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Abstract

Extensive research has been done on the generation of unstruc-

tured grids in reservoir simulation, with the aim of better repre-

senting the geology. We introduce UPR (Unstructured PEBI-grids

for Reservoirs), a free, open source module for the Matlab Reser-

voir Simulation Toolbox. This module automates the generation of

grids that conform to structures in subsurface reservoirs. The mod-

ule implements the new methods presented in this thesis. These

methods generate PEBI-grids that conform to wells and faults. The

grids honor faults exactly. By using our novel method for treating

intersections, it handles several hard cases robustly, including, inter-

section of multiple faults, intersections of wells and faults, and faults

intersecting at sharp angles. We have also generalized our method

to three dimensions, and present how one can create unstructured

3D PEBI-grids that conform exactly to faults.
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Samandrag

Det er blitt gjort omfattande forsking p̊a å generere ustruktur-

erte grid for reservoar simulasjoner, der målet er å forbetre repre-

sentasjonen av geologien. Vi introduserer UPR (Unstructured PEBI-

grids for Reservoirs), ein gratis, open kjeldekode modul for Mat-

lab Reservoir Simulation Toolbox. Denne modulen automatiserer

generering av grid som tilpassar seg strukturar i underjordiske reser-

voar. Modulen brukar dei nye metodane presentert i denne oppg̊ava

for å generere grid som tilpassar seg eksakt til forkastingar. Ved å

bruke v̊ar nyskapande metode for å behandle kryssingar kan den

generere grid av mange vanskelege tilfelle, mellom anna kryssin-

gar av fleire forkastingar, kryssingar av brønnar og forkastingar, og

forkastingar som krysser ved ein skarp vinkel. Vi har ogs̊a generalis-

ert metoden v̊ar til å behandle forkastingar i tre dimensjonar.
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CHAPTER 1

Introduction

The energy consumption in the world is increasing every year. While new

sources of renewable energy are becoming more available, oil and gas will

be the dominant source of energy in the foreseeable future. Since Edwin

Drake drilled the first commercial oil well, humans have found oil in more

and more inaccessible places. However, despite extensive search activity,

the rate of new petroleum discoveries has declined. We therefore need to

utilize new and existing fields in an optimal way.

The burning of fossil fuels releases huge amounts of CO2 into the atmo-

sphere. The climate change is maybe the largest challenge of our generation.

We can already see the effects; 2015 was reported as the warmest year in

recorded history [18, 23]. A proposed solution to improve the imbalance in

the carbon cycle is to store CO2 in subsurface reservoirs. A concern about

storing CO2 is that it might leak back to the atmosphere. Before we can

try to store CO2, we therefore need a thorough understanding of how the

CO2 flows in subsurface reservoirs.

The cases above have one thing in common; they need extensive mathe-

matical modeling and an understanding of flow in porous media. A tool we

have for this is flow simulations. One of the many challenges of simulating

a subsurface reservoir is to transform the physical reservoir into a computa-

tional domain. A reservoir is highly inhomogeneous, and creating a grid of

it is very challenging. A reservoir can contain many layers of rock with very

different properties. Further, geological processes complicate matters and

3
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can create cases such as faults. To accurately estimate the flow in a reser-

voir, we need to be able to represent these features in a grid. By creating a

grid that conforms to features, we can also improve numerical simulations

without increasing the computational cost. In modern reservoirs, wells are

typical long and perforating the reservoir horizontally. The wells can have

complex geometries, such as branching. The wells are an important part of

the flow characteristics and it is crucial to also be able to represent them

accurately.

The first attempts to simulate oil reservoirs were done in the 1950’s.

The early methods created 2D slices of the reservoir and created Cartesian

grids of these slices. The grids would have of the order 102 to 103 cells and

give very coarse approximations of the flow in a reservoir. New numerical

methods and the exponentially growth in computer power have enabled us

to create very complicated models of reservoirs. As an example, a modern

reservoir grid can have millions of cells.

To improve the representation of the geology, corner point grids gained

popularity in reservoir simulations [13, 44]. These grids are similar to 3D

Cartesian grids, but the hexagons are not regular. A side of a hexagon

is even allowed to have zero area. These grids are able to adapt to many

of the features seen in a subsurface reservoir, but still keep the simple

index relationship between cells. Corner point grids are today the industry

standard, and supported by most reservoir simulation softwares.

The use of unstructured grids in reservoir simulation was introduced in

the late 1980s and early 1990s [16, 21, 24, 41]. Unstructured grids are in-

teresting because they are much more flexible than corner point grids. The

earliest techniques would embed refinements in a structured background

grid in areas of interest. A popular unstructured grid is the perpendicu-

lar bisector (PEBI) grid. The properties of PEBI-grids used for reservoir

simulations are discussed by Verma and Aziz [51]. Courrioux et al. [9] use

a PEBI-grid to create a representation of a full scale reservoir. The main

drawback of these first attempts is the inability to represent complex struc-

tures, such as pinchouts and intersections of multiple faults. Later, Branets

et al. [6] proposed a method that handles intersection of multiple faults,

and faults intersecting at sharp angles. A similar method is also presented

by Toor et al. [50]. These methods create a protection layer around the

features using constrained Delaunay triangulation and recover the faults

exactly. Pinchouts and intersecting faults are treated by mirroring Voronoi

sites around the features. A disadvantage with these methods is that they

often lead to congested Voronoi sites around the features. In an attempt to
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deal with these problems, Ding and Fung [12] introduced a conflict-point

removal scheme. First, a structured background grid is created. A set of

Voronoi sites are placed equidistant around each fault. Each Voronoi site

is given a priority, and when two sites are too close, the site with lowest

priority is removed. The generated grid conforms to faults and has fairly

uniform cells, but fails to treat intersections and pinchouts. A different ap-

proach is taken by Merland et al. [37, 38], who suggest to place the Voronoi

sites by an optimization method that minimizes the volume of the cells that

are cut in two by a fault. This method is promising, but one often needs

to treat the grid manually after the optimization. Especially cells at fault

intersections can be bad.

PEBI-grids are not the only unstructured grids that have received at-

tention. There have been several attempts at creating triangular grids that

adapt to faults and fractures. Brewer et al. [7] present a method for ex-

actly representing fractures by a triangulation. Methods for approximating

faults and fractures by triangles have also been investigated [25, 39]. An-

other method that has gained popularity in the latest years is the cut-cell

method [19, 20, 35]. This method generates a grid by creating a mapping

from a Cartesian grid to the physical domain, and then creates general

polyhedrons by cutting the cells by crossing faults.

A great software for simulating oil reservoirs is the Matlab Reservoir

Simulation Toolbox (MRST) [32]. MRST is a Matlab toolbox that allows

for rapid prototyping of new ideas in reservoir simulation. The software is

released open source. The main goal of this thesis has been to develop a

module for unstructured gridding in MRST. As of today, MRST only offers

limited automation for unstructured gridding, and by expanding these fea-

tures a large part of the researchers working with reservoir simulations can

take advantage of an even more powerful software. We will create routines

for unstructured gridding in both 2D and 3D. The gridding routines must

have the ability to conform to structures. We will look at two different

conformity requirements: (i) structures that should be traced by faces of

the grid, and (ii) structures that should be traced by cell centroids. Typi-

cally, wells should be traced by cell centroids, whereas internal boundaries

should be traced by faces.

In a discrete fracture model (DFM), fractures are represented explicitly

by setting the permeability higher in the fractures. DFM is an excellent

example where the use of grids adapting to structures (in this case fractures)

are useful. When modeling the fractures we need to represent them, either

by grid cells or grid faces. MRST already has a DFM module which was
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created by Tor Sandve and Eirik Keilegavlen, and our module works great

together with this. The performance of multi-point flux approximation for

DFM is discussed in [45, 46].

The rest of this thesis is organized as follows. Chapter 2 goes through

the needed background to understand PEBI-grids. We present two op-

timization algorithms, one that places a set of points along a line path,

whereas the other is the well known Limited-Memory BFGS algorithm.

In Chapter 3, we discuss two methods for creating an optimal Voronoi

diagram. We also introduce the notion of clipped Voronoi diagrams. A

method for creating a clipped Voronoi diagram is then presented. Chap-

ter 4 presents the algorithms used to create grids that conform to faults

and wells, whereas Chapter 5 discusses the most important features of

the implementation of these algorithms. Chapter 6 shows some numerical

experiments. We create some example grids and compare them to grids

found in the literature. Finally, we give a summary and draw conclusions

in Chapter 7.



CHAPTER 2

Background

2.1 2D Delaunay Triangulation

This thesis is the continuation of the work I did in my specialization

project [4]. The specialization project discussed 2D Delaunay triangula-

tions in details, and the presentation of this section will follow that of the

specialization project.

A simplex is a generalization of the notation of a triangle and tetrahe-

dron to arbitary dimensions. In 2D, we define three different types of of

simplices: a point, a line segment, and an ordinary triangle. Later, we will

look at simplices in any dimensions, but for now we stay in 2D. One of the

reasons for this generalization is to simplify notation and theorems.

Definition (Triangulation). A triangulation T of the finite point set P is

the set of simplices T , such that

i) The set of vertices in T equals the point set P .

ii) The convex hull of P equals the union of all simplices in T .

Shewchuk et al. [47] show that there exists a triangulation for any point

set. Note that this does not necessary imply the existence of any triangles

in T as shown in Figure 2.1. In the following we will assume that all sets are

finite unless otherwise is said. The convex hull of a point set {pi}i=1...n = P

7
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(a) (b)

Figure 2.1: (a) A triangulation of three points. This triangulation contains
three vertices, two edges, but no triangles. (b) A triangulation of four
points.

is the smallest convex set containing all the elements in P . Formally, we

define it as

K(P ) =

{
n∑
i=1

λipi : pi ∈ P, λi ≥ 0,

n∑
i=1

λi = 1

}
.

Figure 2.2: Two different triangula-
tions of the same five points. The left
triangulation is Delaunay, while the
right is not.

A point set does in general

have several possible triangula-

tions. The left triangulation shown

in Figure 2.2 is of a very special

class, called the Delaunay triangu-

lation. It was introduced in 1934

by the Russian Boris N. Delaunay

[11], and is the most popular of all

triangulations. The Delaunay tri-

angulation has several nice proper-

ties. Arguably, the most important

is that it maximizes the minimum

angle of the triangles. Before we give the definition of a Delaunay triangu-

lation, we will define what it means for a simplex to be Delaunay [47]:

Definition 2.1. Let T be a triangulation of the point set P . We say that

a triangle in T is Delaunay if the interior of the unique circle intersecting

the vertices of the triangle does not contain any points in P (the empty

circumcircle property). We say that an edge in T is Delaunay if the interior

of some circle intersecting its vertices does not contain any points from P .

Finally, any vertex in T is Delaunay.

The definition of a Delaunay triangulation is just an extension of this

definition and follows naturally:
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Definition 2.2 (Delaunay triangulation). A triangulation T of a point set

P is a Delaunay triangulation if all simplices in T are Delaunay.

Figure 2.3: A Delaunay triangulation of a point set. The gray circles
demonstrate the empty circumcircle principle for Delaunay triangulation;
the interior of each circle should not contain any vertices.

An example of a Delaunay triangulation and the empty circumcircle

property is shown in Figure 2.3. A question one might ask oneself is if

there exists a Delaunay triangulation for all point sets. It turns out, not

only does it exist, it is also unique up to degenerate points. A proof of

existence and uniqueness is given by Shewchuk et al. [47]. The proof builds

on the Delaunay lemma proved in Delaunay’s original paper.

Definition 2.3 (Locally Delaunay). Let e be an edge in a triangulation T .

If e is the edge of one or fewer triangles, it is locally Delaunay. If e is the

edge of the two triangles t1 and t2, we say that e is locally Delaunay if the

interior of some circumcircle of e does not contain any vertices from t1 or

t2.

Note that a locally Delaunay edge is not necessary Delaunay. An ex-

ample, where an edge is locally Delaunay, but not Delaunay is shown in

Figure 2.4. The implication is true the other direction, per definition are

all Delaunay edges also locally Delaunay.

Lemma 2.1 (Delaunay Lemma). Let T be a triangulation of the point set

P in the plane. The following statements are equivalent

i) T is a Delaunay triangulation.

ii) All triangles in T are Delaunay.
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e

(a)

e

(b)

Figure 2.4: A triangulation of four points. The edge e in (a) is locally
Delaunay, while the edge e in (b) is not. Note that the edge e is not
Delaunay in either cases.

iii) All edges in T are Delaunay.

iv) All edges in T are locally Delaunay.

As mentioned, the Delaunay triangulation is unique up to degenerate

points. We say that four points are degenerate if they all lie on the same

circumcircle. The simplest example is to let P be the corners of the unit

square. Regardless which way you draw the diagonal, you have a valid

Delaunay triangulation.

Theorem 2.1 (Uniqueness of the Delaunay Triangulation). Let P be a

point set in the plane. Suppose no four points in P lie on the same circum-

circle. Then P has a unique Delaunay triangulation.

The requirement that no four points can lie on the same circumcircle is

slightly stronger than the empty circumcircle property. We will generalize

this requirement to all types of simplices, and call this strong Delaunay.

Definition 2.4 (Strong Delaunay). Let P be a point set in the plane. We

say that a triangle t is strong Delaunay if the vertices in t are points in

P . Further, the closed circumdisk intersecting the vertices of t does not

contain any points in P , except the vertices of t. We say that an edge e

is strong Delaunay if the endpoints of e are points in P , and some closed

circumdisk of e does not contain any points from P , except the endpoints

of e. Finally, any point in P is strong Delaunay.
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As a consequence of the uniqueness of the Delaunay triangulation,

Shewchuk et al. [47] prove the following proposition

Proposition 2.1. Every Delaunay triangulation of a point set contains all

strong Delaunay simplices.

There are several algorithms for finding the Delaunay triangulation of

a set of points. Dufourd and Bertot [15] use the Delaunay lemma to cre-

ate an edge-flipping algorithm and give a proof of correctness. Guibas et

al. [22] present a randomize incremental algorithm for constructing Delau-

nay triangulations, while Cignoni et al. [8] present a divide and conquer

algorithm. All Delaunay triangulations in this thesis are made by the Mat-

lab function delaunay.

2.2 Higher Dimension Delaunay Triangula-

tion

In Section 2.1, we defined a triangulation of a point set as a simplical

complex whose vertices are points in the point set, and the convex hull of

the point sett equals the union of all simplices. This definition generalizes

to any dimension. We define the k-simplex to be the convex hull of k + 1

affinely independent points. E.g., the 2-simplex is a triangle, and the 3-

simplex is a tetrahedron. Let P be a point set in Rd. The triangulation

of P consists of the k-simplices for k ≤ d with vertices equal points in P

and union equal the convex hull of P . If all points in P are on a line, the

triangulation will only contain lines (1-simplices) and vertices (0-simplices).

If the points lie in a plane, the triangulation will also contain triangles. In

general, if the affine hull of P has k dimensions, the triangulation will

contain at least one k-simplex, but no higher orders. The affine hull of P

is the smallest affine set containing P ,

A(P ) =

{
k∑
i=1

λipi : k > 0, pi ∈ P, λ ∈ R,
k∑
i=1

λi = 1

}
.

The generalization of Delaunay triangulation to higher dimensions is

straight forward. We will sum up the most important properties, as they

are presented by Shewchuk et al. [47]. Let P be a point set in Rd. A

simplex is Delaunay if an open circumball of the simplex does not contain

any points in P . Equivalently to 2D, a simplex is strongly Delaunay if the



12 Chapter 2. Background

closed circumball does not contain any points in P , except the vertices of

the simplex.

Definition 2.5 (Delaunay Triangulation). Let T be a triangulation of the

point set P in Rd. The dimension of the affine hull of P is k ≤ d. The

triangulation T is Delaunay if all k-simplices in T are Delaunay.

Remember that the Delaunay triangulation in the plane is unique if no

four points in P lie on the same circumcircle. For higher dimensions this

property generalizes, and we call the set P generic.

Definition 2.6 (Generic). Let P be a point set in Rd. If the dimension of

the affine hull of P is k, the set P is said to be generic if no k + 2 points

lie on the same ball.

As for the Delaunay triangulation in the plane, the Delaunay triangu-

lation in higher dimensions is unique if the point set is generic.

Proposition 2.2. Let P be a point set in Rd. If P is generic, there exists

exactly one Delaunay triangulation of the set.

