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e Joystick: The two larger controllers have joysticks, because the system is meant to be used
for games. The two values returned are the x- and y coordinates for the joystick’s position.
In x-direction the value is -1.0 to 1.0 from left to right. In y-direction the value is -1.0 to 1.0

from down to up.

e Position: Returns the exact position of the magnetic tracker inside the given controller
realtive to the magnetic tracker in the base station. The values returned are the x-, y-,
and z-coordinates given in millimeters. The coordinates are given in the STEM-system’s
own coordinate system, and had to be transformed in order to be used for controlling the

robot, as explained in section 3.4.3.

* Rot Quat: Returns the four quaternions representing the current rotation of the STEM-
tracker. The order of the quaternions are g, ¢, gy, and g, (this is discussed in sec-

tion 3.4.2).

Data from the buttons and trigger will not be used in this project, but it is worth noting that this
could easily be used to include functionality for opening and closing NAO’s hand etc. The data
is available - all that has to be done is to combine it with methods from the SDK. As explained
in section 3.3.1, the only data the IK-solver needed was the position and rotation. During the
summer project, the rotation matrix for the STEM-tracker was retrieved directly from the STEM-
system. It is possible to get the matrix directly, but @ye’s system did not include this function-
ality: it only returned the rotation in quaternions. Because the conversion from quaternions
to rotation matrix seemed pretty straight forward, it did not seem necessary to ask @ye to help

change his data collecting system.

On the previous projects, there had been some problems with identifying what data came from
which tracker, as explained in section 3.2.3 in my project thesis (Evjemo, 2016). The number in

each file identifying which of the trackers the data is from, solved this problem.

As long as the executable file was running, the text files would be updated continuously for

all connected trackers. These coordinates and quaternions could then be read by for example
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a LabVIEW-program or a C++-script, and used to do additional calculations. In addition, the

tracking data was displayed in a command window, as shown in figure 3.2.
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Figure 3.2: Program running: This window shows the tracker data for all five trackers. In this
case, only two of the trackers are connected. The other three trackers would not connect be-
cause of the problems discussed in section 3.8

3.2.3 Advantages and limitations

Because the tracker-data program returned quaternions instead of Euler angles or the rotation
matrix, this had to be implemented in our system. As explained in section 3.3.1, the IK-solver
needed the transformation matrix representing the desired position and orientation of the end
effector, in our case the hands. Therefore, it was necessary to find the rotation matrix from the

Euler angles. The equations for this are presented in section 2.5.2.

This way of collecting data from the STEM-system seemed very accurate when comparing the

registered data with the movements of the trackers. The registered tracker-data displayed in the
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command window was updated in what felt like real-time, so it seemed like the write to file-
approach had very low latency. In addition, the trackers would not disconnect and act funny
very often, unlike when I was working on the project thesis. This would change during the

course of the project, which will be discussed further in section 3.8.

If the IK-solver could read the data from the text files, it should be able to use this data to perform
the necessary inverse kinematics and return the angles for the joints in the arm effector neces-
sary to make the end effector end up in the desired position and orientation. How to access the

angles returned by the IK-solver will be discussed further in section 3.5.5.

3.3 The inverse kinematics solver

The foundation for the work done in this master’s thesis, is the analytic IK-solver for the NAO
robot developed by N. Kofinas in 2012. The hope was that by combining the tracker data from
STEM with his IK-solver, it would be possible to make the robot move its arms along the same
trajectory as the trackers, and that this could also be done in something close to real-time. First,
it was necessary to get some basic understanding of how the IK-solver worked, and to test that it
worked properly when given valid input. It would also be necessary to find some way to include

the IK-solver in the rest of the system.

3.3.1 Abriefintroduction to how Kofinas’ system works

As will be discussed further in section 3.3.3, the C++-scripts that made up the inverse kinemat-
ics solver created by N. Kofinas were quite complicated. However, fully comprehending the
complexity of the code was not necessary in order to use the scripts in this project. The most
important thing to understand was how the input and output of the IK-solver worked, as this

really determined the design of the rest of the system.

The IK-solver needs input in the form of a transformation matrix, which consists of a rotation
represented by a rotation matrix, and Cartesian position coordinates. The position coordinates

must be given in millimeters, and in NAO’s Torso-frame, which is described in section 2.2.2.
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Kofina’s system also includes a FK-solver, which takes a given effector and its respective angles
as input. The FK-solver returns a transformation matrix describing the position and orientation

of the end effector when the joints are set to these angles.

Themain. cpp file for Kofina’s system is used as a foundation for how the IK-solver and FK-solver
have been used in this project. This script starts with setting all angles of the five effectors, be-
fore running the FK-solver. The final position and orientation of the end of these five effectors
are then returned in five 2D-arrays named outputl-output5. These five arrays are transforma-
tion matrices describing the current position and orientation of NAO'’s five effectors: Left Hand,

Right Hand,Left Leg, Right Leg and Head.

To get solutions from the IK-solver, it should only be necessary to set the transformation matrix
corresponding with the desired effector to values describing the desired point and orientation,
and run the program. If there is a solution, the angle solution will returned in an array called
results. If not, this array will be empty, and the text "No valid solution" will be displayed in the

command window.

In this project, the IK-solver was used by building the Makefile in the Visual Studio Command
Prompt. This created an exe file, which could be run in the command window. It is worth men-
tioning that because I was not able to edit the Makefile, the main.cpp-file had to be named the
same throughout the process. In other words: The backup files could be named mainedit . cpp

etc., but the file currently in use had to be named main. cpp.

3.3.2 Testing the existing scripts

As will be explained in section 3.3.3, the simplest approach for combining the IK-solver in the
C++ files with LabVIEW, was thought to be re-creating the IK-solver in another programming
language. But no matter if the IK-solver was to be implemented in a new programming lan-
guage or not, it would always be necessary to compare the output from potential new IK-solver

files with the output from the old C++-files. And if the original files were to be used, it would still
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be necessary to check if the results from this IK-solver made sense.

The inverse kinematics in the C++ files created by N. Kofinas had of course been checked by
other professors at his university, and was approved by the IEEE. It therefore seemed safe to
assume that they worked as they should. Still, some testing should be done to make sure that
the IK-solver was using the same movement frame for NAO, if the output made any sense, and

simply to familiarize with the system.

As mentioned in section 3.3.1, the original main. cpp-file created by N. Kofinas was a simple

test program for both inverse and the forwards kinematics calculations.

* First, all of the angles were set manually.

e Then, the FK-solver was run, and the x-, y-, and z-coordinates for the point of the end

effector was returned.

e Lastly, the IK-solver was run with the transformation matrix given by the forward kine-

matics solver as input.

This was an easy way to test if the calculations done by the system were in fact correct. If so, the

angles returned by the IK-solver should be equal to the angles set in the beginning of the script.

When testing this program, the only focus was on the inverse and forwards kinematics for the
arm effectors, because these were the effectors I hoped to control. The arm effectors each have
five DOFs, distributed as explained in section 2.2.4. This meant that five angles had to be set

before the FK-solver was run, and the IK-solver should return the same five angles.

The inverse kinematics solver seemed to work well for both the right and the left arm. When
running the test program, it returned approximately the same angles. The variations were less
than 1 um, and could be considered irrelevant, as the control of the robot will not be that accu-

rate anyway.
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However, one exception was discovered. If the initial joint angles were set so that that the el-
bow yaw and wrist yaw were parallel, i.e. the arm was completely straight, the angles returned
by the inverse kinematics solver would not be identical to the initial angles. However, the differ-

ence between the two angles remained the same.

One example of this is shown in figure 3.3, where the initial values for elbow yaw and wrist yaw
are 0.3 and 0, respectively. However, when running the position and orientation through the IK-
solver, the return values were 1.97 radians for elbow yaw, and -1.67 radians for wrist yaw. This
meant that the angles had been altered dramatically. But, as we can see, the difference between
the two yaw angles were the same. The reason for this is that when the arm is kept straight, like
in figure 2.11, the end effector will end up with exactly the same orientation for the two differ-
ent angle combinations. In fact, as long as the elbow yaw and wrist yaw are rotating around
the same axis, any solution for the two yaw-angles is valid, as long as the difference remains the
same. It is also worth mentioning that the new values for elbow yaw and wrist yaw were both
within the valid bounds shown in figure 2.8: 1.97 radians is approximately 112°, and -1.67 radi-

ans is approximately 96°.

Several tests were run to make sure that the IK-solver did in fact return values equal to the initial

values in cases where the arm was not straight, and it worked every time.

std::vector<float> joints(NUMOFIOINTS); B Visual C++ 2008 32-bit Cemmand Prompt
double pi = KMath::KMat::transformations::PI; | EEERel

//Left Hand lzersn1d s i ics
joints[L_ARMHSHOULDER_PITCH]=0; ST TE A A e i
joints:__;-‘-.R.'-'.+SHC-U_DEF-!_RD__]=1.3\ ——Solution exists 1
joimts[L ARMHELBOW YAW]=8.3; 1\\\ = I‘ljﬁsiﬁe‘ﬂiﬁ
joints[L_ARMAELBOW_ROLL]=0;. ] 1 97351
joints[L_ARMHWRIST YAW]=0;__ -1.21826e-016

e — -1.67351

Figure 3.3: Change in angles: Here we see that the elbow yaw and wrist yaw has changed val-
ues. However, the difference between the two stays the same, so the end effector would still be
positioned with the desired orientation.

In addition to testing the IK-solver with data directly from the FK-solver, it was also tested with

input for the left arm effector retrieved from NAO using output from the function ALMotion-
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Proxy::getPosition when NAO was in its initial position. This will be explained in section 3.5.2.

3.3.3 Using original scripts or not

This project uses the IK-solver that was developed in N. Kofinas thesis (Kofinas, 2012), and the
code for the IK-solver was implemented in C++ as part of his thesis. It is possible to implement
MatLab-code directly in a LabVIEW-program, but LabVIEW does not have compatibility with

C++ scripts.

On N. Kofinas’ GitHub, both C++ and MATLAB files for the IK-solver were available. Because
LabVIEW is compatible with .m-files, see section 2.1.1, I wanted to use the MATLAB code as a
basis for the new implementation of the inverse kinematics. However, when contacted, N. Kofi-
nas explained that the MATLAB-code that was available on GitHub was not finished, and could

not be used in its current state.

After consulting with my supervisors at SINTEF Fisheries and Aquaculture, who have a lot of ex-
perience with LabVIEW and its compatibilities, the next plan was to try to re-create the IK-solver
in LabVIEW. This could either be done using block diagrams, or by using LabVIEW MathScript
or MatLab-blocks. Because the IK-solver is mostly basic math operations on matrices and vec-

tors, the functionality of MathScript or MatLab-blocks should be enough.

As mentioned in section 3.3.1, alot of time went into getting the old IK-solver to run. Making de-
cisions based on what would be least time consuming therefore became more important for the
rest of the project. After studying the scripts thoroughly, I decided against trying to implement
the code in a different programming language. It was thought to be too time consuming, espe-
cially when considering that there was no guarantee that the new system would work properly.

If this was a wise decision or not will be discussed further in section 4.4.1.
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3.3.4 Early correspondence with N. Kofinas

To make some parts of the code clear, N. Kofinas was contacted through e-mail, see appendix B.
He explained that the inverse kinematics solver naturally depended on being given a valid set of
parameters in order to return a solution. This meant that if it was impossible for the arm effec-
tor to reach a desired point, the IK-solver would not return the closest feasible solution. Initially
the idea was that the possibility of getting no valid solution from the IK-solver would make it
be necessary to implement some exception handling in case the desired position was not in the
feasible area. However, this turned out to be quite a big deal, and much more severe for the

functionality of the system than first expected, as will be explained further in section 4.1.

N. Kofinas also explained that when given valid input, it was very unlikely that a given posi-
tion and orientation of the end effector could have several feasible solutions for the joint angles
in the arm effector. Still, if the IK-solver was to return multiple solutions, a possible way to han-
dle this would be to simply compare the solutions with the current joint angles, and choose the

solution closest to the current robot pose.

