
Ultra Low Leakage Memory

Kai Robert Liknes

Master of Science in Electronics

Supervisor: Snorre Aunet, IET
Co-supervisor: Bjornar Hernes, Disruptive Technologies

Department of Electronics and Telecommunications

Submission date: June 2016

Norwegian University of Science and Technology

Ultra Low Leakage

Memory

Kai Liknes 10.06.2016

Abstract
Three 64-byte memory systems were designed for a 0.18µm standard CMOS technology, one 6T-

SRAM system and two D-Flip-Flop systems. The leakage current, read energy and write energy of

these systems were determined by simulation. A set of extrapolation formulas for area, leakage

current, read energy and write energy were designed to determine the characteristics of the systems

as the size of the memory increases.

The simulations showed that the 64-Byte 6T-SRAM system had a 39% lower area, an 83% lower

leakage current, an 89% lower write energy and an 82% lower read energy than the reference D-Flip-

Flop memory system. The extrapolation formulas predicted that as memory sizes increases, SRAM

becomes more and more favorable in terms of area, leakage current, write energy and read energy.

2

Samandrag (Norwegian translation of abstract)
Tre 64-byte minnesystem vart utvikla for ein 0.18µm standard CMOS teknologi, eit 6T-SRAM-

minnesystem og to D-Vippe-minnesystem. Lekasjestraumen, leseenergien og skriveenergien til desse

minnesystema vart simulerte. Eit sett med ekstrapolasjonsformlar vart utvikla for å avgjere korleis

desse trekka til minnesystema oppfører seg når minnestørrelsane auker.

Simuleringane viste at 64-Byte 6T-SRAM-minnesystemet hadde eit 39% mindre brikkeområde, 83%

lågare lekasjestraum, 89% lågare skriveenergi og 82% lågare leseenergi enn D-Vippe-minnesystemet.

Ekstrapoleringsformlane føresåg at dersom minnestørrelsane auker, så blir brikkeområdet,

lekasjestraumen, leseenergien og skriveenergien til SRAM-minnesystemet betre og betre i høve til D-

Vippe-minnessystemet.

Problem description
The following is a problem description taken from the NTNU DAIM system. The problem description

is only partially representative of the focus of this dissertation.

Ultra low leakage memory

In ultra low power ICs, the leakage current is an important contributor to power dissipation. The

leakage can be reduced by switching off power supplies to modules that are inactive. However,

some memory is required to store the state of the system. Using non-volatile memory may in some

cases not be power efficient. Using low leakage RAM is therefore preferred in some cases.

The assignment will consist of the following tasks:

•Study literature and identify solutions for low leakage memory

•Investigate tradeoffs and compare the identified solutions

•Select best approach and design key building blocks

•Implementation of whole RAM

•Layout

3

Table of Contents
Abstract ... 1

Samandrag (Norwegian translation of abstract) .. 2

Problem description .. 2

List of Figures .. 5

List of tables .. 6

List of terms, abbreviations and definitions ... 7

1. Preface .. 8

2. Acknowledgement .. 8

3. Introduction .. 8

4. Theoretical background .. 9

4.1 Previous work.. 9

4.2 Leakage / Static energy consumption ... 9

4.3 Memory Cells .. 10

4.3.1 6T SRAM cell... 10

4.3.2 D-Flip-flop... 11

4.4 TSMC standard cell library naming conventions... 11

4.5 Drive strength ... 11

4.6 Cadence Bus Notation ... 12

4.7 Degraded logic / pass transistors / short circuit power .. 12

5. Implementation .. 13

5.1 Design specifications ... 13

5.1.1 Process / technology .. 13

5.1.2 Choice of default and minimum transistor sizes ... 14

5.2 The D-Flip-Flop memory system ... 15

5.2.1 Read and write operations ... 18

5.2.2 Sub-Cells ... 20

5.2.3 The reference D-Flip-Flop (REFDFF, DFCNQD1) ... 21

5.2.4 The C2MOS D-Flip-Flop (KHAN_DFF, D_FLIP_FLOP_KHAN_01) ... 21

5.3 The 6T-SRAM memory system .. 22

5.3.1 Read and write operations ... 24

5.3.2 Sub-Cells ... 26

5.3.3 Row driver circuit ... 31

5.3.4 Bit line driver circuitry .. 32

5.3.5 Sense amplifier ... 33

5.3.6 6T-SRAM-Cell ... 34

4

5.3.7 Reset circuitry .. 35

5.4 Extrapolator .. 35

5.4.1 The gate count unit of measurement .. 35

5.4.2 Predicting the gate count and leakage current of the memory systems............................. 36

5.4.3 Predicting the read and write energy of the memory systems ... 36

5.4.4 Measuring average leakage current of standard cells ... 37

5.4.5 Table of the cells’ leakage current and gate count .. 38

5.4.6 Calculating the amount of multiplexers, demultiplexers and buffers 40

5.4.7 Table of cell count prediction formulas ... 41

5.5 Miscellaneous non-standard cell schematics ... 41

5.6 Method of simulation ... 44

5.6.1 Simulator .. 44

5.6.2 Measuring read and write energy .. 45

5.6.3 Determining the worst case initial memory state ... 46

5.6.4 64 Byte D-Flip-Flop simulation setup ... 47

5.6.4 64 Byte SRAM Simulation setup... 48

6. Results ... 49

6.1 Simulation results ... 49

6.2 Extrapolation results ... 50

7. Discussion .. 52

7.1 D-Flip-Flop implementation .. 52

7.2 6T-SRAM implementation ... 53

7.2.1 Sense amplifier ... 53

7.2.2 Row/Column ratio .. 54

7.2.3 Floating charge memory corruption .. 55

7.3 Extrapolator implementation ... 55

7.3.1 Address bus buffers ... 55

7.3.2 Multiplexer/demultiplexer fan-outs .. 55

7.3.3 Leakage current prediction .. 56

7.3.4 State machine .. 56

7.3.5 Read and Write energy prediction ... 57

7.4 Method of simulation ... 57

7.4.1 Memory state ... 57

7.4.2 Clock Frequency: .. 58

7.4.3 SRAM bit line model: ... 58

7.5 Results ... 58

5

7.6 Final system comparisons ... 59

8. Conclusion ... 59

8.1 Future work ... 59

8.1.1 Additional memory types ... 59

8.1.2 Peripheral circuitry implementation .. 60

8.1.3 SRAM sense amplifier .. 60

8.1.4 Extrapolation .. 60

9. References: ... 61

Appendix A: Simulations supporting the choice of initial memory state for the D-Flip-Flop system ... 62

Appendix B: Stim and Measure cell schematics ... 63

Appendix C: MATLAB scripts used to generate ocean and stimulus files ... 66

D-Flip-Flop stim script ... 66

D-Flip-Flip flop ocean script .. 68

6T-SRAM stim script .. 69

6T-SRAM ocean script ... 71

Average leak test ocean and stim script ... 73

Appendix D: Simulation snapshots implying the validity of the memory systems 75

List of Figures
Figure 1: A standard 6T SRAM cell. ... 11

Figure 2: An example of degraded logic causing a short circuit current. ... 12

Figure 3: Leakage current through an NMOS transistor (upper) and a PMOS transistor (lower) as a

function of transistor length. [2] ... 14

Figure 4: Leakage current through an NMOS transistor (upper) and a PMOS transistor (lower) as a

function of transistor width. [2] .. 15

Figure 5: The SIXTYFOURBYTE_DFF Cell .. 17

Figure 6: A waveform showing a standard read operation in the D-Flip-Flop system 18

Figure 7: A waveform showing a standard write operation in the D-Flip-Flop memory system.......... 19

Figure 8: The EIGHTBYTE_DFF cell. ... 20

Figure 9: The BYTE_DFF cell. ... 21

Figure 10: The C2MOS Flip Flop (D_FLIP_FLOP_KHAN_01 / KHAN_DFF). .. 22

Figure 11: The SRAM6T_64B_02 cell .. 23

Figure 12: A waveform showing a standard read operation in the 6T-SRAM memory system 25

Figure 13: A waveform showing a standard write operation in the 6T-SRAM memory system. 26

Figure 14: The 8x8bitBox_01 cell .. 27

Figure 15: The 8x8bitBox_Left_01 cell. ... 28

Figure 16: The 8x8bitBox_top_02 cell. ... 29

Figure 17: The 8x8bitBox_topleft_02 cell. .. 30

Figure 18: The Row_WLDriver_01 cell used in the 6T-SRAM system ... 31

6

Figure 19: The Column_Circuitry_04 cell, or bit line pair driver. .. 32

Figure 20: The sense amplifier used in the SRAM system. ... 33

Figure 21: The 6T SRAM cell. ... 34

Figure 22:The testbench for measuring the average leakage current of standard cells 37

Figure 23: The testbench used to measure average leakage currents in the cells which make up the

peripheral circuitry. ... 38

Figure 24: A simplified solution of the sum of a geometric row 2N-1 .. 40

Figure 25: The DEMUX-1-2_02 cell. .. 41

Figure 26: The DEMUX-1-4_01 cell. .. 42

Figure 27: The DEMUX-1-8_02 Cell. .. 43

Figure 28: The MUX_8-1_02 cell ... 44

Figure 29: An example showing the calculation of the energy spent during a D-Flip-Flop system write

operation... 45

Figure 30: The TB_SIXTYFOURBYTE_REFDFF_01 testbench for the 64 Byte D-Flip-Flop memory

system. .. 47

Figure 31: The TB_SRAM6T_64B_02 testbench for the SRAM system. .. 48

Figure 32: Predicted gate count (normalized area) as a function of memory size [Byte] 50

Figure 33: Predicted leakage current as a function of memory size [Byte] .. 51

Figure 34: Predicted read energy as a function of memory size [Byte] .. 51

Figure 35: Predicted write energy as a function of memory size [Byte]... 52

Figure 36: An alternative sense amplifier presented in [12] .. 53

Figure 37: The TB_SIXTYFOURBYTE_REFDFF_01_STIM cell .. 63

Figure 38: The TB_SIXTYFOURBYTE_REFDFF_01_MEASURE cell .. 63

Figure 39: The TB_SRAM6T_64B_02_STIM cell. ... 64

Figure 40: The TB_SRAM6T_64B_02_MEASURE cell .. 65

Figure 41: A byte containing 0xFF is being read in the REFDFF system .. 75

Figure 42: A byte containing 0xFF being read in the 6T-SRAM system ... 75

List of tables
Table 1: D-Flip-Flop truth table ... 11

Table 2: Instructions decoded from the read|write codeword. ... 24

Table 3: The truth table for the Row_WLDriver_01 cell. .. 31

Table 4:The truth table for the Column_Circuitry_04 cell. ... 33

Table 5: Transistor sizes for the 6T SRAM cell .. 35

Table 6: Simulated leakage currents of various TSMC standard cells and the gate counts as specified

in the TSMC standard cell datasheet .. 38

Table 7: A table of calculated gate counts and leakage currents of non-standard cells 39

Table 8: The formulas for calculating the number of cells contained within either a D-flip-flop

memory system or a 6T-SRAM memory system. .. 41

Table 9: The truth table for the DEMUX-1-2_02 cell .. 42

Table 10: The corresponding truth table for the DEMUX-1-4_01 cell. ... 42

Table 11: The truth table corresponding to the DEMUX_1-8_02 cell. ... 44

Table 12: The truth table corresponding to the MUX_8-1_02 cell ... 44

Table 13: The non-default simulator settings used in all simulations. ... 44

7

Table 14: The stimulus applied to the TB_SIXTYFOURBYTE_REFDFF_01 testbench. 47

Table 15: The stimulus applied to the TB_SRAM6T_64B_02 testbench. .. 49

Table 16: Leakage currents and read/write energies of the three 64 byte memories 49

Table 17: calculated leakage currents and read/write energies per cel ... 50

Table 18: Predicted gate count (normalized area) as a function of memory size [Byte] 50

Table 19: Predicted leakage current [A] as a function of memory size [Byte] 51

Table 20: Predicted read energy [J] as a function of memory size [Byte] .. 52

Table 21: Predicted write energy [J] as a function of memory size [Byte] ... 52

Table 22: A comparison of the predicted and simulated leakage currents of the three memory

systems. .. 56

Table 23: Leakage currents of an 8 byte memory utilizing reference flip flops (REFDFF) 62

Table 24: Read and write energy of an 8 byte memory utilizing reference flip flops (REFDFF) 62

Table 25: Leakage currents of an 8 byte memory utilizing C2MOS Flip Flops (KHAN_DFF) 62

Table 26: Read and write energy of an 8-byte memory utilizing reference C2MOS Flip Flops

(KHAN_DFF) .. 62

List of terms, abbreviations and definitions
CDN – clear data negative. Same as an active low reset.

WL – Write line. Used to open up a row of SRAM cells for either read or write.

BLb and BL – Bit Line bar and Bit Line. These are used in SRAM. BLb = 0 and BL = 1 indicates a logic

‘1’. BLb = 1 and BL = 0 indicates a logic ‘0’.

REFDFF – the reference D-flip-flop used as a baseline for measuring leakage current and read and

write energies.

KHAN_DFF – an alias for the C2MOS D-Flip-Flop

Memory system – A cell array which can be written to or read from given the right sequence of

inputs, excluding the state machine which translates instructions to sequences of inputs.

Row – All 6T-SRAM cells connected to a single write line.

Column – A group of eight bit-line pairs.

Bit line pair – A pair of bit lines, BLb and BL, between which many SRAM cells are connected.

Design time – the amount of man-hours required to complete a design, and ready it for fabrication.

8

1. Preface
This master’s dissertation is written for the Norwegian University of Science and Technology

(NTNU) and Disruptive Technologies AS. Disruptive Technologies is a newly-started company that

specializes in designing microchips for use in the Internet of Things industry.

The work presented in this report was done in cooperation with Disruptive Technologies, and the

memory system designs were designed to be compatible with the company’s choice of technology

and design conventions.

The main supervisor was Snorre Aunet (NTNU) <snorre.aunet@iet.ntnu.no>, and the main company

contact was Bjørnar Hernes (Disruptive Technologies) <bjornar@disruptive-technologies.com>.

The following sections are adapted from [1], a work by the same author: Section 3, 4.1, 4.2 and 4.3.

The previous report might be requested by emailing the author at kaisemailaddress@gmail.com.

2. Acknowledgement
I would like to thank Bjørnar Hernes for being of great assistance in teaching me valuable lessons

about the workings of the microchip industry, for helping me learn how to master the Cadence

analog design suite, and for helping me proofread and tailor the implementation chapter of this

dissertation.

I would further like to thank Snorre Aunet for proofreading the dissertation on such a short notice.

I would like to criticize Imran Ahmed Khan and Mirza Tariq Beg, the authors of [8], whose seemingly

erroneous schematic cost me over 4 days of design time during the development phase.