Shewchuk et al. [47] give several other properties of higher-order Delau-

nay triangulations. We will, however, only need one more property

Theorem 2.2. Let T be a Delauany triangulation of the point set P . All

strongly Delaunay simplices of P are in the triangulation T .

2.3 Voronoi Diagrams

A grid that is closely related to the Delaunay triangulation is the Voronoi

diagram. The Voronoi diagram has been known for several centuries, but

was first formally described in Georges Voronoi’s paper from 1908 [52].

Definition 2.7 (Voronoi Diagram). Let P = {pi}i=1...n be a point set in

Rd. We call each point for a site. We say that a point x belongs to the

Voronoi cell vpi , if it is at least as close to pi as any other sites in P . That

is,

vpi = {x : x ∈ Rd, |x− pi| ≤ |x− pj | j = 1 . . . n}.

The Voronoi diagram V is the set of all Voronoi cells vp.

Note that in the Voronoi diagram shown in Figure 2.5, some of the cells

extend to infinity. This is true in general; the Voronoi diagram will contain

all points in Rd, because all points have at least one closest site in P .
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(a) Delaunay triangula-
tion.

(b) Delaunay triangula-
tion and Voronoi dia-
gram.

(c) Voronoi Diagram.

Figure 2.5: The Delaunay triangulation and the dual Voronoi diagram of
the same point set.

The faces of a Voronoi cell are the points that are shared by one or more

cells. The faces that have dimension d−1, 2, 1, and 0 are called for Voronoi

facets, Voronoi polygons, Voronoi edges, and Voronoi vertices, respectively.

To simplify the notation in the following theorems, we also include the cell

itself as a face. All faces can be described by the intersection of Voronoi

cells. We define the intersection of the cells vp1 , . . . , vpj as

vp1...pj = vp1 ∩ . . . ∩ vpj .

If vpq is none-empty, the points in vpq are equidistant from both sites p and

q, and at least as close to them as to any other site. In other words, the

open ball centered at any point in vpq with p and q on the boundary, does

not contain any sites from P . If P is generic, vpq will have dimension d−1.

In general, the intersection of j cells will have dimension d + 1 − j, but if

P is not generic it can be higher or lower [47]. In the 2D Voronoi diagram

in Figure 2.5, the sites are generic, thus, the intersection of two cells is an

edge, and the intersection of three cells is a vertex.

There is a close relationship between the Delaunay triangulation and

Voronoi diagram. They are often called dual of each other, in the sense that

the topology of one is defined by the topology of the other. The duality

is defined by a bijection between the faces of the Delaunay triangulation

and the faces of the Voronoi diagram. We state this duality precisely in

the following theorem [47].
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Theorem 2.3 (Duality of Delaunay triangulation and Voronoi diagram).

Let P be a generic point set in Rd. Let V and T be the associated Voronoi

diagram and Delaunay triangulation, respectively. Let S = {s1, . . . sj} ⊆ P
be a subset of the sites in P . The convex hull of S is a k-face of T if and

only if vs1,...sj is a (d− k)-face of V.

Proof. First, assume that the convex hull of S is a k-face of T . Then there

exists a closed ball B that intersects s1, . . . , sj , but does not contain any

sites from P \ S. The center of this ball is equidistant to all sites in S,

hence, the intersection vs1...sj is not empty; i.e., it is a Voronoi face of P .

Let Π be the affine space that is orthogonal to the affine space of S and

contains the center of B. The space Π has dimension (d − k) because the

dimension of A(S) is k. All points in Π are equidistant to all sites in S,

and no points in Rd \Π are equidistant to all sites in S, thus, vs1...sj ⊆ Π.

Let 0 < ε = minp∈P\S d(B,p) be the minimum distance from the ball B

to any sites in P \ S. Any points in Π that are closer to the center of B

than 1
2ε are on the face vs1...sj , hence, the dimension of vs1...sj is the same

as Π, that is (d− k).

Now assume that vs1...sj is a Voronoi (d − k)-face. Since P is generic,

there is no sj+1 ∈ P \S such that vs1...sj = vs1...sjsj+1 . In fact, the number

of cells must equal j = k + 1 if vs1...sj is to have dimension (d − k). We

can therefore find a closed ball centered at some point in vs1...sj that has

s1, . . . , sj on its boundary and does not contain any sites P \S. The convex

hull of the k+1 sites in S is a k-simplex and it is strongly Delaunay, hence,

it is a k-face in the Delaunay triangulation.

The main results of the duality theorem is for j = 2 and j = d+ 1. For

j = 2 the theorem says that Voronoi cell vs1 and vs2 share a Voronoi facet

if and only if there is a Delauany edge between site s1 and s2. For j = d+1

the theorem says that all Voronoi vertices are the center of a circumball of

a Delaunay (d+ 1)-simplex. Figures 2.5 and 2.6 show the duality in 2D.

Heinemann et al. [24] introduced Voronoi diagrams to reservoir simula-

tions in 1991. In reservoir simulation it is common to call Voronoi diagrams

for PEBI-grids (PErpendicular BIsector). We will give a new definition of

Voronoi diagrams, which makes it obvious why they are also given this

name.

Definition 2.8 (PEBI-Grid). Let P be a finite point set in Rd, and let B
be its PEBI-grid. A site pi ∈ P generates a cell bpi in the following way.

Create the perpendicular bisector planes of pi and all other sites in P . Each
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(a) Delaunay triangula-
tion.

(b) Delaunay triangula-
tion and Voronoi dia-
gram

(c) Voronoi Diagram.

Figure 2.6: The duality of a Delaunay triangulation and a Voronoi dia-
gram in 2D. Delaunay vertices correspond to Voronoi cells (blue points).
Delaunay edges are perpendicular to the corresponding Voronoi edges. The
circumcenter of a Delaunay triangle corresponds to a Voronoi vertex (pur-
ple points).

bisector cuts Rd in two. Let H(pi,pj) be the half-space that contains the

site pi. The cell bpi is the intersection of all of these half-spaces,

bpi =
⋂

pj∈P\pi

H(pi,pj).

That B in fact is a Voronoi diagram is easily shown. Consider any point

x ∈ Rd, and suppose it belongs to cell vpi in the Voronoi diagram. Since it

is at least as close to pi as any other point pj , it will be in the half-space

H(pi,pj) for all j. Hence, x is in the intersection of all of these half-spaces.

Similarly, if x is in the PEBI-cell bpi , it is in all half spaces H(pi,pj). That

it is in the half space H(pi,pj) means that it is closer to pi than pj . This

is valid for all j, hence, it is in the Voronoi cell vpi .

Because of the close connection between Voronoi diagrams and Delau-

nay triangulations, we expect there to be a connection between the defini-

tion of PEBI-grids and Delaunay triangulations. It turns out that the only

perpendicular bisectors we need to create a PEBI-cell bpi , are of those sites

connected to pi by edges in the Delaunay triangulation.

Proposition 2.3. Let T and B be the Delaunay triangulation and the

PEBI-grid of a point set P . Let pi be a vertex in the triangulation T ,

and p1
i ,p

2
i , . . . ,p

k
i be all vertices connected to pi by an edge in T . Let

b̃pi = H(pi,p
1
i )∩. . .∩H(pi,p

k
i ) be the cell created from pi and its Delaunay

neighbors. Then b̃pi equals the PEBI-cell bpi .

Proof. We will only give a proof for when P is generic, but it can be
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p

Figure 2.7: Creation of a PEBI cell given a Delaunay triangulation. The
dotted lines are edges in the Delaunay triangulations connected to the site
p. The solid lines are bisectors of these edges. The shaded area is the
PEBI-cell bp.

extended to non-generic cases also. Assume vpipl = ∅, that is, cell pi

and pl are not neighbors. The half-space H(pi,pl) can not be a re-

striction when creating the cell vpi . If it was, there would be a point

on the bisector of pi and pl that is closer to the two sites than any

other sites. This is a contradiction since we assumed vpipl = ∅. We

can therefore remove the half-space from the intersection without affect-

ing the cell vpi =
⋂

pj∈P\pi
H(pi,pj) =

⋂
pj∈P\{pi,pl}H(pi,pj). In a

similar way, we can remove all sites that are not neighbors of vpi . Let

S = {s1, . . . sj} = {s ∈ P \ pi : vpis 6= ∅}. We can define the

PEBI-cell as bpi =
⋂

pj∈P\pi
H(pi,pj) =

⋂
pj∈S H(pi,pj). All the faces

vpis1 , vpi,s2 , . . . , vpi,sj are (d − 1) faces of the Voronoi diagram B, and by

the duality theorem, are all edges between pi and s ∈ S edges in the

Delaunay triangulation.

Figure 2.7 shows the construction of a PEBI-cell from a Delaunay tri-

angluation.

The most popular softwares for creating Voronoi diagrams are arguably

Qhull [3] and CGAL [27]. Most of the 2D Voronoi diagrams in this thesis

are created by the MRST function pebi. This function creates the Voronoi

diagram as the dual of the Delaunay triangulation. In Section 3.4 we will

discuss clipped Voronoi diagrams. To create such diagrams, we have imple-

mented our own routine clippedPebi2D. This routine generates Voronoi

diagrams by calculating the half-space intersections from the PEBI-grid

definition. The 3D Voronoi diagrams are created using Qhull.
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2.4 Limited-Memory BFGS

One of the most popular quasi-Newton algorithms is the Limited-Memory

BFGS (L-BFGS) method. It is simple and easy to implement (our Matlab

implementation is less than 80 lines of code). The L-BFGS method is a

variant of the BFGS method. We will explain the differences later, but the

big advantage of quasi-Newton methods, compared to Newton’s method,

is that we never have to calculate the Hessian of the objective function.

Instead, it is approximated by looking at the curvature of the previous

steps taken. We will give a brief summary of the L-BFGS method. A

detailed derivation is given by Nocedal and Wright [40].

A general unconstrained optimization problem can be formulated as

O = min
x∈Rd

f(x),

where f(·) is a function mapping from Rd to R. The point that obtains the

optimal value O is called the optimal point x∗. Finding an analytic solu-

tion to an optimization problem can be extremely hard, even impossible,

and numerical methods must therefore be used. A well known class of nu-

merical methods for solving an optimization problem is the quasi-Newton

methods. The methods are iterative, and require the evaluation of both the

objective function and its gradient. At each iterate, the objective function

is approximated by a quadratic function

mk(p) = f(xk) +∇f(xk)>p +
1

2
p>H−1

k p, (2.1)

where H−1
k is an approximation of the Hessian at the point xk. The mini-

mizer of the quadratic approximation mk(·) is

p∗k = −Hk∇f(xk). (2.2)

This optimum is used as a search direction for the new iterate

xk+1 = xk + αp∗k.

The constant αk is a step length parameter chosen to satisfy the Wolfe

conditions [53][40]:

f(xk + αkpk) ≤ f(xk) + c1αk∇f(xk)>pk,

∇f(xk + αkpk)>pk ≥ c2∇f(xk)>pk,
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with 0 < c1 < c2 < 1. If H−1
k is chosen to be the exact Hessian at each

iteration, we obtain Newton’s method. The beauty of the quasi-Netwon

methods is that we do not need to compute the Hessian, but still obtain

superlinear convergence.

Arguably, the most popular quasi-Newton method is the BFGS method.

Instead of approximating the Hessian, such as the DFP method [10], it

estimates the inverse Hessian directly. We then avoid inverting any matrices

and only need to calculate matrix vector products. Define sk = xk+1−xk,

yk = ∇f(xk+1)−∇f(xk) and ρk = (y>k sk)−1. At each step we update the

inverse Hessian as

Hk+1 = (I − ρksky>k )Hk(I − ρkyks>k ) + ρksks
>
k . (2.3)

We need to specify some initial H0 in order to solve the first step. There

is not one H0 that works best in all cases, the choice is very problem

dependent. A common choice is the identity matrix, or some scaled version

of it.

For large systems, the cost of storing and computing the Hessian ap-

proximation Hk might be very large. As a solution to this problem the

L-BFGS method is introduced. The BFGS method uses all previous itera-

tion steps to approximate the inverse Hessian, but is this necessary? As the

name suggest, the L-BFGS method only remembers the last m iterations.

It uses these steps to update the inverse Hessian in the same way as BFGS.

This means that L-BFGS and BFGS take exactly the same steps the first

m iterations, but after that they will start to differ. A larger m will usually

result in fewer iterations to convergence, but it is a trade-off with increased

computational cost at each iteration. In practice m, is usually set to a

value between 3 and 20.

The inverse Hessian approximation Hk will in general be dense. Instead

of storing the full matrix, we store the latest m vectors {si}k−1
i=k−m and

{yi}k−1
i=k−m and reconstruct the inverse Hessian H from these. We define

Vk = I − ρkyks>k . By unraveling the approximated inverse Hessian from

Equation (2.3) we can express the L-BFGS approximation as a sum of
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vector and matrix products

Hk = (V >k−1 . . . V
>
k−m)H0

k(V >k−m . . . V
>
k−1)

+ρk−m(V >k−1 . . . V
>
k−m+1)sk−ms>k−m(V >k−m+1 . . . V

>
k−1)

+ρk−m(V >k−1 . . . V
>
k−m+2)sk−m+1s

>
k−m+1(V >k−m+2 . . . V

>
k−1)

...

+ρk−1sk−1s
>
k−1.

As for the BFGS method we need to choose an initial H0, however, we

allow H0 = H0
k to vary at each iteration. It is not trivial to choose a H0

k , but

a method that has proven effective in general is to choose H0
k =

s>k−1yk−1

y>k−1yk−1
I.

This scaled version of the identity matrix tries to approximate the size of

the true Hessian. By this choice of H0
k , the search direction p∗k will be

reasonable scaled, and a step length of αk = 1 will be accepted in most

cases.

2.5 Intersection of Geometrical Objects

In this section, we will compute the intersection of various geometrical

objects. These intersections are used by the algorithms described later in

this thesis. Specifically, the line-plane intersection is used by the polygon

clipping algorithm in Section 3.3, and the circle and sphere intersections

are used by the fault conformity algorithms in Chapter 4.

Line-Plane Intersection

The intersection of a line segment and a plane is easily calculated. Let the

line segment be defined by its two endpoints v1 and v2. We describe the

plane by its normal vector n and a point x on the plane. Let I be the

intersection point of the line segment and the plane. The two triangles in

Figure 2.8 are similar, thus, the ratios of the side lengths are equal

d(v1, I)

d(v1, r1)
=

d(v2, I)

d(v2, r2)
. (2.4)

The points r1 and r2 can be found by projecting v1 and v2 onto the plane.

We define t as the relative length from v1 to the intersection

t =
d(v1, I)

d(v1, I) + d(v2, I)
.



20 Chapter 2. Background

Dividing over and under by the length from v2 to the intersection yields,

t =
d(v1, I)/d(v2, I)

(d(v1, I) + d(v2, I))/d(v2, I)
=

d(v1, r1)

d(v1, r1) + d(v2r2)
. (2.5)

Here, we have used the identity from Equation (2.4) to simplify the ex-

pression. The intersection is found by taking a t step length along the line

segment:

I = t(v2 − v1) + v1.

r1

I

r2

v2

v1

Figure 2.8: The two triangles, (v1r1I) and (v2r2I) are similar.

There are a few special cases that the above calculation does not take

into consideration. If v1 and v2 are on the same side of the plane, the

intersection is empty. If d(v1, r1) = d(v2, r2) = 0 the line coincides with

the plane, and the intersection is the whole line. If d(v1, r1) = 0 and

d(v2, r2) 6= 0, the intersection is at the end point v1 and vice versa.

Circle-Circle Intersection

The intersection of two circles is either two real points, one real point, or

two imaginary points. For notation see Figure 2.9. The known variables are

the circle centers C0 and C1 together with the circle radii R0 and R1. The

distance d between the circles is implicitly given. First, we shift and rotate

our coordinate system such that the first circle is centered at the origin and

the second circle is centered at (d, 0). The intersection points in the new

coordinate system will have coordinates (a,±h). At the intersection, the

equations for both circles

R2
0 = a2 + h2

R2
1 = (a− d)2 + h2 = a2 − 2ad+ d2 + h,
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a

R1

C1

R0
d

C0
h

Figure 2.9: Intersection of two circles with centers in C1 and C2 and radii
R1 and R2.

must be satisfied. If d = 0 the intersection is either empty, or R1 = R2

and the circles coincide. Otherwise, we substitute the first equation into

the second and obtain an expression for a

a =
d2 +R2

0 −R2
1

2d
.

