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Work Description

The main objective of this thesis is to increase effectiveness and robustness of au-
tonomous sailboats. Robustness is an important aspect of autonomy, but previous
work have done little to address fundamental issues such as course control, reducing
the danger of capsizing at high wind speeds, and how to optimally chose between
different turning maneuvers when sailing up-wind.

A mathematical model of the system will be developed. The model will try to im-
prove upon previous work by adding increased detailed, such as wind simulation and
dynamics of the boom. The simulator will be used to verify the proposed control
strategy.

Acknowledgements
I would like to express my gratitude to my supervisor Vahid Hassani for many great
conversations and helpful comments on my work. I would also like to thank NTNU
for five great years and a superb education.



i

Summary - English/Engelsk
This thesis is divided into five parts. In the first part, a general mathematical model
of a sailboat is created. The model presented builds upon previous work and im-
proves the modeling at multiple different areas such as current, wind, the boom
dynamics, and more. Simulations are then executed and the results analysed to be
used in the controller design.

In the next part, an ideal sail and rudder controller is designed on the basis that
the system and its states are known at all times. The increased detailed in the sim-
ulation compared to previous work presents new challenges, such as how to control
the angle of the sail when one only can do so by manipulating the length of a rope
connected to the boom. New strategies for a course controller and a technique that
reduces roll motion by using the sail are also presented and tested.

Next, a new and improved path following algorithm is created. Compared to pre-
vious works the solution presented is both easy to implement and provides good
results. The path following algorithm also takes into account how to chose between
tacking or jibing when sailing up-wind, increasing both performance and robustness.

The last two parts are about sensor simulation and state estimation, and how a
practical control system can be designed. The practical controller do not have per-
fect state estimation and is designed to only account for the most important system
dynamics, which are determined by using the analysis from the first and second part
of this thesis.

Testing shows that every part of the system works as intended. The simulator in-
creases the level of detail and captures new and interesting dynamics. The control
system manages to hold a steady course and keep heeling angles within safe levels.
The path following allows the sailboat to sail up-wind, and do so without risk of
loosing control. The performance of the simple controller is similar to the ideal
controller, despite being simpler.



ii

Sammendrag - Norwegian/Norsk
Denne master oppgaven er delt inn i fem deler. Den første delen tar for seg matema-
tisk modelering av en seilbåt. Denne modellen bygger på tidligere arbeid og utvider
modellen ved å inkludere strømninger, forbedret vind modell, dynamikken til bom-
men, og mer. Simuleringer har blitt gjennomført og resultatene analysert.

Den neste delen tar for seg en perfekt seil og ror kontroll som er designet med tanke
på at alt ved systemet er kjent til enhver tid. Den forbedrete modellen av seilbåten
gjør at nye dynamikker ved systemet kommer frem, og det gir nye utfordringer som
må løses, slik som å kontrollere seilet når man bare kan manipulere ett tau som er
festet til bommen. Nye strategier for kurskontroll og en metode for å redusere rull
bevegelse ved å bruke seilet har også blitt designet og testet.

Neste del tar for seg utviklingen av en algoritme som lar båten følge en gitt sti.
Sammenlignet med tidligere arbeid er løsningen enkel å implementere og gir gode
resultater. Algoritmen tar også for seg hvordan man best skal velge mellom forskjel-
lige manøvere for å snu båten når man seiler opp mot vinden, noe som øker både
effektivitet og robusthet.

De to siste delene handler om å estimere posisjon og orientering av skipet, og hvordan
et mer praktisk kontroll system kan bli designet. Den praktiske kontrolleren antar
ikke perfekt kunnskap om systemet og tar bare for seg de viktigste dynamikkene til
systemet, som er blitt funnet ved hjelp av analysen i del en og to. Den praktiske
kontrolleren yter veldig likt som den "perfekte" kontrolleren, selv om den er vesentlig
enklere.

Testing viser at alle delene fungerer slik som de skal. Simulatoren oppfører seg mer
realistisk en før og fanger nye og spennende dynamikker. Kontroll systemet klarer å
holde båten på en stødig kurs samtidig som at båten ikke krenger for mye. Algorit-
men for å følge en sti gjør at seilbåten kan seile mot vinden, uten å riskiere å miste
kontroll.
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1 Introduction

1.1 Motivation and Goals
The history of sailboats goes back to one of the earliest civilizations of mankind
in Mesopotamia where the Tigris and Euphrates rivers inspired the development
of many watercraft, including sailboats, see Carter [2012]. However, autonomy in
sailboats is a topic that has gained attention only in recent years, see Xiao and
Jouffroy [2014].

Sailboats require little to no energy to operate, making them well suited for long
operations such as oceanographic research. Moreover, with the increased focus on
clean energy, sailboats could provide a green option for transporting goods (Michael
et al. [2014]). The propulsion force of the sailboat is created by the wind, and the
only energy needed to operate the boat is by trimming the sail and controlling the
rudder. Fitting the sailboat with solar panels or extracting energy directly from the
sail itself makes them very much self sustainable in terms of energy (Jaulin and Bars
[2013b]). Besides being cheap to operate, sailboats are fairly cheep to build and are
reduces noise pollution as well as greenhouse gases.

The major downside of sailboats are their dependency on the weather conditions.
The large surface area of the sail provides the boat with forward thrust, but it also
makes the boat vulnerable against strong winds. This can cause large heeling an-
gles, a lot of roll motion due to wind gusts, and in worst case it can cause the boat
to capsize. Further more, the wind causes large side forces to be exerted on the
boat causing relatively big drift angles compared to what is normally observer on
motorized boats. Sailboats can not sail directly up-wind either, and one have to
move in a zig-zag pattern to be able to sail up-wind.

The first part of this thesis will cover sailing basics; explaining the purpose of the
sail, keel, rudder and some important maneuvers such as tacking and jibing. When
this is established a mathematical model of a sailboat will be created, which will be
used for simulation purposes and when designing the control system. Path following
will allow the sailboat to sail up-wind, as well as increasing the efficiency when sail-
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1.2. SIMPLIFICATIONS AND IMPORTANT REMARKS 2

ing down-wind. Lastly, sensor simulation and state estimation is added, and then
a practical control system is designed by using all of the knowledge gathered from
the previous chapters.

A lot of earlier papers on the topic of autonomous sailboats ignore a lot of the sys-
tem dynamics, or simplify them to only the bear minimum is left, thus leading to
very general PID controller solutions that has to make up for the model inaccuracies
by relying heavily on integral action, trading simplicity for performance. In parts
of this thesis the problem will be tackled from the other end to give a new perspec-
tive on the subject by trying to make an ideal controller, not taking into account
restriction such as a non-perfect state estimation or model inaccuracies. It will help
us understand which aspects of the system that are the most important, which will
be useful when creating a more robust and practical controller later on that do not
compromise on performance.

A general theme in this thesis is to increase the robustness of the autonomous sail-
boat. Sailboats will never be a viable option if they cannot handle a variety of
different weather conditions, and robustness is an important aspect of autonomy.
While the focus is on autonomous sailboats the automated control system could also
help improve the sailing experience for a crew. A way of reducing roll motion by
controlling the sail will be studied, that can improve both safety and comfort.

Two separate papers based on the work done in this thesis have been accepted for
publication (Wille et al. [2016a,b]). The first paper is about modeling and course
control, and the second paper is about roll stabilization.

1.2 Simplifications and Important Remarks
Even though the model presented in this thesis is more comprehensive than previous
work it is still a very simplified model. The model of the sailboat presented do only
include the mainsail, the keel and the rudder. The only way of controlling the sail
will be through changing its angle relative to the wind, and it should be mentioned
that there are numerous other ways of controlling a sail other than just changing
the angle of it. For example, one can change the twist, the vertical camber, the
draft and much more (C.A.Marchaj [2000]). Other types of sails can also be used
together with the mainsail, such as a jib, genoa, or a spinnaker.
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The following assumptions and simplifications are used throughout the thesis 1:

• The yacht is rigid, and movement in heave and pitch are neglected.

• Waves, and the effect caused by them (first order and second order), are not
modeled.

• Added mass coefficients are modeled as constants, in reality they are frequency
dependent.

• The effects from the sail, keel, rudder and hull are computed independently of
each other. As a result, effects caused by interactions between two (or more)
of these are not modeled.

• The sail, keel and rudder are modeled as (rigid) foils. The lift and drag forces
of a foil are due to the integration of pressure around the foil, though for
simplification, the resultant force will be applied to a single point on the foil
known as the center of effort.

• When modeling the boom dynamics the body-frame will be treated as inertial,
and the movement of the boom will not effect the boat besides changing the
angle of the sail.

Current is implemented in the mathematical model of the system, but the controller
design do not take the current into account. This was partly to reduce the scope of
the thesis, but it was decided to keep it in the model such that other may explore
it in the future.

1The assumptions used are borrowed from Xiao and Jouffroy [2014], see source for more detail.



2 Basic sailing principles

2.1 Main Components

Figure 2.1: Main components of a sailboat shown from the side and from a top down
view.

A sailboat has three main components: The sail, the rudder and the keel. The main
task of the sail is to provide forward motion. Contrary to what one may intuitively
think, the maximum speed is not reached when sailing directly down-wind, called
running. When running the sail is limited to only using drag, and when the speed
of the boat increases the effective wind speed on the sail decreases. When sailing
perpendicular to the wind direction, known as beam reaching, the lift generated by
the sail can be utilized, and when the speed of the ship increases the effective wind
speed increases as well.

The rudder is used for steering the ship onto the desired course, just like on a mo-
torized boat. However, on a motorized boat the rudder is usually placed behind the
propeller, ensuring that the rudder always can provide some steering capabilities.
On a sailboat one do not have this guarantee, meaning that some speed in surge is
required to keep the boat controllable.

4
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The keel is used to balance out unwanted forces in sway created (mainly) by the
sail. The purpose of the sail is to provide forward motion, but when beam reaching
the sail is also pushing the boat sideways. The keel creates an equal but opposite
force in sway to keep the sailboat moving forward instead of sideways.

2.2 Tacking Maneuvers

Figure 2.2: A sailboat that is beating up-wind.

A sailboat can not sail directly against the wind direction. Figure 2.2 shows the
path the sailboat has to make to be able to sail up-wind. When sailing up-wind
in this zig-zag pattern it is called beating, and the boat is said to be sailing close
hauled when sailing close up against the wind direction. When beating the sailboat
has to do multiple turns, and thees can be executed by doing a "tack" or a "jibe"
maneuver. It is usually favorable to be sailing broad reach when sailing down-wind,
which is at an angle between running and beam reaching, in a similar zig-zag pattern
as when beating. When broad reaching one can utilize the lift from the sail, which
as discussed earlier is more efficient.

Figure 2.3 shows the tack maneuver while beating. At one point the bow of the ship
will be facing directly against the wind, also known as the eye of the wind, which
is the defining characteristic of the tack maneuver. No forward forces are provided
by the sail when tacking, and the ship will decelerate throughout the turn. If the
speed falls too low the rudder will not be able to steer the boat.

Figure 2.4 shows the jibe maneuver when sailing up-wind. The jibe is defined by
turning the stern of the ship through the eye of the wind. The main advantage of
this compared to the tacking maneuver is that the sail will be providing a forward
force to the boat. There are two disadvantages to jibing compared to tacking, the
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Figure 2.3: Detailed look at the tack maneuver

Figure 2.4: Detailed look at the jibing maneuver

first one being that it takes a longer amount of time when beating. The second
problem is that the boom will swing over the deck at one point (as can be seen in
figure 2.4), which can hit people if they are not prepared for it, or in worst case
cause the boat to capsize due to the momentum of the boom.



3 System equations

Having a mathematical model that describes the dynamics of the sailboat is nec-
essary before one should begin to discuss control. This is because optimal control
theory is tightly connected to the system dynamics, and because it enables us to
prove the effectiveness of our controller. The model developed will also be used for
simulation and testing purposes, further increasing the need for a detailed model.

This chapter will be divided into three main parts. First, a mathematical model
of the system dynamics are developed. Secondly, coefficients used in the system
model will be estimated based on a real sailboat. The last part shows a couple of
simulation results, and a discussion about which forces that dominates the system
in different conditions.

The model presented builds upon the model developed by Xiao and Jouffroy [2014],
which is the most advance sailboat model the author could find. Their model uses
the framework developed by Fossen [2011] for modeling vehicles at sea, and adds de-
tailed modeling of the sail, keel and rudder. However, there are some short comings
in their model that will be addressed in this thesis, such as very simple drag model,
no attention to modeling of actuators (sail, rudder), rudimentary wind modeling,
and effects due to current are not included.

Main contributions of chapter:

• Realistic wind modeling.

• Accurate simulation of the boom.

• Developed model that includes effects due to current.

• Increased accuracy of drag modeling.

• Analysis of which forces that dominates during running and beam reaching.

7
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3.1 System equations

3.1.1 Definition of forces

Figure 3.1: Definition of positive direction of important parameters, including forces
created by the sail and the keel

Before presenting the system dynamics, description of the essential parameters in
modeling the system, the direction of forces, axis and angles are presented in Figure
3.1 and 3.2. Explanation of variables can be found in table 3.1 and 3.2. All lift and
drag forces are shown for an angle of attack equal to zero. Throughout the thesis,
the notation of Society of Naval Architects & Marine Engineers has been adopted.
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Variable variable explanation
βw wind angle [rad]
Vw wind vector [m

s
]

βc current angle [rad]
Vc current vector [m

s
]

ψ ship heading [rad]
φ roll angle [rad]
λ angle of sail [rad]

Variable variable explanation
SL sail lift [N & mN]
SD sail drag [N & mN]
KL keel lift [N & mN]
KD keel drag [N & mN]
CG Center of gravity [m]
x’ x in body frame [m]
y’ y in body frame [m]

Table 3.1: Variable explanation

Figure 3.2: Definition of positive direction of forces created by the rudder.

Variable variable explanation
σ angle of rudder [rad]
RL rudder lift [N & mN]
RD rudder drag [N & mN]

Table 3.2: Variable explanation cont.
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3.1.2 Vectorial representation
In what follows two different reference frames are used: the north-east-down (NED)
reference frame (n-frame) and the body reference frame (b-frame). The NED coor-
dinate system will be treated as inertial, and the b-frame is connected to the body
of the ship. The origin of the b-frame, CO, is set to be at the center of gravity (CG)
midship and at the waterline.

