which are simulated. A
detailed PFC-technical description is presented in figure 3.9.

• The numerical simulations will mimic creep in a 17 1/2" (0,445 m)
vertical borehole with a 13 3/8" (0,34 m) casing at 1000 m TVD.

• The well pressure Pw = 0 MPa and pore pressure Pf = 0 MPa (totally
drained).

• The effective isotropic horizontal stress is 30 MPa.

Figure 3.9: Key parameters in the borehole simulation are presented as
well as the PFC-notation and explanations.

Figure 3.9 presents all the essential PFC-parameters required to replicate the
creep around a borehole simulations in this report. Unlike figure 3.4, figure
3.9 includes the term uRate which is a parameter used to construct a virtual
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casing (figure 3.8); After the initial hole is constructed in the model and hor-
izontal stress is applied, a hole-sized ball is placed inside the hole. The ball
is then shrunk to the desired casing diameter. The rate of shrinkage is deter-
mined by the uRate, and it is important to be careful with this parameter.
Too high uRate can induce dynamic effects which may result in break outs
and undesirable crack development around the borehole. Too low uRate can
result in no annulus development. This is because the induced horizontal
stress and corresponding wall velocity may cause the borehole wall to move
quicker towards the centre of the hole, than the shrinkage of the virtual cas-
ing. The creep threshold stresses are set to same as for the initial biaxial
calibration test(sigmaS0=1 MPa and sigmaC0=1). There will be conducted
analysis on different creep threshold stresses for borehole simulation later in
the report.

Figure 3.10 presents the simulation methodology for how creep around a bore-
hole is conducted. All parameters in figure 3.9 apply in the initial borehole
simulation.
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Figure 3.10: A simplified flowchart of the numerical creep around a bore-
hole.
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3.2.2 Borehole results with calibrated parameters and

threshold stresses on 1 MPa

This section will present visual and graphical results of a formation creeping
around a well for approximately 1000 days with the calibrated parameters in
figure 3.9 applied. Figure 3.11 shows the initial state right after the virtual
casing has shrunk to correct size. Although the creep mechanism is not yet
induced, figure 3.11 indicates some break outs from the borehole wall, as
some balls seem to have loosen during the shrinking process of the casing.
Another observation to note is that the smallest balls have clustered near the
borehole, while the larger balls are located further away from the well.

Figure 3.11: 2D ball plot of a vertical borehole at t=0.
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Figure 3.12 presents the state of the borehole when the formation has been
creeping for 277 days. The gap between casing and formation has narrowed
and there are also indications of break outs. The locational distribution on
ball sizes seems to be similar to the results in figure 3.11.

Figure 3.12: 2D ball plot of a vertical borehole at t=277.

Figure 3.13 gives a visual view of the situation when the formation has been
creeping around a borehole for 1076 days. The gap has narrowed even more
compared to t=277 days, and some places the formation has reached contact
with casing.
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Figure 3.13: 2D ball plot of a vertical borehole at t=1076.

Figure 3.14 gives graphical results on the relative gap and relative pressure
on casing. Relative gap is defined as the average reduced gap divided on the
initial gap, while relative pressure is defined as ratio on the average pressure
acting on casing over the applied horizontal stress on the model.

At t=0 days the gap has already narrowed approximately 20 % from its initial
size. The figure also indicates that there are no pressure acting on the casing
at this state. Further, the gap decreases and at t=277 days, it is reduced by
approximately 50 % of its initial size. At around t=350 days, the relative
pressure curve shows signs of contact between the formation and the casing.
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The deformation rate decreases as these contacts are initiated and it reduces
even more as the relative pressure starts to increase at approximately t=600
days. By the end, at t=1076, the average gap has narrowed to about 10 %
of its original size, while the relative pressure on casing is about 15 % of the
applied horizontal stress (0,15*30 MPa = 4,5 MPa).

Figure 3.14: Relative gap and relative pressure on casing vs time.
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Figure 3.15 presents the stresses around a borehole for the simulation above.
The analysis conducted, are for both radial (sigmaR) and tangential (sigmaT)
stresses around a borehole during creep through the time of 1076 days. The
two dashed straight lines intersecting at (1, 30), indicates the initial well
radiusR and the horizontal far field stress (sigmaH) respectively. The stresses
are evaluated for t=0, t=277 and t=1076. For t=0, the tangential stress
peaks at the relative distance 2,225 from the wellbore with the magnitude on
65 MPa before it approaches the far field stress further in the formation. The
tangential stress for t=277 peaks at the relative distance of approximately 2
from the wellbore with the magnitude of 35 MPa before it drops and starts
approaching the far field stress. For t=1076, the tangential stress has a
similar behaviour as for t=277. Figure 3.15 indicates that the radial stresses
for all analysis, have a similar constant increase to the approach of far field
stress.

Figure 3.15: Tangential and radial stresses around a borehole during creep.
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3.2.3 Borehole results with calibrated parameters and

without threshold stresses

This section will present visual and graphical results of a formation creeping
around a well for approximately 1000 days with the calibrated parameters
applied in figure 3.9. The creep threshold stresses are not included which
means sigmaT0=0 and sigmaS0=0. Figure 3.16 presents the initial state
right after the casing has shrunk to its correct size. The borehole wall is
smooth and the smaller balls are clustered near it, while the larger balls are
located farther in the formation.

Figure 3.16: 2D ball plot of a vertical borehole at t=0.
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Figure 3.17 shows the borehole state after t=360 days, and it indicates that
the gap has narrowed. The formation has even in some regions managed to
achieve contact with casing. The ball size distribution is the same as for t=0.

Figure 3.17: 2D ball plot of a vertical borehole at t=360.
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The borehole state after t=1069 depicted in figure 3.18, presents a condition
where the gap is almost vanished and the formation has reached more or less
continously contact around the whole casing.