Putting this back into the first equation we get

h = ±
√
R2

0 − a2.

If a2 < R2
0 we have to real solutions. If a2 = R2

0 there is only one intersec-

tion point, and if a2 > R2
0 the intersection points are imaginary.

Let n‖ = C0−C1

|C0−C1| be the normal vector pointing from C0 to C1 and

n⊥ be the vector orthonormal to n‖. Transforming back to the original

coordinate system, we obtain the intersection points on vector format

pint = C0 + an‖ ± hn⊥.

Sphere Intersections

Suppose we have three spheres centered at C0, C1, and C2 with radii R0,

R1, and R2. To calculate their intersection we rotate and shift our coordi-
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p1 = (x1, 0, 0)

p2 = (x2, y2, 0)

(0, 0, 0)

(x, y, 0)

e1

e2

e3

Figure 2.10: The cross section of three spheres. The spheres are centered at
origin, p1, and p2. The point (x, y, 0) is the projection of the intersection
into the xy-plane.

nate system such that C0 is centered at origin, C1 is centered at (x1, 0, 0)

and C2 is centered at (x2, y2, 0). For further notation, see Figure 2.10. The

orthonormal basis for our new coordinate system is

e1 =
C1 −C0

|C1 −C0|
, v2 = C2 −C0 − 〈C2 −C0, e1〉e1

e2 =
v2

|v2|
e3 = e1 × e2.

The coordinates of the sphere centers p1 and p2 in the new coordinate

system is found by first shifting the sphere centers, and then take the inner

product with the three basis vectors. By construction, the z-coordinate of

all sphere centers will equal 0. Equivalently will the y-coordinate of p1 is

also equal 0. The other coordinates are

x1 = |C1 −C0|, x2 = 〈C2 −C1, e1〉, y2 = 〈C2 −C1, e2〉.
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At the intersection, all sphere equations must be satisfied:

R2
0 = x2 + y2 + z2

R2
1 = (x− x1)2 + y2 + z2

R2
2 = (x− x2)2 + (y − y2)2 + z2.

Subtracting the second equation from the first we eliminate both the z and

y variable

x =
R2

0 −R2
1 + x2

1

2x1
.

Notice that this equals the x-coordinate for the circle-circle intersection.

We have assumed that x1 6= 0. If x1 equals zero, sphere one and two either

coincide or do not intersect. To find the y-coordinate we subtract the third

equation from the second

2yy2 = R2
1 + x2

2 + 2xx1 − x2
1 −R2

2 + y2
2 − xx2,

y =
R0 −R2

2 + y2
2

2y2
− x2

y2
x.

If y2 = 0, the equations can only be satisfied if R2
1 − (x− x1)2 = R2

2 − (x−
x2)2, i.e., the intersection is either empty or a circle.

Substituting back into the first equation we obtain the z-coordinate

z = ±
√
R2

0 − x2 − y2.

Transforming back to the original coordinate system, the sphere intersec-

tions are

pint = C0 + xe1 + ye2 ± ze3.

2.6 Placing Points Along a Path

We wish to place a set of points {ci}i=1,...,n = C ⊂ Rd along a path.

The desired distance between two consecutive points is given by a function

f(·, ·) : Rd → R. We parametrize the path such that l(ti) = ci. Further,

l(0) is the start point of the path, and l(T ) is the end point of the path.
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This gives the following requirement on the set of points C:

ti+1∫
ti

|l′(t)|dt = f(ci, ci+1) (2.6)

If f is a constant, the points are placed equidistant along the line. In

this case, Equation (2.6) reduces to

ti+1∫
ti

|l′(t)|dt = ds,

where ds is the desired distance between the points. The total length of

the path is

S =

tn∫
t1

|l′(τ)|dτ.

The number of points in the set C will change depending on the ratio of the

desired distance and length of the path. To achieve the desired distance,

the number of points must be n = S
ds

. In general, the fraction S
ds

will not

be a integer. There are two solutions to this problem. We can keep the

desired distance ds, but set 0 < t1 and tn < T . The start and end points

of the path will then not be in the set C. Alternatively, we can give some

slack to the desired distance. We adjust the distance between the points to

be a factor of the total line length S. The distance between the points will

then be either slightly shorter or slightly longer than the desired distance.

We can find the points in C by using Newton’s method. We wish to

solve Equation (2.6) for the unknown vector t = [t1, . . . , tn]>. Remember

that ci = l(ti). There are n unknowns, but only n− 1 equations. The last

equation is defined depending on the situation, e.g., t1 = 0 if we want to

place the first point at the start of the path. We define the vector function

g = [g1, . . . , gn−1]> as

gi(t1, . . . , tn) =

ti+1∫
ti

|l′(τ)|dτ − f(l(ti), l(ti+1)). (2.7)

The function g is the difference between the actual distance and the desired

distance. When g = 0, we have a solution to Equation (2.6). By using the

fundamental theorem of calculus, together with the chain rule, we obtain
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the partial derivative:

∂gi
∂tj

=


|l′(ti+1)| − f ′(l(ti), l(ti+1))l′(ti+1), j = i+ 1

−|l′(ti)| − f ′(l(ti), l(ti+1))l′(ti), j = i

0, Otherwise.

The Jacobian of the vector function g is

J(t) =


∂g1(t)
∂t1

∂g1(t)
∂t2

0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0

0 · · · 0 ∂gn−1(t)
∂tn−1

∂gn−1(t)
∂tn

 .

To find g = 0, we start by making an initial guess t0. Depending on the

parametrization, placing t1, . . . tn equidistant between 0 and T might be a

good choice. At each iteration, the Newton’s update is

tk+1 = tk − J(tk)−1g(tk),

which we continue until convergence.

In the case where the desired distance between points is constant, the

above method is straight forward. We calculate the number of points

needed, make an initial guess, and run the Newton’s update until conver-

gence. To find the points for a non-constant function f is harder. Already

when deciding the number of points we need, we might run into problems.

For some functions f , there might be several solutions to Equation (2.6),

and the number of points might be different for each solution. We will

present an algorithm for placing the points along the path for a general

function f . The algorithm adjusts the number of points on the fly, and

does not need to evaluate the gradient of the distance function f .

Initialization

To find an initial set of points, we first assume f is constant. The desired

distance between points can by found by estimating the average desired

distance, e.g., set ds = f(l(0), l(T )). The initial set of parameter values

t0 is chosen such that the points points c0
1, . . . , c

0
n0 are placed equidistant

along the path.
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Main Loop

For each iteration we either insert a new point, remove a point, or move the

points. What we do depends on the difference between the left and right

side of Equation (2.6). The vector gk is found by evaluating Equation (2.7)

at iteration k. The vector measures the error of the distances between the

points. If a distance error gki > 0 is positive, it means that the distance

between ci and ci+1 is too long. If a distance error gki < 0 is negative, it

means that the distance between ci and ci+1 is too short.

There are two cases which add or remove points.∑nk

i=1 g
k
i > min

i=1,...nk−1
f(cki , c

k
i+1): A point is added.

∑nk

i=1 g
k
i < − max

i=1,...nk−1
f(cki , c

k
i+1): A point is removed.

If the sum of the distance errors is greater than the smallest desired dis-

tance, we add a point. The point is added on the path segment that has

the largest distance error. We let the new point be

cnew = l

(
tki + tki+1

2

)
; gki ≥ gkj , ∀ j.

If the sum of all distance errors is less than negative the longest desired

distance, we remove a point. We remove a point on the path segment that

is most too short; that is, the most negative gki .

If no points are added or removed, we move the points based on their

distance error gki . If a path segment is too short, we wish it to be longer

and can imagine it pushes the two points that it is connected to away. If

a path segment is too long, we can imagine it pulls the two points that it

is connected to towards its center. We define the force on each point as

the difference of the distance errors of the two path segments the point is

connected to:

F ki = (gki − gki−1).

If F ki > 0 we wish to move point cki towards the end of the path. If F ki < 0

we wish to move point cki towards the start of the path. The force also gives

a good estimate for how long we wish to move the points. However, we are

only able to move the points through the parametrization l(·). Changing

ti by a tiny amount might change the position of ci significantly and vice

versa. We therefore scale the force by the factor
tki−1−t

k
i+1

|ck
i−1−ck

i+1|
to capture this

difference. We move the parametrization values based on the forces acting



2.6. Placing Points Along a Path 27

on the corresponding points:

tk+1
i = tki + βk

tki−1 − tki+1

|cki−1 − cki+1|
F ki .

The constant βk is allowed to vary for each iteration. We could find βk

the same way as for the line search procedure in the L-BFGS algorithm in

Section 2.4, but we have experienced that fixing β ≈ 10−1 for all iterations

works well.
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CHAPTER 3

Grid Optimization and Clipping

In this chapter, we will look at how to create bounded Voronoi diagrams.

To this end, an efficient method for computing the intersection of a Voronoi

diagram and a surface is presented. Lastly, we present two different ap-

proaches for placing Voronoi sites such that the associated Voronoi cells

are as uniform as possible.

3.1 Restricted Voronoi Diagram

The restriction of the Voronoi diagram to the surface ∂Ω is called the re-

stricted Voronoi diagram (RVD). In the literature it is also called restricted

Voronoi tessellation [55]. If {pi}i=1,...n = P is a set of Voronoi sites, the

RVD cell vRpi is the subset of the surface ∂Ω that is at least as close to the

site pi as any other sites,

vRpi = {x, x ∈ ∂Ω ⊂ Rd, |x− pi| ≤ |x− pj | ∀ pj ∈ P}.

As you can see from Figure 3.1, the RVD cell vRpi is intersection of the

Voronoi cell vpi and ∂Ω.

To create the RVD, we need to represent the bounding surface. In

the following we will assume the surface is given by a triangulation. Let

{ti}mi=1 be the set of triangles that triangulate the surface ∂Ω. The edge-

neighborhood of the triangles is also know, that is, for each edge in the

29
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(a) (b)

Figure 3.1: A 2D Voronoi diagram and a corresponding clipped Voronoi
diagram. (a) A Voronoi diagram. (b) The Voronoi diagram clipped against
a regular dekagon. Each colored boundary edges corresponds to one RVD
cell.

triangulation we know which two triangles that have that edge in common.

A brute force method for computing the RVD is to compute the intersection

of all Voronoi cells and all triangles. This requires the computation of

m times n number of intersections, and usually very many of these are

empty. We can do much better, and in the following we will present an

algorithm that only computes the non-empty intersections. The algorithm

is equivalent to the methods presented by Yan et al. [55, 56].

Initialization

First, the Delaunay triangulation of P is created. Remember from Propo-

sition 2.3 that the Voronoi cell k can be defined by the bisectors of pk and

the sites connected to pk by an edge in the Delaunay triangulation. When

we cut a triangle against the bisectors of site pk, we therefore only need

to cut against these bisectors. We will assume P ⊂ R3. The 2D case can

easily be derived from this by thinking of line segments as surfaces in 2D.

The algorithm starts by picking a triangle ti. The Voronoi site pk that is

closest to the centroid of ti is then found. This will guarantee that ti and

pk are incident pairs, that is, the intersection of ti and vpk is non-empty.

We push ti and pk into a queue Q.

Main Loop

The triangle site pair in front of Q is popped out. To simplify notation,

assume the popped triangle is t1 and the popped site is p1. Assume also
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p5

p6

p7 p3

p4

p1

w1

w2

w3

w4

t1

t3

t4

t2

p2

Figure 3.2: Clipping triangle t1 against the bisectors of site p1. The red
shaded area is the intersection of triangle t1 and cell vp1 . The triangles
t2-t4 are the neighbor triangles of t1. The vertex w1 is a type 1 vertex, w2

and w4 are type 2 vertices, and w3 is a type 3 vertex.

the bisectors are ordered such that the k’th bisector is [p1,pk]. We use

the polygon clipping algorithm described in Section 3.3 to clip triangle t1

against all bisectors of site p1 and its Delaunay neighbors. The normal

vector for bisector k is pk−p1

|pk−p1| , and we pick the midpoint 1
2 (p1 + pk) as a

point on the bisector. For each vertex w returned from the clipping, we

keep track of its bounding planes. There are three different possibilities:

1) w is an original vertex of triangle t1,

2) w is the intersection of one bisector and a triangle edge,

3) w is the intersection of two bisectors and triangle t1.

The clipped triangle in Figure 3.2 shows the three different vertex types.

The symbolic representation is stored in a vector symV (pi) = (k1, k2, k3).

The symbolic representation of a vertex can always be represented by three

integers. A negative index k corresponds to the (−k)’th triangle, while a

positive index k corresponds to the k’th bisector. When a new vertex is

inserted during the clipping procedure, we must find its symbolic represen-
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tation. New vertices are only inserted at the intersection of polygon edges

and bisectors. Suppose a vertex w is inserted at the intersection of the edge

between the vertices vi and vj and bisector k. The symbolic representation

symV (w) is found by taking the intersection of the symbolic representation

of vi and vj and add the bisector index k:

symV (w) = symV (vi) ∩ symV (vj) ∪ k.

If symV (vi) = (−3,−2,−1), symV (vj) = (−2,−4,−1), and the edge is

clipped against bisector 4, the symbolic representation of the new vertex is

symV (w) = (−2,−1, 4). The symbolic representation is very useful as it

defines the topology of the RVD.

After cell k is clipped, we add new triangle site pairs to the queue based

on the symbolic representation. If symV contains a positive index k, the

bisector [p1,pk] cut the triangle. That means that the triangle t1 and site

pk are incident pairs, and they are added to the queue. If symV contains a

negative index j, this means the triangle t−j and site p1 are incident pairs.

In Figure 3.2 the incident pairs p1, t2 and p1, t3 are added to the queue

because symV (w1) = (−1, −2, −3). Next, the incident pairs p3, t1 and

p4, t1 are added to the queue because symV (w3) = (−1, 3, 4).

For each cell we have a list of incident triangles. When a triangle site

pair is added to Q, the triangle is also added to the cell’s incident list. A

triangle site pair is not added to the queue if the triangle already is in the

cell’s incident list.

3.2 Clipped Voronoi Diagram

The Voronoi diagram spans the whole of Rd, and some cells will extend to

infinity. In many application we wish to have a bounded diagram. E.g.,

when the diagram represents a reservoir, it should be bounded by the reser-

voir boundaries. In computer graphics we might wish to clip the Voronoi

diagram against the boundary of the object we try to model. We will call

the Voronoi diagram that is restricted to some subdomain Ω of Rd for the

clipped Voronoi Diagram (ClVD). Formally we define a clipped Voronoi cell

as

vCpi = {x, x ∈ Ω ⊂ Rd, |x− pi| ≤ |x− pj | ∀ pj ∈ P}.

The RVD and ClVD are connected in the sense that the RVD defines the

boundary of the ClVD, that is, the RVD corresponds to all facets of the

ClVD that belongs to only one cell. The colored edges in Figures 3.1 and 3.3
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(a) (b)

Figure 3.3: A ClVD of a sheep and a Pac-Man shape. The yellow cells are
outer ClVD cells, and the white cells are inner ClVD cells. The colored
edges corresponds to cells in the RVD.

show a RVD of the corresponding ClVD.

We define two types of ClVD cells. The inner ClVD cells are those

cells that are not cut by the boundary, and the outer ClVD cells are those

that are. The inner ClVD cells are equal the corresponding Voronoi cells,

and we can compute them by our favorite Voronoi diagram algorithm. The

two types of cells are shown in Figure 3.3. If we can locate the outer and

inner cells, we only need to treat the outer cells specially by clipping them

against the boundary.

In the following we will present an algorithm that both locates and clips

the outer cells simultaneously. The algorithm can be summarized in three

steps.

1. Construct the RVD as described in Section 3.1.

2. For all inner cells, construct the Voronoi diagram by any desired

method, e.g., the Qhull algorithm.

3. For all outer cells, the RVD defines the outer facets. The remaining

vertices are calculated as the dual of the Delaunay triangulation. Any

vertices outside the domain Ω are removed.

The main part of this algorithm is the computation of the RVD. Any RVD
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Figure 3.4: (a) Polygon before it is clipped against a plane (dashed line).
(b) Polygon after it is clipped.

cells that are non-empty correspond to outer cells. All other sites corre-

spond to inner cells. The inner cells do not cut the boundary and we create

them using Qhull. The RVD only gives us the vertices on the boundary.

