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Evaluating wave forces on groups of three and nine cylinders using a 3D numerical wave tank
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The evaluation of the complex wave regime due to wave interaction with a large group of cylinders placed in proximity
requires an efficient and accurate numerical model. This paper presents the application of a two-phase Computational Fluid
Dynamics (CFD) model to carry out a detailed investigation of wave forces and flow around vertical circular cylinders placed
in groups of different configurations at low Keulegan-Carpenter (KC) numbers. The 3D numerical wave tank is validated by
comparing the numerical results with experimental data. Further, the hydrodynamic effects associated with three cylinders
placed in tandem, side by side and in a 3 × 3 square array of nine cylinders are investigated. Wave forces are seen to
reduce along the row in a tandem array. In a side-by-side arrangement, the central cylinder experiences the highest force. A
combination of these effects is seen in the 3 × 3 square array. The variation of the wave forces on the cylinders in the array
for different center-to-center distances and incident wavelengths is evaluated and the results show that the wave forces are
the highest on the cylinders when the center-to-center distance is slightly less than half the incident wavelength.
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1. Introduction
Cylindrical structures are commonly seen in marine envi-
ronments as support structures for oil and gas platforms
and offshore wind turbines. The study of wave interaction
with a group of cylinders and the accurate assessment of
the wave forces acting on each of the cylinders is impor-
tant for design considerations. The ratio of the diameter of
a single cylinder to the wavelength of the incident waves
leads to different wave force regimes on the cylinder,
which is determined by the Keulegan-Carpenter number
KC = UT/D, where U is the amplitude of the horizontal
water particle velocity, T is the wave period and D is the
diameter of the cylinder. When KC > 2, the total force on
a single cylinder is calculated using the Morison formula
(Morison, O’Brien, Johnson, & Schaaf, 1950) as a sum
of the inertia and drag forces. The formula uses experi-
mentally determined coefficients to calculate the total wave
force on the cylinder. When KC < 2, the wave forces are
inertia-dominated and the MacCamy-Fuchs theory (Mac-
Camy & Fuchs, 1954) is used to determine the total wave
force on a single cylinder. In this force regime, the effect
of wave diffraction is important and the incident waves
are scattered by the cylinder. In the case of multiple ver-
tical cylinders in a diffraction regime, the incident waves
and the diffracted waves are scattered multiple times, lead-
ing to complex wave interactions in the vicinity of the
cylinders. This phenomenon of multiple scattering from
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the different cylinders influences the wave forces on each
of the cylinders in the group. Ohkusu (1974) proposed
an iterative method to evaluate the successive scattering
from floating structures in a group to determine the wave
force experienced by each structure. The velocity poten-
tial functions used to evaluate the successive scattering
become complicated as the number of structures increases.
Spring and Monkmeyer (1974) presented a method with
all the boundary conditions imposed at once to obtain a
matrix equation to solve the problem. Linton and Evans
(1990) improved on Spring and Monkmeyer by proposing
a method based on potential theory to calculate the wave
forces on each of the cylinders placed in a group. This
method is employed in this paper for the comparison of
numerical results in the case of multiple cylinders.

Several studies have presented numerical wave tanks
based on boundary integral equations (Isaacson 1982;
Kim, Liu, & Ligget, 1983; Longuet-Higgins & Cokelet,
1976) and Boussinesq equations (Nwogu, 1993; Wei &
Kirby, 1995). The numerical wave tanks based on bound-
ary integral equations are limited in their application
due to being single phase and due to the assumption
of the irrotational flow. Boussinesq equations are depth-
averaged, two-dimensional and valid only in interme-
diate and shallow waters. The Navier-Stokes equations
include three-dimensional flow features, the effects of rota-
tional flow, viscosity and higher order non-linear wave
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interactions between the cylinders. Computational Fluid
Dynamics (CFD) simulations provide a great amount of
detail concerning the free surface around obstacles in the
flow, the pressure and forces acting on an object, and the
velocity of fluid particles. With an accurate representa-
tion of the free surface, the various flow features can be
studied, including wave diffraction and the evolution of
the diffracted and reflected waves and their influence on
the wave forces experienced by the objects. In the cur-
rent literature, CFD methods have been used to investigate
wave propagation in coastal regions (Jacobsen, Fuhrman,
& Fredsøe, 2011; Morgan et al., 2010), wave interaction
with coastal structures (del Jesus et al., 2012; Higuera,
Lara, & Losada, 2014) and modeling of breaking waves
(Alagan Chella, Bihs, Myrhaug, & Muskulus, 2015). Two-
phase models are essential for obtaining a good represen-
tation of free surface flows due to the interaction of air
and water at the interface (Liu & Yang, 2014). Numerical
methods such as Smoothed Particle Hydrodynamics (SPH)
have also been used to model the interaction of fluids with
structures (Pu, Shao, Huang, & Hussain, 2013). Three-
dimensional numerical modeling of flow and transport over
large domains can provide insights into the large-scale
phenomena which can have a significant impact on the
engineering solutions in the field of river, estuarine and
coastal engineering and management (Chau & Jiang, 2001,
2004).

