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would always be exactly one clock cycle after the last signal change during an operation, and the 

system would be Idle during that last clock cycle. A static supply voltage is assumed. 

Earlier calculations subtracted the integral of the supply current level, but the contribution of 

leakage currents during a read or write was discovered to be negligible when measuring read and 

write energies. In the simulations, the leakage current was in the order of magnitude less than 10-3 of 

the active read and write induced currents. Another problem with subtracting the contribution of 

leakage currents is that leakage current is only defined in a static system, and therefore its 

contribution is unknown during a read or write. 

5.6.3 Determining the worst case initial memory state 

5.6.3.1 D-flip-flops 

To determine the worst case state of the memory array when examining leakage currents, three 

cases were simulated on an 8-byte memory circuit using the reference D-flip-flop (REFDFF). 

When using the REFDFF flip-flop, having all zeros stored in the memory maximized the leakage 

current.  

When using the C2MOS (KHAN_DFF) flip-flop, having all ones stored in the memory meant the 

leakage current from the cells was 1.54 times higher than the leakage current from the cells when 

having all zeros stored in the memory. Due to the extremely long simulation time required to fill the 

memory with ones, this result will not influence the simulations run and the higher leakage current 

has to be considered in the prediction calculations instead. 

The read and write energies were the highest when writing all ones to a byte containing all zeros, for 

both flip flops. 

See appendix A for details on the memory state simulations. 

5.6.3.2 SRAM 

As the SRAM cells are symmetrical, the effect of the memory state on leakage characteristics and 

read and write energy is assumed to be negligible. A ‘11111111’ is chosen to be written to a byte 

containing ‘00000000’, and the same byte is read. 
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5.6.4 64 Byte D-Flip-Flop simulation setup 

 

Figure 30: The TB_SIXTYFOURBYTE_REFDFF_01 testbench for the 64 Byte D-Flip-Flop memory system. 

Figure 30 shows the testbench used for measuring leakage current and the read and write energies 

for both of the 64 Byte D-Flip-Flop systems. Two different supply currents were measured. The first 

current was the supply current going to the D-Flip-Flop cells, through the I_CELLS_PROBE probe. The 

second current was the supply current going to the peripheral circuitry, through the 

I_PERIPHERAL_PROBE probe. The reason for separating the two supply currents is to give more 

insight into the power consumption of the D-Flip-Flop cells themselves. The testbench shows the 

testbench for the reference D-flip-flop (REFDFF), but the testbench for the C2MOS flip-flop 

(KHAN_DFF) is identical, except the SIXTYFOURBYTE_REFDFF_01 cell is replaced with the 

SIXTYFOURBYTE_KHAN_DFF_01 cell. The STIM and MEASURE cells in the testbench are included in 

appendix B. 

Time [s] DATA ADDRESS STORE CDN Comments 

0 0x00 0x00 0 0 Reset state 

0.0000007 0x00 0x00 0 1 Exit reset state 

1.0000011 0x00 0x00 0 1 Idle. T0 leakage current 

1.2500011 0x00 0x00 0 1 Idle. T1 leakage current 

1.5000012 0xFF 0x0A 0 1 Setup time. T0 write 

1.5000013 0xFF 0x0A 1 1 Write 0b11111111 to the address 
0b01010. 

1.5000014 0xFF 0x0A 0 1 Hold time 

1.5000015 0x00 0x00 0 1 Idle, allow supply current to settle 

1.5000016 0x00 0x00 0 1 Idle. T1 write. 

1.7500016 0x00 0x0A 0 1 Read address 0b01010. T0 read 

1.7500017 0x00 0x0A 0 1 Hold time 

1.7500018 0x00 0x00 0 1 Idle. 

1.7500019 0x00 0x00 0 1 Idle. T1 read. 
Table 14: The stimulus applied to the TB_SIXTYFOURBYTE_REFDFF_01 testbench. 
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Table 14 shows a sequence of stimulus applied to the input buses of the 

TB_SIXTYFOURBYTE_REFDFF_STIM_01 cell, a part of the testbench showed in figure 30. Refer to 

section 5.2.1 for an explanation of the signals. The clock frequency is 10MHz. The STIM cell simply 

passes the square wave signals generated from the stimulus file, through a buffer. This is to give the 

signals a more realistic rise and fall time. The T0 and T1 markers in the comments column indicate at 

which time interval the supply current was integrated over, with T0 being the start time. For details, 

see section 5.6.2. 

The actual LWRTS_stim.vec (stimulus file for the REFDFF test) and LWRTS_results.ocn (ocean script 

for processing simulation results) files were generated by a MatLab script, included in appendix C. 

5.6.4 64 Byte SRAM Simulation setup 

 

Figure 31: The TB_SRAM6T_64B_02 testbench for the SRAM system. 

Figure 31 shows the TB_SRAM6T_64B_02 testbench for the SRAM system. Three different supply 

currents were measured. The first current was the supply current going to the SRAM cells, through 

the I_CELLS_PROBE probe. The second was the supply current going to most of the peripheral 

circuitry, including all logic circuitry, through the I_PERIPHERAL_PROBE probe. The third supply 

current was the current going into the bit lines from the bit-line drivers and the sense amplifiers, 

through the I_COLUMNS_PROBE probe. This allows the study of energy delivered to each SRAM cell 

through the bit-lines. Because D-flip-flops are separated from the rest of the circuit by large gate-

drain and gate-source resistances, there is only a negligible current going from the cells to the 

peripheral circuitry.  SRAM cells are not separate from the peripheral circuitry in this way, and 

therefore it is possible that the peripheral circuitry can deliver current to the cells, and vice versa. 

The measurement of the column circuitry supply current is supposed to give more insight into this 

interaction. The STIM and MEASURE cells in the testbench are included in appendix B. 
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Time[s] Data Row_Adr Col_Adr Read Write WL_en CDN Comments 

0 0x00 0x0 0x0 0 0 0 0 Reset state 

0.0001 0x00 0x0 0x0 0 0 0 1 Exit reset state 

1.0000011 0x00 0x0 0x0 0 0 0 1 Idle. T0 Leak 

1.2500011 0x00 0x0 0x0 0 0 0 1 Idle. T1 Leak 

1.5000012 0xFF 0xA 0x2 0 0 0 1 Setup time 
write. T0 Write. 

1.5000013 0xFF 0xA 0x2 0 1 1 1 Write  
0b11111111 to 
row 0b1010, 
column 0b10 

1.5000014 0xFF 0xA 0x2 0 0 0 1 Hold time write. 

1.5000015 0x00 0x0 0x0 0 0 0 1 Idle. 

1.5000016 0x00 0x0 0x0 0 0 0 1 Idle. T1 Write 

1.7500017 0x00 0xA 0x2 0 0 0 1 Setup time read. 
T0 read. 

1.7500018 0x00 0xA 0x2 1 1 0 1 Precharge 

1.7500019 0x00 0xA 0x2 0 0 0 1 Put bit lines to 
high impedance 

1.7500020 0x00 0xA 0x2 0 0 1 1 enable writeline 

1.7500021 0x00 0xA 0x2 1 0 1 1 Turn on 
sense_amp 

1.7500022 0x00 0xA 0x2 1 0 0 1 Disable writeline 

1.7500023 0x00 0x0 0x0 0 0 0 1 idle 

1.7500024 0x00 0x0 0x0 0 0 0 1 Idle T1 read. 
Table 15: The stimulus applied to the TB_SRAM6T_64B_02 testbench. 

