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Problem Description
The candidate will consider the problem of designing, simulating, experimentally verify-
ing and comparing nonlinear adaptive motion controllers for ships. In addition, techniques
from the field of multivariate analysis shall be investigated, to find methods for analysing
and predicting the model-error, which represents the dynamics and forces not included in
the kinetic model of the ship. The following elements have to be considered:

1. The goal of the master thesis is to develop and experimentally verify a state-of-the-
art adaptive control system capable of handling model uncertainties.

• The model uncertainties to be investigated are the hydrodynamic coefficients
especially the ones related to the rotation rate.

• The considered surface vessel is the model-scale Cybership Enterprise 1.

2. Alternative adaptive control algorithms shall be implemented, numerically simu-
lated and compared in Matlab/Simulink, based on a suitable numerical ship model.

• In the comparative analysis, performance metrics and simulations will be used.

3. To compare the controllers in a real life scenario, model-scale experiments are to be
conducted in the Marine Cybernetics Laboratory.

• The experiment of the model-scaled ship will be performed for different tra-
jectories in order to gather data for model-error analysis.

4. An analysis of the results will be done with system identification and multivariate
analysis to find the structure of the model-error, which will be used to improve the
simulation model and control of the ship.

Assignment given: January 11th 2016.
Supervisors: Morten Breivik, ITK, Mikkel Sørensen, ITK and Harald Martens, ITK





Summary

The ocean is an unreliable environment with nonlinearities and unpredictable disturbances,
which is why having a controller that can handle the changing dynamics of the ship is
essential to achieve precise and predictable tracking. Development of nonlinear adap-
tive controllers for a model-scaled ship is presented. This includes the design of con-
trollers, simulations and experimental verification. Also the post-experimental analysis is
presented, where conventional and new methods are tested for finding improvements for
the simulator and the controllers. The experiments did not go as intended in this master
thesis, and the main lesson from this report is how weakness in the basic design of the
controllers has to be solved, before any fancy algorithm can improve the performance of
the controller. It is also presented how analysing the model-error can be a tool for com-
paring and finding faults in adaptive controllers. And although the experiments did not go
as intended, the developed concurrent learning (CL) controllers showed some promising
results in the simulations.

In this report, several variants of the nonlinear adaptive controller CL, is developed
for the model-scale ship Cybership Enterprise 1 (CSE1). Two storage algorithms are pre-
sented, namely the window (WIN) and singular value maximization (SVD). Also two
error-signals for the adaptation, z2 and ε are used. The difference in performance of the
CL controllers is discussed, based on simulations of the controllers. It is also demonstrated
how the controllers’ abilities to estimate the model-error ω affect their performance. The
evaluations are done through a comparative analysis in which performance metrics are
used. A comparative analysis is also done between CL controllers and the nonlinear con-
trollers adaptive backstepping (ABS) and backstepping (BS).

A control system and a simulator for CSE1 has also been developed. As preparation
for the real life basin experiments with CSE1 in the Marine Cybernetics Lab (MC-lab), a
comparison of potential estimators are shown. A guidance system was designed, although
an error in the late implementation of the system, made it produce a tracking signal ηt
that was four times as fast as intended, which flawed the experiments. In total 16 tests
are performed on CSE1, with 4 controllers, 2 trajectories and 2 sets of speeds. This is
presented as a comparative analysis of the controllers, although difficulties to compare the
controllers are seen, because of the flawed guidance system and insufficient adaptation
possibilities in surge.

In parallel, the field of multivariate analysis (MVA) has been investigated, and MVA
methods and techniques are presented, as well as multivariate statistics. The MVA is used
in the post-experimental analysis, to clean the data, analyse the model-error, and predictor
models of ω are proposed using partial least squares (PLS) regression. The models are
compared with the experimental data, the model-errors are also implemented on simulator,
and the results are presented.

In post experimental analysis, regular methods are used. An open loop simulation with
experimental data is shown. This includes recouping of lost data and analysis of the adap-
tation problems the CL controllers had during the experiments. The CL controller with
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error signal ε, an estimate of the deviation in the controller’s model-error estimates, is
proven capable for system identification (SysID), and a system identification scheme for
identifying ω is shown. The effects of inefficient thrusters were added to the hydrodynam-
ics in the uncertainty model proposed for SysID, and the models from SysID were also
implemented in the simulator.

Results from this master thesis are:

• The CL controllers are proven to have the best performance against ABS and BS
controllers in simulations, and this is supported by examining their superior adapta-
tion ability of the model-error ω

• The CL controllers using the error signal ε have the best adaptation in simulations.
Although, it should be noted that this is shown only during simulations, and the
signal ε seems to be very difficult to estimate during a real life scenario.

• The speed of the CSE1 was too high during the experiments, which resulted in the
dynamic model no longer being accurate. The result is a substantial model-error ω,
especially in surge. This combined with the designed controllers inability to adapt
in surge, resulted in bad tracking

• In the experimental results, CL controllers using z2 showed the best performance,
and CL controllers using the SVD storage algorithm were unstable.

• The CL controllers, as implemented in this project, are less robust than the BS and
ABS controllers. Weaknesses of the CL controller is identified, such as its sensitive-
ness of spikes. These problems were addressed, and solutions provided.

• A weakness in the parametrization for all the controllers of the hydrodynamic error
is identified. This made the controllers unable to adapt in the surge direction.

• Simulations were done of CSE1 following an elliptic trajectory, with the model-
errors ωs implemented in the simulator. When the BS controller was simulated, its
performance was equal to the one from the experiment. Problems with stability for
the models from PLS regression were also found.

• A scenario is presented where SysID is able to identify thruster failure.

• A new parametrization of the model-error is proposed, and is implemented on the
CL controller. It is shown, through simulations with ω implemented, that the modi-
fied CL controller is able to estimated and compensate for the disturbances.
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Sammendrag

Havet er et upålitelig miljø fult av ulineariteter og forstyrrelser. Dette øker viktigheten av
å ha en regulator som kan håndtere den forandrende dynamikken til skipet for å oppnå
førsteklasses styring. Et utviklingsscenario for en ulinær adaptiv regulator for et mod-
ellskip er presentert. Dette inkluderer design, simulering og eksperimentell verifisering
av regulatoren. En analyse av eksperimentell data er også presentert, hvor både konven-
sjonelle og nye metoder for å finne forbedringer til simulatoren og regulatoren er brukt. I
denne rapporten er flere varianter av den ulinære adaptive regulatoren, concurrent learn-
ing (CL) utviklet for modellskipet Cybership Enterprice 1 (CSE1). To lagrings algoritmer
er foreslått, vindu (WIN) og singulær verdi maksimering (SVD), og to feilsignaler for
adapsjonen, z2 og ε. Forskjellen i CL regulatorenes ytelse er utforsket og evaluert gjen-
nom simuleringer. Det er også demonstrert hvordan regulatorens evne til å tilpasse seg
modellfeilen ω påvirket ytelsene deres. En komparativ analyse mellom et utvalg av CL
regulatorene , og regulatorene adaptiv backstepping (ABS) og backstepping (BS) er også
gjennomført.

Et regulatorsystem, og simulator for CSE1 ble utviklet. Som forberedelse for eksper-
imentene i bassenget med CSE1 i Marine Cybernetics Labben (MC-lab), ble et sett med
observatorer evaluert opp mot hverandre. Et guidance system ble også utviklet, men en
sen modifikasjon førte til at den gav ut følgesignaler som var fire ganger raskere en tiltenkt.
Totalt ble 16 forsøk gjennomført, der 4 regulatorer ble sammenlignet, følgene etter 2
forskjellige baner med 2 set av hastigheter på hver. Dette ble presentert som en kompara-
tiv analyse mellom regulatorene , selv om resultatene gjorde det vanskelig å sammenligne
regulatorene .

Imens har fagfeltet multivariat analyse (MVA) også blitt utforsket, og flere metoder
og teknikker er presentert i rapporten, samt multivariat statistikk. Disse teknikkene er
brukt under analysen av de eksperimentelle dataene, fra å sile data, til og både analysere
og lage modeller av ω. Partiell minste kvadrats metode(PLS) regresjon er brukt for å
lage modellene, og disse ble senere implementert i simulatoren for verifisering. Under
analysen av de eksperimentelle dataene, ble mer konvensjonelle metoder også brukt, som
system identifikasjon (SysID). Tapt data ble reprodusert i en åpen sløyfe simulator med de
eksperimentelle dataene, samt at åpen sløyfe simuleringene av CL regulatorene gav bedre
innsikt i hva som gikk galt under eksperimentene. CL regulatoren som brukte ε viste seg
også å fungere til SysID, og dette ble også brukt for å lage en model av ω. I tillegg ble en
modellering av pådrags feil også inkludert i SysID.

Resultater fra denne masteren er:

• CL regulatorer er vist å ha best ytelse sammenlignet med ABS og BS regulatorer
under simulering, og dette er også bekreftet av deres overlegene evne til å tilpasse
seg modellfeilen ω
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• CL regulatorer som bruker ε feilsignalet viste seg å ha best adapsjon under simu-
leringer, men dette var bare tilfelle under simuleringer. Feilsignalet ε viste seg å
være utfordrende å estimere under virkelige omstendigheter.

• Hastigheten til CSE1 var for høy under eksperimentene, noe som resulterte i at den
dynamiske modellen til CSE1 ikke lenger var korrekt. Dette førte til en betydelig
modellfeil ω, spesielt fremover. Dette kombinert med regulatorer som ikke kunne
tilpasse seg krefter forfra, gav dårlig ytelse.

• Under experimentene var CL regulatorene som brukte z2 som hadde best ytelse, og
CL regulatorene som brukte SVD lagrings algoritme viste seg å være ustabil under
virkelige omstendigheter.

• Under eksperimentene var CL regulatore, sånn som de var implementert i denne
masteroppgaven, mindre robuste enn de øvrige BS og ABS regulatore. Svakheter til
CL regulatorer ble identifisert, der sensitiviteten til signal pigger var et problem som
ble adressert, og en løsning er foreslått.

• Simuleringer med de modellerte ωene ble gjennomført mens CSE1 fulgte en ellipse
bane. Simuleringene av BS regulatorer på simulatorene med ω, ble sammenlignet
med de eksperimentelle dataene, og likheten var påfallende. Det ble også adressert
et stabilitests problem av modellene laget av PLS regresjonene under disse simu-
leringene.

• Et scenario der SysID ble brukt for å identifisere truster svikt er også presentert

• Etter analysen, ble parametriseringen av modellfeilen endret til å kunne tilpasse seg
feil fremover, og denne ble brukt i CL regulatoren. Det ble under simuleringer vist
at den modifiserte regulatoren klarte å tilpasse seg modell feilen ω.
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Tables of Symbols
Table 1: Main states, disturbances and actuation for this master’s thesis dynamical model, the ”res-
olution” is used in the nominalization done in Section 3.2 for multivariate analysis, and the ”Min”
and ”Max” was the min and max values of the states observed in the experiments.

No Sym Name Type Max Resolution Min Comment Unit
1 η Pose states mes
2 xn North state 6.5 10 3.5 mes [m]
3 yn East state -2.5 10 2.5 mes [m]
4 ψ Yaw state π 10 -π mes [rad]
5 ν Velocity states est

6 u
Surge
Speed state 0.3 10 -0.02 est [m/s]

7 v
Sway
Speed state 0.15 10 -0.15 est [m/s]

8 r
Yaw
rate state 0.4 10 -0.4 est [rad/s]

9 u̇
Surge
acceleration state 0.1 5 -0.02 est [m/s]

10 v̇
Surge
acceleration state 0.02 5 -0.02 est [m/s2]

11 ṙ
Yaw
acceleration state 0.1 3 -0.1 est [rad/s2]

12 ω∗ Disturbance
function/
constant est

13 ω∗n
Earth-fixed
Disturbance

function/
constant est

14 ω∗b
Body-fixed
Disturbance

function/
constant est

15 τ
Thruster
Force actuation req

16 τu Surge Force actuation 1.2 5 -1.2 req [N ]
17 τv Sway Force actuation 3.8 5 -3.8 req [N ]

18 τr
Yaw
Moment actuation 2 5 -2 req [Nm]
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Table 2: Matrices and parameters used for the dynamical model in Chapter 2.

No Symbol Name Type Model Precision
19 M∗ Inertia Matrix matrix eq:(2.4)

20 MRB
Rigid-Body
Inertia Matrix matrix eq:(2.5)

21 MA
Added Mass
Matrix matrix eq:(2.5)

22 C∗(ν) Coriolis Matrix
matrix
function eq:(2.6)

23 CRB(ν)
Riged-body
Coriolis Matrix

matrix
function eq:(2.7)

24 CA(ν)
Added
Coriolis Matrix

matrix
function eq:(2.7)

25 D∗(ν)
Damping
Matrix

matrix
function eq:(2.8)

26 DL
Linear Damping
Matrix matrix eq:(2.9)

27 DNL(ν)
Nonlinear Damping
Matrix

matrix
function eq:(2.9)

28 m∗ Mass parameter 14.79 certain

29 I∗z
Moment of
Inertia around zb

parameter 1.76 uncertain

30 x∗g Distance from CG to Ob parameter 0.375 certain
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Table 3: Hydrodynamic coefficients used in in the dynamical model from Chapter 2. CS2:Values
are similar to Cybership II’s (Skjetne et al., 2004). LS: Valid for low speeds.

N0 Symbol Name Type Model
value Precision Comment

31 X∗u̇
Added mass
surge

Hydro-
dynamic
Coefficient

-2.0 uncertain CS2

32 Y ∗v̇
Added mass
sway

Hydro-
dynamic
Coefficient

-10.0 uncertain CS2

33 Y ∗ṙ
Added mass
yaw

Hydro-
dynamic
Coefficient

0 uncertain CS2

34 N∗v̇
Added mass
sway to yaw

Hydro-
dynamic
Coefficient

0 uncertain CS2

35 N∗ṙ
Added mass
yaw to sway

Hydro-
dynamic
Coefficient

-1 uncertain CS2

36 X∗u

1st ord.
damping
surge

Hydro-
dynamic
Coefficient

-0.6555 certain LS

37 X∗|u|u

2nd ord.
damping
surge

Hydro-
dynamic
Coefficient

0.3545 certain LS

38 X∗uuu

3rd ord.
damping
surge

Hydro-
dynamic
Coefficient

-3.787 certain LS

39 X∗vv

2nd ord.
damping
sway to surge

Hydro-
dynamic
Coefficient

-2.443 certain LS

40 Y ∗v

1st ord.
damping
sway

Hydro-
dynamic
Coefficient

-1.33 certain LS

41 Y ∗|v|v

2nd ord.
damping
sway

Hydro-
dynamic
Coefficient

-2.776 certain LS

41 Y ∗vvv

2nd ord.
damping
sway

Hydro-
dynamic
Coefficient

-64.91 certain LS

42 N∗v

1st. ord.
damping
sway to yaw

Hydro-
dynamic
Coefficient

0 certain LS

42 N∗|v|v

2nd ord
damping
sway to yaw

Hydro-
dynamic
Coefficient

-0.2088 certain LS
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Table 4: Hydrodynamic coefficients used in in the dynamical model, these were tried to be esti-
mated, the parameters commented with CS2 are similar to the values used and found for Cybership
II (Skjetne et al., 2004).

No Symbol Name Type
measures/

Model
value

Precision Comment

43 Y ∗r

1st. ord.
damping
yaw to sway

Hydro-
dynamic
Coefficient

-7.250 uncertain CS2

44 Y ∗|r|r

2nd. ord.
damping
yaw to sway

Hydro-
dynamic
Coefficient

-3.450 uncertain CS2

45 N∗r

1st. ord.
damping
yaw

Hydro-
dynamic
Coefficient

-1.900 uncertain CS2

46 N∗|r|r

2nd. ord.
damping
yaw

Hydro-
dynamic
Coefficient

-0.750 uncertain CS2

47 Y ∗|v|r
Damping
sway coupled

Hydro-
dynamic
Coefficient

-0.845 uncertain CS2

48 Y ∗|r|v
Damping
sway coupled

Hydro-
dynamic
Coefficient

-0.805 uncertain CS2

49 N∗|v|r
Damping
yaw coupled

Hydro-
dynamic
Coefficient

0.080 uncertain CS2

50 N∗|r|v
Damping
yaw coupled

Hydro-
dynamic
Coefficient

0.130 uncertain CS2
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Table 5: Other possible states, internal signals, metrics and tuning parameters.

No Symbol Name Type
51 z Heave Position state
52 θ Pitch Angle state
53 ϕ Roll Angle state
54 w Heave Speed state
55 q Pitch Rate state
56 p Roll Rate state

57 ẇ
Heave
Acceleration state

58 q̇
Pitch
Acceleration state

59 ṗ
Roll
Acceleration state

60 epos
Position
Error measurement

61 e
Cross-Track
Error measurement

62 e2
Squared
Cross-Track
Error

measurement

63 P Power measurement

64 Iτ̇
Change
of Force measurement

65 ISE
Integrated
Square Error Norm

66 W Work Norm

67 I τ̇
Integrated
change of Tau Norm

68 z1 Pose Error control signal
69 z2 Velocity Error control signal

70 ε
Estimation
Error

estimation
signal

71 Kp

Tuning
Matrix
Proportional

Tuning
parameter

72 Kd
Tuning Matrix
Damping

Tuning
parameter

73 Γ
Estimation
Gains

Tuning
parameter

74 h Time-step parameter
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Chapter 1
Introduction

1.1 Motivation for Adaptive Motion Control for Ships

Development of model-based controllers for ships has been a topic since the 20th century.
As ships increase their automation, the need for more robust and flexible controllers has
increased. When developing a control system for marine vessels, it has to be taken into
account that the ocean is a highly nonlinear and unreliable environment. Being able to
develop a robust controller that can handle changing dynamics is therefore essential for
success in this field. Robust in handling disturbances and uncertainties, but also robust
against oscillatory behaviour and measurement difficulties. A considerable challenge with
surface vessels in general, is the uncertain nonlinear hydrodynamics and external distur-
bances that occur. The hydrodynamic forces are often modelled with hydrodynamical
coefficients. Some can be found for certain scenarios as seen in (Skjetne et al., 2004),
these include hydrodynamic coefficients for linear motions in surge and sway which can
be found through towing experiments. Others can be harder to identify, like the hydrody-
namic coefficients related to rotational motion, as can be seen in (Yoon and Rhee, 2003).
In addition, not being able to measure all necessary states leads to the need of estimation.
This can again introduce problems to the robustness of the controller, such as estimation
spikes and biases. External disturbances, such as waves, wind and currents are also dif-
ficult if not impossible to measure. This rises the importance of having an adaptive and
robust control that can deal with these uncertainties and disturbances in an efficient man-
ner.

1.2 Adaptive Controllers

Robust and adaptive motion controllers have also been applied to other manoeuvring prob-
lems, such as aviation (Lavretsky and Wise, 2012) and quadcopter manoeuvring, and
different nonlinear adaptive controllers are continuously being developed and improved.
Several have been tried with surface vessels, with adaptive backstepping (ABS) as one of

1
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them. The backstepping (BS) controller has been a popular controller design procedure
for surface vessels, as its recursive method fits the structure of the vessel model. Two
versions of adaptive backstepping (ABS) controllers are presented in (Skjetne et al., 2004)
and (Breivik and Fossen, 2004). However these adaptive schemes requires restrictive per-
sistence of excitation to adapt to the right parameters, which is often difficult to guarantee
in a control scenario. A new adaptation scheme is presented in (Chowdhary and Johnson,
2010), concurrent learning (CL), which instead of relying on instantaneous measurements
for adaptation, uses stored data and instantaneous data concurrently for adaptation. Fur-
ther investigation on the adaptation and its convergence is discussed in (Chowdhary and
Johnson, 2011a), and a demonstration of the CL adaptive control on a 3 degree-of-freedom
helicopter model in (Chowdhary et al., 2012) and a rotor crafted unmanned aerial vehicle
in Chowdhary and Johnson (2011b). In addition, the CL has been applied in a approximate
optimal regulation in (Kamalapurkar et al., 2013). The results show that the CL has a po-
tential for improved adaptation, although it is early in its development so its full potential
is far from reached.

1.3 Main Contributions
• Several variants of the nonlinear adaptive controller concurrent learning (CL) was

developed for Cybership Enterprise 1 (CSE1)

– The difference in convergence and adaptation was discussed and investigated,
and weaknesses and strength of different implementations of CL were identi-
fied

– A comparative analysis was made, with performance metrics, of the CL con-
trollers, was done with simulation. In addition a comparative analysis was
made with selected CL controllers, against the ABS and BS controllers.

– An demonstration of the correlation between the controllers ability to estimate
the model-error of the ship and the controllers performance was made.

– A CL implementation for CSE1 was done, although the results of the controller
was not satisfactory.