The objective of this paper is to obtain insights into
the physical processes and hydrodynamic features associ-
ated with wave interaction with multiple cylinders placed
in groups in different configurations using the open-source
CFD model REEF3D (Alagan Chella, Bihs, Myrhaug, &
Muskulus, 2015). CFD can deliver deep insight into the
underlying flow physics and wave kinematics, and produce
accurate and detailed results without the assumptions and
simplifications of typical wave models. The evaluation of
the complex wave diffraction regime in the case of multi-
ple cylinders placed in proximity is challenging due to the
multiple wave reflection and interference effects involved.
The center-to-center distance between the cylinders is also
an important factor influencing the wave forces, and lower-
order methods using potential theory cannot account for the
hydrodynamics when the cylinders are spaced very close
together.

The model is validated by comparing the numerical
results with data from the large-scale experiments car-
ried out in the Large Wave Flume (GWK) in Hannover,
Germany (Mo, Irschik, Oumeraci, & Liu, 2007) for the
wave kinematics and the wave forces on a single cylin-
der. Further, numerical simulations are carried out with
three cylinders in tandem and three cylinders placed side
by side. The final case is a combination of the two arrange-
ments, with nine cylinders placed in a 3 × 3 square array.
The effect of the center-to-center distance and the incident
wavelength on the wave forces experienced by each of the
cylinders in the array is studied.

2. Numerical model: REEF3D
The incompressible Reynolds-Averaged Navier-Stokes
(RANS) equations are used to solve the fluid flow problem:

∂Ui

∂xi
= 0 (1)

∂Ui

∂t
+ Uj

∂Ui

∂xj

= − 1
ρ

∂P
∂xi

+ ∂

∂xj

[
(ν + νt)

(
∂Ui

∂xj
+ ∂Uj

∂xi

)]
+ gi (2)

where Ui is the time averaged velocity, ρ is the density of
water, P is the pressure, ν is the kinematic viscosity, ν t is
the eddy viscosity, t is time and g is the acceleration due to
gravity. The pressure is treated using Chorin’s projection
method (Chorin, 1968) and the resulting Possion pressure
equation is solved using a preconditioned BiCGStab solver
(van der Vorst, 1992). Turbulence modeling is carried out
using the two-equation k −ω model proposed by Wilcox
(1994). Eddy viscosity, ν t, is bounded to avoid unphysi-
cal overproduction of turbulence in strained flow by using
a stress limiter in the definition of eddy viscosity (Brad-
shaw, Ferriss, & Atwell, 1967) as shown by Durbin (2009).
The large difference in density of air and water in a two-
phase model leads to an overproduction of turbulence at
the interface due to the large strain. Free surface turbu-
lence damping using a limiter around the interface for the
source terms as shown by Naot and Rodi (1982) is carried
out to avoid the unphysical overproduction of turbulence at
the interface. The damping is carried out only around the
interface using the smoothed Dirac delta function.

