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A combined level set/ghost cell immersed boundary representation1
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SUMMARY

A six degrees of freedom (6DOF) algorithm is implemented in the open-source CFD code REEF3D. The
model solves the incompressible Navier-Stokes equations. Complex free surface dynamics are modeled with
the level set method based on a two-phase flow approach. The convection terms of the velocities and the level
set method are treated with a high-order WENO discretization scheme. Together with the level set method
for the free surface capturing, this algorithm can model the movement of rigid floating bodies and their
interaction with the fluid. The 6DOF algorithm is implemented on a fixed grid. The solid-fluid interface is
represented with a combination of the level set method and ghost cell immersed boundary method. As a
result, re-meshing or overset grids are not necessary. The capability, accuracy and numerical stability of the
new algorithm is shown through benchmark applications for the fluid-body interaction problem. Copyright
c⃝ 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Coupled fluid-structure interaction plays a major role in many engineering disciplines. In the fields8

of coastal, ocean and arctic engineering, fluid-structure interaction problems occur in the presence9

of a free water surface and result in complex floating body dynamics. Some examples are floating10

piers, floating oil platforms, ship motion prediction or floating ice floes. Advanced solutions for the11

hydrodynamics, which include more complex free surface phenomena such as wave breaking or12

water jets and viscous effects from turbulence, require the solution of the Navier-Stokes equations.13

In earlier studies, fluid-structure interaction problems based on the Navier-Stokes equations have14

been calculated with Arbitrary Lagrangian-Eulerian (ALE) methods ([25], [31]). Then the interface15

location between the solid and the fluid is tied to the numerical mesh. When the location of this16

interface changes, the numerical mesh needs to be adjusted in order to account for this. The re-17

meshing procedure can have a detrimental effect on the numerical accuracy and stability, especially18

for more arbitrary solid body movements. Also, for free surface flows, this method can become19

prohibitively complex.20

A way to avoid constant re-meshing is the usage of dynamic overset grids. The method consists21

of a base mesh, which covers the full flow domain. The overset mesh is placed in the vicinity of22

the solid structures and overlaps with the base mesh. Then the overset mesh follows the movement23

of the solid. Carrica et al. [9] presented a complete framework for the modeling of ship motion24
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using dynamic overset grids. The free surface was treated with a single-phase level set method.25

The dynamic overset mesh approach has numerical stability advantages over ALE, as constant re-26

meshing of the solution domain is not necessary. The challenge of the method lies in an accurate, yet27

stable scheme for establishing the connections between the overset mesh points and the underlying28

grid points in the overlapping region. Later, Yang and Stern [33] showed an extension of the dynamic29

overset mesh approach, where the solid-fluid interface was treated with a sharp interface method30

instead of overset grids. The free surface was treated with a two-phase level set method. A further31

iteration of the dynamic overset mesh approach featured a direct forcing immersed boundary method32

for the fluid-solid interface [34]. Special attention was given to the field extension method, which33

was earlier presented for one-phase fluid-structure interaction [32]. When the solid moves through34

the flow field, solid cells becomes fluid cells and vice versa. With the field extension, unphysical35

values for the pressure and the velocities are avoided, through interpolation and keeping the physical36

pressure gradients intact. More recently, Calderer et al. [8] presented a level set based two-phase37

flow solver for the simulation of floating structures. A curvilinear immersed boundary method38

was used for the fluid-solid interface [6]. Chen et al. [10] presented a strong, two-way, fluid-solid39

coupling algorithm, based on a variational-type cut cell methodology, implemented within a hybrid40

Eulerian-Lagrangian framework.41

Smoothed Particle Hydrodynamics (SPH) methods have also been used to calculate fluid-floating42

structure interaction by Bouscasse et al. [7] using a ghost fluid method to enforce the solid-fluid43

boundary for two-dimensional problems. Omidvar et al. [22] used an SPH implementation for 3D44

floating bodies using variable mass distribution to make the model computationally efficient. A45

large number of particles are required to accurately simulate the hydrodynamics of floating bodies46

using these methods. Glowinski et al. [15] presented a Lagrange multiplier based fictitious domain47

decomposition method for the simulation of an airfoil and sedimentation of circular particles.48

