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Abstract
The versatility of two-legged walking can make bipedal robots ideal for operations in
rough terrain and environments designed for human beings. In order to make such robots
able to operate over long periods of time and handle unexpected external disturbances, it
is crucial that their gaits are energy efficient and stable with respect to perturbations from
the nominal locomotion.

This thesis considers gait planing and the development of stabilizing controllers for a
planar compass biped with a torso using the virtual holonomic constraints approach. The
biped considered has three degrees of freedom and two actuators, and is thus underactuated
by a degree of one. It is further considered as a hybrid dynamical system with a continuous
phase and a discrete phase arising from the sudden change in velocities occurring from the
impact of the swing leg with the ground at the end of a step.

Feasible gaits for the biped are found by assuming that a set of geometrical relations,
called virtual holonomic constraints, between the configurations variables and a scalar
variable, referred to as the motion generator, are kept invariant by feedback control. This
constrains the evolution of the dynamical system to a two-dimensional submanifold of
the state space, describing the evolution of the motion generator. For a given motion
generator, virtual holonomic constraints which describes a feasible gait are then found
by solving a non-linear optimization problem which minimizes a desired cost criteria. It
is shown that highly energy efficient gaits with low torque requirements can be found
with the method presented. Moreover, it is shown that the choice of the motion generator
heavily influences which feasible gaits that can be found, and that obvious candidates for
the motion generator, as the angle of the stance leg, can greatly restrict the search space.

Stabilizing controllers are developed by stabilizing a linear, time-varying system cor-
responding to the linearization of a set of transverse coordinates which are exactly zero
on the nominal trajectory. Two different types of controllers based on transverse lineariza-
tion are developed. The first uses the angle of the stance leg as the motion generator and
five transverse coordinates, which is minimum number of independent transverse coordi-
nates. The second method approximates the motion generator through a projection from
the configuration variables of the biped, such that it can be used to stabilize gaits where the
motion generator is not directly known as a function of the configuration. Transverse lin-
earization is then carried out for six excessive transverse coordinates. For both methods,
a stabilizing controller is then developed which exponentially stabilizes the linear time-
varying system corresponding to the linearized transverse dynamics by solving the Riccati
differential equation with one jump. This is done by transforming the Riccati differential
equation to a linear matrix inequality and solving a semi-definite programming problem.
The found controllers then renders the trajectory of the non-linear system locally, exponen-
tially orbitally stable. It is shown in numerical simulations that both control methods can
stabilize gaits with respect to small perturbations from the nominal motion and changes in
the system parameters from those used in the development of the controllers.
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Sammendrag
(Norwegian translation of the Abstract)
Allsidigheten ved tobeint gange kan gjøre tobeinte roboter ideelle for drift i vanskelig ter-
reng og i omgivelser som er designet for mennesker. For å gjøre slike roboter i stand til
å operere over lange tidsperioder og håndtere uventet ytre forstyrrelse, så er det avgjørende
at deres ganglag er energieffektive og stabile med hensyn til avvik fra det ønskede ganglaget.

Denne avhandlingen omhandler planlegging av ganglag og utviklingen av stabilis-
erende kontrollere for en tobeint robot med overkropp som er betraktet i det vertikale plan
ved hjelp av en metode som bruker virtuelle holonomiske begrensninger. Den tobeinte
roboten har tre frihetsgrader og to aktuatorer, og er dermed et underaktuert system av èn
grad. Roboten er videre betraktet som et hybrid dynamisk system med en kontinuerlig fase
og en diskret fase som er en følge av den plutselige endringen i hastigheter som oppstår
fra kollisjonen mellom svingbenet til roboten og bakken ved slutten av et steg.

Mulige ganglang for roboten blir funnet ved å anta at et sett av geometriske relasjoner,
kalt virtuelle holonomiske begrensninger, mellom konfigurasjonsvariablene og en skalar
variabel kalt bevegelsesskaperen, kan opprettholdes ved bruk av tilbakekobling. Dette
tvinger det dynamiske systemet til å utvikle seg på en todimensjonal submanifold av
tilstandsrommet som beskriver utviklingen av bevegelsesskaperen. For en gitt beveg-
elsesskaper finner man så virtuelle holonomiske begrensninger som beskriver et ganglag
ved å løse et ulineært optimaliseringsproblem som minimerer en ønsket konstnadsindeks.
Det blir vist at den presenterte metoden kan finne svært energieffektive ganglag med lave
krav for dreiemoment. Videre blir det vist at valget av bevegelsesskaperen kan ha store
påvirkninger på hvilke ganglag som kan bli funnet, og at åpenbare kandidater, som vinke-
len til standfoten, kan i stor grad begrense rommet av mulige ganglag.

Stabiliserende kontrollere blir utviklet ved å stabilisere et lineært, tidsvarierende sys-
tem som tilsvarer linearisering av et sett av tverrgående koordinater som er nøyaktig lik
null på det gitte ganglaget. To kontrollere blir utviklet som begge er basert på linearis-
ering av tverrgående koordinater. Den første benytter vinkelen til standfoten som beveg-
elsesskaperen og bruker fem tverrgående koordinater, som er minimum antall uavhengige
tverrgående koordinater. Den andre metoden tilnærmer bevegelsesskaperen gjennom en
projeksjon fra konfigurasjonsvariablene til roboten, slik at den kan brukes til å stabilisere
ganglag hvor bevegelsesskparen ikke er direkte kjent som en funksjon av konfigurasjonen.
Linearisering av de tverrgående koordinatene blir så utført for seks tverrgående koordi-
nater. For begge fremgangsmåter er en stabiliserende kontroller funnet som eksponen-
tielt stabiliserer det lineære, tidsvarierende systemet som svarer til linearisering av det
tverrgående dynamiske systemet ved å løse en Riccati differensialligningen med ett hopp.
Dette gjøres ved å modellere differensialligningen som en lineær matrise-ulikhet og løse et
semidefinitt optimaliseringsproblem. De derav funnede kontrollerne resulterer i at banen
i tilstandsrommet som tilsvarer ganglaget for det ulineære system blir lokalt, eksponen-
tielt orbitalt stabilt. Det blir vist i numeriske simuleringer at begge kontrollmetodene kan
stabilisere ganglag for små avvik fra det ønskede ganglaget og for endringer i systempara-
metrene fra de som brukes i utviklingen av kontrollerene.
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2.4 The Virtual Holonomic Constraints Approach . . . . . . . . . . . . . . . 15
2.4.1 The Reduced Dynamics . . . . . . . . . . . . . . . . . . . . . . 16
2.4.2 Partial Feedback Linearization . . . . . . . . . . . . . . . . . . . 19
2.4.3 Transverse Coordinates and Transverse Linearization . . . . . . . 22
2.4.4 Extension to Impulsive Mechanical Systems with One Jump . . . 25

v



2.5 Stabilizing Linear Time-Varying Systems . . . . . . . . . . . . . . . . . 29

3 Equations of Motion and Impact Models for the Three-Link Biped 35
3.1 Equations of Motion in the Swing Phase . . . . . . . . . . . . . . . . . . 36
3.2 Impact models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Algebraic Method with Newton’s Model of Restitution . . . . . . 43
3.2.2 Conservation of Angular Momentum . . . . . . . . . . . . . . . 45

4 Procedure for finding Periodic Gaits 49
4.1 Finding Feasible Gaits on the Full Model . . . . . . . . . . . . . . . . . 50
4.2 Finding Feasible Gaits from the Reduced Dynamics . . . . . . . . . . . . 51

4.2.1 Finding the Reduced Dynamics . . . . . . . . . . . . . . . . . . 52
4.2.2 Choosing Synchronization Functions . . . . . . . . . . . . . . . 54
4.2.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.4 Summary of the optimization problem . . . . . . . . . . . . . . . 62

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.1 Full dynamical model . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.2 Reduced dynamics with stance leg as the motion generator . . . . 64
4.3.3 Reduced dynamics with an unknown motion generator . . . . . . 71

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Development of Stabilizing Controllers 77
5.1 Motion Generator as the Angle of the Stance Leg . . . . . . . . . . . . . 77

5.1.1 Partial Feedback Linearization . . . . . . . . . . . . . . . . . . . 78
5.1.2 Remaining Internal Dynamics . . . . . . . . . . . . . . . . . . . 80
5.1.3 The Hybrid Linearized Transverse Dynamics . . . . . . . . . . . 81
5.1.4 Construction of a Stabilizing Controller . . . . . . . . . . . . . . 83
5.1.5 Implementation and Results from Numerical Simulations . . . . . 85

5.2 Motion Generator found through a Projection from the Configuration . . . 94
5.2.1 Excessive Transverse Coordinates . . . . . . . . . . . . . . . . . 94
5.2.2 Transverse Linearization . . . . . . . . . . . . . . . . . . . . . . 95
5.2.3 Implementation and Results from Numerical Simulations . . . . . 99

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Conclusion and Recommendations for Further Work 111
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.2 Recommendations for Further Work . . . . . . . . . . . . . . . . . . . . 112

Bibliography 114

A Various Proofs and Theorems 121
A.1 Proof of Theorem 2.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
A.2 Proof of Theorem 2.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
A.3 Hadamard’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.4 Proof of Theorem 4.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.5 Proof of Proposition 4.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 125

vi



B Full Function Expressions 127

C Implementations and Additional Results 131
C.1 The Integral Function using the Trapezoidal Rule . . . . . . . . . . . . . 131
C.2 Stabilizing a Gait with the Motion Generator as the Angle of the Stane Leg

using the Projection Method . . . . . . . . . . . . . . . . . . . . . . . . 132

vii





List of Tables

4.1 Physcial parameters of the compass biped rounded to three decimal places. 63

List of Figures

1.1 The minimum cost of transport as function of body mass for a variety of
robots, animals, and vehicles. . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 A bouncing ball for different values of the coefficient of restitution. . . . . 10
2.2 Illustration of a periodic trajectory Γ lying inside the annular region en-

closed by the closed curves C1 and C2. . . . . . . . . . . . . . . . . . . . 11
2.3 The van der Pol oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . 12
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Chapter 1
Introduction

1.1 Background and Motivation

The study of walking for two-legged robots, often referred to as bipeds, is a field of in-
creasing popularity. Studying bipedal walking can give insight into how humans walk,
while the versatility of two-legged walking can make such robots ideal for operation in
rough terrain and environments designed for human beings.

Some important criteria for bipedal walking, and locomotion in general, are energy
efficiency and the stability of the motion w.r.t. perturbations from the nominal locomotion.
In order to evaluate the energy efficiency, it is common to measure the energetic cost of
transport (COT). The COT is a dimensionless quantity, defined as the energy consumed
to move a unit weight a unit distance [25]. The COT plotted against body mass for a
variety of well known robots, animals and vehicles is shown in Figure 1.1. One of the
most energy efficient bipedal robots that have been made, the Cornell biped [6], has a
COT of approximately 0.2, which is about the same as the minimum for an average human
being. Although the Cornell biped can perform highly efficient walking, it can not do other
simple takes like standing still [25].

In order to ensure stability for bipedal walking, there exists a variety of different strate-
gies. A common strategy is the zero moment point (ZMP) approach [53]. By ensuring that
the whole area of the sole of stance foot is in contact with the walking surface, i.e, the robot
has flat feet which does not roll, the robot can be regarded as fully actuated throughout the
waling cycle such that motion planning and control can be largely based on the kinematics
rather than the dynamics of the robot. This approach is employed by many well known
bipedal robots, like for example Honda’s ASIMO [40]. ASIMO can – in addition to stable
walking – run, climb stairs and even kick a ball. Similar strategies were also employed
by several bipedal robots from different teams competing in the recent DARPA Robotics
Challenge [38], where the robots had to perform a variety of tasks, from opening doors
and drilling holes, to walking across difficult terrain as to emulate operating in a disaster
area.

Although these robots and others which are employing the ZMP approach or similar

1



Chapter 1. Introduction

Figure 1.1: The minimum cost of transport as function of body mass for a variety of robots, animals,
and vehicles. Reprinted from IEEE Robotics and Automation Magazine, Vol. 14, No. 2, A.D Kuo,
Choosing your steps carefully, pages 18-29, Copyright c© 2007 IEEE.

methods are highly advanced and can perform a variety of tasks, the restriction that the
feet can not roll results in gaits which look very non-human like and consume far more
energy than that of a walking human being. Indeed, ASMIO has a minimum COT of
approximately 3.2, which over ten times that of an average human being [6].

For this reasons, strategies for creating and stabilizing gaits with low energetic cost
by drawing inspiration from humans are becoming widely studied. One such approach is
dynamic walking, also called limit cycle walking, where the walking motion is analysed as
a limit cycle. This approach, first presented in [20], harnesses the natural dynamics of the
system in order to generate energy efficient and often quite human-like walking [25]. The
field gained a lot of traction after the seminal paper [31] on passive walking by McGeer. In
this paper, McGeer demonstrated that a completely unactuated bipedal robot could walk
down a shallow slope only powered by gravity, resulting in a very human-like gait. From
this observation, strategies to recreate such motion on varying slopes and level ground
using control action have been studied. One such strategy is the method of passivity-based
control presented in [50]. This method takes an already known passive gait found for a
given slope and transforms and stabilizes it for a differently angled slope using energy
shaping techniques [50].

Some other methods that are gaining traction within the scope of dynamic walking,
are those employing the notion of so-called virtual holonomic constraints (VHC). These

2



1.2 Outline of the Thesis

methods introduces a set of geometric relations, called virtual holonomic constraints, be-
tween the configuration variables of the system and some scalar variable inherent in the
system, which is referred to as the motion generator (MG). By assuming that some control
action can make these relations invariant, the dynamics of the system is restricted to evolve
on a two-dimensional submanifold of the state space describing the time evolution of the
motion generator. Thus, feasible motions of the system can be found from the geometric
curves defined by the virtual holonomic constraints and the evolution of the motion gen-
erator. For underactuated system, the evolution of the motion generator can not be chosen
arbitrarily1, as is the case for fully actuated systems, but must comply with the passive
degrees of freedom and the choice of the geometric relations.

The method of using VHCs for dynamic walking was first demonstrated on the planar
bipedal robot RABBIT [5], which had five degrees of freedom (DOF) and one degree of
underactuation. In order to generate a stabilizing controller, the authors derived the so
called hybrid zero dynamics corresponding to reduced dynamics found by assuming that
the virtual holonomic constraints were perfectly enforced by feedback. Stability could then
be determined by the contraction of the Poincarè map over a step using a two-dimensional
Poincarè surface found from the hybrid zero dynamics [5]. For further details on this
approach, see, e.g., [16, 55, 54].

In [46], virtual holonomic constraints were used for orbital stabilization of periodic
solution for mechanical system with one degree of underactuation, and later extended
to several degrees of underactuation in [42]. It was shown that there exists a generic
choice of transverse coordinates, and that the corresponding transverse dynamics could
be linearized analytically such that an orbitally stabilizing controller could be generated
by stabilizing the origin of the linearized transverse dynamics [46, 42].

In this thesis, the virtual holonomic constraint approach from [46] and [42] will be used
to generate and stabilize gaits for a planar, three-link compass biped with a torso. In order
to account for the sudden change of velocities due to the impact between the swing leg and
the ground at the end of a step, the extension of this method to hybrid systems presented
in [41] will be used. Stabilizing controllers will then be generated by solving the Riccati
differential equation (RDE) corresponding to the linearized transverse dynamics with a
method based on [18, 17] with some additional constraints to account for the dynamics of
the system being hybrid.

1.2 Outline of the Thesis
The outline of this thesis is as follows. In Chapter 2, the theoretical framework of the
thesis is presented. This includes some basic concepts in classical mechanics, like the
Euler-Lagrange equation; the concept of periodic trajectories and orbital stability; a brief
introduction to hybrid systems; the virtual holonomic constraint approach; as well as sta-
bilization of linear time-varying systems using LQR based on the solution of the Riccati
differential equation. In Chapter 3, the mathematical model of the three-link biped is pre-
sented, with the continuous dynamics modelled using Euler-Lagrange and the derivation
of two discrete impact maps. Chapter 4 presents the suggested motion planning procedure

1The evolution of the motion generator must of course also comply with the limitations of the system, like
restrictions actuator torques, as well as constraints on joint velocities and accelerations.

3



Chapter 1. Introduction

for finding symmetric gaits using the reduced dynamics derived from the virtual holonomic
constraints approach. Chapter 5 regards the development of stabilizing controllers based
on the solution of the Riccati differential equation with one jump. The first method that is
presented can be used for gaits found with the motion generator chosen as the angle of the
stance leg, while for the second, the motion generator is approximated from a projection
of the configuration and uses excessive transverse coordinates. Lastly, some concluding
remarks and suggestions for further work are given in Chapter 6.
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Chapter 2
Theoretical Framework and
Preliminaries

In this chapter, the theoretical framework of this thesis is presented, as well as complemen-
tary theory meant to help the reader better understand the topics presented. The chapter is
outlined as follows. In Section 2.1, a brief overview of classical mechanics is presented,
giving a brief introduction to topics as generalized coordinates, holonomic constraint, the
Euler-Lagrange equation, as well as the difference between fully actuated and underactu-
ated systems. The notion of hybrid systems is then presented in Section 2.2. Section 2.3
brings up the topics of periodic trajectories, limit cycles and orbital stability, as well as
Poincarè sections, which is a useful tool in order to determine orbital stability. In Sec-
tion 2.4, the theory of virtual holonomic constraints is presented, showing how it can be
used for motion planning and determining orbital stability through transverse lineariza-
tion. Lastly, Section 2.5 shows how linear, time-varying systems can be stabilized using
the linear-quadratic regulator approach by solving the Riccati differential equation.

2.1 Classical Mechanics and Equations of Motion

2.1.1 Generalized Coordinates and Holonomic Constraints

Consider a system of K particles where the position of the particles are given by the
position vectors ~ri, i = 1, . . . ,K, describing the configuration of the system. Sup-
pose that each particle of mass mi is free to move unconstrained in a three-dimensional
Cartesian coordinate system such that the configuration of the system is described by
~r = [~r1; . . . ;~rK ] ∈ R3K .1 Then, the system is said to have 3K degrees of freedom

1The notation y = [y1; . . . ; yn] will used throughout this text to denote that y is a column vector, i.e.,
[y1; . . . ; yn] = [y1, . . . , yn]T .
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(DOF) and the motion of each particle is described by Newton’s second Law of motion:

mi
d2~r

dt2
= mi~ai =

k∑
j=1

~Fj,i + ~F
(e)
i (2.1)

where ~ai is the second derivative of ~ri w.r.t. to time, i.e., the acceleration of particle i, ~F (e)
i

is the external force acting upon it and ~Fj,i is the internal force acting upon the particle
due to the particle j. Note that ~Fj,i = 0 for j = i.

Now, suppose that the particles are constrained in some fashion. Then, one must also
take into the forces needed for the constraints to hold in (2.1), called the constraint forces.
Some constraints, called holonomic constraints, have the useful property that they make it
possible to reduce the degrees of freedom of the system. A constraint is called holonomic
if it can be written as an equality constraint in terms of the position vectors:

h(~r1, . . . , ~rK , t) = 0, (2.2)

and nonholonomic otherwise [51]. Such constraints can be thought of as either restricting
movement of a particle in certain directions or by coupling the particles in the system such
that they are not fully independent, e.g., two particles linked by a non-flexible rod. Since
these are equality constraints only in terms of the position vectors, one can, for a system
with C holonomic constraints

hj(~r1, . . . , ~rK , t) = 0, j = 1, . . . , C, (2.3)

reduce the degrees of freedom toN = 3K−C by introducing a new set ofN independent
coordinates, q1, . . . , qN , such that the position, ~ri, and velocity, ~vi, of each particle, i =
1, . . . ,K, can be written in terms of the coordinates as

~ri = ~ri(q1, . . . , qN , t),

~vi =
d~r

dt
=

N∑
n=1

∂~ri
∂qn

q̇n +
∂~ri
∂t
.

(2.4)

These new coordinates, q = [q1; . . . ; qN ] ∈ Q ⊆ RN , are called generalized coordinates
and evolve on the configuration manifold, denotedQ, describing all feasible configurations
of the system. The generalized coordinates, q1, . . . , qN , are called minimal coordinates if
they are the minimum number of coordinates needed to describe the configuration of the
system, and excessive coordinates otherwise. The states of the system are described by
[q; q̇] ∈ TQ, where TQ is the 2N -dimensional tangent bundle of Q called the state space
of the dynamical system.

2.1.2 The Euler-Lagrange Equation

For systems subject to holonomic constraints, it is often convenient using the Euler-Lagrange
equation for finding the equations of motion, i.e., the dynamics of the system, as one can

6



2.1 Classical Mechanics and Equations of Motion

use generalized coordinates, q ∈ Q, that contain the holonomic constraints (2.3) condi-
tions implicitly in the transformation equation (2.4) [15]. The Euler-Lagrange equation
can be derived using either D’Alembert’s principle:

K∑
i=1

(
~F

(a)
i −mi

d2~ri
dt2

)
· δ~ri = 0 (2.5)

where ~F (a)
i is the applied forces and δ~ri is a virtual displacement; or Hamilton’s principle

of least action. However, such derivations are outside the scope of this text; see, e.g., [9]
or [15].

In order to derive the equations of motion using the method of Euler-Lagrange, one
starts by defining the Lagrangian, L(q, q̇), of the system given by the kinetic energy, K :=
1
2 q̇
TM(q)q, and the potential energy, P := V (q), as

L(q, q̇) := K − P =
1

2
q̇TM(q)q̇ − V (q), (2.6)

where M(q) is the symmetric, positive definite inertia matrix, whose elements are given
by

mi,j(q) :=
∂

∂q̇i

(
∂K
∂q̇j

)
, ∀i, j ∈ {1, 2, . . . , n}. (2.7)

The Euler-Lagrange equation is then defined as follows

d

dt

(
∂L(q, q̇)

∂q̇

)
− ∂L(q, q̇)

∂q
= B(q)u, (2.8)

where u ∈ Rm is a vector of independent control inputs and B(q) is an n × m matrix
function of full rank. Thus, the equations of motion of the system are described by (2.8),
which can be written on the equivalent form [51]

M(q)q̈ + C(q, q̇)q̇ +G(q) = B(q)u, (2.9)

where G(q) = [∂V (q)/∂q1, . . . , ∂V (q)/∂qn]T is a vector of gravitational terms, referred
to as the gravity vector, and the matrix C(q, q̇) contains the centrifugal and Coriolis terms,
whose elements are given by [51]

ci,j =

n∑
k=1

Γki,j(q)q̇k, ∀i, j ∈ {1, 2, . . . , n}. (2.10)

Herein, Γki,j(q) are the Christoffel symbols of the first kind, which are defined as

Γki,j(q) :=
1

2

{
∂mi,j(q)

∂qk
+
∂mi,k(q)

∂qj
− ∂mk,j(q)

∂qi

}
. (2.11)

As the inertia matrix, M(q), is positive positive definite, and thus invertible, one can
solve (2.9) in terms of the acceleration vector q̈:

q̈ = M(q)−1
[
− C(q, q̇)q̇ −G(q) +B(q)u

]
. (2.12)

7
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By defining the variables x1 := q and x2 := q̇, one can write the system as a set of 2n
ordinary differential equations (ODE) as follows

ẋ1 = x2,

ẋ2 = M(x1)−1
[
− C(x1, x2)x2 −G(x1) +B(x1)u

]
,

(2.13)

which, by defining x = [x1;x2], can be written on the standard form:

ẋ = f(x) + g(x)u (2.14)

with

f(x) =

[
x2

M(x1)−1
(
− C(x1, x2)x2 −G(x1) +

)] and g(x) =

[
0

M(x1)−1B(x1)

]
.

2.1.3 Fully Actuated vs Underactuated Systems
A mechanical system is said to be underactuated if it has fewer actuators than degrees of
freedom. Thus, the system (2.9) is fully actuated ifm = rankB(q) = n, and underactuated
by degree n−m otherwise. If the system is fully actuated, i.e., rankB(q) = n, then B(q)
is invertible, meaning that for any fully actuated system one can set the input to

u = B(q)−1
[
M(q)v + C(q, q̇) +G(q)

]
(2.15)

such that (2.9) reduces to
q̈ = v.

This means that it is possible to generate arbitrary accelerations in any direction on Q.2

Writing the system on the form (2.13), it takes the form of a double integrator:

ẋ1 = x2,

ẋ2 = v,
(2.16)

which can be written on standard linear form as

ẋ = Ax+ bv =

[
0n In
0n 0n

] [
x1

x2

]
+

[
0n
In

]
v, (2.17)

where In is the n× n identity matrix and 0n is an n× n matrix of zeros.
For underactuated systems, i.e., rankB(q) = m < n, no such exact feedback lin-

earization as (2.15) exists. However, the method of partial feedback linearization (PFL)
presented in [48] (see also [23]) makes it possible to linearize m of the second order equa-
tions of (2.9) using nonlinear feedback, where the n−m remaining nonlinear equation are
termed the internal dynamics. From the internal dynamics, one can derive the so called
zero-dynamics. Stability of the system can then be determined by the stability of the zero-
dynamics [48].

2This is of course not the case if there are limitations on the actuator inputs or joint velocities.
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2.2 Hybrid Mechanical Systems
Consider a mechanical system where the continuous dynamics are of the form of the Euler-
Lagrange equation (2.9). Suppose the system is subject to a discrete event defined as an
instantaneous jump in the states of the system, such as the impact between the swing leg
of a bipedal robot and the ground at the end of a step. The jump consists of the pair of
hypersurfaces, {Γ−,Γ+}, in the state space of the system and instantaneous mappings F .
Whenever the states of the system hits the surface Γ−, the states are immediately mapped
by F onto Γ+ such that the update law is defined by the set of triples

{Γ−,Γ+}, F : Γ− → Γ+. (2.18)

The system’s dynamics are thus of the form

M(q)q̈ + C(q, q̇)q̇ +G(q) = B(q)u, [q−; q̇−] /∈ Γ−,

Γ+ 3 [q+; q̇+] = F
(
[q−; q̇−]

)
, [q−; q̇−] ∈ Γ−,

(2.19)

with [q; q̇] ∈ TQ ⊆ R2n. Here the notation [q−; q̇−] and [q+; q̇+] denotes the states
of the system immediately prior to and after the jump, respectively. Such a mechanical
system, which embodies both continuous and discrete behaviours, is referred to as a hybrid
mechanical system [14]. The discrete parts of the dynamics arises from events where
abrupt changes in the states of the system takes place over a sufficiently small timespan
such that the events can be modelled as impulsive, i.e., instantaneous jumps in the states
of the system.

An example of such a system, is a ball dropped from some initial height that falls
towards an immovable horizontal plane, which will be referred to as the ground. The
dynamics of the ball in free fall are simply found by Newton’s second law as ma = F r,
where m is its mass, a its acceleration and F r are the forces acting upon it. When the ball
is falling, its dynamics are thus simply a = −g, where g is the gravitational acceleration.
However, when the ball hits the ground, and assuming it can not be deformed, its velocity
v immediately changes while its vertical position y stays the same. The velocity v+ of the
ball immediately after the impact with the ground is given by v+ = −ev−, where v− is
its velocity immediately prior to the impact, and e ∈ [0, 1] is the coefficient of restitution,
which depends on properties like the materials of the bodies in contact and their geometry,
the approach velocity, as well as the duration of contact [13]. Thus, the hybrid dynamics
of the ball is given by

a = −g, [y−; v−] /∈ Γ−,

Γ+ 3 v+ = −ev−, [y−; v−] ∈ Γ−,
(2.20)

where Γ− denotes the impact surface, defined as Γ− = {[y; v] : y = 0, v < 0}. If
the coefficient of restitution, e, is equal to one such that v+ = −v−, then the ball will
continue to bounce with the same amplitude forever (assuming no air resistance). Such
impacts are called elastic and the energy of the ball is conserved. For the case when e < 1,
there is some dissipation of energy at each impact, meaning that the amplitude will be
smaller for each impact, eventually reaching zero. Such impacts are called inelastic, and
perfectly inelastic if e = 0, meaning that the ball stops after the first impact. Figure 2.1
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shows the evolution of a ball dropped from 1 meter for different values of the coefficient
of restitution.

0 0.2 0.4 0.6 0.8 1
y [m]

-5

0

5

ẏ
[m

/
s]

e = 1
e = 0.9
e = 0.85

(a) Phase portrait.
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0.4
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0.8

1

y
[m

]
(b) Time evolution.

Figure 2.1: A bouncing ball for different values of the coefficient of restitution.

Most bipedal robots are modelled as hybrid systems due to events during walking like
knee-locking and the impact of the swing leg with the ground. Although discretizing such
events is not necessarily the best representation of these events found in nature, it is the
most the most common in the literature under the assumption of completely rigid bodies;
see, e.g., [54, 50, 12]. It has also been shown in [20] that such discrete impacts can play a
vital role in the stability of bipedal locomotion.

2.3 Periodic Trajectories, Limit Cycles and Stability
In many systems, like bipedal walking, one wants the behaviour of the system to be oscil-
latory, i.e., repeating its behaviour with some period T . A system is said to have a periodic
solution3 if

x(t+ T ) = x(t), ∀t ≥ 0,

with period T > 0. On the phase portrait, such periodic solutions form closed trajectories
referred to as periodic orbits or periodic trajectories. For a second-order autonomous
system

ẋ = f(x), x ∈ Rn, (2.21)

where f(x) continuously differentiable, one can use the Poincaré-Bendixson Theorem to
determine if some closed bounded subset of the plane spanned by the vector field of (2.21)
contains a periodic orbit. A corollary of the theorem, given in [23], called the Poincaré-
Bendixson Criterion is stated bellow (see, e.g., [21] for the theorem).

Theorem 2.3.1 (Poincaré-Bendixson Criterion, [23]). Consider the system (2.21) and let
M be a closed bounded subset of the plane such that

3We exclude constant solutions arising from equilibrium points whenever we refer to periodic solutions or
periodic orbits throughout this text.
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• M contains no equilibrium points, or contains only one equilibrium point such that
the Jacobian matrix

[
∂f(x)/∂x

]
at this point has eigenvalues with positive real

parts. ( Hence, the equilibrium point is unstable focus or unstable node.)

• Every trajectory starting inM stays inM for all future time.

Then,M contains a periodic orbit of (2.21).

One can think of the Criterion in the following way. Imagine that M is the closed
bounded region enclosed by the closed curves C1 and C2 given in Figure 2.2. If there are
no equilibrium points inM and the gradient of the vector field points intoM for all points
on C1 and C2 such that every trajectory that entersM stays inM for all time. Then, there
must be at least one periodic orbit Γ inM.

x

x

C1

C2

Γ

ॱ

Figure 2.2: Illustration of a periodic trajectory Γ lying inside the annular region enclosed by the
closed curves C1 and C2.

