@NTNU

Norwegian University of
Science and Technology

Real-time Testing of Operating Systems
on Raspberry Pi

Amund Murstad

Master of Science in Cybernetics and Robotics
Submission date: June 2016
Supervisor: Amund Skavhaug, ITK

Norwegian University of Science and Technology
Department of Engineering Cybernetics

Preface

This thesis is written as a part of the Masters program Engineering Cybernetics at the Nor-
wegian University of Science and Technology in Trondheim, Norway during spring 2016.
The idea came from Amund Skavhaug who had supervised Jadaan Diaa in 2015. He made
a FPGA based real time tester. The task is to show how it could be used to test the response
time of operating systems, exploring different approaches to how the system under test

should be set up, taking advantage of the cheap computing power of the Raspberry Pi.
Trondheim, 2016-13-06

Amund Murstad

iof51

ii of 51

Acknowledgment

I would like to thank Amund Skavhaug for making it possible to do this project, and it has

been a pleasure working with him. I would also like to thank Eirik Wold Solngr for letting

me use the tester to test his KybOS.

iii of 51

Summary

A subset of operating systems are called “real time” operating systems. While a general
operating system like Windows or OSX can make no guarantee when a process gets to run,
a real time one has the ability to do so. They are used for systems where the quality of
the results from the operating system is not only defined by their correctness, but also by
when they arrive. These kinds of systems are called Real-time Systems and can be divided
into soft, hard and firm. If a deadline is missed in a soft system, the usefulness declines
gradually. In a hard system it goes to 0 immediately, an example being a frame in a video
arriving after the next one has already arrived. Firm systems are hard systems where a
missed deadline is catastrophic, as in nuclear systems or some medical equipment.

This project explores the possibility to test an operating system for these kinds of re-
quirements. It does so by using a tester developed in 2015 at NUTS by Jadaan Diaa [10].
The system that has been tested is the Raspberry Pi 3 with Ubuntu Mate as its operating
system. The desire to use the Raspberry Pi comes from its great computing power in re-
gards to price, and its easy to use methods of interacting with other equipment. These tests
are carried out as a electronic ping-pong game, where the tester says “ping” and waits for
the operating system to answer “pong”. Different methods of setting up the operating sys-
tem has been explored, using a spectrum of different methods ranging from high energy,
CPU consuming methods, to CPU friendly ones.

The results show that the results improve by increasing the amount of CPU time used.
This is in line with expectations. It also shows that Ubuntu Mate is not suitable for being a
real time operating system, as its responses come at non-deterministic times, often being
very late. Another type of test shows how the tester can be used to calculate the time it
takes between to points in code, but the results here show that there is some overhead
such that results need to be calculated relative to a base-case. The project has shown that
the tester made by Diaa works and could be used to classify/test operating systems for real

time properties.

iv of 51

Sammendrag

En undergruppe av operativsystemer kalles sanntids-operativsystemer. Mens generelle
operativsystemer som Windows eller OSX ikke kan garantere noe om nar en prosess far
kjore, kan et sanntids-operativsystem gjore dette. De blir brukt hvor systemer hvor kvaliteten
pa resultater fra operativsystemet ikke bare er definert av dets korrekthet, men ogsa av
tiden det ankommer. Disse typen systemer blir kalt sanntidssystemer, og kan bli delt opp i
myk, hard og streng. Hvis en operativsystemet bommer pa en frist i et mykt system mister
resultatet gradvis verdien sin. I et hardt system gér verdien umiddelbart til 0. Et eksempel
her er dersom et bilde i en videostrom kommer etter de neste bildene alt har kommet s&
er det verdilpst. Strenge systemer er harde systemer hvor det & bomme pa fristen leder til
katastrofe, slik som for eksempel atomreaktorer eller medisinske aparater.

Dette prosjektet utforsker muligheten til 4 teste et operativsystem for disse typene krav.
Det gjor sa ved & bruke en tester utviklet av Jadaan Diaa[10] pA NTNU i2015. Systemet som
blir testet er en Raspberry Pi 3 med Ubuntu Mate som operativsystem. @nsket om & bruke
Ubuntu Mate kommer fra den kraftige beregningskraften man fér for lite penger, og dens
enkelhet med tanke pé tilkoblingsmuligheter for annet utstyr. Disse testene blir utfort
som elektronisk ping-pong, hvor testeren sier “ping” og venter pa at operativsystemet skal
svare “pong”. Forskjellige metoder for a sette opp operativsystemet til & respondere pa
har blitt utforsket, giennom bruk av forskjellige metoder varierende fra metoder med hoyt
energiforbruk, til CPU-vennlige metoder.

Resultatene viser at resultatene fra testene blir bedre av & bruke mer CPU og energi.
Dette er i trdd med forventningene. De viser ogsa at Ubuntu Mate ikke er passelig som
et sanntids operativsystem etter som responsene er for uforutsigbare og ofte veldig trege.
En annen type test viser hvordan testeren ogsa kan bli brukt til & kalkluere tiden det tar
mellom to punkter i koden, men resultatet viser ogsa at det er en del overhead som gjor
at resultatet er nedt til 4 kalkuleres relativt til et base-niva. Prosjektet har vist at testeren
laget av Diaa virker og kan bli brukt til 4 klasifisere/teste operativsystemer for sanntid-

segenskaper.

v of 51

Table of Contents

Preface i
Acknowledgment L e iii
Summary e e e e e e e e e e e iv
Sammendrag e e e e \%
1 Introduction 2
1.1 Motivation e e e e e e 2
1.2 Previouswork 3
1.3 Thisproject e 3
2 System on Chip 4
2.1 FPGA . . o 5
2.2 MCU . . e 6
2.3 SUT . o 6
24 LogFiles e 6
3 Project setup 8
3.1 RaspberryPi e 8
3.2 Operatin@ SySteImn o v i i i e e e e e e e e e e e e 10
3.3 Software 11
4 Datalogging 15

vi of 51

4.1 Selftest
4.2 Multiplethreads
43 Multi-core
44 Mutex e

5 Response Testing

51 Methods
5.1.1 BigWhile
512 Threaded

5.1.3 Interrupt

6 Results of response time testing

6.1 Polling
6.1.1 Samecore
6.1.2 Multiplecores
6.1.3 HighPriority

6.2 Interrupt

6.3 KybOS.

7 Discussion

7.1 Process
72 Results e
73 FutureWork

7.4 Concludingremarks

A Acronyms

B Code

B.1 FortestingtheOS

B.2 Foranalyzing.rtsfiles

Bibliography

31

................ 31
................ 33
................ 34
................ 35

36

38

................ 38
................ 45

50

1 of 51

Chapter

Introduction

1.1 Motivation

Operating systems(OSs) are an often overlooked part of everyday life in 2016. Most know
about the really big ones, Windows, OS X, iOS and Android, and Linux. But these does
not cover every system in the modern world. Space shuttles, remote controls and micro
wave ovens does not necessarily use any of these. These systems have requirements that
in some way the big OSes can not deliver. The correctness of these systems, that is if it
works as intended or not, is very much dependent on the OSs not just giving the right
outputs, but also the time at which they arrive. We say that these kind of systems have
Real time demands and call the operating systems that can meet these demands for Real
time systems(RTS).[8] These kind of OSs are all around us, but are more often than not
embedded inside a system with no standard user interface.