• A full control system and a simulator was developed for CSE1.

– This included developing the guidance and estimator for the ship.

– The simulator was made in Simulink, to minimize the effort of transferring the
controller from simulator to CSE1.

– A Hardware-in-the-Loop (HIL) test on a CompactRIO was also preformed to
evaluate the CL controllers on a real-time control system.

• A real life test was performed with CSE1 on the Marine Cybernetics Laboratory
(MC-lab)

– A comparative analysis of potential estimators was made. The derivative filter
chosen in the end, was modified to handle signal freeze and wrap around error.

2



1.4 Overview

– A tuning of the center of mass for the thruster allocation was preformed

– 16 tests were in total preformed on CSE1, with 4 controllers, 2 trajectories and
2 set of speeds. This resulted in a comparative analysis of the CL, ABS and
BS controllers working on a real-life system.

• An investigation of the field of multivariate analysis (MVA), and how it could con-
tribute to the control field was made.

– Several methods for making predictive models with MVA was investigated

– A new way of organizing data for a partial least squares (PLS) regression is
presented, continuous nominalisation.

– A procedure for using principal component analysis PCA together with multi-
variate statistics to detect outliers and clean data was done

– A procedure for analysing and predict model-errors for ships using PLS re-
gression was demonstrated

• A post experimental analysis was done, were the model-error of the ship was iden-
tified, and modelling of this model-error was proposed

– The modelling of the model error was done using System Identification (SysID)
and MVA

– Recouping of data and validation of the estimators was done with an open loop
simulation with the experimental data.

– Identification of weaknesses of the CL adaptation was identified, and an im-
provement was proposed.

– The open loop simulator, with an improved CL adaptation proved to be work-
ing for SysID

– A method for identifying thruster failure using SysID was also presented

– Validation of the model-error model was done by implementing it on the sim-
ulator, and compare it with experimental data

• With improved knowledge of the model error, a modification of the CL controller
was made, and it was tested on the simulator, with the newly found model-error.The
improved CL-controller managed to handle the model error and satisfactory tracking
was preformed.

1.4 Overview
This master thesis focuses on designing, simulating and experimental verifying the CL
controller on CSE1, and through experiments investigate methods for identifying and cre-
ate a model that predicts the model-error.

In Chapter 2, the dynamic model for CSE1 is presented, as well as a discussion on
model-error. In Chapter 3, the theory behind MVA is presented. In Chapter 4, the motion
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Chapter 1. Introduction

control system design is shown, including the controllers tested and estimators used in the
experiments, and performance metrics for comparing controllers. In Chapter 5 the simula-
tions with the controllers presented 4 on the dynamic system from Chapter 2 are shown, in
addition to a discussion. In Chapter 6, the experimental platform is laid out, and the exper-
imental results are shown, as well as a discussion. Chapter 7, contains a post experimental
analysis, in addition to a proposed expansion of the CSE1 model together with a proposed
controller improvement. Finally, in Chapter 8, the master thesis is concluded, and future
work is proposed.
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Chapter 2
Vessel Model

2.1 Vessel Dynamics

As stated in Chapter 1, the numerical vessel model for this project is based on the Cyber-
ship Enterprice 1 (CSE1) model ship, where the nonlinear model from (Fossen, 2011) has
been used:

η̇ = R(ψ)ν (2.1)

M∗ν̇ +C∗(ν) +D∗(ν)ν = τ ∗ + ω∗(t) (2.2)

where η = [xn, yn, ψ]> ∈ R2 × S is the three-dimensional vector describing the
vessel’s position and heading, see Figure 2.1 . The xn and yn represents the position of
the vessel in North and East in the local earth-fixed frame, and ψ ∈ S = [−π, π] represents
the angle of the vessel’s yaw in radians. The velocity vector ν = [u, v, r]> ∈ R3 is the
body fixed velocities. u and v are velocities in surge and sway, and r is the vessel’s yaw
rate. The ω∗(t) is the model-error and external disturbances.

ω∗(t) = R>(ψ)ω∗n(t) + ω∗b(t), (2.3)

where ω∗n(t) is the earth fixed disturbance, and ω∗b(t) is the body-fixed model-error or
disturbance. M∗,C∗(ν),D∗(ν) andR(ψ) are respectively the inertia, Coriolis, damping
and rotation matrix, where M∗ = M∗>, C∗(ν) = −C∗>(ν), D∗(ν) > 0 and R(ψ) ∈
SO(3). These are derived from the model ship described in (Skjetne et al., 2004),

M∗ ,MRB +MA (2.4)
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Chapter 2. Vessel Model

MRB =

m∗ 0 0
0 m∗ m∗x∗g
0 m∗x∗g I∗z

 ,MA =

−X∗u̇ 0 0
0 −Y ∗v̇ −Y ∗ṙ
0 −N∗v̇ −N∗ṙ

 (2.5)

Figure 2.1 Local earth-fixed and body coordinates for the ship from (Fossen, 2011)

Here, m∗ is the mass of the ship, Iz∗ is the inertia of the ship around its body-z axis zb,
see Figure 2.1 , and x∗g is the distance from center of gravity (CG) to the body coordinate’s
origin Ob. X∗u̇, Y

∗
ṙ , Y

∗
ṙ , N

∗
v̇ , N

∗
ṙ are hydrodynamic coefficients. The Coriolis matrix is

C∗(ν) , CRB(ν) +CA(ν) (2.6)

C∗(ν) =

 0 0 −m∗(x∗g + v)
0 0 m∗u

m∗(x∗gr + v) −m∗u 0

+

 0 0 c∗13(ν)
0 0 c∗23(ν)

−c∗13(ν) −c∗23(ν) 0

(2.7)

Here, c∗13(ν) and c∗23(ν) are functions built up from other hydrodynamic coefficients.
c∗13(ν) = Y ∗v̇ v + r and c∗23(ν) = −X∗u̇u. The damping matrix is

D∗(ν) ,DL +DNL(ν) (2.8)

D∗(ν) =

−X∗u 0 0
0 −Y ∗v −Y ∗r
0 −N∗v −N∗r

+

−d∗11(ν) 0 0
0 −d∗22(ν) −d∗23(ν)
0 −d∗32(ν) −d∗33(ν)

 (2.9)

where d∗ii is also a function of ν and hydrodynamic coefficients: d∗11(ν) = X∗|u|u|u|+
X∗uuuu

2, d∗22(ν) = Y ∗|v|v|v|+ Y ∗|r|v||r|, d
∗
23(ν) = Y ∗|v|r|v|+ Y ∗|r|r|r|, d

∗
32(ν) = N∗|v|v|v|+

N∗|r|r|r|. The hydrodynamic coefficients have been calculated for CSE1, and are listed in
Table 2.1
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2.1 Vessel Dynamics

Table 2.1: CSE1 hydrodynamic coefficients from (Sandved, 2015). The hydrodynamic coefficients
that are related to the ships rotation and added mass has been taken from (Skjetne et al., 2004) and
are marked with a #

Parameters for CSE1
m∗ 14.79 X∗u̇ -2# X∗u -0.6555 Y ∗vvv -64.91 N∗|r|r -0.750#

I∗z 1.760# Y ∗v̇ -10# X∗|u|u 0.3545 N∗v 0 Y ∗|v|r -0.845#

x∗g 0.375 Y ∗ṙ 0# X∗uuu -3.787 N∗|v|v -0.2088 Y ∗|r|v -0.805#

N∗v̇ 0# X∗|v|v -2.443 Y ∗r -7.250# N∗|v|r 0.080#

N∗v̇ -1# Y ∗v -1.33 Y ∗|r|r -3.450# N∗|r|v 0.130#

Y ∗|v|v -2.776 N∗r -1.900#

2.1.1 Thruster Model and Allocation
The thrusters are positioned as in Figure 2.2, where two Voith Schneider propellers (VSP)
are at the back, and can give forces in all directions. Hence they work like two fast re-
sponding azimuth thruster. The bow thruster is placed at the front, and ensures that the
ship is fully actuated, at least for slow motions. The mapping from control signal to force
from the thrusters is shown in (Sørensen, 2013), and are the following

f = Ku (2.10)

where f is the vector with the force from every thruster,K is a diagonal matrix that maps
the control signal to actual forces, and u are the control signals proportional to f . For
propeller the thrust is

fi = sign(ni)KT0iρD
4
i n

2
i (2.11)

The fi is the force magnitude from the given propeller, KT0i is the thrust coefficient
and is found by open water tests. The Di is the diameter of the propeller, and ni is its
rotation speed. For the VSP, the mapping is a look-up table with pre-calculated values
under open-water conditions (Koschorrek et al., 2015)

 fixfiy
PiD

 = V SP (p, n,vb) (2.12)

were fix and fiy are the forces in x- and y-direction at the propeller location, and PiD
is the power delivered power. As seen in Figure 2.3, the p is the pitch vector deciding the
angle of the force, n is the revolution rate and vb is the inflow vector. These are presented
in body-fixed coordinates. Given a desired force, it is then the thruster controller’s task to
find the right power for the different thrusters. To see how the forces from the thrusters
affect the ship, the thruster configuration is used (Sørensen, 2013), and can be seen in
Figure 2.2. This leads to the mapping
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Chapter 2. Vessel Model

Figure 2.2 The figure shows the locations of the thrusters on CSE1, from (Sandved, 2015)

τ = T (α)f = T (α)Ku (2.13)

where the α vector is the angle of attack of the different thrusters. The thruster allocation
of CSE1 is then just an inverse map of (2.13) were requested forces are received from the
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2.1 Vessel Dynamics

Figure 2.3 The VSP seen from underneath, with the pitch definition, from (Koschorrek
et al., 2015)

controller, and the control signals are sent out to the thruster controllers on the ship, as can
be seen in Figure 2.4. The control signals from CSE1 thruster allocation is

u =

uV SPxuV SPy
uBT

 (2.14)

which are the control signal for the VSP force in the x and y body-fixed direction, and
the bow thruster.

The thrust mapping in the CSE1 is

K = diag(FV SPmax , FV SPmax , lBT ) (2.15)

where FV SPmax = 1.165 and lBT = 2.629. The configuration mapping is

T =

1 0 0
0 1 1
0 lV SP lBT

 (2.16)

where lV SP = −0.4575 and lBT = 0.3875.
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Chapter 2. Vessel Model

Figure 2.4 The block diagram of the marine craft control system

Control lawGuidance
Thruster 
Allocation

Marine 
Craft

[𝜂, 𝜈][𝜂𝑡 ,  𝜂𝑡 ,  𝜂𝑡] 𝜏 𝑢

Point of attack: The thruster allocation above assumes that the CG or center of mass
(CM) of the ship is known, but this is not necessarily the case. And the result can be a
thruster allocation that induces unwanted rotation on the ship. If a thruster allocation with
flexible point of attack is used, the correct CM can be found through testing, as explained
in Section 6.3.4 and the point of attack can be set so that no unwanted rotation is induced.
The transformation of a force on a rigid body from a point to another can be done through
the transformation matrix

τ = H(po)τo =

[
I2×2 02×1

S1×2(po) 1

]
τo (2.17)

where po = [pox, poy] is the distance between the point of attack of τ and τo, and

S1×2(po) =
[
−poy pox

]
(2.18)

This relationship applies for all rigid bodies when the frames of τ and τo are not rotated
against each other. In that case the relationship between wanted force, and thruster output
is

τ = H(po)T (α)Ku (2.19)

and the thruster allocation is therefore the inverse map of this.
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2.2 Model-Error Parametrization

2.2 Model-Error Parametrization
The nonlinear model (2.1) and (2.2) is a simplification of the real world. In addition,
the hydrodynamic coefficients can be uncertain or unknown, and other parameters can be
incorrect or unreliable. A robust controller must be able to handle all these uncertainties.
The controllers will therefore be designed with an uncertainty and disturbance model in
mind. Multivariate analysis methods will also be tried out to see if the disturbances are
possible to predict and hence compensate for.

Model-Error When describing the dynamics of a real life system, the plant model is
utilized. In this project the plant model will be (2.1) and (2.2). The control model is often
a simplification of the plant model and is implemented when designing the controller.
When designing a controller, the control model that is applied can be mistaken, or have
wrong values. This is modelled as the difference between the control model and plant
model, and will be referred to as the model-error. This will be given the symbol ω∗, and
its estimate will be ω. The controllers estimate of this model-error will be denoted ω̂.

2.2.1 Scaled Error
One possible simplification of model-error is described in (Sørensen and Breivik, 2015)
and can be

M∗ = δMM (2.20)
C∗(ν) = δMC(ν) (2.21)
D∗(ν) = δDD(ν) (2.22)

τ ∗ = δττ (2.23)

In this case, the matrices with asterisk e.g. M∗, are the matrices from the plant model,
while the matrices without asterisk are matrices for the control model. The δi is then a
scalar relationship between the different matrices in the plant and control model. This
is probably too simplified, but gives robust and good adaptive schemes, and limits the
number of variables that have to be estimated.

2.2.2 Error with Unknown Parameter Values
Another assumption is that all the parameters in Table 2.1 are unreliable, except the inertia
matrix, which means that there are 19 unknown parameters that need to be estimated.

Mν̇ = τ + Φ(ν)ϕ∗ +R>(ψ)ωn (2.24)

where all the dynamics from D∗(ν)ν and C∗(ν)ν are left in the Φ(ν). The unknown
parameters are ordered in the vector ϕ∗

ϕ∗ = [c1, c2, c3, X
∗
u, Y

∗
v , Y

∗
r , N

∗
v , N

∗
r , X

∗
|u|u, X

∗
uuu, X

∗
|v|v, Y

∗
|v|v...

..., Y ∗|r|v, Y
∗
|v|r, Y

∗
|r|r, Y

∗
vvv, N

∗
|v|v, N

∗
|r|v, N

∗
|r|v, N

∗
|r|r]

(2.25)
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Chapter 2. Vessel Model

where c1 = −m∗x∗g + 1
2 (N∗v̇ + Y ∗ṙ ) , c2 = −m+ Yv̇v and c3 = m−Xu̇. The regressor

matrix will be

Φ(ν) =
[
ΦC(ν)|ΦDL(ν)|ΦNL(ν)

]
ΦC(ν) =

∣∣∣∣∣∣
r2 vr 0
0 0 ur
−ru −vu −uv

∣∣∣∣∣∣ , ΦDL(ν) =

∣∣∣∣∣∣
−u 0 0 0 0
0 −v −r 0 0
0 0 0 −v −r

∣∣∣∣∣∣
ΦNL(ν) =∣∣∣∣∣∣
−|u|u −u3 −|v|v 0 0 0 0 0 0 0 0 0

0 0 0 −|v|v −|r|v −|v|r −|r|r v3 0 0 0 0
0 0 0 0 0 0 0 0 −|v|v −|r|v −|v|r −|r|r

∣∣∣∣∣∣
(2.26)

2.2.3 Error with Known and Unknown Parameter Values
?? Usually some of the parameters are known, estimated or found through experiments.
While others are found by a best guess, certainly different parameters will have different
reliability in a model. When investigating how the model of CSE1 was found this seemed
to be the case. The parameters on the CSE1 hydrodynamic model correlated with the ships
rotation, were taken from the Cybership II model in (Skjetne et al., 2004), as a best guess.
Which leaves these parameters unreliable, and the dynamic model can be represented as
following

Mν̇ = τ −C(ν)ν − g(ν)−Φ(ν)ϕ∗ +R>(ψ)ωn (2.27)

where g(ν) + Φ(ν)ϕ∗ = D∗(ν)ν1. So g(ν) is the part of the nonlinear damping
known to the controller, and Φ(ν)ϕ∗ needs to be estimated. This would correspond to a
model-error with disturbance

ω∗ = −Φ(ν)ϕ∗ +R>(ψ)ωn (2.28)

The unknown hydrodynamic coefficients are the ones related to the yaw rate of the
ship. The other coefficientsX∗u, Y

∗
v , N

∗
v , X

∗
|u|u, X

∗
uuu, X

∗
|v|v, Y

∗
|v|v, Y

∗
vvv, N

∗
|v|v were found

through towing experiments, described in (Skåtun, 2011). The known part of the hydro-
dynamics will then be

g(ν) =

−X
∗
uu−X∗|u|u|u|u−X

∗
uuuu

3 −X∗|v|v|v|v
−Y ∗v v − Y ∗|v|v|v|v − Y

∗
vvvv

3

−N∗v v −N∗|v|v|v|v

 (2.29)

The true unknown coefficients are
1It should be noted that the sign of Φ(ν) and g(ν) is changed with regards to the model described in (Skjetne

et al., 2004)
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2.2 Model-Error Parametrization

ϕ∗ = [Y ∗|r|v, Y
∗
r , Y

∗
|v|r, Y

∗
|r|r, N

∗
|r|v, N

∗
r , N

∗
|v|r, N

∗
|r|r] (2.30)

and the controller will be estimating the coefficients in the vector

ϕ̂ = [Y|r|v, Yr, Y|v|r, Y|r|r, N|r|v, Nr, N|v|r, N|r|r] (2.31)

Then

Φ(ν) =

 0 0 0 0 0 0 0 0
−|r|v −r −|v|r −|r|r 0 0 0 0

0 0 0 0 −|r|v −r −|v|r −|r|r

 (2.32)

2.2.4 Disturbance
Another name for the model-error is a disturbance. Although disturbance often account
for external effects, such as unknown forces, not accounted for in the model. These can be
external forces as winds, currents, waves and operation related disturbances as in anchor
handling and towing. The disturbing effects can also come from eg. unwanted roll or
unknown hydrodynamics. The disturbance ω∗(t) can be parametrised as (2.3). The earth-
fixed disturbance can be split into two uncertainties like in (Fossen and Strand, 1999)

ω∗n(t) = b∗ + ξ∗(t) (2.33)

where b∗ accounts for a constant, or slowly-varying force like current and wind, and
ξ(t) represents the time-varying disturbances such as waves.

In this project, we did not account for wave motions, but the controllers were designed
to adapt to more slowly-varying and constant earth-fixed disturbances. Although this was
not applied during experiments. It was kept out of simulations as well. The uncertainty
model (2.27) was used in the first simulations , and it will be the model used when the
controllers are designed in Chapter 4. Since there were no earth fixed disturbances, only
body fixed, the model-error ω∗ and its estimates are

ω∗ = −Φ(ν)ϕ∗ + ωb(ν, τ ) (2.34)

which gives the controllers estimate of the model-error

ω̂ = −Φ(ν)ϕ (2.35)

The rest of (2.27), will be the off-line estimate of the model error

ω = Mν̇ +C(ν)ν + g(ν)− τ (2.36)
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Chapter 2. Vessel Model

The controllers adaptation error-signal ε will then be

ε = ω − ω̂ (2.37)

and will be used in the adaptation of the controllers designed in Chapter 4.

2.2.5 Thruster allocation Error
As explained in Section 2.1.1 the thruster allocation is based on look-up tables and thruster
models. This implies that the force requested from the controller is not identical to the
force produced by the thruster.

τ req = τac + τω (2.38)

there τ is the force requested by the controller, τth is the thrust produced by the
thrusters and τω is the thrust error. The problem is that feed forwarding the thrust er-
ror, could again propagate new errors, so if τω is identified, a new thruster map should be
investigated. In Chapter 7, a linear thruster error is proposed and a system identification is
tried out to identify this error.

τ req = τ act + ∆ττ req (2.39)

where ∆τ = diag([δτu, δτv, δτr]). As seen in Figure 2.4 we rely on two models, the
thruster allocation model, and the marine craft model. The problem is, when an error is
identified is it coming from the thruster allocation, or the ship model?
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Chapter 3
Multivariate Analysis

3.1 Multivariate Analysis and Regression
With the increases of computational power , cheaper and more accurate sensors, and in-
creasingly cheaper storage, the problem of handling quantitatively huge amount of data
has exploded during the last decade. The buzzword related to this topic is big data.

The field of MVA is about handling multi dimensional data, or quantitative big data
(Martens, 2015) and MVA techniques and knowledge has been developed for fields like
chemometrics, genometrics, econometrics and psychometrics. Similar techniques have
been used in control design in for example model reduction and balanced truncation, (Ben-
ner et al., 2013). Later these techniques have been tried in model-error analysis and pre-
diction inspired by the work from (Martens et al., 2013b).

When faced with data that have multiple variables and samples, visualisation and un-
derstanding relationships in the data can be challenging. For smaller data sets, plotting
variables against each other, or parallel in sub-plots can give this insight, but as the num-
ber of variables increase, it gets harder to find underlying relationships between the data.
Additionally, it can be difficult to distinguish noise from casual non-linearities. The field
of MVA addresses these issues with techniques fields for: Model reduction, data analysis
and multi linear regression. The backbone of many of these techniques is the principal
component analysis (PCA) (Martens et al., 2013a). This has already been applied in the
control theory literature for model reduction, such as analysing a systems controllability
and observability to find balanced truncation for a system. However it is often refereed to
as singular value decomposition (SVD). In addition to the PCA, partial least square (PLS)
regression will be used to analyse the experimental data in this project.

