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Preface

Fortunately, when I started to work on this thesis, I was little aware of the
problems I was facing. Thinking of the crack propagation approach as the method
of choice to assess the fatigue life of welded structures, I went ahead. However,
soon I started to realise that fatigue is not as simple as I hoped it to be. Many
fatigue phenomena are only understood as far as empirical descriptions reach.
The rather non-technical terms fatigue or notch sensitivity, as well as the parallel
existence of various fatigue assessment approaches are an indication of the lack of
fundamental understanding. Even the more analytically based crack propagation
approach is in the same situation, since the crack propagation laws are empirical.
The fact that we are still using Wohler’s S-N-curve approach may either indicate
the validity of the method or the lack of deeper insight — probably both. It is
accepted that there is and always will be considerable scatter in fatigue data,
which does not make it easy to find general rules. However this should not
prohibit further effort to increase understanding, although the gains might be
overshadowed by scatter. Many efforts are made to obtain a more fundamental
description of the fatigue process, such as tracing cracks from the very beginning
at some micro-structural feature. However, at the moment I doubt its practical
applicability to predict the life of a real structure, but it is not impossible that
this may happen.

Due to the design nature of the financing project, the work was aimed at the
fatigue assessment of welded joints in general, rather than at some very detailed
fundamental fatigue problem. The different state-of-the-art approaches to predict
the fatigue life of welded joints are described, applied and compared in this work,
cf. Chapters 2, 5 and 6. When applying the different approaches, it is immediately
found that they often are not applicable in a straightforward, self-explanatory
manner. Usually many variants exist and the designer must choose, especially
if the analysis is to be more sophisticated than applying a nominal stress S-N
curve. The parallel existence of different fatigue life assessment approaches is
irritating and unsatisfactory, since it makes life difficult for the engineer. In the
analyses carried out and reported in this thesis, I have tried to give an idea of
which method is most promising and highlight some important issues. Some of



i

PREFACE

these analyses have been presented at the 15th Furopean Conference on Fracture
(ECF15) September 2004 in Stockholm [1] and published in Fatigue & Fracture
of Engineering Materials € Structures [2].

Because of the investigations of the influence of residual stress on the fatigue
life of welded joints, which were carried out in a related project, the aspect of mean
stress dependency has received wide attention. This is discussed in a separate
chapter, Chapter 3. The work described in this chapter has been submitted for
publication in the International Journal of Fatigue [3].

Since the initial defects in the welds were below 0.1 mm in size, the propaga-
tion behaviour of short cracks found its way into this work. Crack propagation
tests on sub-millimetre cracks have been carried out to investigate this behaviour.
They are reported and evaluated in Chapter 4. The results have been accepted
for presentation at the International Conference on Fatigue Damage of Structural
Materials VI September 2006 in Hyannis [4].

There is, as is usual, a longer story behind this thesis. One or two years ago,
I had a version that was quite different from the present one in mind. In my first
year of doctoral work at NTNU, I was fully engaged with investigations concerning
the applicability of Neuber’s rule to notched specimens subjected to large scale
yielding. Unfortunately, all attempts to further finance this research were in
vain. Nevertheless, the effort gave birth to a journal paper*, which ironically was
awarded the CEGB Prize of the Journal of Strain Analysis in 2003. For obvious
reasons, I was tempted to somehow include those results. However, since the
main work was devoted to fatigue design of welded structures, it became more
and more clear that they hardly fitted in here, and eventually, but reluctantly, I
decided to leave them out.

Kongsberg, June 2006
Torsten Mann

*G. Harkegard, T. Mann: Neuber prediction of elastic-plastic strain concentration in notched
specimens under large-scale yielding, J Strain Anal Eng, Vol. 38, 2003, pp. 79-94.
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Abstract

Following a short introduction, the state-of-the-art fatigue life assessment meth-
ods based on the nominal stress, the structural hot spot stress and the effective
notch stress, as well as the crack propagation analysis are explained and discussed.

Thereafter, the effect of mean stress on crack propagation was investigated
by exemplifying crack propagation data from different aluminium alloys. In this
context, Walker’s equation received wide attention. In addition, a new, simple
equation to express the mean stress dependency of crack propagation data has
been proposed.

In order to generate crack propagation data for the 6082-T6 aluminium alloy,
investigate the behaviour of short cracks and find the mean stress dependency
of crack growth in this alloy, crack propagation tests of sub-millimetre cracks
subjected to different stress ratios have been carried out. The crack depth was
successfully monitored on-line employing a special direct current potential drop
technique. The crack propagation data generated verified the long crack propa-
gation data given in Eurocode 9 [5]. In addition, useful experience was gained to
improve future tests. Some evidence was found of accelerated crack growth near
the threshold. Based on the data obtained and literature data a Walker exponent
v = 0.78 has been calculated for the aluminium alloy 6082-T6.

The fatigue life of welded aluminium T-joints has been estimated using the
approaches introduced in Chapter 2. The results have been compared with ex-
perimental data from T-joints subjected to 4-point bending. In addition, a series
of T-joints subjected to transverse bending has been fatigue tested and the re-
sults have been compared with predictions using the same fatigue life assessment
methods.

The nominal stress gave a conservative prediction in case of the 4-point bend-
ing loading. Since no applicable detail category for the transverse bending load
case exists, a suitable detail category has been suggested.

The structural hot spot stress approach resulted in conservative predictions
(factor 4-10 in life) for both load cases.

The predictions from the effective notch stress approach are in excellent agree-
ment, with the experimental results, where the method using a 1 mm weld toe
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radius gave the best results. It has been shown that the method can be success-
fully applied to joints with wall thicknesses down to 3 mm.

The fatigue life predicted with the crack propagation approaches is in excellent
agreement with the experimental results from the 4-point bending load when the
My factor was used. Applying the local stress distribution, the predictions are
conservative for both load cases.

The slopes of all predicted S-N curves, especially from the stress based meth-
ods, are steeper than the experimental curves.
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Nomenclature

AKeff -
AKy =

= constant in Basquin’s law
= crack depth

characteristic crack depth

= final crack depth
= initial crack depth

constant in Basquin’s law

constant in Paris’ law

= crack length of a semi-elliptical surface crack (measured along the

surface of the component)

= geometry factor used to determine the stress intensity factor

= factor used in different codes (e.g. [5,6]) to account for the mean

stress effect

= stress intensity factor
= stress intensity factor range
= stress intensity factor range at R = 0, see Section 3.5

= effective stress intensity factor range proposed by Walker

effective stress intensity factor range, AKeg = Kmax — Kop
threshold stress intensity factor range

fracture toughness

= fatigue notch factor

= hot spot stress concentration factor, Kps = oy5/5

stress intensity factor at which a crack becomes fully open

= elastically calculated stress concentration factor

bending moment

= factor to include the stress concentration at a weld toe when calcu-

lating the stress intensity factor

xi
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NOMENCLATURE

Ao

exponent in Paris’ law
fatigue life
life spent whilst a crack is growing from a; to af

support coefficient

= force

= notch sensitivity

stress ratio, R = 0min/0max

effective stress ratio

= ultimate tensile strength

nominal stress ratio
yield strength
nominal stress
plate thickness

crack coordinate running from the crack tip to the specimen surface,
cf. Fig. 2.13

plate width

coordinate perpendicular to the beam axis (here chord or brace)

= coordinate along the beam axis (here chord or brace)

relative crack depth, a = a/t
relative coordinate starting at the crack tip, 5 = x/t
Walker exponent

Walker exponent for the fatigue limit

= Walker exponent for the threshold stress intensity factor range

relative crack coordinate, n = W/a, cf. Fig. 2.13

notch radius

= micro-structural support length

AO’A:

AUc,hs =

AO’C

Aogwr =

Ao Walker —

AO’W

g

oA

slip layer thickness

fictitious weld toe radius

characteristic length

stress range, A0 = Opax — Omin

fatigue limit (stress range)

fatigue strength at 2 x 10® cycles expressed in terms of hot spot stress
fatigue strength at 2 x 10° cycles expressed in terms of nominal stress
Smith, Watson and Topper effective stress range

effective stress by Walker

fatigue limit at R = —1 (stress range)

stress, local stress

fatigue limit (stress amplitude)
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Oow —
Oy =

of =

Ohs
0—1'1’1 ax

Omin

Om —

fatigue limit at R = —1 (stress amplitude)
stress amplitude

fatigue effective notch stress

= constant in Basquin’s law
= structural stress amplitude at the weld toe (hot spot stress)

= maximum stress

minimum stress

mean stress, oy = 3 (Omax + Omin)
|do/dx|

‘O'max‘

absolute value of the relative stress gradient, y =






CHAPTER ]_

Introduction

1.1 Motivation

Many frame-like structures are welded, which, from a fatigue point of view is
far from optimal. Nevertheless, due to cost effectiveness and extensive weld-
ing experience in many companies |7, 8], welding is often the joining method of
choice. This has been the case since the time when welding replaced riveting in
most structures. Actually, in the aircraft industry, an industry with products
very prone to fatigue problems, riveting is still the joining method that is very
frequently used, which is not least due to the weak fatigue resistance of welds.

In recent times, hard competition has forced products to be produced more
effectively, saving time, costs, material and weight [7-9|. In the automotive indus-
try saving structural weight is crucial to keep the overall weight as low as possible
to reduce fuel consumption, tyre wear, noise and to obtain a more active driving
characteristic, hence better competitiveness. All these gains must be achieved
without degrading the functionality or the service life of a product.

To make a component lighter inevitably increases the stresses in the compo-
nent when subjected to the same load. If fatigue was not a critical failure mode in
a component in the first place, slimming it may cause fatigue to become a prob-
lem. Re-design to relieve the welds from high stresses or increasing the fatigue
resistance of welds, e.g., through grinding or the introduction of favourable resid-
ual stresses (peening, overload), may solve the problem [10]. Another solution
may be to reduce the traditionally high fatigue safety factors. However, this can
be done only if the analytical tools available are precise enough. The enormous
increase in computing power and the quality of today’s finite element programs
facilitate very detailed stress analyses. The actual fatigue life prediction, how-
ever, is not straightforward. Several approaches exist side by side, and there is
no general answer about which one should be used. Of course, having a more or
less well defined crack-like defect, the crack propagation approach is the obvious
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choice. In a complex machined or forged component, the effective notch stress
approach will certainly be used successfully. The situation becomes worse, when
a welded component is to be assessed, since the local geometry underlies some
scatter and the size of defects is often unknown.

It is frequently stated that the fatigue life of a welded structure is almost
exclusively covered by crack propagation due to the presence of welding defects.

If this is true, the fatigue life of a welded component must be most
accurately predicted using crack propagation analysis.

Codes and standards, however, primarily recommend the use of the nominal
stress, the structural hot spot stress or the effective notch stress approaches.
Crack propagation analysis is usually allowed as well, but it is much less used.
However, the crack propagation method is not the preferred and dominating
method even though crack propagation is the governing phenomenon. Why is
this so? Is it because it is too complicated or because it yields too conservative
results? Are too many problems still encountered when applying the method to a
real structure? Is it the uncertainty about the initial crack size, shape and location
or the difficulties invoking the real stress distribution over the crack? Why are the
empirical, S-N curve based methods more often used than the crack propagation
approach, which actually tries to model the physics behind the fatigue process?

To date basically four deterministic fatigue life prediction methods exist side
by side, the nominal stress, the structural hot spot stress, the effective notch
stress and the crack propagation approaches. The latter three are found in many
different variants, which makes the situation even more complicated. Do these
approaches yield similar results when applied to the same problem? What are
the benefits and what are the drawbacks that support the existence of the various
approaches?

The main scope of this work is to find answers to the above questions, as far as
it is possible answer them. To reach this goal, the different fatigue life assessment
approaches have been applied to a single geometric detail, a welded T-joint, and
compared with experimental results.

Two problems encountered when predicting the fatigue life of the T-joint,
the mean stress dependency and the propagation of short cracks have received
considerable attention and are thus represented in separate chapters.

1.2 Outline

1.2.1 Chapter 1: Introduction

Chapter 1 gives an introduction to this thesis, presents a short outline and men-
tions the aspects of fatigue life prediction left untreated in this work.

1.2.2 Chapter 2: Fatigue life assessment methods

This chapter describes the nominal stress, structural hot spot stress and the
effective notch stress approach as well as the crack propagation approach.
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1.2.3 Chapter 3: The influence of mean stress on fatigue
crack growth

The dependence of fatigue, especially fatigue crack propagation on mean stress is
addressed in this chapter. Although due to the high residual stresses the depen-
dence of welded structures on the mean stress due to the applied loading is usually
limited, the mean stress dependency becomes an issue when the residual stress
level is manipulated to improve the fatigue performance of a weld. Since part of
this thesis evaluates experimental fatigue data from specimens with manipulated
residual stress level, the mean stress dependency has received more attention.

A few common mean stress equations are discussed and a comparison is made
based on a large amount of crack propagation data from the literature. Walker’s
equation receives most attention and a modified least mean squares method is
presented to fit crack propagation data to Walker’s equation.

Finally, a new, empirical mean stress equation is proposed.

1.2.4 Chapter 4: Short crack growth testing

In general little crack propagation data are available for the aluminium alloy
6082-T6 and in addition these data have been generated using specimens with a
long (deep) crack. The cracks propagating at the weld in the T-joint analysed in
this thesis, however, are initially very short.

Chapter 4 describes the experiments performed to measure the growth of sub-
millimetre cracks in aluminium specimens. The obtained data are compared to
long crack data from the literature and the mean stress dependency is evaluated.

1.2.5 Chapter 5: A welded T-joint subjected to 4-point
bending

In this chapter the fatigue life assessment approaches described in Chapter 2
are applied to a welded T-joint subjected to 4-point bending. The predictions
are compared with experimental data from the literature for the “as welded”
condition and for welds with artificially introduced compressive residual stresses.
Calculating the stress ratio at the weld, the residual (mean) stress effect has been
accounted for in the crack propagation analysis. The different predictions are
compared with each other and with the experimental data.

1.2.6 Chapter 6: A welded T-joint subjected to transverse
bending

Chapter 6 describes fatigue tests carried out with T-joints identical to those
analysed in Chapter 5, but this time subjected to transverse bending, which
makes the weld load carrying.

After the description of the experiments and the experimental results, Chapter
5 continues the comparison of the different fatigue life assessment approaches by
applying them to the T-joint subjected to the transverse bending load case.



CHAPTER 1. INTRODUCTION

1.2.7 Chapter 7: Conclusions

This final chapter summarises the work described in the thesis and discusses the
results. Some recommendations for future work are also given.

1.3 Some untreated aspects

A few aspects that influence the fatigue life of a component have been left un-
treated to keep the extent of this thesis within reasonable confines.

First, only constant amplitude loading has been considered. Variable ampli-
tude loading is usually treated with the Palmgren-Miner rule, see for example [11].
Fatigue crack propagation under variable amplitude loading is carried out incre-
mentally [12], i.e., the crack is extended after each load cycle, see the end of
Section 2.6.3, and approaches to treat crack retardation effects are discussed for
example in [13].

Second, no attention has been paid to the influence of the surface quality on
the fatigue life. Due to the discontinuities at the weld and the large amount of
crack propagation, the impact of the surface condition is certainly of secondary
importance.

The effect of the heat affected zone has not been treated explicitly. Using
nominal or structural stress, the heat affected zone (HAZ) is implicitly accounted
for. Knowing the material properties, i.e., crack propagation data, the effect of
the HAZ is included in a crack propagation analysis as well.

Finally, only high cycle fatigue has been considered, i.e., no large plastic
deformation is allowed.



CHAPTER 2

Fatigue life assessment methods

In this chapter the most common methods to predict the fatigue life of a welded
component are introduced and described. This description covers the approaches
based on nominal stress, structural hot spot stress and effective notch stress as
well as the crack propagation analysis.

2.1 Introduction

The most widespread fatigue assessment method is to compare design stresses
with allowable stresses by means of stress-life curves (often called S-N or Wohler
curves). These curves may either be based on nominal, structural or notch stress,
which will be discussed in more detail in the sections below.

If no S-N-curve for a given component or material is available, the curves
provided by design codes and standards must be used. They are generally based
on nominal stress, but the use of structural or notch stress is given as an option
in some of them. BS 8118 [14], as well as the ECCS recommendations [15], use
nominal stress only. According to Macdonald and Haagensen [16], the S-N curve
for two sided butt welds may serve as an S-N curve for structural hot spot stress
fatigue design. Eurocode 9 [5], which still is in a pre-standard state and widely
based on BS 8118, and the IITW recommendations [6] also include structural and
notch stress. In the low-cycle regime, strain-life curves may take the place of the
S-N curves to account for large plastic deformations.

For metals, fatigue test data usually follow straight “lines” in a log S-log N
plot and those lines or S-N curves can be described with Basquin’s law, which
may be written as

0. = ob (2N;)" (2.1)

where of and b are constants that depend on, for example, material, surface

5



CHAPTER 2. FATIGUE LIFE ASSESSMENT METHODS

condition, environment and stress state. Expressing Basquin’s law as
Ny = AN (2.2)

where A = 0§(_1/b)/2(1+1/b), is also quite common and more convenient when
design standards are used, e.g., Eurocode 9 [5].

In cases where the fatigue life is covered by crack propagation, —1/b is equal
to the exponent m in Paris’ law, see Eq. 2.23.

2.2 Relevant features of fatigue in welds

2.2.1 Crack-like defects

An inherent feature of welded joints are crack-like defects such as lack of fusion
and undercuts. Therefore, assuming the fatigue life to be governed by the growth
of one or more of these defects [17], the crack propagation approach based on
linear elastic fracture mechanics should be suitable to estimate the fatigue life.
However, size, form and position of these defects are often unknown. In addition,
the defects are often so small (crack depth < 1 mm) that they may require special
care when their propagation behaviour is analysed. Short cracks grow faster than
long cracks, which is usually explained by less crack closure [18], i.e., short cracks
open at lower stresses than long cracks. Moreover, short cracks may grow even if
they are below the long crack propagation threshold.

2.2.2 Residual stress

Unless stress relieved, welded details contain considerable residual stresses. These
result from the contraction of the weld material when cooling down. Residual
stresses are created in all directions with a self-equilibrating stress field, i.e.,
there are both positive and negative residual stresses, which exhibit a rather
complicated distribution. This distribution is influenced by the local geometry,
global constraints and the welding sequence. Residual stresses may reach yield
stress magnitude. They act as an additional mean stress, i.e., the applied stress
range will not be changed, but the actual stress ratio at the weld will differ
from the nominal (applied) stress ratio. The straightforward approach to take
care of the residual stresses is to add the residual stress at the weld where crack
propagation is expected to the applied mean stress and calculate a new (local)
stress ratio. This new stress ratio must then be used when estimating the fatigue
life.

For all practical circumstances, this is not simple, since finding a realistic
residual stress value is extremely difficult. A rough method to estimate the resid-
ual stress level is based on prevented contraction of the weld whilst cooling down,
see for example Berkovits et al. [19]. Measurement is possible but difficult. A
third and probably the most accurate method would be to use an FE analysis tool,
e.g., WELDSIM [20-22], to calculate residual stresses. Such analyses, however,
require a profound metallurgic knowledge and much computing power.
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Incorporating residual stress

In general, when assessing welded structures, no attention is paid to the stress
ratio. It is assumed that high tensile residual stresses (yield stress magnitude) at
the weld elevate the mean stress locally to such an extent that the effect of the
applied R ratio is negligible. Therefore, welded structures are usually said to be
relatively insensitive to the stress ratio [23].

However, when the fatigue properties of a welded joint are improved by intro-
ducing compressive residual stresses at the critical spots along the weld, it is of
course desirable to actively use the positive effect in design.

The possibility to improve the fatigue resistance of joints such as by intro-
ducing compressive residual stresses, is mentioned in the codes. But to account
for their beneficial effect is usually not allowed without experimental verification.
BS 8118 [14] has no means to include the effect of compressive residual stresses.
Eurocode 9 |[5] and the recommendations from ECCS [15] and IIW [6] introduce
a fatigue enhancement factor f(R) as a function of the applied stress ratio. The
factor applies to the fatigue strength at N = 2 x 10° cycles, whereas the fatigue
strength at N =1 x 10% cycles is not enhanced (in IIW the latter is not stated),
hence the S-N curve (log-log plot) is “rotated” about the point at N = 1 x 10*
cycles. In Eurocode 9 the data given are labelled “informative” only. If one in-
tends to actively use calculated or measured residual stresses, care must be taken,
since local plastic deformation due to a compressive overload will generate tensile
residual stresses, i.e., existing compressive residual stresses can be partly wiped
out.

2.2.3 The heat affected zone

Due to the heat input into the base material during the welding process, there is a
change in the micro-structure of the base material in a zone near the weld, the so
called heat affected zone (HAZ). This change may affect the material properties
and especially heat treated materials may experience a reduction in strength.
Pinho da Cruz et al. [24] investigated the impact of the HAZ in single lap joints
made from 6082-T6 aluminium alloy. They reported increased fatigue lives in the
joints that were T6 heat treated after welding, i.e., the joints with removed HAZ
had the greatest fatigue strength.

2.3 Nominal stress

In the nominal stress approach, all information concerning the local stress distri-
bution at the expected failure site is included in the S-N curve. Thus, a nominal
stress S-N curve is always connected to a certain geometry and load configuration.
Therefore, using nominal stress, a detail category (detail class, fatigue resistance
class) in the standard used, must be similar to the joint to be analysed. This
detail category possesses an S-N curve from which the endurable life or the allow-
able stress is found. The detail categories are usually defined through the fatigue
strength at N = 2 x 10% cycles. Structural stress concentrations (e.g. arising
from an attachment) and local stress concentrations due to the weld toe notch
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are already included in the S-N curves. Nominal stress is only applicable if the
joint to be assessed is geometrically simple, so that it is possible to define a nom-
inal stress and find a reasonable detail category. The stress may be found from
the basic principles of strength of materials (e.g. beam theory), an FE analysis
or strain measurements away from the weld. In the presence of gross geometrical
stress concentration (e.g. due to shear lag or cut outs), nominal stress must be
multiplied by an elastically calculated stress concentration factor to account for
those stress concentrations, if they are not included in the S-N curves.

2.4 Structural hot spot stress

The structural stress approach has been developed to enable the treatment of
cases, where nominal stress cannot be defined meaningfully and reduce the num-
ber of S-N curves. It is suited to treat fatigue failure starting from weld toes but
does not cover weld root failure. The terminology regarding this method is not
fully settled and the terms hot spot stress, geometrical stress, structural stress
and combinations thereof can be found in the literature. In NORSOK N-004 [25]
a nominal stress amplified by a stress concentration due to, for example, a cut
out is termed hot spot stress, which does not correspond to the usual definition.
The same stress is called modified nominal stress in Eurocode 9 [5]. IIW denotes
the structural stress at the “hot spot”, e.g., at the weld toe, the structural hot
spot stress, a convention that is followed in this work.

The structural stress is the actual stress in a structure, excluding the stress
peak caused by the weld toe notch, see Fig. 2.1. It is a combination of membrane
and bending stresses, i.e., it obeys a linear through-thickness distribution. Since
the structural hot spot stress is a fictitious value, it must be found either by means
of specially adapted parametric equations, by extrapolating structural stresses
outside the reach of the weld toe notch or by through-thickness linearisation.
Since the structural hot spot stress includes the stress concentrations due to joint
geometry, the number of detail categories can be drastically reduced. In fact,
Eurocode 9 [5] only takes the thickness of the stressed member into account,
whereas ITW [6] gives a reduced number of detail categories.

2.4.1 Structural hot spot stress from extrapolation
Strain measurements

The original method of finding the structural hot spot stress is to measure strains
at certain points ahead of the weld. From the measured strains the stress perpen-
dicular to the weld toe at these points is calculated and the structural hot spot
stress is found from extrapolating the stress back to the weld toe, cf. Fig. 2.1.
The strains should be measured perpendicular and parallel to the weld [6,17],
since both contribute to the stress perpendicular to the weld toe. The placement
of the strain gauges depends on the extrapolation method, the type of “hot spot”
and even on the design code or standard used. Doerk et al. [26] distinguished
between three different types of “hot spots”, whereas in the IIW documents [27]
and [6] the types are reduced to two. Type “a”, which is a weld toe on a plate
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Figure 2.1: Idealised stress distribution in a welded joint and
an illustration of the linear extrapolation method to calculate
the structural hot spot stress.

surface, i.e., the extrapolation points can be related to the plate thickness, and
type “b”, which refers to a weld toe at a plate edge, i.e., the structural hot spot
stress is unaffected by the plate thickness.

To find the structural hot spot stress at type “a” “hot spots”, the centre of the
strain gauges must be placed either 0.4¢ and 1.0¢, see Fig. 2.1, or 0.4¢, 0.9¢ and
1.4t away from the weld toe for linear and quadratic extrapolation, respectively.
Quadratic extrapolation is recommended for details with steep stress gradients.
The DNV document [28| recommends placing the extrapolation points 0.5¢ and
1.5t ahead of the weld toe or to use the stress value at 0.5¢ multiplied by 1.12.
Extrapolation points at 0.5t and 1.5t are also specified in NORSOK N-004 |25].

For type “b” “hot spots”, quadratic extrapolation with strains measured at
fixed distances 4, 8 and 12 mm away from the weld toe is recommended [6,27].

It is obvious that the physical length of the strain gauges limit the determi-
nation of the structural hot spot stress from strain measurements to rather large
plate thicknesses.

Finite element analysis

Instead of finding the structural hot spot stress based on strain measurements,
the stress results from a finite element analysis are often used today. The extrap-
olation points correspond to the positioning of the centre of the strain gauges
described above. Only coarse meshes with higher order elements where a single
element spans over the whole thickness in case of type “a” “hot spots” or elements
being as long as 10 mm at the weld toe for a type “b” “hot spot” receive different
extrapolation points. In these cases linear extrapolation from 0.5¢ and 1.5¢ (type
“a”) and 5 and 15 mm (type “b”) is recommended [6]. Due to the fixed extra-
polation points, type “b” “hot spots” are especially sensitive to the extrapolation
method [29].

Tveiten [30] and Tveiten and Moan [31] suggest a new surface extrapolation
method to calculate the structural hot spot stress based on the asymptotic be-
haviour of stress adjacent to an idealized notch. Plotting the stress distribution
ahead of the weld toe obtained from a finite element analysis with a very fine
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mesh, the region affected by the weld toe singularity shows a linear distribution
plotting the distance from the weld toe vs stress in log-log scale. Extrapolating
this linear distribution to the nominal stress the point that defines the separation
between the region influenced by the weld toe and the region influenced by the
structural stress is found. The region influenced by the structural stress ends
where the structural stress and the nominal stress coincide. To calculate the
structural hot spot stress, the stress in the region influenced by the structural
stress is fitted by a second order polynomial and extrapolated to the weld toe.
The applicability of this method is limited because of the very fine element mesh
required.

