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Abstract 
Three 64-byte memory systems were designed for a 0.18µm standard CMOS technology, one 6T-

SRAM system and two D-Flip-Flop systems. The leakage current, read energy and write energy of 

these systems were determined by simulation. A set of extrapolation formulas for area, leakage 

current, read energy and write energy were designed to determine the characteristics of the systems 

as the size of the memory increases. 

The simulations showed that the 64-Byte 6T-SRAM system had a 39% lower area, an 83% lower 

leakage current, an 89% lower write energy and an 82% lower read energy than the reference D-Flip-

Flop memory system. The extrapolation formulas predicted that as memory sizes increases, SRAM 

becomes more and more favorable in terms of area, leakage current, write energy and read energy. 
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Samandrag (Norwegian translation of abstract) 
Tre 64-byte minnesystem vart utvikla for ein 0.18µm standard CMOS teknologi, eit 6T-SRAM-

minnesystem og to D-Vippe-minnesystem. Lekasjestraumen, leseenergien og skriveenergien til desse 

minnesystema vart simulerte. Eit sett med ekstrapolasjonsformlar vart utvikla for å avgjere korleis 

desse trekka til minnesystema oppfører seg når minnestørrelsane auker. 

Simuleringane viste at 64-Byte 6T-SRAM-minnesystemet hadde eit 39% mindre brikkeområde, 83% 

lågare lekasjestraum, 89% lågare skriveenergi og 82% lågare leseenergi enn D-Vippe-minnesystemet. 

Ekstrapoleringsformlane føresåg at dersom minnestørrelsane auker, så blir brikkeområdet, 

lekasjestraumen, leseenergien og skriveenergien til SRAM-minnesystemet betre og betre i høve til D-

Vippe-minnessystemet. 

Problem description 
The following is a problem description taken from the NTNU DAIM system. The problem description 

is only partially representative of the focus of this dissertation.  

Ultra low leakage memory 

In ultra low power ICs, the leakage current is an important contributor to power dissipation. The 

leakage can be reduced by switching off power supplies to modules that are inactive. However, 

some memory is required to store the state of the system. Using non-volatile memory may in some 

cases not be power efficient. Using low leakage RAM is therefore preferred in some cases. 

The assignment will consist of the following tasks: 

•Study literature and identify solutions for low leakage memory 

•Investigate tradeoffs and compare the identified solutions 

•Select best approach and design key building blocks 

•Implementation of whole RAM 

•Layout 
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1. Preface 
This master’s dissertation is written for the Norwegian University of Science and Technology 

(NTNU) and Disruptive Technologies AS. Disruptive Technologies is a newly-started company that 

specializes in designing microchips for use in the Internet of Things industry. 

The work presented in this report was done in cooperation with Disruptive Technologies, and the 

memory system designs were designed to be compatible with the company’s choice of technology 

and design conventions. 

The main supervisor was Snorre Aunet (NTNU) <snorre.aunet@iet.ntnu.no>, and the main company 

contact was Bjørnar Hernes (Disruptive Technologies) <bjornar@disruptive-technologies.com>. 

The following sections are adapted from [1], a work by the same author: Section 3, 4.1, 4.2 and 4.3. 

The previous report might be requested by emailing the author at kaisemailaddress@gmail.com. 

2. Acknowledgement 
I would like to thank Bjørnar Hernes for being of great assistance in teaching me valuable lessons 

about the workings of the microchip industry, for helping me learn how to master the Cadence 

analog design suite, and for helping me proofread and tailor the implementation chapter of this 

dissertation. 

I would further like to thank Snorre Aunet for proofreading the dissertation on such a short notice. 

I would like to criticize Imran Ahmed Khan and Mirza Tariq Beg, the authors of [8], whose seemingly 

erroneous schematic cost me over 4 days of design time during the development phase. 

3. Introduction 
The Internet of Things (IoT) is a concept which is quickly gaining popularity and this causes the IC 

industry to gear towards designing microchips that are compatible with this concept. According to 

advocates of the Internet of Things concept [2], almost every physical object in use by people will 

eventually be connected to the internet. Microchips are designed to fit into even the most trivial 

applications such as clothes hangers. Sensor networks are created by spreading out a large amount 

of inexpensive sensors and having them communicate over the internet. In these cases, a change of 

batteries is impractical and therefore one must design to maximize the battery lifetime of the chip. 

In most applications in the Internet of Things, the chip is only active and computing/transmitting 

data a fraction of the time. This means the static power consumption (power leakage) will be the 

deciding factor in battery lifetime. 

All IoT-chips will require some form of data storage. This report assumes a distributed shared 

memory (DSM), and that the memory is implemented as a single centralized memory cell array.  

Memory accesses only happen when a chip is either computing or transmitting data, and because 

these actions are infrequent, memory accesses are also infrequent. Combined with the fact that the 

memory portion of a chip often makes up a large portion of the total chip area, this means that 

minimizing the power leakage of the memory is essential to reducing the static power consumption 

of the entire chip. 
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In previous works, reducing power consumption meant reducing the active power consumption. 

Active power is the power required to switch transistors on and off. As stated, the leakage power of 

the design is much more of a concern in IoT-chips than other chips. Instead of designing for speed, 

area, or active power consumption, this report focuses primarily on the static power consumption of 

memory circuits.  

4. Theoretical background 

4.1 Previous work 
Previous work in minimizing power in memory circuits focus mostly on Active power consumption, 

while not considering static power consumption.  

The work put into improving D-Flip-Flop systems mostly focus on the flip flop cell itself, as D-Flip-

Flops are rarely used to build memory arrays larger than 128 bytes. [3] introduces a D-Flip-Flop 

design built on C2MOS (C2MOS) latch design principles, and utilizes a sense amplifier in its design to 

achieve lower static and dynamic power consumption. The leakage current of the D-Flip-Flop is 

inferred to be 188pA at a supply voltage of 1.8V. 

Some effort has been spent on improving the energy efficiency of SRAM circuits. [4] tries to 

minimize read and write power in the SRAM by splitting up bit line pairs into several sub-bit-line-

pairs, which includes a local sense amplifier. [5] Uses the same approach of splitting up the SRAM 

into smaller nodes, but instead focuses on splitting up the SRAM into a binary tree structure. The 

two solutions have something in common: They both trade area for lower read and write power, and 

a larger area usually leads to a larger leakage current. 

[1] is an unpublished work by the same author as this report. The previous report explores the 

viability of several types of memory in the context of designing a low leakage, low power memory 

system. The previous report also considers the limitations of designing a circuit for fabrication using 

a basic CMOS technology. Parts of the work presented in this report builds on the findings of the 

previous report. The previous report might be requested by emailing the author at 

kaisemailaddress@gmail.com. 

4.2 Leakage / Static energy consumption 
In CMOS technologies using a technology node of 90nm and larger, the most dominant source of 

static power is the subthreshold leakage power, Psub_leak. For a single-Vdd-level circuit this is given as: 

𝑃𝑠𝑢𝑏_𝑙𝑒𝑎𝑘 = 𝑉𝐷𝐷 ∗  𝐼𝑠𝑢𝑏_𝑙𝑒𝑎𝑘  =  
𝑉𝐷𝐷 2

𝑅𝑉𝑑𝑑−𝑔𝑛𝑑
  

 

 Formula 1: Leakage power as a function of leakage current and supply voltage 

Where Isub_leak is the current going from VDD to ground, through the drain-source subthreshold 

channel of the transistors. RVdd-gnd is the equivalent resistance seen from VDD to ground. 

According to [14], the subthreshold leakage current through a single transistor can be approximated 

by the following function: 
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𝐼𝐷𝑆,𝑜𝑓𝑓[nA] = 100 ∗
𝑊

𝐿
∗ 10−

𝑉𝑡
𝑆  

 Formula 2: A function approximating the leakage current through a transistor 

Where W is the gate width, L is the gate length, Vt is the threshold voltage. S is the so-called 

subthreshold swing, given by: 

𝑆 =  𝜂 ∗ 60mV ∗
𝑇

100
  

    Formula 3: The formula for subthreshold swing 

Where T is the temperature [K], and 𝜂 is equal to: 

𝜂 = 1 +
𝐶𝑑𝑒𝑝

𝐶𝑜𝑥𝑒
    [4] 

    Formula 4: The formula for 𝜂 

Where Cdep is the channel-depletion capacitance and Coxe is the channel-oxide capacitance. 

4.3 Memory Cells 

4.3.1 6T SRAM cell 

A 6T-SRAM cell retains its data by having two inverters connected in a feedback loop. The first 

inverter inverts the input given from the second inverter, and sends that output to the input of the 

second inverter, which in turn inverts and sends back to the first inverter. This means the voltage 

from either VDD or GND from the output of the first inverter reinforces the charge on the input of 

the second inverter, and vice versa. This mutual reinforcement of charges on the gates of the 

transistors in each inverter is what retains the data. 

To write to the SRAM, the charges stored on either side of the inverter loop must be forced to the 

desired value. To do this, the two bit lines are forced to the desired voltage, one will be VDD and one 

will be GND. The word line transistors are then opened. This will draw the charges out of the inverter 

loop and force the loop to store the new value instead. 

The simplest way to read from an SRAM cell is simply to open the word line pass transistors and read 

the voltages on the bit lines. The bit lines have a large parasitic capacitance and will take some time 

to charge. Using a sense amplifier to quickly sense the difference in voltage on the bit lines will help 

solve this problem.  
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Figure 1: A standard 6T SRAM cell. 

4.3.2 D-Flip-flop 

A positive-edge-triggered D flip flop stores the value D only when the signal Clk transitions from low 

to high, a so called rising edge. 

Clk D Qnext 

Rising edge 0 0 

Rising edge 1 1 

Non-rising X Qprev 
Table 1: D-Flip-Flop truth table 

4.4 TSMC standard cell library naming conventions 
The standard cell library provided by TSMC for the TSMC18G process contains cells which follow a 

naming convention in the following format: |NAME|Y|D|x|. NAME is the abbreviated name of the 

cell. Y is the amount of inputs, and is only included if the cell has multiple versions with different 

amounts of inputs. D means drive strength, and x is an integer denoting the drive strength of the 

cell, and ranges from 0 to 10. Drive strength is explained in section 4.5. An example of this naming 

convention is the cell ND4D2, which is a 4-input NAND gate with a drive strength of 2. 

4.5 Drive strength 
Drive strength is how easily a transistor allows current to pass through itself when switched on. A 

large drive strength is required to charge nodes with a high capacitance. If an output-driving 

transistor has an insufficiently large drive strength, the time required to charge the output 

capacitance will increase. This will severely affect the speed of the circuit. The drive strength of a 

transistor is closely related to the W/L ratio of the transistor; a higher W/L ratio produces a higher 

drive strength. 
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Cells with a high drive strength often have a high input capacitance, making it necessary for the cell 

driving the high-drive strength cell to have a sufficient drive strength itself. A rule of thumb used in 

the design presented in this report is that a cell with a drive strength of N (see section 4.5) can drive 

a load of cells totalling a drive strength of N+2. A load of 2 cells of drive strength N is assumed to 

equal a load of a single cell of strength N+1. As an example, a cell with a drive strength 2 can drive 

one cell with a drive strength of 4, or 2 cells of drive strength of 3. 

4.6 Cadence Bus Notation 
For the Cadence Virtuoso software, a specific notation is used to denote either a collection of signals 

or cells, and if the same notation is used for both the signals and cells, the collection of signals will 

correspond to the collection of cells. The following is an example of the usage of bus notation: A 

denotation of Bus<3:0> will contain the signals Bus<3>, Bus<2>, Bus<1> and Bus<0>. Connecting the 

node Bus<3:0> to a single-input, single-output cell called Inverter<3:0> will cause Bus<3> to connect 

to Inverter<3>, Bus<2> to Inverter<2> and so on. 

4.7 Degraded logic / pass transistors / short circuit power 
A degraded logic signal is a signal that is not fully charged to VDD (logic ‘1’) or not fully discharged to 

VSS (logic ‘0). A degraded logic ‘1’ is also called a ‘weak’ logic ‘1’ as opposed to a ‘strong’ logic ‘1’, 

and will have a voltage value which is less than VDD. When an NMOS transistor is placed between a 

node and VDD, turning on the transistor will not allow the node to completely reach a voltage value 

of VDD. The same applies for PMOS transistors placed between a node and VSS.  

Pass transistors are commonly used in CMOS circuits, and the effect of voltage degradation may 

significantly influence the operation of the circuit.  Using an NMOS pass transistor will cause an input 

of logic ‘1’/VDD to be degraded to a voltage of VDD-Vth on the output side of the pass transistor [6]. 

Vth is the threshold voltage of the NMOS pass transistor. Transmission gates solves the problem of 

degraded logic, but require two transistors and two complementary inputs as opposed to one. 

 

Figure 2: An example of degraded logic causing a short circuit current. 

Figure 2 shows an example of what might happen if a gate voltage value is degraded to the point 

where it lower than the threshold voltage for the PMOS transistor, and higher than the threshold 



13 
 

voltage for an NMOS transistor. The resulting current through both transistors will incur a very large 

short circuit power consumption and might overheat the circuit, permanently damaging it. 

5. Implementation 
Three different memory systems were implemented. Two versions of a D-Flip-Flop memory system 

were implemented, utilizing two different D-Flip-Flops. A 6T-SRAM system was also implemented, 

with the intention of comparing memory systems using D-flip-flops to systems using SRAM with 

focus on leakage current, power consumption and area. The size of the designed memory systems 

were 64 Bytes. The reason for this was that the simulations were done on servers owned by Cadence 

Design Systems, rented by Disruptive Technologies, and simulation time was limited. To mitigate the 

small size of the memory systems, a prediction formula was implemented in Microsoft Excel with the 

purpose of extrapolating the leakage currents, area and read and write energies for larger memory 

systems. 