The fifth-order conservative finite difference Weighted
Essentially Non-Oscillatory (WENO) scheme proposed by
Jiang and Shu (1996) is used for the discretization of con-
vective terms for the velocity Ui, the level set function φ,
the turbulent kinetic energy k and the specific turbulent
dissipation rate ω. A Total Variation Diminishing (TVD)
third-order Runge-Kutta explicit time scheme developed
by Harten (1983) is employed for time discretization in the
model. This is a three-step scheme and involves the calcu-
lation of the spatial derivatives three times per time step.
This scheme is used for the time advancement of the level
set function and the re-initialization equation. An adaptive
time stepping approach is used to maintain the time step
in accordance with the Courant-Friedrichs-Lewy (CFL)
criterion for numerical stability (Griebel, Dornsheifer, &
Neunhoeffer, 1998).

The free surface is obtained using the level set method
where the zero level set of a signed distance function, φ(�x,
t) is used to represent the interface between air and water
(Osher & Senthian, 1988). Moving away from the inter-
face, the level set function gives the closest distance of
the point from the interface. The sign of the function rep-
resents the two fluids across the interface, as shown in



Engineering Applications of Computational Fluid Mechanics 3

Equation (3):

φ(�x, t)

⎧⎪⎨
⎪⎩

> 0 if �x is in air
= 0 if �x is at the interface
< 0 if �x is in water

(3)

The velocity field in the simulation moves the level set
function using the convection equation:

∂φ
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+ Uj

∂φ

∂xj
= 0 (4)

The level set method is re-initialized after every iter-
ation using a partial differential equation (PDE) based
re-initialization procedure presented by Sussman et al.
(1994):
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where S(φ) is the smoothed sign function by Peng, Mer-
riman, Osher, Zhao, and Kang (1999) to retain its signed
distance property after convection:
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The jump in density and viscosity at the interface is
handled with the regularized Heaviside function over a
thickness of 2.1�x around the interface.

A uniform Cartesian grid is used in the numerical
model for spatial discretization. The Immersed Boundary
Method (IBM; Peskin, 1972) is used to incorporate the
boundary conditions for complex geometries. In the cur-
rent study, a local directional ghost cell IBM presented
by Berthelsen and Faltinsen (2008) is implemented using
object-oriented programming techniques, where the ghost
cell values can be updated from multiple directions (Bihs,
2011). The ghost cells store multiple values and return a
particular value when called from the respective direction.

The relaxation method (Mayer, Garapon, & Sørensen,
1998) is used for wave generation and absorption in the
numerical wave tank. This method uses a wave generation
zone and a wave absorption zone to moderate the com-
putational values and the analytical values given by wave
theory. The relaxation function proposed by Jacobsen et al.
(2012) presented in Equation (7) is used in this study:

�(x) = 1 − exp (x3.5) − 1
exp (1) − 1

for x ∈ [0; 1] (7)

where x is the coordinate along the x-axis scaled to the
length of the relaxation zone. In the wave generation zone,
the values for the free surface elevation and the velocity
given by wave theory are prescribed to the computational
values using the relaxation function �(x), as shown in
Equation (8), and the generated waves are released into

the working zone of the wave tank. In the wave absorp-
tion zone, the relaxation function is operated as �(1 − x).
The computational values of velocity and free surface from
the working zone are reduced to zero and the wave energy
is smoothly removed from the computational domain.

Urelaxed = � (x) Uanalytical + (1 − � (x)) Ucomputational

φrelaxed = �(x) φanalytical + (1 − � (x)) φcomputational
(8)

The free surface, horizontal and vertical water particle
velocities for linear wave theory are given by Equations
(9), (10) and (11) respectively:

η = A sin(ωt − κx) (9)

u = ωA
cosh κ(z + d)

sinh κd
sin(ωt − κx) (10)

w = ωA
sinh κ(z + d)

sinh κd
cos(ωt − κx) (11)

where A is the wave amplitude, κ is the wave num-
ber = 2π /L, L is the wavelength, ω is the angular wave
frequency and d is the water depth. Typically, the wave
generation zone is one wavelength long and the absorp-
tion zone is two wavelengths long. The computational
efficiency of the program is increased by parallelizing
the code using a Message Passing Interface (MPI). Here
the domain is decomposed into smaller pieces and each
assigned to a processor. So the program runs separately on
each processor and the values between the processes are
communicated using the MPI library.