3. Introduction
The Internet of Things (IoT) is a concept which is quickly gaining popularity and this causes the IC

industry to gear towards designing microchips that are compatible with this concept. According to

advocates of the Internet of Things concept [2], almost every physical object in use by people will

eventually be connected to the internet. Microchips are designed to fit into even the most trivial

applications such as clothes hangers. Sensor networks are created by spreading out a large amount

of inexpensive sensors and having them communicate over the internet. In these cases, a change of

batteries is impractical and therefore one must design to maximize the battery lifetime of the chip.

In most applications in the Internet of Things, the chip is only active and computing/transmitting

data a fraction of the time. This means the static power consumption (power leakage) will be the

deciding factor in battery lifetime.

All IoT-chips will require some form of data storage. This report assumes a distributed shared

memory (DSM), and that the memory is implemented as a single centralized memory cell array.

Memory accesses only happen when a chip is either computing or transmitting data, and because

these actions are infrequent, memory accesses are also infrequent. Combined with the fact that the

memory portion of a chip often makes up a large portion of the total chip area, this means that

minimizing the power leakage of the memory is essential to reducing the static power consumption

of the entire chip.

9

In previous works, reducing power consumption meant reducing the active power consumption.

Active power is the power required to switch transistors on and off. As stated, the leakage power of

the design is much more of a concern in IoT-chips than other chips. Instead of designing for speed,

area, or active power consumption, this report focuses primarily on the static power consumption of

memory circuits.

4. Theoretical background

4.1 Previous work
Previous work in minimizing power in memory circuits focus mostly on Active power consumption,

while not considering static power consumption.

The work put into improving D-Flip-Flop systems mostly focus on the flip flop cell itself, as D-Flip-

Flops are rarely used to build memory arrays larger than 128 bytes. [3] introduces a D-Flip-Flop

design built on C2MOS (C2MOS) latch design principles, and utilizes a sense amplifier in its design to

achieve lower static and dynamic power consumption. The leakage current of the D-Flip-Flop is

inferred to be 188pA at a supply voltage of 1.8V.

Some effort has been spent on improving the energy efficiency of SRAM circuits. [4] tries to

minimize read and write power in the SRAM by splitting up bit line pairs into several sub-bit-line-

pairs, which includes a local sense amplifier. [5] Uses the same approach of splitting up the SRAM

into smaller nodes, but instead focuses on splitting up the SRAM into a binary tree structure. The

two solutions have something in common: They both trade area for lower read and write power, and

a larger area usually leads to a larger leakage current.

[1] is an unpublished work by the same author as this report. The previous report explores the

viability of several types of memory in the context of designing a low leakage, low power memory

system. The previous report also considers the limitations of designing a circuit for fabrication using

a basic CMOS technology. Parts of the work presented in this report builds on the findings of the

previous report. The previous report might be requested by emailing the author at

kaisemailaddress@gmail.com.

4.2 Leakage / Static energy consumption
In CMOS technologies using a technology node of 90nm and larger, the most dominant source of

static power is the subthreshold leakage power, Psub_leak. For a single-Vdd-level circuit this is given as:

𝑃𝑠𝑢𝑏_𝑙𝑒𝑎𝑘 = 𝑉𝐷𝐷 ∗ 𝐼𝑠𝑢𝑏_𝑙𝑒𝑎𝑘 =
𝑉𝐷𝐷 2

𝑅𝑉𝑑𝑑−𝑔𝑛𝑑

 Formula 1: Leakage power as a function of leakage current and supply voltage

Where Isub_leak is the current going from VDD to ground, through the drain-source subthreshold

channel of the transistors. RVdd-gnd is the equivalent resistance seen from VDD to ground.

According to [14], the subthreshold leakage current through a single transistor can be approximated

by the following function:

10

𝐼𝐷𝑆,𝑜𝑓𝑓[nA] = 100 ∗
𝑊

𝐿
∗ 10−

𝑉𝑡
𝑆

 Formula 2: A function approximating the leakage current through a transistor

Where W is the gate width, L is the gate length, Vt is the threshold voltage. S is the so-called

subthreshold swing, given by:

𝑆 = 𝜂 ∗ 60mV ∗
𝑇

100

 Formula 3: The formula for subthreshold swing

Where T is the temperature [K], and 𝜂 is equal to:

𝜂 = 1 +
𝐶𝑑𝑒𝑝

𝐶𝑜𝑥𝑒
 [4]

 Formula 4: The formula for 𝜂

Where Cdep is the channel-depletion capacitance and Coxe is the channel-oxide capacitance.

4.3 Memory Cells

4.3.1 6T SRAM cell

A 6T-SRAM cell retains its data by having two inverters connected in a feedback loop. The first

inverter inverts the input given from the second inverter, and sends that output to the input of the

second inverter, which in turn inverts and sends back to the first inverter. This means the voltage

from either VDD or GND from the output of the first inverter reinforces the charge on the input of

the second inverter, and vice versa. This mutual reinforcement of charges on the gates of the

transistors in each inverter is what retains the data.

To write to the SRAM, the charges stored on either side of the inverter loop must be forced to the

desired value. To do this, the two bit lines are forced to the desired voltage, one will be VDD and one

will be GND. The word line transistors are then opened. This will draw the charges out of the inverter

loop and force the loop to store the new value instead.

The simplest way to read from an SRAM cell is simply to open the word line pass transistors and read

the voltages on the bit lines. The bit lines have a large parasitic capacitance and will take some time

to charge. Using a sense amplifier to quickly sense the difference in voltage on the bit lines will help

solve this problem.

11

Figure 1: A standard 6T SRAM cell.

4.3.2 D-Flip-flop

A positive-edge-triggered D flip flop stores the value D only when the signal Clk transitions from low

to high, a so called rising edge.

Clk D Qnext

Rising edge 0 0

Rising edge 1 1

Non-rising X Qprev
Table 1: D-Flip-Flop truth table

4.4 TSMC standard cell library naming conventions
The standard cell library provided by TSMC for the TSMC18G process contains cells which follow a

naming convention in the following format: |NAME|Y|D|x|. NAME is the abbreviated name of the

cell. Y is the amount of inputs, and is only included if the cell has multiple versions with different

amounts of inputs. D means drive strength, and x is an integer denoting the drive strength of the

cell, and ranges from 0 to 10. Drive strength is explained in section 4.5. An example of this naming

convention is the cell ND4D2, which is a 4-input NAND gate with a drive strength of 2.

4.5 Drive strength
Drive strength is how easily a transistor allows current to pass through itself when switched on. A

large drive strength is required to charge nodes with a high capacitance. If an output-driving

transistor has an insufficiently large drive strength, the time required to charge the output

capacitance will increase. This will severely affect the speed of the circuit. The drive strength of a

transistor is closely related to the W/L ratio of the transistor; a higher W/L ratio produces a higher

drive strength.

12

Cells with a high drive strength often have a high input capacitance, making it necessary for the cell

driving the high-drive strength cell to have a sufficient drive strength itself. A rule of thumb used in

the design presented in this report is that a cell with a drive strength of N (see section 4.5) can drive

a load of cells totalling a drive strength of N+2. A load of 2 cells of drive strength N is assumed to

equal a load of a single cell of strength N+1. As an example, a cell with a drive strength 2 can drive

one cell with a drive strength of 4, or 2 cells of drive strength of 3.

4.6 Cadence Bus Notation
For the Cadence Virtuoso software, a specific notation is used to denote either a collection of signals

or cells, and if the same notation is used for both the signals and cells, the collection of signals will

correspond to the collection of cells. The following is an example of the usage of bus notation: A

denotation of Bus<3:0> will contain the signals Bus<3>, Bus<2>, Bus<1> and Bus<0>. Connecting the

node Bus<3:0> to a single-input, single-output cell called Inverter<3:0> will cause Bus<3> to connect

to Inverter<3>, Bus<2> to Inverter<2> and so on.

4.7 Degraded logic / pass transistors / short circuit power
A degraded logic signal is a signal that is not fully charged to VDD (logic ‘1’) or not fully discharged to

VSS (logic ‘0). A degraded logic ‘1’ is also called a ‘weak’ logic ‘1’ as opposed to a ‘strong’ logic ‘1’,

and will have a voltage value which is less than VDD. When an NMOS transistor is placed between a

node and VDD, turning on the transistor will not allow the node to completely reach a voltage value

of VDD. The same applies for PMOS transistors placed between a node and VSS.

Pass transistors are commonly used in CMOS circuits, and the effect of voltage degradation may

significantly influence the operation of the circuit. Using an NMOS pass transistor will cause an input

of logic ‘1’/VDD to be degraded to a voltage of VDD-Vth on the output side of the pass transistor [6].

Vth is the threshold voltage of the NMOS pass transistor. Transmission gates solves the problem of

degraded logic, but require two transistors and two complementary inputs as opposed to one.

Figure 2: An example of degraded logic causing a short circuit current.

Figure 2 shows an example of what might happen if a gate voltage value is degraded to the point

where it lower than the threshold voltage for the PMOS transistor, and higher than the threshold

13

voltage for an NMOS transistor. The resulting current through both transistors will incur a very large

short circuit power consumption and might overheat the circuit, permanently damaging it.

5. Implementation
Three different memory systems were implemented. Two versions of a D-Flip-Flop memory system

were implemented, utilizing two different D-Flip-Flops. A 6T-SRAM system was also implemented,

with the intention of comparing memory systems using D-flip-flops to systems using SRAM with

focus on leakage current, power consumption and area. The size of the designed memory systems

were 64 Bytes. The reason for this was that the simulations were done on servers owned by Cadence

Design Systems, rented by Disruptive Technologies, and simulation time was limited. To mitigate the

small size of the memory systems, a prediction formula was implemented in Microsoft Excel with the

purpose of extrapolating the leakage currents, area and read and write energies for larger memory

systems.

The cell names are sometimes misleading, as they are temporary names used in the design phase.

The reason behind this is to allow Disruptive Technologies to continue using the designs if need be.

To mitigate this, cells often go by multiple names in the report, and often both names are stated.

5.1 Design specifications
A number of design goals are considered when designing the memory systems. The following list

contains design requirements by order of importance, 1 being the most important consideration:

1) Minimize leakage current

2) Minimize read energy

3) Minimize write energy

4) Minimize chip area

5) Minimize design complexity

Minimizing the leakage current is the most important consideration, as the memory most likely be

idle most of the time. Reads are assumed to be more frequent than writes, and it is therefore more

important to minimize read energy than to minimize write energy. Minimizing chip area is always an

important consideration to minimize chip costs. Lastly, because the design is handed over to another

designer, the complexity of the design should be minimized to allow a quick transfer of knowledge

from designer to designer.

5.1.1 Process / technology

The purpose of the design is to be implemented using a 0.18µm standard CMOS technology from the

Taiwan Semiconductor Manufacturing Company. The process name is TSMC18G.

14

5.1.2 Choice of default and minimum transistor sizes

Figure 3: Leakage current through an NMOS transistor (upper) and a PMOS transistor (lower) as a function of transistor
length. [2]

Figure 3 shows the simulation results of leakage current through a NMOS and PMOS transistor as a

function of transistor length. The simulations were done by applying a voltage across the transistor

while the transistor was turned off (VG = VSS for the NMOS, VG = VDD for the PMOS). The following

simulation parameters were used:

- Process: TSMC018

- gmin=1e-17

- L=0.35µm
- W=0.5µm
- Temp=27oC
- VDS=2.5V
- Transistor type: 3.3V.

 The results imply that a length of 550nm will minimize the leakage current through an NMOS

transistor. Using the same length for PMOS transistors will simplify the layout of the chip, saving

area. Many equations in the VLSI domain contain terms in this format:

𝑊0
𝐿0

𝑊1
𝐿1

. Choosing a standard

length would greatly simplify these equations, reducing design time. During the layout phase, in

CMOS structures such as the basic inverter, the PMOS transistors are usually laid out in parallel

lengthwise with the NMOS transistors [7]. Choosing different lengths would make the parallel PMOS

and NMOS transistors not align with each other, complicating the layout engineer’s job, increasing

design time. Choosing the length of the PMOS to be longer would further limit leakage current, but

would increase the area of the circuit considerably and would drastically increase design time. This

lead to 550nm being chosen as the default length for all transistors in the design.

15

Figure 4: Leakage current through an NMOS transistor (upper) and a PMOS transistor (lower) as a function of transistor
width. [2]

Figure 4 shows the simulation results of leakage current through an NMOS and PMOS transistor as a

function of transistor width. The simulations were done by applying a voltage across the transistor

while the transistor was turned off (Vg = VSS for the NMOS, Vg = VDD for the PMOS). The following

simulation parameters were used:

- Process: TSMC018

- gmin=1e-17

- L=0.35µ
- W=0.5µ
- Temp=27oC
- VDS=2.5V
- Transistor type: 3.3V.

One can see that a larger width leads to a larger leakage current. Choosing a width as low as possible

would minimize leakage current. However, choosing a width that is too close to the absolute

minimum leads to greater susceptibility to fabrication errors (larger transistors leave much more

room for error). If the design is very susceptible to fabrication errors, a larger amount of the finished

microchips will not pass the physical verification process and the fabrication yield will decrease,

increasing the cost of the chip. A minimum width of 300nm was chosen.

The simulations in figure 3 and 4 were provided by Disruptive Technologies.

5.2 The D-Flip-Flop memory system
The D-Flip-Flop memory system was implemented utilizing two different D-flip-flop cells. The first

was the reference D-Flip-Flop, the second was the C2MOS Flip-Flop.

16

As opposed to SRAM, a D-Flip-Flop memory has no internal multiplexing (bit lines and write lines).

This means that the fan-out of demultiplexers and multiplexers is much broader than for the SRAM

system. This also means that the peripheral circuitry of the D-Flip-Flop is simpler.

17

Figure 5: The SIXTYFOURBYTE_DFF Cell

18

Figure 5 shows a completed 64 Byte D-Flip-Flop memory system, the same as the one used in the

simulations presented in this report. The address bus is buffered as there are 8 8-1 demultiplexers

connected to each wire on the bus (see figure 8), and that presents a significant load capacitance.

The SIXTYFOURBYTE_DFF cell is made up of 8 EIGHTBYTE_DFF cells, which are explained in detail in

section 5.2.2.

In the design, each flip-flop has its own set of peripheral circuitry cells. The peripheral circuitry used

by one flip-flop cell is copied and the duplicated version is used when testing the other flip-flop cell.

The peripheral circuitry cells are named with either the keyword ‘KHAN’ for the C2MOS flip flop, or

‘REFDFF’ for the reference D-Flip-Flop. The reason for copying the peripheral circuitry is to allow two

separate testbenches for every cell, as well as to allow changes to the peripheral circuitry for each

separate flip flop. As per this report, the peripheral circuits of the two flip flops are identical.

5.2.1 Read and write operations

Input signal descriptions:

- Store: A positive flank of the store signal will perform a write of the specified value decided

by the Data bus in the flip flop decided by the address bus.

- Address: A binary number which decides which byte in the memory to read from or write to.