3.1.1 Calibration and Validation
MVA techniques, like PCA and PLS regression are empirical methods. PCA is used to
analyse the data, to find if there are some greater structural correlations between the vari-
ables, that can explain the most important dynamics of the model. PLS regression on the
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other hand, is a predictive technique. For building a model mathematical model is found
from a set of data, to predict the response variables Y from predictor variables X. The
finding of a model is divided into: calibration and validation (Martens and Næs, 1992).
Calibration involves dividing the data, or finding a subset of the data from which you want
to build a model. This also includes building the mathematical model from these data.
This subset of the data is called the training set or calibration set. The process of assuring
the quality of the model is called validation, and involves testing the models predictability
against another subset of the data. These are called the validation set. In this project multi-
variate analysis was used to investigate the model-error of CSE1, and a model for this was
presented. This was used to improve the simulator, and also a suggestion on how this can
be implemented in the controller to improve the performance of the controllers is shown.

3.1.2 Principal Component Analysis/ Singular Value Decomposition

The PCA is an orthogonal decomposition of the data matrix, which as mentioned, is closely
related to the SVD known from linear algebra. The strength of the PCA is shown when
presented with a matrix of low rank, and this is often the case when the number of variables
and states are grater than necessary i.e. not minimal. PCA is used to verify that the data
has underlying structure so that the model of the data can be reduced. In this subsection
the PCA will be reviewed through the SVD.

Consider a data matrix X ∈ Rn×m, where n is the number of samples or time steps,
and m is the number of variables. This matrix has a SVD which is the following

X = UΣV > (3.1)

Here bothU ∈ Rn×n and V ∈ Rm×m are orthogonal matrices, while the Σ ∈ Rn×m
is a diagonal matrix, with its entries in acceding orders.

Σ = diag([σ1, σ2, ... , σm]) where σ1, > σ2, ... , > σm (3.2)

and σi are called the singular values, which are the square roots of the eigenvalues of
XX> and X>X . The column vectors of U and V are the eigenvectors of XX> and
X>X which are referred to as the left and right eigenvectors ofX .

U = [u1, u2, ..., un]

V = [v1, v2, ..., vm]
(3.3)

This decomposition gives several implications of the data matrix. The SVD gives an
overview of the transformation through matrix multiplication ofX .

Xvi = σiui

X>ui = σivi
(3.4)
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When vector v1 is multiplied by X , it changes direction to u1 and is scaled with σ1.
Since σ1 is the biggest singular value, it can be shown that v1 is the vector which is scaled
the most when multiplied byX .

v1 = arg max
v∈Rm

||Xv||2
||v||2

(3.5)

and v2 is the arg max in the subspace orthogonal to v1 etc. This also implies that the
data will have biggest variance if it is projected onto v1. Another result of the SVD is that
the matrix can be ordered sum of separable matrices. By separable, we mean that matrix
A can be written as an outer productA = uv> ⇔ Aij = uivj .

X =

k=m∑
k=1

Ak =

k=m∑
k=1

σkukv
>
k (3.6)

The matrix Ak will be called the principal components (PC). It can be seen that the
first PC is the biggest part of X because the σ1 is the biggest singular value. The matrix
X can also be approximated by adding the first p principal components.

X = X̃ +Ep =

k=p∑
k=1

Ak +Ep where p < m (3.7)

The matrix Ep is the residual matrix containing the reminder of matrix X . For matri-
ces with low rank, or huge spread in singular values, an approximation where p << m can
give a fairly good approximation. The result is thatX which havem×n data points can be
approximated by p vectors vi, p vectors ui and p singular values, which is substantial less
if for instance m = 100 and p = 5. Then instead of storing the matrix of 100n elements,
you just have to store the decomposition corresponding to 10n+ 5 elements, which takes
the 10th of the storage capacity.

The PCA is alsmot identical to the SVD, only difference is that it is a decomposition
of two matrices instead of three.

X = ZP> (3.8)

where Z = UΣ and is called the loadings, and P = V is called the scores. The order
is the same as in the singular value decomposition, which means that z1 has the largest
magnitude, then comes z2 and so on.

When analysing the data through PCA the data is projected into a the score plane. As
explained above, all the rows in the data matrix X are the different samples, so by mul-
tiplying X with the scores pi a vector where the elements are the inner product between
the samples and the score is created. This vector is the corresponding a loading to the data
X

z1 = Xp1 (3.9)
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By plotting the loadings against each other, the data comes out as projected onto the
plane of the corresponding scores, with the score directions as the different axis, hence the
scores are given the names principal directions.

3.1.3 Partial Least Squares Regression
PLS regression is a statistical projection method which finds correlating structure between
two sets of data. It is therefore good at building models between two data sets X and Y ,
especially when there are many correlated latent variables. Given the data setX ∈ Rn×m
where each row is an observation/sample with m variables, and Y ∈ Rn×p , where each
row is an observation with p variables which we want to predict. The equations for the
PLS regression model will then be

X = ZP>x +Ex

Y = ZP>y +Ey

Z = XW ∗ = XW (P xW )−1

(3.10)

The matrices W , Z and P matrices are found through an iterative scheme, where
Z contains variation in X and is correlated with the variation in Y . The estimate of an
observation Y can then be made

ỹ = zP>y

ỹ = xW (P xW )−1P>y = xBx

(3.11)

where Ỹ andX are row vectors, andBx ∈ Rm×p

3.1.4 Validation and Statistics
As MVA deal with large amount of variables and samples, it can be difficult to see if a
model represent the data in a good way, therefore some multivariate statistics and valida-
tion techniques have been created. To measure how well a PCA model approximates a
data matrices the square Frobenius norm is used, which is defined as

||X||2F =

n∑
i=1

m∑
j=1

|xij |2 = trace(X>X) =

m∑
i=1

σ2
i (3.12)

R2, Calibration statistic: To see how well a model explains its own data, the goodness
of fit R2 is used, and is defined as

R2 =
||X||2F − ||Xε||2F

||X||2F
= % of explained variance (3.13)
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3.1 Multivariate Analysis and Regression

where |X is the data matrix, and Xε is the residual matrix after the PCA model. We
see that for a residual matrix ||Xε||2F = 0, R2 = 1 and the opposite, where Xε = |X the
R2 = 0. This shows that R2 is a measure of how well the PCA model approximates the
data.

The R2 is used on a calibration set, were you test how well the model predicts its own
data, it is therefore safe to say that if enough factors or principal components are used, the
R2 will eventually go to 0.

Q2, Validation statistic: When testing the model against new data, far validation, Q2 is
used. It is approximately the same as the R2 statistic only that the validation sett Xv is
used instead of X . The Ẽ is the residual matrix, and the prediction error sum of squares
(PRESS) is

PRESS = ||Xv
ε ||2F (3.14)

and the Q2 is then

Q2 = 1− PRESS

SStot
=
SStot − PRESS

SStot
= % of explained variance (3.15)

and as R2 this also goes from 0 to 1, 0 < Q2 < R2 < 1

3.1.5 Outlier Detection and Validation

To see how well the different samples fit into the created model, different statistics have
been made to find outliers.

Q residual: The squared prediction error (SPE), or Q residual, is one of these. It is
defined as

SPEj =

n∑
i=1

e2j,1 (3.16)

This can be interpreted as the orthogonal distance from a data point X to a latent
variable space. If this distance is significantly higher for a data point than the rest of the
data, it is a good indication that it is an outlier.

Hotelling’s T 2: Hotelling’s T 2 is a statistic for all the latent variable, and is the sum
of the balanced distance from a point to the mean center of the data. Were the space is
balanced down in the principal directions by the corresponding singular values. So a value
being far away from the mean, in a direction were the singular value is very low, would
get a high Hotelling’s T 2. The Hotelling’s T 2 is calculated as
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Chapter 3. Multivariate Analysis

T 2
i =

z2i1
σ2
1

+
z2i2
σ2
2

+
z2i3
σ2
3

+ ...+
z2im
σ2
m

(3.17)

where zi,j is the loading element for the sample i , and σj is the singular value related
to loading j. A sample having a significantly high T 2, is an indication that the sample is
an outlier.

Validation: Cross validation is a technique for validating a predictive model, and it
gives a good indication on how the prediction will work in practice. The data is divided
into complementary subsets. On one set the analysis is done, and on the other subset the
validation is done. The results of the cross validation is the average of all validations. The
cross validation can also give a good indication of which variables are consistent for the
model. In PLS regression a regression matrix is made, then by cross validation, several
regression matrices will be made, and the elements of this matrix can be compared. If
one element jumps around, especially changes sign for every regression, it can be deemed
inconsistent, or statistically insignificant. And one can consider removing the variable re-
lated to this element for further analysis.

In this project the PCA was used to calibrate the data set by getting rid of spikes and
dirty samples. The Q residual and Hotellin’s T 2 were used to get rid of outliers, which
mostly included spikes in the estimates. Then a PLS regression was done to analyse the
model-error, and cross validation helped to find which variables that was important for the
the prediction of the model-error.

3.2 Organization of data
There are several extensions of the PLS regression, and hey all require that the data is
organized in a certain way. For the PLS regression method above, the data can be organized
in two matrices. If you have 6 states xt ∈ R6 and two measurement yt ∈ R2 the matrices
could look like in Table 3.1 and 3.2

Table 3.1: The data of x organized in a matrixX

← Variables→
x1 x2 x3 x4 x5 x6

t
...

...
...

...
...

...
↓ · · · · · ·

The object will then be to map the data from X to Y , hence x to y. As described in
previous section, the PLS regression is able to produce a linear map from x to y noted
matrix B. However when the relation is nonlinear, two possible extensions of the PLS
regression exist. The nonlinear extended PLS regression , and the balanced nominal-level
PLS regression.
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Table 3.2: The data of y organized in a matrix Y

← Variables→
y1 y2

t
...

...
↓ · ·

3.2.1 Nonlinear Partial Least Squares

The nonlinear extended PLS regression is quite common from other regressions, such as
polynomial fitting. In addition to having the different states in the columns, the nonlinear
combinations are also added. A quadratic extension would then be

Table 3.3: The data of x organized in a matrixX as an nonlinear quadratic extension

← Variables→
x1 x2 x3 x4 x5 x6 x21 x22 x23 x24 x25 x26 x1x2 · · ·

t
...

...
...

...
...

...
...

...
...

...
...

...
... · · ·

↓ · · · · · · · · · · · · · · · ·

3.2.2 Nominal-level Partial Least Squares

The balanced nominal-level PLS regression works by dividing the states into vectors indi-
cating the states value. If x1 has values between x1 ∈ [0, 10], and the resolution of x1 is
decided to be 10. then the balanced nominal-level vector of x1 would be

N10
[0,10](x1) =



[1, 0, 0, 0, 0, 0, 0, 0, 0, 0] 0 < x1 < 1

[0, 1, 0, 0, 0, 0, 0, 0, 0, 0] 1 < x1 < 2

[0, 0, 1, 0, 0, 0, 0, 0, 0, 0] 2 < x1 < 3

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0] 3 < x1 < 4

[0, 0, 0, 0, 1, 0, 0, 0, 0, 0] 4 < x1 < 5

[0, 0, 0, 0, 0, 1, 0, 0, 0, 0] 5 < x1 < 6

[0, 0, 0, 0, 0, 0, 1, 0, 0, 0] 6 < x1 < 7

[0, 0, 0, 0, 0, 0, 0, 1, 0, 0] 7 < x1 < 8

[0, 0, 0, 0, 0, 0, 0, 0, 1, 0] 8 < x1 < 9

[0, 0, 0, 0, 0, 0, 0, 0, 0, 1] 9 < x1 < 10

(3.18)

This frees the PLS regression from being limited by proposed functions, and the re-
sultingB matrix will plot out the function, as seen in Figure 3.1.
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Figure 3.1 The figure shows the PLS regression of a dynamic system explained in
(Martens et al., 2013a) with three states [x1, x2, x3]. The box to the left, are the Y
variables, which are the time derivatives of the states [ẋ1, ẋ2, ẋ3]. The blue box in the
middle with white lines are the three state variables nominalized as in (3.18), in which
blue is 0 and white is 1, and the box to the left is the resulted B ∈ R3×3n matrix, where
the functions represent the resulted vector that maps the nominal vector N(xi) to yj .

3.2.3 Continuous Nominal Partial Least Squares
A further extension can be made by using the triangular function as basis for the nominal
function, or other higher order basis functions as well.

tri(x)c h = max(−|c− x|/h+ 1, 0) (3.19)

the function can be seen in Figure 3.2, where c decides the position of the triangular’s
top, and h decides the breadth of the triangular. The triangles are ordered so that the
they have value 1 in the middle of their section, and 0 at the edges. This leaves h =
Domain length/resolution, and the result can be seen in Figure 3.3. To represent x1 =
k where k ∈ [1, 10]

CN10
[0,10](k) = [tri(k)0 1, tri(k)1 1, tri(k)2 1, tri(k)3 1, ...

tri(k)4 1, tri(k)5 1, tri(k)6 1, tri(k)7 1, tri(k)8 1, tri(k)9 1, tri(k)10 1]
(3.20)

3.2.4 Resulting Nominalisation
The nominalisation was done for both simulated and experimental data from chapters 5 and
6, which can be seen in Figure 3.4 and 3.5. The variables can be seen as plots, although
they represent the value of the elements on the matrix. In the discrete plot, the red pixels
correspond to a 1, while blue pixels correspond to a 0. For the continuous nomination
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3.2 Organization of data

Figure 3.2 The figure shows the triangular function tri(x)c h described by (3.19). In this
case it is tri(x, 3, 1), where c decides the position of the triangular’s top, and h decides the
breadth of the triangular

Figure 3.3 The figure shows the triangular function tri(x)c h described by (3.19). In this
case it is tri(x)3 1, where c decides the position of the triangular’s top, and h decides the
breadth of the triangular

the same rule applies, only that the colors between blue and red, correspond to a value
between 0 and 1.
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Figure 3.4 The Figure shows the discrete nominalisation of experimental data from an
elliptic run. The value of the states can be seen evolving from left to right, looking like
plots. Although this is a picture of the matrix seen from above, where a pixel represent
value of the element in the matrix. The pixels with colour red, represents a 1, the pixels
that are blue, represent a 0. The three lowest variables, which can be seen as the three
lowest plots, are the states η. The three next variables, are the states ν. These are then
followed by ν̇, τ , ϕ and the cross terms of ν, ν̇ and τ at the top
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Figure 3.5 The Figure shows the continuous nominalisation of simulated data from an
elliptic run. The value of the states can be seen evolving from left to right, looking like
plots. Although this is a picture of the matrix seen from above, where a pixel represent
value of the element in the matrix. The pixels with colour red, represents a 1, the pixels
that are blue, represent a 0. Every pixel with a colour in between represent a number from
0 to 1. The three lowest variables, which can be seen as the three lowest plots, are the
states η. The three next variables, are the states ν. These are then followed by ν̇, τ , ϕ and
the cross terms of ν, ν̇ and τ at the top
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Chapter 4
Motion Control System Design and
Evaluation

4.1 Control Design
The controllers is designed for the the model of Cybership Enterprise 1 (CSE1) described
in Section 2.1. The Adaptive backstepping (ABS) controller is used as the base controller
for this project, and is designed with the control model (2.27). ABS controller with a
concurrent learning (CL) adaptation law to estimate the uncertainties and disturbances are
also tested, where different versions of CL is presented. The control model (2.27) was
also used for the design the latter controllers. The controllers will be designed for the
plant model, (2.1) and (2.2). The stability of the system will be proven through Lyapunov
theory from appendix A to ensure that the controllers are robust and that their estimates
does not diverge.

4.1.1 Adaptive Backstepping

Designing a Backstepping (BS) controller requires a certain procedure. One layer of the
system is stabilized for every step by asserting a Lyapunov function for the sub system,
and using Theorem A.1.1. Our system has two ”layers” so we need two control signals
that we want to stabilize to zero.

z1 , R>(ψ)(η − ηt)
z2 , ν −α

(4.1)

where ηt is the target of the ship, and α is a stabilizing function found by using Theo-
rem A.1.1. The goal is therefore to design a controller such that lim

t→∞
z1 = 0, so that also

η − ηt becomes zero.
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Step 1 Since we want the pose of the ship to converge towards ηt, which means η = ηt,
our first control Lyapunov function (CLF) will be

V1 =
1

2
z1
>z1, (4.2)

which is certainly positive definite. We then find its time derivative

V̇1 = z1
>ż1 (4.3)

which by the product rule and differential kinematics is

V̇1 = z1
>(S(r)>R>(ψ)(η − ηt) +R>(ψ)(η̇ − η̇t))

= z1
>(S(r)>z1 +R>(ψ)(η̇ − η̇t)))

= z1
>(ν −R>(ψ)η̇t)

(4.4)

where we in the last line has used the screw-symmetric property z1>S(r)z1 = 0 ∀z1.
We then see by introducing the control signal (4.1) that we get

V̇1 = z1
>(z2 +α−R>(ψ)η̇t). (4.5)

By Theorem A.1.1 we want V̇1 < 0. We therefore choose

α = R>(ψ)η̇t −Kpz1 (4.6)

andKp > 0, so we get the first step CLF derivative

V̇1 = −z1>Kpz1 + z2
>z1. (4.7)

The term z2
>z1 will be used next to couple the z2 dynamics to V1.

Step 2 The second CLF is chosen to be

V2 = V1 +
1

2
z2
>M∗z2 =

1

2
z1
>z1 +

1

2
z2
>M∗z2, (4.8)

which also is positive definite sinceM∗ > 0. The time derivative will then be

V̇2 = V̇1 + z2
>M∗ż2 (4.9)

For this controller we will use the uncertainty model described by (2.27). We use this to
findM∗ż2

M∗ż2 = M∗(ν̇ − α̇)

= τ −C(ν)ν − g(ν)−Φ(ν)ϕ∗ +R>(ψ)ωn −M∗α̇.
(4.10)
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If we then substitude equation (4.10) into (4.9) we get the CLF

V̇2 =− z1>Kpz1

+ z2
>(z1 + τ −C(ν)ν − g(ν)−Φ(ν)ϕ∗ +R>(ψ)ωn −M∗α̇),

(4.11)

which means that the controller has to be

τ =− z1 −Kdz2 +M∗α̇

+C(ν)ν + g(ν) + Φ(ν)ϕ∗ −R>(ψ)ωn,
(4.12)

for the Lyapunov function to satisfy Theorem A.1.1. And will get the derivative of the
CLF to be

V̇2 = −z1>Kpz1 − z2>Kdz2. (4.13)

Step 3 The parameters in ϕ∗ are unknown, hence they must be estimated. We choose
the CLF

V3 = ϕ̃>Γ−1ϕ ϕ̃+ ω̃>nΓ−1ωnω̃n + V2 (4.14)

where ϕ̃ = ϕ∗ − ϕ̂ and ϕ̂ is the estimate of ϕ∗. Including the error from using the
estimated values Φ(ν)ϕ̂ and R>(ψ)ω̂n in τ instead of the real values, into equation
(4.11) gives

V̇2 = −z1>Kpz1 − z2>Kdz2 − ϕ̃>Φ(ν)>z2 + ω̃>nR(ψ)z2 (4.15)

When differentiating V3 bear in mind the assumption that the derivatives ϕ̇∗ = ϕ̇∗ =
0, or at least neglectable. This gives ˙̃ϕ = − ˙̂ϕ and ˙̃ωn = − ˙̂ωn the last Lyapunov function
is therefore

V̇3 = −ϕ̃>Γ−1ϕ
˙̂ϕ − ω̃n>Γ−1ωn

˙̂ωn − ϕ̃>Φ(ν)>z2 + ω̃>nR(ψ)z2

−z1>Kpz1 − z2>Kdz2,
(4.16)

reorganized look like

V̇3 = ϕ̃>(−Γ−1ϕ
˙̂ϕ −Φ(ν)>z2)+

ω̃>n (−Γ−1ωn
˙̂ωn +R(ψ)z2)

−z1>Kpz1 − z2>Kdz2

(4.17)

To eliminate the uncertainties of ϕ̃ and ω̃n we choose the adaptation laws

˙̂ϕ = −ΓϕΦ>(ν)z2

˙̂ωn = ΓωnR(ψ)z2
(4.18)

The controller is summarized in Table 4.2.
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4.1.2 Concurrent Learning
CL is an adaptive law based on the intuition that if the recorded data is sufficiently rich,
i.e. there is a linear independence in the data, CL adaptation can be used to estimate true
values without the need of persistency of excitation (Chowdhary and Johnson, 2010). For
this algorithm to work, certain conditions have to be fulfilled.