If a periodic orbit is isolated, i.e., there are no other periodic orbits in the vicinity of
the orbit, it is referred to as a limit cycle. A limit cycle is said to be stable if all solutions
starting in some non-zero vicinity of the cycle, referred to as the region of attraction of
the cycle, will converge to the cycle as t → ∞, and unstable otherwise. A well known
example of a limit cycle, is van der Pol’s oscillator [21]

ẍ+ µ(x2 − 1)ẋ+ x = 0, (2.22)

which is stable for µ > 0 and unstable for µ < 0. The phase portait and time evolution of
the van der Pol oscillator can be seen in Figure 2.3 for µ = 0.5.

As mentioned in the introduction, dynamic walking is often referred to as limit cycle
walking. However, the limit cycles resulting in a walking gait differs from that found
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(a) Phase portrait.
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(b) Time evolution.

Figure 2.3: The van der Pol oscillator with µ = 0.5 where the red line corresponds to the limit
cycle. The black, dotted line in (a) corresponds to the Poincaré section SvdP = {(x, ẋ) ∈ R2 : x =
0, ẋ > 0}.

for the van der Pol oscillator due to the discrete events of the system from knee-locking
and impacts between the feet and the ground. Yet, calling such gaits limit cycles are still
appropriate as they can be considered as closed periodic trajectories in the state space,
which can be both inherently stable or unstable. Such gaits might, however, not exist on
the unactuated mechanical system and can only be realized using control action.

2.3.1 Orbital Stability

The reason all solutions starting in a vicinity of a limit cycle must eventually converge
to it for it to be stable, stems from the definition of a limit cycle, i.e., if a non-constant
solution starting in a vicinity of a limit cycle stays in the vicinity of the cycle for all time
and never converges, then the limit cycle is not an isolated periodic orbit and thus not a
limit cycle. Therefore, a stable limit cycle is said to be orbitally asymptotically stable. The
term orbitally refers to the fact that periodic orbits can not be asymptotically stable in the
normal sense, i.e., in the same way that equilibrium points are asymptotically stable. To
illustrate this, consider the van der Pol oscillator (2.22). Every trajectory that is perturbed a
small distance from the limit cycle will eventually converge to the limit cycle, but different
perturbations will not all converge to a given point on the cycle. This is clearly illustrated
in Figure 2.3b where the perturbations clearly converge to the limit cycle but not in phase
with the nominal cycle.

The definition for a periodic orbit to be orbitally stable, orbitally asymptotically stable
and orbitally exponentially stable is given next and is based on Definition 8.2 in [23] and
[43].

Definition 1. Let x(t) = [q(t); q̇(t)] be a trajectory with initial conditions x(t0) = x0.
Then, the orbit O∗ is said to be
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2.3 Periodic Trajectories, Limit Cycles and Stability

• Orbitally stable if for each ε > 0 there is δ = δ(ε) > 0 such that

dist(x0,O∗) < δ ⇒ dist(x(t),O∗) < ε, ∀t > t0.

• Unstable if not orbitally stable.

• Orbitally asymptotically stable if it is orbitally stable and δ can be chosen such that

dist(x0,O∗) < δ ⇒ dist(x(t),O∗)→ 0 as t→∞.

• Orbitally exponentially stable if there exists some c1 > 0, c2 > 0 and δ can be
chosen such than such that

dist(x0,O∗) < δ ⇒ dist(x(t),O∗) ≤ c1dist(x0,O∗)exp(−c2(t−t0)), ∀t ≥ t0.

Here, dist(x(t),O) is the shortest distance between the orbit O and the vector x(t), i.e.,

dist(x,O) = inf
y∈O
‖x− y‖. (2.23)

2.3.2 Poincaré first-return map and Poincarè Sections
One way of determining orbital stability of a periodic orbitO∗ of (2.21), is using Poincarè’s
first-return map [21, 43]. One start by introducing a (n − 1)-dimensional hyper-surface
S, called a Poincaré section, transversal to the flow of O∗, i.e., n(x) · f(x) 6= 0, ∀x ∈ S,
where n(x) is the normal vector of S at the point x. An example of a Poincarè section for
the van der Pol oscillator is SvdP = {[x; ẋ] ∈ R2 : x = 0, ẋ > 0} shown in Figure 2.3a.

Given a sufficiently small region S0 ⊂ S which is open relative to S and containts
the point of intersection between the orbit O∗ and S, the Poincarè map is then defned as
P : S0 7→ S, mapping the initial point of intersection onto the next point the orbitO∗ first
intersects S again; see Figure 2.4. For the system (2.21), the Poincarè map is given as the
time-discrete system

xp[n+ 1] = P (xp[n]) (2.24)

where xp[n] is the point of the nth intersection with the surface S and xp[n+1] is the first-
return point where the trajectory intersects the Poincarè section again. If the first-return
point is the same as the initial point, i.e.,

xp[n+ 1] = xp[n] = P (xp[n]),

then xp[n] is a fixed point of of the map P (·). If this point corresponds to the intersection
between the periodic orbitO∗ and the surface S, then the stability ofO∗ can be studied by
studying the stability of the map P (·). Indeed, an orbit corresponding to the fixed point
xp[n] of the map P (·) is (asymptotically) orbitally stable if and only if xp[n] is a (asymp-
totically) stable fixed point of the the map P (·) [52, Lemma 12.2]. Orbital exponential
stability can be verified by linearizing the map, dP : TS 7→ TS, around the orbit and
checking if the eigenvalues of dP lies inside the unit circle; see, e.g., [43] and references
therein.

13



Chapter 2. Theoretical Framework and Preliminaries

Figure 2.4: Illustration of a Poincarè map P : S 7→ S on the section S and its tangent plane TS.
Reprinted from Annual Reviews in Control Vol. 32, Issue 2, A.S. Shiriaev, L.B. Freidovich, I.R.
Manchester, Can we make a robot ballerina perform a pirouette? Orbital stabilization of periodic
motions of underactuated mechanical systems, pages 200-211, Copyright c© 2008, with permission
from Elsevier.

The use of Poincarè maps for determining stability for bipedal robots is commonly
used in the literature; see, e.g., [54]. However, the Poincaré map does not give a continuous
representation of the dynamics of the system transverse to the target orbit, but focuses only
at one point on the orbit. This means it has limited use for constructive control design [30].

Another way investigating stability of periodic orbits is by introducing a family of
Poincarè sections, {S}t∈[0,T ], called moving Poincarè sections [28]. The definition of a
moving Poincarè section given in [42] is stated next; see also [28].

Definition 2 ([42]). Let q∗(t) for t ∈ [0, T ] be a solution of the n-degrees-of-freedom
Euler-Lagrange ststem (2.9) driven by a control input u∗(t) ∈ C1([0, T ]) with the initial
conditions at q(0) = q0, q̇∗(0) = q̇0, such that

(
|q̇∗(t)|2 + |q̈∗(t)|2

)
> 0 for all t ∈ [0, T ].

The orbit of the corresponding trajectory is

O∗ :=
{

[q; q̇] ∈ TQ : q = q∗(τ), q̇ = q̇∗(τ), τ ∈ [0, T ]
}

(2.25)

and its tublar neighborhood, the set of all points on distance not bigger than som ε > 0, is

Oε(q∗) = {[q; q̇] ∈ TQ : min
τ∈[0,T ]

‖[q − q∗(τ); q̇ − q̇∗(τ)]‖ ≤ ε}. (2.26)

Then, a family of (2n− 1)-dimensional C1-smooth surfaces {S}t∈[0,T ] is called a moving
Poincarè section associated with the solution q∗(t), t ∈ [0, T ], if

1. The Surfaces are locally disjoint, i.e., ∃ε > 0 : S(τ1)∩S(τ2)∩Oε(q∗) = ∅, for all
τ1 ∈ [0, T ), τ2 ∈ (0, T ], τ1 6= τ .

2. Each of the surfaces S(·) locally intersects the orbit only in one point, i.e., ∃ε > 0 :
S(τ) ∩ {[q∗(t); q̇∗(t)], |t− τ | < ε} ∩ Oε = {[q∗(t); q̇∗(t)]} for each τ ∈ [0, T ].

3. The surfaces S(·) are smoothly parametrized by time, i.e., ∃fs(q, q̇, t) ∈ C1(Rn,Rn,R) :
S(t) ∩ Oε(q∗) = {[q; q̇] ∈ Rn : fs(q, q̇, t) = 0} ∩ Oε(q∗).
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4. The surfaces S(·) are transversal to the orbit (2.25), i.e.,[
∂fs
∂q

∣∣∣q=q∗(t)
q̇=q̇∗(t)

]T
q̇∗(t) +

[
∂fs
∂q̇

∣∣∣q=q∗(t)
q̇=q̇∗(t)

]T
q̈∗(t) 6= 0, ∀t ∈ [0, T ].

Given a moving Poincarè section {S(t)}t∈[0,T ] assosicated with the motion q∗(t) of
the system (2.9), one can perform the (local) coordinate transformation (q, q̇) 7→ (ψ, x⊥)
where the scalar variable ψ(t) parametrizes position along the periodic orbit (2.25) and
the (2n− 1)-dimensional vector x⊥(t) defines the location on the surface S(t) [42]. The
vector x⊥ is refereed to as a vector of transverse coordinates, while the dynamics of (2.9)
rewritten in terms of (ψ, x⊥) are called transverse dynamics. Linearizing the transverse
dynamics along the solution q∗(t), t ∈ [0, T ], gives rise to a linear time-varying control
system of 2n-dimensions defined on t ∈ [0, T ]. The (2n− 1)-dimensional subsystem that
corresponds to linearization of the dynamics of the transverse coordinates x⊥ is called a
transverse linearization and evolve on the tangent plane TS(t) of the moving Poincarè
sections S(t); see Figure 2.5.

Figure 2.5: Illustration of a moving Poincarè section S(τ) and its tangent plane TS(τ). Reprinted
from Annual Reviews in Control Vol. 32, Issue 32, A.S. Shiriaev, L.B. Freidovich, I.R. Manch-
ester, Can we make a robot ballerina perform a pirouette? Orbital stabilization of periodic motions
of underactuated mechanical systems, pages 200-211, Copyright c© 2008, with permission from
Elsevier.

2.4 The Virtual Holonomic Constraints Approach
The virtual holonomic constraints approach is a useful tool for both planning and stabiliz-
ing motions for underactuated mechanical systems. As mentioned in the introduction, by
introducing a set of geometric relations between the generalized coordinates and a scalar
variable, referred to as the motion generator (MG), which are kept invariant by feedback
control, the evolution of the mechanical system is restricted to a two-dimensional sub-
manifold of the state space. Thus, the virtual holonomic constraints approach reduces
the complexity motion planning. The definition of a virtual holonomic constraint (VHC)
which is used in this thesis is given next.
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Definition 3 (Virtual holonomic constraints). Suppose there exists a solution q∗(t) ∈ Rn
of the Euler-Lagrange system (2.9) which can be represented by the geometric relation

q∗(t) = Φ
(
θ∗(t)

)
, θ∗(t) ∈ Θ∗ ⊂ R, (2.27)

where Φ(θ) = [φ1(θ); . . . ;φn(θ)] with φi : Θ∗ → R, i = 1, . . . , n, being C2-smooth
functions. Then the relations (2.27) are called

• holonomic (geometric) constraints if they represent a restriction on the generalized
coordinates physically imposed on the system;

• virtual holonomic (geometric) constraints if the relations are not physically imposed
on the system but rather are kept invariant by some control action.

Herein, the scalar variable θ is the motion generator which synchronizes the motion of
the mechanical system through the synchronization functions φi(θ), which are the VHCs
enforced upon the system by feedback control. The MG θ can often be chosen as one of
the generalized coordinates, i.e., θ(t) = qi(t) for some i ∈ {1, . . . , n}, or some parameter
of the system like the arc length along the orbit. In the literature, it is commonly chosen
as a passive coordinate [55, 12].

In this section, the virtual holonomic constraints approach presented in [46] and [42]
will be presented. First, it will shown that enforcing a set of virtual holonomic constraints
upon the system reduces evolution of the system down to that of a second-order differen-
tial equation, which will be referred to as the reduced dynamics. The reduced dynamics
are then shown to have an inherent integral of motion which preserves its zero value along
the solution of interest, and whose derivative w.r.t. time can be computed analytically. It
is then shown that there exists a generic choice of transverse coordinates, which allows an
analytic procedure to linearize the the transverse dynamics such that stability can be as-
sessed on the corresponding linear system. The method is then extended to hybrid systems
with one jump using the method presented in [41].

2.4.1 The Reduced Dynamics
Let q∗(t) be a solution of the Euler-Lagrange equation (2.9) driven by a C1-smooth control
input u∗(t) such that the set of geometric relations

q∗1 = φ1(θ∗, P ), . . . q∗n = φn(θ∗, P ), θ∗ ∈ Θ∗ ⊂ R (2.28)

are valid along the orbit (see (2.25))

O∗ :=
{

[q; q̇] ∈ TQ : q = q∗(τ), q̇ = q̇∗(τ), τ ∈ [0, T ]
}

for the C2-smooth synchronization functions φi : Θ∗ → R, i = 1, . . . , n for a set of
parameters P . Using (2.28) and assuming that some control signal u∗(t) can keep the
relations invariant, one can rewrite (2.9) in terms of the motion generator θ∗, using that

q̇ = Φ
′
(θ∗)θ̇∗ and q̈ = Φ

′
(θ∗)θ̈∗ + Φ

′′
(θ∗)θ̇

2
∗,
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2.4 The Virtual Holonomic Constraints Approach

where
Φ(θ) := Φ(θ, P ) = [φ1(θ, P ); . . . ;φn(θ, P )],

Φ
′
(θ) := Φ

′
(θ, P ) =

∂

∂θ
Φ(θ, P ) = [φ

′

1(θ, P ); . . . ;φ
′

n(θ, P )],

Φ
′′
(θ) := Φ

′′
(θ, P ) =

∂2

∂θ2
Φ(θ, P ) = [φ

′′

1 (θ, P ); . . . ;φ
′′

n(θ, P )],

(2.29)

such that one obtains

M
(
Φ(θ∗)

)[
Φ
′′
(θ∗)θ̇

2
∗ + Φ

′
(θ∗)θ̈∗

]
+ C

(
Φ(θ∗),Φ

′
(θ∗)θ̇∗

)
Φ
′
(θ∗)θ̇∗

+G
(
Φ(θ∗)

)
= B

(
Φ(θ∗)

)
u∗.

(2.30)

If the system (2.9) has m < n independent control variables, i.e., it is underactuated
by a degree n − m, such that the smooth matrix function B(q) ∈ Rn×m has rank m,
then there exists a smooth matrix function B⊥(q) ∈ R(n−m)×n of rank n −m such that
B⊥(q)B(q) = 0, called the annihilator of B(q). Multiplying both sides of (2.30) by
B⊥
(
Φ(θ∗)

)
, making it independent of u∗, yields

B⊥
(
Φ(θ∗)

){
M
(
Φ(θ∗)

)[
Φ
′′
(θ∗)θ̇

2
∗ + Φ

′
(θ∗)θ̈∗

]
+ C

(
Φ(θ∗),Φ

′
(θ∗)θ̇∗

)
Φ
′
(θ∗)θ̇∗ +G

(
Φ(θ∗)

)}
= B⊥

(
Φ(θ∗)

)
B
(
Φ(θ∗)

)
u∗ = 0.

(2.31)

This in turn can be written as n−m second order differential equations of the form

αi(θ∗, P )θ̈∗ + βi(θ∗, P )θ̇2
∗ + γi(θ∗, P ) = 0, i = 1, . . . , n−m, (2.32)

where α1(θ∗)
...

αn−m(θ∗)

 = B⊥
(
Φ(θ∗)

)
M
(
Φ(θ∗)

)
Φ
′
(θ∗), (2.33a)

 β1(θ∗)
...

βn−m(θ∗)

 = B⊥
(
Φ(θ∗)

)[
M
(
Φ(θ∗)

)
Φ
′′
(θ∗) + C

(
Φ(θ∗),Φ

′
(θ∗)

)
Φ
′
(θ∗)

]
, (2.33b)

 γ1(θ∗)
...

γn−m(θ∗)

 = B⊥
(
Φ(θ∗)

)
G
(
Φ(θ∗)

)
. (2.33c)

For the case of m = n − 1, assuming a feedback controller can make the relations
(2.28) invariant, the solutions of the system (2.9) tend asymptotically to the solution of the
second order equation

α(θ∗, P )θ̈∗ + β(θ∗, P )θ̇2
∗ + γ(θ∗, P ) = 0, (2.34)
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which results in a family of 2-dimensional manifolds Z(P ) ⊂ TQ defined by

Z(P )) =
{

[q; q̇] ∈ TQ : q = Φ(θ, P ), q̇ = Φ
′
(θ, P )θ̇

}
. (2.35)

Herein, equation (2.34) and Z(p) will be referred to as the reduced dynamics and the
constraint manifold, respectively, throughout this text4.

Thus, one can study the system (2.9) by only looking at the solutions (θ∗(t), θ̇∗(t)) of
(2.34) and the relations (2.28) constrained to Z(P ). Furthermore, the equation (2.34) have
a few important properties which will be stated next.

The first observation one can from (2.34) is that it has an asymptote at α(θ) ≡ 0, i.e.,
the acceleration θ̈ tends to infinity. Thus any solution θ∗ must be such that α(θ∗) 6= 0 for
all θ∗ ∈ Θ∗ on the interval of interest.

The second observation one can make is that it only has two possible types of equi-
librium points, namely centers and saddles, which are found by solving for θ̄ such that
γ(θ̄) ≡ 0 (see, e.g., [23] for an introduction to equilibrium points). The method of how
to determine the type of equilibrium can be found in [47]. Since the reduced dynamics is
quadratic in the velocity θ̇, it is clear that the vector field is mirrored about the horizontal
θ-axis on the phase portrait. Thus, it is clear that for any solution that crosses the horizon-
tal θ-axis will return to its initial state θ0 and continue, i.e., the solution is periodic and
thus orbiting a center equilibrium point.

Another interesting and very useful property of (2.34) is that it is integrable, which
makes it possible to find an integral of motion which preserves its zero value along any
solution of the reduced dynamics. This function will be referred to as the integral function
throughout this text and is defined in the next theorem.

Theorem 2.4.1 (Integral of motion of the reduced dynamics, [45, 46]). For a solution
(θ∗(t), θ̇∗(t)) of (2.34) with initial conditions (θ0, θ̇0) on which α(θ∗) 6= 0, the function

I(θ∗(t),θ̇∗(t), θ0, θ̇0) = θ̇2
∗ − exp

{
−
∫ θ∗

θ0

2β(τ)

α(τ)
dτ

}

×

[
θ̇2

0 −
∫ θ∗

θ0

exp

{∫ s

θ0

2β(τ)

α(τ)
dτ

}
2γ(s)

α(s)
ds

] (2.36)

preserves it zero value along the solution irrespective of the boundedness of (θ∗(t), θ̇∗(t)).

Proof. The proof is given in Appendix A.1

It turn out that the time derivative of this function has a further useful property as its
time-derivative, even though the right-hand side of (2.34) is not zero, is well defined and
given in the next theorem.

Theorem 2.4.2 ([46]). For some constants x and y, the derivative w.r.t. time of the function
I(θ, θ̇, x, y) defined in (2.36), calculated along a solution (θ(t), θ̇(t)) of the system

α(θ)θ̈ + β(θ)θ̇2 + γ(θ) = W, (2.37)
4In the litterature, (2.34) has been referred to as the virtual limit system [46] or zero-dynamics [16, 23], while

Z(P ) has been referred to as the zero dynamics manifold [16].
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can be computed as

İ(θ, θ̇, x, y) =
2θ̇

α(θ)

(
W − β(θ)I

)
. (2.38)

Proof. The proof is given in Appendix A.2

The integral function and its time derivative will prove to be useful when the topics of
transverse coordinates and transverse linearization are presented.

2.4.2 Partial Feedback Linearization
Introducing a new set of (n+ 1) excessive coordinates

y1 = q1 − φ1(θ), . . . , yn = qn − φn(θ) and θ ∈ Θ ⊆ R, (2.39)

where y1, . . . , yn are the deviations from the virtual holonomic constraints (2.28) and θ is
the synchronization variable, such that

ẏi = q̇i − φ
′

i(θ)θ̇,

ÿi = q̈i − φ
′′

i (θ)θ̇2 − φ
′

n(θ)θ̈,
(2.40)

for i = 1, . . . , n. Herein, it is possible to locally rewrite one of the generalized coordinates
in terms of n − 1 of the y coordinates and the motion generator θ using the he relations
(2.39); e.g.

q1 = φ1(θ) + h(y2, . . . , yn, θ) (2.41)

for a C2-smooth scalar function h : Rn−1×Θ→ R which can be found using the implicit
function theorem and which is identically zero on the solution q∗(t).

Using the relation (2.41), one can rewrite (2.40) in terms of the time derivatives of the
generalized coordinates as

q̇ = L(θ, y)

[
ẏ

θ̇

]
and q̈ = L(θ, y)

[
ÿ

θ̈

]
+N(θ, θ̇, y, ẏ) (2.42)

where Φ
′
(θ) and Φ

′′
(θ) are defined in (2.29) and the matrix functionsL(θ, y) andN(θ, θ̇, y, ẏ)

are given by

L(θ, y) :=

[
grad h

In−1 0(n−1)×1

]
+
[
0n×(n−1) Φ

′
(θ)
]
, (2.43a)

N(θ, θ̇, y, ẏ) :=

[
1

0(n−1)×1

]
[ẏT , θ̇] Hess h

[
ẏ

θ̇

]
+ Φ

′′
(θ)θ̇2, (2.43b)

where grad h = [(∂h/∂y2), . . . , (∂h/∂yn), (∂h/∂θ)] is the gradient and Hess h is the
Hessian of the function h(y2, . . . , yn, θ). Using the coordinate transformation (q, q̇) 7→
(y, θ, ẏ, θ̇) with q2, . . . , qn given in (2.39) and q1 from (2.41), it follows from (2.12) and
(2.42) that

M(θ, y)
−1
[
B(θ, y)u−C(θ, θ̇, y, ẏ)L(θ, y)

[
ẏ

θ̇

]
−G(θ, y)

]
= L(θ, y)

[
ÿ

θ̈

]
+N(θ, θ̇, y, ẏ),

(2.44)
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Assuming that the function L(θ, y), defined in (2.43), is nonsingular in a vicinity of a
solution

y =
[
y2; . . . ; yn

]
≡ 0(n−1)×1, θ = θ∗(t), (2.45)

then (2.44) can be rewritten as[
ÿ

θ̈

]
= L(θ, y)−1

{
M(θ, y)−1

[
B(θ, y)u−C(θ, θ̇, y, ẏ)L(θ, y)

[
ẏ

θ̇

]
−G(θ, y)

]
−N(θ, θ̇, y, ẏ)

}
.

(2.46)
This can in turn be written in terms of ÿ as the (n− 1)-dimensional subsystem

ÿ = K(θ, y)u+R(θ, θ̇, y, ẏ) (2.47)

where the matrix functions K(θ, y) and R(θ, θ̇, y, ẏ) are defined as

K(θ, y) :=
[
In−1 0(n−1)×1

]
L(θ, y)−1M(θ, y)−1B(θ, y),

R(θ, θ̇, y, ẏ) :=
[
In−1 0(n−1)×1

]
L(θ, y)−1

{
M(θ, y)−1

[
−G(θ, y)

− C(θ, θ̇, y, ẏ)L(θ, y)

[
ẏ

θ̇

] ]
−N(θ, θ̇, y, ẏ)

}
.

(2.48)

One degree of underactuation

For the case when rank B(θ, y) = n − 1, i.e., the system is underactuated by a degree of
one, and assuming K(θ, y) is nonsingular in a vicinity of the solution (2.45), the partial
feedback linearizing (PFL) controller

u = K(θ, y)−1
(
v −R(θ, θ̇, y, ẏ)

)
(2.49)

reduces (2.47) to
ÿ = v, (2.50)

where v is a control input to be defined later.
In order to find the remaining internal dynamics for the synchronization variable θ, one

can multiply both sides of (2.44) by B⊥(θ, y)M(θ, y) and rearrange it to get

B⊥(θ, y)

{
M(θ, y)

[
L(θ, y)

[
ÿ

θ̈

]
+N(θ, θ̇, y, ẏ)

]
+ C(θ, θ̇, y, ẏ)L(θ, y)

[
ẏ

θ̇

]
+G(θ, y)

}
= B⊥(θ, y)B(θ, y)u

= 0,
(2.51)

where the vector function B⊥(θ, y) is the 1× n annihilator of B(θ, y). Then, from (2.31)
and the definitions of the functions L(θ, y) and N(θ, θ̇, y, ẏ) given in (2.43), one can see
that when y = ẏ = ÿ = 0(n−1)×1, this becomes the reduced dynamics (2.34). Thus, using
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2.4 The Virtual Holonomic Constraints Approach

Hadamard’s Lemma (see Appendix A.3) about y = ẏ = ÿ = 0(n−1)×1 and using (2.50)
to eliminate ÿ, one can write (2.51) as

α(θ)θ̈ + β(θ)θ̇2 + γ(θ) =gI(θ, θ̇, θ̈, y, ẏ)I + gy(θ, θ̇, θ̈, y, ẏ)y

+ gẏ(θ, θ̇, θ̈, y, ẏ)ẏ + gv(θ, θ̇, y, ẏ)v
(2.52)

where the left-hand side matches the structure of the reduced dynamics (2.34), the scalar
function I is given in (2.36) and gI(·), gy(·), gẏ(·), gv(·) are smooth functions of appro-
priate dimensions [46, 42]. The above arguments are summarized in the next theorem.

Theorem 2.4.3 ([46]). Let the mechanical system (2.9) be underactuated by a degree
n−m = 1. Introducing a new set of coordinates [y1, . . . , yn−1, θ] given by (2.39) and the
C2-smooth geometric relations (2.28), such that the matrix function L(θ, y) and K(θ, y),
given by (2.43) and (2.48), respectively, are nonsingular in a vicinity of a solution (2.45).
Then, the partial feedback linearizing input (2.49) brings the system (2.9) into the partly
linear form

α(θ)θ̈ + β(θ)θ̇2 + γ(θ) =gI(θ, θ̇, θ̈, y, ẏ)I + gy(θ, θ̇, θ̈, y, ẏ)y (2.53)

+ gẏ(θ, θ̇, θ̈, y, ẏ)ẏ + gv(θ, θ̇, y, ẏ)v

ÿ =v (2.54)

where the left-hand side of (2.53) matches the structure of the reduced dynamics (2.34)
and gy(·), gẏ(·), gv(·) are smooth functions of appropriate dimensions.

Degree of underactuation greater than one or non-invertible matrix function K(θ, y)

For the cases when rankB(q) < n − 1 or the matrix function K(θ, y) has singular points
either on or close to the solution (2.45), one can not use a partial feedback linearizing
controller as (2.49). Instead, one introduces a control input

u = v + U(θ, θ̇, y, ẏ) (2.55)

where U(·)is a smooth function which on the orbit defined by (2.25) coincides with the
nominal input u∗(t), i.e.,

U
(
θ∗(t), θ̇∗(t),0(n−1)×1,0(n−1)×1

)
= u∗(t), ∀t ∈ [0, T ]. (2.56)

This is always possible due the affinity of the Euler-Lagrange system (2.9) in u and the
assumptions that q = q∗(t) is a solution [42]. Inserting the controller (2.55) in (2.47), the
y-dynamics can be written on the form

ÿ = F (θ, θ̇, y, ẏ) +K(θ, y)v (2.57)

with K(θ, y) given in (2.48) and F (θ, θ̇, y, ẏ) is given by

F (θ, θ̇, y, ẏ) = R(θ, θ̇, y, ẏ) +K(θ, y)U(θ, θ̇, y, ẏ) (2.58)

which by construction vanishes on the solution q∗(t), i.e.,

F
(
θ∗(t), θ̇∗(t),0(n−1)×1,0(n−1)×1

)
≡ 0(n−1)×1, ∀t ∈ [0, T ].
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The remaining θ-dynamics are found in the same manner as the case of underactuation
n − 1, with the exception that there are n −m equations for the reduced dynamics given
by (2.32). Thus, the remaining θ-dynamics are of the form

αi(θ)θ̈ + βi(θ)θ̇
2 + γi(θ) =g

(i)
I (θ, θ̇, θ̈, y, ẏ)I(i) + g(i)

y (θ, θ̇, θ̈, y, ẏ)y

+ g
(i)
ẏ (θ, θ̇, θ̈, y, ẏ)ẏ + g(i)

v (θ, θ̇, y, ẏ)v
(2.59)

for i = 1, . . . , n −m, where the left-hand side matches the structure of the reduced dy-
namics (2.32) and g(i)

I (·), g(i)
y (·), g(i)

ẏ (·), g(i)
v (·) are smooth functions of appropriate di-

mensions. This is summarized in the next theorem.

Theorem 2.4.4 (Transverse dynamics, [42]). Let the mechanical system (2.9) be underac-
tuated by a degree n−m. Introducing a new set of coordinates [y1, . . . , yn−1, θ] given by
(2.39) and the C2-smooth geometric relations (2.28), such that the matrix function L(θ, y),
given by (2.43), is nonsingular in a vicinity of a solution (2.45). Then, the controller (2.55)
brings the system (2.9) onto the form

αi(θ)θ̈ + βi(θ)θ̇
2 + γi(θ) =g

(i)
I (θ, θ̇, θ̈, y, ẏ)I(i) + g(i)

y (θ, θ̇, θ̈, y, ẏ)y (2.60)

+ g
(i)
ẏ (θ, θ̇, θ̈, y, ẏ)ẏ + g(i)

v (θ, θ̇, y, ẏ)v

ÿ =F (θ, θ̇, y, ẏ) +K(θ, y)v (2.61)

for i = 1, . . . , n −m, with K(θ, y) and F (θ, θ̇, y, ẏ) given in (2.48) and (2.58), repsec-
tively, and where the left-hand side of (2.60) matches the structure of the reduced dynam-
ics (2.32), for which αi(·) is separated from zero. Furthermore, the scalar function I(i)(·)
is given in (2.36) and g(i)

I (·), g(i)
y (·), g(i)

ẏ (·), g(i)
v (·) are smooth functions of appropriate

dimensions.

One can, of course, use Theorem 2.4.4 for the case of underactuation n − m = 1
when the assumption that the matrix function K(θ, y), defined in (2.48), is nonsingular
might not hold such that the the exact partial feedback linearizing controller (2.49) is not
possible, yielding just one equation from (2.60).

2.4.3 Transverse Coordinates and Transverse Linearization
It turns out that if the conditions of Theorem 2.4.4 holds such that one can write the me-
chanical system (2.9) on the form (2.60)-(2.61), then the system has possesses a natural
choice of (2n− 1)-transverse coordinates [42]

x
(i)
⊥ =

[
I(i)
(
θ, θ̇, θ∗(0), θ̇∗(0)

)
; y ; ẏ

]
(2.62)

which can be introduced in a vicinity of the solution

y =
[
y2; . . . ; yn

]
≡ 0(n−1)×1, θ = θ∗(t).

