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ABSTRACT 
News is an ever-growing and global resource, reliant on robust distribution networks to 

spread information. This thesis investigates how exploiting semantic, contextual and 

ontological information may form a basis for a language-independent news article 

classification system.  

In light of the above, a scalable multi-label news article classification system, based 

exclusively on extracted DBpedia entities, and a predetermined standardized set of fixed-

size IPTC Media Topic categories, is presented. The proposed system includes an 

ensemble of 𝑛-binary multinominal classifiers, comprised of both traditional Naïve Bayes 

and several sophisticated artificial neural networks – all trained on 1.8 million news 

articles, spanning twenty years of content from The New York Times.  

Through a series of experiments, this thesis provides evidence that a reliable language-

independent news article classifier is plausible – achieving a macro-averaged F-score of 

91% in categories like sport, and an overall F-score of 49% for the whole system. 

Furthermore, the results show that utilizing pre-trained word embeddings like Word2Vec 

over the traditional Bag-of-Words approach for feature representation, provides both 

reduced training time and comparable classification quality. Also included in the 

experiments are several studies exploring how article length, incorporation of 

ontologically related supertypes, and moving through time, affects the classification 

quality of news articles. Among the most central findings is that article length is 

positively correlated with F-score up until a length of 600 words, at which point the F-

score stabilizes.  

Finally, the thesis presents a thorough evaluation comparing traditional machine learning 

to the state-of-the-art in deep learning for the news article domain, both from a theoretical 

and practical standpoint – ultimately concluding that replacing conventional and well- 

performing machine methods with deep learning is not necessarily the right solution in 

simple problem domains. 
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SAMMENDRAG 
Nyheter er en voksende, og global ressurs, avhengig av robuste distribusjonsnettverk for 

å spre informasjon. Denne avhandlingen undersøker hvordan semantisk, kontekstuell og 

ontologisk informasjon kan utnyttes for å danne et grunnlag for et språkuavhengig 

nyhetskategoriseringssystem. 

I lys av det ovenstående, presenterer dette studiet et skalerbart multikategorisk 

nyhetskategoriseringssytem, basert utelukkende på uthentede DBpedia-entiteter og et 

forhåndsbestemt og standardisert sett med IPTC Media Topic kategorier. Det foreslåtte 

systemet er satt sammen av 𝑛-binære multinominale klassifikatorer, deriblant den 

tradisjonelle Naive Bayes klassifikatoren, og flere sofistikerte kunstige neurale nettverk –

alle trent opp med et datagrunnlag på 1,8 millioner nyhetsartikler bestående av 20 år 

med innhold fra The New York Times. 

Gjennom en serie eksperimenter viser denne avhandlingen at et pålitelig og 

språkuavhengig nyhetskategoriseringssytem er mulig – og oppnår en F-score med 

makrogjennomsnitt på 91% for enkelte kategorier som sport og en samlet verdi på 49% 

for hele systemet. Videre viser studiet at man ved å benytte forhåndstrente Word2Vec 

modeller som et alternativ til standard bag-of-words for å representere data, både gir 

redusert treningstid og sammenlignbar klassifiseringskvalitet. I tillegg inneholder 

oppgaven flere eksperimenter som undersøker hvordan artikkellengde, inkorporering av 

ontologiske supertyper, samt hvordan det å bevege seg i tid, påvirker 

klassifiseringskvaliteten av nyhetsartikler. Blant de mest sentrale funnene er 

observasjonen at artikkellengde er positivt korrelert med F-score inntil en lengde på rundt 

600 ord, hvor verdien så stabiliseres. 

Også inkludert i oppgaven er en grundig gjennomgang av state-of-the-art innen deep 

learning, samt en studie rundt hvor godt disse klassifiseringsmetodene fungerer 

sammenlignet med tradisjonelle maskinlæringsmetoder når det kommer til klassifisering 

av nyhetsartikler. Løst fortalt konkluderer studiet med at deep learning ikke nødvendigvis 

alltid er den riktige løsning i enkle problemdomener. 
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INTRODUCTION – BACKGROUND AND MOTIVATION – 1.1  

 

1 INTRODUCTION 
This initial chapter serves as an overall presentation of the problem domain and research 

context. Included in this chapter is the preparation and elaboration of important research 

questions, motivated by some of the major news related obstacles faced by society today. 

A roadmap for the project’s structure and an outline for the research conducted, 

concludes the chapter.  

1.1 BACKGROUND AND MOTIVATION 
Ever since the dawn of time people have processed, stored and shared information about 

occurring events. Even before the spike of literacy in the modern world, news has been 

an integral part of society. During this period, news as a medium has played a major role 

in keeping the world united and up-to-date. Yet, what once was the responsibility of the 

common tongue and heavily dependent on travel & trade, is now encapsulating us in 

every direction – and overwhelmingly so. News has become an omnipresent, and 

universally shared resource, spanning national borders and cultural differences: Ranging 

from trivial gossip to war-zone status reports. As a consequence, people have become 

extremely reliant on search engines and organized broadcasters, to conceive and digest 

even just a glimpse of what is happening throughout the world.  

At the same time, the number of hours an individual can devote to make sense of the 

ever-growing flow of news is limited. Taking this into account, an incredibly complex 

challenge emerges: How shall relevant news be directed to the right people, in accordance 

with their personal preferences?  

The first, and arguably most important step in this process, is proper categorization. It 

simply does not matter whether the system is successful in determining a user’s 

preference, if the news itself is mislabeled. For this reason, the remaining steps in this 

operation depend heavily on robust categorization procedures – without it, everything 

breaks apart. 

For a long time, news categorization has been a manual task carried out by librarians 

and domain experts [1] [2]. Although recent research shows promising prospects for 

automated approaches, current solutions often focus on the simple analysis of textual 

content, rather than exploring the potential in incorporating conceptual relations, and 

semantic properties [3]. The reason for this approach has traditionally been motivated by 

limited processing power and mediocre training data [4]. 

However, in light of recent advancements in distributed computation and publicly 

available metadata, new opportunities unravel. This brings us down to the heart of the 

thesis, and the core motivational driver behind the project: To explore the relevancy of 

semantic and conceptual metadata, to improve the task of automatically categorizing news 

articles in a language-independent and global domain. 
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1.2 – INTRODUCTION – PROBLEM DESCRIPTION 

 

1.2 PROBLEM DESCRIPTION 
Most media houses and news publishers assign category labels to their news articles. 

However, these category annotation practices are often not standardized. When 

aggregating news from multiple sources one can observe that publishers apply different 

labels for similar categories. Furthermore, the annotation process is often done at various 

levels of detail, with lacking precision, and sometimes even missing altogether. 

The goal of this thesis is to investigate automated approaches for homogeneous news 

article classification, motivated by language agnostic principles and recent advancements 

in deep learning. This involves a study of available news categorization standards, textual 

extraction and classification techniques, as well as available datasets. Evaluation should 

be done both in terms of classification quality and in light of the underlying 

computational requirements. 

In addition, the research conducted throughout this thesis should be backed by a 

prototypical implementation of a news article classification system. The implementation 

should make use of state-of-the-art analytical frameworks, like Apache Spark2 – primarily 

to facilitate large-scale distributed computation and analysis. 

1.3 RESEARCH CONTEXT  
The thesis is conducted as a part of the TDT4900 Master’s Thesis in Computer Science, 

in conjunction with the Computer Science Master program at the Norwegian University 

of Science and Technology (NTNU). 

The core motivator behind this project is the NTNU SmartMedia Program organized by 

Prof. Jon Atle Gulla in collaboration with the Department of Computer and Information 

Services at NTNU. The SmartMedia Program revolves around optimizing the mapping 

between relevant news and attracted consumers. By exploiting semantic and geospatial 

exploration, the program aims to aid the media industry in navigating and making sense 

of the enormous amount of available news sources around the world. The ultimate goal 

of the program is to deliver a mobile and context-aware news experience based on deep 

understanding of textual content. 

1.4 RESEARCH GOALS AND QUESTIONS 
The research for this thesis is split into three main phases. The first phase focuses on 

researching, experimenting and challenging current work in areas of relevance – ranging 

from general text categorization to utilizing ontologies and semantic metadata to improve 

existing methods. The purpose of this phase is to create an overview of the state-of-the-

 

                                                 

2 Apache Spark – http://spark.apache.org/ 
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INTRODUCTION – REPORT OUTLINE – 1.5  

 

art in news classification, and to obtain a robust and reliable set of prerequisites for 

establishing a theoretical basis for the later experiments.  

The second phase emphasizes on analyzing, manipulating and otherwise preprocessing 

and combining various data sources. This is followed by an implementation of a 

framework for automated news classification. In the third and concluding phase, the focus 

shifts over to conducting a set of experiments, followed by a thorough analysis of the 

relevant findings and an evaluation of the results.  

To act as a foundation for the thesis, and as a summary of the underlying goals, the 

following research questions have been defined: 

 

RQ1 How does deep learning compare to traditional machine learning techniques in 
news categorization in terms of classification quality? 

RQ2 How does word embeddings compare to a bag-of-word approach in news 
categorization? 

RQ3 How does the number of annotations and article lengths affect the accuracy of 
news categorization? 

RQ4 How does moving through time affect news categorization performance, and 
what is the relevance of up-to-date training data? 

RQ5 How does incorporating ontologically related supertypes affect the quality of 
news categorization? 

RQ6 How does noun-based feature extraction of ontological data promote language 
agnostic news categorization? 

RQ7 What are the important limitations or challenges of deep learning in news 
categorization, and under what circumstances are the additional complexities of 
deep learning justified? 

1.5 REPORT OUTLINE 
The remaining parts of the report are structured as follows: Chapter 2 provides a 

theoretical overview of the most central techniques and concepts related to text 

classification, with emphasis on the news article domain. Included in this chapter is also 

a thorough review of prevalent techniques in deep learning. Related work and a brief look 

into the state-of-the-art is covered in Chapter 3. Next, Chapter 4 follows with a 

substantial analysis of the relevant datasets as well as a thorough elaboration of how the 

datasets were preprocessed and utilized. This analysis is continued in Chapter 5 which 

covers the practicalities regarding the choice of classifiers and the training phase. The 

conducted experiments and results are presented in Chapter 6. Chapter 7 concludes the 

thesis by addressing research questions and proposing future work. 
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2 BACKGROUND 
The task of text categorization can be summarized as the process of labeling a textual 

document with one or more predefined categories [5]. A natural way to represent text 

categorization is as a sequential pipeline with three steps [6]: The first step being (i) 

preprocessing, followed by (ii) applying the classification method of choice, and finally 

(iii) evaluating the results and choosing a desirable classifier based on chosen evaluation 

measures. For the sake of clarity, categorization and classification are used 

interchangeably throughout this report. 

The preprocessing step typically involves indexing and transforming the textual data into 

a numerical format suitable for further processing [6], and is perhaps the most crucial 

step in the pipeline. Without a reasonable representation of the documents, the 

classification mechanism will have an extremely hard time grouping, dividing, and 

making sense of similar entities, thus making the task of categorization very difficult. For 

this reason, careful thought has to go into the process of determining the most suited 

methods for every step in the pipeline.  

The primary motive for this chapter is to present a systematic breakdown of the 

classification process. This is done by first considering a set of common challenges faced 

in the news domain today, followed by a brief introduction to the field of semantics. The 

remaining parts of the chapter are devoted to a thorough evaluation of central algorithms, 

measures, and mechanics used in practice – both traditionally and the state-of-the-art.  

2.1 SEMANTICS AND ITS CHALLENGES   
Before exploring the theoretical methodologies, one has to take a step back and consider 

some of the challenges commonly faced in the news domain. As proposed by The New 

York Times [7], these challenges may be summarized into four different groups: 

 

DISAMBIGUATION Is this story about Kristen Bell, Bell Labs or Taco Bell? There is no way 
to know for sure, by only examining the textual content. 

SUMMARIZATION The article includes a quote from Archimedes, but the context is 
actually climate change rather than philosophy. Summarization is the 
task of concisely conveying what the article actually is about. 
Typically, through metadata. 

NORMALIZATION NY Times, NYT, New York Times, The Times, all refer to the same 
entity. Can all of them safely be labeled “Newspaper, New York”? 

ONTOLOGY One story is about a video game, another about a new TV-show. Can 
both be labeled as subcategories of “Entertainment”? 
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One way to address the challenges introduced by the concepts above, is to advance the 

analytical process beyond traditional methods. In this study, the advancement revolves 

around exploring the potential in incorporating semantic analysis – a field of research 

dedicated to extracting the meaning from expressions, beyond the power of conventional 

content analysis.  

2.1.1 SEMANTICS 

Formally, semantics is defined as “the study of meaning”3. In linguistic terms, and for the 

purpose of this thesis, this definition is assumed to be analogous to the message 

communicated through a word or a sentence.  This contrasts with syntax, which defines 

the concrete structure, and the actual words being used. The importance of this 

distinction may not be obvious at first glance, but consider the following sentences: 

 Bob only enjoys playing catch with his neighbor’s friend, the family dog. 

 The neighbor’s family dog enjoys playing catch with his only friend, Bob.  

While the sentences contain the exact same set of words, their semantic meanings are 

conflicting: The first illustrates that the only dog Bob would want to play catch with, is 

the neighbor’s dog, whereas the latter implies that the neighbor’s dog is in fact quite 

lonely. 

Needless to say, ambiguities like these are bound to occur when categorizing text solely 

based on textual contents, rather than its meaning. Not only does this lead to improper 

classification, but it also adds a level of confusion to the classifier [3] [8].  

Luckily, there is an entire related field of research in natural language processing 

dedicated to solving these issues, commonly referred to as Word-sense disambiguation4 – 

that is, the task of extracting sense from words with multiple semantic meanings [8].  

2.1.2 ONTOLOGIES 

The exact meaning of the word ontology has for a long time been subject to many 

controversies, resulting in a variety of definitions5. However, the most commonly accepted 

definition in the field of machine learning tends to be T. R. Gruber’s interpretation [9]:  

An ontology is an explicit specification of a conceptualization. 

With other words, it is a formal definition of concepts and the relations between them. 

 

                                                 

3 Semantics definition – http://dictionary.reference.com/browse/semantics 

4 Word-sense disambiguation – https://en.wikipedia.org/wiki/Word-sense_disambiguation 

5 Ontology definition – http://dictionary.reference.com/browse/ontology 
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Why is this useful? Consider the following headlines: 

 Best Barbecue tips for the summer 

 Delicious, healthy, and organic cookie dough 

Although both of the headlines certainly fit the cooking profile, the contents of the articles 

themselves may not necessarily have that much in common. While the first article may 

contain words like chicken, pork, tender and charcoal, the latter might include baking 

soda, healthy, vegetable, and dairy. Viewed from the perspective of a computer, there is 

no obvious way to link the two together, even though they are closely related in practice. 

A possible solution to this matter is to look for relations in an ontology [3], like the one 

exemplified in Figure 2-1. By locating each of the relevant words, and traversing from 

below, one would quickly reveal the fact that both vegetable and chicken are children of 

organic and consumable. Thus, a relation is made. 

 

FIGURE 2-1 – EXAMPLE FOOD ONTOLOGY SHOWING "IS-A"-RELATIONSHIP 

While the relation in the previous example only contains a simple is-a-relationship, it 

illustrates an important point: It demonstrates that it is possible to represent explicit 

relationships between seemingly unrelated concepts, by abstracting the interpretation 

away from the concrete ideas.  

Furthermore, there are in theory no limits to the kind of relationships that are possible 

to define in an ontology – anything from likes-relations present in social media, to 

symmetrical married-to-relations, is possible. However, in the news domain, linguistic 

relations are probably the most interesting ones when it comes to extracting semantic 

knowledge [3]. 
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2.2 REPRESENTATION 
The features of a document can be represented in numerous ways. This section covers 

three possible approaches. First off is the standard bag-of-words, followed by its 

importance-weighting extension TF-IDF. The last approach is a more sophisticated 

method based on word embeddings.  

2.2.1 BAG OF WORDS 

Bag-of-words (BoW) is a simplification scheme used to represent written documents in a 

unifying manner [10]. The actual model is rather trivial and consists of creating a single 

vector containing every distinct word across a set of documents. This is then followed by 

creating a new vector for every document, with corresponding counts for every occurrence 

of every word contained within. 

For instance, consider the two following documents: 

 Mary has a little lamb. Mary is five. 

 Little John’s favorite food is lamb chops. Mary's favorite food is pancakes. 

From this create the following vector of unique terms: 

𝑤𝑜𝑟𝑑𝑠 = [𝑚𝑎𝑟𝑦, ℎ𝑎𝑠, 𝑎, 𝑙𝑖𝑡𝑡𝑙𝑒, 𝑙𝑎𝑚𝑏, 𝑖𝑠, 𝑓𝑖𝑣𝑒, 𝑗𝑜ℎ𝑛, 𝑓𝑎𝑣𝑜𝑟𝑖𝑡𝑒, 𝑓𝑜𝑜𝑑, 𝑐ℎ𝑜𝑝𝑠, 𝑝𝑎𝑛𝑐𝑎𝑘𝑒𝑠] 

The corresponding vectors for each of the documents would then become: 

 mary has a little lamb is five john favorite food chops pancakes 

S1     = [ 2 1 1 1 1 1 1 0 0 0 0 0 ] 

S2     = [ 1 0 0 1 1 1 0 1 2 2 1 1 ] 

 

The final processing step is a normalization procedure, achieved by dividing every value 

by the length of the respective document. The magnitude of each value in the resulting 

vector can then be viewed as a measure of the terms’ importance within the document. 

Although BoW for many years has been the classic way to represent documents, two 

potential drawbacks remain [3]: First, it treats every word as an independent feature, 

thus completely ignoring the semantic and syntactic information present in word order 

and multi-word phrases. Second, the model is oblivious to concepts like synonymy and 

grammatical nuances. A consequence of these disadvantages is that classification 

algorithms are limited to inferring patterns in the terminology, as opposed to exploiting 

the structural semantic knowledge, when extracting information.  
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2.2.2 TERM FREQUENCY, INVERSE DOCUMENT 

FREQUENCY  

Term frequency, inverse document frequency (TF-IDF) is a popular term weighting 

metric for feature selection, that can be used in conjunction with the BoW document 

representation [5] [11] [12] [13] [14]. The metric is built on the assumption that the 

importance of a term within a corpus is proportional to the number of occurrences in a 

document, but inversely proportional to the number of documents containing the given 

term. With other words, a terms measure of importance within a document is dependent 

on its frequency within the document, as well as the degree of absence in the entire 

corpus. 

The main motive behind using a term weighting metric like TF-IDF is to make it possible 

to rank and evaluate how important a word is in a document [12]. This is especially useful 

when classifying text, as words occurring in many documents (e.g. the, and or he) likely 

carries less information than those with lower frequency (e.g. name of a sports team, or 

celebrity). However, it is worth mentioning that TF-IDF has been subject to criticism 

because of its inability to measure order – i.e. the term’s position within the text [4]. Yet, 

its simple nature and long history of use still make it a useful metric [5]. 

The actual TF-IDF formula comes in many flavors, with varying degrees of complexity 

[11]. However, the one commonly used in text classification is quite simple, and can be 

defined as follows: Given a set of terms 𝑡 ∈ 𝒯 and documents 𝑑 ∈ 𝒟, where 𝑐𝑜𝑢𝑛𝑡(𝑡, 𝑑) 

denotes number of occurrences 𝑡 in 𝑑, and vice versa, TF-IDF becomes: 

𝑇𝐹-𝐼𝐷𝐹(𝑡𝑖 , 𝑑𝑗) =
# 𝑡𝑖 𝑖𝑛 𝑑𝑗

# 𝑡 𝑖𝑛 𝑑𝑗
∗ log (

# 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠

# 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝑡𝑖
) =

𝑐𝑜𝑢𝑛𝑡(𝑡𝑖,𝑑𝑗)

∑ 𝑐𝑜𝑢𝑛𝑡(𝑡,𝑑𝑗)
∗ log (

|𝒟|

𝑐𝑜𝑢𝑛𝑡(𝑑,𝑡𝑖)
) 

As seen from the formula, the term frequency within a document is normalized over the 

total number of terms in that document. This normalization step is similar to the one 

used with the barebones BoW [2.2.1], and results in a metric independent of document 

length. This is crucial when working with news articles, which can range from small 

notices, to long, possibly equally important feature articles. 

2.2.3 WORD EMBEDDINGS  

One of the major shortcomings of traditional feature representations like BoW, is that it 

purges much of the semantic information present in documents – it does not care whether 

one word appeared before the other, or the contents of the surrounding sentence. 

Word embeddings is a family feature learning techniques that aims to solve this issue 

[15].  Instead of creating a single feature vector for every document, word embeddings 

extend the representation by creating a parameterized mapping 𝑊 ∈ 𝑤𝑜𝑟𝑑𝑠 → ℝ𝑛 for 

every word – i.e. any higher-dimensional vector. 
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For instance, given a vocabulary: 

𝑑𝑜𝑐 = [𝑗𝑜ℎ𝑛, 𝑙𝑖𝑘𝑒𝑠, 𝑝𝑎𝑛𝑐𝑎𝑘𝑒𝑠, 𝑎𝑛𝑑, ℎ𝑎𝑚𝑏𝑢𝑟𝑔𝑒𝑟] 

We might have the following embeddings in ℝ3: 

𝑗𝑜ℎ𝑛 = [−0.1, 0.3, 0.2] 
𝑙𝑖𝑘𝑒𝑠 = [0.2,−0.1, 0.6] 

𝑝𝑎𝑛𝑐𝑎𝑘𝑒𝑠 = [−0.7, 0.5, 0.4] 
𝑎𝑛𝑑 = [−0.7, 0.5, 0.4] 

ℎ𝑎𝑚𝑏𝑢𝑟𝑔𝑒𝑟 = [−0.7, 0.6, 0.3] 

It is evident that the embeddings contain more information, but it also gives rise to a 

compelling question:  

From where do these embeddings originate, and what do they 
represent? 

The simple answer to the first question is that they are learned. Exactly how these 

embeddings are learned, is in this thesis, subject to the realm of artificial neural networks, 

which is explained in debt in Section 2.5. However, at its core, the matter of calculating 

the vectors boils down to two different approaches: Either by using Continuous Bag of 

Word (CBOW), which predicts single words from context (i.e. surrounding words), or 

Skip-gram, which predicts the context based on specific words. While both models are 

capable of producing desired predictions, skip-gram has proven more accurate on bigger 

datasets [16]. Nevertheless, the end result is a set of embeddings in a high dimensional 

space. 

As for the second question, the intuitive understanding is that the representation should 

reflect similarity. While classic BoW is limited to reflect binary similarity based on 

concrete words (e.g. whether a document contains “pancakes” or not), the embedded 

approach is capable of deducing the similarity at a higher level of abstraction. The key 

idea is that words with similar meaning get similar vectors – often measured in terms of 

either Euclidean distance or Cosine similarity [17]. 

For instance, the embeddings may be used to measure the similarity of “man” and 

“woman”, or “king” and “queen” [18]. These measures can then be used to infer the 

similarity of the sentences “Mathilde of Belgium” and “Sonja of Norway” – both of which 

in abstract terms means “queen of country”. Subsequently, the same approach can 

also be used to construct statements previously unknown to the model: For instance, 

deducing that 𝑘𝑖𝑛𝑔 − 𝑚𝑎𝑛 + 𝑤𝑜𝑚𝑎𝑛 = 𝑞𝑢𝑒𝑒𝑛 or even subtle associations like 

ℎ𝑢𝑚𝑎𝑛 − 𝑎𝑛𝑖𝑚𝑎𝑙 = 𝑒𝑡ℎ𝑖𝑐𝑠 and 𝑝𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡 − 𝑝𝑜𝑤𝑒𝑟 = 𝑝𝑟𝑖𝑚𝑒 𝑚𝑖𝑛𝑖𝑠𝑡𝑒𝑟. 

Figure 2-2 illustrates this concept by showing how the vectors between the king and 

queen, and man and woman are more or less the same.  

As an analogy, this way of thinking is very closely related to how humans process 

information: If you spot a furry four-legged animal with massive antlers on vacation – 

that you have never seen before – it is safe to assume that it is a mammal. By closer 

examination, it is probably also possible to infer whether it is closer to a goat than say a 
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cat. All of this is possible because you, as a sentient being, are capable of combining and 

incorporating knowledge from past events.  

Being able to transfer these principles to the domain of natural language processing, is 

certainly an intriguing thought. 

 

FIGURE 2-2 – CONCEPTUAL WORD EMBEDDINGS RELATIONSHIP, SHOWING SIMILARITY IN 2 DIMENSIONS 

2.3 PREPROCESSING 
There are as many ways to preprocess a document as there are acorns in a pine forest 

[19]. However, most of them share a common goal: Extracting the most substantial 

features from a document, and outputting a representation suitable for further processing 

– commonly known as feature selection [20]. This process may range from removing 

“unnecessary” words, to the task of unifying specific terms with their corresponding 

synonyms. Throughout this section, a handful of preprocessing concepts and strategies 

are presented and evaluated, with the underlying purpose of linking their utility to the 

news article domain.  