The adaptation law is as follows

˙̂ϕ = −ΓϕΦ>(νn)εn −
n−1∑
j=1

ΓϕΦ>(νj)εj (4.19)

where ν are the states, ϕ̂ is the parameter estimates of ϕ∗, Γϕ is the adaptive gain
matrix and Φ(νj) is the regressor matrix. ε is the approximation error, denoted ε = y− ŷ
where

y(t) = Φ(ν(t))ϕ∗

ŷ(t) = Φ(ν(t))ϕ̂
(4.20)

Which leads to

ε = Φ(ν(t))ϕ̃ (4.21)

Then, by setting Γφ = In×n and assuming that ϕ∗, the error dynamics become

˙̃ϕ = −Φ>(νn)εn −
n−1∑
j=1

Φ>(νj)εj (4.22)

then substituting for ε

˙̃ϕ = −Φ>(νn)Φ(ν(t))ϕ̃−
n−1∑
j=1

Φ>(νj)Φ(νj)ϕ̃ (4.23)

which has some linear structure. Then we present a condition of the richness of the
data, that is required for the convergence analysis.

Condition 1 The recorded data has as many linearly independent elements as the di-
mension of Φ(x(t)) ∈ Rn×m. That is if Z = [Φ(x1)>, Φ(x2)>, ..., Φ(xp)

>], then
rank(Z) = m.

Then the theory says

Theorem 4.1.1. If the stored data points satisfy condition 1, then ϕ̃ is globally exponen-
tially stable when using the CL gradient descent weight adaptation law of equation (4.19).
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Proof. Let

V =
1

2
ϕ̃>ϕ̃ (4.24)

be a CLF of the estimation error. We then differentiate V

V̇ = ϕ̃>ϕ̇

V̇ = −ϕ̃>(Φ>(νn)Φ(ν(t)) +

n−1∑
j=1

Φ>(νj)Φ(νj))ϕ̃

V̇ = −ϕ̃>Qϕ̃

(4.25)

where Q = Qc +Qd is positive definite due to Condition 1. The Qd is the data matrix
defined in Condition 1. We also note that

−ϕ̃>Qϕ̃ >= λmin||ϕ̃|| (4.26)

where λmin is the smallest singular value ofQ

V̇ < −λmin||ϕ̃|| (4.27)

We also note that a biggerQ will probably also lead to a bigger convergence. Thus the
product of the singular values will be tried out.

In the proof it is required that
n−1∑
j=1

Φ(νj)
>Φ(νj) > 0 is positive definite. We will try

out two methods to ensure that this property is hold.

4.1.3 Concurrent Learning Choosing Algorithm

From (4.26) the convergence rate is related to the matrix Q. And the CL gives the option
of choosing witch data do build upQd. Here two algorithms will be presented for how the
data is to be chosen.

Concurrent Learning With Data Window The data window algorithm works like a
tube with a constant number of matrices. So that if a new measurement is sufficiently dif-
ferent from the previous one then the regression matrix is stored, and the oldest regression
matrix is rejected.
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Algorithm 1 pseudocode for data window choosing algorithm
1: end← n
2: for i = 1 to N do
3: Φtemp ← Φ(νi)
4: Φp ← ΦM [1]
5: if norm(Φtemp −Φp) < δ then
6: ΦM [2 : end]← ΦM [1 : end− 1]
7: ΦM [1]← Φtemp { % Queuing the regression matrices}
8: ΣM [2 : end]← ΣM [1 : end− 1]
9: ΣM [1]← εi { % Queuing the ε error vectors}

10: Qd = ΦM ∗ ΣM { % Multiplication like in Σ (4.19)}
11: end if
12: end for

Concurrent Learning With Singular Value Maximization The singular value maxi-
mization (SVM) algorithm works by checking if the new regression matrix will increase
the minimum singular value. It tries to change all its data matrices with the new data, and
if the new data point increases the minimal singular value of the data matrix, switch in the
new regression matrix.

Algorithm 2 pseudocode for maximizing SVD choosing algorithm
1: end← n
2: for i = 1 to N do
3: Φtemp ← Φ(νi)
4: Φp ← ΦM [1]
5: if norm(Φtemp −Φp) < δ then
6: for j = 1 to end do
7: ΦMtemp ← ΦM
8: ΦMtemp [j]← Φtemp

9: SingV alues← svd(ΦMtemp)
10: MinSingV alues[j]← min(SingV alues)
11: end for
12: [MinSing, argMinSing] = max(MinSingV alues)
13: if MinSing ≥MinSingOld then
14: ΦM [argMinSing]← Φtemp

15: ΣM [argMinSing]← εi
16: Qd = ΦM ∗ ΣM { % Multiplication like in Σ (4.19)}
17: end if
18: end if
19: end for

4.1.4 Model-Error Parametrization and Estimation

For model (2.27) the regression matrix will be
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Φreg(ν) = [Φ(ν), R(ψ)] (4.28)

and the parameter vector is

ϕ∗reg =

[
ϕ∗

ωn

]
(4.29)

Instead of having one regression matrix, they are split, because the changes in the
hydrodynamic regression matrix Φ(ν) are independent of the rotation matrix R(ψ), and
when storing the the data for the CL, the data chosen for the hydrodynamic estimation will
be separated from the data chosen for disturbance estimation.

˙̂ϕ = −ΓϕΦ(ν)>ε−
k−1∑
j=1

ΓφΦ>(νj)εj , (4.30)

the ε is found by rearranging model (2.27), we have

ω∗ = R>(ψ)ω∗n −Φ(ν)ϕ∗ = M∗ν̇ +C∗(ν)ν + g(ν)− τ
y = M∗ν̇ +C∗(ν)ν + g(ν)− τ ,

(4.31)

and our estimate of the uncertainty is

ω = ŷ = R>(ψ)ω̂n −Φ(ν)ϕ̂. (4.32)

We then get

ε = y − ŷ
ε = M∗ν̇ +C∗(ν)ν + g(ν)− τ − (R>(ψ)ω̂n −Φ(ν)ϕ̂)

(4.33)

For the earth-fixed disturbance, the regression matrix is the rotation matrix, and by
definition R(ψ)>R(ψ) = I and the positive definite condition is satisfied. We then get
the adaptation law

˙̂ωnk = ΓωkR(ψk)εk −
k−1∑
j=1

ΓωnR(ψj)εj . (4.34)

In the project thesis, a choosing algorithm wasn’t used, but rather all the data was
taken into account. The problem was then that the algorithm didn’t take time into con-
sideration. With the result of different adaptive behaviour depending on the time between
the measurements, or step length in the simulations. The summation part was therefore
transformed into an integral
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˙̂ωnk =ΓωnR(ψk)εk −
k−1∑
j=1

ΓωnR(ψj)εjh

˙̂ωn(t) =ΓωnR(ψ(t))ε(t)− ρ
t∫

τ=t0

ΓωnR(ψ(τ))ε(τ)dτ

(4.35)

where h is the time between measurement, or step length in the simulations. The ρ is
a tuning parameter to ensure stable adaptation1.

ε(t) = Mν̇(t) +C(ν(t))ν(t) + g(ν(t))− τ (t)− (R>(ψ(t))ω̂n(t)−Φ(ν(t))ϕ̂(t)) (4.36)

In this project, the h was dependent on how many data points that was stored, and both
the CL with window algorithm and singular value maximization was simulated and tested
in a hardware-in-the-loop (HIL) test. The CL widow algorithm was in addition tested on
the CSE1. The CL singular value maximization algorithm proved to have problems that
are discussed in Chapter 7.

4.1.5 Modifications of Concurrent Learning
As can be seen from previous subsection, CL can be implemented in different ways, by
which data is stored. In addition the instantaneous adaptation error ε can be changed
with tracking error e = xrmx, which is done for a model refrence adaptive control in
(Chowdhary and Johnson, 2011a), this can also be applied to the BS controller, only using
z2 in the adaptation as can be seen from appendix A.2

˙̂ϕ = ΓϕΦ>z2 +

p∑
j=1

ΓφΦ
>
j εj

˙̂wn = ΓwRz2 +

p∑
j=1

ΓwRjεj

(4.37)

This leaves four possible implementations for the CL controllers, as can be seen in
Table 4.1. Where the SVD is claimed to have the best convergence, but as implemented
it can potentially store an error and this can lead to instability. The epsilon has the possi-
bility of faster convergence than z2, but as also discussed in Chapter 6, getting an good
instantaneous estimate of ε proved to be difficult. In Chapter 5 the four versions of the CL
controllers are simulated, and their performance is compared, and the adaptation laws and
controllers are summarized in Table 4.2.

1The Γωn in the integral term of the CL adaptation was reduced by factor of ρ = 0.1 to make the adaptation
stable for all the simulated tests.
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Table 4.1: The different variants of the CL controller

Adaptation Error r Storage Algorithm Window Singular Value Maximation
ε CL-WIN-ep CL-SVD-ep
z2 CL-WIN-z2 CL-SVD-z2
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4.1.6 Summary

In Table 4.2, the summary of the BS controller and the different adaptations are found.
Since the CL controllers can change between having two storage algorithms and two in-
stantaneous adaptation errors, this leaves us with four possible CL controllers.

Table 4.2: Summary table of the controller and adaptations presented in this section. The XXX
means either WIN or SVD, and similarly X stands for W or S

Backstepping Controller

Internal Signal:
z1 = R>(ψ)(η − ηt)
z2 = ν −α
α = R>(ψ)η̇t −Kpz1
α̇ = S>(r)R>(ψ)η̇t +R>(ψ)η̈t −Kpż1
ż1 = S>(r)z1 + ν −R>(ψ)η̇t
Control Law:
τ = −z1 −Kdz2 +C(ν)ν + g(ν) + Φ(ν)ϕ̂−R>(ψ)ω̂n +M∗α̇

Adaptation Laws
Backstepping Adaptive Backstepping

Abbreviations: BS-NORMAL, BSP Abbreviations: BS-ADAPT, ABS
Internal signals: Internal signals:
NONE z2 = ν −α
Adaptive Law:
˙̂ϕ = 0 ˙̂ϕ = −ΓϕΦ>(ν)z2
˙̂ωn = 0 ˙̂ωn = ΓωnR(ψ)z2

Concurrrent Learning with z2 Concurrrent Learning with ε
Abbreviations: CL-XXX-z2, CXZ Abbreviations: CL-XXX-ep, CXZ
Internal signals: Internal signals:
z2 = ν −α ε = Mν̇ +C(ν)ν + g(ν)− τ
ε = Mν̇ +C(ν)ν + g(ν)− τ −(R>(ψ)ω̂n −Φ(ν)ϕ̂)

−(R>(ψ)ω̂n −Φ(ν)ϕ̂)
Adaptive Law: Adaptive Law:

˙̂ϕ = −ΓϕΦ(ν)>z2 −
k−1∑
j=1

ΓφΦ>(νj)εj ˙̂ϕ = −ΓϕΦ(ν)>ε−
k−1∑
j=1

ΓφΦ>(νj)εj

˙̂ωnk = ΓωkR(ψk)z2 −
k−1∑
j=1

ΓωnR(ψj)εj
˙̂ωnk = ΓωkR(ψk)ε−

k−1∑
j=1

ΓωnR(ψj)εj

Data Storage Algorithm

Window: WIN Singular Value Maximation: SVD
Algorithm: 3 Algorithm: 2
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4.2 Guidance Design

4.2 Guidance Design
The guidance system produces the target states ηt that the ship is supposed to follow. The
guidance system in this project is made from parametrization.

ηt = g(θ)

θ̇ = f(θ)
(4.38)

There were two trajectories chosen for the simulations and testing. One elliptic and
one Figure-Eight trajectory. The elliptic trajectory had the parametrization

ηt =

 5 + sin(( π
180 )θ)

0.5 + 1.5 cos(( π
180 )θ)

atan2(−1.5 sin( π
180θ), cos( π

180θ))

 (4.39)

and

θ̇ =
ut√

(1.5 π
180 sin( π

180θ))
2 + ( π

180 cos( π
180θ))

2
(4.40)

where ut is the target speed witch will be held constant in the elliptic trajectory. The
eight figure trajectory is parametrized as

ηt =

 5 + cos(( π
180 )θ)

0.5− 2 sin(( π
180 )θ) cos(( π

180 )θ)
atan2(−2 cos( π90θ),− sin( π

180θ))

 (4.41)

and

θ̇ = 5.33ut (4.42)

the η̇t and η̈ where found through finite differences method, is a numerical method for
differentiating a signal. One can increase the accuracy of the differentiation by choosing
an differentiation of higher order, although it will lead to more noise if there are any
inaccuracies. The differentiations in different order of accuracy and derivative can be seen
in Table 4.3

Depending on the frequency and accuracy of the function that is to be differentiated
may determine which of the methods to use. When differentiating the guidance function,
the frequency was so high that first order forward differentiation gave sufficiently good η̇t
and η̈t .

ˆ̇ηt =
ηt
n − ηtn−1

h
(4.43)

ˆ̈ηt =
ηt
n − 2ηt

n−1 + ηt
n−2

h2
(4.44)
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Chapter 4. Motion Control System Design and Evaluation

Table 4.3: Table of the coeficents for the finite difference forward methods. These functions depend
on how many measurements that are planed

Derivative Accuracy 0 -1 -2 -3 -4 -5 -6 -7 -8

1
1 -1 1
2 -3/2 2 -1/2
3 -11/6 3 -3/2 1/3

2
2 1 -2 1
4 2 -5 4 -1
6 35/12 -26/3 19/2 -14/3 11/12

4.3 State Estimation
During the tests, only the position and orientation η of the vessel is measured, hence the
ν and ν̇ had to be estimated. This can be done with an nonlinear observers described in
(Sørensen, 2013), or a derivation filter. Three observers were tested, and the results can be
seen in Section 6.3.3.

Dealing with real life measurements can provide a few challenges for the estimators
and the controllers

4.3.1 Measurement Challenges
When using measurements in a real time control setting, the measurements usually has
several faults. Such faults can be identified as

Noise: Noise is a short term error in determining the value of the measurement, and
can be a result of physical or computational effects. It can often be characterized as a
probability distribution, but usually it is described as white Gaussian noise with a certain
variance.

Bias: A bias is a systematically error in the measurement. An example can be that
the measurement point on a ship is wrong, so that this fault is propagated to the position
measurements and there is an error in the position measurement. These errors, when found
can often be compensated for so that they are cancelled out.

Signal freeze: If the measurement system is unable to give out an updated measure-
ment, the measurement system will continue to give out a frozen measurement, until the
system is able to find a new update of the measurement. Then the measurement will jump
to the newly updated measurement. This can both affect the controller by falsely provid-
ing an extensive error into the controller, but also the jump can set of oscillations if the
controller isn’t well tuned.

Signal drop: The signal drop, is the same as the signal freeze, but instead of giving out
a constant measurement, they are either set to zero, or nan. which is why they often have
to be handled in another way
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4.3 State Estimation

Wrap around: The problem with the angle measurements is that they are finite ψ ∈
[−π, π]. This means that the measurements will jump from −π to π and visa versa. In a
control setting this can cause problems, and make spikes in ψ̃.

Signal spikes: Signal spikes can come from measurements or estimates that for some
reasons are way off in a temporarily moment. They can often induce osculations on con-
trolled systems.

The pose measurements in the MC-lab had very little noise, but signal freeze occurred
occasionally. To handle this, the estimators were modified so that they identified if there
was a signal freeze, and if that was the case, tried to estimate η̂ as seen in (4.46), (4.49)
and (4.52). In addition, the measurements were used for estimating the ships velocities and
accelerations, resulting in a spike in these estimation every time the signal was recovered.

4.3.2 Modified Derivative Filter
The derivative filter works by low pass filtering the the measurement signal, then differen-
tiating the filtered signal, and then differentiating again, as can be seen below.

ηf,1 =aηm + (1− a)ηf,1,k−1

η̇ =
ηf,1 − ηf,1,k−1

h
η̇f,2 =bη̇ + (1− b)η̇f,2,k−1
ν̂ =R>(ψ)η̇f,2

(4.45)

where ηm is the measured pose and ηf,i the ith filtered pose. If measurements is lost

˙̂η = R(ψ)ν̂

˙̂ν = [0, 0, 0]
(4.46)

The measurement was not lost in the experiments, but signal freeze (see Section 4.3.1)
occurred. It was therefore checked if there was a signal freeze by comparing ηn and ηn−1,
and if so, (4.46) was used to update the estimates.

In addition there was made a continuous conversion of the ψ measurement to continu-
ous ψ̂ measurements. This was don by checking if there was a jump in the ψ measurement,
then the ψ̂ was either added or subtracted 2π.

Algorithm 3 pseudocode for Data Window choosing algorithm
1: input← ψm
2: persistentRounds
3: if jumpIn(ψ)==upwards then
4: Rounds = Rounds+ 2π
5: else if jumpIn(ψ)==downwards then
6: Rounds = Rounds− 2π
7: end if
8: ψo = Rounds+ ψm
9: output← ψo
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4.3.3 Nonlinear Observer
The kinematic model used for the nonlinear observer is

ẋ =

[
η̇
ν̇

] [
R(ψ)ν

0

]
(4.47)

The nonlinear observer is then

˙̂x =

[
˙̂η
˙̂ν

] [
R(ψ)ν̂

0

]
+

[
K1

K2R
>(ψ)

]
(η − η̂) (4.48)

if loss of measurements

˙̂x =

[
˙̂η
˙̂ν

] [
R(ψ)ν̂

0

]
(4.49)

4.3.4 Luenberger Observer
The kinematic equation for CSE1 is

ẋ =

[
η̇
ν̇

] [
R(ψ)ν

M∗−1(−C∗(ν)−D∗(ν)ν + τ ∗ + ω∗(t))

]
(4.50)

And is used when creating the Luenberg filter

˙̂x =

[
˙̂η
˙̂ν

] [
R(ψ)ν̂

M∗−1(−C∗(ν̂)ν −D∗(ν̂)ν̂ + τ ∗ + ω∗(t))

]
+

[
K1

K2R
>(ψ)

]
(η − η̂)(4.51)

with loss of measurements

˙̂x =

[
˙̂η
˙̂ν

] [
R(ψ)ν̂

M∗−1(−C∗(ν̂)ν −D∗(ν̂)ν̂ + τ ∗ + ω∗(t))

]
(4.52)

where theK1 andK2 will be found through tuning.

4.4 Performance Metrics
To judge the performance of the different controllers, performance metrics can help. A
good controller needs to satisfy several features. The most important, is the control objec-
tive

lim
t→∞

η(t) = ηt(t), (4.53)
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which is to bring the ship to a given target. The ηt is the desired target for the ship, and
this can be a stationary or moving target. How close the controlled object is to the target
can be measured by the position error

epos = ||ηt − η||pos =
√

(xt − xn)2 + (yt − yn)2 (4.54)

The error can also be measured by the cross-track error, which is the projection of the
distance from ηt − η on the orthogonal line of the path

Ψ⊥t = [cos(ψt), sin(ψt)), 0]> × [0, 0,−1]> (4.55)

p̃ = [xn, yn]> − [xt, yt]
> (4.56)

e = p̃>Ψ⊥t (4.57)

Figure 4.1 Guidance for a ship on a path from pk to pk+1 from (Fossen, 2011), here ηt
would be a parametrization from pk to pk+1, as explained in Section 4.2. The cross track
error can be seen her as e and the angle ψt is αk in this figure.

where ψt is the angle of ηt. The latter error has been used for the plots and metrics
in this project. To measure the total error, the square-error is integrated over time which
gives the Integrated Square Error (ISE)

ISEpos =

tend∫
0

e(t)2dt. (4.58)
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The square error combines giving a huge penalty for being far off track, and neglecting
the error when it is sufficiently small. In simulations an error can easily come down to
e = 10−5 or even smaller, but in real life, for a ship, the difference between a controller
that has an error of e = 10−5 or e = 10−6 in simulations, will be insignificant compared
other disturbances and uncertainties.

The controllers can also be differentiated by their energy use (Sørensen and Breivik,
2015). This is included in the metric Integral Absolute Error and Work (IAEW) where the
energy is multiplied with the absolute error, thus giving a metric on how well the controller
tracks the target and how energy efficient it is. Absolute error is chosen so the difference
in tracking does not dominate the metric too much.

IAEW =

tend∫
0

|e(t)|dt
tend∫
0

P (t)dt (4.59)

where P = |τ>ν|. Another property of the controller is how smoothly it is working,
in essence how fast τ is changing, thus τ̇ . The smoother the controller output is, the more
realistic it is for the thrusters to produce the desired force. It also leads to less wear for the
actuators and thrusters. Multiplying all these effects together gives the metric Integrated
Absolute Error with Work and Wear and Tear. (IAEWWT)

IAEWWT =

tend∫
0

|e(t)|dt
tend∫
0

P (t)dt

tend∫
0

||τ̇ ||2dt (4.60)

where || · ||2 is the Euclidean norm. It can be difficult to extract the actual energy use,
and wear and tear from these metrics. An increase in the metrics IAEW and IAEWWT can
be due to increased IAE, W or I τ̇ . To see how the energy use and τ̇ was for the different
controllers, these were also calculated.

