
Mitigation of Cheating Threats in Digital
BYOD exams

Thea Marie Søgaard

Master of Science in Computer Science

Supervisor: Guttorm Sindre, IDI

Department of Computer and Information Science

Submission date: June 2016

Norwegian University of Science and Technology

Abstract

Digital exams are not the most common practice in Norwegian higher education,
but it is being tested and used at several institutions. Exams are normally con-
ducted on pen and paper with limited access to resources, and it has been a chal-
lenge to make an affordable, digital adaption for this type of exams.

One approach to create this digital exam environment, is with the use of lock-
down browsers on student owned computers. At NTNU they have chosen to use
a lock-down browser called Safe Exam Browser, which is continuously being im-
proved and is widely used for digital exams.

This thesis will look into whether Safe Exam Browser sufficiently protects against
cheating during a digital Bring-Your-Own-Device exam. It will be a technical
evaluation of Safe Exam Browser as a software, that ensures a secured exam envi-
ronment and helps mitigate cheating behaviors. The vulnerabilities of Safe Exam
Browser is discovered, evaluated and tested with penetration testing.

Safe Exam Browser does have vulnerabilities, and some of them are presented
in this thesis. It is open source and for exams conducted at NTNU, it is installed
on the examinees’ personal computers, and it will always be possible that someone
choose to use a corrupted version to be able to cheat. There are different mecha-
nisms in this software, to detect and deny access to exams, if the lock-down browser
has been modified. These mechanisms make it harder, but not impossible, to make
and use a corrupted version.

Sammendrag

Digital eksamen i Norge er ikke like utbredt som eksamen med pen og papir, for
høyere utdanning, men det brukes og testes ulike løsninger rundt omkring. Ek-
samen foreg̊ar normalt med pen og papir uten tilgang til andre hjelpemidler. Det
er utfordrende å finne rimelige, digitale løsninger som kan begrense ressurstilgan-
gen p̊a samme m̊ate som ved en slik papir eksamen.

En av de eksisterende løsningene er å bruke en nettleser som l̊aser kandidatens
datamaskin (lock-down browsers). Ved NTNU har de valgt å bruke en slik net-
tleser, kallt ’Safe Exam Browser’, som fortsatt blir forbedret og brukes i mange
forskjellige digitale eksamensløsninger.

Denne masteren vil se p̊a om Safe Exam Browser kan beskytte mot fusk p̊a en
tilfredsstillende m̊ate, under en eksamen. Den vil inneholde en teknisk evaluering
av Safe Exam Browser, i forhold til hvordan den sikrer en digital eksamensløsning
og begrenser fusk. S̊arbarheter hos Safe Exam Browser ble oppdaget, evaluert og
testet gjennom penetrasjonstesting.

Safe Exam Browser har s̊arbarheter, der noen av dem blir diskutert her. Program-
met har åpen kildekode og er, ved eksamen hos NTNU, installert p̊a eksamen-
skandidatenes personlige datamaskiner. Det vil alltid være mulig for noen å bruke
en korrupt versjon av programmet for å jukse under en eksamen, og det er flere
mekanismer for å hindre utnyttelse av dette. Disse mekanismene gjør det vanske-
ligere, men ikke umulig, å bruke en korrupt versjon.

Acknowledgements

I would like to thank my supervisor Guttorm Sindre for his guidance and advice
throughout the thesis work. He suggested this topic to me already in the special-
ization project in the fall, and he enabled me to choose the approach that I found
most interesting. While he, at the same time, challenged me by suggesting addi-
tional views and approaches.

I would like to thank PhD candidate Aparna Vegendla, who have paid a special
interest in my project, ever since I started working with the specialization project.
She helped me set up a working test environment, and was always available to give
me suggestion, advice or feedback. She pushed me to work harder, and helped me
get through the periods when I found it hard to get motivated.

