
 Chapter 4. Model Applied for Simulation of Oil Spill Response Time

31

4.6 Determining a Feasible Response
The fastest feasible response plan is determined for each vessel of the fleet by running

through the decision tree shown in figure 6.

Figure 6: Decision Tree – Deciding a Feasible Response Action for Each Vessel

The model reviews the achieved response times for all vessels, and the solution that provides

the shortest response time is chosen.

 Chapter 4. Model Applied for Simulation of Oil Spill Response Time

32

The solution is then evaluated in terms of how the response will be carried out; Will the

vessel sail directly to the emergency site, or does it require supplies from port first?

Alternatively, does the chosen vessel require fuel support from another vessel in the fleet, and

if so, which vessel is set to this task?

When the nature of the response is determined, the chosen solution is plotted, showing the

vessels included in the response and their respective route. This is illustrated in figure 7.

Figure 7: Plotted Solution Example

In this particular example, the solution includes the use of a second vessel as fuel support,

which first sails to port and refuels before coming to the aid of the chosen vessel. This

vessel’s current position is shown by the green circle, and its route by the green lines. The

chosen response vessel sails directly to the oil spill area and starts containing the oil spill,

shown by the red markers. The third vessel, shown by the black cross, does not have any

particular assignment in the initial response.

 Chapter 5. Case Study: Response Times for a Varying Number of NOFO-Equipped Vessels

33

Chapter 5

Case Study: Response Times for a Varying Number of NOFO-Equipped

Vessels
During drilling operations, it is paramount to establish some response apparatus that can react

to any hazardous contingencies within a reasonable amount of time, in our case, oil spills.

This is commonly solved by having a dedicated standby vessel positioned close to the

platform, which is tasked with emergency response and monitoring the safety zone around

the rig for potential leaks.

The drawback is that chartering such a vessel is costly, and it could be economically

beneficial to eliminate the need for this extra vessel by establishing a sufficient emergency

preparedness system through other means. Thus, we want to investigate what oil spill

response time can be achieved through alternative solutions.

In order to combat oil spill, one need to have specialized equipment onboard the vessel,

following standards set by NOFO. In this case study we look into the option of installing such

equipment onboard the supply vessels utilized in the daily operation. However, oil spill

response equipment requires a certain deck area when permanently installed on a vessel.

Thus, for the logistical aspect of marine operations, it is preferable to have the oil spill

equipment stored onshore and retrieve it in case of an oil spill, so that the full deck area can

be utilized for transporting cargo in the daily operations. Although, in terms of safety it

would be ideal to have every vessel equipped with oil spill response gear readily available

onboard. Consequently, we have a trade-off between two aspects of the operation which

forms the basis of this case study, where we seek to determine how the fleet response time

changes by the number of vessels carrying oil spill response equipment onboard.

 Chapter 5. Case Study: Response Times for a Varying Number of NOFO-Equipped Vessels

34

We can study this by using the developed model to simulate the oil spill response time of the

fleet, and develop a statistically expected response by running a large number of simulations.

Furthermore, the simulations can be repeated for several cases, where the number of vessels

carrying emergency response equipment can be varied for each case. This allows us to

determine how the response time can be expected to change depending on the number of

vessels with emergency equipment onboard, which serves as important input when deciding

how many vessels are necessary to equip with oil spill response equipment in order to fulfill

any safety demands. In short, we seek to equip as few vessels as possible, while still meeting

the safety requirements, so that as much deck area as possible of the fleet can be utilized for

cargo transport.

We assume a homogenous fleet of three platform supply vessels, with characteristics as

defined in Appendix C: Input Data Sheet, and run simulations for the four cases as described

in table 15, using the model as given in Appendix D: Case Study Simulation Model.

Table 15: The Four Cases Simulated

Case Number Description

Case 1 All three vessels have NOFO-equipment

permanently installed onboard

Case 2 Two vessels have NOFO-equipment permanently

installed onboard

Case 3 Only one vessel has NOFO-equipment permanently

installed onboard

Case 4 NOFO-equipment is not installed on any of the

vessels, and must be retrieved from port in case of an

oil spill

For each case we perform ten thousand simulations and register the minimum response time

for each simulated scenario. We then plot the number of occurrences of the registered

response times, and also the probability that the response time is below a certain threshold.

Lastly, the mean response time is calculated for each case.

 Chapter 5. Case Study: Response Times for a Varying Number of NOFO-Equipped Vessels

35

5.1 Stochastic Input Data
In this case study we utilize the model as described in chapter 4: Model Applied for

Simulation of Oil Spill Response Time, with some minor changes in order to run the model

for many repeated simulations. Besides adding a loop to perform the desired number of

simulations, the only changes done is that some input data is defined as stochastic rather than

deterministic, and thus vary randomly within a given interval. This is due to the fact that we

try to simulate many scenarios, where certain parameters will vary between each simulation

run, and we do not have deterministic data for all ten thousand scenarios available. However,

we know within what range these variables can be assumed to be, and thus allow the

variables to be chosen within said interval. As an example, it would be strange to assume

that all vessels are in the exact same location every time an oil spill occurs, as they travel

back and forth between the port and platform. Yet, it is reasonable to assume that the vessels

are located somewhere along this route.

The stochastic variables are given in table 16, and how they are defined in the model is

presented in the following sub-chapters.

Table 16: Stochastic Input Data

Stochastic Input

Current Fuel Level

Operational Status

Cargo Status

Vessel Location

Metocean Data (Date)

 Chapter 5. Case Study: Response Times for a Varying Number of NOFO-Equipped Vessels

36

5.1.1 Current Fuel Level

The day-to-day fuel level of a vessel is assumed to be uniformly distributed between 50 and

300 [tonne], based on information provided by MARINTEK.

5.1.2 Operational Status

In chapter 4.1.4.2 Operational Status we defined the operational status variable as an integer,

where the numerical value represented the current operational status of the vessel, as

described in table 17 below. The operational status of each vessel is chosen randomly

between the different options provided, based on the assumed probability of occurrence of

each option in table 17. It is assumed a 2 % probability of being unable to abort the current

operation, and consequently be unable to respond to the oil spill emergency. Furthermore, it

is assumed an equal probability of whether the vessel is sailing towards - or returning from

the platform. However, the case of port navigation cannot be chosen randomly as the other

instances, as this is dependent on vessel location. As an example, it would not make sense to

set the operational status as port navigation if the vessel is sailing in open sea in no close

proximity to the port. This is accounted for by setting the operational status variable as port

navigation if the latitude of the vessel is within 0.05 decimal degrees of the port location.

Table 17: Choosing the Operational Status Variable

Variable Value Definition Probability/Criteria of Being

Chosen

0 Unable to respond 2 %

1 Port navigation Within a 0.05 decimal degree

proximity of the port

2 Sailing towards offshore installation 49 %

3 Returning from offshore installation 49 %

 Chapter 5. Case Study: Response Times for a Varying Number of NOFO-Equipped Vessels

37

5.1.3 Cargo Status

The cargo status was defined as a binary variable declaring whether the current cargo

interfered with the vessels ability to respond to an oil spill emergency or not. It is assumed

that having cargo that takes priority over, or interferes with, the emergency response, is a

very rare event, and is thus modeled with a probability of one in a thousand. This is

implemented by choosing a random number in the interval 1 to 1000. If the number is 1, then

the cargo status variable is set to 0, meaning the vessel is unable to respond to the oil spill

emergency. However, if the random number drawn is any other number in the given interval,

the variable is set to 1, and the vessel is eligible for emergency response.

5.1.4 Location

The route from port to oil spill is divided into three sailing legs, in order to be able to assign

random vessel positions that more accurately follow a realistic route. This is done by dividing

the latitudes and longitudes of the voyage into three areas, defined by the three thirds

constituting the total coordinate range of the voyage, illustrated in figure 8. In other words,

the area closest to the port will have a defined range where the lower limit is the coordinates

of the port, and the upper limit is one third of the distance to the oil spill in both latitudinal

and longitudinal direction, and so on. We would like to remind the reader that the platform

location is used for the assumed location of the oil spill, which is why the vessel route is

given between the oil spill and the port.

Figure 8: The Sailing Route Divided into Three Rectangular Areas Where the Vessels Are Assumed to Operate

 Chapter 5. Case Study: Response Times for a Varying Number of NOFO-Equipped Vessels

38

By dividing the sailing route into these three areas, we limit the options of which the vessel

positions can be defined to a more representative route.

If we had simply allowed the coordinates of the vessel to be randomly generated within the

range of the coordinates of the port and oil spill, the model would be exposed to scenarios

where the location of the vessels could be in places far off the real route, or even on land, as

shown by the red markers in figure 9.

Figure 9: The Sailing Route Defined by Only One Rectangular Area

In the model, the latitude of the vessel is chosen randomly between the port and the oil spill,

and further checked to see within which of the three defined areas of figure 8 it is located.

This area, determined by the given latitude, will further define the upper and lower limit of

the longitude, which is then chosen randomly within the defined range.

It has not been prioritized to put an extensive amount of work into representing more realistic

sailing patterns, as this will be provided by MARINTEK’s model for future simulations.

 Chapter 5. Case Study: Response Times for a Varying Number of NOFO-Equipped Vessels

39

5.1.5 Metocean Data

We assume that there are no seasonal limitations, so that the vessels are in operation the

entire year. The date for which the emergency can occur is thus picked at random from a

uniformly distributed set of months ranging from 1 – 12 and days ranging from 1 – 28/30/31.

We have not included leap years, as this doesn’t affect the weather conditions in any other

way than normal day to day variations, and provides limited contribution to the data set as a

whole. The reason that we still choose to differentiate between months is due to the fact that

not doing so would limit each month to 28 days, as a higher number of days per month would

potentially lead to an invalid data set for February. This would consequently result in the

exclusion of a lot of weather data, and the validity of the model output would suffer.

 Chapter 5. Case Study: Response Times for a Varying Number of NOFO-Equipped Vessels

40

5.2 Results of the Case Study for a Varying Number of NOFO-Equipped Vessels
As mentioned in the introduction of the case study, we run ten thousand simulations for each

of the following four cases:

 Case 1: All three vessels are installed with NOFO-equipment

 Case 2: Two vessels are installed with NOFO-equipment

 Case 3: Only one vessel is installed with NOFO-equipment

 Case 4: No vessels are installed with NOFO-equipment

For each case we register the minimum feasible response time for all ten thousand

simulations. We then use these values to create a probability density plot and a probability

plot. As to easier distinguish between the two plots in the text, we will refer to the probability

density plot as the density plot.

The density plot indicates the relative probability of the various response times, given in 0.5

hour intervals. This is determined by the frequency a given response time occurs throughout

all the simulations.

The probability plot shows the cumulative probability with increasing response time. This

allows us to determine the probability that the response time will be below a given amount of

hours, and thus estimate the upper bound with high certainty.

As a matter of good scientific practice, a significance level is chosen for the data collection. If

within the significance level, one may include that the observed results are representative for

the study, and is not caused by an error or unrealistic conditions. The probability plots are

presented with a 1 % significance level in the figures, but also a 5 % significance level will

be commented. In the density plot, all measured response times are included.