Problems

Finding the structural hot spot stress from extrapolation involves several diffi-
culties. Linear and quadratic extrapolation yield different structural hot spot
stresses, and both the finite element mesh density and the element type will af-
fect the result [32]. The mesh sensitivity has received considerable attention,
cf. [26,33-37|, since the aim is to obtain reliable results with the usually rather
coarse mesh in global finite element models. Specifications for the minimum
required mesh density are given in [6] and [17] for example.

The choice of the element type has an impact on how exact the weld and
its stiffness is modelled. Using solid elements the weld can be included in the
model directly. Often, however, the structure adjacent to the weld is idealised
by means of shell elements. Such elements model the mid-plane of a shell only
and have no natural means of taking the weld geometry into account. Inclined or
thickened shell elements or a combination of shell and solid elements may be used
to represent the weld. Tveiten [32], for example, analysing the T-joint treated
in this thesis, suggests using 20 node elements with 2 point reduced integration.
The main advantage of using volume elements lies in the fact that they provide
a natural means of representing the weld itself and hence its stiffness. This
advantage, however, requires a great increase in meshing effort and increased
computing time and in general prohibits the direct use of a global finite element
model.

In membrane loading a crack will be subjected to a constant stress field,
whereas a bending loading establishes a decreasing stress field. The surface stress
extrapolation method, however, gives no information on the degree of membrane
and bending stresses in the structure. Structural hot spot stress extrapolation
procedures that are based on surface stress extrapolation do not include the
stress field across the plate thickness, which will also influence the crack growth.
Different details showing the same extrapolated structural stress value may show
different stress fields in the plate thickness and, thus, also different crack growth
lives are predicted. Due to this, a uniquely determined design S-N curve based on
a structural hot spot stress derived from extrapolated surface stresses might be
questioned. However, the discrepancy from a single design S-N curve for different
details will likely be dependent on the failure criterion used (amount of crack
growth into different stress fields for different details).

Finally, the extrapolation of surface stresses is not especially suited to be
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used together with the finite element method, since the elements must be placed
and sized so that the stresses are available at the extrapolation points to avoid
additional interpolation.

2.4.2 Structural hot spot stress from linearisation

In the light of the difficulties mentioned above, alternative, more robust meth-
ods to calculate the structural hot spot stress are desired. If the structural hot
spot stress is to be found from a finite element analysis, employing the linear
through-thickness distribution of the structural stress seems to be a straightfor-
ward solution. If o(y) denotes the through-thickness stress distribution at the
weld toe, cf. Fig. 2.2, equilibrium of forces in the z-direction yields

Om = %/Ot ox(y) dy. (2.3)

Equilibrium of moments with respect to x =y = 0 gives

t2 t2 t
Om— + op— = / ox(y)ydy. (2.4)
2 "% ",

—> Y o

weld ty weld
S an )2 1 S,
X | X
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Figure 2.2: Determination to the structural hot spot stress from through-thickness
linearisation.

From Eqgs. 2.3 and 2.4 the membrane and bending stress components, o, and
oy, respectively, are found. Adding both components the structural hot spot
stress, oys, is obtained:

Ohs = Om + O - (2.5)

Extracting both the membrane and the bending component makes it possible to
account for their different impact on fatigue life, something that is not possible
when extrapolating surface stresses to find the structural hot spot stress.

In case of a non-monotonic through-thickness stress distribution, e.g., in a
symmetric joint, or for type “b” “hot spots” slightly modified linearisation strate-
gies are required, see next section.
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Battelle’s method

When proposing his method to calculate the structural hot spot stress, Dong [33]
addressed all the problems stated above. The method suggested is based on
through-thickness stress linearisation. Contrary to the procedure described in
the previous section, the linearisation is not carried out at the weld toe, but a
distance ¢ away in the z-direction. This introduces the shear stress 7, into the
equilibrium of moments, hence Eq. 2.4 becomes
t? t2 t t
Oy + b = / ox(y)ydy + 5/ Tuy (¥) dy . (2.6)
0 0
The distance 0 may be an element length, however, no actual value is recom-
mended as Poutiainen et al. [34] note. Evaluating the equilibrium at a distance
away from the weld toe avoids the singularity at the weld toe. Based on finite
element analyses of a longitudinal gusset on a plate Poutiainen et al. [34] point
out that all shear stresses (7yy, T,y and 7,,) must be included in the equilibrium
equations if 3D models are used. Accounting for all shear stress components and
choosing 6 <t¢, they obtain consistent results.

Type “b” “hot spots” are treated by linearising over a certain depth that cor-
responds to some critical crack depth. The governing equations are similar to
Egs. 2.3 and 2.6 and are found in [33].

Joints with a non-monotonic through-thickness stress distribution, e.g., sym-
metrical joints, are treated in a similar manner. The stress distribution is divided
where 7, changes direction and then linearised from this point to the upper and
lower surface.

Apart from symmetrical joints, where shell elements can not be used, both
shell and solid elements are applicable.

From numerous publications, mesh sensitivity appears to be the most dis-
cussed feature of Battelle’s method. Dong and co-workers [33,36,37] always claim
mesh insensitivity for their method. In a large comparison of different methods to
calculate the structural hot spot stress applied to different “hot spots” and load-
ing, Healy [38] concluded that although it is not fully mesh insensitive, Battelle’s
method is in most cases superior to surface extrapolation. In a work by Doerk et
al. [26], mesh sensitivity was found for 2D models, whereas the results from 3D
models were more scattered, which is believed to be due to omitted shear stresses
in the equilibrium equations in the 3D case. Poutiainen et al. [34] proved the
mesh insensitivity when all shear stresses are accounted for in the 3D case.

2.4.3 Further approaches

Based on through-thickness linearisation, Poutiainen et al. [39, 40| proposed a
structural hot spot stress calculation method that accounts for the relative weld
size. Similar to Battelle’s method for type “b” “hot spots” and symmetrical joints,
the non-linear through-thickness stress distribution is transformed into a bilinear
distribution using force and moment equilibrium. The two linear distributions
intersect at a depth below the weld toe equal to the weld leg length. With the
latter feature it is accounted for the relative weld size, i.e., the relative load
fraction carried by the weld.
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2.5 Effective notch stress

The nominal and structural stress approaches the effect of all or some of the stress
concentrations found in a structure are included in the S-N curves. The next
logical step is therefore to use the local stress at the expected failure site together
with some sort of “material S-N curve”. The major benefit is that whatever
the geometric detail looks like, the S-N curve is the same. The effective notch
stress approach described in this section is primarily applied to components,
not to welds. However, the effective notch stress approach according to Radaj,
cf. Section 2.5.4, which is a special variant of the general effective notch stress
approach, has been proposed for welded structures. It is therefore tempting to
try to apply the general to welded structures too.

2.5.1 Local stress

The local stress, o, may be related to the nominal stress, S, through the linear
relationship

g = KtS, (27)

where K is the elastically calculated stress concentration factor. Stress concen-
tration factors for a large number of geometric details can be found in Peterson’s
stress concentration factors [41]. If K; cannot be be obtained from handbooks, an
experimental investigation or an FE analysis must be carried out. There are, how-
ever, some serious limitations. It might be difficult or even impossible to exactly
measure the local stress peak. Employing an FE analysis, a detailed sub-model
is certainly required, since global models of larger structures seldom contain all
the details determining the local stress, e.g., radii and notches. Another problem
arises in welded structures. The local weld geometry (angle and radii) may vary
considerably along a weld seam and from weld to weld [18], hence modelling is
rather difficult, especially assuming a reasonable weld toe radius.

2.5.2 Notch sensitivity

Although it seems logical to relate allowable local and nominal fatigue stresses,
e.g., fatigue limit, via K, this is not generally correct and often gives too conser-
vative results. Fatigue properties are less sensitive to stress concentration than
the peak stress would suggest. Dowling [12] gives some reasons for this observa-
tion, where the two major explanations are stated below.

e Cracks that initiate at the surface will grow more slowly, if they propagate
into a region with decreasing stress than in the constant stress field of a
smooth fatigue specimen.

e From a statistical point of view, it is far less likely to find some sort of
crack initiation feature, e.g., unfavourable grain orientation or microscopic
defect, in the confined area at the notch tip than at the whole surface of a
smooth fatigue specimen.
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To account for the shortcomings of the stress concentration factor in fatigue
design, the fatigue notch factor, Ky, relating the fatigue-effective notch stress, oy,
to the nominal stress amplitude through

ofr = KfS, (28)

was introduced. The fatigue notch factor is then defined as K¢ = 04 /0 noteh;
where o and o noten are the fatigue limit of a smooth and a notched specimen,
respectively.

A number of empirical approaches to calculate K¢ have been suggested, see for
example [11,12,42] and the most widespread are included here. It is important
to note that, since all or some of the effects causing K; # K; act simultaneously,
and the real nature of the problem is not fully understood, all equations proposed
to incorporate the fatigue notch effect must be regarded as estimates.

According to Thum and Buchmann [43], the relation between the fatigue notch
factor and the stress concentration factor can be expressed as

Ke=1+¢q(K, —1). (2.9)

The parameter ¢ is called the notch sensitivity. For ¢ = 1 the maximal notch
effect is obtained, hence Ky = K;. In case of ¢ = 0, Ky = 1, which means that
the notch has no effect on the fatigue properties. Two equations to estimate ¢
will be discussed below.

Peterson’s and Neuber’s equations
Peterson [42] suggested estimating the notch sensitivity from

1

- 2.10
1+ po/p (2.10)

q

where p is the notch radius and p, a material constant with dimension length.
The smaller p becomes, hence the more confined the highly stressed area ahead
of the notch tip is, the closer to zero ¢ becomes. A large p yields ¢ close to unity,
which gives K¢ = K. Figure 2.3 demonstrates this behaviour plotting K¢ and K
as a function of the relative notch radius p/py. The stress concentration factor was
calculated for a round bar with a circumferential semi-circular notch subjected
to a tensile load. The equation to calculate K given in [44] was used, where the
net-section radius, r, was set to 10 mm. For aluminium alloys py = 0.64 mm,
which represents an average value, is given in [42] and used in Fig. 2.3. Usually
po varies with the tensile strength of the material. Therefore, empirical equations
to estimate pg are often based on R,,. It is certainly due to the lack of data that
an average pg for aluminium is given. From Fig. 2.3 it is seen that the smaller the
notch radius, and therefore the higher the stress concentration factor, the larger
is the effect of ¢ on Kj.

Neuber [45,46] suggested using the stress averaged over the so-called micro-
structural support length, p*, to avoid unrealistically high theoretical stress con-
centration factors for sharp notches. Applying this concept to the fatigue in



2.5 EFFECTIVE NOTCH STRESS

15

3.5 round bar with circumferential semi-circular notch p~ .
net-radius r= 10 mm, tension, Py = 0.64 mm } ‘
3 % ) .
SR .
0
_25F !
X
o
2 ,,,,,,,,,,,,,,,,,,
Kf (Peterson)
15-/ | ‘ | ‘ | AT o
1 1 l 1 1 1 1 1 1 1

Figure 2.3: Ky and K, as a function of the relative notch radius p/po using
Egs. 2.9 and 2.10 and the Ki-equation given in [44].

notched components, see Fig. 2.4, the fatigue-effective notch stress and the micro-
structural support length are related through

*

T=p

1

of = KfS = / U(QT)dQT (2.11)
P =0

Also, incorporating the micro-structural support length to estimate the notch

sensitivity, Neuber proposed

(2.12)

1
= —r——.
14+ +/2p*/p

Furthermore, Neuber suggested that the fatigue notch factor may be found
directly using the fictitious notch radius

pr=p+sp", (2.13)

where the support factor s accounts for the assumed strength hypothesis and the
type of loading. Typical values for s lie between 1 and 3 and can be found for
example in [11,18,46].

Stress gradient methods

There is an obvious problem with the methods described above. The use of K or
K requires the possibility to define a nominal stress. However, this is contrary
to the intention to treat problems with the effective notch stress approach where
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Figure 2.4: Relation be-
tween the fatigue notch fac-
tor and the micro-structural
support length, p*.

no nominal stress can be defined meaningfully. This problem becomes especially
evident, if FE results are to be used, since an FE analysis does not give stress
concentration factors but stresses. For generous notches, K; = K; may be a
sufficient assumption and the calculated stresses can be used directly. For sharper
notches K; < K, hence a method is required to reduce the calculated stresses
without having Ky. Usually, such a method is based on the modulus of the relative
stress gradient, y, at the notch root perpendicular to the surface of the notch:

1 do

Omax 4T

X = (2.14)

=0

In the case of U-notches in flat components or U-shaped circumferential notches
in cylindrical parts, x is well approximated by:

2
X = Xnotch T Xbending ~ ; + =, (215)

ISR V]

where p represents the notch radius and d denotes either the diameter or the
width of the component |11].

To illustrate the method, a first order approach will be developed. In its
simplest form, approximating the stress distribution near the notch root, see
Fig. 2.4, with a linear function, the following gradient approach may be derived:

1 Omax — Ot

2.16
Omax  P*/2 (2.16)

X%

Rearranging gives
of = (1 — %X) Omax - (2.17)

The relative stress gradient, y, and the local stress, omax, may be found from an
FE analysis. With p* known for the actual material, the fatigue-effective notch
stress, oy, can be calculated.
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Based on the work done by Siebel and co-workers [47-49] and included in [50],
the approach is founded on the idea that the material in the highly stressed region
directly ahead of the notch is “supported” by the lower stressed material deeper
inside the component. Contrary to Eq. 2.9 the fatigue notch factor and the stress
concentration factor are assumed to be directly proportional:

K
Kp=—, (2.18)
Ny
which will prove the main asset of this method, since it implies that the fatigue-
effective notch stress is directly proportional to the notch stress:

gf = KfS = = —. (2.19)

The proportionality factor, n,, is called support coefficient. Knowing this, the
fatigue-effective notch stress can be readily found from the local stress of an FE
analysis. The support coefficient may be estimated from the empirical equation

ny, =14 vp°x, (2.20)

introduced by Petersen [51]. The material dependent parameter, p°, is called the
slip layer thickness.

2.5.3 A comparison

Four different approaches to express the fatigue notch effect of a component have
been discussed and it must be interesting to see if they yield similar results,
something they should if they are applicable. Again, a round bar with a circum-
ferential semi-circular notch subjected to a tensile load is employed. Figgure 2.5
is obtained using the equation to calculate K given in [44] with the net-section
radius set to 10 mm. For aluminium alloys the material parameters were found
to pgp = 0.64 mm [42], p* = 0.2 mm [11] and p° = 0.075 mm [11].

The curves in Fig. 2.5 are relatively close to each other and more data, hence
more accurate material constants, may give even better results. As is often the
case, the material data are a weak point, especially in case of aluminium, where
only average values are given. Even the simple approach approximating the stress
distribution with a linear relationship, see Eq. 2.17, gives comparable results.

2.5.4 Radaj’s effective notch stress approach

Applying Eq. 2.13 to welded joints, Radaj [18] found that py = 1 mm, resulting
from the assumptions p* = 0.4 mm, s = 2.5 and p = 0, gives reasonable agree-
ment for welded joints in structural steel. The conservative assumption of p = 0
effectively bypasses the problem of identifying the actual weld toe radius, which
makes the method highly attractive. Both failure from the weld toe and the weld
root can be treated. This increases the applicability of the method compared to
the structural hot spot stress approach, which is only applicable to failures from
the weld toe. This version of the effective notch stress method is implemented
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Figure 2.5: K;/K, as a function of the notch radius p comparing Peterson’s
and Neuber’s approaches and the gradient approaches Eqs. 2.17 and 2.19. The
equation to calculate K; was taken from [44].

in various design codes, e.g., |6,28]. The fatigue notch factors obtained using
pr = 1 mm are tabulated for a wide range of different joint geometries in [18], or
can be calculated with an FE analysis. Both DNV [28] and IIW [6] recommend
to use pr = 1 mm for joints made from plates thicker than 5 mm only.

I[TW recommends to use pr = 1 mm for aluminium alloys too and suggests a
design curve (FAT 75). However, since p* = 0.1...0.2 mm applies for aluminium
alloys (2000 series) [46], strictly following Radaj’s reasoning would lead to pr =
0.25...0.5 mm, a fact that also Sonsino et al. [52| pointed out.

2.5.5 Principal or equivalent stress

When using the effective notch stress approach, the question appears which stress,
maximum principal or an equivalent stress (Tresca, von Mises), should be used.
Figure 2.6 compares the Tresca, von Mises and maximum principal stress surfaces.
Actually, the maximum principal stress criterion is mainly used as a fracture
criterion for brittle materials, e.g., cast iron. In quadrant I, however, it is equal
to the Tresca criterion. Comparing the principal and the von Mises stress criteria
it is seen that in quadrant I the principal stress surface is inscribed in the von
Mises ellipse, thus the principal stress criterion is the more conservative of the
two. However, both criteria differ with a maximum of 15 % in quadrant I, hence,
in most cases it is not important which of the two is used. In quadrants IT and
IV the von Mises stress is more conservative than the maximum principal stress.

Using the von Mises equivalent stress care must be taken, since the spot with
the highest stress might be in compression (the negative sign is lost), i.e., it will
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Figure 2.6: Tresca, von Mises and maximum principal stress surfaces.

not be the spot most that is critical to fatigue.

Traditionally the principal stress perpendicular to the weld is used with the
structural hot spot stress approach, whereas local approaches usually apply the
von Mises equivalent stress. Both conventions are followed in this work.

2.6 Crack propagation analysis

A typical application of a crack propagation analysis would be to check if a
detected crack (or a crack just smaller than detectable) will grow to a critical size
before the next inspection. It is obvious that an initial crack or crack-like defect
is required for this method to work.

It is obvious too, that cracks may be different in shape and size and that
they may either lie inside a body or on its surface and that these characteristics
are important with respect to the behaviour of the crack. In the introduction
to [53], Miller and de los Rios classify cracks according to their size. A crack is
considered physically short when its dimensions are comparable to the size of the
microstructural units in the material, e.g., grain size, hence the crack propagation
behaviour cannot be described using continuum mechanics. Whether a crack can
be classified as geometrically short or long depends not only on its size, but also
on the loading, hence the size of the plastic zone. A crack is geometrically short,
when it is larger than a couple of grains but still small compared to the plastic
zone around the crack tip. Finally, a crack is called long when it is large compared
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to the plastic zone at its tip. It must be noted that, if subjected to high enough
loads, a long crack can behave like a geometrically short crack [53].

2.6.1 Linear elastic fracture mechanics

Linear elastic fracture mechanics (LEFM) states that the singular stress field
ahead of a crack tip is completely described by the stress intensity factors Ky, Ky
and Kpp, which correspond to the three basic crack surface displacement modes.
Often mode I is dominant and the contributions from modes II and III can be
neglected. The stress intensity factor, denoted by K, is defined as

K = FSyma. (2.21)

F' is a function of geometry, crack size and loading, S is the applied nominal
stress and a the crack depth. Since fatigue failure is caused by variable loading,
K and S in Eq. 2.21 are replaced by the stress intensity factor range, AK, and
the stress range, AS, respectively:

AK = FASy/7a. (2.22)

2.6.2 Crack propagation behaviour

When plotting the crack propagation rate, da/dN, versus the stress intensity
factor range, AK, using logarithmic scales, a plot similar to Fig. 2.7 is usually
obtained for long cracks in metals. Below the threshold stress intensity factor
range, AKy,, a long crack does not propagate. When AK exceeds AKy, the
crack will start to propagate with a low but rapidly increasing crack growth
rate. Eventually the propagation rate reaches the straight part of the curve (log-
log linear), which is often referred to as stable crack propagation phase or Paris’
regime. During this propagation phase, the da/dN versus AK plot is given by the
simple power-law suggested by Paris and Erdogan [54], Eq. 2.23. Finally, when
Kinax 18 getting close to the fracture toughness of the material, K., unstable crack
propagation occurs and within relatively few cycles the component will fracture.

Crack propagation laws

A considerable number of crack propagation laws exist which aim at one or more of
the above-mentioned crack propagation phases. Summaries are found for example
in [55] and [56] and four crack propagation equations will be briefly discussed
below.

Paris’ law: The most frequently used model to describe crack propagation was
suggested by Paris and Erdogan [54] and is usually referred to as Paris’ law.
Assuming a power-law relationship between the crack propagation rate and the
stress intensity factor range of the form

da
— =CAK™ 2.2
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Figure 2.7: Principle propagation behaviour of a long crack and Paris’ idealisation.

it accounts for the period of stable crack propagation only. Hence, when plotted
to logarithmic scale, Eq. 2.23 is represented by a straight line, see Fig. 2.7. In
such a diagram the exponent m is the slope of the curve and C' defines its vertical
position. Paris’ law is dimensionally problematic since the term powered by m is
not dimensionless, hence the dimension of C' depends on m. Attempts have been
made to solve this problem, see for example Bergner and Zouhar [57|, however
no alternative to Eq. 2.23 has succeeded so far. Paris’ law does not describe the
regions near AKy, and Kj.. The effect of mean stress is handled by allowing C'
to be a function of R. This is discussed in detail in Chapter 3.

Klesnil and Lukas equation: Klesnil and Lukas 58] suggested the following
equation to extend Paris’ law into the near threshold region:

da " "

This equation approaches the additional constant AKj, asymptotically. The
following, slightly different form, which falls more rapidly (usually too rapid)
below Paris’ law when approaching A Ky, is also found in the literature:

da m
v = C(AK = AKy)™ . (2.25)

Forman equation: An attempt to extend Paris’ law into the region near final
fracture and to include the mean stress dependency was proposed by Forman et
al. [59]. They suggested the following relation:

da - CI (AK)ml

AN ~ (1-R)Kj. — AK " (2.26)




22

CHAPTER 2. FATIGUE LIFE ASSESSMENT METHODS

This equation approaches the materials fracture toughness, Ki., asymptotically
and varies with mean stress, but still ignores the region near threshold. An addi-
tional constant, K., has been introduced and the constants C'; and m; differ from
those in Paris’ law. Except from its ability to deal with mean stress, Forman’s
equation does not represent a large improvement to Paris’ law when considering
high cycle fatigue, since the phase of unstable crack propagation usually repre-
sents only a negligible part of the total life and is rather unwanted.

Erdogan and Ratwani equation: Erdogan and Ratwani [60]| proposed the
following equation to include near threshold and near final fracture behaviour
and to account for the mean stress dependency:

da  Cy(AK — AKy)™

dN = (1-R)K;.— AK °
This equation approaches both K. and AKy, asymptotically, thus it includes all
three crack propagation phases and varies with mean stress. However, the de-
pendency of AKjy, on mean stress is not explicitly accounted for. Two additional

constants, K. and AKy,, are required compared to Paris’ law and the constants
(5 and my differ from those in Paris’ law.

(2.27)

Discussion

A description has been given of the approach to approximate the stable crack
propagation behaviour by a straight line when da/dN is plotted versus AK us-
ing logarithmic scale and three equations, which attempt to include either the
near threshold or the near final fracture behaviour or both. Other, often more
complicated equations exist, but they usually require even more material param-
eters. Not only if those data are lacking, something that is not uncommon, Paris’
law is favourable because of its simplicity.

Measured crack propagation data often suggest that approximating stable
crack propagation behaviour by a straight line may be quite rough. Instead, the
behaviour may be modelled using Paris’ law on a piecewise basis or higher order
equations must be used. However, the gain is always bounded by the availability
and quality of experimental data.

Applying Paris’ law, starting at AKy,, will underestimate life since da/dN
near the threshold is over-predicted. On the other hand, the real near threshold
behaviour is difficult to assess and, if the cracks are geometrically small, they
may propagate below the long crack propagation threshold and this in addition
at high crack propagation rates. Extending Paris’ law to the region of unstable
crack propagation, the number of cycles spent when approaching K. is overesti-
mated. However, the error made is very small, since the period near final fracture
contributes only a small fraction to the total life.

2.6.3 Estimating fatigue life

Introducing Eq. 2.22 into Paris’ law (Eq. 2.23) gives

da m
w-C (FASyma)™ . (2.28)
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Integrating Eq. 2.28 from an initial crack length ¢; to a crack length a¢, where for
example final fracture occurs, results in the number of cycles, N, spent during
crack propagation
1 i
—m
No =5 a5V / (Fva) "da. (2.29)
a;i

For a semi-elliptical surface crack, with depth a and surface width 2¢, a di-
mension is added and the crack will not only propagate into the component
(a-direction), but also along the surface (c-direction). In general the stress inten-
sity factor is different in the two directions, which leads to a varying a/c ratio.
This problem is briefly discussed in Appendix B. Geometry and loading make the
situation usually even more complicated in a real structure, leading to a change
in crack shape and out of plane crack propagation. These cases are not discussed
in this work.

In general, to solve Eq. 2.29, numerical integration is required, but in cases
where F' can be assumed to be constant, the integral can be solved analytically
leading to

N, = 2 ! ! (2.30)
p m m—2  m—2 :
(m—2)C (FASﬁ) aiT afT
In the case when m = 2, Eq. 2.30 becomes
1
I (2.31)

Ny=————
nC (FAS)”  a
Summing or integrating Paris’ law?

Examining Eq. 2.30, it is seen that, if the final crack depth is set to infinity and
2—m

m > 2, the number of cycles, N,, is proportional to a; 2, hence an infinitely
deep crack is created within a finite number of cycles. The reason for this paradox
lies in the fact that crack propagation is not a continuous process as is assumed
when integrating Paris’ law. Instead, idealized, a crack propagates an amount
Aa in each cycle. Replacing the differential operator, d, with A in Eq. 2.28 the
crack extension per cycle can be expressed as:

Aa = C (FASyma)™ . (2.32)

Summation gives the final crack depth as
Np Np
af:ai—i-ZAak:ai+C<FASﬁ)mZa,?, (233)
k=1 k=1

where the number of crack propagation increments corresponds to the number
of cycles required to propagate the crack from a; to a;. Summation gives the
expected infinite number of cycles to reach an infinitely deep crack. In Fig. 2.8,
the difference between integrating and summing Paris’ law is illustrated.
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Figure 2.8: Comparison of the final crack length versus number of cycles for a crack
with an initial crack depth ¢; = 0.1 mm (F = 1.12, m = 4.0, C =2 x 1071, AS =
550 MPa) when either integrating or summing Paris’ law: (a) initial propagation, (b)
near asymptotic behaviour.

It must be noted that the smaller the number of cycles to reach a certain
crack depth, hence the larger AS or C, the greater is the difference between
integrating and summing. This behaviour is due to the fact that the larger
the crack propagation increments Aa become, the larger the error made when
assuming them to be infinitely small (da). To obtain a clearly visible difference,
AS = 550 MPa was used in Fig. 2.8. Most practical cases will not suffer from the
error made when integrating Paris’ law, since, using Eq. 2.30 or 2.33 for realistic
crack depths and loads, no considerable difference in the fatigue life is obtained.
In addition, often numerical integration is required, which is nothing else than
some sort of summation.