As will be explained further in section 3.5, the problems I experienced when trying to use the
IK-solver in the full system caused me to try to contact Kofinas again. At the time of submitting
this Master thesis, he has not replied. However, it eventually became clear why it was so diffi-
cult to get the analytic IK-solver to return valid solutions for the STEM tracker’s trajectory, and
this will be discussed in section 4.1. I also wanted to ask Kofinas why it was unlikely that the
IK-solver would return multiple solutions. As was mentioned in section 3.3.2, certain combina-
tions of position and orientation should potentially have infinite solutions due to parallel joint
axes. Perhaps the IK-solver only returns the first solution it finds, or perhaps it is so sensitive
that it only considers one of the solutions to be accurate enough. This thesis will not answer

these questions, because the system never became functional enough for this to be a concern.
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3.4 Processing the tracked data

The data collected from the STEM-tracker had to be processed before it could be sent to the
IK-solver. It had to be combined with the data describing the robot effector’s current position
and orientation, it was necessary to compensate for differences in frames, and the data had to

be transformed into a form that was compatible with the rest of the system.

3.4.1 Getting initial position and orientation of robot arm

This section is partially based on section 3.1.2 of my project thesis (Evjemo, 2016).

As explained in section 2.2.3, the NAO robot’s "initial position" was chosen to be the starting
point for all movement of the robot arms. This position would be used both for testing done on

the actual NAO robot, and on simulated robots used for testing.

In order to be able to account for the starting position of NAO’s hands, it was necessary to collect

the data describing the initial position and orientation of NAO’s hands.

Finding the initial position and orientation of the arms could be done using the method

ALMotionProxy: :getPosition from the NAO’robots SDK (Cartesian Control API, 2015). Given
an effector and a movement frame, this function will return the Cartesian position and Euler
angle orientation of the end effector, like seen in the output in figure 3.4. The Euler angles re-
turned here are based on a rotation about the fixed frame, more specifically NAO’s Torso frame,
which was explained in section 2.2.2. In order to use the initial rotation in further calculations,
it was necessary to convert the Euler angles to a rotation matrix, as will be explained later in this

section.

The only thing separating the coordinates for the right and the left hand, is the y-coordinates.
Other than that, the coordinates are almost exactly mirrored, as shown in figure 3.4. The same
goes for the orientation of the robot hands, which are identical except for opposite orientation

about the x-axis. As shown in figure 2.5, the robot’s x-axis is defined straight forwards, and fig-
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ure 1.4.2 showing the initial position confirms that the arms have this opposite rotation around
this axis. In the edited main. cpp-file, these initial values were set manually in the script based

on the position and orientation in figure 3.4.
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Figure 3.4: Initial values: Here we can read what the coordinates for NAO’s right and left arm is,
given in the Torso frame. Image taken from (Evjemo, 2016)

After first using the ALMotionProxy: :getPosition-function to get the initial Cartesian coor-
dinates and Euler angles for the robot arms, it became clear that it would be much more useful
to get the rotation matrix directly. This would of course shorten the script’s execution time,
but more importantly: It would mean one less possible source of error. Therefore, the function
ALMotionProxy: :getTransform was used instead: Given an effector name and a movement
frame, this function will return the complete transform matrix of the given effector, see sec-

tion 3.1.2.

By adding the movement and rotation of the tracker together with the initial position and ro-
tation of NAO’s arms, like explained In section 2.5.3, i was possible to find the Cartesian coordi-
nates and rotation matrix describing the desired point for the end effector to end up. How to do

this is explained in section 3.4.4.
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3.4.2 Some necessary transformations

When combining different hardware and software with individual specifications regarding units,
frames etc., there were a lot of transformations and calculations that had to be done. This sec-
tion sums up some of the modifications that had to be done on different kinds of data before it

was compatible with the rest of the system.

Euler angles to rotation matrix

As shown in figure 3.4 and explained in section 2.2.3, the initial position and orientation of the
arm effectors could be found using the function ALMotionProxy: : getPosition. This function
would return the rotation given in Euler angles relative to the robot’s Torso frame. As explained
in section 2.5.3, calculations on partial rotations are possible when using rotation matrices. Be-
cause of differences in frames, it would be easier to have the initial orientation of NAO’s arm
effectors represented as a rotation matrix rather than in Euler angles. Using rotation matrices
also removes some uncertainty because an Euler angle rotation can be described as only one
rotation matrix, while one rotation matrix can describe several combinations of Euler angle ro-

tations. This is explained in section 2.5.2.

When knowing the initial Euler angle rotation, the rotation matrix could be found using the
MatLab-function eul2rotm, see section 2.1.1. It was important to remember that the function
eul2rotm assumes that the Euler-vector has the Euler angles in the order z, y and x. The rotation

matrix gotten from MatLab could then be included in the script as constants.

Including the initial position and orientation as constants seemed like a possible approach since
the idea was to always start the robot in the same initial position, as described in section 2.2.3.
Still, it would have been more ideal to extract the initial position of the arm effectors at the
beginning of the program. As mentioned earlier in this section, a different function from the
NAOqi SDK was used to get the initial rotation matrix directly, skipping the MatLab-step. Using
this function would make it even easier to include this in the script, rather than setting position

and orientation as constants.
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Quaternions to rotation matrix

In section 3.2.2 it was explained that the position and orientation of the STEM-trackers were
written to file, and that they were represented in millimeters and quaternions. Itis possible to do
partial rotation calculations using quaternions, but I had worked more with rotation matrices
than with quaternions, and consequently felt more comfortable with this way of representing
rotation. I therefore chose to convert the rotations described in quaternions to rotation matri-

ces, using the formulas shown in figure 2.14.

When using quaternions, it is always necessary to check if they are given in the order q,, gy,
dy, g or in the order qy, gy, g, 4., as explained in section 2.5.2. To check this for the STEM-

system, the following approach was used:

e First, the STEM-tracker was placed in the orientation which relative to STEM’s frame rep-
resents a rotation of zero. To find this position, the Sixense STEM application that came

with the system was used.

e Then, MatLab was used to see how the quaternions looked for a rotation equal to zero.

That is: Euler angles ey=ey=e.=0, or a rotation matrix equal to the identity matrix, R=1.

e Lastly, the quaternions from the STEM-tracker with zero rotation were compared to the

results from MatLab.

The testing showed that when the rotation is zero, the quaternions have these values: g, = 1, gx
=gy = g, = 0. The output from the STEM-tracker was approximately " 100 0 ", which gave this

order of the quaternions: gy, gx, gy, qz.

In order to double-check that the order of the quaternions was registered correctly, two exam-

ples from Sixense’ own documentation were used (Sixense SDK Overview, 2012).

According to the documentation from Sixense, the point of zero rotation for the flat trackers, or

packs, was when they were lying flat on the table with the LEDs facing the ceiling, pointing in
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Figure 3.5: Checking rotation matrices: According to the documentation from Sixense, these
two rotations of the tracker relative to the base station, should result in the two rotation matrices
R, and Rj, (Sixense SDK Overview, 2012).

the same direction as the base station. This is shown to the left in figure 3.5. Being the point of
zero rotation, the rotation matrix created from the quaternions in this position should result in

the identity matrix, illustrated in matrix R,.

1 00 1 0 O
Ra=10 1 0|,Rp=]0 0 -1
0 01 01 0

The documentation also states that if the tracker is placed aiming at the ceiling, like shown to
the right in figure 3.5, then the resulting rotation matrix should be similar to matrix R;,. Unfortu-
nately, the C++ script did nof result in these two matrices when processing the quaternions for
the tracker in this position. This meant that the order of the quaternions were not correct after

all.

As explained in section 3.2.2, the rotation matrix was collected directly from the STEM-tracker
during the summer project and the work on my project thesis. One thing that led to some con-
fusion back then, was that the rotation matrix was indexed differently than what is the norm,

which is explained in detail in section 3.2.2 in my project report (Evjemo, 2016). According to
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documentation from Sixense, the rotation matrix is stored in column order, each of the columns

representing one of the three transformed unit axes (Sixense SDK Overview, 2012).

r00 r01 rO02 r00 r10 r20
Ruorm=1|r10 r11 r12|,Rstem=|r01 rl1l1 r21
r20 r21 r22 r02 rl12 r22

This meant that the rotation matrix collected directly from the STEM-tracker in earlier work,
was composed so that it actually was the transpose of a rotation matrix following the norm. The
next idea for achieving the correct rotation matrix from the four quaternions, was therefore that
the quaternions might be given in an order, or calculated in a way which made the resulting ro-
tation matrix have the same composition. The order of the elements in the matrix was therefore
changed, and tested both for the order g, gx, gy, g, and the order gy, gy, 4., q,. However,
when placing the pack in the orientations illustrated in figure 3.5, none of these matrices corre-

sponded to the matrix R, or Ry,

The order of the quaternions was eventually determined by testing the quaternion values when
the tracker was rotated 180° around each of the three axes, always starting in the "zero-rotation"
position shown to the left in figure 3.5. When the rotation was zero, the g, would be 1 or -1,
while the rest of the quaternions were 0. When rotating the controller 180° about one of the
three other axes, the quaternions corresponding to this axis would be 1 or -1, while the others
would be zero. The quaternion output was checked with MatLab, to see which of the quater-

nions this rotation corresponded with.

This last approach showed that the order of the quaternions was in fact g, g, qy, qx-

Scaling of translation

The tracked Cartesian position for the STEM-trackers was given in millimeters. When using the

function ALMotionProxy: :getPosition, the position of NAO’s effector was given in meters.
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The IK-solver needed the input in millimeters. It was therefore necessary change the unit of the

position of NAO’s effector from meters to millimeters, simply by multiplying the value by 1000.

3.4.3 Compensating for differences in coordinate systems

This section is partly based on section 3.2.2 of my project thesis (Evjemo, 2016).

The STEM-system has defined its coordinate system, differently from the NAO robot. For NAO,
the x-axis points forwards, the y-axis points to the left, and the z-axis points upwards, as seen in
figure 2.5. For the STEM-system, the x-axis points to the right, the y-axis points upwards, and
the z-axis points backwards, like seen in figure 3.6. Because the IK-solver uses the NAO robot’s
coordinate system, the tracked data received from STEM had to be transformed into NAO’s co-

ordinate system. In other words, it was necessary to implement that:

e The STEM-system’s x-axis was the NAO robot’s negative y-axis
e The STEM-system’s y-axis was the NAO robot’s z-axis

* The STEM-system’s z-axis was the NAO robot’s negative x-axis

Fixing the Cartesian coordinates was quite basic, and could be done simply by changing which
of the Cartesian values read from file was connected to which coordinate, as shown in figure 3.7.
However, it was also necessary to transform the rotation matrix R} before it could be sent to the

IK-solver.

Like for the Cartesian coordinates, this meant changing the output of the rotation matrix so that
it fitted the robot’s coordinate system. If the system had used Euler angles, this could have been
done by just changing the output according to the axes, like for the Cartesian position. But be-
cause the IK-solver needed the rotation matrix, as explained in section 3.3.1, the process was a

bit more complicated.

As explained in section 3.2.2, the tracker data describing the orientation of the STEM-tracker
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Z axis

Figure 3.6: STEM coordinates: The coordinate system that the STEM-trackers follow are defined
like shown in this figure, which is differently from the robot’s coordinate system. Picture taken
from (Evjemo, 2016)

double initx = -atof(initpostokens[3].c str()); //NAO x = STEM -z
-atof(initpostokens[1].c_str()); //NAO y = STEM -x

atof(initpostokens[2].c str()); //NAO z = STEM vy

double inity
double initz

Figure 3.7: Changing the axes: When registering the Cartesian position of the STEM-conroller,
the axes are changes to fit NAO’s coordinate system

was registered in quaternions. Because changing frames for rotation matrices is quite straight
froward, the first step was therefore to transform the rotation from quaternions to the corre-
sponding rotation matrix. Next, the registerred rotation had to be transformed from STEM’c

coordinate system to NAO'’s coordinate system.