Lastly, the mean response time is calculated for each of the cases and summarized in table 19

at the end of this chapter.

 Chapter 5. Case Study: Response Times for a Varying Number of NOFO-Equipped Vessels

41

5.2.1 Three Vessels Installed with NOFO-Equipment

For the first case, all vessels of the fleet have oil spill response equipment permanently

installed. This will provide the fastest response, and is ideal in terms of safety. In figure 10

the density plot is presented, illustrating the relative rate of occurrence of the different

response times.

Figure 10: Density Plot of the Response Times - Three Vessels Equipped

During the ten thousand simulations runs, response times were registered in the span from

<0.5 to about 14.5 hours. Sixty percent of the response times are measured within the first

four hours, and gradually decline as the number of hours increases. There are no extreme

isolated measurements taking place way above the main bulk of registered times, as all three

vessels are properly equipped for combating oil spill, providing each simulated scenario with

at least one decent feasible solution. This is further witnessed in the probability plot in figure

11.

 Chapter 5. Case Study: Response Times for a Varying Number of NOFO-Equipped Vessels

42

Figure 11: Probability Plot of the Response Times - Three Vessels Equipped (0.01 Significance Level)

Figure 11 shows that the response time has a 0.99 probability of being below 13 hours and a

0.95 probability of being less than 10 hours. A 0.99 probability of being below 13 hours is

close to the maximum response time measured across all simulations, telling us that the worst

case scenario of about 14.5 hours does not deviate much from the maximum response within

the 1 % significance level. This cannot, however, be said to hold true for the second fleet

composition evaluated.

 Chapter 5. Case Study: Response Times for a Varying Number of NOFO-Equipped Vessels

43

5.2.2 Two Vessels Installed with NOFO-Equipment

In the second case, the NOFO-equipment is removed from one of the vessels while

maintained on the remaining two. This allows for more cargo to be transported on each trip,

but will weaken the safety function of the fleet. This is shown in figure 12, where the density

plot reveals some extreme incidents with registered response times up to 34 hours.

Figure 12: Density Plot of the Response Times - Two Vessels Equipped

The majority of the results are still centered around the first few hours, and gradually

declining until roughly 15 hours. However, past this point we now witness some scenarios

deviating from the norm, with a measured response in the range of 16 to 34 hours. On the

other hand, the probability plot in figure 13 reveals that these results are not included within a

1 % significance level, and are thus rejected as statistically representative of the expected

response time of the fleet.

 Chapter 5. Case Study: Response Times for a Varying Number of NOFO-Equipped Vessels

44

Figure 13: Probability Plot of the Response Times - Two Vessels Equipped (0.01 Significance Level)

This is a perfect example of why we choose to look at the probability plot for a certain

significance level. In this case we have measured some single incidents where the response

time was as high as 34 hours. However, the probability plot in figure 13 shows that the

response times in the 95th and 99th percentile will be no more than 12 and 14 hours,

respectively. Hence, any incidents where the response takes longer than e.g. 14 hours can be

thought of as isolated incidents that do not properly reflect the viability of the preparedness

system. This is due to how some input data is drawn randomly from within a specified

interval, which allows the worst case scenario of every parameter to potentially coincide. E.g.

all vessels are positioned by the platform, and all are low on fuel. Such incidents are highly

unlikely to occur in real life operations, and gives a poor representation of system

performance. The feasibility of the emergency preparedness should therefore be validated

based on a 1 % or 5 % significance level, as this better represents what one likely can expect

as an upper bound when equipping two vessels with NOFO-equipment.

 Chapter 5. Case Study: Response Times for a Varying Number of NOFO-Equipped Vessels

45

5.2.3 One Vessel Installed with NOFO-Equipment

In the third case we witness that the distribution of response times deviates from the previous

reclining-slope, as seen in figure 14.

Figure 14: Density Plot of the Response Times - One Vessel Equipped

Most results are still in the interval from 0.5 to 15 hours, but more evenly distributed within

this range. Additionally, the occurrence of measurements from 16 to 34 hours is more

frequent than in the previous case. Furthermore, in figure 15, the 99th percentile now includes

response times up to about 23 hours. However, there is still a 0.95 probability for the

response time to be less than 15 hours.

 Chapter 5. Case Study: Response Times for a Varying Number of NOFO-Equipped Vessels

46

Figure 15: Probability Plot of the Response Times - One Vessel Equipped (0.01 Significance Level)

There can be witnessed a small gap in the graph from 16 to a little over 17 hours. This is

where the feasible solution shifts from direct response to requiring a stop in port. This gap

occurs naturally as the upper bound of direct response times does not overlap with the lower

bound of the response by port. A high direct response time would suggest that the vessel is

located close to port and must sail the full length of the route in order to arrive at the oil spill

site. Sailing this distance can take up to 16 hours depending on the weather, while from figure

17 in the next case we can see that a response by port is expected to require about 17 hours as

a minimum. This is logical because for both the maximum direct response and the minimum

response by port, the vessels will sail roughly the same distance. However, the latter also

requires additional time in port in order to load the NOFO-equipment onto the vessel.

 Chapter 5. Case Study: Response Times for a Varying Number of NOFO-Equipped Vessels

47

5.2.4 No Vessels Installed with NOFO-Equipment

For the final case, no vessels have oil response equipment installed onboard. Consequently,

the vessels always have to stop in port and retrieve the necessary equipment before sailing to

the oil spill and initiate oil recovery operations. This causes a jump in the lower end of the

registered response times, which in figure 16 are now shown to be in the range of 16.5 to 33

hours.

Figure 16: Density Plot of the Response Times - No Vessels Equipped

We see that the density plot has returned to the usual shape, yet stabilized at a much higher

number than previously. As all vessels must retrieve NOFO-equipment from port, we no

longer have the fluctuation in response times caused by often being able to provide direct

response, yet regularly having to first stop by the port. As for the previous cases, the

maximum response time is determined from the corresponding probability plot, here given in

figure 17.

 Chapter 5. Case Study: Response Times for a Varying Number of NOFO-Equipped Vessels

48

Figure 17: Probability Plot of the Response Times - No Vessels Equipped (0.01 Significance Level)

For 99 % of the simulations run, the response time is found to not exceed 30 hours, and for

95 % the simulated response time would be no more than 28 hours.

In order to prove that we can achieve a satisfactory response function through our solution,

we need to determine both the expected performance and an upper boundary, which with a

high certainty can be guaranteed to not be surpassed. These results are summarized in the two

tables below for all four investigated cases, where table 18 presents the maximum response

time for a 1 % and 5 % significance level, respectively, and table 19 presents the mean

response time found for each evaluated case.

Table 18: Maximum Response Time Within a 1 % and 5 % Significance Level

Number of Vessels with NOFO-

Equipment Available Onboard

Maximum Response Time

(1 % Significance Level)

[hours]

Maximum Response Time

 (5 % Significance Level)

[hours]

3 12.2 9.7

2 14.0 12.0

1 22.5 14.5

0 30.0 27.7

 Chapter 5. Case Study: Response Times for a Varying Number of NOFO-Equipped Vessels

49

The maximum response time does not change drastically in the first three cases for the 5 %

significance level, but rather increases with about two and a half hours for each NOFO-

equipment uninstalled. However, the maximum response time takes a big jump already

between the second and third case when evaluating based on a 1 % significance level. This is

due to a more frequent occurrence of response times in the higher end of the spectrum for the

third case, which is not included in the 0.95 interval. The impact of these high measurements

are also reflected to some degree in the mean response time in table 19, which increases by

nearly three hours by the removal of the second set of NOFO-equipment.

Table 19: Mean Response Time for the Four Cases Simulated

Number of Vessels with NOFO-Equipment

Available Onboard

Mean Response Time

[hours]

3 4.0

2 5.2

1 8.1

0 21.8

The mean response time only increases by little over an hour from the first to the second case,

as both these two cases almost exclusively utilized direct response. As mentioned, from the

second to the third case the mean response time increases by nearly three hours, as there was

a higher occurrence of responses traveling by port, but more importantly, because only one

vessel was equipped with proper gear. Sailing to the oil spill directly will always provide the

fastest response, so this single vessel was always chosen if possible, but compared to the

previous two cases who can rely on several vessels, this vessel would naturally be more often

located at unfavorable positions. For the last case, we witness a big increase in the mean

response time. This was expected, as all solutions now require the vessel to first make a stop

in port to retrieve the NOFO-equipment.

 Chapter 5. Case Study: Response Times for a Varying Number of NOFO-Equipped Vessels

50

5.3 Conclusion of the Case Study

All in all, this case study was meant to illustrate how the developed simulation model can be

utilized to evaluate different fleet compositions with regards to response time and help aid in

the decision making when determining the fleet specifications with regards to both

emergency preparedness and logistics planning. It is shown that the model can help simulate

the expected response time of a fleet, which can further be used to determine whether the

fleet provides a satisfactory emergency preparedness function against acute oil spills.

 Chapter 6. Discussion

51

Chapter 6

Discussion
The case study proved that the simulation model is able to provide the desired results, and so

the focus of this chapter will be on discussing the validity and versatility of the developed

model.

The validity of the simulation output is affected by both the uncertainty of the input data, as

well as simplifications and assumptions made in order to represent the real world operations.

We cannot 100 % replicate the real world processes. However, we seek to develop a model

that is representable for real world behavior, and can provide results that resembles the

reality. By producing a model that is representable of the real world, we can analyze and

make valid predictions regarding the feasibility of a theoretical solution. Accordingly, the

simplifications and assumptions made are necessary in order to be able to describe the real

world operations through a simulation model.

With that being said, the greatest source of uncertainty in this thesis is related to the

representation of input data in the case study. It was witnessed in the case study that when

allowing input data to be randomly drawn within a specified interval, one run the risk of

having many unfavorable conditions coincide, resulting in extreme measurements that are

very unlikely to occur in real life operations. This was dealt with by neglecting any results

that are deemed not statistically significant. However, errors related to the representation of

input data will not be a problem in the real project, as input will be provided from

MARINTEK. When the daily operation model from MARINTEK is up and running, we will

for example be able to produce more realistic sailing patterns, so that the vessel location is

better represented based on actual sailing schedule. Furthermore, critical conditions, such as

conflicting cargo, lack of fuel etc., will no longer occur for the majority of the vessels within

the same simulated scenario.

Regarding the processing of data in the model, and the simplifications and assumptions made

in the modeling process, there are a few aspects that can be commented on. First off, if a

vessel is not eligible for combatting the oil spill, because it cannot abort its current operation,

it was said in chapter 4.1.4 Fleet Status to be simply deemed as a non-feasible solution, and

taken out of the evaluation. It was not checked for how long it is tied up with its current

operation, and the vessel could in theory finish the operation and still be ready to tackle the

 Chapter 6. Discussion

52

oil spill before any other vessel arrives. However, it was assumed that the oil spill would

almost always be prioritized over other operations.