Contents

Contents

List of Figures

List of Tables

Glossary and Acronyms

1 Introduction 1
1.1 Motivation . 1
1.2 Scope of the Thesis . 4
1.3 Research Questions . 4
1.4 Research Method . 5
1.5 Ethical Issues . 6
1.6 Report Outline . 7

2 Background Research and Related Work 9
2.1 Digital Exams at NTNU . 9
2.2 Cheating Behaviors . 11
2.3 Cheating Behaviors and Digital Exams 12
2.4 Safe Exam Browser . 13
2.5 Moodle . 15
2.6 Digital Exam Solutions in Practice 16
2.7 Prestudy . 18
2.8 Penetration testing . 19
2.9 HARM . 20

3 SEB: Code and Architectural Overview 23
3.1 General . 23
3.2 Architectural Overview . 25
3.3 SEB Windows Service and Registry Resetter 26
3.4 SEB ConfigTool . 28
3.5 SEB Configuration settings . 29
3.6 SEB Client Application . 30

CONTENTS

4 HARM, Vulnerabilities and Risks 35
4.1 Introduction . 35
4.2 Background for penetration test cases 36

4.2.1 Security Requirement 1: Prohibit accessing of resources . . . 37
4.2.2 Security Requirement 2: Prohibit communication 43

4.3 Threat Descriptions and Penetration test cases 47
4.4 Risk Assessment . 52

5 Penetration Testing 55
5.1 Test setup . 55
5.2 Configuration Settings . 57
5.3 Test Results . 58

5.3.1 Inject crib notes using clipboard 58
5.3.2 Run SEB on VM to access local resources 59
5.3.3 Communicate by shared desktop, audio and video 60
5.3.4 Modify the SEB Windows Service 61
5.3.5 Generate the expected browser exam key for the url header . 62

5.4 Result Summary . 63

6 Discussion 65
6.1 Test Results . 65
6.2 Mitigation Strategies . 66
6.3 Exam Solution . 67
6.4 HARM . 69

7 Conclusion and Future Work 71
7.1 Conclusion . 71
7.2 Future Work . 73

Bibliography 75

Appendix A Prestudy 81
A.1 Attack Tree . 81
A.2 Penetration test results . 81

Appendix B Configurations 83
B.1 ConfigTool Screenshots . 83
B.2 Configuration File (.seb-file) contents 89

Appendix C Logfiles 95
C.1 Examle contens of seb.log . 95
C.2 Example contents SebClient.log . 96
C.3 Example contents SebConfig.log . 97
C.4 Example content from sebwindowsservice.log 97

CONTENTS

Appendix D Licences 99
D.1 SEB License . 99
D.2 Moodle License . 100

CONTENTS

List of Figures

2.1 Illustration of an online exam with SEB. [1] 14
2.2 Illustration of SEB’s architecture. [2]. 14
2.3 Schematic of the technical setup for browser-based online exams,

using SEB [18]. 16

3.1 An overview of the dependencies between the different SEB appli-
cations . 25

3.2 A class diagram representation of the architecture behind SEB Service 27
3.3 A class diagram representation of the architecture behind SEB Config 30
3.4 The utilities (utils) of the SEB main application, also called SEB

Client . 31
3.5 A simplified representation of the SEB Client application 32

4.1 MUCM of key injector attack . 38
4.2 MUSD of key injection . 38
4.3 MUCM of using clipboard to inject crib notes 39
4.4 MUCM of running SEB on a Virtual Machine, to be able to access

locally stored resources. 41
4.5 MUSD of running an exam on a remote computer to access resources 42
4.6 MUSD to show how to modify the source code to bypass the security

mechanisms of the browser exam key. 43
4.7 This is an Attack Defence Tree (ADT) [27], to show the relationships

between different attacks with the aim to access prohibited resources. 44
4.8 MUSD to show how to get outside assistance on the exam by using

a remote connection tool. 46
4.9 A MUSD to show how to get outside assistance by using shared

desktop and audio/video communication 46
4.10 This is an Attack Defence Tree (ADT)[27], to show the familiariza-