Figure 3.18: 2D ball plot of a vertical borehole at t=1069.

Figure 3.19 gives graphical results on the relative gap and relative pressure
on casing. Relative gap is defined as the average reduced gap divided on the
initial gap, while relative pressure is defined as ratio on the average pressure
acting on casing over the applied horizontal stress on model.

Initially at t=0, relative gap is 100 % and the relative pressure on casing
is zero percent. As the time goes on, the relative gap is steadily decreasing
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until contact force on casing is initiated (t=250 day). Now, the decline
rate of relative gap is decreasing as the contact increases. At t=360, the
relative gap has narrowed by approximately 70 % of its original gap size,
while the relative average pressure acting on the casing has reached about
5 % of the far field horizontal stress (0,05*30 MPa = 1,5 MPa). Further,
figure 3.19 shows that the average relative gap steadily decreases, while the
average relative pressure on casing correspondingly increases. At t=1069, the
average pressure is approximately 0,4* 30 MPa = 12 MPa, and the average
gap is reduced to under 5 % of its initial size.

Figure 3.19: Relative gap and relative pressure on casing vs time.
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Figure 3.20 presents the stresses around a borehole for the simulation above.
The analysis conducted, are for both radial (sigmaR) and tangential (sigmaT)
stresses around a borehole during creep through the time of 1069 days. The
two dashed straight lines intersecting at (1, 30), indicates the initial well
radiusR and the horizontal far field stress (sigmaH) respectively. The stresses
are evaluated for t=0, t=360 and t=1069. For t=0, the tangential stress
peaks at the relative distance approximately 2 from the wellbore with the
magnitude on 38 MPa before it drops below the horizontal stress and then
finally approaches the far field stress farther in the formation. The tangential
stress for t=360 peaks at the relative distance of approximately 2 from the
wellbore with the magnitude of 44 MPa before it drops and starts approaching
the far field stress. For t=1069, the tangential stress has a similar behaviour
as for t=277. Figure 3.20 indicates that the radial stresses for all analyses,
except for t=0, have a similar constant increase to the approach of far field
stress. The radial stress for t=0 have a constant increase greater than for
t=360 and t=1069 until it exceeds the horizontal stress. Then it drops before
it starts to approach the far field horizontal stress.
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Figure 3.20: Tangential and radial stresses around a borehole during creep.
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4 Plastic strain deformation

Plasticity is often used to describe the behaviour of a rock beyond failure.
The rock’s behaviour at this state is non-linear, and deformation does not
recover when the load causing the deformation ceases. Figure 4.1 describes
a stress-strain situation where a rock contains linear elastic and ideal plastic
material. The figure shows that initially, the rock undergoes a linear elastic
deformation until it reaches the yield point. At this point, the rock initiates
a plastic deformation which increases with constant load. This describes
an ideal plastic behaviour which will be assumed in derivation and theory
throughout this section.

In this report, the term plastic strain deformation will not include time.
This is a likely assumption as the rock has reached the state of equilibrium
when referring to this phenomenon. Creep is also a deformation phenomenon
which may reach steady state with sufficient time. This makes it difficult to
distinguish the difference between the two deformations. Although this sec-
tion refers to deformation as plastic strain, one should not exclude that the
deformation also can be a result of creep.
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Figure 4.1: Stress-strain curve for linear plastic and ideally plastic material.

4.1 Stresses around a borehole with Mohr-Coulomb

criterion

Stability of a borehole after failure can be described analytically by the Mohr-
Coulomb criterion. The failure is explained as a transition from elastic to
plastic behaviour, which by Mohr-Coulomb involves a friction angle as well
as rock strength. Unlike (Skomedal, 2015) [5], the derivation in this report
allows the friction angle and rock strength to alter when the rock behaviour
is transited from elastic to the plastic state. The ideal plasticity still applies
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by allowing the altered parameter, but there will be some discontinuity in the
transition from elasticity to plasticity. This issue is going to be elaborated in
section 4.2. Further, the derivation assumes that the vertical stress σv = 0

and the pore pressure Pf = 0. These simplifications make σr and σθ the
only principal stresses as well as the effective stress is equal to the total
stress; σ′r,θ = σr,θ. With σθ > σr, the Mohr-Coulomb criterion is written as
following:

σθ = C0 + σr tan2 β (4.1)

By allowing altered plastic parameters, eq. 4.1 gives:

σθ = C∗0 + σr tan2 β∗ (4.2)

C∗0 is in this thesis referred to as unconfined residual strength and β∗ is the
altered friction angle after elastic-plastic transition. Further, for simplicity
tan2 β∗ = k∗. Hence:

σθ = C∗0 + k∗σr (4.3)

Introducing the equilibrium equation:

δσr
δr

+
σr − σθ

r
= 0 (4.4)

Inserting eq. (4.3) into the equilibrium equation (4.4) gives:

δσr
δr

+
σr(1− k∗)

r
=
C∗0
r

(4.5)

Solving this differential equation with respect on σr in the plastic region and
the boundary condition σr(R) = Pw yields:
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σr =
(
Pw +

C∗0
k∗ − 1

)[ r
R

]k∗−1
− C∗0
k∗ − 1

(4.6)

For the hoop stress in the plastic zone, substituting eq. (4.6) into the Mohr-
Coulomb criterion (4.3) gives:

σθ = k∗
(
Pw +

C∗0
k∗ − 1

)[ r
R

]k∗−1
− C∗0
k∗ − 1

(4.7)

The two equations above eq. (4.6) and eq. (4.7) only relates to the plastic
zone. As for the region r > Rp, elastic properties rules, and the fact that
σr = σθ far from the borehole gives:

σr = σh −
C
′
2

r2
(4.8)

and

σθ = σh +
C
′
2

r2
(4.9)

Adding these equation yields:

σθ = 2σh − σr (4.10)

Which is the hoop stress on the borehole wall. Inserting this into the Mohr-
Coulomb criterion eq. (4.1) in elastic state yields radial stress at the elastic-
plastic boundary:

σr(Rp) =
2σh − C0

k + 1
(4.11)

The plastic zone radius is found by inserting eq. (4.11) into eq. (4.6) and set
r = Rp:

Rp

R
=
[2σh − C0 + (k + 1)

C∗0
k∗−1

(Pw +
C∗0
k∗−1)(k + 1)

] 1
k∗−1 (4.12)
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It is now possible to find the coefficient C ′2. Inserting eq. (4.12) into eq. (4.8)
with r = Rp yields:

C
′

2 = R2
p(σh − σr(Rp)) (4.13)
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4.2 Explanation and review of altered plastic

parameters

The derivation of the Mohr-Coulomb in the previous section, considered that
the plastic parameters could alter when rock behaviour changed from elastic
to plastic. A triaxial test (figure 4.2) can be used to make an easy under-
standable analogy, although the main application to this theory is related to
boreholes.

Figure 4.2: Triaxial test with confining stress and loading stress.
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Figure 4.3: A graph of a triaxial test with confining stress and loading
stress as a function of strain.

Figure 4.3 gives a qualitatively graphical presentation of the triaxial test il-
lustrated in figure 4.2. The core specimen undergoes an increasing load in
the vertical direction σz until peak stress. According to Mohr-Coulomb, this
is where the rock fails and moves over from an elastic to a plastic behaviour.
The stress at this point is a function of C0 + σconfk as denoted in figure
4.3. Beyond the point of failure, as the rock has reached a plastic behaviour,
both k and C0 transfers to k∗ and an C∗0 respectively. This transition is
conventionally referred to the term softening, which in reality give a less de-
clining behaviour depending on the brittleness of the material (Brady et al,
1973) [14]. The model in this report does not involve this declining behaviour
as it drops directly to the equilibrium state where it still has an ideal plastic
behaviour. The strength at this state is referred to residual strength and is
a function of C∗0 + σconfk

∗. The impact of this residual strength is going to
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be discussed later in the report. Also note that both k∗ and C∗0 can never
exceed k and C0 according to Mohr-Coulomb.

k∗-determination

The new friction constant k∗ can be determined by recording C∗0 as a func-
tion of increasing confining pressure presented in figure 4.4. The friction
coefficient is calculated from the slope determined by linear regression of the
recorded data. The following presents how to calculate the new altered fric-
tion angle and the corresponding friction constant:

The slope is given by:

n∗ =
∆AFS∗

∆σ∗conf
(4.14)

The friction coefficient (Sone and Zoback, 2013) [15]:

µ∗ =
n∗ − 1

2
√
n∗

(4.15)

The friction angle:

φ∗ = tan−1µ∗ (4.16)

The angle relation:

β∗ =
π

4
+
φ∗

2
(4.17)

Which leads tho the new friction constant:

k∗ = tan2β∗ (4.18)
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Figure 4.4: Axial failure stress as a function of confining pressure.
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Figure 4.5: (Sone and Zoback, 2013) [15] Uniaxial compressive strength as
a function of confining pressure for different shales.

4.3 Plastic and elastic stain deforamtion with

the Mohr-Coulomb criterion

This section concerns plastic and elastic strain deformation around a bore-
hole with the Mohr-Coulomb criterion described in section 4.1. Long term
plasticity around well bore gives a totally drained condition. This makes
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the Mohr-Coulomb criterion suitable as it applies under this condition. The
method used in the following calculations is inspired by the Tresca approach
in (Fjær et al, Ch. 4, 2008) [7] but with different boundary conditions.
It also includes the possibility for altered plasticity parameters introduced
in the previous sections. Similar work is also been done in (Risnes et al,
1982) [16]. The following derivation is conducted by Erling Fjær and Øyvind
Skomedal.

The Mohr-Coulomb criterion with altered plastic parameters is written as
following:

f(σ′r, σ′θ) = σ′θ − k∗σ′r − C∗0 = 0 (4.19)

Where k∗ is the friction factor tan2β∗ in the plastic state.

The plastic strains with the associated flow rule are

εpr = dλp
δf

δσr
= −k∗dλp (4.20)

εpθ = dλp
δf

δσθ
= dλp (4.21)

From the definition of total strain, relations between displacement and effec-
tive stresses in porous permeable formations give:

σ′r = (λ+ 2G)
[δu
δr

+ k∗dλp

]
+ λ
[u
r
− dλp

]
(4.22)

and

σ′θ = (λ+ 2G)
[u
r
− dλp

]
+ λ
[δu
δr

+ k∗dλp

]
(4.23)

Substituting eq. 4.22 and 4.23 into eq. 4.19 and solve for dλp gives:
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dλp =

u
r
(λ+ 2G)− k∗ δu

δr
(λ+ 2G) + λ

[
δu
δr
− k∗ u

r

]
− C∗0

(λ+ 2G)(k∗2 + 1)− 2k∗λ
(4.24)

λ+2G is substituted withH (uniaxial compaction modulus) and 1
H(k∗2+1)−2k∗λ =

q. Thus:

dλp = −q
[
− u

r
(H − λk∗) +

δu

δr
(Hk∗ − λ) + C∗0

]
(4.25)

The stresses in eq. 4.23 and 4.24 is then:

σ′r = Ar +Br
δu

δr
+ Cr

u

r
(4.26)

σ′θ = Aθ +Bθ
δu

δr
+ Cθ

u

r
(4.27)

where

Ar = qC∗0(Hk∗ − λ) (4.28)