3. Calculation of wave forces
3.1. Calculation of wave forces in the numerical model
The wave force on an object is calculated as the integral of
the pressure and the shear stress around the surface of the
object as follows:

F =
∫

�

(−�nP + �n · τ) d� (12)

where �n and τ are a unit normal vector and a viscous
stress tensor, respectively. This is easily accomplished in
the numerical model as the values for the pressure at every
point in the domain are available from the solution of the
Poisson pressure equation. No-slip boundary conditions
are imposed on the boundary between the object and the
fluid domain.

3.2. Analytical formula for calculating wave forces on
multiple cylinders

Wave forces on cylinders in an inertia-dominated force
regime (KC < 2) can be calculated using the MacCamy-
Fuchs formula (MacCamy & Fuchs, 1954), which is based
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on potential theory:

F0 =
∣∣∣∣4ρgiA tanh(κd)

κ2H ′
1(κa)

∣∣∣∣ (13)

where F0 is the inline force on a single cylinder, i = √−1,
d is the water depth, a is the radius of the cylinder and H1

′

is the derivative of the Hankel function of the first kind.
Linton and Evans (1990) presented a theory to evaluate

the wave forces experienced by each of the N cylinders
placed in an array by solving a system of N (2M + 1)
unknowns, where M is order of the solution:
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where Ak
m and Aj

n are unknown coefficients of the scat-
tered radiating wave from the kth and the j th cylinders,
Zj

n = J ′
n(κa)/H ′

n(κa), where κ is the wave number, J’ is the
derivative of the Bessel function of the first kind, αjk is the
angle between the x-axis and the line connecting the cen-
ters of cylinders j and k, Rjk is the center-to-center distance
of the cylinders j and k, I k is the incident wave potential
on cylinder k and β is the angle of wave incidence with the
x-axis. ∣∣∣∣Fj

F0

∣∣∣∣ = 1
2
|Aj

−1 ± Aj
1| (15)

where Fj is the force on the j th cylinder. The subtrac-
tion of the coefficients in Equation (15) gives the force
on the cylinder along the x-axis and the addition of the
coefficients gives the force along the y-axis.

4. Results and discussion
4.1. Validation of wave force calculation
A numerical simulation is carried out to determine the
wave force on a single cylinder due to a regular wave.

The wave parameters from the Large Wave Flume (GWK)
experiments (Mo et al., 2007) are used in this simulation.
The numerical wave tank is 132 m long, 5 m wide and 8
m high. A regular wave of height 1.2 m and wave period
T = 4.0 s is generated in a water depth of d = 4.76 m.
A cylinder of diameter D = 0.7 m is placed 44 m from
the wave generation zone to provide sufficient length for
the waves to propagate (Figure 1) and avoid the influ-
ence of waves reflected from the cylinder on the incident
waves. The grid resolution required to represent the cylin-
der geometry in the domain and accurately compute the
wave forces is quantified by the number of cells contained
in a square with a side equal to the diameter of the cylinder.
By this definition, a grid size of 0.1 m is used with a density
of 49 cells/D2 and 5.28 million cells in the domain. Wall
boundary conditions are enforced on the side walls and
bottom of the numerical domain and the symmetry plane
boundary condition is applied at the top.

The free surface elevation is measured near the wall
along the front line of the cylinder (WG 1), in front of
the cylinder (WG 2), at the side (WG 3) and behind the
cylinder (WG 4), as shown in Figure 1. The water particle
velocities near the wall along the frontline of the cylin-
der are measured at the depths of z = − 0.93 m, − 1.53
m and − 2.73 m in experiments using Acoustic Doppler
Velocimeters (ADVs).

The wave forces acting on the cylinder are calculated
and compared to the experimental results (Figure 2(a)) and
the numerical results are seen to match the experimental
observations very well. A grid refinement study is carried
out for the wave forces and simulations are carried out with
49 cells/D2, 22 cells/D2 and 12 cells/D2 (Figure 2(b)) and it
is seen that the numerical model calculates the wave forces
accurately from 49 cells/D2 onwards. Mo et al. (2007)
reported that the measured wave forces corresponded to
the force calculated from the inertia part of the Mori-
son equation. So, this case is inertia-dominated with low
influence from the viscous boundary layer. The numerical
model employs wall layer turbulence modeling and this is

Figure 1. Set-up for calculating forces on a single cylinder.
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(a)

(b)

Figure 2. Wave forces on a single cylinder: (a) comparison of
experimental and numerical results; (b) grid convergence study
for wave forces.

sufficient to account for the hydrodynamics close to the
surface of the cylinder in this case. This is also the case
for the simulations carried out in the following sections,
where the forces are inertia-dominated due to the low KC
numbers.