The equations of the system are based on the vectorial representation proposed by
Fossen [2011]. A 4DOF1 model has been chosen because of the big roll motions
observed on sailboats. The states of the system become the following:

η =


x
y
φ
ψ

 ν =


u
v
p
r

 · (3.1)

Variable variable explanation
x position in north [m]
y position in east [m]
φ roll [rad]
ψ yaw [rad]

Variable variable explanation
u speed in x’ direction [m

s
]

v speed in v’ direction [m
s
]

p angular velocity in roll [ rad
s
]

r angular velocity in yaw [ rad
s
]

Table 3.3: η and ν

The vectorial representation of the system is

η̇ = J(φ, ψ)ν
MRB ν̇ + CRB(ν)ν +MAν̇r + CA(νr)νr +D(νr) + g(η) =

S(η, ν, λ, Vw)+K(η, ν, Vc) +R(η, ν, Vc, σ),
(3.2)

where J(φ, ψ) is the transformation matrix

J(φ, ψ) =


cos(ψ) −sin(ψ)cos(φ) 0 0
sin(ψ) cos(ψ)cos(φ) 0 0

0 0 1 0
0 0 0 cos(φ)

 , (3.3)

1Degrees Of Freedom
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Variable variable explanation
MRB,MA rigid/added mass matrix

CRB(ν), CA(νr) rigid/added mass centripetal matrix
D(νr) drag matrix
g(η) restoration forces
J(θ, ψ) transformation matrix from b- to n-frame
S forces from sail
K forces from keel
R forces from rudder

Table 3.4: Variable explanation cont.

and νr = [ur vr p r]T is the speed of the ship relative to the water

[
ur
vr

]
=
[
u
v

]
− JT2D(ψ, φ)Vc, (3.4)

where J2D is

J2D(φ, ψ) =
[
cos(ψ) −sin(ψ)cos(φ)
sin(ψ) cos(ψ)cos(φ)

]
· (3.5)

Assuming V̇c = 0, it follows that ν̇r = ν̇.

MRB, CRB(ν), MA, CA(νr), D(νr), g(ν), S(η, ν, λ, Vw), K(η, ν, Vc) and R(η, ν, Vc, σ)
are described in table 3.4. S(η, ν, λ, Vw), K(η, ν, Vc) and R(η, ν, Vc, σ) are dependent
on several different states of the system, and will from now on be written as S, K
and R for readability.

3.1.3 Mass and Centripetal Matrix

MRB and MA is expressed as (3.6) and (3.7). Added mass is a function of the fre-
quency of the given motion, but for now, fixed added mass is used. The fixed added
mass is chosen for a frequency of zero, except for the surge motion where it is chosen
for an infinitely high frequency.2

2Only the most important cross terms are included.
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MRB =


m 0 0 0
0 m 0 0
0 0 Ixx 0
0 0 0 Izz

 (3.6)

MA = −


Xu̇(∞) 0 0 0

0 Yv̇(0) 0 Yṙ(0)
0 0 Kṗ(0) 0
0 Yṙ(0) 0 Nṙ(0)

 (3.7)

The rigid body coriolis matrix is equal to

CRB(ν) =


0 −mr 0 0
mr 0 0 0
0 0 0 0
0 0 0 0

 (3.8)

and the added mass coriolis matrix, which causes the destabilizing Munk moment,
(Yv̇ −Xu̇)urvr, is equal to

CA(νr) =


0 0 0 Yv̇vr + Yṙr
0 0 0 −Xu̇ur
0 0 0 0

−Yv̇vr − Yṙr Xu̇ur 0 0

 · (3.9)

3.1.4 Restoration forces
The restoring forces are calculated by

g =


0
0

pwg∆GMtsin(φ)cos(φ)
0

 , (3.10)

where ∆ is the total displacement of the ship and GMt is the transverse metacentric
height (Fossen [2011], p. 64).

3.1.5 Dampening
The damping matrix, D(νr), represents the damping caused by the hull of the ship
(not the rudder and keel, which will be handled separately later). The damping
matrix consists of a linear and a non-linear part:

D(νr) = Dlνr +Dq(νr)· (3.11)
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The linear damping is caused by potential damping and skin friction due to a laminar
boundary layer, though only the latter will be considered. The potential damping
is frequency dependent, and the effect is negligible at low frequencies.

Dl =


dl11 0 0 0
0 dl22 0 0
0 0 0 0
0 0 0 dl66

 (3.12)

Nonlinear damping is caused by wave drift and vortex shedding. Waves are not
modeled, and follows that wave drift damping are not modeled either.

Dq(νr) = [DqX
(νr) DqY

(νr) DqK
(νr) DqN

(νr)]T (3.13)

The nonlinear damping in surge is based on the flat plate friction (ITTC 1957, Lewis
[1988])

DqX
(νr) = 1

2pwSH(1 + k)CF (Rn)|ur|ur, (3.14)

where

CF (Rn) = 0.075
(log10(Rn)− 2)2 , (3.15)

pw is the density of sea water, SH is the wetted surface area of the ship, k is the
form factor coefficient, CDV (Rn) is the friction coefficient due to nonlinear viscus
effects and Rn is the Reynolds number. The nonlinear damping in sway and yaw is
modeled using the cross-flow drag principle based on strip theory (Faltinsen [1990]):

DqY
(νr) = 1

2pw
∫
L
CD(x′)T (x′)|vr + x′r|(vr + x′r)dx′ (3.16)

DqN
(νr) = 1

2pw
∫
L
CD(x′)T (x′)x′|vr + x′r|(vr + x′r)dx′, (3.17)

where T (x′) is the draft and CD(x′) is the two-dimensional drag coefficient. The
roll damping is modeled using the theory developed by Himeno [1981]. The roll
damping consists of a friction and a lift damping component

DqK
(νr) = BF0(LWL + 4.1 ur

ωrollLWL

)pr +BLprur, (3.18)

where BF0 is the linear friction at u = 0, BL is the lift damping, LWL is the water
line length and ωroll is the frequency of the motion in roll. Eddy damping, caused
by flow separation at the bottom of the ship hull due to roll motion, has not been
included as it is negligible when the Froude number is larger than 0.2, which for a
small to medium sized sailboat can safely be neglected.
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3.1.6 Sail, Keel and Rudder

Foils

The sail, keel and rudder are all modeled using foils. The lift and drag of a foil are
calculated using the following formulas:

FL = 1
2pACL(α)V 2 (3.19)

FD = 1
2pACD(α)V 2, (3.20)

where p is the density of the fluid (in this context, air or water), A is the area of
the foil, V is the speed of the fluid over the foil and CL(α) and CD(α) are the lift
and drag coefficients which are functions of the angle of attack, α. The velocity of
the fluid passing by a foil on the boat is equal to3

Vf = JT2D(ψ, φ)Vw/c − νuv −
[
−ry′f

rx′f − pz′f

]
−
[
ẋ′f
ẏ′f

]
, (3.21)

where xf and zf is the x′ and z′ position of the foil in relation to CO. Vw/c is the
wind/current vector.

Sail

The speed of the wind that is passing by the sail is calculated by (3.21):

Vws = JT2D(ψ, φ)Vw(−h1cos(φ))− νuv −
[

rl2sin(λ)
−r(l1 + l2cos(λ)) + ph1

]
−
[
λ̇l2sin(λ)
−λ̇l2cos(λ)

]
,

(3.22)
where Vw(−h1cos(φ)) is the wind speed at h1cos(φ) meters above the sea level, which
is the the center of effort of the sail. The angle of the wind can then be calculated
as4

βws = arctan2(Vwsv , Vwsu), (3.23)

and the angle of attack as
αs = βws − λ+ π· (3.24)

We can then calculate SL (lift of sail) and SD (drag of sail) using formula (3.19),
(3.20) and (3.24). Using trigonometry and the definitions of figure 3.1, S can be
formulated by

3When subscripts u, v, x′, y′ (etc) are added to a variable it means that the u or v component(s)
of that vector is being used. Example: νuv = [u v]T .

4arctan2(y, x) ∈ [−π, π] is the four-quadrant inverse tangent.
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S =


−SLsin(βws) + SDcos(βws)
SLcos(βws) + SDsin(βws)

h1(SLcos(βws) + SDsin(βws))
Sx′l2sin(λ)− Sy′(l1 + l2cos(λ))

 , (3.25)

where Sx′ and Sy′ are the forces from S in x′ and y′ direction respectively.

Keel

For the keel we follow a similar approach. As with the wind, we first have to find
the relative speed of the water to the ship:

Vck = −νruv −
[

0
−rl3 − ph2

]
· (3.26)

The angle the water passing by the keel can be calculated as

βck = arctan2(Vckv , Vcku)· (3.27)

Then we find the angle of attack using

αk = −βck + π· (3.28)

Notice that the angle of attack is negative of βcr. This is due to the definition of
direction of forces (see figure 3.1).

KL and KD can now be calculated using (3.19), (3.20) and (3.28). This gives K as:

K =


KLsin(βck) +KDcos(βck)
−KLcos(βck) +KDsin(βck)
h2(KLcos(βck)−KDsin(βck))
l3(KLcos(βck)−KDsin(βck))

 · (3.29)

Rudder

The equation of the water speed relative to the rudder is

Vcr = −νruv −
[

0
−rl4 − ph3

]
· (3.30)

The angle of the relative speed of the water passing by can be calculated as:

βcr = arctan2(Vcrv , Vcru)· (3.31)
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The angle of attack of the rudder can be found by:

αr = −βcr + σ + π· (3.32)

R is found in the same manner as we found S and K:

R =


RLsin(βcr) +RDcos(βcr)
−RLcos(βcr) +RDsin(βcr)
h3(RLcos(βcr)−RDsin(βcr))
l4(RLcos(βcr)−RDsin(βcr))

 · (3.33)

3.1.7 Actuators

Rudder

The rudder can not move or accelerate infinitely fast and the maximum angle is
restricted due to physical limitations. In the model this is accomplished by setting
the maximum allowed |σ| ≤ σsat. A first order low-pass filter with a time constant
Tr is also applied to the input signal, effectively causing a delay when moving the
rudder. The transfer function of a first order low-pass filter is

F (s) = ω

s+ ω
, (3.34)

where

ω = 1
T

(3.35)

and T is the time constant of the filter.

Sail

The sail actuator has to be modeled more accurately as it is such an important part
of the system. It is assumed that the rope connected to the boom has no mass
and that the boom dynamics happens in a two-dimensional environment, and that
the body frame is inertial. The boom dynamics are a lot faster than the dynamics
of the body-frame, which makes the body frame behave as it is inertial in this
context. The position of the sail is controlled by the wind and a rope controlling
maximum λ. When the rope is being stretched it is modeled by a spring and a
dampening component. The boom will be modeled like a beam with a center of
gravity in the middle, with friction between the mast and the boom. Using all of
the approximations the system dynamics can be described as in Figure 3.4.
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Figure 3.3: Boom dynamics, definitions of important lengths and angles

Figure 3.4: Boom dynamics, definitions of important lengths and angles cont.

The rotational dynamics of the boom can then be expressed by the following equa-
tion:

λ̈Ib = l2Sb − l6Lb + Fb, (3.36)
where Ib is the rotational inertia of the boom, Sb is the force generated by the sail
perpendicular to the boom, Lb is the force created perpendicular to the boom by
the rope, and Fb is the torque created by friction between the boom and the mast.
Sb can be calculated by knowing Sx′ , Sy′ and λ:

Sb = l2(Sx′sin(λ)− Sy′cos(λ))· (3.37)

Fb is modeled by a linear friction component, where Fr is the friction coefficient:

Fb = −λ̇Fr· (3.38)

Lb can be calculated by:
Lb = −l6Qsin(θ2), (3.39)
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where Q ∈ [−∞, 0] is the force created by the stretching of the rope. The length of
the rope while not stretched will be referred to as l70 , while the true length will be
referred to as l7. The true length can be found by

l7 =
√
dX2 + dY 2, (3.40)

where

dX = l5 − l6cos(λ), (3.41) dY = −l6sin(λ)· (3.42)

θ2 can be calculated using

l25 = l26 + l27 − 2l6l7cos(θ2), (3.43)

from which it follows

θ2 = acos( l
2
6 + l27 − l25

2l6l7
)· (3.44)

∆L is the length of which the rope is stretched, defined by

∆L = l7 − l70 · (3.45)

∆̇L can then be calculated as as

∆̇L = l̇7 − ˙l70

= ˙√
dX2 + dY 2 − ˙l70

= dX ˙dX + dY ˙dY√
dX2 + dY 2

− ˙l70 ,

(3.46)

where

˙dX = l6λ̇sin(λ) (3.47) ˙dY = −l6λ̇cos(λ)· (3.48)

Q can then be expressed as

Q = −∆LQk − ∆̇LQb, (3.49)

where Qk is the spring coefficient of the rope and Qb is the dampening coefficient.

The actuator controlling the length of the rope also have physical limitations, such
as maximal torque, friction and inertia. However, to make implementation simpler,
this actuator is modeled as a first order low-pass filter with a time constant of Tb.
A limitation on maximum angle of the sail is also set as |λ| ≤ λsat|.
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3.1.8 Wind

The wind is simulated by the sum of a mean component and a gust component. The
mean wind speed at 10 meter above the sea level will be referred to as U10m. The
guest is estimated using the following wave spectra (NORSOK standard [2007]):

S(f) = 320
(U10m

10 )2(−z10 )0.45

(1 + xn) 5
3n

(3.50)

x = 172f−z10

2
3
(U10m

10 )−3
4 (3.51)

δ = 2
√

2S(f)∆fcos(2πft+ Υ), (3.52)

where f is the frequency of the gust, δ is the amplitude of the gust, t is the time,
z = −10 is the height above sea level, n is a constant equal to 0.468 and Υ is
an evenly distributed phase for each f . Frequencies between 0 and 0.4 Hz will be
simulated as this covers most of the energy in the spectrum. Υ is kept equal between
simulations to keep randomness out of the final conclusion. We also have to correct
for the wind speed being lower depending on how high we are above the sea level

U(z) = U10
5
2
√
k log −z

z0

z0 = 10e−
2

5
√

k ,

(3.53)

where U10 is the sum of the mean and gust wind speed at 10 meters above sea level,
U(z) is the wind speed at z meters and k = 0.0026. Vw(z) is then given by

Vw(z) = U(z)
[
cos(βw)
sin(βw)

]
(3.54)

In addition to the gust, the wind direction will fluctuate, which is modeled by

βw = βw0 + βwflux

β̇wflux
= w,

(3.55)

where βw0 is the average wind direction and w is white noise. βwflux
is saturated at

5 degrees.
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Figure 3.5: Time evolution of U(z) Figure 3.6: Time evolution of βw

Figure 3.7: Wind simulation
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3.2 Estimating Simulation Parameters

Figure 3.8: Picture of boat to be modeled

The following calculations are based on the data in Appedix B. The data includes
some basic information and a couple of drawing of the ship. Using this we can
estimate the variables we need for the model. In all of the following calculations it
is assumed that the mass of the ship is evenly distributed by volume, and that strip
theory is valid (sleek body).

Accurate values are very hard and time consuming to calculate. Most of the fol-
lowing values are rough estimates. The object of this thesis is first and foremost
to uncover the dynamics of a generalized sailboat such that new control approaches
can be tested and discovered, not to model this particular sailboat as accurately as
possible.
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3.2.1 Shape of sailboat
Before we can do any calculations on the sailboat we need to find a way to describe
the hull by equations. By looking at the top down view of the hull (Appendix B)
and recording the beam length at certain points along the hull, one can make a
good approximation by using linear interpolation between each data point. The
same procedure is used to make an approximation of the draft by using the side
view of the boat.