tions between different attacks with the aim to communicate during
the exam. 47

A.1 Attack Tree from prestudy [46], describing the test approach. 81

B.1 Screenshot of SEB ConfigTool, contents of the ’General’ tab. 83

LIST OF FIGURES

B.2 Screenshot of SEB ConfigTool, contents of the ’Config File’ tab. . . . 84
B.3 Screenshot of SEB ConfigTool, contents of the ’User Interface’ tab. . 84
B.4 Screenshot of SEB ConfigTool, contents of the ’Browser’ tab. 85
B.5 Screenshot of SEB ConfigTool, contents of the ’Down/Uploads’ tab. 85
B.6 Screenshot of SEB ConfigTool, contents of the ’Exam’ tab. 86
B.7 Screenshot of SEB ConfigTool, contents of the ’Application’ tab. . . 86
B.8 Screenshot of SEB ConfigTool, contents of the ’Network’ tab. 87
B.9 Screenshot of SEB ConfigTool, contents of the ’Security’ tab. 87
B.10 Screenshot of SEB ConfigTool, contents of the ’Registry’ tab. 88
B.11 Screenshot of SEB ConfigTool, contents of the ’Hooked Keys’ tab. . 88

List of Tables

2.1 Overview of tests . 19

4.1 An Attack Sequence Description (ASD) of the key injector attack,
in a lab environment . 39

4.2 An ASD of using the clipboard to inject crib notes 39
4.3 An Attack Sequence Description (ASD) of how run SEB on a virtual

machine to access local computer resources, in a lab environment. . . 41
4.4 An Attack Sequence Description (ASD) of using remote desktop to

access local computer resources, in a lab environment 41
4.5 An Attack Sequence Description (ASD) of how to bypass the browser

exam key security mechanism. 42
4.6 An Attack Sequence Description (ASD) of how to use remote desktop

to get assistance on an exam, in a lab environment 45
4.7 An Attack Sequence Description (ASD) of how to communicate us-

ing audio/video communication and shared desktop with a back-
ground application, in a lab environment 45

4.8 An informal summary of the vulnerabilities discovered with HARM
and code reviewing . 48

4.9 Threat description . 50
4.10 Threat description . 50
4.11 Threat description . 51
4.12 Threat description . 51
4.13 Threat description . 51
4.14 Penetration test case for disabling the Exam Browser Key mecha-

nism for code and setting control. 52
4.15 Penetration test case for using clipboard by disabling the empty

clipboard method in the source code. 52
4.16 Penetration test case for running exam environment on a VM by

disabling the VM detector in the source code 52
4.17 Penetration test case for the sharing desktop, while running SEB,

by enabling it in the source code . 53
4.18 Penetration test case for disabling registry editing 53
4.19 DREAD model [31] . 54

LIST OF TABLES

5.1 Summary of the results of the penetration tests. 63

A.1 Result description from prestudy [46] 82

Glossary

browser exam key This is a feature provided by SEB to ensure secure use of the
correct software and configuration settings.

clipboard is an option that is available in almost any Windows computer. You can
copy data to the clipboard and paste it somewhere else from the clipboard,
either within or between applications.

Gecko Mozilla open source rendering engine, for rendering web pages/HTML.

Inspera A Norwegian company that makes, improves and operates Inspera As-
sessment, for digital exams with SEB.

Moodle An open source learning management system with tools to create quizzes
and exams, and a plugin option for the use of safe exam browser with the
browser exam key.

registry The registry editor is a Windows(OS) feature that enables an advanced
Windows user to change the configurations for different system features, in
one location. This is also referred to as the registry.

SEB Client refers to the SebWindowsClient application. Which is SEB’s lock-
down browser, this is the main application of SEB.

SEB Config refers to the part of the SEB source code, that provides the SEB
ConfigTool, which is used to create configuration settings for a running in-
stance of the SEB lock-down browser.

SEB ConfigTool is a graphical user interface used to create SEB configuration
files. It is included in the general SEB application installment, and the source
code is located in SebWindowsConfig folder in the SEB source code.