The cell names are sometimes misleading, as they are temporary names used in the design phase. 

The reason behind this is to allow Disruptive Technologies to continue using the designs if need be. 

To mitigate this, cells often go by multiple names in the report, and often both names are stated.  

5.1 Design specifications 
A number of design goals are considered when designing the memory systems. The following list 

contains design requirements by order of importance, 1 being the most important consideration: 

1) Minimize leakage current 

2) Minimize read energy 

3) Minimize write energy 

4) Minimize chip area 

5) Minimize design complexity 

Minimizing the leakage current is the most important consideration, as the memory most likely be 

idle most of the time. Reads are assumed to be more frequent than writes, and it is therefore more 

important to minimize read energy than to minimize write energy. Minimizing chip area is always an 

important consideration to minimize chip costs. Lastly, because the design is handed over to another 

designer, the complexity of the design should be minimized to allow a quick transfer of knowledge 

from designer to designer. 

5.1.1 Process / technology 

The purpose of the design is to be implemented using a 0.18µm standard CMOS technology from the 

Taiwan Semiconductor Manufacturing Company. The process name is TSMC18G.  
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5.1.2 Choice of default and minimum transistor sizes 

 

Figure 3: Leakage current through an NMOS transistor (upper) and a PMOS transistor (lower) as a function of transistor 
length. [2] 

Figure 3 shows the simulation results of leakage current through a NMOS and PMOS transistor as a 

function of transistor length.  The simulations were done by applying a voltage across the transistor 

while the transistor was turned off (VG = VSS for the NMOS, VG = VDD for the PMOS). The following 

simulation parameters were used: 

- Process: TSMC018  

- gmin=1e-17 

- L=0.35µm 
- W=0.5µm 
- Temp=27oC 
- VDS=2.5V 
- Transistor type: 3.3V. 

 

 The results imply that a length of 550nm will minimize the leakage current through an NMOS 

transistor. Using the same length for PMOS transistors will simplify the layout of the chip, saving 

area. Many equations in the VLSI domain contain terms in this format: 

𝑊0
𝐿0

𝑊1
𝐿1

. Choosing a standard 

length would greatly simplify these equations, reducing design time. During the layout phase, in 

CMOS structures such as the basic inverter, the PMOS transistors are usually laid out in parallel 

lengthwise with the NMOS transistors [7]. Choosing different lengths would make the parallel PMOS 

and NMOS transistors not align with each other, complicating the layout engineer’s job, increasing 

design time. Choosing the length of the PMOS to be longer would further limit leakage current, but 

would increase the area of the circuit considerably and would drastically increase design time. This 

lead to 550nm being chosen as the default length for all transistors in the design. 
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Figure 4: Leakage current through an NMOS transistor (upper) and a PMOS transistor (lower) as a function of transistor 
width. [2] 

Figure 4 shows the simulation results of leakage current through an NMOS and PMOS transistor as a 

function of transistor width. The simulations were done by applying a voltage across the transistor 

while the transistor was turned off (Vg = VSS for the NMOS, Vg = VDD for the PMOS). The following 

simulation parameters were used: 

- Process: TSMC018  

- gmin=1e-17 

- L=0.35µ 
- W=0.5µ 
- Temp=27oC 
- VDS=2.5V 
- Transistor type: 3.3V. 

 

One can see that a larger width leads to a larger leakage current. Choosing a width as low as possible 

would minimize leakage current. However, choosing a width that is too close to the absolute 

minimum leads to greater susceptibility to fabrication errors (larger transistors leave much more 

room for error). If the design is very susceptible to fabrication errors, a larger amount of the finished 

microchips will not pass the physical verification process and the fabrication yield will decrease, 

increasing the cost of the chip. A minimum width of 300nm was chosen. 

The simulations in figure 3 and 4 were provided by Disruptive Technologies. 

5.2 The D-Flip-Flop memory system 
The D-Flip-Flop memory system was implemented utilizing two different D-flip-flop cells. The first 

was the reference D-Flip-Flop, the second was the C2MOS Flip-Flop. 
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As opposed to SRAM, a D-Flip-Flop memory has no internal multiplexing (bit lines and write lines). 

This means that the fan-out of demultiplexers and multiplexers is much broader than for the SRAM 

system. This also means that the peripheral circuitry of the D-Flip-Flop is simpler. 
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Figure 5: The SIXTYFOURBYTE_DFF Cell 
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Figure 5 shows a completed 64 Byte D-Flip-Flop memory system, the same as the one used in the 

simulations presented in this report. The address bus is buffered as there are 8 8-1 demultiplexers 

connected to each wire on the bus (see figure 8), and that presents a significant load capacitance. 

The SIXTYFOURBYTE_DFF cell is made up of 8 EIGHTBYTE_DFF cells, which are explained in detail in 

section 5.2.2. 

In the design, each flip-flop has its own set of peripheral circuitry cells. The peripheral circuitry used 

by one flip-flop cell is copied and the duplicated version is used when testing the other flip-flop cell. 

The peripheral circuitry cells are named with either the keyword ‘KHAN’ for the C2MOS flip flop, or 

‘REFDFF’ for the reference D-Flip-Flop. The reason for copying the peripheral circuitry is to allow two 

separate testbenches for every cell, as well as to allow changes to the peripheral circuitry for each 

separate flip flop. As per this report, the peripheral circuits of the two flip flops are identical. 

5.2.1 Read and write operations 

Input signal descriptions: 

- Store: A positive flank of the store signal will perform a write of the specified value decided 

by the Data bus in the flip flop decided by the address bus. 

- Address: A binary number which decides which byte in the memory to read from or write to. 

- Data: An 8bit/1byte binary number, which is stored in the memory if the ‘store’ signal goes 

high. 

- CDN: Clear Data Negative. When CDN is low, all flip flops in the memory are reset to a value 

of ‘0’. 

Read operation: 

 

Figure 6: A waveform showing a standard read operation in the D-Flip-Flop system 

Figure 6 shows a waveform explaining how to perform a read operation in the D-Flip-Flop system 

implemented in this report. The associated states of a yet-to-be-implemented state machine is also 

included in the waveform. The address setup and hold times are needed to. If the address bus is 

altered while the output is being latched onto the data bus, the latched data will be corrupted. 
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Write operation: 

 

Figure 7: A waveform showing a standard write operation in the D-Flip-Flop memory system. 

Figure 7 shows a waveform explaining how to perform a write operation in the D-Flip-Flop system 

implemented in this report. The associated states of a yet-to-be-implemented state machine is also 

included in the waveform. The address and data setup and hold times are needed to prevent a 

glitched store signal from corrupting the memory. If the address bus is altered while the store signal 

is not settled at a logic ‘0’, other cells in the cell array will get a store signal pulse and will be 

corrupted. 
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5.2.2 Sub-Cells 

 

Figure 8: The EIGHTBYTE_DFF cell. 
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Figure 8 shows the EIGHTBYTE_DFF cell (in the design it is named EIGHTBYTE_REFDFF_02 for the 

reference D-Flip-Flop and EIGHTBYTE_KHANDFF_01 for the C2MOS D-Flip-Flop).  The cell contains 8 

cells of the kind BYTE_DFF, for a total of 8 bytes or 64 bits/flip flops. The input data bus is buffered 

because the 8 D-Flip-Flop cells connected to each wire (see figure 9) present a significant load 

capacitance.  

 

 

 

Figure 9: The BYTE_DFF cell. 

Figure 9 Shows the BYTE_DFF cell. It contains a full byte made up of 8 D_FLIP_FLOP cells. The cells 

may be any kind of D-Flip-Flop. The C2MOS flip flop takes a STORE_N (negated STORE) as input, 

meaning area and power could be saved by using negating demultiplexers and inverters at the last 

stage of demultiplexing to produce the two complementary signals, as negating demultiplexers use 

fewer transistors. This was not done in the design and the complementary signal is generated inside 

the flip flop cell itself. 

5.2.3 The reference D-Flip-Flop (REFDFF, DFCNQD1) 

The reference D-Flip-Flop is a positive edge triggered D-Flip-Flop from a standard cell library 

provided by TSMC for the TSMC18G process. The cell is referred to as REFDFF in the report, and in 

the standard cell library it is called DFCNQD1. 

5.2.4 The C2MOS D-Flip-Flop (KHAN_DFF, D_FLIP_FLOP_KHAN_01) 

Many alternative flip flop designs were taken from [8], including the C2MOS flip flop. Most of the 

designs proved to be non-functional when simulated, or they consumed extreme amounts of power 

when simulated in a 180nm technology. The schematic presented in [8] for the C2MOS flip flop was 

erroneous, leading to a large amount of design time wasted when implementing the flip flop. The 

correct version of the C2MOS D-Flip-Flop was adapted from [9]. 

The C2MOS flip flop is a much bigger D-Flip-Flop than the reference D-Flip-Flop. There were two 

reasons for choosing this design over a smaller D-Flip-Flop.  The first reason is that it does not utilize 

any pass transistor logic. Pass transistors introduce degraded logic which increase short circuit 
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power (see section 4.7). The second reason is the fact that the paths from VDD to GND in the cell 

often have a lot of transistors in series, increasing the effective length of transistors from VDD to 

GND, reducing leakage currents. The cell is referred to as either C2MOS or KHAN_DFF in the report, 

and in the design it is named D_FLIP_FLOP_KHAN_01. 

 

Figure 10: The C2MOS Flip Flop (D_FLIP_FLOP_KHAN_01 / KHAN_DFF). 

5.2.4.1 Transistor sizing 

In this section, please refer to figure 10. The lengths of all the transistors are 550nm. This is chosen 

because of the results presented in figure 3. The widths of all the transistors are 550nm, with the 

exception of the PMOS transistors whose gate is connected to CDN. The width of all the non-reset 

(CDN) transistors are set to a width of 550nm. The widths of the reset (CDN) PMOS transistors are 

set to 800nm, simply to have a greater drive strength than the inverters driving the inner nodes D 

and QN. 

The reason behind the seemingly arbitrary choice of widths for the KHAN_DFF is the disruption of 

the design phase caused by errors in [8], as explained in section 5.2.4. 

5.3 The 6T-SRAM memory system 
The 6T-SRAM memory system requires an entirely different peripheral circuit. The functionality of 

the 6T-SRAM is very different from a D-Flip-Flop, for more information, please see section 4.3.1. 
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Figure 11: The SRAM6T_64B_02 cell 
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Figure 11 shows a fully built 64 Byte 6T-SRAM memory system. This 64-Byte system is the same as 

the one simulated in this report. All versions of the 8x8bitBox cell contain 8 rows and 8 bit-line pairs, 

for a total of 64 bits, or 8 bytes each. Scaling up further would simply mean adding more 8x8bitBox 

cells (and the appropriate border versions of the 8xbitBox cell) and adding the necessary 

demultiplexers, multiplexers and buffers. If one were to add two more rows of 8x8bitBox_01 (and 

the appropriate border versions of the 8x8bitBox cell), a full 32x32bitBox chunk would be 

completed, containing a total of 128 Bytes. The 8x8bitBox_01 cells are explained in section 5.3.2. 

5.3.1 Read and write operations 

Input signal descriptions: 

- Col_address: A binary number which decides column in the memory to read from or write 

to. 

- Row_address: A binary number which decides which row in the memory to read from or 

write to.  Row_address in combination with Col_address forms a complete address of a 

single byte in the memory. 

- Data: An 8bit/1byte binary number, which is stored in the memory upon a write instruction 

execution. 

- WL_enable – when WL_enable is high, the pass transistors of all SRAM cells in a row decided 

by the Row_address bus are opened, exposing the SRAM cells to the bit lines. 

- CDN – Clear Data Negative. When CDN is low, all 6T-SRAM cells are reset to the value ‘0’ 

- Read and write: read and write form a 2-bit instruction code-word which apply to all eight 

bit-line pairs in a single column, decided by the Col_address bus. The decoded functions are 

described in the following table: 

Read Write Decoded instruction 

0 0 Bit lines disconnected from VDD and VSS. 

0 1 Write - Charge one bit line (VDD), discharge the other bit line (VSS) 
according to the appropriate bit on the ‘data’ bus. 

1 0 Read - Bit lines disconnected from VDD and VSS, activate sense 
amplifier. 

1 1 Precharge – charge both bit lines (VDD). 
Table 2: Instructions decoded from the read|write code-word. 
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Read operation: 

 

Figure 12: A waveform showing a standard read operation in the 6T-SRAM memory system 

Figure 12 shows a waveform explaining how to perform a read operation in the 6T-SRAM system 

implemented in this report. The associated states of a yet-to-be-implemented state machine is also 

included in the waveform. The address setup time is needed to prevent non-intended bit line pairs 

from being charged when the precharge happens. The address and sense hold time is needed to 

prevent the data from being corrupted while it is being latched onto the output bus. 
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Write operation: 

 

Figure 13: A waveform showing a standard write operation in the 6T-SRAM memory system. 

Figure 13 shows a waveform explaining how to perform a write operation in the 6T-SRAM system 

implemented in this report. The associated states of a yet-to-be-implemented state machine is also 

included in the waveform. The address and data setup time is needed to prevent non-intended bit 

line pairs from being charged. The address hold time is needed to prevent other cells from being 

written to when the Writeline enable signal is still high. The data hold time is to prevent the cell’s 

value from changing before the writeline enable signal goes low. 