Table 15 shows a sequence of stimulus applied to the input buses of the TB_SRAM6T_64B_02_STIM 

cell, a part of the testbench showed in figure 31. Refer to section 5.3.1 for an explanation of the 

signals. The clock frequency is 10MHz. The STIM cell simply passes the square wave signals 

generated from the stimulus file, through a buffer. This is to give the signals a more realistic rise and 

fall time. The T0 and T1 markers in the comments column indicate at which time interval the supply 

current was integrated over, with T0 being the start time. For details, see section 5.6.2. 

6. Results 

6.1 Simulation results 
Memory system Leakage current [pA] Write Energy [pJ] Read energy [pJ] 

REFDFF 44.4 + 390.3 = 434.7 198 + 104 = 302 162.6 + 0 = 162.6 

C2MOS DFF 44.4 + 53.8 = 98.17 183 + 91.3 = 274.5 162.6+ 0 = 162.6 

6T SRAM 22 + 18.4 + 31.7 = 72.3 23.3 + 6.4 + 2.6 = 32.3 16.3 + 5.8 + 6.8 = 29.0 
Table 16: Leakage currents and read/write energies of the three 64 byte memories  

Table 16 shows the leakage currents and read/write energies of the three 64 byte memories in the 

format of peripheral circuit contribution + cell array contribution + column circuitry contribution 

(SRAM only) = total leakage current or total energy 
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Memory cell Leakage current per cell[fA] Write energy per cell[fJ] Read energy per cell[fJ] 

REFDFF 762 203 0 

C2MOS DFF 105 178 0 

6T SRAM 35.9 12.5 11.3 
Table 17: calculated leakage currents and read/write energies per cel  

Table 17 shows the calculated leakage currents and read/write energies per cell, excluding 

peripheral circuitry contributions, derived from the 64-Byte simulations. 

6.2 Extrapolation results 
In this section, the properties of the memory systems, without the state machine required to 

perform reads and writes, are extrapolated using the calculations explained in section 5.4.  

 

Figure 32: Predicted gate count (normalized area) as a function of memory size [Byte] 

Bytes 64 128 256 512 1024 2048 

REFDFF 4940 9904.5 19834.5 39694.5 79414.5 158854.5 

KHAN_DFF 7750 15536.5 31098.5 62222.5 124470.5 248966.5 

SRAM6T 3003 4747.848048 7633.5 12614.2 21457.5 37562.89 
Table 18: Predicted gate count (normalized area) as a function of memory size [Byte] 

Figure 32 and table 18 show the predictions of gate count, a normalized number representing chip 

area, produced by the extrapolator calculations. 
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Figure 33: Predicted leakage current as a function of memory size [Byte] 

Bytes 64 128 256 512 1024 2048 

REFDFF 4.65E-10 9.32951E-10 1.87E-09 3.74E-09 7.48429E-09 1.5E-08 

KHAN_DFF 1.58E-10 3.18655E-10 6.4E-10 1.28E-09 2.56993E-09 5.14E-09 

SRAM6T 6.3E-11 1.01445E-10 1.67E-10 2.8E-10 4.84628E-10 8.6E-10 
Table 19: Predicted leakage current [A] as a function of memory size [Byte] 

Figure 33 and table 19 show the predicted leakage current as a function of memory size. Corrections 

to the leakage current of the C2MOS (KHAN_DFF) D-Flip-Flops discussed in section 5.4.2 are 

included. 

 

 

Figure 34: Predicted read energy as a function of memory size [Byte] 
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Bytes 64 128 256 512 1024 2048 

REFDFF 1.63E-10 3.28259E-10 6.6E-10 1.32E-09 2.64748E-09 5.3E-09 

KHAN_DFF 1.63E-10 3.28259E-10 6.6E-10 1.32E-09 2.64748E-09 5.3E-09 

SRAM6T 2.91E-11 3.89242E-11 5.28E-11 7.25E-11 1.00303E-10 1.4E-10 
Table 20: Predicted read energy [J] as a function of memory size [Byte] 

Figure 34 and table 20 show the predicted read energy as a function of memory size. The predicted 

read energy is simply the simulated read energy multiplied by the increase in peripheral circuitry 

area. The REFDFF and KHAN_DFF have identical results. 

 

Figure 35: Predicted write energy as a function of memory size [Byte] 

Bytes 64 128 256 512 1024 2048 

REFDFF 3.02E-10 5.03625E-10 9.07E-10 1.71E-09 3.32777E-09 6.56E-09 

KHAN_DFF 2.89E-10 4.91025E-10 8.94E-10 1.70E-09 3.31517E-09 6.54E-09 

SRAM6T 3.19E-11 4.27298E-11 5.8E-11 7.96E-11 1.10118E-10 1.53E-10 
Table 21: Predicted write energy [J] as a function of memory size [Byte] 

Figure 35 and table 21 show the predicted write energy as a function of memory size. The predicted 

write energy is simply the simulated write energy multiplied by the increase in peripheral circuitry 

area. The REFDFF and KHAN_DFF have nearly identical results. 

 

7. Discussion 
The discussion chapter of this report is divided into 5 parts. The first two sections discuss the 

implementations of the D-Flip-Flop system and SRAM system. The third section discusses the 

prediction/extrapolation formulas. The fourth section discusses the way the simulations were 

performed. The fifth section discusses the results acquired from the simulations and extrapolation 

formulas. 

7.1 D-Flip-Flop implementation 
In this section, please refer to section 5.2.3 and 5.2.4. 
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The REFDFF cell: In order to have some basis of comparison, a standard D-Flip-Flop was chosen as a 

reference memory cell. The DFCNQD1 (REFDFF) flip-flop was chosen because it was seemingly being 

used by the company Disruptive Technologies for their own purposes. Any other cell from the 

standard cell library could have been chosen as a reference D-Flip-Flop. 

The C2MOS/KHAN_DFF cell: The C2MOS D-Flip-Flop was chosen for testing because it has no pass 

transistor logic and has inverter loops driving every inner node. Pass transistor logic may cause 

degraded logic. If an internal node is cut off by pass transistor logic, its voltage value will degrade 

over time, causing short circuit power consumption (see section 4.7). The C2MOS flip flop may have 

had unnecessarily large transistors. The large sizes of the transistors were chosen arbitrarily. 

Reducing the widths on the transistors would make the flip flop consume less chip area, and might 

make it consume less energy. 

7.2 6T-SRAM implementation 
In this section, please refer to section 5.3. 

7.2.1 Sense amplifier 

In this section, refer to section 5.3.5. The sense amplifier presented in this one of many possible 

sense amplifier designs. [12] Presents a sense amplifier which is similar to the sense amplifier 

presented in section 5.3.5 in that it is precharged to VDD on both sides of an inverter loop. The sense 

amplifier presented in [12] uses a differential input pair. That means it takes its two inputs on the 

gates of two NMOS transistors which are placed between two output nodes and ground. The NMOS 

whose gate voltage is slightly higher will have a greater current IDS passing through it, discharging the 

corresponding node faster than the other node. With the aid of the inverter loop, the output nodes 

will quickly discharge and charge to either VSS or VDD respectively. At this point, the output is ready. 