- Data: An 8bit/1byte binary number, which is stored in the memory if the ‘store’ signal goes

high.

- CDN: Clear Data Negative. When CDN is low, all flip flops in the memory are reset to a value

of ‘0’.

Read operation:

Figure 6: A waveform showing a standard read operation in the D-Flip-Flop system

Figure 6 shows a waveform explaining how to perform a read operation in the D-Flip-Flop system

implemented in this report. The associated states of a yet-to-be-implemented state machine is also

included in the waveform. The address setup and hold times are needed to. If the address bus is

altered while the output is being latched onto the data bus, the latched data will be corrupted.

19

Write operation:

Figure 7: A waveform showing a standard write operation in the D-Flip-Flop memory system.

Figure 7 shows a waveform explaining how to perform a write operation in the D-Flip-Flop system

implemented in this report. The associated states of a yet-to-be-implemented state machine is also

included in the waveform. The address and data setup and hold times are needed to prevent a

glitched store signal from corrupting the memory. If the address bus is altered while the store signal

is not settled at a logic ‘0’, other cells in the cell array will get a store signal pulse and will be

corrupted.

20

5.2.2 Sub-Cells

Figure 8: The EIGHTBYTE_DFF cell.

21

Figure 8 shows the EIGHTBYTE_DFF cell (in the design it is named EIGHTBYTE_REFDFF_02 for the

reference D-Flip-Flop and EIGHTBYTE_KHANDFF_01 for the C2MOS D-Flip-Flop). The cell contains 8

cells of the kind BYTE_DFF, for a total of 8 bytes or 64 bits/flip flops. The input data bus is buffered

because the 8 D-Flip-Flop cells connected to each wire (see figure 9) present a significant load

capacitance.

Figure 9: The BYTE_DFF cell.

Figure 9 Shows the BYTE_DFF cell. It contains a full byte made up of 8 D_FLIP_FLOP cells. The cells

may be any kind of D-Flip-Flop. The C2MOS flip flop takes a STORE_N (negated STORE) as input,

meaning area and power could be saved by using negating demultiplexers and inverters at the last

stage of demultiplexing to produce the two complementary signals, as negating demultiplexers use

fewer transistors. This was not done in the design and the complementary signal is generated inside

the flip flop cell itself.

5.2.3 The reference D-Flip-Flop (REFDFF, DFCNQD1)

The reference D-Flip-Flop is a positive edge triggered D-Flip-Flop from a standard cell library

provided by TSMC for the TSMC18G process. The cell is referred to as REFDFF in the report, and in

the standard cell library it is called DFCNQD1.

5.2.4 The C2MOS D-Flip-Flop (KHAN_DFF, D_FLIP_FLOP_KHAN_01)

Many alternative flip flop designs were taken from [8], including the C2MOS flip flop. Most of the

designs proved to be non-functional when simulated, or they consumed extreme amounts of power

when simulated in a 180nm technology. The schematic presented in [8] for the C2MOS flip flop was

erroneous, leading to a large amount of design time wasted when implementing the flip flop. The

correct version of the C2MOS D-Flip-Flop was adapted from [9].

The C2MOS flip flop is a much bigger D-Flip-Flop than the reference D-Flip-Flop. There were two

reasons for choosing this design over a smaller D-Flip-Flop. The first reason is that it does not utilize

any pass transistor logic. Pass transistors introduce degraded logic which increase short circuit

22

power (see section 4.7). The second reason is the fact that the paths from VDD to GND in the cell

often have a lot of transistors in series, increasing the effective length of transistors from VDD to

GND, reducing leakage currents. The cell is referred to as either C2MOS or KHAN_DFF in the report,

and in the design it is named D_FLIP_FLOP_KHAN_01.

Figure 10: The C2MOS Flip Flop (D_FLIP_FLOP_KHAN_01 / KHAN_DFF).

5.2.4.1 Transistor sizing

In this section, please refer to figure 10. The lengths of all the transistors are 550nm. This is chosen

because of the results presented in figure 3. The widths of all the transistors are 550nm, with the

exception of the PMOS transistors whose gate is connected to CDN. The width of all the non-reset

(CDN) transistors are set to a width of 550nm. The widths of the reset (CDN) PMOS transistors are

set to 800nm, simply to have a greater drive strength than the inverters driving the inner nodes D

and QN.

The reason behind the seemingly arbitrary choice of widths for the KHAN_DFF is the disruption of

the design phase caused by errors in [8], as explained in section 5.2.4.

5.3 The 6T-SRAM memory system
The 6T-SRAM memory system requires an entirely different peripheral circuit. The functionality of

the 6T-SRAM is very different from a D-Flip-Flop, for more information, please see section 4.3.1.

23

Figure 11: The SRAM6T_64B_02 cell

24

Figure 11 shows a fully built 64 Byte 6T-SRAM memory system. This 64-Byte system is the same as

the one simulated in this report. All versions of the 8x8bitBox cell contain 8 rows and 8 bit-line pairs,

for a total of 64 bits, or 8 bytes each. Scaling up further would simply mean adding more 8x8bitBox

cells (and the appropriate border versions of the 8xbitBox cell) and adding the necessary

demultiplexers, multiplexers and buffers. If one were to add two more rows of 8x8bitBox_01 (and

the appropriate border versions of the 8x8bitBox cell), a full 32x32bitBox chunk would be

completed, containing a total of 128 Bytes. The 8x8bitBox_01 cells are explained in section 5.3.2.

5.3.1 Read and write operations

Input signal descriptions:

- Col_address: A binary number which decides column in the memory to read from or write

to.

- Row_address: A binary number which decides which row in the memory to read from or

write to. Row_address in combination with Col_address forms a complete address of a

single byte in the memory.

- Data: An 8bit/1byte binary number, which is stored in the memory upon a write instruction

execution.

- WL_enable – when WL_enable is high, the pass transistors of all SRAM cells in a row decided

by the Row_address bus are opened, exposing the SRAM cells to the bit lines.

- CDN – Clear Data Negative. When CDN is low, all 6T-SRAM cells are reset to the value ‘0’

- Read and write: read and write form a 2-bit instruction code-word which apply to all eight

bit-line pairs in a single column, decided by the Col_address bus. The decoded functions are

described in the following table:

Read Write Decoded instruction

0 0 Bit lines disconnected from VDD and VSS.

0 1 Write - Charge one bit line (VDD), discharge the other bit line (VSS)
according to the appropriate bit on the ‘data’ bus.

1 0 Read - Bit lines disconnected from VDD and VSS, activate sense
amplifier.

1 1 Precharge – charge both bit lines (VDD).
Table 2: Instructions decoded from the read|write code-word.

25

Read operation:

Figure 12: A waveform showing a standard read operation in the 6T-SRAM memory system

Figure 12 shows a waveform explaining how to perform a read operation in the 6T-SRAM system

implemented in this report. The associated states of a yet-to-be-implemented state machine is also

included in the waveform. The address setup time is needed to prevent non-intended bit line pairs

from being charged when the precharge happens. The address and sense hold time is needed to

prevent the data from being corrupted while it is being latched onto the output bus.

26

Write operation:

Figure 13: A waveform showing a standard write operation in the 6T-SRAM memory system.

Figure 13 shows a waveform explaining how to perform a write operation in the 6T-SRAM system

implemented in this report. The associated states of a yet-to-be-implemented state machine is also

included in the waveform. The address and data setup time is needed to prevent non-intended bit

line pairs from being charged. The address hold time is needed to prevent other cells from being

written to when the Writeline enable signal is still high. The data hold time is to prevent the cell’s

value from changing before the writeline enable signal goes low.

5.3.2 Sub-Cells

In order to simplify the process of expanding the 6T-SRAM system, a modular ‘chunk’ system was

devised. In this system, chunks of 8x8 SRAM cells are lumped together in a block named

8x8bitBox_01, for a total of 8 Bytes, where each row is a single byte. Each 8x8bitBox_01 chunk is

designed so that the designer can connect chunks together either vertically or horizontally by

connecting the appropriate bit lines or write lines, respectively. The system is designed so that cells

on the top or left edge of the cell array have either column circuitry, row circuitry or both built into

the cells themselves. The advantage of this is that once a cell array becomes so big that adding

individual row or column circuitry becomes tedious, bigger chunks can be created from the smaller

ones and the same process of connecting together chunks can be utilized to cut down design time to

a minimum. The following figures will explain the various modules in detail.

27

Figure 14: The 8x8bitBox_01 cell

Figure 14 shows a symbol representing the 8x8bitBox_01 cell as well as its expanded view showing

the structure of 6T-SRAM cells within the cell.

28

Figure 15: The 8x8bitBox_Left_01 cell.

Figure 15 Shows the 8x8bitBox_Left_01 cell, which is a standard 8x8bitBox_01 cell with added row

circuitry to the left of the cell. The row circuitry consists of a 1 to 8 demultiplexer, also called a row

decoder, and a row driver which drives one of the 8 write lines according to input from the

demultiplexer.

29

Figure 16: The 8x8bitBox_top_02 cell.

Figure 16 shows the 8x8bitBox_Top_01 cell which is a standard 8x8bitBox_Top_01 cell with added

column circuitry for each pair of bit lines. Because a whole row of 8 bits/cells, or a single byte, is

always written or read at the same time, no multiplexing is required in this cell.

30

Figure 17: The 8x8bitBox_topleft_02 cell.

Figure 17 shows the 8x8bitBox_TopLeft_01 cell which is a standard 8x8bitBox_Top_01 cell with both

column circuitry and row circuitry. The necessity of this block comes from the fact that the upper left

corner cell needs both column and row circuitry.

31

5.3.3 Row driver circuit

The row driver’s function is to drive the write lines when activated by the row decoder. The write

lines are connected to the gates of the pass transistors that connect the 6T-SRAM cells to the bit

lines. As there may be a lot of pass transistors on every row, a line driver is required to adequately

charge the accumulated gate and wire capacitance. In this implementation, a driver strength level of

2 (see section 4.5) is considered more than sufficient, and may be sufficient for much larger memory

arrays.

Figure 18: The Row_WLDriver_01 cell used in the 6T-SRAM system

Figure 18 shows the Row driver cell. The row driver cell drives eight rows/write lines.

CDN WL_in_x WL_out_x

0 X 1

1 0 0

1 1 1
Table 3: The truth table for the Row_WLDriver_01 cell.

Table 3 shows the truth table for the row driver cell. WL_in_x means WL_in_0, WL_in_1, WL_in_2,

and so on. The logic value ‘X’ means ‘don’t care’.

32

5.3.4 Bit line driver circuitry

A custom transistor-level logic circuit was created for the purpose of driving the bit lines. There were

three reasons for choosing a custom design over using standard logic gates. The first reason for

choosing a custom design is that the high capacitance bit lines need to charge or discharge quickly,

requiring transistors with a high driver strength. A custom design would allow the designer to

accurately control the driver strength of the circuit. Another problem with the standard gate

solution was that uneven timing in the logic connected to the bit-line driving transistors lead to

considerable power consumption as a result of glitches. The custom circuit was designed with the

purpose of minimizing glitches during standard read or write operations. The third problem was that

the input to the bit lines require tri-state logic, as the bit lines are cut off from the circuit when the

column is not being read from or written to. When tri-state logic is needed, the standard logic gate

solution has to be supplemented by pass transistors, and the added design time means the designer

might as well do a custom design to suit his/her needs. Because the driver transistors have a large

gate width, which leads to higher gate capacitance, the inputs to these transistors’ gates are

buffered in order to reduce the input capacitance of the circuit.

Figure 19: The Column_Circuitry_04 cell, or bit line pair driver.

Figure 19 shows the bit line pair driver circuit used in the 6T-SRAM system. The bit line pair driver

drives a single pair of bit lines. The signals CDN, CDN_inverted, Write, Write_inverted, Data,

Data_inverted, Read and Read_inverted are all internal signals used to ensure the functionality of

the circuit. Sense_enable is an internal signal derived from the Write signal and the Read_inverted

33

signal, and is used to enable the sense amplifier. The Read_in, Write_in and Data_in signals are all

demultiplexed onto the appropriate column, and all bit line pair drivers in one column share the

same signals. Refer to table 4 for the functionality of the circuit.

CDN Read_in Write_in Data_in BLb BL Sense_enable

0 X X X 1 0 X

1 0 0 X Z Z 0

1 0 1 0 1 0 0

1 0 1 1 0 1 0

1 1 0 X Z Z 1

1 1 1 X 1 1 0
Table 4:The truth table for the Column_Circuitry_04 cell.

5.3.5 Sense amplifier

As the length of the bit lines increases, the capacitance to ground seen from the column circuitry

increases. The driver strength of the 6T-SRAM cell is low compared to the driver strength required to

rapidly discharge one of the bit lines during a read. A read erases the value in the SRAM cell, and a

rewrite is always necessary after a write. Fully discharging one of the bit lines is necessary in order to

rewrite to a cell after a read, and discharging quickly is essential to avoid a large short-circuit power

consumption on the measuring cells (usually a buffering inverter) caused by degraded logic (see

section 4.7). The purpose of a sense amplifier is to detect any slight difference in voltages on two

nodes and amplify that difference to non-degraded voltage levels. In this design a variation of the

Full Complementary Positive Feedback Sense Amplifier (FCPFSA) is designed. This kind of sense

amplifier has the added functionality of automatically performing a rewrite whenever a read is

performed.

Figure 20: The sense amplifier used in the SRAM system.

34

The designed sense amplifier operates as follows: When the sense amplifier is not active, nodes N

and P are precharged to the VDD voltage level and the inverters in the inverter loop are

disconnected from ground. Immediately after enable goes high, nodes N and P are both

disconnected from the power supply and are connected instead to the negative and positive bit

lines, respectively. The inverter loop is enabled by connecting the inverters to ground. The charge

stored on nodes N and P will initially be equal, but the inherent instability caused by the inverter

loop will allow any slight difference in voltage on the nodes (from the bit lines, through the pass

transistors), to cause a quick discharge of one of the nodes. The difference in voltage needed on the

bit lines is not known, but a reasonable assumption is that a 200mV difference will ensure that noise

or the offset in the physical implementation will not cause an error during the read. Wide NMOS

transistors are required to quickly discharge the node, and in turn speed up the discharging of the bit

line. The cell is designed so that both nodes N and P will have an identical capacitance to ground,

requiring a dummy-inverter on the P node. For a 64 Byte memory, which was simulated, a sense

amplifier is not necessary as the SRAM cell itself discharges the bit lines rapidly. The sense amplifier

was included in order to more accurately predict the power consumption and leakage current of

larger cell arrays. The width of the NMOS transistors were arbitrarily chosen to be either 1400n and

1000n, and their widths must be increased when moving to very large memory cell arrays.

5.3.6 6T-SRAM-Cell

Figure 21: The 6T SRAM cell.