The free surface elevation near the wall along the front
line of the cylinder is compared with the experimental data
(Figure 3(a)). The amplitude of the wave near the wall
along the front line of the cylinder is taken as ηmax,wall.
The comparisons of the free surface in front, at the side
and behind the cylinder are presented in Figure 3(b), 3(c)
and 3(d), respectively. The rise in the water level in front
of the cylinder recorded in the experiments is seen in the
numerical results as well. The water elevations beside and
behind the cylinder also show a good match with the exper-
imental observations. Further, the fluid velocity computed
by the numerical model is compared with the experimen-
tal results. The values are scaled with wave celerity C
and are presented in Figure 4; a good agreement is seen
between the numerical and experimental results. Thus, it is
concluded that the numerical model produces a good rep-
resentation of the wave elevation, water particle velocity
and wave force.

(a)

(b)

(c)

Figure 4. Comparison of experimental and numerical results for
water particle velocities in front of the cylinder: (a) at z = − 0.93
m; (b) at z = − 1.53 m; (c) at z = − 2.73 m.

4.2. Wave interaction with multiple cylinders
4.2.1. Wave interaction with three cylinders placed in

tandem
Three cylinders of diameter D = 0.26 m are placed in tan-
dem with a center-to-center distance S = 0.8 m (Figure 5).
Linear waves of amplitude A = 0.03 m, wavelength
L = 2.0 m and wave period T = 1.18 s (KC = 0.79) in a
water depth d = 0.5 m are generated in a wave tank 15
m long, 5 m wide and 1 m high, with a grid resolution of
108 cells/D2 around each cylinder, resulting in 4.8 million
cells. The width of the tank is selected such that reflections
from the side wall do not reach the region around the cylin-
ders by ensuring a distance of 9D between the wall and
the cylinder closest to the wall. The clear distance between
the surfaces of the neighboring cylinders in the set-up is
0.27L and the wave diffraction and interference effects over
a quarter of the incident wavelength are studied. The com-
puted wave forces on the three cylinders are compared with
the predictions from the analytical formula (Equation 15)

(a) (b)

(c) (d)

Figure 3. Comparison of experimental and numerical results for wave elevations around the cylinder: (a) at WG 1; (b) at WG 2; (c) at
WG 3; d) at WG 4.
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Figure 5. Set-up for three cylinders placed in tandem.

(a)

(b)

(c)

Figure 6. Wave forces on three cylinders placed in tandem: (a)
Cylinder 1; (b) Cylinder 2; (c) Cylinder 3.

and a good agreement is seen in Figure 6. Cylinders 1 and
2 experience a similar force of 1.24F0 and 1.23F0 and
the downstream cylinder experiences a force of 1.06F0.
The interaction of the incident waves and the diffracted
waves from the cylinders results in the wave pattern seen
in Figure 7 for t/T = 9.0, 9.25, 9.50 and 9.75. A circular
diffracted wave pattern is noticed in the vicinity of Cylinder
1, which decays as it propagates away from the cylinder.
In an inertia-dominated force regime, the pressure around
the cylinders influences the forces acting on the cylinders,