SEB Resetter Refers to the SEB registry resetter, which is a small application
that enable users to reset the registry settings that have been modified by
the Safe Exam Browser Service.

Glossary

SEB Service refers to the SebWindowsServiceWCF and is the service application
which creates and control the running SEB Windows service for the SEB
installation on your BYOD computer. This service does registry editing and
is accessed by SEB client and SEB Resetter.

UNINETT A company, owned by the Norwegian department of education, that
provides network and network services to Universities and colleges.

XULRunner is a Mozilla runtime package. The framework is, amongst other
things used to embed Gecko, to form a complete browser engine.

Acronyms

ADT Attack Defence Tree.

API Application Programming Interface.

ASD Attack Sequence Description.

BYOD Bring Your Own Device.

ETH Zurich Swiss Federal Institute of Technology.

GNU GNU is Not Unix.

GPL GNU General Public License.

GUI Graphical User Interface.

HARM Hacker Attack Representation Method.

IA Inspera Assessment.

LDB Lock-Down Browser.

LMS Learning Management System.

MPL Mozilla Public License.

MUCM Misuse Case Map.

MUSD Misuse Sequence Diagram.

NTNU Norwegian University of Science and Technology.

OS Operating System.

OSS Open Source Software.

Acronyms

SEB Safe Exam Browser.

UML Unified Modeling Language.

VDI Virtual Desktop Infrastructure.

VM Virtual Machine.

WCF Windows Communication Foundation.

XML EXtensible Markup Language.

Chapter 1

Introduction

This chapter will provide a basis knowledge on the motivation, scope and ap-
proaches for this thesis. The first section will discuss the motivation behind the
topic, based in scientific research and in personal experiences. The second section
will define the scope of the thesis. Then I will discuss the research questions for the
thesis. The research methods will be presented, before the related ethical concerns
are discussed. Finally, I will present the outline of this report.

1.1 Motivation
For a long time, pen and paper exams have been used for assessment in higher
education. Students are to use their knowledge of a particular subject to answer
questions on a written exam. Gradually, technology have become an important
part of education on all levels, from primary school, to high-school, college and
universities. Whether it is used by the teacher to assess students, distribute and
present learning material, or by the students to practice their knowledge, find
literature or answer and deliver assignments. Students use computers, Learning
Management Systems (LMSs), and other digital tools regularly, to perform study
tasks and assignments [12]. Higher education are using end-of-term, pen on paper
exams for assessing students in a large percentage of courses, this includes the Nor-
wegian University of Science and Technology (NTNU) [49]. This practice should
be, and is being, modernized, to comply with the increased use of technology in
other areas of education. Students have become more comfortable with typing on
keyboards than writing on paper [18, 20], due to writing being replaces with typing
in several aspects of everyday life. Studies imply that people have decreasing level
of motor skills today, due to these developments [50]. The only time a student
will be writing, with pen on paper, for any significant amount of time, is during
an examination. The readability, along with the amount of text one is able to
produce during this time, is greatly affected by whether it is conducted digitally
or manually. The variations in handwriting skills can affect a teacher’s evalua-
tion of the content of for example an exam answer [23]. The text’s readability

1

2 CHAPTER 1. INTRODUCTION

affects the objectivity of the examiner, it has also been suggested that typed text
in general receives a better result than written text[26, 34]. If all students type
their exam answers we remove the evaluation bias of readability, because all the
responses will have equal readability. Also, the answers will be more anonymous.
A teacher/professor with a relatively small number of students, might recognize
their handwriting, when grading their exam answers. The grading might then be
affected by some bias toward the students, even if they attempt to be unbiased.

Digital examinations may also participate in reducing students’ discomfort and
stress level [18, 20]. As we have already argued, they are more comfortable with
typing, than with handwriting. They can easily move text around, copy-paste and
navigate back and forth in a digital document. Examinees do not have to manually
organize paper sheets with written copies, and they do not have to rewrite their
draft into a final version, before the exam is over.