Figure 3.9: Plot of beam

Figure 3.10: Plot of draft

In Figure 3.9 and 3.10 the stern of the hull is at x = 0, and in Figure 3.10 the
water line is at y = 0 (the y-axis in Figure 3.10 is equal to the negative z-axis in the
n-frame, which is done for illustrative purposes). As an approximation of the beam
length at a given height, one can assume that the shape of the hull can be described
by the following equations:

h = d(x′) sin(a),

b = B(x′)
√
cos(a),

(3.56)

where d(x′) is the "draft" (measured from the top of the hull, not waterline), B(x′)
is half of the beam length, and h and b is explained in Figure 3.11.
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Figure 3.11: Plot of cross section

We can then solve (3.56) on b for a given h and x′ as

b = B(x′)
√
cos(asin

(
h

d(x′)

)
) = B(x′) 4

√√√√1−
(

h

d(x′)

)2
(3.57)

3.2.2 Mass

Rigid body

m is equal to the displacement of the sailboat, which is 1600kg. Of the 1600kg,
700kg is ballast. The following assumptions are used about the mass distribution of
the different parts:

• boom weight, 10 [kg]

• mast weight, 25 [kg]

• keel weight, 150 [kg]

• ballast is located in the bulb of the keel

• hull weight is equal to 865 (displacement minus boom, mast and ballast)

CGx and CGz of the hull can be approximated by

hull CGx =
∫
V xdV

V
(3.58) hull CGz =

∫
V zdV

V
, (3.59)
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where V is the volume of the hull. This calculation is done numerically, using the
shape of the hull as described in Figure 3.9, 3.10 and 3.11.

From the picture of the sailboat (Appendix B) one can easily require all the necessary
heights and positions of all the parts to make an estimate of the center of gravity.
In the table below, all lengths are measured from the stern, and height measured
from the water line.

Variable value
mast CGz -5 [m]
ballast CGz 1.6 [m]
keel CGz 0.95 [m]
boom CGz -5 [m]

Variable value
mast CGx 6.27 [m]
bulb CGx 5.1 [m]
keel CGx 5.1 [m]

Table 3.5: center of gravity of mast, keel and boom

Using all of the above information, CGx and CGz of the boat can be found by

CGx =
∑n
i=0 weight of element i× CGx of element i

total weight [m] (3.60)

and

CGz =
∑n
i=0 weight of element i× CGz of element i

total weight · (3.61)

Ixx and Izz of the hull are calculated by

Ixx
hull weight =

∫
V x
′2dV

V
(3.62)

Izz
hull weight =

∫
V (z − CGz)2dV

V
,

(3.63)
Ixx and Izz can then be found for the sailboat, assuming roll motion about the water
plane area and yaw motion about CGx

5:

Ixx =
n∑
i=0

weight of element i× x′2 + local rotational inertia about x-axis (3.64)

and

Izz =
n∑
i=0

weight of element i× z2
i + local rotational inertia about z-axis· (3.65)

5The local rotational inertia is assumed small (≈ 0) for the mast and keel.
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Added mass

Calculation of added mass is complicated, especially for three-dimensional objects
near (or at) the free surface. However, strip theory (Faltinsen [1990], pp.41-58),
which can be used for slender bodies, is a simplified approach for roughly estimating
the three-dimensional added mass coefficients by looking at two-dimensional strips.
The two-dimensional added mass coefficient for a cylinder (at a frequency of 0) in
water, half of it submerged, can be expressed as

Ac(R) = 1
2pwπR

2, (3.66)

where R is the radius of the cylinder. The added mass coefficient for a flat plate,
which will be used to approximate the keel and rudder, is equal to

Ap(w) = pwπ(w2 )2, (3.67)

where w is the height of the flat plate. Yv̇(0), Kṗ(0), Nṙ(0) and Yṙ(0) can then be
calculated by using the following equations:

Nṙ(0) = −Ap(kh)kwh2
2, (3.68)

Yv̇(0) = −
∫
LWL

Ac(T (x′))dx′ − Ap(kh)kw − Ap(rh)rw, (3.69)

Nṙ(0) = −
∫
LWL

Ac(T (x′))x′2dx′ − Ap(kh)kw(−l3)2 − Ap(rh)rw(−l4)2, (3.70)

Yṙ(0) = −
∫
LWL

Ac(T (x′))x′dx′ + Ap(kh)kwl3 + Ap(rh)rwl4, (3.71)

where T (x′) is the draft at x′, kh is the height of the keel, kw is the width of the
keel, rh is the height of the rudder and rw is the width of the rudder.

Strip theory can not be used to calculate the added mass in surge, Xu̇(∞). Instead,
a typical value equal to 10% of the displacement of the ship is chosen. The added
mass in surge is low compered to the mass of the ship and does not contribute as
much to the system dynamics as Yv̇, Kṗ and Nṙ.

3.2.3 Restoration forces
Equation (4.32) in (Fossen [2011],p. 65) is used to calculate GMt:



3.2. ESTIMATING SIMULATION PARAMETERS 26

GMt = BMt −BG

BMt = IT
∆ =

∫
Awp

y′2dA

∆
BG = CB − CGz,

(3.72)

where CGz is the center of gravity, CB is the center of bouncy, IL is the moment
of area about the water plane and Awp is the water plane area. CB is assumed to
be equal to a third of the maximum draft for easy calculation.

3.2.4 Dampening
Linear dampening

Fossen [2011] proposes the following formulas to approximate the linear dampening
terms:

dl11 = m11 −Xu̇(0)
Tsurge

(3.73)

dl22 = m22 − Yv̇(0)
Tsway

(3.74)

dl66 = Izz −Nṙ(0)
Tyaw

, (3.75)

where typical values for Tsurge, Tsway and Tyaw are 100-250s. The median value of
175s is chosen for Tsurge, Tsway and Tyaw, but further effort could be done to better
estimate this value. Accurate modeling of linear drag is mostly important for sway
and yaw motion as the quadratic term dominates in surge, thus Xu̇(∞) is used in
stead of Xu̇(0) even though this approximation is not very accurate.

Non-linear Dampening

DqX
(νr), equation (3.14), is dependent on the wetted surface area, SH , and the form

factor coefficient, k. SH is estimated by

SH = LWL(1.7Tmax + CBBWL), (3.76)

CB = ∆
LWLBWLd

, (3.77)

where Tmax is the maximum draft of the hull, CB is the block coefficient, ∆ is the
displacement of the boat and BWL is the beam width at the water line.
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DqY
(νr) and DqN

(νr), respectively equation (3.16) and (3.17), is dependent on the
draft, T (x′), and the two-dimensional drag coefficient CD(x′). CD(x′) is estimated
by using Hoerner’s curve (Hoerner [1965]), see appendix A. To increase simulation
speed, Ci = CD(x′i)T (x′i)dx′ is pre-calculated at ten evenly distributed points along
the ship, and equation (3.16) and (3.17) are modified to be computed numerically
at thees ten points:

DqY
(νr) = 1

2pw
9∑
i=0

Ci|vr + x′ir|(vr + x′ir), (3.78)

DqN
(νr) = 1

2pw
9∑
i=0

Cix
′
i|vr + x′ir|(vr + x′ir)· (3.79)

The roll dampening, DqK
(νr) equation (3.18), is dependent on BF0, BL and ωroll.

ωroll is simplified by using the natural frequency in roll, ωrolln , which can be esti-
mated by

ωrolln =

√√√√ GMt∆
Iφ −Kṗ

· (3.80)

BF0 is the linear friction coefficient at zero speed and BL is the lift dampening
coefficient. To see how thees coefficients can be calculated in more detail, see Himeno
[1981], however, the main equations are presented below.

BF0 = 0.787pwSHr2
s

√
ωrollnνw,

rs = BWL + Tmax
2 ,

(3.81)

where νw is the kinematic viscosity of water.

l0 = 0.3Tmax,
lR = 0.5Tmax,

kN = 2πTmax
LWL

+ k(4.1beamWL

LWL

− 0.045),

BL = 1
2pwLWLTmaxkN l0lR(1− 1.4CGz

lR
+ 0.7CGz

l0
lR

),

(3.82)

where k is dependent on how circular the cross section of the hull is, and k is equal
to zero in this case. See original source material for more information on how k is
calculated.



3.2. ESTIMATING SIMULATION PARAMETERS 28

3.2.5 Sail keel and rudder
Lift and drag coefficients for the sail were found in C.A.Marchaj [2000], p. 587. The
data of the lift and drag coefficients of the sail are gathered using real data, though
it is probably a big simplification of the real world. It’s reasonable to believe that
the lift and drag of the sail would be dependent on states such as wind speed, twist,
the vertical camber and the draft, which are not represented in the model. The drag
and lift coefficients for the rudder are based on NACA0015, while the keel is based
on NACA0009 (Sheldahl and Klimas [1981]). See appendix A for plots of the lift
and drag coefficients.

The lift of a 2-dimensional flat plate is approximately equal to

CL2D
(α) = 2πα· (3.83)

According to Wagner [1948], this formula can be modified for a finitely long plate
to be

CL(α) = 2πα
1 + 2

Asp

= CL2D
(α)

1 + 2
Asp

· (3.84)

where Asp is the aspect ratio of the foil, defined as

Asp = span

chord
· (3.85)

For a foil that is similar in shape to a flat plate, such as NACA0015 and NACA0009,
one can assume that (3.84) still holds true. Assuming this one can recalculate the
lift coefficients for an arbitrary aspect ratio:

CL(α) =
Cl0(α)(1 + 2

Asp0
)

(1 + 2
Asp

) , (3.86)

where Aspo is the original aspect ratio of the foil used when calculating the lift
coefficient, Cl0 is the original lift coefficient, and Asp is the aspect ratio of the foil
we want to scale the results to. The drag coefficients for the rudder and keel only
account for the induced drag CDi(α) and do not take into account the viscus drag.
The viscus drag are added to the drag coefficients:

CD(α) = CDi(α) + 2(1 + 2tmax
c

)CF (Rn), (3.87)

where tmax is the thickness of the foil and c is the chord length.

3.2.6 Boom
No paper before have tried to model the boom as accurately, and thus finding good
values were difficult. The parameters Fr, Qk and Qb were thus instead manually
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tuned to give a response that looked real. This was very difficult to do for Fr as it
does not contribute as much to the dynamic as the other parameters, and because
the sail itself contributes most of the dampening. Maybe in future works one can
try to determine the value of Fr, but currently it is set equal to zero.

3.2.7 Other
The lengths defined in Figure 3.1 and 3.2, and the area and aspect ratios of the keel
and rudder, where found by looking at the drawings of the sailboat (appendix B).

3.3 Results

3.3.1 Boom
The first simulation will focus on the dynamics of the boom. ν̇ = ν = 0 to ensure
that the boat is standing still, and wind gusts and the wind direction changing are
disabled. βws = 20deg, wind speed of 5m

s
, l70 = 2m and the initial value of λ is zero.

Figure 3.12: Boom simulation, λ Figure 3.13: Boom simulation, moments

Figure 3.12 shows the time evolution of λ. The sail accelerates quickly in the be-
ginning and stops just as quickly when the rope tightens. The spring effect of the
rope make the boom bounce a couple of times before the movement stops com-
pletely. In Figure 3.13 one can see that it is Sb that creates the big acceleration
at the beginning. This acceleration then gets smaller as the sail begins to move in
the same direction as the wind, effectively reducing the speed as experienced by the
sail. When the rope tightens, large spikes in Lb is observed. The two first spikes
goes beyond the graph, and reaches a maximum of roughly 2000Nm. Afterwards
Lb becomes zero, and Sb increases in size again due to the sail now moving against
the wind. This pattern is then repeated until Sb and Lb reaches steady values.
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3.3.2 Forces while running
Running describes the maneuver of sailing down-wind. In this simulation the wind
speed is 5m

s
, and the controller developed in chapter 4 is used to keep the boat

heading the correct course angle.

Figure 3.14: Running simulation, forces.

Figure 3.15: Running simulation, heeling angle and yaw.
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Figure 3.16: Running simulation, ν.

In Figure 3.14 shows the forces that acts on the boat while running. In surge one
can see that the sail and the drag are dominating, addition to the drag caused by
the keel. In sway, the rudder and keel causes most of the forces, but also the sail is
contributing. If the keel is producing forces in sway one can assume that the ship
has a small drift angle, which indeed can be found by looking at the ratio between
v and u in Figure 3.16.

The forces in roll are small compared to the inertia and added mass on this axis
of motion, which is not to surprising while running. Looking at Figure 3.15 one
finds that the heeling angle is very small as well. In yaw the sail and rudder are
dominating, but small contributions from the keel and from the coriolis added mass
is seen as well.
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3.3.3 Forces: Beam reaching
Beam reaching describes the maneuver of sailing perpendicular to the wind. In this
simulation the wind speed is 5m

s
, and the controller developed in chapter 4 is used

to keep the boat heading the correct course angle.

Figure 3.17: Beam reaching simulation, forces.

Figure 3.18: Beam reaching simulation, heeling angle and yaw.
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Figure 3.19: Beam reaching simulation, ν.

The first plot in Figure 3.17 shows that the same forces are dominating in surge
while running as when beam reaching. The same can not be said for the forces in
sway, where the sail and keel are now dominating. Looking at Figure 3.19 one finds
that the speed in sway has greatly increased, and it follows that the drift angle has
increased as well. The increase in side force caused by the sail is obliviously caused
by the wind hitting the boat from the side, compared to the stern as when running.

The increase of forces in sway also causes an increase in the moments in roll. The
restoring moment and sail are dominating, though the keel is also a key force. The
increase in the restoring moment is due to the high heeling angle, which can be seen
in Figure 3.18. The dampening moment in roll is very small, almost so that it can
not be seen. The hull causes little to no dampening in roll, and does not contribute
much to the dynamic. In yaw, the coriolis added mass, sail, keel and rudder are
contributing a lot of moments. Compared to running, the forces and moments are
larger on all of the axis, indicating that beam reaching introduces a lot more stress
on the boat.



4 The ideal controller

The purpose of this chapter is to describe an ideal controller which assumes per-
fect knowledge about the system and the states of the system at any time. This is
partly to demonstrate what theoretically can be achieved with a control system on a
sailboat, but first and foremost to have something to compare against when a more
practical controller is developed later on in the thesis. The goal of the controller
is to be able to follow a course at maximum speed, but at the same time limiting
dangerously large heeling motions.

The sailboat has two main actuators: The sail and the rudder. The system has
four degrees of freedom (4DOF) but only two actuators, meaning that the system
is underactuated. The proposed solution is made up of two independent controllers.
The first controller is developed for the rudder such that a course can be followed.
The second controller is for the sail which will focus on maximizing speed while
reducing the heeling angle and roll motion.

Multiple other control strategies for sailboats exists, from controllers based on sim-
plified system dynamics (Jaulin and Bars [2013a], Clement [2013]), to fuzzy control
(Stelzer et al. [2007], Yeh and bin [1992]) and neural networks (Tiano et al. [2001]).
However, by not taking the full system dynamics into account the control strategies
have to make up their inaccuracies by sub-optimal control. The rudder and sail
controller developed in this thesis is not based on any previous work, though the
course controller borrows an idea from [Xiao and Jouffroy, 2014] about a correction
term in the rudder controller to make the sailboat able to follow a course instead
of just a heading. A way of calculating this correction term is provided in this thesis.

Main contributions of chapter:
• A new course controller design is proposed, including a new method of easily

calculating the correction term needed to sustain a given course.

• Optimal sail control which limits heeling angle and roll motion.

• Sail controller that takes into account the new and improved dynamics of the
boom developed in the previous chapter.