which can be studied using the free surface elevations. In
Figure 7(a), Cylinder 1 is directly exposed to the incident
wave crest in the front and a diffracted wave trough is
behind the cylinder. This leads to a larger net difference in
the pressure around the cylinder, resulting in a higher force
compared to a single cylinder. The constructive interfer-
ence seen in Figure 7(b) results in a larger wave elevation
behind Cylinder 1, when a wave trough is incident on it in
the front. Thus, Cylinder 1 is always subject to large dif-
ferences in pressure and it experiences a force that is larger
than the force experienced by a single cylinder. Cylinder
2 is exposed to scattered waves from both the upstream
Cylinder 1 and the downstream Cylinder 3. This counter-
acts the shadowing of the incident waves by Cylinder 1,
and Cylinder 2 experiences a force higher than the force
on a single cylinder. A similar interaction is noted between
Cylinders 2 and 3, but Cylinder 3 experiences a lower force
of 1.06F0 because it is largely exposed only to the scattered
waves from upstream Cylinders 1 and 2. It is also clearly
seen from Figure 7(c) and 7(d) that the diffracted waves
from Cylinder 1 radiate away along the y-axis and the
diffracted pattern along x-axis is extended until the vicin-
ity of Cylinder 3. The diffracted waves from the cylinders
upstream interact with each other and the diffracted waves
from Cylinder 3, resulting in a slightly higher force than
on a single cylinder on Cylinder 3. The total inline wave
forces are seen to decrease along the direction of wave
propagation. As the wave crest is incident on Cylinder 1,
the flow is obstructed and the waves are scattered around
the cylinder, resulting in a downstream pressure gradient.
A diffracted wave is radiated from Cylinder 1, which prop-
agates further downstream and interacts with the diffracted
waves radiated from Cylinder 2. This complex interac-
tion between the cylinders leads to higher forces on both
Cylinders 1 and 2 compared to the forces on a single
cylinder.
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(a) (b)

(c) (d)

Figure 7. Wave elevations around the cylinders showing wave diffraction patterns: (a) t/T = 9.0; (b) t/T = 9.25; (c) t/T = 9.50; (d)
t/T = 9.75.

4.2.2. Wave interaction with three cylinders placed side
by side

In this case, three cylinders of diameter D = 0.26 m are
placed next to each other with a center-to-center distance
of S = 0.3 m. A small center-to-center distance is cho-
sen to magnify the effects of flow obstruction caused by
the cylinders. Regular linear waves of amplitude A = 0.03
m, wavelength L = 2.0 m and wave period T = 1.18 s
(KC = 0.79) in a water depth d = 0.5 m are generated in a
wave tank 15 m long, 7 m wide and 1 m high, with a grid
resolution of 108 cells/D2 around each cylinder, resulting
in 6.72 million cells.

The cylinders on either side experience the same force
of 1.31F0, due to the symmetrical arrangement of the
cylinders. The central cylinder experiences the maximum
force of 1.58F0 in the array and the numerical results in
Figure 8 show a good match between the computed wave
forces and the results from the analytical solution. The
contraction effect due to the small distance of separation
S = 0.3 m between the centers of the cylinders seen in
Figure 9 results in a large pressure difference in front and
behind the cylinders. This is seen through the increase in
the water level in front of the cylinders and lower water
elevations behind the cylinders. The distinct increase in
water elevation in front of Cylinder 2 during the incidence
of the crest and the propagation of the elevated water level
through the space around the cylinder is clearly seen in
Figure 9. The circular diffracted waves radiating from the

(a)

(b)

(c)

Figure 8. Wave forces on cylinders placed side-by-side: (a)
Cylinder 1; (b) Cylinder 2; (c) Cylinder 3.

group of cylinders is also observed. The result of the flow
obstruction is a large pressure in front of the cylinders and
a much lower pressure behind them. This large difference
in the net pressure leads to a 31% larger force on Cylin-
ders 1 and 3 (Figure 9(b) and 9(f)) and 58% larger force on
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Figure 9. Set-up for three cylinders placed side by side and
wave elevation contours around the cylinders.

Cylinder 2 (Figure 9(d)) in comparison to the total force on
a single cylinder.