Sueyoshi et al. [27] simulated wave induced nonlinear motions of a two-dimensional box-shaped49

floating body using a moving particle semi-implicit (MPS) method but had difficulties with shorter50

period waves in sway and heave motions and a phase shift in the wave elevation.51

In the present manuscript the open-source CFD code REEF3D is used. The model has been used52

extensively for complex wave hydrodynamics problems in the field of coastal and ocean engineering53

such as breaking waves [2] [1], wave energy converter devices [21], non-breaking wave forces [20]54

and breaking wave forces [5]. A novel approach for the geometry description for the 6DOF (six55

degree of freedom) algorithm is proposed. With the combined use of triangular surface meshes56

and the level set method, the fluid force and momentum can be integrated in a straightforward57

manner. The solid body is immersed into the fluid and re-meshing or overset grids are avoided. This58

is achieved with the local directional immersed boundary [4] in this study. The presented results59

are all obtained with a weakly coupled scheme. In combination with an already robust two-phase60

flow solver, this results in a stable fluid-structure interaction model. Numerical results for a disc61

entry problem, a free falling wedge and roll decay and roll motion of a rectangular barge under the62

influence of waves are presented.63

2. NUMERICAL MODEL

The governing equations of the numerical model are the continuity and the incompressible Navier-64

Stokes (NS) equations presented in compact tensor notation:65

∂ui

∂xi
= 0 (1)

∂ui

∂t
+ uj

∂ui

∂xj
= −

1

ρ

∂p

∂xi
+

∂

∂xj

[

ν

(

∂ui

∂xj
+
∂uj

∂xi

)]

+ gi (2)

where u is the velocity averaged over time t, ρ is the fluid density, p is the pressure, ν is the kinematic66

viscosity and g the acceleration due to gravity.67

A Cartesian grid is used to discretize the spatial domain, providing easy implementation of68

higher-order discretization schemes.The model employs a staggered numerical grid to ensure69
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better pressure-velocity coupling and avoid numerical instabilities. The convective terms of the NS70

equations are discretized with a fifth-order WENO (weighted essentially non-oscillatory) scheme by71

Jiang and Shu [18] in the conservative finite-difference framework. The conservative WENO scheme72

is used to treat the convective terms for the velocities ui, while a Hamilton-Jacobi version [17] is73

used for the variables of the free surface algorithm. The Hamilton-Jacobi version approximates the74

spatial derivatives at integer grid points rather than at half-integer points in the conservative version75

and is more suitable for the approximation of the gradients in the level set function.76

For the time treatment a second-order accurate TVD Runge-Kutta scheme is employed, solving77

the Poisson equation two times per full time-step consisting of two Euler steps [26]:78

Φ(1) = Φn +∆tL (Φn)

Φ(n+1) =
1

2
Φn +

1

2
Φ(1) +

1

2
∆tL

(

Φ(1)
) (3)

Adaptive time stepping is used in order to control the time steps and ensure numerical stability by79

maintaining the required CFL number. Chorin’s projection method for incompressible flow which80

is first-order accurate, is used for the treatment of the pressure [12]. During the solution of the81

NS equations at each Euler step of the Runge-Kutta time stepping procedure, the pressure gradient82

is excluded. Based on the resulting divergence of the flow, a Poisson equation for the pressure is83

formed with the right hand side containing the continuity defect ∂u∗

i

∂xi
in Eq. 4, where u∗

i is the84

transient velocity. The Poisson equation is solved using the fully parallelized Jacobi-preconditioned85

BiCGStab algorithm [30]. The gradient of the new pressure field is then used to correct the velocity86

field, making it divergence free.87

−
∂

∂xi

(

1

ρ (Φn+1)

∂p

∂xi

)

= −
1

∆t

∂u∗

i

∂xi
(4)

The location of the free water surface is represented implicitly by the zero level set of the88

smooth signed distance function Φ(x⃗, t) [23]. The level set function gives the closest distance to89

the interface and the two phases are distinguished by the change of the sign. This results in the90

following properties:91

Φ(x⃗, t)