The remaining vertices of the outer cells are computed as the dual of the

Delaunay triangulation; a vertex of the Voronoi diagram equals the center

of the circumball of a tetrahedron in the Delaunay triangulation. For all

outer sites pi we locate all tetrahedrons that have pi as a vertex. A vertex

is added to the cell vCpi at the center of each circumball of the tetrahedrons.

We have to be careful since the centers of some circumballs might lay out-

side our domain. This is not that uncommon, e.g., see Figure 3.1 where

one vertex is outside the domain. We check each vertex, and remove any

outside the domain.

3.3 Clipping a Polygon

In Section 3.1, we presented an algorithm for creating the restricted Voronoi

diagram. The core of this algorithm is to clip polygons against the bisectors

in the Delaunay triangulation. To clip a polygon, we use a similar method

as the polygon clipping presented by Sutherland and Hodgman [49]. As a

reference, see Figure 3.4.

Let {vi}ni=1 be the set of vertices of the polygon. The vertices are

ordered counterclockwise such that the line segments (v1v2), (v2v3), . . . ,

(vn−1vn), (vnv1) equal the edges of the polygon. The polygon is a surface

embedded in R3. We will clip the polygon against a plane, so that the part

of the polygon on one side of the plane is kept, while the part on the other

side is removed. The plane is described by a normal vector n and a point
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x0 on it. We define the distance from a vertex vi to the plane to be the

shortest distance between them

di = (vi − x0)>n.

We allow for negative distances, and vertices on different sides of the plane

will have opposite signs. We assume the normal vector n points outward,

so valid vertices will have a negative distance. The clipped polygon has

vertices {w1, . . .wm} = W . To find the vertices of the clipped polygon we

iterate over all edges of the polygon. At each iteration i, the sign of di and

di+1 is checked. Depending on the sign of d, there are three cases which

will add a vertex to W .

1. If both di and di+1 are less than zero, vertex vi+1 is added to W .

2. If the signs of di and di+1 are opposite, the edge (vivi+1) crosses the

plane. The intersection of (vivi+1) and the plane is added to W .

3. If di is positive and di+1 is negative, the vertex vi+1 is added to W .

Notice that case three can only be satisfied if case two is satisfied. What is

important is the order in which vertices are added to the cut polygon. If

the vertex from case 3 were to be added before the vertex from case two,

W would no longer be in a counterclockwise order. The intersection of

the line segment and the plane is calculated as in described in Section 2.5.

The distance from vi to the plane ri needed in Equation (2.5) equals di

up to a sign. Equivalently for the vertex vi+1. The pseudocode is given in

Algorithm 1.

3.4 Optimal Voronoi Diagram

The mass center, or mass centroid, of a Voronoi cell is given by

cpi =

∫
Vpi

yρ(y) dy∫
Vpi

ρ(y) dy
,

where ρ(y) is a given mass density function. A special class of Voronoi

diagrams is one where the sites coincide with the associated mass centroid.

If a Voronoi diagram has this property, we call it a centroidal Voronoi

diagram (CVD). In the literature it is also called for centroidal Voronoi

tesselation. The mass center of the boundary cells in a Voronoi diagram

will equal infinity. We therefore clip the Voronoi diagram to a subset of Rd.
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Algorithm 1 Polygon Clipping

v ← polygon vertices
b← plane
di ← distance from vi to b
for all edges (vivi+1) do

if di < 0 and di+1 < 0 then
W ← vi+1

end if
if sign(di) 6= sign(di+1) then
W ← (vivi+1) ∩ b
if sign(di+1) < 0 then
W ← vi+1

end if
end if

end for
return W

This is equivalent to the Clipped Voronoi diagram discussed in Section 3.2.

Formally we define CVD as follows

Definition 3.1 (CVD). Let Ω ⊂ Rd be a bounded subset, and let P be a

set of sites. The associated Voronoi diagram V is said to be a centroidal

Voronoi diagram if ∫
Vpi
∩Ω

yρ(y) dy∫
Vpi
∩Ω

ρ(y) dy
= pi (3.1)

for all Voronoi cells.

A CVD and a none CVD are shown in Figure 3.5. Notice how the CVD

cells are much more regular, and evenly sized. This is one of the reasons

CVD is called an optimal Voronoi diagram. A great review about details

and applications of CVD is given by Du et al. [14].

How can one generate a CVD? The two sides of Equation (3.1) both

depend on the site pi. Further, the set of equations are coupled together

by edges in the associated Delaunay triangulation. Finding an analytic

expression is extremely hard, if not impossible except for the most simple

cases. Therefore, several numerical schemes have been proposed. One of

the earliest methods for computing the CVD is using a fixed point iteration

scheme. First, we give an initial guess of sites. We construct the Voronoi

diagram for these sites, and compute the centroids. These centroids are

used as a new guess for the sites, and the process continues until conver-

gence. This scheme is extremely simple and easy to implement, however,

linear convergence makes it quite slow.
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(a) (b)

Figure 3.5: A Voronoi diagram (a) compared to a centroidal Voronoi di-
agram (b). Dots are Voronoi sites, while circles are mass centers. Both
diagrams have a constant density function and 10 sites.

We define the CVD energy function as [14, 26]

F (x) =

n∑
i=1

∫
Vpi
∩Ω

ρ(y)|y − ci|2dy. (3.2)

A necessary condition for F to be minimized is pi = ci, that is, the Voronoi

sites coincide with the mass centroids [14]. The gradient of F is [14, 26]

∂F

∂pi
= 2mi(pi − ci),

where mi is the mass of the associated Voronoi cell. It was long thought

that the energy function at most was continuous, due to the change in

topology when the sites are moved. However, Liu et al. [33] proved that for

density functions ρ ∈ C2 the energy function is two times differentiable for

convex domains, and almost always two times differentiable for non-convex

domains.

The exact Hessian is given explicitly [26, 33], and we can therefore use

Newton’s method to find the minimizer of the energy function. However,

the computation of the Hessian is expensive, and Liu et al. [33] show the

advantages of using quasi-Newton methods. Specifically, they show that

the L-BFGS algorithm, described in Section 2.4, performs better than both

Newton’s method and fixed-point iterations.

Figure 3.6 shows two ClVDs of an elephant. The first ClVD is created

by placing the set of sites at random. To create the second ClVD we use the

randomly generated sites as an initial guess. We find the minimum of the

CVD energy function by using the L-BFGS algorithm. At convergence we
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(a) (b)

Figure 3.6: A ClVD of an elephant. Black dots are Voronoi sites. Each cell
is colored in a unique color, and corresponding cells in the two diagrams
have the same color. (a) Initial ClVD. The sites are chosen randomly. (b)
The ClVD after the CVD energy function is minimized.

obtain a CVD. Notice that there are only four sites inside the trunk of the

elephant in the initial ClVD. The optimization procedure moves sites from

the head to the trunk so that all cells in the converged Voronoi diagram

have about the same size.

3.5 Optimal Delaunay Triangulation

In Section 3.4, we looked at CVDs and why we call them optimal Voronoi

diagrams. Another approach to create a Voronoi diagram with nice prop-

erties, is to study the dual Delaunay triangulation. A common measure for

the quality of a triangle grid is how uniform the length of the edges are.

Persson and Strang [43] present a very successful algorithm for optimizing

a Delaunay triangulation based on forces. The Delaunay triangulation is

related to a physical truss structure. The edges in the Delaunay triangula-

tion are associated with springs, whereas vertices are associated with the

joints connecting the springs. The forces on each joint will depend on the

difference between the actual length of the springs and their uncompressed

length.

The uncompressed length l0 of a spring is based on an element size

function h. We evaluate the spring at its midpoint. For the domain [0, 1]×
[0, 1] and element size function h(x, y) = 1 + x, the uncompressed length

of the springs will be about twice as big in the right side of the domain as

the left side.
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F (pi)

(a)

F (pi)
R

(b)

Figure 3.7: Forces acting on a joint pi. Blue forces are the repulsive forces
from each edge. The red force F (pi) is the sum of all repulsive forces.
The lengths of the force vectors are not proportional to their magnitude.
(a) An internal joint. (b) A joint on the boundary. An external force R
is acting perpendicular to the boundary. The external force balance the
internal forces so the joint will not move across the boundary.

We let the forces from the springs follow Hooke’s law; that is, the force

is proportional to the difference of its actual length l and its uncompressed

length l0. We assume, however, the springs only have repulsive forces, and

no attractive forces. The force f from a spring is:

f(l, l0) =

k(l0 − l), l < l0,

0, l ≥ l0.

Here, k is a constant of value one that is needed to obtain the correct units.

Let P be the coordinates of all joints. To find the force on a joint pi

we find the force from all springs connected to pi. The total force F (pi) is

the sum of these forces. Figure 3.7a shows seven springs connected to one

joint. The repulsive force from a spring acts in the longitudinal direction of

the spring. We do not want the joints to move outside the domain we wish

to triangulate. Figure 3.7b shows how an external force is added to the

boundary joints. The external force is perpendicular to the boundary and

balances the repulsive forces of the springs. Boundary joints can therefore

only move along the boundary. We also allow for fixed joints. The fixed

joints can be thought of as glued to their position. They are not allowed

to move, no matter how large the forces acting on them are.

The optimization loop of the force based algorithm is very simple. We

calculate the Delaunay triangulation of the joints P k. For each edge in

the triangulation, we calculate the repulsive force f(l, l0). For joints on
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(a) Initial Delaunay trian-
gulation.

(b) Delaunay triangula-
tion after convergence.

(c) Dual Voronoi diagram.

Figure 3.8: Optimization of a triangulation using the force-based algorithm.
The element size function is proportional to the distance from the origin
squared h(x, y) ∼ x2 + y2.

the boundary we also add an external force to prevent it from passing over

the boundary. The total force on a joint is found by summing all repulsive

forces and external forces. The total force on a fixed joint is set to zero.

All joints are moved a step length ξ along the direction of the total force

acting on them:

pk+1
i = pki + ξF (pki ).

An example of an optimum triangulation and its dual Voronoi diagram

is shown in Figure 3.8.



CHAPTER 4

PEBI-Grids Conforming to Wells and Faults

In this Chapter, we will go through the process of generating a PEBI-grid

that conforms to wells and faults. We will first present our 2D algorithm,

before we discuss how to generalize this to 3D.

We will create three different sets of Voronoi sites: well sites, fault

sites, and reservoir sites. Well and fault sites are created to make the grid

conform to wells and faults respectively. Reservoir sites are all other sites

that create the background grid. We will call any feature that should be

traced by centroids of grid cells for wells. Any features that should be traced

by faces will be called for faults. Note, these conformity requirements are

not exclusive for wells and faults. In some cases, e.g., the simulation case in

Section 6.4, a structure can be gridded both as a well and a fault, depending

on how we wish to approach the problem.

4.1 2D Algorithms

Generating Well Sites

When generating the well sites, our goal is to trace the wells with cell cen-

troids. In a well-shaped Voronoi grid, the cell-centroids coincide with their

respective site [14]. We place a set of well sites along each well as described

in Section 2.6. A requirement we put on the well sites is that consecutive

well sites should be connected by edges in a Delaunay triangulations of the

41



42 Chapter 4. PEBI-Grids Conforming to Wells and Faults

(a) (b)

Figure 4.1: Intersection of two wells (black lines). Blue points are well sites
for the diagonal well, red points are well sites for the vertical well, and the
yellow point is a shared well site. (a) The well paths and well sites. (b) A
grid created using a Cartesian background-grid.

sites. From Theorem 2.3, the PEBI-cells of two consecutive well sites will

then be neighbors.

Definition (Well Condition). If p1 is a well site and p2 is a consecutive

site, the well condition is satisfied if the circle intersecting the two sites

centered at their midpoint does not contain any other sites.

By Proposition 2.1, the line segment between p1 and p2 will be an edge

in the Delaunay triangulation if the well condition is satisfied. In fact, we

do not need the circle to be centered at the midpoint, it is enough that

some circle is empty. To check if there exist an empty circle is tedious, so

we have chosen our definition due the its simplicity. Further, if the circle

centered at the midpoint is empty, the neighbor edge in the PEBI-grid will

contain this point.

When two wells cross, we have to be careful when placing the well sites.

If we place the sites of each well independently, consecutive sites will not

be connected by Delaunay edges over the intersection. It can also create

small and badly shaped cells. To treat these cases, we split all wells at

the intersections. A well site is placed at each intersection. A well site

at an intersection is shared by all well segments starting or ending in this

intersection. Figure 4.1 shows the intersection of two wells. The yellow

site is shared by both wells, and the other sites are in this case placed

equidistant along the wells. This method ensures a consistent size of the

well cells, even at intersections of multiple wells.

Fung et al. [17] suggest to add a protection layer around the well paths

to make the shapes of the well cells more regular. Sun and Schechter [48]
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show that we can grid the radius of a well explicitly by adding protection

sites around the well sites. To add a layer of protection sites, we trace the

well paths and place the protection sites normal to the well path. Each

well site will have two protection sites, one on each side. Figure 4.2 shows

one well with a protection layer. The distance d the protection sites are

placed from the well paths also equals the diameter of the corresponding

well-cell. For the well sites placed at the intersection of wells, we do not

place any protection sites.

d

(a)

d

(b)

Figure 4.2: Illustration of a well with a protection layer. Blue points are
well sites, while purple points are protection sites. The distance from a well
site and its protection sites d also equals the diameter of the corresponding
well cell.

We allow for the distance d to vary along the well path. This is prac-

tical when we for example wish to create a grid of a fracture with varying

width. Figure 4.3 shows two faults intersecting where the distance function

is permuted randomly for each set of protection sites. Notice that at the

intersection no sites are added. This results in a cell having larger diameter

than d.

Generating Fault Sites

To create a grid where edges trace a fault, we have to place fault sites

equidistant on each side of the faults. To achieve this, we are inspired

by the method described by Ding and Fung [12]. They propose to place

fault sites equidistant along a fault by calculating the intersection of circles.

They only discuss the specialized case when all circles have the same radius

and distance apart. Their method also fails to represent faults exactly at
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(a) (b)

Figure 4.3: Intersection of two wells (blue lines). Blue dots are well sites
and purple dots protection sites.

intersections. We will generalize the idea of intersecting circles and give a

rigorous discussion of how one can guarantee this method to works. We

will also present a novel method for handling intersecting faults.

We will generate a set of equidistant sites on both sides of a fault. We

start by placing a set of points C = {ci} along the fault as described

in Section 2.6. These points will be referred to as circle centers. The

distance between two consecutive circle centers di = |ci+1 − ci| is set by a

density function ρ(ci, ci+1). Draw a circle around each circle center. Two

consecutive circles should intersect, which gives us an upper and lower

bound on the radii of the circles:

di ≤ Ri +Ri+1, |Ri −Ri+1| ≤ di. (4.1)

We have chosen to set the radius of a circle as an average of the distance

to the circles on either side

Ri = cf
di + di−1

2
.

The constant cf is called the circle factor, and it controls how far from the

fault the fault sites should be placed. Normal values for the constant is in

the interval (0.5, 1). If cf is small, the fault sites will be placed close to

the fault. If cf is large, the fault sites will be placed far from the fault.

Figure 4.4 shows the difference of circle factor 0.6 and circle factor 0.9

The fault sites {fj} are placed where two circles intersect. Figure 4.4

shows the fault sites placed around a fault that is described by three circle
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Figure 4.4: The creation of fault sites f1, f2, f3, and f4, from the circle
centers c1, c2, and c3. (a) Circle factor is 0.6. (b) Circle factor is 0.9

centers. By construction, the site pairs f1f2 and f3f4 are placed equidis-

tant on each side of the fault, which under the following condition will make

the PEBI-grid conform to the fault.

Definition (Fault Condition). Let f1 and f2 be two sites from P . If the

two sites are placed at the intersection of two circles, the fault condition is

satisfied if the interior of the two circles contains no sites from P .

The fault condition is a necessary and sufficient condition for the line

segment between the two circles to be the neighbor edge between PEBI-cell

bf1 and bf2 . All closed circles intersecting the two sites with a center on

the line segment are subsets of the two circles centered at c1 and c2. The

circles contain no sites, except f1 and f2, thus, the line segment will be an

edge in the PEBI-grid.

In a reservoir, it is common to have multiple faults. Creating the fault

sites can then be much harder, as the faults may intersect. We present

a method that can handle fault intersections, also for the hard cases in

Figure 4.5

If we place the fault sites for each fault independently, we will in general

not be able to represent the faults exactly. At the intersection of two faults,

fault sites from either fault may interfere with each other and violate the

fault condition. We calculate the intersections of all faults, and the faults

are split into fault segments at these intersections. The fault segments will

not have any intersections, except possibly at the end-points. This way

we do not have to distinguish between different intersection cases, such as,

pinchouts or intersection of multiple faults.