When developing these kinds of systems it is important to verify its behaviour, both in
normal and in worst case scenarios. We do not want the engine of our airplane to slow
down just because the OS has a lot to do at the moment serving video for the passengers.
In a 'normal’ OS, like Windows 10, the behaviour of slowing down is normal and accept-
able at times. The OS can tell a process 'Sorry, you just have to wait, even though it really
needs to get it done now. For a RTS, the non determinism in task completion is not ac-

ceptable. Therefore we need a way to test it so we can guarantee it. This needs to be done

2 of 51

by a specialised tester that can measure the timings of the system. The data can then be

analysed and we could find if it meets our demands and specifications.

1.2 Previous work

Since we want to interfere with the system under test as little as possible introducing time
management code directly in to its code is not desirable. It is much better to use an ex-
ternal device which can handle the time management, and just induce tiny pieces of code
in to the system. The kind of equipment needed to test real time systems this way exists
in the form of logic/PIC-analysers, but they are mostly specialised for a specific type of
system and are expensive. The desire for a more universal system for testing, that is also
cheap, lead to a master thesis here at NUTS in 2015. In his thesis, Jaadan Diaa created a
system on chip with the capability to do these kinds of test using only GPIO-pins which
most microcontrollers have[10]. His system came in costing just under €50, which meat
the goal of the project. Diaas work is the basis of which this project is built on. His the-
sis was built on top of Kyrre Gonsholts work of implementing a time management unit
in Verilog for using on a FPGA[9]. Kyrres solution sadly did not work when transferred to
hardware. Diaa managed to find the error and transfer it to a FPGA and build the rest of

the system around it.

1.3 This project

The task of this project is to explore how we can use a real-time tester to test operating
systems and say something about their real-time capabilities. The tester in use will be the
one created by Diaa, and his work will lay the basics. The goal is to look at different ways
of implementing respond-programs on the system under test, compare their results and

explain why the different methods used are better than others.

3 of 51

Chapter

System on Chip

Figure 2.1: A picture of the tester .

The board in figure 2.1 is the board created by Diaa and will be referred to as 'the tester’
in this report. In figure 2.2 we can see the different parts of the system. The PC controls

the tester and is connected through a USB cable. Internally the MCU is communicating

4 of 51

with the SD card by SPI, to communicate with the FPGA UART is used and USB is going to

the PC.
Tester
SUT -
FPGA
| SD
Atmega
PC
Figure 2.2: An overview of the systems modules.
2.1 FPGA

The FPGA is the core of the system. On this chip is the TMU IP of Gonsholt with slight
modifications made by Diaa. The FPGA mounted is made by Altera and is of type Cyclone
IVEP4CE15E22. The main reason this was chose was the low price of 23 Euro and it having
just enough logic elements and memory while still being reasonably fast. Choosing this
came with the drawback of having to add a soft core and hoping that the system, which

was developed for a hard code, would still work.

5 of 51

2.2 MCU

For communication to a PC the tester need a chip between the PC and the FPGA, due to the
PC most likely being much faster than the NIOS processor on the FPGA. A MCU handles
the task of accessing the SD card and talking to the PC through USB. An Atmega32u4 MCU
from Atmel is used. To access the USB-functionality in it an open source library called
LUFA is used. The software loaded on to the MCU is simulating a COM port that the PC
can connect to. This makes it simple to send commands to and from the tester, as they are

simply ASCII characters.

2.3 SUT

The system under test is connected through ports on the side of the tester. There are three

ports which it can connect to.

Table 2.1: The pins for connecting a system to be tested
| Port | PINS
P1 INTA | INTB | INTC | INTD
P3 | ACKA | ACKB | ACKC | ACKD
P4 DO D1 D2 D3 D4 | D5 | D6 | R/'W

Port P1 is an output from the tester while the other two are inputs. For an interrupt-
acknowledgement test P1 and P2 are used. P4 is used for the system under test to trigger
logging when it wants to instead of the tester controlling it as it is with the former method.
It does this by putting a label on the data pins then flashing the R/W. It is important that P3,
the ACK-port, is driven low when not active. Leaving this floating will make the interrupt

pins not trigger, as ACK is prioritised over INT.

2.4 LogFiles

The output of the tester is lines upon lines of binary code which the software pulls in to a

text file (even though the ending .rts was used it is still just plain text). To make sense of

6 of 51

the data we first have to look at what all the bits and bytes mean. Each line of data is 64 bits
long and should be split up in to pieces the way it is shown in table 2.2 to make interpret

the data correctly.

Table 2.2: Formatting of data line from tester

StartBit | EndBit | Length
Start of Frame 0 3 4
Data Type 4 5 2
Active Interrupts | 6 9 4
Active ACK 10 13 4
Data 14 20 7
Timestamp 21 63 43

7 of 51

Chapter

Project setup

3.1 Raspberry Pi

Raspberry Pi is a series of mini-PCs created by the Raspberry Pi Foundation in England.
Their goal is to make a cheap, power efficient, modular PC for usage in education and de-
veloping countries. It quickly got a huge following with fans of electronics due to its low
cost, Linux operating system and good options of connecting peripherals. By February
2016, over 8 million units have been sold [1]. The models all share a number of GPIO(General
Purpose Input-Output)-pins, USB-ports, Ethernet and memory card. The first iterations
used a standard SD-card which over the generations have been replaced by the smaller

microSD-card. This card is used as a system disk and contains the operating system.