Important quality criteria for digital exams could be validity, reliability, costs,
acceptability and feasibility [37, 48]. The validity criteria depends on whether the
assessment gives a representative measurements of the students knowledge, skills,
competences and other related aspects which represent how a student will handle
related work situations in their future. For example if the student has the basis to
become a productive employee in his future carrier. The reliability criteria requires
that the exam assessment is consistent. The same answers should receive the same
score. Acceptability depends on whether students and faculty are confident with
the assessment, and the availability of necessary equipment is described as feasibil-
ity. The criteria that have been described, could also be used to assess the quality
of pen and paper exams.

Reliability can be achieved by anonymity and objective evaluation, which have
already been discussed in this section. By digitalizing exams, the risk of the evalu-
ation being affected by handwriting skills and recognition is decreased. Reliability
could also be improved by implementing automatic scoring of certain question
types, such as for multiple choice questions, to eliminate human bias and error
when evaluating.

Reliability could also be reduced with digital exams, for example if the system
that is being used is unreliable. The automatic scoring can be implemented wrong,
which probably will have greater consequences for the reliability than a few human
errors. It is important to ensure that the software being used is reliable and suffi-
ciently tested.

Validity can be increased by making the digital exam environment similar to real-
life situations. The exams have to assess the students, based on the course’s learn-
ing goals, and make grades reflect their knowledge. Assessment and result should
reflect how the candidate will cope in his or her future carrier. Digital exam as-
signments have the potential to use more tools and creativity during assessment,

1.1. MOTIVATION 3

by for instance using interaction and multimedia. For example to play sounds or
show images that the students need to identify, or in programming courses, exam-
inees could be able to both look up and access certain code libraries and run their
own code during an exam. The possibility to integrate allowed tools into the exam
environments, could give a more realistic evaluation of a student’s skills.

The validity of an exam can also create a bad reflection of student’s skills and
knowledge. If the exam software has bad usability, the results can be negatively
affected, and make the student look less desirable, for future employers, than they
deserve. The reliability could also be negatively affected by cheating behaviors.
Students who cheat, will get unreliable results, which make them more attractive
to future employers, even if they lack the necessary skill set. In this scenario the
students who do not cheat will end up as victims. They will have to compete with
students, that have gained an unfair advantage, for the same jobs, or the same
Master and PhD programs. The future employers of the cheating examinees will
also be negatively affected, by increased probability to hire unqualified personnel.
This could also damage a University’s reputation, as the graduated, cheating stu-
dents, will be unqualified for their jobs.

Research about the acceptability towards digitization of exams is limited, and
the results varies depending on for example which university, faculty, and solution
that is being used. Hillier [19] has conducted a digital exam test run and surveyed
the students on their experiences. The participation was limited and the percep-
tions varied. Acceptance should increase when students and faculty members have
gained more experience with the digital exam solution. Students, as discussed pre-
viously, are more experienced with typing than with writing. This should increase
their acceptability

There have been conducted a study into students’ views on online exams at a
University in Florida [25], where they poll business students. The students are
asked about different behaviors and issues regarding online exams, as well as their
perception on cheating on traditional versus online coursework. Almost 74 % of
the students that where polled, believe that it it easier to cheat on online course
work, which does not reflect good acceptability amongst students.

The two remaining criteria are feasibility and cost. Feasibility represent the neces-
sity of having enough equipment, of sufficient quality. Costs can, for example, be
related to the resources necessary to acquire and maintain this equipment. These
criteria could maybe be the drivers that made NTNU choose to conduct digital
exams on student owned equipment, which, according to UNINETT [36], is the
cheapest solution.