34
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4.1 Rudder Controller

4.1.1 Course Control
The objective of this controller is to get the χ (course angle) to the desired χd. A
backstepping controller will be made to solve this problem, and a new solution is
provided on how to effectively calculate the necessary drift angle for sailboats such
that it is able to follow the course angle without the need for integral action.

Backstepping is a way of building up a controller using control Lyapunov functions
(CLF) and a recursive design approach. This is done by first stabilizing one sub-
system and then "backing out" to stabilize more of the system. This process is then
repeated until the whole system is stable. The method only works for a very specific
set of problems where one subsystem radiates out from another subsystem [Fossen,
2011].

new state variables

z1 = ψ + βb − χd (4.1)

Lyapunov Functions

V1 = 1
2z

2
1 (4.2)

z2 = r − α (4.3) V2 = V1 + 1
2z

2
2 (4.4)

The first z-state describes the error from the desired course angle, and βb is the
necessary drift angle such that the desired course angle is achieved, referred to as
the correction term (βb is explained in more detail later on in this chapter). βb is a
bias, and its time derivative is equal to zero. The drift (also referred to as side slip)
and course angle is defined as

β = arctan2(v cos(φ), u), (4.5) χ = ψ + β· (4.6)

The error dynamic of z1 (which we will use later when solving the Lyapunov Func-
tion) is

ż1 = ψ̇ + β̇b − χ̇d = z2 + α− χ̇d· (4.7)
Differentiating the first Lyapunov Function with respect to time gives

V̇1 = z1ż1

= z1(z2 + α− χ̇d)·
(4.8)

The goal of the virtual controller should be to make the Lyapunov Function stable,

V̇1 = −KP z
2
1 + z1z2· (4.9)
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It follows that the virtual controller is then equal to

α = χ̇d −KP z1 (4.10)
Before differentiating the second Lyapunov function the error dynamics of z2 is found
to be

ż2 = ṙ − α̇, (4.11)
where α̇ is

α̇ = χ̈d −KP ż1

= χ̈d −KP (z2 + α− χ̇d)
= χ̈d −KP (z2 + χ̇d −KP z1 − χ̇d)
= χ̈d −KP (z2 −KP z1)

(4.12)

Derivation of the second Lyapunov Function with respect to time can then be found:

V̇2 = V̇1 + z2ż2

= −KP z
2
1 + z1z2 + z2(ṙ − α̇)

= −KP z
2
1 + z2(ṙ − α̇ + z1)·

(4.13)

We then look to equation (3.2) to find ṙ. We construct the matrix Cψ to be able to
"extract" the elements from the vectors in equation (3.2) that are relevant:

Cψ =
[
0 0 0 1

]
, (4.14)

ṙ = Cψ(S +K +R− CA(νr)νr −D(νr))
Izz −Nṙ

· (4.15)

Our actuator is the rudder, but we are going to set u = Rψ = CψR and later see
how to find σ such that u = Rψ is true. Setting u = CψR the equation becomes
equal to

ṙ = Cψ(S +K − CA(νr)νr −D(νr))
Izz −Nṙ

+ u

Izz −Nṙ

· (4.16)

Inserting (4.16) into (4.13) we get

V̇2 = −KP z
2
1 + z2(Cψ(S +K − CA(νr)νr −D(νr))

Izz −Nṙ

+ u

Izz −Nṙ

− α̇ + z1)· (4.17)

The goal of the controller action u should be to make the Lyapunov Function stable,
that is

V̇2 = −KP z
2
1 −KDz

2
2 , (4.18)
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and it follows that u has to take the following form

u =− Cψ(S +K − CA(νr)νr −D(νr))
− (Izz −Nṙ)(−α̇ + z1)−KDz2·

(4.19)

Inserting (4.12) into (4.20) gives

u =− Cψ(S +K − CA(νr)νr −D(νr))
− (Izz −Nṙ)(−χ̈d +KP (z2 −KP z1) + z1 +KDz2)·

(4.20)

The correlation between σ and u has to be found, because it is the angle of the
rudder which creates the desired moment. By expanding u = Rψ, one finds that

u = Rψ = l4(RLcos(βcr)−RDsin(βcr))· (4.21)
Assuming that v = p = r ≈ 0 it follows from (3.30) and (3.31) that sin(βcr) ≈ 0,
which simplifies (4.21) to

u = Rψ = l4RLcos(βcr)· (4.22)
The lift equation of a foil, (3.19), can easily be linearized for small angle of attacks
(|α| < 15deg). The linearized lift equation can be written as

FL0 = 1
2pACL0αV

2, (4.23)

where CL0r is the linearized lift coefficient for the rudder. Inserting (4.23) into (4.22)
we have

u = l4RLcos(βBcr)

= l4
1
2pwArCL0rαrV

2
crcos(βcr)

= l4
1
2pwArCL0r(−βcr + σ + π)V 2

crcos(βcr),

(4.24)

from which it follows

σ = βcr − π + 2u
l4pwArCL0rV

2
crcos(βcr)

· (4.25)

When calculating z1 one would usually do the following procedure:

z1 = mod(z1 + π, 2π)− π, (4.26)

where mod is the modulo operation. This ensures that the boat always turns in the
direction that has the smallest error. This does however not work in this situation,
because we want to do both the coming about and the jibing maneuver. If one
calculates z1 as in equation (4.26) one will always end up doing the tacking when
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sailing up-wind and jibing when sailing down-wind. How to select χd and how to
choose between the two maneuvers will be handled by the path following algorithm
in the next chapter.

4.1.2 Correction Term, βb
As discussed, a heading controller is not good enough in the case of sailboats due
to the fact that some side slip is needed to keep a course angle. However, using the
course angle as feedback is troublesome because it is difficult to estimate. The idea
of a correction term comes from Xiao and Jouffroy [2014], where they addressed the
problem by using a nonlinear system solver to calculate the necessary drift angles
to keep a desired course, then storing the results in a lookup table. The drawback
of this is that the lookup table is quite large as it depends on several variables, and
would need to be recomputed every time a small change is applied to the boat. In
this thesis a much simpler way of calculating the correction term is provided.

The z1 state for a traditional heading controller is equal to

z1 = ψ − ψd
= ψ − (χd − βd)
= ψ + βd − χd·

(4.27)

On a sailboat, the keel causes hydrodynamic forces with the intent of counteracting
undesirable forces. The undesirable forces are all the forces that cause the ship to
move perpendicular to the course angle. In the body frame, these are all the forces
created perpendicular to the drift angle. By assuming νr ≈ ν and p = r ≈ 0, (3.26)
simplifies to

Vck = −
[
u
v

]
= −νuv· (4.28)

Using (4.5), the simplification v � u (low drift angle), and the approximation
tan(x) = x for small x, it follows that βck (3.27) can be computed by

βck = arctan2(Vckv , Vcku) = β

cos(φ) + π (4.29)

and that

αk = −βck + π = − β

cos(φ) · (4.30)

Assuming cos(φ) ≈ 1 and by applying the result from (4.29) into (3.29) we find that
the lift of the keel is approximately perpendicular to the drift angle when either the
heeling angle or drift angle is low. It then follows that the lift force from the keel is
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aligned with the undesirable force, because it is also perpendicular to the drift angle.

Defining the undesirable force, hereafter referred to as FU , as -90 degrees to the
drift angle causes the lift force generated by the keel and the unwanted forces to be
aligned, but in opposite direction. Neither the restoring force or the Coriolis terms
(assuming r ≈ 0) contribute to the undesirable force. Putting it together we find

FU =(Sx′ +Rx′ −Dx′(νr))cos(β −
π

2 )

+(Sy′ +Ry′ −Dy′(νr))sin(β − π

2 )·
(4.31)

The lift caused by the keel should be equal to the undesirable force. Linearizing the
lift formula around an angle of attack of zero (as we did for the rudder), where CL0k

is the linearized lift coefficient for the keel, we find the necessary drift angle:

FU = KL

= 1
2pwAkCL0k

αkV
2
ck

⇒ αk = 2FU
pwAkCL0k

V 2
ck

·

(4.32)

From (4.30), it follows that

βb = −αkcos(φ)· (4.33)

However, βb needs to be constrained due do practical reasons. If Vck is very low then
βb will go towards infinity. Furthermore, the linearized lift approximation is only
valid for small αk. By constraining the solution to be within ±10deg both problems
are solved. An exception should also be put in place to avoid any numerical errors
when Vck = 0.

4.1.3 Turning Rate
The lift of the rudder is limited by the size of νr, which also limits the the maximum
moment it can create in yaw. Unfortunately, the controller does not take this into
account and could easily request more momentum than the rudder is able to handle,
causing overshoot or other unexpected behavior. Furthermore, a step change in χd
will cause the ship to turn in an unnatural manner because the yaw sub-system
is tuned for a "mass-damper-spring" response, not a steady turning rate. Model
predictive control (MPC) could potentially be applied to solve this problem, but a
simpler approach has been chosen instead which is to limit the turning rate, such
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that |χ̇d| = rsat. A second order low-pass filter was added to make the signal
smoother, which has the transfer function of

F (s) = ω2

s2 + 2ω + ω2 , (4.34)

where Tψ = 1
ω
is treated as a tuning parameter.

4.2 Sail

4.2.1 Optimal Angle of Sail
The sail is used to create forward propulsion for the sailboat. There is an optimal sail
angle that gives the highest forward acceleration for a given relative wind direction,
effectively making λd a function of βws, λd(βws). The objective is thus to create
a map from relative wind direction to the optimal angle of the sail. We begin by
defining a way of measuring the force created by the sail in the forward direction
independent of the wind speed:

Sx′r(βws, λ) = Sx′(βws, λ, Vws)
V 2
ws

, (4.35)

where Sx′ is the force created by the sail in positive surge direction (see (3.25)) and
Sx′r is the force divided by the wind speed (as experienced by the boat) squared.
Sx′r is a function of λ and βws, and there will be an optimal λ given a βws.

However, λ cannot be chosen freely; it is restricted to a certain range depending on
the wind direction and λsat. This is because we only have control of a rope limiting
|λ|, and the rope only works through tension. When the wind is hitting from star-
board, it follows that λ > 0 and that the torque created by the sail around the mast
has to be positive (meaning a positive angle of attack). When the wind is hitting
from port side, λ > 0 and the torque has to be negative (negative angle of attack).

The following equations describe the upper and lower limits of a stable angle of the
sail, λ ∈ [λl, λu], given a relative wind direction:

λu =

βws + π if βws < 0
0 if βws > 0

(4.36)

λl =

0 if βws < 0
βws − π if βws > 0

· (4.37)
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In addition to (4.36) and (4.37), λsat still applies. That is, λu ∈ [0, λsat] and
λl ∈ [−λsat, 0].

The optimal angle of the sail can then be found by traversal of all viable λ, trying to
maximize Sx′r for a given βws. This can be computed off-line, and the results stored
in a lookup table. In this paper, an optimal λ was found for a step size of 1deg in
βws. In order to avoid unnecessary discontinuities in the control action, when there
is only a small difference in the optimal λs between a step change in the lookup
table, a new optimal λ is found based on a linearized solution between the two data
points (this is computed on-line).

As discussed earlier, some drift is to be expected due to side forces and currents. The
course angle is not equal to the heading angle, and it follows that the sail should be
optimized for maximum speed in the desired course direction, or in body frame, the
drift direction. The brute force approach to this problem is to find an optimal λ for
each pair of βws and β, though this would make the lookup-table considerable larger.

Figure 4.1: Optimal λ in different settings

Figure 4.1 shows one sailboat with a drift angle, and another sailboat with no drift
angle, but they are both heading in the same direction. The angle of attack of the
sail should be the same in both situations, and the following relation can be seen
assuming a small heeling angle:
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λ1 = λ2 + β, (4.38) βws2 = βws1 − β· (4.39)

The lookup-table gives us the answer of optimal λ2 when βws2 is found by (4.39),
and λ1 can then be calculated using (4.38). The correlations described in (4.38) do
not take into consideration the limitations described in (4.36) and (4.37), but for
small drift angles one can assume that thees play no effect.

4.2.2 Relative Momentum

In the same manner that we defined the relative force in surge direction, the relative
momentum in roll is defined as

Sφr(βws, λ) = Sφ(βws, λ, Vws)
V 2
ws

, (4.40)

where Sφr is calculated at each optimal λ and is added to the lookup table. This
solution of λ will hereafter, be referred to as the unconstrained solution, λ100.

Before applying the control law to reduce roll motion and heel angle, we have to be
able to control the amount of momentum created in roll. This is accomplished by
finding new optimal λs, though with a restriction on the maximum relative momen-
tum created at each solution.

To produce the desired result, the same traversal algorithm as discussed earlier is
performed again but with the restriction that the solution has to produce a rela-
tive moment of 67% or less compared to that of λ100. This solution will hereafter be
referred to as λ67. Both λ67 and its relative momentum is added to the lookup table.

This is then repeated for a 33%- and a 0% (or as low as possible) constrained
solution, referred to as λ33 and λ0. However, a new constraint is added, which
is that sign(λ100 − λ67) = sign(λ67 − λ33) = sign(λ33 − λ0). In more practical
terms, this is to ensure that the different solutions all move the sail in the same
direction compared to the previous solution. This is important when we try to find
a continuous solution of the relative momentum in the next step.
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Figure 4.3: Relative force in surge caused
by optimal sail position

Figure 4.4: Relative momentum in roll
caused by optimal sail position

Figure 4.2: Optimal position of the sail

We then have all that we need to reverse the process. By entering βwr one finds the
solutions of λs that corresponds to that relative wind direction. Then, by applying
the restriction of the desired Sφr, the ideal λ is found based on a linearization
(computed on-line) between the different Sφr created by λ100, λ67, λ33 and λ0. The
optimal sail angle can be looked upon like a function; λd(βws, β, Sφrd

), where Sφrd
is

the desired relative momentum.
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4.2.3 Roll Controller
The roll controller will step in when the heeling angle gets too large. The heeling
angle should not be larger than 10 degrees for a comfortable ride, and the desired heel
angle, φd, is thus set equal to ±10deg depending on the sign of φ, φd = sign(φ)10deg.
Furthermore, roll motion should also be dampened, which gives the following error
states:

e1 = φ− φd, (4.41) e2 = r· (4.42)

The controller design method chosen is state feedback linearization [Freund, 1973,
Isidori, 1989] combined with a linear quadratic regulator (LQR). The first step is to
make a linearized system of the roll motion by canceling any non-linearities. Similar
to the course controller, we make a matrix Cφ and define it as

Cφ =
[
0 0 1 0

]
· (4.43)

The roll sub-dynamic can then be written as

φ̇ = r

ṙ = u+ Cφ(−D(νr)− g(η) +K(η, ν, Vc) +R(η, ν, Vc, σ))
Ixx −Kṗ

·
(4.44)

Using the following control law

u =− Cφ(−D(νr)− g(η) +K(η, ν, Vc) +R(η, ν, Vc, σ))

−KLQR

[
e1
e2

]
−Kis

∫ t

0
e1dτ,

(4.45)

where

Sφrd
= u

V 2
ws

, (4.46)

and KLQR is the controller gain, it is easy to verify that all the non-linearity in
the roll sub-dynamics are canceled, assuming Sφrd

= Sφr. Integral control action is
added to remove errors caused by the difference in Sφrd

and the actual Sφr, which is
an effect of the linearization used to interpolate solutions of λ. Using conventional
LQR theory, it follows that

x =
[
φ
p

]
, (4.47) ẋ = Ax+Bu, (4.48)
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A =
[
0 1
0 0

]
, (4.49) B =

[
0
1

Ixx−Kṗ

]
· (4.50)

The roll controller should not be on all the time, and the "obvious" solution would
be to keep the controller on while |φ| > |φd|. However, this would not work out
because of two reasons. Firstly, the controller would turn on and off all the time as
the controller task is to have |φ| = |φd|. Secondly, the integrator would only be able
to grow. While it might seem a bit counterintuitive to actively control φ towards
φd when |φ| < |φd|, it is important to realize that a low φ is a trade-off between
speed and robustness, and by allowing an increase in φ one increases the speed of
the sailboat by loosening the restrictions on the sail.