Br = H − q(Hk∗ − λ)2 (4.29)

Cr = λ+ q(Hk∗ − λ)(H − λk∗) (4.30)

Aθ = qC∗0(H − λk∗) (4.31)

Bθ = Cr (4.32)
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Cθ = H − q(H − λk∗)2 (4.33)

The equilibrium equation:

δσr
δr

+
σr − σθ

r
(4.34)

Inserting the effective stresses eq. 4.26 and 4.27 into equilibrium eq. 4.34
gives:

δ2u

δr2
+

1

r

δu

δr
− Cθ
Br

u

r2
+
Ar − Aθ
rBr

+
α

Br

δPf
δr

= 0 (4.35)

When applying Mohr-Coulomb Pf = 0 and introducing a new constant:

P =
Ar − Aθ
rBr

= C∗0
k∗ + 1

H + λ
(4.36)

Dividing eq. 4.33 with eq. 4.29 gives Cθ/Br = k∗2:

δ2u

δr2
+

1

r

δu

δr
− k∗2 u

r2
=
P

r
(4.37)

Solving eq. 4.37 gives this general solution:

u = C1r
k∗ + C2r

−k∗ +
rP

1− k∗2
(4.38)

The radial stress then becomes:

σr =
H2 − λ2

H(k∗2 + 1)− 2λk∗

[
2k∗C1r

k∗−1 − C∗0
H2 − λ2

− P

k∗ − 1

]
(4.39)

With the boundary conditions saying that at r = R and σr = Pw:
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Pw =
H2 − λ2

H(k∗2 + 1)− 2λk∗

[
2k∗C1R

k∗−1 − C∗0
H2 − λ2

− P

k∗ − 1

]
(4.40)

Then solving eq. 4.40 with respect on C1 with Pw = 0 yields:

C1 = C∗0R
−k∗−1 H(k∗2 + 1)− 2λk∗

2k∗(k∗ − 1)(H2 − λ2)
(4.41)

The plastic strain then becomes:

dλp = C2r
−k∗−1 −

C∗0 + C1r
k∗−1(k∗2 − 1)− P

k∗+1
(H − λ)

H(k∗2 + 1)− 2λk∗
(4.42)

The radial displacement in the elastic zone can be written as:

u =
σh

H + λ
r − C2

′

H − λ
1

r
(4.43)

and the stresses are:

σr = σh +
C2
′

r2
(4.44)

σθ = σh −
C2
′

r2
(4.45)

As for the stress derivation for Mohr-Coulomb in section 4.1, the boundary
between the elastic region and the plastic at r = Rp:

σelasticr = σplasticr (4.46)

The Tresca approach in (Fjær et al, Ch. 4, 2008) [7] requires that the plastic
strain is zero at r = Rp, which makes it only to include plastic strain. In
this derivation, both elastic and plastic strain is evaluated. To fulfill this
requirement, the boundary condition here, allows no displacement between
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the elastic and the plastic region, thus:

uelastic = uplastic (4.47)

Eq. 4.43 equals eq. 4.38 gives:

σh
H + λ

Rp −
C2
′

H − λ
1

Rp

= C1R
k∗

p + C2R
−k∗
p +

RpP

1− k∗2
(4.48)

The radial stress in the plastic zone is defined as:

σr =
C∗0

k∗ − 1

[( r
R

)k∗−1
− 1
]

(4.49)

Eq. 4.46 allows putting eq. 4.44 equals eq. 4.49 at the plastic-elastic bound-
ary:

σh +
C2
′

R2
p

=
C∗0

k∗ − 1

[(Rp

R

)k∗−1
− 1
]

(4.50)

Which gives:

C2
′ =
[ C∗0
k∗ − 1

[(Rp

R

)k∗−1
− 1
]
− σh

]
R2
p (4.51)

Combining this with 4.36, 4.41 and 4.49 gives:

C2 =
HRk∗+1

p

H2 − λ2
[
2
(
σh +

C∗0
k∗ − 1

)
− C∗0
k∗ − 1

(Rp

R

)k∗−1 (k∗ + 1)2

2k∗

]
(4.52)

Eqs 4.44 and 4.45 at r = Rp require that they have fulfilled the failure
criterion:

σ1′ = C0 + kσ3′ (4.53)
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Where k is the initial friction factor tan2β. The plastic zone radius is then:

Rp

R
=
[
1 +

2σh − C0

C∗0

k∗ − 1

k + 1

] 1
k∗−1 (4.54)

The total strain in the plastic zone is:

u

r
=

2Hσh
H2 − λ2

(Rp

R

)k∗+1

+
C∗0

2k∗(k∗ − 1)(H2 − λ2)

[
(H(k∗2 + 1)− 2λk∗)

( r
R

)k∗−1
−2k∗(H − λ)−H

[(Rp

R

)k∗−1
(k∗ + 1)2 − 4k∗

](Rp

r

)k∗+1]
(4.55)

and the stresses:

σr =
C∗0

k∗ − 1

[( r
R

)k∗−1
− 1
]

(4.56)

σθ = C∗0 + k∗
C∗0

k∗ − 1

[( r
R

)k∗−1
− 1
]

(4.57)

The strain in the elastic zone is:

u

r
=

σh
H + λ

− 1

H − λ

[ C∗0
k∗ − 1

[(Rp

R

)k∗−1
− 1
]
− σh

](Rp

r

)2
(4.58)

and the stresses:

σr = σh −
[
σh −

C∗0
k∗ − 1

[(Rp

R

)k∗−1
− 1
]](Rp

r

)2
(4.59)

σθ = σh +
[
σh −

C∗0
k∗ − 1

[(Rp

R

)k∗−1
− 1
]](Rp

r

)2
(4.60)