2.6.4 An engineering method to treat short cracks

Paris’ law is strictly valid for the stable growth of long cracks only. To account
for geometrically short cracks, an approach suggested by El Haddad et al. [61],
introducing the effective AK definition

AK = ASy/7t(a + a*), (2.34)

may be used. The parameter a* is often called characteristic or intrinsic crack
length. Hérkegard [62] generalized this approach to surface cracks by including
the geometry function F":

AK = FAS+/n(a + a*). (2.35)
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The characteristic crack length, which marks the intersection between the be-
haviour of a structure containing a long crack and a non-cracked structure in the
Kitagawa-Takahashi-diagram [63], see Fig. 2.9, is found from

1/ AKqy \2
£ _ = 2.
“ Tt <FAO'A) ’ ( 36)

where Ao, is the fatigue limit. AKy, and Ao, depend on mean stress. If
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Figure 2.9: Kitagawa-Takahashi-diagram.

the mean stress dependencies can be expressed with Walker’s equation, cf. Sec-
tion 3.3, and v, = va, a* is found to be independent of mean stress. However,

in general v, # Ya.
Using Eq. 2.35 in combination with Paris’ law, gives an increased crack propa-

gation rate at stress intensity factor ranges near A Ky, which is shown in Fig. 2.10.
The curve in the Kitagawa-Takahashi-diagram, which divides between stresses
that lead to fatigue failure and those that are safe,

AK = FAS\/n(a +a*) = AKy,, (2.37)

depends on the crack configuration (a, F'). Substituting a and a* by

1/ AK \? . 1 [ AKy 2
a = % <m> and a = ;{ (FAO‘A) y (238)

leads with some manipulation to

AK \? AS \?
(m) +(_A0A) 1 (2.39)
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Figure 2.10: Crack propagation rate versus stress intensity factor range with
and without a*.

This equation is independent of the crack configuration [64] and can be seen
as some sort of failure assessment diagram, see Fig. 2.11, which combines the
fatigue assessment of cracked and non-cracked structures. The diagram offers
the possibility to assess cracks which are too short to be treated with respect
to AKjyy, but are still too long to be assumed non-existent, hence the transition
between initiation and propagation. A structure subjected to a combination of
AS and AK that lies outside the quarter ellipse described by Eq. 2.39 will fail,
whereas combination of AS and AK inside the quarter ellipse will have infinite
life.

2.6.5 A crack at a weld toe

A crack starting at a weld toe is subjected to an inhomogeneous, rapidly decreas-
ing stress field caused by the global and local stress concentrations. Especially
if the initial crack is short, it will be subjected to the high peak stress near the
component surface. The crack propagation approach described so far does not ac-
count for the effect of a stress concentration resulting from, for example, a notch.
Approaches to include this effect in a crack propagation analysis are described
below.

The weld toe magnification factor

The influence of several geometric features such as crack shape, component thick-
ness and width, are accounted for by the geometry factor, F'. Therefore, it seems
straightforward to account for the stress raising effect of a weld by introducing
an additional factor. This factor, usually called weld toe magnification factor
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Figure 2.11: Applied Stress range as a function of stress intensity factor range.

and labelled M, is formally defined as the ratio of the stress intensity factor of a
crack at the weld toe and the stress intensity factor of the same crack in a plate
subjected to the same external loading:

K(plate with welded attachment)

My =

(2.40)

K(plate without attachment)

The stress intensity factor range definition for a crack at a weld toe then becomes
AK = MyFASy/ma. (2.41)

It is obvious that My cannot be constant, since, as the crack propagates, the
influence of the stress peak decreases. M) has a sharp peak at the surface that
is rapidly decreasing into the material [65], see Fig. 2.12. Therefore, an equation
or a set of equations is required to express the M) factor as a function of crack
parameters, geometry and loading. Especially in case of two dimensional cracks,
these equations become very complex, see Appendix B.3.

Equations to calculate My can be found in [66,67| and an example is given in
Appendix B.3.

Using the local stress distribution

This method is similar to the one described above. Instead of multiplying by a
weld toe magnification factor obtained from a case geometrically similar to the
one that is to be assessed, the geometry factor, F', is modified to match the local
stress distribution. To follow such an idea frees the approach from the restriction
to certain joint geometries for which an M) factor equation is available, because
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Figure 2.12: Geometry factor F' at the deepest point of a semi-elliptical surface
crack in a plate subjected to pure tension (a/c = 0.5, Newman and Raju [68]) and
the weld toe magnification factor, My, for a similar crack at the weld toe (a/c = 0.5,
I/t = 1.75, 6 = /4, zero weld toe radius, Bowness and Lee [67]) as functions of a/t:
(a) deepest point, (b) surface point.

the geometry is reflected in the local stress distribution. This requires the local
stress distribution to be known, i.e., a very detailed finite element analysis is
needed.

Pommier et al. [69] provided a set of equations to calculate the geometry fac-
tor of a semi-elliptical surface crack subjected to a stress field where the stress
distribution along surface and depth direction is approximated by a polynomial.
However, both distributions may together not exceed a cubic polynomial. As-
suming, for example, the stress along the surface to vary linearly, the stress in
depth direction can be approximated with a quadratic equation. If the stress
along the surface is constant a cubic stress approximation in depth direction is
allowed. Since, deriving the set of equations, a semi-infinite plate was assumed,
Pommier’s solution is only valid for a crack depth up to a/t ~ 0.25, where t
denotes the plate thickness.

Carpinteri et al. [70] developed a method to find the geometry factor of a
semi-elliptical surface crack subjected to a non-linear stress field by superposition
of geometry factors from elementary unit stress distributions (constant, linear,
quadratic, cubic, forth and fifth order). They obtained the elementary geometry
factors, F,,, n =0...5, from finite element analyses covering 0.1 < a/t < 0.7 and
0.1 <a/c <1.2. In contrast to Pommier et al. [69], F}, was not approximated by
a set of equations, but collected in a large table. According to their suggestion,
the local stress distribution can be approximated by any continuous function that
is five times differentiable. However, since this function is then approximated by
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a fifth order polynomial using a Taylor series expansion, it seems reasonable to
use a fifth order polynomial, e.g.,
5
o
ﬂ = BO + BlT] + BQT]2 +...+ B5775 = Z Bnnn s (242)
S n=0

The rather unusual definition of the coordinate 7 is shown in Fig. 2.13. Having
the stress distribution in terms of 7, the geometry factor corresponding to the

given stress distribution is directly found from:

5
F=) F.B,. (2.43)
n=0

Figure 2.13: Definition of the
coordinate 7).

Expressing the local stress distribution as a function of n is inconvenient. It
is much more practical to give it in terms of z or £ = x/t, e.g.,
o(z/t 2 SN e
—g = Aot AL A+ A = AL (2.44)
n=0
Thus, a method is required to extract the coefficients B,, from such an equation.
Substituting z = @ — w and 1 = w/a gives after some manipulation:

11 1 1 1 11 [ A | [ B, |
0O -1 -2 -3 -4 =5 Ao By
o 0 1 3 6 10 Asa? _ | B (2.45)
0 0 0 -1 —4 =10 | | Asd? By |’ '
o 0 0 0 1 5 Ayt B,
L0 0 0 0 0 -—1]/] A5 | | Bs |
where a = a/t. Equation 2.45 is equivalent to
~ (" dMo()/S
B, = nz:% ST (2.46)

T=a

To enable the treatment of cracks shorter than o = 0.1, Huth [71] linearly
extrapolated the F,, values at o = 0.1 and 0.2 down to a = 0.025. Another
possibility would be to use the F), values at & = 0.1 unchanged for shorter cracks
too. This should be a good approximation, since the elementary geometry factors
converge towards a constant for &« — 0. An extrapolation to cracks deeper than
a/t = 0.7 in a similar manner becomes insecure when approaching o = 1. This
is not a serious problem, since only a minor part of the propagation life is spend
in this region.
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Thoughts on using the local stress distribution

The solutions developed to find the stress intensity factor of a crack subjected
to the rapidly decreasing stress field ahead of a notch are usually based on finite
element calculations of a crack in an unnotched plate. Considering the notch
shown in Fig. 2.14a, a crack will be subjected to

K = FK,Sv/ma, (2.47)

as long as a < d. As a increases, K will converge towards

K = FSy/m(a+d). (2.48)

Hence, the notch depth will act as a part of the crack, which is illustrated in
Fig. 2.14b. The real behaviour is marked by the curve connecting the two a-
symptotes. An equation describing this curve has been proposed by Jergéus [72]
and later generalised by Harkegard [62]:

K = 1.128VnD, (2.49)

where the “equivalent” surface crack depth D is defined as
a
D:a+d[1—exp (——,)} . (2.50)
a

The transition crack depth o’ marks the crack depth at which the two asymptotic
solutions coincide, i.e.,

d
a=———. 2.51
K:—1 (251)
A more detailed discussion on using asymptotic solutions to calculate K for a
crack emanating from the root of a notch is found in Wormsen et al. [73].
The situation is slightly different in case of a stress raiser similar to Fig. 2.15a.
Here there is no notch depth that will “add” to the crack depth when the crack

becomes deeper. Therefore, the stress intensity factor is defined as

" { FK,S\/7a a<r (2.5
FSy/ma arrT
The two asymptotes and the real behaviour are illustrated in Fig. 2.15b.
Approximating the stress intensity factor, i.e., the geometry factor, using
solutions obtained from cracks in unnotched plates as described in the preceding
section, the effect of the notch depth acting as a part of the crack, see Fig. 2.14, is
not accounted for, which may lead to non-conservative life predictions. For cracks
propagating from stress raisers similar to Fig. 2.15a, which are representative for
weld-like notches, such a problem is not encountered.
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a

Figure 2.14: (a) Crack at the root of a notch and (b) behaviour of the stress
intensity factor as a function of a.

a) Sl b) a

Figure 2.15: (a) Crack at the root of a shoulder fillet and (b) behaviour of the
stress intensity factor as a function of a.






CHAPTER 3

The influence of mean stress on fatigue
crack propagation

This chapter addresses the mean stress dependency of the fatigue process with
an emphasis on fatigue crack propagation. After a short introduction Walker’s
equation and variations thereof are discussed. To evaluate their applicability
they have been fitted to crack propagation data from several aluminium alloys. A
modified least mean squares method has been derived to fit the crack propagation
data to Walker’s equation. Then a new mean stress equation, which covers the
whole range from —1 < R < 1 with a single expression, has been proposed and
evaluated.

The main focus is directed at equations that directly address the mean stress
dependency of crack propagation data. Crack closure based mean stress equations
are briefly mentioned only. These equations relate the closure behaviour of a crack
to its growth rate. This physical basis makes the method attractive, however,
as Kujawski [74-76] points out when proposing a variation of Walker’s equation,
relating crack growth data to crack closure data the results are not always distinct.

3.1 Introduction

Though it is the stress amplitude that drives crack initiation and propagation, a
tensile mean stress accelerates and a compressive mean stress retards the fatigue
process. Both must therefore be considered in analysis. The mean stress level
is often, especially in association with crack propagation, characterized by the
stress ratio, R, which is defined as

min Kmin
R=Tmin _ . (3.1)

Omax Kmax

Consequently, instead of referring to the mean stress dependency, the terms “stress
ratio effect” or “stress ratio dependency” are often used.

33
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If material data such as the fatigue limit, S-N-curves, the threshold stress
intensity factor range and the crack growth rate, are available at the stress ratio
prevailing in the component to be designed, those data can be used directly.
However, this is often not the case and, having variable amplitude loading, the
stress ratio will be a variable itself. Therefore, a relation to adjust the fatigue
strength to a certain mean stress or stress ratio is generally required.

For welded joints the picture is usually slightly different. They already con-
tain mean stresses in form of residual stresses resulting from contraction of the
weld whilst cooling down. Residual stresses are self-equilibrating and vary be-
tween tension and compression. They may reach yield stress magnitude, hence
the high residual stress will dominate over the applied mean stress. This re-
sults in high stress ratios at the weld that are almost independent of the applied
stress ratio, which explains the relatively weak mean stress dependency of welded
structures. From this point of view, it seems paradoxical that this work has a
focus on embedding the mean stress dependency in analysis. However, with the
introduction of extensive and well documented methods and recommendations
for fatigue life enhancements suggested by ITW [10] and allowed for in, e.g., [5],
and the significant improvements made in welding simulations of aluminum al-
loys recently made, [32,77,78|, the importance of qualitatively coping with mean
stress dependency has become much more important. Being able to introduce
favourable residual stresses at the expected failure site, it is desirable to predict
their positive effect in analysis, hence, to be able to use them in design.

3.2 Mean stress equations — a short introduction

3.2.1 Fatigue crack initiation

To transform the fatigue limit or an S-N curve, which is not given at the required
mean stress, a Haigh-diagram (plotting o, versus oy,) is often used. If such
a diagram cannot be based on experimental data obtained at different mean
stress levels, a number of equations to approximate the mean stress effect have
been proposed, see for example [11,12]. Common approaches are the modified
Goodman equation

Oa Om

— 4+ —=—=1 3.2
UW+Rm ’ ( )

and the equation suggested by Gerber

oa 02

e TR 1. (3.3)
Gerber’s equation is only valid for o, > 0. Since the modified Goodman equa-
tion is usually quite conservative at higher mean stresses, it has been modified by
replacing R,, with either R, the true fracture strength of the material, or of, the
factor from Basquin’s law, Eq. 2.1, representing the S-N curve of an unnotched
specimen at o, = 0. This modification is usually ascribed to Morrow [79]. It
is of little importance if either Ry, or ot is chosen, since they are often approx-
imately equal. In addition, the line described by the modified Eq. 3.2 is cut off
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at o, + 0, = Ry, hence the part where the difference between ém and of would
have the largest effect is not included. Fig. 3.1 illustrates both Eq. 3.2 and its
modification assuming of = 2R,,,. Another approach, which works especially well

Figure 3.1: Approximated Haigh-diagram.

for aluminium alloys [12|, has been proposed by Smith, Watson and Topper [80].
They define an effective stress amplitude at o, = 0, 0, swr, as

Oa,SWT = v/ O0aOmax » (34)

where linear elastic behaviour is assumed. This relation is included in Fig. 3.1
as well. The stress ratio equation suggested by Walker [81] will be described in
Section 3.3.

3.2.2 Fatigue crack propagation

The main reason for the crack propagation rate to vary with R is crack closure,
which was first investigated by Elber [82]. The higher the mean stress, hence the
higher R at given Ao, the longer a crack is open during a stress cycle, thus the
larger is the part of the cycle that contributes to crack propagation. The con-
tributing part of the cycle is usually called the effective part. For the aluminium
alloy 2024-T3, Elber suggested an effective stress intensity factor range

AKer piber = Kmax — Kop = (0.5 + 0.4R)AK (3.5)

with a validity range of —0.1 < R < 0.7. To cover negative stress ratios, Schijve
|83] modified Elber’s approach to:

AKef sehijve = [0.55 + (0.45 — a) R + aR*]AK . (3.6)
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Using o« = 0.12, Schijve obtained the best fit for the aluminium alloy 2024-T3
covering —1 < R < 1. From Eq. 3.5 it follows that AK(R = 0) = 2Keg giber-
Using this relation to eliminate Keg piner in Eq. 3.5, the resulting relation is plotted
in Fig. 3.2. After having eliminated Keg schijve in Eq. 3.6 in the same manner, this
equation has been included in Fig. 3.2.

Both Elber’s and Schijve’s equations are based on crack closure data. An
equation to describe the mean stress dependency of crack propagation data di-
rectly will be discussed in detail in the next section.

3.3 Walker’s equation

Walker [81] proposed an effective stress range at R = 0, Aowaier, for crack
propagation and fatigue failure of non-cracked structures as a function of the
maximum stress, omay, and the stress ratio, R, as

AO-Walker = (]- - R)’y Omax - (37)
Expressing opmay in terms of stress range and stress ratio, on.e = Ao/(1 — R),
and introducing it into Eq. 3.7 gives

Ao

R (3.8)

Ao Walker —

3.3.1 Fatigue crack initiation

As indicated in Section 3.2.1, the influence of mean stress on the fatigue of non-
cracked structures and the fatigue limit is often given in form of a Haigh-diagram.
Replacing stress range with stress amplitude in Eq. 3.8 and setting 0,(R = —1) =
ow, giVes Ta walker = Ow/ 21=7a Applying this relation to eliminate Oa,Walker, and

introducing Eq. 3.1 gives
1=va
ow Om — Oa
= l———- 3.9
21—ya ( Om + Oa) 7 ( )

and after some manipulation

Oa

1
Om ow O, \ a1 Oa

o [(2)P ) 50
This function, assuming ow = 0.4R,,, is plotted together with the modified Good-
man and the Morrow line in the Haigh-diagram in Fig. 3.1. It can be seen that
Walker’s equation using v = 0.5 is in good agreement with the modified Goodman
line for —1 < R < 0.5. v = 0.6 results in a behaviour that lies in between the
modified Goodman and the Morrow line. As for Morrow’s approach, the curve
described by Eq. 3.10 must be cut off at o, + 0, = Ry,.

Setting v = 0.5 and R = —1, Eq. 3.8 yields

Ao

Ac(R=—-1) = V2Aowalker = V2——.
0( ) \/_ OWalk \/_m

(3.11)
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With 1 — R = Ao /opax and Ao = 20, Eq. 3.11 becomes
Oa(R = —1) = \/OaOmax = Oaswr (3.12)

which is identical with the effective stress proposed by Smith, Watson and Topper
[80]. Hence, the equation by Smith, Watson and Topper is seen to be a special
case of Walker’s equation.

3.3.2 Fatigue crack propagation

Expressed in terms of the stress intensity factor range, Walker’s equation, Eq. 3.8,

becomes
AK

(1-R)""
At positive stress ratios the exponents usually take values between 0.3 and 0.8,
where v = (0.3 gives a strong and v = 0.8 a weak dependency on R, cf. Fig. 3.2.
When a crack is closed, it will not propagate, hence the part of the cycle during
which the crack is closed does not contribute to propagate the crack. Assuming
a crack to be closed when subjected to a compressive load, only K., drives the
crack if R < 0. This behaviour is obtained by setting v = 0, which gives
AK

AKwalker = 1_Fk = Kax - (3.14)

A[{V\lalker = (313)

A more detailed discussion about how to apply Walker’s equation to relate avail-
able material data to the loading situation is given in Appendix A.

2
Walker,y=0
1.5+ B
Schijve
g
g Walker,y=1
'Y 1+
<
%
<
05F Elber N
Walker,y=0.8
Walker,y=0.3
0 | | |
-1 -0.5 0 0.5 1

R

Figure 3.2: Graphical representation of Walker’s equation (Eq. 3.13) for different
exponents, Elber’s and Schijve’s equations (Egs. 3.5 and 3.6, respectively).
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3.3.3 The Walker exponent

If the mean stress dependency of crack propagation data is to be expressed by
Walker’s equation, the Walker exponent must be known. If crack propagation
data at two different mean stress levels are available, a Walker exponent could
be calculated directly. However, due to the large scatter in data, it is a rather
unreliable method to base the Walker exponent on values at two stress ratios only.
Having crack propagation data at more than two different mean stress levels, the
Walker exponent can be found by means of linear regression.

In Table 3.1 crack propagation data for the aluminium alloys 7075-T6 and
2024-T3 obtained from [5,12,84-91] are given. Having data at different R val-
ues, the Walker exponent is now calculated using a modified least mean squares
method (see Appendix A.3). It must be mentioned that in most sources the crack
propagation data are given in form of da/dN versus AK plots. This requires a
visual curve fit, which, of course, is quite a subjective process. In addition, the
experimental data do not always represent the complete phase of stable crack
propagation and can often only roughly be fitted by a straight line.

A Walker exponent valid throughout the phase of stable crack propagation
requires that the exponent m in Paris’ law is not a function of R. However, this
is not the case for the crack propagation data given in Table 3.1. One possibility
to overcome this problem would be to rotate all curves to match a mean slope.
Choosing the pivot points in a region (da/dN or AK) characteristic for the initial
crack size to be analysed would be reasonable, since most of the life is spent there.
Another possibility to deal with the different exponents would be to calculate a
Walker exponent at different da/dN levels, hence to make v a function of da/dN.
Here, v was calculated at da/dN = 1x107%, 1x 1077 and 1x 107% m/cycle. The
points obtained, as well as the regression lines are plotted in Fig. 3.3 and Fig. 3.4
and the corresponding Walker exponents are given in Table 3.2. In addition,
Fig. 3.3 and Fig. 3.4 contain lines described by Elber’s and Schijve’s equations.

It is seen rather unexpectedly, that the Walker exponents vary insignificantly
between the three different da/dN levels. For positive stress ratios, a Walker
exponent of approximately 0.64 fits the experimental data for the 7075-T6 alu-
minium alloy best. Walker [81] and Dowling [12] suggested v = 0.425 and
v = 0.64, respectively. With v = 0.61 a slightly lower value suits the data
for the 2024-T3 aluminium alloy. For this alloy [81] and [12]| give v = 0.5 and
v = 0.68, respectively. It is also seen from Fig. 3.3 that taking v = 0 for negative
stress ratios is a good assumption in the case of the 7075-T6 aluminium alloy.
Reliable predictions regarding the Walker exponent for the 2024-T3 aluminium
alloy at negative stress ratios cannot be made due to the lack of data. However,
there is a tendency towards a positive Walker exponent at negative stress ratios.

Taking the relatively large scatter in the da/dN data into account, a Walker
exponent y(R < 0) = 0.6 would be a realistic assumption for both alloys.

In Chapter 4 will be investigated if v = 0.6 is applicable to the 6082-T6
aluminium alloy as well.
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Table 3.1: Paris constants for the aluminium alloys 7075-T6 and 2024-T3.

Source

R

7075-T6
C
(m/cycle,

MPay/m)

m

2024-T3
C
(m/cycle,

MPa,/m)

Broek and Schijve [84]

Bu and Stephens [85]

Donald and Paris [86]

Dowling [12]
DTDH [87]

Duran et al. [88]

Eurocode 9 [5]

Fleck and Anderson [89]

Hudson [90]

Wu et al. [91]

0.66
0.57
0.50
0.38
0.29
0.17
0.06
0.50
0.05
-1.00
0.70
0.10
0.00
0.70
0.50
0.33

0.10
0.00

-0.33
-0.60
-1.00
0.70
0.10
0.80
0.10
0.75
0.50
0.10
0.80
0.70
0.50
0.33
0.00
-0.33
-0.60
-0.70
-1.00
0.50
0.00
-1.00

7.00 x 1011
1.00 x 10710
2.00 x 10~ 11
7.00 x 10~11
2.00 x 10719
8.00 x 1011
3.00 x 10~ 11
9.17 x 10~ 11
1.25 x 10~ 1
2.03 x 10712

2.71 x 10711
6.95 x 1011

1.77 x 10710

4.37 x 10711

147 x 1071
3.89 x 10712
4.41 x 10712
1.04 x 10710
1.30 x 10710

8.65 x 1011
3.60 x 10719
2.55 x 10719
1.65 x 10710
1.32 x 10710

4.14 x 10711
8.30 x 10~ 11
3.40 x 10~ 11
1.35 x 10~
6.14 x 10712
1.69 x 1012
3.24 x 10712
1.96 x 10~10
3.22 x 10~ 11
8.03 x 10712

4.20
3.80
4.30
3.80
3.30
3.40
3.70
3.64
3.99
3.61

3.70
3.69

3.00

3.21

3.40
3.49
3.32
3.83
3.99

3.49
3.29
3.06
3.00
4.00

3.88
3.50
3.56
3.58
3.58
3.87
3.99
3.40
3.56
3.48

2.00 x 10719
2.00 x 10710
7.00 x 10711
1.00 x 10710
2.00 x 1010
2.00 x 10710
2.00 x 1010

1.25 x 10710
1.46 x 10~ 11

6.75 x 10711
8.68 x 10711
7.30 x 10711
8.21 x 10~ 11
5.30 x 1011
3.36 x 1011
5.00 x 10711
2.71 x 10711

1.05 x 10712

1.60 x 1010

1.60 x 1010
1.50 x 1010
0.83 x 1011

2.92 x 10~ 11
7.86 x 10711
9.00 x 10711
1.77 x 10~

2.31 x 10713

3.00
2.80
3.20
2.90
2.60
2.60
2.50

3.36
3.92

3.07
3.02
3.01
2.96
2.90
2.94
2.93
3.27

3.71

3.39

3.28
3.08
3.00

3.86
3.29
3.14
3.46

4.17
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Figure 3.3: AK/AKwaer as a function of R for the 7075-T6 aluminium alloy
using the data in Table 3.1, the Walker curves obtained from linear regression
and Elber’s and Schijve’s equations (see Section 3.2.2).
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Figure 3.4: AK/AKwaer as a function of R for the 2024-T3 aluminium alloy
using the data in Table 3.1, the Walker curves obtained from linear regression
and Elber’s and Schijve’s equations (see section 3.2.2).
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Table 3.2: Predicted Walker exponents for the aluminium
alloys 7075-T6 and 2024-T3.

da/dN 7075-T6 2024-T3
[m/cycle] ~(R<0) ~(R>0) ~(R<0) ~(R>0)
1x1078 -0.07 0.66 -0.07 0.66
1x1077 -0.04 0.63 0.18 0.62
1x1076 -0.02 0.61 0.40 0.57

3.4 A simple physical model of mean stress de-
pendency

As it has been stated before, a closed crack does not propagate. This leaves the
question of when a crack is closed. Ideally this is the case during the compressive
part of the load cycle, hence crack closure would occur at R < 0. However,
the real behaviour is more complicated. Due to surface roughness (mismatch),
environmental effects, e.g., oxidation, and the thickening behind the crack front
caused by plastic deformation, cracks may close at R > 0. A common definition
of an effective stress intensity factor range is

AKeH - Kmax - Kop ) (315)

where K, is the stress intensity factor at which the crack opens. K, is usually
positive, but may also be negative. The common ratio between the effective and
applied stress intensity factor range is usually denoted by U and defined as

AKeg
U= N

(3.16)

Assuming the crack to be either open throughout or closed during a part of the
load cycle, AK.g can be written as

. (3.17)
Kmax - Kmin = AK; if Kmin > Kop .