At first, this was done by rotating the STEM-coordinate system 90° around the y-axis, and then
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-90° around the x-axis. The rotation matrices for these rotations are given as follows (Spong,

Hutchinson and Vidyasagar, 2006):

cos(90°) 0 sin(90°) 0 01
Ry = 0 1 o |=[o 10
—sin(90°) 0 cos(90°)| |-1 0 o
1 0 0 1 0 0

Ry=10 cos(-90° -sin(-90°9)|=]0 0 1
0 sin(—90°) cos(—90°) 0 -1 0

When registering the rotation matrix R(l) from STEM, the transformation to the robot’s coordi-

nate system was done by multiplying it with these to rotations, as seen in equation 3.1

R) = RsteM - Ry - Ry 3.1

The rotation matrices Ry, and R, were post-multiplied, because the rotations are about the cur-

rent axes, not the axes in the world coordinate system, as explained in section 2.5.4.

However, testing showed that this approach really only worked if the STEM-tracker’s initial ori-
entation corresponded to what the STEM-system considered "zero" rotation relative to the base
station (see section 3.7.2). My assumption had been that the tracked orientation were always
given relative to the STEM-system’s base station, but this turned out to be wrong. The reason
was that the registered orientation was given relative to each tracker’s current orientation. In
other words: the frame in which the rotation was registered, followed the rotation of the STEM-
tracker continuously. This meant that is was necessary to compensate for the STEM-tracker’s
initial orientation relative to the base station as well, not only the difference between the frames

of the base station and the robot.
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While this initially seemed like it would only create a more complicated system, this also made
it possible to trick the system into registering the orientation in the robot’s frame from the be-

ginning. How this was done will be explained further in section 3.7.2.

3.4.4 Real movement for robot

When the change in position of the STEM-tracker was registered, this had to be combined with
data for the position and orientation of NAO’s arm effector. The initial rotation of NAO’s arm

effector was described by the rotation matrix R(I)N 100 While the rotation of the STEM controllers

1

after starting the program was described by the rotation matrix R, ¢,z

Because the goal was
to make NAO’s arms follow the movement of the STEM-trackers, the movements after starting

the program should be identical:

1 1
Rynao = RosTEMm (3.2)

1

The new rotation matrix for NAO’s arm, R\ a0

was therefore found by multiplying the two

rotation matrices together (Spong, Hutchinson Vidyasagar, 2006):

0 0 1
Rynao =Rinao Rostem (3.3)

The goal was to get the final transformation matrix T

SNAO describing the full, current position

and orientation, and send this into the IK-solver created by N. Kofinas. To do this, it was neces-

sary to find the new position as well.

As explained in section2.5.3, this was done by adding the change in the Cartesian coordinates of

the STEM-tracker to the initial position of the effector:

newposyao =initposyao+ (newpossten — iNitpossTem) (3.4)
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newpos® , . isthe desired Cartesian position of the effector. By combining this Cartesian posi-
POSN a0 p y 8 p

tion with the rotation matrix RY

2N a0 Fepresenting the desired orientation, it was possible to get

the transformation matrix T2

>n a0 describing what the robot’s effector should do. The final trans-

formation matrix was then sent into the IK-solver, as explained in section 3.3.1 and section 3.3.2.

3.5 Trying to get valid output from the IK-solver

The methods and transformations necessary to crate the transformation matrix describing the
desired position and orientation for the robot’s arm effector were implemented directly in the
main. cpp file of the IK-solver. As explained in section 3.3.1, the reason was that the IK-solver
was used by running an exe-file created when building the scripts. In this section I will present
some of the tests that were run on the system and the scripts to try and get valid output from the
IK-solver. Some of the choices made when editing the main. cpp file are also explained. All the

testing was done for NAO’s left arm effector.

3.5.1 Initial testing: movement between two points

It turned out to be extremely difficult to get valid output from the IK-solver. Testing was done
by writing the initial position and orientation of a STEM-tracker to a file called deviceXO0. txt.
Then, the tracker was moved slightly, and the program run again, this time writing the value to
a different text file called deviceX1.txt. A more detailed description on how this was done is
included in section 3.5.3. With the tracker data for two different points, the change in position
and orientation between these two points could be calculated using the methods explained in

section 3.4.

However, when the new transformation matrix for NAO’s arm effector was sent as input to the
IK-solver, all it returned was "No valid solutions". As explained in section 3.3.2, the IK-solver had
been tested to check that it worked the way it should as long as the input was valid. Still, during
testing I never seemed to get a valid solution when trying to run the IK-solver for a movement

of the STEM-tracker, no matter how small or simple the movement was.
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Because the IK-solver had not only been created as a thesis by Kofinas, but had also been pub-
lished as a scientific article by Kofinas and several professors (Kofinas, Orfanoudakis, and Lagoudakis,
2013), it seemed safe to assume that it should work properly when given valid parameters.
Therefore, it seemed very probable that the error was somewhere in my own code. So a se-
ries of different tests were performed to try to identify the problem. These are described in the

following sections.

3.5.2 Checking for type errors

As explained in section 3.3.1, I did not feel that I fully understood how the IK-solver scripts
worked. Therefore, my initial though was that the problem could be re-setting the values in the
transformation matrix which was sent into the IK-solver. Unlike Python, which had been used
for most of the programming when writing my project report (Evjemo, 2016), C++ is a type-
sensitive language, meaning that any mix-ups between floats, ints, or doubles etc. could be

critical.

Because of this, I tried setting the transformation matrix to values retrieved from NAO using
output from the function ALMotionProxy::getPosition when NAO was in its initial position. As
explained in section 3.1.2, this function returns the position and Euler angle rotation of a given
effector. The output that was used is showed in figure 3.4. The Cartesian position only had to
be scaled down from meters to millimeters. Using the eul2rotm-function in MatLab (see sec-
tion 2.1.1), I was able to get the rotation matrix describing the same rotation as the Euler angles.

The rotation matrix values were used to replace the old values in the transformation matrix.

This time, the IK-solver did return a valid solution in the form of five angles, as shown in fig-
ure 3.8. To make sure that this really corresponded with NAO’s initial position, they were tested
on the 3D-model of the robot in LabVIEW. The left arm of the 3D-model ended up as shown in
figure 3.9, which convinced me that the IK-solver worked properly when given valid input. At a

later stage, this was also tested on the virtual robot in LabVIEW.
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B Visual C++ 2008 32-bit Command Prompt EI@

A.8747 -0.4529 B6.1724
-0.8185 B.3377 6.9411

—A.4845 -@A.8251 B6.29788
Here iz the final cartesian x: —<(B — B> + 118.6811

4. CORRECT TRANSFORMATIOM MATRIX

AH.874 -A.452 A.172 11A8.811
B.337 B.941 127.879
-A.825 8.29 -55.2915

——%olution exists 1
angleB 1.43965
anglel B.263115
-1.36%16
-A.962346
A.8141044

Figure 3.8: Valid solution: When manually setting the transformation matrix in the C++-script
to match the transformation matrix for NAO’s left hand when being in the Initial Position, the
IK-solver returned the output shown above for the five angles in NAO’s left arm effector.

From the results illustrated in figure 3.9, it seemed clear that the position of the left arm matched

the position of the left arm on the actual robot when in the Initial position.

The conclusion of this test was that the problems with getting valid output from the IK-solver
were not caused by wrong types, or other errors related to changing the values in the transfor-

mation matrix.

3.5.3 General troubleshooting

The next step was to double-check if the problem was caused by some mistake in the edited
scripts related to units or simple calculations. It would have been much harder to discover er-
rors in the system if the troubleshooting was done when the C++-scripts were combined with

LabVIEW etc, so in a sense it was a good thing having to do these tests at an early stage.

One example was double-checking the calculations of the changes in the tracker’s position and
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Figure 3.9: Matching angles: When setting the five angles on the left arm of the simple 3D-model
on the right, the final position and orientation of the arm matched the actual robot in its Initial
position. As mentioned in section 3.5, testing was only done on the left arm of the robot.

orientation, and see if the calculated movement made any sense when comparing it to the

movement in the real world.

A simple test was run to check if the inverse kinematics solver in C++ did in fact return results
that made sense. The program that wrote the tracker data to file was run. Two backup-versions
of the given text file was then saved at two different times, with the tracker being moved slightly
in between. The two backup files are shown in figure 3.10, where device30 was saved first, and

device31 was saved after the tracker was moved.
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| device30 - Notepad

File Edit Format View Help

Device: 4

Docked: No Cont Right 2

Buttons: (none)

Trigger: 0.000

Joystick: 0.000 0.000

Position: 131 157 489

ROT Quat: 0.34 0.40 -0.63 0.57

| device31 - Natepad
File Edit Format View Help

Device: 4

pocked: No Cont Right
BUTTONS : (none)
Trigger: 0. 000
Joystick: 0.000 0.000
FPosition: 159 149
ROt Quat: 0.40 0.32

346
-0.59  0.62

Figure 3.10: Small changes: Here we see the tracking data from the same tracker at two different
points in time. Itis clear that the rotation is almost identical, as the quaternions are quite similar,
but the controller has moved a lot in the STEM-system’s negative z-direction. This means that it
has movedforwards, or in the NAO robot’s positive x-directions, see section 3.4.3.

If the script worked as it should, the transformation matrix created at the end of the script should

contain the new rotation matrix and Cartesian coordinates for NAO’s arm effector if it began its

movement in NAO’s initial position, see section 3.4.2.

Checking if the rotation matrix made sense or not is a little complicated, and requires using

the methods explained in section 2.5.3. Checking the Cartesian coordinates in the transforma-

tion matrix should on the other hand be relatively straight forward, so this was step one. The

initial position of the effector the test was run on, NAO’s left hand, is:

e x-coordinate: 110.01
e y-coordinate: 127.08

e z-coordinate: -55.29

When changing the tracked coordinates for the STEM-tracker to match NAO’s coordinate sys-

tem like described in section 3.4.3, the movement given in millimeters ends up being:

¢ In x-direction: -(346 - 489) = 143

e Iny-direction: -(159 - 131) = -28

¢ In z-direction: 149 - 157 = -8
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Added together, the new Cartesian coordinates for NAO’s hand should be:

e x-coordinate: 110.01 + 143 =253

e y-coordinate: 127.08 - 28 =99

e z-coordinate: -55.29 - 8 =-63

If the scripts worked properly, these values should be found in the right-most column of the
final rotation matrix. However, when running the scripts, the final transformation matrix ended

up as shown in figure 3.11. This meant that the maths in the script was somehow wrong.

=

EA Visual C++ 2008 32-bit Command Prempt

H.281311 ®©.235887 B.747384

B.442645 -0.8348931 B.299926
Here is the final cartesian x: —¢14% — 157> + 118.811

MEY, CORRECT TRAMSFORMATION MATRTX
H.8787%8 W.477766 -H.8629655 118.811
H.281311 A.235887Y B.9497884 | —15.%7214
H.442645 —#.848931 B8.299926~,_ 83 .2715

Figure 3.11: Wrong output: It is clear that the calculated Cartesian coordinates do not match
what is known to be the correct answer. Somewhere in the program there must be some math-
ematical error.

In this case, the mistake was simply that the axes had been flipped one too many times, because

the difference in coordinate systems had already compensated for earlier in the script.

Several tests like this were run in order to double check that the position and rotation values
were saved correctly, and that calculations were done right. All details regarding this testing will

not be included in this thesis, as most of them are quite elementary, though time-consuming.
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3.5.4 Reducing accuracy

As explained in section 3.5.2, problems with variable types etc. when setting the values in the
transformation matrix was not why the IK-solver would not return valid solutions. So far, the
only way of getting valid solutions from the IK-solver, seemed to be sending in positions and
orientations for the effector which were know to be valid because they were acquired by us-
ing the ALMotion:getPosition-function on the actual robot. If the IK-solver worked the way
I hoped, it should be possible to get valid solutions for other desired positions and orientations

for the arm effector as well.

The next potential problem investigated, was that the rotation matrix and Cartesian positions
that were sent to the IK-solver might be oo specific. In other words: There might be so many
decimals that the exact position and orientation did not correspond to a valid solution, even
though another point close-by might give a solution. Reducing the number of decimals was
therefore tested, which meant sending a less accurate rotation matrix and position to the IK-
solver. The number of decimals was reduced from 6 significant figures, to 3 decimals after the
decimal point. For the Cartesian coordinates, this meant reducing the number of decimals by

one or two decimals, as the old values had six significant figures.