2.3.1 GROUPING OF SIMILAR TERMS 

Every language is bound to have several words and phrases with interchangeable 

meaning. This can be everything from concepts like synonyms to grammatical nuances.  

There are several ways to attack this problem, one being Stemming [12]. Stemming is the 

act of reducing an inflected word down to its root – for instance by using Porters 

Algorithm [21]. In short, Porters Algorithm proposes a technique that works great if the 

words are syntactically similar, like democracy, democratization and democratize. This 

leads to complications when faced with interchangeable phrases with significant 

differences in terms of syntax, like car and automobile. Thus, the requirement for different 

tools is made. An increasingly common approach to this is to utilize publicly available 

ontologies to include more general or otherwise common and/or related concepts [3] [12].  
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Although, subject to controversy [22] [5], the task of grouping terms remains a prominent 

metric, primarily because of its inherent properties of reducing complexity and feature 

dimensionality. 

2.3.2 STOP-WORD REMOVAL AND TERM FREQUENCY 

FILTERING 

Stop-word6 removal is the task of filtering out specific words that carry little information 

in a document [19]. This operation often revolves around prohibiting very common terms, 

which may range from the exclusion of specific words, to eliminating entire groups of 

words like prepositions (e.g. on, in) and articles (e.g. the, a, an). Although a simple 

procedure in itself, stop-word removal has been proven to be of significant importance in 

the field of text categorization [23]. 

It is worth mentioning that there have been several initiatives at work to propose a 

common list of stop-words [24] [25]. However, a single official list does not yet exist. 

Furthermore, the use precompiled lists, has even in some cases shown to reduce 

performance on smaller entries of texts, like Tweets [26].  

Still, the motivation behind stop-word removal remains high, primarily for its capabilities 

of reducing the search space, but also to avoid overfitting [19].  

Another measure related to stop-word removal is to prune words based on their frequency 

of occurrence within the corpus [19]. For instance, a word that only appears in a single 

document is unlikely to yield much, or any information about the other documents. 

Similar conclusions can be drawn from words occurring in every document. Even though 

term-weighting schemes like TF-IDF [2.2.2] somewhat account for this, they are still 

unable to actually reduce the set of features in the search space. For this reason, 

performing some kind of frequency based removal as a preprocessing step will likely lead 

to substantial performance gains in terms of computational demands. 

2.3.3 PART OF SPEECH TAGGING 

Part-of-speech (POS) tagging is a word sense disambiguation technique that attempts to 

categorize and tag the words in a document or corpus. For instance, marking word classes 

such as nouns, verbs, and adjectives. 

Primarily, there are two ways to perform the POS-tagging: Rule-based and stochastic. 

While rule-based taggers dominated the field early on, the handcrafted taggers often end 

up both high in cost, and in consumption of manpower. One of the reasons for this is 

 

                                                 

6 Stop-words – https://en.wikipedia.org/wiki/Stop_words 
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rooted in the many ambiguities present in language [2.1], making rule-based taggers 

difficult to develop and maintain. This has given rise to an alternative, and cheaper, 

stochastic approach, sometimes showing comparable performance [27].  

Out of the statistical methods, many of the methods commonly used in practice are 

varieties of the maximum entropy tagger developed for the well-known Standford NLP 

toolkit7. Although the choice of POS tags depends on your needs – generally, bigger 

datasets allow for more fine-grained tagging schemes and vice versa – much of the field 

have settled with the Brown/Penn tag set [28] shown in Table 2-1.  

 

 

TAG PART-OF-SPEECH 

AT article 

BEZ the word is 

IN preposition 

JJ adjective 

JJR comparative adjective 

MD modal 

NN singular or mass noun 

NNP singular proper noun 

NNS plural noun 

PERIOD .:?! 

PN personal pronoun 

RB adverb 

RBR comparative adverb 

TO the word to 

VB verb, base form 

VBD verb, past tense 

VBG verb, present participle, gerund 

VBN verb, past participle 

VBP verb, non-3rd person singular present 

VBZ verb, 3rd singular present 

WDT wh- determiner (what, which) 

TABLE 2-1 – BROWN/PENN POS TAGS  

 

                                                 

7 Standford NLP – http://nlp.stanford.edu/software/tagger.shtml  



 

14 

2.4 – BACKGROUND – TRADITIONAL CLASSIFICATION 

 

2.4 TRADITIONAL CLASSIFICATION  
With the classification of news articles in mind, it becomes apparent that simple single-

label techniques will not suffice [29]. Much because an article may have any number of 

correct categories, which in turn perhaps both differ in importance, and inherit 

correlational properties [30]. For instance, if a news article is labeled golf, it is arguably 

more likely to also have the label sport, but less likely to be labeled politics. 

The diverse and complex composition of this problem admittedly results in a massive 

forest of possible approaches [30]. However, recent research shows that given enough 

training data, significant performance can be achieved by even the more primitive 

techniques [31]. For this reason, the following section covers a few of the simpler, 

traditional methods, while the succeeding sections are dedicated to shedding light from a 

state-of-the-art perspective, revolving around neural networks and deep learning. 

2.4.1 NAÏVE BAYES 

Naïve Bayes, sometimes characterized as the favorite punching bag of classification 

techniques, is one the major cornerstones in the history of statistics and classification 

[32]. The simple, yet efficient nature of Naïve Bayes – both in terms of classification 

quality and computational requirements – has been proven successful through a variety 

of contexts. These range from spam filtering [33] [34] and information retrieval [32], to 

sentiment analysis [35], with the general application spanning more than forty years of 

widespread use.  

In layman terms, the classification process can be described in three simple steps: (i) 

Take the probability of an attribute having a given value, for a given classification, 

proceeded by (ii) multiplying all of them together, followed by finally (iii) multiplying it 

all with the probability of that classification appearing in the first place. 

In more formal terms, for a set of classifications 𝑣 and a set of attributes 𝑎, the Naïve 

Bayes classifier is merely a simplification of the Traditional Bayesian classifier [Figure 

2-3]: 

𝑣𝑇𝐵 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑣𝑗∈𝑉𝑃(𝑣𝑗|𝑎1, 𝑎2…𝑎𝑛) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑣𝑗∈𝑉𝑃(𝑎1, 𝑎2…𝑎𝑛|𝑣𝑗) ∗ 𝑃(𝑣𝑗) 

 

FIGURE 2-3 – TRADITIONAL BAYESIAN WAY TO CLASSIFY WITH CONDITIONAL DEPENDENCIES 
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Disregarding the conditional dependency, we can simplify and get the following 

relationship, representing the Naïve Bayesian classifier [Figure 2-4]: 

𝑣𝑁𝐵 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑣𝑗∈𝑉𝑃(𝑣𝑗)∏𝑃(𝑎𝑖|𝑣𝑗)

𝑖

 

 

FIGURE 2-4 – NAIVE BAYES APPROACH TO CLASSIFYING, WITHOUT THE CONDITIONAL DEPENDENCIES 

The assumption of conditional independence might sound like a longshot – certainly, 

some of the attributes in any given domain are bound to be related. However, the 

simplicity of the Naïve Bayes still holds ground, and is shown to be a very successful 

classifier, regardless of internal interdependencies [32] [36]. 

There is a catch though: The classifier in its original form only handles single categories 

– that is, it only assigns single categories to a document, not multiple. However, research 

shows that by transforming the problem into 𝑛-binary classification problems – one for 

each target category – the Naïve Bayes classifier becomes very capable of handling multi-

label classification task as well [34].  

As for the configuration of the classifier, there are two main options: multinomial and 

Bernoulli [37]. The multinomial version supports the use of feature vectors with decimal 

weights, and produces a binary classification output. On the contrary, the Bernoulli 

model only allows for binary feature vectors, but produces a probabilistic classification 

output. The sensible choice when working with text data represented in a BoW fashion, 

is a multinomial configuration, because of incorporation of frequency information (i.e. 

decimal weights) [37]. 

2.4.2 SUPPORT VECTOR MACHINES 

Support Vector Machines (SVM) originates from the family of large margin classifiers 

and are used to find linear decision surfaces (i.e. hyperplane) with the highest margin 

between the positive and negative classification instances [Figure 2-5] [30]. To achieve 

this, an SVM exploits the idea of kernel functions, which are used to manipulate and 

project data points into another space. This procedure results in the SVM becoming 

linearly separable by a single vector [Figure 2-6].  
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SVMs are especially suited for text categorization, mainly for their capabilities of tackling 

classification problems independently of the dimensionality of the feature space [38]. This 

makes them a very robust and flexible tool in the linguistic domain, considering the 

potential sparseness and dimensionality of document vectors [39]. 

Moreover, the trait of capturing subtle and possibly rare details in a document has been 

shown to be a lot more crucial than previously thought – in particular on the web, where 

much of the data consist of individually rare, but collectively frequent events [31].  

Similar to the Naïve Bayes classifier, SVMs are initially suited for single-label 

classification. However, multi-label modifications have been proposed in the literature, 

which tends to involve either transformation to 𝑛-binary problems, to through kernel-

modifications [29].  

Although, an excellent classifier, SVMs are generally slower than simpler methods like 

Naïve Bayes, which leads to its practical use being somewhat constrained by the size of 

the corpus [29]. 

 

FIGURE 2-5 – SVM IN TWO-DIMENSIONAL SPACE WITH A LINEAR KERNEL FUNCTION 

 

 

FIGURE 2-6 – SVM CLASSIFICATION EXAMPLE FROM THREE-DIMENSIONAL SPACE 
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2.4.3 K-NEAREST NEIGHBOR 

K-Nearest Neighbor (k-NN) is lazy learning method, which means that it does not build 

any explicit representation of categories during the training phase [40]. Since there is no 

actual model, keeping the classifier up-to-date is trivial: Once the algorithm has classified 

a new unseen instance, the “training” is simply a manner of indexing the example in the 

database.  

The classification mechanisms in k-NN rely on exploiting the closeness of k near neighbors 

given a certain feature space. For instance, by picking the k closest entities based on the 

Euclidean distance. Once k near neighbors are chosen, the task of classifying is commonly 

accomplished by having a majority election [40]. Another possible approach is distance 

weighting, where nearby neighbors are more worth than those far away [41]. 

One of the biggest strengths of the k-NN classifier is that it makes very few assumptions 

about the actual data [5], as opposed to for example Naïve Bayes, which assumes 

independence between attributes. In fact, the only requirement k-NN has in terms of 

data, is that a reasonable similarity measure exists.  

However, its simplicity is also its biggest weakness. Since there is no preprocessed model, 

the classification of a new instance is by default dependent on every other example in the 

training set. With a big enough database, the computational deficiency at testing time, 

can quickly become a huge bottleneck. Some research does, however, show that this can 

be partially solved by taking advantage of clustering as a preprocessing step [42].  

Nevertheless, due to its popularity and long history of use [13], it is still worth 

investigating, as it provides a good baseline when comparing it with other classifiers. 

Additionally, initiatives have been made to modify the algorithm for a multi-label 

environment [43]. 

2.5 ARTIFICIAL NEURAL NETWORKS 
Artificial neural networks (ANNs) is a family of machine learning algorithms inspired by 

the biological network present in our brain. Conceptually, an ANN is a directed network 

of interconnected nodes, known as neurons – with every neuron acting as an independent 

computational unit. Transparent as this may seem, history shows that by combining 

these neurons in certain ways, a structure inheriting properties akin to those of a 

mathematical function emerges: A deterministic structure capable of producing some 

output given some input – much like the neurons and synapses in our brain interprets 

the world through our senses.  

Although the principles of neural computing emerged already in the 1940s [44], the initial 

breakthrough was Rosenblatt’s introduction of the perceptron in 1958 [45]. The 

perceptron was a simple component, which turned its inputs into a single binary output, 

based on whether or not the weighted sum of the inputs was above some given threshold. 

Researchers quickly began experimenting with these neurons, believing it was the first 
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step towards being able to model the human brain. Hence, the years following this 

invention led to a surge in hype and enthusiasm throughout the field of artificial neural 

research.  

However, during the mid-1960s the excitement was suddenly brought to a halt – mainly 

due to the binary perceptrons’ inability to model even basic concepts like the XOR-gate 

[44]. In addition, these early networks were incredibly difficult to train. From there on 

the field remained more or less desolate until the mid-1980s, with the discovery of 

backpropagation [46], and the fact that researchers finally managed to prove that a 

multilayer feedforward networks were universal approximators [47].  

Despite the surge in potential, ANNs have mostly remained difficult to work with due to 

their complexity and demanding requirements regarding training data and computability. 

That is, until recently. With much help from Moore’s law8 and major advancements in 

data processing efficiency, ANNs have finally become a tractable option for real life 

applications. As a result, ANNs have over the past few years, shown to outperformed 

state-of-the-art techniques across a wide variety of fields – ranging from speech 

recognition and object detection to drug discovery and genomics [48]. 

Needless to say, the capabilities and potential of ANNs span wide and far, with the field 

growing more complex every day. For this reason, a thorough elaboration of the current 

state-of-the-art in neural computing is required to fully comprehend the motivation 

behind its application to the news domain. Thus, the following sections attempt to do 

exactly that.  

2.5.1 GENERAL OVERVIEW 

PERCEPTRON 

To recap, the perceptron is the simplest kind of neuron, and is the primary building block 

in neural nets. For the perceptron each of the 𝑛 ∈ ℕ inputs are scaled with a weight 𝑤𝑛 ∈

ℝ according to their importance, followed by computing the weighted sum ∑ 𝑤𝑗𝑥𝑗𝑗  [Figure 

2-7].  

 

FIGURE 2-7 – SIMPLE ANN WITH A SINGLE NEURON, WITH 3 INPUTS 

 

                                                 

8 Moore’s law – https://en.wikipedia.org/wiki/Moore%27s_law  
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The sum is then run through a threshold function within the neuron – for instance 

outputting a 1 if the sum is above some given threshold, or 0 otherwise. In algebraic 

terms: 

𝑜𝑢𝑡𝑝𝑢𝑡 =

{
 
 

 
 0   𝑖𝑓 ∑𝑤𝑗𝑥𝑗 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑗

1   𝑖𝑓 ∑𝑤𝑗𝑥𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑗

 

The notation can be simplified and rewritten in terms of vectors and biases by defining 

the following relationships: 

𝒘 ∗ 𝒙 =∑𝑤𝑗𝑥𝑗
𝑗

 

𝒃 = −𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

The simplified representation of a perceptron would then become: 

𝑜𝑢𝑡𝑝𝑢𝑡 = {
0   𝑖𝑓 𝒘 ∗ 𝒙 + 𝒃 ≤ 0
1   𝑖𝑓 𝒘 ∗ 𝒙 + 𝒃 > 0

 

The function computing the output is known as the activation function. Although the 

perceptron by definition produces a binary output, other types of neurons can, in theory, 

inherit any activation function [2.5.2].  

NETWORK 

Using the principles of the perceptron, the same idea can be extended and generalized to 

an arbitrary number of neurons, inputs, outputs and activation functions, ultimately 

creating a network. Figure 2-8 shows an example of a 3-layered network where all the 

nodes in layer 𝑛 are connected to every node in layer 𝑛 + 1 – formally known as a bipartite 

graph. If a non-linear activation function is used, the resulting network is a multilayer 

perceptron, or feedforward network (FFN). The layer in between the input and output 

layers is called a hidden layer.  

 

FIGURE 2-8 – 3-LAYER NEURAL NETWORK, OR A MULTILAYER PERCEPTRON 
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The motivation behind the layered structure is based on the notion that each and every 

layer represents a level of abstraction. For instance, the first layer may understand how 

to find lines and edges in a photo, while the next layer combines the lines together forming 

geometric objects. A third layer may then use information to decide whether or not the 

final image is something like a digit or a cat.  

Although the above example is comprehensible and easy to understand, the real strength 

of ANNs surfaces when creating a network with many layers: A deep neural network. 

Utilizing such a network with two or more hidden layers is what the literature today 

refer to as deep learning [48]. An example of a deep neural network is depicted in Figure 

2-9.  

By feeding such a deep network with massive amounts of data, the network might be 

able to find relations previously unknown to humans – all in an automated fashion. 

However, to get an intuition of how this is possible, a closer look into the activation 

functions and training algorithms is required. 

 

FIGURE 2-9 – DEEP NEURAL NETWORK WITH 4 HIDDEN LAYERS 

2.5.2 ACTIVATION FUNCTIONS 

The purpose of an activation function is to transform the activation level of a neuron 

into an output signal. While there are currently numerous possible activation functions 

to choose from, neural practitioners tend to stick with only a handful of them [49].  

With the binary activation function used in perceptrons, a tiny change (i.e. output 

changing from 0 to 1) could cause major ripple effects throughout to the whole network, 

making learning almost impossible [50]. A more desirable function to better facilitate 

learning would be a one capable of outputting any real number between 0 and 1. As of 

now, the functions proven most useful are the Sigmoid, hyperbolic tangent, Softsign and 

rectified linear units (ReLU). 
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SIGMOID 

The Sigmoid, or sometimes called the logistic function has by far been the most common 

activation function [49]. It is a non-linear function with exponential properties, and is 

defined by: 

 𝜎𝑠(𝑧) =
1

1 + 𝑒−𝑧
 

(2.1) 
 

 

FIGURE 2-10 – SIGMOID FUNCTION 

 

HYPERBOLIC TANGENT 

The hyperbolic tangent is in principle the same as the Sigmoid, with the exception that 

it is defined from -1 to 1, instead of 0 to 1: 

 𝜎𝑡(𝑧) = 𝑡𝑎𝑛ℎ (𝑧) (2.2) 

 

FIGURE 2-11 – HYPERBOLIC TANGENT ACTIVATION FUNCTION 

 

The motivation behind the hyperbolic tangent is to avoid systematic bias, with some 

research showing that using a symmetric activation function could solve this and lead to 

faster convergence [51]. 
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SOFTSIGN 

A close relative to the hyperbolic tangent is the Softsign function – with the only 

difference being that its tails are quadratic polynomials rather than exponential [52]. This 

means that the Softsign approaches its asymptotes much slower than the hyperbolic 

tangent. Formally it is defined as: 

𝜎𝑠𝑠 =
𝑥

1 + |𝑥|
 

 

FIGURE 2-12 – SOFTSIGN ACTIVATION FUNCTION 

RECTIFIED LINEAR UNITS – RELU 

Although the Sigmoid has been a prominent activation function for a long time, the 

default recommendation for modern neural networks is often to use the Rectified Linear 

Units (ReLU) [53]: 

 𝜎𝑟𝑒𝑙𝑢(𝑧) = 𝑚𝑎𝑥{0, 𝑧} (2.3) 

 

FIGURE 2-13 – RELU ACTIVATION FUNCTION 

As shown in Figure 2-13, the ReLU consist of a piecewise linear function with two linear 

components. For this reason, ReLU preserves many of the properties that make linear 

models easy to optimize with gradient descent, as well as generalizing well. Another 

important advantage is that ReLUs are computationally inexpensive in comparison to its 

continuous counterparts, and thus suitable for bigger networks [54]. The computational 

convenience is further amplified for naturally sparse datasets, as the ReLU cuts off at 

exactly zero – making it possible to use a sparse encoding of the internal representation. 
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2.5.3 OUTPUT FUNCTIONS 

Output functions are in principle identical to activation functions, with the only 

difference being that they compute – as the name suggests – the output of the entire 

network. For instance: Given a multi-label classification model, one might want to output 

a probability distribution over all of the possible labels, as opposed to a number between 

1 and 0 – like a Sigmoid. 

For this reason, it has been common practice to use the softmax function – also known 

as normalized exponential – on the output layer [55]. Succinctly, the softmax function is 

a generalization of the Sigmoid that works for multiple output classes. While the Sigmoid 

model outputs a single value (e.g. 0 or 1 for a single class), the softmax outputs a 

probability distribution over any set of possible classes. For a set of 𝐾 classes (i.e. outputs 

in the networks), softmax can be described as squashing a 𝐾-dimensional vector 𝒛 of real 

values into a 𝐾-dimensional vector of 𝜎(𝒛) ∈ (0, 1), where ∑ 𝜎(𝑧𝑖) = 1.𝑖  In general, the 

softmax function is given by: 

 

𝜎𝑠𝑚(𝒛)𝑗 =
𝑒
𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘=1

   for 𝑗 ∈ {1, … , 𝐾} 

 

2.5.4 USING AN ARTIFICIAL NEURAL NETWORK 

Using an already configured and trained ANN is in theory as simple as providing some 

vectorized input, followed by observing the output on the other end. For instance, by 

inserting an image and then make the network decide whether or not the image contains 

a cat [56]. However, to make the network produce a sensible output, four complicated 

matters need to be resolved: 

 How to vectorize the input? 

 What should the output be? 

 What should the network look like? 

 What should the weights be? 

The answer to the first two questions depends on the chosen media. For an image, one 

could just create a single vector from the pixel matrix, and for text, one could insert the 

feature vectors produced by BoW and TF-IDF. The output could be binary, as in: “is it 

a cat or not?”. Although not necessarily trivial, the process itself is straight forward.  

As for the third and fourth question: We simply do not know. There are no set of “optimal 

weights” or an “optimal configuration” – everything depends on the properties of the 

underlying data, and what one seeks to achieve from it. Though, while the configuration 

of the network is a somewhat an experimental “trial-and-error” process, the weights need 

to be learned. 
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Luckily, there are several guidelines and best practices as to how one could tackle both 

of these problems, and the following sections will shed some light on the most important 

ones. 

2.5.5 TRAINING 

Over the years, there have been numerous more or less exotic ways of training ANNs. 

The approaches have ranged from semi-chaotic evolutionary techniques [57] to the 

classical, more controlled combination of gradient descent and backpropagation [58]. 

However, most of the field has settled with the latter, both due to its efficiency and 

properties that promote distributed training [50]. 

Apart from that, training an ANN is analogous to training any other modeling algorithm: 

Start by feeding it training examples, and measure the error of the output with a cost 

function9. As with the activation function, there are numerous possible cost functions. 

However, for classification-related ANN tasks, research points in favor of the cross-

entropy error (CEE), or the classic mean square error (MSE) – with the former having 

the upper hand. This is mainly due to CEEs property of promoting rapid learning, even 

when the network is unambiguously wrong – a property not inherited by the MSE [50]. 

With other words: If the values of output function are a lot different than the correct 

output, the CEE makes it possible for the learning algorithm to take a bigger “step” in 

the right direction than the MSE generally is capable of. 

For a single neuron with 𝑚 training examples, where 𝑦 denotes the real output and 𝑎 is 

the approximated output generated from the network, the CEE is defined as [56]: 

 
𝐶𝐸𝐸 = −

1

𝑚
∑[𝑦𝑥  𝑙𝑛(𝑎𝑥) + (1 − 𝑦𝑥)  𝑙𝑛(1 − 𝑎𝑥)]

𝑚

𝑘=1

 
 

(2.4) 
 

The reasoning behind why CEE works is described thoroughly in [50]. However, the 

general takeaway is that the partial derivatives of CEE generally remain greater in 

magnitude than MSE when the error is huge. As shown in the next section, this property 

becomes useful when training the network with gradient descent, where the partial 

derivatives of the cost function play an integral role. 

LEARNING WITH GRADIENT DESCENT 

To actually train an ANN, the cost function has to be minimized over all the neurons, 

that is, all weights and biases for the entire network. The preferred method for doing so 

is gradient descent [50]. The easiest way to understand how and why gradient descent 

 

                                                 

9 Also known as loss or objective function 
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works is with an example: Consider a vector 𝒗 = (𝑣1, 𝑣2)
𝑇defining the feature space 

illustrated in Figure 2-14.  

 

FIGURE 2-14 – FEATURE SPACE FOR V 

The idea behind gradient descent to compute the gradient, i.e. the direction of the 

“steepest” slope for the current position, and then move a tiny step in the opposite 

direction.  