5.3.2 Sub-Cells 

In order to simplify the process of expanding the 6T-SRAM system, a modular ‘chunk’ system was 

devised. In this system, chunks of 8x8 SRAM cells are lumped together in a block named 

8x8bitBox_01, for a total of 8 Bytes, where each row is a single byte. Each 8x8bitBox_01 chunk is 

designed so that the designer can connect chunks together either vertically or horizontally by 

connecting the appropriate bit lines or write lines, respectively. The system is designed so that cells 

on the top or left edge of the cell array have either column circuitry, row circuitry or both built into 

the cells themselves. The advantage of this is that once a cell array becomes so big that adding 

individual row or column circuitry becomes tedious, bigger chunks can be created from the smaller 

ones and the same process of connecting together chunks can be utilized to cut down design time to 

a minimum. The following figures will explain the various modules in detail. 
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Figure 14: The 8x8bitBox_01 cell 

Figure 14 shows a symbol representing the 8x8bitBox_01 cell as well as its expanded view showing 

the structure of 6T-SRAM cells within the cell. 
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Figure 15: The 8x8bitBox_Left_01 cell. 

Figure 15 Shows the 8x8bitBox_Left_01 cell, which is a standard 8x8bitBox_01 cell with added row 

circuitry to the left of the cell. The row circuitry consists of a 1 to 8 demultiplexer, also called a row 

decoder, and a row driver which drives one of the 8 write lines according to input from the 

demultiplexer.  
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Figure 16: The 8x8bitBox_top_02 cell. 

Figure 16 shows the 8x8bitBox_Top_01 cell which is a standard 8x8bitBox_Top_01 cell with added 

column circuitry for each pair of bit lines. Because a whole row of 8 bits/cells, or a single byte, is 

always written or read at the same time, no multiplexing is required in this cell. 
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Figure 17: The 8x8bitBox_topleft_02 cell. 

Figure 17 shows the 8x8bitBox_TopLeft_01 cell which is a standard 8x8bitBox_Top_01 cell with both 

column circuitry and row circuitry. The necessity of this block comes from the fact that the upper left 

corner cell needs both column and row circuitry. 
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5.3.3 Row driver circuit 

The row driver’s function is to drive the write lines when activated by the row decoder. The write 

lines are connected to the gates of the pass transistors that connect the 6T-SRAM cells to the bit 

lines. As there may be a lot of pass transistors on every row, a line driver is required to adequately 

charge the accumulated gate and wire capacitance. In this implementation, a driver strength level of 

2 (see section 4.5) is considered more than sufficient, and may be sufficient for much larger memory 

arrays.  

 

Figure 18: The Row_WLDriver_01 cell used in the 6T-SRAM system 

Figure 18 shows the Row driver cell. The row driver cell drives eight rows/write lines.  

CDN WL_in_x WL_out_x 

0 X 1 

1 0 0 

1 1 1 
Table 3: The truth table for the Row_WLDriver_01 cell. 

Table 3 shows the truth table for the row driver cell. WL_in_x means WL_in_0, WL_in_1, WL_in_2, 

and so on.  The logic value ‘X’ means ‘don’t care’.  
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5.3.4 Bit line driver circuitry  

A custom transistor-level logic circuit was created for the purpose of driving the bit lines. There were 

three reasons for choosing a custom design over using standard logic gates. The first reason for 

choosing a custom design is that the high capacitance bit lines need to charge or discharge quickly, 

requiring transistors with a high driver strength. A custom design would allow the designer to 

accurately control the driver strength of the circuit. Another problem with the standard gate 

solution was that uneven timing in the logic connected to the bit-line driving transistors lead to 

considerable power consumption as a result of glitches. The custom circuit was designed with the 

purpose of minimizing glitches during standard read or write operations. The third problem was that 

the input to the bit lines require tri-state logic, as the bit lines are cut off from the circuit when the 

column is not being read from or written to. When tri-state logic is needed, the standard logic gate 

solution has to be supplemented by pass transistors, and the added design time means the designer 

might as well do a custom design to suit his/her needs. Because the driver transistors have a large 

gate width, which leads to higher gate capacitance, the inputs to these transistors’ gates are 

buffered in order to reduce the input capacitance of the circuit. 

 

Figure 19: The Column_Circuitry_04 cell, or bit line pair driver. 

Figure 19 shows the bit line pair driver circuit used in the 6T-SRAM system. The bit line pair driver 

drives a single pair of bit lines. The signals CDN, CDN_inverted, Write, Write_inverted, Data, 

Data_inverted, Read and Read_inverted are all internal signals used to ensure the functionality of 

the circuit. Sense_enable is an internal signal derived from the Write signal and the Read_inverted 
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signal, and is used to enable the sense amplifier. The Read_in, Write_in and Data_in signals are all 

demultiplexed onto the appropriate column, and all bit line pair drivers in one column share the 

same signals. Refer to table 4 for the functionality of the circuit. 

CDN Read_in Write_in Data_in BLb BL Sense_enable 

0 X X X 1 0 X 

1 0 0 X Z Z 0 

1 0 1 0 1 0 0 

1 0 1 1 0 1 0 

1 1 0 X Z Z 1 

1 1 1 X 1 1 0 
Table 4:The truth table for the Column_Circuitry_04 cell. 

5.3.5 Sense amplifier 

As the length of the bit lines increases, the capacitance to ground seen from the column circuitry 

increases. The driver strength of the 6T-SRAM cell is low compared to the driver strength required to 

rapidly discharge one of the bit lines during a read. A read erases the value in the SRAM cell, and a 

rewrite is always necessary after a write. Fully discharging one of the bit lines is necessary in order to 

rewrite to a cell after a read, and discharging quickly is essential to avoid a large short-circuit power 

consumption on the measuring cells (usually a buffering inverter) caused by degraded logic (see 

section 4.7). The purpose of a sense amplifier is to detect any slight difference in voltages on two 

nodes and amplify that difference to non-degraded voltage levels. In this design a variation of the 

Full Complementary Positive Feedback Sense Amplifier (FCPFSA) is designed. This kind of sense 

amplifier has the added functionality of automatically performing a rewrite whenever a read is 

performed. 

 

Figure 20: The sense amplifier used in the SRAM system. 



34 
 

The designed sense amplifier operates as follows: When the sense amplifier is not active, nodes N 

and P are precharged to the VDD voltage level and the inverters in the inverter loop are 

disconnected from ground. Immediately after enable goes high, nodes N and P are both 

disconnected from the power supply and are connected instead to the negative and positive bit 

lines, respectively. The inverter loop is enabled by connecting the inverters to ground. The charge 

stored on nodes N and P will initially be equal, but the inherent instability caused by the inverter 

loop will allow any slight difference in voltage on the nodes (from the bit lines, through the pass 

transistors), to cause a quick discharge of one of the nodes. The difference in voltage needed on the 

bit lines is not known, but a reasonable assumption is that a 200mV difference will ensure that noise 

or the offset in the physical implementation will not cause an error during the read. Wide NMOS 

transistors are required to quickly discharge the node, and in turn speed up the discharging of the bit 

line. The cell is designed so that both nodes N and P will have an identical capacitance to ground, 

requiring a dummy-inverter on the P node. For a 64 Byte memory, which was simulated, a sense 

amplifier is not necessary as the SRAM cell itself discharges the bit lines rapidly. The sense amplifier 

was included in order to more accurately predict the power consumption and leakage current of 

larger cell arrays. The width of the NMOS transistors were arbitrarily chosen to be either 1400n and 

1000n, and their widths must be increased when moving to very large memory cell arrays. 

 

5.3.6 6T-SRAM-Cell 

 

Figure 21: The 6T SRAM cell. 
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5.3.6.1 Transistor sizing 

For this section, please see figure 21. The transistor dimensions were chosen as follows:   The length 

of the NMOS transistors were designed to have a minimum leakage current as decided by the 

simulations in section 5.1.2. A length of L = 550nm is chosen for all transistors. As a typical layout of 

an SRAM cell is symmetrical, one can reduce the area of each cell by choosing the width and length 

of the PMOS transistors to be equal to the length and width of the NMOS transistors (see section 

5.1.2). A minimum length of 300nm was chosen. 

Read stability: In the case of a read, both bit lines are precharged up to the VDD voltage and 

subsequently the pass transistors are opened up to discharge one of the bit lines depending on the 

value retained in the cell. In the case of a logic ‘0’ retained, the transistor D0 will discharge the bit 

line BL down to ground. When this happens, it is important that the voltage on node1 does not 

exceed Vth when current is intermittently flowing through transistors P1 and D0, which could invert 

the voltage of node0. Intuitively, this means that transistor D0 should be less resistive than transistor 

P1, and enough so that the node1 voltage never exceeds Vth. This means the width of D0 has to be 

larger than the width of P1. According to [10], the width of D0 has to be 1.2 times as large as the 

width of P1. The same goes for transistors D1 and P0. 

Write stability: In the case of a write, the bit lines are forced to either BLb = 0V and BL = VDD or the 

opposite, depending on value written. In the case of a logic ‘0’ being stored, BL is pulled low by 

external column circuitry and the pass transistors are opened. In this case it is important that the 

voltage on node1 never exceeds Vth when current is intermittently flowing through transistors U0 

and P1. Intuitively, this means that P1 should be less resistive than U0, and enough so that the 

node1 voltage never exceeds Vth. This means that the width of P1 should be larger than the half the 

width of U0, owing to the mobility of a PMOS transistor being about half of the mobility of an NMOS 

transistor. According to [10], the width of P1 has to be at least larger than 0.56 than that of U0. 

Choosing U0 and U1 to be the same size as D0 and D1 meets the requirements of read and write 

stability, and simplifies the layout through symmetry (see section 5.1.2).  

Transistor name U0 and U1 D0 and D1 P0 and P1 

Width [nm] 360 360 300 

Length [nm] 550 550 550 
Table 5: Transistor sizes for the 6T SRAM cell 

5.3.7 Reset circuitry 

The reset signal CDN needs only be considered in the peripheral circuitry. To reset the SRAM, WL is 

set to 1, BL is set to 0, and BLb is set to 1. Because BL, BLb and WL are shared among a lot of SRAM 

cells, the amount of transistors per cell used for resetting the memory is very low. The column reset 

circuitry is implemented as a part of the column logic, specifically as part of the bit line pair driver. 

The row reset circuitry was implemented as a part of the row driver circuit. 

 

5.4 Extrapolator 

5.4.1 The gate count unit of measurement 

As per the TSMC datasheet, one gate is equivalent to 4 transistors with a width of 0.85µm and a 

length of 300nm, for a total area of 0.68pm2 per gate count. The gate count of custom transistor 
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level designs was decided by dividing the area of the design by this value, and rounding to the 

nearest half integer. 

𝐺𝑎𝑡𝑒 𝐶𝑜𝑢𝑛𝑡 =
𝐶𝑒𝑙𝑙 𝐴𝑟𝑒𝑎 [𝑚2]

0.68 ∗ 10−12 [𝑚2]
 

Formula 5: The formula for normalizing a cell’s area to the gate count unit of measurement 

5.4.2 Predicting the gate count and leakage current of the memory systems 

In order to predict the gate count (area) of the peripheral circuitry, various mathematical methods 

were used and a few assumptions were made: 

1) Beyond 64 Bytes any multiplexing or demultiplexing will be done only with 1-2 

demultiplexers or 2-1 multiplexers.  

2) The additional wires that are required on the address bus as the memory expands will not be 

buffered. This would lead to even more complicated mathematics. 

3) Because cells are separated horizontally by a large gate-source and gate-drain impedance 

(almost no current passes through the gate of the transistor), total leakage current in a 

bigger cell can be modelled as a sum of leakage currents through the smaller cells contained 

in the bigger cell. 

The leakage currents of bottom-level custom-designed cells were determined by simulating their 

total leak in the 64-Byte system and then dividing by the number of custom-designed cells in the 64-

Byte design. 

For the C2MOS (KHAN_DFF) D-Flip-Flop, the leakage contribution from the cells have to be 

multiplied by 1.54. For details see section 5.6.3 and appendix A. 

5.4.3 Predicting the read and write energy of the memory systems 

In order to predict the read and write energy of the increasingly complex peripheral circuitry, a 

severe simplification is made. It is assumed that the read and write energy consumed by the 

peripheral circuitry is proportional to the total gate count of the peripheral circuitry. Then, the 

results from the 64Byte simulations could simply be multiplied by the ratio of increase in the gate 

count of the peripheral circuitry. Another assumption is that the read and write energy of the cell 

array does not increase significantly when the cell array is expanded, as only a single byte of 8 cells is 

written to or read from at the same time.  

𝐸𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 =  
𝐺𝑎𝑡𝑒 𝑐𝑜𝑢𝑛𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑝𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑎𝑙

𝐺𝑎𝑡𝑒 𝑐𝑜𝑢𝑛𝑡64𝐵𝑦𝑡𝑒,𝑝𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑎𝑙
∗ 𝐸64𝐵𝑦𝑡𝑒,𝑝𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑎𝑙 + 𝐸64𝐵𝑦𝑡𝑒,𝑐𝑒𝑙𝑙𝑠 

Formula 6: Extrapolated read and write energies, based on the 64 Byte simulations. 
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5.4.4 Measuring average leakage current of standard cells

 

Figure 22:The testbench for measuring the average leakage current of standard cells 

In order to measure the average leakage current of several standard cells used in the design of the 

peripheral circuits, a simple testbench was designed. In figure 22, the testbench is displayed, and the 

cell being measured is the AN4D2 standard cell. 