⎧

⎪

⎨

⎪

⎩

> 0 if x⃗ ∈ phase 1

= 0 if x⃗ ∈ Γ

< 0 if x⃗ ∈ phase 2

(5)

In addition, the Eikonal equation |∇φ| = 1 is valid. When the interface Γ is moved under an92

externally generated velocity field v⃗, a convection equation for the level set function is obtained:93

∂Φ

∂t
+ uj

∂Φ

∂xj
= 0 (6)

When the interface evolves, the level set function loses its signed distance property. In order to94

maintain this property and to ensure mass conservation, the level set function is initialized after each95

time step. In the present paper a PDE based reinitialization equation is solved [28]:96

∂Φ

∂tp
+ S (Φ) (|∇Φ|− 1) = 0 (7)

where tp is psuedo time and S (Φ) is the smoothed sign function [24]. The material properties of97

the two phases can be then be determined for the whole domain. Close to the interface, the density98

ρ and the viscosity ν are smoothed out by calculating the density at the cell face with a regularized99

Heaviside function with an interface thickness of ϵ = 2.1dx:100

ρi+ 1

2

= ρ1H
(

Φi+ 1

2

)

+ ρ2
(

1−H
(

Φi+ 1

2

))

(8)
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The level set function at the cell face is obtained using:101

Φi+ 1

2

=
1

2
(Φi + Φi+1) (9)

3. 6DOF ALGORITHM

For the calculation of fluid-structure interaction, the geometry of the solid body needs to be defined.102

In the current model, it is described by a primitive triangular surface mesh neglecting connectivity.103

By design, this resembles the structure of the STL format, a standard for surface meshes, available104

in most CAD and meshing softwares [13].105

(a) Triangulated box with mesh and level
set function

(b) Signed distance field with the zero
level set for the fluid-solid interface

Figure 1. Representation of the solid body with a level set function.

The intersections of the surface mesh with the underlying Cartesian grid are determined with a106

ray-tracing algorithm [35]. Here, inside-outside information and the shortest distance to the closest107

triangle for the grid points along the coordinate axis can be calculated in a very efficient and reliable108

manner. After this step, the standard reinitialization algorithm [24] is used to get signed distance109

properties for the level set function in the vicinity of the solid body, see Fig. 1. In current literature,110

the level set method has been employed to represent moving solid bodies by [11] and [3]. It is111

important to mention, that the ray-tracing algorithm calculates the distances in an exact manner112

close to the solid boundary, which results in a sharp representation of the solid-fluid interface. The113

moving solid-fluid interface is treated with the ghost cell immersed boundary method [4].The forces114

acting on the surface Ω of the floating body can be determined for each co-ordinate direction i115

separately using the pressure p and the viscous stress tensor τ in the following way:116

Fi,e =

∫

Ω

(−nip+ ni · τ)dΩ (10)

The distance of the center of gravity from the origin of the body-fitted grid can be determined117

using the following equation 11:118

rcg =
1

m

∫

V

r ρa dV (11)

where r is the distance from each surface cell to the origin of the body-fitted co-ordinate system.119

Assuming that the origin of the body-fitted co-ordinate system is at the center of gravity of the120

floating body, r is the distance of each surface cell to the center of gravity and the moments are121

determined as follows:122

Li,e =

∫

Ω

r × (−nip+ ni · τ) dΩ (12)
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Through the level set representation of the solid surface, the calculation of the discrete surface area123

in each grid cell can be accomplished with the help of a Dirac delta function [24]:124

dΩ =

∫

δ (Φ) |∇Φ| dx (13)

The advantage of the level set description for the surface area of the solid body is, that the125

intersections of the surface mesh with the underlying grid do not need to be calculated explicitly. The126

implementation of the level set function was relatively easy, as all numerical routines are already127

available from the free surface algorithm and only small adjustments were required.128

A free floating body has six degrees of freedom. The translation consists of the three linear129

velocities u, v, and w. The rotation has the three angular velocities p, q, and r [14]. The location130

and the orientation of the floating body are given by the position vector and the Euler angles:131