For vector 𝒗 and cost function 𝑪 that would translate into first defining the change in 

cost Δ𝑪: 

Δ𝑪 =
𝛿𝐶

𝛿𝑣1
Δ𝑣1 +

𝛿𝐶

𝛿𝑣2
Δ𝑣2 

Followed by defining the gradient of 𝑪, with 𝑇 being the transpose operator: 

∇𝑪 = (
𝛿𝐶

𝛿𝑣1
,
𝛿𝐶

𝛿𝑣2
)
𝑇

 

And letting Δ𝒗 be the change in 𝒗: 

Δ𝒗 = (Δ𝑣1, Δ𝑣2)
𝑇 

Using these relationships, Δ𝑪 can be rewritten as: 

 Δ𝑪 = ∇𝑪 ∗ Δ𝒗 (2.5) 

As mentioned, the goal is to move in the opposite direction of the gradient – with other 

words, a negative Δ𝑪. This can be done by defining the following relationship, where 𝜂 is 

a small, positive parameter known as the learning rate: 

Δ𝒗 = −𝜂∇𝑪 

Finally, the above equation can be used to create what is known as the gradient update 

rule – the quantity to update 𝒗 in order to take one tiny step downhill, thus minimizing 

the cost. By letting 𝑖 denote the current iteration, the update rule becomes: 

 𝒗𝑖+1 = 𝒗𝑖 − 𝜂𝛻𝑪 (2.6) 
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By repeatedly applying the update rule on a convex error function, like MSE or CEE, 

the error has been shown always to converge, given that the learning rate is low enough 

[50]. However, the number of iterations required for this convergence is subject to trial 

and error, as it depends on the particular problem at hand. For this reason, it is often 

helpful to plot the error function while training, giving a graphical perspective of the 

movement of the gradient. 

Although the derivation above only used a two-component vector, gradient descent can 

be generalized to an arbitrary number of components. For the ANN case, the vector 

would consist of all of the dynamic features in the network, namely, all weights and 

biases. Adopting the same procedure as above, this results in the following two update 

rules: 

 𝑤𝑛+1 = 𝑤𝑛 − 𝜂
𝛿𝑪

𝛿𝑤𝑛
 

𝑏𝑙+1 = 𝑏𝑙 − 𝜂
𝛿𝑪

𝛿𝑏𝑙
 

 
(2.7) 

 

OVERCOMING CHALLENGES WITH STOCHASTIC GRADIENT 

DESCENT 

Even though gradient descent in its pure form, as described above, is going to minimize 

the error rather efficiently, there is one major drawback. The cost function is directly 

dependent on every training instance, which means that the gradients need to be 

computed separately for every training input, before being averaged. This also means it 

will be difficult to run the training in a distributed environment.  

The solution for this is to split up the training instances in randomly chosen disjoint 

batches, or mini-batches, followed by running gradient descent on each of the batches. 

An epoch denotes a single run through the entire dataset. By averaging over all of the 

gradients after each epoch, gradient descent can be executed in a distributed manner – 

which often results in both faster and even better learning [59] [60]. This method of 

applying gradient descent is known as stochastic gradient descent (SGD) – stochastic 

because each small set of examples gives a noisy estimate of the average gradient over all 

examples [48]. In more formal terms: For a mini-batch with size 𝑚, the gradient (2.5) for 

SGD is then redefined as: 

 
𝛻𝑪 =

1

𝑚
∑𝛥𝑪𝑥𝑗

𝑚

𝑗=1

 
(2.8) 

 

And the update rule (2.7) for SGD becomes: 

 
𝑤𝑛+1 = 𝑤𝑛 −

𝜂

𝑚
∑

𝛿𝑪𝑥𝑗
𝛿𝑤𝑘

𝑚

𝑗=1

 

𝑏𝑙+1 = 𝑏𝑙 −
𝜂

𝑚
∑

𝛿𝑪𝑥𝑗
𝛿𝑏𝑙

𝑚

𝑗=1

 

 
 

(2.9) 
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COMPUTING GRADIENTS WITH BACKPROPAGATION 

Gradient descent provides a framework for error measurement and an intuition of how 

to update weights and biases using gradients. However, this is not of much use without 

also knowing how to compute the actual gradients of the cost function. One way to 

calculate the gradients would be by choosing some small error 𝜖 > 0, and a unit vector 

in the 𝑗th direction 𝑒𝑗 , and then use the approximation: 

𝛿𝑪

𝛿𝑤𝑗
≈
𝑪(𝑤 + 𝜖𝑒𝑗) − 𝑪(𝑤)

𝜖
 

This approach would work, but given 𝑛 weights it would also require the cost function 

to be calculated 𝑛 times for a single training example. This would undoubtedly quickly 

become very ineffective and possibly insoluble for a cost function with many variables. 

Backpropagation solves this issue by granting a way to apply the same principle, with a 

single pass through the network [58]. In simple terms, the algorithm does the forward 

propagation of the error backward. This is done using efficient techniques from linear 

algebra to repeatedly apply the chain rule from calculus to compute the partial 

derivatives required for every gradient.  

The actual mathematical derivation behind the algorithm is rather involved, and lies 

beyond the scope of this thesis [61, 62]. Nevertheless, for the purpose of the thesis, it is 

sufficient to envision backpropagation as a black box that computes gradients, efficiently. 

2.5.6 TOPOLOGIES 

This far, the only ANN architecture, or topology discussed, has been the classic 

feedforward multilayer perceptron (FFN) – a network where all the nodes are connected 

to every node in the next layer. No loops, and no partially connected layers. However, 

over the years there has been no shortage of more sophisticated network topologies. For 

the scope of this thesis, two of the more successful ones are investigated: Namely, 

convolutional and recurrent neural networks, with the main focus being on the latter. 

CONVOLUTIONAL NEURAL NETWORKS 

As a long time popular choice for image classification, convolutional neural networks 

(CNNs) is a type of neural network especially suited for working with multi-dimensional 

data [54]. For example, images with three channels of 2D arrays denoting color intensities, 

but also 1D data like text or volumetric content like video.  

The idea behind CNNs is to systematically identify and exploit increasingly abstract 

relationships in data. A classic example for explaining this procedure is image 

classification: The first layer may detect simple concepts like lines and curves throughout 

an image. By combining these lines and curves in the second layer, the network is able 

to identify geometrical shapes like squares and circles, which in the third layer might 

translate into more complex features like an ear or an eye. Carrying on, the network 
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might be able to question whether the image contains a cat or a tricycle down the line. 

This may sound similar to how the layered neural architecture was explained in Section 

2.5.1, and it is – CNNs just takes this idea to the extreme. 

Mathematically speaking, convolution is an operation that expresses the amount of 

overlap of one function, as it is shifted over another function. The output of the operation 

is a similarity measure between the two functions. In terms of the image classification 

use case, imagine convolution as sliding a small window (or filter) over an image, 

systematically capturing a subset of the pixels (typically on the order of 5 by 5) at the 

time. And for every new position, the window analyses the underlying pixels, and answers 

the question “does this subset contain feature 𝑥”.  

In principle, a CNN is based on convolving multiple such windows asking different 

questions – forming a convolutional layer. The output of the convolutional layer is then 

passed on to a pooling layer which collects all of the “answers” from the convolutional 

layer, and merges semantically similar signals. The idea behind the merge is that the 

location of features should not matter – it does not matter whether an eye is in the upper 

right or lower left, as long as it is above the mouth. By stacking convolutional and pooling 

layers, a CNN is formed. 

It should be noted that the above example is heavily simplified. While CNNs are both 

widely applicable and fascinating to understand in depth, the topological focus for this 

thesis has been chosen to be on RNNs, introduced in the next section. Thus, for a more 

fine-grained dive into the domain of CNNs, the reader should consult the original works 

of A.I. pioneer Yann LeCun et al. [62]. 

RECURRENT NEURAL NETWORKS 

Recurrent neural networks (RNNs) is a kind of network especially suited for working 

with sequential data – it be a time series, continuous sound or written language. The 

main difference from the standard FFN, is that RNNs has backward edges – the input 

depends on both the input, and the output from the previous iteration. Due to this, RNNs 

inherit a kind of memory, and thus is capable of making inferences based on the current 

input given its previous output – or rather, the present, given its recent past.  

For instance, RNNs can be used to predict the next letter of a word, given the 𝑛 previous 

characters in the sentence. Another way to look at it is to say that RNNs preserves 

contextual information related to the order of the input. In contrast to FFNs which 

simply outputs static information based on current input, a RNN is capable of 

dynamically adjusting its output based on what it remembers – a model closer related to 

the human mind than traditional approaches. 

At first, it may sound courageous to feed the output back into the network, as it would 

indeed create loops [Figure 2-15]. The key here is to remember that the output is only 

redirected through the net at the next time step. Because of this, is it possible to unfold 

any RNN into a chain of 𝑛 separate networks, where 𝑛 denotes the finite number of time 

steps the network “remembers” [Figure 2-16].  
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FIGURE 2-15 – SIMPLE RNN WHERE Z IS A NEURAL STRUCTURE, DIRECTING OUTPUT BACK INTO THE 

NETWORK. 

 

FIGURE 2-16 – UNFOLDED RNN STRUCTURE 

Another important property of RNNs is the capability of dynamically dealing with a 

variable length of input and output vectors [Figure 2-17]. For instance, making it possible 

to input several values at once, only to produce a single, perhaps nominal output, like a 

category. Viewed from a developer’s perspective, the process can be seen as analogous to 

how an actual computer program works. In fact, RNNs are known to be Turing-Complete 

in the sense that they can simulate arbitrary programs, with some input, an internal 

state, and some output [63].  

 

FIGURE 2-17 – POSSIBLE INPUT AND OUTPUT CONFIGURATIONS FOR RNN 

As a result, RNNs are especially suitable for classifying text: Either by inputting entire 

documents, or by using ordered feature vectors, while outputting a single or more 

categories.  

When it comes to training an RNN, the process is more or less identical to how one would 

train a standard FFN. The only change required is an extension of the backpropagation 

algorithm, known as backpropagation through time (BPTT) [58] – which purpose is to 

link the different time-steps together.  
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Although it is easy to become blinded by the benefits of RNNs, there are a few drawbacks 

to consider. Perhaps the most central one is the difficulty of training. Since the training 

examples are fed through the network multiple times, the number of multiplications 

required to compute the gradient also increases. As shown in (2.6), the gradient is 

calculated as a function of the derivatives of the activation functions and the related 

weights. If either of these factors is < 1, the gradient may converge towards zero, leading 

to what is known as the vanishing gradient problem. In the opposite scenario, where both 

factors are > 1, the gradient might increase uncontrollably, resulting in the exploding 

gradient problem [64] [50]. Intuitively, this phenomenon is somehow analogous to why 

consistently winning 0.97 or 1.03 NOK for every krone spent when gambling quickly 

either leads to bankruptcy or incredible wealth.  

The reason that gradients with extreme values is an issue can be deduced from the update 

rule in gradient descent (2.7). If the gradient is tiny, the updates of the parameters will 

also be tiny, and the opposite for very high values. As the whole training process is 

dependent on the gradient to move towards a solution, small updates will lead to very 

slow training, while large gradients will lead to big fluctuations and an unstable network. 

LONG SHORT-TERM MEMORY UNITS 

The issues of vanishing and exploding gradients introduced in the previous section is a 

fundamental problem with bigger neural networks. Luckily, prevention mechanisms exist: 

By swapping the traditional neurons in an RNN with long short-term memory units 

(LSTMs) research shows RNNs can be made both resistant to vanishing and exploding 

gradients, as well as making the RNN easier to train [65] [48].  

In short, LSTMs are smart structures, capable of controlling their own behavior, and 

managing their own memory. Specifically, LSTMs are capable of remembering a value of 

an arbitrary length of time, or choose to forget the value if deemed insignificant.  

 

FIGURE 2-18 – THE INNER ARCHITECTURE OF AN LSTM UNIT 
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As illustrated in Figure 2-18, the design of an LSTM unit is far from trivial at first glance. 

Perhaps the first thing that comes to mind is the fact that there are three inputs: 

ℎ𝑡−1 = 𝑜𝑢𝑡𝑝𝑢𝑡𝐿𝑎𝑠𝑡𝑇𝑖𝑚𝑒𝑠𝑡𝑒𝑝 

𝑥𝑡 = 𝑜𝑢𝑡𝑝𝑢𝑡𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝐿𝑎𝑦𝑒𝑟 

𝑐𝑡−1 = 𝑚𝑒𝑚𝑜𝑟𝑦𝐿𝑎𝑠𝑡𝑇𝑖𝑚𝑒𝑠𝑡𝑒𝑝 

With two corresponding outputs: 

ℎ𝑡 = 𝑜𝑢𝑡𝑝𝑢𝑡𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒𝑠𝑡𝑒𝑝 

𝑐𝑡 = 𝑜𝑢𝑡𝑝𝑢𝑡𝑀𝑒𝑚𝑜𝑟𝑦 

Within the unit itself, there are also three internal units known as gates (i.e. the sigmoid-

shaped units). Due to the properties of a typical activation function (like the Sigmoid, 

the output is either very close to 1 or 0), a gate is comparable to a binary control unit – 

merely as a side effect of the component-wise multiplication. That is, if a gate fires its 

output is going to be close to 1, and the multiplicative step inside the next node will be 

left unaltered. On the contrary, if a gate does not fire, the output is going to be close to 

0, which effectively blocks the signal through the next node.  

Summarized, the gates control three different properties: The first controls whether or 

not the unit should care about its current inputs, the second controls the unit’s internal 

memory, while the third controls whether the neuron should fire or not.  

 

FIGURE 2-19 – LSTM COMBINED, PRODUCING AN RNN WITH 3 INPUTS AND 1 OUTPUTS. E.G. FOR 

CLASSIFICATION. 
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The reason LSTMs prevent the vanishing and exploding gradient problem is twofold: 

First, the output is not directly dependent on the output of the activation function, but 

rather an identity function which derivative is always 1. Second, the weights of the LSTM 

are effectively equal to the memory gate which value is always ≤ 1. For this reason, the 

gradient neither vanishes nor explode. 

Finally, like any neural structure, LTSMs can be combined in arbitrary ways, forming 

configurations like the ones in Figure 2-17. An example LSTM configuration with three 

inputs, and a single output is depicted in Figure 2-19 – a typical topology suitable for 

classification.  

In light of the above, LSTMs becomes the natural choice when working with RNNs today. 

2.5.7 WEIGHT INITIALIZATION AND COMMON 

CHALLENGES 

When training a fresh ANN, the network itself is free of knowledge. Still, the weights and 

biases have to be initialized to some value. It is tempting to conclude that starting from 

a set of random weights, and letting gradient descent work from there, is a sensible choice. 

However, as it turns out: Clever initialization of weights may matter a lot in terms of 

convergence – both in regards to speed, and whether or not the network will converge at 

all [66]. The following section covers some of the commonly used initialization techniques. 

XAVIER 

A popular alternative to random initialization is Xavier initialization [52]. Xavier 

initialization is similar to a Gaussian, but narrower – i.e. fewer values close to the borders 

of 0 and 1. Formally: Given a set of weights 𝑤 and a neuron with 𝑛𝑖𝑛 in-edges and 𝑛𝑜𝑢𝑡 

out-edges, sample weights from either a Gaussian or uniform distribution, with a zero 

mean and a specific variance: 

𝑉𝑎𝑟𝑥𝑎𝑣𝑖𝑒𝑟(𝑤) =
2

𝑛𝑖𝑛 + 𝑛𝑜𝑢𝑡
 

In summary: Using a narrower Gaussian approach like Xavier makes every iteration affect 

the weights in the network more heavily, leading to faster training. 

RELU 

One problem with the Xavier initialization is that it assumes that the activations 

(approximately) are linear. This is fine when the 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 or 𝑡𝑎𝑛ℎ is used, but it does 

not hold for ReLUs. However, all else being equal, the only modification required to make 

it compatible with ReLU is to change the variance to [67]: 

𝑉𝑎𝑟𝑅𝑒𝐿𝑈(𝑤) =
2

𝑛𝑖𝑛
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2.5.8 OPTIMIZATION 

Many of the optimizations and guidelines discussed this far has been static parameters 

that need to be set prior to training. Still, knowing all of the information required to 

achieve a satisfactory training environment up front, is often undeniably ambitious. For 

this reason, several more or less dynamic and automatic tuning algorithms have been 

developed – with a common goal of further adapting the ANN to the particular task at 

hand. 

MOMENTUM 

A natural property of gradient descent that it often ends up traversing the feature space 

in a zigzag-like pattern [50]. This movement is not optimal, as it increases the distance 

the training algorithm has to travel, which in turn increases the number of steps or 

iterations required to find a solution. One technique to smoothen out the path, and thus 

lower the traveling distance during training, is to apply momentum [66].  

From physics, we know that momentum is the property that makes the car skid if you 

quickly rotate the turning wheel – the car wants to continue straight ahead, while the 

tires want it to shift direction. What you end up with is some sort of mix, where the car 

is slowly changing its direction, instead of doing an immediate turn. The same idea can 

be applied to the gradient by incorporating knowledge from its previous step into the 

calculation of the current [Figure 2-20]. 

 

FIGURE 2-20 – THE EFFECTS OF APPLYING MOMENTUM TO THE GRADIENT DESCENT, TO SMOOTHEN THE 

PATH 

The classical momentum is incorporated in training with the following simple 

modification to the gradient descent update rule (2.7) – where 𝜇 ∈ {0,… ,1} is the 

momentum coefficient: 

𝒎𝑖+1 = 𝜇𝒎𝑖 + 𝜂∇𝑪 
𝒗𝑖+1 = 𝒗𝑖 −𝒎𝑖+1 
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ADAPTIVE LEARNING RATE  

Once faced with a new problem, the initial choice of learning rate is often a shot in the 

dark. A learning rate too big is going to overshoot the minimum, while a learning rate 

too small will lead to very slow training [Figure 2-21] – hence the intuitive solution would 

be to take big steps in the beginning, and adjust the rate when approaching the minimum. 

  

 

FIGURE 2-21 – CONCEPTUAL ILLUSTRATION SHOWING THE EFFECTS OF LEARNING RATE ON GRADIENT 

DESCENT 

 

The simplest approach is to use annealing [68], which involves decaying the learning rate 

either according to a pre-defined schedule, or when the cost between epochs falls below 

a certain threshold. However, these techniques are highly dependent on a priori 

configuration, making them incapable of dynamically adapting to the characteristics of 

the dataset [69].  

Therefore, several initiatives have been made to make automatically adapting learning 

rates possible. Among the most successful ones are AdaGrad and RMSProp. 

AdaGrad is essentially an adaptive learning rate relative to the “distance traveled” [70] – 

that is, it accumulates the gradients all the way from the start. This is done by slowly 

decaying the learning rate, but not necessarily by the same amount in every direction. 

As a result, it will decay quickly in directions with steep gradients, and the opposite if 

the gradients are small. The formula for AdaGrad is given by: 

𝒗𝑖+1 = 𝒗𝑖 −
𝜂

√∑ ∇𝑪2𝑡

∇𝑪 

RMSProp is an unpublished adaptive learning rate method very similar to AdaGrad [71]. 

The only difference is that in RMSProp, the decaying factor (in the denominator) is 

calculated by exponentially decaying the average and not the sum of gradients. Or put 

another way, it accumulates gradients over a window as opposed to all gradients from 

the start. For this reason, RMSProp is capable of more easily adapting to new data with 

new properties. 
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INPUT SCALING  

Another trick to improve training accuracy, and to decrease the number of iterations 

required for gradient descent, is input scaling. The mathematical derivation of why this 

is important is somewhat involved [59], however, the principle is easily illustrated. Figure 

2-22 shows a possible feature space with two features 𝑤1 and 𝑤2. If both of the features 

are within the same range [Figure 2-22 (a)], gradient descent – with a fixed step-size – 

will more easily find the global minimum. However, for the skewed inputs [Figure 2-22 

(b)], gradient descent may overshoot and miss the center entirely – perhaps never manage 

to land exactly in the minimum. The reason for this is because of the fixed step-size: A 

small step across one axis (𝑤2) may lead to a big step on the other axis (𝑤1), relative to 

the size of the feature space. Scaling the inputs of the different axis to lie within the same 

range avoids this problem.  

This is obviously not as easy to visualize in higher dimensions, but the same rules apply. 

 

FIGURE 2-22 – CONCEPTUAL GRADIENT DESCENT WITH SCALED AND SKEWED FEATURE VECTORS 

2.5.9 REGULARIZATION 

Regularization is a common way to reduce overfitting of a dataset in a flexible manner. 

In principle regularization can be said to be an enforcer of Occam’s razor10, by artificially 

discouraging complex or extreme explanations of the world [50].  

The process of regularization is one of many concepts best explained with an illustration. 

Imagine a dataset split into training and test examples, as shown in Figure 2-23, where 

each of the dots represents a data point in a two-dimensional feature space. A linear 

function will do a decent job at approximating the values in the training set, but it is 

also apparent that the bias of the approximation is high – the function assumes that the 

data is linear.  

 

                                                 

10 Occam’s razor – https://en.wikipedia.org/wiki/Occam's_razor  
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When using the quadratic approximation [Figure 2-23], it becomes evident that it fits the 

training data well, and the higher order polynomials even more so. However, as the 

function increases in order it starts to overfit. Even though it correctly approximates all 

of the data points in the training set, the function does a poor job at approximating the 

test set – it does not generalize beyond the training data. 

Nevertheless, plotting the function to see which one fits is not always an option, thus 

automated regularization techniques are desired. Vastly simplified, regularization solves 

this by punishing high-valued coefficients more than lower-valued ones, when calculating 

the error of the approximation – ultimately making the higher order approximation less 

“extreme”, or smoother, as seen in the last quadrant in Figure 2-23. 

 

FIGURE 2-23 – CONCEPTUAL REGULARIZATION EXAMPLE 

𝐿2 REGULARIZATION 

𝐿2 regularization, also known as ridge regression or weight decay, is a penalty parameter 

that is added to the cost function [53]. The goal of the parameter is to force the model 

to discriminate towards high-value weights, and instead prefer smaller weights. This 

makes it harder for local noise to leave a footprint in the model’s behavior, thus reducing 

overfitting. 

The actual mathematical term used for regularization varies, but one version commonly 

used with the CEE cost function (2.4) is defined as [50]: 

𝐿2 =
𝜆

2𝑚
∑|𝑤𝑖|

2

𝑖
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Here 𝜆 is a parameter that controls how much the regularizer should affect the cost, and 

𝑤 are the weights of the network. That is, the bias terms are not regularized, as this 

could lead to underfitting [53] – it becomes too general, and incapable of learning. 

Making the regularized cost function: 

 
𝐶𝐸𝐸 = −

1

𝑚
∑[𝑦𝑥  𝑙𝑛(𝑎𝑥) + (1 − 𝑦𝑥)  𝑙𝑛(1 − 𝑎𝑥)] +

𝜆

2𝑚
∑|𝑤𝑖|

2

𝑖

𝑚

𝑥=1

 
 

(2.10) 
 

Currently, 𝐿2 regularization is one of the standard anti-overfitting techniques in the 

neural toolkit. 

DROPOUT 

Dropout is a regularization method that relies on randomly skipping neurons along with 

their related weights during the training phase [72]. When combined with SGD and 

backpropagation, dropout can be implemented in such a way that the training algorithm 

will run the approximation on all of the “thinned” networks in a mini-batch, followed by 

averaging the gradient for each parameter. Hence, applying dropout is analogous to 

averaging over multiple networks, which overfits in different ways.  

The method is illustrated in Figure 2-24, where the gray nodes denote nodes that are 

ignored for the given network. By first training two different sub-networks that overfit 

to a subset of the data points, an overfit to the full dataset can be avoided by creating a 

new network which parameters are the average of the overfitted ones. 

Dropout does, however, require some caution when applied to RNNs, as dropping along 

the time axis has shown to degrade performance [73].  

 

FIGURE 2-24 – CONCEPTUAL ILLUSTRATION OF HOW DROPOUT AVERAGES AND PREVENTS OVERFITTING 
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EARLY STOPPING 

When training an ANN, the number of epochs required in order to reach the sweet spot 

between overfitting and test set accuracy, is more or less subject to trial and error. Early 

stopping is a technique to automate the choice of epochs, with the help of some simple 

heuristics [Figure 2-25].  

The process is relatively straightforward: After every epoch, evaluate the ANN on the 

test set. If the error is less than the previous epoch, store the model and run through 

another epoch. If it is worse, use the currently best-performing network.  

 

FIGURE 2-25 – EARLY STOPPING 

2.6 DIMENSIONALITY REDUCTION 
When working with BoW, or other representations whose feature space quickly escalates, 

it is sometimes desirable to apply techniques to reduce the dimensionality in favor of 

computability [10], while also sometimes reducing overfitting [5]. These methods are 

generally split into two categories: feature selection, and feature extraction [74].  

The idea behind feature selection is to select and subset of the original features which 

provide the most information. For example, by removing all phrases in a corpus which 

are only used in a single document, as these phrases would be of little help when 

classifying other documents. Feature extraction, on the other hand, revolves around 

transforming the original features into another lower-dimensional space. Unlike feature 

selection, the variables of the resulting space often lose its meaning in the intuitive sense. 

The following section covers a brief dig into the domain of dimensionality reduction, 

including a short note about how it may help understanding the dataset through 

visualization. 
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2.6.1 FEATURE EXTRACTION 

Principal component analysis (PCA) is feature extraction technique introduced as a 

mechanism to handle this issue, by attempting to squeeze the column space of the vectors 

together, while still maintaining as much information as possible [39].  