This kind of change in the number of decimals would make the system less accurate, which
could end up being a problem in itself. But it still had to be tested, as a slightly less accurate sys-
tem seemed better than a system that did not work at all. Also, the reduction in accuracy would
probably not be too noticeable in the end. After all, reducing the number of decimals from 5 to
2, only means reducing the accuracy of, for instance, the Cartesian position with one tenth of a
millimeter. When considering that the person controlling the robot is unlikely to be able to con-
trol his own movements with that kind of accuracy in the first place, it seemed negligible. Still,
possible implications would have to be discussed and evaluated further if reducing the number

of decimals did in fact help.
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BB Visual C++ 2008 32-bit Command Prompt

—#.4845 -0.8251 ©.2708

esting is it here

B.8747 —@A.45%2%9 B8.1724

B.8105 B_.33779 B._9411

—A.4845 -A.8251 B.2988
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EX Visual C++ 2008 32-bit Command Prompt

B.4845 -0.8251 06.2988

testing is it here

B.8747 —BA.4529 B.1724

B.8105 B_.3379 B.9411

B.4845 —-@.8251 B.29988

Here iz the final cartesian x: —{(@ — 8> + 118.6811

CORRECT TRANSFORMATION MATRIX
A.875 -8.453 B.172 118.811
B.811 B.338 B.941 127.877

A.4845 -B_8251 ©@.2988 -55.2915 A.485 -8.825 @.291 -55.291

—%olution exists 1
angleB -446863
anglel A.264411
-1.36738
—-B8.963488
A.8128294

2 —8%o0lution exists 2
angled = 1.5788 anglel = —B@.785398 angle2 ‘Bangled = 1.5788 anglel = —8.785398 angle2 = —3.119
4 = 3.12038 4 = 3.12938

Figure 3.12: Change in solution: As shown in the command windows above, reducing the num-
ber of decimals for the values in the transformation matrix also changed the values of the angles
returned by the IK-solver. The command window to the left is shows the original transformation
matrix, while the scaled version is shown to the right.

Changing the number of decimals of the values in the transformation matrix on known, valid
positions, had some effect on the solution returned by the IK-solver, as shown in figure 3.12.
However, it did not seem to solve the problem, because any solution based on a movement

made by the STEM.tracker would still return "No solution".

In fact, if the number of decimals was reduced to only two decimals after the decimal point,
the IK-solver would give "No valid solution" even for the position and rotation taken directly
from the robot, which I knew was supposed to have a solution. This made it necessary to recon-
sider the approach of reducing the number of decimals, at least for the values representing the
rotation matrix. Making these values less accurate might lead to the rotation matrix no longer
being full rank. Therefore, I abandoned this approach. Reducing the accuracy of the Cartesian
position, on the other hand, proved useful on a later stage of the project. This will be explained

further in section 3.7.3.
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3.5.5 Continuous update of movement

As explained in section 3.5.2 and 3.5.4, neither setting the types in the transformation matrix nor
the number of decimals for the values in the transformation matrix seemed to be the problem.
However, as explained in section 3.5, the testing was done by finding the movement between
two specific Cartesian positions and orientations. Therefore, it was possible that I had only
been unfortunate with my choice of values. Even though about 15-20 different movements had

been tested, this was still a relatively small set of points and orientations.

The next step was therefore to create a program which would continuously check for valid so-
lutions for a desired position and orientations while the STEM-tracker moved. Because writing
to and reading from text files was already used in different parts of this project, this method was

used here as well. The new program should:

* Register and save the initial position and orientation values of the STEM-tracker, prefer-

ably to a text file.

e Save the current position and orientation values for the STEM-tracker. These values should

also be written to a text file, but a different one than the initial values.

e Continuously update the position and orientation values for the STEM-tracker in close-to

real-time. This could hopefully be done using a loop.

Since the IK-solver was used through the exe-file, as explained in section 3.3.1, it was natural
to try and use this file directly in the new program. The hope was to not have to spend time

learning a new method unless it became absolutely necessary.

A simple program called IKtester.vi was created in LabVIEW, and the block diagram part of
this program is shown in figure 3.13. Before running IKtester.vi, @ye’s program for writing
the STEM-tracker data to file, SixenseTest.exe (see section 3.2.1), had to be run in the back-

ground, before IKtester.vi was run.
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‘0 R

devicel bt .
L CA\..able\devicel .t devicel bt [100

deviceinit. bt

% .. \deviceinit.bd

ChUsers\linnde\Docurm..\, cemmand line
9, Kode fra Elling\#Second
version'\executable

devicel bt

5 ..\deviceangles.bd

D00 0000000000000 00000000000000000000000000000000000000000000000000000000000O0000000000000000000

Figure 3.13: Continuous IK-solver testing: The exe-file is calculating the movement between
the tracker data in deviceinit.txt with the data currently written in devicel.txt. The data
in the last file is continuously updated by Qye’s program, see section 3.2.2.

This program would first read the tracker values from the text file corresponding to the STEM-
tracker in use. See section 3.2.2 for details regarding which file corresponds to which tracker.
These values were then copied to the text file deviceinit.txt. This was only done once, at the
very beginning of the program, meaning that the textin deviceinit.txt remained the same for
the entire session. This was necessary in order to find the actual movement of the STEM-tracker

relative to where it started, as explained in seciton 2.5.3.

In the next part of the program, shown to the right in figure 3.13, the NAOKinematics.exe-
file was run continuously within a while-loop. Because Qye’s file SixenseTest.exe was still
running in the background, the data written in devicel.txt was updated continuously, see

section 3.2.1. Simultaneously, some small changes were done in main.cpp. Another textfile,
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vector<vector<float> > result;
result = nkin.inverseLeftHand(outputl);
if{!result.empty{))1{

cout << "--Solution exists 1" << endl;

= //If there is a solution, the corresponding angles are written
//to the file named "deviceangles.ixt"

ofstream anglefile("deviceangles.txt");//

= for(int j=0; j<result[e].size(); j++){
cout << "angle™ << j << " = " << result[@][]] << endl;
gnglefile << result[@][j] << “wn';//
I
cout << endl;
anglefile.close(y;//

1
- elseq
cout << "No solution for left arm" << std::endl;
cout << '‘\n' << endl;
= //If there is no solution, the line “"nNo wvalid solutiom™
ffis written to “deviceangles.txt™
ofstream anglefile("deviceangles.txt");//
anglefile << "Mo valid solution"™ << '\n';/f
anglefile.close();//

Figure 3.14: Angle solution: The C++-script was edited so that if there was a valid solution, the
five angles were written to a text file called deviceangles. txt. If there was no solution, the line
"No valid solution" was written to this text file instead.

deviceangles.txt, was updated with these angles, as shown in figure 3.14. If there was no

valid solution, the text No valid solution was written there instead.

For this program to work, it was only necessary to include the block with functionality for run-
ning the NAOKinemtaics. exe-file through a command window, which can be seen the top-right
corner of figure 3.13. In addition, it was necessary to continuously check what was written in
deviceangles.txt. Some functionality for continuously reading from the two filesdevicel . txt
were also included. This was necessary in order to see that the values were written to devicel.txt
fast enough, and that the values made sense. It was possible to see if NAOKinematics.exe
gave valid solutions for any of the new positions and orientations simply by reading from the
deviceangles.txt-file: If any valid solutions were generated, the text read from this file should

be angle values.
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AS it turned out, all that was ever returned was the text No valid solutions, so the IK-solver still
made no sense. It is also worth mentioning that LabVIEW would sometimes crash during these
tests, though not so often that it made it impossible to run the tests. However, LabVIEW did
seem to crash more often when moving the STEM-controller to an infeasible point, so that the

IK-solver would return "No solution".

3.5.6 Normalizations and orthogonality

To begin with, I had assumed that all quaternions that were collected from the STEM-trackers
were already normalized. This had been tested by checking if equation 3.5 was true for arandom

sample of quaternions collected from the STEM-tracker.

V@ +ai+at+ k=1
(3.5)

Having normalized quaternions was necessary in order to create an orthogonal rotation matrix
by using the equations described in figure 2.14, as these were valid if and only if the quaternions

were normalized (Using Quaternion to per-form 3D rotations, 2011).

It still seemed necessary to double-check if all of the collected quaternions were normalized,
and if the resulting rotation matrix were indeed orthogonal. The IK-solver could perhaps not
return a valid solution because it was not able to handle a non-orthogonal rotation matrix as
input. The C++ script was modified to check if g2 + qu, +q>+ q>, = 1 every time new quaternions

were read from file. It was unnecessary to check for the square root, because +v/1 = 1.

It turned out that the quaternions were in fact not always normalized, which meant that g2 +
qu/ + %+ g%, sometimes added up to a number which was a few hundredths larger than 1. It was
only a very small deviation, but it was possible that this was the reason why the IK-solver did not
work as it should. Luckily, normalizing quaternions is done quite easily by dividing each of the

quaternions with whatever number you do get from the left side of equation 3.5. The script was
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modified to always normalize the tracked quaternions, regardless of whether or not they were
normalized already. This was OK because trying to normalize an already normalized quaternion

will not change anything, as this would only mean dividing each quaternion by 1.

Creating a rotation matrix based on normalized quaternions, should ensure that the resulting
rotation matrix was indeed orthogonal, as explained in section 2.5.2. Still, things can go wrong
when doing numeric calculations. For example: 0.67 + 0.67 = 1.34, which can be rounded off
to 1.3. But if the addends are rounded off before they are added together, the result will be:
0.7+ 0.7 = 1.4. These kinds of simplifications can result in small irregularities, and give a differ-
ent result than what was expected. It was therefore necessary to check it the rotation matrix was

indeed always orthogonal.

To start with, this was done my checking if the determinant was equal to 1, which turned out not
to be the case. The determinant would almost always end up as a number slightly larger than 1,
like 1.000000342. This could seem like an insignificantly small deviation, but it was still possible
that the IK-solver could not handle anything but absolute accuracy. For orthogonal matrices,
the product of the matrix and the matrix’ transpose equals the identity matrix, as explained in
section 2.5.2. Testing showed that this was not the case for the rotation matrices generated in
this system, which was not unexpected considering that the determinant was also inaccurate.

The next step was therefore to find a way to get the correct, orthogonal rotation matrix.

The method of polar decomposition was considered, and is described in section 2.5.2. This
method takes a non-orthogonal matrix, and gives us the closest orthogonal matrix. Because
there are several steps to this method that demands matrix multiplications, it seemed quite
comprehensive to implement in the script. Especially considering that this would have to be
done every time a new rotation matrix was created from the quaternions received from the

STEM-tracker.

Because implementing the polar decomposition method seemed both challenging and time-

consuming, it was important to make sure that it was necessary. The idea was that the IK-solver
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was very sensitive to non-orthogonal rotation matrices. If this was really the case, then the ro-
tation matrix collected directly from the NAO robot in a valid posture (see section 3.3.2), which
did get a valid solution from the IK-solver, should be orthogonal. However, this matrix’ deter-
minant was also slightly larger than 1, with a margin just as large as for the other matrices. This
is shown in figure 3.15, where it is also shown that the product of the rotation matrix and the

rotation matrix’ transpose was not exactly equal to the identity matrix either.
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Figure 3.15: Checking for orthogonality: Here is the results when checking if the rotation matrix
is orthogonal. The red square at the top shows that the product of the matrix R and R transpose
does not equal the identity matrix, and further down it is shown that the determinant is in fact
larger than 1. Still, the IK-solver returns a valid solution.

This was proof that the IK-solver could indeed handle slightly inaccurate rotation matrices. The
polar decomposition method was therefore not implemented. Making sure that the rotation
matrices were always orthogonal might be a good functionality in a fully-working system, since
rotation matrices are supposed to be orthogonal. However, seeing as the system did not give
any valid output at this point, it did not seem like a good idea to use time on implementing this

functionality at this stage of the project.
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3.5.7 Alternative approach: Do most calculations in MatLab

Because it seemed impossible to get any valid output from the IK-solver, I started wondering if
the problem might be that the formulas created for matrix calculations in my edited main. cpp
file were not correct. The output of these functions had been cross-checked with built-in meth-
ods in MatLab to check that they would in fact invert a matrix correctly etc. Even so, it started to

seem plausible that errors made in the calculations had to be the problem.