At each intersection, we place a circle that is shared by all fault segments
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(a) (b) (c)

Figure 4.5: Three hard cases to grid. (a) Faults intersecting at sharp angles.
(b) Multiple faults intersecting. (b) Faults that are barely intersecting.

(a) (b) (c)

Figure 4.6: Merging two conflict sites in a pinch out. The orange lines are
two intersecting faults and orange points the fault sites. (a) Original sites.
(b) Merged sites. (c) A grid created using a Cartesian background-grid.

ending in that intersection. The other circles are placed as normal by using

the algorithm in Section 2.6. We color all intersection circles blue, and

all neighbor circles of blue circles are colored red. On each red circle one

of three actions is performed; (i) nothing is modified, (ii) the radius is

changed, (iii) the circle is merged with another red circle. If the interior

of a circle does not contain any sites it is not modified. If the interior of

a circle contains the fault site fi, we locate the red circle that generated

fi. These two circles are tagged as conflict circles. The radii of the conflict

circles are shrunk as shown in Figure 4.6. The new radii are chosen such

that the blue circle and the two red circles intersect at the midpoint of the

two faults. When multiple faults intersect, a circle might have multiple

conflict pairs. We then calculate the circle’s new radius for each conflict

pair and choose the smallest of them.

If the radius of a red circle is shrunk too much, it might violate the

radius condition of Equation (4.1). For those cases, we locate the other

red conflict circle sharing a fault site with this circle. These two circles
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(a) (b) (c)

Figure 4.7: The procedure of merging circles. (a) The circle at the in-
tersection is colored blue, and its neighbors are colored red. The radii of
the red circles are shrunk until they intersect the blue circle at the same
point. The red circles now have an imaginary intersection with its neigh-
bors. They are therefore merged. (b) The merged circles are colored blue,
and their neighbors are colored red. The green circle is already processed
and is therefore not colored red. The procedure from (a) is repeated until
the fault condition is satisfied. (c) An associated grid.

are merged to one circle centered at the midpoint of them. The merged

circle is colored blue, and we repeat the procedure above. Figure 4.7 shows

one iteration of the merging. In this case two sets of conflict circles are

merged, one on each side of the intersection. This is is enough to satisfy

the fault condition. If the intersection had been sharper, we might have

had to merge more circles recursively.

d δ

A second case that trigger two red conflict cir-

cles to merge is if they are too close to each other.

From the figure on the right; if the ratio δ
d is

smaller than a given tolerance, we merge the cir-

cles. By changing the tolerance parameter we can

control how we grid sharp intersections. For a

large tolerance more circles will be merged than

for a small tolerance.

Our method of splitting faults into fault segments and placing circle

centers along these segments, makes it easy to handle barely intersecting

faults. If a fault segment is shorter than a specified length, we do not place

any circles along it. In our implementation we have set this minimum

length to be 80% of the desired length between circle centers.
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(a)

(b)

Figure 4.8: Intersection of a fault (red) and a well (blue). The well sites
at the intersection is removed and the fault sites are placed as close as
possible to the well. (a) The well and fault sites. (b) A grid created using
a Cartesian background grid. The fault sites at the intersection are labeled
as well sites.

Special consideration is also taken when a fault intersects a well. All

faults and wells are split at the intersections. Figure 4.8 shows the inter-

section of a well and a fault. The first circle center of a fault segment

starting in a well-fault intersection is placed half a step length from the

start. Equivalently, the last circle center of a fault segment ending in a

well-fault intersection is placed half a step length from the end. The two

fault sites created from the circle before and after the well-fault intersection

are labeled as well sites. These two sites are the first and last well site for

the well segments starting and ending in the intersection, respectively.

Generating Reservoir Sites

The reservoir sites can be placed any way the user may see fit. The most

obvious choice is to create a Cartesian grid by placing the sites equidistant

in the x and y direction. When placing the reservoir sites, we usually ignore

all faults and wells. After the reservoir sites are created, we remove any sites

violating the fault or well condition. The resulting grid is then guaranteed

to conform to faults and wells. Even if the fault and well conditions are

satisfied, we might want to remove a few more reservoir sites. For each

well and fault site we define a grid size. For well sites the grid size is the

distance between two consecutive well sites. For fault sites the grid size is
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Figure 4.9: A cell refined by
three levels.

Figure 4.10: A grid generated
with three levels of local grid
refinement.

set to the distance between the two sites that are generated by the same

two circles. If a reservoir site is closer to a well or fault site than that site’s

grid size, the reservoir site is removed.

As well as making a grid conforming to faults and wells, one often wants

to refine the grid in areas close to the wells. A well-known method for re-

fining a Cartesian grid is Multilevel Quad-Tree Local Grid Refinement [17].

A cell is refined by dividing it in four by connecting the midpoints of the

opposing edges, as shown in Figure 4.9. This can be repeated any number

of times until a wanted refinement is reached. We can refine the reservoir

sites in a similar manner. If a cell is to be refined, replace the original

reservoir site by four new sites centered at each quadrant. This will re-

sult in non-square cells at the boundary of each refinement level, shown in

Figure 4.10.

To create a fully unstructured grid, we can place the reservoir sites using

the force-based method in Section 3.5. To achieve refinement towards wells,

we create an element size function that decreases towards wells. We let the

element size function decrease exponentially to achieve a similar refinement

as for the quad-tree refinement:

hr(p) = min

[
hmax, hmin exp

(
d(p,W )

ε

)]
. (4.2)

The desired grid size of the background grid far from and close to the wells

is hmax and hmin respectively. The distance d(p,W ) is the closest distance

from the point p to the set of well sites W . The constant ε controls the

transition region. If ε is small, the refinement happens quickly around the
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(a) Cartesian reservoir
sites.

(b) Optimized Delaunay
triangulation.

(c) Minimized CVD en-
ergy function.

Figure 4.11: Three grids of a reservoir. The reservoir has two wells (dotted
blue lines) and two faults (dotted orange lines). The well and fault sites are
the same for all three grids and are created using the methods described in
this chapter. The reservoir sites are created by three different methods; a
Cartesian grid, optimizing the dual Delaunay triangulation, and minimizing
the CVD energy function.

wells. If ε is large, the transition region is large. When we run the force

algorithm, all well and fault sites are set as fixed points.

The last method we will discuss for generating reservoir sites is a variant

of the CVD algorithm presented in Section 3.4. This method is similar

to the force-based method, but we optimize the Voronoi diagram directly

instead of optimizing the dual Delaunay triangulation. We define the fault

and well sites as fixed sites, that is, their gradient is zero. The CVD energy

function is then minimized, but without moving any of the well or fault

sites. A comparison of the three methods for placing reservoir sites is

shown in Figure 4.11. The two optimization methods have more uniform

cells than the Cartesian background grid. Also, the cell centroids for the

optimization methods are very close to the well path. The minimization of

the CVD energy function creates better reservoir cells in congested areas,

e.g., look at the area between the well intersection and fault intersection.

All the steps for creating a conforming PEBI-grid are summarized in

Algorithm 2, and the steps are shown in Figure 4.12 for a Cartesian back-

ground grid.

4.2 2.5D Grids

It is not uncommon for an oil reservoir to have very large aspect ratios.

An oil reservoir can stretch kilometers in the lateral directions, but only

hundred meters in vertical direction. 2.5D grids are 3D grids that take
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Algorithm 2 Unstructured Griding.

(1) Create fault and well sites

(1.i) A set of well sites is placed along each well path according to a
well cell density function.

(1.ii) A set of circle centers is placed along the faults according to a
fault cell density function. Around each circle center, a circle is
drawn. The fault sites are placed at the circle intersections.

(1.iii) Special care has to be taken when wells and faults intersect. If
two or more wells intersect at a point, a well site is placed at the
intersection. The rest of the well sites are placed as normal. For
fault-fault intersections, a circle is placed at the intersections.
The other circles are placed as normal and the fault sites set at
the circle intersections. If a well and fault intersect, a fault circle
is placed half a step length on both sides of the intersection. The
two fault sites generated by these circles are labeled as wells. The
other well sites are placed as normal.

(2) A set of reservoir sites are created in the domain.

(3) Other types of sites are inserted, e.g., refinements around wells.

(4) All reservoir sites that violate the fault or well condition are removed.

(5) Well and fault sites are assigned a minimum grid size. For well sites
the minimum grid size equals the distance between two consecutive
well sites. For fault sites the minimum grid size equal the distance
between the two fault sites created by the same two circles. If a
reservoir site is closer to a fault or well site than the allowed minimum
grid size, the reservoir site is removed.
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(a) Create well and fault sites. (b) Create reservoir sites.

(c) Refine the reservoir sites. (d) Remove conflict sites.

(e) Assosiated PEBI-grid.

Figure 4.12: Generating a grid
using Algorithm 2. Orange line
is a fault and blue lines are two
wells. (a) Step (1) creates the well
and fault sites (blue and orange
dots). (b) Step (2) creates the
reservoir sites. (c) Step (3) refines
the reservoir sites close to wells.
(d) Steps (4) and (5) remove con-
flicting grid sites. (e) PEBI-grid
created from the grid sites.
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Figure 4.13: The creation of a 2.5D grid. First, a 2D layer is gridded (red
layer) and a set of pillars is placed through all vertices. Then, the grid is
extruded along the pillars. Figures from Lie [32].

advantage of the flexibility of 2D griding to create complex grids in lateral

direction, and the simplicity of a Cartesian grid in the vertical direction.

The rock in oil reservoirs is formed by a sedimentation process that creates

natural horizontal layers. These layers are often captured very well by 2.5D

grids, which have made these types of grids are very popular in reservoir

simulation.

A 2.5D grid is created by generating a 2D grid of a layer in lateral

direction, or aligning with some major horizon. A set of pillars is created,

one pillar going through each vertex. The grid is extruded along these

pillars, as shown in Figure 4.13. The pillars can be vertical or inclined

such that they align with faults. The hard part of creating a 2.5D grid

is the choice of pillars and the length each cell is extruded along them.

An example of a 2.5D grid that aligns with an inclined fault is shown in

Figure 4.14.

Figure 4.14: A 2.5D grid aligned with an inclined fault.
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4.3 3D Algorithms

Creating PEBI-grids conforming to faults is much harder in 3D than in 2D.

Instead of dealing with lines, one has to consider surfaces, and the complex-

ity increases drastically. In this section, we will present a generalization of

the 2D method presented in Section 4.1. This is a novel method, which to

the best of our knowledge is new in the literature.

Generate Fault Sites

In 3D, faults are represented by surfaces. This added degree of freedom

(compared to 2D) increase the complexity drastically. In 2D, it was suffi-

cient to use two circles to create equidistant fault sites on each side of the

fault. One might to try the same in 3D by taking the intersection of two

spheres, but the intersection will give a circle instead of two points. To

define two unique points, one possibility is to choose the two points on the

circle that are furthest from the fault surface. Another method is to take

the intersection of a third sphere. The intersection of three spheres yields

two unique points equidistant from the plane defined by the sphere centers.

This method is the natural extension of intersecting circles in 2D, which is

why we have opted to use it to generate the fault sites.

To generate the fault sites, we will represent a fault by a surface trian-

gulation. A triangle is the equivalent to a line segment in the 2D gridding

method. Around all vertices in the triangulation, we draw a sphere. We

let the radius of the spheres vary based on a fault cell density function.

The radius of a circle should be approximately the same as the length of

the edges in the corresponding triangle. For each triangle, we find the

intersection of the three spheres centered at the triangle’s vertices. This

intersection gives two points equidistant on each side of the triangle, and

we place one fault site at each of these points. The resulting PEBI-grid

will have faces tracing the fault. In fact, the faces on the fault will equal

the triangulation.

The reservoir sites can be created by any preferred method. The meth-

ods discussed in Section 4.1 easily generalize to higher dimensions. As long

as the fault condition is satisfied for all spheres, the associated PEBI-grid

will conform exactly to the faults. Figure 4.15 shows a fault in the unit

cube. We create a triangulation of the fault using the force-based algorithm

in Section 3.5. The relative element size function is set to h = 1 + 4x, and

the radii increase at the same rate R = 1
40 (1 + 4x).

To handle intersections of faults, we introduce a priority scheme. Each
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(a) (b) (c)

Figure 4.15: The generation of fault sites in 3D. Orange points are gener-
ated fault sites. The domain is the unit cube. (a) A side view of the fault
triangulation. The size of the triangle edges increases linearly towards the
right end of the fault. The radii of the circles are growing with the same
rate. (b) Top view of the fault and fault sites. (b) A grid of the domain.

fault is given a priority by the user. If a fault site is in the interior of a circle

of a fault with higher priority, it is removed. We start by finding any sites

that violate the fault condition for the fault with highest priority. These

sites are removed. We then consider the fault with second highest priority

and remove any sites inside the generating circles of this fault. This process

continues recursively until we have checked all faults. When we check which

sites that violate the fault condition for a fault, we only check sites that have

a lower priority than the current fault. If two faults have the same priority,

they will not affect each other. A grid of two intersecting faults is shown

in Figure 4.16. The fault with higher priority is represented exactly, while

the fault with lower priority is only approximated over the intersection.

A last example is shown in Figure 4.17. We have created an inclined

fault in the unit cube. The fault also curves in the horizontal direction.
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(a) (b)

Figure 4.16: Two intersection faults in 3D. (a) Top view of the fault and
fault sites. Orange points show sites of the fault with higher priority, while
the red points show sites of the fault with lower priority. (b) A grid of the
domain.

Figure 4.17: An inclined fault that curves in the horizontal direction.



CHAPTER 5

Implementation in Matlab

All algorithms from Chapters 3 and 4 have been implemented in Matlab.

The implementation is compatible with the Matlab Reservoir Simulation

toolbox (MRST) [32]. The focus of the implementation has been to create

a basis for generating unstructured PEBI-grids for this toolbox. A set

of functions and a number of illustrative examples have been created and

can be downloaded from a git repository [5] under the terms of the GNU

v3.0. In this chapter, we will discuss the most important features of the

implementation and how one can use it efficiently.

5.1 2D Faults and Wells

The griding module contains several routines for creating grids. The most

automated routines are compositePebiGrid and pebiGrid. The two rou-

tines create a valid MRST grid in a square domain. These two routines are

used to create most 2D grids in this thesis. The two routines handle faults

and wells, as well as intersections. The routines are equivalent up to how

they generate the reservoir sites. The first routine generates the reservoir

sites as a Cartesian background grid, whereas the second routine uses the

Delaunay force algorithm from Section 3.5.

As an illustration, we will create a minimalistic test case. First, the

wells and faults are defined:

57
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f = {[0.2,0.2;0.5,0.5;0.8,0.6], ...

[0.2,0.8;0.5,0.5]};
w = {[0.8,0.2;0.7,0.4;0.3,0.8], ...

[0.7,0.4;0.5,0.35]};
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All routines assume that faults and wells are piecewise linear paths. The

faults and wells are stored in a cell array, where each element is a set of

coordinates describing one path.

The two routines have two required parameters, the grid size and the

size of the domain. The routines assume that the domain is a square with

lower left corner at the origin and upper right corner given by the do-

main size. In this example, we will refine the grid close to wells. We set

the size of the fault and well cells to half the size of the reservoir cells.

The relative size is set by the optional parameters 'faultGridFactor'

and 'wellGridFactor'. Further, we define one level of local grid refine-

ment for compositePebiGrid. For the fully unstructured grid created by

pebiGrid, we set the refinement constant ε (from Equation (4.2)) to 1
5 .

gS = [.08,.08];

G = compositePebiGrid(gS ,[1,1],'faultLines', f, ...

'wellLines', w, ...

'faultGridFactor', 0.5, ...

'wellGridFactor', 0.5, ...

'mlqtMaxLevel', 1);

Gp = pebiGrid(gS(1), [1,1], 'faultLines', f, ...

'wellLines', w, ...

'faultGridFactor', 0.5, ...

'wellGridFactor',0.8*0.5, ...

'wellRefinement', true, ...

'wellEps', 1/5);

The two routines tag the well cells and fault faces. The logical ar-

ray G.cells.tag has a length equal the number of cells. The element

G.cells.tag(i) is true if cell i is a well cell. Equivalently, the array

G.faces.tag is a logical array of length equal the number of faces. The

element G.faces.tag(i) is true if face i is a fault face. The two grids and

the tagged cells and faces are shown in Figure 5.1.
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(a) compositePebiGrid. (b) pebiGrid.