Another weakness in the current model is that there are set no operational limitations based

on environmental conditions. In reality, harsh weather conditions may affect the vessels

ability to perform oil spill response operations, refueling at sea, or even sail. If, for example,

the wave height exceeds a certain threshold, some operations may no longer be feasible, and

the vessel might even have to wait for appropriate weather conditions before being able to

respond to the emergency.

Lastly, we would like to comment on the second fuel criteria, where the possibility of

utilizing a second vessel as fuel support is evaluated. In this scenario, the model does not

allow for the fuel supporting vessel to sail directly to the oil spill site to refuel the responding

vessel, but is forced to first refuel in port. This may cause the loss of some feasible solutions

where the responding vessel is dependent on receiving fuel support within a short period of

time. Although, in these scenarios, the fuel support vessel is likely to have enough fuel to

take over the role as the responding vessel, given that the necessary emergency equipment is

installed.

In terms of versatility, the model is applicable for several types of emergency response

operations, such as fire accidents and other rescue operations. The simulation model may

require some minor adjustments based on the specifics regarding the scenario at hand.

However, the same principles and argumentation are still valid: do we have the necessary

equipment onboard, is the current fuel level sufficient for conducting the operation at hand,

and so on. Subsequently, the minimum response time can be calculated based on sailing time

and feasibility of the vessels.

 Chapter 7. Conclusion and Further Work

53

Chapter 7

Conclusion and Further Work

7.1 Conclusion
Arctic operation is a trending topic, and the current amount of experience related to marine

operations in this area is somewhat limited. Simulation may be a valuable tool when planning

offshore operations in the Arctic, as one can develop a simplified model to perform test-runs

for the real-life project, and support the decision-making of important parameters in the

project, as well as potentially cut the lifetime costs of the project. Thus, the development of

simulation models applicable for Arctic operations are valuable for the progression of both

simulation as a decision support tool, and the geographical expansion of the maritime

industry.

Regarding emergency preparedness, the developed simulation model may help prove that a

satisfactory response is achievable through other means than assigning an extra vessel to this

task. In particular, that through thorough fleet management and operational planning, one can

provide a safe and satisfactory oil spill preparedness function by utilizing the existing vessels

in the fleet for response. This could further reduce the lifetime costs of the project, as there

would no longer be need for a supplementary standby vessel tasked with emergency

response.

In the beginning of the thesis, the objective was formulated as follows.

The objective of this thesis is to develop a simulation model that can evaluate the expected

emergency response time of a given fleet composition, and thus serve as a decision support

tool for strategical fleet sizing and operational planning.

Through the case study, it was shown that the model is indeed capable of simulating the

expected emergency response time of a fleet, and is thus able to aid in the decision making

when determining the fleet specifications with regards to both emergency preparedness and

logistics planning.

 Chapter 7. Conclusion and Further Work

54

7.2 Further Work
Further development of this model will be in terms of establishing sufficient communication

and sharing of data across platforms with the model developed by MARINTEK. For an

external reader that wish to utilize this model, it is recommended to include some operational

limitations given by weather conditions, such as wave height, and also extend upon the

relation between weather conditions and their effect on sailing times.

 Reference List

55

Reference List

Aneichyk, T. (2009). Simulation Model for Strategical Fleet Sizing and Operational

Planning in Offshore Supply Vessels Operations. Molde University College. Retrieved

from http://brage.bibsys.no/xmlui/bitstream/handle/11250/153445/master_aneichyk.pdf

?sequence=1

Antonio. (2008). Function for faster data transfer Matlab <--> Excel. Retrieved from

MathWorks Community: http://www.mathworks.com/matlabcentral/fileexchange/

22365-function-for-faster-data-transfer-matlab-%3C-%3E-excel

Bowditch, N. (2002). The American Practical Navigator, An Epitome of Navigation.

Bethesda, MD: National Imagery and Mapping Agency.

Carson II, J. S. (2005). Introduction to modeling and simulation. Paper presented

at The 2005 Winter Simulation Conference, Orlando, FL.

Green, J. C. (1968). Modeling A Weather Environment. Paper submitted to

The 1968 Winter Simulation Conference, New York, NY. Retrieved from

http://www.informs-sim.org/wsc68papers/1968_0077.pdf

Klaussen, A. (2013). Oil Spill Response – The Norwegian Model. Presentation for INTSOK’s

Norway Days in Baku Conference, Azerbaijan. Retrieved from

http://www.intsok.com/content/download/20514/128695/version/1/file/NorLense+OSR+th

e+Norwegian+Model1Aktuell.pdf

Maisiuk, Y., & Gribkovskaia, I. (2014). Fleet Sizing for Offshore Supply Vessels with

Stochastic Sailing and Service Times. Procedia Computer Science, 31(0), 939-948.

doi: http://dx.doi.org/10.1016/j.procs.2014.05.346

NOFO. (2013). Effektiv og Robust Oljevernberedskap - Dimensjonert etter Operatørens

 Beredskapsplaner. Sandnes, Norway: Vikmedia AS.

NOFO. (2016). Principle Illustration of the Multi-Barrier System. Reprinted from NOFO,

retrieved May 25, 2016 from http://www.nofo.no/Plangrunnlag/Aksjonsmal-og-

miljomal/Strategier-og-metoder1/

 Reference List

56

Norconsult AS. (2010). Beredskap mot akutt oljeforurensning i nordområdene –

Status og forventet utvikling. Retrieved from

https://www.norskoljeoggass.no/PageFiles/6532/Beredskap%20mot%20akutt%20oljeforur

ensning%20i%20nordomr%C3%A5dene.pdf

Nordbø, H. (2013). Optimal configuration of supply logistics for remote oil and gas fields.

Norwegian University of Science and Technology. Retrieved from

http://brage.bibsys.no/xmlui/handle/11250/238594

Norwegian Oil and Gas Association. (2013). Veiledning for miljørettede beredskapsanalyser

(4th ed.). Retrieved from https://www.norskoljeoggass.no/Global/2013%20Dokumenter

/Publikasjoner/Veiledning%20beredskapsanalyser%202013.pdf

Oceans System Simulation. (2015). Weather data set from Waveclimate.com is access

restricted, but was given in the course TMR4565 - Oceans System Simulation during the

fall semester at the Department of Marine Technology, NTNU.

Petroleum Safety Authority. (2005). Consent for permanent area emergency preparedness

Oseberg-Troll. Retrieved from http://www.psa.no/news/consent-for-permanent-area-

emergency-preparedness-oseberg-troll-article2347-878.html

SINTEF Materials and Chemistry. (2014). The OSCAR Model. Retrieved from

https://www.sintef.no/globalassets/upload/materialer_kjemi/faktaark/environment/oscar-

fact.pdf

Støwer, S. K. (2015). Simulating Ocean Engineering Systems. The Norwegian University of

Science and Technology.

Ulstein, M. (2014). A simulation-based decision support tool for arctic field logistics. The

Norwegian University of Science and Technology. Retrieved from

http://brage.bibsys.no/xmlui/handle/11250/238817

Westerberg, V. (2012). Arctic Oil Spill Response Recovery operations - Management and

Performance. KTH Royal Institute of Technology. Retrieved from http://www.diva-

portal.org/smash/record.jsf?pid=diva2%3A550494

 Appendix

Appendix

 Appendix

 Appendix A. The Simulation Model (MATLAB Script)

A

Appendix A: The Simulation Model (MATLAB Script)

A.1 Initialization
%Made by David Josefsen, spring 2016, for his master's thesis at the
%Norwegian University of Science and Technology, Department of Marine
%Technology

%% Initialization

%Clear out all data and figures for a clean run
clc
clear all
close all

%Read csv datafile of metocean data into a matrix
Weather = csvread('WeatherData.csv',0,0);

%Initializes the function xlsread1.m which keeps the excel sheet open
%throughout the simulation, instead of opening and closing excel each
%time a parameter is read. This caused tremendous saving in the program
%run time.

%Requires xlsread1.m in the same folder as this program

Excel = actxserver ('Excel.Application');
%NB!
%REMEMBER TO DEFINE THE PATH OF THE INPUT DATA FILE BELOW
File='C:\Users\David\Documents\NTNU\MASTER\MATLAB\INPUTDATA.xlsx';
if ~exist(File,'file')
 ExcelWorkbook = Excel.Workbooks.Add;
 ExcelWorkbook.SaveAs(File,1);
 ExcelWorkbook.Close(false);
end
Excel.Workbooks.Open(File);

 Appendix A. The Simulation Model (MATLAB Script)

A

 Appendix A. The Simulation Model (MATLAB Script)

A

A.2 Input Data
%% Input Data
%Choose the first row in the data set
InitializeRow = 3;
FirstRow = num2str(InitializeRow);

%Fleet Characteristics

%Vessel data that will serve as input
Counter = 1;
FleetRow = FirstRow;
while isempty(xlsread1('INPUTDATA.xlsx',1,['D',FleetRow])) == 0
Fleet(Counter) = xlsread1('INPUTDATA.xlsx',1,['D',FleetRow]);
Counter = Counter + 1;
FleetRow = str2num(FleetRow);
FleetRow = FleetRow + 1;
FleetRow = num2str(FleetRow);
end
EndRow = num2str(str2num(FleetRow) - 1);
%Number of Vessels
nVessels = length(Fleet);
%Max speed [knots]
SpeedMax = xlsread1('INPUTDATA.xlsx',1,['E',FirstRow,':','E',EndRow]);
%Service speed [knots]
SpeedService = xlsread1('INPUTDATA.xlsx',1,['F',FirstRow,':','F',EndRow]);
%Economical speed [knots]
SpeedEco = xlsread1('INPUTDATA.xlsx',1,['G',FirstRow,':','G',EndRow]);
%Fuel consumption in max speed (14.6 knop) [tonne/hour]
FuelConMax = xlsread1('INPUTDATA.xlsx',1,['H',FirstRow,':','H',EndRow])/24;
%Fuel consumption in service speed (12 knop) [tonne/hour]
FuelConService =

xlsread1('INPUTDATA.xlsx',1,['I',FirstRow,':','I',EndRow])/24;
%Fuel consumption in economical speed (10 knots) [tonne/hour]
FuelConEco = xlsread1('INPUTDATA.xlsx',1,['J',FirstRow,':','J',EndRow])/24;
%Fuel consumption in operation [tonne/hour]
FuelConOperation =

xlsread1('INPUTDATA.xlsx',1,['K',FirstRow,':','K',EndRow])/24;
%Fuel capacity of the fleet [tonne]
FuelCapacity = xlsread1('INPUTDATA.xlsx',1,['L',FirstRow,':','L',EndRow]);

%Fleet Status

%Current fuel level in [tonne]
FuelLev = xlsread1('INPUTDATA.xlsx',1,['M',FirstRow,':','M',EndRow]);

%Operational status
%0 = unable to abort current operation, 1 = in port, 2 = in
%transit going towards platform (or at platform), 3 = return trip
OpStatus = xlsread1('INPUTDATA.xlsx',1,['N',FirstRow,':','N',EndRow]);

%Cargo status
%Does delivery of cargo take priority or conflict with response?
%0 = unable to do oil spill, 1 able to.
CargoStatus = xlsread1('INPUTDATA.xlsx',1,['O',FirstRow,':','O',EndRow]);