An alternative LabVIEW-program was therefore created. As explained in section 2.1.1, LabVIEW
has MatLab-blocks that allows you to use many MatLab-methods directly in LabVIEW. The new
program would read the initial and current tracking data for the STEM-tracker directly from the
two text files deviceinit.txt and devicel.txt, just like the system described in section 3.5.5.
However, this program would not convert the quaternions to rotation matrices using the for-
mulas in figure 2.14, or do matrix multiplications based on formulas I had programmed my-
self. Instead, the quaternions would be sent to the MatLab-block, and all computations done
using MatLab-methods. The MatLab-block would then return the final transformation matrix

describing the desired point and orientation of NAO’s arm effector.

The output from this new program ended up being almost exactly the same as the output of
the C++ script. Some decimals had changed, which were to be expected when doing a series of
calculations in two different programming languages, each with their own set of norms. When
testing with values collected from the initial position of NAO’s hand, the new transformation
matrix would give close to the same solution as when using the transformation matrix from my
C++ script. But it was still impossible to find a valid solution with a final transformation matrix

based on the movements of the STEM-tracker.

This was of course also good news in the sense that it made me more confident that the func-
tions I had implemented in C++ were correct. Still, the problem was not solved. Because the
MatLab-based program in LabVIEW was slow, and would crash quite often, the calculations

were again done directly in the C++ script after these series of tests.
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3.6 Testing an alternative IK-solver

As explained in section 3.5, getting valid output from Kofinas’ IK-solver proved to be very prob-
lematic. I tried discussing what the problem might be with the students I had worked with on the
summer project in 2015, seeing as they also had experience with working with the NAO robot.
As it turned out, one of them, Asmund Pedersen Hugo at the institute of Marine Cybernetics,
had developed an analytic IK-solver for the NAO robot in MatLab during his project thesis in the
fall of 2015. I was not aware that he had developed this kind of system, or I might have consid-
ered using it from the beginning. MatLab is directly compatible with LabVIEW, as explained in

section 2.1.1, which might have made the system structure less complicated.

Hugo had developed an analytic, full-body IK-solver for the NAO robot in MatLab. His solu-
tion had never been tested on the physical NAO robot, and Hugo informed me that some of the
specifications he had used for joint length and joint angle limitations might not be accurate.
Still, at this point I felt that it would be better to test an IK-solver on an experimental stage, than
to be stuck with a thoroughly tested IK-solver that would not give any valid output. After all, I
had both my own 3D-model in LabVIEW and the virtual robot described in section 2.3 to test
the IK-solver on. Even if Hugo’s IK-solver proved to be inaccurate, there was no risk of damaging

the physical robot.

Unfortunately, when taking a closer look at Hugo’s IK-solver, more specifically the IK-solver for
the arm effectors, it became evident that this IK-solver would not work on the simulated robots
in my project. The reason was that Hugo had made an assumption regarding the DOFs of the
arm effector that did not match the physical robot. Hugo’s IK-solver was based on the elbow
yaw and wrist yaw of the arm effector always rotating about a parallel axis, namely the robot’s
underarm. In other words, it assumed that the elbow yaw was a rotation about the underarm.
The joint angles representing the rotations of the elbow yaw and wrist yaw had therefore been

combined, and the arm effector was considered to have only 4 DOFs instead of 5.

As explained in section 3.3.2, the elbow yaw and wrist yaw does in fact rotate about the same
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Figure 3.16: Actual DOFs: This figure shows the arm effectors 5 DOFs, and about which axis each
of the joints rotates. As shown here, the elbow yaw is a rotation about the overarm, whereas the
wrist yaw is a rotation about the underarm. Picture taken from Choreographe.

axis when the robot arm is kept straight. But, as shown in figure 3.16, the elbow yaw on NAO's
arm effector is in fact a rotation about the overarm. This implies that when the arm is bent
slightly, the two joints no longer rotate about the same axis. Because the alternative IK-solver
was based on an arm effector with a different structure and different DOFs than the real one,
I only did basic testing of it, never including it in my complete system. Hugo’s solution seems

both valid and functional, just not for a robot arm with the same DOFs as NAO.

3.7 Achieving valid output - a revelation

After what seemed like countless tests and modifications to the script, it was finally possible to
get valid solutions from the IK-solver. However, this was only under very specific circumstances,
which lead to some quite eye-opening realizations related to the methods used in this project.
In this section it will be explained how these final tests were done, and how they lead to valid

joint angle solutions from the IK-solver.
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3.7.1 Changing NAO'’s initial position

After many attempts to make the IK-solver return a valid input, it seemed like the structure of
the input was not the problem. For instance, the problem was not that the rotation matrix-part
of the transformation matrix was not orthogonal, because the IK-solver could handle small ir-
regularities, as explained in section 3.5.6. But it was possible that the combination of orientation

and position that were sent to the IK-solver was infeasible.

The next step was to test a simple rotation movement of the robot hand, controlled by the
STEM-tracker. The rotations that were sent to the IK-solver , were given relative to the robot’s
own coordinate system. In the initial pose used for the robot, the hand effector was kept
in an orientation which made it impossible to realize a simple rotation about only one axis in
the robot’s frame. However, if the start-position of the robot was changed so that the arms were
stretched out in front of the robot, the arms would be parallel with the robot’s x-axis. This would
mean that a rotation about the x-axis would be realizable by simply changing the value of elbow

yaw or wrist yaw, as explained in section 3.3.2.

The position where NAO has his arms stretched out in front of him corresponds to all of the joint
values in the arm effectors being zero (Poses, 2015). The pose is shown to the left in figure 2.5,
and in figure 2.11. This was also one of the pre-programmed poses in the NAOqi SDK, which
meant that the virtual robot could be sent to this position using methods in Choreographe.
From there, it was possible to get the values for position and orientation of the hand by using
ALMotionProxy: :getPosition or ALMotionProxy: :getTransform, just like for the initial po-
sition (Joint Control API, 2015). These values could then be included in the script as constants,

making the IK-solver consider this as the robot arm’s initial position and orientation.

However, sending a simple rotation of the STEM-tracker to the IK-solver would still not return a

valid solution.
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3.7.2 Simplifying the approach for rotation tracking

As explained in section 3.4.3, registering the orientation of the STEM-tracker turned out to be
more complex than expected. In this section it is explained how the tracker data was collected

in a way that made it directly compatible with the NAO robot’s coordinate frame.

Instead of using the larger controllers, one of the flat STEM-trackers, or packs, were used for
testing. As shown in figure 1.2 and 1.3, the electromagnetic tracker inside a controller is slightly
tilted when the controller is placed on a flat surface, while this is not the case for the packs.
Therefore, it was easier to test specific rotations about a single axis relative to the base station
or the robot on a prismatic pack than on a controller. According to the documentation for the
STEM-system, the orientation of this kind of tracker should be "zero" relative to the base station
when placed in the position shown on the top left in figure 3.17 (Sixense Entertainment Inc.,

2012).

When placed in this position, a rotation of 90° about each of the three axes was tested, and
the rotation matrix that was generated for each movement was compared to the standard rota-
tion matrices introduced in section 2.5.2. By studying the signs of the values in these matrices,
which corresponded to the sines and cosines of the registered angles, it was possible to check
how the current frame had defined each of the three axes, and if a specific rotation about each
axis was considered to be positive or negative. These tests showed that the frame for the tracker
in this orientation was actually oriented differently than for the base station, as shown to the
top left of figure 3.17. In order to get to the same frame as the base station, the tracker had to
be rotated 180° about the z-axis, which made the controller end up in the position shown to the

upper right in the same figure.

As discussed in section 3.4.3, the rotations necessary to get from the frame of the base station to
the frame of the robot, were a positive rotation of 90° about the current y-axis, followed by a ro-
tation of —90° about the current x-axis. These rotations were performed directly on the tracker,
as shown in the lower half of figure 3.17. When the telemanipulator held the trakcer in this final

orientation while facing the base station at the beginning of a tracking session, the change in
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Figure 3.17: Changing frame for the tracker: Here are the four steps for changing the frame of
the tracker to match the frame of the robot. The rotating frame of the tracker is shown in the
bottom left corner of each step, while the frame of the base station remains fixed.

orientation would be registered in the robot’s frame. For example, the small rotation shown in
figure 3.19 would be registered as a positive rotation about the x-axis. This meant that no addi-

tional transformations were necessary for the rotation, other than combining it with the initial
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rotation of the robot’s hand, see section 3.4.4. The position was still tracked relative to the base

station’s frame, and had to be transformed by swapping the axes, as described in section 3.4.3.

The new approach for tracking the change in rotation made it easier to double-check that the
registered orientation and the actual orientation were identical. This was not necessarily a very
good way for controlling the robot in the final telemanipulation system, because using a tracker
from an arbitrary start position would be more intuitive. But at this point, the priority was to
see if it was possible to get the IK-solver to work at all. It is worth mentioning that the tests
described earlier in this chapter were done with this new tracking approach as well, but the IK-

solver would still refuse to return a valid solution for any of the movements that were tested.

To simplify the movements even more, the initial position of the robot was changed so that
the arm effectors were pointing straight forward as described in section 3.7.1. This should mean
that the small rotation about the robot’s x-axis shown in figure 3.19 was feasible: Seeing as the
arms pointed straight forward, parallel to the robot’s x-axis, it should only require a small change

in elbow yaw or wrist yaw, as mentioned in section 3.3.2.

When testing rotations of the STEM-tracker, it felt natural to assume that the centre of rotation
was in the middle of the STEM-tracker. But, as shown figure 1.3, the electromagnetic tracker in
the STEM-tracker is in fact placed at one end. If the goal was to get the STEM-tracker to rotate
about its own axis, it was important to keep this in mind, and try to make the rotation happen

about the point where the electromagnetic tracker was located.

But even when it was possible to check that the change in orientation registered by the STEM-

tracker should be feasible, the IK-solver would refuse to return a valid solution.

3.7.3 Focus only on rotation

As explained in section 3.7.2, it was challenging to rotate the STEM-tracker exactly about the
point where its electromagnetic tracker was located. This meant that there would be some

change in Cartesian position, not only rotation. To check how large the change in Cartesian
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Figure 3.18: Slight rotation: This shows a small rotation about .

position was, the difference between the initial and current position was written to screen.

The results are shown in figure 3.19, and it is clear that it is difficult for the telemanipulator
to rotate the controller about a fixed point. The Cartesian position would change with a few
millimeters even when trying to keep the tracker’s center of rotation completely still. To see if
the IK-solver would give a solution for a rotation only about the x-axis, the script was changed
so that the change in position was ignored. This meant that the change in orientation of the
tracker was combined with the initial rotation of NAO’s hand, but the Cartesian position stayed

fixed in the initial position.

To begin with, it was still not possible to get a valid output. But when I tried reducing the accu-
racy of the position to millimeters instead of meters as well, the IK-solver would finally return
valid solutions. It would return solutions continuously as long as the movement was restricted
to a simple rotation about the x-axis, so it was evident that ignoring the changes in position and
keeping the rotation about the x-axis made the movement feasible. What this actually meant in

the long run, will be discussed in section 4.1.
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Figure 3.19: Changes in position: The output here shows the small, but significant, changes in
position which are registered by the STEM-tracker when trying to keep the tracker’s centre of
rotation perfectly still. The sensitivity of the tracker, and the inaccuracy of the telemanipulator,
makes the combination of position and orientation very difficult for the robot arm to follow.

3.8 Problems with STEM

Some parts of this section are based on section 3.3 of my project thesis (Evjemo, 2016).

As mentioned in section 1.4.1, the tracking system used in this project is a BETA-version of the
5-controller system Sixense STEM. When working with this system during the summer and fall
of 2015, I encountered some quite time-consuming problems, and many of these issues were
still there while working on the Master thesis. These issues have been a continuous problem,
but they have not been given much attention in other parts of this thesis. This is partly because
these problems were less prominent in this project compared to previous work because there
were little or no direct robot control, and partly because focusing on these issues continuously,

would draw attention away from the general progress of the project.

Some of the issues with the STEM-system were due to severe physical weaknesses in the STEM-

system. These problems will hopefully be improved or removed before STEM is released to the
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commercial market.