35

5.3.6.1 Transistor sizing

For this section, please see figure 21. The transistor dimensions were chosen as follows: The length

of the NMOS transistors were designed to have a minimum leakage current as decided by the

simulations in section 5.1.2. A length of L = 550nm is chosen for all transistors. As a typical layout of

an SRAM cell is symmetrical, one can reduce the area of each cell by choosing the width and length

of the PMOS transistors to be equal to the length and width of the NMOS transistors (see section

5.1.2). A minimum length of 300nm was chosen.

Read stability: In the case of a read, both bit lines are precharged up to the VDD voltage and

subsequently the pass transistors are opened up to discharge one of the bit lines depending on the

value retained in the cell. In the case of a logic ‘0’ retained, the transistor D0 will discharge the bit

line BL down to ground. When this happens, it is important that the voltage on node1 does not

exceed Vth when current is intermittently flowing through transistors P1 and D0, which could invert

the voltage of node0. Intuitively, this means that transistor D0 should be less resistive than transistor

P1, and enough so that the node1 voltage never exceeds Vth. This means the width of D0 has to be

larger than the width of P1. According to [10], the width of D0 has to be 1.2 times as large as the

width of P1. The same goes for transistors D1 and P0.

Write stability: In the case of a write, the bit lines are forced to either BLb = 0V and BL = VDD or the

opposite, depending on value written. In the case of a logic ‘0’ being stored, BL is pulled low by

external column circuitry and the pass transistors are opened. In this case it is important that the

voltage on node1 never exceeds Vth when current is intermittently flowing through transistors U0

and P1. Intuitively, this means that P1 should be less resistive than U0, and enough so that the

node1 voltage never exceeds Vth. This means that the width of P1 should be larger than the half the

width of U0, owing to the mobility of a PMOS transistor being about half of the mobility of an NMOS

transistor. According to [10], the width of P1 has to be at least larger than 0.56 than that of U0.

Choosing U0 and U1 to be the same size as D0 and D1 meets the requirements of read and write

stability, and simplifies the layout through symmetry (see section 5.1.2).

Transistor name U0 and U1 D0 and D1 P0 and P1

Width [nm] 360 360 300

Length [nm] 550 550 550
Table 5: Transistor sizes for the 6T SRAM cell

5.3.7 Reset circuitry

The reset signal CDN needs only be considered in the peripheral circuitry. To reset the SRAM, WL is

set to 1, BL is set to 0, and BLb is set to 1. Because BL, BLb and WL are shared among a lot of SRAM

cells, the amount of transistors per cell used for resetting the memory is very low. The column reset

circuitry is implemented as a part of the column logic, specifically as part of the bit line pair driver.

The row reset circuitry was implemented as a part of the row driver circuit.

5.4 Extrapolator

5.4.1 The gate count unit of measurement

As per the TSMC datasheet, one gate is equivalent to 4 transistors with a width of 0.85µm and a

length of 300nm, for a total area of 0.68pm2 per gate count. The gate count of custom transistor

36

level designs was decided by dividing the area of the design by this value, and rounding to the

nearest half integer.

𝐺𝑎𝑡𝑒 𝐶𝑜𝑢𝑛𝑡 =
𝐶𝑒𝑙𝑙 𝐴𝑟𝑒𝑎 [𝑚2]

0.68 ∗ 10−12 [𝑚2]

Formula 5: The formula for normalizing a cell’s area to the gate count unit of measurement

5.4.2 Predicting the gate count and leakage current of the memory systems

In order to predict the gate count (area) of the peripheral circuitry, various mathematical methods

were used and a few assumptions were made:

1) Beyond 64 Bytes any multiplexing or demultiplexing will be done only with 1-2

demultiplexers or 2-1 multiplexers.

2) The additional wires that are required on the address bus as the memory expands will not be

buffered. This would lead to even more complicated mathematics.

3) Because cells are separated horizontally by a large gate-source and gate-drain impedance

(almost no current passes through the gate of the transistor), total leakage current in a

bigger cell can be modelled as a sum of leakage currents through the smaller cells contained

in the bigger cell.

The leakage currents of bottom-level custom-designed cells were determined by simulating their

total leak in the 64-Byte system and then dividing by the number of custom-designed cells in the 64-

Byte design.

For the C2MOS (KHAN_DFF) D-Flip-Flop, the leakage contribution from the cells have to be

multiplied by 1.54. For details see section 5.6.3 and appendix A.

5.4.3 Predicting the read and write energy of the memory systems

In order to predict the read and write energy of the increasingly complex peripheral circuitry, a

severe simplification is made. It is assumed that the read and write energy consumed by the

peripheral circuitry is proportional to the total gate count of the peripheral circuitry. Then, the

results from the 64Byte simulations could simply be multiplied by the ratio of increase in the gate

count of the peripheral circuitry. Another assumption is that the read and write energy of the cell

array does not increase significantly when the cell array is expanded, as only a single byte of 8 cells is

written to or read from at the same time.

𝐸𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 =
𝐺𝑎𝑡𝑒 𝑐𝑜𝑢𝑛𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑝𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑎𝑙

𝐺𝑎𝑡𝑒 𝑐𝑜𝑢𝑛𝑡64𝐵𝑦𝑡𝑒,𝑝𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑎𝑙
∗ 𝐸64𝐵𝑦𝑡𝑒,𝑝𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑎𝑙 + 𝐸64𝐵𝑦𝑡𝑒,𝑐𝑒𝑙𝑙𝑠

Formula 6: Extrapolated read and write energies, based on the 64 Byte simulations.

37

5.4.4 Measuring average leakage current of standard cells

Figure 22:The testbench for measuring the average leakage current of standard cells

In order to measure the average leakage current of several standard cells used in the design of the

peripheral circuits, a simple testbench was designed. In figure 22, the testbench is displayed, and the

cell being measured is the AN4D2 standard cell.

A test stimulus covering all the different combinations of inputs was applied. After applying a certain

combination of inputs, the cell would be left idle for a sufficient amount of time (here: 0.5s) in order

to stabilize the internal voltages of the cell. After stabilizing the cell, the supply current going to the

cell was measured over a short period of time (200ns) and averaged. After measuring the leakage

current of every combination of inputs, the arithmetic mean of all the leakage currents was

calculated. This average leakage current was used as a representative value for the leakage of the

cell.

38

Figure 23: The testbench used to measure average leakage currents in the cells which make up the peripheral circuitry.

5.4.5 Table of the cells’ leakage current and gate count

Cell name Gate Count Leakage current [A]

INVD0 0.5 5.0E-14

INVD2 1 1.9E-13

INVD4 2 3.9E-13

NR2D0 1 5.5E-14

NR2D2 2 2.09E-13

AN2D0 1.5 1.18E-13

AN2D2 2 3.68E-13

MUX2D0 3 1.74E-13

MUX4D0 6.5 3.61E-13

AN4D0 2.5 1.13E-13

AN4D2 3 3.83E-13

BUFFD0 1 1.0E-13

BUFFD2 1.5 2.86E-13
Table 6: Simulated leakage currents of various TSMC standard cells and the gate counts as specified in the TSMC standard
cell datasheet

Table 6 Shows the simulated leakage current of various TSMC standard cells and the gate counts as

specified in the TSMC standard cell datasheet. The simulations of leakage currents were performed

by the author of this report on the grounds that the results in the datasheet provided by TSMC were

admitted to be wrong. The leakage currents were simulated at with a supply voltage of 3V, in the

default process corner and at a temperature of 70 degrees Celsius. 5.0E-14 is the same as 5.0 * 10-14.

39

Cell Name Gate Count Leakage Current

DEMUX-1-2_02 4.5 6.27E-13

DEMUX-1-4_01 13.5 1.88E-12

DEMUX-1-8_02 21.5 1.05E-12

Column circuitry (including
sense amplifier)

65 9.9E-13

Row_WLDriver 17 2.15E-12

MUX-8-1_02 16 8.96E-13

REFDFF (DFCNQD1) 7 7.62E-13

C2MOS DFF (KHANDFF) 12.5 1.05E-13

SRAM6T Cell 1.5 3.6E-14
Table 7: A table of calculated gate counts and leakage currents of non-standard cells

Table 7 shows the calculated and simulated leakage currents of non-standard cells designed for the

purpose of this report. See appendix A for details. The cells DEMUX-1-2_02, DEMUX-1-4_01,

DEMUX-1-8_02, Row_WLDriver, MUX-8-1_02 are cells made up entirely of standard cells, the others

are custom transistor-level designs. The leakage currents and gate counts of the cells made up of

standard cells are calculated by taking the sum of the leakage currents and gate counts of the

standard cells contained within the cell, as per table 6. The gate counts of the custom designs were

calculated by dividing the area of the design by the area per gate count (see section 5.4.1). The

leakage currents of the custom designs were calculated from the simulation results of the complete

64 Byte systems. Specifically, the memory cell leakage was found by dividing the total cell leakage by

the amount of cells (64 * 8 cells), and the Column circuitry was found by dividing the total column

circuitry leakage with the amount of bit line pairs (4 columns * 8 bit-line pairs per column).

40

5.4.6 Calculating the amount of multiplexers, demultiplexers and buffers

Figure 24: A simplified solution of the sum of a geometric row 2N-1

Figure 24 shows a simple equation for determining the sum of elements in any construct where

elements double every iteration. AK is the amount of elements in the Kth row. SK is the sum of all

elements in the row up until the Kth row. See [11] for details on row theory. This applies to

constructs such as a demultiplexing or multiplexing circuit consisting only of 1-2 demultiplexers or 2-

1 multiplexers. This also applies to the specific buffer fan-outs assumed in this design, where every

buffer drives the input of two other buffers. In order to find the sum of elements, one needs only

count the amount of elements in the final stage of the fan-out, double that number and subtract

one.

In order to simplify the calculations of buffer and multiplexer/demultiplexer fan-outs, the existing

64-Byte memory was assumed to be an atomic cell (indivisible, foundation cell), and all further

expansion of the memory system would happen through simple doubling fan-outs as shown in figure

24.

41

5.4.7 Table of cell count prediction formulas

Cell name Amount in the SRAM system Amount in the DFF system

SRAM6T Col * Row * 8 0

Row_WLDriver Row / 8 0

Column circuitry + sense amp Col * 8 0

DEMUX-1-2 2*(Col /4 – 1) + Row/8 - 1 Bytes/64 - 1

DEMUX-1-4 Col / 2 0

DEMUX-1-8 Row / 8 (1.125/8) * Bytes

BUFFD0 8*(Col/2) + 8 * (Col/4-1) +
Row/8 - 1

(1/8 + 1/64) * Bytes + 1/64 *
Bytes + 9 * (Bytes/64 -1)

MUX2D0 8* (Col/4 – 1) Bytes/64 - 1

MUX4D0 8*(Col/4) 0

MUX-8-1 0 8*(1/8 + 1/64) * Bytes

D-Flip-Flops 0 Bytes * 8
Table 8: The formulas for calculating the number of cells contained within either a D-flip-flop memory system or a 6T-SRAM
memory system.

Table 8 shows the formulas used for calculating the number of cells in the D-Flip-Flop and 6T-SRAM

memory systems. The ‘Row’ variable is the amount of rows in the SRAM system, which is the same

as the amount of write lines. The ‘Col’ variable is the amount of columns in the SRAM system, which

is the same as the total amount of pairs of bit lines divided by 8. The ‘Bytes’ variable is the amount of

bytes in the D-Flip-Flop system, which is the same as the amount of D-Flip-Flops divided by 8. The

values were calculated by taking advantage of the hierarchical structure of the design, as well as

taking advantage of the multiplexers, demultiplexers and buffers forming a geometric row as

described in section 5.4.6. When calculating the amount of rows and columns per byte of memory, a

ratio of 4 rows per column was assumed, and the resulting formulas are applied:

𝐶𝑜𝑙𝑢𝑚𝑛𝑠 = √
𝐵𝑦𝑡𝑒𝑠

4
, 𝑅𝑜𝑤𝑠 = √

𝐵𝑦𝑡𝑒𝑠

4
∗ 4

Formula 7: Calculation of the amount of rows and columns as a function of the number of bytes.

5.5 Miscellaneous non-standard cell schematics

Figure 25: The DEMUX-1-2_02 cell.

42

Input Sel Output0 Output1

0 X 0 0

1 0 1 0

1 1 0 1
Table 9: The truth table for the DEMUX-1-2_02 cell

Figure 26: The DEMUX-1-4_01 cell.

Input Sel<1> Sel<0> Output3 Output2 Output1 Output0

0 X X 0 0 0 0

1 0 0 0 0 0 1

1 0 1 0 0 1 0

1 1 0 0 1 0 0

1 1 1 1 0 0 0
Table 10: The corresponding truth table for the DEMUX-1-4_01 cell.

43

Figure 27: The DEMUX-1-8_02 Cell.

44

Input Sel2 Sel1 Sel0 Out7 Out6 Out5 Out4 Out3 Out2 Out1 Out0

0 X X X 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 1

1 0 0 1 0 0 0 0 0 0 1 0

1 0 1 0 0 0 0 0 0 1 0 0

1 0 1 1 0 0 0 0 1 0 0 0

1 1 0 0 0 0 0 1 0 0 0 0

1 1 0 1 0 0 1 0 0 0 0 0

1 1 1 0 0 1 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0
Table 11: The truth table corresponding to the DEMUX_1-8_02 cell.

Figure 28: The MUX_8-1_02 cell

Sel2 Sel1 Sel0 Output

0 0 0 Data0

0 0 1 Data1

0 1 0 Data2

0 1 1 Data3

1 0 0 Data4

1 0 1 Data5

1 1 0 Data6

1 1 1 Data7
Table 12: The truth table corresponding to the MUX_8-1_02 cell

5.6 Method of simulation

5.6.1 Simulator

Simulator version: Cadence Virtuoso Spectre Simulator 13.1.1.117.isr8 64bit

Virtuoso version: IC6.1.6-64b.500.12

Simulation parameters

Simulation parameter Setting or value

Gmin 10-17

Gear2only Turned on

Error preset (err preset) Moderate
Table 13: The non-default simulator settings used in all simulations.

45

Table 13 shows a selection of simulation parameters that were modified for the purpose of

measuring leakage current. All other simulation parameters were set to the default values.

5.6.2 Measuring read and write energy

Figure 29: An example showing the calculation of the energy spent during a D-Flip-Flop system write operation.

Figure 29 shows a write operation for the D-Flip-Flop system (bottom graph) along with an example

graph (top graph) of the combined supply current for the entire system. The supply current in the

simulations is much lower than what the graph implies. The energy is calculated by using the

following formula:

𝐸 = 𝑉𝐷𝐷 ∗ ∫ 𝑖(𝑡) 𝑑𝑡
𝑇1

𝑇0

 Formula 8: Energy (E) as a function of supply current (i(t))

Formula 8 shows the calculation of the energy of an operation. The operation could be either read or

write, performed on any of the memory systems presented in this report. T0 would always be the

time of the first signal change (usually the address and data bus signals) during an operation. T1

46

would always be exactly one clock cycle after the last signal change during an operation, and the

system would be Idle during that last clock cycle. A static supply voltage is assumed.