 

Figure 36: An alternative sense amplifier presented in [12] 
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In this paragraph, refer to section 5.3.5. The functionality of the sense amplifier presented in this 

report is slightly different. Its output nodes are connected to the bit lines through NMOS pass 

transistor. The voltage difference on the bit lines will cause one of the pass transistors to have a 

greater IDS going to the bit lines, discharging one of the output nodes faster. This is inevitably slower, 

as the output nodes are connected to large capacitances presented by the bit lines, and that would 

drain a lot of the current that would otherwise be used to charge the output nodes. The advantage 

of this design is that it greatly simplifies the process of using the output to drive the bit lines for a 

rewrite, as the bit lines would be charged as soon as the pass transistors open. The minimum voltage 

difference on the bit lines needed to ensure a correct read is not known, and should be examined. 

Trying to measure a voltage difference which is too low would mean the output would not be 

decided by the voltage difference on the bit lines, but would rather be decided by a differences in 

drive strength and output node capacitances caused by fabrication errors. 

A differential input pair sense amplifier (the alternative sense amplifier in figure 36 would require a 

more complex timing scheme in order to rewrite to the SRAM cell. The following reason is 

presented: Inverters are assumed to be the driving cells when charging the bit lines for a rewrite. 

These inverters have to be disconnected from the bit lines during a measurement of voltage 

difference, as leaving them to drive the bit lines would influence the measured voltage difference. 

This requires an additional state, the rewrite state, which could only be entered once the sense 

amplifier has made a decision on which output is the correct output. The extra state and timing 

requirements for that state would increase the design complexity of the design of the state machine.  

Avoiding design complexity can help reduce the area, design time, as well as the power consumption 

and leakage current of a design. One problem with the sense amplifier presented in this report is 

that it is slower. A slow sense amplifier will allow the output nodes to remain in an intermediate 

voltage value between VDD and VSS (degraded logic) for longer. This may incur unwanted short 

circuit power (See section 4.7) in either the sense amplifier or the SRAM cell, as the SRAM cell’s pass 

transistors are open during a sense amplifier voltage difference measurement. 

In the design presented in this report, the memory size is small enough that the bit lines present a 

very low capacitance to ground. This means the SRAM cells themselves can pull the bit lines to 

strong logic values (either VDD or VSS) within a read cycle, and one could use the voltage level on 

the bit lines as an output. This means a sense amplifier is not needed in small memories. The sense 

amplifier is included only for the purposes of studying the effect it has on chip area and leakage 

current. The validity of the sense amplifier presented in this paper was not verified. 

7.2.2 Row/Column ratio 

In the implementation described in this report, there are 4 rows per column. This number is 

arbitrary; any ratio could be chosen. The reason this number was chosen was because during the 

design process, memory size expansion had to stop at 64 Bytes because of simulation time 

considerations. At that point, with the given hierarchical structure, the only structures which could 

be constructed without severely lengthening the design time required were either 32 rows/2 

columns, 16 rows/4 columns. 4 rows per column was chosen rather than 16 rows per column. 

Choosing a ratio with a higher number of rows per column decreases area overhead, as each column 

needs 8 bit-line drivers and 8 sense amplifiers. If there are many rows per column, the amount of 

rows will increase faster with increasing memory sizes than if there were few rows per column. 
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More rows mean longer bit lines, and longer bit lines means a greater bit line capacitance. Refer to 

section 7.2.3 for an explanation why bit line capacitance might become an issue. Custom designs 

with a fixed amount of rows are also possible. 

7.2.3 Floating charge memory corruption 

When a specific cell is accessed for a read or a write, its pass transistors are opened by enabling the 

corresponding WL signal. A problem may arise as the pass transistors in all cells in the same row are 

also opened at the same time. When a read or write is finished, the bit lines are disconnected 

completely from either VDD or VSS. The bit lines will slowly discharge through leakage currents, but 

when a writeline is enabled immediately after a read or write, the floating charge on the bit line may 

be enough to flip the value in the cell. The point at which the capacitance of the bit line is big enough 

for this to happen is unknown. This is not a problem for small memory sizes (assumption: 5MB and 

perhaps even much more), when the bit lines have such a low capacitance to ground that the SRAM 

cell will pull the charge on the bit lines to either VSS or VDD before the cells internal capacitance is 

charged beyond Vth, potentially flipping the cell. The cells whose internal capacitances have not 

been charged beyond Vth will eventually rewrite themselves once the writeline_enable signal goes 

low, owing to the inverter loop inside the SRAM cell. Further and more precise explanations of 

charge sharing is beyond the scope of this report, and a large part of the reason the system works is 

because of the inherent read stability explained in section 5.3.6.  

A solution that might solve this problem for much larger memories is to first precharge all bit lines in 

the entire memory whenever a read or write is performed, and then activate the sense amplifiers on 

every bit line pair to rewrite every bit line pair according to the value stored in the opened SRAM 

cell. This would require a redesign of the column circuitry, but the amount of complexity in the 

column circuitry would not increase by much, and therefore the current design is still fairly 

representative of larger memory systems. 

7.3 Extrapolator implementation 

7.3.1 Address bus buffers 

In this section, refer to sections 5.2.2 and 5.3.2 and 5.4.6. When the memory size increases, the 

number of bits needed to address the memory increases. As the address bus gets wider and wider, 

additional buffers will be required in order to drive the address buses on both the 6T-SRAM and the 

DFF circuits. In the calculations, a static bus size was assumed, as a dynamic bus size would 

complicate the mathematics of the extrapolator, and the additional buffers would not represent a 

significant portion of the peripheral circuitry. 

7.3.2 Multiplexer/demultiplexer fan-outs 

In this section, refer to sections 5.2.2, 5.3.2 and 5.4.6. In the extrapolator calculations, it is assumed 

that only 1-2 and 2-1 demultiplexers and multiplexers would be used to decode the buses and 

signals outside the 64-Byte cell. Inside 64-Byte cell, 1-8 and 8-1 demultiplexers and multiplexers are 

used to save area, power and leakage current, and this could also be done outside the 64-Byte cell. 

This means that the extrapolator predicts a larger area, leakage current and read and write power as 

a result of this. 
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7.3.3 Leakage current prediction 

In this section, refer to section 5.4.2. In the design of the extrapolator, the leakage current is 

modelled as a sum of the average leakage currents of the cells in the TSMC standard cell library as 

well as any bottom-level custom designs. For the cells in the standard cell library, an assumption that 

is made is that the input to every cell is either a strong logic ‘1’ or a strong logic ‘0’. This is not 

necessarily true, voltage levels on the outputs of some cells may be degraded (weak logic). One 

reason the voltage may be degraded is if the cell which is driving the input has an insufficient drive 

strength. When the logic value on the input of a cell is degraded, some, or all, transistors in the cell 

have a gate voltage which is not quite VDD or VSS. This may incur additional leakage current. 

 

Memory system type REFDFF KHAN_DFF SRAM6T 

Predicted leakage current [pA] 465 129 63 

Simulated leakage current [pA] 434 98 72 

Error 7.1% 31.6% -12.5% 
Table 22: A comparison of the predicted and simulated leakage currents of the three memory systems. 