A test stimulus covering all the different combinations of inputs was applied. After applying a certain 

combination of inputs, the cell would be left idle for a sufficient amount of time (here: 0.5s) in order 

to stabilize the internal voltages of the cell. After stabilizing the cell, the supply current going to the 

cell was measured over a short period of time (200ns) and averaged. After measuring the leakage 

current of every combination of inputs, the arithmetic mean of all the leakage currents was 

calculated. This average leakage current was used as a representative value for the leakage of the 

cell. 
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Figure 23: The testbench used to measure average leakage currents in the cells which make up the peripheral circuitry. 

5.4.5 Table of the cells’ leakage current and gate count 

Cell name Gate Count Leakage current [A] 

INVD0 0.5 5.0E-14 

INVD2 1 1.9E-13 

INVD4 2 3.9E-13 

NR2D0 1 5.5E-14 

NR2D2 2 2.09E-13 

AN2D0 1.5 1.18E-13 

AN2D2 2 3.68E-13 

MUX2D0 3 1.74E-13 

MUX4D0 6.5 3.61E-13 

AN4D0 2.5 1.13E-13 

AN4D2 3 3.83E-13 

BUFFD0 1 1.0E-13 

BUFFD2 1.5 2.86E-13 
Table 6: Simulated leakage currents of various TSMC standard cells and the gate counts as specified in the TSMC standard 
cell datasheet 

Table 6 Shows the simulated leakage current of various TSMC standard cells and the gate counts as 

specified in the TSMC standard cell datasheet. The simulations of leakage currents were performed 

by the author of this report on the grounds that the results in the datasheet provided by TSMC were 

admitted to be wrong. The leakage currents were simulated at with a supply voltage of 3V, in the 

default process corner and at a temperature of 70 degrees Celsius. 5.0E-14 is the same as 5.0 * 10-14. 
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Cell Name Gate Count Leakage Current 

DEMUX-1-2_02 4.5 6.27E-13 

DEMUX-1-4_01 13.5 1.88E-12 

DEMUX-1-8_02 21.5 1.05E-12 

Column circuitry (including 
sense amplifier) 

65 9.9E-13 

Row_WLDriver 17 2.15E-12 

MUX-8-1_02 16 8.96E-13 

REFDFF (DFCNQD1) 7 7.62E-13 

C2MOS DFF (KHANDFF) 12.5 1.05E-13 

SRAM6T Cell 1.5 3.6E-14 
Table 7: A table of calculated gate counts and leakage currents of non-standard cells 

Table 7 shows the calculated and simulated leakage currents of non-standard cells designed for the 

purpose of this report. See appendix A for details. The cells DEMUX-1-2_02, DEMUX-1-4_01, 

DEMUX-1-8_02, Row_WLDriver, MUX-8-1_02 are cells made up entirely of standard cells, the others 

are custom transistor-level designs. The leakage currents and gate counts of the cells made up of 

standard cells are calculated by taking the sum of the leakage currents and gate counts of the 

standard cells contained within the cell, as per table 6. The gate counts of the custom designs were 

calculated by dividing the area of the design by the area per gate count (see section 5.4.1). The 

leakage currents of the custom designs were calculated from the simulation results of the complete 

64 Byte systems. Specifically, the memory cell leakage was found by dividing the total cell leakage by 

the amount of cells (64 * 8 cells), and the Column circuitry was found by dividing the total column 

circuitry leakage with the amount of bit line pairs (4 columns * 8 bit-line pairs per column).  
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5.4.6 Calculating the amount of multiplexers, demultiplexers and buffers 

 

Figure 24: A simplified solution of the sum of a geometric row 2N-1 

Figure 24 shows a simple equation for determining the sum of elements in any construct where 

elements double every iteration. AK is the amount of elements in the Kth row. SK is the sum of all 

elements in the row up until the Kth row. See [11] for details on row theory. This applies to 

constructs such as a demultiplexing or multiplexing circuit consisting only of 1-2 demultiplexers or 2-

1 multiplexers. This also applies to the specific buffer fan-outs assumed in this design, where every 

buffer drives the input of two other buffers. In order to find the sum of elements, one needs only 

count the amount of elements in the final stage of the fan-out, double that number and subtract 

one. 

In order to simplify the calculations of buffer and multiplexer/demultiplexer fan-outs, the existing 

64-Byte memory was assumed to be an atomic cell (indivisible, foundation cell), and all further 

expansion of the memory system would happen through simple doubling fan-outs as shown in figure 

24.  

 

 



41 
 

5.4.7 Table of cell count prediction formulas 

Cell name Amount in the SRAM system Amount in the DFF system 

SRAM6T Col * Row * 8 0 

Row_WLDriver Row / 8 0 

Column circuitry + sense amp Col * 8 0 

DEMUX-1-2 2*(Col /4 – 1) + Row/8 - 1 Bytes/64 - 1 

DEMUX-1-4 Col / 2 0 

DEMUX-1-8 Row / 8 (1.125/8) * Bytes 

BUFFD0 8*(Col/2) + 8 * (Col/4-1) + 
Row/8 - 1 

(1/8 + 1/64) * Bytes + 1/64 * 
Bytes + 9 * (Bytes/64 -1) 

MUX2D0 8* (Col/4 – 1) Bytes/64 - 1 

MUX4D0 8*(Col/4) 0 

MUX-8-1 0 8*(1/8 + 1/64) * Bytes 

D-Flip-Flops 0 Bytes * 8 
Table 8: The formulas for calculating the number of cells contained within either a D-flip-flop memory system or a 6T-SRAM 
memory system. 

Table 8 shows the formulas used for calculating the number of cells in the D-Flip-Flop and 6T-SRAM 

memory systems. The ‘Row’ variable is the amount of rows in the SRAM system, which is the same 

as the amount of write lines. The ‘Col’ variable is the amount of columns in the SRAM system, which 

is the same as the total amount of pairs of bit lines divided by 8. The ‘Bytes’ variable is the amount of 

bytes in the D-Flip-Flop system, which is the same as the amount of D-Flip-Flops divided by 8. The 

values were calculated by taking advantage of the hierarchical structure of the design, as well as 

taking advantage of the multiplexers, demultiplexers and buffers forming a geometric row as 

described in section 5.4.6. When calculating the amount of rows and columns per byte of memory, a 

ratio of 4 rows per column was assumed, and the resulting formulas are applied: 

𝐶𝑜𝑙𝑢𝑚𝑛𝑠 =  √
𝐵𝑦𝑡𝑒𝑠

4
,      𝑅𝑜𝑤𝑠 = √

𝐵𝑦𝑡𝑒𝑠

4
∗ 4 

Formula 7: Calculation of the amount of rows and columns as a function of the number of bytes. 

5.5 Miscellaneous non-standard cell schematics 

 

Figure 25: The DEMUX-1-2_02 cell. 
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Input Sel Output0 Output1 

0 X 0 0 

1 0 1 0 

1 1 0 1 
Table 9: The truth table for the DEMUX-1-2_02 cell 

 

Figure 26: The DEMUX-1-4_01 cell. 

Input Sel<1> Sel<0> Output3 Output2 Output1 Output0 

0 X X 0 0 0 0 

1 0 0 0 0 0 1 

1 0 1 0 0 1 0 

1 1 0 0 1 0 0 

1 1 1 1 0 0 0 
Table 10: The corresponding truth table for the DEMUX-1-4_01 cell. 
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Figure 27: The DEMUX-1-8_02 Cell. 
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Input Sel2 Sel1 Sel0 Out7 Out6 Out5 Out4 Out3 Out2 Out1 Out0 

0 X X X 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 1 

1 0 0 1 0 0 0 0 0 0 1 0 

1 0 1 0 0 0 0 0 0 1 0 0 

1 0 1 1 0 0 0 0 1 0 0 0 

1 1 0 0 0 0 0 1 0 0 0 0 

1 1 0 1 0 0 1 0 0 0 0 0 

1 1 1 0 0 1 0 0 0 0 0 0 

1 1 1 1 1 0 0 0 0 0 0 0 
Table 11: The truth table corresponding to the DEMUX_1-8_02 cell. 

 

Figure 28: The MUX_8-1_02 cell 

Sel2 Sel1 Sel0 Output 

0 0 0 Data0 

0  0 1 Data1 

0 1 0 Data2 

0 1 1 Data3 

1 0 0 Data4 

1 0 1 Data5 

1 1 0 Data6 

1 1 1 Data7 
Table 12: The truth table corresponding to the MUX_8-1_02 cell 

5.6 Method of simulation 

5.6.1 Simulator 

Simulator version: Cadence Virtuoso Spectre Simulator 13.1.1.117.isr8 64bit 

Virtuoso version: IC6.1.6-64b.500.12  

Simulation parameters 

Simulation parameter Setting or value 

Gmin 10-17 

Gear2only Turned on 

Error preset (err preset) Moderate 
Table 13: The non-default simulator settings used in all simulations. 
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Table 13 shows a selection of simulation parameters that were modified for the purpose of 

measuring leakage current. All other simulation parameters were set to the default values. 

5.6.2 Measuring read and write energy 

 

Figure 29: An example showing the calculation of the energy spent during a D-Flip-Flop system write operation. 

Figure 29 shows a write operation for the D-Flip-Flop system (bottom graph) along with an example 

graph (top graph) of the combined supply current for the entire system. The supply current in the 

simulations is much lower than what the graph implies. The energy is calculated by using the 

following formula: 

𝐸 =  𝑉𝐷𝐷 ∗ ∫ 𝑖(𝑡) 𝑑𝑡
𝑇1

𝑇0

 

  Formula 8: Energy (E) as a function of supply current (i(t)) 

Formula 8 shows the calculation of the energy of an operation. The operation could be either read or 

write, performed on any of the memory systems presented in this report. T0 would always be the 

time of the first signal change (usually the address and data bus signals) during an operation. T1 
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would always be exactly one clock cycle after the last signal change during an operation, and the 

system would be Idle during that last clock cycle. A static supply voltage is assumed. 

Earlier calculations subtracted the integral of the supply current level, but the contribution of 

leakage currents during a read or write was discovered to be negligible when measuring read and 

write energies. In the simulations, the leakage current was in the order of magnitude less than 10-3 of 

the active read and write induced currents. Another problem with subtracting the contribution of 

leakage currents is that leakage current is only defined in a static system, and therefore its 

contribution is unknown during a read or write. 

5.6.3 Determining the worst case initial memory state 

5.6.3.1 D-flip-flops 

To determine the worst case state of the memory array when examining leakage currents, three 

cases were simulated on an 8-byte memory circuit using the reference D-flip-flop (REFDFF). 

When using the REFDFF flip-flop, having all zeros stored in the memory maximized the leakage 

current.  

When using the C2MOS (KHAN_DFF) flip-flop, having all ones stored in the memory meant the 

leakage current from the cells was 1.54 times higher than the leakage current from the cells when 

having all zeros stored in the memory. Due to the extremely long simulation time required to fill the 

memory with ones, this result will not influence the simulations run and the higher leakage current 

has to be considered in the prediction calculations instead. 

The read and write energies were the highest when writing all ones to a byte containing all zeros, for 

both flip flops. 

See appendix A for details on the memory state simulations. 

5.6.3.2 SRAM 

As the SRAM cells are symmetrical, the effect of the memory state on leakage characteristics and 

read and write energy is assumed to be negligible. A ‘11111111’ is chosen to be written to a byte 

containing ‘00000000’, and the same byte is read. 
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5.6.4 64 Byte D-Flip-Flop simulation setup 

 

Figure 30: The TB_SIXTYFOURBYTE_REFDFF_01 testbench for the 64 Byte D-Flip-Flop memory system. 

Figure 30 shows the testbench used for measuring leakage current and the read and write energies 

for both of the 64 Byte D-Flip-Flop systems. Two different supply currents were measured. The first 

current was the supply current going to the D-Flip-Flop cells, through the I_CELLS_PROBE probe. The 

second current was the supply current going to the peripheral circuitry, through the 

I_PERIPHERAL_PROBE probe. The reason for separating the two supply currents is to give more 

insight into the power consumption of the D-Flip-Flop cells themselves. The testbench shows the 

testbench for the reference D-flip-flop (REFDFF), but the testbench for the C2MOS flip-flop 

(KHAN_DFF) is identical, except the SIXTYFOURBYTE_REFDFF_01 cell is replaced with the 

SIXTYFOURBYTE_KHAN_DFF_01 cell. The STIM and MEASURE cells in the testbench are included in 

appendix B. 

Time [s] DATA ADDRESS STORE CDN Comments 

0 0x00 0x00 0 0 Reset state 

0.0000007 0x00 0x00 0 1 Exit reset state 

1.0000011 0x00 0x00 0 1 Idle. T0 leakage current 

1.2500011 0x00 0x00 0 1 Idle. T1 leakage current 

1.5000012 0xFF 0x0A 0 1 Setup time. T0 write 

1.5000013 0xFF 0x0A 1 1 Write 0b11111111 to the address 
0b01010. 

1.5000014 0xFF 0x0A 0 1 Hold time 

1.5000015 0x00 0x00 0 1 Idle, allow supply current to settle 

1.5000016 0x00 0x00 0 1 Idle. T1 write. 

1.7500016 0x00 0x0A 0 1 Read address 0b01010. T0 read 

1.7500017 0x00 0x0A 0 1 Hold time 

1.7500018 0x00 0x00 0 1 Idle. 