W =

tend∫
0

P (t)dt (4.61)

Iτ̇ =

tend∫
0

||τ̇ ||2dt (4.62)

IWWT =

tend∫
0

Pdt

tend∫
0

||τ̇ ||2dt (4.63)
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Chapter 5
Simulations

The simulations has several useful tasks. They were used to find interesting trajectories for
the experiment, and verify the motion control system and see that the different controllers
worked as intended. In addition it is a good start for coarse tuning of the adaptation and
controllers before the experiments.

The simulations were also made for a comparative analysis of the controllers presented
in Chapter 4. To compare them, the ship was simulated against the same trajectories as they
encountered in the Mc-lab. There were non external disturbances imposed on the system,
the only uncertainties where the rotational hydro dynamics as explained in Section ??,
which includes the uncertainty model (2.27). The process plant of the simulations were
(2.1) and (2.2), and the controllers are summarized in Section 4.1.6.

5.1 Simulation Plots
In this section, the results of all the different simulations are presented in plots. For each
scenario there are 5 plots:

• Plot 1(a) shows the trajectory of the controllers in the given scenario

• Plot 1(b) shows the offset angle and cross track error explained in Section 4.4

• Plot 2(a) shows the control metric also explained in Section 4.4

• Plot 2(b) shows the output forces from the controllers, linear, nonlinear and total
force.

• Plot 3 shows the controllers body fixed estimate for the model-error ω together with
the controllers estimate of this error ω̂

In Plot 2(b), the linear forces are the force from the feedback part of the controller, while
the nonlinear part is the part that tries to zero out estimated and known nonlinear dynamics.
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The total force is then these two forces added together. For the ABS controller this is

τLinear = −z1 −Kdz2 +M∗α̇

τNonlinear = C(ν)ν + g(ν) + Φ(ν)ϕ̂−R>(ψ)ω̂n

τ total = τLinear + τNonlinear

(5.1)

5.2 Tuning Parameters

The tuning parameters used for the simulations can be viewed in Table 5.1. The control
parameters where found through trial and error, based on the control and adaptation pa-
rameters values in (Skjetne et al., 2004), with the condition that ||τ || < 3, since this was
the limit of CSE1.

Table 5.1: The table shows the control parameters for the simulations.

Control Parameters
Kp diag([0.4, 1, 0.2])
Kd diag([1, 5, 1]
Γϕ diag([8, 4, 8, 8, 8, 4, 8, 8])

5.3 Comparison of Concurrent Learning Controllers

The first set of plots is a comparison of the four different version of the CL controller
presented in Table 4.1.6. And their differences are presented in Section 4.1.5

• CL-SVD-ep: CL with SVD algorithm, using ε as instantaneous adaptation error

• CL-SVD-z2: CL with SVD algorithm, using z2 as instantaneous adaptation error

• CL-WIN-ep: CL with WIN algorithm, using ε the instantaneous adaptation error

• CL-WIN-z2: CL with WIN algorithm, using z2 the instantaneous adaptation error

they have been given the colours for the plots, and are as follows:

• CL-SVD-ep: is plotted with a blue line

• CL-SVD-z2: is plotted with a green dashed line

• CL-WIN-ep: is plotted with red dashed line

• CL-WIN-z2: is plotted with dashed and dotted line in magenta
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5.3.1 Elliptic Trajectory
The CSE1 model was simulated against the elliptic trajectory, explained in Section 4.2,
and was set to ut = 0.8m/s. The start pose was

η0 = [5, 2, 0]>

ηt0 = [5, 2, 0]>
(5.2)

and the controllers where tested for two rounds. We see that all the controllers are
able to track the elliptic trajectory, and are able to adapt to, and estimate the main part of
the model-error, as can be seen in Figure 5.1 and 5.2. The CL controllers using ε have
the best preformance, were CL-WIN-ep seems to be a bit better, although it looks like
it has a bias in its cross track error, while the CL-SVD-ep’s cross track error is centred
around zero, As can be seen in Figure 5.1b. The CL controllers also have the fastest
estimation of ω, which can be seen in Figure 5.3. It would be interesting for the reader
to examine this scenario, as it shows great evidence that better model-error adaptation,
leads to better performance. By inspection, it can be seen how the estimation of ω affects
the τ Nonlinear, and also reduces the τ Linear, hence the need for feedback. Also by
comparing these to ψ̃ and e, in Figure 5.1b. This strengthen the notion of that reducing the
model error, improves the performance of the controllers. The controllers using z2 have
substantial weaker performance, especially CL-SVD-z2.
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Figure 5.1 The Figure shows the simulation of the CL controllers following an elliptic tra-
jectory, explained in Section 5.3.1. In Figure (a) the trajectory of the different controllers
and the target position ηt are seen, in Figure(b) the error in yaw can be seen, together with
the cross track error, explained in Section 4.4
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Figure 5.2 This figure shows the simulation results of the CL controllers following an
elliptic trajectory, explained in Section 5.3.1. In Figure (a) the performance metrics, de-
scribed in Section 4.4 can be seen. In Figure (b) the plots of the normed forces from the
controller are shown, they are explained in Section 5.1
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Figure 5.3 This figure shows the simulation results of the CL controllers following an
elliptic trajectory, explained in Section 5.3.1. The model-error ω is shown as the black
line, and the lines of the controllers show their estimate of ω̂ using (2.35).
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5.3.2 Figure-Eight Trajectory
The CSE1 model was simulated against the figure-eight trajectory, explained in Section
4.2, and ut = 0.16, witch equals ||η̇t|| ∈ [0.015, 0.05]. The start pose was

η0 = [6, 0, 0]>

ηt0 = [6, 0, −π]>
(5.3)

and the controllers where tested for a whole round. The transient start comes from the
ship starting with their heading pointed north, which can be confirmed be examining the
ψ̃ in Figure 5.4b.

We see that all the controllers seem to track the figure-eight the whole round, the only
controller getting trouble is the CL-SVD-z2 which at the end gets off the trajectory. By
looking at both the τ Nonlinear in of Figure 5.5b and Figure 5.6 we see that the estimates
has drifted of a bit in sway, causing bad control output. By examining the τ Nonlinear this
could be oscillatory behaviour, which would cause the control to collapse. Looking at the
other controllers, and Figure 5.5a, we see that CL-SVD-ep has the best tracking, followed
by CL-WIN-ep. They are also preforming best in regards of the IAEWWT and IAEW
metrics. By looking at the ω estimates in Figure 5.3 we see how this can be confirmed
by looking at how they adapt to the model-error. In the CL-WIN-z2 has problems with
the ω yaw, which is peculiar, since it adapts right in the elliptic trajectory, but here it
seems to estimate the opposite, which affects it performance, as can be seen in the ψ̃ in
5.4b. To summarize,CL-SVD-ep and CL-WIN-ep comes best out of this scenario, while
CL-SVD-z2 show some troubling behaviour, and CL-WIN-z2 adapts wrongly in yaw.
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Figure 5.4 The Figure shows the simulation of the CL controllers following an figure-
eight trajectory, explained in Section 5.3.2. In subfigure (a) the trajectory of the different
controllers and the target position ηt, in subfigure(b) the error in yaw can be seen, together
with the cross track error, explained in Section 4.4
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Figure 5.5 This figure shows the simulation results of the CL controllers following an
figure-eight trajectory, explained in Section 5.3.2. In Figure (a) the performance metrics,
described in Section 4.4 can be seen. In Figure (b) the plots of the normed forces from the
controller are shown, they are explained in Section 5.1
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Figure 5.6 This figure shows the simulation results of the CL controllers following an
figure-eight trajectory, explained in Section 5.3.2. The model-error ω is shown as the
black line, and the lines of the controllers show their estimate of ω̂ using (2.35).
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Figure 5.7 The singular values for the runs can be seen, the line plots are for the simula-
tions using figure-eight trajectory, while the dot dashed are for the elliptic trajectory. The
red and magenta plots are from the WIN storage algorithm, while the blue and green are
for the SVD algorithm.
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5.3.3 summary
When it comes to the convergence of the hydrodynamic parameter, it was experienced
that only a few parameters converged to the correct value. By examining the min singular
values of the different scenarios in Figure 5.7, it is clear that these were too small to
guarantee any fast convergence, although they were the best found during trial, hence they
were used for the experiments. We also witness that the figure-eight trajectories produces
richer data, and that the SVD algorithm worked as intended. Although this would also be
its bane, because during the experiments, spikes occurred, and the SVD algorithm made
the CL controller store all the spikes, leading to instability. This was a problem for the
WIN algorithm as well, although it replaced its data continuously, which resulted in more
robust behaviour.

After comparing the simulations of the CL controllers, some factors were apparent.
The CL-SVD-z2 is a bad combination and produced the worst and least robust control.
The CL controllers using ε had the by far best adaptation, the CL-WIN-ep proved to have
the best performance in regular elliptic scenarios, while CL-SVD-ep was best against more
irregular model-error in the figure-eight trajectory. What was not tested in these compar-
isons, was how robust the controllers were against noisy measurements and spikes. Intu-
itively CL-WIN-z2 would be the most robust controller in this fashion, since it relies on
z2 which is a cleaner signal than ε, and the Window storage algorithm replaces its stored
data, so its less sensitive to spikes. The pros and cons of the different CL controllers are
summarized in Table 5.2. Also it would be more interesting to have one CL controller
using ε and one CL controller using z2. It was therefore decided to test CL-SVD-ep and
CL-WIN-z2 in a comparative analysis against BS and ABS controllers.
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Table 5.2: Summary of the pros and cons with the CL controller implementations

Window Singular Value Maximation
CL-WIN-ep: CL-SVD-ep

ε

Pros:
Best Adaptation

Cons:
Dificult to
implement,
because of ε

Pros:
Best Adaptation,
smoothest output

Cons:
Dificult
to implement,
because of ε
SVD is fragile
to error in ε

CL-WIN-z2 CL-SVD-z2

z2

Pros:
Easiest to
implement in a
robust fassion

Cons:
Worse
adaptation than the
CL controllers
using ε

Pros:
More realistic
implementation,
theoretically
faster convergance
than CL-WIN-z2

Cons:
Badest control
and adaptation
SVD is fragile
to error in ε
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5.4 Comparison of Concurrent Learning and Adaptive Backstepping

5.4 Comparison of Concurrent Learning and Adaptive
Backstepping

To see if the CL controllers have the promising convergence as stated, they have to be
compared to what already is the state-of-the-art adaptive controllers. The two controllers
to be tested against the CL controllers are the adaptive backstepping (ABS) controller , and
the regular backstepping (RBS) controller. This way the CL controllers can be compared
to both a regular and an adaptive controller. In addition, by comparing the performance of
the ABS stepping controller to the RBS controller, the benefits of having adaptation can
be confirmed. It can also grant a test as insignificant if there is no significant performance
difference between the RBS, and the ABS, thus rejecting that good adaptation is essential
for improved performance. The controllers that are compared in this section are

• BS-ADAP: Adaptive backstepping controller also called ABS

• BS-NORMAL: Normal backstepping controller also called RBS or just BS

• CL-SVD-ep: CL with SVD algorithm, using ε the instantaneous adaptation error

• CL-WIN-z2: CL with WIN algorithm, using z2 the instantaneous adaptation error

These are also summarized in section 4.1.6, hey have been given the colours for the
plots, and are as follows:

• BS-ADAP: is plotted with a blue line

• BS-NORMAL: is plotted with a green dashed line

• CL-SVD-ep: is plotted with red dashed line

• CL-WIN-z2: is plotted with dashed and dotted line in magenta

and the tuning parameters are the same as in Table 5.1.

5.4.1 Elliptic Trajectory
The CSE1 model was simulated against the elliptic trajectory, explained in Section 4.2,
and was set to ut = 0.8m/s. The start pose was

η0 = [5, 2, 0]>

ηt0 = [5, 2, 0]>
(5.4)

and the controllers where tested for two rounds. We see that all the controllers are able
to track the elliptic trajectory, and are able to adapt to, and estimate most of the model-
error, as can be seen in Figure 5.9 and 5.8. As expected the CL-SVD-ep has by far the
best adaptation and tracking. As can be seen in Figure 5.8b, it has the fastest estimation
of ω. This also leads to highest τ Nonlinear, and smallest τ Linear which means that it
has to rely the least on feedback. The CL-WIN-z2 is also a satisfactory number two, as
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it has a good early adaptation of ω. Although the difference to the ABS controller is not
impressive. Also by examining the RBS controller it can be witnessed how the controllers
would perform without adaptation.
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Figure 5.8 The figure shows the simulation of the CL controllers together with the ABS
and BS controller following an elliptic trajectory, explained in Section 5.4.1. In Figure (a)
the trajectory of the different controllers and the target position ηt are seen, in Figure(b)
the error in yaw can be seen, together with the cross track error, explained in Section 4.4
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Figure 5.9 This figure shows the simulation results of the CL controllers following an
elliptic trajectory, explained in Section 5.4.1. In Figure (a) the performance metrics, de-
scribed in Section 4.4 can be seen. In Figure (b) the plots of the normed forces from the
controller are shown, they are explained in Section 5.1
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Figure 5.10 This figure shows the simulation results of the CL controllers following an
elliptic trajectory, explained in Section 5.4.1. The model-error ω is shown as the black
line, and the lines of the controllers show their estimate of ω̂ using (2.35).
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5.4.2 Figure-Eight Trajectory
The CSE1 model was simulated against the figure-eight trajectory, explained in Section
4.2, and ut = 0.16, witch equals ||η̇t|| ∈ [0.012, 0.03]. The start pose was

η0 = [6, 0, 0]>

ηt0 = [6, 0, −π]>
(5.5)

and the controllers where tested for a whole round. The transient start comes from the
ship starting with their heading pointed north, which can be confirmed be examining the
ψ̃ in Figure 5.11b.

We see that all the controllers seem to track the figure-eight trajectory the whole round.
The CL clearly have the best tracking, where the CL-SVD-ep comes best out. We also see
how the CL controllers are best at estimating ω, at least in sway. It is curious to see how
CL-WIN-z2 adapts differently in ω yaw. This happened to both CL controllers using z2
as instantaneous adaptation error, but then again the bad adaptation does not happen to
ABS. It is probably the data stored combined with a z2 which is too small to help in the
adaptation. We also see how the ABS works better than RBS, so adaptation does work in
this setting. As CL-SVD-ep closely eliminates the model-error, it is interesting to see how
the rotational forces affect the manoeuvring of the ship. In this setting the hydro forces
gives an outward push on the boat, as can also be seen in the elliptic simulation which will
not be the case for the real system, as can be seen in Chapter 6.
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Figure 5.11 The figure shows the simulation of the CL controllers together with the ABS
and BS controller following an elliptic trajectory, explained in Section 5.4.2. In Figure (a)
the trajectory of the different controllers and the target position ηt, in Figure(b) the error
in yaw can be seen, together with the cross track error, explained in Section 4.4
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Figure 5.12 The figure shows the simulation of the CL controllers together with the ABS
and BS controller following an figure-eight trajectory, explained in Section 5.4.2. In sub-
figure (a) the trajectory of the different controllers and the target position ηt, in subfigure
(b) the error in yaw can be seen, together with the cross track error, explained in Section
4.4
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Figure 5.13 This figure shows the simulation results of the CL controllers following an
figure-eight trajectory, explained in Section 5.4.2. The model-errorω is shown as the black
line, and the lines of the controllers show their estimate of ω̂ using (2.35).
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5.4.3 Summary
It can be seen from the simulations that a few conclusion can be made

• There is clearly a correlation between the controllers ability to adapt to the model-
error ω, and its tracking performance

• The BS-ADAPT outperformed the BS-NORMAL adapter, leading to the conclusion
that the trajectories seems valid for testing adaptive controllers.

• CL has good potential in achieving greater adaptation and thus control than the
state-of-the-art adaptive controllers.

• Using an Eight figure trajectory captures a more variety of the hydrodynamic forces,
and can therefore be a better tool for testing adaptive controllers, this was also con-
firmed in Figure 5.7

• In simulations the CL using ε had best adaptation and performance, although the ro-
bustness of these controllers was not impressive as will be demonstrated in Chapter
6.

• The elliptic and figure-eight trajectory seems like good indicators of the adaptation
abilities of the, although it was not demonstrated that the parameters of the con-
trollers converged to the correct value. And by examining the min singular values of
the scenarios in Figure 5.7 these were too small to guarantee any fast convergence.
But these were the best results which was realistic to preform in real life testing, so
these were chosen for the CSE1 experiment.
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Chapter 6
Experimental Results

To see if the promising result of CL could work for a real system, there was set up an
experiment with CSE1 on the MC-lab, were the controllers designed in Chapter 4 were
to be compared. In this chapter the experimental platform is presented in Section 6.1,
the Section 6.1.3 presents the goal and set-up of the experiments. In Section 6.3, the
chronological steps done as preparation for the experiment are gone through, and the result
of the experiments are presented and discussed in Section 6.4. At the end of this chapter,
a lessons learned section summarizes the results of the Experiments and what lessons can
be taken from them, in Section 6.5.

6.1 Experimental Platform
The experiments were preformed on the MC-lab at Marine Technology Centre at NTNU,
on CSE1. The description of the lab can be found in (Mc-lab and NTNU, 2015). The
CSE1 can be seen in Figure 6.1

6.1.1 Vessel Body and Design
The CSE1 is model scaled ship designed as a supply vessel used in offshore operations
with parameters seen in Table 6.1. Further details regarding the body and design of CSE1
can be found in (Skåtun, 2011).

Table 6.1: Weight and dimension parameters for CSEI from (Sandved, 2015)

Parameter Symbol Value
Mass m 14.79 Kg
Length L 1.105 m
Width B 0.248
Scale λ 1:50
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Figure 6.1 Picture of CSE1 from (Sandved, 2015)

6.1.2 Sensors and Communication

The communication on CSE1 is done through Wi-Fi and bluetooth, Ethernet and PWM, as
can be seen in Figure 6.2, which connects the CompactRIO (cRIO), thrusters and servos,
Wi-Fi module, Respberry Pi, Qualisys motion capture system and the computer.

CompactRIO The cRIO is the controller on the ship. This means that it is the central
computer, handling everything from sending PWM thruster commands, to acquiring mea-
surements from Qualisys motion capture system, and taking commands from the remote
Play Station 3 (Ps3) controller, and the Veristand program on the computer, In addition,
the cRIO sent logged data to the computer through Wi-Fi during tests. The code is de-
ployed from a computer to the cRIO through the National Instruments program Veristand.
With the Veristand program the user can also monitor and send in commands and change
parameters in the controller. How this is done is also described in (Mc-lab and NTNU,
2015) and (Sandved, 2015). The controller was designed in Simulink, and a hardware-in-
the-loop (HIL) test was preformed, by running the control system against a process model
on the cRIO. This was done before the controllers were tested on CSE1.

Qualisys motion capture system Qualisys motion capture system works by three cam-
eras calculate taking pictures of the model ship. The set-up can be seen in Figure 6.3. By
locating and triangulating the white spheres placed on CSE1, the pose of the ship is found.
The spheres can be seen seen in Figure 6.1. The measurements are very accurate, but a
problem came when the spheres occasionally were blocked, or blocked on another from
one of the cameras, the system lost the track of the boat, and measurements froze until
the ship was found again. These freezes occurred regularly on the same place when CSE1
followed the elliptic and figure-eight trajectory, and the freeze could happen for as long as
a second.

66



6.1 Experimental Platform

Figure 6.2 Picture of the communication system on CSE1 (Mc-lab and NTNU, 2015)

Raspberry Pi and six axis control The Raspberry Pi communicates with a Ps3 con-
troller, see Figure 6.4, and the cRIO, so that commands can be given from the controller
to CSE1. For a more thorough explanation see (Mc-lab and NTNU, 2015). If the CSE1
project from (GitHub, 2016) is deployed to the cRIO, the ship can be controlled from the
Ps3 controller. The figure buttons will switch between different modes of controlling the
CSE1, and the joysticks will optionally give commands to the thrusters. The different
modes are

• Cross: ctrl student, this mode lets the students run a self built controller on CSE1
with the interfaces pose measurement η as input, and thruster commands u as out-
put.