Figure 5.1: Two grids generated by the routines compositePebiGrid and
pebiGrid. Blue dots are centroids of cells tagged as well cells. Orange
edges are edges tagged as fault edges.

5.2 Working with Lower-Level Routines

In some cases, the routines used in Section 5.1 might not be enough to

create the grid we wish. We might not want a square domain, or maybe

we would like to create the reservoir sites with a different algorithm. To

this end, we discuss how we can use the lower-level routines in our module.

Creating a grid from these routines requires a bit more work, but we are

even more flexible to achieve the results we wish.

We create a fault intersected by two wells:

well = {[0.2,0.2; 0.8,0.8], ...

[0.4,0.4; 0.5,0.8]};
fault = {[0.2,0.7; 0.8,0.5]};
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This is a quite simple case, with one fault that is intersected by a branching

well.

The next step is to find the intersection of all wells and faults. At each

intersection we split the paths. The new set of paths has no intersections,
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except possibly at the endpoints. To split the paths, we use the routine

splitAtInt:

[sWell, wCut, wfCut] = splitAtInt(well, fault);

[sFault,fCut, fwCut] = splitAtInt(fault, well);

The routine splitAtInt takes in two cell arrays of paths and calculates all

intersections between the paths in the first argument. Then, it calculates

the intersection of all paths in the first argument and the second argument.

Finally, it returns the paths of the first argument, which are now split at

all intersections. The routine also returns two additional vectors. The first

vector gives information about the intersections between the paths in the

first cell array. The second vector gives information about the intersection

of the paths of the first cell array and the paths of the second cell array. If

fCut(i)=1, it means that sFault(i) has a fault intersection at the end. If

fCut(i)=2, it means that sFault(i) has a fault intersection at the start.

If fCut(i)=3, it means tha sFault(i) has a fault intersection at both the

start and end. Equivalently for fwCut, but this gives the fault-well inter-

sections. In this example we have the following:

sFault = fCut = fwCut =

{[0.2,0.7; 0.4538, 0.6154], 0 1

[0.4538, 0.6154; 0.575, 0.575], 0 3

[0.575, 0.575; 0.8,0.5]} 0 2

We will use the routine createFaultGridPoints to generate the fault

sites, and the routine createWellGridPoints to generate the well sites.

These routines are able to handle intersections of faults and wells and have

several options available to tweak the generation of the sites. We will use

the preset options, but we have to specify the well-fault intersections for

each path. If this is not done, the routines just ignore the intersections.

df = 0.05; dw = 0.05; dr = 0.05;

F = createFaultGridPoints(sFault, df, ...

'fwCut', fwCut);

fSites = F.f.pts;

fGs = F.f.Gs;

[wSites, wGs] = ...

createWellGridPoints(sWell, dw, ...

'wfCut', wfCut);
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The routine createFaultGridPoints returns a struct F that contains all



5.3. Generate 2D Fault Sites 61

the information about the fault sites. Notably, it contains all generating

circles and a mapping to and from the fault sites.

We generate a Cartesian background grid by placing the reservoir sites

equidistant in the x and y direction:

[X,Y] = meshgrid(0:dr:1);

rSites = [X(:),Y(:)];

rSites = ...

removeConflictPoints2(rSites, ...

[fSites;wSites], ...

fGs;wGs]);
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We use the routine removeConflictPoints2 to remove any reservoir sites

that are too close to well or fault sites.

We have now created all sites for our grid. By using the MRST routine

triangleGrid we create a Delaunay triangulation of the sites. We then

create the PEBI-grid as the dual of the Delaunay triangulation by using

the MRST routine pebi:

sites = [fSites;wSites;rSites];

Gt = triangleGrid(sites);

G = pebi(Gt);
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5.3 Generate 2D Fault Sites

In this section we will go through the most crucial part of the implementa-

tion that places sites equidistant on both sides of a fault. The following is

a very simplified version of the routine createFaultGridPoints. We will

show a simple example of a single fault with no intersection. It is much

simpler to create a grid conforming to wells than faults. Placing well sites

is basically equivalent to placing circle centers along the faults, as we will

show later. We therefore do not explain it further.
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We start by creating a fault path of two line segments. We also set the

circle factor and the desired distance between fault circles:

fault = [0.2,0.8; 0.5,0.5; 0.8,0.5];

dFault = 0.1;

circFact = 0.6;
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Notice that the second row of the variable fault corresponds to the end

point of the first line segment and the start point of the second line seg-

ment. The first step of the algorithm is to place a set of circles equidistant

along the fault. We use the built-in Matlab function interp1 to interpo-

late the fault:

linesDist = sqrt(sum(diff(fault,[],1).ˆ2,2))

linesDist = [0; linesDist];

cumDist = cumsum(linesDist);

dt = cumDist(end)/ ...

ceil(cumDist(end)/dFault);

newPtsT = 0:dt:cumDist(end);

CC = interp1(cumDist,fault,newPtsT);
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This will create a set of equidistant circle centers if you measure the dis-

tance along the fault path. For two consecutive circle centers that lie on

different line segments, the Euclidean distance may therefore be slightly

shorter. This difference is usually not big, but we have to be careful and

take it into account when calculating the circle intersections.

Now that we have placed the circle centers, we need to set the radii

of the circles. The radius of circle i has to be bigger than one-half of the

distance to the circles on either side. We have chosen to set the radius to

be the circle factor times the average distance to the circle centers on either

side. This works for almost all cases, but if one for some reason places the

circle centers very irregularly, one may need to set a different radius to

make sure the circles intersect.

d = sqrt(sum((CC(2:end,:) - CC(1:end-1,:)).ˆ2, 2));

CR = circFact*[d(1); (d(1:end-1) + d(2:end))/2; d(end)];

To calculate the intersecting points we use the method described in Sec-

tion 2.5. The basis vectors of the new coordinate system are calculated,
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n1 = (CC(2:end,:)-CC(1:end-1,:))./repmat(d,1,2); %Unit vector

n2 = [-n1(:, 2), n1(:,1)]; %Unit normal

together with the coordinates:

a = (d.ˆ2 - CR(2:end).ˆ2 + CR(1:end-1).ˆ2)./(2*d);

h = sqrt(CR(1:end-1).ˆ2 - a.ˆ2);

Transforming back to the original coordinate system, we obtain the inter-

sections:

lPts = CC(1:end-1,:)+bsxfun(@times,a,n1)...

+bsxfun(@times,h,n2);

rPts = CC(1:end-1,:)+bsxfun(@times,a,n1)...

-bsxfun(@times,h,n2);

pts = [lPts; rPts]; 0.4
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We now create a Cartesian background grid, pretending the fault does

not exists. The Cartesian grid is created by placing reservoir sites equidis-

tant in the unit square. After the reservoir sites are generated, we remove

any sites inside one of the circles created above.

[X,Y] = meshgrid(0:dFault:1);

backPts = [X(:),Y(:)];

CRrep = repmat(CR',size(backPts,1),1);

removed = any(pdist2(backPts,CC)<CRrep,2);

backPts = backPts(~removed,:); 0.4
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Now that all sites are created we can generate the MRST-grid:

Gt = triangleGrid([pts;backPts]);

G = pebi(Gt);
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5.4 Creating a 3D PEBI-Grid in MRST

Unlike in 2D, MRST does not have any routines for creating a 3D PEBI-

grid. Instead of reinventing the wheel, we wish to take advantage of the

build-in routines in Matlab for generating Voronoi diagrams. Matlab uses

the Qhull algorithm, which is fast, robust, and well tested. Our routine

voronoi2mrst transform the output from the Qhull algorithm to a valid

MRST grid. In this section, we will go through the most important details

of this routine.

The grid structure in MRST is very general. This has the advantage

that it is able to represent almost any kind of grids. On the other hand,

it can not take advantage of the structure that some grids have, which

makes storing the grid more expensive. The Qhull algorithm for creating

Voronoi diagrams uses a very simple grid structure. It stores two sets: (i)

a set of vertices coordinates, and (ii) a mapping from cells to the set of

vertices. This representation is very compact, but does not contain much

information. To generate a valid MRST, grid we need to create several

mappings, e.g., which faces belong to which cells. First, we present all fields

required for a valid MRST grid. Then, we present how one can convert a

Qhull grid structure into a MRST grid structure. For a full explanation of

the MRST grid structure, we refer the reader to Lie [32].

A grid in MRST is stored as a struct which we will call G. The grid

has three substructs, G.cells, G.faces, and G.nodes. The first substruct

G.cells contains information about the cells and mappings from cells to

G.faces. The second substruct contains information about the facets. In

3D, a facet is a surface, whereas in 2D it is a line segment. The last sub-

struct contains the information about the vertices. The substruct G.cells

must contain at least the following fields:

- num: A scalar of the total number of cells nc in the grid.

- facePos: A nc+1×1 array that maps from cells to half-faces. The

index of all half-faces belonging to cell i is:

G.cells.facePos(i):G.cells.facePos(i+1)-1. A face can be

imagined to consist of two half faces; each half face belonging to

one of the two cells sharing the face. The number of half faces equal

nh = facePos(end)-1.

- faces: A nh × 1 array that maps from half-faces to faces. The

index of the face that belongs to half-face i is found at faces(i).

Figure 5.2 shows a grid with the corresponding mappings.
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Figure 5.2: A grid and the corresponding mappings G.cells. Numbers
with circle around them are cell indices, while the other numbers are face
indices.

The substruct G.faces contains the following mandatory fields:

- num: A scalar of the total number of faces nf in the grid.

- nodePos: A nf +1×1 array that maps from faces to the half-nodes.

The index of all half-nodes belonging to face i is:

G.faces.nodePos(i):G.faces.nodePos(i+1)-1.

- nodes: A mapping from half-nodes to nodes. The index of the node

that belongs to half-node i is found at nodes(i).

The substruct G.nodes contains the following mandatory fields

- num: A scalar of the total number of nodes nn in the grid.

- coords: A nn × d array containing the coordinates of all nodes.

The column size d equals the dimension. The coordinate of node i is

G.nodes.coords(i,:).

We will show a simple example of how one can generate all necessary

maps. We start by generating a Voronoi diagram using Qhull:

n = 5;

[X,Y,Z] = ndgrid(linspace(0,1,n));

pts = [X(:),Y(:),Z(:)];

pts(1:2:end,1) = pts(1:2:end,1) + 0.1;

[V,C] = voronoin(pts);

% Remove infinity cells

rem = cellfun(@(c) any(isinf(V(c,1))), C);

C = C(~rem);
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In the Qhull grid structure, the first vertex is always equal infinity. To ob-

tain a bounded grid, we have removed any cells mapping to this vertex.

The first step is to generate all half-faces. Qhull only contains mappings

from cells to vertices, and to obtain the half faces we compute the convex

hull of each cell. This will give us a mapping hf2n from the half-faces to

nodes.

cNum = numel(C); % Number of cells

hf2n = []; % Map from half-face nodes to nodes

hf2nPos = 1; % Map from half-faces to hf2n

facePos = ones(cNum,1);

for i = 1:cNum;

hull = convhull(V(C{i},:));
[hull, localPos] = remParFaces(V(C{i},:), hull);

hf2n = [hf2n; C{i}(hull)'];
hf2nPos = [hf2nPos; (hf2nPos(end) - 1 + localPos(2:end))];

facePos(i+1) = numel(hf2nPos-1);

end

The Matlab function convhull(V) creates a triangulation of the convex

hull of the vertices V. In a Voronoi diagram, the faces (and therefore half-

faces) are in general polygons. We have made a function remParFaces that

merges all triangles that lie in the same plane to one polygon. It returns an

array, hull, of size (number of nodes in cell)× 1 and an array, localPos,

of size (number of half-faces in cell + 1) × 1. Specifically, the local nodes

of half-face j is hull(localPos(j):localPos(j+1)-1). By local nodes

we mean the nodes of cell i.

The next step is to create the mapping from half-faces to faces. If a face

is shared by two cells, there are two half-faces mapping to the face. We

will find these mappings by finding half-faces that contain the same nodes.

First, we find the number of vertices of each half-face.

fSize = diff(hf2nPos); % Number of nodes of each half face

[~,ias,ics] = unique(fSize); % The unique sizes

If two half faces share the same face, they must have the same number of

vertices. We therefore iterate over all half face sizes and find the half faces

of that size.



5.4. Creating a 3D PEBI-Grid in MRST 67

nodes = [];

nodePos = 1;

faces = zeros(size(hf2nPos,1)-1,1);

for i = 1:numel(ias)

testPos = fSize(ias(i))==fSize;

To find the corresponding nodes, we use the MRST routine mcolon(A,B).

This is a generalization of the Matlab operator colon that works on arrays.

For two arrays we have mcolon(A,B) = [A(1):B(1), A(2):B(2), . . . ,

A(end):B(end)].

from = hf2nPos([testPos;false]);

to = hf2nPos([false;testPos]) - 1;

map = mcolon(from, to);

nTmp = reshape(hf2n(map),fSize(ias(i)),[])';

Each row in the matrix nTmp is a mapping from a half face to its nodes.

We now find the unique rows of the matrix nTmp, and let this be the

mapping from faces to nodes. The information about which half faces maps

to which face is found at the third output of the unique routine in Matlab.

[~,ia,ic]= unique(sort(nTmp,2), 'rows');

newNodes = nTmp(ia,:)';

nodes = [nodes; newNodes(:)];

faces(testPos) = ic+numel(nodePos)-1;

locPos = cumsum(repmat(fSize(ias(i)),[size(newNodes,2),1]));

nodePos = [nodePos; nodePos(end) + locPos];

end

The only mapping we now lack is the mapping G.faces.neighbors.

We use a MRST function to create the mapping from half faces to cells:

cellNo = rldecode(1:cNum, diff(facePos), 2).';

Half face i belongs to cell number cellNo(i). If two half-faces j, k maps

to the same face this means that cell cellNo(j) and cellNo(k) are neigh-

bors.



68 Chapter 5. Implementation in Matlab

fNum = numel(nodePos)-1;

for i = 1:fNum

neigh = faces==i;

if sum(neigh)==2

neighbors(i,:) = cellNo(neigh);

else

neighbors(i,:) = [cellNo(neigh),0];

end

end

We have now created all mappings, and we put it together to make the

final grid:

G.cells.num = cNum;

G.cells.facePos = facePos;

G.cells.faces = faces;

G.faces.nodePos = nodePos;

G.faces.num = fNum;

G.faces.nodes = nodes;

G.nodes.num = size(V,1);

G.nodes.coords = V;

G.faces.neighbors = neighbors;

3D Fault

An example of 3D reservoir with a single fault is shown in Figure 5.4. The

reservoir contains three layers of different types of rock, with the highest

porosity in the middle layer. The rock has shifted diagonally along a fault.

We create a grid of the reservoir using the method described in Section 4.3.

We start by generating the fault sites:

F = createFaultGridPoints3D(fDt,rho);

The syntax here is equivalent as for the 2D case. The first argument

fDt is a cell array of surface triangulations. In this case the cell array only

contains one triangulation. The second argument rho is a function that

gives the radii of the circles. We create the reservoir sites as the Cartesian

grid, and then remove any sites inside the generating circles:
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rx = 0:dt:xmax; ry = 0:dt:ymax; rz = 0:dt:zmax;

[X,Y,Z] = ndgrid(rx,ry,rz);

rSites = [X(:), Y(:), Z(:)];

[rSites,removedRes] = faultSufCond(rSites,F.c.CC,F.c.R);

Figure 5.3: A faulted reser-
voir. Red cells are auxiliary
cells.

Putting all sites together we can generate

the grid. To generate a clipped Voronoi

diagram we use our implementation of the

clipping algorithm from Section 3.2:

sites = [F.f.pts; rSites];

G = clippedPebi3D(sites,boundary);

The grid is shown in Figure 5.3. The red

cells are auxiliary cells that are inactive.

The yellow cells on the right side of the

fault can be imagined to have shifted 1
3zmax down along the fault.

We now set the porosities of the rock. The porosity is set as an approx-

imated Gaussian field. We create a set of normally distributed variables

corresponding to each cell. Then we convolve them with a Gaussian kernel.