η = (η1,η2) = (xcg, ycg, zcg,φ, θ,ψ) (14)

The calculation of the six degrees of freedom for the solid body can be simplified with respect to132

the moments of inertia by introducing two separate coordinate systems. The fluid flow is calculated133

in the inertial coordinate system, and the floating body in the non-inertial coordinate system. Then134

the forces X,Y and Z and moments K,M and N acting on the body can be calculated in the inertial135

coordinate system. When the origin of the non-inertial coordinate system coincides with the center136

of gravity, the moments of inertia can be calculated by considering only the main diagonal of the137

moment of inertia tensor:138

I =

⎡

⎣

Ix 0 0
0 Iy 0
0 0 Iz

⎤

⎦ =

⎡

⎣

mr2x 0 0
0 mr2y 0
0 0 mr2z

⎤

⎦ (15)

where rx, ry and rz are the distances of a point from the center of gravity along the x−, y− and z−139

directions.140

The calculated forces and moments from the inertial reference frame can be expressed in the non-141

inertial coordinate system with a rotation matrix J
−1
1 , consisting of three elemental rotations around142

the axis of the coordinate system (s stands for sin and c for cos):143

afb =

⎡

⎣

cψ cθ sψ cθ −sθ
−sψ cφ+ sφ sθ cψ cψ cφ+ sφ sθ sψ sφ cθ
sθ sψ + cφ sθ cψ −sφ cψ + cφ sθ sψ cθ cφ

⎤

⎦ae = J
−1
1 ae (16)

Here afb is a vector in the reference frame of the floating body, and ae a vector in the inertial144

coordinate system. With the calculation of the forces, momentum and moments of inertia in place,145

the dynamic rigid body equations can be solved [9]:146

Fi = J
−1
1 Fi,e = [X,Y, Z]

Li = J
−1
1 Li,e = [K,M,N ]

(17)

where147

[m(u̇− vr + wq)] = X

[m(v̇ − wp+ ur)] = Y

[m(ẇ − uq + vp)] = Z

[Ixṗ+ (Iz − Iy)qr] = K

[Iy q̇ + (Ix − Iz)rp] = M

[Iz ṙ + (Iy − Ix)pq] = N

(18)

Here u, v, w, p, q and r are the values for the linear and angular velocities from the previous time148

step. Then u̇, v̇, ẇ, ṗ, q̇ and ṙ can be calculated in an explicit manner. Any of the linear and angular149
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velocities ϕ̇ and any component of the position and orientation vector ϕ of the floating body can be150

calculated with a second-order Adams-Bashforth scheme for the new time step:151

ϕ̇n+1 = ϕ̇n +
∆t

2

(

3ϕ̈n+1 − ϕ̈n
)

ϕn+1 = ϕn +
∆t

2

(

3ϕ̇n+1 − ϕ̇n
)

(19)

As a result, the floating body dynamics are solved in a fully explicit way. Even though the weak152

coupling between the 6DOF algorithm and the flow solver has been reported to lead to numerical153

stability problems for complex cases (e.g. [9] or [8]), the current implementation shows good154

numerical stability throughout the range of applications.155

The dynamic rigid body equations have been solved in the floating body reference frame. The156

translations and and orientations are also calculated there. They are transformed to the inertial157

reference frame with the matrix given in Eq. 16. The angular velocities are transformed using the158

following rotation matrix J2 [14] where s, c and t stand for sin, cos and tan respectively:159

η̇2 =

⎡

⎣

1 sφ tθ cφ tθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

⎤

⎦v2 = J2 v2 (20)

Boundary conditions for the velocities on the solid-fluid interface result from the motion of the160

solid body with respect to its center of gravity.161

ui = η̇1 + η̇2 × r (21)

Pressure oscillations in the vicinity of the solid body can occur due to solid cells turning into162

fluid cells and vice versa. This is avoided by the implementing the field extension method [29][32]163

adapted to the ghost cell immersed boundary method. For non-moving boundaries, a zero-gradient164

boundary condition is used for the pressure. In order to maintain a physical pressure gradient near165

the floating body, the following boundary condition for the gradient of the pressure is given:166