Here, the scalar function I(i)(·) is defined in (2.36) for the left-hand side of (2.60) for all
i = 1, . . . , n −m, with the assumption that αi(θ∗(t)) 6= 0,∀t. The transverse dynamics
of these coordinates are given by

ẋ
(i)
⊥ =

[
İ(i); ẏ ; ÿ

]
(2.63)
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where ÿ is given in (2.61) and İ(i) is given in (2.38) with u equal to the right-hand side of
(2.60). It is important to note that (2.63) is of different order and is not equivalent to the
system (2.60)-(2.61).

These transverse coordinates (2.62) automatically generates a moving Poincarè section
{S(t)}t∈[0,T ] associated with the motion of the periodic orbit (2.25) on which x

(i)
⊥ (t)

defines the location on the surface S(i)(t). By introducing the scalar ψ(i) := ψ(i)(θ, θ̇)
such that the target trajectory is{

ψ(i) = ψ
(i)
∗ (t), I(i) = 0, y = 0(n−1)×1, ẏ = 0(n−1)×1

}
and, by the assumption that

(
|q̇∗|2(t)+ |q̈∗|2(t)

)
> 0 for t ∈ [0, T ], the function ψ(i)

∗ (t) :=

ψ
(i)
∗ (θ∗(t), θ̇∗(t)) monotonically changes with time. Then, the moving Poincarè surface is

defined by [42]

S(i)(t) :=
{

[θ; θ̇; y; ẏ] ∈ R2n : ψ(i)(θ, θ̇) = ψ
(i)
∗ (t)

}
(2.64)

for t ∈ [0, T ] and can be expressed in [q; q̇]-coordinates. Therefore, if one can find an
explicit expression for ψ(i)(θ, θ̇), one can determine which section S(i)(τ) the system
states belongs to, which in turn can be used to determine the time instant τ corresponding
to the orbit (2.25). Thus, for the case of underactuation one, the system can be made
time-invariant by introducing a projection operator

T : [θ, θ̇] 7→ t, t ∈ [0, T ], (2.65)

using the scalar function ψ(θ, θ̇) [43, 11].

Transverse Linearization

For the transverse coordinates (2.62), it is possible to compute a transverse linearization of
the transverse dynamics (2.63) analytically. The first step is to linearize İ(i) from (2.38)
with u equal to the right-hand side of (2.60), around the solution

θ = θ∗(t), θ̇ = θ̇∗(t), θ̈ = θ̈∗(t), y = ẏ = 0(n−1)×1, v = 0, (2.66)

of (2.60)-(2.61). Since İ(i) can be written on the form

İ(i) = f (i)(θ, θ̇, y, ẏ, I(i), v), (2.67)

where f (i)(·) is given by

f (i)(θ, θ̇, y, ẏ, I(i), v) =
2θ̇

αi(θ)

[
g

(i)
I I(i) + g(i)

y y + g
(i)
ẏ ẏ + g(i)

v v − βi(θ)I(i)
]
, (2.68)

the linearization around (2.66) yields

d

dt
Ī(i) = a

(i)
11 (t)Ī(i) + a

(i)
12 (t)Ȳ1 + a

(i)
13 (t)Ȳ2 + b

(i)
1 (t)V̄ , (2.69)

23



Chapter 2. Theoretical Framework and Preliminaries

where the variables Ī(i), Ȳ1, Ȳ2, V̄ give the first order approximations for the deviations
of I(i)(·), y(·), ẏ(·) and v of (2.60)-(2.61) from the nominal solution (2.66). Herein, a(i)

11 ,
a

(i)
12 , a(i)

13 , b(i)1 are given by

a(i)(t) = 2θ̇∗(t)/αi(θ∗(t)), (2.70a)

a
(i)
11 (t) = a(i)(t)

(
g

(i)
I

(
θ∗(t), θ̇∗(t), θ̈∗(t),0(n−1)×1,0(n−1)×1

)
− βi(θ∗(t))

)
, (2.70b)

a
(i)
12 (t) = a(i)(t)g(i)

y

(
θ∗(t), θ̇∗(t), θ̈∗(t),0(n−1)×1,0(n−1)×1

)
, (2.70c)

a
(i)
13 (t) = a(i)(t)g

(i)
ẏ

(
θ∗(t), θ̇∗(t), θ̈∗(t),0(n−1)×1,0(n−1)×1

)
, (2.70d)

b
(i)
1 (t) = a(i)(t)g(i)

v

(
θ∗(t), θ̇∗(t),0(n−1)×1,0(n−1)×1

)
. (2.70e)

The transverse linearization of y and ẏ, with y given in (2.61), yields the dynamics for Ȳ1

and Ȳ2 on the form

˙̄Y1 = Ȳ2

˙̄Y2 = A31(t)Ī(i) +A32(t)Ȳ1 +A33(t)Ȳ2 +B3(t)V̄
(2.71)

where the matrix functions A31(t), A32(t), A33(t) and B3(t) are found by linearizing
(2.61) around the solution (2.66), i.e., [42, 12]

[
A31(t);A32(t);A33(t);B3(t)

]
=

[
θ̇ ∂F
∂θ̇
− θ̈ ∂F∂θ

2(θ̇2 + θ̈2)
;
∂F

∂y
;
∂F

∂ẏ
;N

]
θ=θ∗(t)

θ̇=θ̇∗(t)

θ̈=θ̈∗(t)
y=ẏ=0

, (2.72)

where the linearization resulting in the term A31(t) stems from the fact that the integral
function I(·) measures the deviation from the nominal solution of the motion generator,
and is orthogonal to its vector field; see [43].

The equations (2.69) and (2.71) are combined to form the linearized transverse dynam-
ics on state space form next.

Theorem 2.4.5 (Linearized transverse dynamics). By introducing X(i) =
[
Ī(i); Ȳ1; Ȳ2

]
and V̄ , where Ī(i), Ȳ1, Ȳ2, V̄ give the first order approximations for the deviations of
I(i)(·), y(·), ẏ(·) and v of (2.60)-(2.61) from the nominal solution (2.66), the transverse
linearization of the system (2.60)-(2.61) can be written as the linear time-varying system

Ẋ(i) = A(i)(t)X(i) + B(i)(t)V̄ (2.73)

where the time-varying, T -periodic matrices A(i)(t) and B(i)(t) are given by

A(i)(t) =

 a
(i)
11 (t) a

(i)
12 (t) a

(i)
13 (t)

0(n−1)×1 0(n−1)×(n−1) I(n−1)

A31(t) A32(t) A33(t)

 , B(i)(t) =

b
(i)
1 (t)

0m×m

B3(t)

 , (2.74)

with a(i)
11 , a(i)

12 , a(i)
13 , b(i)1 defined in (2.70) and A31, A32, A33 and B3 defined in (2.72).
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2.4 The Virtual Holonomic Constraints Approach

2.4.4 Extension to Impulsive Mechanical Systems with One Jump
Given the hybrid system (2.19) with one jump, it has been shown in [41] that the method
of virtual holonomic constraints can be used to both find and control periodic trajectories
for such systems using the methods of the previous sections. This is clearly seen by the
next theorem.

Theorem 2.4.6 ([44, 41]). Given an n degree of freedom impulsive mechanical system
of the form (2.19) which is underactuated by a degree of one, and suppose that for some
control input u = u∗(t) = u∗(t + Th), the impulsive mechanical system has a periodic
solution

q = q∗(t) = q∗(t+ Th), ∀t, Th > 0 (2.75)

with only one jump, i.e., [q∗(0+); q̇∗(0+)] ∈ Γ+, [q∗(Th−); q̇∗(Th−)] ∈ Γ−,
F ([q∗(Th−); q̇∗(Th−)]) = [q∗(0+); q̇∗(0+)]. Now suppose the continuous-in-time arc of
(2.75) admits a re-parametrization q∗(t) = φ(θ∗(t)) defined by (2.28) with C2-functions
φ1(·), . . . , φn(·). Compute the continuous dynamics of (2.19) when these relations are
kept invariant, i.e., compute the coefficients of the virtual limit system (2.34). Then, by
necessity, the algebraic equations

I
(
θ∗(0), θ̇∗(0), θ∗(Th), θ̇∗(Th)

)
= 0,

F
(

[q−; q̇−]
)∣∣∣∣∣q−=φ(θ∗(Th))

q̇−=φ
′
(θ∗(Th))θ̇∗(Th)

= [q+; q̇+]

∣∣∣∣∣q+=φ(θ∗(0))

q̇+=φ
′
(θ∗(0))θ̇∗(0)

(2.76)

hold, where I(·) is defined in (2.36).

Finding Cycles

The relations (2.76) of Theorem 2.4.6 can be used for planning cycles of the system (2.19),
as stated in [44] and [41], as follows:

1) Let P = (p1, . . . , pk) be a vector of parameters and θ be a scalar variable; choose a
set of C2-smooth functions: Φ(θ, P ) = [φ1(θ, P ); . . . ;φn(θ, P )];

2) Simplify the continuous dynamics of (2.19) under the assumption that the relations
q1 = φ1(θ, P ), . . . , qn = φ(θ, P ) are kept invariant. This results in the family of
2-dimensional manifolds Z(P ) ⊂ TQ defined by

Z(P ) =
{

[q; q̇] ∈ TQ : q = Φ(θ, P ), q̇ = Φ
′
(θ, P )θ̇

}
(2.77)

where θ = θ(t) is a solution of the reduced dynamics (2.34), and where the phase
curves of the system

α(θ, P )θ̈ + β(θ, P )θ̇2 + γ(θ, P ) = 0 (2.78)

fill out Z(P ). Following Theorem 2.4.6, for each choice of P , the virtual limit
system (2.78) is integrable; i.e., for any solution θ = θ(t, P ) of (2.78) well-defined
for t = τ1 > 0, the function I(·) defined in (2.36), satisfies

I
(
θ(τ1, P ), θ̇(τ1, P ), θ(0, P ), θ̇(0, P )

)
= 0; (2.79)
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3) Define the the curves γ−, γ+ and the mapping F : γ− 7→ Γ− such that

γ+ = Γ+∩Z(P ), γ− = Γ−∩Z(P ), F
(

[θ; θ̇]
)∣∣∣∣∣

[θ;θ̇]∈γ−

= F
(

[q; q̇]
)∣∣∣∣∣q=φ(θ,P )

q̇=φ
′
(θ,P )θ̇

;

(2.80)

4) Search for parameters P = P∗ such that the following algebraic equations have a
non-trivial solution:

I(a, b, x, y) = 0, F
(

[x; y]
)

= [a; b], [a; b] ∈ γ+, [x; y] ∈ γ−, a, b, x, y ∈ R.
(2.81)

If the search is successful and θ = θ∗(t, P∗) is the solution of (2.78) with P = P∗
initiated at θ∗(0, P∗) = a, θ̇∗(0, P∗) = b such that θ∗(Th, P∗) = x, θ̇∗(Th, P∗) = y
for some Th > 0, then the hybrid mechanical system, (2.19), has the hybrid cycle
defined by

q1 = φ1

(
θ∗(t, P∗), P∗

)
, . . . , qn = φn

(
θ∗(t, P∗), P∗

)
. (2.82)

Transverse Linearization

If a Th-periodic cycle on the form (2.82) is found, then the transverse linearization on
the interval [t0, t0 + Th] is found by the method of Theorem 2.4.5. However, since the
system is hybrid with the update law F : Γ− → Γ+, see Figure 2.6(a), the mapping
[dTSF ] : TS(0)→ TS(Th) between the tangent planes of the moving Poincarè sections
must be developed such that X(t0) = [dTSF ]X(t0 + Th). The mapping [dTSF ] is,
however, not trivial as the switching surfaces Γ− and Γ+ might not correspond with the
Poincarè sections S(Th) and S(0), such that the respective tangent planes TΓ−, TΓ+ and
TS(Th), TS(0) are likely to not correspond as well [41].

In order to find the mapping [dTSF ], the procedure proposed in [41] and [12] will here
be used. The procedure is outlined as follows:

1. Define the linearized update map dF : TΓ− → TΓ+ by evaluating the Jacobian of
the the update map F (q, q̇) at [q∗(Th); q̇∗(Th)] ∈ Γ−:

dF :=
∂F

∂[q; q̇]

∣∣∣∣∣q=q∗(Th)
q̇=q̇∗(Th)

: TΓ−

∣∣∣∣∣q=q∗(Th)
q̇=q̇∗(Th)

→ TΓ+

∣∣∣∣∣q=q∗(0)
q̇=q̇∗(0)

. (2.83)

2. Find the projection operators P+
~n(0) : TΓ+ → TS(0) along the normal vector ~n(0)

of TS(0) and P−~n(Th) : TS(Th)→ TΓ− along the normal vector ~n(Th) of TS(Th);
see Figure 2.6(b).

3. Then the linearization of F (q, q̇) associated with the moving Poincarè section
{S(t)}t∈[0,Th] is given by the linear mapping operator

[dTSF ] : TS(Th) 3 X(Th) 7→ X(0) :=
[
P+
~n(0)

]
dF
[
P−~n(Th)

]
X(Th) ∈ TS(0).

(2.84)
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Figure 2.6: (a) Tangent planes TΓ− and TΓ+ to the switching surfaces Γ− and Γ+ at two points,
where the quasi-periodic trajectory hits Γ− and is mapped to Γ+ by the impact map F (·). The
linearization of F (·) in a vicinity of the hybrid cycle is the linear mapping dF : TΓ− → TΓ+.
The vectors ~m− and ~m+ denote the normals to TΓ− and TΓ+, respectively; (b) Illustration of the
moving Poincàre sections S(t) and its tangent TS(t), as well as its normal vector ~n(t). Reprinted
from IEEE Transactions on Automatic Control, Vol. 54, No. 12, A.S. Shiriaev, L.B. Freidovich,
Transverse Linearization for Impulsive Mechanical Systems With one Passive Link, pages 2882-
2888, Copyright c© 2009 IEEE.

In order to find this mapping, assume that there exists a linear mapping Λ(t) between
small increments of the transverse coordinates in terms of the state variables:

∆X(t) = Λ(t)∆x(t), (2.85)

where ∆X(t) = [∆I; ∆y; ∆ẏ] ∈ TS(t) ∼= R2n−1 and ∆x(t) = [∆q(t); ∆q̇(t)] ∈
TS(t) ⊂ R2n. However, since Λ(t) ∈ R(2n−1)×2n, it is not invertible, such that one
can not find a linear mapping from small increments of the state variables in terms of the
transverse coordinates by simply inverting Λ(t). In order to achieve this, one can observe
that the vector field of the nominal trajectory is orthogonal to S(t) at time t [12], thus the
normal vector is given by

~n(t) = [q̇∗(t); q̈∗(t)] (2.86)
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such that ~n(τ)
T

∆x(τ) = 0. Hence, one can write

∆x(Th) =

[
Λ(Th)

~n(Th)
T

]−1 [
∆X(Th)

0

]
. (2.87)

Now, since ∆x(Th) ∈ TS(Th), one must find its image δx− on TΓ− by projecting it onto
TΓ− using the projection operator P−~n(Th) by the following relation:

TΓ− 3 δx− := P−~n(Th)∆X(Th). (2.88)

In order to find P−~n(Th), one can observe that δx− can be written as

δx− = ∆x(Th) + ~n(Th)τ∆x(Th), (2.89)

where the scalar τ∆x(Th) denotes the length along the direction of ~n(Th) from ∆x(Th)
which intersect with TΓ−; see Figure 2.7. By noting that ~m− · δx− = 0, it follows that

~mT
−∆x(Th) + ~mT

−~n(Th)τ∆x(Th) = 0. (2.90)

Hence,

τ∆x(Th) = −
~mT
−∆x(Th)

~mT
−~n(Th)

, (2.91)

which, as expected, clearly shows that τ∆x(Th) ≡ 0 if ~m− ‖ ~n(Th), i.e., if the hypersur-
faces TΓ− and TS(Th) align. This yields the projection operator

P−~n(Th) :=

(
I2n −

~n(Th)~mT
−

~n(Th)T ~m−

)[
Λ(Th)

~n(Th)
T

]−1 [
I2n−1

01×2n−1

]
. (2.92)

The next step is then to find δx+ ∈ TΓ+ in terms of δx−, which is simply done by the
Jacobian of the update law:

δx+ := dFδx− (2.93)

with dF found from (2.83).
The last step is to find the operator P+

~n(0) which projects δx+ ∈ TΓ+ on to TS(0)

yielding ∆X(0). This is done by noting that TS(0) 3 ∆X(0) = Λ(0)∆x(0), where

∆x(0) := δx+ − Proj~n(0)δx+,

and where Proj~n(0)δx+ is the projection of δx+ along the normal ~n(0) of TS(0) (see
Figure 2.6(a)), which is defined as

Proj~n(0)δx+ :=
~n(0)

T
δx+

~n(0)
T
~n(0)

~n(0) =
~n(0)~n(0)

T

~n(0)
T
~n(0)

δx+. (2.94)

Thus, one obtains

P+
~n(0) := Λ(0)

(
I2n −

~n(0)~n(0)
T

~n(0)
T
~n(0)

)
, (2.95)
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TΓ−

~m−

TS(Th)

~n(Th)

∆x(Th)

~n(Th)τ∆x(Th)

δx−

Figure 2.7: Projection from a point ∆x(Th) ∈ TS(Th) to a point δx− ∈ TΓ− along the direction
of ~n(Th).

such that the complete map is of the form (2.84).
Thus, to summarize, the linearized transverse dynamics with one jump has the form

Ẋ = A(τ)X + B(τ)V̄ , 0 ≤ τ < Th,

X(0) = dFTSX(Th),

with τ computed τ = t moduloTh.

2.5 Stabilizing Linear Time-Varying Systems
In this section, the topic will be stabilization of linear time-varying systems of the form

ẋ(t) = A(t)x(t) +B(t)u(t), (2.96)

where x(t) ∈ Rn are the state variables, u(t) ∈ Rm are the actuator inputs, and A(t) and
B(t) are C0-smooth n × n and n × m matrices on t ∈ [t0, T ], respectively. In order to
determine the stability of such a system, the notion of a Hurwitz matrix is given next.

Definition 4. [56] The matrix function A(t) is said to be Hurwitz5 if there exists numbers
C > 0, ε > 0 such that for any solution x = x(t) of the equation ẋ = A(t)x one has

|x(t)| ≤ Ce−ε(t−τ)|x(τ)|, t ≥ τ.

Moreover, if A(t) is Hurwitz, then the system ẋ = A(t)x is exponentially stable.
5It can be shown that any constant matrix A is Hurwitz if its eigenvalues lie in the left-half plane [23]. How-

ever, for the time-varying case, the matrixA(t) is not necessarily Hurwitz on [t0, T ] even though its eigenvalues
lie in the left-half plane for all t ∈ [t0, T ]; see, e.g., [27, Theorem 7.4].
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From this, it directly follows that if the matrix A(t) of (2.96) is Hurwitz, then the
origin is stable even when the system is unactuated. However, this is unlikely to be the
case for most system. Thus, one needs to determine, by some manner, a control input u(t)
such that the closed-loop system is stable. In order to determine if such a control input is
possible, one can use the notion of controllability stated next.

Theorem 2.5.1. (Controllability, [39]) The system (2.96) is controllable on [t0, T ] if and
only if the n× n controllability Gramian

W (t0, T ) =

∫ T

t0

Φ(t0, t)B(t)BT (t)ΦT (t0, t)dt (2.97)

is invertible6. Herein, the n × n matrix Φ(t, t0) is called the transition matrix, and is
defined as Φ(t, t0) = X(t), where X(t) found from the n× n matrix differential equation

Ẋ(t) = A(t)X(t), X(t0) = In. (2.98)

The implications of Theorem 2.5.1 follows next.

Theorem 2.5.2. (Existence of stabilizing controller, [56, 39]) If the system (2.96) is con-
trollable on [t0, T ], then there exists a continuous m × n matrix function K(t) such that
the controller

u(t) = K(t)x(t) (2.99)

makes
(
A(t) + B(t)K(t)

)
Hurwitz for all t ∈ [t0, T ], which in turn makes the origin of

closed-loop system exponentially stable.

Although one can use Theorem 2.5.2 to determine if there exists a controller which
makes the system (2.96) exponentially stable7, the question of how to find the matrixK(t)
still remains. Indeed, even though a stabilizing matrix K(t) is found, it might lead to
unrealistic requirements of the actuators. For this reason, the method of minimizing a
quadratic cost function, which penalize both deviations of the states from the origin and
the actuator outputs, leading to the linear-quadratic regulator (LQR), will be presented
next.

The Linear-Quadratic Regulator Method

The linear-quadratic regulator (LQR) is a well known control strategy in the field of opti-
mal control. The method is based on minimizing the quadratic cost functional

J
(
x(t0), u(t), t0, te

)
=

∫ te

t0

[
xT (t)Q(t)x(t) + uT (t)Γ(t)u(t)

]
dt+ xT (te)Sx(te),

(2.100)
6Note that the invertibility of the controllability Gramian of (2.97) is equivalent to the positive definiteness

condition [56] ∫ te

t0

[
X(t)−1

]
B(t)BT (t)

[
X(t)−1

]T
dt � 0.

7The controllability condition is only a sufficient condition for there to exists an exponentially stabilizing
controller, and not a necessary condition. The necessary condition is L2-stabilizability of (2.96), which control-
lability implies; see, e.g., [56].
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where the term xT (t)Q(t)x(t) penalize the deviation of the states from the origin,
uT (t)Γ(t)u(t) penalize the actuator outputs and xT (te)Sx(te) penalize the final deviation
of the states. Herein, Q(t) ∈ Rn×n and Γ(t) ∈ Rm×m are contiuous-in-time, symmet-
ric positive-semidefinite (SPSD) and symmetric positive-definite (SPD) matrix functions,
respectively, and S ∈ Rn×n is SPSD. The reader interested in a more in-depth derivation
of the method, and optimal control in general, is referred to the seminal paper [22] by
Kalman.

It can be shown that the optimal8 controller u0(t) which minimizes the cost function
(2.100) and exponentially stabilizes the system (2.96) is given by [1, 22]

uo(t) = −Γ(t)
−1
BT (t)R(t)x(t), (2.101)

where R(t) is a twice continuously differentiable, n×n symmetric matrix function which
is the solution of the Riccati differential equation (RDE)

Ṙ(t) +AT (t)R(t) +R(t)A(t) +Q(t) = R(t)B(t)Γ(t)
−1
BT (t)R(t), (2.102)

with the boundary condition R(te) = S. Moreover, the optimal cost functional
Jo
(
x(t), t, te

)
:= J

(
x(t), uo(t), t, te

)
which is the minimum of (2.100) subject to uo(t)

for t ∈ [t0, te], has the quadratic form

Jo
(
x(t), t, te

)
= xT (t)R(t)x(t), (2.103)

referred to as the cost-to-go, i.e., the remaining cost from time t until te when subject to
the optimal control input (2.101). Hence, the minimal of the cost functional (2.100) has
the form

Jo
(
x(t0), t0, te

)
= xT (0)R(0)x(0). (2.104)

This is not difficult to see by defining

V (x(t), t) := xT (t)R(t)x(t), (2.105)

whose derivative w.r.t. time is

V̇ (x(t), t) = ẋTR(t)x(t) + xTR(t)ẋT (t) + xT Ṙ(t)x(t

= xT (t)
[
AT (t)R(t) +R(t)A(t) + Ṙ(t)− 2R(t)B(t)Γ(t)

−1
BT (t)R(t)

]
x(t)

= xT (t)
[
−Q(t)−R(t)B(t)Γ(t)

−1
BT (t)R(t)

]
x(t).

Inserting the controller (2.101) into (2.100) yields

Jo
(
x(t0), t0, te

)
=

∫ te

t0

[
xT (t)Q(t)x(t) +R(t)B(t)Γ(t)

−1
BT (t)R(t)

]
dt+ xT (te)Sx(te)

=

∫ te

t0

−V̇ (x, t)dt+ xT (te)Sx(te)

= V (x(t0), t0)− V (x(te), te) + xT (te)Sx(te).

8The superscript ”o” identifies optimality.
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Therefore, from the boundary condition R(te) = S, it is clear that xT (0)R(0)x(0) is the
minimum of the cost functional. From this, it further follows that R(t) must be at least
a positive-semidefinite matrix function for all t ∈ [t0, T ] as J

(
x(t), u(t), t, te

)
≥ 0 by

definition.

Solving the Periodic Riccati differential equation

Solving the Riccati differential equation (2.102) is no easy task. Indeed, finding numeri-
cally reliable and efficient algorithms is still an active research subject. However, most of
the proposed solutions assume time-invariant systems; see, e.g, [35, 8]. For this reason, a
method proposed in [17, 18] for solving the periodic Riccati differential equation (PRDE)
will be presented in this text.

Suppose that the matrices of (2.96) are T -periodic, i.e., A(t) = A(t+ T ) and B(t) =
B(t + T ). The stabilizing solution is then of form (2.101) with R(t) = R(t + T ), which
is the solution of the periodic Riccati differential equationR

(
R(t), t

)
= 0, where

R
(
R(t), t

)
= Ṙ(t) +AT (t)R(t) +R(t)A(t) +Q(t)−R(t)B(t)Γ(t)

−1
BT (t)R(t).

(2.106)
It was found in [4] that solution of R

(
R(t), t

)
= 0 is unique, as well as the maximal

solution. The exact meaning of this is clarified in the next Proposition.

Proposition 2.5.3 (Maximal solution of the PRDE, [18]). Let A(t), B(t), Q(t) and Γ(t)
be continuous, T -periodc matrix functions; the pair (A,B) be stabilizable; and Q(t) �
0, Γ(t) � 0, ∀t ∈ [0, T ]. Then, there exists a unique, T -periodic stabilizing solution
R+(t) such thatR

(
R+(t), t

)
= 0. Moreover, any T -periodic solution R(t) of the Riccati

inequality
R
(
R(t), t

)
� 0, ∀t ∈ [0, T ], (2.107)

satisfies the inequality
R+(t)−R(t) � 0, ∀t ∈ [0, T ]. (2.108)

The inequality (2.107) can be transformed into a linear matrix inequality (LMI) by
taking the Schur complement9 of Γ(t):

R̄
(
R(t), t

)
=

[
Ṙ(t) +AT (t)R(t) +R(t)A(t) +Q(t) R(t)B(t)

BT (t)R(t) Γ(t)

]
� 0, ∀t ∈ [0, T ].

(2.109)
Thus, the stabilizing solution satisfies R̄

(
R(t), t

)
� 0 and maximizes the functional

J
(
R(t)

)
=

∫ T

0

tr
(
R(t)

)
dt, (2.110)

where tr(·) denotes the trace of the matrix functions, i.e., the sum of the elements on the
main diagonal.

9For a matrix A =

[
A11 A12

A21 A22

]
, the Schur complement of A22 is given by Ac = A11 − A12A

−1
22 A21.

Moreover, if A22 � 0 and Ac is positive (semi-)definite, then A is positive (semi-)definite [58].
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2.5 Stabilizing Linear Time-Varying Systems

In order to transform this from a infinite problem to a finite, one can approximate the
matrix function R(t) with a symmetric, T -periodic trigonometric polynomial:

R̂(t) = Ra,0 +

N∑
k=1

(
cos(kωt)Ra,k + sin(kωt)Rb,k

)
, (2.111)

with ω = 2π/T and the 2N + 1 coefficients Ra,k and Rb,k. Thus, by taking a number
of L evenly spaced time-samples, t1, t2, . . . , tL, one can find an approximations R̄+(t) of
the stabilizing solution by solving the semi-definite programming (SDP) problem:

minimize
R̄(t)

− J̄ (R̄(t))

subject to Sj � 0, j = 1, ..., L,
(2.112)

where

J̄ (R̄(t)) =

L∑
j=1

tr

(
Ra,0 +

N∑
n=1

(
cos(nωtj)Ra,n + sin(nωtj)Rb,n

))

and Sj = S(R̄(tj), tj), for some sufficiently large integers N and L.
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Chapter 3
Equations of Motion and Impact
Models for the Three-Link Biped

In this chapter, the mathematical model describing the planar compass biped will be de-
rived. The compass biped considered in this text, is an open kinematic chain consisting
of two sub-chains, called the legs, connected to another sub-chain called the torso through
a revolute joint referred to as the hip. When walking, the biped switches between two
phases: double support, when both legs are in contact with the ground; and single support,
or the swing phase, where only one of the legs, referred to as the stance leg, is in contact
with the ground and where the other leg is referred to as the swing leg. These phases
are depicted (a) and (b) in Figure 3.1, respectively. The biped is thus a hybrid system
where the dynamics in the swing phase can be modelled using the Euler-Lagrange equa-
tion, which will be done in Section 3.1, while the dynamics during double support, which
will be called the impact phase, is discussed in Section 3.2.

Hip

Torso

Direction of motion

(a) Double support.

Stance leg
Swing leg

(b) Swing phase.

Figure 3.1: Phases of the three-link biped with torso shown in the saggital plane.

For walking, a few standard assumptions will be made [55, 49] for the biped during
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Chapter 3. Equations of Motion and Impact Models for the Three-Link Biped

the gait:

• During the swing phase, the stance leg acts like a pivot, i.e., its tip can be regarded
as being fixed to the ground.

• The collision of the swing leg with the ground at impact is perfectly inelastic, i.e.,
no rebound; no slipping occurs and the swing leg becomes the new stance leg.

• At impact, the stance leg detaches from the ground and becomes the new swing leg.

• The gait is symmetric, i.e., the configuration is identical at the beginning of each
consecutive step with the exception that the swing- and stance leg are switched.

• The biped can only move in the sagittal plane, i.e., from left to right; see Figure 3.1a.

Another common assumption is that the impact can be modelled as an instantaneous event
[55, 49, 26]. This will be discussed further in Section 3.2.

The biped consists of three connected links, each of which can be considered to dis-
tributed mass with the center of mass (COM) given for each link. Thus, a minimum of
three generalized coordinates are needed to describe the configuration of the robot, while
two more are needed in order to determine its position in the inertial (World) frame. Fur-
thermore, the biped is powered by two actuators (motors) connected at the hip, each acting
between the torso and one of the legs. These are denoted by the vector u = [u1, u2]T

where u1 is connected between the torso and stance leg, while u2 is connected between
the torso and the swing leg.

The biped has a total of five degrees of freedom: the rotation of each link and the x-y
coordinates of some point on the biped, e.g., its center of mass or the hip, measured in
the inertial frame. Since it only has two actuators, it is thus underactuated by a degree of
three. However, since the assumption that the stance leg does not move during the swing
phase and acts like a pivot, one can describe the configuration of the biped in each phase
by the rotations of the link and move the inertial frame from, e.g., the stance leg to the new
stance leg after each transition phases. Therefore, one can reduced the degrees of freedom
to three, i.e., the configuration, such that it is underactuated by a degree of one.

3.1 Equations of Motion in the Swing Phase

In this section, the equations of motion in the swing phase will be derived using the Euler-
Lagrange equation. Each link of the biped is considered to have distributed mass, i.e., it
is not modelled as a point mass. For each link, i = 1, 2, 3, the constant scalar mi denotes
the mass of the link i located at its centre of mass, Ji denotes its moment of inertia, Li
denotes the link’s length and li denotes the length to its center of mass from the previous
frame. A schematic of the biped is shown in Figure 3.2 where the masses and the inertias
of the torso and the hip are combined into m2 and J2, respectively.