The controller should be able to turn on quickly if |φ| gets very large, but not turn
on unnecessarily. This is somewhat contradictory, and some compromise between
the two has to be found. The controller should not turn off unless λ = λ100, i.e. the
maximum moment is given, and |φ| < φd. Using this logic, the following rules are
proposed:

Ω̇ = sign(e1)e2
1Kc, sat(|Ω|) = 1 (4.51)

Γ =


0 if Γ = 1 and Ω = −1
1 if Γ = −1 and Ω = 1
Γ else

(4.52)

Kc =


Kc+ if Γ = 0
Kc− if Γ = 1 and λd = λ100

0 else
(4.53)

Γ = 1 signals that the controller is turned on while Γ = 0 means that it is turned
off. If the controller is off and Ω = 1 then the controller should turn on. If the
controller is on and Ω = −1 the controller should turn off. Histories ensures that
the controller do not turn on and off to fast, as this could potentially make the
system unstable. The square of the error is used to make sure that the controller is
able to turn on quickly in case |φ| gets very large, without triggering to easily if |φ|
is barely larger than |φd| for a short period of time. Furthermore, if the sail can not
create any more momentum in roll, that is λ = λ100, the integral action is disabled
such that unnecessary integral build up is avoided.
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4.2.4 Rope Controller
The objective of the this controller is to control the length of the rope connected
to the boom, l70 , such that the sail moves into the desired position (λd) given by
the roll controller or the look-up table. Assuming that the rope has no stretch, l70

is equal to l7, which is given by (3.47),(3.48) and (3.40). Replacing λ with λd and
inserting (3.47) and (3.48) into (3.40) gives l70 as

l70 =
√

(l5 − l6cos(λd))2 + (l6sin(λd))2· (4.54)
Using (4.54) as an baseline and treating the stretching of the rope as an unknown
error (which is slowly changing), the following controller action can be used for the
actuator that is controlling the length of the rope

l70 = l7b
− sign(λ)Kib

∫ t

0
λ− λddτ, (4.55)

where l7b
is the baseline estimate of l70 assuming no stretch as given by (4.54) and

Kib is the integrator gain. The added complexity of the boom and sail modeling
also introduces a couple of new control problems. The map presented in Figure 4.2
shows that the optimal solutions are not continuously, especially at Bws = 0 where
the step change in λd is about 140deg. Wind gusts (or other disturbances, such as
waves) could make the boat continuously change between the two optimal λds, caus-
ing sub-optimal performance. To solve this problem, a special rule is put in place
for this big jump. The rule is that if λd has to switch sign, the gain in Sx′r , (4.35),
has to be greater than 5%. Hysteresis was also considered, though implementing
the method of using Sx′r is simpler and more flexible.

A second problem that arises is best explained by Figure 4.5. The current λ is shown
by the brown boom, and the desired λd is shown by the dark blue boom. Using
4.55 directly as our control strategy, the boom will end up moving to the light blue
position due to the wind pushing the sail in this direction. The solution is to first
set λd = 0 such that the wind is hitting the sail from the correct side, then, when
this position is reached, move the sail to the actual desired angle by loosening the
rope again. The following rule is used, where λdn is the new and corrected λd:

λdn =

λd if sign(λ) = sign(λd)
0 else

, (4.56)

The final problem is when λd = 0. Looking at (3.39) it becomes obvious that the
force Lb goes towards zero as λ approaches zero, and λ will never actually get to
zero unless the wind direction allows it. This can create integral build up, which
should be avoid. The minimum length of the rope should be equal to lmin = l5− l6,
and when this happens the integral action should be turned off as the rope can not
get any shorter.
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Figure 4.5: Illustration of angle of the sail control problem

4.3 Tuning of controllers

4.3.1 Course controller
The course controller was tuned manually. The controller gains Kp and Kd where
tuned for what could be considered a normal speed in surge, u = 4m

s
. The reference

gain Tφ was tuned until the beginning and end of the turn looked smooth. Then,
rsat was tuned by lowering the speed in surge to u = 2m

s
, and rsat was lowered until

there were no more overshoot. The results are presented in Table 4.1.

tuning parameter value
Kp 0.25
Kd 50
Tψ 0.66
rsat 15deg

s

Table 4.1: Course controller tuning parameters

4.3.2 Roll controller
The LQR controller gain, KLQR, was tuned by setting the matrices Q and R, where
Q is the weighting matrix in the quadratic cost caused by error in x, and R weighs
the quadratic cost of using the actuator. R was tuned to be R = 1e-10 while Q was
tuned to be

Q =
[
0.75 0

0 1

]
· (4.57)
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The LQR gain was then calculated in matlab by using the function lqr(A,B,Q,R,0).
Kis, Kc+ and Kc− where tuned manually. The tuning parameters of the roll con-
troller can be found in Table 4.2.

tuning parameter value
KLQR [8.66e4 1.05e5]
Kis 2500
Kc+ 200
Kc− 100

Table 4.2: Roll controller tuning parameters

4.3.3 Rope controller

Kib was tuned manually. Value of Kib is found in Table 4.3.

tuning parameter value
Kib 0.2

Table 4.3: Rope controller tuning parameters

4.4 Results

4.4.1 Course controller

Two sets of simulations were executed to show the effectiveness of the drift correction
term. In the first simulation βb is set equal to zero, meaning that the controller will
behave as a heading controller. In the second simulation βb is calculated properly. In
both simulations, the boat will try to keep a steady course angle of 0 degrees (north)
when the wind speed is 5m

s
and the angle of the wind is equal to βw = 125deg. The

simulations lasted 200 seconds.
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Figure 4.6: Course controller, time evo-
lution of χ

Figure 4.7: Course controller,
North/East-plot

The overall drift from the desired course can be estimated by figure 4.7. To compute
an estimate of the error, |atan(x

y
)| is used, where x is the distance traveled in north

direction and y is the distance traveled in east direction. The course controller takes
20 seconds to adjust, and the drift caused by this is removed from the error. See
table 4.4 for results.

Table 4.4: Results of course controller test

simulation x [m] y [m] error [deg]
heading controller 28 590 2.71
course controller 0 560 0

Comparing with figure 4.6, the estimate of the errors seems reasonable. The course
controller managed to follow the desired course much better than the heading con-
troller, an on average managed to follow the course perfectly. Looking at the results
one can conclude that the course controller behaved as intended.

A third and fourth simulation was made to show how the control system handles
turning at different speeds. The boat will try to do a 90deg turn at initial speeds of
u = 5m

s
and u = 3m

s
. The wind speed was set to zero.
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Figure 4.8: Course controller, time evolution of χ

Figure 4.9: Course controller, time evo-
lution of z-states

Figure 4.10: Course controller, time evo-
lution of β

As can be seen from Figure 4.8, the control system is able to complete the turn.
There is a small offset from the course, which is due to the drift angle. The drift
angle increases as the speed in surge drops. The course of the two simulations
and the desired course are very similar, to the point where they are difficult to
distinguish for each other. The turning rate is steady, and even at low speeds we
get not overshoot. The speed in surge at t = 10s were u = 2.97m

s
and 2.05m

s

respectively, meaning that a considerable speed was lost during the turn. Figure 4.9
shows the time evolution of z1 and z2 of the third simulation. The terms are very
small and behaves as expected.
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4.4.2 Roll controller
Two sets of simulations have been studied in what follows. In both simulations the
boat is set to go on a course direction perpendicular to a mean wind speed of 10m

s
.

The results will show the last 50 seconds of a 200 second simulation, ensuring that
the top speed in surge has been reached and that the integral term in the controller
has had time to reach a steady value. In the first simulation, the controller in roll
has been turned off, meaning λ100 is always chosen as the desired angle of the sail.
In the next simulation the controller is turned on with φd = 10deg.

Figure 4.11: Roll controller, time evolu-
tion of φ

Figure 4.12: Roll controller, time evolu-
tion of p

Figure 4.11 demonstrates the effectiveness of the controller keeping the heel angle
low. Furthermore, not only does the controller reduce the maximum heeling angle, it
also reduces the amplitude of the roll motion almost completely. Figure 4.12 shows
that the rotational velocity is reduced considerably. The results of the test are found
in Table 7.2. The amplitude of the roll motion is reduced by 95.5% and that the
maximum rotational velocity is reduced by by 92.5%. However, the reduction of the
heeling angle comes at a price; the speed in surge is reduced by 18.6%.

Table 4.5: Results of roll controller test

simulation amplitude of φ [deg] maximum p [deg
s

] u [m
s

]
controller off 5.31 4.0 7.58
controller on 0.24 0.3 6.48
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While it in general is true that loosening the restriction on φ increases the speed in
surge, this is only true until a certain point. As the heeling angle gets very large the
effective wind direction approaches −π, i.e. equivalent to sailing directly up-wind.
This can bee seen from (3.22) and (3.23). The following result shows the maximum
speed in surge when targeting different heeling angles with the roll controller.

Figure 4.13: Relation between heeling angle and speed in surge

Figure 4.13 one can see the results of the simulations. After a while the speed does
not change as φd increases. This is due to λ100 already being chosen, and the sail
is not able to produce any more momentum (without choosing a non-optimal sail
angle). There is clearly an optimal heeling angle for forward speed, and it seems
to be moving up when the wind speed increases. At a wind speed of 16m

s
the

optimal heeling angle is 32.5deg, and at 13m
s
wind speed the optimal angle is 30deg.

From the looks of it, restricting the heeling angle would make even more sense for
even higher wind speeds as the ratio between maximum speed at optimal heeling
angle and maximum speed at unrestricted heeling angle increases by wind speed.
The optimal heeling angle in terms of speed is quite high, and is way above the
"recommended" 10 degrees. However, these results might be interesting for robotic
racing applications.

4.4.3 Rope controller
The simulation shown recreates the situation described in Figure 4.5. βw = 20deg,
wind speed of 5m

s
, ψ = 0, λ = 90deg at the beginning, and λd = −90deg. ν̇ = ν = 0

to ensure that the boat is standing still, and wind gusts and the wind direction
changing are disabled.
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Figure 4.14: Rope controller, λ-plot

From Figure 4.14 one can see that the controller works as intended. When ψ = φ = 0
and ν = 0 it follows that βws = βw, and comparing λd in Figure 4.14 to the optimal
lambda in Figure 4.2 one can see that the optimal sail angle is chosen correctly. λdn
is set to zero at the beginning because of (4.56), and is then correctly set equal to λd
when sign(λ) = sign(λd). At t = 3 there is a small bump in λ before it stabilizes at
λd. This is because the rope that controls the boom has not yet been able to reach
it correct length due to the limitations of the rope actuator (modeled as a 1. order
low pass filter).



5 Path Following

Path following and path generation is an important aspect of most autonomous ve-
hicles, but it is especially important for sailboats due to the limitations of the sail
and rudder. For most vehicles the shortest path in air distance is equal to the path
that takes the shortest amount of time to travel. This is not true for sailboats, the
most obvious example being if we want to travel up-wind. This is a non-sailing zone
which has to be avoided. To be able to sail up-wind the sailboat has to move in a
zig-zag like pattern called beating. For sailing optimally down wind one also has
to move in the same zig-zag pattern, because sailing broad reaching is faster than
running.

In this chapter a relatively simple to implement method for path following is devel-
oped. The solution consists of a supervisor deciding if the path is up-wind, nominal
or down-wind, and then applying the correct control strategy depending on the sit-
uation. The algorithm is also able to chose the most appropriate turning maneuver
(tack or jibe) depending on the wind and the speed of the ship. The optimal turning
maneuver should be the one that makes the shortest path without compromising on
safety or the risk of loosing control over the ship.

A Lookahead-based steering algorithm (Fossen [2011],pp. 254-266) will be the basis
of the point-to-point following algorithm in nominal mode, but it has to be modified
to be able to solve the non-sailing zone problem. The modifications are inspired by
Jaulin and Bars [2013a], and this thesis expand upon their work by increasing preci-
sion and robustness. The issue of choosing optimal turning maneuver have already
been explored by Xiao and Jouffroy [2011], and the reasoning behind the strategy
developed in this thesis will be similar, though less complex.

Main contributions of chapter:

• Path following, enabling sailing up-wind and down-wind optimally.

• An easy to implement method of choosing between tacking or jibing.

54
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5.1 Polar Speed Diagram
The Polar speed diagram describes the speed of the sailboat when traveling in a
given direction relative to the wind. This is valuable to known when deciding how
steep one should travel relative to the wind direction.

While there are ways of estimating the polar speed diagram of a sailboat using the
dynamics established in chapter 3 (Herrero et al. [2005]), a more brute force method
of computing the polar speed diagram is used in this thesis. Multiple simulations
were set up where the boat had to travel in a straight line with different course angles
relative to the wind. The polar speed diagram were then calculated at 2,4,6,8,10
and 12 m

s
wind and one value was computed pr 5 degree of course angle. Wind

guests were not enabled. Each simulation lasted 200 seconds to make sure the boat
had reached a steady state.

To make the process a bit easier an automated script was made in matlab. Calculat-
ing all the values took roughly 2 hours on an i5-4670k (3.4GHz). The script prints
out an ETA of the calculation, average simulation time and percentage completed
every two minutes such that one can follow the progress. Figure (5.1) shows the
result, where 0 degrees would be sailing directly against the wind.

Figure 5.1: Polar speed diagram

Θmax is the optimal direction relative to the wind direction when sailing down-
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wind, and Θmin the optimal angle when sailing up-wind. Assuming that the polar
speed diagram is symmetrical along, Θmax and Θmin is given by the angle that
maximizes the following expressions

Uuw = cos(Θmax)U(Θmax) (5.1) Udw = −cos(Θmin)U(Θmin), (5.2)

where U(Θ) is the speed of the ship in a given direction, and Uuw and Udw is the
effective maximum speed when traveling up-wind and down-wind. Using the data
from the polar speed diagram, Θmax and Θmin were calculated at at the different
wind speeds, and the results are presented in Table 5.1. As can be seen, Θmax and
Θmin are fairly consistent regardless of the wind speed. From now on, Θmax and
Θmin is given by the 8m

s
wind speed data, i.e. Θmax = 140deg and Θmin = 55deg.