4.2.3. Wave interaction with a 3 × 3 square array of
nine cylinders

In this case, a 3 × 3 square array of cylinders of diam-
eter D = 0.26 m (Figure 10) was placed in a wave tank
16 m long, 7 m wide and 1 m high to study the wave
interaction with a large array of cylinders (Figure 11).
Waves of amplitude A = 0.03 m, wavelength L = 2.0 m
and wave period T = 1.18 s (KC = 0.79) in a water depth
of d = 0.5 m are incident on the cylinder array. The com-
putational domain consists of a grid resolution of 64
cells/D2 around each cylinder with S = 0.8 m. Figure 11
shows the wave forces on cylinders and wave surface ele-
vation at t/T = 11, 11.25 and 11.5 (Figure 11(a)–11(c)) in
the part of the computational domain around the cylinder

array. The computed wave forces on the cylinders are in
good agreement with the results from the analytical for-
mula. The wave forces on Cylinders 1, 2 and 3 are the
same as the wave forces on Cylinders 7, 8 and 9 due
to the symmetrical arrangement. Figure 11(a)–11(c) illus-
trates the interaction of the waves with a 3 × 3 square
array of cylinders and the resulting wave patterns due to
the incident, diffracted and reflected waves in the computa-
tional domain. An increase in the free surface elevation in
front of each of the columns of the arrangement is seen in
Figure 11(a)–11(c) similar to the increase seen in the case
of a single column in section 4.2.2. It is also observed that
the increase in the water elevation in front of the cylinders
is reduced as the wave progresses downstream. The for-
mation of diffracted waves of large radii is seen behind the
first upstream column, showing that the strongest diffracted
waves propagate between the first and the second columns
in the array. This is similar to the phenomenon observed
in section 4.2.1 where the strongest diffracted waves were
seen to propagate between the first and second tandem
cylinders.

The radiating diffracted waves from cylinders influence
the wave forces on the cylinders besides and diagonally
across from each cylinder. The central cylinder (Cylinder
4) in the front row experiences the highest force in the array
of 1.46F0, due to the combined influence of the cylinders
beside and behind it (Figure 11(g)). The other two cylin-
ders in the front row (Cylinders 1 and 7) experience a force
of 1.34F0 (Figure 11(d)). The results are consistent with
the case of three cylinders side by side, presented in section
4.2.2, where the central cylinder experienced the maximum
force in the column and the two cylinders on either side
had lower forces acting on them. Cylinders 2 and 8 in the

Figure 10. Set-up for nine cylinders placed in a 3 × 3 square array.
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(a) (d)

(e)

(f)

(g)

(h)

(i)

(b)

(c)

Figure 11. Wave elevations around the cylinders: (a) at t/T = 11.0; (b) at t/T = 11.25; (c) at t/T = 11.50; and wave forces on (d)
Cylinder 1; (e) Cylinder 2; (f) Cylinder 3; (g) Cylinder 4; (h) Cylinder 5; (i) Cylinder 6.

second row experience a force of 1.15F0 (Figure 11(e))
due to the diffraction effects from the cylinders upstream
and downstream. Cylinders 3, 6 and 9 in the downstream
row experience the lowest forces in the array as they are
protected from the direct incident waves by the upstream
cylinders and do not have cylinders placed behind them.
The wave forces on the cylinders reduce along the row
in the direction of wave propagation, as seen in the case
of three tandem cylinders in section 4.2.1. Cylinders 3
and 9 experience a force of 0.92F0 (Figure 11(f)) and
Cylinder 6 a force of 0.96F0 (Figure 11(i)). The central
cylinder in the array is exposed to diffracted and reflected
waves from upstream and downstream cylinders. The cen-
tral position of Cylinder 5 results in diffraction effects
from all directions and the cylinder experiences a force of
1.26F0 (Figure 11(h)).

In order to study the influence of the center-to-center
distance between the cylinders, simulations with S = 0.6
m and S = 1.0 m were carried out with the incident

wavelength kept at L = 2 m. The numerically determined
amplitude of the wave forces on each of the cylinders in the
different cases is compared and presented in Figure 12. It
is seen that for S = 0.6 m, the cylinders in the first column
(Cylinders 1, 4 and 7) experience the same force, lower
than the force on a single cylinder, F0. The cylinders in
the second column (Cylinders 2, 5 and 8) experience the
highest forces in the arrangement and the cylinders in the
last column (Cylinders 3, 6 and 9) experience forces higher
than F0. In this case, a different diffraction regime arises
from the center-to-center distance, being much less than
half of the incident wavelength compared to S = 0.8 m.
The cylinders in the second row experience higher forces
than the cylinders in the first row because of the destructive
interference of the diffracted waves around the first column
and constructive interference around the second column in
this arrangement.