The configuration of the biped can be described using several conventions for the an-
gles. In this text, two conventions will be presented: one using absolute angles and one

36



3.1 Equations of Motion in the Swing Phase

l2

L1

l1

L3l3

m1, J1

m3, J3

m2, J2

Figure 3.2: Masses, inertias and link lengths of the three-link biped.

using relative angles. These are shown in Figure 3.3 . Herein, the absolute angles are given
in terms of the relative angles byqa1qa2

qa3

 =

1 0 0

1 1 0

1 1 1

qr1qr2
qr3

+

 −π/2−π/2
−3π/2

 , (3.1)

hence the relative angles can be found in terms of the absolute byqr1qr2
qr3

 =

 1 0 0

−1 1 0

0 −1 1

qa1qa2
qa3

+

π/20

π

 . (3.2)

In this text, the relative coordinates will be used in order to derive the equations of motion.
However, one can simply find these in absolute coordinates by the coordinate transforma-
tion (3.1).

Position and velocity vectors using relative coordinates

Using relative angles and the coordinate convention in Figure 3.3 with frame assignment
as in Figure 3.4, the position vectors in the inertial frame o0 to the center mass of each of
the links can be found using the homogeneous transformation

T i−1
i =

[
Ri−1
i oi−1

i

01×3 1

]
(3.3)
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-qa1

qa2

qa3

(a) Absolute coordinates.

qr1

qr2

qr3

(b) Relative coordinates.

Figure 3.3: Coordinate conventions.

between frame oi−1 and oi, where Ri−1
i denotes the rotation between the frames around

the zi−1-axis and oi−1
i denotes the translation along the xi-axis. Using the Denavit-

Hartenberg convention [51], the transformation matrix between frame i− 1 and i is given
by

T i−1
i =


cos θi − sin θi 0 ai cos θi
sin θi cos θi 0 ai sin θi

0 0 1 0

0 0 0 1

 (3.4)

where θi is the angle between the xi−1- and xi-axis measured around the zi−1-axis, and
ai is the distance between the zi−1- and zi-axis measured along the xi-axis. Using this,
the distance from the frame o0 to the frame oi is given by the vector pi = 00

i , where 00
i is

extracted from
T 0
i = T 0

1 · · ·T i−1
i (3.5)

Using Figure 3.4, and by setting q := [q1; q2; q3] = [qr1; qr2; qr3], the homogeneous trans-
formation matrices between the frames are found to be

T 0
1 =


cos q1 − sin q1 0 l1 cos q1

sin q1 cos q1 0 l1 sin q1

0 0 1 0

0 0 0 1

 , T 0
H =


cos q1 − sin q1 0 L1 cos q1

sin q1 cos q1 0 L1 sin q1

0 0 1 0

0 0 0 1

 ,

TH2 =


cos q2 − sin q2 0 l2 cos q2

sin q2 cos q2 0 l2 sin q2

0 0 1 0

0 0 0 1

 ,

TH3 =


cos(q2 + q3) − sin(q2 + q3) 0 l3 cos(q2 + q3)

sin(q2 + q3) cos(q2 + q3) 0 l3 sin(q2 + q3)

0 0 1 0

0 0 0 1

 .
(3.6)
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q1

q2

q3

o0
x0

y0

o1

x1

y1

oH

xH
yH

o2

x2

y2

o3

x3

y3

o4

x4

y4

Figure 3.4: Coordinate and frame convention using relative angles.

Thus, T 0
2 = T 0

HT
H
2 and T 0

3 = T 0
HT

H
3 , giving, after some simplification, the positions

vectors

~p1 = o0
1 =

[
l1 cos q1

l1 sin q1

]
, (3.7a)

~p2 = o0
2 =

[
L1 cos q1 + l2 cos(q1 + q2)

L1 sin q1 + l2 sin(q1 + q2)

]
, (3.7b)

~p3 = o0
3 =

[
L1 cos q1 + l3 cos(q1 + q2 + q3)

L1 sin q1 + l3 sin(q1 + q2 + q3)

]
. (3.7c)

From this, the velocities are simply found from the time-derivative of the positions using
the Jacobian Ji(q) as follows:

~vi =
d~pi
dt

=
∂~pi
∂q

q̇ = Ji(q)q̇, i = 1, 2, 3.
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Hence, the velocities are given by

~v1 = J1q̇ =

[
−l1 sin q1 0 0

l1 cos q1 0 0

]
q̇, (3.8a)

~v2 = J2q̇ =

[
−L1 sin q1 − l2 sin(q1 + q2) −l2 sin(q1 + q2) 0

L1 cos q1 + l2 cos(q1 + q2) l2 cos(q1 + q2) 0

]
q̇, (3.8b)

~v3 = J3q̇ =

[
−L1 sin q1 − l3 sin123 −l3 sin123 −l3 sin123

L1 cos q1 + l3 cos123 l3 cos123 l3 cos123

]
q̇, (3.8c)

where sin123 = sin(q1 + q2 + q3) and cos123 = cos(q1 + q2 + q3).

Kinetic and Potential Energy

The kinetic energy of link i is found using

Ki =
1

2
mi~vi · ~vi +

1

2
Jiω

2
i =

1

2
miq̇

TJi(q)
TJi(q)q̇ +

1

2
Jiω

2
i (3.9)

where ωi =
∑i
k=1 q̇i. Thus, the kinetic energy of the biped is given by

K(q, q̇) = K1 +K2 +K3, (3.10)

where

K1 =
1

2
q̇2
1(l21m1 + J1), (3.11a)

K2 =
1

2
q̇2
1

(
2L1l2m2 cos q2 + L2

1m2 + l2m2 + J2

)
+

1

2
q̇2
2

(
l22m2 + J2

)
(3.11b)

+ q̇1q̇2

(
L1l2m2 cos q2 + l22m2 + J2

)
,

K3 =
1

2
q̇2
1

(
2L1l3m3 cos(q2 + q3) + L2

1m3 + l3m3 + J3

)
(3.11c)

+
1

2

(
q̇2
3 + q̇2

2

)(
l23m3 + J3

)
+
(
l23m3 + J3

)
q̇2q̇3

+
(
L1l3m3 cos(q2 + q3) + l23m3 + J3

)(
q̇2 + q̇3

)
q̇1.

The potential energy of the biped is the sum of the potential energy of the links, V (q) =
P1 + P2 + P3, where the potential energy of each link can be computed as

Pi = mighi (3.12)

where g is the gravitational acceleration and hi denotes the height of the centre of mass of
joint i computed along the y-axis of the inertial frame, which corresponds to the second
element of the position vectors in (3.7). Thus, the potential energy of the biped is given by

V (q) = (L1gm2+L1gm3+gl1m1) sin q1+gl2m2 sin(q2+q1)+gl2m3 sin(q1+q2+q3).
(3.13)
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3.1 Equations of Motion in the Swing Phase

The equation of motion can now be found by defining the Lagrangian

L(q, q̇) := K − V (q)

and using the Euler-Lagrange equation (2.8). In order to state the equation on the form
(2.9), i.e.,

M(q)q̈ + C(q, q̇)q̇ +G(q) = B(q)u, (3.14)

one must find the matrix functions M(q), C(q, q̇), G(q) and B(q). This is done next.

The Inertia Matrix

The elements of the inertia matrixM(q) are found using (2.7), such that the i-jth elements
are given as

m1,1(q) =m1l
2
1 + 2L1l2m2 cos(q2) + L2

1m2 + l22m2 + 2L1l3m3 cos(q2 + q3) (3.15a)

+ L2
1m3 + l23m3 + J1 + J2 + J3,

m1,2(q) =m2,1(q) = L1l2m2 cos(q2) + L1l3m3 cos(q2 + q3) + l22m2 + l23m3 (3.15b)
+ J2 + J3,

m1,3(q) =m3,1(q) = L1l3m3 cos(q2 + q3) + l23m3 + J3, (3.15c)

m2,2(q) =l22m2 + l23m3 + J2 + J3 (3.15d)

m2,3(q) =m3,2(q) = l23m3 + J3, (3.15e)

m3,3(q) =l23m3 + J3. (3.15f)

The Coriolis and Centrifugal Matrix

Using (2.10), the non-zero elements of the matrix function C(q, q̇) are found to be

c1,1(q, q̇) =− L1l2m2 sin(q2)q̇2 − L1l3m3 sin(q2 + q3)
(
q̇2 + q̇3

)
, (3.16a)

c1,2(q, q̇) =− L1l2m2 sin(q2)
(
q̇1 + q̇2

)
− L1l3m3 sin(q2 + q3)

(
q̇1 + q̇2 + q̇3

)
(3.16b)

c1,3(q, q̇) =− L1l3m3 sin(q2 + q3)
(
q̇1 + q̇2 + q̇3

)
, (3.16c)

c2,1(q, q̇) =
(
L1l2m2 sin(q2) + L1l3m3 sin(q2 + q3)

)
q̇1, (3.16d)

c3,1(q, q̇) =L1l3m3 sin(q2 + q3)q̇1. (3.16e)

The Gravity Vector

The gravitational vector is computed as G(q) = [∂V (q)/∂q1, . . . , ∂V (q)/∂qn]T , yielding

G(q) =

g1(q)

g2(q)

g3(q)

 (3.17)
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where

g1(q) =g
(
L1 cos(q1)m2 + L1 cos(q1)m3 + cos(q1 + q2)l2m2 (3.18a)

+ cos(q1 + q2 + q3)l3m3 + cos(q1)l1m1

)
,

g2(q) =g
(
l2m2 cos(q1 + q2) + l3m3 cos(q1 + q2 + q3

)
, (3.18b)

g3(q) =gl3m3 cos(q1 + q2 + q3). (3.18c)

The Coupling Matrix

There are two actuators: one situated between the stance leg and the torso, and another
between the torso and the swing leg. The torques generated are defined to be positive in
the counter-clockwise direction. Thus, in order to find the coupling matrix B(q), one can
start by noting that for the case of relative angles, a virtual displacement δq1 generates no
virtual work about either of the actuators, while the displacements δq2 and δq3 generates
work about u1 and u2, respectively. Hence by D’Alembert’s principle, the coupling matrix
for the relative case is

B =

0 0

1 0

0 1

 . (3.19)

Note that if one wants to find the coupling matrix when using absolute angles, one can
use (3.19) and the relations (3.2) to find that it is given by [54]

Ba =

(
∂

∂qa

[
qr2
qr3

])T
=

−1 0

1 −1

0 1

 . (3.20)

3.2 Impact models
Whenever the end of the swing leg hits the ground, an impact will occur. This is equivalent
to q ∈ Γ−, where Γ− is the impact surface which given by

Γ− =
{
q ∈ Q : L1 sin q1 + L3 sin(q1 + q2 + q3) = 0

}
. (3.21)

When an impact occurs, the previous swing leg should become the stance leg and vice
versa. For the case of absolute angles, this gives the straight forward mappingqa1+

qa2+

qa3+

 =

0 0 1

0 1 0

1 0 0

qa1−qa2−
qa3−

 . (3.22)

To finds this mapping for the case of relative angles, one can use this relation together with
(3.1) to findqa1+

qa2+

qa3+

 =

0 0 1

0 1 0

1 0 0

1 0 0

1 1 0

1 1 1

q1−
q2−
q3−

+

0 0 1

0 1 0

1 0 0

 −π/2−π/2
−3π/2

 . (3.23)
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3.2 Impact models

Hence, by plugging this into (3.2), the relative angles before and after impact are given by
the mapping

q+ =

q1+

q2+

q3+

 = Pqq− + c =

1 1 1

0 0 −1

0 −1 0

q1−
q2−
q3−

+

−ππ
π

 . (3.24)

For the velocities, one needs to take into account that the impact gives rise sudden
changes in the velocities, thus one needs to develop an impact model which gives a good
approximation of this change. Such impact models can either be discrete models or con-
tinuous models. For the discrete models, it is assumed that the impact takes place over an
infinitesimally small period of time such that the velocity mapping takes the form

q̇+ = Pq̇(q−)q̇−, (3.25)

where Pq̇(q−) = PqP̂q̇(q−) with the relabelling matrix Pq from (3.24) and where P̂q̇(q−)
denotes the change of velocities due to impact before the relabelling of the coordinates.
Such discrete models normally only give a good approximation for rigid bodies with stiff
impacts [13].

In continuous models, the contact normal forces due to the impact are added to (3.14)
during the duration of the contact for the bodies which impacts. Such models have some
advantages over the discrete models, mainly that they can take into account both contact
which takes place over a very short duration of time, i.e., impacts, as well as contact over
longer duration and the use of several friction models [13]. However, such models often
require several parameters dependent on the bodies in contact which can be difficult to
obtain and might need to be tuned in order to get a realistic approximation of the impact
[13]. For this reason, only discrete methods will be used in this thesis.

In the next sections, two models for Pq̇(q−) will be derived, both of which are linear
and modelled as discrete mappings. The first is an algebraic method based on the kinematic
definition of restitution, i.e., Newton’s method of the coefficient of restitution, while the
other is based on the conservation of angular momentum. Note that both models result in
exactly the same velocity mapping Pq̇(q−).

3.2.1 Algebraic Method with Newton’s Model of Restitution
In [19], an algebraic formulation of an impact model for kinematic chains was presented
using Newton’s model of restitution, which has been used for a three-link biped in [16]. In
order to use this model, one must use the excessive coordinates qe = [q1; q2; q3;x; y] where
x and y are the Cartesian coordinates of the end of the stance leg as seen in Figure 3.4.
The equations of motions then take the form

Me(qe)q̈e + C(qe, q̇e)q̇e +G(qe) = Be(qe)u+ δFext (3.26)

where δFext represents the external forces acting on the biped at the points of contact.
Furthermore, the model uses the following assumptions [19, 16]:

1. The impact takes place over an infinitesimally small period of time.
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2. The external forces during the impact can be represented as instantaneous impulses.

3. Impulsive forces may result in an instantaneous change in velocities of the general-
ized coordinates, but the positions remain continuous.

4. The torques supplied by the actuators are not impulsional.

By these assumptions, the generalized coordinates can be regarded as constants in the
duration of the impact and all the non-impulsive terms of (3.26) can be neglected, such
that by integrating it, one obtains

Me(qe)(q̇e+ − q̇e−) =

∫ t+

t−

δFext(τ)dτ = Fext (3.27)

where q̇e+ and q̇e− are the velocities immediately after and prior to the impact, respec-
tively. Here, the inertia matrix Me(qe) is found by the same method as in section 3.1 by
adding the vector ~p0 = [x; y] to each of the position vectors in (3.7). Its non-zero elements
are given in (B.1) in Appendix B.

As the stance leg detaches after impact, the only external forces acting on the biped
due to the impact are at the end tip of the swing leg, which position vector ~psw is given by

~psw =

[
x+ L1 cos q1 + L3 cos(q1 + q2 + q3)

y + L1 sin q1 + L3 sin(q1 + q2 + q3)

]
. (3.28)

Thus, the external forces can be found as

Fext =

(
∂~psw
∂qe

)T [
F t

Fn

]
= E

[
F t

Fn

]

=

[
−L1 sin q1 + f(q) f(q) f(q) 1 0

−L1 cos q1 + g(q) g(q) g(q) 0 1

]T [
F t

Fn

]
,

(3.29)

where F t and Fn are the tangential and normal forces, respectively, acting on the tip of
the swing leg. Here, f(q) = −L3 sin(q1 + q2 + q3) and g(q) = L3 cos(q1 + q2 + q3).

The unknown variables to be found are F t, Fn and q̇e+ as the velocities, q̇e−, prior to
the impact are known, with ẋ− and ẏ− equal to zero as the stance leg acts as a pivot before
the impact. Furthermore, by the assumption that the swing does neither slip nor rebound,
the relation (

∂~psw
∂qe

)
q̇e+ = 0 (3.30)

must hold. Thus, the problem is reduced to seven unknowns, q̇e+, F t and Fn, with seven
linear equations given by (3.27) and (3.30), which combined give

[
Me(qe) −E
ET 02×2

]q̇e+F t
Fn

 =

[
Me(qe)

02×5

]
q̇e−. (3.31)
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Since Me(qe) is invertible and E has full rank, the left-hand matrix can be inverted such
that the unknowns can be found by

q̇e+F t
Fn

 =

[
Me(qe) −E
ET 02

]−1 [
Me(qe)

02×5

]
q̇e−. (3.32)

Thus, the impact velocity mapping in relative coordinates is given by

q̇+ = Pq̇(q−)q̇− = Pq
[
I3 03×4

] [Me(qe) −E
ET 02

]−1 [
Me(qe)

02×5

] [
I3 02

02×3 02

]
q̇−,

(3.33)
with Pq from (3.24). Note that the tangential and normal force can be found from the
expression

[
F t

Fn

]
= PF (q−)q̇− =

[
02×5 I2

] [Me(qe) −E
ET 02

]−1 [
Me(qe)

02×5

] [
I3 02

02×3 02

]
q̇−.

(3.34)

3.2.2 Conservation of Angular Momentum

It is possible to derive a simpler model than the one from the previous section using the
same assumptions, namely that the angular momentum about the point of impact should
be conserved through the impact, as well as the angular momentum of the torso and stance
leg about the hip. This stems from the assumption that the only forces acting on the
biped through the duration of the impact, apart from the constraint forces, are the normal
and tangent impact force at the point of impact. Thus, the angular momentum should be
conserved about the point of impact as the impact forces generate no torque about this
point. The same argument also holds true for the angular momentum of the torso and the
swing leg about the hip as the torque from the actuator is assumed to be non-impulsive.

The angluar momentum Li of a rigid body i about a point j in the inertial frame frame
is given by [9]

Li = ~rji ×mi~vi + Ji~ωi, (3.35)

where ~rji is the distance from the point j to i and ~vi is the velocity of the body i, both
measured in the inertial frame; Ji is the moment of inertia of the body and ~ωi is its angular
velocity.

To find the angular momentum of the biped about the point o4 given in Figure 3.3 (i.e.,
the point of impact), the vectors from this point to the COMs of the links of the biped
must be found. Herein, absolute angles of the links of the robot will be used to clarify the
procedure which are found from relative angles using the coordinate transformation from
(3.1). The vectors from o4 to the COM of each link measured in the inertial frame are thus
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given as follows:

~r41 =

−L3 sin(qa3 ) + (L1 − l1) sin(qa1 )

L3 cos(qa3 )− (L1 − l1) cos(qa1 )

0

 ,
~r42 =

−L3 sin(qa3 )− l2 sin(qa2 )

L3 cos(qa3 ) + l2 cos(qa2 )

0

 , ~r43 =

−(L3 − l3) sin(qa3 )

(L3 − l3) cos(qa3 )

0

 .
(3.36)

The velocities of the links prior to and after the impact, i.e., ~vi− and ~vi+, respectively,
depend on the point of pivot but not on the point of reference. As the pivot point before
the impact is given by the tip of the stance leg, oo, the velocities ~vi− are equal to those of
(3.8) by adding the third dimension. Thus, using absolute angles, they are

~v1− =

−l1q̇a1− cos qa1

−l1q̇a1− sin qa1
0

 , ~v2− =

−L1q̇
a
1− cos qa1 − l2q̇a2− cos qa2

−L1q̇
a
1− sin qa1 − l2q̇a2− sin qa2

0

 ,
~v3− =

−L1q̇
a
1− cos qa1 + l3q̇

a
3− cos qa3

−L1q̇
a
1− sin qa1 + l3q̇

a
3− sin qa3

0

 .
(3.37)

By the assumption that the swing leg should not rebound, but become the new stance leg,
it will act as the pivot after the impact, meaning that the velocities ~vi+ must be found from
the point o4. This yields

~v1− =

−L3q̇
a
3+ cos qa3 + (L1− l1)q̇a1+ cos qa1

−L3q̇
a
3+ sin qa3 + (L1− l1)q̇a1+ sin qa1

0

 ,
~v2+ =

−L3q̇
a
3+ cos qa3 − l2q̇a2+ cos qa2

−L3q̇
a
3+ sin qa3 − l2q̇a2+ sin qa2

0

 , ~v3+ =

−(L3 − l3)q̇a3+ cos qa3

−(L3 − l3)q̇a3+ sin qa3
0

 .
(3.38)

Since absolute angles are used, the angular velocity of a link i is simply the the vector
~ωi± = [0; 0; q̇ai±]. Therefore, the total angular momentum, Lb, of the biped is given by

Lb =

3∑
i=1

Li =

3∑
i=1

(
~r4i ×mi~vi− + Ji~ωi−

)
=

3∑
i=1

(
~r4i ×mi~vi+ + Ji~ωi+

)
. (3.39)

In order to find the angular momentum of the stance leg, Lsl, and the torso, Lt, about
the hip, the vectors ~rH1 and ~rH2 must be defined. These are given by

~rH1 =

 (L1 − l1) sin qa1
−(L1 − l1) cos qa1

0

 , ~rH2 =

−l2 sin qa2
l2 cos qa2

0

 . (3.40)
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The angular momenta are thus given by

Lsl = ~rH1 ×m1~v1− + J1~ω1− = ~rH1 ×m1~v1+ + J1~ω1+ (3.41)

and
Lt = ~rH2 ×m2~v2− + J2~ω2− = ~rH2 ×m2~v2+ + J2~ω2+. (3.42)

Since the angular velocities, q̇−, prior to the impact are known, the three unknown
angular velocities, q̇i+ for i = 1, 2, 3, can be found from the three equations (3.39), (3.41)
and (3.42) by differentiating them w.r.t. the angular velocities as they are linear in these.
Let Lk− denote the angular momentum prior to the impact about frame j, i.e.,

Lk− = ~rjk ×mk~vk− + Jk~ωk−,

and letLk+ be the angular momentum after impact, where k ∈ {b, sl, t}. Thus, the relation
between q̇a− and q̇a+ can be found by combining the three equation and differentiating
L̂k− = Lk− · k̂ w.r.t. q̇ai− and L̂k+ = Lk+ · k̂ w.r.t. q̇ai+ , where k̂ is the unit vector of the
z-axis in the inertial frame, i.e., k̂ = [0; 0; 1]. This yields

Q+q̇
a
+ = Q−q̇

a
−, (3.43)

where

Q+ =


∂L̂sl+

∂q̇a1+

∂L̂sl+

∂q̇a2+

∂L̂sl+

∂q̇a3+

∂L̂t+

∂q̇a1+

∂L̂t+

∂q̇a2+

∂L̂t+

∂q̇a3+

∂L̂b+

∂q̇a1+

∂L̂b+

∂q̇a2+

∂L̂b+

∂q̇a3+

 and Q− =


∂L̂sl−
∂q̇a1−

∂L̂sl−
∂q̇a2−

∂L̂sl−
∂q̇a3−

∂L̂t−
∂q̇a1−

∂L̂t−
∂q̇a2−

∂L̂t−
∂q̇a3−

∂L̂b−
∂q̇a1−

∂L̂b−
∂q̇a2−

∂L̂b−
∂q̇a3−

 . (3.44)

By using the coordinate transformationK between absolute angular velocities and relative
angular velocities given by differentiating (3.2) w.r.t. time, which is defined by

K =

 1 0 0

−1 1 0

0 −1 1

 , (3.45)

and the relabelling matrix from (3.24), one finds the angular velocities prior to the impact
by

q̇+ = Pq̇(q−)q̇− = PqKQ
−1
+ Q−K

−1q̇−. (3.46)
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Chapter 4
Procedure for finding Periodic
Gaits

In this chapter, a procedure for finding gaits based numerical optimization will be pre-
sented, where gaits are found by inducing limit cycles inherent in the natural dynamics for
a given open-loop control action. The main focus will be on finding gaits using the reduced
dynamics found from the virtual holonomic constraint apporach presented in Section 2.4,
but a basic search procedure on the full dynamics will also be given in order to compare
with that on the reduced dynamics.

The search space will be restricted to symmetric gaits, meaning that the configuration
of the robot will equal at the beginning and the end of step step, with the exception that
the swing leg becomes the stance leg, and vice versa. Mathematically, this can be written
as the following relations using absolute angles:

qa1 (t0) = −qa1 (t0 + T ), (4.1a)
qa1 (t0) = qa3 (t0 + T ), (4.1b)
qa3 (t0) = qa1 (t0 + T ), (4.1c)
qa2 (t0) = qa2 (t0 + T ) = ϕ, (4.1d)

where t0 is denotes the time at the beginning of the step and T denotes the step duration,
or step period, which, from now on, will be denoted t+ = t0 and t− = t0 + T , i.e., the
time immediately after and prior to impact of the swing leg. Herein, the angle ϕ will be
referred to as the lean angle of the torso, such that the torso is leaning forward if ϕ < 0.
The problem will be further restricted to a constant step length, denoted Lstep. From this,
the initial and final angle of the stance leg, denoted q1(t+) and q1(t−), respectively, can
be computed in relative angles using the following relations

q1(t−) = arccos
(Lstep

2L1

)
, (4.2a)

q1(t+) = π − q1(t−). (4.2b)
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Chapter 4. Procedure for finding Periodic Gaits

Thus, for a symmetric gait, the initial and final configuration of the biped over a step can
be directly computed knowing the step length, Lstep, and the lean angle of the torso, ϕ,
using the coordinate transformation of (3.2).

The chapter is outlined as follows. In Section 4.1 presents a basic search procedure
for finding gaits on the full dynamical model. Section 4.2 introduces a search procedure
for finding gaits from the reduced dynamics arising from enforcing virtual holonomic con-
straints on the system. The results from the search procedure are given in Section 4.3, with
a brief discussion on the method and found results given in Section 4.4.

4.1 Finding Feasible Gaits on the Full Model
In this section, a basic search procedure for finding gaits on the full dynamical model
will be presented for comparison with the method on the reduced dynamics presented
later. Moreover, the procedure can give some indication as to see if one can expect to find
gaits for a certain set of initial conditions, given by the step length and lean angle of the
torso, due to constraints on the value and change of torque supplied by the actuators. For
this, one must have the dynamics of the system, described by (2.9), as a constraint in the
optimization problem, meaning it will be a highly nonlinear and non-convex optimization
problem.

In order to constrain the optimization problem to follow the dynamics, one must use
some integration method, e.g., Euler’s method [9] for t from 0 to T with N discrete steps,
giving the constraints

qk − qk+1 + dtq̇k+1 = 0, (4.3a)

M(qk)
(
q̇k+1 − q̇k

)
+ dt

(
C(qk, q̇k)q̇k +G(qk)−B(qk)uk

)
= 0, (4.3b)

for k = 0, . . . , N − 1 and where dt = T/N defines the time-step. Moreover, one must
add the impact interpolation and velocity constraints:

q(k=1) = Pqq(k=N) + c (4.4a)
q̇(k=1) = Pq̇(q−)q̇(k=N) (4.4b)

where Pq and c are given in (3.24) and Pq̇ is found from (3.46) or (3.33). It also possible
to constrain the maximum actuator outputs and their maximum allowed rate:

ui,min ≤uk ≤ ui,max, i ∈ {1, 2}, (4.5a)
−dt · u̇i,max ≤ uk+1 − ui,k ≤ dt · u̇i,max. (4.5b)

Due to the relabelling of the legs at impact, the actuators u1 and u2 must in turn be re-
labelled, and since discontinuous jumps in the required torques must be avoided, the fol-
lowing constraints are needed in order to ensure a smooth torque profile over the impact1:

1Such constraints are dependent on the mounting of the actuators on the mechanical system. Indeed, if the
actuators are mounted between the legs and the torso, then the constraints should be ui,1 = −uj,N . However,
(4.6) is here used as its enforcement can be easily seen in the found results.
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4.2 Finding Feasible Gaits from the Reduced Dynamics

u1,1 = u2,N , (4.6a)
u2,1 = u1,N . (4.6b)

Furthermore, using the normal and tangential forces, respectively denoted Fn and F t,
found from (3.34), one can add the assumption from the no rebound condition

FN ≥ 0, (4.7)

as well as the no slip condition
F t/Fn ≤ µ (4.8)

as constraints, where µ denotes the friction coefficient between the swing leg and the
walking surface. However, this is omitted in this thesis as it is assumed that µ is sufficiently
large as to prevent slipping. The variables of the optimization problem are therefore qk,
q̇k and uk, for k = 1, . . . , N , and the period T , giving a total of 8N + 1 optimization
variables.

The choice of objective function can be many, but a good choice is to minimize the
energetic cost of transport (COT). This can be written as

WCOT =
1

gmTLstep

∫ T

0

(
|u1(t)q̇2(t)|+ |u2(t)q̇3(t)|

)
dt (4.9)

where mT denotes the total mass of the robot. Another performance index that can be
used is the minimization of the quadratic cost over the duration of the step:

WCC =

∫ T

0

(
qTQqq + q̇TQq̇ q̇ + uTRu

)
dt, (4.10)

whereQq andQq̇ are symmetric, positive semi-definite 3×3 matrices weighting the states
and R = RT is a 2× 2 positive definite matrix weighting the actuator inputs.

If the main concern when optimizing is to find a trajectory with the lowest maximum
torque required, one can simply minimize the maximum value needed by any of the actu-
ators over the duration of the step, which is equivalent to minimizing the cost function

WLT = maxU (4.11)

where U = {|u1(t)|} ∪ {|u2(t)|} ∀t ∈ [0, T ]}.