%Emergency Equipment Status (0 if unequipped, 1 if equipment is available)
EmergencyEquipment =

xlsread1('INPUTDATA.xlsx',1,['P',FirstRow,':','P',EndRow]);

 Appendix A. The Simulation Model (MATLAB Script)

A

%Locations in latitudes and longitudes
%Location of vessels
Latitude = xlsread1('INPUTDATA.xlsx',1,['Q',FirstRow,':','Q',EndRow]);
Longitude = xlsread1('INPUTDATA.xlsx',1,['R',FirstRow,':','R',EndRow]);
%Location of port
LocationPort = [xlsread1('INPUTDATA.xlsx',1,['S',FirstRow]),

xlsread1('INPUTDATA.xlsx',1,['T',FirstRow])];
%Location of oil spill
LocationOilSpill = [xlsread1('INPUTDATA.xlsx',1,['U',FirstRow]),

xlsread1('INPUTDATA.xlsx',1,['V',FirstRow])];

%Refueling rate of the port [tonne/hour]
RefuelingRatePort = xlsread1('INPUTDATA.xlsx',1,['W',FirstRow]);
%Delay caused by navigation in and out of port [hours]
DelayNavigationPort = 2;

% Metocean data

%Read month and day, used for reading the appropriate weather data
Month = xlsread1('INPUTDATA.xlsx',1,['B',FirstRow,]);
Day = xlsread1('INPUTDATA.xlsx',1,['C',FirstRow]);

%Initialize counter for the number of Hs read
HsNumber = 0;

%Read all significant wave heights for the appropriate month and day in the
%time period 1992-2012 (3 hours interval)
for i = 1:size(Weather,1)
 %Can also define for the given time of the day
 if (Weather(i,2) == Month) && (Weather(i,3) == Day)
 %Note the number of Hs read
 HsNumber = HsNumber + 1;
 %Read the Hs from the weather data file
 Hsread(HsNumber) = abs(Weather(i,7));
 end
end

%Pick a random Hs from any of the same days from the 21 years of historical
%data
RandomDay = randi(HsNumber,1);

%If Hs is less than or equal to zero, then signal is either not read or
%misread, and another random day will be picked
while Hsread(RandomDay) <= 0
 RandomDay = randi(HsNumber,1);
end

%Set the appropriate significant wave height
Hs = Hsread(RandomDay);

 Appendix A. The Simulation Model (MATLAB Script)

A

A.3 Calculations
%% Get distance from mapping, calculate sailing time and fuel consumption

%Calculating the distances between vessels and oil spill, and vessels and

port (in nautical miles)
for i=1:nVessels
 LocationVessel = [Latitude(i), Longitude(i)];
 %Distance of the great circle route
 %Distance from vessel location to oil spill
 DistOilSpillGC(i) = distance('gc',LocationVessel,LocationOilSpill);
 %Distance from vessel location to port
 DistPortGC(i) = distance('gc',LocationVessel,LocationPort);
 %Distance from port to oil spill
 DistPortOilGC(i) = distance('gc',LocationPort,LocationOilSpill);
 %Rhumb line: DistRL(i) =

distance('rh',LocationVessel,LocationOilSpill);
 %Distance in nautical miles
 NMDistOilSpillGC(i) = deg2nm(DistOilSpillGC(i));
 NMDistPortGC(i) = deg2nm(DistPortGC(i));
 NMDistPortOilGC(i) = deg2nm(DistPortOilGC(i));

 %Calculate sailing time in hours (affected by Hs)
 %Sailing time to oil spill (max speed)
 SailingTimeOilSpill(i) = ((NMDistOilSpillGC(i)/SpeedMax(i))*1.02^Hs);
 %Sailing time to port (max speed)
 SailingTimePort(i) = ((NMDistPortGC(i)/SpeedMax(i))*1.02^Hs);
 %Sailing time from port to oil spill (max speed)
 SailingTimePortOil(i) = ((NMDistPortOilGC(i)/SpeedMax(i))*1.02^Hs);
 %Sailing time return trip from oil spill to port, in economical speed
 %after oil spill containment operation is complete
 SailingTimeReturn(i) =

((NMDistPortOilGC(i)/(SpeedEco(i)*0.5))*1.02^Hs);

 %Calculate fuel consumption for said trip
 %Weather affects sailing time, which again increases fuel consumption
 %Fuel consumption - Vessel location to oil spill
 FuelConsumptionSailToOilSpill(i) =

SailingTimeOilSpill(i)*FuelConMax(i);
 %Fuel consumption - Vessel location to port
 FuelConsumptionSailToPort(i) = SailingTimePort(i)*FuelConMax(i);
 %Fuel consumption - Port to oil spill
 FuelConsumptionPortToOilSpill(i) = SailingTimePortOil(i)*FuelConMax(i);
 %Fuel consumption - return trip in fuel save mode
 FuelConsumptionReturn(i) = SailingTimeReturn(i)*FuelConEco(i);

 %Time in oil spill operation [hours], very rough estimate
 TimeOperation = 10;

 %Time to refuel in port
 TimeRefuelPort(i) = ((FuelCapacity(i) - FuelLev(i) +

FuelConsumptionSailToPort(i))/RefuelingRatePort) + DelayNavigationPort;
end

 Appendix A. The Simulation Model (MATLAB Script)

A

%% Fuel Feasibility Criteria

%REFUEL AT OIL SPILL SITE
%Refuel at oil spill site, send other ship to pick up fuel
%Safety factor of 20 % included
RefuelPort = zeros(nVessels,nVessels);
for i=1:nVessels
 for j=1:nVessels
 if i ~= j
 %Fuel consumed while waiting for other vessel to arrive for

refueling
 %That is, fuel consumed while sailing out to oil spill, and
 %fuel consumed in operation at oil spill site while waiting for
 %the fuel support vessel to arrive
 RefuelPort(i,j) = FuelConsumptionSailToOilSpill(i) +

((SailingTimePort(j) + TimeRefuelPort(j) + SailingTimePortOil(j) -

SailingTimeOilSpill(i))*FuelConOperation(i));
 if RefuelPort(i,j)*1.2 <= FuelLev(i)
 Refuel(i,j) = j;
 else
 Refuel(i,j) = 0;
 end
 end
 end
end

%NO REFUELING
for i=1:nVessels
 FuelConsumptionResponse(i) = FuelConsumptionSailToOilSpill(i) +

FuelConsumptionReturn(i) + (TimeOperation*FuelConOperation(i));
 if FuelConsumptionResponse(i)*1.2 <= FuelLev(i)
 FuelCriteria(i) = 1;
 else
 FuelCriteria(i) = 0;
 end
end

 Appendix A. The Simulation Model (MATLAB Script)

A

A.4 Determining the Response
%% Decide how to respond to the emergency and which vessels to send

%This loop goes through a set of logical decisions and determines
%the fastest feasible response for each vessel
for i=1:nVessels
 %Feasibility of vessel (0 if not feasible)
 Vessels(i)=OpStatus(i)*CargoStatus(i)*Fleet(i);
 %Check if vessel is feasible for direct response
 if Vessels(i) > 0 && FuelCriteria(i) > 0 && EmergencyEquipment(i) ~= 0
 %If vessel is in port, add 4 hours delay
 if OpStatus(i) == 1
 Delay = 4;
 %If vessel is in transit towards platform
 elseif OpStatus(i) == 2
 Delay = 0;
 %if vessel is sailing return trip, add 0.2 h. Should also
 %contribute to fuel consumption?
 elseif OpStatus(i) == 3
 Delay = 0.2;
 end
 ResponseDirect(i) = SailingTimeOilSpill(i) + Delay
 ResponseRefuel(i) = 0;
 ResponseByPort(i) = 0;
 %If the ship's current fuel level is a limiting factor, then
 %check the option of being refueled by another ship while doing oil
 %spill operations
 elseif Vessels(i) >0 && max(Refuel(i,:)) >0 && EmergencyEquipment(i)~=0
 %If vessel is in port, add 4 hours delay
 if OpStatus(i) == 1
 Delay = 4;
 %If vessel is in transit towards platform
 elseif OpStatus(i) == 2
 Delay = 0;
 %if vessel is sailing return trip, add 0.2 h. Should also
 %contribute to fuel consumption?
 elseif OpStatus(i) == 3
 Delay = 0.2;
 end
 ResponseDirect(i) = 0;
 ResponseRefuel(i) = SailingTimeOilSpill(i) + Delay;
 ResponseByPort(i) = 0;
 %If the current fuel level is so low that the ship are both unable to
 %perform oil spill operations independently, and unable to wait for
 %another ship to refuel, then it must travel back to port and refuel.
 %This option is also chosen if the vessel does not have the
 %necessary equipment onboard to deal with the emergency, and must thus
 %pick this up at port.
 else
 %If vessel is in port, add 4 hours delay
 if OpStatus(i) == 1
 Delay = TimeRefuelPort(i);
 ResponseByPort(i) = SailingTimePortOil(i);
 %If vessel is in transit towards platform, turn around
 elseif OpStatus(i) == 2
 Delay = 0.2;

ResponseByPort(i) = SailingTimePort(i) + TimeRefuelPort(i) +

SailingTimePortOil(i);

 Appendix A. The Simulation Model (MATLAB Script)

A

%if vessel is sailing return trip
 elseif OpStatus(i) == 3
 Delay = 0;

ResponseByPort(i) = SailingTimePort(i) + TimeRefuelPort(i) +

SailingTimePortOil(i);
 end
 SailingTimeOilSpill(i) = ResponseByPort(i);

 ResponseDirect(i) = 0;
 ResponseRefuel(i) = 0;
 ResponseByPort(i) = SailingTimeOilSpill(i) + Delay;
 end
 ResponseTime(i) = SailingTimeOilSpill(i) + Delay;
end

%Choose the minimum response time of all vessels as the solution,
%and print to command window the time and vessel chosen

[MinResponseTime, ChosenVessel] = min(ResponseTime(:))

%Initialize variable
RefueledByVessel = 0;
RefuelsAtPort = 0;

%Checking if the solution includes refueling by other vessel, and if so,
%which vessel to set to this task
for i=1:nVessels
 if MinResponseTime == ResponseRefuel(i)
 %Initialize the response time matrix of the fuel support vessels
 MinFuelSupportResponse = zeros(1,nVessels);
 %Checking the response time for the fuel support vessels
 for j=1:nVessels
 if Refuel(i,j) > 0

MinFuelSupportResponse(j) = SailingTimePort(j) +

TimeRefuelPort(j) + SailingTimePortOil(j);
 end
 end
 %The vessel responding to the oil spill can not be chosen to act
 %as fuel support for itself, and is thus set with a response time
 %ten times that of the maximum response time for all fuel
 %supporting vessels
 for j=1:nVessels
 if MinFuelSupportResponse(j) == 0

MinFuelSupportResponse(j) =

max(MinFuelSupportResponse(:))*10;
 end
 end
 %The vessel that can arrive first with extra fuel is chosen