Earlier calculations subtracted the integral of the supply current level, but the contribution of

leakage currents during a read or write was discovered to be negligible when measuring read and

write energies. In the simulations, the leakage current was in the order of magnitude less than 10-3 of

the active read and write induced currents. Another problem with subtracting the contribution of

leakage currents is that leakage current is only defined in a static system, and therefore its

contribution is unknown during a read or write.

5.6.3 Determining the worst case initial memory state

5.6.3.1 D-flip-flops

To determine the worst case state of the memory array when examining leakage currents, three

cases were simulated on an 8-byte memory circuit using the reference D-flip-flop (REFDFF).

When using the REFDFF flip-flop, having all zeros stored in the memory maximized the leakage

current.

When using the C2MOS (KHAN_DFF) flip-flop, having all ones stored in the memory meant the

leakage current from the cells was 1.54 times higher than the leakage current from the cells when

having all zeros stored in the memory. Due to the extremely long simulation time required to fill the

memory with ones, this result will not influence the simulations run and the higher leakage current

has to be considered in the prediction calculations instead.

The read and write energies were the highest when writing all ones to a byte containing all zeros, for

both flip flops.

See appendix A for details on the memory state simulations.

5.6.3.2 SRAM

As the SRAM cells are symmetrical, the effect of the memory state on leakage characteristics and

read and write energy is assumed to be negligible. A ‘11111111’ is chosen to be written to a byte

containing ‘00000000’, and the same byte is read.

47

5.6.4 64 Byte D-Flip-Flop simulation setup

Figure 30: The TB_SIXTYFOURBYTE_REFDFF_01 testbench for the 64 Byte D-Flip-Flop memory system.

Figure 30 shows the testbench used for measuring leakage current and the read and write energies

for both of the 64 Byte D-Flip-Flop systems. Two different supply currents were measured. The first

current was the supply current going to the D-Flip-Flop cells, through the I_CELLS_PROBE probe. The

second current was the supply current going to the peripheral circuitry, through the

I_PERIPHERAL_PROBE probe. The reason for separating the two supply currents is to give more

insight into the power consumption of the D-Flip-Flop cells themselves. The testbench shows the

testbench for the reference D-flip-flop (REFDFF), but the testbench for the C2MOS flip-flop

(KHAN_DFF) is identical, except the SIXTYFOURBYTE_REFDFF_01 cell is replaced with the

SIXTYFOURBYTE_KHAN_DFF_01 cell. The STIM and MEASURE cells in the testbench are included in

appendix B.

Time [s] DATA ADDRESS STORE CDN Comments

0 0x00 0x00 0 0 Reset state

0.0000007 0x00 0x00 0 1 Exit reset state

1.0000011 0x00 0x00 0 1 Idle. T0 leakage current

1.2500011 0x00 0x00 0 1 Idle. T1 leakage current

1.5000012 0xFF 0x0A 0 1 Setup time. T0 write

1.5000013 0xFF 0x0A 1 1 Write 0b11111111 to the address
0b01010.

1.5000014 0xFF 0x0A 0 1 Hold time

1.5000015 0x00 0x00 0 1 Idle, allow supply current to settle

1.5000016 0x00 0x00 0 1 Idle. T1 write.

1.7500016 0x00 0x0A 0 1 Read address 0b01010. T0 read

1.7500017 0x00 0x0A 0 1 Hold time

1.7500018 0x00 0x00 0 1 Idle.

1.7500019 0x00 0x00 0 1 Idle. T1 read.
Table 14: The stimulus applied to the TB_SIXTYFOURBYTE_REFDFF_01 testbench.

48

Table 14 shows a sequence of stimulus applied to the input buses of the

TB_SIXTYFOURBYTE_REFDFF_STIM_01 cell, a part of the testbench showed in figure 30. Refer to

section 5.2.1 for an explanation of the signals. The clock frequency is 10MHz. The STIM cell simply

passes the square wave signals generated from the stimulus file, through a buffer. This is to give the

signals a more realistic rise and fall time. The T0 and T1 markers in the comments column indicate at

which time interval the supply current was integrated over, with T0 being the start time. For details,

see section 5.6.2.

The actual LWRTS_stim.vec (stimulus file for the REFDFF test) and LWRTS_results.ocn (ocean script

for processing simulation results) files were generated by a MatLab script, included in appendix C.

5.6.4 64 Byte SRAM Simulation setup

Figure 31: The TB_SRAM6T_64B_02 testbench for the SRAM system.

Figure 31 shows the TB_SRAM6T_64B_02 testbench for the SRAM system. Three different supply

currents were measured. The first current was the supply current going to the SRAM cells, through

the I_CELLS_PROBE probe. The second was the supply current going to most of the peripheral

circuitry, including all logic circuitry, through the I_PERIPHERAL_PROBE probe. The third supply

current was the current going into the bit lines from the bit-line drivers and the sense amplifiers,

through the I_COLUMNS_PROBE probe. This allows the study of energy delivered to each SRAM cell

through the bit-lines. Because D-flip-flops are separated from the rest of the circuit by large gate-

drain and gate-source resistances, there is only a negligible current going from the cells to the

peripheral circuitry. SRAM cells are not separate from the peripheral circuitry in this way, and

therefore it is possible that the peripheral circuitry can deliver current to the cells, and vice versa.

The measurement of the column circuitry supply current is supposed to give more insight into this

interaction. The STIM and MEASURE cells in the testbench are included in appendix B.

49

Time[s] Data Row_Adr Col_Adr Read Write WL_en CDN Comments

0 0x00 0x0 0x0 0 0 0 0 Reset state

0.0001 0x00 0x0 0x0 0 0 0 1 Exit reset state

1.0000011 0x00 0x0 0x0 0 0 0 1 Idle. T0 Leak

1.2500011 0x00 0x0 0x0 0 0 0 1 Idle. T1 Leak

1.5000012 0xFF 0xA 0x2 0 0 0 1 Setup time
write. T0 Write.

1.5000013 0xFF 0xA 0x2 0 1 1 1 Write
0b11111111 to
row 0b1010,
column 0b10

1.5000014 0xFF 0xA 0x2 0 0 0 1 Hold time write.

1.5000015 0x00 0x0 0x0 0 0 0 1 Idle.

1.5000016 0x00 0x0 0x0 0 0 0 1 Idle. T1 Write

1.7500017 0x00 0xA 0x2 0 0 0 1 Setup time read.
T0 read.

1.7500018 0x00 0xA 0x2 1 1 0 1 Precharge

1.7500019 0x00 0xA 0x2 0 0 0 1 Put bit lines to
high impedance

1.7500020 0x00 0xA 0x2 0 0 1 1 enable writeline

1.7500021 0x00 0xA 0x2 1 0 1 1 Turn on
sense_amp

1.7500022 0x00 0xA 0x2 1 0 0 1 Disable writeline

1.7500023 0x00 0x0 0x0 0 0 0 1 idle

1.7500024 0x00 0x0 0x0 0 0 0 1 Idle T1 read.
Table 15: The stimulus applied to the TB_SRAM6T_64B_02 testbench.

Table 15 shows a sequence of stimulus applied to the input buses of the TB_SRAM6T_64B_02_STIM

cell, a part of the testbench showed in figure 31. Refer to section 5.3.1 for an explanation of the

signals. The clock frequency is 10MHz. The STIM cell simply passes the square wave signals

generated from the stimulus file, through a buffer. This is to give the signals a more realistic rise and

fall time. The T0 and T1 markers in the comments column indicate at which time interval the supply

current was integrated over, with T0 being the start time. For details, see section 5.6.2.

6. Results

6.1 Simulation results
Memory system Leakage current [pA] Write Energy [pJ] Read energy [pJ]

REFDFF 44.4 + 390.3 = 434.7 198 + 104 = 302 162.6 + 0 = 162.6

C2MOS DFF 44.4 + 53.8 = 98.17 183 + 91.3 = 274.5 162.6+ 0 = 162.6

6T SRAM 22 + 18.4 + 31.7 = 72.3 23.3 + 6.4 + 2.6 = 32.3 16.3 + 5.8 + 6.8 = 29.0
Table 16: Leakage currents and read/write energies of the three 64 byte memories

Table 16 shows the leakage currents and read/write energies of the three 64 byte memories in the

format of peripheral circuit contribution + cell array contribution + column circuitry contribution

(SRAM only) = total leakage current or total energy

50

Memory cell Leakage current per cell[fA] Write energy per cell[fJ] Read energy per cell[fJ]

REFDFF 762 203 0

C2MOS DFF 105 178 0

6T SRAM 35.9 12.5 11.3
Table 17: calculated leakage currents and read/write energies per cel

Table 17 shows the calculated leakage currents and read/write energies per cell, excluding

peripheral circuitry contributions, derived from the 64-Byte simulations.

6.2 Extrapolation results
In this section, the properties of the memory systems, without the state machine required to

perform reads and writes, are extrapolated using the calculations explained in section 5.4.

Figure 32: Predicted gate count (normalized area) as a function of memory size [Byte]

Bytes 64 128 256 512 1024 2048

REFDFF 4940 9904.5 19834.5 39694.5 79414.5 158854.5

KHAN_DFF 7750 15536.5 31098.5 62222.5 124470.5 248966.5

SRAM6T 3003 4747.848048 7633.5 12614.2 21457.5 37562.89
Table 18: Predicted gate count (normalized area) as a function of memory size [Byte]

Figure 32 and table 18 show the predictions of gate count, a normalized number representing chip

area, produced by the extrapolator calculations.

0

50000

100000

150000

200000

250000

300000

64 128 256 512 1024 2048

G
at

e
co

u
n

t

Bytes

Gate count vs memory size

REFDFF KHAN_DFF SRAM6T

51

Figure 33: Predicted leakage current as a function of memory size [Byte]

Bytes 64 128 256 512 1024 2048

REFDFF 4.65E-10 9.32951E-10 1.87E-09 3.74E-09 7.48429E-09 1.5E-08

KHAN_DFF 1.58E-10 3.18655E-10 6.4E-10 1.28E-09 2.56993E-09 5.14E-09

SRAM6T 6.3E-11 1.01445E-10 1.67E-10 2.8E-10 4.84628E-10 8.6E-10
Table 19: Predicted leakage current [A] as a function of memory size [Byte]

Figure 33 and table 19 show the predicted leakage current as a function of memory size. Corrections

to the leakage current of the C2MOS (KHAN_DFF) D-Flip-Flops discussed in section 5.4.2 are

included.

Figure 34: Predicted read energy as a function of memory size [Byte]

0.00E+00

2.00E-09

4.00E-09

6.00E-09

8.00E-09

1.00E-08

1.20E-08

1.40E-08

1.60E-08

64 128 256 512 1024 2048

Le
ak

ag
e

C
u

rr
en

t
[A

]

Bytes

Leakage current vs memory size

REFDFF KHAN_DFF SRAM6T

0

1E-09

2E-09

3E-09

4E-09

5E-09

6E-09

64 128 256 512 1024 2048

R
ea

d
 e

n
er

gy
 [

J]

Bytes

Read energy vs memory size

REFDFF KHAN_DFF SRAM6T

52

Bytes 64 128 256 512 1024 2048

REFDFF 1.63E-10 3.28259E-10 6.6E-10 1.32E-09 2.64748E-09 5.3E-09

KHAN_DFF 1.63E-10 3.28259E-10 6.6E-10 1.32E-09 2.64748E-09 5.3E-09

SRAM6T 2.91E-11 3.89242E-11 5.28E-11 7.25E-11 1.00303E-10 1.4E-10
Table 20: Predicted read energy [J] as a function of memory size [Byte]

Figure 34 and table 20 show the predicted read energy as a function of memory size. The predicted

read energy is simply the simulated read energy multiplied by the increase in peripheral circuitry

area. The REFDFF and KHAN_DFF have identical results.

Figure 35: Predicted write energy as a function of memory size [Byte]

Bytes 64 128 256 512 1024 2048

REFDFF 3.02E-10 5.03625E-10 9.07E-10 1.71E-09 3.32777E-09 6.56E-09

KHAN_DFF 2.89E-10 4.91025E-10 8.94E-10 1.70E-09 3.31517E-09 6.54E-09

SRAM6T 3.19E-11 4.27298E-11 5.8E-11 7.96E-11 1.10118E-10 1.53E-10
Table 21: Predicted write energy [J] as a function of memory size [Byte]

Figure 35 and table 21 show the predicted write energy as a function of memory size. The predicted

write energy is simply the simulated write energy multiplied by the increase in peripheral circuitry

area. The REFDFF and KHAN_DFF have nearly identical results.

7. Discussion
The discussion chapter of this report is divided into 5 parts. The first two sections discuss the

implementations of the D-Flip-Flop system and SRAM system. The third section discusses the

prediction/extrapolation formulas. The fourth section discusses the way the simulations were

performed. The fifth section discusses the results acquired from the simulations and extrapolation

formulas.

7.1 D-Flip-Flop implementation
In this section, please refer to section 5.2.3 and 5.2.4.

0

1E-09

2E-09

3E-09

4E-09

5E-09

6E-09

7E-09

64 128 256 512 1024 2048

W
ri

te
 e

n
er

gy
 [

J]

Bytes

Write energy vs memory size

REFDFF KHAN_DFF SRAM6T

53

The REFDFF cell: In order to have some basis of comparison, a standard D-Flip-Flop was chosen as a

reference memory cell. The DFCNQD1 (REFDFF) flip-flop was chosen because it was seemingly being

used by the company Disruptive Technologies for their own purposes. Any other cell from the

standard cell library could have been chosen as a reference D-Flip-Flop.

The C2MOS/KHAN_DFF cell: The C2MOS D-Flip-Flop was chosen for testing because it has no pass

transistor logic and has inverter loops driving every inner node. Pass transistor logic may cause

degraded logic. If an internal node is cut off by pass transistor logic, its voltage value will degrade

over time, causing short circuit power consumption (see section 4.7). The C2MOS flip flop may have

had unnecessarily large transistors. The large sizes of the transistors were chosen arbitrarily.

Reducing the widths on the transistors would make the flip flop consume less chip area, and might

make it consume less energy.

7.2 6T-SRAM implementation
In this section, please refer to section 5.3.

7.2.1 Sense amplifier

In this section, refer to section 5.3.5. The sense amplifier presented in this one of many possible

sense amplifier designs. [12] Presents a sense amplifier which is similar to the sense amplifier

presented in section 5.3.5 in that it is precharged to VDD on both sides of an inverter loop. The sense

amplifier presented in [12] uses a differential input pair. That means it takes its two inputs on the

gates of two NMOS transistors which are placed between two output nodes and ground. The NMOS

whose gate voltage is slightly higher will have a greater current IDS passing through it, discharging the

corresponding node faster than the other node. With the aid of the inverter loop, the output nodes

will quickly discharge and charge to either VSS or VDD respectively. At this point, the output is ready.