∂p

∂xi
= −

1

ρ

Dui

Dt
(22)

In oder to determine ui, one possibility is to evaluate the momentum equations. A simpler way is167

to differentiate Eq. 21 with respect to time and use this for the ghost cell values for the pressure:168

Dui

Dt
=

d

dt
(η̇1 + η̇2 × r) (23)

When cells are freshly cleared by the moving body and become fluid cells, unphysical values for169

the velocities and the pressure in those cells can cause numerical stability problems. This is avoided170

by assigning the velocities the values from Eq. 21 and the value for the pressure is found through171

interpolation from the fluid.172

4. RESULTS

4.1. Disc Entry173

At first the 6DOF algorithm is tested for the well-known disc entry problem. This case has been used174

by several authors to benchmark their models (e.g. [33] or [8]). The parameters for the geometry,175

the initial boundary conditions and flow parameters of this test are non-dimensional. The disc enters176

the water with the fixed vertical velocity of V = −1. The center of the disc is located at H = 1.25177

over the free surface at T = V t/H = 0. The cylinder has a radius of R = 1. The two-dimensional178

simulation domain has the size 30R× 22R. The uniform mesh size is dx = 0.025, resulting in179

Copyright c⃝ 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2015)
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1200× 880 grid cells. Acceleration due to gravity is g = −1, the density of the water is ρwater = 1,180

the density of the air is ρair = 0.001, the viscosity of the water is νwater = 0.001 and the viscosity181

of the air is νair = 0.018. The time step size is controlled with adaptive time stepping using a CFL182

number of 0.1. No turbulence model is employed for this case.183

The free surface location and contour for the velocity magnitude are shown in Fig. 2. The disc184

enters the liquid phase in Fig. 2a. In a symmetric fashion, breaking waves are generated from the185

solid impact at the sides of the disc and are traveling away from the disc. A fine enough mesh is186

necessary for capturing breaking waves, in general terms [2], but also specifically for the present187

case [8]. In Fig. 2b, the post-breaking waves are moving further away towards the side boundaries.188

At T = 3.0, the displaced water has started to return to the location of the disc impact, and the solid189

body is now fully submerged in the liquid phase. At T = 4.0, the returning water creates a vertical190

water jet. The free surface location compares well with other results reported in literature (e.g. [33]191

or [8]).192

(a) T=0.0 (b) T=0.5 (c) T=1.0

(d) T=1.5 (e) T=2.0 (f) T=2.5

(g) T=3.0 (h) T=3.5 (i) T=4.0

Figure 2. Disc entry problem, the contour shows the velocity magnitude.

4.2. Free Falling Wedge193

In the previous section, the motion of the solid body was fixed. In this section, the free falling194

wedge has all degrees of freedom in the two-dimensional plane. The numerical setup is similar to195
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the experiments by Yettou et al. [36]. The solid wedge has a density of ρ = 466.6 kg/m3. The bottom196

sides have an angle of 25◦ with respect to the x-axis and the wedge is 1.2 m wide. The time step size197

is controlled with adaptive time stepping using a CFL number of 0.1. As this case evolves rapidly198

over a span of only a few seconds, no turbulence model is used.199

The distance from the tip of the wedge to the free surface is 1.3 m in the initial stage of the200

experiment. The water depth is 1 m. In the experiments, the wedge was released into a 27 m long201

tank. In the present simulations the length of the tank is 8 m. As a result, some amount of reflections202

from the side walls can be expected, while they are negligible in the experiments. The numerical203

results are shown in Fig. 3. The wedge is released at t = 0.0 s and then accelerates downwards driven204

by gravity. At t = 0.5 s, the wedge is close to impact with the free surface. The contour shows the205

velocity magnitude. From this it can be seen that at t = 0.5 s, the velocity is maximum just after206

impact. From the impact, the displaced water rapidly moves away from the wedge in the form of207

two symmetric waves (Fig. 3e), which are breaking at t = 0.8 s. Then, the waves are reflected by208

the side walls at t = 1.35 s. Because the wedge is significantly lighter than the water, the body does209

not get fully submerged. Instead, it is floating and moving up and down with the reflected waves.