[MinFuelSupportResponseTime, FuelSupportVessel] =

min(MinFuelSupportResponse(:));
 RefueledByVessel = FuelSupportVessel

 elseif MinResponseTime == ResponseDirect(i)
 disp('No refueling needed')
 elseif MinResponseTime == ResponseByPort(i)
 disp('Refuels at port')
 RefuelsAtPort = 1;
 end
end

 Appendix A. The Simulation Model (MATLAB Script)

A

A.5 Plot the Solution
%Plot the chosen vessel and its route to the oil spill
figuremap = figure('color','w');
ha = axesm('mapproj','mercator','maplatlim',[70 78],'maplonlim',[50 90]);
axis off, gridm off, framem on;
mlabel on, plabel on;

%Loading coastline data
load coast
hg = geoshow(lat, long,'displaytype','line','color','b');
%Color land areas green
geoshow('landareas.shp', 'FaceColor', [0.15 0.5 0.15])

%Mark the locations of interest
for i=1:nVessels
 if i == ChosenVessel
 geoshow(Latitude(i),Longitude(i),'Marker','o','Color','red');
 %Label the location of the chosen vessel

textm(Latitude(ChosenVessel)-0.3,Longitude(ChosenVessel)-3,

'Chosen Vessel');
 elseif i == RefueledByVessel
 geoshow(Latitude(i),Longitude(i),'Marker','o','Color','green');
 %Label the location of the fuel support vessel
 textm(Latitude(i)-0.3,Longitude(i)-5, 'Fuel Support Vessel');
 %Plot the great circle route for the vessel chosen for fuel support

GreatCirc =

track2('gc',Latitude(FuelSupportVessel),Longitude(FuelSupportVesse

l),LocationPort(1),LocationPort(2));

geoshow(GreatCirc(:,1),GreatCirc(:,2),'DisplayType','line','Color'

,'green','linestyle','-');
 GreatCirc =

track2('gc',LocationPort(1),LocationPort(2),LocationOilSpill(1),Lo

cationOilSpill(2));

geoshow(GreatCirc(:,1),GreatCirc(:,2),'DisplayType','line','Color'

,'green','linestyle','-');
 else
 geoshow(Latitude(i),Longitude(i),'Marker','x','Color','black');
 %Label the location of the remaining vessels
 textm(Latitude(i)-0.3,Longitude(i)-3.5, 'Other Vessel');
 end
end

geoshow(LocationOilSpill(1),LocationOilSpill(2),'Marker','o','Color','black

');
%Label the location of the oil spill
textm(LocationOilSpill(1)+0.3,LocationOilSpill(2)-2, 'Oil Spill');

geoshow(LocationOilSpill(1),LocationOilSpill(2),'Marker','.','Color','yello

w');
%Label the location of the port
textm(LocationPort(1)-0.25,LocationPort(2)-0.2, 'Port');

 Appendix A. The Simulation Model (MATLAB Script)

A

%Create the great circle route from the chosen vessel to the oil spill
%If the vessel requires a stop at port
if RefuelsAtPort == 1

GreatCirc =

track2('gc',Latitude(ChosenVessel),Longitude(ChosenVessel),LocationPort

(1),LocationPort(2));

geoshow(GreatCirc(:,1),GreatCirc(:,2),'DisplayType','line','Color','red

','linestyle','-');
GreatCirc =

track2('gc',LocationPort(1),LocationPort(2),LocationOilSpill(1),Locatio

nOilSpill(2));

geoshow(GreatCirc(:,1),GreatCirc(:,2),'DisplayType','line','Color','red

','linestyle','-');
%If sailing directly to the oil spill
else

GreatCirc =

track2('gc',Latitude(ChosenVessel),Longitude(ChosenVessel),LocationOilS

pill(1),LocationOilSpill(2));

geoshow(GreatCirc(:,1),GreatCirc(:,2),'DisplayType','line','Color','red

','linestyle','-');
end

%Closes excel, which have been held open through the entire simulation
Excel.ActiveWorkbook.Save;
Excel.Quit
Excel.delete
clear Excel

 Appendix B. xlsread1.m

B

Appendix B: xlsread1.m
The function xlsread1.m was created and published by user Antonio of the Federal University

at Campina Grande on the MathWorks official forums in December 2008.

function [data, text, rawData,

customOutput]=xlsread1(file,sheet,range,mode,customFun)
% XLSREAD Get data and text from a spreadsheet in an Excel workbook.
% [NUMERIC,TXT,RAW]=XLSREAD(FILE) reads the data specified in the Excel
% file, FILE. The numeric cells in FILE are returned in NUMERIC, the text
% cells in FILE are returned in TXT, while the raw, unprocessed cell
% content is returned in RAW.
%
% [NUMERIC,TXT,RAW]=XLSREAD(FILE,SHEET,RANGE) reads the data specified
% in RANGE from the worksheet SHEET, in the Excel file specified in FILE.
% It is possible to select the range of data interactively (see Examples
% below). Please note that the full functionality of XLSREAD depends on
% the ability to start Excel as a COM server from MATLAB.
%
% [NUMERIC,TXT,RAW]=XLSREAD(FILE,SHEET,RANGE,'basic') reads an XLS file

as
% above, using basic input mode. This is the mode used on UNIX platforms
% as well as on Windows when Excel is not available as a COM server.
% In this mode, XLSREAD does not use Excel as a COM server, which limits
% import ability. Without Excel as a COM server, RANGE will be ignored
% and, consequently, the whole active range of a sheet will be imported.
% Also, in basic mode, SHEET is case-sensitive and must be a string.
%
% [NUMERIC,TXT,RAW]=XLSREAD(FILE,SHEET,RANGE,'',CUSTOMFUN)
% [NUMERIC,TXT,RAW,CUSTOMOUTPUT]=XLSREAD(FILE,SHEET,RANGE,'',CUSTOMFUN)
% When the Excel COM server is used, allows passing in a handle to a
% custom function. This function will be called just before retrieving
% the actual data from Excel. It must take an Excel Range object (e.g. of
% type 'Interface.Microsoft_Excel_5.0_Object_Library.Range') as input,
% and return one as output. Optionally, this custom function may return
% a second output argument, which will be returned from XLSREAD as the
% fourth output argument, CUSTOMOUTPUT. For details of what is possible
% using the EXCEL COM interface, please refer to Microsoft documentation.
%
% INPUT PARAMETERS:
% FILE: string defining the file to read from. Default directory is pwd.
% Default extension is 'xls'.
% SHEET: string defining worksheet name in workbook FILE.
% double scalar defining worksheet index in workbook FILE. See
% NOTE 1.
% RANGE: string defining the data range in a worksheet. See NOTE 2.
% MODE: string enforcing basic import mode. Valid value = 'basic'. This
% is the mode always used when COM is not available (e.g. on Unix).
%
% RETURN PARAMETERS:
% NUMERIC = n x m array of type double.
% TXT = r x s cell string array containing text cells in RANGE.
% RAW = v x w cell array containing unprocessed numeric and text data.
% Both NUMERIC and TXT are subsets of RAW.
%
%

 Appendix B. xlsread1.m

B

EXAMPLES:
% 1. Default operation:
% NUMERIC = xlsread(FILE);
% [NUMERIC,TXT]=xlsread(FILE);
% [NUMERIC,TXT,RAW]=xlsread(FILE);
%
% 2. Get data from the default region:
% NUMERIC = xlsread('c:\matlab\work\myspreadsheet')
%
% 3. Get data from the used area in a sheet other than the first sheet:
% NUMERIC = xlsread('c:\matlab\work\myspreadsheet','sheet2')
%
% 4. Get data from a named sheet:
% NUMERIC = xlsread('c:\matlab\work\myspreadsheet','NBData')
%
% 5. Get data from a specified region in a sheet other than the first
% sheet:
% NUMERIC = xlsread('c:\matlab\work\myspreadsheet','sheet2','a2:j5')
%
% 6. Get data from a specified region in a named sheet:
% NUMERIC = xlsread('c:\matlab\work\myspreadsheet','NBData','a2:j5')
%
% 7. Get data from a region in a sheet specified by index:
% NUMERIC = xlsread('c:\matlab\work\myspreadsheet',2,'a2:j5')
%
% 8. Interactive region selection:
% NUMERIC = xlsread('c:\matlab\work\myspreadsheet',-1);
% You have to select the active region and the active sheet in the
% EXCEL window that will come into focus. Click OK in the Data
% Selection Dialog when you have finished selecting the active region.
%
% 9. Using the custom function:
% [NUMERIC,TXT,RAW,CUSTOMOUTPUT] = xlsread('equity.xls', ...,

@MyCustomFun)
% Where the CustomFun is defined as:
%
% function [DataRange, customOutput] = MyCustomFun(DataRange)
% DataRange.NumberFormat = 'Date';
% customOutput = 'Anything I want';
%
% This will convert to dates all cells where that is possible.
%
% NOTE 1: The first worksheet of the workbook is the default sheet. If
% SHEET is -1, Excel comes to the foreground to enable interactive
% selection (optional). In interactive mode, a dialogue will prompt
% you to click the OK button in that dialogue to continue in

MATLAB.
% (Only supported when Excel COM server is available.)
% NOTE 2: The regular form is: 'D2:F3' to select rectangular region D2:F3
% in a worksheet. RANGE is not case sensitive and uses Excel A1
% notation (see Excel Help). (Only supported when Excel COM server
% is available.)
% NOTE 3: Excel formats other than the default can also be read.
% (Only supported when Excel COM server is available.)
%
% See also XLSWRITE, CSVREAD, CSVWRITE, DLMREAD, DLMWRITE, TEXTSCAN.

% Copyright 1984-2007 The MathWorks, Inc.
% $Revision: 1.23.4.24 $ $Date: 2007/12/06 13:30:15 $
%==

===

 Appendix B. xlsread1.m

B

Excel = evalin('base','Excel'); % added command (Brandao 12/09/2008)
% initialise variables
data = [];
text = {};
rawData = {};

Sheet1 = 1;
if nargin < 2
 sheet = Sheet1;
 range = '';
elseif nargin < 3
 range = '';
end

% handle input values
if nargin < 1 || isempty(file)
 error('MATLAB:xlsread:FileName','Filename must be specified.');
end

if ~ischar(file)
 error('MATLAB:xlsread:InputClass','Filename must be a string.');
end

if nargin > 1
 % Verify class of sheet parameter
 if ~ischar(sheet) && ...
 ~(isnumeric(sheet) && length(sheet)==1 && ...
 floor(sheet)==sheet && sheet >= -1)
 error('MATLAB:xlsread:InputClass',...
 'Sheet argument must a string or an integer.');
 end

 if isequal(sheet,-1)
 range = ''; % user requests interactive range selection.
 elseif ischar(sheet)
 if ~isempty(sheet)
 % Parse sheet and range strings
 if isempty(strfind(sheet,':'))
 else
 range = sheet; % only range was specified.
 sheet = Sheet1;% Use default sheet.
 end
 else
 sheet = Sheet1; % set sheet to default sheet.
 end
 end
end
if nargin > 2
 % verify class of range parameter
 if ~ischar(range)
 error('MATLAB:xlsread:InputClass',...
 'Range argument must a string. See HELP XLSREAD.');
 end
end
if nargin >= 4
 % verify class of mode parameter
 if ~isempty(mode) && ~(strcmpi(mode,'basic'))
 warning('MATLAB:xlsread:InputClass',...