AKQH _ { Kmax - Kop 3 if Kmin S Kop
Denoting the stress ratio at which the crack starts to remain open throughout
the load cycle by Reg, the first line of Eq. 3.17 can be written as

AK AK,
AKeff - Kmax - Kop = ﬁ — KOp = 1_ Rﬁﬁ — Kopa (318)

leading to
1 — Regr

1-R
It must be noted that the above requires K, not to be a function of R, a require-
ment which is not fulfilled if, for example, Elber’s equation applies. Including the

AKyp = AK . (3.19)
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region with R > Re.g gives

1_Reff .
AK, if R<R,
AKy—{ 1-g o8, s R

AK it R > Reg,

(3.20)

which is similar to Walker’s equation with v = 0 and v = 1 for R < Reg and
R > Reg, respectively. In contrast to Walker’s original approach, v changes not
at R = 0, but at R = Ret. The second line of the above equation indicates that
the crack propagates independently of R if R > R.g. Figure 3.5 schematically
illustrates Eq. 3.20 using Reg = 0.4 and compares it with Walker’s equation.

3.5

Walker,y= 0.6 8

I
I
I
05} AK=AK_(1-R)/(1-R_) : -
I
|

Reff
0 | | |
-1 0.5 0 0.5 1
R

Figure 3.5: AK/AK.g as a function of R given by Eq. 3.20 (Reg = 0.4) com-
pared with Walker’s equation.

Comparing Fig. 3.5 with Fig. 3.2 it is seen that the behaviour described by
Eq. 3.20 is partly a reminder of both Elber’s and Schijve’s equations. As for
Walker’s approach, two relations are required to describe the stress ratio range
from -1 to 1. In addition, Reg must be known.

3.4.1 Application to 7075-T6 aluminium alloy da/dN data

In order to explore how well this model fits actual data, it has been used together
with the 7075-T6 aluminium alloy crack propagation data given in Table 3.1. The
results are plotted in Fig. 3.6.

It is seen that Eq. 3.20 with Res = 0.3 nicely fits the experimental data up to
R ~ 0.7. At higher R ratios the model deviates from the experimental data. It
must be mentioned that, although Eq. 3.20 is closely related to Walker’s approach,
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Figure 3.6: AK/AK.g as a function of R for the 7075-T6 aluminium alloy
using the data in Table 3.1 and the fitted Eq. 3.20 (Reg = 0.3, AKeg(da/dN =
1078, 107" and 107°% m/cycle) = 3.5, 7 and 13 MPa,/m).
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Figure 3.7: AK/AK.g as a function of R for the 7075-T6 aluminium alloy
using the data in Table 3.1 and the fitted Eq. 3.21 (Regr = 0.2, AKeg(da/dN =
1078, 107" and 107 m/cycle) = 4, 8 and 15.5 MPa,/m).
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the curve fitting method described in Appendix A.3 does not apply. This is
due to the additional unknown R.g. Of course, choosing a value for Reg, the
two lines can simply be fitted using a slightly modified version (constant slopes,
intersection at Reg) of the least mean squares method given in Appendix A.3. Tt
is certainly possible to develop an iterative approach where R.gs can be treated as
a variable as well, which, however, was not considered in this work. Res = 0.3 was
chosen to visually fit the data in Fig. 3.6 by normalising with AKeg(da/dN =
1078, 107" and 107% m/cycle) = 3.5, 7 and 13 MPa/m.

Examining the data points at R > R.g, they would better fit to a Walker type
equation with v < 1. This would result in the following modification to Eq. 3.20:

11_ R}%ﬁ AK, if R < Reg
AKeﬁ‘ = 1 — 11:_3 1—v (321)
(1 ;) AK, if R> R,

Fig. 3.7, where R = 0.2 and v = 0.8 were used, shows a very good cor-
respondence between the data and the model. The data were normalised using
AKeg(da/dN = 1078, 1077 and 107® m/cycle) = 4, 8 and 15.5 MPa,/m.

In a final attempt, Eq. 3.21 can be made even more flexible introducing the
exponent y; = (R < Reg) # 0:

1_e 1-m
( Rﬁ) AK, if R < Reg

ARy = 11__ If . (3.22)
( 1_;) AK, if R> R,

Setting Reg = 0, Eq. 3.22 transforms into Walker’s equation. Eq. 3.22 has the
benefit of being more flexible compared to Walker’s equation, however, this is at
the cost of another parameter, Reg.

3.4.2 Application to 5083-H321 aluminium alloy A K, data

Recently, Kranenburg et al. [92] carried out fatigue crack propagation threshold
tests on the 5083-H321 aluminium alloy. They generated and compared AKiy
data testing at constant R (ASTM E647) and constant K.,. Since AKy, from
the constant K, method are given at R = 0.8, 0.86, and 0.93 only, the following
examination is confined to the constant R data. Figure 3.8b shows both, experi-
mental data and the fitted Eq. 3.20, with Reg = 0.42 and AKegyn = 1.3 MPay/m.
It must be noted that R.s = 0.42 was chosen to fit the data points at low R best,
whereas the data rather indicate R.q = 0.6.

It is seen that the transition from partly open to fully open behaviour is
smooth rather than sharp. Therefore, Eq. 3.20 does not fit the data at R = 0.4
and 0.5 very well. However, above R ~ 0.5 and below R ~ 0.3 good agreement
is obtained.

If a fatigue crack propagation threshold exists, it should be independent
of R and the measured dependency on R must be a result of crack closure,
hence AKegsn should be constant. This allows to plot U = AKegin/AKp,



3.5 A NEW MEAN STRESS EQUATION

45

with AKegs, = 1.3 MPay/m, versus R, see Fig. 3.8a. It can be seen that the
data points at R < 0.6 follow a straight line nicely. Fitting a linear equation
(Elber’s equation) to those data points using the least mean squares method,
U = 0.59 + 0.69R is found, which is included in Figs. 3.8a and b. The very
good agreement is obvious. However, it can be expected that Elber’s line rapidly
deviates from experimental data at negative stress ratios. Above R = 0.6 Elber’s
equation does not apply, since the crack is fully open.

1.1 w w T 2 ;
Elber: U = 0.59 + 0.68R 5083-H321
(0<R<0.6) =
1l o o | Elber: U = 0.59 + 0.68R
¢ (0<R<0.6)
2 15
—
I
£
5
R aK, [MPaym] ><‘1
0.0 2.2 <
0.1 2.0 - IR oo o
0.2 1.8 :
0.4 15 ‘
0.5 1.4 |
0.6 13 |
0.7 13 | B
0.86 13 IR, =0.42
0.5 : ‘ : ‘ 05 i il i
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
a) R b) R

Figure 3.8: (a) U as a function of R for the 5083-H321 aluminium alloy using the
experimental data from [92] and Elber’s equation fitted to the data points excluding the
values at R = 0.7 and 0.86, (b) AKn/AKegn as a function of R, the fitted Eq. 3.20
(Rer = 0.42, AKesgn = 1.3 MPay/m) and Elber’s equation fitted to the data points
excluding the values at R = 0.7 and 0.86.

3.5 A new mean stress equation

It has been shown in Section 3.3.3 how Walker’s equation can be fitted to crack
propagation data. However, the distinct change of v at R = 0, which is somewhat
arbitrary, is a weakness. This weakness is eliminated with the approach described
in Section 3.4, but at the cost of having an additional variable. Still, as it is the
case for Walker’s equation, two line segments are required to cover the stress ratio
range —1 < R < 1, which is not a convenient feature.

Both, Elber’s and Schijve’s equations fit the experimental 2024-T3 aluminium
alloy data very well, which is not very surprising, since they were proposed for
this alloy. Elber’s equation covers —0.1 < R < 0.7 only. Therefore, the author
was tempted to propose another equation to express the mean stress dependency.
Re-plotting the data in Fig. 3.3 using a logarithmic ordinate gives the diagram in
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Fig 3.9. It is seen that the data points at each da/dN level fit nicely to a straight
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Figure 3.9: AK as a function of R for the 7075-T6 aluminium alloy using the
data in Table 3.1 and the fitted Eq. 3.23.

line, which can be expressed as:
log AK =log AK* — R, (3.23)

where AK* = AK(R = 0). Equation 3.23 may be transformed to a form similar
to Walker’s equation when expressing AK™* as a function of R:

AK* = 10°7AK . (3.24)

Using the least mean squares method to fit Eq. 3.23 to the crack propagation
data for the aluminium alloys 7075-T6 and 2024-T3, the constants in Table 3.3
are found. The [ values for 7075-T6 are 0.3, whereas ( for 2024-T3 varies from
0.25 to 0.29. The variation for 2024-T3 is mainly due to the few data points
below R = 0. The results are visualised in Fig. 3.9 and Fig. 3.10.

Normalising AK with AK*, only done here for the 7075-T6 aluminium alloy,
Fig. 3.11 is obtained, where a linear ordinate is used. In this normalised form the
data points collapse to a single line. Since § = 0.3 at all three da/dN levels, see
Table 3.3, Eq. 3.24 gives the same line in Fig. 3.11 for each set of data points.

Contrary to Walker’s equation, AK/AK* in the proposed equation does not
reach zero when R approaches 1. The same thing occurs in Elber’s and Schijve’s
equations. Below R = —1, Eq. 3.24 may deviate from the experimental data.
However, due to the lack of data, this could not be checked. Taking the relatively
large scatter in data into account, a [ value of 0.3 for both alloys would be a
realistic assumption. Equation 3.24 provides a good approximation of the stress
ratio dependency of crack propagation data and the single parameter 3 can easily
be found from usual da/dN data.
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Figure 3.10: AK as a function of R for the 2024-T3 aluminium alloy using the
data in Table 3.1 and the fitted Eq. 3.23.
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Figure 3.11: AK/AK* as a function of R for the 7075-T6 aluminium alloy
using the data in Table 3.1 and the fitted Eq. 3.23.
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Table 3.3: Predicted constants in Eq. 3.23 for the
aluminium alloys 7075-T6 and 2024-T3.

7075-T6 2024-T3
da/dN AK* 6] AK* 6]
[m/cycle] [MPay/m] [MPay/m]
1x1078 5.0 0.30 6.0 0.29
1x1077 9.5 0.30 12.5 0.26

1x10°¢ 18.2 0.31 25.8 0.24

3.6 Remarks

In the previous sections, a number of equations to account for the dependency of
crack propagation data on mean stress has been discussed, and compared to the
experimental data. Since this investigation is only carried out for two aluminium
alloys it is certainly not generally applicable. However, it may give an indication
of the advantages and drawbacks in the different methods.

None of the methods seem much superior to the others, especially when bear-
ing in mind the relatively large scatter in data. Within that scatter they will all
yield reasonable results.

Walker’s approach and the one suggested in Section 3.4 require two lines to
describe either side of R = 0 or R = R, respectively. The distinct change in
behaviour at R = 0 or R = Reg gives the approaches a partly physical basis.
On the other hand, comparison with experimental data reveals that the real
behaviour is more complicated. The approach described in Section 3.4, especially
with 7 < 1 for R > Res, yields very good agreement with experimental data.
However, due to the extra variable R.g, data fitting is not trivial. Being forced
to handle two equations may prove inconvenient if the crack propagation data
stress ratio and the load stress ratio do not fall on the same line.

Crack propagation threshold data seem to own a constant AKegn, hence,
if known, Elber’s equation can be fitted easily and yields very good agreement,
when the closure free data are excluded.

The new mean stress equation proposed in Section 3.5 combines simplicity,
easy adaption to crack propagation data and covers the range —1 < R < 1 with
a single expression.



CHAPTER 4

Short crack growth testing

The welded T-joints which will be investigated in Chapters 5 and 6 are made from
the aluminium alloy 6082-T6. Little published crack propagation data are avail-
able for this alloy. Published crack propagation data are mostly generated with
specimens containing a deep (long) crack, whereas many cracks in real structures
are rather short. In addition, no Walker exponent for this alloy was available.
Therefore this chapter has the following objectives. First, fatigue crack propaga-
tion tests were carried out to determine whether there is a significant difference
in the behaviour of short and long cracks, and to see if using the characteristic
crack length, a*, is an appropriate means of dealing with the probable differences.
The second objective was to produce additional crack propagation data for the
aluminium alloy under investigation and the third was to investigate the mean
stress dependency of the 6082-T6 aluminium alloy.

This work was focused on sub-millimetre cracks which were supposed to prop-
agate in the same material as was used for the T-joints and with a propagation
direction perpendicular to the extrusion direction. The most straightforward
method to monitor crack growth would be to use a microscope. However, this
requires both manual reading and a clearly visible crack tip. A more elegant
method for data acquisition is measuring the drop in electrical potential at the
propagating crack.

During the planing of the tests, the test equipment required and the available
competence in carrying out such testing were thoroughly investigated. Due to
the lack of both a resonance test machine to test at high frequencies and the
lack of experience in applying the potential drop technique to aluminium in the
department’s own workshop (potential changes with nanovolt magnitude must be
measured) it was decided to use an external laboratory. The raw data produced by
the laboratory were processed and evaluated in parallel to the tests and feedback
was given to the laboratory in order to adjust the test parameters for each new
specimen.

49
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4.1 Test specimens and measurement technique

4.1.1 The test specimens

The test specimen geometry chosen was a single edge notch tension (SENT)
specimen, see Fig. 4.1, which fitted the existing clamping equipment and the
available material best.

174
140

40

‘ Thickness: 3 mm
‘ Gauge length 40 mm
and radii R30 polished

3 E ) in longitudinal direction

Figure 4.1: Geometry of the short crack growth test specimens including the
geometry of the starter notch.
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The specimens were machined from the same 6082-T6 aluminium RHS profiles
as used in the T-joints. Both the machining and the polishing were carried out in
the department’s own workshop. The specimen thickness varied between 2.8 mm
and 3.2 mm, which was due to the variations in the wall thickness of the RHS
profiles.

A specialized company in Switzerland spark eroded the tiny starter notch (U-
notch, 0.2 mm deep and 0.1 mm wide, cf. Fig. 4.1). In addition, two shallow
grooves (0.06 mm deep and 0.1 mm wide) were eroded on each side of the starter
notch. These grooves were 2 mm away from the starter notch and were used to
position the potential drop probes accurately.

4.1.2 Test conditions and potential drop technique

A resonance test machine was used to carry out the crack propagation tests. The
test frequency was 100 Hz and the specimens were subjected to a direct current
(DC) of 15 A for the potential drop measurements. Figure 4.2 shows a specimen
fixed with two bolts to the insulated clamping system, the current wires and two
microscopes. Figure 4.3 shows a close-up of specimen 3 with the starter notch
and the attached potential drop probes. Eight specimens were tested successfully
at four different stress ratios, cf. Table 4.1.
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Figure 4.2: Specimen 3 in the resonance testing machine.

Figure 4.3: A close up of specimen 3 showing the starter notch and the attached
potential drop probes.
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To compensate for the change of the electrical resistance of the specimen due
to temperature changes, the temperature of the specimen was measured with a
thermocouple, which was kept in place by the yellow tape seen in Fig. 4.3. A
computer program collected the electrical potential drop change, the temperature
and the elapsed number of cycles. The program automatically compensated for
temperature changes.

Since the measured voltage is of the order of uV and changes in crack depth
result in voltage changes with nV magnitude, high and precise amplification is
required. Therefore, a high quality tailor-made pre-amplifier was used to amplify
the temperature signal and the voltage change by a factor 2000.

A special DC potential drop technique was used, where the current is pulsed
and the current flow is reversed with each successive pulse, see Fig. 4.4 [93]|. To
make sure that each measurement is made at the highest load, multiple measure-
ments were made near each peak. In addition, the voltage drop is averaged over
the time of one current pulse, ¢,, cf. Fig. 4.4. The total voltage drop is then
found from the difference between two successive current pulses.
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Figure 4.4: Potential drop technique with pulsed direct current.

As a means of quality control it was planned to measure the crack depth
optically employing the two microscopes seen in Fig. 4.2. Some specimens were
therefore equipped with a very fine grid ahead of the starter notch. This grid
was generated photographically |94]. However, since it was extremely difficult to
accurately locate the crack tip, these measurements were eventually suspended.

4.2 Some pre-test evaluations

The measurements had to be started close to the threshold region, since the main
difference in the crack propagation rate between short and long cracks is supposed
to be in this region. Therefore, some calculations were carried out to estimate an
appropriate load level.
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4.2.1 Fatigue limit of notched specimen

The loading must exceed the fatigue limit of the notched specimen to initiate a
crack at the starter notch. From R,, = 300 MPa, the fatigue limit of a smooth
specimen is estimated to oo (R = —1) = 120 MPa. Converting to R = 0.1 using
Walker’s equation with y4 = 0.5 gives o (R = 0.1) = 80 MPa.

Using different assumptions, the stress concentration factor at the starter
notch can be calculated to:

14+2y/d/p=75 |, elliptical hole, infinite plate,

K = 5.6 , Dubbel [44], U-notch, semi-infinite plate, (4.1)
5.3 , FE analysis, U-notch.

The three values are almost identical and K; = 5.3 is used in the further calcu-
lations. Estimating the fatigue notch factor with the three approaches described
in Section 2.5.2 gives:

K;—1

Peterson: Ki=14+——= =064 mm}=1.3
' Tt pofp J
Neub K=t {p* =02mm} =21
euber: F= ————=1{p =02 mmy} = 2.
L+ /2p%/p
1 5.3—4.3
Gradient: = — =41 -1
radien X = 5348 — 4.7954) mm i
K
Ki=——"— ={p,=0.075mm} =19.

L+ /poX B

Finally, assuming Ky =~ 2, the fatigue limit of the SENT specimen is found to:

Smoten (R = 0.1) = }’(—A — 40 MPa. (4.2)
f

4.2.2 Fatigue limit of cracked specimen

Whether a crack that has been initiated can grow or not is determined by the
threshold stress intensity factor range, AKy,. Assuming the total crack depth
to be just slightly larger than the depth of the starter notch, for example a =
0.21 mm, and using AK, (R = 0.1) = 3 MPay/m, the stress range becomes

AKy,
1.12y/ma

Hence, conservatively assuming that the crack has grown out of the notch stress
field already, S, > 52 MPa is required to propagate the crack.

The estimates from Eqs. 4.2 and 4.3 are relative close to each other. During
the experiments, however, it was found that a crack started to propagate at
even lower stress amplitudes and the stress amplitude required to start crack
propagation varied to some extent from specimen to specimen.

AS(R=0.1) = — 104 MPa. (4.3)
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4.3 Correlating potential drop and crack depth

Subjecting the specimen to an electric current, which of course requires elec-
trically insulated clamping, a potential drop can be measured between any two
points (probes) that are a distance apart in the direction of the current flow. If
there is a crack between the probes, the potential drop will increase as the crack
propagates. A calibration curve or function is required to relate the measured
potential drop change to the change in crack depth.

4.3.1 Edge crack in a semi-infinite plate

According to Dobmann et al. [95] the electrical potential drop over an edge crack
in a semi-infinite plate is given by

%:\/H (o) (4.4

where V* is the electrical potential drop measured in a smooth specimen, d+a =
0, and y is the distance between the probes and the crack, see Fig. 4.5. Since the

y

o

probel [« probe

A A

Y

Figure 4.5: Potential drop measuring principle
and nomenclature.

specimens tested here contain a starter notch, it is more convenient to transform
Eq. 4.4 such that it is normalised with Vi = V (d):

vV _ ﬂ_ (4.5)

Vo o d\ 2
’ 1+ (—)
Y
Introducing the relative potential drop change, u, Eq. 4.5 becomes:

1+<d+a)2
we L =Vo 4 —1. (4.6)

V 2
0 1+ (§>
Yy
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Finally, rewriting Eq. 4.6, the crack depth can be expressed as a function of u:

1+(§)2] ~1 —d. (4.7)

4.3.2 Edge crack in a finite plate

a=y,|(u+1)2

As long as a < W the above equations hold true in a finite plate, too. When the
crack becomes deeper, i.e., the finite plate width has to be accounted for, another
calibration function, usually known as Johnson’s formula [96], must be used:

Vv Ty -1 ) cosh;—v‘q{/
7= (gp) coh —dta | (48)
2W

Transforming Eq. 4.8 to make it non-dimensional with respect to Vg, the crack
depth is obtained from

cosh Y

2w oW
= — —d 4.9
T | cosh (A(u+1)) ’ (4.9)

with .
cosh Y

A = cosh™* 7721?/ . (4.10)
CoS —

2W

4.4 The stress intensity factor

The stress intensity factor must be calculated to express the crack propagation
rate, da/dN, as a function of AK. For an edge crack in a semi-infinite plate the
well-known equation

AK = 1.12A8y/ma (4.11)

applies. The SENT specimens used here, however, will follow this relation for
relatively short cracks (a/W < 0.1) only. As the crack grows deeper, two effects
are no longer negligible. The first one is the increasing contribution from the
bending stress due to the unsymmetric specimen. Secondly, AK will increase
more rapidly as the crack approaches the opposite specimen surface.

An equation that takes care of both effects can be found in [97] and is written
as:

2tan T

2W a . T \3
AK = ASYWY— =2 [0.752 + 2025 + 037 (1= sin - ) } (4.12)

COS ﬁ

Section 4.5.1 evaluates the impact of using Eq. 4.7 together with Eq. 4.11
versus using Eqs. 4.9 and 4.12.
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4.5 Results

According to Section 4.2, a crack should initiate and propagate at S, > 40 MPa
and employing the threshold stress intensity factor range, an initiated crack would
grow at S, > 52 MPa. However, the experiments revealed that a propagating
crack could be initiated already at stress amplitudes ~ 30 MPa (R = 0.1). One
reason for the estimated high stress amplitude required to propagate an initiated
crack may be due to the high threshold stress intensity factor range used, which
was estimated from crack growth data in Eurocode 9. Borrego et al. [98] suggested
AKy, = (2.184 —1.007R) MPay/m, hence, AK, (R = 0.1) would be 2.1 MPa,/m
instead of the 3 MPa+/m used here. Furthermore, the notch tip is certainly not
perfectly smooth and the spark erosion process may have changed the material
properties at the notch tip.

The tests were started at low stress amplitude. When no change in the elec-
trical potential was observed, the load was increased by 5 % every 1 million cycles
until a crack had been initiated. This was determined by a relative potential drop
change of 0.8 %. Thereafter the load was reduced to obtain reasonable lifetimes.
To keep the increase in crack depth during this load reduction period as small
as possible, the load had to be reduced quickly. However, this represented some
difficulties. Since the stress intensity factor range was very close to the threshold
value, too large a reduction in load immediately resulted in crack arrest. Hence,
time-consuming manual manipulation was required. Having reached a reasonable
stress level, the crack was by that time approximately 0.5 mm deep, the stress
was kept constant. The tests were concluded at a crack depth of approximately
3 mm, with some of the specimens having survived more than 30 million cycles.
Some specimens could not be used, because they fractured at one of the bolt
holes used for the clamping.

During early propagation, the cracks were not through edge cracks, as in-
tended, but were growing from one of the two corners in the starter notch in-
stead. Only after having reached a depth of ~ 1 mm, the cracks became through
edge cracks, which were still not equally deep on both sides of the specimen. A
tentative explanation of this behaviour is found in the specimens themselves. Af-
ter machining the specimens from the hollow section profiles, they were slightly
distorted, which was probably caused by released residual stresses. Due to the
specimens not being totally flat, out-of-plane bending occurred, which made the
loading more severe at one of the corners in the starter notch.

Another observation has been made after finally fracturing the specimens.
Inspecting the fracture surfaces, the structure near the specimen surfaces was
found to be much coarser than the structure inside the specimen. Figure 4.6
shows a typical fracture surface. The rougher surface structure prevails up to
about 1 mm below both surfaces of the specimen. These different zones reflect
the grain structure shown in Fig. 5.7. The material structure near the surfaces,
which is a result of the extrusion process, probably causes some of the variations
in the recorded crack propagation data.
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Figure 4.6: Starter notch
(left hand side) and a typical
fracture surface.

4.5.1 Semi-infinite plate or SENT?

The results from the two assumptions are compared in Fig. 4.7 to find out whether
the equations for an edge crack in a semi-infinite plate, Eqs. 4.7 and 4.11, apply,
or whether the effects from the finite width and the bending part of the loading
must be accounted for, Eqs. 4.9 and 4.12. It is seen that up to a crack length of
~ 1 mm (a/W = 0.1), both assumptions give similar results. For longer cracks
the solution for the SENT specimen yields larger stress intensity factor ranges.
Since the specimens were tested up to a crack depth of approximately 3 mm,
Eqs. 4.9 and 4.12 were used throughout the following investigations.
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Figure 4.7: Difference between assuming an edge crack in a semi-infinite plate
and the same crack in a SENT specimen.

4.5.2 Crack propagation data

As mentioned the output from the potential drop measurements, i.e., the relative
potential drop change, u, was transformed to a crack depth by applying Eq. 4.9.
Thereafter appropriate intervals, Aa were chosen to calculate da/dN. The mean
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crack length in each interval was used together with Eq. 4.12 to find AK. In
Fig. 4.8 the crack propagation data obtained are plotted together with the long
crack propagation data given in Eurocode 9. The corresponding Paris constants
are listed in Table 4.1.

Comparing the presented results with the curve from Eurocode 9, it is imme-
diately seen that they coincide to a large degree.

10" ; , ,
6082-T6 :

specimen 0, R =0.1
specimen 6, R=0.1
specimen 8, R=0.1
specimen 3, R =0.3
specimen 9, R=0.3 [
specimen 4, R=0.5 ]
specimen 10, R=0.5 []
o specimen 7, R=0.8

" o —— Eurocode 9,R=0.1

1 2 3 4 5 6 7 8 910
AK [MPaym]

da/dN [mm/cycle]

x<O0O*x¥g+0

Figure 4.8: Obtained crack propagation data compared to the curve from Euro-
code 9.

Especially at lower crack propagation rates the scatter in the experimental
results is considerable. Some of the scatter is certainly due to the different grain
structures the crack must pass through during propagation. The data from speci-
men 9 show some crack retardation behaviour at intermediate growth rates, which
is probably due to the formation of an oxide layer during a longer stop of the
test.

Apart from the results from the specimens 0 and 9, all crack propagation data
seem to converge towards some threshold stress intensity factor ranges. These
threshold values are close to AKy, = 2.184 — 1.007R [MPa+/m]| as observed by
Borrego et al. [98].

However, the data from the specimens 0 and 9 show no threshold. This
indicates some form of short crack growth behaviour, i.e., faster propagation at
low AK. Actually, the measurements from these specimens could be evaluated
starting directly with the initiated crack, i.e., the cracks were ~ 0.2 mm deep.
However, this was the case for the data from specimens 3 and 4 too, and they
seem to approach a threshold value.

The limited number of results and the scatter make it difficult to draw con-
clusive facts regarding the difference in growth behaviour between short and long
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Table 4.1: Paris constants calculated from the

test data.
Specimen R C m
no. (mm/cycle, MPa,/m)
0 0.1 6.1 x 107 5.1
6 0.1 5.0 x 1078 2.9
8 0.1 1.8 x 1078 3.8
3 0.3 3.1x1078 4.2
9 0.3 — —
4 0.5 2.5 x 1077 2.9
10 0.5 1.4 x 1077 3.0
7 0.8 2.5 x 1077 3.4

cracks at low AK. However, the experimental results clearly justify the usage of
the crack propagation data published in Eurocode 9 in the previous two chapters.