Table 3.1: Comparison of the Raspberry Pis [2]

Type CpPU Clock Frequency Price Ram New from previous version
Model B ARMv6 700MHz $30 512MB

Model2 ARMvV7 900MHz $40 1GB 4USB

Model 3 ARM Cortex-A53 1.2GHz $40 1GB WiFi og Bluetooth

The Raspberry Pi has 26 pins which can be seen in figure 3.1. 9 of them are power
pins, 5 ground (0V), 2x3.3V and 2x5V. The 17 left over are GPIO-pins. Some of them can be
used for specialised operations such as I12C or SPI-interface while others are only used as

programmable pins. Listed in the figure are the different ways one can count the pins. The

8 of 51

P1: The Main GPIO connector
WiringPi Pin | BCM GPIO Name | Header | Name | BCM GPIO | WiringPi Pin |
3.3v 1(2 5v
B8 Rv1:0 - Rv2:2 3|4 5v
9 Rv1:1 - Rv2:3 5(86 Ov
7 4 GPIO7 718 14 15
Qv 9]10 15 16
0 17 GPICO 1112 GPIO1 18 1
2 Rv1:21 - Rv2:27 | GPlO2 13 (14 Ov
3 22 GPIO3 15 (16 GPIO4 23 4
3.3v 17 | 18 GPIO5 24 5
12 10 MOSI 19 [20 Oov
13 9 MISO 21 [22 GPIO6 25 [
14 11 SCLK 23 [24 CED 8 10
Ov 25 | 26 CE1 7 11
[WiringPi Pin | BCM GPIO [Name [Header [Name [BCM GPIO | WiringPi Pin |

Figure 3.1: Pin nummerering

innermost is the natural counting method. The next is the BroadCom chip numbering,

referencing the actual pin values on the BroadCom chip. The last one is the numbers used

by the wiringPi module included on Raspberry Pi operating systems for interfacing with

the GPIO-pins. All pins inn this project will refer to the wiringPi-numbers.

9 of 51

Figure 3.2: Raspberry Pi with the tester. The pins used are noted in Appendix B.1

3.2 Operating system

Most available operating systems for the Raspberry Pi are based on a form of Linux. Linux
is used by many enthusiasts, and the choice to provide versions for Raspberry Pi has a
lot of the honor for the great position the product is at today. The group behind it have
made their own OS, called Raspbian, which is the only official operating system. This does
not mean that they do not support others. They provide easy links and methods of getting
operating systems made by 3rd parties, emphasising their willingness to help make a more
open community. In this project Ubuntu Mate was used. This is a lightweight version
of Ubuntu, which is the most adapted version of Linux today. The Mate-part of it is the
desktop, simplifying it to make it run on weaker units, such as the Raspberry Pi. This
results in a known environment for someone who is used to Ubuntu, while not being too
slow on the Raspberry Pi. The requirements are Pentium 3 750Mhz, 8GB SD and 512MBs
of ram. These are all well inn the range of the Raspberry Pi 3. All operating systems can be

downloaded from their website [4].

10 of 51

3.3 Software

The graphical desktop of Ubuntu Mate is fully functional, but it runs on a low resolution
and it feels slow on handling inputs. Therefore it was desirable to find a method to control
and write files to the Raspberry Pi without using the graphical desktop. The solution was
found using SSH for command line interface and SCP(based on SSH) for file management.
As my main computer is running Windows, I looked for programs that could connect using
these protocols. The program that was chosen was WinSCP[7]. This program connects to
the remote target and gives a graphical representation of its file system as if it was a local
folder, as can bee seen in figure 3.4. The program features a simple mode to share the SSH-

session with PuTTY, a SSH-client for Windows. The PuTTY-window simulates the terminal

window from Linux, as is shown in figure 3.3

Figure 3.3: PuTTY simulates a terminal window known from the Unix world

11 of 51

RTT _Software - @ T

Shome/murstad/Desktop/RTT_Software

Mawvn * Sterrelse
el
it

|j .gitignore 1KE
*+ main.cpp & KB
| | main.o 322 KB
| | Makefile 1KB
| | README.md 1KB
[] test_sw 108 KB

Figure 3.4: The file system of the Raspberry Pi as viewed from WinSCP

One of the best things about WinSCP is that it is very customisable in terms of how it
manages the remote files. If one of the files is opened, it creates a temporary file that the
user can work on. Every time it is saved, it is transferred to the Raspberry Pi. It features
methods to select which program each type of files should be opened with as seen in 3.5.

This makes it easy to work with and one is able to use its favourite editor for each type of

file. In figure 3.6

12 of 51

M:iljﬁ Editor innstilling
i~ Grensesnitt
Vindu Editor Maske Tekst |~
{ Commandeh Texmaker = tex Ja
Utforsker Tilknyttet applikasjon = pdf
i Sprdk Tilknyttet applikasjon * doc* =
Paneler Deveny s Ja
Ekstern Tilkryttet applikasion *h
- Lokal Tilknyttet applikasjon *.cpp
Editarer Trtarn aditar Gl Y
Overfer
--Dra og slipp [L
Bakgrunn
‘... Utholdenhet EEo Ei
Mettverk
Sikkerhet Innstilinger for intern editor
Logging [T el lange linjer
Integrasjon
‘... Applikasjoner Tabulator starrelse: Consolas, 11 pt
Kommandoer | 8 | The Quick Brown Fox Jumps
Lagring
Oppdateringer Standard koding: A 5 c D
1252 (anst-latinsk) v| 4 5 3 4
| 0K | | Avbryt | | Hjelp |

Figure 3.5: The settings screen for WinSCP. It features filters for which application should
open each type of file.

13 of 51

e Edit View) Build Debug Team
G - i JA 9 - Debug

main.cpp ¥
%] Miscellan

inn, ou

pinMode(
pinMode(

ignal()
digitalWrite(out, HIGI
digitalWrite(out, LOW

read_write;
data_tab[7]

digitalWrite(RL, LOW
pullupDnControl (R, PUD_DOWN);

Error List
Entir
Description
nreferenced local variable

unreferenced local variable

Window Help
P Local Windows Debugger ~

Pin(int inn, int out)

(@ 0Messages | Build + IntelliSense
File
main.cpp

main.cpp

Figure 3.6: Visual Studio Community 2015 is used as the main editor for the C++ files

14 of 51

Chapter

Data logging

The tester can be told to do a log externally by toggling the R/W-pin of the system. This
makes the tester log an event, and will save the state of pins D0-6 as a string of bits. This
is referred to as a “Tag”. This method can be used to time the execution of a critical part
of the code, the time it takes for the operating system to switch between threads or more
general logging of events in code. This makes the tester a product that can be used in many
different applications, not just as a response tester. To reliably time code, it is needed to
find how much time the testing itself takes, as there is some overhead. The operations

needed to log a given tag is given below:
1. Convert the tag to binary form

2. Iterate through the pins, setting them high or low dependant on the bit value in the

tag
3. Toggle the R/W-pin to signal that a log should be performed
4. Make sure that the operating system can schedule other processes

This is not a non trivial amount of code that needs to be run for a logging. If it is known

that the system only uses one tag, it can be sped up by skipping step 1 and 2.

15 of 51

4.1 Selftest

By running code performing the task above, the results are given as below.4.1.:

Table 4.1: Self test of data logging
Type Tag Timestamp
11 0000001 22
11 0000001 53
11 0000001 83

This test is performed with a scaling of 3 and a clock cycle of 20ns, giving the time
used as (53 —23) = 20ns * 3 = 1800ns for one logging. The thread is ran with a standard
priority, and results can such be improved by raising its priority. Doing this yields a result
of 27 * 3 % 20ns = 1620ns, a minor improvement. This shows that most of the time used is

used by the code itself, not by the scheduling.