4.2 Finding Feasible Gaits from the Reduced Dynamics
In this section, a method of searching for gaits using the reduced dynamics found from
the virtual holonomic constraints approach will be presented. The method presented can
be used for any choice of motion generator θ as long as it is strictly monotonic over the
step, which is required by [55, Proposition 1] due to uniqueness of the solution. However,
the main emphasis will be on q1 = θ, i.e., the angle of the stance leg, as it is likely to be
monotonically decreasing over any ”normal” gait, and since it is the most common choice
in the literature [12, 26, 16].
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4.2.1 Finding the Reduced Dynamics
Given the vector of the synchronization functions from (2.29) as

Φ(θ) = [φ1(θ);φ2(θ);φ2(θ)],

Φ
′
(θ) = [φ

′

1(θ);φ
′

2(θ);φ
′

3(θ)],

Φ
′′
(θ) = [φ

′′

1 (θ);φ
′′

2 (θ);φ
′′

3 (θ)],

(4.12)

such that q = Φ, q̇ = Φ
′
(θ)θ̇ and q̈ = Φ

′
(θ)θ̈ + Φ

′′
(θ)θ̇2, and noting that

B⊥ = [1, 0, 0] (4.13)

is an annihilator of the coupling matrix B, given in (3.19), the procedure of (2.31) reduces
the dynamical system to the reduced dynamics equation

α(θ)θ̈ + β(θ)θ̇2 + γ(θ) = 0. (4.14)

Herein, the functions α(θ), β(θ) and γ(θ) are found using (2.33), and are given as

α(θ) =(L1 cos(φ2(θ))l2m2 + L1 cos(φ2(θ) + φ3(θ))l3m3 + l22m2 + l23m3 (4.15a)

+ J2 + J3)φ
′

2 + (L1 cos(φ2(θ) + φ3(θ))l3m3 + l23m3 + J3)φ
′

3

+ 2L1 cos(φ2(θ))φ
′

1l2m2 + 2L1 cos(φ2(θ) + φ3(θ))φ
′

1l3m3 + L2
1φ
′

1m2

+ L2
1φ
′

1m3 + φ
′

1l
2
1m1 + φ

′

1l
2
2m2 + φ

′

1l
2
3m3 + J1φ

′

1 + J2φ
′

1 + J3φ
′

1,

β(θ) =(L1 cos(φ2(θ))l2m2 + L1 cos(φ2(θ) + φ3(θ))l3m3 + l22m2 + l23m3 (4.15b)

+ J2 + J3)φ
′′

2 + (L1 cos(φ2(θ) + φ3(θ))l3m3 + l23m3 + J3)φ
′′

3

− 2L1 sin(φ2(θ))φ
′

1φ
′

2l2m2 − 2L1 sin(φ2(θ) + φ3(θ))φ
′

1φ
′

2l3m3

− 2L1 sin(φ2(θ) + φ3(θ))φ
′

1φ
′

3l3m3 − 2L1 sin(φ2(θ) + φ3(θ))φ
′

2φ
′

3l3m3

− L1 sin(φ2(θ))(φ
′

2)2l2m2 − L1 sin(φ2(θ) + φ3(θ))(φ
′

2)2l3m3

− L1 sin(φ2(θ) + φ3(θ))(φ
′

3)2l3m3 + 2L1φ
′′

1 cos(φ2(θ))l2m2

+ 2L1φ
′

1 cos(φ2(θ) + φ3(θ))l3m3 + L2
1φ
′′

1m2 + L2
1φ
′′

1m3 + φ
′′

1 l1
2m1

+ φ
′′

1 l
2
2m2 + φ

′′

1 l
2
3m3 + J1φ

′′

1 + J2φ
′′

1 + J3φ
′′

1 ,

γ(θ) = cos(φ2(θ) + φ1(θ))gl2m2 + cos(φ2(θ) + φ3(θ) + φ1(θ))gl3m3 (4.15c)
+ (L1gm2 + L1gm3 + gl1m1) cos(φ1(θ)).

Moreover, if one uses the the matrices B2 = [0; 1; 0] and B3 = [0; 0; 1] instead of the an-
nihilator B⊥, one gets two new equations which are also dependent on the control inputs:

α2(θ)θ̈ + β2(θ)θ̇2 + γ2(θ) = u1, (4.16a)

α3(θ)θ̈ + β3(θ)θ̇2 + γ3(θ) = u2. (4.16b)
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The full expressions for the functions αi(θ), βi(θ) and γi(θ), for i = 1, 2, are given in
(B.2) and (B.3) in Appendix B.

If one now observes that the variables θ̈ and θ̇2 are not independent, but are given by
the relation [47] (see also Appendix A.1)

θ̈ =
1

2

∂

∂θ

(
θ̇2
)
, (4.17)

one can define Y := θ̇2, and thus (4.14) and the two equations of (4.16) can be written as
three first order equations of the form:

α(θ)Y
′
(θ) + 2β(θ)Y (θ) + 2γ(θ) = 0, (4.18a)

α2(θ)Y
′
(θ) + 2β2(θ)Y (θ) + 2γ2(θ) = 2u1, (4.18b)

α3(θ)Y
′
(θ) + 2β3(θ)Y (θ) + 2γ3(θ) = 2u2 (4.18c)

which only depend on θ. This will be important for integrating the system internally in the
optimization problem as the systems of (4.18) are time-independent and only of first order
compared to (4.14).

Another interesting property of these equations can be found by looking closely at
(4.15a) and (4.15b), where one can see that

β(θ) =
∂

∂θ

(
α(θ)

)
. (4.19)

This property will be used later in order to simplify the integral function. Note, however,
that his relation does not hold for the other two equations, i.e., βi(θ) 6= ∂

∂θ

(
αi(θ)

)
for

i = 2, 3. A general case for when this property holds is stated in the next Theorem.

Theorem 4.2.1. Given an Euler-Lagrange system of the form (2.8) with one degree of
underactuation and n generalized coordinates q ∈ Q ⊆ Rn. Let B⊥ = [b⊥1 , . . . , b

⊥
n ] be

the annihilator of the coupling matrix B(q) with constant, scalar elements b⊥i . Then, the
relation

β(θ) =
∂

∂θ

(
α(θ)

)
(4.20)

holds for the reduced dynamics (2.34) if and only if

1

2
Φ
′
(θ)

T

[
n∑
i=1

b⊥i
∂M(q)

∂qi

∣∣∣
q=Φ(θ)

]
Φ
′
(θ) = 0 ∀θ ∈ R. (4.21)

Proof. The proof is given in Appendix A.4.

Corollary 4.2.1.1. For systems with more than one degrees of underactuation, Theo-
rem 4.2.1 holds for each of the resulting equations (2.32) by using the rows of the m × n
annihilator matrix.

Proof. The proof of this is trivial and follows directly from the proof of Theorem 4.2.1.
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It is not difficult see that the requirements of Theorem 4.2.1 is fulfilled for the three
link biped since

Φ
′
(θ)

T

[
∂M(q)

∂q1

∣∣∣
q=Φ(θ)

]
Φ
′
(θ) = 0

as the inertia matrix is independent of the passive coordinate q1, such that ∂M(q)
∂q1

= 03×3.
This in itself is not surprising as the kinetic energy of the system is not dependent on q1

as it is an absolute angle measured w.r.t. the inertial frame, and thus, by [54, Proposition
B.8], the inertia matrix is independent of it.

It is important to note that even though the requirements of Theorem 4.2.1 are not
fulfilled, one can acquire similar forms to (4.20) by clever choice of virtual holonomic
constraints. Indeed, in [46] a clever choice of constraints by the authors gave the even
more powerful relation2

∂α(θ)

∂θ
=

1

2
β(θ)

for the cart pendulum, where the requirements of Theorem 4.2.1 were impossible to fulfil.
Moreover, for an n-degree system, one can defineA(θ) := φ

′

1(θ)α1(θ)+· · ·+φ′n(θ)αn(θ)
and B(θ) := φ

′

1(θ)β1(θ) + · · ·+ φ
′

n(θ)βn(θ), for which the relations

∂A(θ)

∂θ
=

1

2
B(θ)

always holds. For a completely passive system, this property can be used to easily integrate
and find another function which keeps its value throughout the motion. This property
comes from the total energy of the system; see [2].

4.2.2 Choosing Synchronization Functions
The choice of virtual holonomic constraints are many, but a common choice when search-
ing are different types of polynomials as they can take many shapes with relatively few
coefficients. In this text, three types of polynomials will be tried and compared; these are:
regular polynomials, Bezièr curves and trigonometric polynomials. Note that there are
other good choices of virtual constraints, e.g., different types of splines, which are a set of
polynomials themselves.

Let the motion generator be chosen as θ = q1. It then follows that the synchronization
function for q1 and its partial derivatives are given by

φ1(θ) = θ, (4.22a)

φ
′

1(θ) = 1, (4.22b)

φ
′′

1 (θ) = 0. (4.22c)
(4.22d)

For the remaining synchronization functions, the following will be used as the polynomial
variable

2This relation means that one can write the reduced dynamics on the from ∂
∂θ

(
α(θ)θ̇

)
+ 2γ(θ) = 0 using

the relation (4.17), which then easily can be integrated.
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s := s(θ) =
θ − θ+

θ− − θ+
, (4.23)

such that s(θ+) = 0, s(θ−) = 1 and s ∈ [0, 1]. Thus, the partial derivatives of the
remaining synchronization functions can be computed as

φ
′

i(θ) =
∂φi
∂θ

=
∂φi
∂s

∂s

∂θ
,

φ
′′

i (θ) =
∂2φi
∂θ2

=
∂2φi
∂s2

(∂s
∂θ

)2

,

where ∂s/∂θ = 1/(θ− − θ+).

Regular polynomials

Using N th order regular polynomials, the synchronization functions are by

φi(θ) =

N∑
k=0

ai,ks
k, i ∈ {2, 3}, (4.24)

where a2,k and a3,k are the polynomial coefficients of the VHCs. The partial derivatives
are thus given by

φ
′

i(θ) =
1

θ− − θ+

N∑
k=1

kai,ks
k−1, (4.25a)

φ
′′

i (θ) =
1

(θ− − θ+)2

N∑
k=2

k(k − 1)ai,ks
k−2. (4.25b)

Using the property that s(θ+) = 0, one finds that φi(θ+) = ai,0. Thus, one can find a2,0

and a3,0 prior to the search by the formula

a2,0 =
π

2
+ ϕ− θ+, (4.26a)

a3,0 =
3π

2
− ϕ− θ+, (4.26b)

such that the remaining 2N coefficients are left as optimization variables.

Bezièr curves

Another choice of virtual holonomic constraints are Bezièr curves, often called Bezièr
polynomials, giving the following synchronization functions [10]:

φi(θ) =

N∑
k=0

ai,kBN,k(s) =

N∑
k=0

ai,k
N !

k!(N − k)!
sk(1− s)N−k, i ∈ {2, 3}, (4.27)
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where BN,k are N th order Bernstein polynomials. The first and second derivatives of the
Bezièr curves are given by the following [10]

φ
′

i(θ) =
1

θ− − θ+

N−1∑
k=0

BN−1,k(s)N
(
ai,k+1 − ai,k

)
, (4.28a)

φ
′′

i (θ) =
1

(θ− − θ+)2

N−2∑
k=0

BN−2,k(s)N(N − 1)
(
ai,k+2 − 2ai,k+1 + ai,k

)
, (4.28b)

from which it follows that

φ
′

i(θ+) =
N

θ− − θ+

(
ai,1 − ai,0

)
, (4.29a)

φ
′

i(θ−) =
N

θ− − θ+

(
ai,N − ai,N−1

)
, (4.29b)

φ
′′

i (θ+) =
N(N − 1)(
θ− − θ+

)2 (ai,2 − 2ai,1 + ai,0
)
, (4.29c)

φ
′′

i (θ−) =
N(N − 1)(
θ− − θ+

)2 (ai,N − 2ai,N−1 + ai,N−2

)
. (4.29d)

One of the advantages of using Bezièr curves is that both the first and last of the
polynomial coefficients, ai,0 and ai,N , of the synchronization can be precomputed if one
knows the initial and final configuration of the biped, compared to regular polynomials
where only the first could be pre-computed. The first coefficients are found by the same
formula as the regular polynomials, i.e., from (4.26), while the last are found from

a2,N =
π

2
+ ϕ− θ−, (4.30a)

a3,N =
3π

2
− ϕ− θ−, (4.30b)

meaning that the remaining 2N − 2 coefficients are left as optimization variables.
Another useful property is that the resulting curve from the Bezièr polynomial lies

within the convex hull of the control points [10], which in this case are the coefficient ai, k
for k = 0, . . . , N . This makes Bezièr curves ideal for numerical optimization as small
changes the in the coefficients does not result in large changes in the curve. Moreover, it
enables intuitively choosing values of the coefficients as the initial condition for the search.

Trigonometric polynomials

Another choice for the synchronization functions are trigonometric polynomials, which
are truncated Fourier series which are well suited to approximate periodic functions [24].
When using trigonometric polynomials, the synchronization functions are given by

φi(θ) = ai,0 +

N∑
k=1

(
ai,k cos(kωis) + bi,k sin(kωis)

)
, i ∈ {1, 2}, (4.31)
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such that the partial derivatives are

φ
′

i(θ) =
ωi

θ− − θ+

N∑
k=1

k
(
− ai,k sin(kωis) + bi,k cos(ωis)

)
, (4.32a)

φ
′′

i (θ) =
ω2
i

(θ− − θ+)2

N∑
k=1

k2
(
− ai,k cos(kωis)− bi,k sin(kωis)

)
. (4.32b)

The parameters ω2 and ω3 are referred to as the harmonics of the trigonometric polyno-
mials. However, since the synchronization function are not truly periodic such that the
harmonics can be directly computed, they must either be set to a constant value of choice
or added as optimization variables. However, having these as optimization variables will
make the resulting problem even more non-linear such that it is likely to be advantageous
to tune these by hand to get a satisfactory performance rather than having them as vari-
ables, even if they are restricted to a small range.

As none of the parameters can be chosen directly prior to the search, the number of
optimization variables are 2(2N + 1) with the addition of two more if the harmonics are
left as optimization variables.

4.2.3 Constraints
Interpolation Constraints

In order to simplify the problem, as well as give some degree choice, one can fix certain
variables of the problem. As previously mentioned, in this text, the step length and the
lean angle of the torso will be be fixed immediately prior to and after the impact, as it was
when optimizing over the full model. Thus, since one wants qa2 to be equal to the angle ϕ
at impact, one must add the constraint

φ1(θ) + φ2(θ)− π/2 = ϕ, θ ∈ {θ+, θ−}. (4.33)

For the step length, the relations of (4.2) gives the constraints on the angles of the swing
leg prior to and after impact as

φ1(θ−) = arccos
(Lstep

2L1

)
, (4.34a)

φ1(θ+) = π − φ1(θ−), (4.34b)

where φ1(θ+) = π − φ1(θ−) comes from the assumption of a symmetric gait, giving
φ1(θ+) > φ1(θ−). Furthermore, due to symmetry of the stance and swing leg before and
after impact, one must add the constraint

2φ1(θ) + φ2(θ) + φ3(θ)− 2π = 0, θ ∈ {θ+, θ−}. (4.35)

Lastly, the impact mapping interpolation due to the symmetric configuration gives the
constraints

φ1(θ+) = φ1(θ−) + φ2(θ−) + φ3(θ−)− π, (4.36)
φ2(θ+) = −φ3(θ−) + π, (4.37)
φ3(θ+) = −φ2(θ−) + π. (4.38)
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If the choice of motion generator is θ = q1, then θ+ and θ− are found directly from
(4.34), and φ1(θ) is thus known, which simplifies the problem.

Impact Velocity constraints

In order to satisfy the the change of velocities at impact, given by the relation

q̇+ = Pq̇(q−)q̇−, (4.39)

one now must take into account that the velocities are now governed by the motion gener-
ator by the relation q̇ = Φ

′
(θ)θ̇. Plugging this into (4.39) yields

Φ
′
(θ+)θ̇+ = Pq̇(Φ(θ−))Φ

′
(θ−)θ̇−. (4.40)

In order to simplify this constraint, one can define the column vector

Ξ(θ−) := Pq̇(Φ(θ−))Φ
′
(θ−) = [ξ1(θ−); ξ2(θ−); ξ3(θ−)],

such that the following should hold

Φ
′
(θ+)θ̇+ = Ξ(θ−)θ̇−.

This means that for all i ∈ {1, 2, 3}, the relation

φ
′

i(θ+)/ξi(θ−) = θ̇−/θ̇+ = κ (4.41)

should hold for some nonzero κ, which further implies

φ
′

i(θ+)/ξi(θ−) = φ
′

j(θ+)/ξj(θ−) = κ, ∀i, j ∈ {1, 2, 3},

assuming ξi(θ−) 6= 0. Thus, the following three bilinear constraints must be added to the
problem:

φ
′

1(θ+) = κξ1(θ−), (4.42a)

φ
′

2(θ+) = κξ2(θ−), (4.42b)

φ
′

3(θ+) = κξ3(θ−), (4.42c)

where κ is an optimization variable. These relations means that the angles of the veloc-
ities prior to and after impact are related by the impact map. Furthermore, the velocity
amplitudes can be any as long as their proportion equals κ, i.e., θ̇− = κθ̇+.

One can now further deduce that if the motion generator is given by θ = q1, it is clear
that θ should be monotonically decreasing since θ+ > θ−. Thus, the following must be
true:

θ̇+ < 0 and θ̇− < 0,

giving the additional contraint
κ > 0. (4.43)

Note that the constraint κ > 0 holds irrespectively of the choice of θ as it must be either
monotonically increasing or decreasing, such that κ = θ̇−/θ̇+ > 0 for any choice of θ.

58



4.2 Finding Feasible Gaits from the Reduced Dynamics

Impact direction constraint

At impact, the swing leg should be have a negative vertical velocity, thus

L1θ̇−φ
′

1(θ−) cos(φ1(θ−))

+ L3θ̇−
(
φ
′

1(θ−) + φ
′

2(θ−) + φ
′

3(θ−)
)

cos(φ1(θ−) + φ2(θ−) + φ3(θ−)) < 0.

If one assumes that L1 = L3, i.e., both legs have the same length, which is reasonable,
and that the gait is symmetric such that

cos(φ1(θ−)) = cos(φ1(θ−) + φ2(θ−) + φ3(θ−)),

then one can write the constraint as

θ̇− cos(φ1(θ−))
(
2φ
′

1(θ−) + φ
′

2(θ−) + φ
′

3(θ−)
)
< 0.

If the motion generator is chosen as θ = q1, then it is clear that θ̇ < 0 on the interval and
that cos(φ1(θ−)) > 0, so the constraint becomes

2φ
′

1(θ−) + φ
′

2(θ−) + φ
′

3(θ−) > 0. (4.44)

Constraints on θ̇+ and θ̇−

Suppose the synchronization functions of (4.12) are given. In order to check if a solution
exists for these functions, it is known from Theorem 2.4.1 that

I(θ+, θ̇+, θ−, θ̇−) =θ̇2
− − exp

{
−
∫ θ−

θ+

2β(τ)

α(τ)
dτ

}
(4.45)

×

[
θ̇2

+ −
∫ θ−

θ+

exp

{∫ s

θ+

2β(τ)

α(τ)
dτ

}
2γ(s)

α(s)
ds

]

must be equal to zero for some pair θ̇+, θ̇− for there to be a solution. Thus, one must find
θ̇+ and θ̇− such that

I(θ+, θ̇+, θ−, θ̇−) = 0, (4.46)

with the known constraints on θ̇− and θ̇+ from the previous section upheld, namely κ > 0,
as well as θ̇+ < 0 and θ̇− < 0 if q1 is chosen as the motion generator.

By defining

Ψ1 := Ψ1(θ+, θ−) = exp

{
−
∫ θ−

θ+

2β(τ)

α(τ)
dτ

}
and

Ψ2 := Ψ2(θ+, θ−) =

∫ θ−

θ+

exp

{∫ s

θ+

2β(τ)

α(τ)
dτ

}
2γ(s)

α(s)
ds,

which can be computed only knowing θ+ and θ−, the constraint (4.46) can be written as

θ̇2
− −Ψ1

(
θ̇2

+ −Ψ2

)
= 0. (4.47)
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There are several integration methods which can be used for computing Ψ1 and Ψ2.
A method based on the trapezoidal rule is given in Appendix C.1. However, using the
trapezoidal rule can lead to a rather large error if the number of integration steps is not
chosen high enough due to the nested integrals in Ψ2. Luckily, the relation noted in (4.20),
i.e.,

β(θ) =
∂

∂θ

(
α(θ)

)
,

means that the integral functions can be written on a form without the need to computing
nested integrals. This new form is stated in the next proposition.

Proposition 4.2.2. If the relation (4.20) holds for equation (4.14), then the integral func-
tion (4.45) can be written on the form

I(θ+, θ̇+, θ−, θ̇−) = θ̇2
− − Ψ̂1

(
θ̇2

+ − Ψ̂2

)
, (4.48)

where the functions Ψ̂1 and Ψ̂2 are given as

Ψ̂1 := Ψ̂1(θ+, θ−) =

(
α(θ+)

α(θ−)

)2

(4.49)

and

Ψ̂2 := Ψ̂2(θ+, θ−) =
2(

α(θ+)
)2 ∫ θ−

θ+

α(τ)γ(τ)dτ. (4.50)

Proof. The proof is given in Appendix A.5.

Remark (First integral). It is interesting to remark that according to [32], by defining

M̃(θ) =

(
α(θ)

α(0)

)2

,

which they refer to as the virtual mass, and

Ṽ (θ) =
1(

α(0)
)2 ∫ θ

0

α(τ)γ(τ)dτ,

which they refer to as the virtual potential; the Euler-Lagrange equation (2.8) with the
Lagrangian L̃(θ, θ̇) = 1

2M̃(θ)θ̇2 − Ṽ (θ), leads to the reduced dynamics (4.14). Further-
more, the total energy E0(θ, θ̇) = 1

2M̃(θ)θ̇2 + Ṽ (θ) of (4.14) is a first integral of the
system, meaning that is constant along all solutions of (4.14). Indeed, it is not hard to see
that by taking E0(θ−, θ̇−)−E0(θ+, θ̇+), and assuming it to be equal to zero, one obtains
(4.48).

There is, however, a disadvantage of using (4.48) for optimization as it becomes infinite
when α(θ−) = 0. This can be remedied by multiplying (4.48) by

(
α(θ−)

)2
, yielding a

new integral function which is zero along any solution:

Î(θ−, θ̇−, θ+, θ̇+) =
(
α(θ−)θ̇−

)2 − (α(θ+)θ̇+

)2
+ 2

∫ θ−

θ+

α(τ)γ(τ)dτ. (4.51)

60



4.2 Finding Feasible Gaits from the Reduced Dynamics

By noting that this can also be zero for certain functions α(θ), e.g., α(θ) = 0 ∀θ ∈
[θ+, θ−], one must add the additional constraint:

α(θ) 6= 0, ∀θ ∈ [θ+, θ−]. (4.52)

This constraint is equivalent to saying that α(θ) must either always positive or always
negative on the interval, i.e., if α(θ−) > 0, then α(θ) > 0 for all θ ∈ (θ+, θ−], and vice
versa. If the motion generator is chosen as θ = q1, one can deduce from (4.15a) and the
constraint (4.47) that α(θ+) > 0, thus the constraint

α(θ) > 0, ∀θ ∈ [θ+, θ−], (4.53)

must be used. Note, however, that the constraint (4.52) must hold regardless of the choice
of the integral function as to avoid asymptotes (infinite acceleration) in the phase-space of
(2.34).

Since one now only needs to evaluate one integral, i.e., the one in Ψ̂2, in order to
compute the value of the integral function (4.48), one can now easily implement Simpson’s
rule of integration [24] which will likely be far more accurate than when computing the
integral function with nested integrals(c.f., equation (4.45)) using the trapezoidal rule as
in Appendix C.1. A proposed implementation for computing (4.51) using Simpson’s rule
is given in Algorithm 1.

Algorithm 1 Approximation of the integral function using Simpson’s rule of integration.

1: Set dθ = (θ− − θ+)/n for some sufficiently large, even integer n
2: s0 = (α(θ+)γ(θ+))
3: s1 = 0
4: s2 = 0
5: θ = θ+

6: for i from 1 to n− 3 do
7: θ = θ + dθ
8: s1 = s1 + Γ + α(θ)γ(θ)
9: θ = θ + dθ

10: s2 = s2 + α(θ)γ(θ)
11: i = i+ 2
12: end for
13: θ = θ + dθ
14: s1 = s1 + α(θ)γ(θ)
15: Γ = dθ 2

3 (s0 + 4s1 + 2s2)

16: Return I(θ+, θ̇+, θ−, θ̇−) =
(
α(θ−)θ̇−

)2 − (α(θ+)θ̇+

)2
+ Γ

Continuity condition for the actuators over the impact

From the condition (4.6), i.e., u1(0) = u2(T ) and u2(0) = u1(T ), one must find a way
to write this as a constraint for the reduced dynamics. This is not difficult knowing the
final and end configuration, as well as the initial velocity of the motion generator and the
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κ parameter. Since the acceleration of the motion generator is given by θ̈ = −
(
β(θ)θ̇2 +

γ(θ)
)
/α(θ), one can simply use the relations (4.16), giving the following constraints

α2(θ+)θ̈+ + β2(θ+)θ̇2
+ + γ2(θ+) = α3(θ−)θ̈− + β3(θ−)θ̇2

− + γ3(θ−), (4.54a)

α3(θ+)θ̈+ + β3(θ+)θ̇2
+ + γ3(θ+) = α2(θ−)θ̈− + β2(θ−)θ̇2

− + γ2(θ−), (4.54b)

where θ̇− can be found using the relation θ̇− = κθ+.

4.2.4 Summary of the optimization problem
In this section, a summary of the optimization problem for the reduced dynamics is pre-
sented. Compared to the optimization of the full model as presented in Section 4.1, where
the number of optimization variables was the total number of states and actuator inputs
times the number of integration steps; the number of optimization variables for the re-
duced dynamics are restricted to the number of parameters in the synchronization func-
tions in addition to the initial velocity θ̇+ and the proportion parameter κ = θ̇−/θ̇+. Thus,
the number of optimization variables using N th order polynomials with q1 as the MG are
2N+2 using regular polynomials, 2N using Bezièr curves and 4(N+1) for trigonometric
polynomials (if the harmonics ω2 and ω3 are set to constant values).

It should be noted that the initial velocity θ̇+ and the parameter κ can be found directly
from (4.41) and (4.45) just knowing then parameters of the synchronization variables such
that they can be omitted as optimization variables. However, having these as optimization
variables, and restricting them using linear inequality constraints, lets one easily restrict
the search space to an area of interest, such that they act as an additional heuristic.

The objective function of the problem can be chosen as either the minimization of
(4.9), (4.10) or (4.11). Thus, for each iteration of the solver, the reduced dynamics (4.14)
must be integrated from θ+ to θ− and then evaluating the torque requirements using (4.16).
Since the period T of the step is unknown, this motivates integrating over (4.18a) instead,
which, in addition to only being a first order equation compared to (4.14) which is of
second order, is also time-independent and can be simply integrated over [θ+, θ−] using
an integration method of choice. Thus, one finds that its initial value, Y+, is simply found
from Y+ = θ̇2

+, and that the additional constraint

Y (θ) ≥ 0, ∀θ ∈ [θ+, θ−] (4.55)

must be added as Y (θ) := θ̇2. If the motion generator is chosen as θ = q1 such that θ̇ < 0
for all θ ∈ [θ+, θ−], one can determine θ̇ from Y (θ) by the relation θ̇ = −

√
Y (θ).

Since one has eliminated the time-dependence, the objective function (4.9) can not be
used directly. However, by using the relation q̇i = φ

′

i(θ)θ̇, it can be rewritten on the form

WCOT =
1

gmTLstep

∫ θ−

θ+

(
|u1(τ)φ

′

2(τ)|+ |u2(τ)φ
′

3(τ)|
)
dτ, (4.56)

with u1(t) and u2(t) found from (4.18).
The constraints include all the aforementioned, i.e., the interpolation constraint, impact

velocity and direction constraints, as well as those on θ+ and κ. Some of these constraints
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are dependent on the choice of the motion generator θ and must, therefore, be modified
accordingly. In addition to these constraint, one can add the constraints (4.7) and (4.8), as
well as heuristic constraints of choice, e.g., acceleration requirements at the beginning or
end of the step, bounds on the maximum value Y (θ) and the allowed range of κ, both of
which affects the step period T .

The problem is highly non-linear and non-convex such that any found solution is un-
likely to be a global solution. Furthermore, since on can not simply pass the gradient and
the Hessian of the objective function to the solver, this problem can be regarded as a blind
search, where the solver must try to find estimates of these by itself. Thus, if the value
of the chosen objective function is highly sensitive to changes in the parameters of the
synchronization functions, the necessary computation time might be long in order to find
any solution, which in turn is likely to be a poor local minima.

4.3 Results

In this section, the results from optimization on the full dynamical model and the re-
duced dynamics will be presented. The physical parameters used, rounded to three dec-
imal places, are given in Table 4.1. In order to easily compare the different results, all
the presented gaits have a step length of 15 cm and a −0.01 rad lean angle of the torso
measured in absolute angles. Note, however, that gaits have been found for a large array
of different step lengths and lean angles. Furthermore, all the phase portraits of the angles
corresponding to the gaits will be presented in absolute angles (see Figure 3.3a) in order
to give a clear representation. All computations have been done on a PC with 16 GB of
RAM and an Intel i7 four core processor running at 2.5 GHz.

Table 4.1: Physcial parameters of the compass biped rounded to three decimal places.

Link 1 Link 2 Link 3

l1 0.467 m l2 0.264 m l3 0.183 m

L1 0.650 m L2 1.000 m L3 0.650 m

m1 1.898 kg m2 3.799 kg m3 1.898 kg

J1 0.092 kg m2 J2 0.445 kg m2 J3 0.092 kg m2

4.3.1 Full dynamical model

When searching for gaits on the full dynamical model, the optimization problems was
formulated using the YALMIP optimization Toolbox[29] for MATLAB3, together with
the fmincon solver provided by MATLAB running the interior-point algorithm4 due to the
large number of parameters.

3MATLAB is a registered trademark of The MathWorks, Inc.
4For more information about the algorithms used in this text, namely: interior-point, active-set and sequential

quadratic programming; see, e.g., [34].

63



Chapter 4. Procedure for finding Periodic Gaits

The number of integration steps was set to 100, with the allowed maximum change
of torque, u̇max, set to 0.5 N m s−1. The objective function was chosen as the quadratic
cost functional of (4.10) with Q = 06 and R = I2, thus only penalizing the actuator
inputs. The computation time was approximately one hour, with the resulting gait shown
in Figure 4.1. The gait has a step period of approximately 0.72 s and a maximum torque of
0.2 N m. Interestingly, the actuators almost have a C1-smooth transition over the impact.
However, Figure 4.1b clearly shows several abrupt changes in direction for both actuators
over the step. This could possibly be remedied by lowering the allowed maximum change
of torque and increasing the number of integration steps, which in turn could lead to a
large increase in necessary computation time. Therefore, this was not attempted as the
gaits found on the full dynamical model were found as to compare with those found on the
reduced dynamics.

Another interesting property of the gait is that the energy of the biped is monotonically
increasing over the step, as seen in Figure 4.2. This implies that the only energy added
to the system by the actuators, is the amount needed in order to satisfy the energy loss at
impact.

4.3.2 Reduced dynamics with stance leg as the motion generator
The gait searching procedure using the reduced dynamics with the motion generator cho-
sen as θ = q1 made finding feasible gaits an easy task. The time needed to find a feasible
gait was reduced drastically compared to the search on the full dynamics, rarely taken
longer than a few minutes, with some gaits found in less than 5 seconds. The required
time was found to depend heavily on factors like the choice of solver, the number of op-
timization variables, the chosen virtual holonomic constraints, the initial conditions of the
search and the choice of objective function. The resulting gaits were also heavily depen-
dent on these factors. However, no truly low-torque gaits were found compared to that
found from the search on the full dynamical model.

The fmincon solver was used when optimizing on the reduced dynamics, with the
following algorithms tested: interior-point, sequential quadratic programming (SQP) and
active set. As previously mentioned from the search on the full dynamics, the interior-
point algorithm is well suited for problems with many optimization variables and was
found to be the solver which was by far the most likely to find a solution when the search
was initiated poorly, such as badly chosen initial conditions and with many optimizations
variables. This could often result in the SQP and active set algorithms terminating before
any solution was found. The active set algorithm especially struggled if the order of the
synchronization functions were higher than four, while the SQP algorithm could find solu-
tions even for the order as high as eight in some cases if the initial conditions were chosen
properly.