Checking for eq. 4.47 and 4.46:
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uelastic
Rp

=
2Hσh
H + λ

− 1

H − λ
C∗0

k∗ − 1

[(Rp

R

)k∗−1
− 1
]

=
uplastic
Rp

(4.61)

σelasticr =
C∗0

k∗ − 1

[( r
R

)k∗−1
− 1
]

= σplasticr (4.62)

Which proves the calculations are correct. Also note that the boundary
conditions in eq. 4.45 and 4.47 do not include continuity in tangential plane,
just like the Mohr-Coulomb derivation in section 4.1.
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4.4 Application of plastic strain deformation

This section is going to review the application of the strain deformation
derived in previous section. It will investigate how different parameters affect
the deformation around a well. These parameters include the altered plastic
parameters as well as the horizontal stress. The calculations will be based on
eq. 4.55 and assume the gap is closed between formation and casing. This
means that the u/R-ratio has to be approximately 0,25. Figure 4.6 describes
the closing process on how the formation moves towards a casing due to
plastic strain deformation. With the notation in the figure, the u/R-ratio
becomes:

u/R =
R−Rdef

R
(4.63)

Figure 4.6 does not illustrate when the annulus is totally sealed and the
corresponding u/R-ratio here is therefore lower.
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Figure 4.6: A vertical borehole with a formation deforming towards casing.

Determining the horizontal stress

As mentioned previously, eq. 4.55 gives the total strain due to plastic defor-
mation. The horizontal stress in this equation can be used as a parameter
to determine how easy a rock can seal around a casing. The lower horizontal
stress eq. 4.55 requires to reach a u/R-ratio, the better suited is the rock to
deform around a casing. Eq. 4.55 has σh and Rp as unknown and the plastic
radius eq. 4.54 needs therefore to be included. Now, there are two equations
with two unknowns, but the complexity of eq. 4.55 makes the problem too
difficult to solve it analytically. It is therefore suggested to solve eq. 4.55
for σh and eq. 4.54 for Rp with iteration. This iteration process starts with
an initial guess on a σh in eq. 4.54. The next step is to insert the new Rp

(computed in eq. 4.54) into eq. 4.55 which yields a new σh. This σh is then
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inserted back to eq. 4.54. The procedure continues until both σh and Rp

converges to their true values, and operation can be conducted by a simple
while-loop in MATLAB or LOOKUP-function in Excel.

61



4.5 Evaluation of elastic strain

Eq. 4.55 gives the result as total strain deformation, and does not distinguish
whether the main contribution to the deformation comes from plastic strain
or elastic strain. Equation 4.43 which (Fjær et al, Ch. 4, 2008) [7] denotes
as:

u/R =
σh

H + λ
+

σh
H − λ

(4.64)

This equation excludes pore and well pressure and describes only elastic
displacement on the borehole wall. Applying elastic parameters in section
4.6 (H = 2500 MPa and λ = 500 MPa) and corresponding horizontal stress
σh = 10 MPa into 4.64 gives an elastic strain on u/R = 0, 0083. This means
that the well radius decreases just below 1 % by only allowing elastic strain.
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4.6 Plastic parameter evaluation

This section is going to investigate what impact different plastic parameters
i.e. k, k∗, C0 and C∗0 have on plastic strain deformation around a well. The
horizontal stress is used as an interpretation parameter to this purpose. The
analysis will be conducted by adjusting the plastic parameters one by one,
while the remaining parameters are kept constant. The initial parameters
are following:

• k = 3.

• k∗ = 2.

• C0 = 10 MPa.

• C∗0 = 1 MPa.

• Borehole radius R = 0, 2225 m (never changed).

• Uniaxial compaction modulus H = 2500 MPa (never changed).

• Lame’s parameter λ = 500 MPa (never changed).

• u/R = 0, 25 (never changed).

Where H and λ are constants which are assumed.

The analysis on how the horizontal stress becomes affected by change in
plastic parameters can be conducted in both MATLAB and Excel. The
general methodology involves the procedure conducted when determining
the horizontal stress σh in previous section. This operation is then repeated
separately for each new plastic parameter incrementally. According to Mohr-
Coulomb, the general rule for evaluation area is that k∗ ≤ k and C∗0 ≤ C0.
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4.6.1 Evaluation of k

Figure 4.7 shows that k (orange) is evaluated from 2 ≤ k ≤ 3. The intersec-
tions of reference line σh (dashed red) and reference line for k∗ (dashed black)
and k (dashed blue) indicate the initial values. At this state, the formation
requires a horizontal stress on 10 MPa in order to reach a plastic strain defor-
mation ratio u/R = 0, 25. Initially, when k = k∗ = 2, the required horizontal
stress is approximately 9 MPa. When k reaches 3, the required horizontal
stress is the same value as in the initial condition (10 MPa). This means
that the relative change in horizontal stress is approximately 11 %, while the
relative change in friction factor k is 50 %.