The fact that little evidence of short crack growth behaviour was found, is
certainly due to the cracks not being short enough.

4.5.3 Mean stress dependency

The crack propagation tests were carried out at four different stress ratios, R =
0.1, 0.3, 0.5 and 0.8, which offers the possibility to evaluate the mean stress
dependency of the obtained crack propagation data. Together with the data
from Eurocode 9, c¢f. Table 5.3, and from Borrego et al. [98], see Table 4.2, the
obtained data are plotted in a AK vs. R plot, see Fig. 4.9.

Table 4.2: 6082-T6 aluminium alloy Paris
constants generated by Borrego et al. [98].

R C m

No. (mm/cycle, MPay/m)
1 -025 1.9 x 1078 3.98
2 0.05 5.1 x 1078 3.54
3 0.25 8.9 x 1078 3.45
4 0.40 1.2x 1077 3.40

Carrying out a linear regression analysis including all data points at positive
stress ratios, a Walker exponent of v = 0.78 is obtained, which is much larger
than the value v = 0.6 that has been found suitable for both 7075-T6 and 2024-
T3. Apart from the scatter at R = 0.1, the data points nicely follow Walker’s
curve. At negative stress ratios only one data point is given. Hence, no statement
about the mean stress dependency in this region can be made, apart from the
observation that the data point falls below the line representing v = 0.
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Figure 4.9: AK/AKwaer as a function of R including the presented data,
data from Eurocode 9 (Table 5.3) and Borrego et al. [98] (Table 4.2) compared
to Walker’s equation.

Applying the mean stress equation presented in Section 3.5, a linear regression
analysis gives # = 0.19. This value is rather low compared to the 5 = 0.24...0.31
obtained for the 7075-T6 and 2024-T3 aluminium alloys, which is partly due to
the low value at R = —0.25.

Using Eq. 3.24 with § = 0.19 (Walker’s equation with v = 0.78 gives a similar
result), the da/dN data collapse into a narrow scatter band, see Fig. 4.11. It is
also seen that near the threshold the stress ratio dependency is more pronounced.
Specimen 9 has been left out of the diagram shown in Fig. 4.11.

4.6 Remarks and discussion

Crack propagation tests on SENT specimens with sub-millimetre cracks have been
carried out. The crack length has been successfully monitored with a special DC
potential drop technique. It has been proven that this technique is applicable to
aluminium alloys with very short cracks. This is not obvious since aluminium is a
very good conductor, which means that very precise measurements are required.
Observing the crack propagation optically using microscopes was found to be
extremely difficult, if not impossible, since the crack tip was more or less invisible.

Apart from the specimens 0 and 9, no accelerated crack propagation rates
for short cracks were found, certainly because the cracks were not short enough.
Nevertheless, the data obtained for sub-millimetre cracks validate those given
in [5] and [98], which were conducted with much longer cracks. Bearing in mind
that the crack growth data has been mainly generated at cracks shorter than
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Figure 4.10: AK/AK* as a function of R including the presented data, data
from Eurocode 9 (Table 5.3) and Borrego et al. [98] (Table 4.2) compared to the
mean stress equation presented in Section 3.5.
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1 mm, the amount of scatter is not unexpected. Some of the scatter is probably
due to the interaction between the crack and the different micro-structural zones
of the specimen, cf. Section 4.5.

The mean stress dependency of the 6082-T6 aluminium alloy crack propaga-
tion data has been investigated and a Walker exponent v = 0.78 has been calcu-
lated. This value is somewhat higher than v ~ 0.6, which was found suitable for
the 7075-T6 and 2024-T3 aluminium alloys, i.e. the mean stress dependency of
the 6082-T6 alloy is less pronounced.

Beside the data obtained, the tests gave valuable information about possible
modifications to improve the experiments. It was found that the tests are very
sensitive to stops. After a longer stop, the crack propagation rates remained
constant for a while or even decreased. This behaviour is probably due to the
formation of an oxide layer, which reduces the effective AK. The use of a liquid
to make the crack visible may slow down crack growth too.

The following points may be considered to increase the quality and to test
even shorter cracks:

e Machining of very plane specimens to avoid out-of-plane bending.

e Thinner specimens (1.5-2 mm) would increase the electrical resistance of
the specimens, hence increase the measured potential drop.

e Heat treatment of the specimens in order to obtain a homogeneous micro-
structure.

e Use a central indent as a starter notch to develop a through edge crack
faster.

e After having initiated a through edge crack, the crack depth should be
reduced as much as possible (¢ ~ 0.1 mm) by machining the edge of the
specimens.

e The load range used to initiate a crack should be maintained throughout
propagation.

When planning the experiments it was intented to adjust the loading during
the tests in order to keep AK relatively constant. It was expected to get data
points describing a vertical line in a da/dN versus AK plot, which would clearly
indicate the faster growth whilst the cracks are short. However, small load re-
ductions immediately resulted in crack arrest and the idea had to be abandoned.
Designing the test setup to enable a “continuous” load reduction should make
such measurements possible.



CHAPTER 5

A welded T-joint subjected to 4-point
bending

In order to support or reject the thesis stated in Chapter 1 and to find answers
to the questions raised, the most common fatigue life assessment approaches, cf.
Chapter 2, have been applied to the same structure, a welded T-joint subjected to
4-point bending loading. In addition, due to the availability of experimental data
generated on T-joints with different residual stress level, the effect of the stress
ratio, i.e., the residual stress, has been included in the analysis, using Walker’s
equation with v = 0.78, cf. Chapter 4.

5.1 Background

5.1.1 Fatigue tests

As a part of a parallel project within the NorLight framework, welded T-joints,
see Figs. 5.1 and 5.2, made from extruded 6082-T6 aluminium alloy profiles with
rectangular hollow cross-section (RHS), were produced and fatigue tested. The
specimens were welded according to the welding procedure specification given in
Appendix D. A detailed description of the test conditions and the results has
been published in [32]. Therefore, only a brief summary of the experiments will
be given here.

The specimens were subjected to 4-point bending, see Fig. 5.3a, at R = 0.1.
One of the main goals of those experiments was to explore the fatigue life improve-
ment due to artificially introduced residual stresses at the weld. The methods for
introducing the superimposed residual stress fields were verified through welding
simulations [78]. Two series of specimens were tested. The joints of the first
series (batch 1) were simply welded together, while the two profiles were kept in
position. In the joints of the second series (batch 2) a compressive residual stress
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Figure 5.1: T-joint made
from rectangular hollow sec-
tions. The arrows indicate the
corner areas at one of which the
crack starts propagating.

in the loading direction was introduced at the weld toe. This was achieved by
elastically deforming the lower profile (chord), see Fig. 5.3b, prior to and during
the welding. After welding the chord was unloaded thus adding a compressive
stress to the tensile welding stress.

During testing it was found that cracks first become visible at one of the
“corners” along the weld toe, see arrows in Fig. 5.1. This behaviour could be
expected, since those areas have the highest stress concentration. The crack sub-
sequently propagates into the chord and after having penetrated the profile wall
thickness, it propagates along the weld toe. Final fracture occurs just after the
upper flange has fractured completely. Figure 5.4 shows a cross section of the
weld and illustrates the region where the crack propagates. The obtained fatigue
lives have been plotted in Fig. 5.5. Underneath the weld toe, there appears to
be a zone of limited or no fusion. This zone is marked “cold lap”. Cold laps of
aluminium welds are often caused by a surface oxide layer, which has a consider-
able higher temperature of fusion than metallic aluminium (2050°C and 650°C,
respectively). Since the temperature at the rim of the weld bead during welding
is somewhat lower than the temperature inside the weld bead, the temperature is
probably not sufficient to break down the oxide layer in order to obtain complete
fusion at the weld toe. Actually, similar features are normally seen in aluminium
production welds, even though the welds meet the specifications. As indicated in
Fig. 5.4, the cracks propagated a small distance, usually a few tenth of a millime-
tre, behind the weld toe creating a small lip. This was seen as an indication of
limited fusion. However, the lip was always much smaller then the zone marked
“cold lap” in Fig. 5.4 would suggest. Even if there is a zone of limited fusion at
the weld toe only a very small amount of mode II crack growth could be expected.
In a study on welded cruciform steel joints, cold laps have been shown to reduce
the fatigue strength [99], since cold laps act as sites for fatigue crack initiation.
It has been shown that a crack growing from a cold lap rapidly reaches a vertical
orientation [100]. Therefore, the analyses were based on the assumption of mode I
crack propagation in the through thickness direction The cold lap was taken into
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Figure 5.3: (a) T-joint subjected to 4-point bending, (b) elastically pre-
deformed chord.

account by assuming a zero weld toe radius when choosing the My equation for
the crack propagation analysis.

Using linear regression (least mean squares method), Basquin’s law, Eq. 2.1,
was fitted to the test data [32]. The constants of, representing mean values, the
exponents b and the standard deviation of log V¢, Sioe &, are given in Table 5.1. In
addition, the values for the mean minus two standard deviation curve are given.
The corresponding mean S-N curves have been plotted in Fig. 5.5.

5.1.2 Calculating the nominal stress

Calculating the nominal stress in the chord is rather straightforward. The 4-point
bending applies a bending moment M, = Ply; to the part of the chord between
the two inner loading points, see Fig. 5.3a. From beam theory the following
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chord . Figure 5.4: Cross section of the weld.
Table 5.1: Constants in Basquin’s law for batches 1 and 2.
1/b O‘é A Slog N¢
[MPa] (Ao [MPa], N [cycles])
mean Batch 1 -4.63 647 1.30 x 104 0.11
Batch 2 -5.07 633 2.76 x 10 0.15
mean — 2sj,g v, Batch 1 -4.63 581 7.93 x 1013
Batch 2 -5.07 551 1.37 x 10%°

equation to calculate the bending stresses is known:

M

I chord

S = Yy, (5.1)

where y is a coordinate running from the centre of the chord section (y = 0) to the
lower surface (y = 20 mm) of the chord, thus, the maximum nominal tensile stress,
Smax, is found at the upper surface (y = —20 mm). With Igq = 125830 mm?,
see Appendix C, and M = —Mj, Eq. 5.1 becomes

1.59 x 10~
Sy 10107 52)
mim

5.1.3 Residual stress

Since the batch 2 specimens were given a compressive residual stress field at
the weld toe, it is desirable to include this when estimating the fatigue life. In
general, the residual stress magnitude and its distribution in welded structures
are unknown. A rough method to estimate the residual stress level is based on
prevented contraction of the weld whilst cooling down, see for example Berkovits
et al. [19]. Fortunately, the residual stress in the T-joint has been calculated,
cf. [32], using the finite element program WELDSIM, a proprietary code to sim-
ulate and optimize the welding process [20-22,78|. Plots of the residual stress
distributions in the z-direction (along the axis of the chord) for batches 1 and 2
are shown in Fig. 5.6. As can be seen from this figure, the residual stress com-
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Figure 5.5: Experimentally found fatigue lives for batches 1 and 2 and the
corresponding mean S-N curves.

ponent in the z-direction is relatively evenly distributed along the weld toe. It
must be mentioned that the finite element mesh density was not high enough to
obtain the residual stress distribution through the wall thickness and the stress
peak at the weld toe. Hence only a through-thickness mean value of the residual
stress is shown in Fig. 5.6. The required, much higher mesh density to obtain
a very detailed residual stress distribution would demand excessive computation
time and was not feasible. However, it was assumed that the calculated mean
values were sufficient with respect to the fatigue life predictions presented later.
Numerical values of the residual stress at the weld toe, estimated from the plots,
are given in Table 5.2.

The residual stress acts as a mean stress, hence it changes the stress ratio, R.
Therefore, to include the effect of the residual stress in the analysis, the stress
ratio must be calculated locally, at the point where fatigue cracking is expected.
Using the relations between the maximum, the minimum and the mean stress
and the stress range, the stress ratio can be written as

om — Ao /2
R=——". 5.3
Om + Ao /2 (5:3)
The stress ratio at the weld toe, Ryelq, which includes the residual stress, has been
calculated from Eq. 5.3, where oy = Sy weld = Sm + Stesidual: Lweld 1S @ nominal

stress ratio including the nominal stress. If the through-thickness distribution at
the weld toe of both the applied and the residual stress is known, a real local
stress ratio could be calculated. This stress ratio would be not constant in the
through-thickness direction.

The stress ratios at the weld toe for two stress ranges are given in Table 5.2.
It can be seen that the actual stress ratio at the weld toe differs strongly from
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Figure 5.6: Residual stress distribution in the z-direction [32]: (a) batch 1 and
(b) batch 2.

the nominal applied stress ratio and therefore must be taken into account when
predicting fatigue life.

Table 5.2: Stress ranges, mean stresses, residual stresses and stress
ratios at the weld toe.

R AS Sm SresidualT Sm,weld Rweld
[MPa] [MPa] [MPa] [MPa]

Batch 1 0.1 50 30.5 50 80.5 0.53
100 61.1 50 111.1 0.38
Batch 2 0.1 50 30.5 -20 10.5 -0.41
100 61.1 -20 41.1 -0.10

T - Calculated by means of WELDSIM (see e.g. [78])

5.1.4 Material data

The T-joints were produced from extruded 6082-T6 aluminium alloy profiles and
the material data used in the analyses are listed in Table 5.3. R0 and R,, are
lower bound data stated by Hydro Automotive Structures. C, m and AKj, have
been approximated from da/dN versus AK plots in Eurocode 9 [5].



5.2 NOMINAL STRESS

69

Table 5.3: 6082-T6 aluminium alloy material data.

Rpo2  Rm m C (m/cycle, MPay/m) AK, [MPay/m)]
[MPa] [MPa] R=01 R=08 R=0.1 R=08 R=01 R=0S8
270 300 4.0 3.9 2x 1071 8x107 1 3 1

5.1.5 Micro-structure

Figure 5.7 shows the micro-structure near the weld. Figure 5.7a represents a cross
section parallel to the axis of the chord and Fig. 5.7b shows a cut along the weld
slightly behind the weld toe perpendicular to the axis of the chord. The weld itself
has a fine grain structure, whereas the chord has large grains in a layer below the
top and bottom surfaces. Between these two layers, the grain structure is very
fine. The grain structure in the chord near the weld seems almost unaffected by
the welding process. The variation in the through-thickness micro-structure is
reflected in the fracture surfaces observed during the short crack growth tests, cf.
Chapter 4.

Figure 5.7: Micro-structure near the weld: (a) parallel to the axis of the chord and
(b) perpendicular to the axis of the chord.

5.2 Nominal stress

The relatively simple T-joint geometry seems well suited to assess fatigue life
using nominal stress. The nominal stress is calculated from Eq. 5.2. Following
Eurocode 9, it should be modified for the shear lag effect. However, finite element
analyses presented in [32] have shown that the effect is almost negligible in the
analysed T-joints.
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Finding a suitable detail category is not as straightforward as it might seem,
since joints made from hollow sections are often not given. As can be seen from
Table 5.4, using different codes and standards leads to slightly different detail
categories, and the Basquin exponents differ slightly too. The effect of the differ-
ences is seen in Fig. 5.8, where experimental data and the design S-N curves are
plotted.

Table 5.4: Nominal stress detail categories for the T-joint and the corresponding
constants in Basquin’s law.

Comment  Detail f ASct 1/b A (AS[MPa],

category [MPa] N [cycles])

BS 8118 [14] 20 — 200 -3.0  1.60 x 10
Eurocode 9 [5] ¢ < 4 mm 25 — 250 -32  5.95x 10
IIW [6] batch 1 20 1 20.0 -3.0  1.60 x 10*°
batch 2 20 1.16 232 -3.27  5.84 x 1010

ECCS [15] detail E6 23 — 230 -3.37 7.76 x 101°

fat N =2 x 10° cycles

The different design curves lie within a factor of ~ 1.7 in life. The curve
from Eurocode 9, representing ¢ < 4 mm, has been chosen, since the thin walled
hollow section behaves more like a thin plate (f = 3 mm) than a massive section
(t = 40 mm), see Section 5.5.2. For batch 2, a fatigue enhancement factor
f = 1.16 has been calculated (ITW), which leads to a fatigue strength at 2 x 10°
cycles of ASc = 23.3 MPa. Rotating the design curve from detail category 20
around the point at N = 1 x 10* cycles, such that it passes through ASq, the
enhanced design curve is obtained. This curve has a slope of 1/b = —3.27.

All design curves are conservative. The conservatism increases the lower the
stress range becomes, which is due to the different exponents 1/b ~ —3 and
1/b &~ —5 for design curves and experimental curves, respectively. The different
exponents may be an indication of higher quality welds in the experiments leading
to a longer crack initiation period, which in turn is more pronounced at low
stresses. Introducing the fatigue enhancement factor does not give a remarkable
improvement.

5.3 Structural hot spot stress

The structural hot spot stress concentration factor used in this study has been
based on surface stress extrapolation and the extrapolation scheme adopted by
ITW [6]. As mentioned in Chapter 2, new and perhaps more robust and versa-
tile extrapolation methods to estimate the structural stress based on the stress
distribution through the thickness have recently been suggested, e.g., [26, 33, 34].
However, none of these has yet been included in design codes and recommen-
dations and an assessment using alternative extrapolation schemes will not be
included in this study.
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Figure 5.8: Experimental S-N curves for batches 1 and 2 compared to nominal
stress design curves from Eurocode 9 [5], BS 8118 [14], IIW [6] and ECCS [15].

Structural hot spot stress design curves are given in Eurocode 9 [5] and in the
IIW recommendations |6]. Eurocode 9 gives the structural hot spot stress design
curves as a function of member thickness. As for nominal stress, the curve for
t < 4 mm was chosen, which corresponds to “detail category” 44. The exponent
1/b = —3.2 is the same as for nominal stress. IIW assigns two different detail
categories to nine different joints. The T-joint falls into detail category 40 with
1/b = —3. A fatigue enhancement factor f = 1.16 is calculated for batch 2, which
leads to a fatigue strength Aocps = 46.4 MPa at 2 x 10° cycles. Rotating the
design curve from detail category 20 around the point at N = 1 x 10* cycles,
such that it passes through Aoc ps, the enhanced design curve, which takes the
beneficial effect of the compressive residual stress into account, is obtained. This
curve has a slope of 1/b = —3.27. All Basquin constants are listed in Table 5.5.

5.3.1 Structural hot spot stress concentration factor

So far, the experimental results have been plotted as a function of nominal stress.
To be comparable with the structural hot spot stress design curves, either exper-
imental results or design curves must be transformed. This is achieved by mul-
tiplication with the structural hot spot stress concentration factor, Ky, which is
defined as

Ky = Ohs (5.4)
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Table 5.5: Structural hot spot stress “detail categories” for the T-joint and the cor-
responding constants in Basquin’s law.

Comment  Detail f AO’C,hST 1/b A (AS[MPa], AScTT

category [MPa] N [cycles]) [MPa]

Euro- t <4 mm 44 — 44 3.2 3.63 x 10! 20.7
code 9 [5]

W [6] batch 1 40 1 40 3.0 1.28 x 101! 18.8

batch 2 40 1.16 464  -327  5.63 x 101! 21.8

fat N =2 x 10° cycles, T at N =2 x 108 cycles using Ky,s = 2.13

where o5 and S are the structural hot spot stress and the nominal stress, re-
spectively. Tveiten [32] has compiled a detailed analysis on the influence of FE
element choice, weld stiffness representation and extrapolation method on the
calculation of the structural hot spot stress in the T-joint. Using quadratic vol-
ume elements with reduced integration and linear extrapolation (extrapolation
and modelling principles based on recommendations given by ITW [6], Niemi [17],
and Tveiten and Moan [31]) he obtains K5 = 2.13.

It was decided to transform the design curves rather than the experimental re-
sults to obtain direct comparability to the other diagrams. Converting Basquin’s
law from structural to nominal stress is done as follows:

N = A(Aoyg)" = A(KpAS)Y" (5.5)

The resulting S-N curves are plotted in Fig. 5.9. All design curves are conserva-
tive and are almost identical with the results from the nominal stress approach,
cf. Fig. 5.8. Again, the fatigue enhancement factor gives only a negligible con-
tribution and is not capable to account for the effect of the compressive residual
stress.

5.3.2 Parametric equations

The structural hot spot stress concentration factor for many joint geometries can
be found from parametric equations. In the ITW recommendations Fatigue Design
Procedure for Welded Hollow Section Joints |[101], there is an extensive collection
of such equations for joints made from tubular and rectangular hollow section.
Although those recommendations refer to steel joints, they should be applicable
to aluminium joints as well, since Kypg should be independent of the material.
Along lines D and C, see Fig. 5.10, the following equations are given:

Ky = 1.373(2)0-2058 7024 (line D)
Kps = 0.725(2)0-2480 £0-19 (line C) , (5.7)

with 27 = bchord/tchorda ﬁ = bbrace/bchord and 7 = Zfbrace/tchorda where b and ¢ are
section width and wall thickness, respectively.
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Figure 5.9: Experimental S-N curves for batches 1 and 2 compared to structural
hot spot stress design curves from Eurocode 9 [5] and IIW [6] expressed in terms
of nominal stress.

With bprace = 40 mm, beporg = 60 mm and tprace = tehora = 3 Mm, see Fig. 5.2,
2y =20, 8 = 0.67 and 7 = 1, thus, Ky = 2.07 and 1.19 along line D and line
C, respectively. Comparing the value along line D with Ky, = 2.13 from [32]
very good agreement is found, especially considering the variation in the Kjg
predictions from 1.78 to 2.13 due to different finite elements, weld idealisations
and extrapolation methods [32]. Ky = 2.13 was used in Fig. 5.9, because it
appears to be the most realistic value since it was obtained from a finite element
analysis of the actual geometry using volume elements.

5.4 Effective notch stress

After having applied both the nominal and the structural hot spot stress approach
to the T-joint, the effective notch stress approach will be examined.

In order to calculate the stress at the expected failure site, a very fine finite
element mesh is required to capture the local geometry. In general, the global
model of a structure is far too coarse to give local stresses, and the modelling
effort, computing time and hardware resources required prohibit the modelling
of a complex structure in enough detail. The sub-modelling technique presents
a possible solution to this problem. A sub-model from the region close to the
expected failure site is created, which contains all geometrical features that have
an impact on the local stress. Along the boundary between the global model
and the sub-model, the results from the global-model, i.e., displacements and
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Figure 5.10: Definition of the lines along
which the hot spot stress concentration factor
is given.

rotations, become boundary conditions of the sub-model.

The next problem encountered is very pronounced when analysing welded
structures. The local geometry, especially the weld toe radius, underlies large
scatter along a weld seam and from component to component. Setting the weld
toe radius to zero the weld notch becomes singular and the stresses in an FE
analysis will depend on the mesh density and will not converge. From this point
of view, Neuber’s approach defining a fictitious weld toe radius, pg, which gives
Ky directly is very attractive, see Eq. 2.13. Conservatively assuming p = 0, cf.
Radaj [18], results in pr # 0, hence a finite radius that can be modelled with
finite elements.

According to Tveiten [32], the weld toe radius and the weld angle in the T-
joint varies between 0.9 and 2.3 mm with a mean value of 1.3 mm and between
17° and 57° with a mean value of 35°, respectively. Thus, assuming p = 0 might
be too conservative. However, it is often difficult to conclude whether there is a
radius at all. In addition, if the cold lap presents a zone of no or limited fusion,
the weld toe radius would be practically zero.

In order to get an idea how important the weld toe radius and the weld angle
are, both have been varied in a series of FE analyses.

5.4.1 Stress analysis

A finite element model of the T-joint was created using ABAQUS CAE and
analysed with ABAQUS Standard. Due to symmetry only a quarter of the T-joint
was modelled, see Fig. 5.11a. When meshing with three-dimensional elements,
local mesh refinement is difficult, especially when the stress output along certain
paths is required, e.g., perpendicular to the weld toe. In order to keep the fine
mesh at the weld and reduce the required hardware resources and computing
time, two sub-models were generated. The first sub-model (sub-1), see Fig. 5.11b,
receives the boundary conditions from the global model and the second sub-model
(sub-2), see Fig. 5.11c, receives its boundary conditions from the first sub-model.

During the fatigue tests, the load was applied to the chord through cylindrical
rods, see Fig. 5.3a. Due to the different stiffness in the flanges and webs of the
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Figure 5.11: Model geometry: (a) global model, (b) first sub-model, (c) second sub-
model.

hollow section, the section distorts so that the rods partly lose contact. The
stiffness differences make modelling the load boundary conditions with line forces
unrealistic [102]. Although, due to Saint-Venant’s principle, the error from the
locally incorrect boundary conditions should not affect the stresses at the weld
toe, the rods have been modelled as well, see Fig. 5.11a. The interaction between
the rods and the T-joint was modelled as a contact problem. Figure 5.12 plots
the deformation near an actuator rod showing, when carefully examined, that
rod and T-joint partly separate. Figure 5.13 shows the overall deformation of the
T-joint.

Figure 5.12: Local defor-
mation at an actuator rod.
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Figure 5.13: Deformation of the T-joint.

Convergence study

At first, a convergence study was carried out to find a mesh-element combination
that reflects the local stress and its through-thickness distribution with sufficient
accuracy. The global model was meshed with linear brick elements with reduced
integration (ABAQUS element C3D8R) and with a mesh density near the weld
as given in Table 5.6. After having analysed the first sub-model using the same
mesh as for the global model to check whether it behaves in the same way as the
global model, the mesh was refined. Thereafter, the second sub-model with an
even more refined mesh and quadratic brick elements with reduced integration
(ABAQUS element C3D20R) was analysed. In a final refinement step, the mesh
of the second sub-model was constructed so that the mesh was denser near the
weld toe (using biased mesh seeds). All these mesh configurations have been
collected in Table 5.6.

Table 5.6: Model specifications from the convergence study (p =
1 mm and € = 45°) and stress concentration factors, based on von
Mises equivalent stress.

Element Number of elements* K
Model type M1t w2t w3t wat At B
Global C3D8R 4(1) 6(1) 10(1) 10(1) 1.19 1.63
Sub-1 C3D8R  8(1) 8(1) 20(1) 20(1) 1.36 1.86
Sub-2a  C3D20R 8(1) 8(1) 20(1) 20(1) 1.66 2.25
Sub-2b C3D20R  8(3) 8(3) 30(1) 20(10) 1.70 2.32
* Numbers in brackets denote bias, T defined in Fig. 5.14a.

Figure 5.14b presents the von Mises equivalent stress obtained with the second
sub-model (no bias). It is immediately seen that the stress along the weld toe
is highest in the curved part and it is, therefore, not surprising that the cracks
started in this area during the experiments.