Table 22 shows a comparison of the simulated leakage current results versus the predicted leakage 

currents. Corrections to the leakage current of the C2MOS (KHAN_DFF) D-Flip-Flops referenced in 

section 5.6.3 are not included. The formula used to calculate error is: 

Error =
(predicted leakage current − simulated leakage current)

simulated leakage current
∗ 100 

Formula 9: The formula used to compute the leakage current prediction error 

One source of error is the aforementioned degraded logic issue. Another source of error is the fact 

that some of the buffers which are predicted to be part of the design once expanded, are not a part 

of the simulated implementation, and the fault lies with the designer. This would mean that the 

predicted leakage current would include the leakage current from additional buffers. The effect 

would be most significant in the C2MOS (KHAN_DFF) system, as the leakage current contribution 

from the cells compared to the peripheral circuitry is a lot smaller compared to the REFDFF system. 

This effect is only valid for memory sizes close to the simulated memory system’s size. 

When considering the error in predicting the amount of buffers (see above paragraph), inaccuracies 

caused by the assumptions stated in section 5.4 and the error values computed in table 22, it seems 

that the memory circuits’ leakage current can be predicted with enough accuracy to at least give the 

employees at Disruptive Technologies a rough estimate of how much leakage current would be 

incurred by the different memory systems. A sample size of N = 1 is however not adequate for a 

statistical verification, and the correctness of the extrapolator can only be implied by understanding 

the implemented system. 

7.3.4 State machine 

The state machine needed to perform reads and writes in the memory systems was not 

implemented. One reason for this was because of design time limitations. Another reason was that 

the size of the state machine does not grow very fast when the size of the memory circuit increases, 

and that the contribution it has to the total area, leakage current and read and write energy will be 
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negligible at large memory sizes (larger than 128 Bytes). There is however a difference in size of the 

two state machines, the D-Flip-Flop state machine and the SRAM state machine. Implementing these 

or predicting their sizes would allow the prediction of the ‘break-even point’, the memory size at 

which a D-Flip-Flop memory system has the same area as a 6T-SRAM memory system, which is an 

important metric when considering whether to use an SRAM system or a D-Flip-Flop system. 

Because the speed of the circuit is of no concern in this application, the SRAM system was 

implemented with an extremely simplified read and write timing sequence. This means the state 

machine required to perform reads and writes on the SRAM system in this report will be far less 

complex than the state machine required in high-performance systems. This leads to an educated 

guess that the break-even point might be as low as 32 bytes. 

7.3.5 Read and Write energy prediction 

The assumption that read and write energies are proportional to chip area is wrong. There is 

probably a certain correlation between area and read and write energy, because signals have to be 

propagated through the multiplexer logic. A larger area of logic means the signals propagate to a 

greater number of logic gates. The exact correlation between logic area and signal propagation 

energy is beyond the scope of this report. The purpose predictions that were made for read and 

write energy in the results section is mostly to show that for an increasing memory size, the 

difference between the read and write energies of a D-Flip-Flop systems and a 6T-SRAM system 

increase. This is because the D-Flip-Flop peripheral circuitry increases in size faster than the 6T-

SRAM peripheral circuitry. 

Read and write energy extrapolation for the SRAM system 

Extrapolation of read and write energies is likely very inaccurate at larger memory sizes. The effect 

of opening the WL pass transistors of all cells connected to the same WL when reading or writing is 

unknown. There will likely be an increase in the read and write energy contribution from the cell 

array when increasing the cell array size, even though only one cell is ever written to or read at the 

same time. An analysis of the energy consumption of the SRAM cell array as a whole is beyond the 

scope of this report.  

7.4 Method of simulation 

7.4.1 Memory state  

During the simulation, the contents of the REFDFF memory system was set to the worst case 

memory state for leakage current and read and write energy. The leakage current predictions for the 

KHAN_DFF/C2MOS memory system was scaled up to ensure a worst case result. The reason behind 

simulating the worst case memory state is to ensure that the results show qualities as close as 

possible to the qualities of the physical implementation. The physical implementation will always 

have a larger leakage current than the transistor level simulations, and will most likely have a larger 

read and write energy consumption. 

The SRAM memory system was assumed to have approximately the same leakage current 

independent of memory state. The effect the SRAM-Cells have on the voltage levels of the bit lines 

was not simulated. Having every cell retain a logic value ‘0’ may cause the bit lines to have a 

different voltage level than if half the cells stored a logic value ‘1’. This is because there are leakage 

currents through the pass transistors which connect the SRAM cells to the bit lines. The effect this 
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has on leakage currents inside the SRAM cells is probably negligible, and the extra leakage current 

through to the bit lines is accounted for in the separate measurement of column supply currents. 

Measuring the worst case leakage current for flip-flops, and comparing that to a memory system 

with an (assumed) unvarying leakage current might skew the data in favor of the memory system 

with a stable leakage current (SRAM). To mitigate this, one could measure the average leakage 

current instead. 

7.4.2 Clock Frequency:  

The clock frequency during simulation was set to 10MHz. This is a rather slow clock frequency, but as 

energy consumption is measured as an energy per operation metric rather than power (Watt), clock 

frequency does not matter much. The only situation in which the clock frequency could matter, 

would be if the clock ticks were so frequent, that some internal nodes in the logic circuitry would not 

settle completely within one clock period. At this point, the circuit is close to non-functional as a 

result of approaching the absolute maximum clock frequency. Setting the clock frequency to this 

value is not viable for the type of design presented in this report. 

7.4.3 SRAM bit line model:  

In the simulations presented in this report, a model of the capacitance and resistance of the bit lines 

was not applied as a part of the SRAM memory system. The bit lines present a significant 

capacitance beyond the drain-bulk capacitance modelled in the transistors. The bit lines also present 

a resistance per length of wire, which can grow to be significant when the bit lines grow longer and 

longer with increasing memory size. Increased bit line capacitance and resistance may lead to 

increased read and write energy consumption by slowing down the sense amplifier (see section 

7.2.1). The added capacitance and resistance of the bit lines is negligible for small memory sizes 

(assumption: less than 512B). 

7.5 Results 
Simulation results: Table 16 shows that clearly, in all cases, the 6T-SRAM system without an 

implemented state machine is superior to both D-Flip-Flops. The SRAM system achieves a leakage 

current that is 83% lower than that of the Reference D-Flip-Flop system, and 26% lower than that of 

the C2MOS Flip-Flop system. It achieves a write energy that is 89% lower than that of the reference 

D-Flip-Flop system, and 88% lower than that of the C2MOS flip-flop system. It achieves a read energy 

that is 82% lower than that of the flip-flop systems. 

Table 16 shows that during a read, the column circuitry draws a lot of power. This is probably 

because of the sense amplifier which is enabled during a read. By choosing a different sense 

amplifier design, the read energy consumption can quite possibly be reduced. 

Extrapolation results: The extrapolation graphs (figure 32 through 35) show that for all the memory 

systems, the gate count (area), leakage current and read and write energy grow exponentially with 

an increasing memory size. The SRAM memory shows a much slower rate of growth compared to 

the two D-Flip-Flop systems, and therefore the difference between the SRAM and D-Flip-Flop 

systems grows exponentially in favor of the SRAM system. 
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As previously explained in section 7.3.5, the read and write energies predictions are highly 

unreliable. As implied in section 7.3.1, 7.3.2 and 7.3.3, the gate count and leakage current 

predictions are somewhat reliable. 

7.6 Final system comparisons 

In this section, the memory systems are compared to each other on the basis of the five design 

considerations presented in section 5.1. 