1.7500019 0x00 0x00 0 1 Idle. T1 read. 
Table 14: The stimulus applied to the TB_SIXTYFOURBYTE_REFDFF_01 testbench. 
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Table 14 shows a sequence of stimulus applied to the input buses of the 

TB_SIXTYFOURBYTE_REFDFF_STIM_01 cell, a part of the testbench showed in figure 30. Refer to 

section 5.2.1 for an explanation of the signals. The clock frequency is 10MHz. The STIM cell simply 

passes the square wave signals generated from the stimulus file, through a buffer. This is to give the 

signals a more realistic rise and fall time. The T0 and T1 markers in the comments column indicate at 

which time interval the supply current was integrated over, with T0 being the start time. For details, 

see section 5.6.2. 

The actual LWRTS_stim.vec (stimulus file for the REFDFF test) and LWRTS_results.ocn (ocean script 

for processing simulation results) files were generated by a MatLab script, included in appendix C. 

5.6.4 64 Byte SRAM Simulation setup 

 

Figure 31: The TB_SRAM6T_64B_02 testbench for the SRAM system. 

Figure 31 shows the TB_SRAM6T_64B_02 testbench for the SRAM system. Three different supply 

currents were measured. The first current was the supply current going to the SRAM cells, through 

the I_CELLS_PROBE probe. The second was the supply current going to most of the peripheral 

circuitry, including all logic circuitry, through the I_PERIPHERAL_PROBE probe. The third supply 

current was the current going into the bit lines from the bit-line drivers and the sense amplifiers, 

through the I_COLUMNS_PROBE probe. This allows the study of energy delivered to each SRAM cell 

through the bit-lines. Because D-flip-flops are separated from the rest of the circuit by large gate-

drain and gate-source resistances, there is only a negligible current going from the cells to the 

peripheral circuitry.  SRAM cells are not separate from the peripheral circuitry in this way, and 

therefore it is possible that the peripheral circuitry can deliver current to the cells, and vice versa. 

The measurement of the column circuitry supply current is supposed to give more insight into this 

interaction. The STIM and MEASURE cells in the testbench are included in appendix B. 
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Time[s] Data Row_Adr Col_Adr Read Write WL_en CDN Comments 

0 0x00 0x0 0x0 0 0 0 0 Reset state 

0.0001 0x00 0x0 0x0 0 0 0 1 Exit reset state 

1.0000011 0x00 0x0 0x0 0 0 0 1 Idle. T0 Leak 

1.2500011 0x00 0x0 0x0 0 0 0 1 Idle. T1 Leak 

1.5000012 0xFF 0xA 0x2 0 0 0 1 Setup time 
write. T0 Write. 

1.5000013 0xFF 0xA 0x2 0 1 1 1 Write  
0b11111111 to 
row 0b1010, 
column 0b10 

1.5000014 0xFF 0xA 0x2 0 0 0 1 Hold time write. 

1.5000015 0x00 0x0 0x0 0 0 0 1 Idle. 

1.5000016 0x00 0x0 0x0 0 0 0 1 Idle. T1 Write 

1.7500017 0x00 0xA 0x2 0 0 0 1 Setup time read. 
T0 read. 

1.7500018 0x00 0xA 0x2 1 1 0 1 Precharge 

1.7500019 0x00 0xA 0x2 0 0 0 1 Put bit lines to 
high impedance 

1.7500020 0x00 0xA 0x2 0 0 1 1 enable writeline 

1.7500021 0x00 0xA 0x2 1 0 1 1 Turn on 
sense_amp 

1.7500022 0x00 0xA 0x2 1 0 0 1 Disable writeline 

1.7500023 0x00 0x0 0x0 0 0 0 1 idle 

1.7500024 0x00 0x0 0x0 0 0 0 1 Idle T1 read. 
Table 15: The stimulus applied to the TB_SRAM6T_64B_02 testbench. 

Table 15 shows a sequence of stimulus applied to the input buses of the TB_SRAM6T_64B_02_STIM 

cell, a part of the testbench showed in figure 31. Refer to section 5.3.1 for an explanation of the 

signals. The clock frequency is 10MHz. The STIM cell simply passes the square wave signals 

generated from the stimulus file, through a buffer. This is to give the signals a more realistic rise and 

fall time. The T0 and T1 markers in the comments column indicate at which time interval the supply 

current was integrated over, with T0 being the start time. For details, see section 5.6.2. 

6. Results 

6.1 Simulation results 
Memory system Leakage current [pA] Write Energy [pJ] Read energy [pJ] 

REFDFF 44.4 + 390.3 = 434.7 198 + 104 = 302 162.6 + 0 = 162.6 

C2MOS DFF 44.4 + 53.8 = 98.17 183 + 91.3 = 274.5 162.6+ 0 = 162.6 

6T SRAM 22 + 18.4 + 31.7 = 72.3 23.3 + 6.4 + 2.6 = 32.3 16.3 + 5.8 + 6.8 = 29.0 
Table 16: Leakage currents and read/write energies of the three 64 byte memories  

Table 16 shows the leakage currents and read/write energies of the three 64 byte memories in the 

format of peripheral circuit contribution + cell array contribution + column circuitry contribution 

(SRAM only) = total leakage current or total energy 
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Memory cell Leakage current per cell[fA] Write energy per cell[fJ] Read energy per cell[fJ] 

REFDFF 762 203 0 

C2MOS DFF 105 178 0 

6T SRAM 35.9 12.5 11.3 
Table 17: calculated leakage currents and read/write energies per cel  

Table 17 shows the calculated leakage currents and read/write energies per cell, excluding 

peripheral circuitry contributions, derived from the 64-Byte simulations. 

6.2 Extrapolation results 
In this section, the properties of the memory systems, without the state machine required to 

perform reads and writes, are extrapolated using the calculations explained in section 5.4.  

 

Figure 32: Predicted gate count (normalized area) as a function of memory size [Byte] 

Bytes 64 128 256 512 1024 2048 

REFDFF 4940 9904.5 19834.5 39694.5 79414.5 158854.5 

KHAN_DFF 7750 15536.5 31098.5 62222.5 124470.5 248966.5 

SRAM6T 3003 4747.848048 7633.5 12614.2 21457.5 37562.89 
Table 18: Predicted gate count (normalized area) as a function of memory size [Byte] 

Figure 32 and table 18 show the predictions of gate count, a normalized number representing chip 

area, produced by the extrapolator calculations. 
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Figure 33: Predicted leakage current as a function of memory size [Byte] 

Bytes 64 128 256 512 1024 2048 

REFDFF 4.65E-10 9.32951E-10 1.87E-09 3.74E-09 7.48429E-09 1.5E-08 

KHAN_DFF 1.58E-10 3.18655E-10 6.4E-10 1.28E-09 2.56993E-09 5.14E-09 

SRAM6T 6.3E-11 1.01445E-10 1.67E-10 2.8E-10 4.84628E-10 8.6E-10 
Table 19: Predicted leakage current [A] as a function of memory size [Byte] 

Figure 33 and table 19 show the predicted leakage current as a function of memory size. Corrections 

to the leakage current of the C2MOS (KHAN_DFF) D-Flip-Flops discussed in section 5.4.2 are 

included. 

 

 

Figure 34: Predicted read energy as a function of memory size [Byte] 
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Bytes 64 128 256 512 1024 2048 

REFDFF 1.63E-10 3.28259E-10 6.6E-10 1.32E-09 2.64748E-09 5.3E-09 

KHAN_DFF 1.63E-10 3.28259E-10 6.6E-10 1.32E-09 2.64748E-09 5.3E-09 

SRAM6T 2.91E-11 3.89242E-11 5.28E-11 7.25E-11 1.00303E-10 1.4E-10 
Table 20: Predicted read energy [J] as a function of memory size [Byte] 

Figure 34 and table 20 show the predicted read energy as a function of memory size. The predicted 

read energy is simply the simulated read energy multiplied by the increase in peripheral circuitry 

area. The REFDFF and KHAN_DFF have identical results. 

 

Figure 35: Predicted write energy as a function of memory size [Byte] 

Bytes 64 128 256 512 1024 2048 

REFDFF 3.02E-10 5.03625E-10 9.07E-10 1.71E-09 3.32777E-09 6.56E-09 

KHAN_DFF 2.89E-10 4.91025E-10 8.94E-10 1.70E-09 3.31517E-09 6.54E-09 

SRAM6T 3.19E-11 4.27298E-11 5.8E-11 7.96E-11 1.10118E-10 1.53E-10 
Table 21: Predicted write energy [J] as a function of memory size [Byte] 

Figure 35 and table 21 show the predicted write energy as a function of memory size. The predicted 

write energy is simply the simulated write energy multiplied by the increase in peripheral circuitry 

area. The REFDFF and KHAN_DFF have nearly identical results. 

 

7. Discussion 
The discussion chapter of this report is divided into 5 parts. The first two sections discuss the 

implementations of the D-Flip-Flop system and SRAM system. The third section discusses the 

prediction/extrapolation formulas. The fourth section discusses the way the simulations were 

performed. The fifth section discusses the results acquired from the simulations and extrapolation 

formulas. 

7.1 D-Flip-Flop implementation 
In this section, please refer to section 5.2.3 and 5.2.4. 

0

1E-09

2E-09

3E-09

4E-09

5E-09

6E-09

7E-09

64 128 256 512 1024 2048

W
ri

te
 e

n
er

gy
 [

J]

Bytes

Write energy vs memory size

REFDFF KHAN_DFF SRAM6T



53 
 

The REFDFF cell: In order to have some basis of comparison, a standard D-Flip-Flop was chosen as a 

reference memory cell. The DFCNQD1 (REFDFF) flip-flop was chosen because it was seemingly being 

used by the company Disruptive Technologies for their own purposes. Any other cell from the 

standard cell library could have been chosen as a reference D-Flip-Flop. 

The C2MOS/KHAN_DFF cell: The C2MOS D-Flip-Flop was chosen for testing because it has no pass 

transistor logic and has inverter loops driving every inner node. Pass transistor logic may cause 

degraded logic. If an internal node is cut off by pass transistor logic, its voltage value will degrade 

over time, causing short circuit power consumption (see section 4.7). The C2MOS flip flop may have 

had unnecessarily large transistors. The large sizes of the transistors were chosen arbitrarily. 

Reducing the widths on the transistors would make the flip flop consume less chip area, and might 

make it consume less energy. 

7.2 6T-SRAM implementation 
In this section, please refer to section 5.3. 

7.2.1 Sense amplifier 

In this section, refer to section 5.3.5. The sense amplifier presented in this one of many possible 

sense amplifier designs. [12] Presents a sense amplifier which is similar to the sense amplifier 

presented in section 5.3.5 in that it is precharged to VDD on both sides of an inverter loop. The sense 

amplifier presented in [12] uses a differential input pair. That means it takes its two inputs on the 

gates of two NMOS transistors which are placed between two output nodes and ground. The NMOS 

whose gate voltage is slightly higher will have a greater current IDS passing through it, discharging the 

corresponding node faster than the other node. With the aid of the inverter loop, the output nodes 

will quickly discharge and charge to either VSS or VDD respectively. At this point, the output is ready. 

 

Figure 36: An alternative sense amplifier presented in [12] 
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In this paragraph, refer to section 5.3.5. The functionality of the sense amplifier presented in this 

report is slightly different. Its output nodes are connected to the bit lines through NMOS pass 

transistor. The voltage difference on the bit lines will cause one of the pass transistors to have a 

greater IDS going to the bit lines, discharging one of the output nodes faster. This is inevitably slower, 

as the output nodes are connected to large capacitances presented by the bit lines, and that would 

drain a lot of the current that would otherwise be used to charge the output nodes. The advantage 

of this design is that it greatly simplifies the process of using the output to drive the bit lines for a 

rewrite, as the bit lines would be charged as soon as the pass transistors open. The minimum voltage 

difference on the bit lines needed to ensure a correct read is not known, and should be examined. 

Trying to measure a voltage difference which is too low would mean the output would not be 

decided by the voltage difference on the bit lines, but would rather be decided by a differences in 

drive strength and output node capacitances caused by fabrication errors. 

A differential input pair sense amplifier (the alternative sense amplifier in figure 36 would require a 

more complex timing scheme in order to rewrite to the SRAM cell. The following reason is 

presented: Inverters are assumed to be the driving cells when charging the bit lines for a rewrite. 

These inverters have to be disconnected from the bit lines during a measurement of voltage 

difference, as leaving them to drive the bit lines would influence the measured voltage difference. 

This requires an additional state, the rewrite state, which could only be entered once the sense 

amplifier has made a decision on which output is the correct output. The extra state and timing 

requirements for that state would increase the design complexity of the design of the state machine.  

Avoiding design complexity can help reduce the area, design time, as well as the power consumption 

and leakage current of a design. One problem with the sense amplifier presented in this report is 

that it is slower. A slow sense amplifier will allow the output nodes to remain in an intermediate 

voltage value between VDD and VSS (degraded logic) for longer. This may incur unwanted short 

circuit power (See section 4.7) in either the sense amplifier or the SRAM cell, as the SRAM cell’s pass 

transistors are open during a sense amplifier voltage difference measurement. 

In the design presented in this report, the memory size is small enough that the bit lines present a 

very low capacitance to ground. This means the SRAM cells themselves can pull the bit lines to 

strong logic values (either VDD or VSS) within a read cycle, and one could use the voltage level on 

the bit lines as an output. This means a sense amplifier is not needed in small memories. The sense 

amplifier is included only for the purposes of studying the effect it has on chip area and leakage 

current. The validity of the sense amplifier presented in this paper was not verified. 

7.2.2 Row/Column ratio 

In the implementation described in this report, there are 4 rows per column. This number is 

arbitrary; any ratio could be chosen. The reason this number was chosen was because during the 

design process, memory size expansion had to stop at 64 Bytes because of simulation time 

considerations. At that point, with the given hierarchical structure, the only structures which could 

be constructed without severely lengthening the design time required were either 32 rows/2 

columns, 16 rows/4 columns. 4 rows per column was chosen rather than 16 rows per column. 