Wind speed [m
s

] Θmax [deg] Θmin [deg]
4 140 55
8 140 55
12 140 50

Table 5.1: Optimal course angle for up-wind and down-wind navigation

5.2 Path Following

5.2.1 Lookahead-based steering

Figure 5.2: Lookahead-based steering (Fossen [2011], p. 262)

Lookahead-based steering is the basis for the path following algorithm (Fossen
[2011],pp.254-266). Utilizing this method, the desired course angle is given by
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χd(e) = χp + χr(e), (5.3)

where χp is the angle of the path,

χp = αk = atan2(yk+1 − yk, xk+1 − xk)· (5.4)

xk and yk is the coordinates of point k along the path. χr ensures that the boat
is heading towards a point on the path that is located at the lokahead distance ∆
from the ship

χr(e) = arctan2(−e,∆), (5.5)

where e is the cross track error

e = −(x− xk)sin(α) + (y − yk)cos(α)· (5.6)

The lookahead distance, ∆, is given by

∆ = 2
√
R2 − e2 (5.7)

where R is the selected "circle of acceptance", see figure 5.2. A large R creates a long
lookahead distance, while a small R makes for more aggressive steering. A lower
bound of 0 is set on ∆ because a negative (/complex) ∆ do not make sense.

k will increase when the distance between pk+1 and νxy is less than Rk, or when
the sailboat has reached the end of a the line between pk and pk+1, that is 〈pk+1 −
pk, ηxy − pk+1〉 > 0. When the last point has been reached the simulation will stop.
It was found that basing Rk and R on the turning radius gave good results, which
is roughly equal to

Rt(u) = |u|
rsat

(5.8)

by testing it was shown that Rk = Rt(u) and R = 5Rt(u) were effective.

5.2.2 Sailing up- and down-wind
The Lookahead-based steering algorithm do not take into account the fact that the
sailboat can not sail to steep against the wind. The method used in this thesis
follows a similar structure to Jaulin and Bars [2013a], whereby a supervisor decides
between two modes: nominal route or tack. In nominal route mode the desired
heading is equal to the angle between the two points pk and pk+1. In tack mode
the desired heading angle is based off the wind orientation ±Θmin, and a tack is
initiated when the cross track error becomes to large. k increases when the sailboat
crosses the line which is perpendicular to pk and pk+1 and goes though point pk+1.
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Figure 5.3: Up-wind sailing (beating) algorithm

The supervisor developed in this thesis build upon this work and adds another mode
of operation for down-wind sailing.
Figure 5.3 shows how the up-wind sailing problem optimally should be handled,
which is the dark blue line. The green line represents the algorithm developed by
Jaulin and Bars [2013a], and how it would miss the point pk+1. It is obvious that
the error of the algorithm can be as big as the size of the constraint, but a small
constraint would mean a lot of tack or jibe maneuvers. Ideally one would only tack
or jibe one time, as shown by the light-blue line, though this might be impossible
due to constraints in the environment (reefs, shore, etc).

A measurement for how steep one are sailing up against the wind is given by 1

κp = χp − βw + π· (5.9)

When κp = 0, the path created by χp goes through the eye of the wind (up-wind).
|κp| should not be smaller than the optimal angle for sailing against the wind, Θmin.
If |κp| < Θmin, the up-wind mode should be enabled. Inserting χd for χp and ±Θmin

for κp in (5.9) and solving for χd gives
1In equation (5.9), and the following equations, it is important to use modulus to keep the

values valid by keeping them in the range of ±π. It should be easy to understand from context
which equations this entails.
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χd = ±Θmin + βw + π· (5.10)
Each time the sign in front of Θmin is changed, a tack or jibe will be initiated. By
the strategy of Jaulin and Bars [2013a], a turn should happen when the cross track
error gets to big, |e| > emax. By slightly modifying this to |e| + Rt(u) > emax the
tack or jibe will be initiated early enough to avoid |e| > emax. The sign in front
of Θmin should change to the opposite sign of e, ensuring that the course changes
towards the line between pk and pk+1 (towards the path). The angle between pk+1
and the sailboat is given by

χs = arctan2(yk+1 − y, xk+1 − x), (5.11)
where y and x is the position of the boat. A second reason for turning is to avoid
the large error seen in Figure 5.3, and should be when the sailboat can sail directly
against Pk+1 without any problems. Defining κs as

κs = χs − βw + π, (5.12)
it follows that a tack should be initiated when |κs| > Θmin. Not only should the
boat tack if this is true, but it should aim straight for Pk+1, that is χd = χs when
|κs| > Θmin.

The algorithm for sailing down-wind is similar to when sailing up-wind. When
κp = π, the path is down-wind. If |κp| > Θmax, the down-wind mode should be
enabled. When sailing down-wind the desired course angle is given by

χd = ±Θmax + βw + π, (5.13)
and the conditions for initiating a jibe and changing the sign in front of Θmax are
similar to when sailing up-wind: |e| + Rt(u) > emax or if |κs| < Θmax, and the sign
in front of Θmax should be equal to the sign of the cross track error (opposite to
when sailing up-wind).

κχd = χd − βw + π (5.14)
If |κs| > Θmin and |κs| < Θmax the nominal mode should be selected. The nominal
mode uses the lookahead-based steering algorithm to primarily set χd. However,
care has to be taken because |κχd| < Θmin (5.14) is not unlikely, as shown in Figure
5.4 where even though the path itself is not up-wind the lookahead-based steering
algorithm computes a desired heading which is up-wind. If κχd < ΘMIN , where
ΘMIN = 40deg (See Figure 5.1) is the steepest angle one can travel up wind at a
reasonable speed, we should chose

χd = ±Θmin + βw + π, (5.15)
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Figure 5.4: Nominal path following problem

where the sign in front of Θmin should be set such that the cross track error gets
smaller as fast as possible. If the two different options are χd1 and χd2 then the
course angle that differs the most from χp (or χp+π) will make the cross track error
disappear the fastest, as the cross track error is measured perpendicular to χp. The
following rules are proposed:

χd =

χd1 if |mod(χp − χd1 + π
2 , π)− π

2 | > |mod(χp − χd2 + π
2 , π)− π

2 |
χd2 else

(5.16)

This algorithm takes over for the lookahead-based steering until |e| − R(t) < 0|.
Hysteresis has been implemented to avoid the supervisor from changing back and
forth between the different modes too fast due to a variable wind direction. A safety
factor εΘ is proposed, such that if nominal mode is selected, εΘ + |κp| < Θmin has
to be true before switching to up-wind mode. If it wants to go back to nominal
mode again then |κp| > Θmin + εΘ has to be true. The same logic is applied to the
down-wind sailing mode.

5.3 Tack or Jibe
When sailing up-wind one can choose between tacking or jibing to turn the ship.
Tacking is considered more dangerous as one has to cross the no-sailing zone. During
this time the sail will not be providing any forward force, and if the speed drops too
much one can lose control. In the paper by Xiao and Jouffroy [2011] the analogy of a
kid jumping across a river is used. Before the kid can jump he has to acquire enough
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speed, such that when his feet leaves the ground he has enough forward momentum
to carry him over the river. The same idea is applicable for a sailboat crossing the
no-sailing zone; there has to be enough initial energy in the system before a tack
can be initiated, else it will fail. The surge sub-dynamic is given by

(m−Xu̇)u̇−mrv + Yv̇vr + Yṙr
2 +Dqx(u) + dl11u = Sx′ +Kx′ +Rx′· (5.17)

Assuming u > 0, Rx′ ≈ 0, αs = αk ≈ 0, r = sign(r) rsat, equation (5.17) simplifies
to

(m−Xu̇)u̇ = −Yṙr2
sat −Dqx(u)− dl11u−DKu

2 −DSV
2
ws ±m sign(r) rsatv, (5.18)

where DS and DK are quadratic drag constants for the sail and keel. For the relation
r = sign(r) rsat to be true a minimum speed in surge of umin = 2m

s
is required.

The results from chapter 4 showed that while turning the drift would not get higher
than 5deg as long as umin > 2m

s
. Using the approximation U =

√
u2 + v2 ≈ u one

can find an approximation of v:

v ≈ u sin(−βmaxsign(r)), (5.19)

where βmax = 5deg, from which it follows that

mrv = m sign(r) rsat u sin(−βmaxsign(r)) = −m rsat u sin(βmax) = −Dru, (5.20)

where Dr = m rsat sin(βmax). Inserting (5.20) into (5.18) gives

(m−Xu̇)u̇ = −Yṙr2
sat −Dqx(u)− (dl11 +Dr)u−DKu

2 −DSV
T
wsVws, (5.21)

which can be simplified by gathering some of the drag terms to

(m−Xu̇)u̇ = −Yṙr2
sat −Dγu

2 −Dρu−DSV
T
wsVws, (5.22)

where Dρ = dl11 + Dr is a linear drag term for the linear drag of the hull and the
rigid body coriolis term, and Dγ is a quadratic drag constant that accounts for the
drag of the hull and keel. It follows that the following equation must hold:

Dγu
2 > Dqx(u) +DKu

2· (5.23)

Setting a minimum speed in surge, umin, and inserting for the quadratic drag equa-
tion of the hull (3.14), and the drag equation for the keel at αk = 0 (which is simply
the viscus drag, which dominates at small αs), gives
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Dγ = 1
2pwCF (Rn(umin))

(
S(1 + k) + 2AK(1 + 2tmax

c
)
)
· (5.24)

CF (Rn(u)) decreases as u increases, and an upper bound of CF (Rn) can be calculated
at u = umin. Given VwU =

√
V T
w Vw, an upper bound estimate of Vws can be expressed

as

V T
wsVws = (u+ VwU)2· (5.25)

The different coefficients where then calculated, and are presented in Table 5.2. DS

might look insignificant, though it is important to keep in mind that it is propor-
tional to (u + VwU)2 and will easily dominate in high wind speed situations. Dr

makes up about 81% of Dρ, meaning that the rigid body coriolis term is a very
important part of the effective linear drag. In the paper by Xiao and Jouffroy [2011]
the rigid body coriolis term is neglected, as well as DS, even though both are clearly
an important part of the surge sub-dynamic while tacking!

Coefficient value
Dγ 18.0
Dρ 44.7
DS 1.11

Table 5.2: Surge sub-dynamic coefficients

The time it takes for a tack to complete while, and only taking into account when
the sailboat looses speed, is roughly equal to

T = 2ΘMIN

rsat
· (5.26)

The speed in surge should not be lower than umin at the end of the turn, i.e.
u(t + T ) > umin. Using the Euler Forward Method for integration, an estimate of
u(t+ T ) can be found given the initial speed in surge and the absolute wind speed
(VwU). The Euler Forward Method for integration is

ut+h = ut + h u̇(u, Vw), (5.27)
where h is the step size and

u̇(u, Vw) = −Yṙr
2
sat −Dγu

2 −Dρu−DS(u+ VwU)2

(m−Xu̇)
· (5.28)

The local truncation error of Forward Euler is given by

LTE = u(t+ h)− ut+h = 1
2h

2ü(ζ), (5.29)
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where ζ ∈ [t, t + h]. As long as −Yṙr2
sat < Dγu

2 + Dρu + DS(u + VwU)2 then
ü > 0, which was found to be true when u > 0.6m

s
. From (5.29), when ü > 0

then u(t + h) > ut+h. It then also follows that u(t + T ) > ut+T , meaning that the
Euler Forward Method for integration in this case gives a lower bound estimate,
and a relatively large step size h can be used without concern for underestimating
the dampening. Now that we are able to optimally choose between tacking and
jibing a method for setting χd correctly has to be found. Normally when creating a
heading or a course control one use the following technique to make the boat turns
the shortest direction:

z1 = mod(ψ + βb − χd + π, 2π)− π· (5.30)
This does however not work in this case because the jibe maneuver is not the shortest
path. Taking a step back, if there exist a point between χd and ψ (β ≈ 0) which
makes κp = 0 we have to cross the eye of the wind. Given

κψ = ψ − βw + π (5.31)
if sign(κψ) = −sign(κχd) and |κψ|+ |κχd| < π it would mean that we have to cross
the eye of the wind. If so we have to check for u(t+ T ) > umin and choose between
the tack and the jibe maneuver. If the tack maneuver is chosen we would like z1 to
behave the same as if (5.30) were being used. The modulus function is given by

mod(a, b) = a− b floor(a
b

), (5.32)

where floor(n) rounds n to the nearest integer less than or equal to n. The equation
for z1 (4.1) is

z1 = ψ + βb − χd· (5.33)
We would like (5.33) to behave as (5.30) by using χdt ∈ [−∞,∞] instead of χd ∈
[−π, π]. Inserting χdt for χd in (5.33), using βb ≈ 0, and setting the two equations
equal to each other and solving for χdt gives

z1 = ψ − χdt = mod(ψ − χd, 2π)− π

ψ − χdt = ψ − χd + π − 2πfloor(ψ − χd + π

2π )− π

χdt = χd + 2πfloor(ψ − χd + π

2π )

(5.34)

where χdt is the desired course angle when a tack is wanted. The jibe maneuver is
then simply 2

χdj = χtack + 2πsign(κχd)· (5.35)
2given that sign(κψ) = −sign(κχd) and |κψ|+ |κχd| < π are both true.



5.4. RESULTS 64

Figure 5.5: Test of surge sub-dynamic while tacking

5.4 Results

5.4.1 Surge Sub-Dynamic
By running a couple of simulations one can compare the simplified surge sub-
dynamic model to the complete model. The sailboat tries to tack at different initial
speeds in surge and at different wind speeds. The results are presented in Figure 5.5.
The test shows that the estimates are fairly good, though the accuracy decreases
when the wind speed increases. This is probably due to the sail providing some
forward force to the sailboat in the beginning and at the end of the turn which
our simplified model do not capture. The estimates are in general lower that the
simulation values, which is a good thing considering the estimate is a lower bound
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Figure 5.6: Results of path following sim-
ulation

Figure 5.7: Speed in surge while path fol-
lowing

estimate, expect when u drops below umin. This could be because the boat is not
able to sustain the turning rate and thus it takes longer than anticipated to complete
the turn.

5.4.2 Path Following
One simulation was executed to show how the path following algorithm works in
action. The path is created such that the boat has to sail up-wind, down-wind and
perpendicular to the wind. The wind speed is equal to 6m

s
, and the wind is coming

from the east direction (βw = −90deg). The path witch the ship tries to follow is
given in Table 5.3. The initial position of the boat is x = 0 and y = 0, meaning
that the sailboat starts with a large cross track error and will have to sail up-wind
to get back on the path. The path restriction is |e| < 150m.

p1 p2 p3 p4 p5 p6
N [m] −250 250 250 −450 −450 0
E[m] 150 150 −400 −400 150 700

Table 5.3: Path used in path following test

The results are found in Figure 5.6. The boat is able to finish the path, and from
Figure 5.7 one can see that the speed in surge never drops below umin = 2m

s
. At

the beginning the sailboat manages to get back on the path, despite having to sail
up-wind. It does however chose to go in the lest optimal direction in terms of min-
imizing the total distance traveled, which is something that might could be solved
in a future iteration of this algorithm. The most important is however that it does
manage to get back on the path, and when the sailboat is back on the path it does



5.4. RESULTS 66

not leave the path. When the sailboat reaches the path it chooses to do a jibe
maneuver, despite being the longer turning distance. The sailboat then sails along
the first path segment, and when it reaches the end of the path it starts moving
towards the next setpoint.