• Circle: ctrl DP basic, this mode get the model ship to navigate to a set point which
can be moved with the joystick
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Figure 6.3 Picture of the Qualisys motion capture system from (Mc-lab and NTNU, 2015)

Figure 6.4 Picture of the controller used to send commands to CSE1

• Triangle: ctrl sixaxis2thruster, this mode lets the model ship take commands di-
rectly from the joysticks to the thrusters

• Square: ctrl sixaxis2force, this mode lets the model ship take commands as a desired
force from the joystick.
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6.1.3 Propulsion and Power System

The Propulsion system is composed of two Voith Schneider propellers and one bow thruster
propeller, that are also described in Section 2.1.1. The VSP are actuated by two servos for
each VSP, and are connected to the main 12V battery, while the servos use an adapter to
run on 5V, as can be seen on Figure 6.5. The servos and motors are controlled with PWM
signals. The BT is connected to its own 6V battery, and different from the figure, the Wi-
Fi is connected to its own 6V battery, although the batteries were connected. A possible
reason for the fall out of some of the data delivered through Wi-Fi, was the combination
of low battery and a heavy working BT.

Figure 6.5 Picture of the power set-up for CSE1
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6.2 Experimental Setup and Goals
The tests ran in th MC-lab had several purpose. One was to verify and compare different
nonlinear adaptive controllers. Another was to present multivariate methods for identify-
ing model-error, and improve the ship model. After discussing the CSE1 with students
and stipendiates whom worked with the CSE1, and examining the system identification of
CSE1 a few issues were raised towards the dynamic model og CSE1.

Problems with the current model:

• The parameters related to rotational hydro dynamics forces seemed uncertain, and
was taken from a Cybership II experiment in (Skjetne et al., 2004),

• the thruster allocations had issues like the absence of superposition property for the
thrust, and inaccurate thruster allocation.

To identify the problem with the rotational hydro dynamic forces, the CSE1 ran on an
elliptic and figure-eight trajectory. The plan was to gather as many variables as possible
during the test, to see if some structure in the model-error could be found using system
identification (SysID), or MVA. In Chapter 3, the structuring of the data before a multi-
variate analysis is presented, and the post-experimental analysis can be seen in Chapter 7.
For this experiments, the signals and states stored can be seen in Table 6.2 and 6.3.

Table 6.2: All the variables measured

← Variables→
τu τv τr x y ψ u v r u̇ v̇ ṙ

t
...

...
...

...
...

...
...

...
...

...
...

...
↓ · · · · · · · · · · · ·

The goal is too map these variables to a model-error. The model-error is defined as in
section 2.2.4. The off-line estimate of the model-error is

ω = Mν̇ +C(ν)ν + g(ν)− τ (6.1)

And through analysis, the goal was to make a model of ω. How this was investigated
can be seen in Chapter 7. It was also of interest to see if there could be any relationship
between the ω and the tracking performance, thus the tracking error z1 was stored as in
Table 6.3.

6.3 Experimental Preparations
Before experiments could be preformed, several steps were made. After the control system
had been designed, the system was tested through simulations. The next step was to test
the control system in a HIL-test, and at the end open and closed loop test were done on
SCE1. In this section these procedures are given in chronological order.
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Table 6.3: The internal signals logged, in addition estimates like φ and ωn were logged, but they
were not used for MVA.

← Variables→
ωu ωv ωv z1u z1v z1r

t
...

...
...

...
...

...
↓ · · · · · ·

6.3.1 Simulations

Testing how the control system designed worked, and the planing of trajectories were
done through simulations. The different controllers were tested with different trajectories
and observers, and with and without noise in the measurement. What could have been
added in addition to make the simulation more realistic was the signal freeze and NaN
measurements, so that this could have been taken to account earlier in the design of the
estimators and controllers. The final simulations done after the basin experiments can
be seen in Chapter 5. When planing trajectories, there were certain considerations that
had to be made. The goal was to see how rotational hydro dynamic forces affected the
control. Therefore, having trajectories where the rotational states were sufficiently rich,
was essential to see if any model could be built up from the model-error. From Section
4.19 the convergence of the estimates were dependent on the the size of matrix Q, and
intuitively this increased with both larger values of v and r, and the spread of the stored
data. This was tested by several trajectories, also by recording the λmin, and seeing how
the different parameters converged, as can be seen in Figure 5.7. The resulting simulations
and analysis of the convergence can be seen in Chapter 5. In multivariate analysis, the
models are often easier to build up when more states are visited, especially when using
the nominal techniques described in Section 3.2, it was therefore important to examine
trajectories who gave more variate states. Hence the trajectories chosen at the end were an
elliptic and figure-eight trajectory. The plots of the simulations are plotted in Section 5.

6.3.2 Hardware-In-The-Loop Tests

Before testing the control system on CSE1, the control system was tested against a process
model of CSE1 on the cRIO that is presented in Section 6.1.2. This was to ensure that the
signal flow was correct. This included that the coordinates chosen were right, that the
signals went were they was supposed to and that non of the signals diverged. It was also
important to see if cRIO was fast enough to run the control systems. During the HIL test, it
was experienced how sensitive the controller was of reaching NaN signals. This was due to
the implementation of the controller, that propagated NaN signals when they occurred. A
solution was to use saturated signals, and checking for NaN states. In addition redundant
memories were deleted. Doing the HIL test also gave great training on how the cRIO
worked, how the designed controller had to be deployed and how data could be logged
and monitored during a test so that the routines were better when the actual basin tests
started.
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6.3.3 Estimator Tests
Before being able to to test the controllers, we had to be sure that the estimators worked.
This was ensured by first testing the estimators in the simulations, where both the nonlinear
estimator, and the derivative filter were tested. Then the estimators were tested open loop
on CSE1 while another controller worked on the ship, or the CSE1 was controlled by a
Ps3 controller as explained in Section 6.1.2. The result of one of the tests can be seen
in Figure 6.6c. The Derivative filter was lagging compared to the other controllers, but
produced less noisy estimates. In addition, the derivation filter was more robust than the
other observers at handling the jump in measurements happening after a signal freeze.
The implementation of the nonlinear and lungenberg observer had estimates stored, so
if a NaN estimate was produced due to high spikes, the observers were stuck in a NaN
state. Because of time pressure the derivative filter seemed most robust, and was chosen
as the observer. The derivative filter was also modified to handle signal freeze, as shown
in (4.46). The estimator also produced continuous angle estimates, so that the measured
jump in ψ did not occur.

6.3.4 Tuning Thruster Allocation
As explained at the end of Section 2.2, When requesting only forces from the thruster allo-
cation, moments can also be induced by having the point of attack at a distance from center
of moment CM. To minimize this, the point of attack can be changed in the thruster allo-
cation, as can be seen in Figure 6.7. The result is that the thruster allocation will produce
a moment that is equal to the moment induced on the ship, when there is a certain distance
between the point of attack, and CM. The thruster allocation was tuned by requesting a
force in sway motion, if the ship happened to rotate as the ship to the left in Figure 6.7,
the point of attack was moved backwards on the boat. If the rotation was like the ship on
the right in Figure 6.7, the point of attack was moved forward. This was done until the
induced moments were minimized. This was at

P 0 = [0.18, 0, 0]> (6.2)

6.3.5 Basin Tests
When the estimator was chosen, and thruster allocation was tuned, the whole controller
could be tested on CSE1. First the controllers were tested towards a set point, and changing
of set point. Then the controller was tested in a zig-zag manoeuvre back and forth, and
at the end, controllers were tested on the elliptic and figure-eight trajectory. The guidance
was designed to give first a desired set point at the start of the trajectory to be run. When
the CSE1 was close enough and the test was ready, the guidance was set to start, and CSE1
started to follow the trajectory . For the elliptic trajectory, the CSE1 went two rounds, for
every controller, and every speed. For the figure-eight trajectory, the controller were tested
for one round on every speed. The desired velocities was set to ut = 0.2, ut = 0.4, but
because of an error in the implementation, the guidance were called 4 times as fast as
desired, so the resulting speed were ut = 0.8, ut = 0.16. In addition, a round were ut
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Figure 6.6 The figure shows the comparison of the different observers proposed in sec-
tion 4.3, compared with the derivative filter previously implemented on the ship. They
estimates for u, v and r are shown in (a), (b) and (c). The derivative filter is denoted DF,
the nonlinear observer KF and lungenberg observer LO. It is clear that the lungenberg ob-
server and nonlinear observer have somewhat faster responce, but creates more noise than
the derivation filter.
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Chapter 6. Experimental Results

Figure 6.7 The figure shows the effect of changing the point of attack on the thruster
allocation, and how it effects the moment of the ship, when tuning the thruster allocation.

changed from ut = 0 to ut = 0.6 was run, with pulse period of 15 seconds and pulse
width of 70%. This was to get richer data for the multivariate analysis. The results of the
tests can be seen in Chapter 6, were the two first rounds are plotted.

6.3.6 Preparations Outcome and Results
During these Experimental preparations, a few issues and children diseases were identified
and had to be addressed, such as

Problems identified under pretesting

• The controllers did not handle wraparound problems

• The SVD controller had stability issues due to slow replacement of stored data

• Freezing signals effect on the controllers

• Oscillations when the controllers were badly tuned

The measurement problems were solved as explained in Section 4.3.2. The measure-
ment problems also introduced rapid change for the controller, this introduced oscillations
in roll, and the controller reached marginal stability. An example can be seen in Figure
6.23a. Another problem identified in this process was the big weakness of the CL SVD
storage algorithm described in Section 4.1.3. Since the SVD algorithm always tries to
maximize the minimal singular value of data matrix, it often keeps wrong with estimation
errors but high deviation from the rest of the data, because changing them out would result
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6.3 Experimental Preparations

in lower minimal singular value. Seeing as the SVD algorithm does not have a ”forget-
ting time” on its data, the wrong data are kept, which leads to instability. This was also
confirmed in the post-experimental simulations and a possible solution was presented in
Algorithm 4 in Section 7.2.2. By having stronger regulations on which data is allowed for
the data matrix, and by introducing a maximum time for a data to be stored, it would lead
to a significant increase in the robustness of the controller.

6.3.7 Estimator Test Results
Before running the the full control system, the estimators were tested separately, and in
open loop ass explained in Section 6.3.3. When the DF was chosen, it had to be modified.
The wraparound problem was solved by making a continuous ψ estimate as described
in Section 4.3, the solution to the signal freeze is also described in this section. These
measures decreased the problems with the measurement substantially. The result of the
modified derivative filter compared to the old one can be see seen in Figure 6.8 and 6.9.
For the experiments the parameters were a = 0.08 and b = 0.05.

Tuning Thruster Allocation The thruster allocation was tested as explained in Section
6.3.4. Some moment was induced, and tuned to have po = [0.18, 0, 0]>.

Guidance Problems When the experiment date came closer, the guidance of the control
system was changed into taking η as an input. This was to ensure a smoother set-point
output from the Guidance. For some reason, this resulted in the guidance quadruple its
frequency, resulting in the θ integrating from θ̇ four times as often as intended, which re-
sulted in CSE1 driving four times as fast as requested and leaving the domain where the
dynamic model was accurate. The dynamic model was said to work for slow velocities
(Mc-lab and NTNU, 2015), and in (Skåtun, 2011) the towing experiment is done from
u ∈ [−0.6, 0.6]m/s to find the linear damping. During the tests this became especially
apparent, as the surge error was significantly high, which was due to the controllers in-
ability of adapt to uncertainties in surge. This was a result of using of the hydrodynamic
parametrization from (Skjetne et al., 2004), which was chosen since the rotation related
forces were in focus. On the bright side, CSE1 high speed, which resulted in a substantial
high model-error, which made the analysis easier as can be seen in Chapter 7.
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Chapter 6. Experimental Results

Figure 6.8 The figures show the estimates of the chosen MDF, compared with the DF
previously implemented on CSE1. In Figure (a) the estimates of the surge velocity u are
shown, and in (b) the sway velocity v are shown. It can be seen that the MDF keeps the
velocity estimates constant during signal freeze, while the DF takes the estimated veloci-
ties to zero. This also affects the spikes happening after the signal freeze, and it should be
noted that the blue spikes for MDF also are read spikes for DF.
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6.3 Experimental Preparations

Figure 6.9 The figure show the chosen modified derivative filter, compared with the deriva-
tive filter previously implemented on the ship, together with the position and heading mea-
surements. The measurements are in (a), and the rotation rate estimates are in (b). The
previous derivative filter did not handle wraparound, witch clearly can be seen by compar-
ing the heading measurements with the spikes in the DF estimates of the rotation rates.
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Chapter 6. Experimental Results

6.4 MC-lab Plots
The tests were ran with CSE1 as explained in Section 6.3.5. First ran the experiment
with the control gains found through simulations. These were not satisfactory, especially
because there was a significant lag in surge, so the controller were tuned harder to get better
tracking. The tuning was done while the ship moved in an ellipse at speed set to ut = 0.02
which in reality was a ut = 0.08, since the guidance was four times faster than intended.
The resulting gains can be seen in Table 6.4. The tuning worked somewhat, but lead to
a less stable system. The two first set of plots are of the experiments performed at the
lowest speed, first in an elliptic trajectory, and then in a figure-eight trajectory. Subsequent
are the plots in higher speeds, in the same order, these results are somewhat bad, but they
are presented to give a comprehensive picture of the experiment done, and help in the
discussion of the controllers.

Table 6.4: The control gains used after tuning CSE1, which was done while it followed the elliptic
trajectory with a velocity of u = 0.08[m/s]

Tuning matrix Tuning Gains Values
Kp diag([kpu, kpv, kpr]) diag([0.2, 0.6, 0.2])
Kd diag([kdu, kdv, kdr]) diag([3, 6, 3])
Γϕ diag([γφ1

, · · · , γφ8
]) diag([8, 4, 8, 8, 8, 4, 8, 8])

6.4.1 Result Plots
In this section, the results of all the different simulations are presented in plots. For each
scenario there are 6 plots:

• Plot 1 shows the trajectory of the controllers in the given scenario

• Plot 2 (a) shows the offset angle and cross track error explained in Section 4.4

• Plot 2 (b) shows the z1 control signal, or body fixed pose error

• Plot 3 (a) shows the control metric also explained in Section 4.4

• Plot 3 (b) shows the output forces from the controllers, linear, nonlinear and total
force.

• Plot 4 shows the estimate of ω, and the controllers prediction of ω.

The τ plot 3 (b) is explained in section 5.1.
The different controllers have gotten their abbreviation and colours for the plots, and

are as follows:

• Concurrent learning window storage algorithm with z2 as instantaneous error (CLZ)

• Concurrent learning window storage algorithm with ε as instantaneous error (CLE)
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6.4 MC-lab Plots

• Regularl backstepping controller (RBS)

• Adaptive backstepping controller (ABS)

The controllers are summarized in Table 4.1.6

6.4.2 Elliptic Trajectory ut = 0.08

The results of the ship following the ellipse trajectory, can be seen in Figure 6.10. The first
thing to notice which is different from the simulations, is that the trajectories are inside the
desired trajectory, opposed to the simulations in Figure 5.8a where they lay outside. This
is due to the difference in model-error in surge and sway. This can be seen by comparing
Figure 6.13 and 5.10, where surge is way greater in real life scenario than for the simulation
model. The result is that the ship lags behind the tracking, and tries to take the inner turn
to catch up. What is peculiar is that the RBS and ABS have equal performance, which
paints the experiment as invalid for a comparative analysis. It can be seen that the ABS
controller does not adapt in sway which leaves little room for improvement by the small
adaptation in yaw. There can also be seen oscillations in Figure 6.10 and 6.12a, which is
significantly stronger for the CL controllers. The amusing part is that these oscillations
were not caught up by the IAEWWT metric, however, it may seem from looking at Figure
6.12b that CLZ has the superior tracking for this test. When looking at Figure 6.13 one
can see how the different controllers adapt to the model-error, and it is curious to notice
how CLZ and CLE adapt differently, while it may make sense to do like ABS and keep the
estimates at zero. Later in the post analysis of the data it will be shown that although it is
seemingly no error in sway, this can be the case, as is seen in Figure 7.15. Seemingly the
CLZ estimates are the most correct, which can be confirmed by comparing the cross track
error of CLZ and CLE in the figures 6.12a and 6.11b. In the rotation error estimates the
controllers are trying to adapt to the epsilon estimates, but are slower than the simulations,
which can be seen in Figure 5.10. However, the biggest problem with the controllers can
be seen in the surge sub plot, where one can see that the controllers does not adapt in surge
direction at all. This will be a repeating problem in the rest of the experiments.
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Chapter 6. Experimental Results

Figure 6.10 The figure shows the tests of CSE1 following an elliptic trajectory, with a
desired speed of ut = 0.08m/s, using the controllers mentioned in Section 6.4.We see the
desired elliptic trajectory in black, with the paths of CSE1 with the different controllers
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6.4 MC-lab Plots

Figure 6.11 The figure shows the tests of CSE1 following an elliptic trajectory, with a
desired speed of ut = 0.08m/s, using the controllers mentioned in Section 6.4. In Figure
(a) the cross track error described in Section 4.4 is plotted together with ψ̃ . In Figure (b)
the z1 used in the control is plotted. In essence the body fixed pose error.
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Chapter 6. Experimental Results

Figure 6.12 The figure shows the tests of CSE1 following an elliptic trajectory, with a
desired speed of ut = 0.08m/s, using the controllers mentioned in Section 6.4. In Figure
(a) the performance metrics described in Section 4.4 are shown. In (b) the norm of the
thrust was shown, where the τ Linear accounts for the thrust part related to feedback,
while the τ Nonlinear part accounts for the feed forward part of the control including both
the non linearities in the model, and the estimated part of the controller.
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6.4 MC-lab Plots

Figure 6.13 The figure shows the model-error estimates The model-error ω that is shown
as the black line, and the lines of the controllers show their estimate of ω̂ using (2.35).
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Chapter 6. Experimental Results

6.4.3 Figure-Eight Trajectory ut ∈ [0.015, 0.5]

The results of CSE1 following the figure-eight path can be seen in Figure 6.15 and 6.16.
The controllers are able to follow the figure-eight. The effect of the frozen measurements
can also be seen in the lower right corner of Figure 6.22. Here again there is little difference
between the BS and ABS, and it can be seen that the ABS and RBS manage to get closer
to the desired trajectory, while the CLZ and CLE manage to have a constant error in sway,
although this is not reflected in the z1 as can be seen in figure 7.1, which is peculiar.
The RBS and ABS comes best out of the metrics in 6.16b, and ABS seams a bit more
energy efficient than RBS, while CLE is by far the worst. By examining the model-error
in Figure 6.17 one can see that this error is not as systematic as the one from the ellipse,
and the adaptive controllers struggle with estimating. This could be because the error
is mostly related to other parametrizations, or the propulsion vector, or that the noisy
estimates damage the adaptation. It can also be that the adaptive gains are badly tuned, or
that there are some faults in the implementation. This was further investigated during the
system identification and post processing simulations explained in Section 7.2.1.
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6.4 MC-lab Plots

Figure 6.14 The figure shows the tests of CSE1 following an figure-eight trajectory, ex-
plained in Section 6.4.3 using the controllers mentioned in Section 6.4. We see the desired
elliptic trajectory in black, with the paths of CSE1 with the different controllers

−0.5 0 0.5 1 1.5

4

4.5

5

5.5

6

6.5

east [m]

no
rt

h 
[m

]

Trajectory

 

 
CLZ
CLE
RBS
ABS
η

t

85



Chapter 6. Experimental Results

Figure 6.15 The figure shows the tests of CSE1 following an figure-eight trajectory, ex-
plained in Section 6.4.3, using the controllers mentioned in Section 6.4. In Figure (a) the
cross track error described in Section 4.4 is plotted together with ψ̃ . In Figure (b) the z1
used in the control is plotted. In essence the body fixed pose error.
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Figure 6.16 The figure shows the tests of CSE1 following an figure-eight trajectory, ex-
plained in Section 6.4.3, using the controllers mentioned in Section 6.4. In Figure (a) the
performance metrics described in Section 4.4 are shown. In (b) the norm of the thrust
was shown, where the τ Linear accounts for the thrust part related to feedback, while the
τ Nonlinear part accounts for the feed forward part of the control including both the non
linearities in the model, and the estimated part of the controller.
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Chapter 6. Experimental Results

Figure 6.17 The figure shows the model-error ω that is shown as the black line, and the
lines of the controllers show their estimate of ω̂ using (2.35).
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6.4.4 Elliptic Trajectory ut = 0.16

The results of CSE1 following the elliptic path can be seen in Figure 6.18. It should be
noticed that the tracking abilities are substantially decreased, and these experiments are
more valid in testing the controllers robustness than their actual tracking performance.
The oscillations has increased, and one can see more clearly where the measurement is
lost especially in Figure 6.20a. Here the CLZ and CLE controllers fails compared with
the regular RBS and ABS. And as implemented in this project, the CL controllers are less
robust than the ABS and RBS controllers. It is also interesting to see that the ABS still
manages to show improved performance compared to RBS. Also by looking at Figure 6.21
one can see that the increased error in surge hasn’t increased that much compared to Figure
6.13, but the sway error has drifted to the side. A possible explanation of this is that the
bow thruster has trouble with working with speeds exceeding u = 0.15m/s (Skjetne et al.,
2004) which will affect the sway thrust on the ship.