4.6.2 Evaluation of k∗

Figure 4.7 shows that k∗ (blue) is evaluated in the area from 1, 1 ≤ k∗ ≤ 3.
As for the k-evaluation, the intersections of reference line σh (dashed red)
and reference line for k∗ (dashed black) and k (dashed blue) indicate the
initial values. Eq. 4.54 restricts k∗ not to approach 1 as Rp in that case
diverges and a solution will not exist. Initially, at k∗ = 1, 1, the required
horizontal stress is approximately 9 MPa, and when k∗ increases, figure 4.7
indicates the horizontal stress increases with approximately same rate as it
did with k.
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Figure 4.7: Horizontal stress as a function of friction constants

4.6.3 Evaluation of C0

Figure 4.8 presents evaluation of C0 in the area from 1 ≤ C0 ≤ 19, 5.
The intersections of reference line σh (dashed red) and reference line for
C0 (dashed black) and C∗0 (dashed blue) indicate the initial values. Initially,
when C0 = C∗0 = 1 MPa, the required horizontal stress approximately 7,5
MPa. As the compressive strength C0 increases, the horizontal stress also
increases. At initial condition (C0 = 10 MPa), the horizontal stress is also
10 MPa, and it increases with same rate until it reaches approximately 13,7
MPa. At this state, C0 has a value of 19,5 MPa which indicates relative
increase of 1 850 % from the initial value, while the relative increase in hor-
izontal stress is approximately 83 %.
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4.6.4 Evaluation of C∗0

Figure 4.7 shows that C∗0 (blue) is evaluated in the area from 1 ≤ C∗0 ≤ 10.
As for the C0-evaluation, the intersections of reference line σh (dashed red)
and reference line for C0 (dashed black) and C∗0 (dashed blue) indicate the
initial values. As C∗0 increases from 1 MPa to 10 MPa, the horizontal stress
increases from 10 MPa to almost 36,5 MPa. This indicates a relative increase
for σh to be 265 % and a relative change in C∗0 is 900 %.

Figure 4.8: Horizontal stress as a function of compressive strength of rock.
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4.7 Analytical results of stress distribution around

a borehole

This section will investigate stress distribution around a borehole for both
constant and altered plastic parameters based on derivation conducted in
section 4.1. The horizontal stress in section 4.6 is calculated to be 10 MPa
with initial parameters. It is therefore decided to investigate the stress dis-
tribution around a borehole with σh = 10 MPa for both constant and altered
parameters. Hence, the analysis for altered parameters will represent the
stress distribution when the deformation has closed 25 % of the well radius.

4.7.1 Stress distribution for constant plastic parameters

Figure 4.9 shows the stress distribution for the data presented below the
figure. At the borehole wall the radial stress σr = Pw = 0 and it increases
linearly until approximately r/R = 1, 5 where the radial stress slope starts
to decrease as it approaches the far field horizontal stress σh = 10 MPa.
The tangential stress is σθ = 10 MPa at the borehole wall and increases up
to 17,5 MPa at the boundary between plastic and elastic region Rp/R =

1, 2. Further, the tangential stress decreases as it approaches the far field
horizontal stress σh = 10 MPa.

67



Figure 4.9: Stresses around a borehole with constant plastic parameters

Data for figure 4.9

• Isotropic horizontal far field stress σh = 10 MPa.

• C0 = C∗0 = 10 MPa.

• k = k∗ = 3.

• Borehole radius R = 0, 2225 m.

• Well pressure Pw = 0 MPa.

• Pore pressure Pf = 0 MPa.
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4.7.2 Stress distribution for altered plastic parameters

Figure 4.10 shows the stress distribution for the data presented below the
figure. At the borehole wall the radial stress σr = Pw = 0 and it increases
linearly until the boundary between plastic and elastic region Rp/R = 3, 5.
At this point, the radial stress suddenly changes over to elastic behaviour
and the stress increase slows down as it approaches the horizontal far field
stress σh = 10 MPa. The tangential stress is σθ = 1 MPa at the borehole
wall and increases up to 6 MPa at the edge of the plastic region Rp/R = 3, 5.
At the transition from plastic to elastic region, the tangential stress shows
discontinuity as it suddenly bounces up to 17,5 MPa. Further, the tangential
stress decreases as it approaches the far field horizontal stress σh = 10 MPa.

Figure 4.10: Stresses around a borehole with altered plastic parameters

Data for figure 4.10
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• Isotropic horizontal far field stress σh = 10 MPa

• C0 = 10 MPa

• C∗0 = 1 MPa

• k = 3

• k∗ = 2

• Borehole radius R = 0, 2225 m

• Well pressure Pw = 0 MPa

• Pore pressure Pf = 0 MPa
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5 Discussion

5.1 Sources of error in the simulations

Through the simulations of both calibration and creep around a well, different
sources of error are discovered. These involve limitations of code and the
mimicking, as well as doubtful assumptions regarding downhole conditions
in the borehole simulation.

• Horizontal stress
The model requires an effective horizontal stress σh = 30 MPa to make
the rock creep. This is high horizontal stress comparing to the TVD
on 1000 m. (Zoback et al, 2003) [17] suggests an effective horizontal
stress on σ′h = 0, 6σ′z, which at TVD on 1000 m approximately gives
an effective horizontal stress σh = 6 MPa. The requirement for high
horizontal stress to make the model creep, proves that Haynesville is
not well suited for the purpose as a well barrier. Haynesville is therefore
chosen as a reference due to its easy accessible creep data rather than
its well barrier applicability.

• Simplicity of model

The simulation simulates in 2D, and therefore only includes stresses to
act in the x-y plane. For the borehole simulation, the vertical stress is
excluded and creep drive mechanism is controlled by applied horizontal
stress, while in reality, vertical stress is an important parameter regard-
ing creep around a wellbore. This proves that the code does not fully
simulate the correct creep mechanism. Another problem regarding this
2D code, is that it has a rather simplified yield criterion (Described in
section 2.1). (Li et al, 2014) [18] developed a model for PFC3D which
among other failure criteria, included the Mohr-Coulomb. Such criteria
are not yet developed for 2D.

The grains which are simulated in this thesis are shaped as balls, while
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in reality, the grains in a shale has a rather flaky shape. In order
to mimic a shale more thoroughly, flaky ball structures can be imple-
mented. This may change the strain and creep results.

• Calibration error
There are uncertainties related to the calibration of parameters such
as threshold stresses, bond strength and creep rate. For instance, the
calibration test detects little change in strain rate by changing threshold
stresses. This is due to the high differential stress Pdiff applied in this
test. For simulations where lower differential pressure is applied, change
in threshold stresses might have larger impact on creep.