The porosity of each layer is generated separately.

nx = numel(rx); ny = numel(ry); nz = numel(rz);

p1 = gaussianField([nx,ny,nz*2/9],[0.05,0.2],3,10)

p2 = gaussianField([nx,ny,nz*2/9],[0.4,0.6], 3,10)

p3 = gaussianField([nx,ny,nz*2/9],[0.2,0.4], 3,10)

The thickness of the reservoir is 2
3zmax, disregarding the auxiliary cells. All

layers have the same thickness 2
9zmax. A comparison of the grid generated

and a corresponding Cartesian grid is shown in Figure 5.4. A detailed study

of the effects these two grid types have on flow simulations is given by Wu

and Parashkevov [54].
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(a) (b)

Figure 5.4: A close up view of a single fault. The reservoir contains three
layers with distinct porosities. The cells in the two grids are equal away
from the fault. (a) A grid created using our implementation. The fault
is exactly represented by the grid. (b) A Cartesian grid. The fault is
represented by a zig-zag pattern.



CHAPTER 6

Numerical Tests

6.1 CVD optimization

We create a CVD by finding the minimum of the CVD energy function

given by Equation 3.2. We use our Matlab implementation of the L-BFGS

method described in Section 2.4 to find the minimum. In the following

we present two cases; a CVD for the unit square, and a CVD for the unit

Cube. The initial guesses for the sites are found by the random function in

Matlab. The convergence tolerance are in the two cases set to ||∇f(xk)|| ≤
||∇f(x0)|| · 10−6

A 2D PEBI-grid before, during, and after optimization is shown in

Figure 6.1. The domain is the unit square. There are 200 sites. The

number of stored vectors for the Hessian approximation is set to m = 10.

We see that the grid is fairly good already after 20 iterations.

In another example we set our domain equal the unit cube. The number

of stored vectors for the Hessian approximation is set to m = 5. Figure 6.2

shows the converged CVT grid for 100, 500 and 1000 cells. It also shows

objective function and the `2-norm of the gradient for each iteration.

71
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(a) Initial PEBI-grid. (b) PEBI-grid after 20 it-
erations.

(c) Converged PEBI-grid
(140 iterations).

Figure 6.1: The optimization of a PEBI-grid using L-BFGS. The initial
sites are 200 randomly chosen points in the unit square. The convergence
criterion is set to ∇fk < ∇f0 · 10−6, and we use 10 vectors in the Hessian
approximation.

6.2 Example Grids

Sharp Intersections

Figure 6.3 shows the intersection of faults at different angles. The first

case shows an intersection at 90 degrees. In this case the fault condition

is not violated for any circles, thus, no fault sites are merged. In the

second case two faults intersect at 45 degrees. This is sharp enough that

two fault sites are merged; one on both sides of the intersection. The last

intersection is at 20 degrees. This is so sharp that multiple circles are

merged. Because circles are merged, the faults are not represented exactly

around the intersection, but the error is small compared to the cell sizes.

Three Intersecting Faults

We create a grid with three faults and with two fault intersections. One of

the faults ends in the first intersection. At the other intersection, one fault

just barely crosses the other, leaving a tiny finger on the other side of the

fault. This example grid is taken from Ding and Fung [12], and their grid

can be seen in Figure 6.4c. We create the fault paths:

l = {[0.1,0.42; 0.4,.55; 0.7,0.65], ...

[0.8,0.13; 0.6,0.4; 0.55,0.6], ...

[0.42,1.08; 0.45,0.9; 0.5,0.8; 0.58,0.6]};
gs = 1/30;

We generate a grid with a Cartesian background grid using the routine
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Figure 6.2: CVD grids of a cube with different number of cells. The green
cells are inner cells while the yellow cells are boundary cells. Function
values and gradient norms for the CVD energy function are shown on the
right.
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(a) (b) (c)

Figure 6.3: Intersection of faults at different angles. Dashed orange lines
are the faults. (a) Faults intersecting at 90°. No circles or fault sites are
merged. (b) Faults intersecting at 45°. No circles are merged, but two pairs
of fault sites are merged. (c) Faults intersecting at 20°. Four pairs of circles
are merged; two on both sides of the intersection.

compositePebiGrid with the preset settings:

G = compositePebiGrid([1/30,1/30],[1,1.15],'faultLines',l);

The result is shown in Figure 6.4. The small finger that crosses the fault

in one of the intersections is ignored by the gridding algorithm. Any fault

paths that are shorter than 80% of the fault grid size is considered to

small too matter, and therefore not gridded. This is a fixed value in our

implementation. The main difference between our algorithm and the one

presented by Ding and Fung [12] is how we handle fault intersections. No-

tice how all faults are exactly represented in our grid, whereas only one

fault is exactly represented over the intersections in the grid by Ding and

Fung [12].

Complex Fault Network

We create a grid of a highly faulted reservoir. Branets et al. [6] create a grid

of the same reservoir using constrained Delaunay triangulation algorithm.

A comparison of this algorithm and our method is shown in Figure 6.5.

Notice how the grid generated by Branets et al. [6] has much more congested

cells around the faults.

Since this reservoir does not have a square boundary, we can not use

the wrapping function pebiGrid to generate our grid. But we are not in

vain. We start by cutting the faults at all intersections:
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(a) (b)

(c)

Figure 6.4: A reservoir where three faults are intersecting. (a) A grid
generated by our implementation. (b) A close up view of the intersection
in (a). (c) A grid generated by Ding and Fung [12].
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(a) (b)

Figure 6.5: A reservoir with a complex fault network. (a) A grid created
using our implementation. (b) A grid generated by Branets et al. [6].

[fault, fCut, ~] = splitAtInt(fault, {});

The boundary of the reservoir is a polygon stored in the variable bdr. We

scale the fault grid size by the size of the reservoir and create the fault sites:

fGs = max(max(bdr))/70;

F = createFaultGridPoints(fault, fGs,'fCut',fCut);

We create the reservoir sites using the third party software DistMesh [43].

To define the boundary, we use a the signed distance function signDist.

This function returns the distance to the bounding polygon, with a nega-

tive sign for points inside the polygon:

rectangle = [min(bdr); max(bdr)];

fixedPts = [F.f.pts;bdr]; % Add faults as fixed points

uni = @(p,varargin) 2*ones(size(p,1),1); % Desity function

Pts = distmesh2d(@signDist ,uni, fGs, rectangle,...

fixedPts, 'bdr', bdr);

To use the MRST routine pebi, one needs to create the Delaunay triangu-
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Figure 6.6: A fractured reservoir. The fractures are from the dataset
statistical fractures in the hfm module. Notice that the figures are
rotated 90°. The fractures are shown in the top figure, while a grid created
using our implementation is shown in the bottom figure. See Figure 6.7 for
a zoomed view.

lation of the sites. This routine has some problems when the circumcircle

of a Delaunay triangle is outside the boundary. We have therefore im-

plemented our own PEBI-grid routine that creates the PEBI-grid directly

from the intersection of bisectors:

G = clippedPebi2D(Pts,bdr);

This routine clips the Voronoi diagram defined by the sites Pts against the

boundary bdr and returns a valid MRST grid.

Statistical Fractures

The module hfm, which is released in MRST 2016a, contains a dataset,

statistical fractures, of a set of fractures. We will create a grid of

these fractures, where we treat the fractures as faults, that is, the fractures

are traced by edges in the grid. We start by importing the dataset and

transform the fractures into a cell array:
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load('statistical fractures.mat')

offset = 2;

f = mat2cell(fl, ones(size(fl,1),1), size(fl,2)).';

f = cellfun(@(c) reshape(c', 2,[])' + offset,f,'un',false);

The reservoir is 35 m by 120 m, and is shown in Figure 6.6. The reservoir

contains 51 fractures that are aligned more or less in the same direction.

This results in many sharp intersections.

Our algorithm does not have any method for handling fractures that

are close by each other, but not intersecting. If two fractures are closer to

each other than the fracture grid spacing, we can not guarantee conformity.

To handle these cases, we decrease the fracture grid sizes for fractures in

these areas, as shown in Figure 6.7b. Notice that the fracture cell sizes are

only smaller where two fractures are close to each other. To decrease the

fracture cell size in an area, we decrease the distance between the circles

that are placed along these fractures. We define the density function as

follows:

eps = [3,5,1,1,1,2,2,1.5,1,1.5,1.5,1.5,1,1.5,1.5,2.5,1.5];

refPts = [17.4,79.5; 15.0,71.6; 25.9,98.7; 25.8,97.9; ...

25.7,97.2; 25.7,96.4; 25.5,94.7; 25.3,92.8; ...

9.1,87.0; 13.0,87.6; 13.1,88.5; 9.0 ,66.2; ...

28.95,77; 26.0,70.0; 20.8,69.2; 24.9,24.8; 26.8,38.9];

amp = [.5,.7,.3,.3,.4,.4,.4,.6,.3,.45,.45,.2,.3,.25,.55,.45,.6];

faultRho = @(p) min(ones(size(p,1),1), ...

min(bsxfun(@times, amp, ...

exp(bsxfun(@rdivide, pdist2(p,refPts),eps))),[],2));

This density function has to be specified manually, which is very cumber-

some for large datasets. Alternatively, we could define a very fine fracture

grid size, but this would result in equivalently many more grid cells.

We create the grid by optimizing the reservoir sites:

G = pebiGrid(15,[35,120],'faultLines',l,'faultGridFactor',1/40,...

'circleFactor',0.62,'faultRefinement',true, ...

'faultEps',5,'faultRho', faultRho,'mergeTol',0.12);

A option we have not yet seen is the 'mergeTol' option. This sets the

merge tolerance from Section 4.1; two conflict circles are merged if their rel-

ative distance is smaller than 'mergeTol'. The default value of 'mergeTol'

is 0, but we have set it higher to treat some of the very sharp intersections.
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(a) (b)

Figure 6.7: Zoomed view of the grid shown in Figure 6.6. (a) Fractures
intersecting at sharp angles. (b) Almost parallel, but not intersecting frac-
tures.

The generated grid is shown in Figure 6.6. A close up view of the green

and purple squares is shown in Figure 6.7.

6.3 Grid-Orientation Effects

Grid-orientation effects are a common example for how the grid can affect

the numerical solution. These effects can cause the numerical scheme to

converge to the wrong solution. We create a small reservoir sector of di-

mension 20 m × 10 m × 10 m. We assume there is an inclined fault in the

middle of the sector that the grid cells should conform to. We create two

grids, one corner point grid and one unstructured grid using the method

presented in Section 4.3. In the corner-point grid, cells at different heights

will be stretched or compressed differently, which will introduce the grid

orientation effects. We introduce a pressure gradient by setting the pres-

sure difference from the left to the right boundary to 108 Pa. This should

result in a linear change in pressure in the x direction, and a constant pres-

sure in the z and y directions. Figure 6.8 shows the calculated pressure in

the reservoir using the Two Point Flux Approximation (TPFA) discretiza-

tion. We clearly see that the pressure is not constant in the z direction

for the corner-point grid. The unstructured grid gives a correct pressure

solution. By using a consistent discretization, such as, MPFA, mimetic or

mixed FEM, we do not get the same gird-orientation effects as for TPFA.

For further reading, we refer the reader to [1, 54]
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0

10

2

4

6

8

×
1
08

P
a

Figure 6.8: A reservoir with a single fault. The figure shows a cross section
of the reservoir in the xz−plane. The color shows the pressure in each cell.
The red line is a fault the grids conform to. The pressure difference on the
left and right boundary is 1× 108 Pa and there are no-flow conditions on
the top and bottom. The corner-point grid in (a) shows grid-orientation
effects, whereas the unstructured grid in (b) does not.

6.4 Flow Simulation in a Fractured Reservoir

Fractures can have a significant impact on the flow in a reservoir. We will

investigate two methods for representing fractures in a reservoir. The first

method seperates the physical domain from the computational domain. A

fracture is modeled as a line segment and we trace the fractures by edges

in the grid. We call this for lower-dimensional fractures. Karimi-Fard

et al [28] show how one can create a discretization of lower dimensional

fractures. In the second representation, we explicitly create grid blocks of

the fractures. We call this representation for volumetric fractures. Sun and

Schechter [48] present several numerical examples of flow in reservoirs using

this method. In our gridding module we can easily model both volumetric

and lower-dimensional fractures. For volumetric fractures we create a grid

by modeling the fractures as wells. Around the fractures we place a protec-

tion layer to obtain the correct aperture. For lower-dimensional fractures

we model the fractures as faults. To solve for the pressure in reservoirs with

volumetric fractures, we use the MRST routine incompTPFA. We use the

explicit transport solver explicitTransport to solve the transport equa-

tions. For the lower-dimensional fractures we use the equivalent methods

from the the dfm module; we use icompTPFA DFM to solve for pressure and

explicitTransport DFM to solve the transport equations.

The first example we will look at is a single fracture that connects two

wells. The aperture for each fracture cell block is chosen randomly between

1 cm and 5 cm. The dimension of the reservoir is 100 m× 100 m. Initially,

the reservoir is filled with oil, but one well is injecting water. The difference

in bottom hole pressure of the two wells is 108 Pa. The rock permeability is
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Figure 6.9: The water saturation in the producing well. The green line is
water saturation for the volumetric fractures, while the purple line is the
water saturation for the lower-dimensional fractures.

set to 1 md, while the porosity is set to 0.01. We model the permeability of

the fracture from the parallel plate assumption [29] and set the permeability

as 1
12a

2, where a is the aperture. Figure 6.9 shows the saturation of the

producer. Figure 6.10 shows a plot of the water saturation in the reservoir

after 3 and 6 hours.

To compare the two methods further, we create

a reservoir with several long fractures. The frac-

tures are shown in shown in the figure on the right.

We create two grids; one with volumetric fractures,

and one with lower dimensional fractures. The

aperture of the fractures is 1 mm. The reservoir

sites of the reservoir are found by optimizing the

dual Delaunay triangulation and are the same for

both grids. The reservoir is 1000 m in the x- and y-directions. We set an

input flux of water on the lower boundary (y = 0). The flux is 0.1 m3/day

distributed evenly over the whole lower boundary. There are no flow over

the left and right boundaries. The pressure on the upper boundary is set to

zero. The permeability of the reservoir is set to 10 µd and the porosity to

0.001. The difference in saturation of the two grids after 500 days is shown

in Figure 6.12. As a measure of the difference in saturation we create a

vector S. Each element in S is the difference in saturation for a cell in the

two grids. The difference for each time step is shown in Figure 6.11.
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Figure 6.10: The water saturation in the reservoir with a single fracture.
A well is injecting water at the left end of the fracture, while a well is
producing at the right end. The left column shows the water saturation
for the lower-dimensional fractures, while the right column shows the water
saturation for the volumetric fractures. Notice that the saturation in the
fracture is plotted wider than the aperture for visibility.
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Figure 6.11: The relative error in water saturation. The error S is a vector
where the elements are the difference in water saturation of the lower-
dimensional fracture grid and the volumetric fracture grid for each cell.

-0.1

-0.05

0

0.05

0.1

(a)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(b)

Figure 6.12: The water saturation in a fractured reservoir after 500 days.
Water is injected at the lower boundary, while there are no flux over the
left and right boundary. (a) The difference in water saturation between
the volumetric fracture grid and the lower-dimensional fracture grid. (b)
Water saturation in the reservoir for the edge centered grid. The saturation
in the fractures are plotted wider than the aperture for visibility.
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Figure 6.13: The maximum stress in the cells. A pressure of 10 bar is set
inside the fractures, and there is a no displacement boundary condition.

6.5 UPR in the Literature

Our UPR module has already been used by several researchers. Halvor Møll

Nilsen at Sintef ICT has used UPR to generate grids that he have used to

solve mechanics. An example is shown in Figure 6.13. In this example, a

pressure of 10 bar is set inside the fractures. Young’s modulo is set to 109,

and the Poisson’s ratio for plane strain to 0.3. There is a no displacement

condition on the boundary. The figure shows the maximum stress in the

cells.

Bao et al. [2] use UPR to generate grids simulating polymer flooding.

They use both compositePebiGrid and pebiGrid and compare the grids

with corresponding coarse and fine Cartesian grids. Klemetsdal [30] gen-

erates unstructured PEBI-grids with UPR. He uses these grids to test his

implementation of the virtual element method.
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Conclusion and Recommendations for Further Work

7.1 Summary and Conclusions

The goal of this thesis has been to implement a new module for creat-

ing unstructured grids in MRST. The module we have created is highly

automated and requires minimal input and interaction from the user. It

allows for unstructured PEBI-grids in both 2D and 3D. The grids gener-

ated by the module have the ability to conform to geological structures.