The way this is done is by executing a statistical procedure that exploits the spatial 

relationships by identifying the closest correlated hyperplane, proceeded by projecting 

every vector onto said plane. By repeatedly applying this process, the PCA algorithm is 

able to effectively reduce the dimensionality space by one dimension for every iteration.    

Perhaps more intuitively, using PCA can be seen as finding the perspective that spreads 

out the data points the most – thus, capturing the most variance and information 

possible, for a given dimension. Figure 2-26 illustrates how a set of correlated features in 

a 2D plane may be projected onto a single dimension. 

 

FIGURE 2-26 – PCA ALGORITHM SHOWING THE MAPPING FROM 2 TO 1-DIMENSIONAL SPACE 

2.6.2 FEATURE SELECTION 

While the computational demands for feature extraction – especially PCA [75] – can be 

quite demanding, feature selection is often both easier to perform and lighter on the 

requirements. As touched upon in the introductory section, one way to perform feature 

selection is to create an upper and lower threshold for the number of occurrences for 

every phrase (i.e. term frequency filtering). However, this should not be applied blindly, 

as it has been shown that even rare occurrences might carry significant meaning [31]. 

Another, yet similar method, is to use a low-variance filter. The idea behind this 

technique is to prune variables with – as the name suggests – low variance. Put another 

way, given a matrix representation of a dataset (i.e. one vector for every example), low-

variance filter removes variables whose data columns’ variance lies beneath some 

threshold.  

High-correlation filters are yet another useful feature selection method, based on 

identifying variables which behave similarly. If two sets of variables are heavily correlated 
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– they move “up and down” in sync – this technique is based on the assumption that 

keeping only one of the variables will suffice for the learning algorithm. This can be done 

by using the Chi-Square statistic (𝜒2), which measures the degree of association between 

a term and its corresponding category. Its application is based on the expectation that a 

term whose frequency strongly depends on the category will be important to account for 

when discriminating among them [10]. 

2.6.3 VISUALIZATION 

While performing dimensionality reduction to promote computability and otherwise 

improving the classification process, the reduction may also serve as a visual tool to better 

understand the dataset. Furthermore, dimensionality reduction can potentially provide a 

lot of traction in understanding ANNs – which typically works with data in high-

dimensional planes [76].  

As for the actual techniques, the most prominent in terms of visualization is t-Distributed 

Stochastic Neighbor Embedding (t-SNE) [77]. While mathematically incomprehensible for 

the common people, the output of the algorithm is quite intelligible. Though, as many 

related subjects, it is best explained with some visual aid. Figure 2-27 shows a figure from 

the original t-SNE paper, and depicts a 2D representation of how the classic MNIST 

dataset (a famous benchmark for recognizing handwritten digits [78]). Although slightly 

mangled, a closer look reveals that the image contains clusters of similar numbers, with 

gradual transitions between them. While the axis, nor their values within carry much 

intuitive meaning, it is the topological structure – the relative position of the numbers – 

that conveys the message.  

Concretely, the plot shows that “1” (bottom right) is the furthest away from “5” (top left), 

which implies that these numbers are also probably the least related in terms of their 

original 28x28 pixel space. 

Similarly, the same procedure can be used to model news articles and their categories: 

Both to get a better view of how categories are related, and to identify overlapping 

relationships. This could then be further utilized to merge very similar categories, or be 

used as an incentive to investigate and apply more complex methods for those categories 

in order to better separate them – ultimately uncovering hidden relationships and features 

of the dataset. 

Paraphrased a little more philosophically: Just as there are sounds we cannot hear, and 

light we cannot see, there might be thoughts we cannot think. Thus, dimensionality 

reducing tools are created to fill this gap, in an attempt to aid our understanding as a 

whole. 
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FIGURE 2-27 – T-SNE PLOT OF THE MNIST DATASET 
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2.7 TRADITIONAL EVALUATION METHODS 
Before delving into the task of the more sophisticated and domain relevant multi-label 

evaluation methods, a few fundamental concepts related to text classification need to be 

defined. The following section covers a brief introduction to some traditional evaluation 

metrics, with a focus on single-label classification.  

2.7.1 CONTINGENCY TABLE 

A contingency table is a popular way to illustrate several key concepts in information 

retrieval [5] [79] [80]. Consider a system with 𝑛 entries, with relationships as shown in 

Table 2-2. The entries in the table are defined as follows: 

𝑇𝑃 = 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝐹𝑃 = 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝐹𝑁 = 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

𝑇𝑁 = 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

Each cell in the table specifies the number of times an action took place. For instance, if 

the system successfully classified five entries as correct, while misclassifying two correct 

entries as incorrect, you would get a 𝑇𝑃 = 5, and a 𝐹𝑁 = 2.  

 YES IS CORRECT NO IS CORRECT  

DECIDES YES 𝑇𝑃 𝐹𝑃 𝑇𝑃 + 𝐹𝑃 

DECIDES NO 𝐹𝑁 𝑇𝑁 𝐹𝑁 + 𝑇𝑁 

 𝑇𝑃 + 𝐹𝑁 𝐹𝑃 + 𝑇𝑁 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁 = 𝑛 

TABLE 2-2 – CONTINGENCY TABLE 

Based on these relationships, three basic evaluation metrics emerge: recall, precision and 

fallout. Intuitively, recall measures the fraction of relevant entries retrieved, while 

precision is the fraction of retrieved entries that is relevant. Fallout, on the other hand, 

is the portion of non-relevant entries retrieved. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

𝐹𝑎𝑙𝑙𝑜𝑢𝑡 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

Additionally, a fourth measure overlap is sometimes used, which is a symmetric measure 

with response to 𝐹𝑃 and 𝐹𝑁, which can be used to illustrate how much two categories 

are alike, disregarding any measure of correctness.  

𝑂𝑣𝑒𝑟𝑙𝑎𝑝 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
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Although the concepts of precision and recall yield valuable outputs on their own, a 

certain harmony between the two is often desired. Two popular measures for this is 

accuracy and F-score: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑛
 

𝐹𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
=

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

While the contingency model arguably is one of easier models to grasp, it has two 

potential drawbacks [80]. The first is that it treats every result with equal importance. 

Incorrectly labeling a golf article as sports would have the same impact as labeling golf 

as gossip. The second limitation is that it requires all decisions to be binary, thus not 

suitable for multi-label classification in its pure form.  

2.7.2 MICRO- AND MACRO-AVERAGING 

When dealing with many labels, averaging measures may be used to obtain a unified 

evaluation across all the labels. Among approaches applied in literature is micro- and 

macro-averaging [5] [30] [80]. A macro-average is to calculate the binary classification 

metrics, like precision and recall, individually for every label, and then apply an averaging 

measure over them. On the contrary, a micro-average is simply to calculate a single 

binary classifier for the entire dataset. To get a more formal understanding of the 

averaging procedures, consider the set of labels 𝑦 ∈ 𝒴 and the definitions from Table 2-2. 

The micro- and macro-averaged binary metrics then becomes: 

𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑖𝑐𝑟𝑜 =
∑ 𝑇𝑃𝑖
|𝒴|
𝑖=1

∑ (𝑇𝑃𝑖 + 𝐹𝑁𝑖)
|𝒴|
𝑖=1

 

𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑎𝑐𝑟𝑜 =
∑

𝑇𝑃𝑖
𝑇𝑃𝑖 + 𝐹𝑁𝑖

|𝒴|
𝑖=1

|𝒴|
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑖𝑐𝑟𝑜 =
∑ 𝑇𝑃𝑖
|𝒴|
𝑖=1

∑ (𝑇𝑃𝑖 + 𝐹𝑃𝑖)
|𝒴|
𝑖=1

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑎𝑐𝑟𝑜 =
∑

𝑇𝑃𝑖
𝑇𝑃𝑖 + 𝐹𝑃𝑖

|𝒴|
𝑖=1

|𝒴|
 

Intuitively, micro-averaging simply denotes a weighted average based on the number of 

occurrences for every given category, while macro-averaging weighs every category 

equally.  

Whether micro- or macro is more appropriate depends on the purpose of the 

categorization. It is argued that micro-average is more applicable when the categories are 

of similar size, while macro-average, on the other hand, is preferred when classifying 

documents into equally important divisions [80] – however, the optimal choice often 

requires a call of judgment based on the underlying scenario. 
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2.8 MULTI-LABEL EVALUATION 
While classical evaluation techniques, like the ones presented in Section 2.7.1, are limited 

to single-label evaluation, multi-label variants carry out the task of multi-label 

evaluation. This is an important distinction, especially in the news article domain, as 

articles typically have several correct classifications.  

There are several useful measures available [81], generally divided into two main 

categories [30]: Example-based and Label-based. Example-based metrics starts by 

evaluating the learning systems’ performance on each test example separately, followed 

by returning some mean value based on the test set. Examples of example-based metrics 

are subset accuracy and hamming loss. Label-based metrics, on the other hand, evaluates 

each separate label and then returns the micro- or macro-averaged value across every 

label.  

The following section outlines some of the more common evaluation methods.  

Mathematical definitions used throughout this section are summarized in Table 2-3. 

 

NOTATION DESCRIPTION 

𝒳 𝑑-dimensional instance space ℝ𝑑 

𝒴 Label space of size 𝑞 with labels {𝑦1, 𝑦2, … , 𝑦𝑞} 

𝑥 𝑑-dimensional feature vector {𝑥1, 𝑥2, … , 𝑥𝑑} 

𝑌 Label set associated with 𝑥, 𝑌 ∈ 𝒴 

𝒟 Multi-label training set {(𝑥𝑖 , 𝑌𝑖)|1 ≤ 𝑖 ≤ 𝑚} 

𝒮 Multi-label test set {(𝑥𝑖 , 𝑌𝑖)|1 ≤ 𝑖 ≤ 𝑝} 

ℎ(∗) Multi-label classifier ℎ:𝒳 → 2𝒴 , where ℎ(𝑥) returns the set of proper 

labels for 𝑥 

TABLE 2-3 – MATHEMATICAL DEFINITIONS 
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2.8.1 LABEL CARDINALITY, DENSITY AND DIVERSITY 

Before introducing the multi-label evaluation metrics, a handful of convenient measures 

for general data analysis are elaborated. These measures primarily provide information 

about the label structure rather than evaluating the classification process. Although 

trivial concepts, these simple analytical tools still give meaningful guidance when 

exploring the properties of the dataset as a whole. 

First off is label cardinality, which measures the degree of multi-labelness in the dataset. 

This is done by calculating the average number of labels per example [30]. The simple 

nature label cardinality makes it very interesting when characterizing the dataset, as it 

gives insight regarding the number of categories one should expect from the classifier. 

The formula for label cardinality is as follows: 

𝐿𝐶𝑎𝑟𝑑(𝒟) =
1

𝑚
∑|𝑌𝑖|

𝑚

𝑖=1

 

Label cardinality can be normalized by the total number of different labels, which 

becomes label density: 

𝐿𝐷𝑒𝑛(𝒟) =
1

|𝒴|
∗ 𝐿𝐶𝑎𝑟𝑑(𝒟) 

Another popular multi-labelness measure is label diversity [30], which calculates the 

number of distinct label-sets appearing in the dataset. This gives an intuition of the 

diversity of the labels themselves. Label diversity is calculated as follows: 

𝐿𝐷𝑖𝑣(𝒟) = |{𝑌 ∃ 𝑥: (𝑥, 𝑌) ∈ 𝒟}| 

Similar to label cardinality, the diversity can be normalized by dividing by the number 

of examples to indicate the proportion of distinct labels: 

𝑃𝐿𝐷𝑖𝑣(𝒟) =
1

|𝒟|
∗ 𝐿𝐶𝑎𝑟𝑑(𝒟)  
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2.8.2 EXAMPLE-BASED EVALUATION METRICS 

SUBSET ACCURACY 

Subset accuracy is an example-based metric that measures the proportion of correctly 

classified examples – that is, whether or not the predicted label set is identical to that of 

the test example. Although a useful measure, it has been criticized for being overly strict 

when the label space is large [30]. The metric is calculated as follows: 

𝑆𝑢𝑏𝑠𝑒𝑡𝐴𝑐𝑐(ℎ) =
1

𝑝
∑|ℎ(𝑥𝑖) = 𝑌𝑖|

𝑝

𝑖=1

 

HAMMING LOSS 

Hamming loss is another example-based metric for evaluating how many times an 

instance label pair is misclassified [43] – namely, the fraction of wrong labels with respect 

to the total number of labels. The equation for calculating the Hamming loss is as follows: 

𝐻𝐿𝑜𝑠𝑠(ℎ) =
1

𝑝
∑

|ℎ(𝑥𝑖)Δ𝑌𝑖|

ℎ(𝑥𝑖) ∩ 𝑌𝑖

𝑝

𝑖=1

 

where Δ is the symmetric difference between the label sets. The magnitude of the measure 

evaluates the performance where ℎ𝑙𝑜𝑠𝑠(ℎ) = 0 denotes a perfect score (i.e. no misclassified 

labels).  

PRECISION, RECALL, AND ACCURACY 

As elaborated in Section 2.7.1 precision, recall, accuracy and f-score are not very useful 

when faced with a multi-label evaluation problem. Luckily, these measures all have been 

formalized for an arbitrary number of labels as well [30]. Although slightly more 

complicated at first glance, these multi-label variants convey the same message as their 

simpler single-label cousins. The example-based versions of these metrics are formalized 

as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑒𝑥𝑎𝑚𝑝𝑙𝑒(ℎ) =
1

𝑝
∑

|𝑌𝑖 ∩ ℎ(𝑥𝑖)|

|ℎ(𝑥𝑖)|

𝑝

𝑖=1

 

𝑅𝑒𝑐𝑎𝑙𝑙𝑒𝑥𝑎𝑚𝑝𝑙𝑒(ℎ) =
1

𝑝
∑

|𝑌𝑖 ∩ ℎ(𝑥𝑖)|

|𝑌𝑖|

𝑝

𝑖=1

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑒𝑥𝑎𝑚𝑝𝑙𝑒(ℎ) =
1

𝑝
∑

|𝑌𝑖 ∩ ℎ(𝑥𝑖)|

|𝑌𝑖 ∪ ℎ(𝑥𝑖)|

𝑝

𝑖=1
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2.8.3 LABEL-BASED EVALUATION METRICS 

Precision, recall, accuracy and F-score, as well as the concepts of micro and macro-

averaging [2.7.2] can also be modified for a label-based environment. However, in order 

to do this, the definitions within the contingency table [Table 2-2] – i.e. 𝑇𝑃, 𝑇𝑁, 𝐹𝑃 and 

𝐹𝑁 – need to be defined more generally [30]. 

Based on the classifier ℎ(∗) the multi-label definitions of 𝑇𝑃, 𝑇𝑁, 𝐹𝑃 and 𝐹𝑁 for the 𝑗-th 

class label 𝑦𝑗 becomes: 

𝑇𝑃𝑗 = |{𝑥𝑖|𝑦𝑗 ∈ 𝑌𝑖 ∧ 𝑦j ∈ h(xi), 1 ≤ i ≤ p}| 

𝐹𝑃𝑗 = |{𝑥𝑖|𝑦𝑗 ∉ 𝑌𝑖 ∧ 𝑦j ∈ h(xi), 1 ≤ i ≤ p}| 

𝐹𝑁𝑗 = |{𝑥𝑖|𝑦𝑗 ∈ 𝑌𝑖 ∧ 𝑦j ∉ h(xi), 1 ≤ i ≤ p}| 

𝑇𝑁𝑗 = |{𝑥𝑖|𝑦𝑗 ∉ 𝑌𝑖 ∧ 𝑦j ∉ h(xi), 1 ≤ i ≤ p}| 

These new definitions can then be used to redefine precision, recall, accuracy and F-score 

in terms a label-based metric: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑙𝑎𝑏𝑒𝑙(𝑇𝑃𝑗 , 𝐹𝑃𝑗 , 𝑇𝑁𝑗 , 𝐹𝑁𝑗) =
𝑇𝑃𝑗

𝑇𝑃𝑗 + 𝐹𝑃𝑗
 

𝑅𝑒𝑐𝑎𝑙𝑙𝑙𝑎𝑏𝑒𝑙(𝑇𝑃𝑗 , 𝐹𝑃𝑗 , 𝑇𝑁𝑗 , 𝐹𝑁𝑗) =
𝑇𝑃𝑗

𝑇𝑃𝑗 + 𝐹𝑁𝑗
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑙𝑎𝑏𝑒𝑙(𝑇𝑃𝑗 , 𝐹𝑃𝑗 , 𝑇𝑁𝑗 , 𝐹𝑁𝑗) =
𝑇𝑃𝑗 + 𝑇𝑁𝑗

𝑇𝑃𝑗 + 𝐹𝑃𝑗 + 𝑇𝑁𝑗 + 𝐹𝑁𝑗
 

𝐹𝑆𝑐𝑜𝑟𝑒𝑙𝑎𝑏𝑒𝑙(𝑇𝑃𝑗 , 𝐹𝑃𝑗 , 𝑇𝑁𝑗 , 𝐹𝑁𝑗) =
2𝑇𝑃𝑗

2𝑇𝑃𝑗 + 𝐹𝑃𝑗 + 𝐹𝑁𝑗
 

Then, by letting  𝐵(𝑇𝑃𝑗 , 𝐹𝑃𝐽, 𝑇𝑁𝑗 , 𝐹𝑁𝑗) represent one of the classification metrics above, 

micro- and macro-averaging becomes: 

𝑅𝑚𝑎𝑐𝑟𝑜(ℎ) =
1

𝑞
∑𝐵(𝑇𝑃𝑗 , 𝐹𝑃𝑗 , 𝑇𝑁𝑗 , 𝐹𝑁𝑗)

𝑞

𝑗=1

 

𝑅𝑚𝑖𝑐𝑟𝑜(ℎ) = 𝐵(∑𝑇𝑃𝑗 ,

𝑞

𝑗=1

∑𝐹𝑃𝑗 ,

𝑞

𝑗=1

∑𝑇𝑁𝑗 ,

𝑞

𝑗=1

∑𝐹𝑁𝑗)

𝑞

𝑗=1
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3 RELATED WORK 
The amount of research related to text classification is astonishing, and keeping track of 

it all is an ambitious task. This chapter aims to present a broad, yet concise overview of 

the state-of-the-art in text classification, with emphasis on the news article domain. The 

priority of the chapter is to serve as a non-technical summary, complementing the more 

thorough elaboration covered in Chapter 2. Furthermore, it should be noted that this 

chapter is not an exhaustive source of inspiration for this thesis, but more a fundament 

that motivated and shaped the remaining chapters. 

3.1 THE CURRENT STATE OF MULTI-
LABEL LEARNING 

The current research on multi-label learning remains in a preliminary state, with most 

studies in the literature having focused on single-label classification problems [82] [29]. 

However, due to its omnipresence in real-world problems, it is still an active area of 

research.  

Up until now, the most common approach to multi-label classification, has been to 

decompose the problem into a set of binary classification problems [34] [29] [30] – with 

one classifier for each label. A study using a multi-label Naïve Bayes classifier [34], shows 

that binary decomposition achieves highly competitive performance with respect to 

specialized multi-label classifiers like the popular AdaBoost.MH [83] and Multi-Label k-

NN (ML-kNN) [43]. The motivation for using binary decomposition rather than 

specialized methods, has commonly been because of its computational efficiency and 

conceptual simplicity [34] [29].  

Although simple by virtue, the binary decomposition strategy has received criticism for 

ignoring correlational information between categories. One study tried to answer these 

claims using an ML-kNN clustering technique, with experimental results showing superior 

performance over conventional methods [43]. The study showed that using a specialized 

kNN with simple distance metrics like Euclidean distance is a very capable approach in 

several use cases, spanning from yeast gene functional analysis to natural scene- and web 

page classification. 

3.2 SEMANTICS AND MULTILINGUALISM 
The area of focus in recent semantic research has mostly been on exploiting ontological 

concepts [3] [4] [12]. A common motive for much research has been to challenge the 

conventional BoW [2.2.1] technique of representing documents – primarily because of its 

inability to comprehend relationships between important terms that do not occur 
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literally, as discussed in [3] [10]. Still, there is also conflicting research stating that more 

sophisticated representations yield little to no improvement over standard BoW [5]. 

One of the most widespread ontologies used in natural language-related research is 

WordNet11 [3] [4] [8] [10] [12] [84]. WordNet is an online ontology based on lexical 

concepts revolving synonyms – or more specifically, synsets, which are groups of 

semantically interchangeable concepts. As a side note: Although WordNet is not used 

directly in this thesis, it is included here because of its frequent utilization in related 

studies. 

One particular study used WordNet to create an alternative semantic term-weighting-

scheme. The study showed that their proposed method outperformed the traditional TF-

IDF in cases where the amount of training data was small and the categories well-defined 

[4]. The main idea behind their approach was to exploit semantic similarity in category 

labels. However, their results were deemed inconclusive, due to WordNet’s incapacity to 

make sense of proper nouns, like brand names, celebrities, and so on.  

Another study used WordNet to create a cross-linguistic classifier by exploiting a graph 

traversal algorithm to explore and link related and relevant concepts [12]. The resulting 

method, which consisted of an ensemble of 𝑛-binary classifiers, achieved better accuracy 

over methods using no background knowledge. Both English, Spanish, and Japanese were 

evaluated – however, since there is no Japanese WordNet, the Japanese dataset was first 

translated into English before utilized.  

The above study is somehow unique in the way that it diverges from the traditional 

multilingual approach, which often involves (i) creating separate classifiers for every 

language [85] [86] or (ii) translation into a single language [87] [88]. They also provide 

evidence that translation alone is insufficient when working in a multilingual domain. 

There have also been attempts at using WordNet to manipulate the textual documents 

directly, as a preprocessing step. One study proposed three main approaches [3]: 

 Add related: Text contains “meat” and “salad”, add concept “food” 

 Replace similar: Text contains “tale” and “adventure”, replace with “story” 

 Only use concepts: Ignore all terms not present in the WordNet ontology 

Results revealed a tiny fraction of improvement by using ontologies, over the standard 

binary BoW. Though, the choice of concept strategy was shown to have little impact. 

A study with a similar approach criticized some of these techniques showing that 

incorporating WordNet features, utilizing part-of-speech tags during WordNet expansion, 

 

                                                 

11 WordNet – http://wordnetweb.princeton.edu/perl/webwn 
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and even term weighting schemes, have little statistically significant positive effect on 

the accuracy of the Naïve Bayes and SVM classifiers [89]. They used results based on 15 

datasets to highlight these claims, ranging from the Reuters news articles to UseNet logs. 

On a related note, a team from Google managed to utilize the type information from 

Freebase12 entities to surpass state-of-the-art methods using embedding methods for fine-

grained entity type classification [90] – that is, they used concrete phrases like “Madonna” 

as input and predicted multiple labels like “artist”, “singer”, “woman” and so on. The 

study shows that there is a significant relationship between entities and their types, which 

in turn could provide some leverage when clustering entities into more abstract groups 

of types.  

Other research revolving Freebase has often been related to word sense disambiguation, 

and not directly concerned with classification [91] [92]. However, one particularly 

interesting study attempts to classify blog posts based on extracted named entities [93]. 

By using off-the-shelf extraction frameworks as a basis, researchers managed to obtain a 

classification accuracy of 0.69 for a multi-class (not multi-label) classification problem 

involving seven categories. The methods they used were standard implementations of 

SVM and Naïve Bayes. Studies like these make Freebase-like ontologies interesting 

subjects for further research. 

However, hierarchical ontologies have also been subject to some concern. One thorough 

study on the matter disclosed that misclassification on the parent level of an ontology 

could forcibly misclassify children on a lower level, due to downward error propagation 

[79]. A conclusion for this particular matter remains unresolved. 

3.3 DEEP LEARNING AND WORD2VEC 
First and foremost, the amount of related research in the field of deep learning has 

absolutely exploded over the past decade, with new studies and techniques published on 

a daily basis. For this reason, the following section covers only some of the highlights, 

with a focus on recent developments related to RNNs. 

Most of the research revolving recurrent nets are based on the LSTM architecture. The 

areas of application span anything that can be represented as a set of ordered inputs. For 

instance, generating textual descriptions for a wide range of media sources, like speech 

[94], music [95], images [96] or even video [97] – everything with beyond state-of-the-art 

accuracy. LSTMs have also been a popular choice for translation because of its sequence-

to-sequence capabilities [98]. Subsequently, the capabilities of RNNs and deep learning 

in general have also led to groundbreaking performances in many areas other than 

 

                                                 

12 Another online ontology, discussed further in Section 4.1.4 
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computer science. One example is in medicine, where deep learning has been used to 

predict the activity of drug molecules [99], and analyze the effects of mutations in DNA 

[100]. 