(a) t=0.0 s (b) t=0.3 s (c) t=0.5 s

(d) t=0.55 s (e) t=0.65 s (f) t=0.8 s

(g) t=1.2 s (h) t=1.4 s (i) t=2.0 s

Figure 3. Free falling wedge, the contour shows the velocity magnitude.

210

Fig. 4a shows the vertical position of the center of gravity of the wedge, which is measured from211

the still water level. In the first 0.5 s of the free fall, the wedge moves downwards and hits the free212

surface, which can also be seen in Fig. 3d. Then the wedge moves into the body of water and starts to213
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oscillate around the still water level. Three different grid sizes are tested in 2D and one simulation214

is carried out in 3D. The result for the two finest grids are almost similar in 2D and comparable215

to the results in 3D. A marginal difference can be found for the grid with dx = 0.05 m. Here, the216

wedge moves slightly deeper into the water after the impact than in the experiments and the fine grid217

results. The vertical velocity of the wedge is shown in Fig. 4b. In the free fall phase, the velocity is218

increasing linearly under acceleration due to gravity. After it reaches the peak velocity of 5.5 m/s,219

the wedge sharply decelerates due to the water impact. When the wedge starts to oscillate around the220

still water level, the vertical velocity becomes non-linear. The vertical velocity is modeled accurately221

on all three grids, with slight deviations on dx = 0.05 m.222

The result from the 3D simulation during water entry of the wedge at t = 0.8 s is presented in223

Fig. 5, showing the splash up of the water as the freely falling wedge impacts the free surface. This224

scenario involves large pressure gradients as the wedge impinges the fluid surface and typically225

requires strongly coupled schemes to solve the fluid structure interaction problem according to226

Calderer et al. [8]. In the current study, this complex fluid structure scenario is solved with a weakly227

coupled scheme with good results.228

experiment
2D dx = 0.02m
2D dx = 0.025m
2D dx = 0.05m
3D dx = 0.02m

z 
[m

]

0

0.5

1.0

1.5

t [s]
0 1 2

(a) Vertical wedge position

experiment
2D dx = 0.02m
2D dx = 0.025m
2D dx = 0.05m
3D dx = 0.02m

w
 [m

/s
]

!1

0

1

2

3

4

5

t [s]
0 0.5 1.0 1.5 2.0

(b) Vertical wedge velocity

Figure 4. Motion of a wedge under free-fall

Figure 5. 3D simulation of free falling wedge into water at t = 0.8 s
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4.3. Roll motion of a rectangular barge229

The case of roll motion of a rectangular barge in waves has been presented by Jung et al. [19]. They230

performed experiments in a wave flume with the barge fixed around the rotational direction axis in231

the center of gravity of the structure, resulting in a single degree of freedom. The barge is 0.3 m232

long, 0.1 m high and 0.9 m wide. It is made of solid acrylic glass with the density ρ = 1048 kg/m3,233

resulting in a moment of inertia Iy = 0.236 kg m2 for the direction of the roll motion. The wave234

flume has a water depth of h = 0.9 m. The center of gravity of the barge coincides with the still235

water free surface location.236

experiment
dx = 0.01m
dx = 0.02m
dx = 0.025m

!
[d

eg
. o ]

"15

"10

"5

0

5

10

15

t [s]
0 1 2 3 4

(a) Roll decay

experiment
numerical

!
[d

eg
. o ]

"15

"10

"5

0

5

10

15

t [s]
2 4 6 8 10 12 14

(b) Roll motion under waves, dx = 0.01 m

Figure 6. Roll motion of a rectangular barge.