When the memory size grows to sizes greater than 64Bytes, the SRAM system is without doubt the 

best design option for the purposes of minimizing leakage current, area and read and write energy. 

The SRAM system fails to satisfy the fifth and least prioritized design consideration, namely design 

time. An SRAM memory system requires considerably more effort to design than a D-Flip-Flop 

system, as the interaction between the components of an SRAM system form a complicated system 

requiring comprehensive analysis.  

As stated in section 7.3.4, it is impossible to determine the exact characteristics of the memory 

systems when the required state machine and I2C slave circuit has not been designed. The focus on 

simplicity when designing the SRAM system helped reduce the size of the SRAM system considerably 

at smaller memory sizes, and an estimate of when the areas of the SRAM system and D-Flip-Flop 

systems are equal is at a memory size of 32 bytes. At a memory size of 64 Bytes, the SRAM system 

without a state machine/I2C slave circuit had an area that was 39% lower than the REFDFF D-Flip 

Flop system. 

8. Conclusion 
The simulations show that the 6T-SRAM memory system, without the necessary state machine, is 

clearly superior in terms of area, leakage current and read and write energy consumption. The 

implementation or size prediction of the required state machines and I2C slave circuits is needed to 

determine the ‘area break-even point’, but an educated guess is that the area break-even point is at 

a memory size of 32 Bytes. 

The extrapolations of area, leakage current and read and write energy show that when memory sizes 

increase, the SRAM system becomes more and more favorable as a memory system alternative.  

8.1 Future work 

8.1.1 Additional memory types 

Only two different types of memory were considered in this report, several others could prove to be 

suitable in the given 0.18µm technology. 

- RRAM could possibly be implemented on a standard CMOS technology chip [13]. 

Investigating the feasibility of RRAM in a low leakage low power application would be very 

useful. 

- Additional D-Flip-Flops could be simulated in order to select the most suitable D-Flip-Flop for 

a low leakage, low power application. 

- D-Latches could be investigated as a possibility in a low performance application. 

- 4-transistor leaking SRAM could prove to be feasible in a low leakage application. 
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8.1.2 Peripheral circuitry implementation 

The peripheral circuitries of the SRAM and DFF memory systems are far from optimal. A number of 

things can be done to improve them: 

- Buffer fan-outs can be replaced with inverter fan-outs, as long as an even number of 

inverters are ensured. 

- The demultiplexers and multiplexer fan-outs can be optimized drastically. One example 

would be to use negating demultiplexers, which consume less area and leakage current.  

- Synthesizing the multiplexing and demultiplexing circuits could reduce the area of the 

peripheral circuitry, as well as leakage current and read and write power. 

8.1.3 SRAM sense amplifier  

- The validity of the sense amplifier proposed in this report needs to be ensured. 

- The required voltage difference on the bit lines needed to ensure a correct read for the 

proposed sense amplifier should be examined before the sense amplifier is implemented in 

a physical design. 

8.1.4 Extrapolation 

- In order to more accurately represent the sizes and leakage currents of the memory 

systems, the state machine required for reading and writing needs to be implemented. This 

state machine would most likely take the form of an I2C slave circuit. Once implemented, or 

its size predicted, the ‘break even’ point (the point at which the flip flop system is equal in 

size to the SRAM system) can be determined. 

- The mathematical models for buffer and demultiplexer/multiplexer fan-outs should be 

refined to cover an increasing address bus size. 

- A prediction of the read and write energy consumption of the SRAM memory cell array 

would be useful. Specifically, one should look at how the read and write energy responds to 

an increase in bit line capacitance when the memory size grows to 1kB and beyond. 

- The energy consumption of a multiplexer/demultiplexer fan-out increases non-linearly with 

the area of the fan-out. This ‘signal propagation energy’ as a function of multiplexer fan-out 

area could be modelled in order to predict read and write energies more accurately. 
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Appendix A: Simulations supporting the choice of initial memory 

state for the D-Flip-Flop system 
The memory state cases were: 

1) All logic zeros, that is 0x00 stored in every byte 

2) All logic ones, that is 0xFF stored in every byte 

3) Alternating ones and zeros: 0x55 stored in every byte 

To measure the write energy, 0xFF is written to a byte containing 0x00, 0x00 is written to a byte 

containing 0xFF, and 0xAA is written to a byte containing 0x55. This is based on the assumption that 

flipping a bit from either 0 to 1 or from 1 to 0 requires more energy than not flipping a bit. 

To measure read energy, the address which was previously written is read. 

 

 

 

 

Results REFDFF: 

Data stored in all bytes 0x00 0xFF 0x55 

Leakage current [pA] 4.9 + 48.8 = 53.7 8.6 + 51.1 = 59.7 6.8 + 50.0 = 56.7 
Table 23: Leakage currents of an 8 byte memory utilizing reference flip flops (REFDFF) 

Format: peripheral circuit leakage current + cell array leakage current = total leakage current 

Data stored in all bytes 0x00 0xFF 0x55 

Write energy [pJ] 10.0 + 16.2 = 26.2 5.8 + 3.5 = 9.3 7.9 + 9.8 = 17.8 

Read energy [pJ] 5.3 + 0 = 5.3 5.2 + 0 = 5.2 5.2 + 0 = 5.2 
Table 24: Read and write energy of an 8 byte memory utilizing reference flip flops (REFDFF) 

Format: peripheral circuit energy + cell array energy = total energy 

Results C2MOS DFF / KHAN_DFF: 

Data stored in all bytes 0x00 0xFF 0x55 

Leakage current [pA] 4.9 + 6.7 = 11.62 8.6 + 10.4 = 19.0 6.8 + 8.5 = 15.3 
Table 25: Leakage currents of an 8 byte memory utilizing C2MOS Flip Flops (KHAN_DFF) 

Format: peripheral circuit leakage current + cell array leakage current = total leakage current 

Data stored in all bytes 0x00 0xFF 0x55 

Write energy [pJ] 8.2 + 12.8 = 21.2 6.3 + 1.0 = 7.3 7.3 + 6.9 = 14.24 

Read energy [pJ] 5.3 + 0 = 5.3 5.2 + 0 = 5.2 5.2 + 0 = 5.2 
Table 26:  Read and write energy of an 8-byte memory utilizing reference C2MOS Flip Flops (KHAN_DFF) 

Format: peripheral circuit energy + cell array energy = total energy 
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Appendix B: Stim and Measure cell schematics 

 

Figure 37: The TB_SIXTYFOURBYTE_REFDFF_01_STIM cell 

 

Figure 38: The TB_SIXTYFOURBYTE_REFDFF_01_MEASURE cell 
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Figure 39: The TB_SRAM6T_64B_02_STIM cell. 
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Figure 40: The TB_SRAM6T_64B_02_MEASURE cell 
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Appendix C: MATLAB scripts used to generate ocean and stimulus 

files 

D-Flip-Flop stim script 
function  [leak_start, leak_end, write_start, write_end, read_start, 

read_end] = writeStimFile_DFFRAM_64B( filename ) 
%generates a STIM file for use in Kai Likne's testbenches of a D-flip-flop 
%64 byte 
%% constants and initialization: 
hier = '0'; 
tunit = 'ns'; 
trise = '0.001' ; %100ps falltime/risetime 
tfall = '0.001' ; 
vih = '3'; 
vil = '0'; 
period = 100; %10Mhz clock freq, 100ns period 
wait_time = 1000000000; %1 second wait time to measure leak 

  
radix_data = '44'; 
radix_address = '24'; 
radix_store = '1'; 
radix_cdn = '1'; 

  
time = '000000000000'; 
time_amount_of_digits = length(time); %has to be 12 
maxtime = 10^(time_amount_of_digits); 
randomdata='00'; 
address_string='00'; 