In addition to being subject to a variety of academic research, there is also no shortage 

in more creative areas of application. Andrej Karpathy demonstrated in his blog post13 

that an LSTM network made with only a few hundred lines of Python, could be used to 

generate anything from Shakespeare and new baby names, to compilable C code. For the 

latter, he simply trained the network on the Linux kernel, and let the algorithm produce 

new code based on a seed. Using the same approach, others have been able to generate 

both humanlike handwriting [101] and composing folk music [95]. 

Regarding classification, a particularly widespread use for LSTM has been in the domain 

of sentiment analysis [102] and sequence classification [103] – both with huge success. 

Especially interesting is the sentiment analysis study, which closely resembles the 𝑛-

binary multi-label classification problem (each of the binary classifiers is analogous to a 

sentiment classifier). One of the experiments in the sentiment study [102], used a pre-

trained Word2Vec model as the basis for embedded word features, attempting to classify 

IMDb movie reviews. The possible labels were on a 5-level sentiment scale ranging from 

very negative to very positive. The classification was done by splitting the review into 

paragraphs, and then splitting the paragraphs into sentences. Each of the sentences was 

then classified, and the results were accumulated on a paragraph level, ultimately making 

a decision about the full review. The study showed that using Word2Vec features 

surpassed using standard TF-IDF by an increase of 3.2% in classification accuracy. 

Another example of combining deep learning techniques with Word2Vec is a famous 

study by Yoon Kim using CNNs for sentence classification [17]. He showed that with 

minimal hyperparameter configuration, a simple convolutional network with only one 

convolutional layer on top of a feature representation using a pre-trained Word2Vec, 

could outperform state-of-the-art on several classification tasks. The tasks included both 

sentiment analysis and sentence classification. The results suggested that the pre-trained 

Word2Vec models are good and universal feature extractors which can be utilized across 

datasets. 

Finally, another recent study shows that by representing an entire text as a 1D structure 

– instead of using many low-dimensional word vectors (e.g. Word2Vec) – a CNN similar 

to those which perform well on 2D images, could outperform the current state-of-the-art 

in both topic classification and sentiment analysis [104]. The take-home message from 

the study is that using a single 1D structure, and thus preserve the order of characters 

in the text, can improve common text classification tasks. 

 

                                                 

13 Unreasonable effectiveness of RNN – https://karpathy.github.io/2015/05/21/rnn-effectiveness/ 
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In summary, what the current state-of-the-art shows, is that it often does not matter 

much which areas of application an RNN/LSTM or CNN network is applied to. 

Extraordinary results have been achieved regardless, with the only requirement being 

that it is possible to represent the underlying machine learning task as a set of input and 

output vectors. 

3.4 THE NEWS ARTICLE DOMAIN 
The news article domain has for a very long time been a particularly interesting and 

relevant area of focus in text classification, much due to the nature of the content [2]. As 

touched upon in Section 1.1, news articles have traditionally been classified by hand, 

which is a tedious and error-prone procedure. This, combined with the fact that news 

articles often have several matching categories, may lead to a significant amount of 

ambiguity in the classification process. The takeaway is, not surprisingly, that news 

classification has been a long awaited task to automate, which ultimately results in an 

overwhelming amount of related research. The following section attempts to highlight 

some of the substantial studies deemed relevant for this thesis, with a focus rooted in 

datasets and classification methods. 

3.4.1 CHARACTERISTICS AND COMMON 

APPROACHES 

Formal research characterizing news articles is hard to come by. However, some features 

can be inferred by taking a quick glance at any commercial newspaper. First and 

foremost, news articles are mostly written by professionals, and the writing style is 

typically formal and focused [4]. Second, it is fair to assume that news articles may have 

very high dimensionality when represented as a BoW. This assumption is based on the 

notion that news articles often have a high frequency of proper nouns, like names of 

people, places, countries, organizations and more. This also fits well with the common 

opinion that text is a media of high dimensionality, with few irrelevant features [38]. 

By combining these characteristics one may assume that performing news classification 

in a reliable way is subject to significant computational deficiencies. This supposition also 

makes sense in a research context, as several popular algorithms used within the domain 

are based on lightweight classifiers like Naïve Bayes [8] [5] and SVM [38]. SVM has for 

instance produced promising results while only requiring 20 training examples and 100 

iterations to become stable – and still outperform both Naïve Byes and k-NN [79]. 

Furthermore, Naïve Bayes in its pure form, has been shown to inherit significant bias 

towards skewed label distributions, giving greater probabilities to high-frequency labels 

[37]. 

Regarding classification techniques, it is worth noting that recent research point in the 

direction that given enough data, the choice of the classifier is no longer as crucial [31]. 

The hypothesis that motivates this claim is that as the dataset grows, the training data 
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gradually approaches the true distribution of the underlying data itself – thus, making 

overfitting a problem of the past. 

3.4.2 DATASETS 

Most of the research done in the news article domain, or even text classification in general, 

have traditionally used a variation of the Reuters-2157814 dataset [1] [3] [4] [38] [79] [12]. 

The dataset is, as implied by its name, a collection of 21578 manually categorized news 

articles, collected and labeled by the Carnegie Group, Inc. and Reuters, Ltd. Although a 

valuable dataset, it is vulnerable to criticism for its size – especially for multi-label 

classification, which by default requires a lot more data. However, over the last decade a 

new generation of more recent datasets from Reuters have emerged: RCV1 [105], a news 

article corpus containing 810 000 articles released in 2000, spanning a single year worth 

of English articles. RCV2, a smaller version containing articles from 13 languages was 

published in 2005. These datasets have since gained considerable traction in the text 

classification domain [29] [12] [104] [106].  

An even bigger dataset was released in 2008, by The New York Times (NYT). They 

released a massive corpus with more than 1.8 million of labeled articles – a perfect 

playground for data mining and a genuine resource for classification tasks. Since then, 

the corpus has become subject to multiple interesting studies, ranging from Twitter 

analysis [107] and event detection [108] to barebones data mining [109]. There has also 

been an initiative to improve the categorizations supplied in the corpus [14], but the real 

potential in the field of classification has been left more or less unexplored.  

There are however some exceptions to this. For instance, a recent study by Google which 

used the corpus to implement a system for extracting Freebase entities (similar to [93]) 

and assigning relevance score (salience) for each entity in every document [110]. Although 

the study only used a small portion (100 000 documents) of the dataset, Google showed 

that features derived from an entity-first approach were more robust than simple word-

count features typical of a keyword extraction system. They concluded that there is much 

potential in this type of approach, and encouraged similar research. 

3.4.3 EVALUATION 

As with text categorization in general, the most common way to evaluate classification 

results is by using macro-averaged precision, recall and F-score. F-score being the most 

significant, with anything over 0.7 often regarded as satisfactory [10] [29] [79] [82]. These 

observations are in line with the argumentation in Section 2.7.2. Another popular metric 

is Hamming loss, with acceptable values spanning a range of 0.03 to 0.06 [34]. However, 

 

                                                 

14 Reuters-21578 – http://www.daviddlewis.com/resources/testcollections/reuters21578/ 
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it is also argued that numbers like these carry little weight, as they are really only 

comparable when conducting experiments with the exact same datasets – motivating that 

one should rather compare them with the results of a human expert [5] [111].  
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4 DATA 
As touched upon in Chapter 3, the quantity of well-categorized training data has been 

scarce and hard to come by [4], making the processes of classifying things like news 

articles a challenging task. However, this inconvenience took a turn when The New York 

Times (NYT) in 2008 released a massive corpus to the public15. The corpus is composed 

of manually categorized and handcrafted news articles, spanning twenty years of news 

history. Containing more than 1.8 million articles, NYT gave life to an enormous 

potential in text classification, especially in the news article domain. For this reason, the 

corpus creates a natural data foundation for many classification tasks.  

Motivated by Google’s preliminary work with the corpus [110] (performing entity 

extraction and classification as discussed in Section 3.4.2), the NYT corpus was selected 

as the main dataset of choice for this thesis. Although explained in great detail in Section 

4.2, the main idea was to use it as the basis for a language-independent feature extraction 

process much like done in [93], composed of:  

 extracting language-independent entities for each article 

 and mapping the articles into a language-independent category space 

The purpose of this chapter is to serve as an elaborate presentation on how this process, 

motivated by findings in Chapter 3, was carried out. This is done by first examining a 

set of relevant data sources, followed by a thorough demonstration of how they were 

connected.  

4.1 DATA SOURCES 
In addition to the NYT corpus, numerous other data sources have been assessed and 

utilized for this research. The following section contains a brief overview of how and why 

the data sources were chosen. 

4.1.1 NEW YORK TIMES ANNOTATED CORPUS 

Before delving into the other data sources, let us take a closer look at the properties of 

the NYT corpus. As mentioned, the corpus contains more than 1.8 million articles. Out 

of these, 1.5 million are manually categorized by library scientists, while the remaining 

are algorithmically tagged under supervision by NYT’s production staff. An overview of 

the article attributes available in the corpus is shown in Table 4-1. The relevant column 

in the table shows which attributes were used for this project. To fully grasp the 

 

                                                 

15 The New York Times Annotated Corpus – https://catalog.ldc.upenn.edu/LDC2008T19 
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immensity of the corpus, a number of interesting statistics are displayed in Table 4-2. An 

example of a full article is available in Appendix A.1. 

Needless to say, the NYT corpus is an incredible testbed for text classification tasks 

rooted in the news article domain, or even text related research in general. 

 

ATTRIBUTE RELEVANT ATTRIBUTE RELEVANT 

alternativeURL  onlineDescriptors x 

articleAbstract  onlineHeadline  

authorBiography  onlineLeadParagraph  

Banner  onlineLocations  

biographicalCategories  onlineOrganizations  

Body  onlinePeople  

Byline  onlineSection  

columnName  onlineTitles  

columnNumber  Organizations  

correctionDate  Page  

correctionText  People  

Credit  publicationDate  

Dateline  publicationDayOfMonth  

dayOfWeek  publicationMonth  

Descriptors x publicationYear  

featurePage  Section  

generalOnlineDescriptors x seriesName  

Guid x Slug  

Headline x sourceFile  

Kicker  taxonomicClassifiers x 

leadParagraph  Titles  

Locations  typesOfMaterial  

Names  url x 

newsDesk  wordCount  

normalizedByline    

TABLE 4-1 – FULL SET OF ATTRIBUTES THE NYT CORPUS. RELEVANCE DENOTES IF THE ATTRIBUTE IS 

USED.  

DESCRIPTION VALUE 

Article count 1 855 658 

Article summary count 650 000 + 

Number of taxonomic classifiers 8 300 051 

Number of descriptors 9 512 574 

Number of attributes per article 49 

Zipped size 3 GB 

Uncompressed size 15.6 GB 

Data format New Industry Text Format (NITF) 

Year span 1987 – 2007 

TABLE 4-2 – NYT CORPUS STATISTICS 
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4.1.2 IPTC AND MEDIA TOPICS 

The International Press Telecommunication Council16 (IPTC) is a consortium of the 

world’s major news agencies and providers, aiming to simplify the distribution of 

information. With affiliates like Reuters, Associated Press, BBC and The New York 

Times, the organization acts as the global standards body for the news industry. 

One of IPTC’s major initiatives, the Media Topics17, is an ontology of news categories. 

At the time of writing, the ontology is made up of 1130 different language neutral topics, 

distributed throughout the ontology under 17 top level categories. Each main category 

holds up to 5 nested levels of increasingly specific sub-categories. Figure 4-1 shows an 

excerpt of the Media Topics ontology. 

 

FIGURE 4-1 – MEDIA TOPICS ONTOLOGY EXCERPT 

Being subject to constant development, the Media Topics ontology is a vigorous and 

potentially important building block when creating a language-independent news 

classifier. The fact that it is maintained by some of the biggest players in the industry, 

only adds to the robustness of the project, which makes it a natural fundamental guideline 

for classifying news articles. For these reasons, IPTC Media Topics were chosen as a 

suitable basis for the category set used in this thesis. 

 

                                                 

16 IPTC – https://iptc.org/ 

17 IPTC, Media Topics – https://iptc.org/standards/media-topics/ 
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4.1.3 NEW YORK TIMES TO IPTC  

To take advantage of the potential of IPTC’s Media Topics, a mapping between the 

categorical descriptors in the NYT corpus, and matching Media Topics is required. 

Fundamentally, the process of creating this mapping is a difficult, and not to mention 

tedious, task. This is mainly because the corpus contains an overwhelming number of 

categories, many of which do not have obvious counterparts in the Media Topic domain. 

Direct matching by word is not the desired approach, as the category space itself, is 

subject to severe word sense ambiguities. 

For this reason, in order to achieve a sensible mapping between NYT descriptors and 

corresponding Media Topics, all of the mappings would require individual quality 

assurance by a domain expert, to certify the link. Lucky, this work has already been 

done, and with much help from Evan Sandhaus18, the creator of the NYT corpus, the 

mapping was acquired. An excerpt of the mapping is displayed in Table 4-3. 

 

NYT CATEGORY SKOS MATCH IPTC MEDIA TOPIC ID 

Privacy skos:narrowMatch data protection 20000627 

Presidents Cup (Golf) skos:broadMatch golf 20000940 

Presidents' Day skos:broadMatch public holiday 20000552 

Pretzels skos:broadMatch food and drink 20000568 

Preventive Medicine skos:exactMatch preventative medicine 20000476 

Prices (Fares, Fees and Rates) skos:exactMatch prices 20000382 

Priests skos:broadMatch religious leader 20000703 

Primaries and Caucuses skos:exactMatch primary 20000583 

Principals (School) skos:closeMatch teachers 20000416 

Prison Escapes skos:broadMatch prison 20000137 

TABLE 4-3 – NYT TO IPTC MAPPING EXCERPT 

 

As shown in Table 4-3, the link between NYT category and the Media Topic is trailed 

with a matching attribute. The matching attribute determines how the descriptor and 

Media Topic is related, and follows the Simple Knowledge Organization System RDF 

Schema19 ontology, which is a framework for tying and defining related concepts.  

  

 

                                                 

18 Evan Sandhaus – http://evansandhaus.com/ 

19 SKOS – http://www.w3.org/TR/2008/WD-skos-reference-20080829/skos.html 



 

61 

DATA – DATA SOURCES – 4.1  

 

4.1.4 ONLINE ONTOLOGIES 

Structured data linked together across language barriers, and abstracted away from 

grammatical nuances, is key when it comes to labeling news articles in a multilingual 

setting. Unfortunately, the task of extracting entities is far from trivial. Word 

disambiguation is already incredibly difficult for a single language – how should one 

proceed with such a task for multiple languages? Fortunately, this problem has existed 

for some time, and possible solutions exist. The magic phrase is online ontologies: A set 

of unifying databases where concepts and entities are reduced to language agnostic 

identifiers, knit together forming graph-like structures of relations. This section explores 

the online ontologies investigated in this thesis. 

FREEBASE 

Freebase used to be a large collaborative knowledge base. Ever since its launch in 2007 

and until its retirement in 2015 it was an open project maintained by a dedicated 

community. At the time of its discontinuation, it contained a whopping 3 041 722 635 

facts, covering 49 947 845 different topics. The topics range from celebrities to home 

appliances, each paired with a unique, language-independent, ID – together forming a 

massive online ontology, relating an astonishing number of diverse concepts and entities. 

The reason why such an incredible resource was discontinued might be puzzling to some, 

however, their motivation was clear: In order to completely fulfill and successfully 

maintain such an ambitious project, there are not a lot of room for competitors – which 

leads the introduction of Wikidata20.  

WIKIDATA 

Wikidata is a project operated by the Wikimedia Foundation21, and is in many ways an 

identical initiative with respect to Freebase. The major difference is that Wikidata is 

backed by Wikimedia – an organization already very familiar with handling huge 

amounts of data. For this reason, the natural outcome for Freebase was to shut down, 

and mobilize a merge of the two databases, that is, move everything from Freebase into 

Wikidata. 

However, because of Wikidata’s strict policy regarding the credibility of sources and 

overall integrity of facts, the mapping from Freebase turned out less than trivial22.  

 

                                                 

20 Wikidata – https://www.Wikidata.org/ 

21 Wikimedia Foundation – https://en.wikipedia.org/wiki/Wikimedia_Foundation 

22 Freebase’s announcement – https://plus.google.com/109936836907132434202/posts/bu3z2wVqcQc 
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A lot of the Freebase entities could not be automatically mapped to their corresponding 

Wikidata concepts, which in turn led to a significant number of entities getting lost in 

the transformation.  

Although the Freebase to Wikidata translation may result in a substantial loss of 

information, the quality and verbosity of Wikidata still make it a very prominent 

resource.  

DBPEDIA 

As mentioned, Wikidata is governed by strict editing policies with a focus on quality 

rather than quantity. But there is also a third alternative, DBpedia23 with more or less 

the opposite. Whereas Wikidata’s information is structured natively, and provided by 

Wikimedia directly from Wikipedia, DBpedia uses an automated approach based on 

crawling and parsing on its own. For this reason, DBpedia gathers a lot more information 

and captures more relations than Wikidata – all at the price of being less accurate and 

more relaxed in terms of structure. 

Although a little less organized, DBpedia’s real strength stems from its richness. Another 

selling point is its maturity. DBpedia was launched around the same time as Freebase in 

2007, and has been collecting data ever since. Having served almost ten years in service, 

the ecosystem around DBpedia is also rather diverse and widespread, containing multiple 

third party tools covering anything from working with the API to automatic entity 

extractors. 

4.1.5 ENTITY EXTRACTORS 

Entity extraction is hard. Not only is it hard, but it is also a very computationally 

expensive and time-consuming process. This is part because of the amount of training 

required, but also due to the mere complexity of language itself. The process is also often 

reliant on pre-trained language models in order to gain a high success rate. Building such 

tools from the ground up is a comprehensive process subject to an entire thesis on its 

own. For this reason, the focus of this project has been on utilizing publicly available 

entity extraction and part-of-speech tagging software. 

Among the extractors investigated were the well-known NLP libraries OpenNLP24 and 

Stanford NLP25, as well as DBpedia Spotlight26. Whereas OpenNLP and Stanford NLP 

provides a quite low-level NLP API, DBpedia Spotlight a high-level extractor built on 

 

                                                 

23 DBpedia – http://wiki.dbpedia.org/ 

24 OpenNLP – https://opennlp.apache.org/  

25 Stanford NLP – http://nlp.stanford.edu/software/  

26 DBpedia Spotlight – https://github.com/dbpedia-spotlight/dbpedia-spotlight  
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top of several such APIs (including OpenNLP) [112]. DBpedia is also, as the name 

suggests, tightly integrated with DBpedia, making it possible to extract DBpedia entities 

directly.  

 

 

FIGURE 4-2 – DBPEDIA ONLINE DEMO AVAILABLE AT DBPEDIA-SPOTLIGHT.GITHUB.IO/DEMO/  

 

While OpenNLP and Stanford NLP both are well-performing libraries backed by 

thoroughly trained language models, DBpedia Spotlight became the natural choice for 

this project due to its ease of use and tight integration with DBpedia. 

In addition to being well performant and easy to use, DBpedia Spotlight is also very 

resourceful with a wide variety of features. An example from the online demo of the 

annotation API is shown in Figure 4-2, where entities extracted from a sample text are 

underlined, each accompanied by a link to its corresponding DBpedia page.  

There are several customizable parameters for the API, with the most important ones 

being type and language selection, and confidence. Type selection is related to the online 

ontologies’ type hierarchy. For instance, among the types of Berlin are Thing, Place, 

Location, City and so on. DBpedia Spotlight is capable of extracting nearly any existing 

DBpedia type. With other words, the type selector in DBpedia Spotlight is merely a filter 

for which kind of things you want the API to extract.  

As for the methodology, DBpedia Spotlight’s entity extraction is a two-step process, 

initialized by first performing entity disambiguation based upon cosine similarities and 

TF-IDF weights. After the disambiguation is completed, the identification and extraction 

of entities is just a matter of exact string matching [112]. 
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Furthermore, DBpedia Spotlight supports extraction from a total of ten languages out of 

the box: English, German, French, and Spanish to mention some. According to the 

developers, the framework should in principle be extendable to any language that has a 

Wikipedia edition, as that is the main resource for model training [112]. 

The last parameter to tune is confidence – a measure of how sure the extractor is that it 

extracted the correct entity. An extractor with a confidence of 0.5 is going to return a 

higher number of entries, possibly with some false positives, while an extractor with a 

confidence of 0.9 will return fewer, but more certain entities.  

4.1.6 WORD2VEC 

As elaborated in Section 2.2.3, word embeddings is an alternative way to represent 

features in a document as opposed to the traditional BoW approach. However, unlike 

BoW features, whose construction is merely a matter of counting, the word embeddings 

need to be trained. Not only that, but in order to obtain a set of word embeddings that 

closely represents the relationships in the language itself, the required amount of training 

data is potentially enormous. For this reason, training word embeddings may quickly 

turn into a very computationally demanding task.  

A striking side effect of training and creating a robust set of word embeddings, is that 

the resulting model also becomes extremely versatile – hence, it can be reused. This leads 

us to the Google’s Word2Vec project27 [16] [113] – an open source toolkit for working 

with, and training word embeddings. In addition to providing implementations of the 

algorithms required to train and utilize Word2Vec vectors, the toolkit also includes a 

number of pre-trained models – some of which are trained with more than 100 billion 

words from Google News. Even more interestingly: One of the models provided is trained 

for Freebase data. The model contains an almost complete mapping between Freebase 

ID’s and a set of 1000-dimensional Word2Vec vectors. 

As for the actual training, Google’s Word2Vec vectors are trained with a two-layer neural 

network using the skip-gram method [2.2.3]. The network processes the entire corpus as 

input, and output a set of Word2Vec vectors.  

For the reasons above, Google’s pre-trained Word2Vec Freebase model turned out to be 

the perfect source for the word embedded feature representation for this project. 

  

 

                                                 

27 Word2Vec – https://code.google.com/archive/p/word2vec/  
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4.2 PREPROCESSING  
After having gathered a handful of desirable resources, the preprocessing pipeline is 

initiated to kick start the classification process. For this thesis, the preprocessing of the 

data is done in five steps, as outlined by Figure 4-3. The first four steps involve joining 

and filtering the different data sources, while the last step revolves around cleaning up, 

and computing the feature vectors.  

In order to provide the reader with a solid understanding of the entire preprocessing 

operation, the demonstration of the pipeline is complemented with an illustrative 

example, using the New York Times article 1821747 as a basis. The full raw article is 

available in Appendix A.1.  

 

 

 

 

FIGURE 4-3 – PREPROCESSING PIPELINE 
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4.2.1 THE PROCEDURE 

STEP 1 – EXTRACTING THE RELEVANT RAW-DATA 

The initial preprocessing step involves loading the corpus from disk, followed by 

extracting the relevant attributes based on Table 4-1. This step reduces the article from 

Appendix A.1 to the following: 

 

FIGURE 4-4 – RAW NYT ARTICLE WITH RELEVANT ATTRIBUTES 

The most notable attributes at this point are generalOnlineDescritors, onlineDescriptors 

and taxonomicClassifiers. However, as seen in Figure 4-4 the categorical data is spread 

across four different attributes, in two different textual formats. One format being a list 

of descriptors whilst the latter is a taxonomy (ontology). There is also a lot of duplication. 

A quick and easy fix for this subtle inconvenience is to split the taxonomic entries on the 

“/” character, extracting the last descriptor, and then take the union of all of the 

descriptive categories combined. The result is trimmed down article representation with 

a single descriptors category, as shown in Figure 4-5: 

 

FIGURE 4-5 – RAW NYT ARTICLE WITH COMBINED DESCRIPTORS 
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STEP 2 – MAPPING DESCRIPTORS TO IPTC MEDIA TOPICS 

The second preprocessing step is mapping the categorical information to IPTC Media 

Topic categories according to the relationships in Table 4-3. Mapping the NYT 

descriptors to Media Topics is arguably the most crucial step of the entire pipeline. This 

is because the mapping makes it possible to create an NYT-independent link between the 

article contents and its category, and thus facilitating language neutrality. However, the 

process is also a very unforgiving, as a lot of the descriptors do not have any matches. 

This is because the mapping only contains very general terms. For instance, anything 

related to geographical areas, people or otherwise national descriptors, will not have any 

match in Media Topics. In fact, only general descriptors like politics, family and religion 

and belief will have matching counterparts in Media Topics. 

As shown in Table 4-3, the mapping is in principle straightforward: If the NYT descriptor 

has a match in Media Topics, add it, otherwise ignore. However, to reduce the problem 

domain, two different types of mapping mechanisms were attempted: Best and Broad.  

While Best simply maps to the closest Media Topic, Broad – as the name suggests – 

maps to the broadest Media Topic. The latter is done by initially selecting the closest 

match, and then traversing the Media Topic ontology upwards until reaching the top 

level. Using a broad map gives a clear advantage with regard to the complexity of the 

classification process, as the number of top level categories is orders of magnitude lower 

than the entire category set – from 1130 to 17 at the time of writing. When using an 𝑛-

binary multi-label classifier, this means the number of models to train, is reduced from 

1130 to 17. 