4.2 Multiple threads

When laying out multiple threads on the same core, it is desired that they should all get to
do their job, not blocking the other tasks. This switch between threads is not trivial, as a
context switch has to be performed, saving the state of the thread and resuming another.
These switches are done all the time by modern CPUs as they want to simulate work being
done simultaneously. By adding a couple of threads that does the same as the self test
above this switching can be observed. The threads uses individual tags, and has a tag
number equal to two to the power of n (such that thread 0 uses tag 1, thread 1 uses 10 and

so on). The code is included in Appendix B.1.

Table 4.2: Self test of data logging on the same core
Type Tag Timestamp
11 0000100 22119
11 0000010 22162
11 0000001 22205
11 0001000 22248
11 0000100 22291

16 of 51

From table 4.2 it is observed that the time between two log-points has gone up. A log
is now performed every 43 * 3 * 20 = 2580ns. But this is between two logs, not necessarily
between to logs with the same label. As the table shows, two logs with the same tag now
has a (22291 —22119) * 3 % 20ns = 10320ns. Since the scheduler is set to round-robin, the
tasks are all executed the same amount of times. The extra execution time does not only
come from the extra amount of threads, as there are 3 new threads. Given the time found
in 4.1, this should amount to 32 * 3 = 94 extra cycles and the results give 172 — 32 = 140
extra cycles. This can only be because the operating system now has a more difficult time

scheduling and is using more time swapping between the threads.

4.3 Multi-core

To improve the results from the previous test it is possible to lay the different threads out
on different cores. The Raspberry Pi has 4 cores, which allows us to run 4 threads on their
own core simulating them running alone. Now concurrency is not only simulated. The
threads are now executed on different physical cores at the same time. This could make
the results more non deterministic as there are other threads that need to run in order for
the Raspberry Pi to function correctly. Previously these threads could be switch to one of
the cores that wasn’t busy, but now they are all busy. This means that even though the
threads want to run continuously, the operating system has to chose one of them to be
scheduled later such that an important processes gets the chance to run. This situation
leads to not all four threads getting to run the same amount of times, as some might have

to fight more for CPU-time on the core.

Table 4.3: Excerpt from test data for threads on multiple cores
Type Tag Timestamp
11 0000000 5237
11 0000001 5242
11 0000110 5251

This data shows a challenge that did not exist when all the threads were ran on the

same core. In table 4.3 there are two logs of special interest. The Tags 0000000 and 0000110

17 of 51

are not tags that any of the threads use, so the question then arises of who has written
them. The case here is that two(or more) of the threads on their own core has been chang-
ing the states of the data-pins at the same time, yielding a undefined result. From the two
first lines it looks like there is only 5 cycles between the logs, a time short enough that
process 2 could have been under way of setting its data up on the pins while process 1 is

triggering the R/W-pin.

4.4 Mutex

The part of the code that sets the pins is called a critical section, and has to be guarded
against multiple processes entering at the same time. This is solved by adding a mutex as
a guard. A mutex is a lock that only can be opened by the one who locks it. Other threads
has to wait until it is unlocked before they can attempt locking it themselves. If N threads
are all waiting to lock a mutex, it is not given who gets to lock it when it is unlocked, it is
first come first serve. This means that there is still the same property of not knowing how
many times one of the tests run, but now it is guaranteed that only legal tags are written
to the data-pins. The price to pay for this is the extra overhead of working with a mutex-
object. By reducing the amount of threads back to 1 we can compare the timings with
mutex against the timings of the self test. The test in table 4.4 show that it uses 2 cycles

more, which amounts to 120ns extra for the mutex-object.

Table 4.4: Self test with mutex
Type Tag Timestamp

11 0000001 32
11 0000001 ©64
11 0000001 96
11 0000001 128

18 of 51

Chapter

Response Testing

The purpose of this test is to see how fast we can get a response from the operating sys-
tem, and how reliably we can tell when the response is coming. This information is useful
when deciding the worst case and average case responses of a system, and telling some-
thing about its real time properties. The method used is the interrupt to acknowledgement
method as seen in Figure 5.1. The result is the time it takes from the tester to put out a sig-

nal to it registering a result.

SUT Tester

t t

Interrupt

Ack

L)

Figure 5.1: Interrupt to Acknowledgement

19 of 51

5.1 Methods

For the system under test, there are several different ways we can set it up to respond to
the signals. The trade off is often between speed and usage of CPU. If it is known that
the operating system is only going to be used for these actions, maxing out the CPU at
all times will give the best results. But this will also use a lot more power and hence also
produce more heat. These properties can be dealt with in certain situations, but not every.
Therefore it is crucial that we also have some methods that does not hog the CPU, only

working when necessary or at some interval.

5.1.1 BigWhile

The "Big While"-method is the first one to be looked at, and consists of one loop. This
method includes hogging one core of the CPU at all time, continuously checking if there

are things to be done. For a test with two pins, the process is as follows:
1. Check if input pin A is high
2. Ifitwas high, answer the tester by setting response pin A high
3. Check if input pin B is high
4. Ifit was high, answer the tester by setting response pin B high
5. Go back to top and check again

Observing this method leaves us with a couple of notes. For one, since we do not have any
sleeps or are yielding in any way, we run as often as the scheduler allows us. The response
time of a signal is also highly dependant on where in the code we currently are. If the
signal goes high just before we check it, the result will be very good. If it goes high just
after we check it, it will not be answered before all the other pins are checked and the code
executes the next iteration of the loop. This method will always be executed on one core,
and since the Raspberry Pie has 4 cores, it will never lock completely up as the operating

system can move other processes to other cores.

20 of 51

5.1.2 Threaded

The Big While has the problem of being non deterministic in its results since the response
is dependant on where in the code it currently is. This can be improved upon by splitting
up the work in to different threads and laying them out on different cores. By doing this
and not yielding, the CPU will be maxed out on all cores at all time, leaving other pro-
cesses with few chances to run, which might be problematic. By letting each thread yield
or sleep, the other processes can run from time to time. This will result in a system that
actually can be used for anything else, but will make the responses be dependant on if the
core is currently running the thread or something else, and when it eventually will sched-
ule in the thread again. By managing the priority of the threads the result can be even
further improved, but this will make other threads not able to run and hence locking up

the system.
1. Spawn N threads (where N is the amount of pins in use)
2. Assign each of them with a process that responds to the corresponding pin
3. Bind them to a core
4. Wait until testing is done

5. Signal all the threads that they should stop

21 of 51

5.1.3 Interrupt

Both the previously mentioned methods uses all of the CPU (one core or all 4). With inter-
rupts it can be managed so that in userland, the code uses almost none of the CPU. This is
the interrupt-method. Interrupts on Linux is something reserved for the kernel. When an
interrupt is triggered, the kernel puts away what it was doing, handles the interrupt, then
resumes its work. This method consists of the kernel triggering a sleeping thread when it
receives an interrupt. All we need to do from user space is to register with the kernel what

thread is to be executed when an interrupt on a specific pin is triggered.