3.8.1 WiFi sensitivity

The Sixense STEM system is quite sensitive to WiFi-connections, so using it in the lab was diffi-
cult during the project thesis. The trackers would more often than not refuse to connect to the
base station, which was indicated by that the LED lights in the front kept rotating. Sometimes
only a few of the trackers would connect, and it seemed completely random which trackers
would connect and not. Other times, none of the trackers would connect at all. The solutions
suggested in the documentation (Diaz, 2015) would not help. For more details, see my project

thesis section 3.3.1 (Evjemo, 2016).

In the summer project, these issues eventually improved when the robot was connected to the
local network with a wire instead of using WiFi. This was challenging because this made it nec-
essary to make sure that the NAO robot did not trip on any of the wires connecting the robot
to the router, as we can see in figure 3.20. Even though the problems improved somewhat, the
trackers would still disconnect quite frequently, which made the system very difficult to work

with.

The difficulties with WiFi-sensitivity was not that big of an issue when working with the Mas-
ter thesis as it had been in the previous projects. This was mainly because most of the work
was done outside of the lab, away from both the physical robot and routers. In e-mail corre-
spondence with the Sixense STEM-developers in the fall of 2015, their advice was to change the
frequency of the routers nearby, because routers running on 2.4 GHz where known to cause in-
terference with the system. The full e-mail correspondence is included in appendix C. This was
not tested because the problems became less prominent with the latest firmware updates. It is
still necessary to mention it, because if the complete system was to be tested on the physical
robot, the WiFi weakness would be a limitation in the sense that the robot would have to be
connected to the Internet through a wire, as shown in figure 3.20. It is not a crippling obstacle,

but still quite limiting.
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3.8.2 Metal sensitivity

The Sixense STEM system is incredibly sensitive to metal. If the controllers and packs were used
too close to objects with metal surfaces, like chairs, desks or screens, the tracking failed com-
pletely. This was evident both when following the trackers with the STEM-system’s API, and with
Qye’s Sixense application, which was described in section 3.2.2. For example, when a tracker was
actually standing still, close to a metal surface, the tracking data would indicate that it bounced

around, or that it was positioned in a different location.

If the entire base station was placed too close to metal, it would for the most part fail to con-
nect with the computer at all, and trackers that managed to connect to the base station would
disconnect again within seconds. The metal sensitivity was the reason why the whole lab-setup
in the summer project was eventually changed to be made out of cardboard, as shown in sec-

tion 3.20.

When the Sixense STEM-developers were contacted about the problem in the fall of 2015, they
explained that the STEM-system was sensitive to metal because of the magnetic tracking. They
explained that this was common for other tracking solutions as well, and that it was necessary
to make environmental considerations when using it. They recommended to avoid any metal
within a radius of 1 meter from the base station. The full e-mail correspondence is included in

appendix C.

As mentioned in section 3.8.2, most of the testing was done outside of the lab while working
on this Master thesis, so the metal sensitivity were less of an issue than it had been in previous
projects. Still, if the base station was placed to close to the computer screen, or the trackers
came too close to my office chair, they would disconnect or give out tracking data that made no
sense. This was not too difficult to avoid, but it made it clear that combining the STEM-system

with other kinds of hardware consisting of metal will be problematic.
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Figure 3.20: Summer lab: Here is the complete system from the summer project. The rig is
made of cardboard because of Sixense STEM’s metal sensitivity, and the robot is connected to
the Internet through a cable because of the WiFi-sensitivity.

3.8.3 Lifeless trackers

A new problem that arose at the late stages of the work on my project assignment, was that one

or several trackers would seem completely lifeless. The LED lights would stay dark, and it would
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refuse to connect to the base station.

While working with the Master thesis, there have been very few periods of time where all five
trackers have been functional at the same time. In the early stages of my work, four out of five
trackers worked properly, while the middle pack was lifeless (see section 1.4.1). It did not help

to restart the system or the computer. In fact, the tracker was "dead" for several weeks.

Then, suddenly, all five trackers worked for a short period of time. There had not been any
updates of firmware, and I had done nothing differently. And only a short while after, the two
other packs stopped working. So throughout the period that I have been working on this thesis,
one or several trackers have always been lifeless for no apparent reason, before suddenly work-

ing again when I least expected it.

Luckily, my system could be tested using only one tracker at a time, so this was not a very big
issue for the testing. It only meant that I occationally had to change which of the text files the
IK-solver colelcted the data from, see section 3.2.2. However, as will be discussed further in
section 5.2.4, a suggestion for further work would be to place the robot, the STEM-system, and
other necessary hardware in the same coordinate frame using all five trackers. In that case, the

problem with lifeless trackers would be very inconvenient, as I will get back to in section 4.3.

3.8.4 Issues that have been fixed or improved by firmware updates

Some of the STEM-problems that I experienced in previous projects, have been improved or

fixed through firmware updates while I have been working with the Master thesis.

No more confusion related to axis directions

One of the problems I had experienced while working with the STEM-system that could po-
tentially do most harm, was that STEM would sometimes register both directions of an axis to
be positive. The values would rise in one direction, and approach zero when closing in on the
base station’s center, as it should. But when moving the tracker in the opposite direction, the

position value for the given axis would start decreasing as normal, before suddenly becoming
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positive again. This is explained further in my project thesis, section 3.3.4 (Evjemo, 2016). This
error caused large problems when trying to control NAO, because it can lead to massive jumps
in the given coordinates. Fortunately, the latest firmware updates seems to have gotten rid of

this problem completely, and it has not been an issue while working on the Master thesis.

Fewer random disconnects

When working with the STEM-system in this project, it was also less common that the trackers
would randomly disconnect. While working on the project thesis in the fall of 2015, it almost
became a daily routine to have the trackers or the base station disconnect, and refuse to connect
again until the computer and the entire system was rebooted. This would happen in the same
environment as where I have been working on the Master’s thesis. Fortunately, the issue has
been improved tremendously by the latest firmware updates. Trackers would still disconnect at
random if left outside of their docking stations, sometimes after only a minute, other times after
a long period of time. However, they would almost always connect again without any problems
as soon as they were placed back in their docking stations. This is, of course, not counting the

semi-permanently lifeless tracker-problem described in section 3.8.3.
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Discussion

The goal of this project was to create a system allowing telemanipulation of the NAO robot’s
arm with minimal latency. It turns out that using an analytic IK-solver to make a robot arm with
a limited number of DOFs follow the motions of a human arm, is much easier said than done.
Even though this project did not result in a working system, it has lead to some important insight

into both robot control in general, and to how a system like this could be improved further.

4.1 Combining STEM-control with analytic IK-solver

Throughout chapter 3, it has been explained how the system was tested in order to achieve valid
solutions from the analytic IK-solver. The problem was not type errors when setting the values
for the transformation matrix in the C++ script, nor was it basic mathematical mistakes made in
the implementation. And the problem was not that the rotation matrix was not orthogonal, be-
cause the IK-solver could handle small inconsistencies like this. In section 3.7, it finally became
clear that the system did work, but only under very specific circumstances. This allowed me to
conclude that my implementation was correct, and that the challenge seemed to be with the
combination of Cartesian position and orientation registered by the STEM-tracker. Therefore,

the problem had to be related to limitations of the analytic IK-solver.

The analytic IK-solver has been thoroughly tested, both by myself and by others. It was also

possible to get a valid solution from it, if only for a very specific rotational movement of the

99
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STEM-tracker described in section 3.7. It was therefore necessary to try to understand why it
did not return a valid solution for all movements. To understand this, I had to go back and con-
sider what limitations the IK-solver had that made it consider almost all of the combinations of

position and rotation that the STEM-tracker sent it non-feasible.

The analytic IK-solver was of course created specifically for the NAO robot’s effectors. And, as
explained in section 2.2.4, the arm effectors of the NAO robot does not have the same number
of DOFs as a normal, human arm. Even though the mobility of the shoulder and elbow joint
was quite similar to a human arm, the robot’s wrist joint was very limited in comparison: The
robot’s wrist joint only has 1 DOE allowing nothing but a simple rotation about the underarm.
This meant that while a human is able to change the orientation of its hand quite freely from the

position of the full arm, the robot-hand was locked to the orientation of its underarm.

As explained in section 2.2.4, the NAO robot’s arm effectors seemed to have quite a large workspace.
However, this was based only on which points in Cartesian space the robot arm could reach, not
on what orientation the arm effector could have in each given point. The general workspace of
a manipulator can be divided into the reachable workspace and the dexterous workspace. The
first is, as the name indicates, all the points the end effector is able to reach. The dexterous
workspace, on the other hand, is the subset of points that the manipulator can reach with an
arbitrary orientation (Spong, Hutchinson, and Vidyasagar, 2006, p. 6). Because NAO’s arm ef-

fectors have only 5 DOFs, the dexterous workspace is very limited.

When considering this, one can understand that it is not possible to send any combination of
position and orientation from the STEM-tracker to the IK-solver, and expect a valid solution.
For each Cartesian position the end effector is able to reach, there is an almost endless number
of orientations that is out of bounds, and only a small subset of orientations that is realizable.
This feels more intuitive if tested on your own, human arm: If you try "locking" your wrist so
that you only allow for rotation about the underarm, the number of orientations you can realize

with your hand in any, fixed position in Cartesian space is very limited.
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Early on in the project, Kofinas had informed me that the IK-solver would not return the "nearest
possible solution" if given a non-feasible combination of position and orientation (Appendix B).
At the time this did not seem too problematic, only indicating that there would have to be some
kind of exception-handling for such occasions. I now understand that this was not only a limita-
tion in the IK-solver Kofinas had designed, but on the robot itself. This did in fact mean that the

robot would have no way of following most of the movements registered by the STEM-tracker.

4.2 Cartesian vs. joint control

Because I was not able to create a functioning system for joint control of the NAO robot in this
project, it is not possible to give an exact estimate of how effective joint control is compared
to Cartesian control. However, the experiences from testing the two methods during both this
project and earlier work, has shown that joint control seems more stable. In addition, the Carte-
sian methods are based on the robot’s own numeric IK-solver. As mentioned in section 2.5.1, an
analytic IK-solver is more effective than a numeric one. This is because an analytic approach
is a direct calculation, while a numeric approach is an optimization problem. Therefore, it is

almost certain that a system based on joint control will be most effective.

As explained in the introduction, no testing was done on the physical NAO robot in this project.
However, some testing was done on the virtual robot in Choreographe. I had little experience
with the virtual robot in Choreographe before this project, so it was difficult to tell whether or
not it behaved enough like the real robot for the results to be valid. However, when running
old code from the project thesis (Evjemo, 2016) on the virtual robot, the behaviour was exactly
like the behaviour of the real robot. Even the scripts that had made the physical robot shake
or become unstable, gave the same behaviour. Therefore, I choose to trust that this is the case
the other way around as well, and that the results seen on the virtual robot in this project are

transferable to the physical robot.

The Cartesian control methods seemed to have difficulties with keeping the robot stable if the

desired position and orientation of the end effector were too far from the current position. The
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robot arm would often be shaking, never coming to a full stop. The same would sometimes be
the case for smaller movements: Instead of just moving the end effector to its new position and
orientation, the robot arm would keep moving slightly, never really coming to a halt. Joint con-
trol methods, on the other hand, seemed to have no problem with big changes in angle values.
Once the end effector had reached its new position, it would also stay completely still until be-

ing told to move to a new point.

To understand the robot’s behaviour for the two control methods, it is necessary to go back
to the basics of forward and inverse kinematics, which were explained in section 2.5.1. First of
all, a inverse kinematics problem can have one solution, multiple solutions, or no solution at all.
A forward kinematics problem on the other hand, will always have one and only one solution.
Secondly, a numeric IK-solver like the one used by the NAO robot for Cartesian control, uses
an iterative method to come to an optimized solution to the problem. This means that when
the robot is told to move its effector to a given position and orientation, the numeric IK-solver

might come up with a slightly different solution each time.

After all, the robot’s controller will never give "no solution" as output, like the analytic IK-solver.
Instead, it will try to find a feasible solution that is close to the desired position and orientation.
For joint control, however, the robot’s controller only has to set each of the joint angles to the
given value. the end effector will therefore always end up exactly in the one position and ori-
entation that is the solution to the given forward kinematics problem. This could explain why

joint control methods are a more stable way of controlling the robot.