Although the interior-point algorithm was most likely to find a solution, it was often
slow compared to the SQP algorithm and the resulting solution would often result in a
higher final value of the objective functions compared to the SQP algorithm. Therefore,
the SQP algorithm was mainly used in the search procedure. Should it fail to find a feasible
solution, the interior-point algorithm would be used to find a feasible gait, and then the
found values of this gait would be used as the initial conditions for a new search using
the SQP algorithm to see if a better solution could be found. The active set algorithm
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Figure 4.1: Gait found on the full dynamical model.

was only used for problems with a small number of optimization variables and with initial
conditions which were known to be good, in the sense that they were close to a feasible
gait.

Since the choice of virtual holonomic constraints resulted in often quite different gaits,
a comparison of these will be given next. In order to easily compare them, the order will be
restricted to 6 and the initial conditions for the initial velocity of the motion generator and
the parameter κ were set to θ̇2

+ = 0.3 rad s−1 and κ = 1, while the remaining constraint
parameters were set to initial values depending on the type. All the aforementioned cost
functionals were tested, but it was found that (4.11) resulted in the fastest convergence and
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Figure 4.2: Energy of the biped for the gait found on the full dynamical model over two steps.

gave, not surprisingly, the best results as minimization of maximum required torque was
deemed most important. All the presented results were thus found using this cost criteria.

When a gait was found by the given solver, the gait was the simulated over a few
steps using the ode45 solver provided by MATLAB with a relative tolerance of 10−6 and
absolute tolerance 10−12. The initial conditions (θ0, θ̇0) were used to compute the initial
and final configurations of the biped by x = [Φ(θ); Φ

′
(θ)θ̇]. Impacts were detected using

ode45’s Event option using (3.21) and the assumption that vertical velocity of the tip of
the swing leg should be negative. If the relation ‖x0 − x+‖ < 10−6 was fulfilled, with
x+ computed using the end configuration and the impact maps (3.25), (3.24), the gait was
deemed feasible. Otherwise, the number of integrations steps was increased and the search
was starter over.

Regular polynomials

With the virtual holonomic constraints, φ2(θ) and φ3(θ), chosen as regular polynomials,
the minimum order needed to find a feasible gait was 5 for the given step length and lean
angle. With the order set to 6, the total number of optimization variables was 14. When
searching, the initial values of the polynomial parameters were all set to zero.

The gait with the lowest torque requirement with a maximum of 2.06 N m and step
period of 1.18 seconds was found using the interior-point algorithm and is shown in Fig-
ure 4.3. The cost of transport was found to be approximately 0.247. The search took
approximately 153 seconds with 100 integration steps. With the same number of integra-
tion steps, the SQP algorithm converged after 14.5 seconds to one with a maximum of
2.62 N m and a step period 1.12 seconds. The active set algorithm converged to a gait with
19.7 N m and a step period of 0.37 seconds after 9.58 seconds.

The energy of the biped during the gait of Figure 4.3 is shown in Figure 4.4. Clearly,
the energy is far from monotonically increasing, implying that the actuators add a lot of
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(b) Nominal torque profile for the actuators over two steps.

Figure 4.3: Gait found from the reduced dynamics with the motion generator chosen as θ = q1 and
with the virtual holonomic constraints as 6th-order regular polynomials.

”unnecessary” energy to the system during the step in order to satisfy the synchronization
of the VHCs rather than just that required in order to satisfy the impact conditions, as it
was the case for the gait found on the full dynamical model.

Bezièr curves

When using Bezièr curves of order 6, the problem had a total of 12 optimization vari-
ables. Since the first and last parameter of each of the virtual holonomic constraints were
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Figure 4.4: Energy of the biped for the gait found from the reduced dynamics over with 6th-order
regular polynomials as virtual holonomic constraints.

computed before the search, the remaining parameters were chosen as follows for the ith
constraint:

ai,j = ai,0 + δai · j, j = 1, 2, ..,m− 1,

where m is the order of the curve and δai =
(
ai,m − ai,0

)
/m + 1 such that the initial

curve lies within the end points of the first and last parameters.
The gait with the lowest torque found was the exact same gait found using regular

polynomials (see Figure 4.3). However, the search now took 12.5 seconds using the SQP
algorithm with 110 integration steps, compared to 153 second for the regular polynomials.
The algorithm also converged to this solution with 100 integration steps but struggled to
fully satisfy all the constraints into the required accuracy of 10−12, and thus halted.

The active set algorithm converged to almost the same gait, which had a maximum of
2.08 N m with the same number of integration steps after 27.5 seconds, while the interior-
point algorithm found the exact same gait as the SQP algorithm after 51 seconds of search-
ing.

The lowest order for the given step length and lean angle using Bezièr curves was
found to be 5. The gait was quite similar to that of Figure 4.3 with a maximum torque
of 2.6 N m and a step period of approximately 1.2 seconds. The reason that the lowest
order for feasible gaits was found to be 5 is not surprising considering that the first and
last parameters are restricted to satisfy the configuration interpolation, while the second
and the second last are constrained to satisfy the impact velocity mapping, as can be seen
by (4.29). Thus the two remaining parameters are needed in order to satisfy the continuity
of the actuators of the impact. It is therefore not surprising that a lower torque profile was
found for a curve of order six as the remaining parameter could be chosen as to shape the
torque profile throughout the step. The same reasoning can be used for the order of regular
polynomials as well.
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Trigonometric polynomials

With the virtual holonomic constraints chosen as trigonometric polynomials, the initial val-
ues of the parameters for the search were all set to zero except for the a2,0 and a3,0 which
were set to the values from (4.26). The harmonics ω2, ω3, were either set to a constant
value or left as optimization variables constrained to be within the interval [π/12, 2π].

The lowest order in which a feasible gait was found was 3 using the interior-point
algorithm after 162 seconds of searching with the harmonics set to ω2 = ω3 = 1. The
gait shown in Figure 4.5; it had a maximum torque requirement of −2.65 N m, with a step
period of 1.23 seconds and cost of transport approximately 0.266. The continuity of the
actuators is also very close to being C1-smooth over the impact.
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(b) Nominal torque profile for the actuators over two steps.

Figure 4.5: Gait found from the reduced dynamics with the motion generator chosen as θ = q1 and
with the virtual holonomic constraints as 3rd-order trigonometric polynomials.
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With an order of 6, the optimization problem had a total of 16 variables. Due to this,
only the interior-point and SQP algorithms were able to find a feasible gait. The gait with
the lowest torque requirement was found using the SQP algorithm after approximately 15
seconds. The gait is shown in Figure 4.6. The maximum required torque was 1.89 N m,
with a step period of 1.24 seconds and cost of transport approximately 0.244.
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(b) Nominal torque profile for the actuators over two steps.

Figure 4.6: Gait found from the reduced dynamics with the motion generator chosen as θ = q1 and
with the virtual holonomic constraints as 6th-order trigonometric polynomials.

70



4.3 Results

4.3.3 Reduced dynamics with an unknown motion generator
In order to see if the choice of θ = q1 as the motion generator is a reasonable choice, the
optimization procedure for the reduced dynamics was also run with an ”unknown” motion
generator, which was simply chosen as θ = s ∈ [0, 1]. By unknown, it is meant that it is
not a known property found directly from the configuration, q, of the system. However,
it must be noted that any found solution still represents a feasible gait for the mechanical
system as the reduced dynamics correspond to the enforcement of the VHCs.

All the VHCs were chosen as 6th-order Bezièr curves, as described in Section 4.2.2,
such that ∂s/∂θ = 1. The initial and end values were thus θ+ = 0 and θ− = 1, such that
the constraints on the velocity and on α(θ) had to be modified to θ̇ > 0 and α(θ) < 0 for
all θ ∈ [θ+, θ−]. As the parameters of the synchronization function φ1(θ) had to be added
to the problem, in addition to those of φ2(θ) and φ3(θ), the total number of optimization
variables was 17. The SQP algorithm of fmincon was chosen as the solver.

The optimization problem was run with 80 integration steps5 and took approximately
52 seconds, with the resulting in gait shown in Figure 4.7. The gait has a maximum torque
requirement of approximately−0.0848 N m, with a step period of 0.76 seconds and cost of
transport approximately 0.0031. It is also quite similar to that found on the full dynamical
model (c.f., Figure 4.1) but with half the required torque and a smoother overall torque
profile, as well as a C1-smooth torque continuity over the impact. Furthermore, as seen in
Figure 4.8, the energy over the step is very close to being strictly monotonically increasing,
except for a small decrease of energy at the beginning of the step.

By minimizing the COT using the objective function (4.56), the gait shown in Fig-
ure 4.10 was found. It had a COT of 0.0025, with the energy of the system strictly increas-
ing over the step, as seen in Figure 4.9. However, it had a maximum torque of 0.285 N m
and not a C1-smooth torque continuity over the impact. Although, the torque requirements
for both actuators is zero at both the beginning and end of the step, which is a useful
property for implementation of a real system.

By changing the step length and lean angle, one could find gaits with even lower torque
requirements and COT using this procedure. As an example, by minimizing the COT for a
step length of 10 cm and lean angle of −0.0015 rad, the gait in Figure 4.11 was found. It
had a COT of approximately 8 · 10−4 and maximum torque requirement of 0.0425 N m.

5Surprisingly, increasing the number of integration steps resulted in gaits with slightly worse performance.
This is likely due to the problem having many local minima.
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(b) Nominal torque profile for the actuators over two steps.

Figure 4.7: Gait found from the reduced dynamics with the MG chosen as θ = s ∈ [0, 1] and with
the VHCs as 6th-order Bezièr curves.
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Figure 4.8: Energy of the biped for the gait found from the reduced dynamics with θ = s ∈ [0, 1]
as the MG and 6th-order Bezièr curves as VHCs.
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Figure 4.9: Energy of the biped for the gait found by minimizing (4.56) with θ = s ∈ [0, 1] as the
MG and 6th-order Bezièr curves as VHCs.

73



Chapter 4. Procedure for finding Periodic Gaits

-0.2 -0.1 0 0.1 0.2
qi [rad]

-1

-0.5

0

0.5

1
q̇
i
[r
ad

/s
]

1
2
3

(a) Phase portrait in absolute angles.

0 0.5 1 1.5
t [s]

-0.1

0

0.1

0.2

0.3

u
i
[N

m
]

u1

u2

(b) Nominal torque profile for the actuators over two steps.

Figure 4.10: Gait found by minimizing (4.56) with the MG chosen as θ = s ∈ [0, 1] and with the
VHCs as 6th-order Bezièr curves.
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(c) Energy of the system over two steps.

Figure 4.11: Gait found by minimizing (4.56) for a step length 0f 10 cm and lean angle of
−0.0015 rad with the MG chosen as θ = s ∈ [0, 1] and with the VHCs as 6th-order Bezièr curves.
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4.4 Discussion
In this chapter, a method was presented for finding feasible gaits on the three-link compass
biped by searching on the reduced dynamics found by enforcing geometric relations, called
virtual holonomic constraints, between the configuration variables of the system and a
scalar motion generator. Moreover, a basic method for finding feasible gaits on the full
dynamical model was presented for comparison.

Searching for gaits on the reduced dynamics resulted in a dramatic reduction in the
time needed for finding gaits compared to the search on the full dynamical model. Yet,
the resulting gaits were found be heavily dependent on several factors. The main factor
found was the choice of the motion generator. Although the angle of stance leg seems to
be a natural choice, the results showed that it clearly restricts the search space such that
the gaits found have much high COT and maximum required torque than what is possible.
There may be many reasons for this. Firstly, with q1 as the motion generator, the fact
that φ

′

1(θ) = 1 and φ
′′

1 (θ) = 0 limits the possible values of Φ
′
(θ) and Φ

′′
(θ) due the

impact constraints (4.42) and (4.44), as well as the actuator interpolation constraint (4.54).
Moreover, the reduced dynamics (4.14) becomes quite restricted, which again affects the
required torques through (4.16). For these reasons, it can be advantageous to find what is
feasible for the system by using the procedure with an unknown MG as in Section 4.3.3.
Then, one should search for a MG which can reproduce similar results if desired.

It is also interesting to note the resulting solutions dependence on factors like the initial
conditions, choice of virtual holonomic constraints, the solver and number of integration
steps. These are clear indications that the highly nonlinear search-space has a lot of local
minima for all choices of objective functions. Since no gradient nor Hessian is passed
to the solver, this further complicates the search. Thus, a linear comparison system, as
mentioned in [36], if it exists, could possibly result in faster convergence to more ”global”
solutions as on could pass approximations of the gradient and Hessian to the solvers based
on an already found gait.

The observation from Figures 4.2, 4.8, 4.9 and 4.11c that the energy of the robot is
strictly increasing, or close to it, over the step for gaits with low torque requirements and
COT is very interesting. This is evidence that the gaits with the lowest torque requirements
are those which are the closest to being passive, in the sense that the only added energy
to the system is that required in order to satisfy the energy loss at impact, resulting in a
very low energetic cost of transport. However, comparing the gaits from Figures 4.7 and
4.10 shows that the smallest torque requirements does not correspond to the lowest COT,
and vice versa. Moreover, Figure 4.11 also shows that such factors are, not surprisingly,
heavily dependent on the step length and lean angle of the torso. Thus, if one wants to
only minimize, say, COT, one should have the step length and lean angle as optimization
variables, which is likely to lead to a large increase in the necessary search time for finding
feasible solutions.

It is important to note that the COT and torques for the gaits found do not represent
what is feasible on a real system, as the factors like friction and uncertainty in system pa-
rameters will increase the necessary energy which must be added to the system. Thus, the
COT of the gaits found can not be compared to other bipedal robots (c.f. Figure 1.1) before
experiments on a real biped robot have been performed. Yet, they give clear indications
that energy efficient gaits are feasible and exists for the compass biped.
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Chapter 5
Development of Stabilizing
Controllers

In the previous chapter, gaits for the three-link compass biped were found using the virtual
holonomic constraints approach. The gaits corresponded to limit cycles induced on the
system through open-loop control action which were found by enforcing the geometric
relations of the VHCs upon the system. However, the found limit cycles are unlikely to
be stable, even for small perturbation away from the nominal cycle. For this reason, the
development of an orbitally stabilizing controller which increases the stability region of
the walking motion is needed.

In this chapter, exponentially orbritally stabilizing controllers will be developed by
stabilizing the origin of the linearized transverse dynamics corresponding to the limit cycle
by solving the Riccati differential equation with one jump. Herein, controllers will be
developed using two different methods. In Section 5.1, the method presented in [46] will
be used to construct a stabilizing controller where the angle of the stance leg is used as
the motion generator (MG). However, as shown in the previous chapter, the gaits which
were found with this MG required far more torque and had a much higher minimum COT
that what is feasible on the mechanical system. For this reason, a method of constructing
a stabilizing controller where the MG is found through a projection from the configuration
of the biped will be presented in Section 5.2. This method transfers the method presented
in [37] to an underactuated hybrid system and uses excessive transverse coordinates in
order to generate the stabilizing controller. Lastly, in Section 5.3, a brief discussion on the
found controllers and presented results will be given.

5.1 Motion Generator as the Angle of the Stance Leg

In this section, a stabilizing controller will be developed using the angle of the stance leg as
the MG. First, the method of partial feedback linearization (PFL), which was presented in
Section 2.4.2, will be used to bring parts of the transverse dynamics on linear form. This
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results in an open-loop controller which, on the nominal solution, makes the dynamical
system exactly follow the limit cycle corresponding the the virtual holonomic constraints.
Then, the remaining internal dynamics will be linearized in order to form the linearized
transverse dynamics. A mapping for the transverse coordinates will then be developed to
take into account the instantaneous change in the velocities and swapping of coordinates
due to the impact, and how this affect the transverse states. Next, a stabilizing controller
will be developed by solving the Riccati differential equation with one jump using a semi-
definite programming approach. Lastly, some results from numerical simulations will be
presented.

5.1.1 Partial Feedback Linearization
With the motion generator chosen as θ = q1, the synchronization vector is given by

Φ(θ) = [θ;φ2(θ);φ3(θ)].

Thus, one can introduce the new set of coordinates

y1 = q1 − θ, y2 = q2 − φ2(θ), y3 = q3 − φ3(θ), (5.1)

corresponding to the deviations from the VHCs. Herein, y1 ≡ 0 as θ = q1, such that one
can rewrite the generalized coordinates as

q1 = θ,

q2 = y2 + φ2(θ),

q3 = y3 + φ3(θ),

(5.2)

with their velocity and acceleration vectors given by

q̇ = L(θ, y)

[
ẏ

θ̇

]
, (5.3a)

q̈ = L(θ, y)

[
ÿ

θ̈

]
+N(θ, θ̇, y, ẏ), (5.3b)

where y = [y2; y3]. Clearly, since q1 is only dependent on θ, the function h(y2, y3, θ) from
(2.41) is equal to zero, such that both its gradient and Hessian is zero as well. Thus,

L(θ, y) = L(θ) =

0 0 1

1 0 φ
′

2(θ)

0 1 φ
′

3(θ)

 , (5.4a)

N(θ, θ̇, y, ẏ) = N(θ, θ̇) = Φ
′′
(θ)θ̇2. (5.4b)

Now, by using the procedure of (2.46), one can deduce the 2-dimensional subsystem

ÿ = K(θ, y)u+R(θ, θ̇, y, ẏ), (5.5)
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where the functionsK(θ, y) andR(θ, θ̇, y, ẏ) are defined in (2.48). This can be done since
the function L(θ) of (5.4a) is clearly non-singular; indeed

L(θ)−1 =

−φ
′

2(θ) 1 0

−φ′3(θ 0 1

1 0 0

 .
The question now remains to check if the function K(θ, y) is non-singular such that

an exact PFL controller as (2.49) can be used, which for convenience is repeated here:

u = K(θ, y)−1
(
v −R(θ, θ̇, y, ẏ)

)
. (5.6)

This controller leads to the simple form of (2.54), i.e., ÿ = v. If K(θ, y) can be singular
along, or close to, the solution of interest, then a controller of the form (2.55) must be used
instead, such that one is left with the more complicated form of (2.61).

Using (2.48), one finds that the inverse of the matrix function K(θ, y) can be written
as

K(θ, y)−1 =
1

kd(θ, y)

[
k11(θ, y) k12(θ, y)

k21(θ, y) k22(θ, y)

]
(5.7)

where

kd(θ, y) =(L1φ
′

2(θ)l2m2 + 2L1l2m2) cos(φ2(θ) + y2) + (L1φ
′

2(θ)l3m3

+ L1φ
′

3(θ)l3m3 + 2L1l3m3) cos(φ2(θ) + y2 + φ3(θ) + y3)

+ ((l22m2 + l23m3 + J2 + J3)φ
′

2(θ)) + ((l23m3 + J3)φ
′

3(θ))

+ L2
1m2 + L2

1m3 +m1l
2
1 + l22m2 + l23m3 + J1 + J2 + J3,

(5.8)

such that the denominators of the matrix elements, k11, k12, k21, k22, are all equal to unity.
Therefore, the inverse of the matrix function K(θ, y) is well defined as long as kd 6= 0. It
should be noted that kd(θ, y) is not the determinant of K(θ, y), which it can be shown is
given by

det
(
K(θ, y)

)
=

kd(θ, y)

det
(
M(θ, y)

) .
By close inspection, one can observe from (5.8) and (4.15a) that kd(θ, 0) = α(θ) since

φ
′

1(θ) = 1 when θ = q1. Noting from Theorem 2.4.1 that α(θ) is bounded away from
zero along all solutions of interest, it follows that there exists some ε > 0 such that for
∀y2, y3 where ‖y‖ < ε, then |kd(θ∗(t), y)| > 0 along some solution of interest θ∗(t). How
large the perturbation parameter ε will be is hard say without knowing the functions φ

′

2(θ)
and φ

′

3(θ), but as y2 and y3 only appear inside the sinusoidal functions in kd(θ, y), which
are bounded inside [−1, 1], it is fair to assume that ε will be quite large, possibly even
infinite. However, since q1 might also get perturbed outside the boundaries of solution
θ∗(t), one must also verify that the functions φ

′

2(θ), φ
′

3(θ) does not make kd(θ, y) = 0
for θ = q1 outside the boundaries of θ∗(t). Thus, one should always check that kd(θ, y)
is bounded away from zero for reasonable values of ε and for q1 outside the boundaries of
the solution of interest, either by algebraic or by numerical methods, before determining to
use the controller (2.49). However, it will be assumed for the remainder of this chapter that
the matrix function K(θ, y) is nonsingular in a sufficiently large region about the nominal
solution such that the controller (5.6) can be used.
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5.1.2 Remaining Internal Dynamics
When the PFL controller (5.6) is used, the dynamics of the transverse coordinates y are
brought to the linear form ÿ = v. Thus, one must find the remaining internal dynamics
such that the one can linearize the dynamics corresponding to the integral function I(·).

Using (2.51), one finds that the internal dynamics can be written as

α̂(θ, y)θ̈ + β̂(θ, y)θ̇2 + γ̂(θ, y) = gẏ(θ, θ̇, y, ẏ)ẏ + gv(θ, y)v (5.9)

which is equal to the reduced dynamics (4.14) when y = ẏ = v = 0, which, from now
on, will be referred to as the zero-dynamics. Herein, the vector functions on the right-hand
side are given by

gv(θ, y) = [gv1(θ, y), gv2(θ, y)] and gẏ(θ, θ̇, y, ẏ) = [gẏ2(θ, θ̇, y, ẏ), gẏ3(θ, θ̇, y, ẏ)].

The full expression of these functions can be found in (B.4) in Appendix B.
In order to get the left-hand side of (5.9) to equal the zero-dynamics, one can add and

subtract the reduced dynamics (4.14) to the left-hand side such that one can write

α(θ)θ̈ + β(θ)θ̇2 + γ(θ) =
(
α(θ)− α̂(θ, y)

)
θ̈ +

(
β(θ)− β̂(θ, y)

)
θ̇2 +

(
γ(θ)− γ̂(θ, y)

)
+ gẏ(θ, θ̇, y, ẏ)ẏ + gv(θ, y)v.

In order to get this on the form (2.52), one can take a first-order Taylor expansions of

g(θ, θ̇, θ̈, y) =
(
α(θ)− α̂(θ, y)

)
θ̈ +

(
β(θ)− β̂(θ, y)

)
θ̇2 +

(
γ(θ)− γ̂(θ, y)

)
in terms of the integral function I(·) and y.1 The terms of I(·) of (2.52) are found using
the orthogonal property of the integral function, i.e.,

gI(θ, θ̇, θ̈) =
1

2(θ̇2 + θ̈2)

[
θ̇
∂g

∂θ̇
− θ̈ ∂g

∂θ

]
y=0

.

However, by noting that g(θ, θ̇, θ̈, 0) = ∂
∂θg(θ, θ̇, θ̈, 0) = ∂

∂θ̇
g(θ, θ̇, θ̈, 0) = 0, it is clear

that gI(θ, θ̇, θ̈) = 0, so one only needs to take the expansion in terms of y.
The first-order Taylor expansion of g(θ, θ̇, θ̈, y) in terms of y is equivalent to the ex-

pansion of the functions α̂(θ, y), β̂(θ, y) and γ̂(θ, y) about y = 0, i.e.,

gy =

[
θ̈
∂

∂y

(
α(θ)− α̂(θ, y)

)
+ θ̇2 ∂

∂y

(
β(θ)− β̂(θ, y)

)
+

∂

∂y

(
γ(θ)− γ̂(θ, y)

)]
y=0

= −

[
θ̈
∂

∂y
α̂(θ, y) + θ̇2 ∂

∂y
β̂(θ, y) +

∂

∂y
γ̂(θ, y)

]
y=0

,

(5.10)
1If Hadamard’s Lemma is used directly, it results in the form α̂(θ, y) =

(
α(θ)− α̂(θ, y)

)
1
y
y such that one

can not simply set y = 0 for the transverse linearization. Thus, one would need to use L’Hospital’s Rule, which
in this case is equivalent to the first-order Taylor expansion.
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with gy := gy(θ, θ̇, θ̈) and where the zero-order terms have been excluded as they disap-
pear since α(θ) = α̂(θ, 0), β(θ) = β̂(θ, 0) and γ(θ) = γ̂(θ, 0). The full expression of
gy(θ, θ̇, θ̈) = [gy2(θ, θ̇, θ̈), gy3(θ, θ̇, θ̈)] is given in (B.5). The remaining internal dynamics
thus has the form

α(θ)θ̈ + β(θ)θ̇2 + γ(θ) = gy(θ, θ̇, θ̈)y + gẏ(θ, θ̇, y, ẏ)ẏ + gv(θ, y)v. (5.11)

It now remains to use (5.11) to find the transverse linearization of the transverse coor-
dinate I(·) using the relation of Theorem 2.4.2. However, it turns out that the transverse
coordinates proposed in Section 2.4.2 can be simplified by making them independent of
the integral function (2.36). This is done by using Proposition 4.2.2 and the relation (4.20)
by introducing the new integral function (4.51) as the new transverse coordinate, which
was found by multiplying (4.48) by

(
α(θ)

)2
, yielding

Î(θ, θ̇, θ0, θ̇0) =
(
α(θ)θ̇

)2 − (α(θ0)θ̇0

)2
+ 2

∫ θ

θ0

α(τ)γ(τ)dτ. (5.12)

Now, if the linearized transverse dynamics shall be independent of the new integral func-
tion, then its time-derivative must not be dependent on itself when the right-hand side of
the zero dynmaics is not zero, which was the case for (2.38) in Theorem 2.4.2.

In order to show that the time-derivative of (4.51) is independent of itself when the
zero dynamics has the form (2.37), one can start by noting that

∂

∂θ
Î(θ, θ̇, θ0, θ̇0) = 2θ̇2α(θ)

∂

∂θ
α(θ) + 2α(θ)γ(θ) = 2θ̇2α(θ)β(θ) + 2α(θ)γ(θ)

and
∂

∂θ̇
Î(θ, θ̇, θ0, θ̇0) = 2θ̇

(
α(θ)

)2
.

Now, since

d

dt
Î(θ, θ̇, θ0, θ̇0) =

∂

∂θ
Î(θ, θ̇, θ0, θ̇0)θ̇ +

∂

∂θ̇
Î(θ, θ̇, θ0, θ̇0)θ̈

and
θ̈ =

1

α(θ)

(
W − β(θ)θ̇2 − γ(θ)

)
,

one obtains, after some simplification,

d

dt
Î(θ, θ̇, θ0, θ̇0) = 2θ̇α(θ)W, (5.13)

which is independent of Î(θ, θ̇, θ0, θ̇0) as long as W is also independent of it.

5.1.3 The Hybrid Linearized Transverse Dynamics
Using the remaining internal dynamics (5.11) together with (5.13), the transverse lineariza-
tion around the solution (θ∗, θ̇∗) = (θ∗(t), θ̇∗(t)) yields the matrices

A(t) =

 0 a12(t) a13(t)

02×1 02 I2

02×1 02 02

 and B(t) =

b1(t)

02

I2

 , (5.14)
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where

a(t) = 2θ̇∗α(θ∗), (5.15)

a12(t) = a(t)gy(θ∗, θ̇∗, θ̈∗,0), (5.16)

a13(t) = a(t)gẏ(θ∗, θ̇∗,0,0), (5.17)
b1(t) = a(t)gv(θ∗,0). (5.18)

The linearized transverse dynamics in the continuous swing phase thus has the form

ẋ⊥ = A(t)x⊥ + B(t)v, t ∈ [0, T ). (5.19)

with x⊥ = [I(·), y2, y3, ẏ2, ẏ3]T . It thus remains to find the discrete mapping L := dFTS

from (2.84) to account for the change of the coordinates due to impact.
In order to find this mapping, one can first note that the impact surface Γ− from (3.21)

can be equivalently written as

Γ− = {x = [q; q̇] ∈ TQ ⊆ R2n : 2q1 + q2 + q3 = 0}, (5.20)

which is already on linear form, meaning that TΓ− = Γ−. The normal vector ~m− of TΓ−
is then simply found by taking the gradient; hence

~m− = [2, 1, 1, 0, 0, 0]T . (5.21)

By further noting from (2.86) that the normal vector ~n(t) of the moving Poincarè
section S(t) is given by the vector field of x(t) along the nominal solution (θ∗, θ̇∗) =
(θ∗(t), θ̇∗(t)), one can see that it can be written as

~n(t) =

[
Φ
′
(θ∗)θ̇∗

Φ
′′
(θ∗)θ̇

2
∗ + Φ

′′
(θ∗)θ̈∗

]
, (5.22)

where θ̈∗ can be found from (2.34) using θ∗ and θ̇∗.
The next step is then to find some relation between the states of the system x(t) = [q; q̇]

and the transverse coordinates. As stated in [12], one can find the linear mapping matrix
Λ(t) of (2.85) between small increments of the transverse coordinates in terms of the state
variables as

Λ(t) =


−2θ̈∗α(θ∗)

2 0 0 2θ̇∗α(θ∗)
2 0 0

−φ′2(θ∗) 1 0 0 0 0

−φ′3(θ∗) 0 1 0 0 0

−φ′′2 (θ∗)θ̇∗ 0 0 −φ′2(θ∗) 1 0

−φ′′3 (θ∗)θ̇∗ 0 0 −φ′3(θ∗) 0 1

 , (5.23)

such that ∆x⊥ = Λ(t)∆x. Herein, the relations

∂I

∂θ
= −2θ̈α(θ)2 and

∂I

∂θ̇
= 2θ̇α(θ)2

have been used.
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Now, since the change of impact velocity mapping Pq̇(q−) is linear and constant as q−
is assumed to be fixed, the mapping of the states dF from (2.83) is given by

dF =

[
Pq 03

03 Pq̇(q−)

]
. (5.24)

Thus, the discrete mapping for the transverse coordinates is found to be

L :=
[
P+
~n(0)

]
dF
[
P−~n(Th)

]
, (5.25)

with P+
~n(0) and P−~n(Th) defined in (2.95) and (2.92), respectively. Hence, the linearized

transverse dynamics for the hybrid system takes the form

ẋ⊥ = A(τ)x⊥ + B(τ)v, τ ∈ [0, T ),

x⊥(0) = Lx⊥(T ), τ = T,
(5.26)

with the time variable, τ , computed τ = t moduloT .

5.1.4 Construction of a Stabilizing Controller
In order find a stabilizing controller for the system (5.26), the LQR method introduced
in Section 2.5 will be utilized with a few modifications and simplifications. Firstly, the
matrix S, giving weighting the deviation of the states at the final time T , will be set to
zero. This is due to the difficulty of determining a suitable final cost for the transient
states. Furthermore, the matrix functions Q(t) and Γ(t) will be given as constant, positive
definite matrices, such that the solution, R(t), to the Riccati differential

Ṙ(t) +A(t)TR(t) +R(t)A(t) +Q = R(t)B(t)Γ−1B(t)TR(t), (5.27)

if it exists, is positive definite for all t ∈ [0, T ]. However, even if such a solution exists, it
is not sufficient as to say that one can stabilize the hybrid system (5.26) due to the mapping
x⊥(0) = Lx⊥(T ). An additional condition to assure that the system can be stabilized is
addressed next.