1. Spawn N threads (where N is the amount of pins in use)
2. Register them with the kernel and tell what interrupt to look for
3. Wait until testing is done

4. Signal all the threads that they should stop

22 of 51

Chapter

Results of response time testing

The basic big-while. The Pins class is shown in appendix B.1

void bigWhile () {
Pins system_pins;
while (1) {
for (int i = 0; i < 4; ++i) {
if (digitalRead (system_pins[i].inn)) {

system_pins[i].signal ();

}
std :: this_thread :: sleep_for (std::chrono:: microseconds (THREAD_SLEEP)) ;

6.1 Polling

Putting all the threads on the same core as suggested in section 5.1.2 gives the code shown
bellow. Running this on multiple cores uses 100% of all the cores, resulting slow ssh-
processing. By setting the priority higher than normal, ssh functionality was turned com-
pletely off. This removes all possibilities of controlling the Raspberry PI over ssh, and such
a hard reset is needed (which Ubuntu does not like as discussed in 7.1). Since the schedul-

ing used was round robin, giving this thread a higher priority than the other threads, the

23 of 51

yield in the function does not matter as it is scheduled in again immediately. The results

in this section is generated with Microsoft Excels histogram-function.

void test_thread (Pin p) {

while (barrier) {}
static int thread_nr = 0;
//set_cpu (thread_nr); //use this to put each thread on new core
thread_nr = (thread_nr + 1) % 4;
while (running) {

std :: this_thread :: yield ();

if (digitalRead (p.inn))

{

p-signal ();

void threaded () {

Pins pinner;

std::vector<std ::thread> threads;

for (int i = 0; i <4; ++i)
threads.push_back(std::thread(test_thread, pinner[i]));

int prio = 10;

// for (auto& i : threads)
//set_thread_priority (i, prio);

barrier = false;

char a;

std::cin >> a; //press any key to exit

running = false;

for (int i = 0; i < 4; ++1)

threads[i].join ();

24 of 51

6.1.1 Same core

Running the test on one core with normal priority 50 times and compiling together the
results yields the graph shown in 6.1. From these numbers we can see that the operating
system sometimes uses a long time to answer. This comes from another thread running,
and the correct thread not being able to run again for some while. The CPU usage for this
is one core on 100% and the rest unaffected, which means that normal system operations

can be maintained.

Threaded one core

% of tests

Responstime in nanoseconds

Figure 6.1: Test results on one core, multithreaded

25 of 51

6.1.2 Multiple cores

Running the test on multiple cores with normal priority 50 times and compiling together
the results yields the graph shown in 6.2. This test uses 100% of all the cores, and yields a
better result than the previous test. Still we can observe that the system sometimes fails to
answer in time and that the system is not consistently responding in the same time-frame.
This kind of result would be more acceptable for a soft real time system, as few responses
are really late, but there are some. In a video-example this would mean that some frames

are dropped (which is normal for online streaming).

Threaded multicore

% of tests

1000 2000 3000 4000 5000 5000 7000 8000 s000 10000 11000 12000 13000 1000 15000

Responstime in nanoseconds

Figure 6.2: Test results on four cores

26 of 51

6.1.3 High Priority

Running the test on multiple cores with high priority 50 times and compiling together
the results yields the graph shown in 6.3. This test uses 100% of all the cores, and locks
up the system completely, requiring a hard reset. We can observe that this made all the
difference. Now, since the threads are running at a higher priority, they do not have to
compete with as many other tasks for getting time to run on the CPU. We still see that
there are cases where the response time is large, since there are some system operations
that have a higher priority than the threads. This result is the best we can get out of Ubuntu

on a Raspberry P], as it is not a real time operating system.

Threaded multicore high prio

% of tests

1000 2000 3000 4000 5000 5000 7000 8000 000 0000 11000

Responstime in nanoseconds

Figure 6.3: Test results on four cores

27 of 51

6.2 Interrupt

The setup for this test is listet below. WiringPI makes it easy to register the different tasks
for the different pins, then setitin aloop that does nothing (and uses little CPU). This code
runs with a CPU usage of 0.0-0.1% on one core, making it nice on the rest of the system.

void ansA() {
digitalWrite (oA, HIGH);
digitalWrite (oA, LOW);
}
void ansB() {
digitalWrite (oB, HIGH);
digitalWrite (0B, LOW);
}
void ansC() {
digitalWrite (oC, HIGH);
digitalWrite (oC, LOW);
}
void ansD () {
digitalWrite (oD, HIGH);
digitalWrite (oD, LOW);
}
void inter_driven () {
Pins pinner;
wiringPiISR (iA, INT_EDGE_RISING, &ansA);
wiringPiISR (iB, INT_EDGE_RISING, &ansB);
wiringPilSR (iC, INT _EDGE_RISING, &ansC);
wiringPiISR (iD, INT_EDGE_RISING, &ansD);
while (1) {

std :: this_thread :: sleep_for(std::chrono:: microseconds (1));

Running the test with interrupts 50 times and compiling together the results yields the
graph shown in 6.4. From these numbers we can see that even though this method should

be fast, it is not. This might be wiringPis method of handling interrupts that fails, or it

28 of 51

might be the kernel taking a long time to pause the current thread, handle the interrupt,
then bringing back the thread that was running. Going back to wiringPis source it states:
“The function will be called when the interrupt triggers. When it is triggered, it’s cleared
in the dispatcher before calling your function, so if a subsequent interrupt fires before you
finish your handler, then it won't be missed. (However it can only track one more interrupt,
if more than one interrupt fires while one is being handled then they will be ignored) ”.[6]
This would mean that if more interrupts are triggered while one is already being handled

in the kernel, they might not be recognised until much later, which could be the source.

Interrupt

% of tests

1000 2000 3000 4000 5000 5000 7000 8000 000 10000 11000 12000 13000 1000 15000

Responstime in nanoseconds

Figure 6.4: Test results with interrupt

29 of 51

6.3 KybOS

In Eirik Wold Solngrs master thesis KybOS [11] he created his own operating system. This
gave the opportunity to work together with him and test the response time of his system.
The results are shown in 6.5. The results here were kind of surprising to the both of us, as
his OS had the code for responding directly as a module in the kernel, and had nothing else
to do. This had led me to believe that it would be far better than what could be achieved
by Ubuntu. It performed a bit better than running it multithreaded on one core in Ubuntu
(the most fare comparison as his operating system only utilised one core). The results are
better, as it hits worst-case scenarios way less frequently than Ubuntu and the average
response time is lower. Since it is interrupt-driven and in the kernel it also uses far less

CPU, making it far more power-efficient.