Two different types of conformity are supported; faces following surfaces,

and centroids following surfaces. The gridding routines in 2D are very ver-

satile and can handle several hard cases, such as pinch-outs, intersection

of multiple faults, and intersection of wells and faults. The module also

supports grids in 3D that conform exactly to faults, however, conformity

is not guaranteed when two faults intersect.

Matlab has support for using the Qhull algorithm for creating Voronoi

diagrams in 3D. These diagrams extend to infinity, which is undesirable

when we wish to use the corresponding grid for numerical simulations.

Creation of clipped Voronoi diagrams are therefore studied in Chapter 3,

and the method for generating clipped Voronoi diagrams is implemented

in Matlab. We also presented two different approaches for creating an

optimized Voronoi diagram. The first approach formulates an optimization

problem which can be solved by quasi-Newton methods. At the optimum
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point, the Voronoi sites coincide with the corresponding cell centroids. The

second method optimized the dual Delaunay triangulation, and in this way

created a Voronoi diagram with evenly shaped cells.

Chapter 4 presents a novel method to generate PEBI-grids that con-

form to faults. We discuss how to create grids conforming to wells and

faults in 2D, 2.5D, and 3D. The 2D method is able represent intersec-

tions of faults exactly. The method presented, also handles intersection of

multiple faults. When two faults intersect at very sharp angles, we have

chosen to merge them in a small area around the intersection to create

more uniform cells. Depending on the problem, this might not be the

optimal method. Another approach is shown on

the right. For the cases that in our algorithm will

merge two circles, we could split each circle in two.

By this method, we could represent the geometry

exactly, however, it would result in cells with very

sharp corners at the intersection. In 3D, we gener-

alize the method used in 2D, which, to the best of

our knowledge, has never been done before. The

method honors faults if they do not intersect. At

the intersection of two or more faults, only one of them is traced exactly

by faces of the grid.

Chapter 5 shows the most important implementation details of our new

MRST module. We also give examples of how it can be used efficiently.

For the generated PEBI-grids, it is not uncommon that some cells have

very small faces, especially when faults intersect. It would be interesting

to implement a routine that removes these very small faces. In 2D, this

could be done by merging the two vertices of the face (remember a face is

a line segment) to a single vertex. The resulting grid would not be strictly

Voronoi, but it might have better flow properties.

Chapter 6 shows numerical simulations. We first show the convergence

of the L-BFGS algorithm for the optimization problem formulated in Sec-

tion 3.4. We then show a few examples of how our implementation handles

cases that are hard to grid. A comparison with gridding algorithms al-

ready found in the literature is done. Our module creates equivalent or

better grids. We also demonstrate the advantage of an unstructured grid

for reducing grid-orientation effects. Lastly, we model a fractured reser-

voir. We compare two different methods for modeling fractures. In the

first method, the fractures are represented explicitly by cells in the grid. In

the second, we create the grid as if the fractures are faults. The physical
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domain and computational domain are separated, and the fault edges are

given an imaginary volume. Our experiments shows that the two methods

give equivalent results. The advantage of modeling the fractures explicitly

by cell block, is that we can use any standard reservoir solver to model the

fractures. For lower-dimensional fractures we often have to use specialized

solvers.

7.2 Recommendations for Further Work

To get a truly versatile gridding module, one should implement a method

for handling intersections of faults in 3D. It would be interesting to see

if one could generalize the method for handling intersections in 2D. This

would presumably add some new challenges; a fault site in 3D is created

by intersecting three balls, so merging fault sites at the intersection would

be a grater challenge.

Gridding in 3D is generally hard, but many times not necessary. 2.5D

grids are often enough to create an accurate model of the reservoir. It would

therefore be interesting to look closer at how we can construct general pillar

grids by extruding unstructured 2D PEBI-grids.

A hard case to grid, which we have not studied, is when two faults are

almost parallel, very close too each other, but not intersecting. This is

common for fractures in a reservoir. Creating a very fine grid can solve

this problem, but this might lead to unreasonable many cells in the grid.

We have presented two methods for optimizing the reservoir sites. In

both cases, we held the fault and well sites fixed. A possible improvement

would be to let the fault and well sites move; but only along their associated

paths. This could improve the grids, especially when there are several

intersections close by each other.

A grid should not only conform to features. It is maybe just as impor-

tant that the grid conforms to flow in the reservoir. There have been some

studies on creating grids that adapts to flow using a modified version of

the CVD energy function[36]. Using the framework from our module, we

believe this could be an achievable extension.

In our MRST module, we only have support for unstructured PEBI-

grids. Other types of unstructured grids that conform to faults exist, and

it would be exiting to expand the module with support of the recently

developed cut-cell method.
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APPENDIX A

Computing the Gradient of a Voronoi Cell Cut by a

Fault

A method for creating a Voronoi diagram conforming to faults is presented

by Merland et al. [37, 38]. An objective function is presented, and several

numerical experiments show that the method performs well. Unfortunately,

details about how one can compute the gradient of the objective function

are left out. In this section, we will present the objective function together

with a method for computing its gradient. We will go through all steps

in the computations, however, we have not implemented the results in our

MRST module, nor tested the results numerically.

We define our objective function by adding a term to the CVD energy

function penalizing cells that are cut in two by faults. Let {pi}ni=1 = P be a

set of Voronoi sites in R3 and V the associated Voronoi diagram. Consider

a fault cutting a cell vpi . We define V inn
pi to be the volume of the cell that is

on the same side as pi. Equivalently we define V out
pi to be the volume that

is opposite side of the fault, as shown in Figure A.1. The penalty function

is the sum of all outer volumes. The complete objective function is

F̃ (P ) = F (P ) + βFV (P ) =
n∑
i=1

∫
Vpi
∩Ω

ρ(y)||y − ci||2 dy + β

n∑
i=1

V out
pi ,

where β is a constant that weights the importance of conformity. Merland

et al. [38] report that β should be chosen such that F ≈ βFV . The gradient
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V out
p1

p1
V inn
p1

Figure A.1: Cell i is divided into two volumes, V out
pi and V inn

pi by a fault.

of the objective function is

∇F̃ (P ) = ∇F (P ) + β∇FV (P ).

The gradient of the CVD energy function ∇F (P ) is [14, 26]:

∂F

∂pi
= 2mi(pi − ci),

We will now focus on finding the gradient of the penalty function∇FV (P ) =∑n
i=1∇V out

pi

Geometry

Suppose we have fault F cutting through our domain. The fault is described

by a surface triangulation. The faces of the triangulation {ti}i=1...m are

subsets of the planes N>ti x + bti = 0. We compute the intersection of the

Voronoi diagram and the fault by the method discussed in Section 3.1.

The vertices from the intersection together with the Voronoi vertices on

the opposite side of the fault defines the outer volume of a cell. After

the intersection is found, the outer volume of a cell can be decomposed

into tetrahedrons by joining pi to three of it’s vertices C1, C2 and C3, as

shown in Figure A.2. The observant reader will notice that the union of

these tetrahedrons is larger than the outer volume. We fix this by giving all

tetrahedrons with three vertices on the surface F a negative volume. The

sum of the volume of all tetrahedrons will then equal the outer volume.

The three vertices C1, C2, C3 can be of four different types [31],
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pi

C1

C2

C3

Figure A.2: Creating a tetrahedron of the outer Volume. White lines shows
the integration tetrahedral. The yellow faces are the intersection of the
Voronoi cells and the inner boundary. Only the outer Volumes of the
Voronoi cells are shown.

A) a vertex from F ,

B) intersection of one bisection [pi,pj ] and two planes (N1, b1), (N2, b2),

C) intersection of two bisections [pi,pj ], [pi,pk] and one plane (N1, b1),

D) intersection of three bisections [pi,pj , [pi,pk], [pi,pl].

Let V T (pi,C1,C2,C3) be the volume of the integration tetrahedral.

The outer volume V out
pi and its gradient ∇V out

pi are found by summing over

all integration tetrahedrons. The gradient of a tetrahedron is stated by

Lévy and Liu [31], and Parigi and Piastra [42] give a detailed derivation.

Gradient of V T

By the chain rule we obtain

∇pV
T (pi,C1,C2,C3) =

∂V

∂pi
∇ppi+

∂V

∂C1
∇pC1 +

∂V

∂C2
∇pC2 +

∂V

∂C3
∇pC3.

We here use the notation that ∇p is the gradient with respect to p1, . . .pn.

The gradient ∇pp is a 3×3n matrix with only zeros, except columns 3i−2
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to 3i which equals the identity matrix I3×3. We will first derive ∂V
∂Ci

, then

this will be used to give an expression for ∂V
∂pi

. Lastly, we calculate ∇pCj ,

which is the hardest part.

Define Uj = Cj − pi for j = 1, 2, 3. This will center the pi vertex of

the tetrahedron at the origin. The vectors U1, U2, U3 equal the edges of

the tetrahedron, and its volume V T is given by

V T =
1

6
U1 · (U2 ×U3).

By using the triple product identity

U1 · (U2 ×U3) = U2 · (U3 ×U1) = U3 · (U1 ×U2),

we calculate the partial derivatives

∂V T

∂C1
=

1

6
U2 ×U3,

∂V T

∂C2
=

1

6
U3 ×U1,

∂V T

∂C3
=

1

6
U1 ×U2.

The partial derivative ∂V T (pi,C1,C2,C3)
∂pi

is found by using the chain rule

∂V T (pi,C1,C2,C3)

∂pi
=
∂V T (U1,U2,U3)

∂pi
= −∂V

T

∂C1
− ∂V T

∂C2
− ∂V T

∂C3
.

Gradient of C

To calculate the gradient of the vertex C we need to consider each of the

four configuration cases separately. Depending on the configuration, we

can express the vertex C as the intersection of three planes. This leads to

a system of equations

AC = B,

where the rows of A are the normal vectors of the planes and B the offset

of each plane. First, we recall the matrix derivation rules [34]

d(AB) = (dA)B +A dB, d(A−1) = −A−1(dA)A−1.

We use these to obtain an expression for the derivative of the vertex

dC = d(A−1B) = (dA−1)B +A−1 dB = −A−1(dA)A−1B +A−1 dB

= A−1(dB − (dA)C).



95

Given a configuration we can compute the derivatives dB and dA, and plug

this back into the equation. We will first state the results and then give

the derivation. Columns of ∇pC that are zero are understood implicitly

and left out for readability. Please see the derivation for explanation.

Configuration A:

∇pC = 0

Configuration B:

∇pC =

(pj − pi)
>

N>1
N>2


−1 (C − pi)

> (pj −C)>

0 0

0 0


Configuration C:

∇pC =

(pj − pi)
>

(pk − pi)
>

N>2


−1 (C − pi)

> (pj −C)> 0

(C − pi)
> 0 (pk −C)>

0 0 0


Configuration D:

∇pC =

(pj − pi)
>

(pk − pi)
>

(pl − pi)
>


−1 (C − pi)

> (pj −C)> 0 0

(C − pi)
> 0 (pk −C)> 0

(C − pi)
> 0 0 (pl.C)>


Configuration A

In this configuration, C is a vertex of the fault. The fault is independent

of the set of sites, i.e., the gradient is zero.

Configuration B

In this configuration, C is the intersection of one bisector [pi,pj ] and two

planes (N1, b1), (N2, b2). This gives us the matrices

A =

(pj − pi)
>

N>1
N>2

 , B =


1
2 (p>j pj − p>i pi)

−b1
−b2

 . (A.1)

The gradient of B is straight forward with only six columns different from

zero. Columns 3i − 2, 3i − 1, 3i come from the derivative with respect

to pi and equal [−pi,0,0]>. Columns 3j − 2, 3j − 1, 3j come from the
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derivative with respect to pj and equal [pj , 0, 0]>. The gradient of A is

the derivative of a 3 × 3 matrix with respect to n vectors of size 3 × 1 .

This gives us the 3× 3n× 3 tensor

∇pA =


∂(pj−pi)

>

∂p1
. . .

∂(pj−pi)
>

∂pn

0 . . . 0

0 . . . 0

 .
The derivative

∂(pj−pi)
>

∂pk
is an 1× 3× 3 tensor which equal

∂(pj − pi)
>

∂pk
=




1 0 0

0 1 0

0 0 1

 , k = j


−1 0 0

0 −1 0

0 0 −1

 , k = i


0 0 0

0 0 0

0 0 0

 , k 6= j, i.

Multiplying ∇pA by the vector C gives us a 3 × 3n matrix. The only

columns different from zero are columns 3i − 2, 3i − 1, 3i which equal

[−C,0,0]>, and columns 3j − 2, 3j − 1, 3j which equal [C,0,0]>. We

will mention a small misprint in the original paper by Lévy and Liu [31].

They mistakenly add an extra element to (∇pA)C and∇pB and write that

columns 3i−2 to 3i of the two matrices are [−C,−C,0]> and [−pi,−pi,0]>

respectively.

Configuration C

In configuration C, the vertex is given by the intersection of two bisectors

[pi,pj ], [pi,pk] and one plane (N1, b1). The A and B matrices are then

A =

(pj − pi)
>

(pk − pi)
>

N>2

 , B =


1
2 (p>j pj − p>i pi)
1
2 (p>k pk − p>i pi)

−b1

 . (A.2)

The calculation of the gradient is equivalent to above, but there are another

three columns different from zero. Columns 3k − 2, 3k − 1, 3k equal
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[0,pk, 0]> for ∇pB and [0,C, 0]> for (∇pA)C.

Configuration D

In configuration D, the vertex is given by the intersection of the three

bisectors [pi,pj ], [pi,pk], [pi,pl]. This gives the matrices

A =

(pj − pi)
>

(pk − pi)
>

(pl − pi)
>

 , B =


1
2 (p>j pj − p>i pi)
1
2 (p>k pk − p>i pi)
1
2 (p>l pl − p>i pi)

 . (A.3)

The calculation of the gradient is equivalent to above, but with three more

columns different from zero. Column 3l − 2, 3l − 1, 3l equal [0, 0,pl]
> for

∇pB and [0, 0,C]> for matrix (∇pA)C.
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[33] Y. Liu, W. Wang, B. Lévy, F. Sun, D.-M. Yan, L. Lu, and

C. Yang. On Centroidal Voronoi Tessellation&Mdash;Energy Smooth-

ness and Fast Computation. ACM Trans. Graph., 28(4):101:1–101:17,

Sept. 2009. ISSN 0730-0301. URL http://doi.acm.org/10.1145/

1559755.1559758.

[34] J. Magnus and H. Neudecker. Matrix Differential Calculus with Appli-

cations in Statistics and Econometrics, chapter 8, page 168 and 171.

Wiley Series in Probability and Statistics - Applied Probability and

Statistics Section. John Wiley & Sons, 3rd edition, 1988.

http://dx.doi.org/10.1007/BFb0008901
http://doc.cgal.org/4.7/Manual/packages.html# PkgTriangulation3Summary
http://doc.cgal.org/4.7/Manual/packages.html# PkgTriangulation3Summary
http://dx.doi.org/10.2118/88812-PA
http://dx.doi.org/10.1016/0017-9310(85)90234-0
http://dx.doi.org/10.1016/0017-9310(85)90234-0
http://doi.acm.org/10.1145/1778765.1778856
http://www.sintef.no/MRST
http://doi.acm.org/10.1145/1559755.1559758
http://doi.acm.org/10.1145/1559755.1559758


Bibliography 103

[35] B. Mallison, C. Sword, T. Viard, W. Milliken, and A. Cheng. Unstruc-

tured Cut-Cell Grids for Modeling Complex Reservoirs. SPE-163642-

PA, 2014. URL http://dx.doi.org/10.2118/163642-PA.

[36] R. Merland, C. Guillaume, L. Bruno, and C.-D. Pauline. Building

Centroidal Voronoi Tessellations For Flow Simulation In Reservoirs

Using Flow Information. In Proceedings of the SPE Reservoir Simu-

lation Symposium, The Woodlands, Texas, USA, February 2011. doi:

10.2118/141018-MS.
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[55] D.-M. Yan, B. Lévy, Y. Liu, F. Sun, and W. Wang. Isotropic Remesh-

ing with Fast and Exact Computation of Restricted Voronoi Diagram.

In Proceedings of the Symposium on Geometry Processing, SGP ’09,

pages 1445–1454, Aire-la-Ville, Switzerland, Switzerland, 2009. Euro-

graphics Association. URL http://dl.acm.org/citation.cfm?id=

1735603.1735629.
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