An example of the two NYT to Media Topic mappings for the example article is depicted 

in Figure 4-6 (Broad) and Figure 4-7 (Best). 

 

FIGURE 4-6 – NYT --> IPTC MAPPING, BROADEST 

 

FIGURE 4-7 – NYT --> IPTC MAPPING, BEST 

Moving on with the Broad mapping, the example article transforms into: 

 

FIGURE 4-8 – NYT ARTICLE AFTER IPTC MAPPING 
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STEP 3.1 – ENTITY EXTRACTION 

Once the categories are mapped, the next step in the pipeline is to perform entity 

extraction and create annotations for each article. The raw entity extraction is done 

through an offline version of DBpedia Spotlight28 (v0.7), and its REST API. As 

mentioned in Section 4.1.5, there are three main parameters to consider when using the 

API. The language selection is given, as the NYT corpus is exclusively in English. As for 

the types, all types are chosen, to closer represent the contents of the article. The 

confidence level was initially set to the default value of 50 %, as this seemed to give a 

decent balance between too many, and too few annotations. A later experiment [6.1] 

explores the impact of the different confidence levels more thoroughly. 

As the actual article 1821747 is quite long (997 words), Figure 4-9 shows a snippet used 

to illustrate the differences between some of the available confidence levels. Figure 4-10 

depicts the raw data extracted with the DBpedia Spotlight REST API with confidence 

50 %. The first value is the DBpedia ID, which corresponds to the lexical suffix of any 

Wikipedia URL (e.g. http://en.wikipedia.org/wiki/Zalmay_Khalilzad). The second 

value is the offset – that is, the location of the entity within the document, by character. 

The third value is a set of types, which are elaborated upon in Step 3.2. 

 

FIGURE 4-9 – CONFIDENCE LEVELS EXAMPLE 

 

FIGURE 4-10 – ENTITIES EXTRACTED WITH DBPEDIA SPOTLIGHT 

As shown in Figure 4-10, the entities extracted from DBpedia have does not necessarily 

have IDs matching the phrase that triggered the extraction. For instance, Iraq was 

identified as 2003_invasion_of_Iraq. As touched upon in Section 4.1.5 this is due to 

DBpedia Spotlight’s word disambiguation schemes, which attempts to find entities based 

on its surrounding context. 

 

                                                 

28 DBpedia Spotlight v1.2.7 – http://spotlight.sztaki.hu/downloads/  
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Another remark is that the extracted ID is in the DBpedia format, which is incompatible 

with the Freebase (/m/<id>) and Wikidata (Q<id>) formats. However, as the 

DBpedia ID corresponds to the lexical Wikipedia ID, the Wikidata ID can be extracted 

from the full Wikidata ontology – given that the entity actually exists in the other 

ontologies, that is.  

The actual extraction of the Wikidata ID can be done either by downloading and parsing 

an offline Wikidata dump, or through the Wikidata Query API29. The same can be done 

for the Freebase ID, which is also present on Wikidata, as a result of the attempt of 

incorporating Freebase’s knowledge base into Wikidata after Freebase’s discontinuation 

[4.1.4].  

It should be mentioned that the Freebase to Wikidata translation is not optimal – much 

because of the differing policies and other difficulties related to the Freebase to Wikidata 

transferring process, which ultimately led to a significant number of Freebase entities 

getting lost in transit, as touched upon in Section 4.1.4. However, for the annotations in 

the example, the mapping was quite successful, and a match was acquired for all Freebase 

ID’s. The result of the translation process is depicted in Figure 4-11.  

 

FIGURE 4-11 – EXTRACTED ANNOTATION AFTER PROCESSING 

In addition to the merged IDs, the translation also introduced a value mc which is the 

mention count for the given annotation within the text. That is, the number of 

occurrences that the entity appears within the document. For simplicity, only the first 

occurrence is captured in the annotation list attached to the document, however the 

mention count is required to compute the TF-IDF [2.2.2] later on. 

STEP 3.2 – INCORPORATING TYPES (OPTIONAL) 

Once all of the annotations from DBpedia Spotlight have been merged into the articles, 

there is one optional step left. This step involves incorporating the types returned from 

DBpedia, as shown in Figure 4-11, into the article in addition to the other entities. In 

short the types can be seen as the generalization, or superclass of an entity. For instance, 

the entity Zalmay_Khalilzad (Q145193) has the types Person30 (Q215627) and Human31 

(Q5). See Section 2.1.2 for more information about ontologies. 

 

                                                 

29 Wikidata Query API – https://wdq.wmflabs.org/api_documentation.html 

30 Person – https://www.Wikidata.org/wiki/Q215627   

31 Human – https://www.wikidata.org/wiki/Q5 
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The act of padding articles with types is just a matter of translating the types into 

“normal” annotations, and add them the normal way. For the purpose of simplicity, the 

mention count and offset of the new type-annotation are chosen to be the same values as 

those of the annotation it was created from. Figure 4-12 shows the list of annotations for 

the running example with types incorporated. NONE means that there was no matching 

Freebase ID for that particular Wikidata entity. 

 

 
 

FIGURE 4-12 – EXTRACTED ANNOTATIONS WITH TYPES 

Finally, it should be mentioned that padding existing annotations with ontologically 

related concepts is not necessarily limited to types. Wikidata contains many other kinds 

of relationships32, ranging from listing family members of celebrities to the type of 

material in a structure. However, for the scope of this thesis, the ontological exploration 

is limited to just types. 

STEP 4 – COMBINE WITH PRE-TRAINED WORD2VEC VECTORS 

The next step in the pipeline is to fetch Word2Vec vectors for the annotations extracted 

from DBpedia. This is achieved by joining the set of annotations with Google’s pre-

trained Word2Vec model discussed in Section 4.1.6. Using the pre-trained vectors is as 

easy as downloading the model33, and decoding its binary format into a big map of 

(𝐹𝑟𝑒𝑒𝑏𝑎𝑠𝑒, 𝑉𝑒𝑐𝑡𝑜𝑟) key-value-pairs. The map can then be used as an ordinary data 

structure. 

The extraction process this far has already fetched Freebase IDs for all matching entities, 

thus, the actual pairing just involves adding Word2Vec vectors to the annotations as an 

extra attribute during runtime.  

As mentioned briefly in Section 4.1.6, the Word2Vec vectors from the Google model are 

1000-dimensional. However, unlike traditional BoW vectors, where every value represents 

a given phrase, the features of a Word2Vec vector are not as easy to grasp – they are 

 

                                                 

32 Wikidata Properties – https://www.wikidata.org/wiki/Wikidata:List_of_properties/all 

33 Word2Vec Freebase model – https://docs.google.com/file/d/0B7XkCwpI5KDYaDBDQm1tZGNDRHc  
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simply inferred features from the learning process itself, with no inherent meaning beyond 

the values themselves. For illustrative purposes, Figure 4-13 illustrates what an actual 

Word2Vec vector for Zalmay_Khalilzad looks like. Although the actual values in the 

vector convey little intuitive sense, it is a fair assumption that 1000 values may represent 

a more information about Zalmay_Khalilzad than the word itself is capable of – 

presumably containing implicit information about both context and related entities. 

 

FIGURE 4-13 – WORD2VEC REPRESENTATION FOR ZALMAY_KHALILZAD 

STEP 5 – FILTER AND SPLIT  

A consequence of some of the preprocessing procedures in the preceding pipelining steps, 

is that many articles may end up having all of their categories or annotations filtered 

away. For this reason, the preprocessing pipeline is concluded with two filtering steps: 

1. Filter annotations 

 Remove extracted DBpedia annotations with no Freebase match 

 Remove Freebase annotations with no Word2Vec match 

2. Filter articles 

 Remove articles with no matching Media Topic category 

 Remove articles with no annotations  

To emphasize a little on the removal of articles with no category; as explained in Step 2, 

the mapping from NYT descriptors to IPTC Media Topics is not perfect. Not every 

descriptor will have a match, and this leaves us with orphaned articles. As these articles 

provide no further information apart from the fact that they do not have a category, 

these articles are discarded. 

For a visual feel of the filtering process and the dataset as a whole, Figure 4-14 shows 

the filtering results on the entire corpus. As the figure shows, the filtered dataset contains 

roughly 1.4 million news articles, and almost 22 million annotations, with about 213 

thousand annotations being unique. Figure 4-15 illustrates the article breakdown per 

category, according to the Broad IPTC MediaTopic mapping explained in Step 2. 
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FIGURE 4-14 – CORPUS FILTERING RESULT 

 

FIGURE 4-15 – ARTICLE DISTRIBUTION PER CATEGORY 
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After the cleanup phase has completed, the dataset is ordered chronologically by date, 

and split up into training, validation, and test sets. The reason for ordering the dataset 

by date is to avoid bias in the classifiers. Since the goal is to model news articles, which 

naturally reflects current events based on past, it makes sense to follow this scheme 

through the classification process as well. Exactly how the splitting is done depends on 

the experiment, but it generally follows the following metric:  

60 % 𝑡𝑟𝑎𝑖𝑛, 20 % 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛, 20 % 𝑡𝑒𝑠𝑡 

The training set is used to train the models, while the validation set is used to evaluate, 

and help tune the hyperparameters during training. After training is complete, the 

finalized models are evaluated with the test set.  

After the dataset is split up, the final step in the preprocessing pipeline is to calculate 

TF-IDF weights for all of the annotations. As covered in Section 2.2.2 TF-IDF is the de 

facto method of weighting features in a dataset.  

NB: An important note is that the TF part of TF-IDF (i.e. term frequency in the entire 

corpus), is only computed based on the training set. This is done to avoid any bias in the 

training process. With other words: When calculating TF-IDF for annotations in the 

validation or test set, the TF from the training set is used. 

4.2.2 DEEPER INSIGHT 

Now that the dataset is preprocessed and split up accordingly, it is interesting to take a 

closer look at the data itself – both to understand the data a bit better before using it 

for training and as a sanity check to make sure the dataset still inhibits its desired 

properties. 

The intended purpose of the annotated dataset is to have the extracted DBpedia entities 

convey the information present in the news articles. However, after all of the 

preprocessing done, it is not obvious which annotations actually represent the different 

categories. To get a better intuition of this, Table 4-4 has been included – which lists the 

most relevant annotations in terms of TF-IDF weight for each and every category.  

Although some entries are less clear than others, one could argue that the bulk of them 

make sense. For instance, ozone, greenhouse, and carbon dioxide definitely seem relevant 

for weather articles. Among the results are also some less obvious, and perhaps amusing 

entries: Apparently goldfish and caviar applies to human interest.  One thought-

provoking remark, though, is that salt is assumed relevant by four categories, in the top-

nine alone, which may suggest some overlap among them.  

Some other interesting observations about the dataset is the average number of 

annotations for articles in each category, as seen in Figure 4-16. According to the plot, 

one should expect about half the amount of information from articles labeled economy 

as opposed to religion and belief. The average label cardinality [2.8.1] for the different 
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categories is displayed in Figure 4-17, which shows that most articles in the dataset have 

between 2 and 3 assigned categories. 

 

FIGURE 4-16 – AVERAGE NUMBER OF ANNOTATIONS PER IPTC CATEGORY 

 

FIGURE 4-17 – LABEL CARDINALITY BREAKDOWN BY CATEGORY 

 

FIGURE 4-18 – LOGARITHMIC PLOT SHOWING MULTI-LABELNESS – THE NUMBER OF CATEGORIES PER 

ARTICLES   
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ARTS, CULTURE … CONFLICTS, WAR … CRIME, LAW … DISASTER, ACCIDENT … ECONOMY, BUSINESS … 

bilingual education sonar Gangi cyclone Isetan 

confetti Coverdale Lubin Valujet Borden 

National Geographic Noriega Hoffa tritium honeycomb 

Univision Mobutu C.F.T.C sonar Univision 

Goosebumps Osama bin Laden Governor deer easement 

Genie Kurds Sergeant Major boulevard Peoplesoft 

Lindbergh Texaco lysine air bag Oshkosh 

pygmies Chechnya Petrocelli tornado C.F.T.C 
 

EDUCATION ENVIRONMENT HEALTH HUMAN INTEREST LABOUR LIFESTYLE … 

bilingual education salt chi caviar Workfare gypsum 

Ubinas Georgian dyslexia liver Reno Grand Union 

chancellor Pinelands euthanasia deer Greyhound batik 

Ledyard asbestos melanoma PCB Social Security saddle 

Head Start Asbestos varicose veins Atlantic salmon Lynn plywood 

Barnwell Manville bulimia whaling Saturn muffler 

Walden Con Edison autism goldfish workfare salt 

Asbestos tuberculosis Rogaine fat Governor Saturn 
 

POLITICS RELIGION … SCIENCE AND TECHNOLOGY SOCIETY SPORT WEATHER 

Lubin Kwanzaa dyslexia bilingual education Ramsey radar 

Workfare Koran melanoma Goosebumps Nebraska ozone 

Hoffa Rebbe bulimia Sergeant Major Ledyard carbon dioxide 

impeachment Barbie autism Nelson Mandela Polonia greenhouse 

Schumer Hasidic Radon Workfare Spira levee 

Lockheed Shaker salt Philippines Schwinn Kyoto 

chiropractic chocolate American Red Cross dyslexia Sampras salt 

Social Security Baptist Head Start euthanasia Navratilova river 

TABLE 4-4 – MOST RELEVANT ANNOTATIONS IN TERMS OF TF-IDF FOR EACH CATEGORY 

 

Furthermore, Figure 4-18 shows a logarithmic plot of the multi-labelness for the dataset 

– the distribution of number of categories assigned to the different articles in the corpus. 

This plot reveals that the vast majority of articles after the filtration have either one or 

two categories. The red dot plots the number of articles filtered away as a result of having 

no category after the initial filtering.  

Finally, one particularly interesting set of relationships is shown in Table 4-5. This 

comprehensive table shows the correlational probability of row given column. For 

instance, the probability than an article that already has a labour category also has the 

economy label is 50 %. Looking through the table most of the relationships tend to make 

sense: A weather article is likely also to be about disaster, economy or environment. This 

is reassuring, as it implies that the IPTC Media Topic category mapping was successful. 
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ARTS - 19 % 18 %  12 % 23 % 14 % 16 % 24 % 15 % 16 % 18 % 28 % 22 % 26 % 5 % 8 %  

CONFLICTS 2 % - 5 % 3 % 2 % 1 % 2 % 1 % 1 % 2 % 1 % 10 % 4 % 2 % 2 % 0 % 1 %  

CRIME 8 % 20 % - 17 % 10 % 15 % 14 % 17 % 6 % 14 % 8 % 20 % 17 % 10 % 30 % 5 % 4 %  

DISASTER 1 % 2 % 4 % - 4 % 1 % 15 % 3 % 3 % 1 % 3 % 1 % 3 % 3 % 3 % 2 % 27 %  

ECONOMY 19 % 22 % 33 % 56 % - 25 % 49 % 31 % 21 % 50 % 27 % 35 % 16 % 35 % 25 % 6 % 40 %  

EDUCATION 2 % 1 % 3 % 1 % 1 % - 2 % 3 % 3 % 7 % 1 % 2 % 4 % 3 % 5 % 0 % 1 %  

ENV 1 % 2 % 3 % 16 % 3 % 2 % - 5 % 10 % 1 % 8 % 2 % 1 % 9 % 2 % 1 % 24 %  

HEALTH 4 % 2 % 8 % 6 % 4 % 6 % 11 % - 10 % 5 % 4 % 3 % 4 % 39 % 12 % 3 % 9 %  

HUMAN 3 % 1 % 1 % 3 % 2 % 4 % 12 % 6 % - 1 % 5 % 1 % 2 % 7 % 2 % 3 % 7 %  

LABOUR 1 % 1 % 2 % 1 % 3 % 6 % 1 % 2 % 1 % - 1 % 2 % 1 % 1 % 3 % 2 % 1 %  

LIFESTYLE 6 % 4 % 6 % 11 % 6 % 5 % 28 % 8 % 16 % 6 % - 4 % 36 % 9 % 6 % 11 % 12 %  

POLITICS 11 % 48 % 24 % 8 % 13 % 13 % 13 % 8 % 4 % 18 % 6 % - 15 % 8 % 23 % 1 % 5 %  

RELIGION 1 % 1 % 1 % 1 % 0 % 1 % 0 % 1 % 0 % 0 % 3 % 1 % - 1 % 2 % 0 % 1 %  

SCIENCE 3 % 2 % 3 % 4 % 3 % 5 % 12 % 25 % 8 % 2 % 4 % 2 % 3 % - 5 % 1 % 11 %  

SOCIETY 8 % 5 % 21 % 9 % 5 % 17 % 6 % 18 % 4 % 10 % 5 % 13 % 17 % 12 % - 2 % 3 %  

SPORT 3 % 1 % 5 % 8 % 2 % 2 % 3 % 7 % 12 % 13 % 15 % 1 % 1 % 2 % 3 % - 6 %  

WEATHER 0 % 0 % 0 % 6 % 1 % 0 % 5 % 1 % 1 % 0 % 1 % 0 % 0 % 2 % 0 % 0 % -  

TABLE 4-5 – PROBABILITY OF ARTICLE IN CATEGORY ROW ALSO BEING CATEGORY COLUMN 

4.2.3 FINALIZED MODEL 

After the preprocessing pipeline is completed, the final model becomes rather slim in 

terms of original size – maintaining only the relevant attributes (with the exception of 

the headline attribute used for debugging purposes). The final article model is described 

in Table 4-6, while the annotation model is available in Table 4-7.  

NAME TYPE DESCRIPTION 

ID String Unique identifier 

Headline String Article headline 

IPTC List Correct IPTC Media Topics category 

Annotations Annotation Relevant phrases 

TABLE 4-6 – FINALIZED ARTICLE MODEL AFTER PREPROCESSING 

NAME TYPE DESCRIPTION 

ID String Unique identifier 

Index Integer Per-article unique identifier 

Phrase String Freebase entity name 

Mention Count Integer Number of mentions within a single article 

DBpedia ID String Unique identifier from DBpedia 

Freebase ID String Freebase ID, /m/<string> 

Wikidata ID String Wikidata ID, Q<number> 

TF-IDF Double Term frequency, inverse documents frequency 

TABLE 4-7 – FINALIZED ANNOTATION MODEL AFTER PREPROCESSING  
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5 METHODS 
One of the major goals of this thesis is to investigate and evaluate how simple traditional 

machine learning compares to the more sophisticated neural approaches. For this reason, 

careful thought has to go into the process of picking the appropriate methods suitable for 

providing insight on this matter. One concern when dealing with this is to make sure the 

methods are compared on fair ground – or with other words: That the comparison 

evaluates the methods and not the surrounding circumstances. The purpose of the 

following chapter is to explain the “which and why” behind the choice of classifiers, and 

their configurations. Practicalities surrounding the training phase, and how the 

preprocessed dataset from Chapter 4 was tailored to fit the input format for each 

classifier, is also included in this chapter.  

5.1 TESTING ENVIRONMENT 
The testing environment used for this thesis consist of a custom classification framework 

written in Scala for Apache Spark34. The framework uses tools from Spark’s MLlib library 

(v1.6.1) for the Naïve Bayes implementation, and deeplearning4j (v0.4-rc3.10) for 

configuring and training of ANNs. Furthermore, the developed framework is open source 

and available on GitHub35. To cope with the computational demands, training was done 

on a series of Intel Xeon E5 32 core 2.6ghz CPUs. 

5.2 CLASSIFIERS  
In order to keep the multi-label classification task as simple as possible, the news article 

categorization is modeled as an 𝑛-binary classification problem. This choice is also 

motivated by the promising related work using 𝑛-binary ensembles, discussed in Section 

3.1. As explained in Section 4.1.2 this means that no less than 17 binary classifiers are 

required for each of the chosen approaches – one for each of the top-level IPTC Media 

Topic categories. 

There are three classifiers used in this project:  

 Multinomial Naïve Bayes (NB) – [2.4.1] 

 Feedforward Multilayer Perceptron network (FFN) – [2.5.1] 

 Long Short-Term Memory Recurrent neural network (LSTM) – [2.5.6]  

 

                                                 

34 Spark – http://spark.apache.org/ 

35 Corpus Project – https://github.com/Habitats/corpus 
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The motivation behind this choice of classifiers is to represent three different levels of 

sophistication. Summarized, NB acts as the baseline for the traditional methods. SVM 

[2.4.2] and k-NN [2.4.3] were also explored as alternatives to the traditional method, but 

NB was ultimately chosen because of its simplicity and low computational requirements. 

For the more complex methods, the FFN represents the baseline for the artificial neural 

networks (ANN), while the LSTM represent a more sophisticated alternative. As a quick 

recap: LSTM are networks capable of modeling ordered sequences, which makes them 

particularly interesting for modeling text.  

The following section provides a breakdown of how each of the classifiers was configured 

and tuned to fit the news article classification problem.  

5.3 FEATURE SELECTION 
Once the data preprocessing pipeline demonstrated in Section 4.2 is completed, the 

dataset consists of a set of articles, each with one or more annotations attached to it. In 

order to make the articles and annotations compatible with a classification model, the 

dataset has to be translated into a format that the classification algorithm can 

understand. As discussed in Section 2.2, the representations that were chosen in this 

thesis are either a bag-of-words/TF-IDF approach, or through word embeddings.  

5.3.1 BAG OF WORDS WITH TF-IDF 

The first representation involves creating a standard BoW vector of TF-IDF weights for 

every article. Figure 5-1 illustrates how an example of how a small corpus may look like 

after being translated into TF-IDF vectors. United States and Iraq have column values 

of zero, implying they were present in all of the articles, and hence not important. 

 

FIGURE 5-1 – A FINAL MATRIX REPRESENTATION OF A SMALL PREPROCESSED CORPUS 

Using the BoW representation together with the NB and FFN is as simple as mapping 

the vector directly to the input. However, as the preprocessed corpus contain no less than 

213 379 unique annotations [Figure 4-14], some additional filtering is carried out to make 

the method tractable in terms of computation time – which in terms of the chosen 

methods is proportional to the size of the input vector.  

Therefore, annotations with a term frequency less than 100 were ignored. This reduced 

the number of annotations to around 25 000, without affecting classification performance 

in any noticeable way. Other dimensionality reduction techniques like PCA and feature 

selection, as explained in Section 2.6, were attempted, but not used because of the lack 



 

79 

METHODS – FEATURE SELECTION – 5.3  

 

of suitable implementations in MLlib. PCA in particular turned out to be very slow to 

compute. 

Furthermore, using the BoW representation together with the LSTM was shown highly 

impractical due to the computational requirements, and was for this reason omitted. That 

is, the BoW representation was only used with FFN and NB. 

5.3.2 WORD EMBEDDINGS WITH WORD2VEC 

Utilizing the embedded Word2Vec representation is a little less straightforward than the 

BoW approach. As a recap from Section 4.2: With the chosen Word2Vec implementation, 

each article has a set of 𝑛𝑎 1000-dimensional vectors, where 𝑛𝑎 is the number of 

annotations in article 𝑎. This means that every article can be seen as a 2-dimensional 

𝑛𝑎 ∗ 1000 matrix. However, as soon to be uncovered, simple vector representation is also 

possible. 

VECTORIZED REPRESENTATION  

The matrix representation becomes an issue when working with NB or FFN, which 

expects vectorized inputs. This means that the article has to be translated yet another 

time in order to fit as input for these classifiers.  

As all of the vectors have 1000 dimensions, there are several ways the information in the 

vectors can be accumulated into a lower dimensionality representation. For instance, by 

taking the average, adding them together, or concatenating [114]. The method that was 

proven the most useful for this thesis, consisted of multiplying the vectors with their 

corresponding annotations’ TF-IDF weight, and then adding them together – ultimately 

creating a document vector from the set of Word2Vec phrase vectors. Not only did this 

simplify the input, but it also created a cumulative footprint for the article in light of the 

TF-IDF weights from its corresponding annotations. 

By using the document vector approach, the representation was reduced to the same 

format as the BoW vectors, only with 1000 dimensions instead of a dimension equal to 

the number of distinct annotations. 

MATRIX REPRESENTATION  

While the NB and FFN methods are limited to vectorized inputs, the LSTM is capable 

of utilizing the full matrix representation. As elaborated in Section 2.5.6, an LSTM can 

model time, which for the news article classification problem can be interpreted as the 

internal order of the annotations within an article – similar to how a human would 

process a text from left to right. 

In practice, this means every row in the document matrix represents a single time-step 

for the LSTM, a time-step which is reset after every article. Training is done the same 

way as the other methods, only with matrices as input instead of vectors.  
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Incorporating TF-IDF weights into the ordered Word2Vec representation used with the 

LSTM did not show much effect. For this reason, the TF-IDF weights were not used 

with the LSTM. 