Kybos

% of tests

Responstime in nanoseconds

Figure 6.5: Test results on KybOS

30 of 51

Chapter 7

Discussion

7.1 Process

SD card

At the beginning of the project I got hold of the Raspberry Pi 3 and a Micro SD card. Be-
lieving it to be of no consequence, I did not go for the most expensive card, and bought
a Kingston Micro SD 16GB UHS-I U3. After installing Ubuntu on it and setting up WiFi,
installing packages and updating the included packages, it suddenly crashed. The file sys-
tem locked itself up, entering read only mode. This is done by the operating system to pro-
tect your files when it senses that there is something wrong. This read only mode includes
simple commands such as Is (list files) and cd (change directory) not being recognised as
commands, and such the system was useless. The only things that still works are the files
that happened to lay in the cache of the processor. This means that the graphical interface
would not crash, but no button would work.

The fix is to unmount the SD card, put it in on another computer running Linux, fix
the file system then reinstalling it into the Raspberry Pi. Under 10minutes later, the card
would crash again. This time I tried to format the card and reinstall the operating system,
but it happened again and again, until there was no doubt about it being the cards fault.

I had initially bought two of them as I intended to have multiple operating systems, so I

31 of 51

tried the other one but still the same issues appeared. Searching online yielded that there
is a page where user reports on compatibility between SD cards and Raspberry Pi [5]. This
page has varying reports from users, with some stating that it is working, while others have
not been that lucky. Getting hold of a SD card from SanDisk (same speed and capacity) did

the trick, and it has not crashed since.

Ubuntu Mate

Choosing Ubuntu Mate as the operating system was a decision I started regretting after a
while. As described in section 3, I had the Raspberry Pi connected to WiFi and interfaced
with it over SCP and SSH. This meant that if those services were not running, I had to
connect a keyboard and a screen to fix it. Unluckily, Ubuntu Mate does not like hard resets
by pulling out the power, and the Raspberry Pi has no power off button. So to turn it
off gently, I would have to SSH in and run a command that turns it off. But when the
SSH/desktop was not responding (such as when running a lot of high priority tasks), the
only way to turn it off was to pull out the power adapter.

By doing this, Ubuntu Mate goes to an emergency mode, as it was not shut down cor-
rectly. At startup it gives a message that the file system might be corrupted and keyboard
input is needed to decide what to do. Checking the file system requires to unmount it and
do it from another computer running Linux, so that was not desirable. It does give the op-
tion to bypass the check by entering the command “systemctl default”. This again requires
a keyboard to be connected. So each time I had to turn it off (without the opportunity to

do it via SSH) the following process had to be done:
1. Pull out the power plug
2. Take the keyboard from the computer and plug in to Raspberry Pi
3. Insert power
4. Wait 5-10sec and enter “systemctl default”

5. Take out keyboard and reenter it into the pc

32 of 51

7.2 Results

Response Time

The results as shown in chapter 6 prove that Ubuntu Mate is not suitable to be deployed as
areal time system. This is not ground breaking as it is not something it claims to be, but we
now have data that shows it. Some of the different methods we can implement the testing
has been shown, and we can see clear differences between them. It is also easy to observe
a clear trend that with more computing power comes faster responses, as we unlock more
cores and give higher priority. The handling of interrupts are a bit weak in these tests and I
am not pleased with the way they came out. In my opinion they should not have gone into
worst case scenarios as often as they did, but I do think that this is a flaw with wiringPi. On

the other hand they show that we can get some OK responses whilst using almost no CPU.

Data logging

In chapter 4 it was shown how the tester could be used for timing pieces of code, and
some factors that is needs to be thought about when doing such tasks. The results for
the self-test was satisfactory, with a clean and consistent pattern appearing. In hindsight
I believe that the result could have been even better had i compiled the C++ code with a
more aggressive optimising policy, such as -O3[3]. This functionality of the tester gives it
another dimension to just being a response tester. It could be useful in cases where code
is running on a remote target with no way of logging timings on the target. There is some
overhead in setting all the correct pins (can be improved if it is known that only one tag is
written at all times), such that it is not always better to use this method than writing to a

timestamp to a local file.

33 of 51

7.3 Future Work

Going further the most interesting thing would be to compile an own version of Linux with
real time patch enabled and all unnecessary services removed, as to make the hardware
perform as good as it possibly can and compare this to the results in this thesis. For the

tester, a couple of ideas have emerged

Transfer speed

The tester uses about 15 seconds to transfer one log file of 512 test lines to the computer.
This means that doing a series of tests takes a long time, and it feels unnecessarily slow. In
my tests I did a series of 50 tests, which ended up taking 12.5 minutes just to transfer the
files. Adding the time it takes to perform the test (1-2sec each) + extra overhead, it takes

about 14 minutes to do them.

Continuously testing

Following the previous point, it would be handy to provide a way of continuously testing
and showing the results as they come in. This would require changes on the tester as it
now does a test, saves it locally, then transfers it to the computer if needed. It can not do it

at the same time, which would be needed if this functionality would be implemented.

Reworking the PCB

As the PCB is now, it still has debugging pins and hardware, buttons and LEDs that are not

in use. Shaving these off would make it possible to deploy the system on a smaller PCB.

34 of 51

7.4 Concluding remarks

This project has shown how to utilise the tester to perform two different types of tests. One
was the data-logging, the other the interrupt to acceptance test. The results for Ubuntu
Mate running on a Raspberry Pi 3 were in line with what was expected. Different methods
of programing the Raspberry Pi to respond has been shown, and their differences theo-
rised and proven in the results. The result that is not completely as it should have been
is the result for interrupts, which in my head should have performed better than it did.
The tester works as expected, and has shown that it can do what it set out to do. Overall I

consider the project a success, having gotten the results that I was looking for.

35 of 51

Appendix

Acronyms

ACK Accept signal or message

ASCII American Standard Code for Information Interchange
COM Communication

Config Configuration

CPU Central Processing Unit

DUT Device Under Test

FPGA Field Programmable Gate Array

GUI Graphical User Interface

HAT Hardware Attached on Top

LED Light Emitting Diode

LUFA Lightweight USB Framework for AVR
MCU Micro Controller unit

OS Operating System

36 of 51

PC Personal Computer

RPi Raspberry Pie

RTS Reak Time System

SoC System on Chip

SPI Serial Peripheral Interface
SUT System Under Test

UI User Interface

USB Universal Serial Bus

37 of 51

Appendix

Code

B.1 For testing the OS

#include

#include

#include
#include
#include
#include
#include
#include

#include

<iostream>

<wiringPi.h> // Include WiringPi library!