Theorem 5.1.1. Suppose there exists a symmetric, positive definite solutionR(t) of (5.27)
on [0, T ] with Q,Γ � 0, which satisfies

LTR(0)L ≤ R(T ). (5.28)

Then the controller
v(t) = −Γ−1B(t)TR(t)x⊥ (5.29)

renders the system hybrid linear system (5.26) exponentially stable.

Proof. If a solution to (5.27) exists for t ∈ [0, T ], then the pair
(
A(t),B(t)

)
is already

known to be stabilizable over [0, T ]. Moreover, introducing the Lyapunov function candi-
date

V
(
x⊥(t), t

)
= xT⊥R(t)x⊥, (5.30)
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which, since it is equivalent to the cost-to-go of (2.100), is strictly decreasing on [0, T ] as
for all ‖x⊥‖ 6= 0 its derivative w.r.t. time is

V̇
(
x⊥(t), t

)
= xT⊥

[
−Q−R(t)B(t)Γ−1BT (t)R(t)

]
x⊥ < 0, ∀t ∈ [0, T ]. (5.31)

Now, let x⊥(t0+) ∈ TS(0) be the initial value of the transverse states and let x⊥(t1+) ∈
TS(0) be the value at the next iteration of the system (5.26), i.e.,

x⊥(t1+) = Lx⊥(t0+ + T ).

It is clear that for the hybrid system (5.26) to be stable over consecutive discrete mapping,
the relation V

(
x⊥(t1+), t1+

)
≤ V

(
x⊥(t0+), t0+

)
must hold, i.e,

xT⊥(t1+)R(0)x⊥(t1+) ≤ xT⊥(t0+)R(0)x⊥(t0+), (5.32)

such that the Lyapunov function candidate (5.30) is nonincreasing over the discrete map-
ping. By noting that V

(
x⊥(T ), T

)
≤ V

(
x⊥(0), 0

)
, it follows that the relation (5.32) is

ensured if

xT⊥(t0++T )R(T )x⊥(t0++T ) ≥ xT⊥(t1+)R(0)x⊥(t1+) = xT⊥(t0++T )LTR(0)Lx⊥(t0++T ),
(5.33)

yielding (5.28). Thus, uniform asymptotic stability follows from [57, Th. 3.1], from which
exponential stability follows as the controller (5.29) makes A(t)− Γ−1B(t)R(t) Hurwitz
for all t ∈ [0, T ]; see Definition 4.

The relation (5.28) is not new, and was, to the knowledge of the author, first stated in
[26] without a formal derivation. Moreover, it should be emphasized that it only provides a
sufficient conditions for exponential stability of (5.26), with the necessary condition given
by (5.32).

It is not difficult, however, to see that the controller (5.29) does not stabilize the solu-
tion (q∗(t), q̇∗(t)) of the closed-loop nonlinear system (2.19), (5.6) as the the matrix B(t)
in (5.29) is uncoupled from the states of the system. For this reason, the modified ad-hoc
controller

v(t) = −Γ−1B(θ, θ̇, y)TR(t)x⊥ (5.34)

with

B(θ, θ̇, y) =

2θ̇α(θ)gv(θ, y)

02

I2

 ,
exponentially orbitally stabilizes the periodic solution [46]

O∗ :=
{

[q; q̇] ∈ TQ : q∗(t) = Φ(θ∗), q̇∗(t) = Φ
′
(θ∗)θ̇∗, t ∈ [0, T ]

}
.

The stabilizing controller, given by (5.6) and (5.34), is still time-variant due to the
time dependence of R(t). In order to make the controller fully time-independent, one
must introduce some projection operator as (2.65) which retrieves the time-stamp of the
moving Poincarè section to which the system states belongs. With θ = q1 as the motion
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generator, which is positive and monotonically decreasing over the step, one can find some
function

T : θ 7→ τ, τ ∈ [0, T ], (5.35)

such that the controller can be directly computed just knowing the states of the system:

v(q, q̇) = −Γ−1B(θ, θ̇, y)TR
(
T (θ)

)
x⊥(q, q̇). (5.36)

The projection operator (5.35) will be dependent on the virtual holonomic constraints and
must thus be approximated for each individual gait.

5.1.5 Implementation and Results from Numerical Simulations
The gait chosen to be stabilized in this thesis is the one found using third order trigono-
metric polynomials as and which is depicted Figure 4.5. Note, however, that all the pre-
viously presented gaits with the motion generator as q1 were successfully stabilized with
the method.

The differential Riccati equation (DRE) was solved using the method of (2.112) with
a few modifications due to the system being of hybrid nature and that the solution to DRE
is not T -periodic. To this end, the approximation of the approximation R̄(t) of R(t) was
represented using a N th-order Bezièr polynomial:

R̄(t) =

N∑
k=0

Rk
N !

k!(N − k)!
τk(1− τ)N−k, (5.37)

where the N + 1 symmetric matrices Rj are the optimization variables and τ = t/T . An
order of N = 12 was used in the presented results as it was found that the performance
dropped for lower order, while the increase in performance for higher order was close to
negligible.

The LMI was given by

R̄
(
R(t), t

)
=

[
Ṙ(t) +AT (t)R(t) +R(t)A+Q+ 2δR(t) R(t)B(t)

B(t)TR(t) Γ(t)

]
, (5.38)

where the additional term 2δR(t) arises by using the matrix function Ā(t) = A(t) + δI5
in the problem rather than just A(t) from (5.26). This makes the system, in a sense,
”less stable”, resulting in a more aggressive controller the larger the offset parameter δ is
chosen. Thus δ acts as an additional tuning parameters in addition to Q and Γ in order to
get the desired performance. To easily compare the results and not put to much emphasis
on ”tuning” the controllers, the matrices Q and Γ were set to the 5× 5 and 2× 2 identity
matrices, respectively, while δ was chosen in order to get a desirable performance.

Lastly, the constraint of (5.28) had to be added to the problem, which, using Bezièr
polynomials, is equivalent to

LTR0L ≤ RN . (5.39)

However, it was found that the solvers struggled to find solution using this relation and
needed strict bounds on R̄(t), i.e.,

− σI5 ≤ R̄(t) ≤ σI5 (5.40)
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with σ not chosen too large2. Restricting the constraint to

LTR0L = RN (5.41)

greatly increased the likelihood of the solver finding a feasible solution. For this reason,
the presented results are given were found with the constraint (5.41) used, which in turn
means that the value of the Lyapunov function candidate (5.30) does not change due to the
impact.

The procedure used for generating a controller is outlined as follows:

1. Simulate the reduced dynamics (4.14) using a fixed step solver with an integration
step of dt =1 ms.

2. Set the matrices Q and Γ to some value of choice, as well as the parameter δ.

3. Take 100 evenly spaced time samples from the simulation of the reduced dynamics
and formulate the optimization problem (2.112) with R̄(t) from (5.37) and the addi-
tional constraints (5.41),(5.40) using the YALMIP toolbox. Note that there seemed
to be no increase in performance when increasing the number of time steps.

4. Solve the SDP problem using a solver of choice. For the results presented, the DSDP
solver [3] from the OPTI toolbox [7] was used to solve the SDP.

Since the resulting controller is time-dependent, the projection operator (5.35) is needed
to make it time-invariant. It was found that time could be well represented in terms of θ
by the function

T (θ) = Ts+ a sin(2πs), s =
θ − θ+

θ− − θ+
, (5.42)

where T is the step period and a is a parameter found using least squares from the mea-
sured relation between the actual time t and θ. For the gait from Figure 4.5, a was cal-
culated to −0.1092. The resulting projection along the nominal solution can be seen in
Figure 5.1.

0 1 2 3
t [s]

0

0.5

1

1.5

T
(θ
)
[s
]

Figure 5.1: Relation between the projection operator and time over two steps.

2Most solvers tested struggled when σ > 104 was used. With the constraint (5.41), the presented results
were found with σ = 106
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Open-loop vs stabilizing controller

In order to show the necessity of the stabilizing controller (5.34), the biped was simulated
with no perturbations in the initial conditions with only the PFL controller (5.6) with v =
[0; 0], i.e., open-loop control. The results are shown in Figure 5.2 where the initial states
are marked by red dots. Although the open-loop controller manages to make the biped
follow the nominal gait over a few steps, small numerical deviations due to the impact
quickly builds up making the gait unstable. After the fourth step the biped is already about
to fall.
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ẏ3

(c) Values of the transverse states .

Figure 5.2: The gait in open loop with only the PFL controller and unperturbed initial conditions.

With the stabilizing controller v from (5.6) with δ = 1, the nominal gait was stabilized,
as seen in Figure 5.3. Indeed, the values of the transverse states have a maximum deviation
from the origin of about 10−5, with only some spikes occurring due to the impacts. Herein,
the integral function I(·) was calculated using Algorithm 1 using 100 integration steps,
which on average took approximately 1 ms.
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Figure 5.3: The gait with unperturbed initial conditions and the controller generated with δ = 1.
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Performance with different system parameters

For a real system, it is likely that the parameters used in the construction of the controller
will deviate from the real parameters of the system. Because of this, the controller was
tested with the system parameters from Table 4.1 scaled up or down by 10%. The results
can be seen in Figures 5.4 and 5.5, respectively. When the parameters were scaled up, δ
was set to 2 in order to get the desired performance, while it needed to be increased to
3 when the parameters were scaled down in order to stabilize the biped. The controller
manages to stabilize the system in both cases. Although, as one would expect, the biped
settles to different gaits than the nominal. Figures 5.4c and 5.5c also show that the main
deviations of the transverse states happens just prior to and after impact due to the impact
map also being changed. Furthermore, Figure 5.5b shows that the reference torque from
the controller jumps at impact. Thus, one would need to pass the reference signal through
a low-pass filter for implementation on a real system.
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Figure 5.4: The gait with the parameters of the system scaled up by 10% compared to the design
phase and a controller with δ = 2.
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Figure 5.5: The gait with the parameters of the system scaled down by 10% compared to the design
phase and a controller with δ = 3.
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Pertubred initial velocity of the stance leg

Since the stance leg is passive throughout the gait, it is becomes difficult for the controller
to correct perturbations from its nominal trajectory. For this reason, the controller was
tested when the initial angular velocity of the stance leg was perturbed from its nominal
trajectory.

In Figure 5.6 the initial angular velocity was perturbed from the nominal value by
0.015 rad s−1 for which δ had to be at least 3. If the perturbation was increased or δ
was lowered, the controller was unable to stabilize the gait in time such that the angular
velocity of the stance leg became positive, resulting in the biped falling backwards. As
seen in Figure 5.6a, the angular velocity of the stance leg, q̇1, almost crosses the horizontal
zero-line during the first step but eventually manages to stabilize the gait, with almost
perfect tracking for the remaining steps.
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Figure 5.6: The gait with the initial perturbation q̇1(t0) = θ̇∗(t0) + 0.015 and δ = 3.

With negative perturbations, the controller could stabilize higher greater perturbations
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and the δ-parameter could be lowered. However, due to the increase of energy of the
system compared to the nominal gait, the controller require high spikes in the torques
in order to stabilize the motion. Because of this, saturation of the actuators of ±5 N m
was added to keep to realistic torques. In Figure 5.7 the initial perturbation is given by
q̇1(t0) = θ̇∗(t0)− 0.06 with δ = 2. As seen by Figure 5.7b, the actuators saturate at both
the beginning and the end of the step, but still manages to stabilize the motion even tough,
as seen in Figure 5.7c, the absolute value of the transverse coordinates are actually bigger
in the beginning of the second step than the first. Indeed, the motion does not converge to
the nominal before the third step.
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Figure 5.7: The gait with the initial perturbation q̇1(t0) = θ̇∗(t0) − 0.06 of the stance leg and
controller with δ = 2 with enabled saturation of the actuators at ±5 N m.
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5.1 Motion Generator as the Angle of the Stance Leg

Zero initial angular velocity of the stance and swing leg

An important aspect of walking is how to initialize a gait from a stand still. To this end, the
biped was initialized with zero angular velocity of the stance and the swing legs, with only
initial angular velocity of the torso to emulate the the biped being pushed into starting. In
Figure 5.8c, the initial angular velocity of the torso was set to −1.25 rad s−1 with δ set
to 1. Increasing δ led to very high torque requirements at the beginning of the motion.
Furthermore, if the saturation of the actuators was lowered bellow ±10 N m the controller
was unable to stabilize the motion.
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Figure 5.8: The gait with the initial conditions perturbed such that, measured in absolute angles, the
swing and stance leg have zero velocity, while the torso is initialized with q̇a2 (t0) = −1.25 rad s−1.
The controller was generated with δ = 1 and saturation was set to ±10 N m.
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Chapter 5. Development of Stabilizing Controllers

5.2 Motion Generator found through a Projection from
the Configuration

In this section, a controller will be constructed for the case where the scalar MG is not
directly known as a function of the configuration, but can be closely approximated using a
projection from the generalized coordinates. Such a method was first presented in [37] for
a fully actuated industrial manipulator. Therefore, this method will here be transferred to
an underactuated system with hybrid dynamics.

5.2.1 Excessive Transverse Coordinates
Suppose one has found a solution of the Euler-Lagrange (2.8) described by the geometric
relations

q∗(t) = Φ(θ∗), (5.43a)

q̇∗(t) = Φ
′
(θ∗)θ̇∗, (5.43b)

where θ is a strictly monotonic MG which can not directly be found from the configuration
variables of the system, but which can be approximated by the projection

θ ≈ P (q), (5.44)

such that

θ̇ ≈ ∂P (q)

∂q
q̇, (5.45)

θ̈ ≈ ∂P (q)

∂q
q̈ + q̇T

[
∂2P (q)

∂q2

]
q̇. (5.46)

Since the projection is only an approximation of the MG, using (5.45) to retrieve the ve-
locity might lead to large inaccuracies compared to what the velocity of the MG should
truly be for a given θ, especially for perturbation from the nominal trajectory. For this
reason, one can introduce a function h(θ) which retrieves the correct velocity for a given
value of the MG, i.e.,

θ̇∗(t) = h
(
θ∗(t)

)
. (5.47)

For the biped, this function can be found from the integral function (4.51) as

h(θ) = − 1

α(θ)

((
α(θ0)θ̇0

)2

− 2

∫ θ

θ0

α(τ)γ(τ)dτ

)1/2

. (5.48)

Noting from (4.17) that θ̈ = 1
2
∂
∂θ

(
h(θ)

)2
, its partial derivatives are found to be

h
′
(θ) :=

∂h(θ)

∂θ
= − 1

α(θ)h(θ)

[
γ(θ) + β(θ)h(θ)2

]
, (5.49)

h
′′
(θ) :=

∂2h(θ)

∂θ2
= − 1

α(θ)h(θ)

[
γ
′
(θ) + β

′
(θ)h(θ)2 + 3β(θ)h(θ)h

′
(θ) + α(θ)h

′
(θ)2

]
(5.50)
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5.2 Motion Generator found through a Projection from the Configuration

where

γ
′
(θ) :=

∂γ(θ)

∂θ
and β

′
(θ) :=

∂β(θ)

∂θ
.

Using the function h(θ), one can introduce the output functions

y = q − Φ(θ), (5.51a)

ω = q̇ − Φ
′
(θ)h(θ), (5.51b)

acting as the new transverse coordinates, and whose time derivatives are

ẏ = q̇ − Φ
′
(θ)θ̇, (5.52a)

ω̇ = q̈ −F(θ)θ̇, (5.52b)

where column matrix function F(θ) is defined as

F(θ) := [F1(θ);F2(θ);F3(θ)] = Φ
′′
(θ)h(θ) + Φ

′
(θ)h

′
(θ). (5.53)

Thus, one has 2n transverse coordinates. However, for any state space of dimension 2n,
there can only be (2n− 1) independent transverse coordinates [37]. This follows directly
from the fact that any Poincarè surface, which is transverse to the trajectory by Defini-
tion 2, is of (2n− 1)-dimensions. Thus, the coordinates of (5.51) are excessive transverse
coordinates. Nonetheless, asymptotic stability of the linearized transverse dynamics of the
form

d

dt

[
δy

δω

]
= A(t)

[
δy

δω

]
(5.54)

about the trajectory (5.43) ensures local asymptotic stability of the trajectory [37].

5.2.2 Transverse Linearization
In order to find the linearized transverse dynamics of (5.51), one can note that (5.52) can
be rewritten as

ẏ = f1(q, q̇) := q̇ − Φ
′
(θ)

∂P (q)

∂q
q̇, (5.55)

ω̇ = f2(q, q̇) := q̈ −F(θ)
∂P (q)

∂q
q̇, (5.56)

such that f1(q, q̇) and f2(q, q̇) equals zero on the nominal trajectory (5.43). Thus, for
small deviations from the nominal trajectory, a linearization of the evolution of these 2n
transverse coordinates can be written on the form

d

dt

[
δy

δω

]
= A(t)

[
δy

δω

]
+ B(t)v, (5.57)

where A(t) and B(t) are found from

A(t) :=

[
∂f1
∂y

∂f1
∂ω

∂f2
∂y

∂f2
∂ω

] ∣∣∣∣∣
y=0
ω=0

and B(t) :=

[
∂f1
∂v
∂f2
∂v

] ∣∣∣∣∣
y=0
ω=0

, (5.58)
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Chapter 5. Development of Stabilizing Controllers

with v := v(y, ω) denoting a control input which satisfies v
(
0, 0
)

= [0; 0].
However, computing the Jacobian of the functions f1(·) and f2(·) in terms of the trans-

verse coordinates is not straightforward. Nevertheless, it can be done by noting that for
each of the functions, the following relations between the expansions must hold

δfi −
∂fi
∂v

δv =
∂fi
∂y

δy +
∂fi
∂ω

δω =
∂fi
∂q

δq +
∂fi
∂q̇

δq̇, i ∈ {1, 2}. (5.59)

Thus, one can write

A(t)

[
δy

δω

]
= C(t)

[
δq

δq̇

]
(5.60)

with

C(t) :=

[
∂f1
∂q

∂f1
∂q̇

∂f2
∂q

∂f2
∂q̇

] ∣∣∣∣∣θ=θ∗(t)
q=q∗(t)
q̇=q̇∗(t)

. (5.61)

Further noting that small increments of the transverse states about the nominal trajectory
can be written in terms of small increments of the states as[

δy

δω

]
=

[
In − Φ

′
(θ)∂P (q)

∂q 0n

−F(θ)∂P (q)
∂q In

] ∣∣∣∣∣θ=θ∗(t)
q=q∗(t)

[
δq

δq̇

]
= T (t)

[
δq

δq̇

]
, (5.62)

one obtains the relation
A(t)T (t) = C(t). (5.63)

Unfortunately, the matrix function T (t) can not be directly inverted as its rank is not neces-
sarily3 2n due to the fact that there are only (2n− 1) independent transverse coordinates;
yet the solvability of (5.63) is guaranteed due to the existence of the expansions (5.59)
[37]. Moreover, one can observe that from (5.63) that

∂f1

∂ω
=
∂f1

∂q̇
and

∂f2

∂ω
=
∂f2

∂q̇
,

such that one only needs to solve the equations

∂fi
∂y

(
In − Φ

′
(θ)

∂P (q)

∂q

)
− ∂fi
∂q̇
F(θ)

∂P (q)

∂q
=
∂fi
∂q

, i = 1, 2, (5.64)

where the term In − Φ
′
(θ)
(
∂P (q)/∂q

)
can not always be inverted since it has a rank of

(n−1) when the rank of T (t) is (2n−1). This also suggest that the equation (5.64) might
have multiple solutions when T (t) has insufficient rank. In order to solve it, one can use
methods like, e.g., taking the pseudoinverse, or by minimizing the least-square error.

3If the projection P (q) exactly represent θ, then T (t) has rank (2n − 1) and is thus singular. This is not
necessarily the case if P (q) is a non-exact approximation.
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5.2 Motion Generator found through a Projection from the Configuration

The remaining step is therefore finding the expansions of the functions fi(·) in terms
of the states and the control input v. Herein, the expansion of f1(·) is trivial, and is given
by

∂

∂q
f1(q, q̇) = −

[
Φ
′′
(θ)

∂P (q)

∂q

]∂P (q)

∂q
q̇ − Φ

′
(θ)
[∂2P (q)

∂q2
q̇
]T
, (5.65a)

∂

∂q̇
f1(q, q̇) = In − Φ

′
(θ)

∂P (q)

∂q
, (5.65b)

∂

∂v
f1(q, q̇) = 03×2. (5.65c)

The expansion of f2(q, q̇, v) is, however, not trivial due to the term

q̈ = M(q)−1
[
Bu− C(q, q̇)q̇ −G(q)

]
.

Herein, the control input u should be of the form (2.55). This is achieved with the semi-
partial feedback linearizing controller

u = K(q)−1
(
v +BTF(θ)h(θ)−R(q, q̇)

)
, (5.66)

where

K(q) : = BTM(q)−1B, (5.67)

R(q, q̇) : = BTM(q)−1
(
− C(q, q̇)q̇ −G(q)

)
, (5.68)

in which the invertibility of K(q) is guaranteed as M(q) is positive definite and the
columns of B are non-zero. Thus, by writing f2(q, q̇, v) = [f1

2 ; f2
2 ; f3

2 ], the expansions of
the second and third functions are given by[∂f2

2

∂q
;
∂f3

2

∂q

]
=BTF(θ)

(
h
′
(θ)

∂P (q)

∂q
− q̇T ∂

2P (q)

∂q2

)
(5.69a)

+BTF
′
(θ)

∂P (q)

∂q

(
h(θ)− ∂P (q)

∂q
q̇
)
,[∂f2

2

∂q̇
;
∂f3

2

∂q̇

]
=−BTF(θ)

∂P (q)

∂q
, (5.69b)[∂f2

2

∂v
;
∂f3

2

∂v

]
=I2 (5.69c)

In order to find the remaining expansion of f1
2 , one can start by writing

B⊥
{
M(q)q̈ + C(q, q̇)q̇ +G(q)

}
= 0

and note that the controller (5.66) brings q̈2,3 = [q̈2; q̈3] on the form

q̈2,3 = BTF(θ)h(θ) + v.
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Chapter 5. Development of Stabilizing Controllers

Hence,

f1
2 (q, q̇, v) =

1

m11(q)

{
− z(q, q̇)−M1(q)Bv − C1(q, q̇)q̇ − g1(q)

}
, (5.70)

z(q, q̇) := m11(q)F1(θ)
∂P (q)

∂q
q̇ +m12(q)F2(θ)h(θ) +m13(q)F3(θ)h(θ),

whereM1(q) and C1(q, q̇) denote the first rows of the matrix functionsM(q) and C(q, q̇);
g1(q) is the first element of the gravity vector; and mij(q) denotes the i, j-th element of
the inertia matrix. From this, it follows that

∂f1
2

∂v
= − 1

m11(q)
[m12(q) m13(q)], (5.71)

such that the matrix function B(t) has the form

B(t) =


03×2

∂f1
2

∂v

I2


∣∣∣∣∣
q=q∗(t)

. (5.72)

Since the actuator inputs v are linear in f1
2 , one can set v = [0; 0] for the remaining

computations and denote f̂1
2 := f1

2 (q, q̇,0). Moreover, by defining

η(q, q̇) := −z(q, q̇)− C1(q, q̇)q̇ − g1(q), (5.73)

one can compute the Jacobian by the following relations:

∂f̂1
2

∂q
=

1

m11(q)

(
∂η(q, q̇)

∂q
− ∂m11(q)

∂q
f̂1

2

)
, (5.74)

∂f̂1
2

∂q̇
=

1

m11(q)

∂η(q, q̇)

∂q̇
. (5.75)

Herein, the expansions of η(q, q̇) can be computed by the formulas

∂η(q, q̇)

∂q
= −∂z(q, q̇)

∂q
− q̇T ∂C1(q, q̇)

∂q
− ∂g1(q)

∂q
(5.76)

and
∂η(q, q̇)

∂q̇
= −∂z(q, q̇)

∂q̇
− q̇T ∂C1(q, q̇)

∂q̇
− C1(q, q̇). (5.77)

By close inspection, one can see that

η
(
q∗(t), q̇∗(t)

)
= −α(θ∗)θ̈∗ − β(θ∗)θ̇

2
∗ − γ(θ∗) = 0

if

h(θ∗) =
∂P (q∗)

∂q
q̇∗.
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5.2 Motion Generator found through a Projection from the Configuration

Hence, this can be used to check the accuracy of the projection P (q). Furthermore, if η(·)
is exactly zero on the trajectory, then on can set f̂1

2 = 0 in (5.74) as it will disappear in the
linearization, which is the case for perfect projections of the MG.

Thus, by solving (5.60) to findA(t), the linearized transverse dynamics takes the form
(5.57), with the addition of an instantaneous mapping L(t), which is found in by the same
manner as (5.25) by using the relation (5.62) and its inverse, found from, e.g., using the
pseudoinverse. A stabilizing controller, if it exists, can then be constructed using the same
method as in Section 5.1.4.

5.2.3 Implementation and Results from Numerical Simulations
In this section, results from numerical simulations using the aforementioned method of
constructing a controller will be presented. The stabilization of the gait depicted in Fig-
ure 4.11 will be shown here, while some results of stabilizing the gait in Figure 4.5, as
was done with the previous control method and which represent the perfect projection
P (q) = q1, is given in Appendix C.2.

For the gait shown in Figure 4.11, one needed to find a projection P (q) ∈ [0, 1] with
P (q+) = 0 and P (q−) = 1. This was done by noticing that by defining q̂ := q1 +
5.5q2 +2q3, then q̂ was monotonic over the trajectory and could be used to give reasonable
representation of the MG by

ŝ :=
q̂(t)− q̂(0)

q̂(T )− q̂(0)
≈ θ(t).

However, this projection was still not very accurate, such that a better projection was
clearly needed. To this end, a 10th order Bezièr polynomial which was a function of the
variable ŝ was used. Thus, the gradient and the Hessian of the projection was found by

∂P (q)

∂q
=
∂P (q)

∂ŝ

∂ŝ

∂q
and

∂2P (q)

∂q2
=
∂2P (q)

∂ŝ2

(∂ŝ
∂q

)T ∂ŝ
∂q
,

where
∂ŝ

∂q
= [1, 5.5, 2]/

(
q̂(T )− q̂(0)

)
.

The parameters for the Bezièr polynomial were found by minimizing the least square error
of ‖θ∗ − P (q∗)‖ over a given number of time steps. Over 1500 time steps, the resulting
error was approximately 1 · 10−2, with the error in the velocities is shown in Figure 5.9a.
Although the the projection is very close, the deviation at the beginning and the end of
the trajectory is very prominent as seen in Figure 5.9b, in which η(q, q̇), defined in (5.73),
should be zero on the whole trajectory for a perfect projection. This of course shows
that a better projection would be advantageous. However, to illustrate the method with an
imperfect projection, this projection will be used for the results presented.

In order to solve the equations (5.64), the pseudoinverse function provided by MAT-
LAB was used. This was also used to find the inverse of the relation [δy; δω] = T (t)[δq; δq̇]
in order to find the impact map L for the linearized transverse dynamics by the same
method as in Section 5.1.3. Note that there might exist better methods than the pseudoin-
verse for solving these equations.
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Figure 5.9: Accuracy of the projection P (q) over the nominal trajectory.

The controller was generated using the same method as described in Section5.1.5 with
a Bezièr polynomial of order 12 to approximateR(t). Herein, the constraint of the velocity
mapping had to be given as

LTR0L ≤ RN
in order for a solution to be found rather than the equality constraint used for the other
controller that was developed. Moreover, the linearization showed that the expansions
of the function fi in terms of y resulted in much larger values of the matrix elements
than that of the expansion in terms of ω. Indeed, as seen in Figure 5.10, the norm of the
expansions in terms of y ”blow up” several times over the step 4. Because of this, the
solver was unable to find a stabilizing solution when setting the weighting matrix Q to the
6× 6 identity matrix. However, by increasing the values of the bottom right diagonal, i.e.,
weighting deviations of ω more than y, by using e.g., Q = diag(1, 1, 1, 100, 100, 100), the
solver was able to find solution. Thus, such weighting will be used in the results presented,
where a number 100 time samples in the SDP have been used.

In order to make this controller time-invariant, one can note that time can be well
approximated by θ ·T , where T is the period of the step, as seen in Figure 5.11. Of course,
this is far from a perfect projection, such that performance can possibly be improved by
developing a better projection by, e.g, some order Bezièr polynomial in terms of θ. Yet,
this simple projection operator gave satisfactory results such that the development of a
better one was not attempted.

4Solving the equations (5.64) using the pseudoinverse or by minimizing the least squares error both resulted
in the same ”blow ups” of the norms and gave the same solutions. However, it shows that other methods for
solving these equations might be advantageous as they can have multiple solutions when the rank of T (t) is
2n− 1.
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Figure 5.10: Norms of the expansions of fi over the nominal trajectory.
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Open-loop vs stabilizing controller

Setting v = [0; 0] in the controller (5.66), i.e., in open-loop with zero perturbations, the re-
sulting walking motion can be seen in Figure 5.12. This shows that the nominal controller
is able to recreate the gait, but it quickly becomes unstable after just a few steps.
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Figure 5.12: The gait in open loop with only the semi-PFL controller and unperturbed initial condi-
tions.

By generating a controller with Q = diag(1, 1, 1, 100, 100, 100), Γ = I2 and δ = 0,
the controller managed to stabilize the gait when there were no perturbations present, as
seen in Figure 5.13. Indeed, the gait is stabilized even though the value of ‖ω‖ greatly
increases just prior to the impact, as seen from Figure 5.13c, due to the imperfect projection
P (q).
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Figure 5.13: The gait in closed loop and unperturbed initial conditions.

Performance with different system parameters

As with the controller generated using the angle of the stance leg as the MG, it is in-
teresting to see how the controller can handle different system parameters from those
used when making the controller. In order to test this, a controller was made with Q =
diag(1, 1, 1, 1000, 1000, 1000), Γ = 10 · I2 and δ = 5, and the system parameters were
increased and decreased to find the maximum deviation which the controller managed to
stabilize the motion.

The controller managed to stabilize an increase in the system parameters of a maxi-
mum of 3%. The resulting motion can be seen in Figure 5.14, where the biped settles into
a different gait after approximately 7 steps. Since the the offset parameter δ is quite large,
the resulting control action is quite aggressive, resulting in large spikes around the time of
impact as seen in Figure 5.14b,

When decreasing the parameters, the controller managed a maximum decrease of 8%,
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Figure 5.14: The gait with the parameters of the system scaled up by 6% compared to the design
phase .

with the resulting evolution shown in Figure 5.15. Now, the biped settles into a new gait
after about 4 steps. However, the aggressive control action also results in large spikes in
the applied torques at impact, as seen in Figure 5.15b.
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Figure 5.15: The gait with the parameters of the system scaled down by 8% compared to the design
phase
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Chapter 5. Development of Stabilizing Controllers

Perturbed initial velocity of the stance leg

As it was with the previous controller, the new control method was tested when the velocity
of the angle of the stance leg was perturbed, as this is a passive degree of freedom. The
controller was generated with the same weighting matrices as the previous subsection.