Choosing a ratio with a higher number of rows per column decreases area overhead, as each column 

needs 8 bit-line drivers and 8 sense amplifiers. If there are many rows per column, the amount of 

rows will increase faster with increasing memory sizes than if there were few rows per column. 
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More rows mean longer bit lines, and longer bit lines means a greater bit line capacitance. Refer to 

section 7.2.3 for an explanation why bit line capacitance might become an issue. Custom designs 

with a fixed amount of rows are also possible. 

7.2.3 Floating charge memory corruption 

When a specific cell is accessed for a read or a write, its pass transistors are opened by enabling the 

corresponding WL signal. A problem may arise as the pass transistors in all cells in the same row are 

also opened at the same time. When a read or write is finished, the bit lines are disconnected 

completely from either VDD or VSS. The bit lines will slowly discharge through leakage currents, but 

when a writeline is enabled immediately after a read or write, the floating charge on the bit line may 

be enough to flip the value in the cell. The point at which the capacitance of the bit line is big enough 

for this to happen is unknown. This is not a problem for small memory sizes (assumption: 5MB and 

perhaps even much more), when the bit lines have such a low capacitance to ground that the SRAM 

cell will pull the charge on the bit lines to either VSS or VDD before the cells internal capacitance is 

charged beyond Vth, potentially flipping the cell. The cells whose internal capacitances have not 

been charged beyond Vth will eventually rewrite themselves once the writeline_enable signal goes 

low, owing to the inverter loop inside the SRAM cell. Further and more precise explanations of 

charge sharing is beyond the scope of this report, and a large part of the reason the system works is 

because of the inherent read stability explained in section 5.3.6.  

A solution that might solve this problem for much larger memories is to first precharge all bit lines in 

the entire memory whenever a read or write is performed, and then activate the sense amplifiers on 

every bit line pair to rewrite every bit line pair according to the value stored in the opened SRAM 

cell. This would require a redesign of the column circuitry, but the amount of complexity in the 

column circuitry would not increase by much, and therefore the current design is still fairly 

representative of larger memory systems. 

7.3 Extrapolator implementation 

7.3.1 Address bus buffers 

In this section, refer to sections 5.2.2 and 5.3.2 and 5.4.6. When the memory size increases, the 

number of bits needed to address the memory increases. As the address bus gets wider and wider, 

additional buffers will be required in order to drive the address buses on both the 6T-SRAM and the 

DFF circuits. In the calculations, a static bus size was assumed, as a dynamic bus size would 

complicate the mathematics of the extrapolator, and the additional buffers would not represent a 

significant portion of the peripheral circuitry. 

7.3.2 Multiplexer/demultiplexer fan-outs 

In this section, refer to sections 5.2.2, 5.3.2 and 5.4.6. In the extrapolator calculations, it is assumed 

that only 1-2 and 2-1 demultiplexers and multiplexers would be used to decode the buses and 

signals outside the 64-Byte cell. Inside 64-Byte cell, 1-8 and 8-1 demultiplexers and multiplexers are 

used to save area, power and leakage current, and this could also be done outside the 64-Byte cell. 

This means that the extrapolator predicts a larger area, leakage current and read and write power as 

a result of this. 
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7.3.3 Leakage current prediction 

In this section, refer to section 5.4.2. In the design of the extrapolator, the leakage current is 

modelled as a sum of the average leakage currents of the cells in the TSMC standard cell library as 

well as any bottom-level custom designs. For the cells in the standard cell library, an assumption that 

is made is that the input to every cell is either a strong logic ‘1’ or a strong logic ‘0’. This is not 

necessarily true, voltage levels on the outputs of some cells may be degraded (weak logic). One 

reason the voltage may be degraded is if the cell which is driving the input has an insufficient drive 

strength. When the logic value on the input of a cell is degraded, some, or all, transistors in the cell 

have a gate voltage which is not quite VDD or VSS. This may incur additional leakage current. 

 

Memory system type REFDFF KHAN_DFF SRAM6T 

Predicted leakage current [pA] 465 129 63 

Simulated leakage current [pA] 434 98 72 

Error 7.1% 31.6% -12.5% 
Table 22: A comparison of the predicted and simulated leakage currents of the three memory systems. 

Table 22 shows a comparison of the simulated leakage current results versus the predicted leakage 

currents. Corrections to the leakage current of the C2MOS (KHAN_DFF) D-Flip-Flops referenced in 

section 5.6.3 are not included. The formula used to calculate error is: 

Error =
(predicted leakage current − simulated leakage current)

simulated leakage current
∗ 100 

Formula 9: The formula used to compute the leakage current prediction error 

One source of error is the aforementioned degraded logic issue. Another source of error is the fact 

that some of the buffers which are predicted to be part of the design once expanded, are not a part 

of the simulated implementation, and the fault lies with the designer. This would mean that the 

predicted leakage current would include the leakage current from additional buffers. The effect 

would be most significant in the C2MOS (KHAN_DFF) system, as the leakage current contribution 

from the cells compared to the peripheral circuitry is a lot smaller compared to the REFDFF system. 

This effect is only valid for memory sizes close to the simulated memory system’s size. 

When considering the error in predicting the amount of buffers (see above paragraph), inaccuracies 

caused by the assumptions stated in section 5.4 and the error values computed in table 22, it seems 

that the memory circuits’ leakage current can be predicted with enough accuracy to at least give the 

employees at Disruptive Technologies a rough estimate of how much leakage current would be 

incurred by the different memory systems. A sample size of N = 1 is however not adequate for a 

statistical verification, and the correctness of the extrapolator can only be implied by understanding 

the implemented system. 

7.3.4 State machine 

The state machine needed to perform reads and writes in the memory systems was not 

implemented. One reason for this was because of design time limitations. Another reason was that 

the size of the state machine does not grow very fast when the size of the memory circuit increases, 

and that the contribution it has to the total area, leakage current and read and write energy will be 
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negligible at large memory sizes (larger than 128 Bytes). There is however a difference in size of the 

two state machines, the D-Flip-Flop state machine and the SRAM state machine. Implementing these 

or predicting their sizes would allow the prediction of the ‘break-even point’, the memory size at 

which a D-Flip-Flop memory system has the same area as a 6T-SRAM memory system, which is an 

important metric when considering whether to use an SRAM system or a D-Flip-Flop system. 

Because the speed of the circuit is of no concern in this application, the SRAM system was 

implemented with an extremely simplified read and write timing sequence. This means the state 

machine required to perform reads and writes on the SRAM system in this report will be far less 

complex than the state machine required in high-performance systems. This leads to an educated 

guess that the break-even point might be as low as 32 bytes. 

7.3.5 Read and Write energy prediction 

The assumption that read and write energies are proportional to chip area is wrong. There is 

probably a certain correlation between area and read and write energy, because signals have to be 

propagated through the multiplexer logic. A larger area of logic means the signals propagate to a 

greater number of logic gates. The exact correlation between logic area and signal propagation 

energy is beyond the scope of this report. The purpose predictions that were made for read and 

write energy in the results section is mostly to show that for an increasing memory size, the 

difference between the read and write energies of a D-Flip-Flop systems and a 6T-SRAM system 

increase. This is because the D-Flip-Flop peripheral circuitry increases in size faster than the 6T-

SRAM peripheral circuitry. 

Read and write energy extrapolation for the SRAM system 

Extrapolation of read and write energies is likely very inaccurate at larger memory sizes. The effect 

of opening the WL pass transistors of all cells connected to the same WL when reading or writing is 

unknown. There will likely be an increase in the read and write energy contribution from the cell 

array when increasing the cell array size, even though only one cell is ever written to or read at the 

same time. An analysis of the energy consumption of the SRAM cell array as a whole is beyond the 

scope of this report.  

7.4 Method of simulation 

7.4.1 Memory state  

During the simulation, the contents of the REFDFF memory system was set to the worst case 

memory state for leakage current and read and write energy. The leakage current predictions for the 

KHAN_DFF/C2MOS memory system was scaled up to ensure a worst case result. The reason behind 

simulating the worst case memory state is to ensure that the results show qualities as close as 

possible to the qualities of the physical implementation. The physical implementation will always 

have a larger leakage current than the transistor level simulations, and will most likely have a larger 

read and write energy consumption. 

The SRAM memory system was assumed to have approximately the same leakage current 

independent of memory state. The effect the SRAM-Cells have on the voltage levels of the bit lines 

was not simulated. Having every cell retain a logic value ‘0’ may cause the bit lines to have a 

different voltage level than if half the cells stored a logic value ‘1’. This is because there are leakage 

currents through the pass transistors which connect the SRAM cells to the bit lines. The effect this 



58 
 

has on leakage currents inside the SRAM cells is probably negligible, and the extra leakage current 

through to the bit lines is accounted for in the separate measurement of column supply currents. 

Measuring the worst case leakage current for flip-flops, and comparing that to a memory system 

with an (assumed) unvarying leakage current might skew the data in favor of the memory system 

with a stable leakage current (SRAM). To mitigate this, one could measure the average leakage 

current instead. 

7.4.2 Clock Frequency:  

The clock frequency during simulation was set to 10MHz. This is a rather slow clock frequency, but as 

energy consumption is measured as an energy per operation metric rather than power (Watt), clock 

frequency does not matter much. The only situation in which the clock frequency could matter, 

would be if the clock ticks were so frequent, that some internal nodes in the logic circuitry would not 

settle completely within one clock period. At this point, the circuit is close to non-functional as a 

result of approaching the absolute maximum clock frequency. Setting the clock frequency to this 

value is not viable for the type of design presented in this report. 

7.4.3 SRAM bit line model:  

In the simulations presented in this report, a model of the capacitance and resistance of the bit lines 

was not applied as a part of the SRAM memory system. The bit lines present a significant 

capacitance beyond the drain-bulk capacitance modelled in the transistors. The bit lines also present 

a resistance per length of wire, which can grow to be significant when the bit lines grow longer and 

longer with increasing memory size. Increased bit line capacitance and resistance may lead to 

increased read and write energy consumption by slowing down the sense amplifier (see section 

7.2.1). The added capacitance and resistance of the bit lines is negligible for small memory sizes 

(assumption: less than 512B). 

7.5 Results 
Simulation results: Table 16 shows that clearly, in all cases, the 6T-SRAM system without an 

implemented state machine is superior to both D-Flip-Flops. The SRAM system achieves a leakage 

current that is 83% lower than that of the Reference D-Flip-Flop system, and 26% lower than that of 

the C2MOS Flip-Flop system. It achieves a write energy that is 89% lower than that of the reference 

D-Flip-Flop system, and 88% lower than that of the C2MOS flip-flop system. It achieves a read energy 

that is 82% lower than that of the flip-flop systems. 

Table 16 shows that during a read, the column circuitry draws a lot of power. This is probably 

because of the sense amplifier which is enabled during a read. By choosing a different sense 

amplifier design, the read energy consumption can quite possibly be reduced. 

Extrapolation results: The extrapolation graphs (figure 32 through 35) show that for all the memory 

systems, the gate count (area), leakage current and read and write energy grow exponentially with 

an increasing memory size. The SRAM memory shows a much slower rate of growth compared to 

the two D-Flip-Flop systems, and therefore the difference between the SRAM and D-Flip-Flop 

systems grows exponentially in favor of the SRAM system. 
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As previously explained in section 7.3.5, the read and write energies predictions are highly 

unreliable. As implied in section 7.3.1, 7.3.2 and 7.3.3, the gate count and leakage current 

predictions are somewhat reliable. 

7.6 Final system comparisons 

In this section, the memory systems are compared to each other on the basis of the five design 

considerations presented in section 5.1. 

When the memory size grows to sizes greater than 64Bytes, the SRAM system is without doubt the 

best design option for the purposes of minimizing leakage current, area and read and write energy. 

The SRAM system fails to satisfy the fifth and least prioritized design consideration, namely design 

time. An SRAM memory system requires considerably more effort to design than a D-Flip-Flop 

system, as the interaction between the components of an SRAM system form a complicated system 

requiring comprehensive analysis.  

As stated in section 7.3.4, it is impossible to determine the exact characteristics of the memory 

systems when the required state machine and I2C slave circuit has not been designed. The focus on 

simplicity when designing the SRAM system helped reduce the size of the SRAM system considerably 

at smaller memory sizes, and an estimate of when the areas of the SRAM system and D-Flip-Flop 

systems are equal is at a memory size of 32 bytes. At a memory size of 64 Bytes, the SRAM system 

without a state machine/I2C slave circuit had an area that was 39% lower than the REFDFF D-Flip 

Flop system. 

8. Conclusion 
The simulations show that the 6T-SRAM memory system, without the necessary state machine, is 

clearly superior in terms of area, leakage current and read and write energy consumption. The 

implementation or size prediction of the required state machines and I2C slave circuits is needed to 

determine the ‘area break-even point’, but an educated guess is that the area break-even point is at 

a memory size of 32 Bytes. 

The extrapolations of area, leakage current and read and write energy show that when memory sizes 

increase, the SRAM system becomes more and more favorable as a memory system alternative.  

8.1 Future work 

8.1.1 Additional memory types 

Only two different types of memory were considered in this report, several others could prove to be 

suitable in the given 0.18µm technology. 

- RRAM could possibly be implemented on a standard CMOS technology chip [13]. 

Investigating the feasibility of RRAM in a low leakage low power application would be very 

useful. 

- Additional D-Flip-Flops could be simulated in order to select the most suitable D-Flip-Flop for 

a low leakage, low power application. 