4.3 Evaluating the STEM system’s practical use

In previous work there has been a lot of difficulties with the STEM-system, and the work on this
master’s thesis was no exception. There would still be random disconnects of the trackers, times
when the base station would not connect with the computer, and of course problems related to
metal and WiFi sensitivity. However, the problems were considerably less dominant than be-

fore. It was clear that the newest firmware updates had had some effect, which made it possible
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to use the system for testing and control throughout the project. The physical problems related
to metal in the system’s surrounding had not improved, but they were fairly easy to avoid in this
case. However, in larger projects involving a lot of different hardware, this would make the sys-
tem quite useless. Hopefully, this will be improved before the commercial release of the tracking

system.

One major issue in earlier work had been that the sign of the position coordinates would some-
times change. These random changes could potentially send massive jumps in position data to
the robot’s effector, which could be harmful to the physical robot. This problem was fixed now,
which made testing on the physical robot a lot less risky - if the project had ever gotten that far.
The fact that the stability had improved, with fewer random disconnects, also indicated that the
work on making the system more user friendly was going in the right direction. As mentioned in

section 3.8.1, the firmware updates had also made the system less sensitive to WiFi interference.

The main concern at this point was the new problem that had arisen during the work on the
project thesis: the "permanently” dead trackers. Most of the other problems, like the base sta-
tion not connecting to the computer, or the trackers losing contact with the base station, could
be fixed by simply re-setting the computer and the STEM-system. This was of course somewhat
time-consuming, but it was a quick-fix to most of the problems. The fact that some of the track-
ers would now stay dead for weeks at a time, makes the system less suitable for use in larger

projects, where this kind of delay could be critical.

After seeing how the system has improved over time, it seems very probable that it will be suit-
able use in this kind of projects at a later stage. When it works as it should, the tracking is very
accurate. The controllers also have many functionalities like joysticks and buttons, which makes
the system even more attractive when working on larger projects. As mentioned in section 3.2.2,
implementing opening/closing functionality for NAO’s hands, or changing modes during test-
ing, could be done relatively easily using the functionalities which the STEM-system provides
in addition to tracking. Still, the STEM-system has some weaknesses that must to be improved

or removed completely before it is ready to be used in projects that demands a fully functioning
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tracking system.

4.4 More general system structure decisions

In this section some of the general choices for the system structure will be discussed to see if
they were the wisest choice or not. This could help create an easier and more effective system

in future work.

4.4.1 The decision to use the original C++-files

The decision to stick with the original C++ scripts for the IK-solver seems like a good choice.
Even after working with the scripts for several months, I do not understand how they work down
to a point where it would be an easy task to recreate the IK-solver in a different programming
language. However, the method of running the executable file in LabVIEW described in sec-
tion 3.5.5, would occasionally make LabVIEW crash. Therefore, it might be an idea to try and
finish the MatLab-scripts that Kofinas has made available through GitHub. However, at this
point, using the C++ scripts seems like a good enough solution, as long as LabVIEW crashing

does not become a bigger problem.

4.4.2 Collecting data from the STEM-system

Out of the three choices for collecting tracker data discussed in section 2.4, this project went
with the approach of using @ye’s program to write data for each of the STEM-trackers to a des-
ignated text file. This system seemed to work fairly well, and was highly effective. However,
it would have been possible to use DLL-files in LabVIEW as well. This solution was discarded
because I thought at the time that using DLL-files would make it necessary for LabVIEW to get
data directly from the IK-solver, which would require some way of direct communication be-
tween the C++ scripts and LabVIEW. As explained in section 3.2.1, this would be easier said than
done, because LabVIEW is not compatible with C++. However, the work on the project made
it clear that communication between LabVIEW and the IK-solver could have been solved in a

similar way as for the current system if I had been using DLL-files.
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A solution with DLL-files would require some way of transporting the information between the
programs, like writing to and reading from file, which was used in the current system. Using
TCP-connections might also be an alternative. Because using Jye’s program makes it possible
to get the tracker data directly to text files, which can be read by the IK-solver, this still seems
like the easiest solution for the system at this point. But if restructuring the system had made
it easier to use DLL-files, this solution would also be possible. Using DLL-files combined with
Python could, for the same reasons, be used if more of the system was to be implemented di-
rectly in Python, but would also make it necessary to transport the data between the programs
using text files or network connections. In other words: Discarding the DLL-solutions is still the
wisest choice for this system structure. But in future work, the decision for how to collect data
from the STEM-trackers must be based on what is more effective for the given system structure,

because all three approaches can be used.

When working on the project thesis during the fall of 2015, the rotation of the STEM-trackers
were collected in the form of a rotation matrix. Both the quaternions and the rotation matrix
can be collected directly from the trackers. For more details on this, see section 2.3 of my project
report (Evjemo, 2016). Qye’s program collects the rotation in the form of quaternions instead of
the rotation matrix. Because the IK-solver needed the rotation in the form of a transformation
matrix, it would have been a better choice to get the rotation directly in the form of a rotation

matrix.

To get the rotation matrix directly would save the system the work of transforming the quater-
nions to rotation matrices. When using DLL-files in earlier project, it was possible to choose
what data to extract from the STEM-tracker. However, I was not able to make changes in Qye’s
system. In retrospect, it would have been best to ask @ye to help edit his program to return the
rotation matrix from the start. This was not done because at the time, I thought it would be
more trouble than it was worth. I did not consider how much work it might be to convert the
quaternions to rotation matrices. As explained in section 3.4.2, it took time to determine the or-

der of the quaternions. It was also necessary to make sure that they were normalized, and they
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had to be converted to a rotation matrix.



Chapter 5

Conclusion and further work

5.1 Conclusion

In the end, I was not able to create a system that would allow for low-latency control of the arm
effectors of a NAO robot. The physical limitations of the robot arm makes it impossible for the
end effector to follow the exact movements of a tracker that moves like a human hand. If the
robot is to follow the STEM-tracker, there must be some kind of compromise between follow-
ing the position and following the orientation. It is therefore impossible to use only a straight-
forward analytic IK-solver to perform joint control of the arm effectors, as this will only return
solutions for the very few, feasible combinations of position and orientation. How the system

might be changed to make this possible, must be left for further work.

As for the STEM-system, the conclusion has to be, once again, that it is currently too unsta-
ble to be used in this kind of project work, even though it is very accurate and easy to use, and
has improved a lot over the last year. Dealing with the bugs takes up too much time, and some-
times puts a halt to the testing altogether. Hopefully, future firmware updates will help make
this BETA-version more stable. When the commercial version of the system is released to the

public, it will hopefully have reached its full potential.

Based on the limited testing done in this project and experiences from previous work, it seems

pretty clear that joint control is the most effective way of controlling the arm of the NAO robot.
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It is both a faster and a more stable control method than Cartesian control, and seems like the
most promising way to achieve low-latency telemanipulation of the robot arm. To create a sys-
tem with joint control based on hand-held motion trackers, it could be possible to use an ex-
ternal IK-solver to do the maths, and then send the angles directly to the robot. This project
has shown that this would require quite a lot of work. Another approach could be full-arm mo-
tion tracking, where the angles between the different joints in the human arm are measured
directly. Because the STEM-system cannot be considered a suitable tracking tool at this point,

one should keep this approach in mind when looking for alternative tracking solutions.

5.2 Suggestions for further work

This project did not succeed in creating a low latency system for telemanipulation of the NAO
robot. But the new-found understanding of what did not work,brings with it ideas and sug-
gestions for what could be done differently in future projects. In this section I will present my
suggestions for future work, and my ideas for fixing the system, that there were unfortunately

not enough time to test.

5.2.1 Modifying joint control with analytic IK-solver

The conclusion of the work in this project is that it is not possible to make the end effector of
a robot arm with only 5 DOFs follow the movements of a human hand both in position and
orientation. The human arm has 2 additional DOFs, which makes our dexterous workspace
much larger than the dexterous workspace of the robot arm. In this section, some possible
solutions to this problem will be presented. None of these ideas have been tested in this project,

but are suggestions for further work.

Mapping the robot’s workspace with orientation constraints

One way of creating a system using joint control methods together with a hand held tracker
similar to STEM, could be to somehow map all of the feasible positions and orientations of the
arm effector. If it was possible to create a table with all of these values, and then look up a given

value each time, it could be possible to narrow it down to a feasible solution. This would almost
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certainly demand the use of an effective search algorithm.

If the current position and orientation did not have a solution, then one could try iterating over
"nearby" points in position and orientation to find a feasible point close by. This could for ex-
ample be done by changing the position one millimeter at a time in one direction or the other, or
changing the orientation by one degree around one of the axes. This would demand some kind
of weighting between position and orientation to determine what solution the system should
be looking for: Is it most important to keep the position, and alter the rotation, or is the ori-
entation the most important thing? Should either position or rotation stay fixed, or are small
changes in both parameters preferable? These are questions that need to be answered if this

kind of solution is to be tested in a larger system.

Adding more degrees of freedom

Another way to solve the problem with an analytic IK-solver and a hand-held motion tracker,
would be to introduce more DOFs. This could for example be done by allowing the robot to
move forward and/or sideways. This can easily be implemented using methods from the SDK.
The desired position would still be given in Cartesian coordinates relative to the robot’s torso.
This means that when the robot moved, the movement in the "global frame" would have to be
added or subtracted from the Cartesian coordinates describing the position in the robot’s Torso
coordinates. This way;, if given a position and orientation that were not feasible, the robot could
move along its x- and y-axis until it hopefully ended up somewhere that made the desired posi-

tion and orientation a feasible point.

This approach would be quite straight-forward to simulate, because it would only be necessary
to iterate over the x- and y- values of the desired position to see if changing the value makes it
easier to find a valid solution. If this solution was to be put to practical use, however, it might be
more realistic to place the robot on a controllable, moving surface than to have it walk around.
In order to stay in balance, the NAO robot’s walk is very slow, and would therefore be a big in-
terruption in a telemanipulation system that requires low latency. This approach of introducing

more DOFs is still worth mentioning if the idea is to create a functioning system based on an
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analytic IK-solver.

5.2.2 Tracking the joint angles directly

Parts of this section is based on section 5.1 in my project report (Evjemo, 2016).

Another way to use joint control would be to try and avoid an IK-solver altogether, and in-
stead measure the angles between the joints directly. This could be done with the STEM-system,
should its functionality improve. By fastening one tracker to the overarm, one to the underarm,
and holding one tracker in the hand, all the information needed to send direct angles to the
robot would be available. It would also be necessary to have one tracker fastened to the torso of
the controller, and for the controller to keep his back straight. This way the system would have

a point of reference for the straight position NAO'’s torso is kept in.

With the current STEM-system, with its five trackers, this would limit the telemanipulation to
only one arm at a time. Still, it could be used for testing that would help determine how much
faster joint control is compared to Cartesian control. Like mentioned in section 1.4.1, one of
the other tracking systems that were considered for this project is based on direct joint control
(Advanced Realtime Tracking, 2016). The ART Hybrid Suit has trackers that are fastened to all
the major joints of the human body, measuring the change in position and orientation for each
of them. This would, on a larger scale, perhaps allow telemanipulation of the full body of the
NAO robot, but as for now, the focus is on producing a way of successfully controlling the arms..
It is important to note that it is necessary to limit the DOFs of the teleoperator’s arm when using
STEM, or any other hardware to measure the joint angles directly. It would therefore be neces-
sary to somehow lock the wrist to stay parallel to the underarm. otherwise, the orientation of
the hand of the teleoperator would make no sense when comparing it to the DOFs of the robot

arm.
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5.2.3 DCM-programming

Parts of this section is based on section 5.3 in my project thesis (Evjemo, 2016).

It is possible that using the DCM is the fastest way to control the robot, but it might also be
extremely difficult, and possibly disastrous. The DCM is a link between the "upper level" soft-
ware and the "lower level" software of the NAO robot (DCM - Introduction, 2012). The DCM is
in charge of communication with all sensors, actuators and boards in the robot. The ALMotion
module uses the DCM to send commands to the actuators. If it was possible to go around the
ALMotion module, and communicate directly with the DCM, this would certainly be more ef-

fective.