With a initial perturbation of 0.04 rad s−1, the controller managed to stabilize and set-
tle into the nominal motion after approximately 3 steps, as seen in Figure 5.16. Increasing
the perturbation made the robot fall backwards.
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Figure 5.16: The gait with the initial perturbation q̇1(t0) = θ̇∗(t0) + 0.04.

For a negative perturbation, the controller managed to stabilize the motion for a max-
imum perturbation of −0.08 rad s−1. It took approximately 8 steps before the controller
managed to settle the biped into the nominal gait, as seen in Figure 5.17.
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-0.15 -0.1 -0.05 0 0.05 0.1 0.15
qi [rad]

-1

-0.5

0

0.5

1

q̇
i
[r
a
d
/s
]

1
2
3

(a) Phase portrait in absolute angles.

0 2 4 6
t [s]

-4

-2

0

2

4

u
i
[N

m
]

u1

u2

(b) Actuator outputs.

0 2 4 6
t [s]

-0.5

0

0.5

1
y1

y2

y3

ω1

ω2

ω3

(c) Values of the transverse states .

Figure 5.17: The gait with the initial perturbation q̇1(t0) = θ̇∗(t0)− 0.08.

Zero initial velocity of the stance and swing leg

Using a controller generated with the same Q and Γ, but with δ = 1 to make the controller
less aggressive, the biped managed to stabilize the gait if the initial velocities of the abso-
lute angles of the stance leg and swing leg were set to zero, while q̇a2 = −0.75 rad s−1.
However, this led to a spike of the torque of u1 of almost 20 N m. For this reason, satura-
tion was enabled, which could be set to a minimum of ±8 N m for the controller to being
able to stabilize the motion. The result can be seen in Figure 5.18. The strange evolution
of the stance leg and the torso, as seen in Figure 5.18a, is likely due to the projection
P (q) which becomes quite inaccurate for such large perturbations. Yet, the controller still
manages to stabilize the motion after about 3 steps even with saturation enabled.
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Figure 5.18: The gait with the initial conditions perturbed such that, measured in absolute angles, the
swing and stance leg have zero velocity, while the torso is initialized with q̇a2 (t0) = −0.75 rad s−1.

5.3 Discussion

In this chapter, two methods of developing orbitally stabilizing controllers for periodic
trajectories, referred to as gaits, on the planar compass biped were presented. The first used
the angle of the stance leg as a motion generator (MG), which made it possible to derive
the linearized transverse dynamics for five linearly independent transverse coordinates.
The second method found the MG by a projection from the configuration variables, and
the transverse dynamics were linearized for six excessive transverse coordinates.

Both controllers managed to stabilize the gaits tested even when subject to pertur-
bations in the initial condition or with different system parameters than that used in the
modelling of the controller. However, the stability and convergence to the nominal gait,
as well as the necessary torque required, was shown to be heavily dependent on the offset
parameter δ, which, for large values, resulted in a very aggressive control action. The
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5.3 Discussion

projection based controller was also shown to be heavily dependent of the the weighting
matrix Q due to the transverse linearization, where the elements lower third diagonal had
to be set to large values in order to achieve stability due to the large eigenvalues of the
expansions of the function f1. It is thus clear that the desired performance can be greatly
increased by proper choice of the weighting matrices and the offset parameter; however,
tuning of these was not the main focus of this thesis, so it is left as a recommendation for
further work on the topic. This again ties in with the region of attraction for a found con-
troller; finding some estimate of the region of attraction, be it precise or very conservative,
will give some indication of the stability of the induced limit cycle, which can be used
to determine suitable controllers in advance of implementation by changing the weighting
matrices and the offset parameter. Therefore, finding an estimate of the region of attraction
is also left as a recommendation for further work.

It was shown for both controllers that perturbations from the nominal trajectory could
lead to large spikes in the torque required from the actuators in order to stabilize the mo-
tion. It was further shown that the controllers still managed to stabilize the motion with
torque saturation enabled to some extent. However, the remaining spikes in the torques
required are still not feasible to handle even for high frequency actuators and would need
to be passed through a low-pass filter for implementation on a real system. Moreover, it
was assumed that all the states of the biped could be perfectly measured without noise.
Thus, it would be interesting to test the controllers subject to the torque reference passed
through a low-pass filter, as well as the measurement of the states value with added noise
or where some have states, e.g., the angular velocities, are found from observers rather
than directly measured. These topics are thus left as recommendations for further work.

Although the controller developed in Section 5.1 used the angle of the stance leg as
the MG, it can also be used for other choices of motion generators as long as they can
be found directly as a function of the generalized coordinates of the biped. However, the
construction procedure of the controller will differ for every individual choice of the MG
due to the linearization of the transverse dynamics. This is not the case for the projection
based controller from Section 5.2, where the transverse linearization stays the same, and
one only needs to change the projection P (q), its gradient and Hessian, as well as the new
virtual holonomic constraints in order to linearize the transverse dynamics for different
gaits. This method can be used for both gaits where the MG is known, resulting in a
perfect projection as with it chosen as the angle of the stance leg, or where the MG is an
unknown quantity such that the projection must be found for each individual gait. It was
also shown that this control method manages to stabilize the gait even if the projection is
imperfect. However, if the perturbations away from the nominal trajectory become large
as in Figure 5.18, it can results in strange behaviour and instability.
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Chapter 6
Conclusion and Recommendations
for Further Work

6.1 Conclusion

The aim of this thesis was to plan energy efficient, symmetric gaits for an underactuated
planar compass biped robot with a torso, as well as developing stabilizing controllers for
these gaits. The biped was considered as a hybrid dynamical system due to the sudden
change of velocities arising from the impact between the swing leg and the ground at the
end of a step. This meant, that in addition to the continuous dynamics found using the
method of Euler-Lagrange, an additional mapping accounting for this sudden change of
velocities had to be found. For this, two discrete mappings were developed: one algebraic
formulation using Newton’s model of restitution and one using the conservation of angular
momentum.

In order to find feasible gaits for the biped, a set of geometrical relations, called vir-
tual holonomic constraint, between the configuration variables of the system and a scalar
variable, referred to as the motion generator, were assumed to be kept invariant by feed-
back control. This made it possible to reduce the search space down to a two-dimensional
subspace of the state space. A gait was then determined by the given virtual holonomic
constraints and the evolution of the motion generator.

Three types of polynomials of a given order were tested as virtual holonomic con-
straints: regular polynomials, Bezièr curves and trigonometric polynomials. Gaits were
found for all three types, but for the Bezièr curves it was shown that more of the polyno-
mial variables could be determined in advance, and since the resulting curve lied in the
convex hull of the polynomial parameters, the solvers needed less time to converge to a
feasible gait compared to the other two types of polynomials.

Two types of motion generators were considered in the gait planning procedure: the
angle of the stance leg and a quantity which was not directly found as a function of the
configuration variables. A large array of feasible gaits were found using the motion gener-
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ator as the angle of the stance leg. However, this choice of the motion generator restricted
the search space such that the found gaits required far more energy and torque than what
was feasible on the mechanical system. Using the quantity between zero and one which
was not directly found from the configuration of the biped as the motion generator, gaits
with very low energetic cost of transport and low torque requirements were found. It was
shown that for these energy efficient gaits, the only energy added to the system was that
needed in order to combat the energy dissipation due to impact.

In this thesis, two methods for generating stabilizing controllers were presented. The
first method was restricted for gaits where the motion generator was chosen as the angle
of the stance leg, while the second used a projection from the configuration variables in
order to approximate the motion generator. Moreover, the first method used five trans-
verse coordinates, which is the minimum number of independent transverse coordinates
for the system, while the second method used six excessive transverse coordinates. For
both methods, a stabilizing controller was then developed from exponentially stabilizing
the linearized transverse dynamics by solving the Riccati differential equation with one
jump using a semi-definite programming approach. This was done by writing the Riccati
differential equation as a linear matrix inequality by taking its Schur complement. More-
over, in order to account for the instantaneous change in the states accruing at impact, a
discrete mapping for the transverse coordinates was generated which then could be used
to add an additional constraint to the semi-definite programming problem, which, if satis-
fied, ensured exponential stability of the hybrid linearized transverse dynamics. A locally
exponentially orbitally stabilizing controller was generated for both methods, which was
made time-invariant by recovering the time-stamp of the given moving Poincarè section to
which the transverse coordinates belonged by a projection operator.

Both control methods presented were shown in numerical simulations to be able to sta-
bilize trajectories when subject to small perturbation or changes in the system parameters
compared to those used in the construction of the controllers. The found torque required
for achieving stability and the convergence rate was, however, shown to be heavily de-
pendent on the weighting matrices and the offset parameter used in the Riccati differential
equation. Moreover, no method for estimating the region of attraction for a given controller
was developed.

It was observed that the first method of developing a controller could only be used for
gaits in which the motion generator can be found directly from the configuration. For this
method, the linearization of the transverse dynamics would also differ for different motion
generators. For the second method, which found the motion generator through a projection
from the configuration, it was shown that it can be used for both gaits where the motion
generator in a known function or where it must be approximated by a projection, with the
method for finding the transverse linearization being the same regardless of the motion
generator, with only the projection, as well as its gradient and Hessian, being different for
different motion generators.

6.2 Recommendations for Further Work

In this section, some recommendations for further work on the topic will be presented.
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Linear comparison system to the reduced dynamics

It was found that the search space of feasible gaits had many local minima, which slowed
down the convergence of the solvers and could result in solutions which was far from
optimal. Thus, a linear comparison system of the reduced dynamics about an already
found gait, as mentioned in [36], could be used to pass approximates of the gradient and
the Hessian of the objective function to the solvers. This could results in faster convergence
to more optimal gaits, and possibly even be used to plan new gaits ”online” on a real biped
if the convergence is fast enough.

Region of attraction estimate, tuning and time-dependent weighting matrices

The controllers found and tested in this thesis managed to stabilize the trajectories subject
to small perturbations and changes in systems parameters. However, there was not much
emphasis on tuning of the weighting matrices Q and Γ, as well as the offset parameter
δ. Clearly, the desired performance of the controller can be greatly increased by correct
choice the matrices and the offset parameter. Yet, no clear method other than using the
developers intuition of the system, as well as trial and error can at this time be used to better
the performance. Moreover, it is likely that constant weighting matrices will not yield
the optimal performance as the system is time-varying. Thus, time-dependent weighting
matrices could possibly yield large increases in performance of the controllers. However,
the question of finding these weighting matrices again arises. Therefore, an estimate of
the region of attraction for a given controller could be used to determine the choice of the
weighting matrices and the offset parameters, as well as determining the performance of a
controller without rigorously testing it in numerical simulations.

Testing the controllers subject to low-pass filtered torque reference, measurement
noise and imperfect measurements of some of the states

Although the controllers presented in this thesis managed to stabilize the trajectories sub-
ject to small perturbation and changes in system parameters, their robustness w.r.t. to noise
in measurements or when some states can not be measured directly is not clear. Further-
more, the torques required to stabilize the gaits could have large jumps or spikes arising
at impacts. Such jumps and spikes in the references sent to the actuators would not be
feasible for implementation on a real system. Thus, the controllers should be tested when
the torque references are passed through a low-pass filter to get a smooth reference to the
actuators, as well as when there is uncertainty in the measurements of the states due to
noise or as some states must be found by observers rather than measured directly.

Development of non-symmetric gaits and how to transition between them

All the gaits presented in this thesis were symmetric gaits. Thus, finding energy efficient,
non-symmetric gaits is then an obvious next step for work on this topic. Moreover, as a
robot must be able to turn, change pace and avoid obstacles to be viable for operation in
real environments, a way to smoothly and stably change between different gaits is further
left as a recommendation for further work on the topic.
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Appendix A
Various Proofs and Theorems

A.1 Proof of Theorem 2.4.1
Given a system of the form

α(θ)θ̈ + β(θ)θ̇2 + γ(θ) = 0 (A.1)

where α(θ) 6= 0 along a solution (θ(t), θ̇(t)) such that one can rewrite (A.1) as

θ̈ +
β(θ)

α(θ)
θ̇2 +

γ(θ)

α(θ)
= 0. (A.2)

By setting Y := θ̇2(t), one can see that

dY

dt
=

d

dt

(
θ̇2(t)

)
= 2θ̇θ̈

and
dY

dt
=
∂Y

∂θ

dθ

dt
=
∂Y

∂θ
θ̇.

Thus

θ̈ =
1

2

∂Y

∂θ

holds along the solution of (A.2), giving

∂Y

∂θ
+ 2

β(θ)

α(θ)
Y + 2

γ(θ)

α(θ)
= 0 (A.3)

which is a linear Bernoulli equation which easily can be solved. By defining a function
µ := µ(θ) such that

2µ
β(θ)

α(θ)
:=

∂µ

∂θ
, (A.4)
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and multiplying it with (A.3), one obtains

µ
∂Y

∂θ
+
∂µ

∂θ
Y + 2µ

γ(θ)

α(θ)
= 0 ⇒ ∂

∂θ
(µY ) = −2µ

γ(θ)

α(θ)
. (A.5)

Integrating both sides yields

Y µ− Y (θ0)µ(θ0) =

∫ θ

θ0

−2µ(s)
γ(s)

α(s)
ds. (A.6)

Thus, by solving (A.4) to get

µ = µ(θ0)exp

{∫ θ

θ0

2
β(s)

α(s)
ds

}
,

one can set

ψ(θ, θ0) = exp

{
−
∫ θ

θ0

2
β(s)

α(s)
ds

}
and obtain from (A.6)

Y = ψ(θ, θ0)Y (θ0)− ψ(θ, θ0)

∫ θ

θ0

2(ψ(s, θ0))−1 γ(s)

α(s)
ds. (A.7)

Thus, the function

I(θ(t), θ̇(t), θ0, θ̇0) = θ̇2(t)− Y (θ(t), θ̇(t), θ0, θ̇0) (A.8)

is identically zero along the solutions of (A.2).

A.2 Proof of Theorem 2.4.2
The time derivative of the function I = (θ(t), θ̇(t), x, y) defined in (2.36) is given by

d

dt
I =

∂I

∂θ
θ̇ +

∂I

∂θ̇
θ̈. (A.9)

where
∂I

∂θ̇
= 2θ̇ (A.10)

and
∂I

∂θ
=− ∂Y

∂θ
(A.11)

=− ∂ψ

∂θ
Y (x) +

∂ψ

∂θ

∫ θ

x

2(ψ(s, x))−1 γ(s)

α(s)
ds (A.12)

+ ψ
∂

∂θ

∫ θ

x

2(ψ(s, x))−1 γ(s)

α(s)
ds (A.13)

=
2β(θ)

α(θ)
ψ(θ, x)

[
Y (x)−

∫ θ

x

2(ψ(s, x))−1 γ(s)

α(s)
ds
]

+
2γ(θ)

α(θ)
(A.14)

=
2γ(θ)

α(θ)
− 2β(θ)

α(θ)

[
I − θ̇2

]
, (A.15)
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where Y is defined in (A.7). Thus, evaluated along the solutions of

α(θ)θ̈ + β(θ)θ̇2 + γ(θ) = u,

the time derivative of (2.36) is given by

İ =
{2γ(θ)

α(θ)
− 2β(θ)

α(θ)

[
I − θ̇2

]}
θ̇ +

(
u− β(θ)θ̇2 − γ(θ)

)
α(θ)

2θ̇ (A.16)

=
2θ̇

α(θ)

(
u− β(θ)I

)
. (A.17)

A.3 Hadamard’s Lemma
Lemma A.3.1 (Hadamard’s Lemma, [33]). Any smooth function f(·) in a starlike neigh-
borhood U of a point z is representable in the form

f(x) = f(z) +

n∑
i=1

(xi − zi)gi(x), (A.18)

where gi(·) are smooth functions.

Proof. Consider the function

ϕ(t) = f(z + t(x− z)),

such that ϕ(0) = f(z) and ϕ(1) = f(x). Since f(x) is smooth in a starlike (often called
star convex) neighborhoodU of a point z, i.e., for any point y ∈ U all points on the interval
(z, y) lies in U , then

ϕ(1)− ϕ(0) =

∫ 1

0

dϕ(t)

dt
dt =

∫ 1

0

n∑
i=1

∂f

∂xi
(z + t(x− z))(xi − zi)dt

=

n∑
i=1

(xi − zi)
∫ 1

0

∂f

∂xi
(z + t(x− z))dt.

Since the functions

gi(x) =

∫ 1

0

∂f

∂xi
(z + t(x− z))dt

are smooth in U , this concludes the proof.

A.4 Proof of Theorem 4.2.1
For any constant annihilator B⊥, one finds from (2.33) that the relation (4.20) holds as
long as

B⊥

[
∂M

(
Φ(θ)

)
∂θ

− C
(
Φ(θ),Φ

′
(θ)
)]

Φ
′
(θ) = 0. (A.19)
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If one denotes Ĉ
(
Φ(θ),Φ

′
(θ)
)

=
∂M
(

Φ(θ)
)

∂θ , one finds that its elements are given by

ĉi,j(θ) =

n∑
k=1

∂mi,j(Φ)

∂φk
φ
′

k.

Further noting from (2.10) that the elements of the matrix C
(
Φ(θ),Φ

′
(θ)
)

are given by

ci,j
(
Φ(θ),Φ

′
(θ)
)

=

n∑
k=1

Γ̂ki,j
(
Φ(θ)

)
φ
′

k,

where Γ̂ki,j
(
Φ(θ)

)
is defined as

Γ̂ki,j
(
Φ(θ)

)
:=

1

2

{
∂mi,j(Φ)

∂φk
+
∂mi,k(Φ)

∂φj
− ∂mk,j(Φ)

∂φi

}
,

one can define the column vector

D
(
Φ(θ),Φ

′
(θ)
)

=
[
Ĉ
(
Φ(θ),Φ

′
(θ)
)
− C

(
Φ(θ),Φ

′
(θ)
)]

Φ
′
(θ),

whose elements are

di
(
Φ(θ),Φ

′
(θ)
)

=

n∑
j=1

n∑
k=1

1

2

{
∂mi,j(Φ)

∂φk
− ∂mi,k(Φ)

∂φj
+
∂mk,j(Φ)

∂φi

}
φ
′

kφ
′

j .

Therefore, one can write (A.19) as

B⊥D
(
Φ(θ),Φ

′
(θ)
)

= 0. (A.20)

Since
n∑
j=1

n∑
k=1

1

2

{
∂mi,j(Φ)

∂φk
− ∂mi,k(Φ)

∂φj

}
φ
′

kφ
′

j = 0

due to symmetry, it follows that

di
(
Φ(θ),Φ

′
(θ)
)

=

n∑
j=1

n∑
k=1

1

2

{
∂mk,j(Φ)

∂φi

}
φ
′

kφ
′

j =
1

2
Φ
′
(θ)

T

[
∂M

(
Φ(θ)

)
∂φi

]
Φ
′
(θ).

Hence,

B⊥D
(
Φ(θ),Φ

′
(θ)
)

=

n∑
i=1

b⊥i
1

2
Φ
′
(θ)

T

[
∂M

(
Φ(θ)

)
∂φi

]
Φ
′
(θ), (A.21)

from which (4.21) follows, concluding the proof.
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A.5 Proof of Proposition 4.2.2
By using the relation (4.20), rewrite ∫ θ−

θ+

β(τ)

α(τ)
dτ

as ∫ θ−

θ+

1

α(τ)

d

dτ

(
α(τ)

)
dτ =

∫ α(θ−)

α(θ+)

1

u
du,

which has the solution ∫ α(θ−)

α(θ+)

1

u
du = ln

(
α(θ−)

)
− ln

(
α(θ+)

)
.

This yields

exp

{
−
∫ θ−

θ+

2β(τ)

α(τ)
dτ

}
=

(
α(θ+)

α(θ−)

)2

and

exp

{∫ s

θ+

2β(τ)

α(τ)
dτ

}
=

(
α(s)

α(θ+)

)2

.

Inserting this into (4.45) and noting that α(θ+) is a constant, one obtains

I(θ+, θ̇+, θ−, θ̇−) =θ̇2
− −

(
α(θ+)

α(θ−)

)2[
θ̇2

+ −
∫ θ−

θ+

(
α(s)

α(θ+)

)2
2γ(s)

α(s)
ds

]
,

which is equivalent to (4.48), concluding the proof.
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Appendix B
Full Function Expressions

Non-zero elements of the 5 × 5 inertia matrix for the instantaneous impact model

me11 =l21m1 + J1 + 2L1 cos(q2)l2m2 + L2
1m2 + l22m2 + J2 + L2

1m3 + l23m3 (B.1a)
+ J3 + 2L1 cos(q2 + q3)l3m3,

me12 =me21 = L1 cos(q2)l2m2 + L1 cos(q2 + q3)l3m3 + l22m2 + l23m3 (B.1b)
+ J2 + J3,

me13 =me31 = L1 cos(q2 + q3)l3m3 + l23m3 + J3, (B.1c)
me14 =me41 = −L1 sin(q1)m2 − L1 sin(q1)m3 − sin(q1)l1m1 (B.1d)

− sin(q2 + q1)l2m2 − sin(q1 + q2 + q3)l3m3,

me15 =me51 = L1 cos(q1)m2 + L1 cos(q1)m3 + cos(q1)l1m1 (B.1e)
+ cos(q1 + q2)l2m2 + cos(q11 + q2 + q3)l3m3,

me22 =l22m2 + l23m3 + J2 + J3, (B.1f)

me23 =me32 = l23m3 + J3, (B.1g)
me24 =me42 = − sin(q1 + q2)l2m2 − sin(q1 + q2 + q3)l3m3, (B.1h)
me25 =me52 = cos(q1 + q2)l2m2 + cos(q1 + q2 + q3)l3m3, (B.1i)

me33 =l23m3 + J3, (B.1j)
me34 =me43 = − sin(q1 + q2 + q3)l3m3, (B.1k)
me35 =me53 = cos(q1 + q2 + q3)l3m3, (B.1l)
me44 =m1 +m2 +m3 (B.1m)
me55 =m1 +m2 +m3 (B.1n)
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Functions for the second and third reduced dynamical equations

α2(θ) =(l22m2 + l23m3 + J2 + J3)φ
′

2(θ) + (l23m3 + J3)φ
′

3(θ) (B.2a)

+ L1 cos(φ2(θ))φ
′

1(θ)l2m2 + L1 cos(φ2(θ) + φ3(θ))φ
′

1(θ)l3m3

+ φ
′

1(θ)l22m2 + φ
′

1(θ)l23m3 + J2φ
′

1(θ) + J3φ
′

1(θ),

β2(θ) =(l22m2 + l23m3 + J2 + J3)φ
′′

2 (θ) + (l23m3 + J3)φ
′′

3 (θ) (B.2b)

+ L1 sin(φ2(θ))(φ
′

1(θ))2l2m2 + L1 sin(φ2(θ) + φ3(θ))l3m3(φ
′′

1 (θ))2

+ L1φ
′′

1 cos(φ2(θ))l2m2 + L1φ
′′

1 (θ) cos(φ2(θ) + φ3(θ))l3m3

+ φ
′′

1 (θ)l22m2 + φ
′′

1 (θ)l23m3 + J2φ
′′

1 (θ) + J3φ
′′

1 (θ),

γ2(θ) = cos(φ2(θ) + φ1(θ))gl2m2 + cos(φ2(θ) + φ3(θ) + φ1(θ))gl3m3, (B.2c)

α3(θ) =(l23m3 + J3)φ
′

2(θ) + (l23m3 + J3)φ
′

3(θ) (B.3a)

+ L1 cos(φ2(θ) + φ3(θ))φ
′

1(θ)l3m3 + φ
′

1(θ)l23m3 + J3φ
′

1(θ),

β3(θ) =(l23m3 + J3)φ
′′

2 (θ) + (l23m3 + J3)φ
′′

3 (θ) + L1 sin(φ2(θ) (B.3b)

+ φ3(θ))l3m3(φ
′

1(θ))2 + L1φ
′′

1 (θ) cos(φ2(θ) + φ3(θ))l3m3

+ φ
′′

1 (θ)l23m3 + J3φ
′′

1 (θ),

γ3(θ) = cos(φ2(θ) + φ3(θ) + φ1(θ))gl3m3. (B.3c)

Right-hand side of the reduced dynamics

gv1(θ, y) =− L1 cos(φ2 + y2)l2m2 − L1 cos(φ2 + y2 + φ3 + y3)l3m3 (B.4a)

− l22m2 − l23m3 − J2 − J3,

gv2(θ, y) =− L1 cos(φ2 + y2 + φ3 + y3)l3m3 − l23m3 − J3, (B.4b)

gẏ2(θ, θ̇, y, ẏ) =(L1 sin(φ2 + y2)l2m2 + L1 sin(φ2 + y2 + φ3 + y3)l3m3)ẏ2 (B.4c)

+ ((L1l2m2φ
′

2(θ)θ̇ + L1l2m2θ̇ + (L1φ
′

2(θ)l2m2

+ L1l2m2)θ̇) sin(φ2 + y2) + (2L1l3m3ẏ3 + L1l3m3θ̇

+ L1l3m3φ
′
(θ)2θ̇ + L1l3m3φ

′
(θ)3θ̇ + (L1φ

′

2(θ)l3m3

+ L1φ
′

3(θ)l3m3 + L1l3m3)θ̇) sin(φ2 + y2 + φ3 + y3)),

gẏ3(θ, θ̇, y, ẏ) =L1 sin(φ2 + y2 + φ3 + y3)l3m3ẏ3 + (L1l3m3θ̇ (B.4d)

+ L1l3m3φ
′

2(θ)θ̇ + L1l3m3φ
′

3(θ)θ̇ + (L1φ
′

2(θ)l3m3

+ L1φ
′

3(θ)l3m3 + L1l3m3)θ̇) sin(φ2 + y2 + φ3 + y3),
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gy2(θ, θ̇, θ̈) =((L1φ
′

2(θ)l2m2 + 2L1l2m2) sin(φ2(θ)) + (L1φ
′

2(θ)l3m3 (B.5a)

+ L1φ
′

3(θ)l3m3 + 2L1l3m3) sin(φ2(θ) + φ3(θ)))θ̈

+ ((L1φ
′

2(θ)l2m2 + (L1φ
′

2(θ)l2m2 + L1l2m2)φ
′

2(θ)) cos(φ2(θ))

(L1φ
′

2(θ)l3m3 + L1φ
′

3(θ)l3m3 + (L1φ
′

2(θ)l3m3 + L1φ
′

3(θ)l3m3

+ L1l3m3)φ
′

2(θ) + (L1φ
′

2(θ)l3m3 + L1φ
′

3(θ)l3m3

+ L1l3m3)φ
′

3(θ)) cos(φ2(θ) + φ3(θ)))θ̇2

+ sin(φ2(θ) + θ)gl2m2 + sin(φ2(θ) + φ3(θ) + θ)gl3m3,

gy3(θ, θ̇, θ̈) =(L1φ
′

2(θ)l3m3 + L1φ
′

3(θ)l3m3 + 2L1l3m3) sin(φ2(θ) + φ3(θ))θ̈

(L1φ
′

2(θ)l3m3 + L1φ
′

3(θ)l3m3 + (L1φ
′

2(θ)l3m3 + L1φ
′

3(θ)l3m3

+ L1l3m3)φ
′

2(θ) + (L1φ
′

2(θ)l3m3 + L1φ
′

3(θ)l3m3

+ L1l3m3)φ
′

3(θ)) cos(φ2(θ) + φ3(θ))θ̇2

+ sin(φ2(θ) + φ3(θ) + θ)gl3m3. (B.5b)
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Appendix C
Implementations and Additional
Results

C.1 The Integral Function using the Trapezoidal Rule
Consider the integral function

I(θ, θ̇, θ0, θ̇0) = θ̇2 − e−ψ(θ0,θ) ×

(
θ̇2

0 −
∫ θ

θ0

eψ(θ0,s) × 2γ(s)

α(s)
ds

)
, (C.1)

where

ψ(x0, x) =

∫ x

x0

2β(τ)

α(τ)
dτ. (C.2)

Several numerical integration methods can be used to approximate the integral. Here, the
trapezoidal rule will be used, which is described next.

Suppose one wants to to integrate the function f(x) over the interval [a, b], then the
trapezoidal method is given by [24]∫ b

a

f(x)dx ≈ h
[

1

2
f(a) +

n−1∑
i=1

f(xi) +
1

2
f(b)

]
,

where h = (b − a)/n defines the integration step for some integer n, chosen sufficiently
large, and xi+1 = xi + hi such that x1 = a+ h.

Thus, for finding an approximation of the integral function using the trapezoidal rule,
Algorithm 2 is proposed.
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Algorithm 2 Approximation of the integral function using the trapezoidal rule

1: Set h = (θ − θ0)/n for some sufficiently large n
2: B(0) = (β(θ0)/α(θ0))/2
3: Γ = (γ(θ0)/α(θ0))/2
4: x0 = θ0

5: for i from 0 to n− 1 do
6: xi+1 = xi + h
7: λ = β(xi+1)/α(xi+1)
8: B(i+ 1) = B(i) + λ
9: Π(i) = h

(
B(i) + λ/2

)
10: Γ = Γ + (γ(xi+1)/α(xi+1)) exp

(
2Π(i)

)
11: end for
12: Π(n) = h

(
B(n) + (β(θ)/α(θ))/2

)
13: Γ = Γ +

[
(γ(θ)/α(θ)) exp

(
2Π(n)

)]
/2

14: Ψ1 = exp
(
− 2Π(n)

)
15: Ψ2 = 2hΓ
16: Return I(θ, θ̇, θ0, θ̇0) = θ̇2 −Ψ1

(
θ̇2

0 −Ψ2

)
C.2 Stabilizing a Gait with the Motion Generator as the

Angle of the Stane Leg using the Projection Method
Here, some results from stabilizing the gait depicted in Figure 4.5 using the method from
Section 5.2 will be presented. Since the angle of the stance leg is the motion generator,
one has the perfect projection P (q) = q1, with P

′
(q) = [1, 0, 0] and P

′′
(q) = 06.

For all the results presented, the weighting matrices were Q = I6 and Γ = I2, with
δ = 1. The controller was made time-invariant using the same projection method as
(5.42). Figure C.1 shows the system system simulated in closed loop with zero initial
perturbations. Figure C.2 shows the results when the system parameters are scaled up
by 10%. Figure C.3 shows the system response to a initial perturbations of the angular
velocity of the stance leg by 0.15 rad s−1.
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Figure C.1: The gait simulated in closed loop with zero initial perturbation.
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Figure C.2: Shows the evolution of the system with the parameters scaled up by 10%.
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Figure C.3: The gait with the initial perturbation q̇1(t0) = θ̇∗(t0) + 0.015.
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