• uRate
The uRate may affect the initial conditions at the borehole wall. Too
high uRate can for instance result in dynamic effects and break outs,
and too low may result in no annulus development. The dynamic effects
and break outs affect the size of the initial gap and the stress distri-
bution around the well. Unsuitable uRate, as a source of error, should
therefore be considered if unexpected initial gap and stress distribution
results occur.

• Inaccuracy
Output plotting and printing parameters from PFC can be inaccurate.
Figure 5.1 illustrates an example of this inaccuracy; It shows the lo-
cation of where the numerical analysis on stress distribution around
wellbore is conducted. The radial and tangential stress is calculated
and recorded in each circle separately. This means that the evaluation
of stresses around a borehole only represent a small part of the model,
and not the stress distribution around the whole well. Figure 5.1 also
indicates that the area closest to the borehole wall is not evaluated. It
is therefore not possible to determine the exact stress condition at the
wellbore wall.
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Figure 5.1: A ball plot of a fully closed annulus. The black circles illustrate
the location of stress distribution analysis.
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5.2 Discussion of simulation results

The numerical analyses involve simulations on calibration test and creep
around a borehole. The calibration test mimics the strain rate on a biaxial
test to the strain rate for a triaxial creep test on a real shale core specimen
(Haynesville). The strain rate is mimicked by adjusting the bond strength
between elements and creep rate. To achieve the strain rate recorded in fig-
ure 3.2 strainRate = 1, 5 ∗ 10−8s−1, the bond strength and creep rate are
required to be 30 MPa and 0,000033 respectively. The recorded data from
the calibration test are then applied in the well scale simulation in order to
mimic creep around a borehole for Hayneseville.

The creep threshold for the calibration test is initially decided to be 1 MPa
for both the shear and tensile threshold. Section 3.1.3 evaluates the strain
rate for the calibration test with no creep threshold. Figure 3.7 shows no sig-
nificant difference between the strain rates for the different threshold stresses.
This proves that creep threshold is not capable to affect the strain rates when
large differential stress Pdiff is applied. It is therefore decided to investigate
how the creep threshold affects closure around a borehole where the model’s
differential stress between x-y directions is zero.

Figure 3.19 presents the relative gap and relative pressure on casing vs time
when the creep tensile and shear threshold are both increased to 1 MPa.
After 277 days, the gap is reduced to 50 % of its initial size, and at t=1076
days, the gap is reduced to 10 % of its initial size. One should note that
the initial gap in this case is related to the requested initial gap in the code.
The fact that the gap at t=0 days is 80 % indicates that there has been
some deformation prior to the creep initiation, which might be a result of
too high uRate. Figure 3.8 also indicates small break outs at the borehole
wall which according to the previous section backs up this argument. After
1076 days the relative average pressure on casing has reached 15 % of the ap-
plied horizontal stress (0,15*30 MPa = 4,5 MPa). Pressure on casing gives an
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indication on how the formation bonds with casing, but it does not describe
the quality of the barrier. This is because the parameter is unable to detect
the sealing capabilities of the formation, which can for instance be destroyed
by crack development and break outs. Visual interpretation of figure 3.13 at
t=1076 shows that there are still gaps and spaces fluid easily can penetrate.
Figure 3.14 also concludes that the rock in this simulation has not reached a
sufficient barrier as there is still 10 % gap left to seal.

Figure 3.14 presents the relative gap and relative pressure on casing vs time
when the creep threshold is absent. After 360 days, the gap has reduced to
approximately 30 % of its initial size, and at t=1069 days, the gap is reduced
to under 5 % of its initial size. The relative average pressure on casing is
0,4* 30 MPa = 12 MPa at this stage. Unlike the simulation in section 3.2.2,
the initial gap prior to creep initiation is here 100 %. This contradicts the
argument on high uRate as both simulations use the same uRate (figure 3.9).
The reason for the break outs and initial deformation in section 3.2.2 remains
therefore unknown. When it comes to the gap development around wellbore
in section 3.2.3, figure 3.19 shows that the relative gap remains stable (just
below 5 %) the last 100 days of the simulation. During the same period,
the relative average pressure on casing increases. This is also an indication
that the relative pressure parameter is invalid when determining the sealing
capabilities of a formation pushing on casing.

When comparing the results from creep deformation around wellbore in sec-
tion 3.2.2 and section 3.2.3, it is clear that the simulation without creep
threshold experiences significantly more deformation compare to the simula-
tion which included these parameters. Adding the fact that the calibration
test is not able to detect any considerable difference in the strain rates while
changing these threshold stresses, induces huge uncertainties regarding this
parameter. In order to reduce the uncertainties on the creep threshold for
future work, it is suggested to mimic a softer shale. A softer shale requires
less differential stress in order to initiate creep. The applied differential stress
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in the calibration simulation has to correspond to the differential stress of
the real rock specimen. Due to this reduction in differential stress, the true
threshold stress may be easier determined.

The different graphs in figure 3.15 and figure 3.20 present how the stress dis-
tribution develops during creep around a well for approximately 1000 days.
The behaviours of tangential stresses indicate that the model undergoes plas-
ticity near wellbore. This is because they tend to have a relatively steep slope
before the peak, and the region before this peak, is often referred to as plastic
region. Despite different threshold conditions, both analyses indicate more
or less the same behaviour for all time step evaluated. As mentioned in
section 5.1, the analyses on stresses around wellbore may give some errors
regarding inaccuracy, and the spiky and irregular behaviour of the various
stresses might be a result of that.
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5.3 Sources of error in evaluation on elastic and

plastic strain deformation

This section lists up and elaborates assumptions and corresponding errors to
the total strain deformation model.