However, Aldebaran strongly warns against meddling with the DCM unless you know exactly
what you are doing. It therefore seems logical to try to develop a functioning system using the
approaches described in section 5.2.1 and 5.2.2 before attempting to go over to DCM-control.
If it is possible to find a way of controlling the robot using joint control methods from ALMotion
which is effective enough for the telemanipulation to feel natural, it might be unnecessary to

use DCM-control, even if it could result in a system with even lower latency.

5.2.4 Global frame and scaling of movements

Parts of this section is based on section 5.4 in my project thesis (Evjemo, 2016).

In this project, the system is based on the robot working relative to its Torso frame, meaning
that it interprets all coordinates to be relative to its own torso’s position. As explained in sec-
tion r2.2.2, it can theoretically also use coordinates relative to its starting position, but this is
very inaccurate in real-life. For further work, sensor fusion algorithms might be something to
consider. This is a technique that allows a system to be robust by combining the data from sev-

eral sensors to make sense of input that has been disturbed by the surroundings (Mathas, 2012).

Sensor fusion could be part of a system where all the equipment is placed in one global frame.
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This could be achieved by using several tracking units from the system STEM-system - if it starts
working properly, of course. By fastening one tracker directly on the robot, and on any other
hardware included in the system, it would be possible to find the exact position of all the differ-
ent hardware in the same, global frame. It would then be possible to get the robot to move its ef-
fectors, mainly its arms, towards a given point in this global coordinate system. This might even
allow the robot to move around in the room, because all of the movements would be tracked
accurately. By converting the tracked coordinates to be relative to the robot’s torso, as has been
done to some extent in this thesis, the robot could move its arm to a given point in the global

system.

In further work with a functional system, it would also be a good idea to scale the movements
of the telemanipulator down to the robot’s size, to properly test if the movements feel and look
natural when the robot performs them. This way, larger and more realistic movements can be
tested without moving the tracker outside of the robot’s quite limited workspace. In the long
run, the goal is to make the robot follow a movement as closely as possible relative to its own
body, which makes scaling down the movements essential. In a functional system where the
movements are tested on a simulation of the robot, one should also try testing intentionally in-
troducing time-delay in order to evaluate how big the system latency can become before the

telemanipulation feels unnatural.
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E-mail correspondence with Halit Bener

Suay

Linn Danielsen Evjemo <linndevjemo@gmail.com> Mon, Sep 21, 2015 at 1:17 PM

To: benersuay@upi.edu

Hello

name is Linn Danielsen Evjemo, and I am a 5th year student of cybernetics and robotics at the Norwe-
gian University of Science and Technology. I am currently working on a project assignment where we are
trying to control the arms of a NAO robot using a new, and very accurate motion tracking system callen

Sixense STEM: http://sixense.com/wireless

One of the main problems of our project is to reduce latency enouch so that the control of NAO’s arms
feel natural for the person controlling him. I have looked into your project with telemanipulation of NAO
using a 3D camera, and I see that you have very little delay. We have so far tried controlling everything
though a program called Labview: We have written the code for controlling NAO in Python, which the
communicates with Labview using a TCP-connection. Labview is connected to the motion tracking sys-
tem, and sends coordinates for where NAO should move his arms using another TCPconnection, and the

setPositions()-method.

I wondered if you could share how you communicate with/send coordinates to NAO in your system?

I see that the github-link does not work anymore. if would be very helpful to get some input on a better
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way to communicate with the robot than what we are using now. I really hope that you can help me.

Regards
Linn Danielsen Evjemo
5th year Cybernetics and robotcs

Norwegian University of Science and Technology

Suay, Halit Bener <benersuayQ@upi.edu> Mon, Sep 21, 2015 at 3:25 PM

To: Linn Danielsen Evjemo <linndevjemo@gmail.com>

Dear Linn,

Thank you for getting in touch with me. I would like to clarify a few things,

1. I've moved the code here /fair warning: super messy code with very little testing and it used to work
with a very old version of ROS): https://github.com/benersuay/nao_rail/tree/fuerte-devel/nao_openni
2. Since I was using ROS, inherently the communication is over TCP/IP and yes, there is a noticeable
amount of delay between the user’s motions and the robot’s imitation.

3. When I was controlling the robot, my movements are as slow as possible in order to make up for the

delay.

I've had a few other people complaining about this problem (from different schools), and there may be a
few things to do to mitigate the issue:

- If it is possible, try using the wired connection and see if that makes any difference. Nao’s hardware is
very limited in general (though I don’t know which version you're using, the latest Naos may be better
than the ones I have used).

- If possible, try to timestamp all the outputs of your system blocks and see where the biggest delay is
occurring (you mentioned Labview, and I have no experience with it, however I know that it’s being used

for signal processing in general. For example if your system is roughly designed as:

[cameras]——>[PC:labviewDAQmethod] — — > [labviewfiltermethod] — — >



iii

[otherlabview functions] —— > [labviewtcpsocketoutput] —— > [nao: pythonsocketinput]

Then try to measure how many msec every block takes to process each call. Of course, it all adds up
and what you observe as a user is the total delay, however if one of the blocks is takings 10 times more

than the others, you may re-think / re-design that block and improve the throughput of your system.

If I had any experience in LabView I would offer to read your code and help you with that but unfor-
tunately I know almost nothing about it. Please let me know if there’s anything more I can help you with.

I check my emails very frequently.

Best,

Ben
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Appendix B

E-mail correspondence with Nikolaos

Kofinas

Linn Danielsen Evjemo <linndevjemo@gmail.com> Wed, Mar 9, 2016 at 2:08 PM

To: mnikofinas@gmail.com

Hello

My name is Linn Danielsen Evjemo. | am a 5th year student in cybernetics and robotics at the Norwegian
University of Science and Technology. | am currently writing my master’s thesis, which is partly based
on the inverse kinematics that you developed for the NAO robot in you own thesis. My goal is to use the
inverse kinematics that you developed in order to control the arms of a NAO robot with two hand-held
motion trackers. By transforming the registered position and orientation of the hand-held trackers, | hope
to send the joint angles for the arm effector-chains directly to NAO, and thereby control NAO in close to

real-time, at least a lot quicker than when using NAO's own IK-solver.

| would really appreciate it if you had time to answer a couple of quick questions regarding the c++
files that you have made available on GitHub. | just want to make sure that | have understood the code

properly, as | still find it a bit difficult to read and interpret other people’s code.

- Is the code that is currently available on GitHub "finished", in the sense that it can be used di-
rectly as it is? | ask because of the commented ares, like the "Under construction"part in main.cpp.

- | wish to send in a given position and orientation, and then get the angles in the arm effector chain to
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make the hand end up there. Can your code, as it is now, be used for this?
- When there are several possible solutions, what method do you recommend for finding the "best"
solution? Comparing the solution with the previous movements, to see what is "closest"? Or send all

solutions through the forward kinematics, and compare the results?

If you have the time to answer me, | would greatly appreciate it. And if you are too busy, | com-

pletely understand, but it would be great if you could reply to my email and let me know.

Sincerely
Linn Danielsen Evjemo
5th year student in cybernetics and robotcis

Norwegian University of Science and Technology

Nikos Kofinas <nikofinas@gmail.com> Wed, Mar 16, 2016 at 10:19 PM

To: Linn Danielsen Evjemo <linndevjemo@gmail.com>

Dear Linn,

First of all | am really sorry for the late response.

- Is the code that is currently available on GitHub "finished", in the sense that it can be used di-
rectly as it is? | ask because of the commented ares, like the "Under construction"part in main.cpp.
The code is finished and can be used as is. | don't see any "under construction" parts in the main
function, can you please give me a pointer to them?

- | wish to send in a given position and orientation, and then get the angles in the arm effector chain to
make the hand end up there. Can your code, as it is now, be used for this?

Yes. But you need to give a valid set of parameters else you will not get any solution (e.g. you will not
get the closest feasible solution).

- When there are several possible solutions, what method do you recommend for finding the "best" solu-
tion?Comparing the solution with the previous movements, to see what is "closest"? Or send all solutions
through the forward kinematics, and compare the results?

It is unlikely that you will have multiple solutions. If you get multiple solutions then just use the one that
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it is closest to the current robot pose.

Best regards,

Nikolaos Kofinas

Linn Danielsen Evjemo <linndevjemo@gmail.com> Thu, Mar 17, 2016 at 1:52 PM

To: Nikos Kofinas <nikofinas@gmail.com>

Hello

Thank you so much for your reply! It seems that the first time I downloaded the files, I somehow managed
to download only the oldest versions. In the updated files there are no "under construction" parts, sorry
about that :) I only have one more question: Is the MatLabsolution as complete as the C++ solution? I
am not as familiar with MatLab as i am with C++, so I do not understand if all of the inverse kinematics
are there? Sorry if that is a silly question, but I guess it is better do ask anyway. If the MatLabsolution is
complete, it would be easier to use in my project than C++, because I am using LabVIEW, which is not

compatible with C++.

Best regards

Linn Danielsen Evjemo

Nikos Kofinas <nikofinas@gmail.com> Fri, Mar 18, 2016 at 6:48 AM

To: Linn Danielsen Evjemo <linndevjemo@gmail.com>

Hey,

The matlab solution is incomplete. I lost the actual correct files and I never reimplemented it.

Cheers,
Nikos
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Appendix C

E-mail correspondence with

STEM-developer

Linn Danielsen Evjemo <linndevjemo@gmail.com> Mon, Aug 31, 2015 at 5:56 AM
To: Steve Braman <steve.b@sixense.com>
Cc: John Reidar Mathiassen <John.Reidar.Mathiassen@sintef.no>, Elling Ruud Bye

<Elling.Ruud.Oye@sintef .no>

Hello Steve,
The STEM system has worked well in general, and is very accurate. However, we have had some quite

time consuming difficulties, mostly because it took us a while to realize exactly what the problems were.

It seems like our STEM system is easily disturbed by WiFi. We tried using the STEM system in the same
room as a NAO robot from Aldebaran Robotics, which was connected to a local network via WiFi. The
controllers and packs would more often than not refuse to connect to the base station. Sometimes only
a few of the controllers and packs would connect, other times none of them. When the controllers and
packs connected, it was also just a matter of time before they all disconnected again, and returned to the
state with rotating lights. When we eventually connected the Nao robot to the local network with a wire

instead, the system worked much better.

In addition, the STEM system is very(!) sensitive to metal. When we tried using the controllers and packs

too close to metal (chairs, screens etc), the tracked movement in the Sixense Test program showed that

ix



X Chapter C. E-mail correspondence with STEM-developer

the motion tracking failed completely. When we placed the base station too close to metal, it often failed
to connect with the computer at all. Controllers and packs that managed to connect to the base station
would disconnect again within seconds, and go to the state where the leds kept flashing. This happened
if we placed the base station as far as 2 meters from a small metal frame (about 1.5x0.5 m2) which was
part of our lab. When we removed the metal frame, the STEM system worked fine. Both the WiFi problem
and the metal sensitivity is very limiting, and makes it problematic to integrate Sixense STEM in a larger
project that includes different kinds of hardware. At this point we are able to work around these prob-
lems, but that might become more challenging las our project progresses. Has anybody else had similar

problems?

Sincerely

Linn Danielsen Evjemo

Steve Braman <steve.b@sixense.com> Wed, Sep 9, 2015 at 3:02 AM
To: Linn Danielsen Evjemo <linndevjemo@gmail.com>
Cc: John Reidar Mathiassen <John.Reidar.Mathiassen@sintef.no>, Elling Ruud Bye

<Elling.Ruud.Oye@sintef .no>

Hey all,
I apologize for the delayed response. I am happy to hear that the system performs well and hope I can
help address the issues you are experiencing, As far as the Wifi issue, yes some routers that are running

2.4GHz wifi have been known to cause interference. Can you switch to running 5GHz wifi?

Similarly to other tracking solutions, there are environmental considerations that need to be made for
magnetic tracking. The environment should be as free of metal as much as possible especially near the
base station and between the base station and user. We recommend keeping metal out of the magnetic
field which would be 1 meter put from the base station. If you are still experiencing these issues or have

further questions please let me know.

Thanks,



Steve Braman

Designer/Developer Support Sixense Studios

xi
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