Figure 36: An alternative sense amplifier presented in [12]

54

In this paragraph, refer to section 5.3.5. The functionality of the sense amplifier presented in this

report is slightly different. Its output nodes are connected to the bit lines through NMOS pass

transistor. The voltage difference on the bit lines will cause one of the pass transistors to have a

greater IDS going to the bit lines, discharging one of the output nodes faster. This is inevitably slower,

as the output nodes are connected to large capacitances presented by the bit lines, and that would

drain a lot of the current that would otherwise be used to charge the output nodes. The advantage

of this design is that it greatly simplifies the process of using the output to drive the bit lines for a

rewrite, as the bit lines would be charged as soon as the pass transistors open. The minimum voltage

difference on the bit lines needed to ensure a correct read is not known, and should be examined.

Trying to measure a voltage difference which is too low would mean the output would not be

decided by the voltage difference on the bit lines, but would rather be decided by a differences in

drive strength and output node capacitances caused by fabrication errors.

A differential input pair sense amplifier (the alternative sense amplifier in figure 36 would require a

more complex timing scheme in order to rewrite to the SRAM cell. The following reason is

presented: Inverters are assumed to be the driving cells when charging the bit lines for a rewrite.

These inverters have to be disconnected from the bit lines during a measurement of voltage

difference, as leaving them to drive the bit lines would influence the measured voltage difference.

This requires an additional state, the rewrite state, which could only be entered once the sense

amplifier has made a decision on which output is the correct output. The extra state and timing

requirements for that state would increase the design complexity of the design of the state machine.

Avoiding design complexity can help reduce the area, design time, as well as the power consumption

and leakage current of a design. One problem with the sense amplifier presented in this report is

that it is slower. A slow sense amplifier will allow the output nodes to remain in an intermediate

voltage value between VDD and VSS (degraded logic) for longer. This may incur unwanted short

circuit power (See section 4.7) in either the sense amplifier or the SRAM cell, as the SRAM cell’s pass

transistors are open during a sense amplifier voltage difference measurement.

In the design presented in this report, the memory size is small enough that the bit lines present a

very low capacitance to ground. This means the SRAM cells themselves can pull the bit lines to

strong logic values (either VDD or VSS) within a read cycle, and one could use the voltage level on

the bit lines as an output. This means a sense amplifier is not needed in small memories. The sense

amplifier is included only for the purposes of studying the effect it has on chip area and leakage

current. The validity of the sense amplifier presented in this paper was not verified.

7.2.2 Row/Column ratio

In the implementation described in this report, there are 4 rows per column. This number is

arbitrary; any ratio could be chosen. The reason this number was chosen was because during the

design process, memory size expansion had to stop at 64 Bytes because of simulation time

considerations. At that point, with the given hierarchical structure, the only structures which could

be constructed without severely lengthening the design time required were either 32 rows/2

columns, 16 rows/4 columns. 4 rows per column was chosen rather than 16 rows per column.

Choosing a ratio with a higher number of rows per column decreases area overhead, as each column

needs 8 bit-line drivers and 8 sense amplifiers. If there are many rows per column, the amount of

rows will increase faster with increasing memory sizes than if there were few rows per column.

55

More rows mean longer bit lines, and longer bit lines means a greater bit line capacitance. Refer to

section 7.2.3 for an explanation why bit line capacitance might become an issue. Custom designs

with a fixed amount of rows are also possible.

7.2.3 Floating charge memory corruption

When a specific cell is accessed for a read or a write, its pass transistors are opened by enabling the

corresponding WL signal. A problem may arise as the pass transistors in all cells in the same row are

also opened at the same time. When a read or write is finished, the bit lines are disconnected

completely from either VDD or VSS. The bit lines will slowly discharge through leakage currents, but

when a writeline is enabled immediately after a read or write, the floating charge on the bit line may

be enough to flip the value in the cell. The point at which the capacitance of the bit line is big enough

for this to happen is unknown. This is not a problem for small memory sizes (assumption: 5MB and

perhaps even much more), when the bit lines have such a low capacitance to ground that the SRAM

cell will pull the charge on the bit lines to either VSS or VDD before the cells internal capacitance is

charged beyond Vth, potentially flipping the cell. The cells whose internal capacitances have not

been charged beyond Vth will eventually rewrite themselves once the writeline_enable signal goes

low, owing to the inverter loop inside the SRAM cell. Further and more precise explanations of

charge sharing is beyond the scope of this report, and a large part of the reason the system works is

because of the inherent read stability explained in section 5.3.6.

A solution that might solve this problem for much larger memories is to first precharge all bit lines in

the entire memory whenever a read or write is performed, and then activate the sense amplifiers on

every bit line pair to rewrite every bit line pair according to the value stored in the opened SRAM

cell. This would require a redesign of the column circuitry, but the amount of complexity in the

column circuitry would not increase by much, and therefore the current design is still fairly

representative of larger memory systems.

7.3 Extrapolator implementation

7.3.1 Address bus buffers

In this section, refer to sections 5.2.2 and 5.3.2 and 5.4.6. When the memory size increases, the

number of bits needed to address the memory increases. As the address bus gets wider and wider,

additional buffers will be required in order to drive the address buses on both the 6T-SRAM and the

DFF circuits. In the calculations, a static bus size was assumed, as a dynamic bus size would

complicate the mathematics of the extrapolator, and the additional buffers would not represent a

significant portion of the peripheral circuitry.

7.3.2 Multiplexer/demultiplexer fan-outs

In this section, refer to sections 5.2.2, 5.3.2 and 5.4.6. In the extrapolator calculations, it is assumed

that only 1-2 and 2-1 demultiplexers and multiplexers would be used to decode the buses and

signals outside the 64-Byte cell. Inside 64-Byte cell, 1-8 and 8-1 demultiplexers and multiplexers are

used to save area, power and leakage current, and this could also be done outside the 64-Byte cell.

This means that the extrapolator predicts a larger area, leakage current and read and write power as

a result of this.

56

7.3.3 Leakage current prediction

In this section, refer to section 5.4.2. In the design of the extrapolator, the leakage current is

modelled as a sum of the average leakage currents of the cells in the TSMC standard cell library as

well as any bottom-level custom designs. For the cells in the standard cell library, an assumption that

is made is that the input to every cell is either a strong logic ‘1’ or a strong logic ‘0’. This is not

necessarily true, voltage levels on the outputs of some cells may be degraded (weak logic). One

reason the voltage may be degraded is if the cell which is driving the input has an insufficient drive

strength. When the logic value on the input of a cell is degraded, some, or all, transistors in the cell

have a gate voltage which is not quite VDD or VSS. This may incur additional leakage current.

Memory system type REFDFF KHAN_DFF SRAM6T

Predicted leakage current [pA] 465 129 63

Simulated leakage current [pA] 434 98 72

Error 7.1% 31.6% -12.5%
Table 22: A comparison of the predicted and simulated leakage currents of the three memory systems.

Table 22 shows a comparison of the simulated leakage current results versus the predicted leakage

currents. Corrections to the leakage current of the C2MOS (KHAN_DFF) D-Flip-Flops referenced in

section 5.6.3 are not included. The formula used to calculate error is:

Error =
(predicted leakage current − simulated leakage current)

simulated leakage current
∗ 100

Formula 9: The formula used to compute the leakage current prediction error

One source of error is the aforementioned degraded logic issue. Another source of error is the fact

that some of the buffers which are predicted to be part of the design once expanded, are not a part

of the simulated implementation, and the fault lies with the designer. This would mean that the

predicted leakage current would include the leakage current from additional buffers. The effect

would be most significant in the C2MOS (KHAN_DFF) system, as the leakage current contribution

from the cells compared to the peripheral circuitry is a lot smaller compared to the REFDFF system.

This effect is only valid for memory sizes close to the simulated memory system’s size.

When considering the error in predicting the amount of buffers (see above paragraph), inaccuracies

caused by the assumptions stated in section 5.4 and the error values computed in table 22, it seems

that the memory circuits’ leakage current can be predicted with enough accuracy to at least give the

employees at Disruptive Technologies a rough estimate of how much leakage current would be

incurred by the different memory systems. A sample size of N = 1 is however not adequate for a

statistical verification, and the correctness of the extrapolator can only be implied by understanding

the implemented system.

7.3.4 State machine

The state machine needed to perform reads and writes in the memory systems was not

implemented. One reason for this was because of design time limitations. Another reason was that

the size of the state machine does not grow very fast when the size of the memory circuit increases,

and that the contribution it has to the total area, leakage current and read and write energy will be

57

negligible at large memory sizes (larger than 128 Bytes). There is however a difference in size of the

two state machines, the D-Flip-Flop state machine and the SRAM state machine. Implementing these

or predicting their sizes would allow the prediction of the ‘break-even point’, the memory size at

which a D-Flip-Flop memory system has the same area as a 6T-SRAM memory system, which is an

important metric when considering whether to use an SRAM system or a D-Flip-Flop system.

Because the speed of the circuit is of no concern in this application, the SRAM system was

implemented with an extremely simplified read and write timing sequence. This means the state

machine required to perform reads and writes on the SRAM system in this report will be far less

complex than the state machine required in high-performance systems. This leads to an educated

guess that the break-even point might be as low as 32 bytes.

7.3.5 Read and Write energy prediction

The assumption that read and write energies are proportional to chip area is wrong. There is

probably a certain correlation between area and read and write energy, because signals have to be

propagated through the multiplexer logic. A larger area of logic means the signals propagate to a

greater number of logic gates. The exact correlation between logic area and signal propagation

energy is beyond the scope of this report. The purpose predictions that were made for read and

write energy in the results section is mostly to show that for an increasing memory size, the

difference between the read and write energies of a D-Flip-Flop systems and a 6T-SRAM system

increase. This is because the D-Flip-Flop peripheral circuitry increases in size faster than the 6T-

SRAM peripheral circuitry.

Read and write energy extrapolation for the SRAM system

Extrapolation of read and write energies is likely very inaccurate at larger memory sizes. The effect

of opening the WL pass transistors of all cells connected to the same WL when reading or writing is

unknown. There will likely be an increase in the read and write energy contribution from the cell

array when increasing the cell array size, even though only one cell is ever written to or read at the

same time. An analysis of the energy consumption of the SRAM cell array as a whole is beyond the

scope of this report.

7.4 Method of simulation

7.4.1 Memory state

During the simulation, the contents of the REFDFF memory system was set to the worst case

memory state for leakage current and read and write energy. The leakage current predictions for the

KHAN_DFF/C2MOS memory system was scaled up to ensure a worst case result. The reason behind

simulating the worst case memory state is to ensure that the results show qualities as close as

possible to the qualities of the physical implementation. The physical implementation will always

have a larger leakage current than the transistor level simulations, and will most likely have a larger

read and write energy consumption.

The SRAM memory system was assumed to have approximately the same leakage current

independent of memory state. The effect the SRAM-Cells have on the voltage levels of the bit lines

was not simulated. Having every cell retain a logic value ‘0’ may cause the bit lines to have a

different voltage level than if half the cells stored a logic value ‘1’. This is because there are leakage

currents through the pass transistors which connect the SRAM cells to the bit lines. The effect this

58

has on leakage currents inside the SRAM cells is probably negligible, and the extra leakage current

through to the bit lines is accounted for in the separate measurement of column supply currents.

Measuring the worst case leakage current for flip-flops, and comparing that to a memory system

with an (assumed) unvarying leakage current might skew the data in favor of the memory system

with a stable leakage current (SRAM). To mitigate this, one could measure the average leakage

current instead.

7.4.2 Clock Frequency:

The clock frequency during simulation was set to 10MHz. This is a rather slow clock frequency, but as

energy consumption is measured as an energy per operation metric rather than power (Watt), clock

frequency does not matter much. The only situation in which the clock frequency could matter,

would be if the clock ticks were so frequent, that some internal nodes in the logic circuitry would not

settle completely within one clock period. At this point, the circuit is close to non-functional as a

result of approaching the absolute maximum clock frequency. Setting the clock frequency to this

value is not viable for the type of design presented in this report.

7.4.3 SRAM bit line model:

In the simulations presented in this report, a model of the capacitance and resistance of the bit lines

was not applied as a part of the SRAM memory system. The bit lines present a significant

capacitance beyond the drain-bulk capacitance modelled in the transistors. The bit lines also present

a resistance per length of wire, which can grow to be significant when the bit lines grow longer and

longer with increasing memory size. Increased bit line capacitance and resistance may lead to

increased read and write energy consumption by slowing down the sense amplifier (see section

7.2.1). The added capacitance and resistance of the bit lines is negligible for small memory sizes

(assumption: less than 512B).

7.5 Results
Simulation results: Table 16 shows that clearly, in all cases, the 6T-SRAM system without an

implemented state machine is superior to both D-Flip-Flops. The SRAM system achieves a leakage

current that is 83% lower than that of the Reference D-Flip-Flop system, and 26% lower than that of

the C2MOS Flip-Flop system. It achieves a write energy that is 89% lower than that of the reference

D-Flip-Flop system, and 88% lower than that of the C2MOS flip-flop system. It achieves a read energy

that is 82% lower than that of the flip-flop systems.

Table 16 shows that during a read, the column circuitry draws a lot of power. This is probably

because of the sense amplifier which is enabled during a read. By choosing a different sense

amplifier design, the read energy consumption can quite possibly be reduced.

Extrapolation results: The extrapolation graphs (figure 32 through 35) show that for all the memory

systems, the gate count (area), leakage current and read and write energy grow exponentially with

an increasing memory size. The SRAM memory shows a much slower rate of growth compared to

the two D-Flip-Flop systems, and therefore the difference between the SRAM and D-Flip-Flop

systems grows exponentially in favor of the SRAM system.

59

As previously explained in section 7.3.5, the read and write energies predictions are highly

unreliable. As implied in section 7.3.1, 7.3.2 and 7.3.3, the gate count and leakage current

predictions are somewhat reliable.

7.6 Final system comparisons

In this section, the memory systems are compared to each other on the basis of the five design

considerations presented in section 5.1.

When the memory size grows to sizes greater than 64Bytes, the SRAM system is without doubt the

best design option for the purposes of minimizing leakage current, area and read and write energy.

The SRAM system fails to satisfy the fifth and least prioritized design consideration, namely design

time. An SRAM memory system requires considerably more effort to design than a D-Flip-Flop

system, as the interaction between the components of an SRAM system form a complicated system

requiring comprehensive analysis.

As stated in section 7.3.4, it is impossible to determine the exact characteristics of the memory

systems when the required state machine and I2C slave circuit has not been designed. The focus on

simplicity when designing the SRAM system helped reduce the size of the SRAM system considerably

at smaller memory sizes, and an estimate of when the areas of the SRAM system and D-Flip-Flop

systems are equal is at a memory size of 32 bytes. At a memory size of 64 Bytes, the SRAM system

without a state machine/I2C slave circuit had an area that was 39% lower than the REFDFF D-Flip

Flop system.