On the other hand, at S = 1.0 m, the cylinders in the
first column experience the same force as that on a single
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Figure 12. Variation of the wave forces on the cylinders with a
distance of separation S.

Figure 13. Variation of the wave forces on the cylinders with
incident wavelength L.

cylinder, F0. The cylinders in the second and third columns
experience forces lower than F0. This is justified by the
fact that the cylinders are placed wide apart at S = 1.0 m
and the wave forces experienced by the cylinders in the
first column are the same as those experienced by a sin-
gle cylinder. As the wave propagates through the array, the
interaction with the cylinders reduces the wave energy car-
ried by it and successive columns experience lower forces.
The central cylinder (Cylinder 5) benefits from cancelation
effects from two sides and experiences a lower force than
Cylinder 3 in the third column.

The effect of incident wavelength on the wave forces
experienced by the cylinders in the arrangement is studied
by carrying out simulations with L = 1.5 m and L = 2.5
m. The center-to-center distance between the cylinders is
kept at S = 0.8 m. The variation of the wave forces on the
cylinders in the array with the incident wavelength is pre-
sented in Figure 13. A general trend of the wave forces
increasing with increasing incident wavelength is seen. It is
also observed that the change in incident wavelength does
not greatly affect the wave forces on Cylinders 3, 6 and
9 in the last column. The central cylinder in the first col-
umn, Cylinder 4, undergoes the most change in the wave
forces with change in the incident wavelength. The center-
to-center distance of S = 0.8 m is almost equal to half the
incident wavelength for L = 1.5 m, but the wave forces on
all the cylinders are seen to be lower than the force on a
single cylinder. The highest increase in the forces is seen
when the incident wavelength is increased from L = 1.5 m
to L = 2 m. This is further evidence that the strong diffrac-
tion and interference effects occur between the cylinders

when the center-to-center distance is slightly lower than
but not equal to half the incident wavelength.

5. Conclusion
The open-source CFD model REEF3D was used to model
the wave interaction with a single vertical cylinder, three
cylinders placed in tandem, three cylinders placed side by
side and a 3 × 3 square array of nine cylinders at low
KC numbers. The numerical model was validated by com-
paring the numerical results with the experimental data
from the large-scale experiments performed by Mo et al.
(2007). The computed wave surface elevation, water par-
ticle velocity and wave forces on a single cylinder agree
well with the experimental data.

The wave interaction with cylinder groups in different
configurations was investigated. Circular diffracted waves
were observed radiating from the cylinders with construc-
tive and destructive wave interference influencing the wave
forces on the cylinders. The following observations were
made in each of the cases simulated:

Three cylinders in a tandem arrangement:

• The computed wave forces on the first two cylinders
were about 24% larger than the wave forces on a
single cylinder due to the strong interaction of the
diffracted waves between them. The last cylinder in
the array experienced only a 6% higher force than
a single cylinder due to the absence of neighbors
downstream from the cylinder.

Three cylinders in a side-by-side arrangement:

• An increase in the free surface elevation in front of
the column of cylinders was observed due to the
flow obstruction caused by the three closely-spaced
cylinders.

• The central cylinder experienced a 57% higher force
than a single cylinder and the cylinders beside it
experienced a similar force that was 30% higher than
the force experienced by a single cylinder.

Nine cylinders in a 3 × 3 square array arrangement:

• The circular radiating waves from each of the cylin-
ders had an influence on all the cylinders in the
arrangement.

• The cylinders experience the highest forces when the
center-to-center distance is slightly less than half the
incident wavelength due to the constructive wave
interference around the cylinders.

• The central cylinder in the first column experiences
the largest change in the wave force on changing the
incident wavelength.
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The paper presents the results for three cylinders
arranged in tandem and side by side. Further a combination
of these two cases, a 3 × 3 square array of cylinders, was
simulated and the effect of incident wavelength and center-
to-center distance on the wave forces was investigated. The
results obtained in this study represent a few combinations
of cylinder arrangements. Further studies can be carried out
to explore the influence of the center-to-center distance and
the incident wavelength on the wave forces. The variation
of the force regime for high steepness waves and larger
cylinders can also be investigated.
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