The stress concentration factor at the weld toe at both the symmetry line and
the point of maximum stress is given in Table 5.6. It should be noted that the
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Figure 5.14: (a) Mesh definition notation and the points (A and B, where B marks the
maximum von Mises stress) at which K is calculated, (b) Von Mises equivalent stress.

highest stress is not obtained at the weld toe but some distance into weld toe
radius.

The through-thickness von Mises stress distributions from the different finite
element models have been plotted in Fig. 5.15. As expected, the linear elements
are inferior to the quadratic elements. Even using quadratic elements requires
a relatively large number of elements through the wall thickness. Finally, it can
be concluded that both meshes used with the second sub-model give reasonable
results.

In order to get a detailed overview of the stress state at the most highly
stressed point, all stress components have been extracted from the finite element
analysis and Mohr’s stress circle has been constructed. Both stress values and
Mohr’s stress circle are given in Fig. 5.16.

It is seen that the principal axes 1 and 2 are almost perpendicular and tan-
gential to the global axes x and y, respectively. The third principal stress is
practically zero as it should be, because of the free surface. Since oy/07 = 0.24
the von Mises equivalent stress is 10 % less than the Tresca equivalent stress.

5.4.2 Estimating the fatigue life

Unfortunately, no S-N curve obtained with smooth specimens manufactured from
weld or HAZ material is available. However, in context with the effective notch
stress approach according to Radaj, the ITW recommendations |6] give FAT 75
and 1/b = —3. The corresponding Basquin constants are listed in Table 5.7.
Based on the stress analysis in the previous section, the fatigue notch factor
and the fatigue life is estimated. The T-joint obeys a relatively simple geom-
etry, which allows to define a nominal stress. Thus, beside the stress gradient
and Radaj’s approach, both Peterson’s and Neuber’s equations to estimate the
notch sensitivity can be applied and compared to each other. For a description
of the approaches see Section 2.5.2. The stress gradient approach requires the
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Figure 5.15: Normalised von Mises equivalent stress through-thickness distribution at
the weld toe: (a) in the symmetry line (point A), (b) maximum value (point B).
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Figure 5.16: Stress components, principal stresses and von Mises equivalent stress at the
point with the highest von Mises stress at the weld toe and Mohr’s stress circle.



5.4 EFFECTIVE NOTCH STRESS

79

Table 5.7: Effective notch stress design curve and the corresponding constants in
Basquin’s law.

“Detail Aoc! 1/b A (AS[MPa], ASc'T [MPa]
category” [MPa] N [cycles]) Ky=18 Ky=232
W [6] 75 75 -3.0 844 x 101 42 32
fat N =2 x 10° cycles

normalised stress gradient x, which can be found from the finite element results.
Using the von Mises stress field at point B, cf. Fig. 5.15b, x becomes

1 232-2.08
232 0.1 mm

1 do

X = =1.03 mm™". (5.8)

Omax AT |,_,

Recalling Eq. 2.15, the relative stress gradient ahead of an U-notch subjected
to tension loading can be roughly estimated by y ~ 2/p = 2/1 mm = 2 mm™!,
which is twice as much as the above result from the FE analysis. The main
reason for this difference is the notch angle, which is 0° and 135° for U-notch and
weld, respectively. The relevant equations and the required material constants to
estimate the fatigue notch factor are listed in Table 5.8 together with the obtained
fatigue notch factors. It is seen that the three approaches yield almost identical
fatigue notch factors. Although, supported by Fig. 2.5 this must be expected,
but such a good agreement is surprising and rather accidental.

Table 5.8: Fatigue notch factors calculated from Ky = 2.32 employing
different approaches.

Material Geometric
Approach Eqgs. parameter [mm] parameter K
Peterson 2.9, 2.10 po = 0.64 [42] p=1mm 1.80
Neuber 2.9, 2.12 p*=0.2[11] p=1mm 1.81
Gradient  2.18,2.20 p°=0075[11] x =103 mm~! 1.82
Radaj — — p=pr=1mm 2.32

Having estimated K, the effective notch stress S-N curve can be expressed in
terms of the nominal stress as follows:

Ne = A(Ac)" = A(KAS)Y" (5.9)

With the Basquin parameters given in Table 5.7, the S-N curve prediction labelled
Ky = 1.8 in Fig. 5.17 is obtained. It is seen that the prediction is in good
agreement with the experimental curve. Only at higher stresses it is somewhat
non-conservative.

Radaj’s effective notch stress approach

Following Radaj’s reasoning, see Section 2.5.2, the stress concentration factor
obtained from the model with a weld toe radius p = pf = 1 mm already represents
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Figure 5.17: Experimental S-N curves for batches 1 and 2 compared to effective
notch stress design curves from ITW [6] expressed in terms of nominal stress.

the fatigue notch factor, i.e., Ky = K; = 2.32. The resulting S-N curve using the
Basquin constants listed in Table 5.7 is plotted in Fig. 5.17. Excellent agreement
between the prediction and the experimental curve is obtained. Although not
recommended for joints with wall thickness less than 5 mm |6, 28|, the results
indicate the applicability of the method down to 3 mm wall thickness.

Impact of weld toe radius and angle

The main problem modelling the local weld geometry is that neither the weld toe
radius, p, nor the weld angle, 6, have exactly determined values. It is, therefore,
important to know the impact of p and 6 on local stress and hence on fatigue
life. A series of analyses to investigate the effect has been carried out, where
the ABAQUS element C3D20R was used throughout. Table 5.9 sums the model
specifications and the results.

Using Peterson’s approach, see Section 2.5.2, with py = 0.64 mm, cf. Table 5.8,
gives the fatigue notch factors listed in Table 5.9. Employing Basquin’s law to
find the influence of the variations of Ky on fatigue life yields

N A(KnAS)Y* <Kﬂ)1/b

= — 5.10
% (5.10)

Ni A(KfQAS)l/b a

With 1/b = —3, a decrease of the weld toe radius from p = 1.5 mm to p = 0.5 mm
gives a rise in fatigue life by a factor 1.5. This rather surprising result is due to
the K; drop predicted with Peterson’s approach when p/py tends towards zero,
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Table 5.9: Sensitivity study model specifications and the ob-
tained stress concentration and fatigue notch factors.

Number of elements™ BT
No. p 9 M1t M2t w3t w4t K, K

1 05 520° 10(6) 8(4) 40(1) 16(10) 267 1.73
2 1.0 52.0° 8(3) 8(3) 30(1) 20(10) 2.32 1.80
3 15 52.0° 8(3) 8(3) 30(1) 20(10) 2.15 1.81
4 1.0 45.0° 10(6) 8(4) 40(1) 16(10) 223 1.75
5 1.0 41.5° 10(6) 8(4) 40(1) 16(10) 2.17 1.70

Numbers in brackets denote bias, T defined in Fig. 5.14a.

see Fig. 2.3. Keeping p = 1.0 mm and decreasing the weld angle from 6 = 52°
to § = 41.5° extends the fatigue life by a factor 1.2. This behaviour could be
expected, since the larger # the more abrupt is the change in cross section, hence
the larger is the stress concentration. Summarising, it can be said that within
the confines of this sensitivity study a very small effect of the weld geometry on
the predicted fatigue life is found.

5.5 Crack propagation analysis

Integrating Paris’ law, Eq. 2.28, gives after introducing the characteristic crack
length, a*, and the weld toe magnification factor, My, an equation to predict the
fatigue life of a welded component containing small initial defects:
1 i
N, :—m/ MFva+a*) "da. 5.11
p C (AS\/E) ( k ) ( )
Since both F' and M)y are functions of a, this equation must be integrated nu-
merically. Before the integration is carried out, the influence of some variables
on the analysis will be discussed.

5.5.1 The characteristic crack length a*

If a crack propagates from a weld toe, and the stress concentration is expressed
through the weld toe magnification factor, My, the following modified stress in-
tensity factor range definition must be used:

AK = M FASy\/7t(a+ a*). (5.12)

Setting AK = AKyy, in Eq. 2.41 and replacing the local stress range, M AS, with
the fatigue limit of a smooth specimen, Ac,, gives after rearranging an equation

to find a* )
1 [ AKy
= 1
“ T (FAO’A) 7 (5 3)
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which is identical to Eq. 2.36. In order to calculate a*, AK;, and Ao, must be
converted to the same stress ratio. Applying Walker’s equation, Eq. 5.13 can be

written as
. 1 AKpwake \© 1 [ (1= Ry ™AKy, 2 (5.14)
a = — _ = — .
Tt FAOA,Walker Tt (1 — Rth)l_%hFAO'A ’

where Rj and Ry, are the stress ratios at which Ao, and AKy, are given, re-
spectively.

The fatigue limit of a polished aluminium alloy test specimen at R = —1 may
be estimated from the empirical equation

AO’W
2

which is given in [11]. It must be noted that some authors point out that the
traditional definition of the fatigue limit (stress amplitude at 2 x 10° cycles) may
not be suitable for aluminium alloys. Beste [103| reports that for a number of
aluminium alloys the S-N curves proceed with constant slope till beyond 1 x 10°
cycles. From Eq. 5.15 the fatigue limit of the aluminium alloy 6082-T6 at R = —1
is estimated to Aow = 240 MPa.

In the effective stress intensity factor definitions proposed by El Haddad et al.
|61] and Hérkegard |62], the geometry factor, F, is assumed to be constant, which
makes the calculation of a* straightforward. Since the semi-elliptical surface crack
analysed in this work obeys a geometry factor that is not constant, a problem
is encountered when calculating a*. Using the geometry factor equation for the
deepest point of a semi-elliptical surface crack suggested by Newman and Raju
|68], assuming a = 0, a < t and ¢ < w, a dependency on the, usually unknown,
a/c ratio remains:

= ow ~ 0.4R,, , (5.15)

F= \/1 1 424 <a>1.65 (1.13 . 0.09%> . (5.16)
+1.464 (¢
&

The geometry factor defined through Eq. 5.16 is plotted as a function of a/c in
Fig. 5.18. The curve does not vary dramatically with a/c. However, remembering
that F is squared when calculating a* the effect of the a/c ratio on the predicted
fatigue life will be notable.

When the initial a/c ratio is known, which is rather unlikely, a* can be cal-
culated. In case of an unknown a/c ratio, a practical solution could be to use
Fuin = F(a/c = 1) = 0.66, see Fig 5.18. The latter gives a large a* and would
therefore predict the shortest fatigue life when employing Eq. 5.12. According
to Fig. 5.23, a crack will rapidly reach an aspect ratio a/c ~ 0.35 and maintain
a/c between 0.4 and 0.5 under further propagation. It might, therefore, be an
realistic choice to assume F'(a/c = 0.35) ~ 1 when calculating a*.

Inserting AKy, (R = 0.1) = 3 MPay/m, see Table 5.3, assuming ~, = 0.6, and
oa(R=—1) ~ 04R,, = 120 MPa, with y4 = 0.5, into Eq. 5.14 gives

. _ { 0.25 mm, F' = 0.66

0.11 mm, F=1 (5.17)
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Figure 5.18: Geometry factor, F, [68] in the a-direction (deepest
point) as a function of a/c.

va = 0.5 was chosen, since this makes Walker’s equation equal to the mean
stress equation suggested by Smith et al. [80] and 4, = 0.6 was used instead of
0.78, see Section 4.5.3, since the mean stress dependency is more pronounced at
the threshold.

5.5.2 Finite versus infinite plate thickness

The equations to calculate F' and M) used in this work, were developed for a plate
and a joint made from plates, respectively. Therefore, it is not straightforward to
apply them to hollow sections. The main question is whether to set the “plate”
thickness in the equations equal to the total section height or to the wall thickness
of the section. Using the section height would result in a “thick” or infinite plate,
whereas choosing the wall thickness would give a “thin” or finite plate, if the
section is thin walled. Obviously, a crack starting at the surface of a hollow
section will propagate through the section wall. It seems, therefore, most relevant
to assume a crack propagating through a thin plate. However, this would neglect
the supporting effect from the rest of the rectangular hollow section (webs and
opposite flange). Another argument for assuming a finite plate is that crack
propagation is a highly localised process and therefore the local geometry (two
thin plates welded together) is of primary importance.

Assuming a crack propagating in a finite plate complicates the analysis. Firstly,
the geometry factor F' becomes dependent of the crack depth and secondly, there
is a distinction between bending and tension. The first limitation prohibits using
the closed form solution of Eq. 2.29. This is not a major obstacle, since involving
the factor M\ to account for the stress concentrations at the weld toe requires
numerical integration, because My is a function of crack depth in both cases,
finite and infinite plate.
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Semi-elliptical surface cracks with different a/t ratios in a rectangular hollow
section (40 x 60 mm cross section with a wall thickness ¢ = 3 mm) have been
analysed to justify the assumption of a finite plate. The fracture analysis pro-
gram FRANC3D was employed for this purpose [104,105]. FRANC3D uses the
displacement output of a boundary element program called BES. Both programs
are developed by the Cornell Fracture Group at Cornell University. The geom-
etry model and the boundary element mesh at and near the crack are shown in
Fig. 5.19. The obtained geometry factors are plotted in Fig. 5.20 together with
the Newman and Raju solution for a crack in a finite plate [68].

Figure 5.19: FRANC3D geometry model and boundary element mesh
at and near the crack.

Although there is no perfect agreement between the equation and the Franc3D
results, both have similar behaviour, i.e., the wall thickness is the significant
parameter and the overall geometry (hollow section) is of minor importance.
Therefore, the thickness parameter in the ' and M) equations was set to 3 mm
within all analyses.

5.5.3 Tension or bending loading

The 4-point bending loading gives a linear stress distribution in the cord, see
Fig. 5.21. However, as the crack propagates only through the flange, the stress
distribution in the flange is of interest. The stress decreases from o, at the
outer surface of the flanges to o; at the inner surface, where the relation between
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Figure 5.20: Geometry factor F' for a semi-elliptical surface crack
(a/c = 0.5) in a rectangular hollow section compared to F in a thin

plate [68].
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Omax and o; can be expressed as

o; = (1 — 2%) Omax - (5.18)

Inserting the actual dimensions (¢t = 3 mm, h = 40 mm) it is seen that the stress
decreases by only 15 % through the thickness of a flange. Dividing the stress in
the flanges into a tension and a bending component gives

t
oy = (1 — E) Omax = 0.9250 max , (5.19)
t
Ob = 7 Omax = 0.0750 max - (5.20)

Superposition leads to the stress intensity factor
K = K, + Ky, = (0.925F, + 0.075F,) o/7a. . (5.21)

It is seen that the tension component dominates, which is even amplified due to
F, > Fy. As a consequence it is assumed that the upper part (flange) of the box
section is subjected to uniform tension with S = S,... This assumption makes
the loading slightly more severe since the crack is assumed to propagate through
a constant and not a decreasing stress field.

5.5.4 Crack shape, initial and final crack depth

Starting from some defect at the weld toe, a semi-elliptical crack propagates, as
the experiments have shown, mainly in the thickness direction [77], i.e., through
the upper flange. Only after having penetrated the flange, the crack propagates
rapidly along the weld toe. It seems, therefore, straightforward to assume the
fatigue life being covered by the propagation of a semi-elliptical surface crack,
especially since most of the life is spent while the crack is short.

The initial a/c ratio has been set to 0.5. An initial crack depth of ¢; = 0.05 mm
was assumed, since this is just below the resolution limit of the replica method
used for weld geometry (and possible weld defects at the fusion line) measure-
ments |32]. The final crack depth was set to a; = 2.85 mm which corresponds to
95 % of the wall thickness. It must be mentioned that the predicted fatigue life
is relatively insensitive to the choice of a;, since the parameter a* levels the effect
of the initial crack depth, as long as a; is smaller than or of about the same size
as a*. The final crack length is not very important, since most of the life is spent
while the crack is short.

The influence of the above assumptions is studied more closely in Section 5.5.7.

5.5.5 The factors F' and M)y

The geometry factor F' was calculated from the set of equations proposed by
Newman and Raju [68], which is given in Appendix B.2.

Bowness and Lee [67] derived a set of equations to calculate M) for a welded T-
joint with a non-load-carrying weld. Those equations are based on finite element
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analyses of a “welded” joint made from plates, see Fig. B.2. From the four sets
of equations they have derived, the set for membrane load and zero weld toe
radius was chosen. The membrane load, since the load in the flange is almost
pure tension, cf. Section 5.5.3 and the zero weld toe radius because Bowness and
Lee argue that the equations derived with zero weld toe radius, referred to as “as
welded condition”, are suited for cases where the weld toe was not ground. In
addition a small cold lap would practically remove any weld toe radius.

All equations are given in Appendix B.3, for both the deepest point and the
points where the crack front intersects the component surface.

Computing the ratios [/t =5 mm/3 mm = 1.7 and ¢;/t = 0.05 mm/3 mm =
0.017, it is seen that both are well within the My validity limits, Eq. B.5. A weld
angle of = 7t/4 was used throughout.

An interesting feature of the weld toe magnification factor is that in contrast to
F', which becomes constant when a/t < 1, M) varies rapidly as long as a/t < 1,
hence, M, is very sensitive to a/t. This is due to the fact that a given crack is
“pushed” deeper into the non-linear stress peak as the thickness ¢ becomes larger.
Employing M, it is therefore not possible to neglect the effect of a finite plate
width on AK by assuming ¢ to be very large.

5.5.6 Results

Equation 5.11 was numerically integrated using Simpson’s rule. Letting a semi-
elliptical surface crack (a/c = 0.5) propagate from ¢; = 0.05 mm to a; = 2.85 mm,
the S-N curves obtained are plotted in Fig. 5.22.

The predicted lines do not follow a straight line but are slightly curved. The
line corresponding to batch 1 is concave when looking from below. This is due
to the increasing negative effect of Siesiqual @s AS decreases. The opposite is
the case for the batch 2 line, which is convex when looking from below. The
compressive residual stress causes the tensile part of the cycle to decrease when
AS decreases. The limiting case, where the whole stress cycle is compressive,
AS = |Siesidual — Sm|, 18 approached asymptotically. The curvature is hardly seen
in Fig. 5.22, because of the limited AS range covered by the diagram.

As expected, using a* = 0.25 mm gives shorter fatigue lives than a* =
0.11 mm, see also Eq. 5.17 for further details. Since the initial crack depth
chosen is very small, a* tends to have a high impact on the result. It is clearly
seen that the introduction of local stress ratios using Walker’s equation leads to
longer fatigue lives in the case of compressive residual stress at the weld toe (batch
2). The overall agreement between experimental and predicted curves is good.
However, even though the “slopes” match slightly better than in case of the stress
based S-N curves, the predicted “slopes” are still too steep. The slope mismatch
may indicate the existence of a crack initiation phase, which is more pronounced
at low stresses. The predicted curves are somewhat non-conservative. There may
be several reasons for this shortcoming. Due to the joint geometry, the corners
where the cracks are originated will be subjected to stress concentrations that
are not included in My. Furthermore, the change in material properties resulting
from the welding process (heat affected zone) has not been taken into account.
A lower fatigue limit, e.g., due to lower tensile strength, would result in a larger
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a* and hence in shorter lives.

predicted, batch 2 a*=0.25mm||

150+
- —--a=0.11mm
mean, batch 2
100
90 mean, batch 1 B
80 B

AS [MPa]

70 - nom. stress, EC 9

60 4
\
N
50 ~ i
predicted, batch 1
40 n n n n n PR n n n n n PR X n n n n PR
10" 10° 10° 10
Nf [cycles]

Figure 5.22: S-N curves for a semi-elliptical crack at the weld toe in a thin
plate propagating from a; = 0.05 mm to ar = 2.85 mm and the mean test curves.

Evolution of the crack aspect ratio

When the crack aspect ratio, a/c, is treated as a variable in the analysis, it is,
of course, interesting to see how it develops as the crack propagates. Figure 5.23
shows a plot of the a/c ratio as a function of crack depth obtained from the
analysis.

Driven by the stress gradient the initially chosen aspect ratio rapidly ap-
proaches some sort of “natural” value of a/c =~ 0.35. Propagating away from the
stress peak at the surface, a/c increases to approximately 0.4 when the crack
has penetrated 20 % of the wall thickness. Throughout further propagation, a/c
increases slowly towards 0.5.

5.5.7 Some sensitivity studies

In the previous analysis, the initial crack depth and the initial a/c ratio were “best-
guess” values and such a situation is very likely to occur whenever the fatigue life
of a welded component is to be assessed. It is therefore of primary importance
to examine the sensitivity of the fatigue life prediction to those parameters. In
addition, the crack propagation data present an obvious source of uncertainty,
which will be examined as well.

Varying the initial crack depth

In a series of analyses the initial crack depth, a;, has been varied from 0.1-
0.5 mm. The predicted S-N curves, including the one obtained previously us-
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Figure 5.23: The a/c ratio of a crack propagating at a weld toe as a function
of the crack depth.
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Figure 5.24: S-N curves for a semi-elliptical crack at the weld toe propagating from
different initial crack depths @; to af = 2.85 mm: (a) ¢* = 0.25 mm, (b) a* = 0.
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ing a; = 0.05 mm, are plotted in Fig. 5.24a. The characteristic crack length
a*(F =1) =0.25 mm was used in all cases.

From Fig. 5.24a it is immediately seen that the effect of a; is rather small.
Only if a; = 0.5, which is about 5a*, a notable impact on the fatigue life is found.
The main reason for the small effect of ¢; lies in the use of a+a* instead of a. This
insensitivity with respect to a; is rather welcome, since, as has been said before,
the initial crack depth is usually unknown. The effect of a; on predicted fatigue
life when setting a* = 0 is documented in Fig. 5.24b. The differences between
the predictions are larger, but not quite as large as expected from the fact that
a; usually dictates the fatigue life. A reason for the relatively small impact of a;
may lie in the fact that the crack propagates initially relatively fast through the
near surface region due to the high peak stress. This high peak stress counteracts
to some extent the initially slow propagation of a crack in a plate.

Varying the a/c ratio

In order to investigate the effect of the initial a/c ratio, a/c = 0.2,0.3,0.5 and 1.0
were analysed. The predicted S-N curves are plotted in Fig. 5.25. It is seen that
the crack shape has a very small impact on fatigue life. Comparing Figs. 5.25a
and 5.25b it is found that the small impact of the initial a/c ratio is not due to

*

a .
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Figure 5.25: S-N curves for a semi-elliptical crack at the weld toe propagating
from a; = 0.05 mm to af = 2.85 mm, assuming different initial a/c ratios: (a)
a* =0.25 mm, (b) a* =0.

The main reason for the small effect of a/c on the fatigue life is the fact that
a/c rapidly approaches a value of approximately 0.35, see Fig. 5.23. Already
from this figure it could be guessed that the initial crack aspect ratio plays only
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a minor role. The reason why the initial a/c is that unimportant is because only
a relatively small part of the fatigue life is spent before a/c ~ 0.35 is reached.

Variability and availability of crack propagation data

Having reliable material data is crucial when carrying out analyses. Hudson
and Seward [106] and Hudson and Ferrainolo [107] have compiled a compendium
of sources of fatigue crack propagation and fracture toughness data for a wide
range of metallic materials. When looking for crack propagation data of aircraft
application aluminium alloys (2000 and 7000 series), sources are quite frequent,
whereas data for alloys used in automotive structures (5000 and 6000 series)
are rare. Often data are published in the report series of certain institutions
(e.g. NASA, AFML) and may not be easily available from all libraries. Another
problem arises from the existence of different crack propagation laws. Since they
usually use different constants, the constants one may look for are certainly not
given, if any constants are given at all. Therefore, the constants must often be
estimated from da/dN versus AK plots which especially in the case of journal
articles are often small and of poor quality. In addition, estimating the required
data from a simple visual curve fit will be subjective, i.e., it will give different
results when carried out by different persons. It is obvious that due to such error
sources the progress achieved by more fine tuning of the models may be in vain.

Since crack propagation data for the 6082-T6 aluminium alloy are rare, the
data for the 7075-T6 aluminium alloy, see Tables 3.1 and 5.10, were used to
evaluate the variation in the fatigue life resulting from variations in documented
crack propagation data. Carrying out this sensitivity study on an aluminium
alloy different from 6082-T6 should not be a serious limitation, since the sources
of the scatter should be relatively independent of the material.

The data in Table 3.1 are given at different stress ratios. Therefore, the
constants C' have been transformed to R = 0 using Eq. A.6 with v(R > 0) = 0.63
and v(R < 0) = 0, see Section 3.3.3. In Table 5.10 both original data and
transformed constants C' are given.

Letting a semi-elliptical crack (a;/¢; = 0.5) propagate at a weld toe from
a; = 0.05 mm to af = 2.85 mm, using the data from Table 5.10, fatigue lives at
three different stress levels were obtained. Due to the large amount of data only
maximum and minimum fatigue life predictions, N¢max and Ngmin, respectively,
mean value, Ny, standard deviation, s, and the factor fy = Nt max/Nemin have
been tabulated in Table 5.11. This was done at three different stress levels.

From the large difference between Nt pax and Nimin as well as from the stan-
dard deviation or the factor fy it is seen that the fatigue lives predicted using
the different crack propagation data show a large variation. These variations
overshadow the rather small variations obtained from varying a; or the initial a/c
ratio. This result highlights the importance of good and reliable material data.
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Table 5.10: Paris constants (C' and m) for the aluminium alloys 7075-T6 and the constant

C transformed to R = 0 using Walkers equation with v(R > 0) = 0.64 and v(R < 0) = 0.