<vector>
<thread>
<mutex>
<atomic>
<bitset>
<cmath>

<iostream>

using namespace std;

// Pin number declarations. Use WiringPi chip pin

#define
#define
#define
#define

#define
#define

#define

iA 8
iB 9
iC 7
iD 0
oA 15

oB 16
oC 1

numbers.

38 of 51

#define oD 4

#define RW 2

#define SIGNAL SLEEP 1
#define PRIO_DIFF 1
#define THREAD SLEEP 1 //micros

struct Pin {

int inn, out;

Pin(int inn, int out):inn(inn),out(out){
pinMode (inn, INPUT);
pinMode (out, OUTPUT);

}

void signal () {
digitalWrite (out, HIGH);
digitalWrite (out, LOW);

class Pins {
std :: vector<Pin> gpio_pins;
Pin read_write;
const int data_tab[7] = { 3,5,6,10,11,12,13
public:
Pins (): read_write (RW,RW) {
digitalWrite (RW, IOW);
pullUpDnControl (RW, PUD DOWN) ;

gpio_pins.push_back(Pin(iA, 0A));
gpio_pins.push_back(Pin(iB, 0B));
gpio_pins.push_back(Pin (iC, oC));
gpio_pins.push_back(Pin (iD, oD));
for (auto& pin : gpio_pins) {
pinMode (pin.inn, INPUT);

b3

39 of 51

pinMode (pin.out, OUIPUT);

pullUpDnControl (pin.inn, PUD DOWN); //PUD_OFF;PUD DOWN; PUD UP
pullUpDnControl (pin.out, PUD DOWN);

digitalWrite (pin.inn, LOW);

digitalWrite (pin.out, IOW);

Pin operator[](int n) {

return gpio_pins[n];

}

void writeData (uint8_t word) {
auto t = std::bitset<7>(word). to_string ();
for (int i = 0; i < 7; i++) {

digitalWrite (data_tab[i], t[i] == "1’ ? HIGH : LOW);

}

read_write.signal ();

void bigWhile () {
Pins system_pins;
while (1) {
for (int i = 0; i < 4; ++i) {
if (digitalRead (system_pins[i].inn)) {

system_pins[i].signal ();

}

std :: this_thread :: sleep_for (std :: chrono:: microseconds (THREAD_SLEEP)) ;

40 of 51

void set_thread_priority(std::thread& trad,int prio) f{
sched_param sch;
int policy=SCHED_ RR;
auto thread_ = trad.native_handle ();
pthread_getschedparam (thread_, &policy, &sch);
sch.sched_priority = prio;

pthread_setschedparam (thread_, policy, &sch);

void set_cpu(int cpu_core) {
cpu_set_t mask;

int status;

CPU_ZERO(&mask) ;
CPU_SET (cpu_core, &mask);
status = sched_setaffinity (0, sizeof (mask), &mask);

static volatile bool running;

static volatile bool barrier;

void test_thread (Pin p) {
while (barrier) {}
static int thread_nr = 0;
//set_cpu (thread_nr); //use this to put each thread on new core
thread_nr = (thread_nr + 1) % 4;
while (running) {

std :: this_thread :: yield ();

41 of 51

if (digitalRead (p.inn))
{
p-signal ();

void threaded () {

Pins pinner;

std :: vector<std :: thread> threads;

for (int i = 0; i <4; ++i)
threads.push_back(std:: thread(test_thread, pinner[i]));

int prio = 10;

// for (auto& i : threads)
//set_thread_priority (i, prio);

barrier = false;

char a;

std::cin >> a; //press any key to exit

running = false;

for (int i = 0; i < 4; ++1i)

threads[i].join ();

void ansA() {
digitalWrite (oA, HIGH);
digitalWrite (oA, IOW);

}

void ansB() {
digitalWrite (oB, HIGH);
digitalWrite (0B, LOW);

}

void ansC() {
digitalWrite (oC, HIGH);
digitalWrite (oC, LOW);

42 of 51

void ansD () {
digitalWrite (oD, HIGH);
digitalWrite (oD, LOW);

}

void inter_driven () {
Pins pinner;
wiringPiISR (iA, INT_EDGE_RISING, &ansA);
wiringPiISR (iB, INT_EDGE_RISING, &ansB);
wiringPiISR (iC, INT_EDGE_RISING, &ansC);
wiringPiISR (iD, INT_EDGE_RISING, &ansD);
while (1) {

std :: this_thread :: sleep_for (std::chrono:: microseconds (1));

std :: mutex mut;

void tester (int define) {

Pins pinner;

//set_cpu (0);

while (barrier) {};

while (1) {
mut. lock ();
pinner.writeData (define);
mut. unlock ();

std :: this_thread :: yield ();

}

void noise () {
set_cpu(0);
int b =0, c = 0;

while (barrier) {};

43 of 51

while (1) {
//std :: this_thread ::yield ();

++b;
if (b == 100) {
cout << "100\n";

b = 0;

void timeSection () {

Pins p;

while (1) {
p-writeData (1);
std :: this_thread :: yield ();

void timeCode() {

std :: vector<std :: thread> threads;

for (int i = 0; i < 4; i++) {
threads.push_back(std :: thread (tester ,std::pow(2,i)));
}
barrier = false;
for (int i = 0; i < 4; ++1)

threads[i].join ();

44 of 51

int main ()
{
/] Setup stuff:
if (wiringPiSetup () < 0)
{
fprintf(stderr, "setup_failed\n");
}
running = true;
barrier = true;
bigWhile () ;
// threaded ();
/linter_driven ();
// timeCode () ;
// timeSection ();

return O0;

B.2 For analyzing .rts files

import sys

INT=1

ACK=2

FD=[3,5,9,13,20,63] #seperation points in a line
FL=16 #number of chars in a line

N_PINS=4

class dataLine ():

22

Strict—like class for holding one line of test data from the system.