• Ideal elastic and plastic behaviour
The total strain deformation model assumes ideal elastic and plastic
behaviour. This means that a rock will act like figure 4.1 or figure 4.3
with increasing load. In reality, a rock may start softening/hardening
when it exceeds its failure strength (Brady et al, 1973) [14]. The be-
yond elasticity behaviour will then either be decreasing (softening) or
increasing (hardening) as a function of strain. The total strain defor-
mation model excludes possibility for these behaviours.

• No pore pressure
The total strain deformation model assumes no pore pressure. This is
an assumption due to Mohr-Coulomb criterion as it requires complete
drainage.

• No well pressure
The total strain deformation model assumes no well pressure. Allowing
well pressure requires non-permeable borehole wall as the the model
does not include pore pressure.

• Sealing capabilities
The total strain deformation model does not evaluate the rock’s capa-
bilities to establish a sufficient barrier according to the requirement of
authorities. Although a borehole wall has reached sufficient deforma-
tion, cracks or break outs may have been developed and destroyed the
rock’s sealing capabilities.
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5.4 Discussion of plastic and elastic deforma-

tion results

Section 4.6 and section 4.5 conduct analyses on how different parameters
influence the abilities of a rock to deform around a borehole. These are now
going to be discussed, and the discussion starts with whether this total strain
deformation (eq. 4.55) is mainly a result of plastic strain or elastic strain:
The total strain deformation allows 25 % closure of the well radius with the
initial given rock properties and corresponding stress condition applied in
section 4.6. With the same rock properties and stress condition, the elastic
strain evaluation in section 4.5 shows that the wellbore closes below 1 % by
only allowing elasticity. This indicates that the elasticity contributes very
little to the total strain deformation compared to the plastic strain. Thus,
elastic parameters such as H and λ are not essential parameters regarding
total strain deformation around a borehole.

The elastic strain analysis in section 4.5 concludes that by only allowing elas-
tic strain, there would only be under 1 % deformation of wellbore. As this
indicates that the elastic contribution to the deformation is very little, it is
decided to conduct analysis on plastic parameters, k, k∗, C0 and C∗0 . These
analyses investigate what impact each of these parameters have on a rock’s
ability to deform around a well. The discussion will focus on the results from
figure 4.7 and figure 4.8.

Figure 4.7 presents graphs of both k and k∗ and shows that the required
horizontal stress to reach u/R = 0, 25, varies with 1 MPa when changing k
and 2 MPa when changing k∗. It is important to note k∗ is evaluated two
times the range of k. This indicates that they have equal slope and therefore
equal impact on the ability of a rock to deform.

Figure 4.8 presents the horizontal stress σh as a function of C0 and C∗0 . By
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maintaining C∗0 as constant, the horizontal stress required to reach 25 % clo-
sure varies from σh = 8 MPa to σh = 14 MPa when evaluating 1 < C0 < 19, 5

MPa. By maintaining C0 as constant, the horizontal stress required to reach
25 % closure varies from σh = 10 MPa to σh = 36, 5 MPa when evaluating
1 < C∗0 < 10 MPa.

The slope indicates change in horizontal stress per incremented variable, and
the magnitude in slope therefore describes the impact each variable has on
the ability of a rock to deform. Analyses in section 4.6 show that the uncon-
fined residual strength C∗0 has a significant steeper slope than k, k∗ and C0.
This indicates that the unconfined residual strength C∗0 is an important pa-
rameter compared to the other plastic parameters regarding a rock’s ability
to deform around a well.

Figure 4.9 presents the stress distribution around a borehole according to
Mohr-Coulomb failure criterion (section 4.1). The figure describes when fail-
ure occur with constant plastic parameters (C0 = C∗0 and k = k∗). These
parameters also decide the size of the plastic zone. Figure 4.10 presents the
stress distribution around wellbore when altered plastic parameters are in-
troduced and the well has undergone a deformation of 25 %. Unlike figure
4.9 the tangential stress shows discontinuity in the transition between plastic
and elastic zone. This is not a surprising result as Mohr-Coulomb criterion
only requires continuity in the radial stress (eq 4.11 and eq 4.46). Except for
the discontinuity, figure 4.10 also shows that the plastic zone is significant
greater when allowing altered plastic parameters.
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6 Conclusion

This thesis has conducted creep simulations in PFC and derived an analyt-
ical expression on plastic and elastic strain deformation around a borehole
according to the Mohr-Coulomb criterion. The creep simulation investigated
the impact of change in threshold stresses, while the analytical part examined
the importance for various parameters for a rock’s ability to strain deform
around a well. Following conclusions are obtained from this work:

• The PFC simulations on creep around a borehole discovered major
differences in a rock’s ability to close the gap between formation and
casing when changing creep threshold stresses.

• The calibration tests which mimicked strain rates from a real rock spec-
imen into PFC were unable to detect any significant difference in strain
rate when changing the creep threshold stress τ0. This leads to huge
uncertainties regarding calibration of this parameter. The absence of
change in strain rate is due to high differential stress Pdiff in the sim-
ulation.

• It is possible to reduce these uncertainties by mimicking from a softer
rock specimen than Haynesville. Softer rock requires lower differential
stress Pdiff to induce creep. This allows the corresponding differential
stress in the simulation also to be reduced.

• Evaluation of elastic deformation indicates that elastic strain contributes
little to the total strain deformation around a borehole.

• Analyses on total strain deformation around a borehole show that the
unconfined residual strength C∗0 has large impact on the rock’s ability
to close the annulus between casing and formation.

• Plasticity may explain closure around a wellbore, but it is important
to note that these analytical strain analyses do not evaluate the sealing
capabilities of a rock.
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