5.4 EVALUATION METRICS 
To fully explore the properties of the data, numerous evaluation metrics are 

investigated. For the label-based metrics, this includes both the macro- and micro-

averaged precision, recall, accuracy and F-score. Example-based metrics that are used 

are Hamming loss (H-Loss) and Subset accuracy (Sub-Acc). In addition, a modified 

Subset-accuracy metric, Subset-one accuracy is used, which is the fraction of articles 

with at least one correctly predicted category. Layer Cardinality (LCard) is also 

investigated, sometimes normalized in terms of the true label cardinality. That is, a 

normalized LCard of 2.5 would mean the classifier predicted 2.5 times more categories 

for the article than what the article actually has. 

As discussed in Section 3.4.3, the most commonly used evaluation metric when analyzing 

news articles is the macro-averaged F-score. For this reason, the macro-averaged F-score 

metric used for the final assessment. All further mentions of F-score assume macro-

average unless explicitly stated otherwise. 

As a refresher from Section 2.7: The macro-averaged strategy first calculates the metrics 

individually for each label, and then takes the average – making it the sensible choice for 

news data, where the label classes differ a lot in size, but are equal in importance. 

5.5 HYPERPARAMETER TUNING 
A simple learning problem can be viewed as a function taking some training data and 

producing one or more outputs. However, in reality, this process usually also involves 

tuning a set of hyperparameters. Said best by Yoshua Bengio, one of the fathers of 

modern A.I., hyperparameters are “annoying knobs to be adjusted” [115]. Or put another 

way; hyperparameters are the parameters of the learning algorithm itself.    

Although simple methods like Naïve Bayes have very few knobs, entering the realm of 

neural networks, the complexity, and level of sophistication skyrockets. Even for FFNs, 

which are arguably the simplest ANNs capable of performing classification, there are 

already a wide variety of hyperparameters to tune. Tuning LSTMs is no different – if 

anything, it is even more complicated.  

The hyperparameters deemed relevant for this thesis are primarily those covered 

throughout Section 2.5 – ranging from the choice of learning rate, and activation 

functions, to choosing the number of neurons in a layer, or even the number of layers in 

the network itself.  

Needless to say, choosing suitable hyperparameters when starting from scratch with a 

previously unresolved classification problem is far from trivial. In fact, one of the most 
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prominent hyperparameter optimization techniques, Random Search, boils down to just 

being a matter of educated guessing [116]. In short Random Search involves figuring out 

a suitable range for every hyperparameter, often initiated by looking at related problems 

or following rules of thumb, and then just trying random permutations of parameters 

until it works.  

Random Search represents more or less how the hyperparameter search was conducted 

for this thesis. “More or less”, as it was done with simplicity in mind: Choose the simplest 

kind of network, and add bells and whistles until it either stops improving or becomes 

too complicated to work with. The following sections present the most promising 

configurations. 

5.5.1 NAÏVE BAYES 

As previously discussed, NB is an incredibly simple classifier, and requires little to no 

tuning in order to function. In fact, the only noteworthy hyperparameter is to decide 

whether it should be a multinomial or Bernoulli classifier. Multinominal means that it 

will predict discrete data, as opposed to the Bernoulli variant, which is probabilistic. The 

NB classifier for this thesis was chosen to be binary, which is a special case of the 

multinomial classifier, with only two classes – that is, it outputs a 1 if it thinks a certain 

article is in a given category, and 0 otherwise. 

5.5.2 FEEDFORWARD NETWORK 

The relevant hyperparameters and their configuration for the FFN are summarized in 

Table 5-1. One thing to notice is that there are two outputs through a Softmax function. 

This means that the network outputs a probability distribution for the binary choice 

[𝑦𝑒𝑠, 𝑛𝑜]. For instance, [0.55, 0.02] would means the model would output a “yes”.  

Although there are no right or wrong regarding the number of nodes in a layer, the 

topology for the FFN W2V network was guided by a couple of rules of thumb proposed 

by Jeff Heaton [117], which states that: 

 The number of hidden neurons should be between the size of the input layer 
and the size of the output layer. 

 The number of hidden neurons should be 2/3 the size of the input layer, plus 
the size of the output layer. 

 The number of hidden neurons should be less than twice the size of the input 
layer.  

Another important detail is that the topology of the network varies based on the 

representation of the input format. The original idea for the FFN BoW topology was to 

prepend another layer in front of the 1000 input FFN W2V network, with as many inputs 

as the BoW feature space required. This design was motivated by an assumption that 

this would make it easier to compare the two methods, as the topologies would be 

otherwise identical. However, the resulting network turned out to be extremely slow to 
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train, due to the high number of input nodes. For this reason, the FFN BoW network 

had to be kept very simple in order to remain a tractable solution in terms of computation 

time.  

Other than that, most of the hyperparameters were found through trial & error as 

explained in Section 5.5.  

It should be noted that Table 5-1 only shows hyperparameters for techniques that were 

actually used, and thus omits hyperparameters that had little to no effect on the training 

process in this particular scenario. Among the techniques that were tried, but yielded 

little impact, are dropout and input scaling.  

Furthermore, some hyperparameters were manually dynamic – like the learning rate. 

What this means is that the networks were first trained using a higher learning rate, then 

saved and trained again with a lower learning rate. This procedure did to a certain degree 

mimic an adaptive learning rate. Though, the method ended up being a little cumbersome 

because of limitations in deeplearning4j.  

HYPERPARAMETER VALUE 

OPTIMIZATION ALGORITHM Stochastic Gradient Descent with Backpropagations. 
Mini-batch size of 250 

UPDATER RMSProp 

WEIGHT INITIALIZATION Xavier 

ACTIVATION INPUT Hyperbolic tangent 

ACTIVATION OUTPUT Softmax 

COST FUNCTION Cross Entropy  

TOPOLOGY WORD2VEC 1000 inputs, 700 in the first hidden layer, 500 in the 
second and 2 outputs 

TOPOLOGY BOW 25000 inputs, 1000 in the first hidden layer and 2 outputs 

LEARNING RATE Initially 0.5, then decreased gradually until 0.05 

TABLE 5-1 – HYPERPARAMETER CONFIGURATION FOR FFN  



 

83 

METHODS – HYPERPARAMETER TUNING – 5.5  

 

5.5.3 LONG SHORT-TERM MEMORY NETWORK 

As shown in Table 5-2, the hyperparameter configuration of the LSTM is very similar to 

the FFN in Table 5-1. The most noteworthy change is the topology. Although the LSTM 

units are a lot more complex than the simple nodes in the FFN [Figure 2-18], 100 hidden 

nodes are still very few compared to the 1000 nodes in the first layer. However, due to 

LSTMs incredibly demanding computational requirements, 100 was the highest number 

of nodes the available resources allowed for. 

Other than that, the hyperparameters for the LSTM were chosen much the same was as 

those of the FFN, using simplicity and Heaton’s three rules of thumb as a guideline. 

HYPERPARAMETER VALUE 

OPTIMIZATION ALGORITHM Stochastic Gradient Descent with Backpropagations. Mini-
batch size of 50. Gradient clipping applied with a threshold 
of 1.0 

UPDATER RMSProp 

WEIGHT INITIALIZATION Xavier 

REGULARIZATION L2 regularization with a coefficient of 1 ∗ 10−5 

ACTIVATION INPUT Softsign 

ACTIVATION OUTPUT Softmax 

COST FUNCTION Cross Entropy  

TOPOLOGY WORD2VEC 1000 inputs, 100 hidden LSTM units, and 2 outputs 

LEARNING RATE Initially 0.5, then decreased gradually until 0.005 

TABLE 5-2 – HYPERPARAMETER CONFIGURATION FOR LSTM 
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5.6 TRAINING TIME 
The previous sections mention that the chosen topologies for the FFN and LSTM were 

heavily constrained by the high computational requirements involved when working with 

ANNs. To put some numbers on these constraints: A single run through the full dataset, 

using an LSTM with only 10 hidden nodes, was initially estimated to take more than 45 

days, using on an Intel Xeon E5 machine.  

However, after spending countless hours working closely with the developers of 

deeplearning4j, implementing a variety of clever caching techniques, tuning garbage 

collectors, and adding native bindings for the mathematical components, the training 

time was finally cut down to less than 3 days for a 100 node LSTM. Yet, as evident from 

Figure 5-2, the training time for the bigger ANNs do not even come close to the simple 

nature of Naïve Bayes. 

The motivation behind mentioning this, is to shed some light on the many unforeseen 

issues faced when working with something as complex as ANNs. Another side effect of 

the long training times is that it inhibits the number of different hyperparameter 

configurations possible to explore with Random Search. With an epoch time (a single run 

through the dataset) of two and a half days for the LSTM, time quickly adds up.  

It is also worth mentioning that prediction time – the time it takes for the model to 

evaluate a single example – was observed to increase proportionally to the network size. 

In fact, testing 200 000 examples on a finished LSTM model takes around five hours, 

while the NB completes in a matter of minutes.  

 

  

FIGURE 5-2 – TRAINING TIME FOR A SINGLE EPOCH ON THE FULL DATASET  

 

1h 45m

2d 14h 44m

2h 38m 1h 35m

18h 34m

NB W2V LSTM W2V FFN W2V NB BOW FFN BOW
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6 EXPERIMENTS 
During the introductory chapter, a set of research questions were defined [1.4]. This 

analytical chapter attempts to address these questions, by conducting a set of 

experiments. In total, seven experiments have been carried out, each covering different 

aspects of the research goals. As the research questions and experiments are somewhat 

intertwined, a mapping showing the experiments’ main focal point, is presented in Table 

6-1. RQ7 is not included as it is addressed throughout Chapter 5 and 6 as a whole.  

In general, the experiments can be split into two groups. The first group is concerned 

with how the dataset may be preprocessed to enhance training. This involves decisions 

regarding the number of annotations necessary, and whether or not to incorporate 

ontologically related concepts into the training phase. The second group of experiments 

revolves around analyzing and comparing the different methods. For instance, by 

exploring how article length and moving through time affects the quality of the 

classification.  

NB: For the sake of keeping the evaluation as clean as possible, the results section for 

each experiment only focus on delving into what is relevant with respect to its related 

research question.  

 

 RQ1 RQ2 RQ3 RQ4 RQ5 RQ6 

6.1  IMPORTANCE OF CONFIDENCE   X    

6.2  ONTOLOGICAL      X   

6.3  ARTICLE LENGTH   X    X 

6.4  PERFORMANCE OVER TIME    X    

6.5  WORD EMBEDDINGS VERSUS BAG OF WORDS  X      

6.6  NAÏVE BAYES VERSUS DEEP LEARNING X      

6.7  WORDS VERSUS ANNOTATIONS      X 

TABLE 6-1 – OVERVIEW OVER EACH EXPERIMENTS MAIN FOCUS POINT 
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6.1 IMPORTANCE OF CONFIDENCE 
As explained in Section 4.2.1, the feature extraction from the articles is done through 

DBpedia Spotlight. The default confidence level for this extraction was set to 50 %. This 

first experiment attempts to justify this choice by investigating how different confidence 

levels affect the classification process.  

It should be taken into consideration that this experiment merely serves as a means to 

an end in order to build a viable foundation for the remaining experiments. For this 

reason, the evaluation does not dig deeper than what is necessary to advocate a sensible 

confidence level. 

PREPARATION 

Figure 4-9 already gave a good indication of what to expect from the different confidence 

levels, by showing that a lower confidence yields a higher number of annotations. To get 

a better picture of exactly how many more, Figure 6-1 shows the average number of 

annotations per article for a random sample of a sample of 45 000 articles. An implication 

following the massive number of annotations for the 25 % level, is that the task of testing 

the model on the full dataset becomes infeasible. The number of annotations per article, 

88 on average, simply becomes too large to be practical. For this reason, this experiment 

was carried out with only a small portion of the full dataset, totaling 45 000 articles. The 

default split from Section 4.2.1 was used. 

 

FIGURE 6-1 – AVERAGE NUMBER OF FOR EACH CONFIDENCE LEVEL ON A SAMPLE DATASET 

RESULTS 

As for the results, Figure 6-2 shows the macro-averaged scores for the different confidence 

levels. Looking at the F-score reveals some mixed results: The FFNs seems to benefit 

more from a higher number of uncertain annotations, while the LSTM and NB tend to 

prefer a confidence around 50 %.  

Either way, a confidence level around 50 % was found to be a sound choice: It gave all 

of the 5 methods enough to work with, while at the same time keeping the problem 

domain within tractable bounds. However, because of the limitation on dataset size, the 

fine-grained preferences remain inconclusive.   
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FIGURE 6-2 – IMPACT OF DIFFERENT CONFIDENCE LEVELS 

  

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

25 % 50 % 75 % 100 %

CONFIDENCE

PRECISION

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

25 % 50 % 75 % 100 %

CONFIDENCE

RECALL

82 %

84 %

86 %

88 %

90 %

92 %

94 %

96 %

25 % 50 % 75 % 100 %

CONFIDENCE

ACCURACY

0 %

10 %

20 %

30 %

40 %

50 %

60 %

25 % 50 % 75 % 100 %

CONFIDENCE

F-SCORE



 

88 

6.2 – EXPERIMENTS – ONTOLOGICAL EXTRACTION 

 

6.2 ONTOLOGICAL EXTRACTION 
The core motivator for this thesis is to explore language-independent news classification 

through feature extraction of ontological annotations. This experiment is devoted to 

delving deeper into the implications of doing so. The experiment also includes an 

assessment of the effects of incorporating the optional ontologically related supertypes 

from Section 4.2.1 into the classification process.  

PREPARATION 

For this experiment, the entire corpus was used. From this, two identical dataset splits 

were created, according to the standard splitting procedure [4.2.1]. One of the datasets 

was then appended with supertype annotations, whereas the other one remained as is.  

Figure 6-3 illustrates how the number of annotations for each category was affected by 

adding types. An interesting observation is that padding with types had about the same 

effect on all of the categories, adding an average of 4 extra type annotations for every 

category. 

 

 

 

FIGURE 6-3 – AVERAGE NUMBER OF ANNOTATIONS PER CATEGORY WITH AND WITHOUT SUPERTYPES 
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FIGURE 6-4 – EFFECTS OF INCLUDING ONTOLOGICAL TYPES. TYPES IN DARK COLORS, NONE IN LIGHT 

 

FIGURE 6-5 – LSTM W2V VS. NB BOW CATEGORICAL BREAKDOWN OF F-SCORE FOR TYPES  
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RESULTS 

The macro-averaged F-scores for this experiment are shown in Figure 6-4, where the dark 

colored bars represent the scores with type inclusion, and the light colored bars without.  

In regards to supertypes, the overall direction of the results is quite conclusive. For all of 

the five methods tested, the incorporation of types results in a slight drop in F-score. By 

closer examination, the results reveal an interesting meta-relationship: For both of the 

BoW-based methods the recall decreases while the precision increases, when adding 

types. That is, it swaps some false positives for false negatives. Exchanging false positives 

for false negatives effectively means reducing the label cardinality, as the classifier would 

refrain from misclassifying articles at the price of also missing some articles.  

Although the accumulated F-values for every method decreased by introducing types, 

there is one particularly interesting observation to be made from the categorical 

breakdown from Figure 6-5. What the chart uncovers is that the decay is not uniform 

across categories. Looking at religion and belief the F-score is nearly cut in half for the 

LSTM W2V. Furthermore, the results show that the performance varies immensely 

between the different categories, even though the exact same method is used.  

Intuitively, one may believe that incorporating types would only add redundant 

information, and not negatively affect the existing information. In addition, considering 

that the performance across the categories – with some exceptions – is relatively 

consistent between methods, the inconsistency between categories may originate from the 

dataset itself. 

To investigate this hypothesis, remember the category distribution for the dataset in 

Figure 4-15. This shows that the distribution of categories is extremely skewed – or 

imbalanced. That is, the dataset contains a lot more info about certain categories than 

others. The effects relating this imbalance and the F-score is plotted in Figure 6-6. The 

plot shows the fraction of articles having a certain category with respect to the entire 

dataset, plotted against the F-score for the NB BoW classifier.  

To emphasize: The imbalance factor in Figure 6-6 is the true/false rate. For instance, if 

a fourth of a dataset’s articles are labeled sport the imbalance factor for sport would be 

25%. 

The imbalance correlation plot uncovers a clear relationship between the imbalance of a 

category and the resulting F-score for most categories: A more balanced category 

generally yields higher F-scores. However, there is one significant exception, namely sport, 

shown in red. Sport achieves the highest F-score while only inheriting an imbalance rate 

of 12 %. Thus, the imbalance rate cannot be the only side-effect affecting the F-score. 

As it turns out, there is another correlation to be revealed by looking deeper into the 

properties of the annotations themselves. This relationship is related to the fraction of 

unique annotations for a given category, and is plotted in Figure 6-7. What the correlation 

plot shows, is that the fraction of unique annotations is inversely proportional to the F-

score: Lower fraction of unique annotations yield higher F-scores. This observation is 
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sound in the sense that a greater number of unique annotations results in lower statistical 

significance for the features themselves. An even closer look actually hints towards a 

quadratic decay in F-score when increasing the number of distinct annotations. 

Although only the NB BoW F-score was used for this detailed inspection, the same 

relationships were present for all of the other classifiers. 

 

FIGURE 6-6 – CORRELATION BETWEEN IMBALANCE RATE AND F-SCORE FOR NB BOW 

 

FIGURE 6-7 – CORRELATION BETWEEN DISTINCT ANNOTATIONS AND FOR NB BOW  

sport

0 %

25 %

50 %

75 %

100 %

0 % 10 % 20 % 30 % 40 % 50 % 60 %

F-
SC

O
R

E

IMBALANCE RATE

CORRELATION BETWEEN IMBALANCE RATE AND F-SCORE

sport

0 %

25 %

50 %

75 %

100 %

0 % 2 % 4 % 6 % 8 % 10 % 12 % 14 % 16 % 18 %

F-
SC

O
R

E

DISTINCT ANNOTATION RATE

CORRELATION BETWEEN DISTINCT ANNOTATION RATE

AND F-SCORE



 

92 

6.3 – EXPERIMENTS – ARTICLE LENGTH 

 

6.3 ARTICLE LENGTH 
Like most other types of media, news articles come in all shapes and sizes. It is a fair 

assumption that these properties may affect the classification quality. The following 

experiment attempts to uncover exactly how much of an impact this is – more specifically, 

how the performance of the classifier correlates with the number of annotations and 

article length.  

PREPARATION 

The only information available to the classifiers in these experiments are the annotations, 

and not the actual article text. For this reason, in order to say something about article 

length, there is a requirement for a correlation between article length and the number of 

annotations. Based on Figure 6-8, this correlation is assumed to exist.  

In order to evaluate the models on different article lengths, the test set was split into ten 

equally sized buckets – each corresponding to a length group as shown in Figure 6-9. The 

models were then trained using the standard split defined in Section 4.2.1. 

 

FIGURE 6-8 – CORRELATION BETWEEN NUMBER OF ANNOTATIONS AND ARTICLE LENGTH 

 

GROUP WORDS ARTICLES 
TRAIN 0 – 45355 846334 

TEST 1 0 – 136 28212 

TEST 2 137 – 191 28212 

TEST 3 192 – 304 28212 

TEST 4 305 – 500 28212 

TEST 5 501 – 675 28212 

TEST 6 676 – 810 28212 

TEST 7 811 – 952 28212 

TEST 8 953 – 1129 28212 

TEST 9 1130 – 1441 28212 

TEST 10 1421 – 45355 28212 
 

FIGURE 6-9 – LENGTH BUCKETS 
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FIGURE 6-10 – CLASSIFICATION PERFORMANCE WITH RESPECT TO ARTICLE LENGTH  
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FIGURE 6-11 – PROGRESSIVE BREAKDOWN OF LSTM F-SCORE FOR LENGTHS, BLUE BELOW THE EDGE, RED ABOVE 
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RESULTS 

Figure 6-10 captures the initial results from this experiment. Looking at the precision 

graph, it is possible to spot a clear increasing trend towards length group 5 – which 

translates into roughly 600 words. As all of the groups are of similar size, having the peak 

at around 5 implies that about half of the articles are equal or greater in length. The 

trend in precision translates naturally into the F-score and accuracy, as the increase in 

precision outweighs the subtle decrease in recall. 

To better understand what is causing this rather significant edge in the F-score at group 

5, a deeper dive into the categorical breakdown is required. This breakdown is depicted 

in Figure 6-11, with blue bars showing F-scores below the observed edge, and red bars 

representing the F-score above the edge. Looking at the specific categories, there seems 

to be a consensus regarding the correlation between longer articles and F-score. It is 

especially clear when looking at the categories sport, politics and weather, whose F-score’s 

progression closely resembles the macro-averaged F-score development in Figure 6-10.  

However, there are also exceptions to this relationship, human interest being the most 

significant one. For this category, transitioning into length group 6 actually decreases 

the F-score by more than 10 %. The reason for this abrupt behavior was first thought to 

be related to a skewed distribution of articles among the different length groups. A closer 

investigation found this not to be the case, as that distribution turned out to be almost 

uniform. Further assumptions remain speculative: It might just be that the NYT has a 

particularly easily classifiable range of human interest-related articles in that range. 

Further analysis of the breakdown in Figure 6-11 also reveals that some categories obtain 

very high F-scores even with very little information. For instance, sport and economy, 

business and finance get F-scores in the high 70% and 60% respectively, with the latter 

even having a clear peak in F-score for length group 3 with otherwise little variation. 

Observing irregularities like these shows that there are more forces affecting the scores 

than the quantity of the information, and that the effects of adding more information are 

highly dependent on the category. Still, the macro-averaged scores attest the claim that 

longer articles generally are easier to classify, and that the most descriptive terms in a 

news article are probably located towards the beginning.  
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6.4 PERFORMANCE OVER TIME 
One can argue that the uncertainty of a prediction from a model trained on historical 

data increases as time passes by. The following experiment investigates how this 

uncertainty affects the classifiers performance. 

PREPARATION 

The NYT Corpus contains articles spanning from 1987 to 2007. To get the most out of 

each time period, the dataset was first ordered chronologically by date, and then split 

into one training set, and ten equally sized validation and test sets, as shown in Table 

6-2.  

The split was done in such a way that each of the ten validation and test sets made up 

one third of the training set, and thus maintaining the properties of the standard split. 

 

 

  

GROUP DATE START DATE END ARTICLES 
TRAIN 1987-01-01 1989-01-23 183986 

TEST 1 1989-01-24 1990-07-21 61329 

TEST 2 1990-07-22 1992-04-21 61329 

TEST 3 1992-04-22 1994-05-22 61329 

TEST 4 1994-05-23 1996-04-27 61329 

TEST 5 1996-04-28 1998-05-04 61329 

TEST 6 1998-05-05 2000-04-17 61329 

TEST 7 2000-04-18 2002-01-18 61329 

TEST 8 2002-01-19 2003-09-06 61329 

TEST 9 2003-09-07 2005-06-02 61329 

TEST 10 2005-06-03 2007-12-31 61329 

TABLE 6-2 – TIME GROUPS 
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FIGURE 6-12 – MACRO-AVERAGED CLASSIFICATION PERFORMANCE OVER TIME 
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FIGURE 6-13 – CATEGORICAL BREAKDOWN OF F-SCORE BETWEEN TIME GROUP 1 AND TIME GROUP 10 

FOR LSTM 
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RESULTS 

Figure 6-12 shows how the macro-averaged scores develop over time. Common for all of 

the methods is that the overall F-score decays as time pass – mainly because of the 

decreasing recall. Accuracy naturally follows suit.  

One possible reason for this behavior was thought to be that the available information 

the classifier is able to extract from the test sets in the distant future, is also decaying. 

However, when looking at the average number of annotations in response to the different 

time periods this is shown not to be the case. The development is shown quite clearly in 

Figure 6-14, where the available information in terms of annotations seems to actually 

increase. However, despite this increase in annotations, Figure 6-15 shows that the 

number of words remains rather constant. With other words, it is the density of 

annotations per article that increases. One plausible reason for the increased density is 

that Wikipedia, DBpedia’s data source, may simply contain more information about 

recent entities than past.  

Another possible reason for this decline may just be that some of the features assumed 

relevant for a given category in 1987-1989 – the span of the training set – simply shifted 

with time. This assumption is somewhat strengthened by looking at Figure 6-13, which 

shows the categorical breakdown of the F-score between the first and last time group for 

the LSTM classifier. Interestingly, sport – the by far most successful category, seemed 

also to decay the least over time, whereas conflicts, war and peace decayed the most.  

This observation makes sense in the way that news articles about sporting events often 

follow the same style and lingo. On the other hand, articles revolving major, and perhaps 

world-spanning events like wars and global conflicts, may inadvertently pull in a 

significant number of entities previously unrelated to these topics. However, these 

assumption remains inconclusive as they were proven difficult to investigate. 