]

def __init__ (self,binary):

self .b=binary

45 of 51

self.b=self.b[2:]

self.type=int (self .b[FD[0]:FD[1]],2)

self.inter_status= self.b[FD[1]:FD[2]]

self.ack_status= self.b[FD[2]:FD[3]]

self .inter_id=int(self.b[FD[3]:FD[4]],2)

self.timestamp=int(self.b[FD[4]:FD[5]],2)
def __str__(self):

non
—

return str(self.type)+" "+str(self.inter_status)+\

non
—

non
—

+str (self.ack_status)+ +str (self.timestamp)

class datafile ():
Class holding all the datalines of the test file.
It can calculate the response times of the logfile.
def __init__ (self,n):
self.lines=[0]*n
self.n=0
def addLine(self,line):
self.lines[self.n]=line
self.n+=1
def find_next_ack(self,j,inter):
for i in range(j,self.n,1):
if self.lines[i].ack_status[inter]=="1":
return i
return -1
def response_times_intAck(self):
res={0:[]1,1:[1,2:[1,3:[1}
for 1 in range (N_PINS):
prev_int=0
for i in range(self.n):
if (i==0 and self.lines[i].inter_status[l]=="1")
(self.lines[i].inter_status[l]=="1" and\

self.lines[i—1].inter_status[l]=="0"):

or\

46 of 51

pos=self.find_next_ack(i, 1)

if pos>=0:
resTime=self.lines [pos].timestamp—self.lines[i].timestamp
res[1].append(resTime)

return res

class RTTresults ():
Main class for holding info about a test.
Includes the entire test file and methods
for printing info and basic statistics.
def __init__ (self,filename):
self.filename=filename
self. fil ,self.n=self.__openFile (filename)
self .responses=self.__parse ()
def __parse(self):
df=datafile (self.n)
for linje in self. fil:
binary=bin(linje)
if int(binary([2])>0:
dl=dataLine (binary)
df.addLine (dl)

return df.response_times_intAck ()

def basicAnalyze(self):

retDict={"Max":[],"Min":[], "Avg" :[]}

for key,val in self.responses.items():
maxi=-max(val) if len(val) else 0
mini=min(val) if len(val) else 0
avg=sum(val)/len(val) if len(val) else 0
retDict ["Max"] . append (maxi)
retDict ["Min"] . append (mini)
retDict["Avg"].append (avg)

return retDict

47 of 51

def printinfo (self):

print self.responses

print self.basicAnalyze ()
def __openFile(self,filename):

file =open(filename,"r")

text=file.read (). strip ()
text=text.replace(’\n’,’’)
text=text.replace(’'\r’,’’)
n_lines= len(text)/FL #FL=chars in one line
lines=[0]*n_lines
j=0
for i in range(0,len(text),FL):
lines[j]=int(text[i:i+FL],FL)
j+=1

return lines,n_lines

def main():

if len(sys.argv)==2 and sys.argv[l][-3:]=="r1ts":
data=RTTresults (sys.argv[1])
data. printInfo ()
elif (len(sys.argv)==3 and sys.argv[l]=="folder"):

import glob
files= glob.glob(sys.argv[2]+"*.rts")
tot_data={"Max":[0] «N_PINS, "Min" : [0] *N_PINS, "Avg" : [0] * N_PINS}
fileA=open(sys.argv[2]+"\A. txt","w")
fileB=open(sys.argv[2]+"\B. txt","w")
fileC=open(sys.argv[2]+"\C. txt","w")
fileD=open(sys.argv([2]+"\D. txt","w")
for fil in files:

raw=RTTresults (fil)

for line in raw.responses|[0]:

fileA .write (str (line=20%3)+’\n’)

for line in raw.responses[1]:

48 of 51

fileB .write (str (line*20%3)+’'\n’)
for line in raw.responses[2]:
fileC.write (str (line=*20%3)+’\n’)
for line in raw.responses[3]:
fileD .write (str (line*20%3)+’\n’)
data=raw.basicAnalyze ()
for key in data:
for pin in range(N_PINS):
tot_data [key] [pin]+=data[key][pin]
for key in tot_data:
for pin in range(N_PINS):
tot_data [key] [pin]/=len(files)

print tot_data

else:
print "Please_input_a_filename"

if _name =="_main_":

main ()

49 of 51

Bibliography

(1] (2016). Blog post about the amount of sold raspberry pi. https://web.
archive.org/web/20160229072534/https://www.raspberrypi.org/blog/

raspberry-pi-3-on-sale/. [Online; accessed 25-September-2015].

[2] (2016). Comparrison of raspberry pi models. http://www.makershed.com/pages/

raspberry-pi-comparison-chart. [Online; accessed 25-September-2015].

(3] (2016). Gce optimizing options. https://gcc.gnu.org/onlinedocs/gecc/

Optimize-Options.html. [Online; accessed 18-April-2016].

(4] (2016). Raspberry pi operating systems. https://www.raspberrypi.org/
downloads/. [Online; accessed 26-February-2016].

[5] (2016). Raspberry pi sd card compatibility. http://elinux.org/RPi_SD_cards. [On-

line; accessed 6-December-2015].

[6] (2016). Reference of wiringpi. https://projects.drogon.net/raspberry-pi/

wiringpi/functions/. [Online; accessed 25-September-2015].

[7] (2016). Winscp homepage. https://winscp.net/eng/index.php. [Online; accessed
25-September-2015].

[8] Burns, A. and Wellings, A. J. (2010). Real-time systems and programming languages,
volume 2097. Addison-Wesley.

50 of 51

https://web.archive.org/web/20160229072534/https://www.raspberrypi.org/blog/raspberry-pi-3-on-sale/
https://web.archive.org/web/20160229072534/https://www.raspberrypi.org/blog/raspberry-pi-3-on-sale/
https://web.archive.org/web/20160229072534/https://www.raspberrypi.org/blog/raspberry-pi-3-on-sale/
http://www.makershed.com/pages/raspberry-pi-comparison-chart
http://www.makershed.com/pages/raspberry-pi-comparison-chart
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://www.raspberrypi.org/downloads/
https://www.raspberrypi.org/downloads/
http://elinux.org/RPi_SD_cards
https://projects.drogon.net/raspberry-pi/wiringpi/functions/
https://projects.drogon.net/raspberry-pi/wiringpi/functions/
https://winscp.net/eng/index.php

[9] Gonsholt, K. (2014). Implementing a time management unit for the or1200 processor.

Master Thesis NTNU.
[10] Jadaan, D. (2015). Fpga based real-time systems tester. Master Thesis NTNU.

[11] Solner, E. W. (2016). Kybos. Master Thesis NTNU.

51 of 51

	Preface
	Acknowledgment
	Summary
	Sammendrag
	Introduction
	Motivation
	Previous work
	This project

	System on Chip
	FPGA
	MCU
	SUT
	Log Files
	Project setup
	Raspberry Pi
	Operating system
	Software

	Data logging
	Self test
	Multiple threads
	Multi-core
	Mutex

	Response Testing
	Methods
	Big While
	Threaded
	Interrupt

	Results of response time testing
	Polling
	Same core
	Multiple cores
	High Priority

	Interrupt
	KybOS

	Discussion
	Process
	Results
	Future Work
	Concluding remarks

	Acronyms
	Code
	For testing the OS
	For analyzing .rts files
	Bibliography