The next path segment is down wind, and the sailboat moves in the correct zig-zag
pattern. When the cross track error grows larger than 150m the boat jibes, except in
the end where it jibes a bit earlier, ensuring that sailboat hits the set point directly.
Then the sailboat move southward by beam reaching, and afterwards starts beating
up-wind. At the end the path moves slightly up-wind, and the sailboat is able to
follow the path correctly. In general the results show that the path algorithm works
as intended, and even in its simplicity its performance and robustness is quite good.



6 Sensor simulation and state es-
timation

6.1 Introduction

Perfect state estimation is impossible in a real system. The controller developed in
chapter 4 is built upon a perfect state estimation and system knowledge, though this
is impossible due to modeling errors and noisy sensors. Sensors and state estimation
are a big part of a control system as it dictates which states that can effectively be
used in the feedback loop and how aggressive our control action can be.

Sensor simulation will be added to the model in this chapter, and a Luenberger
observer will be used for state estimation. A standard set of sensors will be im-
plemented in the model, including GPS, gyro, accelerometer and magnetometer.
An observer can, by using sensors and the knowledge about the system dynamics,
improve the state estimation, reconstruct non-measured states, and provide dead
reckoning capabilities in case of sensor failure. The theory presented in this chapter
about state estimation and sensors are gathered from Beard and McLain [2012],
Fossen [2011] and Sørensen [2013]. Wind sensor is not implemented.

Sensor bias is not included in the sensor models. This is because sensor bias is
not difficult to counteract, but it would unnecessarily increase the complexity of
our simulation and state estimation without giving anything insightful information
regarding control.

Main contributions of chapter:

• Added realistic simulation of a standard suit of sensors.

• Implemented a Luenberger observer to estimate states of system.

67
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6.2 Sensor simulation

6.2.1 GPS
The Global Positioning System (GPS) is used to get an estimate of the coordinates
and velocity of the boat. It is a satellite-based navigation system and is a critical
enabling technology for unmanned vehicles. There are 24 satellites that orbit the
earth, and there are always at least four satellites observable from the earth’s sur-
face. By sending signals from the satellites and measuring the time it takes for the
signals to arrive the position can be triangulated. Errors exist due to synchroniza-
tion errors between the satellites clock and the receivers clock, and the variations
of the speed of light as it goes though the ionosphere and troposphere. How close
the satellites are to each other is also an important variable when discussing the
accuracy of GPS. Furthermore, the update rate on the GPS sensor is quite low,
usually in the 5Hz range.

Velocity

The GPS sensor is able to measure the velocity of the ground speed by using carrier
phase Doppler measurements from the GPS satellite signals, and it has a standard
deviation of 0.01 to 0.05 m

s
. The GPS measures the speed in north and east direction,

referred to as GPSm,Ṅ and GPSm,Ė respectively, from which course and ground
speed can be estimated:

√
u2 + v2 =

√
GPS2

m,Ṅ
+GPS2

m,Ė
(6.1)

χ = arctan2(GPSm,Ė, GPSm,Ṅ), (6.2)

where GPSm,Ṅ and GPSm,Ė are modeled as[
GPSm,Ṅ
GPSm,Ė

]
=
√
u2 + v2

[
cos(ψ)
sin(ψ)

]
+
[
ηGPS,Ṅ
ηGPS,Ė

]
(6.3)

where ηGPS,Ṅ and ηGPS,Ė are zero-mean Gaussian noise with a standard deviation
of σ2

GPS,Ṅ
= σ2

GPS,Ė
. Using an estimate of the heading angle and heeling angle, ψ̂

and φ̂, one can then estimate u and v as[
GPSm,u̇
GPSm,v̇

]
= J2D(φ̂, ψ̂)−1

[
GPSm,Ṅ
GPSm,Ė

]
· (6.4)

The 5Hz update frequency of the sensor is modeled using a zero-order hold function.
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Position

Accurate simulation of GPS measurements for long periods of time are difficult to
do because of the movement of the satellites and the dynamic of the error. However,
for small periods of time, the sensor can be simulated by random noise and a bias.
The bias term will not be included in this model, though attention should be made
when making a real system. It will also be assumed that instead of coordinates,
direct measurements of the x and y positions are obtained. The following simplified
model is used:

[
GPSm,N
GPSm,E

]
=
[
x
y

]
+
[
ηGPS,N
ηGPS,E

]
, (6.5)

where GPSm,N and GPSm,E is the sensor reading of the position in x and y, and
ηGPS,N and ηGPS,E are random errors (not zero-mean Gaussian noise) with a magni-
tude of 0.4m. The 5Hz update frequency of the sensor is modeled using a zero-order
hold function. By combining (6.3) and (6.6) one can make an improved estimate of
the position:

[
GPSm,Ni
GPSm,E

]
=
[
GPSm,Ni
GPSm,E

]
+ 1

2h

[
GPSm,Ṅ
GPSm,Ė

]
, (6.6)

where h is the update frequency of the GPS. The improved estimate corrects for the
low update frequency of the GPS signal. This new signal will on average be correct,
compared to (6.6) which would cause a steady state error.

6.2.2 Accelerometer

The accelerometer measures the acceleration on the body in x′, y′ and z′ axis. This
includes acceleration caused by linear acceleration, coriolis acceleration and gravi-
tational acceleration. However, in combination with a gyro, the coriolis acceleration
can be removed from the measurements. To make things more convenient, the effects
of the coriolis acceleration are removed from the model, removing the need for this
extra step that would not add much to the accuracy of the simulation model. The
accelerometer has noise, but usually little bias. The accelerometer is implemented
as follows:

Accm =

u̇v̇
0

+

ηacc,x′ηacc,y′
ηacc,z′

+ JTacc

0
0
g

 , (6.7)

where
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Jacc =

cos(ψ) −sin(ψ)cos(φ) sin(ψ)sin(φ)
sin(ψ) cos(ψ)cos(φ) −cos(ψ)sin(φ)

0 sin(φ) cos(φ)

 (6.8)

is the transformation matrix from n-frame to b-frame of x, y, z to x′, y′, z′ and gm
s2 is

the gravitational constant and ηacc,x′ , ηacc,y′ and ηacc,z′ are zero-mean Gaussian noise
with variance σ2

acc.

Assuming that the gravitational vector is dominating the measurements, i.e. |u̇| � g
and |v̇| � g, one can write (6.7) as

Accm = J ′acc

0
0
g

 =

 0
sin(φ)
cos(φ)

 g, (6.9)

and it can be seen that the the heeling angle, φ, can be estimated by

Accm,φ = arctan2(Accm,y′ , Accm,z′)· (6.10)

6.2.3 Gyro
Rate gyros are used to measures the rotational velocity along the different axis of the
ship. It works by the principal of coriolis acceleration which is proportional to the
velocity and the rate of rotation. The gyro has a significant bias which is sensitive
to temperature, meaning that the sensor have to be calibrated before each use, and
maybe even multiple times during long missions. The bias is not implemented in
this model, though the process of recalibrating the bias while on a mission could be a
point of interest. However, the sensor has some noise, and the sensor measurements
is implemented as

Gyrom =
[
Gyrom,p
Gyrom,r

]
=
[
p
r

]
+
[
ηgyro,p
ηgyro,r

]
, (6.11)

where Gyrom is the sensor reading and ηgyro,p and ηgyro,r are zero-mean Gaussian
noise with variance σ2

gyro.

6.2.4 Magnetometer
The magnetometer measures the earth’s magnetic field. The earth’s magnetic field
is three dimensional with north, east and down components that vary with the
location on earth. A compass provides an indication of the heading relative to the
magnetic north, but do not work well for big heel and pitch angles. Other sources
for noise are nearby metal or electrical interference. Modern digital compasses uses
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three-axis magnetometers, which can be used to compensate measurements at big
heel and pitch angles by effectively projecting the three dimensional vector onto the
plane. To simplify our model, a two-axis magnetometers is used, and it will always
be level (no heel or pitch angle) and the magnetic north is equal to the true north.
A more complex model could be implemented though the extra detail would not
contribute a lot to the realism of the sensor simulation. The simplified model is

Magm = ψ + ηmag, (6.12)
where Magm is the sensor readings and ηmag is zero-mean Gaussian noise with
variance σ2

mag.

6.3 Observer
A disadvantage associated with filtering is phase lag. This reduces the performance
of the controller as the states in the feedback loop effectively has a delay. An
observer is able to overcome this issue by the use of a prediction element in the state
estimation. This prediction is only possible when the system dynamics are know
or can be approximated. In this thesis, a simple continues Luenberger observer is
used, which is described as

˙̂x = Ax̂+Bu+ L(y − ŷ)
ŷ = Cx̂+Du

, (6.13)

where x̂ = [η ν]T is the estimation of states, L is the gain of the observer, y is the
states that can be measured using sensors and ŷ is the estimation of those states.
It can be shown that the error, e = x− x̂, has a dynamic of

ė = (A− LC)e, (6.14)
which goes asymptotically to zero if A−LC is Hurwitz (all eigenvalues are negative).
The dynamics of the sailboat are non-linear, and to make matters worse, can not be
linearized easily. The Luenberger observer can however be modified for a non-linear
system:

˙̂x = f(x̂) +B(u) + L(y − ŷ)
ŷ = Cx̂+D(u)

, (6.15)

where f(x̂) represents the system dynamics. The system model developed in chapter
3 includes the forces from the actuators, i.e. B(u) = 0, and it is easy to see that
D(u) = 0. The Luenberger observer (6.15) is then simplified to

˙̂x = f(x̂) + L(y − ŷ)
ŷ = Cx̂

· (6.16)
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Using the system model (3.2), f(x̂) can be formulated as

f(x) =
[

J(φ, ψ)ν
M−1(−CRB(ν)ν − CA(νr)νr −D(νr)− g(η) + S +K +R)

]
, (6.17)

where M = MRB +MA. The measured states, y:

y =
[
ηm
νm

]
, (6.18)

where

ηm =


GPSm,Ni
GPSm,Ei
Accm,φ
Magm

 (6.19) νm =


GPSm,u(φ̂, ψ̂)
GPSm,v(φ̂, ψ̂)
Gyrom,p
Gyrom,r

 · (6.20)

C in equation (6.16) then simply becomes the identity matrix of size eight. For lin-
ear systems the observer gain, L, can be found using the Kalman gain. The Kalman
gain is optimized for systems where the noise in both the system dynamics and mea-
surements can be modeled as zero-mean Gaussian noise. When the variance of each
sensor and dynamic is know the Kalman gain is the optimal gain. For non-linear
systems, the extended kalman gain can be used, which is just the regular kalman
gain calculated based on a linearization of the system dynamics at each time step.
The variance of each sensor is easy to find, but the same is not true for the system
dynamics. The L gain was thus just tuned manually until satisfactory performance
was achieved.

If Vw was know perfectly the model of our system would be perfect, and it follows
that L would be zero. Instead, only the average wind speed is known, V̂w, which
effectively makes the wind gusts, and the variable wind direction, the noise in the
system. The sail is affected by the wind speed squared, and it follows that the size
of the noise in the system is related to the square of the wind speed. A time-varying
observer gain based on the size of the wind speed could be one possibility, though
this is too complicated. Instead, the observer gain is tuned for U10m = 10m

s
, a

fairly high wind speed which can be seen as a worst case scenario. Further more,
depending on if the boat is running or is beam reaching, the optimal observer gain
might be different as the noise propagates through the system differently. This has
to be taken into consideration when tuning manually. The observer gain can be
found in appendix B.
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6.4 Results

6.4.1 Observer
One simulation was executed, showing the estimation of states while running, as
well as the sensor simulation. The average wind speed and direction was known to
the observer, and and true wind speed used in the simulation is 6m

s
. The results

show the last 5 seconds of a 50 second simulation.

Figure 6.1: State estimation, η

Figure 6.1 shows the sensor reading, estimation and real value of the states in η. In
the first plot one can see that the GPS position simulation works as intended; the
error looks random between ±0.4m, though on average the estimate seems correct.
The observer estimate of x looks correct as well, though for some control schemes
the estimate might not be steady enough. The next plot shows the estimate and
sensor reading of state y, and the results is similar to that of x.
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Figure 6.2: State estimation, ν

The next two plots shows the result for φ and ψ. The estimation of heeling angle
by the use of accelerometer is working, even with an substantial amount of noise.
Using the accelerometer measurements alone would probably not give the same re-
sults, and the estimate of φ is strongly connected to the estimate of p, which is
rather good (Figure 6.2) due to the accuracy of the gyro. The estimate of ψ could
probably be better, in terms of average error, by increasing the L gain. However,
this would make ψ̂ less steady which could lead to an unnecessary amount of control
action in the rudder.

Figure 6.2 shows the results for the states in ν. The first two plots shows u and v.
The estimation of u and v are very close to the real value, and the simulation of the
GPS position sensor is good. The estimates of p and r are very accurate as well,
and the gyro simulations looks reasonable.



7 Simple Controller

7.1 Introduction

The controller in chapter 4 could be considered ideal, but it assumes perfect state
estimation for its feedback-loop. Further more, the course controller tries to cancel
all nonlinearities in the system, but this requires a very precise model of the sys-
tem which can be difficult, or even impossible, to make. The ideal controller also
takes into account a lot of non-important details and dynamics, which makes the
controller unnecessarily complex.

In this chapter a simpler controller will be developed based on the results from
the previous chapters. The main objectives of the simple controller is to provide a
simpler to implement option, while minimizing the impact on performance. This
is achieved by analyzing the results from chapter 3 and looking at what forces and
moments that can be neglected. The ideal controller from chapter 4 will be the base
of the controller developed in this chapter, though some elements will be changed,
and other parts removed.

As in chapter 4, there will be two main independent controllers. One to control
the sail, and another one that controls the yaw and course. The biggest changes
in the controller will relate to the course controller and roll reduction controller, as
thees are the most dependent on the system dynamics and estimated states in their
feedback loops.

Main contributions of chapter:

• A simple to implement course controller with high performance.

• A simple to implement roll controller with high performance.
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7.2 Rudder Controller

7.2.1 Course Control
The desired momentum of the rudder was found in chapter 4 to be equal to (4.20)

u =− Cψ(S +K − CA(νr)νr −D(νr))
− (Izz −Nṙ)(−χ̈d +KP (z2 −KP z1) + z1 +KDz2)·

(7.1)

Looking at the force analysis from chapter 3, Figure 3.14 and 3.17, reveals that
many of thees moments contribute little to the yaw sub-dynamic. When running,
it is only the sail that has a significant moment contribution in yaw, though the
dynamics while beam reaching are more complex. While beam reaching, the keel,
sail and added mass Coriolis are all important. Assuming r ≈ 0, the added mass
Coriolis term (3.9) in yaw can be simplified to

CψCA(νr)νr ≈ −(Yv̇ −Xu̇)urvr ≈ −
1
2(Yv̇ −Xu̇)U2sin(2βb), (7.2)

where U2 = u2 + v2. This is simply the Munk moment.