(a) t/T = 0.0 (b) t/T = 0.25

(c) t/T = 0.5 (d) t/T = 0.75

Figure 7. Roll motion of the rectangular barge, the contour shows the vertical velocity.
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For the roll decay test, the barge is initially tilted to an angle of 15◦ and then released. In the237

experiments, the roll angle is recorded with a rotary position sensor. In the numerical simulations the238

case is treated as two-dimensional, as it is symmetric along the width. The numerical domain for the239

roll decay test is 5 m long and 1.6 m high, the inflow and outflow boundaries are modeled as walls.240

A uniform mesh size of dx = 0.01 m is used, resulting in a moment of inertia of Iy = 0.0026 kg m2
241

for the 0.01 m wide barge. Following [8], the damping coefficient of C = 0.275 for the three-242

dimensional case is used in the rigid body equations and adjusted to the two-dimensional setup,243

in order to account for the friction of the experimental apparatus. No turbulence model is used. Fig.244

6a shows the comparison between the experimental and numerical results for the roll decay test. For245

the acrylic glass barge, the calculated roll angle φ for dx = 0.01 m agrees well with measurements246

up to around 3 s. Small differences are observed for the roll decay on the coarser meshes. After that,247

the numerical results go out of phase.248

The roll motion of the rectangular barge under the influence of regular periodic waves is shown249

in Fig. 6b. Waves with a length of L = 2.2 m, a wave period of T = 1.2 s and a height H = 0.06 m250

are generated in the numerical model with the relaxation method [16][2]. The simulation domain is251

L = 12 m long, the wave generation zone is 2.2 m long and the numerical beach is 4.4 m long. Fig.252

6b shows the roll angle. When the first full wave has propagated to the barge from the generation253

zone, the roll angle shows two maximum peaks in the numerical results. After that, the roll angle254

maintains a constant amplitude and the measured and computed values from the finest grid show255

a good match. In Fig. 7, the rectangular barge is shown at different stages of a wave cycle. The256

contour shows the vertical velocity.257

5. CONCLUSIONS

The implementation of a 6DOF algorithm in the open-source CFD code REEF3D was shown. In258

a novel approach, the floating body is represented by the combination of a surface mesh, a level259

set function and the ghost cell immersed boundary method. This results in a method, that does not260

require re-meshing or overset grids. The level set method for the description of the surface area of261

the floating body has the advantage, that the forces and moments can be calculated without explicitly262

defining the intersections between the surface mesh and the grid of the flow domain. In addition,263

the numerical model uses the level set method for the capturing of the interface between water264

and air. The resulting model proved to be numerically stable and all simulations were performed265

with a weakly coupled fluid-structure interaction scheme. The three benchmark cases disc entry,266

free falling wedge and roll motion of a rectangular were calculated successfully and a high level267

of detail and accuracy was achieved. With the new 6DOF algorithm many interesting problems in268

coastal, ocean and arctic engineering can be investigated in the future.269
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[31] Walhorn, E., Kölke, A., Hübner, B., and Dinkler, D. (2005). “Fluid–structure coupling within347

a monolithic model involving free surface flows.” Computer & Structures, 83, 2100–2111.348

[32] Yang, J. and Balaras, E. (2006). “An embedded-boundary formulation for large-eddy349

simulation of turbulent flows interacting with moving boundaries.” Journal of Computational350

Physics, 215, 12–40.351

[33] Yang, J. and Stern, F. (2009). “Sharp interface immersed-boundary/level-set method for wave–352

body interactions.” Journal of Computational Physics, 228(17), 6590–6616.353

[34] Yang, J. and Stern, F. (2012). “A simple and efficient direct forcing immersed boundary354

framework for fluid–structure interactions.” Journal of Computational Physics, 231, 5029–5061.355

[35] Yang, J. and Stern, F. (2013). “Robust and efficient setup procedure for complex triangulations356

in immersed boundary simulations.” Journal of Fluids Engineering, 135(10), 101107.1–357

101107.11.358

[36] Yettou, E. M., Desrochers, Y., and Champoux, Y. (2006). “Experimental study on the water359

impact of a symmetrical wedge.” Fluid Dynamics Research, 38, 47—66.360

Copyright c⃝ 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2015)
Prepared using fldauth.cls DOI: 10.1002/fld

Page 13 of 13

http://mc.manuscriptcentral.com/fluids

International Journal for Numerical Methods in Fluids

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