 

 

FIGURE 6-14 – AVERAGE NUMBER OF ANNOTATIONS PER 

ARTICLE FOR EACH TIME GROUP 

 

 FIGURE 6-15 – AVERAGE NUMBER OF WORDS PER ARTICLE 

FOR EACH TIME GROUP 
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6.5 WORD EMBEDDINGS VERSUS BAG OF 
WORDS 

Word embeddings are, as discussed in Section 2.2.3, a way of incorporating contextual 

information into the representation of words or entities. While the other experiments 

adhere to evaluating classification performance through a variety of scenarios and 

environments, the purpose of this experiment is to evaluate how an embedded approach 

compares to the traditional BoW approach.  

PREPARATION 

For this experiment, the full dataset was used. That is, 846 334 articles in the training 

set, and 282 111 in the test set. All models were then trained and tested using the 

standard split. 

RESULTS 

Figure 6-16 shows the overall macro-averaged score for all of the methods, with 

Word2Vec classifiers in blue, and BoW classifiers in red. First of all, what the macro-

averaged scores shows is that there is no obvious winner. LSTM ranked the highest of 

the Word2Vec models with an F-score of 48 %, with NB BoW being only a single percent 

higher, at 49 %.  

This subtle distinction is quite interesting as the Word2Vec vectors only contain 1000 

features, far less than the BoW vectors which have a feature for every phrase – about 

25 000 in total. With other words, the 1000 features in the Word2Vec vectors, are in this 

given experiment capable of conveying the same amount of information as the full-blown 

BoW vectors.  

Looking at the example-based scores in Figure 6-17 there is at first glance little difference 

between the Word2Vec and BoW methods also here. Subset accuracy – the fraction of 

news articles which got all of their categories correctly assigned – is just below 40 % for 

both the best Word2Vec and BoW classifiers. Hamming loss – the fraction of incorrectly 

assigned labels – ranges in the mid 40’s.  

The biggest distinction is in the normalized label cardinality [5.4], but this is believed to 

be because of eagerness in the NB classifier (explained in Experiment 6.6), and not a 

property of the BoW representation. The same argumentation also holds for the Subset-

One accuracy – the fraction of articles which had at least one category correctly assigned 

– which is 7 % higher for the NB BoW than LSTM W2V. Firing more shots increases 

the chances of hitting something. 

Another interesting observation is that although both LSTM W2V and NB BoW got 

similar F-scores, the categorical breakdown in Figure 6-18 reveals that the similarity has 

exceptions. For instance, for the categories labour, society and religion and belief the 

difference in F-score is quite significant – as much as 20 % for labour.  
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So what is the deal with labour? Table 4-5 shows that half of the articles labeled labour 

are also labeled economics – the third best performing category overall. From a statistical 

standpoint, some of this should transfer into the labeling process for labour. This does 

however not seem to happen, and the actual reason for this behavior remain unresolved.  

Either way, across the board, the embedded Word2Vec approach shows results on par 

with the traditional BoW approach from a macro perspective. 

 

 

FIGURE 6-16 – MACRO-AVERAGED SCORES FOR THE FULL DATASET 

 

 

FIGURE 6-17 – EXAMPLE-BASED SCORES FOR THE FULL DATASET 
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FIGURE 6-18 – F-SCORE BREAKDOWN BY IPTC CATEGORY 
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6.6 NAÏVE BAYES VERSUS DEEP LEARNING 
While the preceding experiments have refrained from going into detail regarding the 

specific methods, the purpose of this last experiment is to do exactly that – and serve as 

a complement to the other results.  

PREPARATION 

This meta-experiment is based on the results from all of the preceding experiments. 

RESULTS 

Throughout all of the conducted experiments the perhaps most notable difference 

between the neural and the traditional Bayesian approach, is that NB generally sacrifices 

precision for recall. Another way to put this is that the NB more eagerly assigns labels – 

it has lower confidence. For the FFN and LSTM, the behavior seems to be the opposite. 

From the definition of the F-score in Section 2.7: If the F-score remains constant, a higher 

recall implies a higher number of false negatives. That is, news articles that should have 

been a given category, but that the classifier did not identify as such. 

The takeaway from this is that the NB correctly labels news articles more often than the 

neural methods, at the expense of also misclassifying news articles at a higher rate. This 

relationship is possible to infer from the label cardinality in Figure 6-17, but is perhaps 

made even clearer with additional visual aid as shown in Figure 6-20. The diagram shows 

the total amount of annotations on the vertical axis, with every pillar representing the 

distribution of TP, FN, FP and TN for every category. The red areas represent mistakes 

made by the classifier, and the blue marks the successful predictions. By comparing the 

two charts it is possible to notice that the light red (false positives) sections are a lot 

bigger for NB than for LSTM. Conversely, the dark areas dominate the mistakes for the 

LSTM. 

Another distinction between the neural and NB classifiers is the subset accuracy, which 

is consistently higher for the former. However, the reason for this can be inferred from 

the eagerness described above. Assigning more labels also results in a higher chance of 

error. 

On a categorical level, the differences between NB and the neural approaches is more 

significant, as displayed in the categorical breakdown in Figure 6-18. Perhaps the most 

noticeable deviation is the results for labour. The neural methods are not able to reach 

an F-score beyond a mere 5% for this category, whereas NB BoW reaches 25 %. A similar, 

but opposite relationship is possible to spot for weather, where it is the NB BoW being 

inferior. Further investigation of the categorical breakdown uncovers numerous related 

observations. However, as mentioned in Experiment 6.5, the actual reason for this 

behavior remains unknown. 

As for the neural approaches, one of the selling points for the LSTM is that it can work 

with ordered input. Still, throughout these experiments, the rather slim differences 
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between FFN W2V, NB W2V and LSTM W2V shows that, in this particular context, 

there is little to be gained from exploiting order. Other than that, the overall quality of 

the classification process seems to converge towards the same F-score.  

In terms of computability, it is no secret that NB is a lot faster to train than the neural 

methods in terms of hours on the clock. However, how fast the methods learn in terms 

of training examples has been left mostly unexplored so far. An example of this 

development is shown in Figure 6-19, which plots the F-score for FFN W2V and NB 

BoW as a function of training examples. In addition, the plot also shows how the error 

in the FFN changes with training. As elaborated in Section 2.5.5, an ANN is trained by 

minimizing error, which in this case is inversely proportional to the F-score. This really 

just means that the network is learning something.  

The perhaps most interesting observation to be made in Figure 6-19 is that while both 

NB BoW and FFN W2V learns quite a lot with very few examples, the FFN keeps on 

learning, while the NB BoW saturates almost immediately. While this example only 

shows the development for a single category, a similar relationship was found for other 

categories as well. It was also shown to be the case for the LSTM.  

 

 

FIGURE 6-19 – LEARNING SPEED IN TERMS OF NUMBER OF EXAMPLES 
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FIGURE 6-20 – CATEGORICAL DISTRIBUTION OF TP/FN/FP/TN FOR NB BOW AND LSTM W2V  
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6.7 WORDS VERSUS ANNOTATIONS 
The purpose of this last experiment is to provide some closure to supplement the other 

experiments. The reason for its inclusion is just to give an intuition of how a “normal” 

approach would perform on the same dataset, where normal means that the classification 

is based on the entire body text and not solely on extracted annotations. Or to 

paraphrase: An approach that does not account for the multilingual principles which 

motivate the annotation-based methods. 

As the approach used in this experiment is not among the main focal points of this thesis, 

only a quick presentation of the results follows.  

PREPARATION 

For this experiment, a 6th classifier was added: The Traditional Naïve Bayes Bag of 

Words (NB Trad). NB Trad is similar to the NB BoW, with the exception that it uses 

the actual words of from the news article as annotations, instead of just the extracted 

entities. Another modification done for this method was to apply Porter Stemming [2.3.1] 

before creating the annotations from the body text. Stemming, together with frequency 

filtering (done according to the procedures describe in Section 4.2.1), was done to reduce 

the dimensionality. Though, even with the reduction, the dimensionality of the word-

feature space still ended up containing almost 100 000 features. The classifier is otherwise 

identical to NB BoW. 

The dataset used for this experiment was the full corpus with the standard split. 

RESULTS 

As shown in the accumulated results in Figure 6-21, and in the categorical breakdown in 

Figure 6-22, is that the NB Trad has a very hard time learning the features of this dataset 

when using only words as a basis for its features. In fact, there are only four categories 

which the classifier manages to produce an F-score higher than zero. 

The reason for these incredibly low F-scores is believed to originate from the same issues 

discussed in Experiment 6.2, which discussed supertype inclusion: The dimensionality of 

the feature vector combined with the imbalanced dataset, is simply too great to produce 

any statistically significant traction during the training phase.  

What this experiment uncovers, is that the extracted entities not only provide a language-

independent basis, but it also acts as a way of reducing the dimensionality, while at the 

same time improving the classifier. 
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FIGURE 6-21 – BASELINE RESULTS FOR TRADITIONAL NAIVE BAYES 

 

FIGURE 6-22 – CATEGORICAL BREAKDOWN OF TRADITIONAL NAIVE BAYES RESULTS 
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7 CONCLUSION 
This final chapter of the report wraps up the thesis, with the primary motive being to 

shed light on the findings and the observations made. The first part of the chapter is 

dedicated to discussing the quality of the results, as well emphasizing the strengths and 

weaknesses of the system. This is then followed by a summarized assessment of the 

research questions. A brief summary of possible extensions for future work completes the 

chapter, and concludes the thesis. 

7.1 DISCUSSION 
This project has undertaken the ambitious task of designing a language agnostic and 

multi-label news article classification system, whose features are based solely on extracted 

DBpedia annotations. As the experiments from the preceding chapter uncover, the results 

are mixed – both in terms of the methodic classification quality, and performance across 

categories. While the focus of the experiments was to evaluate empiric results, the 

following section aims to spell out the strengths and weaknesses of the system from a 

practical standpoint. 

RELATED RESEARCH  

First of all, exploring related research for this thesis has been challenging. While there 

are a great number of relevant studies done in each of the individual fields explored in 

this project, relevant studies combining each approach the way it is done in this thesis 

are far and few in between. The most relatable family of research is probably sentiment 

and blog post classification, as mentioned throughout Chapter 3. 

For this reason, it has been proven difficult to dig up an adequate comparison for the 

findings of this project, which in turn complicates the evaluation process. For instance, 

as mentioned in Section 3.4, most previous research in the news domain has used entirely 

different datasets, with wildly different characteristics. Also, the multi-label environment 

is often overlooked. Although this poses a challenge when evaluating the findings, it also 

shows that the chosen domain is in a preliminary state – which in turn promotes a bright 

future with great potential for the field as a whole. 

It should also be noted that this project has attempted to cover a lot of ground. Getting 

a full overview of every little tidbit in related areas of research has been an inconceivable 

task. Still, I feel confident that the project was successful in covering the most relevant 

elements, while simultaneously providing leeway for future research.  

THE DATASET AND DOMAIN 

Even though the NYT corpus is sheer in size, the quality of the news articles themselves 

is varied. As the corpus contains more or less anything published in NYT over the span 

of 20 years, it includes anything from letters to the editor, death notices, corrections, 
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promotional content and even a significant number of lists (e.g. all books published in 

years 2000). Not only does this “noise” complicate the training process, but it also raises 

questions regarding the quality of the classification, as the empiric results reflect how 

well the classifier manages to classify the collective contents of a news aggregator, and 

not actual news articles. 

Similar issues are also spotted in the tagging of the articles. Although most articles, as 

shown in Figure 4-14, were successfully attributed with IPTC Media Topic categories, 

the original descriptors were subject to manual tagging schemes. In short, this means 

that there is not necessarily any strict consistency in what constitutes a labour or weather 

article – and even less so when using only extracted annotations (i.e. nouns) as identifying 

features. For example, there are several cases where different articles end up with an 

identical set of extracted annotations, yet attributed with completely different categories, 

ultimately making it impossible for the classifier to get them all right. 

Another property of the corpus, and perhaps the media industry in itself, is that the 

overall category distribution is absurdly skewed [Figure 4-15]. There are simply more 

news articles related to politics, economics lifestyle and arts, than there are news articles 

covering weather and religion – making attaining the necessary amount of training data 

for the smaller categories difficult. The end result is, as several observations in this project 

substantiate, that the quality of the classification process inevitably suffers from this lack 

of information.  

Nonetheless, it is believed that simply increasing the quantity of the dataset would 

probably not have sufficed in the long run in terms of language independence. This is 

primarily because everything in the NYT corpus is American. As shown in Table 4-4, 

this is something that profoundly influences both the diversity of the annotations, but 

also their corresponding relevance with respect to the different categories.  

The same conclusion can in a sense be drawn for the online ontologies like DBpedia and 

Wikidata, which at the time of writing predominantly covers concepts and entities rooted 

in Western values – especially in terms of celebrities and pop culture. On the other hand, 

these ontologies are a live and growing resource, with open and active communities – 

while the corpus remains static.  

CLASSIFICATION 

Throughout Chapter 6, the performance of the deep learning inspired methods has been 

more or less indistinguishable from the in comparison trivial NB classifier. Does this 

imply that deep learning does not work and should be immediately scrapped in favor of 

the much more efficient NB? Probably not. Truth be told: As emphasized in Chapter 5, 

the difficulty of configuring and training ANNs most likely has constrained the real 

potential of deep learning. However, what the results also show, is that achieving 

satisfactory results with complicated neural nets, is within reach even for someone 

otherwise fresh in the field. Furthermore, the research also shows that using 𝑛-binary 

classifiers is a viable choice even when using neural methods, which further strengthens 

the claims in related research, discussed in Section 3.1. 
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As far as the actual classification quality goes, the research conducted in this thesis 

demonstrate a far-reaching point: That it is possible to classify news articles only through 

consideration of extracted language-independent noun-based entities, with some 

categories like sports reaching an F-score as high as 91% [Figure 6-18]. On a related note, 

it remains unclear whether using proper nouns as the only means of information for news 

articles, is a sustainable approach across the board. Certain categories, like economics, 

business and finance did not outperform sport, despite being more than three times the 

size, regarding training data.  

In terms of categories, IPTC Media Topic has been proven a valuable resource when 

classifying news articles in a language-independent manner. The extensive breadth 

covered by the five ontologically cataloged layers, enables a very flexible and convenient 

guideline for classifying a wide variety of news articles. 

TECHNICAL CHALLENGES 

Aside from being an ambitious project from a research perspective, the technical 

difficulties faced throughout this project have been at least as much of a challenge. 

Ranging from troubleshooting distributed environments, to customizing the garbage 

collector to avoid race conditions when concurrently training neural networks, to having 

a job crash after six days because of bugs in a third party framework – this project has 

at times felt like a depth-first search through an ocean of issues. And that is only the 

technical side. Then there is the deep learning side. 

Admittedly, this project started off with the naïve assumption that deep learning is some 

sort of silver bullet in machine learning – a tool that can just be applied to any given 

problem, and it will just work. The harsh reality is quite different. Deep learning is hard. 

It is in fact very hard. And this is something that has become more than crystal clear 

throughout this project.  

Section 5.5 scratched the surface of hyperparameter tuning, and mentioned that Random 

Search was more or less how the neural networks were configured and tuned for this 

project. While this still holds, what it means in practice is having eight servers running 

24/7 for weeks trying to find something that might work. Not only is it a challenge to 

manage all of these servers to begin with, but keeping track of parameters that may work, 

what to explore and so on, is in itself a struggle. Juggling all of the results, configurations 

and different models have similarly posed a major challenge, and many experiments had 

to be run several times simply because result got lost.  

Finally, training neural nets with the chosen frameworks in a distributed environment 

like Apache Spark was also proven a lot more difficult than expected. Partially because 

of the immaturity of the deeplearning4j framework, and a lack of knowledge in distributed 

computing. Spark is not always as straightforward as one might seem. 

Although the technical challenges faced over the course of this project were numerous, 

and to a certain extent crippled the deep learning aspects of the thesis, the lessons learned 

are invaluable. 
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7.2 CONCLUDING REMARKS 
After having gained considerable insight about the field, both theoretically, and 

experimentally, it is time to address the research questions and emphasize the key 

findings of this thesis. The answers in this section are meant to serve as a concise and to-

the-point summary, complementing the extensiveness of the preceding chapters. 

RQ1 How does deep learning compare to traditional machine learning techniques in 
news categorization in terms of classification quality? 

 While there are no doubts about the potential of deep learning, this study’s neural 

techniques did not manage to significantly surpass simple traditional methods like 

Naïve Bayes in terms of classification quality. In fact, the classification quality of 

the best performing methods from either domain was more or less 

indistinguishable on the macro level.  

However, the reason for these results is believed to be related to a combination of 

sub-optimal hyperparameter configurations and insufficient training on the part 

of the deep learning methods, rather than them being inferior methods for this 

task. 

Looking at the deep learning approaches in isolation, the LSTM – which is capable 

of modeling ordered input – performed marginally better than the FFN in terms 

of F-score (+3%). This finding is in sync with previous research emphasizing the 

importance of accounting for word order in text classification [104].  

Although some of the findings in this study are somewhat conflicting with the 

recent hype in deep learning, discussed in Section 2.5 and 3.3, the attempted 

approaches were not exhaustive. For this reason, conclusions based on these 

findings remain undecided, and are subject to further research.  

RQ2 How does word embeddings compare to a bag-of-word approach in news 
categorization? 

 For this thesis, using word embedded feature construction through utilization of 

a pre-trained Word2Vec, was shown to be comparable to bag-of-words regarding 

classification quality. Subsequently, for all of the deep learning-based classifiers 

used, Word2Vec gave superior results over bag-of-words in all cases. This supports 

the claim made by [17], discussed in Section 3.3, that pre-trained Word2Vec 

models are good universal feature extractors. 

In addition, the study provides evidence showing that creating normalized 

document vectors by first performing scalar multiplication with TF-IDF weights, 

followed by adding the vectors together, yields little to no loss in classification 

quality compared to representing features as a chain of ordered word vectors.  

Furthermore, the models using the accumulated document vectors were also, in 

general, the fastest models to train – both because the document vectors could be 
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pre-computed and because the dimensionality of the document vectors generally 

is significantly lower than the corresponding bag-of-word vectors. 

RQ3 How does the number of annotations and article lengths affect the accuracy of 
news categorization? 

 The conducted experiments showed that the macro-averaged F-score increased 

proportionally with the article length up to around 600 words (≈ 14 annotations), 

at which point the F-score stabilized.  

On a categorical level, this limit is less clear. Some categories, like sport and 

economics & finance, performed very well even at lengths below 136 words (≈ 3 

annotations). 

Although 600 words is not a golden number for all categories, there is a consensus 

that there is an upper limit at which point the F-score does no longer increase. 

RQ4 How does moving through time affect news categorization performance, and what 
is the relevance of up-to-date training data? 

 For this thesis, moving through time was shown to slightly degrade the 

classification quality, even though the number of annotations increased with time. 

The article length did not change significantly, thus promoting the idea that 

extracting annotations from older news articles is less trivial than recent ones. 

As the F-score decreased even with the increase of annotations, the impact of 

moving through time is assumed to be greater than what is observed in the 

conducted experiments.  

Like with the article length experiment, the categorical breakdown of the results 

shows that categories are impacted with varying degrees of significance when 

moving through time. Some categories, like sport (-2%) and politics (-1%), remain 

nearly unaffected even on test data ten years in the future, whereas conflicts, war 

and peace (-21%) and environment (-16%) are affected the most. 

RQ5 How does incorporating ontologically related supertypes affect the quality of 
news categorization? 

 The conducted experiments show no evidence to promote the hypothesis that 

incorporating ontologically related supertypes into the classification process has 

any positive effects on classification performance. In fact, incorporating supertypes 

in several cases reduced performance, both in terms of classification quality and 

computational demands, as it expanded the feature space without providing any 

new information.  

Thus, the observations made further support the claims discussed in Section 3.2 

and [3], stating that adding ontologically related synsets has little to no effect 

when classifying textual content. 
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RQ6 How does noun-based feature extraction of ontological data promote language 
agnostic news classification? 

 Language independence has been the underlying theme throughout the entire 

project, and the experiments and the proposed preprocessing pipeline points in 

favor for a noun-based approach based on extracted ontological annotations.  

The study shows that it is possible, only by using noun-based language-

independent DBpedia/Wikidata entities and top-level IPTC Media Topics 

categories, to classify certain categories covering topics like sports, economics, and 

arts & entertainment with high accuracy. These findings further support the 

conclusions made in [96] and discussed in Section 3.2, that using ontologically 

extracted entities forms a robust basis for feature construction. 

Although the quality of the classification is quite inconsistent between categories, 

the study provides evidence that this is a property of the dataset itself, and not 

the proposed methods. It is therefore assumed that the inconsistencies could be 

evened out through a more carefully tuned feature construction process. For 

instance, by better promoting the statistical significance of key entities, or by 

reducing the imbalance between categories. 

RQ7 What are the important limitations or challenges of deep learning in news 
categorization, and under what circumstances are the additional complexities of 
deep learning justified? 

 Regarding computational requirements, the deep learning methods, especially 

LSTM, generally require a lot more resources compared to traditional methods 

like Naïve Bayes. This is both in terms of CPU cycles and memory, but also in 

training time. For this thesis, the increase in training time was sometimes several 

orders of magnitude – from the 30 minutes with Naïve Bayes, to several days with 

an LSTM. Subsequently, prediction time was found to increase proportionally 

with the complexity of the network topology. In addition, deep learning methods 

are proven extremely hard to train beyond the limits of a linear classifier. 

Furthermore, tuning hyperparameters and figuring out a suitable topology is an 

equally time-consuming, and error-prone process. 

While not dismissing the potential in deep learning for the news article domain, 

general takeaway from the experiences gained throughout this study is: (i) One 

should not underestimate the power of traditional methods and that (ii) deep 

learning should only be a consideration if the simpler approaches do not meet the 

requirements, and if project has sufficient time and resources to survive probable 

failures, with no immediate guarantee for success.  
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7.3 FURTHER WORK 
The core motivational driver behind this project was to facilitate the automation of 

reliable and language-independent news classification. While the findings made 

throughout this project are significant, the field of language agnostic multi-label news 

classification remains largely unexplored. As a consequence, the number of possible 

extensions for this research is plentiful, to say the least. This final section of the report 

is therefore dedicated to a brief summary of the most natural courses of continuation. 

IMPROVE NEURAL TOPOLOGY AND HYPERPARAMETERS 

Perhaps the most obvious extension of this project is simply to try out and examine more 

configurations and topologies. Although this project did not succeed in significantly 

surpassing traditional methods, it is still believed that the hyperparameters and neural 

topologies could be improved to achieve higher classification quality. 

In addition, it would also be fascinating to see how a convolutional network would 

perform on the same classification task tackled throughout these experiments. 

MULTILINGUALISM IN PRACTICE AND STANDARDIZED DATASETS 

Although the theme for this thesis has been multilingualism, the reference language 

actually used has been limited to English. However, the proposed system should in theory 

work for other languages, given that the DBpedia/Wikidata annotations can be 

extracted, and that labeled datasets exist.  

Exploring other languages in practice, would both be providing a new perspective on the 

news article classification problem, and significantly broaden the areas of application for 

the framework itself. This could also be extended to explore cultural differences in both 

news articles and text in general.  

Furthermore, it would also be very useful for the research context to redo the experiments 

with a more frequently used dataset, like the Reuter datasets mentioned in Section 3.4.2. 

Not only would this offer a fresh viewpoint, but it would also make it a lot easier to 

evaluate the results in general. 

COMBINE, MULTIPLY AND CONQUER  

The experiments show that one of the strongest selling points for the well-performing 

categories is that they have a huge number of distinct annotations, while still maintaining 

a high term-frequency throughout the corpus [Figure 6-7]. Or put another way, too many 

unique annotations, leads to a reduction in statistical significance. One possible way to 

accumulate and utilize this otherwise lost information, could be to combine or cluster 

these terms – possibly by joining them with their corresponding ontological supertypes.  

Another property of the well-performing categories is that they normally inherit less 

imbalance between true positives and true negatives. It is reasonable to believe that the 
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inferior performance of certain categories could be improved by balancing these 

differences, possibly by sub- or super-sampling of the dataset.  

Integrating and experiment with the above strategies are natural succeeding steps in the 

search for higher classification quality.    

INCORPORATING CORRELATIONAL DEPENDENCIES 

Every approach carried out in this project has ignored correlations between categories. 

However, as shown in Table 4-5 it is clear that there is quite a bit of leverage to be 

utilized by exploiting correlational dependencies. For instance, the table indicates that 

the probability of an article being economy given that it got tagged disaster, is as much 

as 56 %. Creating a classification system that could account for this information certainly 

has the potential to improve classification quality. 
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