- D-Latches could be investigated as a possibility in a low performance application. 

- 4-transistor leaking SRAM could prove to be feasible in a low leakage application. 
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8.1.2 Peripheral circuitry implementation 

The peripheral circuitries of the SRAM and DFF memory systems are far from optimal. A number of 

things can be done to improve them: 

- Buffer fan-outs can be replaced with inverter fan-outs, as long as an even number of 

inverters are ensured. 

- The demultiplexers and multiplexer fan-outs can be optimized drastically. One example 

would be to use negating demultiplexers, which consume less area and leakage current.  

- Synthesizing the multiplexing and demultiplexing circuits could reduce the area of the 

peripheral circuitry, as well as leakage current and read and write power. 

8.1.3 SRAM sense amplifier  

- The validity of the sense amplifier proposed in this report needs to be ensured. 

- The required voltage difference on the bit lines needed to ensure a correct read for the 

proposed sense amplifier should be examined before the sense amplifier is implemented in 

a physical design. 

8.1.4 Extrapolation 

- In order to more accurately represent the sizes and leakage currents of the memory 

systems, the state machine required for reading and writing needs to be implemented. This 

state machine would most likely take the form of an I2C slave circuit. Once implemented, or 

its size predicted, the ‘break even’ point (the point at which the flip flop system is equal in 

size to the SRAM system) can be determined. 

- The mathematical models for buffer and demultiplexer/multiplexer fan-outs should be 

refined to cover an increasing address bus size. 

- A prediction of the read and write energy consumption of the SRAM memory cell array 

would be useful. Specifically, one should look at how the read and write energy responds to 

an increase in bit line capacitance when the memory size grows to 1kB and beyond. 

- The energy consumption of a multiplexer/demultiplexer fan-out increases non-linearly with 

the area of the fan-out. This ‘signal propagation energy’ as a function of multiplexer fan-out 

area could be modelled in order to predict read and write energies more accurately. 
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Appendix A: Simulations supporting the choice of initial memory 

state for the D-Flip-Flop system 
The memory state cases were: 

1) All logic zeros, that is 0x00 stored in every byte 

2) All logic ones, that is 0xFF stored in every byte 

3) Alternating ones and zeros: 0x55 stored in every byte 

To measure the write energy, 0xFF is written to a byte containing 0x00, 0x00 is written to a byte 

containing 0xFF, and 0xAA is written to a byte containing 0x55. This is based on the assumption that 

flipping a bit from either 0 to 1 or from 1 to 0 requires more energy than not flipping a bit. 

To measure read energy, the address which was previously written is read. 

 

 

 

 

Results REFDFF: 

Data stored in all bytes 0x00 0xFF 0x55 

Leakage current [pA] 4.9 + 48.8 = 53.7 8.6 + 51.1 = 59.7 6.8 + 50.0 = 56.7 
Table 23: Leakage currents of an 8 byte memory utilizing reference flip flops (REFDFF) 

Format: peripheral circuit leakage current + cell array leakage current = total leakage current 

Data stored in all bytes 0x00 0xFF 0x55 

Write energy [pJ] 10.0 + 16.2 = 26.2 5.8 + 3.5 = 9.3 7.9 + 9.8 = 17.8 

Read energy [pJ] 5.3 + 0 = 5.3 5.2 + 0 = 5.2 5.2 + 0 = 5.2 
Table 24: Read and write energy of an 8 byte memory utilizing reference flip flops (REFDFF) 

Format: peripheral circuit energy + cell array energy = total energy 

Results C2MOS DFF / KHAN_DFF: 

Data stored in all bytes 0x00 0xFF 0x55 

Leakage current [pA] 4.9 + 6.7 = 11.62 8.6 + 10.4 = 19.0 6.8 + 8.5 = 15.3 
Table 25: Leakage currents of an 8 byte memory utilizing C2MOS Flip Flops (KHAN_DFF) 

Format: peripheral circuit leakage current + cell array leakage current = total leakage current 

Data stored in all bytes 0x00 0xFF 0x55 

Write energy [pJ] 8.2 + 12.8 = 21.2 6.3 + 1.0 = 7.3 7.3 + 6.9 = 14.24 

Read energy [pJ] 5.3 + 0 = 5.3 5.2 + 0 = 5.2 5.2 + 0 = 5.2 
Table 26:  Read and write energy of an 8-byte memory utilizing reference C2MOS Flip Flops (KHAN_DFF) 

Format: peripheral circuit energy + cell array energy = total energy 
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Appendix B: Stim and Measure cell schematics 

 

Figure 37: The TB_SIXTYFOURBYTE_REFDFF_01_STIM cell 

 

Figure 38: The TB_SIXTYFOURBYTE_REFDFF_01_MEASURE cell 
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Figure 39: The TB_SRAM6T_64B_02_STIM cell. 



65 
 

 

Figure 40: The TB_SRAM6T_64B_02_MEASURE cell 
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Appendix C: MATLAB scripts used to generate ocean and stimulus 

files 

D-Flip-Flop stim script 
function  [leak_start, leak_end, write_start, write_end, read_start, 

read_end] = writeStimFile_DFFRAM_64B( filename ) 
%generates a STIM file for use in Kai Likne's testbenches of a D-flip-flop 
%64 byte 
%% constants and initialization: 
hier = '0'; 
tunit = 'ns'; 
trise = '0.001' ; %100ps falltime/risetime 
tfall = '0.001' ; 
vih = '3'; 
vil = '0'; 
period = 100; %10Mhz clock freq, 100ns period 
wait_time = 1000000000; %1 second wait time to measure leak 

  
radix_data = '44'; 
radix_address = '24'; 
radix_store = '1'; 
radix_cdn = '1'; 

  
time = '000000000000'; 
time_amount_of_digits = length(time); %has to be 12 
maxtime = 10^(time_amount_of_digits); 
randomdata='00'; 
address_string='00'; 

  
%% start writing file 
fileID = fopen(filename,'w'); 

  
fprintf(fileID,'radix\n'); 
fprintf(fileID,'+ %s %s %s %s\n', radix_data, radix_address, radix_store, 

radix_cdn); 
fprintf(fileID,'\nio\n'); 
fprintf(fileID,'+ i i i i\n\n'); 
fprintf(fileID,'hier %s\ntunit %s\ntrise %s\ntfall %s\nvih %s\nvil %s\n\n', 

hier, tunit, trise, tfall, vih, vil); 
fprintf(fileID,'\nvname\n+DATA_BUS_VECTOR<[7:0]> ADDRESS_VECTOR<[5:0]> 

STORE_VECTOR CDN_VECTOR\n\n'); 

  

  
fprintf(fileID,'\n\n\n; Initializing\n\n'); 
fprintf(fileID,';time\t\tdata\tad\tst\tcdn\n'); 
fprintf(fileID,'%s\t%s\t%s\t0\t0\t; Reset 

state\n',time,randomdata,address_string); %enter reset state 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 
fprintf(fileID,'%s\t%s\t%s\t0\t1\t; deactivate reset 

state\n',time,randomdata,address_string); 
time = sprintf('%012d',str2num(time)+period*10); %timestep 2 clock periods 

   
%% measure leakage current 
time = sprintf('%012d',str2num(time)+wait_time); %timestep 1 second to 

measure leak 



67 
 

leak_start = time; 
time = sprintf('%012d',str2num(time)+ceil(wait_time/4)); %timestep 0.25 

seconds 
leak_end = time; 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 

  

  
%% measure write energy 

  
fprintf(fileID,'\n\n\n; Start measuring write energy\n\n'); 
fprintf(fileID,';time\t\tdata\tad\tst\tcdn\n'); 
time = sprintf('%012d',str2num(time)+ceil(wait_time/4)); %timestep 0.25 

seconds 

  
write_start = time; 

  
address = '0A'   ; 
data = 'FF'; 
fprintf(fileID,'%s\t%s\t%s\t0\t1\t; Setup time\n',time,data,address); 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 
fprintf(fileID,'%s\t%s\t%s\t1\t1\t; Write %s to Address 

%s\n',time,data,address,data,address); 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 
fprintf(fileID,'%s\t%s\t%s\t0\t1\t; hold time\n',time,data,address); 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 

  
fprintf(fileID,'%s\t00\t00\t0\t1\t; address and data are 0 when 

idle\n',time); 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 

  
write_end = time; 

  
%% measure read energy 
fprintf(fileID,'\n\n\n; Start measuring read energy\n\n'); 
fprintf(fileID,';time\t\tdata\tad\tst\tcdn\n'); 
time = sprintf('%012d',str2num(time)+ceil(wait_time/4)); %timestep 0.25 

seconds 

  

  
address = '0A' ;  
data = '00'; %N/A 

  
read_start = time; 

  
fprintf(fileID,'%s\t%s\t%s\t0\t1\t; measure read energy. start read at 

address %s\n',time,data,address,address); 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 
fprintf(fileID,'%s\t00\t00\t0\t1\t; read end address and data are 0 when 

idle\n',time); 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 
read_end = time; 

  
%% print out stats and close file 
fprintf(fileID,'\n\n\n; leak_start = %s \t leak_end = %s \n; write_start = 

%s \t write_end = %s\n; read_start = %s \t read_end = %s\n',leak_start, 

leak_end, write_start,write_end,read_start,read_end); 
fclose(fileID); 
end 
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D-Flip-Flip flop ocean script 
function  writeOceanScript_64B(filename, leak_start, leak_end, write_start, 

write_end, read_start, read_end) 
%generates an OCEAN file for use in Kai Likne's testbenches of a D-flip-

flop 
%REFDFF 
%64 byte 

  
%% leakage currents 
fileID = fopen(filename,'w'); 
fprintf(fileID,'axlOutputResult("-----" "--- Leakage Currents ---")\n\n'); 

  
fprintf(fileID,'leak_peripheral = 

average(clip(IT("/I_PERIPHERAL_PROBE/PLUS") %sn %sn 

))\n',leak_start,leak_end); 
fprintf(fileID,'leak_cells = average(clip(IT("/I_CELLS_PROBE/PLUS") %sn %sn 

))\n',leak_start,leak_end); 
fprintf(fileID,'leak_total = leak_peripheral + leak_cells\n'); 

  
fprintf(fileID,'\naxlOutputResult(leak_peripheral "leak_peripheral 

(A)")\n'); 
fprintf(fileID,'axlOutputResult(leak_cells "leak_cells (A)")\n'); 
fprintf(fileID,'axlOutputResult(leak_total "leak_total (A)")\n'); 

  
%% write energy 
fprintf(fileID,'\naxlOutputResult("-----" "--- Write energy ---")\n\n'); 

  
fprintf(fileID,'write_energy_peripheral = 

integ(clip(IT("/I_PERIPHERAL_PROBE/PLUS") %sn %sn )) * 

VAR("VDD_VAL")\n',write_start,write_end); 
fprintf(fileID,'write_energy_cells = integ(clip(IT("/I_CELLS_PROBE/PLUS") 

%sn %sn )) * VAR("VDD_VAL")\n',write_start,write_end); 
fprintf(fileID,'write_energy_total = write_energy_peripheral + 

write_energy_cells\n'); 

  
fprintf(fileID,'\naxlOutputResult(write_energy_peripheral 

"write_energy_peripheral (J)")\n'); 
fprintf(fileID,'axlOutputResult(write_energy_cells "write_energy_cells 

(J)")\n'); 
fprintf(fileID,'axlOutputResult(write_energy_total "write_energy_total 

(J)")\n'); 

  
%% read energy 
fprintf(fileID,'\naxlOutputResult("-----" "--- Read energy ---")\n\n'); 

  
fprintf(fileID,'read_energy_peripheral = 

integ(clip(IT("/I_PERIPHERAL_PROBE/PLUS") %sn %sn )) * 

VAR("VDD_VAL")\n',read_start,read_end); 
fprintf(fileID,'read_energy_cells = integ(clip(IT("/I_CELLS_PROBE/PLUS") 

%sn %sn )) * VAR("VDD_VAL")\n',read_start,read_end); 
fprintf(fileID,'read_energy_total = read_energy_peripheral + 

read_energy_cells\n'); 

  
fprintf(fileID,'\naxlOutputResult(read_energy_peripheral 

"read_energy_peripheral (J)")\n'); 
fprintf(fileID,'axlOutputResult(read_energy_cells "read_energy_cells 

(J)")\n'); 
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fprintf(fileID,'axlOutputResult(read_energy_total "read_energy_total 

(J)")\n'); 

  
fclose(fileID); 
end 

  

6T-SRAM stim script 
function  [leak_start, leak_end, write_start, write_end, read_start, 

read_end] = writeStimFile_SRAM6T_64B( filename ) 
%generates a STIM file for use in Kai Likne's testbenches of a 6T SRAM 
%64 byte circuit 
%% constants and initialization: 
hier = '0'; 
tunit = 'ns'; 
trise = '0.001' ; %100ps falltime/risetime 
tfall = '0.001' ; 
vih = '3'; 
vil = '0'; 
period = 100; %10Mhz clock freq, 100ns period 
wait_time = 1000000000; %1 second wait time to measure leak 

  
radix_data = '44'; 
radix_row_address = '4'; 
radix_col_address = '2'; 
radix_read = '1'; 
radix_write = '1'; 
radix_WL_ENABLE = '1'; 
radix_cdn = '1'; 

  
time = '000000000000'; 
time_amount_of_digits = length(time); %has to be 12 
maxtime = 10^(time_amount_of_digits); 
data='00'; 
row_address='0'; 
col_address='0'; 