Cheating is a major concern for all types of assessment, and there are several
existing methods to mitigate cheating. During an exam there should be invigila-
tors present, to assist the examinees and to detect cheating. For papers written

4 CHAPTER 1. INTRODUCTION

at home, there exist several different tools to conduct plagiarism control with, to
ensure the paper has not been copied. There are, however, fewer mechanisms to
catch students who get assistance on their home exams. The punishment, if you
are caught cheating, is severe, and it may include being kicked out from the school.
At NTNU, there are few episodes were cheaters have been caught and prosecuted,
probably because students who cheat don’t get caught and it is expenses to pros-
ecute cheating students in Norway. According to McCabe [30], cheating behaviors
are used and perceived and cheating mitigation is an ongoing struggle.

Cheating is a major threat toward the quality criteria we have discussed. In partic-
ular towards acceptability and validity. Cheating is important to avoid, in any kind
of high-stakes assessment, it has been a threat for paper based exams and it will
be a threat for digital exams. Digitalizing exams will introduce new vulnerabilities
and behaviors that can be used to cheat. It also introduces new ways to mitigate
cheating.

1.2 Scope of the Thesis
This thesis will focus mainly on the validity criteria, by discussing different aspects
of cheating in digital exams In particular, cheating behaviors during a digital exam-
ination. The main research will be conducted on an open source exam environment
that should imitate the environment that is used at NTNU for digital exams. I
will assess this open source environment, to gain a perspective on the vulnerabil-
ities that could potentially be used to cheat during an exam. The vulnerabilities
will be used to plan and conduct attacks, in a lab environment, and I will assess
the validity of these attacks by comparing them with real-life exam situations. I
will discuss possible mitigation strategies, mainly regarding the technological and
social aspects. I will also assess the method that I use to conduct these security
tests, to see if this is an approach that can be recommended. This thesis is not
meant to aid students with cheating behaviors, but rather to inform the stakehold-
ers of the particular risks involved with digital assessment. The technical details
should be vague enough to make them harder to copy, while at the same time give
value to the stakeholders. It is important to emphasize that the vulnerabilities
that are presented are only concerned with the software that is being assessed, in
a lab environment, and there are no guarantees that the attacks will work in a
real-life digital assessment situation. The vulnerabilities and mitigations that are
discussed are only concerned with cheating behaviors during an exam, that have
the possibility to increase the academic result for the cheating examinee for that
exam.

1.3 Research Questions
The objectives of this master thesis is to look further into the security of the tech-
nical solution, which NTNU has chosen, to conduct digital exams. The main focus

1.4. RESEARCH METHOD 5

will be on cheating related security during an exam, which means for an exami-
nee to use any form of communication or use prohibited tools while conducting an
exam. Cheating has been defined as a behavior that may compromise academic
integrity [30], and is a known issue with regard to student assessment. Cheating be-
havior is not unique for digital assessment, but have been researched and discussed
in regards to written assessment as well. For written end-of-term assessment, com-
munication and the use of prohibited tools and notes during an exam is considered
to be cheating behaviors. For digital end-of-term assessment, the amount of differ-
ent cheating behaviors are increased. In addition to traditional ways of cheating,
for example to bring crib notes or use code signals to communicate, the examinees
can take advantage of the technological opportunities. What are the technological
opportunities, and how can cheating be prevented so that future academic integrity
will not be compromised due to digitization. I will look at cheating behaviors that
are realized through the BYOD exam computer, and not discuss the possibilities
regarding the use of external tools, for example a mobile phone.

RQ1 What are the cheating vulnerabilities of SEB and how can they be mitigated?

RQ2 What are the cheating vulnerabilities of SEB used with Moodle during an
exam?

RQ3 What are the strengths and weaknesses of HARM [24, 52] used for penetra-
tion test planning?

RQ1 is related to the prestudy [46], which is presented in section 2.7. The vulner-
abilities that was confirmed by penetration testing in the prestudy, will be assessed
and mitigation strategies will be suggested. The prestudy tested the open source
lock down browser called Safe Exam Browser, without a learning management sys-
tem, which it is designed for. There are learning management systems(LMSs) that
have a special plug-in for SEB exams, that helps increase the security features
that are designed to prevent cheating behaviors. To answer RQ2, I will plan and
conduct penetration tests, to assess these security features, and I will discuss how
they can be mitigates. To plan the penetration tests I will use a method, which
was suggested by my advisor and one of his Ph.D candidates. It is an extension of
the Hacker Attack Representation Method (HARM), designed to plan penetration
testing, which was partially based on my prestudy. I will use this method and
assess the strengths and weaknesses discovered during the process, to answer the
third research question (RQ3).