8. Conclusion
The simulations show that the 6T-SRAM memory system, without the necessary state machine, is

clearly superior in terms of area, leakage current and read and write energy consumption. The

implementation or size prediction of the required state machines and I2C slave circuits is needed to

determine the ‘area break-even point’, but an educated guess is that the area break-even point is at

a memory size of 32 Bytes.

The extrapolations of area, leakage current and read and write energy show that when memory sizes

increase, the SRAM system becomes more and more favorable as a memory system alternative.

8.1 Future work

8.1.1 Additional memory types

Only two different types of memory were considered in this report, several others could prove to be

suitable in the given 0.18µm technology.

- RRAM could possibly be implemented on a standard CMOS technology chip [13].

Investigating the feasibility of RRAM in a low leakage low power application would be very

useful.

- Additional D-Flip-Flops could be simulated in order to select the most suitable D-Flip-Flop for

a low leakage, low power application.

- D-Latches could be investigated as a possibility in a low performance application.

- 4-transistor leaking SRAM could prove to be feasible in a low leakage application.

60

8.1.2 Peripheral circuitry implementation

The peripheral circuitries of the SRAM and DFF memory systems are far from optimal. A number of

things can be done to improve them:

- Buffer fan-outs can be replaced with inverter fan-outs, as long as an even number of

inverters are ensured.

- The demultiplexers and multiplexer fan-outs can be optimized drastically. One example

would be to use negating demultiplexers, which consume less area and leakage current.

- Synthesizing the multiplexing and demultiplexing circuits could reduce the area of the

peripheral circuitry, as well as leakage current and read and write power.

8.1.3 SRAM sense amplifier

- The validity of the sense amplifier proposed in this report needs to be ensured.

- The required voltage difference on the bit lines needed to ensure a correct read for the

proposed sense amplifier should be examined before the sense amplifier is implemented in

a physical design.

8.1.4 Extrapolation

- In order to more accurately represent the sizes and leakage currents of the memory

systems, the state machine required for reading and writing needs to be implemented. This

state machine would most likely take the form of an I2C slave circuit. Once implemented, or

its size predicted, the ‘break even’ point (the point at which the flip flop system is equal in

size to the SRAM system) can be determined.

- The mathematical models for buffer and demultiplexer/multiplexer fan-outs should be

refined to cover an increasing address bus size.

- A prediction of the read and write energy consumption of the SRAM memory cell array

would be useful. Specifically, one should look at how the read and write energy responds to

an increase in bit line capacitance when the memory size grows to 1kB and beyond.

- The energy consumption of a multiplexer/demultiplexer fan-out increases non-linearly with

the area of the fan-out. This ‘signal propagation energy’ as a function of multiplexer fan-out

area could be modelled in order to predict read and write energies more accurately.

61

9. References:
[1] Liknes: Low Leakage Memory. Unpublished. Trondheim, 2015

[2] Disruptive Technologies. http://www.disruptive-technologies.com contact: Bjørnar Hernes,

bjornar@disruptive-technologies.com

[3] Jianjun, Yihe: A low clock swing, power saving and generic technology based D flip-flop with

single power supply. 7th International Conference on ASIC, 2007

[4] Yang, Kim: A Low-Power SRAM Using Hierarchical Bit Line and Local Sense Amplifiers, IEEE

JOURNAL OF SOLID-STATE CIRCUITS, VOL. 40, NO. 6, JUNE 2005

[5] Luo, Jimson, Rishad, Dhiraj: Low Power and Robust Binary Tree SRAM Design for Embedded

Systems, Electronic System Design (ISED), International Symposium on, 2013

[6] Jaeger, Blalock: Microelectronic circuit design, fourth edition, chapter 6.6. McGraw-Hill, 2011

[7] Uyemura “Introduction to VLSI Circuits and Systems”, Wiley 2001

[8] Khan, Beg: A New Area and Power Efficient Single Edge Triggered Flip-Flop Structure for Low Data

Activity and High Frequency Applications, Innovative Systems Design and Engineering, Vol.4, 2013

[9] Kumari, Anand, Bhattacharya: Comparative Study of different Flip Flop Cells for WSN

Applications, International Journal of Computer Applications, March 2014

[10] Daya, Jiang, Piotr Nowak, Sharief. Synchronous 16x8 SRAM Design. Electrical Engineering

Department, University of Florida

[11] Adams, Essex: Calculus: A Complete Course, 8th Edition, Pearson, 2013

[12] Murugeswari, Anusha, Venkateshwarlu, Bhaskar, Venkataramani: A Wide Band Voltage Mode

Sense Amplifier Receiver for High Speed Interconnects. TENCON 2008 - 2008 IEEE Region 10

Conference, 2008

[13] Sheu, Chiang, Lin, Lee, Chen, Chen, Wu, Chen, Su, Kao, Cheng, Tsai:A 5ns Fast Write Multi-Level

Non-Volatile 1 K bits RRAM Memory with Advance Write Scheme, Symposium on VLSI Circuits, 2009

[14] Amuthavalli, Gunasundari: Analysis and Design of Subthreshold Leakage Power-aware Ripple

Carry Adder at Circuit-level Using 90nm Technology, International Conference on Intelligent

Computing, Communication & Convergence, 2015

http://www.disruptive-technologies.com/

62

Appendix A: Simulations supporting the choice of initial memory

state for the D-Flip-Flop system
The memory state cases were:

1) All logic zeros, that is 0x00 stored in every byte

2) All logic ones, that is 0xFF stored in every byte

3) Alternating ones and zeros: 0x55 stored in every byte

To measure the write energy, 0xFF is written to a byte containing 0x00, 0x00 is written to a byte

containing 0xFF, and 0xAA is written to a byte containing 0x55. This is based on the assumption that

flipping a bit from either 0 to 1 or from 1 to 0 requires more energy than not flipping a bit.

To measure read energy, the address which was previously written is read.

Results REFDFF:

Data stored in all bytes 0x00 0xFF 0x55

Leakage current [pA] 4.9 + 48.8 = 53.7 8.6 + 51.1 = 59.7 6.8 + 50.0 = 56.7
Table 23: Leakage currents of an 8 byte memory utilizing reference flip flops (REFDFF)

Format: peripheral circuit leakage current + cell array leakage current = total leakage current

Data stored in all bytes 0x00 0xFF 0x55

Write energy [pJ] 10.0 + 16.2 = 26.2 5.8 + 3.5 = 9.3 7.9 + 9.8 = 17.8

Read energy [pJ] 5.3 + 0 = 5.3 5.2 + 0 = 5.2 5.2 + 0 = 5.2
Table 24: Read and write energy of an 8 byte memory utilizing reference flip flops (REFDFF)

Format: peripheral circuit energy + cell array energy = total energy

Results C2MOS DFF / KHAN_DFF:

Data stored in all bytes 0x00 0xFF 0x55

Leakage current [pA] 4.9 + 6.7 = 11.62 8.6 + 10.4 = 19.0 6.8 + 8.5 = 15.3
Table 25: Leakage currents of an 8 byte memory utilizing C2MOS Flip Flops (KHAN_DFF)

Format: peripheral circuit leakage current + cell array leakage current = total leakage current

Data stored in all bytes 0x00 0xFF 0x55

Write energy [pJ] 8.2 + 12.8 = 21.2 6.3 + 1.0 = 7.3 7.3 + 6.9 = 14.24

Read energy [pJ] 5.3 + 0 = 5.3 5.2 + 0 = 5.2 5.2 + 0 = 5.2
Table 26: Read and write energy of an 8-byte memory utilizing reference C2MOS Flip Flops (KHAN_DFF)

Format: peripheral circuit energy + cell array energy = total energy

63

Appendix B: Stim and Measure cell schematics

Figure 37: The TB_SIXTYFOURBYTE_REFDFF_01_STIM cell

Figure 38: The TB_SIXTYFOURBYTE_REFDFF_01_MEASURE cell

64

Figure 39: The TB_SRAM6T_64B_02_STIM cell.

65

Figure 40: The TB_SRAM6T_64B_02_MEASURE cell

66

Appendix C: MATLAB scripts used to generate ocean and stimulus

files

D-Flip-Flop stim script
function [leak_start, leak_end, write_start, write_end, read_start,

read_end] = writeStimFile_DFFRAM_64B(filename)
%generates a STIM file for use in Kai Likne's testbenches of a D-flip-flop
%64 byte
%% constants and initialization:
hier = '0';
tunit = 'ns';
trise = '0.001' ; %100ps falltime/risetime
tfall = '0.001' ;
vih = '3';
vil = '0';
period = 100; %10Mhz clock freq, 100ns period
wait_time = 1000000000; %1 second wait time to measure leak

radix_data = '44';
radix_address = '24';
radix_store = '1';
radix_cdn = '1';

time = '000000000000';
time_amount_of_digits = length(time); %has to be 12
maxtime = 10^(time_amount_of_digits);
randomdata='00';
address_string='00';

%% start writing file
fileID = fopen(filename,'w');

fprintf(fileID,'radix\n');
fprintf(fileID,'+ %s %s %s %s\n', radix_data, radix_address, radix_store,

radix_cdn);
fprintf(fileID,'\nio\n');
fprintf(fileID,'+ i i i i\n\n');
fprintf(fileID,'hier %s\ntunit %s\ntrise %s\ntfall %s\nvih %s\nvil %s\n\n',

hier, tunit, trise, tfall, vih, vil);
fprintf(fileID,'\nvname\n+DATA_BUS_VECTOR<[7:0]> ADDRESS_VECTOR<[5:0]>

STORE_VECTOR CDN_VECTOR\n\n');

fprintf(fileID,'\n\n\n; Initializing\n\n');
fprintf(fileID,';time\t\tdata\tad\tst\tcdn\n');
fprintf(fileID,'%s\t%s\t%s\t0\t0\t; Reset

state\n',time,randomdata,address_string); %enter reset state
time = sprintf('%012d',str2num(time)+period); %timestep one clock period
fprintf(fileID,'%s\t%s\t%s\t0\t1\t; deactivate reset

state\n',time,randomdata,address_string);
time = sprintf('%012d',str2num(time)+period*10); %timestep 2 clock periods

%% measure leakage current
time = sprintf('%012d',str2num(time)+wait_time); %timestep 1 second to

measure leak

67

leak_start = time;
time = sprintf('%012d',str2num(time)+ceil(wait_time/4)); %timestep 0.25

seconds
leak_end = time;
time = sprintf('%012d',str2num(time)+period); %timestep one clock period

%% measure write energy

fprintf(fileID,'\n\n\n; Start measuring write energy\n\n');
fprintf(fileID,';time\t\tdata\tad\tst\tcdn\n');
time = sprintf('%012d',str2num(time)+ceil(wait_time/4)); %timestep 0.25

seconds

write_start = time;

address = '0A' ;
data = 'FF';
fprintf(fileID,'%s\t%s\t%s\t0\t1\t; Setup time\n',time,data,address);
time = sprintf('%012d',str2num(time)+period); %timestep one clock period
fprintf(fileID,'%s\t%s\t%s\t1\t1\t; Write %s to Address

%s\n',time,data,address,data,address);
time = sprintf('%012d',str2num(time)+period); %timestep one clock period
fprintf(fileID,'%s\t%s\t%s\t0\t1\t; hold time\n',time,data,address);
time = sprintf('%012d',str2num(time)+period); %timestep one clock period

fprintf(fileID,'%s\t00\t00\t0\t1\t; address and data are 0 when

idle\n',time);
time = sprintf('%012d',str2num(time)+period); %timestep one clock period

write_end = time;

%% measure read energy
fprintf(fileID,'\n\n\n; Start measuring read energy\n\n');
fprintf(fileID,';time\t\tdata\tad\tst\tcdn\n');
time = sprintf('%012d',str2num(time)+ceil(wait_time/4)); %timestep 0.25

seconds

address = '0A' ;
data = '00'; %N/A

read_start = time;

fprintf(fileID,'%s\t%s\t%s\t0\t1\t; measure read energy. start read at

address %s\n',time,data,address,address);
time = sprintf('%012d',str2num(time)+period); %timestep one clock period
fprintf(fileID,'%s\t00\t00\t0\t1\t; read end address and data are 0 when

idle\n',time);
time = sprintf('%012d',str2num(time)+period); %timestep one clock period
read_end = time;

%% print out stats and close file
fprintf(fileID,'\n\n\n; leak_start = %s \t leak_end = %s \n; write_start =

%s \t write_end = %s\n; read_start = %s \t read_end = %s\n',leak_start,

leak_end, write_start,write_end,read_start,read_end);
fclose(fileID);
end

68

D-Flip-Flip flop ocean script
function writeOceanScript_64B(filename, leak_start, leak_end, write_start,

write_end, read_start, read_end)
%generates an OCEAN file for use in Kai Likne's testbenches of a D-flip-

flop
%REFDFF
%64 byte

%% leakage currents
fileID = fopen(filename,'w');
fprintf(fileID,'axlOutputResult("-----" "--- Leakage Currents ---")\n\n');

fprintf(fileID,'leak_peripheral =

average(clip(IT("/I_PERIPHERAL_PROBE/PLUS") %sn %sn

))\n',leak_start,leak_end);
fprintf(fileID,'leak_cells = average(clip(IT("/I_CELLS_PROBE/PLUS") %sn %sn

))\n',leak_start,leak_end);
fprintf(fileID,'leak_total = leak_peripheral + leak_cells\n');

fprintf(fileID,'\naxlOutputResult(leak_peripheral "leak_peripheral

(A)")\n');
fprintf(fileID,'axlOutputResult(leak_cells "leak_cells (A)")\n');
fprintf(fileID,'axlOutputResult(leak_total "leak_total (A)")\n');

%% write energy
fprintf(fileID,'\naxlOutputResult("-----" "--- Write energy ---")\n\n');

fprintf(fileID,'write_energy_peripheral =

integ(clip(IT("/I_PERIPHERAL_PROBE/PLUS") %sn %sn)) *

VAR("VDD_VAL")\n',write_start,write_end);
fprintf(fileID,'write_energy_cells = integ(clip(IT("/I_CELLS_PROBE/PLUS")

%sn %sn)) * VAR("VDD_VAL")\n',write_start,write_end);
fprintf(fileID,'write_energy_total = write_energy_peripheral +

write_energy_cells\n');

fprintf(fileID,'\naxlOutputResult(write_energy_peripheral

"write_energy_peripheral (J)")\n');
fprintf(fileID,'axlOutputResult(write_energy_cells "write_energy_cells

(J)")\n');
fprintf(fileID,'axlOutputResult(write_energy_total "write_energy_total

(J)")\n');

%% read energy
fprintf(fileID,'\naxlOutputResult("-----" "--- Read energy ---")\n\n');

fprintf(fileID,'read_energy_peripheral =

integ(clip(IT("/I_PERIPHERAL_PROBE/PLUS") %sn %sn)) *

VAR("VDD_VAL")\n',read_start,read_end);
fprintf(fileID,'read_energy_cells = integ(clip(IT("/I_CELLS_PROBE/PLUS")