Figure 6.18 The figure shows the tests of CSE1 following an elliptic trajectory, with a
desired speed of ut = 0.08m/s, using the controllers mentioned in Section 6.4. We see
the desired elliptic trajectory in black, with the paths of CSE1 with the different controllers
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Chapter 6. Experimental Results

Figure 6.19 The figure shows the tests of CSE1 following an elliptic trajectory, with a
desired speed of ut = 0.16m/s, using the controllers mentioned in Section 6.4. In Figure
(a) the cross track error described in Section 4.4 is plotted together with ψ̃ . In Figure (b)
the z1 used in the control is plotted. In essence the body fixed pose error.
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Figure 6.20 The figure shows the tests of CSE1 following an elliptic trajectory, with a
desired speed of ut = 0.16m/s, using the controllers mentioned in Section 6.4. In Figure
(a) the performance metrics described in Section 4.4 are shown. In (b) the norm of the
thrust was shown, where the τ Linear accounts for the thrust part related to feedback,
while the τ Nonlinear part accounts for the feed forward part of the control including both
the non linearities in the model, and the estimated part of the controller.
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Figure 6.21 The figure shows the model-error ω that is shown as the black line, and the
lines of the controllers show their estimate of ω̂ using (2.35).
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6.4.5 Figure-Eight Trajectory ut ∈ [0.02, 0.67]

The results of CSE1 following the figure-eight path can be seen in Figure 6.22. The con-
trollers are able to follow the figure-eight, however in this case the CLZ are set into a
marginal stability together with ABS, which can be seen as oscillations in the sway mo-
tion. The effect of this can be seen in the IAEWWT as CLZ surpasses the CLE, and ABS
surpasses RBS. Although the metric should have caught the oscillations better. Though it
should be noted that the adaptation parameters does not adabt, they probably come from
hydrodynamic estimate in both CLZ and ABS that has made the system under damped.
This combined with under damped roll and some time delay in the controller, or thrust
system, especially the BT gives the oscillations. The period of the oscillations was close
to T = 0.1s. Although its curious that the ABS controller also had oscillations, as it
was belied it would be more robust against oscillations than the CL controllers, this also
confirms that the ships were tuned aggressively.

Figure 6.22 The figure shows the tests of CSE1 following an figure-eight trajectory, ex-
plained in Section 6.4.5 using the controllers mentioned in Section 6.4. We see the desired
elliptic trajectory in black, with the paths of CSE1 with the different controllers
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Chapter 6. Experimental Results

Figure 6.23 The figure shows the tests of CSE1 following an figure-eight trajectory, ex-
plained in Section 6.4.5 using the controllers mentioned in Section 6.4. In Figure (a) the
cross track error described in Section 4.4 is plotted together with ψ̃ . In Figure (b) the z1
used in the control is plotted. In essence the body fixed pose error.
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6.4 MC-lab Plots

Figure 6.24 The figure shows the tests of CSE1 following an figure-eight trajectory, ex-
plained in Section 6.4.5 using the controllers mentioned in Section 6.4. In Figure (a) the
performance metrics described in Section 4.4 are shown. In (b) the norm of the thrust
was shown, where the τ Linear accounts for the thrust part related to feedback, while the
τ Nonlinear part accounts for the feed forward part of the control including both the non
linearities in the model, and the estimated part of the controller.
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Chapter 6. Experimental Results

Figure 6.25 The figure shows the model-error ω that is shown as the black line, and the
lines of the controllers show their estimate of ω̂ using (2.35).
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6.5 Lessons Learned

6.5 Lessons Learned
As one can see from the results, not everything in the experiments worked as intended. To
summarize:

• Guidance was four times as fast as desired

• CSE1 manoeuvred outside the domain of the dynamical model

• The performance difference of BS and ABS controllers were not significant, dis-
qualifying the experiments for comparative analysis.

• Large model-error, especially in the surge motion

• The parametrization of the hydrodynamic model-error lead to the controllers inabil-
ity of adapting in surge direction.

• CL storage algorithms stored spikes from the ε estimates.

• The nonlinear estimators had insufficient robustness

• Aggressive tuning lead to an underdamped control system.

Some of these problems could have been caught by having better routines. The guid-
ance problem for instance could easily have been detected if the speed of CSE1 had been
monitored online. The ship was watched in the basin, but distinguishing a surge speed of
0.08[m/s] with 0.02[m/s] seemed rather difficult in retrospective.

Another big error was to trust the dynamical model too blindly, and it is easy in hind-
sight to overthrow the parametrization as reckless, although the plan was to move CSE1
such that only the hydrodynamics related to the rotation rate of the ship were unknown.
This could have been possible if the experiments had been performed at slower speeds or
the dynamical model had been valid for higher speeds, as can be seen in (Skjetne et al.,
2004)1. It is an important eye-opener to see how bad results can become if the foundation
you are working on is not strong enough. This parametrization is modified in Chapter 7,
and a simulation is shown where it tackles the newly acquired model-error. In this chap-
ter, the unknown disturbance was introduced in the kinetic model of the simulator. This
could have been introduced earlier, even as a constant, and the obvious weakness of the
model-error parametrization would have been apparent.

As of the robustness of the CL controllers, and nonlinear estimators, these problems
could have been addressed better and earlier if the simulator was built with noise and signal
freeze. The problem with CL controllers was that the storage algorithms stored regression
matrices and ε with spikes, and in addition adapted further to the spikes in ε, this be-
came apparent when the adaptations were post-experimental stimulated in Chapter 7. This
problem is also addressed in this chapter and an adaptation blocker was made to hinder
adaptation or storage of data during spikes. This was again used when the CL algorithm
with ε was used for system identification in the post-experimental simulations. Another

1Although Cybership II does have higher speed than in this experiment, the dynamic model was tested, and
thus valid for the speed it was tested in.
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solution to this problem could also be addressed by having a more accurate estimate of ν
and ν̇, which is possible in retrospective. The data stored does not have to be calculated
instantaneously, which gives room to other estimators like optimal fixed point smoother
(Chowdhary et al., 2012). This way, more accurate estimates of the states ν ,ν̇ and the
error signal ε could be acquired for the stored data in the CL controller.
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Chapter 7
Post-Experimental Analysis and
Improvements

In this chapter, we go through the procedures done after the experiments. From post
process simulations to recuperation of lost data, and clarification of the adaptation, to the
building the ω model through system identification (SysID) and MVA. The validation of
the ω model was also tested through simulations, and at the end a modification of the CL
controller was proposed, and simulated to handle the proposed ω.

7.1 Data Post Processing
During the experiment, some of the states measured had failure in their delivery through
the Wi-Fi. This resulted in the data of for instance τ and z1 having NaN measurements
in them. A solution was to modify the simulator, so it could run open loop simulation,
where instead of taking measurement from simulator model, the measurement, guidance
and thrust was fed from the measurements. By doing this, the adaptation of the different
controllers could be reproduced and verified. The results of the post-processing simulation
can be seen in Figure 7.1.

7.1.1 Adaptation Verification

After the experiments, there was an uncertainty about the adaptation of the controllers.
Some seemed to have produced estimates of ω but they were not as those from the simu-
lations. Doing the open loop simulation confirmed this, and it seemed like a combination
of noisy estimates and spikes slowed down the estimations. For CLZ and CLE, the stor-
age algorithm seemed to store up the spikes, which eliminated each other, thus gave bad
estimations. In addition trying to eliminate the the stored data for the adaptation resulted
in the instantaneous adaptation were mostly effected by the spikes, thus not being able
to converge. This also accounted for the ABS controller, and obviously the controllers
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Chapter 7. Post-Experimental Analysis and Improvements

Figure 7.1 The figure shows the z1 signal for the eight figure trajectory of CSE1 with CLE
controller. The red points are what was measured, where the rest of the measurements
were NaN. The blue line was z1 found during the post process simulation of the data. PPS
stands for post process simulation
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7.2 Analysis of Model-Error

did not adapt to ωu in surge, in the simulations as well. In addition, as stated before, the
parametrization was made so that the controllers was enable to adapt in surge, this would
probably be the easiest and most effective fix for the adaptations.

Also with small changes the simulator with the CL controller using ε could be used for
SysID.

7.2 Analysis of Model-Error
When the adaptation had been reproduced from the tests, the work on improving the weak-
nesses of the CL adaptation schemes started. This included being able to reproduce the
model-error, but also changing the parametrization of the model-error ω. By looking at
the model-error from the experiments in figures 6.13, 6.21 and 6.17 there seemed likely
that other effects than the hydrodynamics were part of the Ω. Especially the error on surge
during the elliptic trajectories, which only went from 0.4[N ] to 0.5[N ] as the surge speed
doubled from 0.08[m/s] to 0.16[m/s] . To investigate the model-error further, the data
was analysed using MVA and SysID in a off-line estimation.

7.2.1 Post Processing Simulations and System Identification
After verifying the adaptation, it was certain that there had to be improvements if the CL
algorithm with ε was to be used for SysID. In which the adaptation of the controller was
used to find parametrization that approximated the model-error. Since the post processing
was open loop, the z2 was pre determined, so CLE was the controller chosen for SysID.
Although the weaknesses addressed in Section 7.1.1 had to be improved. This also resulted
in a new parametrization of the model-error for the SysID

7.2.2 Improved Concurrent Learning Adaptation
The weaknesses of the CL algorithm which was tested in the MC-lab was:

• The CL adaptation stored the spikes in the data matrix, and spikes dominated adap-
tation.

• The parametrization of the hydrodynamic uncertainties, made it impossible for the
controller to adapt for disturbance and model-error in surge direction.

• It only adapts to hydrodynamic forces, and do not adapt to thruster loss or other
other disturbances

Three measures were therefore done; one was to change the parametrization of the
hydrodynamics to account for surge forces. The regression matrix was then

Φ(ν) =

−|u|u −u −|u|r 0 0 0 0 0 0 0 0
0 0 0 −|r|v −r −|v|r −|r|r 0 0 0 0
0 0 0 0 0 0 0 −|r|v −r −|v|r −|r|r

(7.1)
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The parameters to be estimated are then

ϕ̂ = [X
ε

|u|u, X
ε

u, X
ε

|u|r, Y|r|v, Yr, Y|v|r, Y|r|r, N|r|v, Nr, N|v|r, N|r|r] (7.2)

For the thruster error, we assume that the thruster error can be written as

τ req = τ act + ∆ττ req (7.3)

where ∆τ = diag([δτu, δτv, δτr]), but since we are trying to estimate the [δτu, δτv, δτr]
we instead parametrize it as

∆ττ = Rτreq (τ )ωτ = diag([τu, τv, τr])ωτ (7.4)

whereRτreq (τ ) is the regression matrix, and the parameters to be estimated are

ωτ = [δτu, δτv, δτr]
> (7.5)

The thrust is therefore modelled as

τ act = τ req −Rτ (τ req)ωτ (7.6)

To avoid the problem with spikes in τ , ν and ν̇, a variable was introduced, to block
adaptation and data storage if the value of τ , ν or ν̇ exceeded certain values.

Algorithm 4 pseudocode for the adoption block variable, that is set to 0 and kept 0 for a
time if there occur spikes in τ or ν̇.

1: input← ν, ν̇, τ , β
2: timer ← persistent
3: if β == 1 then
4: if ||ν̇|| > ε1or||ν|| > ε2or||τ || > ε3 then
5: β ← 0
6: timer ← 0
7: end if
8: else if β == 0 then
9: if ||ν̇|| > ε1or||ν|| > ε2or||τ || > ε3 then

10: timer ← 0
11: else if timer > N then
12: adaptation← 1
13: else
14: timer + +
15: end if
16: end if
17: output← β

so if a spike appear in ν, ν̇ or τ , the variable β is set to zero, and hold there for a time,
else will be β = 1.
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7.2.3 Adaptation Law
The adaptation that is derived from the adaptations in Section 4.1.4 , and (7.6) is substituted
for τ and setting ωn = 0

−Φ(ν)ϕ∗ = M∗ν̇ +C∗(ν)ν + g(ν)− (τ req −Rτ (τ req)ωτ
∗)

−Rτ (τ req)ωτ
∗ −Φ(ν)ϕ∗ = M∗ν̇ +C∗(ν)ν + g(ν)− τ req

y = ω = M∗ν̇ +C∗(ν)ν + g(ν)− τ req,
(7.7)

and our estimate of the uncertainty is

ŷ = ω̂ = −Rτ (τ req)ω̂τ −Φ(ν)ϕ̂. (7.8)

then the estimation error of ω is

ε = ω − ω̂ = y − ŷ (7.9)

and the adaptations laws are then

˙̂ωτk = (−ΓωτkRτ (τ req)εk −
k−1∑
j=1

ΓωτRτ (τ req)εj)β (7.10)

˙̂ϕ = (−ΓϕΦ(ν)>ε−
k−1∑
j=1

ΓφΦ>(νj)εj)β, (7.11)

where the concurrent learning window algorithm from Section 4.1.3 with 20 data points
was used for the SysID. We see here that the adaptation stops if β = 0;

7.2.4 Results from System Identification
The SysID was ran with the data from the experiments, after a run, the starting value of ϕ
and ωτ was updated, and the simulation ran again with the same data. This was repeated
until all the parameters had reached stationary, or nearly stationary values. Then the same
model was tested on other experiment data to validate the result. The result of the error
modelled can be seen in Figure 7.2, where one can see that the proposed model captures
the main dynamic of the model. The parameters for different SysID’s can be seen in Table
7.1

7.2.5 Thruster Error Identification
In one of the tests, the bow thruster suddenly stopped working, due to low voltage in the
battery. A SysID was done on this to see if the ωτ estimates could capture this fault. The
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Figure 7.2 The figure shows the model-error of CSE1 for an elliptic run in ut = 0.8m/s,
with four attempts of modelling the error, with the parameters seen in Table 7.1
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Table 7.1: The table shows the result of diffrent SysID of CSE1 moving in an elliptic trajectory.
Although there are some differences in the result, it is apparent that there are some similarities, such
as the domination of linear parameters.

Scenario Phi parameters ωτ parameter
1: Elipse BS [-0.3, -6.5,-0.025, 0 0 0 0 -1.44, -2.7, 1.4, 8.2] [0, 0, 0]
2: Elipse CLE [-0.30,-4.0,0.225,0,0.38,0,0.067,0.02,-1.7,-0.02,-0.23] [0.36, 0, 0.23]
3: Elipse BS [-0.33,-4.6,0.27,-0.015,1.7,0.02,0.2,0.02,-2.3,-0.026,-0.26] [0.11, 0, 0.18]
4: Elipse BS [-0.26,-3.5,0.2,-0.014,1.55,0.017,0.2,0.017,-1.8,-0.02,-0.2] [0.3, 0, 0.31]

results can be seen in Figure 7.3. And it is clear that the ωτ estimates in surge and sway,
are affected by this fault, and this could be used in a fault detection. The idea could be
expanded further for more complex thruster set-ups as having several azimuth thrusters,
where these errors are more difficult to identify.
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Figure 7.3 In this figure, the scenario of a failed bow thruster under an experiment is
shown. The bow thruster failed due to low voltage in its battery, which happened after
there was was a jump in the measurement, seen in figure (a). In figure (b) the z1 error
is seen, and we can see the ship starting to drift of ηt after 140 seconds has gone. The
model-error can also be seen drifting. This is because as the ship drifts from z1, an equal
increase in τ is requested in sway and yaw, which results in the increase in model-error by
the lack of the bow thrust. We see that this makes the estimates of ωτ increase from close
to 0 to 30− 40% in seconds.
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7.3 Multivariate Analysis
As for the MVA, we want do predict ω, and as described in Section 3.2, the data was
organized in different ways. The data for this analysis were the elliptic trajectory from the
the basin tests seen in Chapter 6. Both PCA and PLS were used to analyse the data, and
see which variables correlated with the error ω. What was discovered was that since ν̇ had
such high ratio between its noise and actual values, and in addition was multiplied with
M , the result was that ν̇ overrode the other variables in the regression, which resulted in
ν̇ having to be kept outof the regression. In the end, the values that seemed relevant for
the ω prediction was ν and τ , which gave the regression

Y = [ωu, ωv, ωr] (7.12)

while theX is dependent on how the PLS is moddeled

X = [u, v, r, τu, τv, τr, ] (7.13)

or another proposed term was

X = [u, v, r, τu, τv, τr, |u|u, |u|v, |u|r, |v|v, |v|r, |r|v, |r|r] (7.14)

At the end the shape of X depended on trial and error, and observing the validation
of the regression coefficients. First the calibration had to be done. As the data gathered
from the experiment, includes spikes, and irregularities, these had to be disqualified from
the calibration set. First, the data is checked, by plotting the variables, in line and against
each other, to see if there are some abnormalities. As can be seen from the plots of ν, seen
in Figure 7.5a, there are several spikes in the data, that will have bad effect on the PLS
regressio The variables were also plotted against each other, which can be seen in Figure
7.4, but no big abnormalities were detected. To get rid of data that seemed invalid, a PCA
was done with the variables ε, ν and τ .

The samples detected as outliers by the hotelling’s T 2 statistics and Q residuals were
removed from the calibration set. The result can be seen by comparing figures 7.5a and
7.5b. We see that the PCA outlier removal get rid of the worst spikes, but also removes
the most ugly part of the data. The calibration set is then found, and it is time to build a
model from the calibration set using PLS regression. At first a PLS was done with all the
variables, and cross terms. And it was seen that the most relevant variables were the ν and
τ as well as the cross terms of these. The PLS regression of these variables is PLS1. The
next regression, the cross terms of τ were kept out, and is denoted PLS2. The validation
of the regression factors are seen in Figure 7.7. From the regression validation, one can
see which variables are statistically significant and important for the regression, and from
this, the couplings |u|v, |v|v, |v|r, |r|v were kept out of the further PLS regressions, this
can also be verified by looking at the loadings of the PLS, as these variables are kept near
the center of the correlation loading plot, which means that they are uncorrelated with
the important latent variables in the model. In addition, one can see from the explained
variance plot in Figure 7.6a, that there is only need for 3 factors to build the PLS model.
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Figure 7.4 Plot of scatter plots of ω and ν against each other, from CSE1 with the four
elliptic runs from Chapter 6, described in Section 6.3.5, beside each other. No apparent
abnormalities as clusterings or faraway samples were detected.

108
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Figure 7.5 The plots show the subsequent ν samples after the four elliptic runs on CSE1
described in chapter 6, described in Section 6.3.5. The PCA was used to detect and remove
outliers, where the results can be seen by comparing subfigure (a) and (b), where (a) is the
ν samples before the PCA outlier removal, and (b) is the ν samples after the PCA outlier
removal.

(a) Plot of the raw data of ν from CSE1 before the PCA was used to detect and
remove outliers

(b) Plot of the remaining data of ν from CSE1 after PCA was used to detect and
remove outliers

The resulting PLS can be seen in Figure 7.8, and is denoted PLS3. It was also tried a
PLS, where the different regressions were calculated separately, in addition, τ was kept
out of this regression, to see if the error could be modelled by only hydrodynamic coeffi-
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cients. The result can be seen in Figure 7.9. In this PLS regression, it can be seen that the
model-error is mostly systematic in surge and yaw, and that the error in surge is closely
uncorrelated with potential hydrodynamic forces.

Figure 7.6 The figure shows the PLS-regression of ω using the variables ν and τ and
cross correlation of ν. This will be denoted PLS2. The plot (a) shows how well the model
predicts the data, while (c)-(d) shows the correlation loadings for the three first factors.

(a) (b)

(c) (d)

7.3.1 Partial Least Squares Validation
In this section, several models were presented. But the models also had to be validated.
The validation of the PLS regression models were done by cross validation, as explained
in Section 3.1.5, by dividing the data set eight subsequent parts. The results can bee seen
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Figure 7.7 The figure shows the validation of the PLS-regression coeficents of ω where
(a)-(c) is the regression coefficients for ε(1)− ε(3). So every bar represents the element of
theB matrix produced by the PLS. There was done a cross validation with the data parted
in 8 subsequent parts, where the standard deviation of the different coefficients are shown

(a)

(b)

(c)

by examining the red line in the figures 7.6a, 7.8a and 7.9. The red line shows the Q2

statistic, which is done during the cross validation, while the blue line is the R2 statistic,
both are explained in Section 3.1.4. The difference is most apparent in Figure 7.9b. Also
by looking at Figure 7.7 the results of the cross validation of the regression coefficients
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Figure 7.8 The figure shows the PLS-regression of ω using the variables ν and τ and
cross terms of ν, were the cross terms related to νv (nu(2)) is kept out of the PLS . This
will be denoted PLS3. The plot (a) shows how well the model predicts the data, while
(c)-(d) shows the correlation loadings for the three first factors.