  
%% start writing file 
fileID = fopen(filename,'w'); 

  
fprintf(fileID,'radix\n'); 
fprintf(fileID,'+ %s %s %s %s\n', radix_data, radix_address, radix_store, 

radix_cdn); 
fprintf(fileID,'\nio\n'); 
fprintf(fileID,'+ i i i i\n\n'); 
fprintf(fileID,'hier %s\ntunit %s\ntrise %s\ntfall %s\nvih %s\nvil %s\n\n', 

hier, tunit, trise, tfall, vih, vil); 
fprintf(fileID,'\nvname\n+DATA_BUS_VECTOR<[7:0]> ADDRESS_VECTOR<[5:0]> 

STORE_VECTOR CDN_VECTOR\n\n'); 

  

  
fprintf(fileID,'\n\n\n; Initializing\n\n'); 
fprintf(fileID,';time\t\tdata\tad\tst\tcdn\n'); 
fprintf(fileID,'%s\t%s\t%s\t0\t0\t; Reset 

state\n',time,randomdata,address_string); %enter reset state 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 
fprintf(fileID,'%s\t%s\t%s\t0\t1\t; deactivate reset 

state\n',time,randomdata,address_string); 
time = sprintf('%012d',str2num(time)+period*10); %timestep 2 clock periods 

   
%% measure leakage current 
time = sprintf('%012d',str2num(time)+wait_time); %timestep 1 second to 

measure leak 
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leak_start = time; 
time = sprintf('%012d',str2num(time)+ceil(wait_time/4)); %timestep 0.25 

seconds 
leak_end = time; 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 

  

  
%% measure write energy 

  
fprintf(fileID,'\n\n\n; Start measuring write energy\n\n'); 
fprintf(fileID,';time\t\tdata\tad\tst\tcdn\n'); 
time = sprintf('%012d',str2num(time)+ceil(wait_time/4)); %timestep 0.25 

seconds 

  
write_start = time; 

  
address = '0A'   ; 
data = 'FF'; 
fprintf(fileID,'%s\t%s\t%s\t0\t1\t; Setup time\n',time,data,address); 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 
fprintf(fileID,'%s\t%s\t%s\t1\t1\t; Write %s to Address 

%s\n',time,data,address,data,address); 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 
fprintf(fileID,'%s\t%s\t%s\t0\t1\t; hold time\n',time,data,address); 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 

  
fprintf(fileID,'%s\t00\t00\t0\t1\t; address and data are 0 when 

idle\n',time); 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 

  
write_end = time; 

  
%% measure read energy 
fprintf(fileID,'\n\n\n; Start measuring read energy\n\n'); 
fprintf(fileID,';time\t\tdata\tad\tst\tcdn\n'); 
time = sprintf('%012d',str2num(time)+ceil(wait_time/4)); %timestep 0.25 

seconds 

  

  
address = '0A' ;  
data = '00'; %N/A 

  
read_start = time; 

  
fprintf(fileID,'%s\t%s\t%s\t0\t1\t; measure read energy. start read at 

address %s\n',time,data,address,address); 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 
fprintf(fileID,'%s\t00\t00\t0\t1\t; read end address and data are 0 when 

idle\n',time); 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 
read_end = time; 

  
%% print out stats and close file 
fprintf(fileID,'\n\n\n; leak_start = %s \t leak_end = %s \n; write_start = 

%s \t write_end = %s\n; read_start = %s \t read_end = %s\n',leak_start, 

leak_end, write_start,write_end,read_start,read_end); 
fclose(fileID); 
end 
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D-Flip-Flip flop ocean script 
function  writeOceanScript_64B(filename, leak_start, leak_end, write_start, 

write_end, read_start, read_end) 
%generates an OCEAN file for use in Kai Likne's testbenches of a D-flip-

flop 
%REFDFF 
%64 byte 

  
%% leakage currents 
fileID = fopen(filename,'w'); 
fprintf(fileID,'axlOutputResult("-----" "--- Leakage Currents ---")\n\n'); 

  
fprintf(fileID,'leak_peripheral = 

average(clip(IT("/I_PERIPHERAL_PROBE/PLUS") %sn %sn 

))\n',leak_start,leak_end); 
fprintf(fileID,'leak_cells = average(clip(IT("/I_CELLS_PROBE/PLUS") %sn %sn 

))\n',leak_start,leak_end); 
fprintf(fileID,'leak_total = leak_peripheral + leak_cells\n'); 

  
fprintf(fileID,'\naxlOutputResult(leak_peripheral "leak_peripheral 

(A)")\n'); 
fprintf(fileID,'axlOutputResult(leak_cells "leak_cells (A)")\n'); 
fprintf(fileID,'axlOutputResult(leak_total "leak_total (A)")\n'); 

  
%% write energy 
fprintf(fileID,'\naxlOutputResult("-----" "--- Write energy ---")\n\n'); 

  
fprintf(fileID,'write_energy_peripheral = 

integ(clip(IT("/I_PERIPHERAL_PROBE/PLUS") %sn %sn )) * 

VAR("VDD_VAL")\n',write_start,write_end); 
fprintf(fileID,'write_energy_cells = integ(clip(IT("/I_CELLS_PROBE/PLUS") 

%sn %sn )) * VAR("VDD_VAL")\n',write_start,write_end); 
fprintf(fileID,'write_energy_total = write_energy_peripheral + 

write_energy_cells\n'); 

  
fprintf(fileID,'\naxlOutputResult(write_energy_peripheral 

"write_energy_peripheral (J)")\n'); 
fprintf(fileID,'axlOutputResult(write_energy_cells "write_energy_cells 

(J)")\n'); 
fprintf(fileID,'axlOutputResult(write_energy_total "write_energy_total 

(J)")\n'); 

  
%% read energy 
fprintf(fileID,'\naxlOutputResult("-----" "--- Read energy ---")\n\n'); 

  
fprintf(fileID,'read_energy_peripheral = 

integ(clip(IT("/I_PERIPHERAL_PROBE/PLUS") %sn %sn )) * 

VAR("VDD_VAL")\n',read_start,read_end); 
fprintf(fileID,'read_energy_cells = integ(clip(IT("/I_CELLS_PROBE/PLUS") 

%sn %sn )) * VAR("VDD_VAL")\n',read_start,read_end); 
fprintf(fileID,'read_energy_total = read_energy_peripheral + 

read_energy_cells\n'); 

  
fprintf(fileID,'\naxlOutputResult(read_energy_peripheral 

"read_energy_peripheral (J)")\n'); 
fprintf(fileID,'axlOutputResult(read_energy_cells "read_energy_cells 

(J)")\n'); 
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fprintf(fileID,'axlOutputResult(read_energy_total "read_energy_total 

(J)")\n'); 

  
fclose(fileID); 
end 

  