%sn %sn)) * VAR("VDD_VAL")\n',read_start,read_end);
fprintf(fileID,'read_energy_total = read_energy_peripheral +

read_energy_cells\n');

fprintf(fileID,'\naxlOutputResult(read_energy_peripheral

"read_energy_peripheral (J)")\n');
fprintf(fileID,'axlOutputResult(read_energy_cells "read_energy_cells

(J)")\n');

69

fprintf(fileID,'axlOutputResult(read_energy_total "read_energy_total

(J)")\n');

fclose(fileID);
end

6T-SRAM stim script
function [leak_start, leak_end, write_start, write_end, read_start,

read_end] = writeStimFile_SRAM6T_64B(filename)
%generates a STIM file for use in Kai Likne's testbenches of a 6T SRAM
%64 byte circuit
%% constants and initialization:
hier = '0';
tunit = 'ns';
trise = '0.001' ; %100ps falltime/risetime
tfall = '0.001' ;
vih = '3';
vil = '0';
period = 100; %10Mhz clock freq, 100ns period
wait_time = 1000000000; %1 second wait time to measure leak

radix_data = '44';
radix_row_address = '4';
radix_col_address = '2';
radix_read = '1';
radix_write = '1';
radix_WL_ENABLE = '1';
radix_cdn = '1';

time = '000000000000';
time_amount_of_digits = length(time); %has to be 12
maxtime = 10^(time_amount_of_digits);
data='00';
row_address='0';
col_address='0';

%% start writing file
fileID = fopen(filename,'w');

fprintf(fileID,'radix\n');
fprintf(fileID,'+ %s %s %s %s %s %s %s\n', radix_data, radix_row_address,

radix_col_address, radix_read, radix_write, radix_WL_ENABLE, radix_cdn);
fprintf(fileID,'\nio\n');
fprintf(fileID,'+ i i i i i i i\n\n');
fprintf(fileID,'hier %s\ntunit %s\ntrise %s\ntfall %s\nvih %s\nvil %s\n\n',

hier, tunit, trise, tfall, vih, vil);
fprintf(fileID,'\nvname\n+DATA_BUS_VECTOR<[7:0]> ROW_ADDRESS_VECTOR<[3:0]>

COL_ADDRESS_VECTOR<[1:0]> READ_VECTOR WRITE_VECTOR WL_ENABLE_VECTOR

CDN_VECTOR\n\n');

fprintf(fileID,'\n\n\n; Initializing\n\n');
fprintf(fileID,';time\t\tdata\trow\tcol\trd\twrt\twl\tcdn\n');
fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ; Reset

state\n',time,data,row_address,col_address,'0','0','0','0'); %enter reset

state
time = sprintf('%012d',str2num(time)+period); %timestep one clock period
fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ; exit out of reset

state\n',time,data,row_address,col_address,'0','0','0','1');

70

time = sprintf('%012d',str2num(time)+period*10); %timestep 2 clock periods

%% measure leakage current
time = sprintf('%012d',str2num(time)+wait_time); %timestep 1 second to

measure leak
 leak_start = time;
 time = sprintf('%012d',str2num(time)+ceil(wait_time/4)); %timestep 0.25

seconds
 leak_end = time;
time = sprintf('%012d',str2num(time)+period); %timestep one clock period

%% measure write energy

fprintf(fileID,'\n\n\n; Start measuring write energy\n\n');
fprintf(fileID,';time\t\tdata\trow\tcol\trd\twrt\twl\tcdn\n');
time = sprintf('%012d',str2num(time)+ceil(wait_time/4)); %timestep 0.25

seconds

write_start = time;

row_address = 'A' ;
col_address = '2' ;
data = 'FF';

fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ; setup time

\n',time,data,row_address,col_address,'0','0','0','1');
time = sprintf('%012d',str2num(time)+period); %timestep one clock period
fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ; turn on write and wl for

selected row \n',time,data,row_address,col_address,'0','1','1','1');
time = sprintf('%012d',str2num(time)+period); %timestep one clock period
fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ; hold time

\n',time,data,row_address,col_address,'0','0','0','1'); % TODO MAY NEED TO

TURN OFF WRITELINE BEFORE turning off others, probably not
time = sprintf('%012d',str2num(time)+period); %timestep one clock period
row_address = '0' ; %idle
col_address = '0' ;
data = '00';
fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ; idle

\n',time,data,row_address,col_address,'0','0','0','1');
time = sprintf('%012d',str2num(time)+period); %timestep one clock period

write_end = time;

%% measure read energy
fprintf(fileID,'\n\n\n; Start measuring read energy\n\n');
fprintf(fileID,';time\t\tdata\trow\tcol\trd\twrt\twl\tcdn\n');
time = sprintf('%012d',str2num(time)+ceil(wait_time/4)); %timestep 0.25

seconds

fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ;

\n',time,data,row_address,col_address,'0','0','0','1');
time = sprintf('%012d',str2num(time)+period); %timestep one clock period

row_address = 'A' ;
col_address = '2' ;
data = '00';

71

read_start = time;

fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ; set addressess

\n',time,data,row_address,col_address,'0','0','0','1');
time = sprintf('%012d',str2num(time)+period); %timestep one clock period
fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ; precharge

\n',time,data,row_address,col_address,'1','1','0','1');
time = sprintf('%012d',str2num(time)+period); %timestep one clock period
fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ; disable precharge, WAIT

WITH WRITELINES to avoid writing over

values\n',time,data,row_address,col_address,'0','0','0','1');
time = sprintf('%012d',str2num(time)+period); %timestep one clock period
fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ;open

writeline\n',time,data,row_address,col_address,'0','0','1','1');
time = sprintf('%012d',str2num(time)+period); %timestep one clock period
fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ; turn on read to enable

sense amp\n',time,data,row_address,col_address,'1','0','1','1');
time = sprintf('%012d',str2num(time)+period); %timestep one clock period
fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ; turn off writeline, data

is being latched at this clock

cycle\n',time,data,row_address,col_address,'1','0','0','1');
time = sprintf('%012d',str2num(time)+period); %timestep one clock period
row_address = '0' ;
col_address = '0' ;
data = '00';
fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ; return to

idle\n',time,data,row_address,col_address,'0','0','0','1');
time = sprintf('%012d',str2num(time)+period); %timestep one clock period

read_end = time;

fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ; idle

\n',time,data,row_address,col_address,'0','0','0','1');
time = sprintf('%012d',str2num(time)+period); %timestep one clock period
%% print out stats and close file
fprintf(fileID,'\n\n\n; leak_start = %s \t leak_end = %s \n; write_start =

%s \t write_end = %s\n; read_start = %s \t read_end = %s\n',leak_start,

leak_end, write_start,write_end,read_start,read_end);
fclose(fileID);
end

6T-SRAM ocean script
function writeOceanScript_64B(filename, leak_start, leak_end, write_start,

write_end, read_start, read_end)
%generates an OCEAN file for use in Kai Likne's testbenches of a SRAM 64B
%circuit

%% leakage currents
fileID = fopen(filename,'w');
fprintf(fileID,'axlOutputResult("-----" "--- Leakage Currents ---")\n\n');

fprintf(fileID,'leak_peripheral =

average(clip(IT("/I_PERIPHERAL_PROBE/PLUS") %sn %sn

))\n',leak_start,leak_end);
fprintf(fileID,'leak_cells = average(clip(IT("/I_CELLS_PROBE/PLUS") %sn %sn

))\n',leak_start,leak_end);

72

fprintf(fileID,'leak_columns = average(clip(IT("/I_COLUMNS_PROBE/PLUS") %sn

%sn))\n',leak_start,leak_end);
fprintf(fileID,'leak_total = leak_peripheral + leak_cells +

leak_columns\n');

fprintf(fileID,'\naxlOutputResult(leak_peripheral "leak_peripheral

(A)")\n');
fprintf(fileID,'axlOutputResult(leak_cells "leak_cells (A)")\n');
fprintf(fileID,'axlOutputResult(leak_columns "leak_columns (A)")\n');
fprintf(fileID,'axlOutputResult(leak_total "leak_total (A)")\n');

%% write energy
fprintf(fileID,'\naxlOutputResult("-----" "--- Write energy ---")\n\n');

fprintf(fileID,'write_energy_peripheral =

integ(clip(IT("/I_PERIPHERAL_PROBE/PLUS") %sn %sn)) *

VAR("VDD_VAL")\n',write_start,write_end);
fprintf(fileID,'write_energy_cells = integ(clip(IT("/I_CELLS_PROBE/PLUS")

%sn %sn)) * VAR("VDD_VAL")\n',write_start,write_end);
fprintf(fileID,'write_energy_columns =

integ(clip(IT("/I_COLUMNS_PROBE/PLUS") %sn %sn)) *

VAR("VDD_VAL")\n',write_start,write_end);
fprintf(fileID,'write_energy_total = write_energy_peripheral +

write_energy_cells + write_energy_columns\n');

fprintf(fileID,'\naxlOutputResult(write_energy_peripheral

"write_energy_peripheral (J)")\n');
fprintf(fileID,'axlOutputResult(write_energy_cells "write_energy_cells

(J)")\n');
fprintf(fileID,'axlOutputResult(write_energy_columns "write_energy_columns

(J)")\n');
fprintf(fileID,'axlOutputResult(write_energy_total "write_energy_total

(J)")\n');

%% read energy
fprintf(fileID,'\naxlOutputResult("-----" "--- Read energy ---")\n\n');

fprintf(fileID,'read_energy_peripheral =

integ(clip(IT("/I_PERIPHERAL_PROBE/PLUS") %sn %sn)) *

VAR("VDD_VAL")\n',read_start,read_end);
fprintf(fileID,'read_energy_cells = integ(clip(IT("/I_CELLS_PROBE/PLUS")

%sn %sn)) * VAR("VDD_VAL")\n',read_start,read_end);
fprintf(fileID,'read_energy_columns =

integ(clip(IT("/I_COLUMNS_PROBE/PLUS") %sn %sn)) *

VAR("VDD_VAL")\n',read_start,read_end);
fprintf(fileID,'read_energy_total = read_energy_peripheral +

read_energy_cells + read_energy_columns\n');

fprintf(fileID,'\naxlOutputResult(read_energy_peripheral

"read_energy_peripheral (J)")\n');
fprintf(fileID,'axlOutputResult(read_energy_cells "read_energy_cells

(J)")\n');
fprintf(fileID,'axlOutputResult(read_energy_cells "read_energy_columns

(J)")\n');
fprintf(fileID,'axlOutputResult(read_energy_total "read_energy_total

(J)")\n');

fclose(fileID);
end

73

Average leak test ocean and stim script
function writeStimAndOceanFile_avgleaktest(filename)
%generates a STIM file for use in Kai Liknes' testbenches for measuring
%average leakage current of standard TSMC cells

%% constants and initialization:
hier = '0';
tunit = 'ns';
trise = '0.001' ; %100ps falltime/risetime
tfall = '0.001' ;
vih = '3';
vil = '0';
period = 100; %10Mhz clock freq, 100ns period
wait_time = 500000000; %0.5 second wait time to measure leak

time = '000000000000';
time_amount_of_digits = length(time); %has to be 12
maxtime = 10^(time_amount_of_digits);

%% intialize ocean file
ocean_fileID = fopen(strcat(filename,'.ocn'),'w');
fprintf(ocean_fileID,'axlOutputResult("-----" "--- Leakage Currents ---

")\n\n');

%% start writing file
fileID = fopen(strcat(filename,'.vec'),'w');

fprintf(fileID,'radix\n');
fprintf(fileID,'+ 1 1 1 1\n');
fprintf(fileID,'\nio\n');
fprintf(fileID,'+ i i i i\n\n');
fprintf(fileID,'hier %s\ntunit %s\ntrise %s\ntfall %s\nvih %s\nvil %s\n\n',

hier, tunit, trise, tfall, vih, vil);
fprintf(fileID,'\nvname\n+INPUT3 INPUT2 INPUT1 INPUT0\n\n');

fprintf(fileID,'\n\n\n; Initializing\n\n');
fprintf(fileID,';time\t\t\tin3\tin2\tin1\tin0\n');
fprintf(fileID,'%s\t\t%s\t%s\t%s\t%s ;\n',time,'0','0','0','0');
time = sprintf('%012d',str2num(time)+period); %timestep 1 clock period

for vector_value = 0:15
 vector = dec2bin(vector_value,4);

 in3 = vector(1);
 in2 = vector(2);
 in1 = vector(3);
 in0 = vector(4);

 %write stim part
 fprintf(fileID,'%s\t\t%s\t%s\t%s\t%s ;\n',time,in3,in2,in1,in0);

74

 time = sprintf('%012d',str2num(time)+wait_time);
 start = time;
 time = sprintf('%012d',str2num(time)+ 2* period);
 stop = time;
 time = sprintf('%012d',str2num(time)+ 2* period);

 %write ocean part
 fprintf(ocean_fileID,'average_%s = average(clip(IT("/I_PROBE/PLUS") %sn

%sn))\n',num2str(vector_value),start,stop);
 fprintf(ocean_fileID,'axlOutputResult(average_%s "average leak with

value %s (A)")\n\n', num2str(vector_value), num2str(vector_value));

end

%finish up ocean part
%fourinputs
fprintf(ocean_fileID,'axlOutputResult("-----" "--- Overall average leakage

currents ---")\n\n');
fprintf(ocean_fileID,'average_fourinputs = (average_0 ');
for j = 1:15
 fprintf(ocean_fileID,'+ average_%s ',num2str(j));
end
fprintf(ocean_fileID,')/16\n');
fprintf(ocean_fileID,'axlOutputResult(average_fourinputs "average leak with

four inputs (A)")\n\n');

%threeinputs
fprintf(ocean_fileID,'average_threeinputs = (average_0 ');
for j = 1:7
 fprintf(ocean_fileID,' + average_%s ',num2str(j));
end
fprintf(ocean_fileID,')/8 \n');
fprintf(ocean_fileID,'axlOutputResult(average_threeinputs "average leak

with three inputs (A)")\n\n');

%twoinputs
fprintf(ocean_fileID,'average_twoinputs = (average_0 ');
for j = 1:3
 fprintf(ocean_fileID,'+ average_%s ',num2str(j));
end
fprintf(ocean_fileID,')/4 \n');
fprintf(ocean_fileID,'axlOutputResult(average_twoinputs "average leak with

two inputs (A)")\n\n');

%oneinput
fprintf(ocean_fileID,'average_oneinput = (average_0 ');
for j = 1:1
 fprintf(ocean_fileID,'+ average_%s ',num2str(j));
end
fprintf(ocean_fileID,')/ 2\n');
fprintf(ocean_fileID,'axlOutputResult(average_oneinput "average leak with

one input (A)")\n\n');

fclose(ocean_fileID);
fclose(fileID);
end

75

Appendix D: Simulation snapshots implying the validity of the

memory systems

Figure 41: A byte containing 0xFF is being read in the REFDFF system

Figure 42: A byte containing 0xFF being read in the 6T-SRAM system