1.4 Research Method
This thesis consists of an empirical study of the digital solution that are being used
for conducting exams at NTNU, and the existing cheating mitigation mechanisms.
The research questions RQ1 and RQ2 are mostly of a technical nature. Firstly
research of the topics involved will be conducted based in literature, to create a

6 CHAPTER 1. INTRODUCTION

basis of knowledge and explain the motivation. I have personal experience and
motivation for this study as I have participated in a number of written exams at
NTNU, and digital exams during my high-school years. The main inspiration for
my prestudy [46] came from Dawson’s ”Five ways to hack with BYOD e-exams”
[13], where he rejects the idea of digital assessment in the form of Bring Your Own
Device (BYOD) e-exams due to the many cheating vulnerabilities he discovered.
For this master thesis I will use my prestudy as conceptual framework, to expand
the findings of that project, and get more valid results.

The research questions will be covered by exploratory case studies [38, p. 143],
to explain the issues of digital examinations by using penetration testing and plan-
ning. It will be an in depth, short-term, contemporary study. RQ1 will be an-
swered by code analysis. Static and dynamic code analysis will be applied to gain
an understanding of how the security features, that where tested in the prestudy,
function. RQ3 will be based on penetration test planning, by using the method
that are to be assessed. To answer RQ2, I will conduct the penetration tests
that was planed using HARM, by the same approach used in the prestudy, but
the testing will be extended further. The Hacker Attack Representation Method
(HARM) method has been extended to give a systematic approach to penetration
test development [52], and should help create a good overview, through different
models, on relevant vulnerabilities, threats and mitigations for the system.

1.5 Ethical Issues
Ethics is an important subject when it comes to both cheating behaviors and
software hacking, it should be emphasized that this research is not meant to aid
students in any way to turn to cheating behaviors, but rather to decrease the oc-
currence of cheating. SEB is an Open Source Software (OSS), which could be a
disadvantage with regard to security, as any examinee can access and modify the
source code, and modify their SEB installation. The advantage is that any re-
searcher can distribute to, and test, the source code as they please.

SEB is an OSS, licensed by Mozilla Public License (MPL) version 1.1 (see ap-
pendix D.1) [35]. MPL is an open source license, which allows free reuse of the
original software, as long as developers keeps the license. There are many different
open source licenses with different demands toward distribution of software that are
modified versions of, or has been derived through, the original licensed software [17].

The LMS used for the penetration tests is called Moodle and it is licensed un-
der the GNU General Public License (GPL) (shown in appendix D.2). The GNU
license is a common open source license, and software under this license is copy-
lefted. Copylefted software is free for access and redistribution, which mean that
all derived software has to also be open source [40]. Software that are not copy-

1.6. REPORT OUTLINE 7

lefted, can be used to develop commercial software that are not open source. This
decreases contributions from independent developers in improving the original soft-
ware. The core files of software under MPL is copylefted, to motivate independent
contributions. SEB uses a browser engine called Gecko, which is developed by
Mozilla and licensed under MPL This is why SEB is also licensed under MPL, and
it is free for testers, developers and others to use as they like and contribute, as
long as they continue using the MPL on redistributions and derived software.

During a presentation held by the lead developer of SEB during a fall seminar with
Inspera, he explains that because Gecko is no longer being supported by Mozilla,
SEB will have to start using a different browser engine [44]. This will probably be
WebKit, which is the browser engine that is already being used in SEB for Mac
users. Even though this is likely to happen, he ensures the audience that SEB will
still continue to be open source, maybe be under a different license.