 Appendix B. xlsread1.m

B

 'Import mode string is invalid. XLSREAD resets mode to

normal.');
 mode = '';
 end
else
 mode = '';
end

custom = false;
if nargin >= 5
 if strcmpi(mode,'basic') || ~ispc
 warning('MATLAB:xlsread:Incompatible',...
 ['Custom functions cannot be used in basic mode or on non-Windows

platforms.\n'...
 'The custom function argument will be ignored.'])
 elseif ~isa(customFun,'function_handle')
 warning('MATLAB:xlsread:NotHandle', ...
 'The fifth argument to XLSREAD must be a function

handle.');
 else
 custom = true;
 end
end

%==

====
% block command crossed out (Brandao 12/09/2008)
% handle requested Excel workbook filename
% try
% file = validpath(file,'.xls');
% catch exception
% err = MException('MATLAB:xlsread:FileNotFound','XLSREAD unable to

open file %s.\n%s',...
% file,exception.message);
% throw(err);
% end
%==

====
% select import mode from either normal or basic mode.
if strcmpi(mode,'basic') || ~ispc
 warning('MATLAB:xlsread:Mode',...
 ['XLSREAD has limited import functionality on non-Windows

platforms\n'...
 'or in basic mode. Refer to HELP XLSREAD for more

information.']);
 try
 if nargout > 2
 [data,text,rawData] = xlsreadold(file,sheet);
 else
 [data,text] = xlsreadold(file,sheet);
 end
 catch exception
 if isempty(exception.identifier)
 exception = MException('MATLAB:xlsreadold:FormatError','%s',

exception.message);
 end
 throw(exception);
 end
 return;
% else % block command crossed out (Brandao 12/09/2008)
% % Attempt to start Excel as ActiveX server process.

 Appendix B. xlsread1.m

B

% try
% Excel = actxserver('excel.application');
% catch exc1
% % revert to old XLSREAD that uses BIFFREAD
% warning('MATLAB:xlsread:ActiveX',...
% ['Could not start Excel server for import. '...
% 'Refer to documentation.']);
% try
% if nargout > 2
% [data,text,rawData] = xlsreadold(file,sheet);
% else
% [data,text] = xlsreadold(file,sheet);
% end
% catch exc2
% message=sprintf('%s\n%s', exc1.message, exc2.message);
% if isempty(exc2.identifier)
% exception = MException('MATLAB:xlsreadold:FormatError',

message);
% else
% exception = MException(exc2.identifier, message);
% end
% throw(exception);
% end
% return;
% end
end
%==

====
try
 % open workbook
 Excel.DisplayAlerts = 0;

 %Workaround for G313142. For certain files, unless a workbook is
 %opened prior to openiong the file, various COm calls return an error:
 %0x800a9c64. The line below works around this flaw. Since we have
 %seen only one example of such a file, we have decided not to incur the
 %time penalty involved here.
% aTemp = Excel.workbooks.Add(); aTemp.Close();

% try % block command crossed out (Brandao 12/09/2008)
% ExcelWorkbook = Excel.workbooks.Open(file,0,true);
% catch exception %#OK
% %do not pollute lasterror state
% end

% % block command crossed out (Brandao 12/09/2008)
% format = ExcelWorkbook.FileFormat;
% if strcmpi(format, 'xlCurrentPlatformText') == 1
% error('MATLAB:xlsread:FileFormat', 'File %s not in Microsoft

Excel Format.', file);
% end

 if nargin >= 2
 % User specified at least a worksheet or interactive range

selection.
 if ~isequal(sheet,-1)
 % Activate indicated worksheet.
 activate_sheet(Excel,sheet);

 Appendix B. xlsread1.m

B

 try % importing a data range.
 if ~isempty(range)
 % The range is specified.
 Select(Range(Excel,sprintf('%s',range)));
 DataRange = get(Excel,'Selection');
 else
 % Only the worksheet is specified.
 % Activate upper left cell on sheet.
 Activate(Range(Excel,'A1'));

 % Select range of occupied cells in active sheet.
 DataRange = Excel.ActiveSheet.UsedRange;
 end
 catch % data range error.
 error('MATLAB:xlsread:RangeSelection',...
 'Data range is invalid.');
 end

 else
 % User requests interactive range selection.
 % Set focus to first sheet in Excel workbook.
 activate_sheet(Excel,Sheet1);

 % Make Excel interface the active window.
 set(Excel,'Visible',true);

 % bring up message box to prompt user.
 uiwait(warndlg({'Select data region in Excel worksheet.';...
 'Click OK to continue in MATLAB'},...
 'Data Selection Dialogue','modal'));
 DataRange = get(Excel,'Selection');
 set(Excel,'Visible',false); % remove Excel interface from

desktop
 end
 else
 % No sheet or range or interactive range selection.
 % Activate default worksheet.
 activate_sheet(Excel,Sheet1);

 % Select range of occupied cells in active sheet.
 DataRange = Excel.ActiveSheet.UsedRange;
 end

 %Call the custom function if it was given. Provide customOutput if it
 %is possible.
 if custom
 if nargout(customFun) < 2
 DataRange = customFun(DataRange);
 customOutput = {};
 else
 [DataRange, customOutput] = customFun(DataRange);
 end
 end

 % get the values in the used regions on the worksheet.
 rawData = DataRange.Value;
 % parse data into numeric and string arrays
 [data,text] = parse_data(rawData);

catch exception

 Appendix B. xlsread1.m

B

% try % block command crossed out (Brandao 12/09/2008)
% ExcelWorkbook.Close(false); % close workbook without saving any

changes
% catch exc2 %#OK
% %Do not pollute lasterror state
% end
 rethrow(exception); % rethrow original error
end

% try % block command crossed out (Brandao 12/09/2008)
% ExcelWorkbook.Close(false); % close workbook without saving any

changes
% %This call could fail if the file is "locked". This is the same
% %message you would get if you opened the file in Excel, and then

tried
% %to close the workbook (NOT the application).
% Excel.Quit;
% catch exception
% warning(exception.identifier, '%s', exception.message);
% Excel.Quit;
% end

%--
function [numericArray,textArray] = parse_data(data)
% PARSE_DATA parse data from raw cell array into a numeric array and a text
% cell array.
% [numericArray,textArray] = parse_data(data)
% Input:
% data: cell array containing data from spreadsheet
% Return:
% numericArray: double array containing numbers from spreadsheet
% textArray: cell string array containing text from spreadsheet
%==

% ensure data is in cell array
if ischar(data)
 data = cellstr(data);
elseif isnumeric(data) || islogical(data)
 data = num2cell(data);
end

% Check if raw data is empty
if isempty(data)
 % Abort when all data cells are empty.
 textArray = {};
 numericArray = [];
 return
else
 % Trim empty leading and trailing rows
 % find empty cells
 emptycells = cellfun('isempty',data);
 nrows = size(emptycells,1);
 firstrow = 1;
 % find last of leading empty rows
 while (firstrow<=nrows && all(emptycells(firstrow,:)))
 firstrow = firstrow+1;
 end
 % remove leading empty rows
 data = data(firstrow:end,:);

 Appendix B. xlsread1.m

B

 % find start of trailing empty rows
 nrows = size(emptycells,1);
 lastrow = nrows;
 while (lastrow>0 && all(emptycells(lastrow,:)))
 lastrow = lastrow-1;
 end
 % remove trailing empty rows
 data = data(1:lastrow,:);

 % find start of trailing NaN rows
 warning('off', 'MATLAB:nonIntegerTruncatedInConversionToChar');
 while (lastrow>0 && ~(any(cellfun('islogical', data(lastrow,:)))) &&

...
 all(isnan([data{lastrow,:}])))
 lastrow = lastrow-1;
 end
 warning('on', 'MATLAB:nonIntegerTruncatedInConversionToChar');
 % remove trailing NaN rows
 data=data(1:lastrow,:);

 [n,m] = size(data);
 textArray = cell(size(data));
 textArray(:) = {''};
end

vIsNaN = false(n,m);

% find non-numeric entries in data cell array
vIsText = cellfun('isclass',data,'char');
vIsNaN =

cellfun('isempty',data)|strcmpi(data,'nan')|cellfun('isclass',data,'char');

% place text cells in text array
if any(vIsText(:))
 textArray(vIsText) = data(vIsText);
else
 textArray = {};
end
% Excel returns COM errors when it has a #N/A field.
textArray = strrep(textArray,'ActiveX VT_ERROR: ','#N/A');

% place NaN in empty numeric cells
if any(vIsNaN(:))
 data(vIsNaN)={NaN};
end

% extract numeric data
data = reshape(data,n,m);
rows = size(data,1);
m = cell(rows,1);
% Concatenate each row first
for n=1:rows
 m{n} = cat(2,data{n,:});
end
% Now concatenate the single column of cells into a matrix
numericArray = cat(1,m{:});

% trim all-NaN leading rows and columns from numeric array

 Appendix B. xlsread1.m

B

% trim all-empty trailing rows and columns from text arrays
[numericArray,textArray]=trim_arrays(numericArray,textArray);

% ensure numericArray is 0x0 empty.
if isempty(numericArray)
 numericArray = [];
end

%--
function activate_sheet(Excel,Sheet)
% Activate specified worksheet in workbook.