6T-SRAM stim script 
function  [leak_start, leak_end, write_start, write_end, read_start, 

read_end] = writeStimFile_SRAM6T_64B( filename ) 
%generates a STIM file for use in Kai Likne's testbenches of a 6T SRAM 
%64 byte circuit 
%% constants and initialization: 
hier = '0'; 
tunit = 'ns'; 
trise = '0.001' ; %100ps falltime/risetime 
tfall = '0.001' ; 
vih = '3'; 
vil = '0'; 
period = 100; %10Mhz clock freq, 100ns period 
wait_time = 1000000000; %1 second wait time to measure leak 

  
radix_data = '44'; 
radix_row_address = '4'; 
radix_col_address = '2'; 
radix_read = '1'; 
radix_write = '1'; 
radix_WL_ENABLE = '1'; 
radix_cdn = '1'; 

  
time = '000000000000'; 
time_amount_of_digits = length(time); %has to be 12 
maxtime = 10^(time_amount_of_digits); 
data='00'; 
row_address='0'; 
col_address='0'; 

  
%% start writing file 
fileID = fopen(filename,'w'); 

  
fprintf(fileID,'radix\n'); 
fprintf(fileID,'+ %s %s %s %s %s %s %s\n', radix_data, radix_row_address, 

radix_col_address, radix_read, radix_write, radix_WL_ENABLE, radix_cdn); 
fprintf(fileID,'\nio\n'); 
fprintf(fileID,'+ i i i i i i i\n\n'); 
fprintf(fileID,'hier %s\ntunit %s\ntrise %s\ntfall %s\nvih %s\nvil %s\n\n', 

hier, tunit, trise, tfall, vih, vil); 
fprintf(fileID,'\nvname\n+DATA_BUS_VECTOR<[7:0]> ROW_ADDRESS_VECTOR<[3:0]> 

COL_ADDRESS_VECTOR<[1:0]> READ_VECTOR WRITE_VECTOR WL_ENABLE_VECTOR 

CDN_VECTOR\n\n'); 

  

  
fprintf(fileID,'\n\n\n; Initializing\n\n'); 
fprintf(fileID,';time\t\tdata\trow\tcol\trd\twrt\twl\tcdn\n'); 
fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ; Reset 

state\n',time,data,row_address,col_address,'0','0','0','0'); %enter reset 

state 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 
fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ; exit out of reset 

state\n',time,data,row_address,col_address,'0','0','0','1'); 
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time = sprintf('%012d',str2num(time)+period*10); %timestep 2 clock periods 

   
%% measure leakage current 
time = sprintf('%012d',str2num(time)+wait_time); %timestep 1 second to 

measure leak 
 leak_start = time; 
 time = sprintf('%012d',str2num(time)+ceil(wait_time/4)); %timestep 0.25 

seconds 
 leak_end = time; 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 

  

  
%% measure write energy 

  
fprintf(fileID,'\n\n\n; Start measuring write energy\n\n'); 
fprintf(fileID,';time\t\tdata\trow\tcol\trd\twrt\twl\tcdn\n'); 
time = sprintf('%012d',str2num(time)+ceil(wait_time/4)); %timestep 0.25 

seconds 

  

  
write_start = time; 

  
row_address = 'A'   ; 
col_address = '2' ; 
data = 'FF'; 

  
fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ; setup time 

\n',time,data,row_address,col_address,'0','0','0','1'); 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 
fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ; turn on write and wl for 

selected row \n',time,data,row_address,col_address,'0','1','1','1'); 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 
fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ; hold time 

\n',time,data,row_address,col_address,'0','0','0','1'); % TODO MAY NEED TO 

TURN OFF WRITELINE BEFORE turning off others, probably not 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 
row_address = '0'   ; %idle 
col_address = '0' ; 
data = '00'; 
fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ; idle 

\n',time,data,row_address,col_address,'0','0','0','1'); 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 

  
write_end = time; 

  
%% measure read energy 
fprintf(fileID,'\n\n\n; Start measuring read energy\n\n'); 
fprintf(fileID,';time\t\tdata\trow\tcol\trd\twrt\twl\tcdn\n'); 
time = sprintf('%012d',str2num(time)+ceil(wait_time/4)); %timestep 0.25 

seconds 

  

  
fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ; 

\n',time,data,row_address,col_address,'0','0','0','1'); 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 

  
row_address = 'A'   ; 
col_address = '2' ; 
data = '00'; 
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read_start = time; 

  
fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ; set addressess 

\n',time,data,row_address,col_address,'0','0','0','1'); 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 
fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ; precharge 

\n',time,data,row_address,col_address,'1','1','0','1'); 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 
fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ; disable precharge, WAIT 

WITH WRITELINES to avoid writing over 

values\n',time,data,row_address,col_address,'0','0','0','1'); 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 
fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ;open 

writeline\n',time,data,row_address,col_address,'0','0','1','1'); 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 
fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ; turn on read to enable 

sense amp\n',time,data,row_address,col_address,'1','0','1','1'); 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 
fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ; turn off writeline, data 

is being latched at this clock 

cycle\n',time,data,row_address,col_address,'1','0','0','1'); 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 
row_address = '0'   ; 
col_address = '0' ; 
data = '00'; 
fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ; return to 

idle\n',time,data,row_address,col_address,'0','0','0','1'); 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 

  
read_end = time; 

  
fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ; idle 

\n',time,data,row_address,col_address,'0','0','0','1'); 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 
%% print out stats and close file 
fprintf(fileID,'\n\n\n; leak_start = %s \t leak_end = %s \n; write_start = 

%s \t write_end = %s\n; read_start = %s \t read_end = %s\n',leak_start, 

leak_end, write_start,write_end,read_start,read_end); 
fclose(fileID); 
end 

  

 

6T-SRAM ocean script 
function  writeOceanScript_64B(filename, leak_start, leak_end, write_start, 

write_end, read_start, read_end) 
%generates an OCEAN file for use in Kai Likne's testbenches of a SRAM 64B 
%circuit 

  
%% leakage currents 
fileID = fopen(filename,'w'); 
fprintf(fileID,'axlOutputResult("-----" "--- Leakage Currents ---")\n\n'); 

  
fprintf(fileID,'leak_peripheral = 

average(clip(IT("/I_PERIPHERAL_PROBE/PLUS") %sn %sn 

))\n',leak_start,leak_end); 
fprintf(fileID,'leak_cells = average(clip(IT("/I_CELLS_PROBE/PLUS") %sn %sn 

))\n',leak_start,leak_end); 
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fprintf(fileID,'leak_columns = average(clip(IT("/I_COLUMNS_PROBE/PLUS") %sn 

%sn ))\n',leak_start,leak_end); 
fprintf(fileID,'leak_total = leak_peripheral + leak_cells + 

leak_columns\n'); 

  
fprintf(fileID,'\naxlOutputResult(leak_peripheral "leak_peripheral 

(A)")\n'); 
fprintf(fileID,'axlOutputResult(leak_cells "leak_cells (A)")\n'); 
fprintf(fileID,'axlOutputResult(leak_columns "leak_columns (A)")\n'); 
fprintf(fileID,'axlOutputResult(leak_total "leak_total (A)")\n'); 

  
%% write energy 
fprintf(fileID,'\naxlOutputResult("-----" "--- Write energy ---")\n\n'); 

  
fprintf(fileID,'write_energy_peripheral = 

integ(clip(IT("/I_PERIPHERAL_PROBE/PLUS") %sn %sn )) * 

VAR("VDD_VAL")\n',write_start,write_end); 
fprintf(fileID,'write_energy_cells = integ(clip(IT("/I_CELLS_PROBE/PLUS") 