R C m C(R=0)
Source (m/cycle, MPay/m) (m/cycle, MPay/m)
Broek and Schijve [84] 0.66 7.00 x 10711 4.20 1.37 x 1071
0.57 1.00 x 10710 3.80 3.15 x 10~ 11
0.50 2.00 x 10~ 1 4.30 6.84 x 10712
0.38 7.00 x 1011 3.80 3.64 x 1011
0.29 2.00 x 10710 3.30 1.33 x 10710
0.17 8.00 x 10~ 11 3.40 6.37 x 10~ 11
0.06 3.00 x 1011 3.70 2.76 x 10~ 11
Bu and Stephens [85] 0.50 9.17 x 1071 3.64 3.69 x 10711
0.05 1.25 x 10~ 3.99 1.16 x 10~
-1.00 2.03 x 10712 3.61 2.47 x 10711
Dowling [12] 0.00 2.71 x 10711 3.70 2.71 x 10711
DTDH [87] 0.70 6.95 x 10711 3.69 1.40 x 1071
0.33 1.77 x 10710 3.00 1.14 x 10710
0.00 4.37 x 1071 3.21 4.37 x 10711
-0.33 1.47 x 1071 3.40 3.87 x 10711
-0.60 3.89 x 10712 3.49 2.00 x 10~ 11
-1.00 4.41 x 10712 3.32 4.40 x 10~11
Duréan et al. [88] 0.70 1.04 x 10710 3.83 1.97 x 10711
0.10 1.30 x 10710 3.59 1.13 x 10710
Eurocode 9 [5] 0.10 8.65 x 10~ 1 3.49 7.57 x 1071
Fleck and Anderson [89]  0.75 3.60 x 10710 3.29 6.96 x 1011
0.50 2.55 x 10710 3.06 1.18 x 1010
0.10 1.65 x 10710 3.00 1.47 x 10710
Hudson [90] 0.80 1.32 x 10710 4.00 1.30 x 10~
0.50 4.14 x 10711 3.88 1.57 x 101
0.33 8.30 x 1011 3.50 5.01 x 10~ 11
0.00 3.40 x 1011 3.56 3.40 x 10~ 11
-0.33 1.35 x 10711 3.58 3.74 x 10711
-0.60 6.14 x 10712 3.58 3.30 x 10~ 11
-0.70 1.69 x 10712 3.87 1.31 x 1071
-1.00 3.24 x 10712 3.59 3.90 x 10~ 11
Wu et al. [91] 0.50 1.96 x 10710 3.40 8.39 x 10711
0.00 3.22 x 10~ 11 3.56 3.22 x 10~ 11
-1.00 8.03 x 10712 3.48 8.95 x 1011
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Table 5.11: Maximum and minimum predicted fatigue
life, Nt max and Nfmin, respectively, mean value, g, stan-
dard deviation, s, and the factor fx = Ntmax/N¢min-

Ao Ntmax  Nimin Nt s Ix
[MPa] [cycles] [cycles] [cycles] [cycles]

50 1391000 197000 679000 313000 7.1

75 401000 59000 199000 83000 6.8

100 164000 24000 81000 32000 6.8

5.6 Crack propagation using the local stress dis-
tribution

There are several reasons why it is tempting to apply another crack propagation
approach. First of all, the My equations proposed by Bowness and Lee were de-
veloped for a joint made of plates, not hollow sections. Comparing the results
with an other method provides a means of verification. Furthermore, the local
stress distribution is easily available from the analyses done in context with the
effective notch stress approach, see Section 5.4. The complete procedure to cal-
culate F' from the local stress distribution, including the numerical integration of
Paris’ law, was already programmed by Huth [71].

Figure 5.26 shows the through-thickness distribution of the maximum prin-
cipal stress (point B in Fig 5.14a), as well as the representation through the
following 5" order polynomial

01

Smax

= —5.796% +19.44€* — 26.17€% + 17.906% — 7.59¢ 4 2.58.. (5.22)

Applying Eq. 2.45, the coefficients B,, are found to:

By = —5.790” + 19.440* — 26.17a° 4+ 17.90a* — 7.59a + 2.58
By = 28.950° — 77.76a* + 78.51a° — 35.800” + 7.59

By = —57.900° 4+ 116.64a* — 78.51a + 17.900°

By = 57.90a° — 77.76a* + 26.17a°

By = —28.950° 4 19.440*

Bs = 5.79¢°

The S-N curve in Fig. 5.27 is obtained by letting a semi-elliptical surface crack
at the weld toe propagate from q; = 0.05 mm to af = 2.1 mm (o = 0.017...0.7).
The assumed final crack depth had to be reduced to 2.1 mm to stay within the
validity limit of the method (a0 < 0.7). The characteristic crack depth a* =
0.25 mm was used, and as long as the crack was shorter than a = 0.1 the F,
value for a = 0.1 was assumed. The crack propagation data given at R = 0.1, see
Table 5.3, were transformed to R = 0.5, which, according to Table 5.2, is realistic
for batch 1. The transformation was done using Walker’s equation with v = 0.6.



94 CHAPTER 5. A WELDED T-JOINT SUBJECTED TO 4-POINT BENDING

q
25

fifth order polynomial fit

x
g 15F f
n
\\—|
o
1 -
normalised
nominal stress
S/S
05 - max n
)
0 1 1 1
0 0.25 0.5 0.75 1

X/t

Figure 5.26: Through-thickness distribution of the maximum principal stress
at the weld toe (point B) from FE analysis and its approximation by a 5'® order
polynomial (Eq. 5.22).
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Figure 5.27: S-N curves for a semi-elliptical crack at the weld toe.
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For comparison, the nominal stress S-N curve from Eurocode 9 and the one
obtained in Section 5.5.6 using the weld toe magnification factor, M, are in-
cluded in Fig. 5.27. It is seen that the fatigue life predicted using the local stress
distribution is conservative and similar to the nominal stress S-N curve from Eu-
rocode 9. Some of the deviation between the two crack propagation approaches
is certainly due to the use of the maximum stress all along the surface when
applying the local stress distribution, which makes is more conservative. The
analysis applying the M factor uses the nominal stress and excludes some of the
stress concentration due to the joint geometry (hollow section, corner). In the
real T-joint the crack propagates into a decreasing stress field along the surface,
i.e., it will grow more slowly.

5.7 A comparison

Having applied all fatigue life prediction methods presented in Chapter 2 to the
same structure, the results will be compared in this section. In Fig. 5.28 the
S-N curves obtained with the different approaches and the experimental curve
for batch 1 are given, where the nominal stress curve is the one obtained from
Eurocode 9.

1501 crack growth (local stress distribution) © batchl )
: mean
effective notch stress (Radaj): | .- . mean-2stdv
100
< 90 1
o
2 sof .
%) crack growth (M)
< 7ok K |
60 ; J
structural stress o~ \@
50+ o o4
nominal stress
l
10° 10" 10° 10°

N ; [cycles]

Figure 5.28: S-N curves obtained with the different approaches and the exper-
imental curve for batch 1. Structural hot spot stress and nominal stress results
are from Eurocode 9

It should be noted that apart from the two crack propagation approaches,
which compare directly to the mean experimental curve, the other predictions
must be compared with the mean-2stdv curve. The predicted S-N curves, espe-
cially from the stress based approaches, have a steeper slope than the experimen-
tal curves.
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The crack propagation approach using M and the effective notch stress ap-
proach (Radaj) yield S-N curves that compare best with the experimental results.
The prediction using the notch sensitivity (not included in Fig. 5.28) is slightly
non-conservative and the agreement with the experimental curve is not as good
as the agreement between the effective notch stress approach (Radaj) and the
experimental results.

The nominal stress and the structural hot spot stress as well as the crack
propagation approach using the local stress distribution give results conservative
with factors of 2-5, 4-10 and 2-3 in life, respectively.

An explanation for the different results from the crack propagation analyses
using the My factor or the local stress distribution, is found in the actual stress
used and the stress gradient along the weld toe. Shorter fatigue lives are predicted
using the local stress distribution because the highest stress is used throughout
the crack propagation. However, a crack starting at the most highly stressed
point will grow into a less stressed region, i.e., it will grow more slowly than
assumed in the analysis. On the other hand, the equation used to calculate M
does not account for the shear lag and the inhomogeneous stress distribution due
to the hollow sections, thus a longer lifetime is predicted.



CHAPTER 6

A welded T-joint subjected to transverse
bending

After having applied the various fatigue assessment methods to a welded T-joint
subjected to 4-point bending, another load case was studied. Under 4-point
bending, the weld is non-load carrying. Therefore, a load case where the load
is transmitted through the weld was looked for. Eventually it was decided to
investigate the T-joint subjected to transverse bending of the brace, as shown in
Fig. 6.1. Loading the joint in such a way is obviously not a good design, since
severe stress concentrations are produced. Nevertheless, from a research point
of view, this load case is of interest [102,108|. Another reason for applying this
load case is that, due to the approximately 3 mm deep crack-like root gap, failure
from the root side was expected.

_> R
1
h =265mm
I, i
j Figure 6.1: T-joint subjected to trans-
777 v 777 verse bending of the brace.
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6.1 Fatigue testing

6.1.1 Description

The specimens were welded according to the welding procedure specification given
in Appendix D. Altogether thirteen specimens were tested. The specimens were
divided into two groups and each group was tested at a different load level. The
applied nominal stress ranges in the chord at the weld toe are given in Table 6.1.
All specimens were subjected to constant amplitude loading at a stress ratio of
R = 0.1. The specimens were arranged vertically and clamped to a rigid plate,
see Fig. 6.2.

Figure 6.2: T-joint made from rectangular hollow sections.

To apply the load, a bolt, that was cylindrical at one end and with a cross
section fitting exactly into the brace (50 mm deep) at the other end, was inserted
into the brace and clamped. The cylindrical part of the bolt was mounted to
a spherical hinge, which in turn was attached to the load cylinder. The hinge
allowed the brace to bend freely. The experiments were carried out using load
control, thus the load was kept constant even when the crack becomes prominent.
The tests were stopped when the maximum displacement of the loading point had
increased by 4 mm. By that time the crack had extended along the weld toe and
around the “corners”, see Fig. 6.3.
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Figure 6.3: Typical crack at the time the test was concluded.

6.1.2 Calculating the nominal stress

As in the previous chapter, the fatigue life will be presented in form of nominal
stress S-N diagrams, thus, the nominal stress must be calculated. Both ends
of the chord are clamped, which makes the beam structure three times statically
undetermined. However, making use of the symmetrical boundary conditions and
some elementary beam cases, the problem can be treated quite effectively.

Applying the load P to the brace, cf. Fig. 6.4, the brace receives the bending
moment

M(z) = Pz . (6.1)

With 2z = h = 265 mm, ¥ = Ymax brace = 30 mm for the left surface of the brace
and Tprace = 234 660 mm?*, see Appendix C, the maximum stress becomes

Ph 0.034

Ymax,brace — 2
I brace ’ min

Smax,brace = P. (6.2)

Due to symmetry it follows that half of the bending moment M(z; = h) = Ph
is transferred to either side of the chord, see Fig. 6.4c. To obtain the complete
bending moment distribution in the chord, it is assumed that one half of the chord
is described by a cantilever beam subjected to My = Ph/2. For the displacement
of the free end of the beam to vanish, a transverse force, Py, is required and its
magnitude follows from:

2E'Ichord 3EI(:hord B
3 My
P="2 6.3
b =5 (6.3)

From the equilibrium of moments and forces follow the reaction moment M, =
My /2 and the reaction force Py = P, respectively. Now, the bending moment in
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chord 3 E
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Figure 6.4: Idealisation and nomenclature of the T-joint subjected to trans-
verse bending of the brace.

the chord from the left end to the junction with brace is found to be

M(z) = % (1 - 3?) . (6.4)

The bending moment distribution of the complete T-joint is sketched in Fig. 6.5

My /2 oM, N\t
— |\ = Myl2
MO

Figure 6.5: bending moment distribution in the T-joint.

With the stress from the axial load Sp = P/2A (tension in the left part of the
chord), the total nominal stress in the chord is found from adding the stresses due
to the bending moment and the axial force. With M(zy = [) = —My = —ph/2,
Y = Ymaxchord = —20 mm for the upper surface of the chord, A = 520 mm?,
Ihora = 125830 mm*, the maximum tensile stress in the chord becomes

( 1 h > (0.001 + 0.021)
Smax,chord -

e Ymaxchord | P = P. 6.5
2A 2Ichordy ,chord HIHI2 ( )
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It is immediately seen that the axial load contributes with 5 % only. Figure 6.6
compares the stress distribution along the chord from beam theory (Eq. 6.5) with
the result from a finite element analysis, see Section 6.3. The FE result follows
the beam theory nicely up to 29/l =~ 0.5. Thereafter the stress in the chord
deviates from the beam theory result. This deviation is due to local buckling in
the hollow section and the stress concentration from the weld.

0.1

0.08
FEA, volume elements

0.06 -

0.04

S/P [MPa/N]

0.02 beam theory

_002 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

22/I

Figure 6.6: Axial stress distribution along the centre line of the upper surface of
the chord. Finite element analysis (cf. Section 6.3) compared with beam theory
(Eq. 6.5).

Comparing the maximum nominal stress in the brace, Eq. 6.2, with the maxi-
mum nominal stress in the chord, Eq. 6.5, it is found that the maximum stress in
the brace is 1.5 times its equivalent in the chord. From this evaluation of nominal
stress the failure could be expected in the brace. Thus, if the joint fails in the
chord, the failure will be related to the local geometry.

6.1.3 Test results

The obtained fatigue lives are listed in Table 6.1 and the Basquin constants of the
fitted curve, together with the standard deviation of log Ny, siog g, are given in
Table 6.2. Figure 6.7 shows both the test results and the fitted mean S-N curve.
For comparison, the mean S-N curve from the 4-point bending tests (batch 1) is
shown in Fig. 6.7 too.

It was found that the crack propagated from the weld toe of the chord, c.f.
Fig 6.3, in all specimens. This behaviour was rather unexpected since the root
gap, cf. Fig. 5.4, presents a crack-like defect of about 3 mm depth, which led to
the presumption that a crack would propagate from the root. This, however, did
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not happen. The crack always started at one of the radial parts along the weld
toe, see Fig. 5.1 and propagated into the chord.

Table 6.1: Loading conditions and fatigue lives.

Specimen  Ppin  Pmax AP AS N; comments
no. [kN]  [kN] [kN] [MPa] [cycles] test no. strain gauges
1 0.11 1.1 1.0 22.0 504 000 6.1 —
2 0.11 1.1 1.0 22.0 1000000 6.2 —
3 0.11 1.1 1.0 22.0 2220000 6.3 —
4 0.11 1.1 1.0 22.0 248 000 6.5 —
5 0.11 1.1 1.0 22.0 271000 6.9 —
6 0.11 1.1 1.0 22.0 297000 6.10 —
7 0.167 1.67 1.5 33.0 74000 6.6 —
8 0.167 1.67 1.5 33.0 49000 6.4 4x
9 0.167 1.67 1.5 33.0 49000 6.7 —
10 0.167 1.67 1.5 33.0 121000 6.8 —
11 0.167 1.67 1.5 33.0 63 000 6.12 6x
12 0.167 1.67 1.5 33.0 153 000 6.13 —
13 0.167 1.67 1.5 33.0 138 000 6.14 2x

Comparing the S-N curves from 4-point bending and transverse bending, it
is seen that the fatigue live is reduced by a factor of approximately 150 in life
in case of the transverse bending load case. This large reduction supports the
statement at the beginning of this chapter that the transverse bending load case is
not an optimal design. However, as pointed out earlier, the load case was applied
in order to investigate the applicability of the various approaches to fatigue life
predictions of aluminium load-carrying fillet welds.

Table 6.2: Constants in Basquin’s law for transverse bend-
ing fatigue tests and the standard deviation, siog v

1/b 0‘% A S]og N¢
[MPa] [cycles/ MPal/ b]
mean -4.55 231 6.91 x 10! 0.3
mean — 2 Sjog v, -4.55 171 1.74 x 10!

6.1.4 Strain measurements

In order to get an indication of the load symmetry and monitor when and where a
crack starts to propagate, single strain gauges with a gauge length of 7 mm were
applied to three specimens (specimens 8, 11 and 13). Figure 6.8 illustrates the
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Figure 6.7: Experimentally found fatigue lives and the corresponding mean S-N
curve.

location of the strain gauges. It must be noted that not all of the three specimens
were equipped with all six strain gauges, see Table 6.1. The strain gauges sgl
through sg4 were to monitor the strain near the weld, whereas the remaining two
strain gauges, sgb and sg6, were to measure the strain undisturbed from the weld.

Table 6.3: “Strain ratios” for spec-
imens 8, 11 and 13.

specimen no.
“Strain ratios” 8 11 13

8II]a.X,Sg2/grnax’sgl 04 05 —
6IIla,X,SgE}/i(:.:rr]adx’sgzl 08 09 13

5max,sg5/5max,sg6 — 1.0 —

Figure 6.8: Strain gauge placement and no-
tation.

Figure 6.9 plots the maximum strain, €5, recorded with strain gauges sgl
through sg4 on specimen 8 as a function of the number cycles. Theoretically,
the recordings from sgl and sg2 as well as from sg3 and sg4 should, because of
symmetry, be identical as long as no considerable crack has developed. It is,
however, immediately seen that they are not equal. The ratio emaxgse2/Emaxsgls
which should be 1, is approximately 0.4 and €paxse3/Emaxsegd ~ 0.8. Returning
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to Fig. 6.9, it is found that the strain recorded with sg4 starts to drop rapidly
at approximately 15000 cycles, which indicates that the crack has become large
enough to cause major changes in the load distribution. The strains at sgl and
sg4 are decreasing, whereas the strains obtained from sg2 and sg3 increase. At
sg4, the strain even becomes negative, which may be explained by the release of
tensile residual stresses.

1000

specimen 8

800 sg3 N

600 k

400

€
3 200
=]

—-400

—600

_800 | | | |
0 10000 20000 30000 40000 50000
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Figure 6.9: Maximum strain, ey, as a function of the number cycles recorded
with strain gauges sgl to sg4 on specimen 8.

To investigate whether the large non-symmetry in the strain measurements
is caused by non-symmetrical loading, non-symmetries in the weld geometry or
erroneous measurements, two more specimens were equipped with strain gauges.
Specimen 11 received six strain gauges where the additional strain gauges, sgb and
sg6, were placed on the chord far away from the weld toe to be undisturbed from
the weld geometry, see Fig. 6.8. Two strain gauges, sg3 and sg4, were attached to
specimen 13. In Table 6.3 “strain ratios” indicating the symmetry of the loading
are listed. The pair of strain gauges sgb and sg6 measure the same strain, hence
a ratio of 1.0 is obtained. The other two strain gauge pairs, however, record large
differences. This would suggest that the weld is the source of the non-symmetry.
However, to become confident, a larger number of specimens equipped with all
six strain gauges must be tested. In addition, two more strain gauges should
be placed away from the weld on the brace. To trace the crack, smaller strain
gauges should be placed closer to the expected crack initiation site. However, it
is of course impossible to directly obtain information about the actual size of a
crack with this method.

The strain measurements showed that the strain distribution along the weld
toe is not symmetric as expected. Since the load cylinder and the specimens were
thoroughly aligned, the lack of strain symmetry must be due to non-symmetries
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in the weld. There might be some measurement error or a badly applied strain
gauge. However, since both specimens 8 and 11 show a similar non-symmetry,
this is not most likely.

Due to the higher strain measured at the sg3 side of the chord, the failure of
specimen 8 could be expected to start from this side. This was not the case. The
crack propagation started from the opposite side, which is clearly seen from the
sg4 strain readings, cf. Fig. 6.9. This unexpected behaviour is probably caused
by a larger initial defect or a more severe weld toe geometry at the sg4 side.

6.2 Nominal stress

Applying different design codes to the T-joint subjected to 4-point bending showed
that the predicted S-N curves differ little from code to code. However, neither
Eurocode 9 nor BS 8118 give a detail category suitable for the T-joint subjected
to transverse bending of the brace. The experimental results for the 4-point bend-
ing load case and the transverse bending load case differ by a factor 3 in stress,
cf. Fig. 6.7. Since the detail categories applicable for the 4-point bending loading
range between 20 and 25, a detail category 8 would be suitable for the T-joint
subjected to transverse bending of the brace. Such a low detail category does not
exist in the standards mentioned above. Therefore, to be able to treat welded
structures loaded similar to the T-joint discussed here, a detail category 8 should
be considered to be included in the design standards.

6.3 Structural hot spot stress

After having applied the nominal stress approach, the structural hot spot stress
approach is employed. Unfortunately, BS 8118 does not state structural hot spot
stress design curves. Therefore, the curve has been taken from Eurocode 9. Since
the structural hot spot stress detail categories in Eurocode 9 are distinguished
by the member thickness only, the same design S-N curve (detail category 44) as
for the 4-point bending tests applies. Thus, Aocps = 44 MPa. The structural
hot spot stress S-N curve must be converted to nominal stress to be comparable
with the experimental results and the nominal stress approach. This is done by
means of the structural hot spot stress concentration factor, K. Two finite el-
ement models were created to find the hot spot stress and hence K;s. The first,
which is a shell model combined with solid elements to represent the weld, did
not give reasonable results near the weld. The geometry might be too complex
to be adequately described by such a model. The second model, therefore, con-
sisted entirely of volume elements (quadratic elements with reduced integration,
C3D20R), see Fig. 6.10, with two elements through the wall thickness.

In addition to the finite element analysis, the following parametric equations,
derived by van Wingerde [108] and contained in the IIW document [101], are
employed as verification and also to find out whether or not the equations are
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applicable to the given T-joint.

Kys = (0.952 — 3.0623 + 2.382% + 0.0228 - 27)

x (2

)(—0‘694—5‘8176—4.68562) 075

Ky = (—0.054 + 0.3323 — 0.2583%)

x (27) (2.084—1.06234-0.52732) L7075

Kps = (0.39 — 1.05453 + 1.1153%)

% (2,}/)(—0‘154—&-4.555[3—3.809[32)

(line C) (6.6)
(line D) (6.7)
(line E), (6.8)

For a definition of (3, v and 7 refer to Section 5.3.2. Lines C to E are defined in
Fig. 6.11. Equations 6.6 to 6.8 are proposed for T-joints made from square hollow
sections subjected to a transverse force on the brace [108]. The cross section of
the brace was considerably smaller than the cross section of the chord.
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Figure 6.10: Finite element mesh near the wel

the T-joint modelled with volume elements.

o
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Figure 6.11: Definition of the
lines along which the hot spot
stress concentration factor was
calculated.

The structural hot spot stresses and stress concentration factors along lines C,
D and E, see Fig. 6.11, for the T-joint investigated in this work were established
using linear extrapolation and the obtained values are listed in Table 6.4. From
these values it is seen that the hot spot stress concentration factor from the FE
analysis at line D is in good agreement with the value obtained from Eq. 6.7.
Along line C the parametric equation (Eq. 6.6) predicts a 30 % larger Kys. Fi-
nally, the finite element result and Eq. 6.8 differ most along line E, with Eq. 6.8
predicting a hot spot stress concentration factor that is four times larger than the
one from the FE analysis. This deviation is most probably due to the differences
in the geometry between the T-joint studied by van Wingerde [108]| and and the

T-joint investigated in this work.

In order to convert the structural hot spot stress S-N curve to nominal stress,
using Eq. 5.5, K3 = 8.9 from the FE analysis was selected since it refers to
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Figure 6.12: Experimental S-N curve compared to the structural hot spot stress
design curve from Eurocode 9 [5] expressed in terms of nominal stress.

the actual joint. The resulting curve is plotted in Fig. 6.12. It is seen that
the structural hot spot stress approach provides a conservative prediction. The
conservatism is of the same magnitude as in the 4-point bending case, i.e., a factor
4-10 in life. Note that if the parametric equation (Eq. 6.6) for the derivation of
the structural hot spot stress is used, the predictions are even more conservative.

Table 6.4: Hot spot stresses and stress concentration factors.

Soat/P  Siot/P ouns/P S/pP Khs Kus

Line [MPa/N] [MPa/N] [MPa/N] [MPa/N] (FEA) (Egs.6.6-6.8)
ol 0.152 0.086 0.196 0.022 8.9 11.6
D 0.117 0.096 0.135 0.022 6.1 6.5
E 0.040 0.020 0.053 0.034 1.6 6.5

 Line C at angle ¢ = 45°

6.4 Effective notch stress

A three dimensional finite element model has been created to find the most
severely stressed point in the joint. To minimise the required computing resources
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and computing time, the same sub-model strategy as for the 4-point bending case
has been followed. The mesh densities of the global and the sub-models were
similar to those given in Table 5.6. Linear elements (C3D8R) were used for the
global model, whereas both sub-models were idealised using quadratic elements
(C3D20R). Since the most highly stressed area is farther away from the axis of
the chord than under 4-point bending, see Fig. 6.13b, the geometry of the sec-
ond sub-model differs slightly to the 4-point bending analysis, cf. Figs. 5.11 and
6.13a.

a)

Figure 6.13: (a) Geometry of the second sub-model, (b) von Mises equivalent stress near
the weld.

The highest stressed point at the weld toe is situated where the the tangent
to the weld toe forms an approximately 45° angle to the axis of the chord, see
Fig. 6.14.

To get a detailed overview of the stress state at this point, all stress com-
ponents have been extracted from the finite element analysis and Mohr’s stress
circle has been constructed. Both the stress values and Mohr’s stress circle are
given in Fig. 6.14. It is seen that the principal axes 1 and 2 are almost perpen-
dicular and tangential to the weld toe, respectively. The third principal stress is
practically zero as it should be, because of the free surface. Since oy/07 = 0.4
and both stresses are positive, this stress state is found in quadrant I of Fig. 2.6
and the difference between Tresca and von Mises equivalent stress is close to the
maximum value of 15 %.

As in Chapter 5, Peterson’s, Neuber’s and the gradient method to estimate
the notch sensitivity are compared. The stress concentration factor is calculated

to

o 0.232 MPa/N
KK=—=——""_=10.5. .
"7 S 0.022 MPa/N 05 (6.9)

The von Mises stress distribution in thickness direction at the highest stressed
point is plotted in Fig. 6.15. The normalised stress gradient, Y, is found from
this stress distribution to be

1 do

Omax Az

1 105-93
©10.5 0.1 mm

X = =114 mm". (6.10)

‘xZO
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Figure 6.14: Stress components, principal stresses and von Mises equivalent stress at the
point with maximal von Mises stress at the weld toe and Mohr’s stress circle.
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Figure 6.15: Von Mises stress distribution in thickness direction at the highest
stressed point at the weld toe.
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The required material constants for the three notch sensitivity approaches are
listed in Table 6.5 together with the obtained fatigue notch factors. It is seen
that reasonable agreement between the fatigue notch factors calculated with the
different approaches is obtained.

Table 6.5: Fatigue notch factors calculated from Ky = 10.5 employing
different approaches.

material geometric
Approach Egs. parameter [mm] parameter K
Peterson 2.9, 2.10 po = 0.64 [42] p=1mm 6.8
Neuber 2.9, 2.12 p*=0.2[11] p=1mm 6.8

Gradient 2.18,2.20 p°=0.075[11] x=1I14mm™! 81

Using Eq. 5.9 together with K¢y = 6.8 to convert the effective notch stress
S-N curve to nominal stress, with the Basquin parameters given in Table 5.7,
the respectively marked S-N curve in Fig. 6.16 is obtained. It is seen that the
predicted S-N curve is somewhat non-conservative.
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Figure 6.16: Experimental S-N curve compared to effective notch stress design
curve from Eurocode 9 [5] expressed in terms of nominal stress.

6.4.1 The effective notch stress according to Radaj

Assuming Ky = Ki(pf = 1 mm) = 10.5 results in the second predicted S-N
curve shown in Fig. 6.16. As for the 4-point bending load case, Radaj’s effective
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notch stress approach yields almost perfect agreement. The reason for Radaj’s
method being superior to the other effective notch stress approaches is certainly
because the design S-N curve is proposed for the assumption of a 1 mm notch
radius. Again, although not recommended for joints with wall thickness less than
5 mm |6, 28], the results indicate the applicability of the method down to 3 mm
wall thickness.