Assuming that the correction term, βb, is correct, the force created by the keel
should be equal to FU (4.31). From (3.29) and βck ≈ π it follows that the moment
created in yaw by the keel should be equal to

Kψ = −FU l3· (7.3)

Figure 3.14 and 3.17 only shows the moments in yaw while in a steady course,
and the dampening term is thus very low. When turning there will be a lot more
dampening in yaw, but it is considered a "good" nonlinearity because it increases the
stability of the system (Fossen [2011], p. 457). It can be proven that the dampening
term dissipates energy from the second Lyapunov function. The equation for z2 can
be simplified when z1 ≈ 0 and χ̇d ≈ 0 to

z2 = r − α = r − χ̇d +KP z1 ≈ r· (7.4)

When v is small the dampening in the yaw sub-dynamic can be approximated by

Dψ = dl66r +DqN
(νr) ≈ dl66r +DCr|r|, (7.5)

whereDC > 0. If u do not cancel out the dampening term, Dψ, in the ideal controller
(7.1) then the second Lyapunov function becomes

V̇2 = −KP z
2
1 −KDz

2
2 − z2

(
dl66r +DCr|r|
Izz −Nṙ

)
· (7.6)
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By inserting the simplified expression for z2 (7.4) in the last term it is easy to see
that V̇2 < 0:

V̇2 = −KP z
2
1 −KDz

2
2 − r2

(
dl66 +DC |r|
Izz −Nṙ

)
· (7.7)

Removing the moments that do not contribute to the yaw sub-dynamic, inserting
the simplifications of the added mass coriolis term (7.2) and keel (7.3), removing
the dampening term and adding integral control action to account for any errors (in
estimation, modeling or by simplification), the control input u is given by

u =− FU l3 − Sψ −
1
2(Yv̇ −Xu̇)U2sin(2βb)

+ (Izz −Nṙ)(−χ̈d +Kp(z2 −Kpz1) + z1 +KDz2) +Kir

∫ t

0
z1τ ·

(7.8)

Looking at Figure 3.17, Kψ, Sψ and the Munk moment are all slowly changing mo-
ments. A very simple controller could thus replace these three terms with integral
control action, though it would reduce performance after changing course as the
integral term would need time to stabilize again, which is done frequently when
sailing up-wind and down-wind.

7.2.2 Correction Term, βb
The undesirable force, FU (4.31), can also be simplified. Assuming a low drift angle
one can simplify this to just the forces in negative y-direction, as cos(−π

2 ) ≈ 0 and
sin(−π

2 ) ≈ −1. When the drift angle is low it follows that v is small, which implies
Dy(νr) ≈ 0. Furthermore, Ry′ can be approximated by Ry′ ≈ − u

l4
, where u is the

desired yaw moment of the rudder. This gives the following simplified solution for
FU :

FU ≈ −Sy′ +
u

l4
· (7.9)

In (3.28), Vck is used in the calculation of αk, but by assuming p = r ≈ 0 it can be
simplified to

αk = 2FU
pwAkCL0k

U2 · (7.10)
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7.3 Sail Controller

7.3.1 Roll Controller
The roll controller developed in chapter 4 removed all the nonlinearities in the sys-
tem and then used a linear quadratic regulator (LQR) to control the roll motion.
A simplified controller can be made by linearizing the system in roll about an equi-
librium point, which is selected to be the desired heel angle. The linearized system
can be written as

x =
[
φ
p

]
(7.11) ẋ = Ax+Bu· (7.12)

Looking at the results of the force analysis in chapter 3, Figure 3.14 and 3.17 shows
that the restoring moment and the sail contributes roughly 91% of the total moment
generated in roll, and the keel another 8%. Assuming FU is correct, then from (3.29),
the moment created by the keel is equal to −FUh2. The restoring moment (3.10)
can be linearized to be written as

Gφ = pwg∆GMt((1− 2sin(φw)2)φ+ C1, (7.13)

where φw is the equilibrium point and C1 is equal to

C1 = pwg∆GMtcos(φw)sin(φw)· (7.14)

Matrices A and B in our linearized system can then be written as

A =
[ 0 1
−pwg∆GMt(1−2sin(φw)2)

Ixx−Kṗ
0

]
, (7.15)

B =
[

0
1

Ixx−Kṗ

]
, (7.16)

where u is defined as

u = −KLQR

[
φ− φd
p

]
−Kis

∫ t

0
φ− φddτ + C1 + FUh2, (7.17)

and

Sφrd
= u

V 2
ws

· (7.18)

The LQR controller gain, KLQR, was then tuned by using the same matrices Q and
R as in chapter 4., which gave the result KLQR = [9.03e4 1.04e5]. In a real system
the constant C1 can be estimated by the use of the integral action, as the steady
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sate value of the integral action will approximately be C1. Furthermore, FUh2 is
fairly small, and by the force analysis in chapter 3, produced a steady moment. It
follows that the integral action could handle the error caused by not including it.
However, if FU is already calculated, there is little reason not to include it. As al-
ready discussed, it would however reduce performance after changing course, which
is done frequently when sailing up-wind and down-wind.

7.4 Results
Three different simulation setups are used in the following simulations. In the first
simulation setup, the ideal controller is used along with perfect state estimation. In
the second, the simple controller is used along perfect state estimation. In the last,
the simple controller is used, but the observer is used to estimate states and only
the average wind speed is known.

7.4.1 Course controller
The first scenario is of the boat trying to keep a steady course angle of 0 degrees
(north) when the mean wind speed is 5m

s
and the angle of the wind is equal to

βw = 125deg. The simulations has a duration of 1000 seconds. Thees are the same
conditions that were used when testing the course controller in chapter 4, except
that the simulation time has been increased.

Figure 7.1: Course controller simple, χ-
plot

Figure 7.2: Course controller simple, NE-
plot

The overall drift from the desired course can be estimated as it where in chapter



7.4. RESULTS 80

4. To compute an estimate of the error, |atan(x
y
)| is used, where x is the distance

traveled in north direction and y is the distance traveled in east direction. The
course controller takes 20 seconds to adjust, and the drift caused by this is removed
from the error. See table 7.1 for results.

Table 7.1: Results of course controller test

scenario x [m] y [m] error [deg]
(ideal) heading controller 149 3100 2.71

ideal 0 2950 0
simple 9 2950 0.17

simple + observer 10 2950 0.19

The simple controller with perfect state estimation perform slightly worse than the
ideal controller, and the simplifications done to the drift correction term causes
roughly a 0.17deg error. Otherwise the controller performs quite similarly to the
ideal controller, which is easy to see on in Figure 7.2. The drift is slightly larger
when the simple controller has to use the observer and average wind estimate, and
the course fluctuates considerably more. In the ideal controller showed that without
the drift correction term the error would be 2.71deg, and it follows that the drift
from the course has been reduced by roughly 1396% compared to the ideal controller
without drift correction.

The variation in course angle is considerable less when perfect state estimation is
used, and the effectiveness of the controller is mostly limited by how well one can
estimate the states used in the feedback loop, and in that regard the simplified con-
troller performed excellent. However, perfect state estimation or not, the controller
is able to keep the course without too much deviation. The amplitude of the fluc-
tuating seems to be around 1m, which is not bad at all.

The next scenario where designed to test performance while turning. A lot of the
simplifications of the ideal controller were justified on the basis of holding a steady
course, such as r ≈ 0 when simplifying the Coriolis added mass term. To make the
result as focused on the controller as possible, Vw = [0 0]T , ν̇u and perfect state
estimation were used. The boat will try to do a 90deg turn at u = 5m

s
, no wind.
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Figure 7.3: Course controller simple,
time evolution of χ

Figure 7.4: Course controller simple,
time evolution of z1

From Figure 7.3 it is difficult to see the difference in performance between the three
controller setups, but all of them works as they should. There are no overshoot and
the turning rates are stable in all simulations. Figure 7.4 shows the time evolution of
z1, and it is easier to see the difference between the two controllers in this Figure. The
simple controller has a larger constant error in z1 compared to the ideal controller,
though this is to be expected because the drag term has been neglected. When state
estimation is turned on the error in z1 fluctuates a bit due to noise in the estimates
by the observer, but it does not seem to effect performance or overall stability.

7.4.2 Roll controller
The last set of simulations shows how the different setups handles reducing roll
motion. The boat is set to go on a course direction perpendicular to a mean wind
speed of 10m

s
. The results will show the last 50 seconds of a 200 second simulation,

ensuring that the top speed in surge has been reached and that the integral term in
the controller has had time to reach a steady value. These are the same conditions
that were used when testing the roll controller in chapter 4.

Figure 7.5 and 7.6 shows that the simple controller, even when using the observer
for state estimation, is able to reduce the heeling angle and roll motion. The simple
controller performs almost identical to the ideal controller, justifying the simplifi-
cations. When the true value of the states are not known we get a big drop in
performance. The drop in performance is most likely caused by that only the aver-
age wind speed is known, which makes it difficult to calculate the relative desired
momentum in roll (Sφrd

). However, the heeling angle is kept around 10deg regardless
of which controller setup is used, which is the main purpose of the roll controller.
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Figure 7.5: Roll controller simple, time
evolution of φ

Figure 7.6: Roll controller simple, time
evolution of p

In comparison, without a roll controller the heeling angle was about 25deg.

In Table 7.2 the results are summarized. Besides reducing the heeling angle to a
safe level, the simple controller without perfect state estimation is able to reduce the
amplitude of the roll motion by about 47.8% and the rotational velocity by 62.5%
compared to having no controller in roll at all.

Table 7.2: Results of roll controller test

scenario amplitude of φ [deg] maximum p [deg
s

] u [m
s

]
ideal 0.24 0.3 6.48
simple 0.24 0.3 6.52

simple + observer 2.54 1.5 6.54
controller off 5.31 4.0 8.3

7.4.3 Path following
The following simulation is the same as in chapter 5, except that the simple con-
troller is used, and only the average wind estimate is known.

From Figure 7.7 and 7.8 it is easy to see that the sailboat manages to follow that
path. The result is very similar to the simulation in chapter 5 where the ideal con-
troller with perfect state estimation were used. The simple controller is able to tack
and jibe, sail close hauled, beam reaching and broad reaching, and the speed in surge
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Figure 7.7: Results of path following sim-
ulation

Figure 7.8: Speed in surge while path fol-
lowing

never drops below umin. The speed in surge is comparable to the ideal controller,
and it manages to complete the path in a similar amount of time.
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B

Data Sheet and Parameters used in Simulation
Data sheet and drawings of sailboat were found on the website sailboatdata.com
(http://sailboatdata.com/viewrecord.asp?class_id=2893), accessed on 9-10-
2015. All estimated parameters are calculated in the script called "CalcSailBoat-
Values.m".

Figure 8.1: Datasheet

http://sailboatdata.com/viewrecord.asp?class_id=2893
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Figure 8.2: Drawing of sailboat
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Table 8.1: Important lengths

Variable value
h1 5.2 [m]
h2 0.95 [m]
h3 0.7 [m]
l1 -1.82 [m]
l2 1.35 [m]
l3 -0.66 [m]
l4 3.66 [m]
l5 2.2 [m]
l6 2 [m]

Table 8.2: Rigid and added mass

Variable value
m 1.6e3 [kg]
Ixx 3.3e3 [kg m2]
Izz 4.6e3 [kg m2]
Xu̇ -1.6e2 [kg]
Yv̇ -1.2e3 [kg]
Kṗ -1.0e3 [kg m2]
Nṙ -2.4e3 [kg m2]
Yṙ -3.5e2 [kg m]

Table 8.3: Dampening

Variable value
k 0.15 [−]
dl11 10 [kg m

s
]

dl22 16 [kg m
s

]
dl66 40 [kg m

s
]

BF0 15 [−]
BL 70 [ kg

rad
]

Table 8.4: Sailboat basics

Variable value
LWL 8.8 [m]
SH 9.8e4 [m2]
ωroll0 2.39 [1

s
]

GMt 2.4 [m]

Table 8.5: Actuators

Variable value
Tr 0.2 [s]
Tb 0.5 [s]
σsat 35 [deg]
λsat 110 [deg]
Qk 200000 [kg

s2 ]
Qb 1000 [kg

s
]]

Table 8.6: Foils

Variable value
Aspk 1.75 [−]
Aspr 9.8e4 [−]
CL0k

3.57 [−]
CL0r 4.51 [−]

Keel Area 0.93 [m2]
Rudder Area 0.30 [m2]
Sail Area 22.8 [m]
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Table 8.7: Controller tuning parame-
ters

Variable value
LQRideal [8.66e4 1.05e5] [−]
LQRsimple 0.5 [−]

Kis 0.2 [−]
KP 0.25 [−]
KD 50 [−]
Kir 500 [−]
Kc+ 200 [−]
Kc− 100 [−]
Kib 0.2 [−]
Tψ 0.66 s

Table 8.8: Path following

Variable value
rsat 15 [deg

s
]

Θmin 55 [deg]
ΘMIN 40 [deg]
Θmax 140 [deg]
εΘ 5 [deg]
Dγ 18 [kg m]
Dρ 44.7 [kg m]
D§ 1.11 [kg

s
]

Table 8.9: Sensor simulation

Variable value
ηGPS,Ṅ/Ṅ 0.05 [−]
ηGPS,N/E 0.4 [−]
ηacc 0.1 [−]
ηGyro 0.00002 [−]
ηMag 0.0002 [−]

(observer gain)L =



0.5 0 0 0 0 0 0 0
0 0.5 0 0 0 0 0 0
0 0 0.1 0 0 0 0 0
0 0 0 0.5 0 0 0 0
0 0 0 0 0.3 0 0 0
0 0 0 0 0 0.05 0 0
0 0 0 0 0 0 20 0
0 0 0 0 0 0 0 5


(8.1)
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C

Implementation and use of Simulator
Everything has been implemented in simulink (matlab). The implementation was
made using matlab R2014b, and if any problems are encountered it is recommend
to use this version of matlab. Comments are used in all the matlab scripts with
references to this thesis. There are automated scripts to recreate any of the results
presented in this paper, these are located in the folder called "plot_scripts". Simply
run the desired script and all simulations and graphs are made automatically. To
make it simpler to initiate a simulation there is a script called "runSimulation.m".
Description of all the inputs and outputs are described in the Table below.

Table 8.10: runSimulation.m

Variable value
model_name name of simulink model
simTime simulation time [s]
nu_init initial value of nu on the format

’[u;v;p;r]’ [m;m;rad;rad]
eta_init initial value of eta on the format

’[x;y;phi;psi]’ [m/s; m/s; rad/s; rad/s]
windSpeedMean average wind speed at z = -10m [m/s]
windDirection average wind direction in [rad]
desiredCourse desired course if path_model>0 [rad]

desiredCourse_init initial desired course [rad]
driftGain should be equal to 1 to enable the drift correction term

path_model >0 follows desired course, <0 enables path following
roll_target_init desired max heeling angle

lamda_init initial value of lambda (corrects l70 automatically) [rad]
windEstimation_mode =0 perfect wind estimation, =2 average wind is known

observer_on =0 perfect state estimation, =1 enables observer
controller_mode =0 ideal controller, =1 simple controller

Before simulations can be initiated there are a couple of settings that must be
adjusted. Global variables are defined in the script called globalV ariables, and it is
important that the setting in simulink is to load global variables from this script.
The scripts that model the kinetics, kinematics, and drag/lift coefficients are found
in separate folders. Thees has to be added manually to the search path in matlab.
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