%sn %sn )) * VAR("VDD_VAL")\n',write_start,write_end); 
fprintf(fileID,'write_energy_columns = 

integ(clip(IT("/I_COLUMNS_PROBE/PLUS") %sn %sn )) * 

VAR("VDD_VAL")\n',write_start,write_end); 
fprintf(fileID,'write_energy_total = write_energy_peripheral + 

write_energy_cells + write_energy_columns\n'); 

  
fprintf(fileID,'\naxlOutputResult(write_energy_peripheral 

"write_energy_peripheral (J)")\n'); 
fprintf(fileID,'axlOutputResult(write_energy_cells "write_energy_cells 

(J)")\n'); 
fprintf(fileID,'axlOutputResult(write_energy_columns "write_energy_columns 

(J)")\n'); 
fprintf(fileID,'axlOutputResult(write_energy_total "write_energy_total 

(J)")\n'); 

  
%% read energy 
fprintf(fileID,'\naxlOutputResult("-----" "--- Read energy ---")\n\n'); 

  
fprintf(fileID,'read_energy_peripheral = 

integ(clip(IT("/I_PERIPHERAL_PROBE/PLUS") %sn %sn )) * 

VAR("VDD_VAL")\n',read_start,read_end); 
fprintf(fileID,'read_energy_cells = integ(clip(IT("/I_CELLS_PROBE/PLUS") 

%sn %sn )) * VAR("VDD_VAL")\n',read_start,read_end); 
fprintf(fileID,'read_energy_columns = 

integ(clip(IT("/I_COLUMNS_PROBE/PLUS") %sn %sn )) * 

VAR("VDD_VAL")\n',read_start,read_end); 
fprintf(fileID,'read_energy_total = read_energy_peripheral + 

read_energy_cells + read_energy_columns\n'); 

  
fprintf(fileID,'\naxlOutputResult(read_energy_peripheral 

"read_energy_peripheral (J)")\n'); 
fprintf(fileID,'axlOutputResult(read_energy_cells "read_energy_cells 

(J)")\n'); 
fprintf(fileID,'axlOutputResult(read_energy_cells "read_energy_columns 

(J)")\n'); 
fprintf(fileID,'axlOutputResult(read_energy_total "read_energy_total 

(J)")\n'); 

  
fclose(fileID); 
end 
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Average leak test ocean and stim script 
function  writeStimAndOceanFile_avgleaktest( filename ) 
%generates a STIM file for use in Kai Liknes' testbenches for measuring 
%average leakage current of standard TSMC cells 

  
%% constants and initialization: 
hier = '0'; 
tunit = 'ns'; 
trise = '0.001' ; %100ps falltime/risetime 
tfall = '0.001' ; 
vih = '3'; 
vil = '0'; 
period = 100; %10Mhz clock freq, 100ns period 
wait_time = 500000000; %0.5 second wait time to measure leak 

  
time = '000000000000'; 
time_amount_of_digits = length(time); %has to be 12 
maxtime = 10^(time_amount_of_digits); 

  
%% intialize ocean file 
ocean_fileID = fopen(strcat(filename,'.ocn'),'w'); 
fprintf(ocean_fileID,'axlOutputResult("-----" "--- Leakage Currents ---

")\n\n'); 

  

  

  

  
%% start writing file 
fileID = fopen(strcat(filename,'.vec'),'w'); 

  
fprintf(fileID,'radix\n'); 
fprintf(fileID,'+ 1 1 1 1\n'); 
fprintf(fileID,'\nio\n'); 
fprintf(fileID,'+ i i i i\n\n'); 
fprintf(fileID,'hier %s\ntunit %s\ntrise %s\ntfall %s\nvih %s\nvil %s\n\n', 

hier, tunit, trise, tfall, vih, vil); 
fprintf(fileID,'\nvname\n+INPUT3 INPUT2 INPUT1 INPUT0\n\n'); 

  

  
fprintf(fileID,'\n\n\n; Initializing\n\n'); 
fprintf(fileID,';time\t\t\tin3\tin2\tin1\tin0\n'); 
fprintf(fileID,'%s\t\t%s\t%s\t%s\t%s ;\n',time,'0','0','0','0'); 
time = sprintf('%012d',str2num(time)+period); %timestep 1 clock period 

  

  
for vector_value = 0:15 
   vector = dec2bin(vector_value,4); 

  

    
   in3 = vector(1); 
   in2 = vector(2); 
   in1 = vector(3); 
   in0 = vector(4); 

    
   %write stim part 
   fprintf(fileID,'%s\t\t%s\t%s\t%s\t%s ;\n',time,in3,in2,in1,in0); 
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   time = sprintf('%012d',str2num(time)+wait_time); 
   start = time; 
   time = sprintf('%012d',str2num(time)+ 2* period); 
   stop = time; 
   time = sprintf('%012d',str2num(time)+ 2* period); 

    
   %write ocean part 
   fprintf(ocean_fileID,'average_%s = average(clip(IT("/I_PROBE/PLUS") %sn 

%sn ))\n',num2str(vector_value),start,stop); 
   fprintf(ocean_fileID,'axlOutputResult(average_%s "average leak with 

value %s (A)")\n\n', num2str(vector_value), num2str(vector_value)); 

    
end 

  
%finish up ocean part 
%fourinputs 
fprintf(ocean_fileID,'axlOutputResult("-----" "--- Overall average leakage 

currents ---")\n\n'); 
fprintf(ocean_fileID,'average_fourinputs = ( average_0 '); 
for j = 1:15 
    fprintf(ocean_fileID,'+ average_%s ',num2str(j)); 
end 
fprintf(ocean_fileID,')/16\n'); 
fprintf(ocean_fileID,'axlOutputResult(average_fourinputs "average leak with 

four inputs (A)")\n\n'); 

  
%threeinputs 
fprintf(ocean_fileID,'average_threeinputs = ( average_0 '); 
for j = 1:7 
    fprintf(ocean_fileID,' + average_%s ',num2str(j)); 
end 
fprintf(ocean_fileID,')/8 \n'); 
fprintf(ocean_fileID,'axlOutputResult(average_threeinputs "average leak 

with three inputs (A)")\n\n'); 

  
%twoinputs 
fprintf(ocean_fileID,'average_twoinputs = ( average_0 '); 
for j = 1:3 
    fprintf(ocean_fileID,'+ average_%s ',num2str(j)); 
end 
fprintf(ocean_fileID,')/4 \n'); 
fprintf(ocean_fileID,'axlOutputResult(average_twoinputs "average leak with 

two inputs (A)")\n\n'); 

  
%oneinput 
fprintf(ocean_fileID,'average_oneinput = ( average_0 '); 
for j = 1:1 
    fprintf(ocean_fileID,'+ average_%s ',num2str(j)); 
end 
fprintf(ocean_fileID,')/ 2\n'); 
fprintf(ocean_fileID,'axlOutputResult(average_oneinput "average leak with 

one input (A)")\n\n'); 

  
fclose(ocean_fileID); 
fclose(fileID); 
end 
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Appendix D: Simulation snapshots implying the validity of the 

memory systems 

 

Figure 41: A byte containing 0xFF is being read in the REFDFF system 

 

Figure 42: A byte containing 0xFF being  read in the 6T-SRAM system 