6.5 Crack propagation analysis

Finally, after having applied the nominal, the structural hot spot and the effective
notch stress approaches to the T-joint subjected to transverse bending, the fatigue
life will be predicted using a crack growth analysis. Unfortunately, no M solution
was found that is suitable to the current load case. Simply assuming the M factor
given by Eq. B.4 is applicable to the transverse bending too would lead to the
same S-N curves as in the 4-point bending load case, thus much too long lives
would be predicted. Therefore, the method suggested by Carpinteri et al. [70]
and described in Section 2.6.5 is applied here.

The stress gradient at the weld toe is available from the finite element analyses
carried out to find the local stress. Figure 6.17 shows the through-thickness
distribution of the maximum principal stress, as well as the approximation by
the following 5 order polynomial

Sal = —18.66£° 4 64.12¢* — 84.64€° + 64.38¢% — 37.40¢€ +12.16.  (6.11)
max
12 b
10 b
8 -
« fifth order polynomial fit
U)E 6 i
bH
4 L. .
normalised
2 . h -
nominal stress
Or S/ Smax \O\O\O_ﬂf

0 0.25 0.5 0.75 1
x/t

Figure 6.17: Through-thickness distribution of the maximum principal stress
at the weld toe.
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The geometry factor, F', is calculated from:

F=> F.B,, (6.12)

where the coefficients B,, are found by applying Eq. 2.45:

By = —18.66a° + 64.12a" — 84.64a° + 64.380* — 37.40a + 12.16
By = 93.30a° — 256.48a" + 253.92a° — 128.76a° + 37.40a

By = —186.60a” + 384.72a" — 253.92a° + 64.380

B; = 186.60a° — 256.48a" + 84.64a°

By = —93.30a” + 64.12a"

Bs = 18.66a° .

Letting a semi-elliptical surface crack at the weld toe propagate from a; =
0.05 mm to a; = 2.1 mm (o = 0.017...0.7), the S-N curve in Fig. 6.18 is obtained.
Similar to the 4-point bending analysis, the assumed final crack depth has been
reduced to 2.1 mm to stay within the validity limit (o < 0.7) of the method. As
long as the crack was shorter then a = 0.1 the F}, values for a = 0.1 were used.
The characteristic crack depth was set to a* = 0.11 mm. The crack propagation

data given at R = 0.1, see Table 5.3, were transformed to R = 0.5, which,
according to Table 5.2, is realistic for untreated T-joints, using Walker’s equation

with v = 0.6.
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Figure 6.18: S-N curves for a semi-elliptical crack growing at the weld toe
compared to experimental data.

Figure 6.18 shows the resultant prediction. It is seen that it is conservative
by approximately a factor 40 in life. One explanation for this conservatism is
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the fact that the highest stress is used throughout the propagation along the
surface, even though the crack, as it propagates along the surface, grows along a
decreasing stress field.

6.6 A comparison

As was done in the previous chapter, all the fatigue life predictions obtained are
compared to each other. Figure 6.19 gives the S-N curves obtained with the
different approaches and the experimental curves.
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Figure 6.19: S-N curves obtained with the different approaches and the exper-
imental curve.

It is seen that all predicted curves have a steeper slope than the experimen-
tal curves. The crack propagation approach and the structural hot spot stress
approach yield very similar S-N curves. Both predictions are conservative. How-
ever, since the prediction from the crack propagation analysis must be compared
to the mean curve and the structural hot spot stress prediction refers to the
mean-2stdv curve, the curve from the crack propagation analysis is further from
the experimental results.

In the standards referred to in this work, no suitable nominal stress detail
category could be found, hence no prediction could be made using the nominal
stress approach. The S-N curve from the effective notch stress approach according
to Radaj is in excellent agreement with the mean-2stdv curve obtained from the
fatigue tests. As for the 4-point bending load case, the S-N curve predicted using
the notch sensitivity, cf. Fig. 6.16, gives slightly non-conservative results. An
explanation for this conservatism is given in Section 5.6.






CHAPTER 7

Conclusions

7.1 Summary

If the effect of the mean stress is to be incorporated in a crack propagation
analysis, Walker’s equation with v = 0 at R < 0and v = 0.6 at R > 0 is a
good approximation for both the 7075-T6 and 2024-T3 aluminium alloys. An
interesting alternative to Walker’s mean stress equation is the equation proposed
in Section 3.5. This equation represents an elegant means of incorporating the
mean stress effect from —1 < R < 1 into one simple equation.

The crack propagation tests carried out on short cracks confirmed the crack
propagation data based on long cracks found in the literature are applicable
to shorter cracks too. The crack propagation rate was successfully measured
using a special DC potential drop method. It was not obvious to apply this
measurement technique to aluminium specimens with short cracks, because of the
very good conductivity of aluminium. Two specimens showed some accelerated
crack propagation at low stress intensity factor ranges, which is said to be typical
for short cracks. Probably, the cracks in the other specimens were already too
deep to show these effects. The scatter, especially at low AK, is partly due to
differences in the crack growth behaviour as the crack propagates through the
regions with the different grain structures. Based on the test results obtained at
different stress ratios and literature data, a Walker exponent of v = 0.78 for the
6082-T6 aluminium alloy was calculated. This value which is somewhat higher
than v = 0.6, which was found suitable for the 7075-T6 and 2024-T3 aluminium
alloys, indicates a less pronounced mean stress dependency of crack growth in the
6082-T6 aluminium alloy.

The fatigue life of a welded aluminium T-joint has been estimated and com-
pared with test results from both 4-point bending of the chord and transverse
bending of the brace. For the 4-point bending load case all predictions are within
a factor 10 in life. Similar deviations between the predictions from the differ-
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ent models, on the one hand, and between the predictions and the experimental
results, on the other hand were obtained for the transverse bending load case.

The nominal stress method may be assumed to be the most robust, however,
due to the lack of an adequate detail category in current design codes and recom-
mendations, no prediction for the transverse bending load case could be made.
Instead, a new suitable detail category has been suggested. The prediction for
the T-joint subjected to 4-point bending loading was conservative with a factor
2-5 in life.

The structural hot spot stress approach gave conservative results (factor 4-10
in life) for both load cases.

The effective notch stress approach according to Radaj resulted in excellent
agreement with the mean-2stdv curves of the test data for both 4-point bending
and transverse bending.

Finally, the crack propagation approach using the M factor gave excellent
agreement in the case of the 4-point bending loading. For the transverse bending
load case the available M equations were not suitable. Employing the local stress
distribution gave conservative predictions for both load cases.

A reason for the different results obtained employing either M) or the local
stress distribution, is found in the actual stress used and the stress gradient along
the weld toe. Shorter fatigue lives are predicted using the local stress distribution
because the highest stress all along the surface is used throughout the crack
propagation. However, a crack starting at the most highly stressed point will
grow into a less stressed region, i.e., it will grow more slowly than assumed in
the analysis. On the other hand, the equation used to calculate My does not
account for the shear lag and the inhomogeneous stress distribution due to the
hollow sections. Therefore, the method based on the local stress distribution and
the one based on the M, factor represent some sort of lower and upper bound
fatigue life estimates, respectively. The fact that the initial defect size is usually
unknown turms out to be rather unimportant, as long as the defects are about
the same size as a*.

7.2 Discussion and further work

When a suitable detail category is available, the nominal stress approach is a safe
method. Incorporating the local effects in the detail category, i.e., in the S-N
curve, the many uncertainties related to the local geometry are avoided, which in
many cases are not possible to determine. The dependency on a nominal stress
represents the main drawback of this method. On the other hand, its obvious
attractiveness results from the simplicity and the minimum requirement on the
stress analysis.

Including the global (structural) stress concentration in the stress analysis
the structural hot spot stress approach eliminates the need of a nominal stress.
However, the fact that the structural hot spot stress is a fictitious value that can
be found only indirectly is not comforting, especially since there are a variety of
approaches to calculate the structural hot spot stress. In addition, the result of
these methods usually depend on the finite element mesh. A major drawback of
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the structural hot spot stress approach is its restriction to failures starting from
the weld toe.

The method that gave the best results, is the effective notch stress approach
according to Radaj. This method circumvents the uncertainties related to the
local weld geometry by assuming that the weld toe radius is 1 mm. Although
recommended for wall thicknesses larger than 5 mm only |6, 28|, the results in-
dicate that the method is suitable for welded structures with a wall thickness as
low as 3 mm. Both failure from the weld toe and the weld root can be treated.
Only the very detailed stress analysis required is a drawback. However, pre-
calculated notch stress concentration factors can be used together with a more
global finite element analysis capturing only the global geometrical features of
the structure (as implemented in the fatigue prediction software FEMFAT [109]).
This drastically simplifies the practical use of the method.

According to the thesis stated in Chapter 1, the fatigue life of a welded compo-
nent must be most accurately predicted using a crack propagation analysis, since
the fatigue life is dominated by crack propagation. However, the crack propaga-
tion approaches investigated in this work are not reliable and flexible enough to
be regarded as the best approach for welded structures.

Nevertheless, crack propagation remains a tempting approach, because of its
physical basis, flexibility and since it is theoretically not limited to certain struc-
tures. The effect of mean stress can be accounted for in a straightforward manner,
which has been successfully shown in Chapter 5. However, the crack propagation
analysis is rather complex and more difficult to apply than the S-N curve based
approaches. To accurately incorporate the effect of the local stress field appears
to be the most important and widely unsolved problem. Under many practical
circumstances, cracks will be subjected to stress gradients in both the depth and
surface directions. Today, the My factor does not account for stress gradients
in surface direction and the methods using the local stress distribution are only
able to take care of the stress gradient in the surface direction to a certain ex-
tent. Therefore, developing equations to calculate My for more structural details,
including those that have stress gradients in two directions, would be required.
Using My has the strong benefit that no FE analysis is required. On the other
hand, a nominal stress and an equation to calculate My for a given structural de-
tail are needed, which returns to the drawbacks of the nominal stress approach.
Therefore, despite the somewhat discouraging results, employing the local stress
distribution is the more promising solution since no nominal stress is required,
only a very detailed FE analysis. To improve the method it must be extended to
treat stress gradients in both the depth and surface directions.

A third method is to use a computer program (finite or boundary element)
that can model crack propagation, i.e., that directly calculates the stress intensity
factor. Especially the boundary element method seems to be suitable, since the
re-meshing effort upon crack extension is relatively low. The effort to apply the
Franc3D program to the analysis of a crack at the weld toe of the T-joint was not
successful. It is believed that this was due to the extremely small initial crack
and the even smaller elements on the crack surfaces compared with the overall
dimensions of the model, a limitation that certainly will be removed by more
sophisticated software.
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Treating short cracks by the approach suggested by El Haddad et al. [61],
results in an increased crack propagation rate as long as the crack is short. Its
simplicity makes it attractive for engineering applications. In addition, provided
the model is correct, a very welcome feature is the relative insensitivity to the
choice of the initial crack depth as long as the latter is smaller than a*. It is of
course tempting to learn more about the real mechanisms that affect the growth of
a short crack. However, from a practical point of view taking care of the micro-
structural effects will complicate the analysis to a large degree, not the least
because of the additionally required material parameters, which are practically
impossible to acquire. At this level the statistical nature of the fatigue process is
revealed. The probabilistic approaches to fatigue, however, have not been within
the scope of this work.

Returning to the thesis stated in Chapter 1 it must be concluded that the
fatigue life of a welded component can be predicted using a crack propagation
analysis. However, the results are not generally superior to those from the other
approaches and improvements in treating the local stress gradients are required.
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APPENDIX A

Walker’s equation

A.1 Fatigue limit

If the fatigue limit is know at R; and the structure to be analysed is loaded at
R, both can be related using Walker’s equation. Equation 3.8 gives for R;

Ao (Ry) = Aoa walker (1 — Ry)' T (A.1)

Combining Eqgs. 3.8 and A.1 an equation follows that relates the fatigue limit at
two arbitrary mean stress levels

1—R 1=va
AUA(R) == AUA(Rl) (1 R > . (AQ)
— I

If the fatigue limit is known at at least two different mean stresses, ya can be
calculated. The dependency of the threshold stress intensity range, AKjy,, on
mean stress may also be described using Walker’s equation, using the exponent
Yn. Both exponents, v and 74, do not necessarily have the same value, since
they describe the dependence on R of the fatigue limit of a polished specimen
and of a cracked specimen, respectively. v, may be roughly estimated from

Ynh=1— 1 ; (A.3)

m
given in [18], where m is the exponent in Paris’ law. Expressing the dependency
of the stress intensity factor range, AK, on mean stress with Walker’s equation,
the exponent may be called 7. Dowling [12| states that in general v > 4. The

dependency on R is more pronounced at low AK.

A.2 Crack propagation rate

If the crack propagation data (C; and m) have been obtained at R, but the
structure is loaded at R, the constant C' must be modified to match the actual
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loading. The Paris exponent m is approximately independent of R. Rewriting
Eq. A.2 in terms of stress intensity range and inserting in Paris’ law leads to

da 1- R\ "
= _c AK(R Ad
L_c, [( ) A (A1)
Rearranging gives
da
— = CAK™ A.
N (A.5)
with )
Oy ()™ i Ry > 0and R> 0
¢ (N i Ry > 0and R< 0
ol o, ) . (4.6)
C (5f=)" i Ri<Oand R>0
L O ()" if Ry <0Oand R<0

A.3 Linear regression to find Walker exponent

Taking the logarithm of Eq. 3.13 gives the following linear relationship:
y(zr) =a+bx, (A7)

with y = log AK(R), = log(1 — R), a = log AKwaker and b = (1 — ). If data
at R > 0 or R < 0 are only given, the standard least mean squares method can
be used to find a v valid for R > 0 or R < 0, respectively. However, having data
at both, positive and negative R ratios, the standard least mean squares method
is not appropriate.

Since the dependency of AK on R changes when R becomes negative, the
Walker exponent must change also. Therefore the least mean squares method
must be modified to obtain a continuous curve. To be more precise, two interpo-
lation curves, one for R > 0 and one for R < 0, must be found that intersect at
R = 0. This may be achieved by fulfilling the following condition,

> Ly = (@)l + D [y — yela)] = min, (A8)
7 J
with y;(z) = a + bx and ys(z) = a + cx. If the index i applies to data points for
R <0, then j applies at R > 0. Partial differentiation with respect to a, b and
c gives a system of linear equations to calculate a, b and ¢ and hence AKwaker,
(R < 0) and 7(R > 0).

n+m sz ij ZyH-Zyj
i j i j
n n a n
dor 0 ) af >y
| J | L J 4




APPENDIX B

Geometry functions for some crack
configurations

B.1 Edge crack in a finite plate

Empirical geometry functions for an edge crack in a finite plate (width w) sub-
jected to a membrane load can be found in [110], for example

0.857 + 0.265—
w

K

a 4
F = 0.265 (1——) +
w

B.2 Semi-elliptical surface crack in a finite plate

Newman and Raju [68] proposed a geometry function for a semi-elliptical surface
crack, see Fig. B.1, in a finite plate subjected to membrane and bending load.
For a membrane load the following equation applies:

F= % [Ml + M, (%)2 + M (%)4} Fofud . (B.2)

for0<a/c<1,0<a/t <1, c/w<0.5and 0<¢<m with
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\ \ / A

2w

Y

Figure B.1: Semi-elliptical surface crack in a plate with
finite width and finite thickness.

s ar 212 an 165 a
\/@:/ 1—[1—(—)] sin? 3dj ~ 1+1.464<—> <—§1>,
C C &
0
My =113 -009 (%) | My = 0544 23
¢ 0.2+ —
&
1 a 24 a 2 ) ) 0.25
M3:0.5—7a+14<1—2) , f¢:{<g> cos? ¢ + sin 4 ,

0.65 + —
c

fu = {1/008 (;—;\/9}05 , g=1+ {0.1+0.35 (%)2} (1 — sin §)2.

For a shallow crack (a/t < 1), Eq. B.2 simplifies to

1
F = ﬁle(;sg. (B.3)

B.3 Semi-elliptical surface crack at a weld toe in
a finite plate

If a weld toe is the starting point of a crack, it will not grow through a constant
stress field, but through a decreasing one. The stress gradient is caused by a stress
concentration introduced by the weld toe radius (notch) and the attachment.
Bowness and Lee [65,67] proposed and verified a set of equations to calculate the
correction factor, My, to the stress intensity factor solution for a semi-elliptical
edge crack in a plate, see Appendix B.2. This factor includes the effect of the
attachment and the weld toe radius. The proposed equations are based on finite
element analyses of a T-joint made from plates (see Fig. B.2). British Standard
BS 7910 [66] refers to the work from Bowness and Lee.

Deepest point

The My factor at the deepest point of the crack for “as welded” conditions (weld
toe radius p < 0.1x plate thickness t) and membrane load is given as

My = fi(a, ) + fa(a,0) + f3(a,0,7) , (B.4)
with a = a/t, B = a/c, v = 1/t. The factors f;, fo and f3 are defined as follows:
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(A1+(420)3) —0.050966

f1 = 0.43358q +0.93163 e + Ay,

fa= A5 (1= ) + Aga=010Te,

fz3= Asa(A992+A1°9+A“) + Apa13 + Ajya? + Arsa + Asg,

Ay = —1.03433% — 0.156573 + 1.3409 ,

Ay = 1.32183(-061153)

Az = —0.872380 + 1.2788,

Ay = —0.461908% + 0.67093% — 0.375710 + 4.6511,
As = —0.0003873762 + 0.647710 — 0.72368

Ag = 0.241836 + 176.23

A7 = —0.0002774360 + 2.8143 ,

Ag = —0.0825026% + 0.008486260 + 0.38417,

Ag = 0.0107667> — 0.060159v2 + 0.13667~ — 0.0234 ,
Ay = —0.02837873 + 0.1648972 — 0.35584 — 0.00024554 ,
Aq; = —0.001506142 + 0.023369y — 0.23124,

App = 0.05155462 + 0.0254476 + 1.8975

Az = —0.129146? + 0.2186360 + 0.13798,

Ayg = —0.201367% + 0.933117y — 0.41496,

Aqs = 0.20188+2 — 0.97857y + 0.068225,

Ajg = —0.027338v2 + 0.12551y — 11.218,

where t is the wall thickness, [ the attachment footprint length and 6 the weld
angle, see Fig. B.2. The following validity limits are given for M)

0.005 <ar < 0.9
0.5 <y < 2.75

<6<z (B.5)

<0 <042m if 0.5 <y <1.25.

> Ao A

Surface point

The M, factor at the points where the crack front intersects the components
surface, for “as welded” conditions (weld toe radius p < 0.1x plate thickness ?)
and membrane load, is given as



132 APPENDIX B. GEOMETRY FUNCTIONS FOR SOME CRACK CONFIGURATIONS

AC, Ao

Figure B.2: Geometry of the joint analysed to derive the My
factor equations [67].

Mk:fl(oﬁ]-/ﬁ?’)/) f2<a7ﬁ70) f3<a7ﬁ7977)7 (BG)
with
f1 = Ala(A2(1/5)2+A3(1/3)+A4) + A5 (1—a) (As(1/8)*+A7(1/B)+As)

I

fo=(AoB® + A1+ Anr) @12 + Ayz (1 — )™t |
f3 = (A150% + A8 + Arz) @8 + (A196% + Aggf + Ax) pol Az Aaadt o) ,
A; = 0.0078157 (1/8)% — 0.070664 (1/5) + 1.8508,
Ay = —0.00005454672 + 0.00013651 — 0.00047844 ,
Az = 0.00049192~% — 0.0013595y + 0.011400,
Ay = 0.00716547% — 0.033399y — 0.25064 ,
As = —0.018640 (1/3) + 0.24311 (1/8) — 1.7644
Ag = —0.00167137% + 0.0090620 — 0.016479 ,
A7 = —0.00316157% — 0.010944 + 0.13967 ,
Ag = —0.045206~3 4 0.3238072 — 0.689357 + 1.4954 ,
Ag = 0.152090% + 0.00291556 — 0.38250,
Ay = —0.245236% 4 0.001324460 + 0.50434 ,
A = —0.6402362 + 2.264260 + 0.25959,
Ag = —0.254733% 4 0.409283 + 0.0021892,
Az = —0.1145862 + 0.729276 — 0.22760,
Ayy = 37.4236% — 15.7413 + 64.903
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Az = —0.14475+% 4 0.51648y — 0.18189,

A1 = 0.3495072 — 1.30697 + 1.0641,

Ayr = —0.105537v% + 0.413737% — 0.38632y — 1.9885,
A1g = 1.822500?% — 4.50086 + 3.1650,

A9 = 0.0415744% — 0.16138v + 0.14184,

Agg = —0.09891272 + 0.39688y — 0.58821 ,

Agy = 0.04389173 — 0.19694+2 4 0.23516+y + 0.97585
Agg = —0.0461383% — 0.121713 + 1.6277,

Agz = 0.08859142 + 0.278163 — 4.0124,

Aoy = —0.0525303% — 0.139023 + 2.6646 .

The validity limits are the same as for the deepest point.

B.4 Crack propagation with variable a/c ratio

In general, having a semi-elliptical surface crack, the stress intensity factor will
vary along the crack front. This leads to a change in crack shape as the crack
propagates. If Paris’ law is valid in depth direction (a-direction) and along the
surface (c-direction), the rates of crack propagation in both directions are related
as

d AK™ Fam
a_¢ a—( ) | (B.7)

de  CAKm  \F,
where F, and F; are the geometry functions in a and c-direction, respectively.
From the relation above follows that the crack extension increment Ac, corre-

sponding to an increment Aa is found from

s (5" a0 B

Hence, when a numerical integration is carried out, Ac is directly obtained from
the given Aa.
Using the equations to calculate F', suggested by Newman and Raju [68],

Eq. B.7 becomes:
da 1

de [\/T/c(m +0.35 (a/t)2)]m '

As long as a < t, the crack asymptotically approaches a form where a/c = da/dc.
Assuming m = 3 the asymptotic a/c ratio according to Eq. B.9 is 0.89. However,
as Newman and Raju [68] point out, experiments have shown that a semi-elliptical
surface crack tends to become semi-circular in a thick plate subjected to mem-
brane loading. They explain this discrepancy with different Paris constants, C,
in the a and c-directions, due to the transition from plane strain in the material

(B.9)
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to plane stress at the surface. Another reason for the deviation between experi-
mental and predicted crack aspect ratio is that the crack does not obey a 1/4/r
singularity at the surface, see for example Pook [111], hence K loses its validity.
However, especially in mode I loading this effect has a rather minor impact on
fatigue life prediction [111|. To predict the correct aspect ratio, Newman and
Raju 68| suggest using C. = 0.9™C},, which leads to

0.9F.\"
Ac:( 7 ) Aa. (B.10)

a

Using C. = 0.9™C, predicts an asymptotic aspect ratio of approximately 1, if
a < t, see Fig B.3a. If the crack approaches the opposite plate surface, a/c
decreases, see Fig B.3b, since F),/F. decreases.

1.2

semi—elliptical surface crack, a <<t, semi-elliptical surface crack
Paris exp.m =3

initial a/C: initial a/C:

0 1 2 30 0.2 0.4 0.6 0.8 1
a) a[mm] b) ar
Figure B.3: Development of crack aspect ratio, a/c, as a semi-elliptical surface crack

propagates: (a) a shallow crack and (b) a crack growing through the thickness. C. =
0.9™C, [68] was assumed in both cases.



APPENDIX C

Second moment of area of the cross
section of the T-joint

To find the second moment of area relative to the z-axis

I, = /yZdA (C.1)

of the cross section of the T-joint, one quarter of the cross section area is divided
into three parts A;, A and As, see Fig. C.1. Because of the symmetry in = and
y the total second moment of area will be four times that of the quarter, which
in turn will be the sum of the second moment of area of each part.

A

y v

t
2T
)

» Figure C.1: One quarter of the
cross section of the T-joint.

Using Steiner’s theorem, the second moment of area corresponding to Ay, I,; can

be written as

ty} y1\? ty

I, == <—> t= 2= C.2
1 19 + 5 U1 ( )
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To obtain [, integration is required:

I0 = /deA = //(rsingo—l—yl)%“dgodr

Ao r o
r=r, P=7/2
= / / (r¥sin? ¢ + 2r%y; sin p + ry?)de dr
r=r; =0
=Ta w/2

' 1
= / [r3 (g -1 sin 2@) —2r¥y cosp +ryfp| dr
0

2
= / (%7“3 + 2112 + %ylr) dr

_[moa 2n s T o)
—[16r+3r+ 47“}

2
=T+ )+ T ) (©3)
The derived equation can be checked partly by setting y; = 0 and multiplying
Lo with four: 4l,5(y; = 0) = w(r} — r{")/4, which corresponds to the second
moment of area around a symmetry axis of a circular ring, as it should. Another
control can be performed as follows. Mirroring A, at y; the second moment of
area relative to y = 0 of the mirrored area becomes

., T 2y Ty;
fm:E(?“;‘—Tf‘)—?1(7“3’—7“?)+71(7“§—7”12)- (C.4)

I,5 and I, can be combined such that the second moment of area of a circular
ring, I, ., with a distance y; to the bending axis is obtained:

Ipor = 200 + 213,
= T (=) +yin (2= rd) (C5)

It is easily seen that the same result could be obtained by employing Steiner’s
theorem.

I3 could be found using Steiner’s theorem, however, integration gives the
result in a more compact form:

y2+t

X
Ls = /deA =z / vidy = 5 (12 +1)° —43) - (C.6)

As Y2

The second moment of area of the complete hollow section is calculated from:

I, =4I + Lo + L3) . (C.7)



APPENDIX D

Welding Procedure Specification for
robotic welding of aluminum T-joints

Welding sequence

Welding parameters

Material: Aluminum RHS profiles (40 x 60 x 3), AA 6082-T6,
Robot: ABB IRB 2400 (S4C+)

Power source: ABB LRC 430

Filler wire: ER 5183, ¢1.2 mm, Esab OK Autrod 18.16
Shielding gas: Ar 4.6, 25 1/min
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APPENDIX D. WELDING PROCEDURE SPECIFICATION

Sequence Wire speed Welding voltage Welding speed
[m/min] V] [mm /s|

1 8.0 25.0 9

2 8.0 23.0 -

3 8.0 22.0 10

4 7.0 21.5 -

5 8.0 22.0 12

6 8.0 23.0 9

7 8.0 23.0 -

8 8.0 23.0 9

9 8.0 23.0 -

10 8.0 22.0 12
Welding current
Wire speed: 8 m/min 7 m/min
Pulse current 288 A 276 A
Pulse time 1.9 ms 1.9 ms
Base current 68 A, 148 Hz 56 A, 128 Hz

Cleaning:
1. Degreasing with alcohol
2. Wire brushing