% Initialise worksheet object
WorkSheets = Excel.sheets;

% Get name of specified worksheet from workbook
try
 TargetSheet = get(WorkSheets,'item',Sheet);
catch
 error('MATLAB:xlsread:WorksheetNotFound',...
 'Specified worksheet was not found.');
end

%Activate silently fails if the sheet is hidden
set(TargetSheet, 'Visible','xlSheetVisible');
% activate worksheet
Activate(TargetSheet);

%--
function [matrixResult,cellResult,rawResult]=xlsreadold(filename,sheet)
% Basic import mode. Range specification not available.
% Interactive range selection not available.
% Read Excel file as binary image file
if nargin > 1
 if isequal(sheet,1) || isequal(sheet,-1)
 sheet = '';
 elseif ~ischar(sheet)
 error('MATLAB:xlsread:WorksheetNotFound',...
 'In basic mode, sheet argument must be a string.');
 end
end
% read XLS file
biffvector = biffread(filename);

% get sheet names
[data, names] = biffparse(biffvector);

% if the names array is empty, this is an old style biff record with
% no sheet name. Just return data and empty text cell array.
if isempty(names)
 matrixResult = data;
 cellResult = cell(names);
 if nargout > 2
 rawResult = num2cell(data);
 end
 return;
end

if nargin == 1 || isempty(sheet)

 Appendix B. xlsread1.m

B

 % just get the first sheet
 [n, s] = biffparse(biffvector, names{1});
else
 % try to read this sheet
 try
 [n, s] = biffparse(biffvector, sheet);
 catch
 error('MATLAB:xlsread:WorksheetNotFound',...
 'Specified worksheet was not found.');
 end
end

% trim trailing empty text cells and NaN matrix elements
[matrixResult, cellResult] = trim_arrays(n,s);
% replace empty text cells with char([]).
cellResult(cellfun('isempty',cellResult))={''};

if nargout > 2
 % create raw data return
 if isempty(s)
 rawResult = num2cell(n);
 else
 rawResult = cell(max(size(n),size(s)));
 rawResult(1:size(n,1),1:size(n,2)) = num2cell(n);
 for i = 1:size(s,1)
 for j = 1:size(s,2)
 if (~isempty(s{i,j}) && (i > size(n,1) || j > size(n,2) ||

isnan(n(i,j))))
 rawResult(i,j) = s(i,j);
 end
 end
 end
 end
 % trim all-empty-string leading rows from raw array
 while size(rawResult,1)>1 && all(cellfun('isempty',rawResult(1,:)))
 rawResult = rawResult(2:end,:);
 end
 % trim all-empty-string leading columns from raw array
 while size(rawResult,2)>1 && all(cellfun('isempty',rawResult(:,1)))
 rawResult = rawResult(:,2:end);
 end
 % replace empty raw data with NaN, to comply with specification
 rawResult(cellfun('isempty',rawResult))={NaN};
end

%--
function [numericArray,textArray] = trim_arrays(numericArray,textArray)
% trim leading rows or cols
% if the string result has dimensions corresponding to a column or row of
% zeros in the matrix result, trim the zeros.
if ~isempty(numericArray) && ~isempty(textArray)
 [mn, nn] = size(numericArray);
 [ms, ns] = size(textArray);

 if ms == mn
 % trim leading column(textArray) from numeric data
 firstcolm = 1;
 while (firstcolm<=nn && all(isnan(numericArray(:,firstcolm))))
 firstcolm = firstcolm+1;
 end

 Appendix B. xlsread1.m

B

 numericArray=numericArray(:,firstcolm:end);
 end

 if ns == nn
 % trim leading NaN row(s) from numeric data
 firstrow = 1;
 while (firstrow<=mn && all(isnan(numericArray(firstrow,:))))
 firstrow = firstrow+1;
 end
 numericArray=numericArray(firstrow:end,:);

 % trim leading empty rows(s) from text data
 firstrow = 1;
 while (firstrow<=ms &&

all(cellfun('isempty',textArray(firstrow,:))))
 firstrow = firstrow+1;
 end
 textArray=textArray(firstrow:end,:);
 end

 % trim all-empty-string trailing rows from text array
 lastrow = size(textArray,1);
 while (lastrow>0 && all(cellfun('isempty',textArray(lastrow,:))))
 lastrow = lastrow-1;
 end
 textArray=textArray(1:lastrow,:);

 % trim all-empty-string trailing columns from text array
 lastcolm = size(textArray,2);
 while (lastcolm>0 && all(cellfun('isempty',textArray(:,lastcolm))))
 lastcolm = lastcolm-1;
 end
 textArray=textArray(:,1:lastcolm);

 % trim all-NaN trailing rows from numeric array
 lastrow = size(numericArray,1);
 while (lastrow>0 && all(isnan(numericArray(lastrow,:))))
 lastrow=lastrow-1;
 end
 numericArray=numericArray(1:lastrow,:);

 % trim all-NaN trailing columns from numeric array
 lastcolm = size(numericArray,2);
 while (lastcolm>0 && all(isnan(numericArray(:,lastcolm))))
 lastcolm=lastcolm-1;
 end
 numericArray=numericArray(:,1:lastcolm);
end

 Appendix B. xlsread1.m

B

 Appendix C. Input Data Sheet

C

Appendix C: Input Data Sheet
The input data is in the Excel sheet given column by column, i.e. the blue heading continues

along the same row.

Month Day Vessel nr Max Speed [knots]
Service Speed
[knots]

2 12 1 14.6 12

 2 14.6 12

 3 14.6 12

Economic Speed
[knots]

Fuel
Consumption in
Max Speed
[tonne/day]

Fuel Consumption
in Service Speed
[tonne/day]

Fuel Consumption
in Economic Speed
[tonne/day]

Fuel Consumption
in Operation
[tonne/day]

10 19.5 13.6 9.8 6

10 19.5 13.6 9.8 6

10 19.5 13.6 9.8 6

Fuel Capacity
[tonne]

Current Fuel Level
[tonne]

Operational Status
(0,1,2 or 3)

Cargo Status (1 or
0)

Emergency
Equipment
Availability (1 or 0)

300 134 1 1 1

300 97 3 1 1

300 281 2 1 1

Latitude of vessel
Longitude of
vessel Latitude of Port Longitude of Port Latitude of Oil Spill

72.48 72.86 72.48 72.86 76

74.67 72.18

73.92 71.67

Longitude of Oil
Spill

Refueling Rate of
the Port
[tonne/hour]

75 200

 Appendix C. Input Data Sheet

C

 Appendix D. Case Study Simulation Model

D

Appendix D: Case Study Simulation Model

%% Initialization

%Clear out all data and figures for a clean run
clc
clear all
close all

%Initializes the function xlsread1.m which keeps the excel sheet open
%throughout the simulation, instead of opening and closing excel each
%time a parameter is read. This caused tremendous saving in the program
%run time; After implementing xlsread1.m, the simulation run time was
%reduced to about 22 % of the original simulation time.

%Requires xlsread1.m in the same folder as this program

Excel = actxserver ('Excel.Application');
%NB!
%REMEMBER TO DEFINE THE PATH OF THE INPUT DATA FILE BELOW
File='C:\Users\David\Documents\NTNU\MASTER\MATLAB\INPUTDATA.xlsx';
if ~exist(File,'file')
 ExcelWorkbook = Excel.Workbooks.Add;
 ExcelWorkbook.SaveAs(File,1);
 ExcelWorkbook.Close(false);
end
Excel.Workbooks.Open(File);

%% Input Data that is valid for each simulation
InitializeRow = 3;
FirstRow = num2str(InitializeRow);
%Fleet Characteristics
%Vessel data that will serve as input
Counter = 1;
FleetRow = FirstRow;
while isempty(xlsread1('INPUTDATA.xlsx',1,['D',FleetRow])) == 0
Fleet(Counter) = xlsread1('INPUTDATA.xlsx',1,['D',FleetRow]);
Counter = Counter + 1;
FleetRow = str2num(FleetRow);
FleetRow = FleetRow + 1;
FleetRow = num2str(FleetRow);
end
EndRow = num2str(str2num(FleetRow) - 1);
%Number of Vessels
nVessels = length(Fleet);
%Max speed [knots]
SpeedMax = xlsread1('INPUTDATA.xlsx',1,['E',FirstRow,':','E',EndRow]);
%Service speed [knots]
SpeedService = xlsread1('INPUTDATA.xlsx',1,['F',FirstRow,':','F',EndRow]);
%Economical speed [knots]
SpeedEco = xlsread1('INPUTDATA.xlsx',1,['G',FirstRow,':','G',EndRow]);
%Fuel consumption in max speed [tonne/hour]
FuelConMax = xlsread1('INPUTDATA.xlsx',1,['H',FirstRow,':','H',EndRow])/24;
%Fuel consumption in service speed [tonne/hour]
FuelConService =

xlsread1('INPUTDATA.xlsx',1,['I',FirstRow,':','I',EndRow])/24;

 Appendix D. Case Study Simulation Model

D

%Fuel consumption in economical speed [tonne/hour]
FuelConEco = xlsread1('INPUTDATA.xlsx',1,['J',FirstRow,':','J',EndRow])/24;
%Fuel consumption in operation [tonne/hour]
FuelConOperation =

xlsread1('INPUTDATA.xlsx',1,['K',FirstRow,':','K',EndRow])/24;
%Fuel capacity of the fleet [tonne]
FuelCapacity = xlsread1('INPUTDATA.xlsx',1,['L',FirstRow,':','L',EndRow]);
%Emergency Equipment Status (0 if unequipped, 1 if equipment is available)
EmergencyEquipment =

xlsread1('INPUTDATA.xlsx',1,['P',FirstRow,':','P',EndRow]);

%Location of port in latitudes and longitudes
LocationPort = [xlsread1('INPUTDATA.xlsx',1,['S',FirstRow]),

xlsread1('INPUTDATA.xlsx',1,['T',FirstRow])];
%Location of oil spill in latidues and longitudes
LocationOilSpill = [xlsread1('INPUTDATA.xlsx',1,['U',FirstRow]),

xlsread1('INPUTDATA.xlsx',1,['V',FirstRow])];

%Refueling rate of the port [tonne/hour]
RefuelingRatePort = 200;
%Delay caused by navigation in and out of port [hours]
DelayNavigationPort = 2;

%Read csv datafile into a matrix
Weather = csvread('WeatherData.csv',0,0);

%Choose the number of simulations to repeat
NumberOfSimulations = 10000;
for simulations = 1:NumberOfSimulations
%% Input Data That Changes For Each Simulation

for i=1:nVessels
 %Current fuel level in [tonne]
 FuelLev(i) = (FuelCapacity(i)-50).*rand(1,1) + 50;

 %Operational status
 %0 = unable to abort current operation, 1 = in port, 2 = in
 %transit going towards platform (or at platform), 3 = return trip
 RndOp = randi(100,1);
 if RndOp <= 2
 OpStatus(i) = 0;
 elseif RndOp > 2 && RndOp <= 51
 OpStatus(i) = 2;
 elseif RndOp > 51 && RndOp <= 100
 OpStatus(i) = 3;
 end

 %Cargo status
 %Does delivery of cargo take priority or conflict with response?
 %0 = unable to do oil spill, 1 able to
 %The probability of Cargo Status = 0 is one in a thousand
 RndCargo = randi(1000,1);
 if RndCargo == 1
 CargoStatus(i) = 0;
 else
 CargoStatus(i) = 1;
 end

%Location of vessels is varied between the coordinates of the port and

 Appendix D. Case Study Simulation Model

D

 %the oil spill. The sailing route is split into three legs so that the
 %assigned vessel positions are more realistic.
 %The latitude is decided between the port and the oil spill
 Latitude(i) = ([LocationOilSpill(1)] - [LocationPort(1)]).*rand(1,1) +

[LocationPort(1)];
 %If the latitude of the vessel position is within the first third of
 %the route (closest to the port), then the longitude can be given as
 %the third of the route that is closest to the port longitudes.
 if Latitude(i) <= ((2/3)*[LocationPort(1)] +

(1/3)*[LocationOilSpill(1)]);
 Longitude(i) = (((2/3)*[LocationPort(2)] +

(1/3)*[LocationOilSpill(2)]) - [LocationPort(2)]).*rand(1,1) +

[LocationPort(2)];
 %If the latitude is within the last third of the route (closest to oil
 %spill), then the longitude is given as the third that is nearest the
 %oil spill longitudes
 elseif Latitude(i) >= ((1/3)*[LocationPort(1)] +