(a) (b)

(c) (d)

can be seen. We can see how the coefficients related to v (nu (2)), seemed statistically
insignificant as their value were so close to zero, and some even changed sign. The cross
terms related to v was therefore taken out in the subsequent PLS regressions.

The models were also tested against the experimental data, in the post proses simulator
as in Section 7.2.4, and the result of this can be seen in Figure 7.10. The difference of the
PLS models are summarized in Table 7.2. We can see that the models are able to predict
the most important part of ω, although they predicts the model-error differently. Form
PLS1 that has caught up the spike dynamics in sway, to PLS4 who neglect most of the
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Figure 7.9 The figure shows the PLS-regression of the elements in ω done separately,
using the elements and cross terms of ν related to the given direction. This will be denoted
PLS4. The subfigure (a) is the explained variance of the PLS regression of ω surge. The
subfigure (b) is the explained variance of the PLS regression of ω sway and subfigure
(c) is the explained variance of the PLS regression of ω yaw. The subfigure (d) is the
loadings of the PLS-regression of ε(2), and it confirms that the ε(2) is uncorrelated with
the hydrodynamic coefficients. A cross validation was also done, where the data was
partitioned into eight sequential data sets.

(a) (b)

(c) (d)

dynamics in sway motion. We also see that PLS4 has problems with reaching up to the
model-error in yaw.
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Table 7.2: The table summarize the properties of the different PLS regressions. The QE() represents
the quadratic extension, and is described in Section 3.2

Name X factors Figures comments
PLS1 τ , ν,QE(τ , ν) 7 -
PLS2 τ , ν,QE(ν) 7 7.6

PLS3 τ , ν,QE(ν) 3 7.8
the cross terms related to
v were kept out of the regression

PLS4 ν,QE(ν) 2-3 7.9
The PLS was done sepperatly for every
direction in ω

114



7.3 Multivariate Analysis

Figure 7.10 The figure shows the model-error of CSE1 for an elliptic run in ut = 0.8m/s,
with four attempts of modelling the error with a model derived from the PLS method. The
models are summarized in Table 7.2
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7.4 Model-Error Simulations
To validate the models of ω further, they were introduced into the simulators kinematics

ẋ =

[
η̇
ν̇

] [
R(ψ)ν + ξ∗(t)

M∗−1(−C∗(ν)−D∗(ν)ν + τ + ω∗(ν, τ ))

]
(7.15)

where the ξ∗(t) also was added to simulate wave noise, and was implemented as in
(Sørensen, 2013). The ω was tested against the BS controller in an elliptic trajectory,
to see if this produced the same position error and trajectory as seen in the experiments.
BS was chosen because it lacks adaptation, thus the results will more likely be comparable
with the experimental results. The comparison can be seen in Figure 7.11 and 7.12, clearly
there are significant similarities in both the trajectories, position error z1 and the model-
errorω. This is a good indication that theω from the test can be represented by the models
of ω produced in this chapter. Although. This was only demonstrated for this trajectory,
and for the ω model to be relevant for other trajectories, a similar SysID would have to be
made. This could be done for the figure-eight trajectory as well.

Further we wanted to validate the models, and see how the CL controller would handle
the ω if adaptation worked properly. This was also to see how the models of ω reacted to a
simulation setting. The models of ω was therefore implemented as in 7.15. The controller
CLZ was used for these scenarios as it was deemed the most robust CL controller, and the
ω was SYSID1, SYSID4, PLS3 and PLS4. The results can be seen in figures 7.13, 7.14
and 7.15. We see that the CL controller is able to minimize the cross track error, but still
is unable to eliminate the deviation in surge. This can be confirmed by looking at the error
signal z1 in Figure 7.14a. The model-errors seams to react quite similarly in to the simula-
tions. The SYSID1 was modelled with only hydrodynamics, while SYSID4 was modelled
with an δtau = 0.3 in both surge and yaw. The PLS4 was also only modelled with only
hydrodynamics, but it has notable difference compared to the two other models, especially
in yaw, but also in sway and surge. It should also be noted that the SYSMV3 was tested,
and failed as can be seen in Figure 7.16. By examining the regression coefficient in Figure
7.7, the coefficients related to τ are very high, so its reasonable that this could have an
affect on the stability of the system. This raises important questions about MVA methods
when they are implemented in control theory. How can stability easily be analysed when
the PLS regression model is introduced to the system, and is it possible to modify the PLS
so that it produces stable ω models? It is also interesting to see from Figure 7.14 and 7.15,
how the error in sway appeared random in ω, but the controllers are still able to adapt to
ω∗ in an efficient manner.

7.5 Improved Concurrent Learning Controller
It was apparent that the CL controller had to be modified to be able to handle the model-
error ω in surge. A natural choice was to modify the parametrization of the hydrodynamic
regression matrix Φ(ν), so the regression matrix chosen was (7.1). The CL-WIN-ep con-
troller was chosen for this last simulation, and the SYSID4 with δτ was the implemented
model-error. The results can be seen in Figure 7.17. As expected, the modified controller
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is able to adapt to the uncertainties, and as can be seen in Figure 7.18a the error signals
goes towards zero. Only a little cross track error is kept in sway, but as can be seen in
Figure 7.18b, the adaptation in sway is a bit off.

But to conclude, the most important lesson taken from this master thesis is that your
controller can be as fancy and promising as you want, but if the basics has faults, the
controller will probably fail or give disappointing results.

Figure 7.11 The figure shows the comparison of the Mc-lab test with the RBS controller
moving in an elliptic trajectory, with the same scenario simulated with ω in the simulator,
on the right.
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Figure 7.12 The figure shows the comparison of the Mc-Lab test with the RBS controller
moving in a elliptic trajectory, with the same scenario simulated with ω in the simulator,
on the right. The sub-figures (a) and (b) are the z1 components of the signals in the two
scenarios, and the sub-figures (c) and (d) are the ω
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7.5 Improved Concurrent Learning Controller

Figure 7.13 The figure shows the simulation of CSE1 flowing an elliptic trajectory, with
a desired speed of ut = 0.08m/s. The different models of ω are implemented in the
simulator for each scenario. The CLE controller from Section 6.4 was used.
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Chapter 7. Post-Experimental Analysis and Improvements

Figure 7.14 The figure shows the simulation of CSE1 flowing an elliptic trajectory, with
a desired speed of ut = 0.08m/s. The different models of ω are implemented in the
simulator for each scenario. The CLE controller from Section 6.4 was used. In subfigure
(a) the components of the error-signal z1 is shown. In subfigure (b) the ω̂ from the different
controllers are shown.

0 50 100 150
−0.8

−0.6

−0.4

−0.2

0

z
1
 components

time [s]

su
rg

e 
[m

]

 

 

0 50 100 150
−0.2

−0.1

0

0.1

0.2

time [s]

sw
ay

 [m
]

 

 

0 50 100 150
−0.1

0

0.1

0.2

0.3

time [s]

ya
w

 [r
ad

]

 

 

SYSID1
SYSID4
SYSMV4

SYSID1
SYSID4
SYSMV4

SYSID1
SYSID4
SYSMV4

(a)

0 20 40 60 80 100 120 140
−1

−0.5

0

0.5
ω surge

 

 

0 20 40 60 80 100 120 140
−1

−0.5

0

0.5

1
ω sway

 

 

0 20 40 60 80 100 120 140

−0.2

0

0.2

0.4
ω yaw

 

 

SYSID1
SYSID4
SYSMV4
ω

SYSID1
SYSID4
SYSMV4
ω

SYSID1
SYSID4
SYSMV4
ω

(b)

120



7.5 Improved Concurrent Learning Controller

Figure 7.15 The figure shows the simulation of CSE1 flowing an elliptic trajectory, with
a desired speed of ut = 0.08m/s. The different models of ω are implemented in the
simulator for each scenario. The CLE controller from Section 6.4 was used. In subfigure
(a) the ω estimates made in the controllers for the different model-errors are shown. In
subfigure (b) the real ω∗ from the different model-errors can be seen.
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Figure 7.16 The figure shows the Simulation of CSE1, trying to follow an elliptic trajec-
tory. The ω model SYSMV4 was implemented in the simulator, and it clearly had some
stability issues.
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7.5 Improved Concurrent Learning Controller

Figure 7.17 The figure shows the tests of CSE1 folowing an elliptic trajectory, with a
desired speed of ut = 0.08m/s, using the improved CL controllers from Section 7.5. In
Figure (a) the trajectory of the ship can be seen, together with the target ηt. In (b) the
error in ψ is shown, together with the cross-track error described in Section 4.4 . In (c)
the performance metrics presented in Section 4.4 of the controller is shown and in (d) the
norm of the thrusters can be seen explained in Section 6.4.1
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Figure 7.18 The figure shows the tests of CSE1 folowing an elliptic trajectory, with a
desired speed of ut = 0.08m/s, using the improved CL controllers from Section 7.5. In
Figure (a) the error-signal z1 is shown. In (b) ω estimate of the model-error together with
the controllers own estimate ω̂
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Chapter 8
Conclusion and Future Work

In this report, several variants of the nonlinear adaptive controller, named concurrent learn-
ing (CL) were developed for the model-scale ship Cybership Enterprise 1 (CSE1). Two
storage algorithms were presented for the adaptation, namely the window (WIN) and sin-
gular value maximization (SVD), and two error-signals, z2 and ε. This resulted in four
alternative combinations for the CL controllers. The difference in the convergence and per-
formance of the CL controllers was discussed and investigated. It was also demonstrated
through simulations how the controllers’ ability to estimate the model-error ω affected
their performance. How this lead to smaller tracking error, and less need for linear feed-
back from the controllers, was also shown. The CL controllers using ε as error-signal
seemed to be able estimate the model-error ω fastest, resulting in the best performance.
Although, it should be noted that this was shown only during simulations, and ε proved to
be a very difficult signal to estimate during the experiments.

The evaluations of the controllers were done through a comparative analysis where
performance metrics were used. A comparative analysis was also done between the CL
controllers and the nonlinear controllers adaptive backstepping (ABS) and backstepping
(BS). The CL controllers proved to have the best performance, and it was clear that their
performance in adapting the model-error ω was superior.

A control system and a simulator for CSE1 was also developed. The simulator was
built in Simulink, to minimize the effort of transferring the control system from the sim-
ulator to CSE1. A HIL test was performed on the CompactRIO controller, similar to the
one used on CSE1.

As preparation for the real life basin experiments with CSE1, in the Marine Cybernet-
ics Lab (MC-lab), a comparison of potential estimators was also performed. These tests
were performed on CSE1, where the estimators were tested in open loop. The derivative
filter was chosen in the end, and a modification of the derivative filter was made so it could
handle signal freeze and yaw wraparound. In addition, the thruster allocation on CSE1 was
tuned by changing the point of attack for the thruster allocation to the center of mass. A
guidance system was designed, although an error in the late implementation of the system
made it produce a target ηt that was four times as fast as intended, which flawed the ex-
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periments. In total 16 tests were performed on CSE1, with 4 controllers, 2 trajectories and
2 sets of speed. This resulted in a comparative analysis of the controllers, although they
were difficult to compare because of the poor tracking. The CSE1 went too fast during the
experiments, so the dynamic model was no longer accurate. The result was a substantial
model-error ω, especially in surge. This combined with the controllers inability to adapt
to disturbances in surge, resulted in the bad tracking. With the results of not being able to
distinguish the performance of ABS and BS controller. Although a few weaknesses of the
CL controllers were identified, and as implemented in this project, it was clear that the CL
controllers were less robust than the BS and ABS controllers.

In parallel, methods from the field of multivariate analysis (MVA) had been inves-
tigated. Some of the MVA methods and techniques are presented in this project, along
with multivariate statistics. Also a new way of organizing data for multivariate regres-
sion was shown, called continuous nominalization. The MVA was used during the post-
experimental analysis, to clean the data, analyze the model-error and propose models ofω,
using partial least squares (PLS) regression. The models were compared to the experimen-
tal data, and the results seemed promising. Further, the models were implemented on the
simulator, with variable success. Some of the simulations produced similar results as the
experiments when the BS controller was used, however others seemed to have problems
with stability. A method for analyzing the stability of the models produced by the PLS
regression will therefore be crucial for implementing them on a controller.

In the post-experimental analysis, regular methods were also used. An open loop sim-
ulation with the data from the experiments was performed. This was done to recoup lost
data during the experiments, but also to further analyse the problems with the adapta-
tions. A few weaknesses of the CL adaptation was identified, such as its sensitiveness to
spikes. In addition, the parametrization of hydrodynamic uncertainties, resulting in the
controllers’ inability to adapt in surge. These problems were addressed, and solutions
provided. The CL controller with ε as error signal, as well as a spike adaptation blocker,
proved to be useful for system identification (SysID), and a system identification scheme
for identifying ω was shown. In addition to model ω using hydrodynamic disturbances,
the effects of inefficient thrusters were also introduced to the ω modelling. Several models
using SysID were found. A scenario where SysID was used to identify thruster failure was
also demonstrated. These models were also implemented in the simulator. It was shown
that the CL controller would still have produced unsatisfactory tracking even with perfect
adaptation, since it still was unable to adapt in surge. This was resolved by modifying the
regression matrix Φ to also account for hydrodynamics in surge, and a simulation where
the CL controller was able to tackle the new disturbances ω was presented.

I would like to emphasize that this project has been a great learning experience, and the
main lesson to take from this master thesis is that the foundation of the controller, such as
the parametrization of the model error, has to be satisfying, before more complex solutions
can be introduced to help improve the controller.
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8.1 Future Work
Future work would include the improvement of the CL controller from Chapter 7, and
testing its performance in a new experiment. Also implementing an estimator providing
satisfactory estimates of ν, ν̇ and ε, especially for the stored data, would be a high priority
for the further development of the CL controller. In addition, an implementation and stabil-
ity analysis of a CL controller with thruster error adaptation would have been interesting.
Further in the model-error analysis, a model-error of the eight-figured trajectory would
have been interesting, especially comparing the MVA to SysID. Also doing an analysis, or
finding a criteria for the disturbance model produced by the MVA methods, guaranteeing
a stable system would be interesting. How the PLS could be modified so that the models
produced would have stable properties is also an curious problem, and is essential if these
PLS models are going to be applied to controllers in the future.
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Appendix A
Stability and Stability Analysis

When talking about stabillity, we often talk about stability in the Lyapunov sense. And
there are different definitions when it comes to stability, the most relevant for this project,
that are taken from (Lavretsky and Wise, 2012) chapetr 8 are

ẋ = f(t,x) (A.1)

Figure A.1 Geometric interpretation of Lyapunov stability for two-dimensional dynamics
from (Lavretsky and Wise, 2012)
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A.1 Definitions
Definition A.1.1 (Stability of Equilibrium in the Sense of Lyapunov). The equilibrium
point x∗ = 0 of the nonautonomous unforced dynamics (A.1) is stable if for any e > 0
and t0 ≥ 0 there exists δ(ε, t0) ≥ 0 such that for all initial conditions ||x(t0)|| < δ and
for all t ≥ t0 ≥ 0 , the corresponding system trajectories are bounded, as in ||x(t)|| < ε.
The equilibrium is uniformly stable if it is stable and δ does not depend on t0. Finally, the
equilibrium is unstable if it is not stable.

Definition A.1.2 (Global Stability). The origin is globally stable if it is stable and lim
ε→∞

δ(ε, t0) =
∞.

Definition A.1.3 (Asymptotic Stability). The equilibrium point x∗ = 0 is asymptotically
stable if it is stable and there exists a positive constant c = c(t0) such that x(t) → 0 as
t→∞, for all ||x(t0)|| < c.

Definition A.1.4 (Uniform Asymptotic Stability). The equilibrium point x∗ = 0 is uni-
formly asymptotically stable if it is uniformly stable and there exists a positive constant c
independent of t0 such that x(t)→ 0 as t→∞, for all ||x(t0)|| < c, uniformly in t0

Definition A.1.5 (Uniform Global Asymptotic Stability (UGAS)). The origin is uniformly
globally asymptotically stable if it is uniformly asymptotically stable and lim

ε→∞
δ(ε, t0) =

∞.

It is important that the controllers are able to stabilize the system they are controlling,
and brings it to desired states. To have a robust controller, the stabilization of the system
should be as general as possible, and the goal is therefore to show that a controller makes
the system UGAS or UAS and worst case stable. This stability is usually proven through
Lyapunov stability, which will be used when the controllers are designed.

Theorem A.1.1 (Lyapunov’s Direct Method for Assessing Uniform Stability of Nonau-
tonomous Systems). Let x∗ = 0 ∈ Rn be an equilibrium point for the nonautonomous
dynamics (A.1), whose initial conditions are drawn from a domain D ⊂ Rn, with x∗ ∈ D
and t0 = 0. Suppose that on the domain D there exists a continuously differentiable lo-
cally positive-definite function V (x) : D → R, whose time derivative along the system
trajectories is locally negative semidefinite:

V̇ (x) = ∇V (x)f(t, x) ≤ 0 (A.2)

for all t ≥ 0 and for all x ∈ D. Then, the system equilibrium x∗ = 0 is locally uniformly
stable in the sense of Lyapunov. If in equation (A.2) V̇ < 0 for all nonzero x and for all
t ≥ 0 (the time derivative along the system trajectories is locally negative definite), then
the origin is locally uniformly asymptotically stable.

Theorem A.1.2. Let x∗ = 0 be an equilibrium point for equation (A.1). Let V (x) : Rn →
R be a radially unbounded Lyapunov function of the system. Then, the system equilibrium
is globally uniformly asymptotically stable.

A usual example of the unbounded Lyapunov function is on the form V (x) = x>Px
where P ∈ Rn×n and P ≥ 0.

Also used to conclude convergence is Barbalat’s lemma and LaSalle-Yoshizawa.
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Lemma A.1.1 (Barbalat). Let f : R → R be a uniformly continuous function on [0,∞).

Suppose that lim
t→∞

t∫
0

f(τ)dτ exists and is finite. Then, lim
t→∞

= 0.

Theorem A.1.3 (LaSalle Yoshizawa). Starting anywhere in a domain D, all trajectories
of the nonautonomous dynamics

ẋ = f(t, x), x(t0) = x0, f(t, 0) = 0 (A.3)

with a Lyapunov function satisfying

V̇ (x) = ∇V (x)f(t, x) ≤ −W (x) ≤ 0 (A.4)

will uniformly asymptotically approach the set E

E = x ∈ D : W (x) = 0 (A.5)
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A.2 Stability of Concurrent Learning Backstepping
Concurrent learning is an adaptive law based on the intuition that if the recorded data is
sufficiently rich, i.e. there is a linear independence in the data, concurrent learning adap-
tation can be used to estimate true values without the need of persistency of excitation.
However, Condition 1 from Chowdhary and Johnson (2010) needs to be fulfilled.

Condition 1: The recorded data has as many linearly independent elements as the
dimension of regressor matrix Ω(x(t)) ∈ Rl×m. That is if

Z = [Ω(x(t1))>,Ω(x(t2))>, ...,Ω(x(tp))
>] (A.6)

then rank(Z) = m.

If this condition is satisfied for Φ and R>, the adaptation laws are

˙̂ϕ = ΓϕΦ>z2 +

p∑
j=1

ΓφΦ
>
j εj (A.7)

˙̂wn = ΓwRz2 +

p∑
j=1

ΓwRjεj , (A.8)

where j ∈ {1, 2, ...p} denotes the index of a recorded data point xj = [η>j ,ν
>
j ]>, Φj and

Rj are the regressor matrices evaluated at point xj , ε is the approximation error, denoted
ε , y − ŷ and

y = Φϕ∗ + R>w∗n

= Mν̇ − τ +C(ν)ν − g(ν) (A.9)

ŷ = Φϕ̂+ R>ŵn. (A.10)

By applying the control law found in (4.1.6), that stabilizes V2 in section 4.1.1, and comb-
ing it with the concurrent learning adaptation laws (A.7) and (A.8), the derivative of

V3 = ϕ̃>Γ−1ϕ ϕ̃+ ω̃>nΓ−1ωnω̃n + V2 (A.11)

it becomes

V̇3 =− z>1 K1z1 − z>2 K2z2 − ϕ̃>
p∑
j=1

Φ>j εj − w̃
>
n

p∑
j=1

Rjεj

=− z>1 K1z1 − z>2 K2z2 − ϕ̃>
p∑
j=1

Φ>j (Φjϕ̃+ R>j w̃n)

− w̃>n
p∑
j=1

Rj(Φjϕ̃+ R>j w̃n)

≤− z>1 K1z1 − z>2 K2z2 ≤ 0 ∀ z1, z2, (A.12)

134



which can be shown to be UGAS by utilising Theorem A.1.2.
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