  
%% start writing file 
fileID = fopen(filename,'w'); 

  
fprintf(fileID,'radix\n'); 
fprintf(fileID,'+ %s %s %s %s %s %s %s\n', radix_data, radix_row_address, 

radix_col_address, radix_read, radix_write, radix_WL_ENABLE, radix_cdn); 
fprintf(fileID,'\nio\n'); 
fprintf(fileID,'+ i i i i i i i\n\n'); 
fprintf(fileID,'hier %s\ntunit %s\ntrise %s\ntfall %s\nvih %s\nvil %s\n\n', 

hier, tunit, trise, tfall, vih, vil); 
fprintf(fileID,'\nvname\n+DATA_BUS_VECTOR<[7:0]> ROW_ADDRESS_VECTOR<[3:0]> 

COL_ADDRESS_VECTOR<[1:0]> READ_VECTOR WRITE_VECTOR WL_ENABLE_VECTOR 

CDN_VECTOR\n\n'); 

  

  
fprintf(fileID,'\n\n\n; Initializing\n\n'); 
fprintf(fileID,';time\t\tdata\trow\tcol\trd\twrt\twl\tcdn\n'); 
fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ; Reset 

state\n',time,data,row_address,col_address,'0','0','0','0'); %enter reset 

state 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 
fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ; exit out of reset 

state\n',time,data,row_address,col_address,'0','0','0','1'); 
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time = sprintf('%012d',str2num(time)+period*10); %timestep 2 clock periods 

   
%% measure leakage current 
time = sprintf('%012d',str2num(time)+wait_time); %timestep 1 second to 

measure leak 
 leak_start = time; 
 time = sprintf('%012d',str2num(time)+ceil(wait_time/4)); %timestep 0.25 

seconds 
 leak_end = time; 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 

  

  
%% measure write energy 

  
fprintf(fileID,'\n\n\n; Start measuring write energy\n\n'); 
fprintf(fileID,';time\t\tdata\trow\tcol\trd\twrt\twl\tcdn\n'); 
time = sprintf('%012d',str2num(time)+ceil(wait_time/4)); %timestep 0.25 

seconds 

  

  
write_start = time; 

  
row_address = 'A'   ; 
col_address = '2' ; 
data = 'FF'; 

  
fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ; setup time 

\n',time,data,row_address,col_address,'0','0','0','1'); 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 
fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ; turn on write and wl for 

selected row \n',time,data,row_address,col_address,'0','1','1','1'); 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 
fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ; hold time 

\n',time,data,row_address,col_address,'0','0','0','1'); % TODO MAY NEED TO 

TURN OFF WRITELINE BEFORE turning off others, probably not 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 
row_address = '0'   ; %idle 
col_address = '0' ; 
data = '00'; 
fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ; idle 

\n',time,data,row_address,col_address,'0','0','0','1'); 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 

  
write_end = time; 

  
%% measure read energy 
fprintf(fileID,'\n\n\n; Start measuring read energy\n\n'); 
fprintf(fileID,';time\t\tdata\trow\tcol\trd\twrt\twl\tcdn\n'); 
time = sprintf('%012d',str2num(time)+ceil(wait_time/4)); %timestep 0.25 

seconds 

  

  
fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ; 

\n',time,data,row_address,col_address,'0','0','0','1'); 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 

  
row_address = 'A'   ; 
col_address = '2' ; 
data = '00'; 
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read_start = time; 

  
fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ; set addressess 

\n',time,data,row_address,col_address,'0','0','0','1'); 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 
fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ; precharge 

\n',time,data,row_address,col_address,'1','1','0','1'); 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 
fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ; disable precharge, WAIT 

WITH WRITELINES to avoid writing over 

values\n',time,data,row_address,col_address,'0','0','0','1'); 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 
fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ;open 

writeline\n',time,data,row_address,col_address,'0','0','1','1'); 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 
fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ; turn on read to enable 

sense amp\n',time,data,row_address,col_address,'1','0','1','1'); 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 
fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ; turn off writeline, data 

is being latched at this clock 

cycle\n',time,data,row_address,col_address,'1','0','0','1'); 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 
row_address = '0'   ; 
col_address = '0' ; 
data = '00'; 
fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ; return to 

idle\n',time,data,row_address,col_address,'0','0','0','1'); 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 

  
read_end = time; 

  
fprintf(fileID,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s ; idle 

\n',time,data,row_address,col_address,'0','0','0','1'); 
time = sprintf('%012d',str2num(time)+period); %timestep one clock period 
%% print out stats and close file 
fprintf(fileID,'\n\n\n; leak_start = %s \t leak_end = %s \n; write_start = 

%s \t write_end = %s\n; read_start = %s \t read_end = %s\n',leak_start, 

leak_end, write_start,write_end,read_start,read_end); 
fclose(fileID); 
end 

  

 

6T-SRAM ocean script 
function  writeOceanScript_64B(filename, leak_start, leak_end, write_start, 

write_end, read_start, read_end) 
%generates an OCEAN file for use in Kai Likne's testbenches of a SRAM 64B 
%circuit 

  
%% leakage currents 
fileID = fopen(filename,'w'); 
fprintf(fileID,'axlOutputResult("-----" "--- Leakage Currents ---")\n\n'); 

  
fprintf(fileID,'leak_peripheral = 

average(clip(IT("/I_PERIPHERAL_PROBE/PLUS") %sn %sn 

))\n',leak_start,leak_end); 
fprintf(fileID,'leak_cells = average(clip(IT("/I_CELLS_PROBE/PLUS") %sn %sn 

))\n',leak_start,leak_end); 
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fprintf(fileID,'leak_columns = average(clip(IT("/I_COLUMNS_PROBE/PLUS") %sn 

%sn ))\n',leak_start,leak_end); 
fprintf(fileID,'leak_total = leak_peripheral + leak_cells + 

leak_columns\n'); 

  
fprintf(fileID,'\naxlOutputResult(leak_peripheral "leak_peripheral 

(A)")\n'); 
fprintf(fileID,'axlOutputResult(leak_cells "leak_cells (A)")\n'); 
fprintf(fileID,'axlOutputResult(leak_columns "leak_columns (A)")\n'); 
fprintf(fileID,'axlOutputResult(leak_total "leak_total (A)")\n'); 

  
%% write energy 
fprintf(fileID,'\naxlOutputResult("-----" "--- Write energy ---")\n\n'); 

  
fprintf(fileID,'write_energy_peripheral = 

integ(clip(IT("/I_PERIPHERAL_PROBE/PLUS") %sn %sn )) * 

VAR("VDD_VAL")\n',write_start,write_end); 
fprintf(fileID,'write_energy_cells = integ(clip(IT("/I_CELLS_PROBE/PLUS") 

%sn %sn )) * VAR("VDD_VAL")\n',write_start,write_end); 
fprintf(fileID,'write_energy_columns = 

integ(clip(IT("/I_COLUMNS_PROBE/PLUS") %sn %sn )) * 

VAR("VDD_VAL")\n',write_start,write_end); 
fprintf(fileID,'write_energy_total = write_energy_peripheral + 

write_energy_cells + write_energy_columns\n'); 

  
fprintf(fileID,'\naxlOutputResult(write_energy_peripheral 

"write_energy_peripheral (J)")\n'); 
fprintf(fileID,'axlOutputResult(write_energy_cells "write_energy_cells 

(J)")\n'); 
fprintf(fileID,'axlOutputResult(write_energy_columns "write_energy_columns 

(J)")\n'); 
fprintf(fileID,'axlOutputResult(write_energy_total "write_energy_total 

(J)")\n'); 

  
%% read energy 
fprintf(fileID,'\naxlOutputResult("-----" "--- Read energy ---")\n\n'); 

  
fprintf(fileID,'read_energy_peripheral = 

integ(clip(IT("/I_PERIPHERAL_PROBE/PLUS") %sn %sn )) * 

VAR("VDD_VAL")\n',read_start,read_end); 
fprintf(fileID,'read_energy_cells = integ(clip(IT("/I_CELLS_PROBE/PLUS") 

%sn %sn )) * VAR("VDD_VAL")\n',read_start,read_end); 
fprintf(fileID,'read_energy_columns = 

integ(clip(IT("/I_COLUMNS_PROBE/PLUS") %sn %sn )) * 

VAR("VDD_VAL")\n',read_start,read_end); 
fprintf(fileID,'read_energy_total = read_energy_peripheral + 

read_energy_cells + read_energy_columns\n'); 

  
fprintf(fileID,'\naxlOutputResult(read_energy_peripheral 

"read_energy_peripheral (J)")\n'); 
fprintf(fileID,'axlOutputResult(read_energy_cells "read_energy_cells 

(J)")\n'); 
fprintf(fileID,'axlOutputResult(read_energy_cells "read_energy_columns 

(J)")\n'); 
fprintf(fileID,'axlOutputResult(read_energy_total "read_energy_total 

(J)")\n'); 

  
fclose(fileID); 
end 
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Average leak test ocean and stim script 
function  writeStimAndOceanFile_avgleaktest( filename ) 
%generates a STIM file for use in Kai Liknes' testbenches for measuring 
%average leakage current of standard TSMC cells 

  
%% constants and initialization: 
hier = '0'; 
tunit = 'ns'; 
trise = '0.001' ; %100ps falltime/risetime 
tfall = '0.001' ; 
vih = '3'; 
vil = '0'; 
period = 100; %10Mhz clock freq, 100ns period 
wait_time = 500000000; %0.5 second wait time to measure leak 

  
time = '000000000000'; 
time_amount_of_digits = length(time); %has to be 12 
maxtime = 10^(time_amount_of_digits); 

  
%% intialize ocean file 
ocean_fileID = fopen(strcat(filename,'.ocn'),'w'); 
fprintf(ocean_fileID,'axlOutputResult("-----" "--- Leakage Currents ---

")\n\n'); 

  

  

  

  
%% start writing file 
fileID = fopen(strcat(filename,'.vec'),'w'); 

  
fprintf(fileID,'radix\n'); 
fprintf(fileID,'+ 1 1 1 1\n'); 
fprintf(fileID,'\nio\n'); 
fprintf(fileID,'+ i i i i\n\n'); 
fprintf(fileID,'hier %s\ntunit %s\ntrise %s\ntfall %s\nvih %s\nvil %s\n\n', 

hier, tunit, trise, tfall, vih, vil); 
fprintf(fileID,'\nvname\n+INPUT3 INPUT2 INPUT1 INPUT0\n\n'); 

  

  
fprintf(fileID,'\n\n\n; Initializing\n\n'); 
fprintf(fileID,';time\t\t\tin3\tin2\tin1\tin0\n'); 
fprintf(fileID,'%s\t\t%s\t%s\t%s\t%s ;\n',time,'0','0','0','0'); 
time = sprintf('%012d',str2num(time)+period); %timestep 1 clock period 

  

  
for vector_value = 0:15 
   vector = dec2bin(vector_value,4); 

  

    
   in3 = vector(1); 
   in2 = vector(2); 
   in1 = vector(3); 
   in0 = vector(4); 

    
   %write stim part 
   fprintf(fileID,'%s\t\t%s\t%s\t%s\t%s ;\n',time,in3,in2,in1,in0); 
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   time = sprintf('%012d',str2num(time)+wait_time); 
   start = time; 
   time = sprintf('%012d',str2num(time)+ 2* period); 
   stop = time; 
   time = sprintf('%012d',str2num(time)+ 2* period); 

    
   %write ocean part 
   fprintf(ocean_fileID,'average_%s = average(clip(IT("/I_PROBE/PLUS") %sn 

%sn ))\n',num2str(vector_value),start,stop); 
   fprintf(ocean_fileID,'axlOutputResult(average_%s "average leak with 

value %s (A)")\n\n', num2str(vector_value), num2str(vector_value)); 

    
end 

  
%finish up ocean part 
%fourinputs 
fprintf(ocean_fileID,'axlOutputResult("-----" "--- Overall average leakage 

currents ---")\n\n'); 
fprintf(ocean_fileID,'average_fourinputs = ( average_0 '); 
for j = 1:15 
    fprintf(ocean_fileID,'+ average_%s ',num2str(j)); 
end 
fprintf(ocean_fileID,')/16\n'); 
fprintf(ocean_fileID,'axlOutputResult(average_fourinputs "average leak with 

four inputs (A)")\n\n'); 

  
%threeinputs 
fprintf(ocean_fileID,'average_threeinputs = ( average_0 '); 
for j = 1:7 
    fprintf(ocean_fileID,' + average_%s ',num2str(j)); 
end 
fprintf(ocean_fileID,')/8 \n'); 
fprintf(ocean_fileID,'axlOutputResult(average_threeinputs "average leak 

with three inputs (A)")\n\n'); 

  
%twoinputs 
fprintf(ocean_fileID,'average_twoinputs = ( average_0 '); 
for j = 1:3 
    fprintf(ocean_fileID,'+ average_%s ',num2str(j)); 
end 
fprintf(ocean_fileID,')/4 \n'); 
fprintf(ocean_fileID,'axlOutputResult(average_twoinputs "average leak with 

two inputs (A)")\n\n'); 

  
%oneinput 
fprintf(ocean_fileID,'average_oneinput = ( average_0 '); 
for j = 1:1 
    fprintf(ocean_fileID,'+ average_%s ',num2str(j)); 
end 
fprintf(ocean_fileID,')/ 2\n'); 
fprintf(ocean_fileID,'axlOutputResult(average_oneinput "average leak with 

one input (A)")\n\n'); 

  
fclose(ocean_fileID); 
fclose(fileID); 
end 
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Appendix D: Simulation snapshots implying the validity of the 

memory systems 

 

Figure 41: A byte containing 0xFF is being read in the REFDFF system 

 

Figure 42: A byte containing 0xFF being  read in the 6T-SRAM system 