(2/3)*[LocationOilSpill(1)])
 Longitude(i) = ([LocationOilSpill(2)]-((1/3)*[LocationPort(2)] +

(2/3)*[LocationOilSpill(2)])).*rand(1,1) + (((1/3)*[LocationPort(2)] +

(2/3)*[LocationOilSpill(2)]));
 %If the latitude is withing the middle third of the route, then the
 %longitude is chosen accordingly.
 else
 Longitude(i) = (((1/3)*[LocationPort(2)] +

(2/3)*[LocationOilSpill(2)]) - ((2/3)*[LocationPort(1)] +

(1/3)*[LocationOilSpill(1)])).*rand(1,1) + ((2/3)*[LocationPort(1)] +

(1/3)*[LocationOilSpill(1)]);
 end
 %Operational Status is set to 1 (in port) if the vessel latitude is
 %within a 0.05 decimal degrees proximity to the location of the port
 if Latitude(i) <= ([LocationPort(1)] + 0.05)
 OpStatus(i) = 1;
 end
end

% Metocean data
%Read month and day, used for reading the appropriate weather data
%The month is referred to numerically, by a number from 1 to 12,
%where 1 is January and 12 is December
Month = randi(12,1);
%The day ranges from the 1st to the 31st for the following months
if Month == 1 || Month == 3 || Month == 5 || Month == 7 || Month == 8 ||

Month == 10 || Month == 12
 Day = randi(31,1);
%The day ranges from the 1st to the 30th for the following months
elseif Month == 4 || Month == 6 || Month == 9 || Month == 11
 Day = randi(30,1);
%The day ranges from the 1st to the 28th for February
%(leap year is not included)
else
 Day = randi(28,1);
end

%Initialize counter for the number of Hs read
HsNumber = 0;

 Appendix D. Case Study Simulation Model

D

%Read all significant wave heights for the appropriate month and day in the
%time period 1992-2012 (3 hours interval)
for i = 1:size(Weather,1)
 if (Weather(i,2) == Month) && (Weather(i,3) == Day)
 %Note the number of Hs read
 HsNumber = HsNumber + 1;
 %Read the Hs from the weather data file
 Hsread(HsNumber) = abs(Weather(i,7));
 end
end

%Pick a random Hs from any of the same days from the 21 years of historical
%data
RandomDay = randi(HsNumber,1);

%If Hs is less than or equal to zero, then signal is either not read or
%misread, and another random day will be picked
while Hsread(RandomDay) <= 0
 RandomDay = randi(HsNumber,1);
end

%Set the appropriate significant wave height
Hs = Hsread(RandomDay);

%% Get distance from mapping, calculate sailing time and fuel consumption

%Calculating the distances between vessels and oil spill, and vessels and

port (in nautical miles)
for i=1:nVessels
 LocationVessel = [Latitude(i), Longitude(i)];
 %Distance of the great circle route
 %Distance from vessel location to oil spill
 DistOilSpillGC(i) = distance('gc',LocationVessel,LocationOilSpill);
 %Distance from vessel location to port
 DistPortGC(i) = distance('gc',LocationVessel,LocationPort);
 %Distance from port to oil spill
 DistPortOilGC(i) = distance('gc',LocationPort,LocationOilSpill);
 %Rhumb line: DistRL(i) =

distance('rh',LocationVessel,LocationOilSpill);
 %Distance in nautical miles
 NMDistOilSpillGC(i) = deg2nm(DistOilSpillGC(i));
 NMDistPortGC(i) = deg2nm(DistPortGC(i));
 NMDistPortOilGC(i) = deg2nm(DistPortOilGC(i));

 %Calculate sailing time in hours (affected by Hs)
 %Sailing time to oil spill (max speed)
 SailingTimeOilSpill(i) = ((NMDistOilSpillGC(i)/SpeedMax(i))*1.02^Hs);
 %Sailing time to port (max speed)
 SailingTimePort(i) = ((NMDistPortGC(i)/SpeedMax(i))*1.02^Hs);
 %Sailing time from port to oil spill (max speed)
 SailingTimePortOil(i) = ((NMDistPortOilGC(i)/SpeedMax(i))*1.02^Hs);
 %Sailing time return trip from oil spill to port, in economical mode
 %after oil spill containment operation is complete (economical speed)
 SailingTimeReturn(i) =

((NMDistPortOilGC(i)/(SpeedEco(i)*0.5))*1.02^Hs);

 Appendix D. Case Study Simulation Model

D

 %Calculate fuel consumption for said trip
 %Weather affects sailing time, which again increases fuel consumption
 %Fuel consumption - Vessel location to oil spill
 FuelConsumptionSailToOilSpill(i) =

SailingTimeOilSpill(i)*FuelConMax(i);
 %Fuel consumption - Vessel location to port
 FuelConsumptionSailToPort(i) = SailingTimePort(i)*FuelConMax(i);
 %Fuel consumption - Port to oil spill
 FuelConsumptionPortToOilSpill(i) = SailingTimePortOil(i)*FuelConMax(i);
 %Fuel consumption - return trip in fuel save mode
 FuelConsumptionReturn(i) = SailingTimeReturn(i)*FuelConEco(i);

 %Time in oil spill operation [hours], very rough estimate
 TimeOperation = 10;

 %Time to refuel in port
 TimeRefuelPort(i) = ((FuelCapacity(i) - FuelLev(i) +

FuelConsumptionSailToPort(i))/RefuelingRatePort) + DelayNavigationPort;
end

%% Fuel Criteria

%REFUEL AT OIL SPILL SITE
%Refuel at oil spill site, send other ship to pick up fuel
%Safety factor of 20 % included
RefuelPort = zeros(nVessels,nVessels);
for i=1:nVessels
 for j=1:nVessels
 if i ~= j
 %Fuel consumed while waiting for other vessel to arrive for

refueling
 %That is, fuel consumed while sailing out to oil spill, and
 %fuel consumed in operation at oil spill site while waiting for
 %the refuel ship
 RefuelPort(i,j) = FuelConsumptionSailToOilSpill(i) +

((SailingTimePort(j) + TimeRefuelPort(j) + SailingTimePortOil(j) -

SailingTimeOilSpill(i))*FuelConOperation(i));
 if RefuelPort(i,j)*1.2 <= FuelLev(i)
 Refuel(i,j) = j;
 else
 Refuel(i,j) = 0;
 end
 end
 end
end

%NO REFUELING
for i=1:nVessels
 FuelConsumptionResponse(i) = FuelConsumptionSailToOilSpill(i) +

FuelConsumptionReturn(i) + (TimeOperation*FuelConOperation(i));
 if FuelConsumptionResponse(i)*1.2 <= FuelLev(i)
 FuelCriteria(i) = 1;
 else
 FuelCriteria(i) = 0;
 end
end

 Appendix D. Case Study Simulation Model

D

%% Decide how to respond to the emergency and which vessels to send

%This loop goes through a set of logical decisions and determines
%the fastest feasible response for each vessel
for i=1:nVessels
 %Feasibility of vessel (0 if not feasible)
 Vessels(i)=OpStatus(i)*CargoStatus(i)*Fleet(i);
 %Check if vessel is unable to respond
 if Vessels(i) == 0
 Delay = SailingTimePortOil(i)*10;
 ResponseDirect(i) = 0;
 ResponseRefuel(i) = 0;
 ResponseByPort(i) = 0;
 %Check if vessel is feasible for direct response
 elseif Vessels(i) > 0 && FuelCriteria(i) > 0 && EmergencyEquipment(i)

~= 0
 %If vessel is in port, add 4 [hours] delay
 if OpStatus(i) == 1
 Delay = 4;
 %If vessel is in transit towards platform
 elseif OpStatus(i) == 2
 Delay = 0;
 %if vessel is sailing return trip, add 0.2 [hours]
 elseif OpStatus(i) == 3
 Delay = 0.2;
 end
 ResponseDirect(i) = SailingTimeOilSpill(i) + Delay;
 ResponseRefuel(i) = 0;
 ResponseByPort(i) = 0;
 %If the ship's current fuel level is a limiting factor, then
 %check the option of being refueled by another ship while doing oil
 %spill operations
 elseif Vessels(i) > 0 && max(Refuel(i,:)) > 0 && EmergencyEquipment(i)

~= 0
 %If vessel is in port, add 4 [hours] delay
 if OpStatus(i) == 1
 Delay = 4;
 %If vessel is in transit towards platform
 elseif OpStatus(i) == 2
 Delay = 0;
 %if vessel is sailing return trip, add 0.2 [hours] Should also
 %contribute to fuel consumption?
 elseif OpStatus(i) == 3
 Delay = 0.2;
 end
 ResponseDirect(i) = 0;
 ResponseRefuel(i) = SailingTimeOilSpill(i) + Delay;
 ResponseByPort(i) = 0;

 Appendix D. Case Study Simulation Model

D

 %If the current fuel level is so low that the ship are both unable to
 %perform oil spill operations independently, and unable to wait for
 %another ship to refuel, then it must travel back to port and refuel.
 %This option is also chosen if the vessel does not have the
 %necessary equipment onboard to deal with the emergency, and must thus
 %pick this up at port.
 else
 %If vessel is in port, add 4 [hours] delay
 if OpStatus(i) == 1
 Delay = TimeRefuelPort(i);
 ResponseByPort(i) = SailingTimePortOil(i);
 %If vessel is in transit towards platform, turn around
 elseif OpStatus(i) == 2
 Delay = 0.2;
 ResponseByPort(i) = SailingTimePort(i) + TimeRefuelPort(i) +

SailingTimePortOil(i);
 %if vessel is sailing return trip
 elseif OpStatus(i) == 3
 Delay = 0;
 ResponseByPort(i) = SailingTimePort(i) + TimeRefuelPort(i) +

SailingTimePortOil(i);
 end
 SailingTimeOilSpill(i) = ResponseByPort(i);

 ResponseDirect(i) = 0;
 ResponseRefuel(i) = 0;
 ResponseByPort(i) = SailingTimeOilSpill(i) + Delay;
 end
 ResponseTime(i) = SailingTimeOilSpill(i) + Delay;
end

%Choose the minimum response time of all vessels as the solution,
%and print to command window the time and vessel chosen

[MinResponseTime, ChosenVessel] = min(ResponseTime(:));

%Register the result of this particular simulation to a variable containing
%the results of all simulations
AllChosenResponseTimes(simulations) = MinResponseTime;

end

disp('Simulations Complete')
disp('All simulated response times can be found in the variable

"AllChosenResponseTimes".')

%Closes excel, which have been held open through the entire simulation
Excel.ActiveWorkbook.Save;
Excel.Quit
Excel.delete
clear Excel

 Appendix D. Case Study Simulation Model

D

 Appendix E. Abbreviations

E

Appendix E: Abbreviations

CSV

Comma Separated Values

HSE

Health, Safety & Environment

NCA

Norwegian Coastal Administration

NOFO

Norwegian Clean Seas Association for Operation Companies

OSCAR

Oil Spill Contingency and Response

PSA

Petroleum Safety Authority Norway

SAR

Search and Rescue

SF

Safety Factor