To conduct ethical hacking, it is important to not damage the target system, but
assess the security with the aim to increase it [42]. I informed the lead developer
of SEB at ETH Zurich of my findings in the prestudy, and I will continue to report
any findings, so they can be used to mitigate the discovered threats. I also disclosed
my findings to the exam office at NTNU and Inspera. I will make sure that my
tests will not harm any systems permanently and I will report my findings to the
stakeholders to ensure that my research remains ethical.

As a conclusion, I would say that I am free to use, test and document the SEB
software and the Moodle web application, as long as I keep the existing licensing
for potential redistributions of the software. However, based in ethical guidelines,
I still hold an obligation to inform the stakeholders of any vulnerabilities that I
discover, that could have impact on the application and it’s intended use.

1.6 Report Outline
Chapter 2: Background Research and Related Work: An introduction of
the technologies, prior work and existing studies which will be used in the thesis.
This chapter presents the current status of digital exams at different institutions,
including NTNU.

Chapter 3: SEB: Code and Architectural Overview: This chapter presents
the technological details of SEB and creates an overview of the applications archi-
tecture, through descriptions, diagrams and figures.

Chapter 4: HARM, Vulnerabilities and Risks: This chapter shows how
the HARM method was used to discover vulnerabilities and plan penetration tests.

Chapter 5: Penetration Testing: Describes the penetration tests, and how
the systems and configurations where set up. It presents the tests, their outcomes

8 CHAPTER 1. INTRODUCTION

and discuss the results.

Chapter 6: Discussion: This chapter further discuss the test results, with re-
gards to cheating and mitigation strategies. It will contain an assessment of the
affect of HARM for the test planning, and finalize the basis knowledge for which
to make the conclusion.

Chapter 7: Conclusion and Future Work: This final chapter will conclude
by answering the research questions, and present suggestion to future work based
on this conclusion.

Chapter 2

Background Research and
Related Work

In this chapter, I will discuss research and theories that can be related to this thesis.
The first section presents the situation at NTNU regarding digital exams. The next
two sections discuss cheating behaviors in both paper based and digital exams and
how cheating can be an important topic with regard to digitizing of exams and
exam processes. The fourth and fifth sections should create a background of the
tools that are being tested in this thesis, SEB and Moodle. Sections 6 describes
briefly a selection of different existing solutions that are being used to create a
secured environment for digital exams. The next section presents and discuss the
specialization project, from the fall of 2015. This project will be referred to as the
prestudy throughout this thesis. The last two sections will present and explain
different approaches used to create and maintain secure systems and how to plan
and conduct penetration testing.

2.1 Digital Exams at NTNU
In this master thesis, I will attempt to assist in the improving of NTNU’s digital
exam solution with regard to mitigating cheating during digital exams. I will do
research, testing and evaluation of the technology being used. NTNU is currently
running small scale exams for testing purposes, using student owned equipment.
There have been conducted thorough investigation, to determine which solution
fulfills the requirements of digital exams at NTNU, partially covered by a prelim-
inary report by NTNU [21] and a report written for UNINETT [36]. The NTNU
preliminary report describes why digital exams is the appropriate apprach for the
future of assessment. NTNU hosts about 60 000 written exams per semester, in the
span of 18 days(3 weeks) with two subsequent sessions each day. In order to keep
this schedule and size, the University would need to invest in at least 1667 exam
workstations, and the costs where estimated to be between 6.7 and 10 MNOK [21].
The maintenance, operations and other administrative costs are excluded. If the

9

10 CHAPTER 2. BACKGROUND RESEARCH AND RELATED WORK

exams are run on University owned equipment, it will be easier to control the digi-
tal environment throughout the exam, and it makes sure of equal conditions for the
examinees. The preliminary report also discuss BYOD as a possible solution. They
argue that most students today have their own PCs, to use for school work, that
they should be more familiar with, despite the argument that this might give an ad-
vantage to students with more money to spend on equipment. They suggest to use
the laptops as thin clients running a Virtual Desktop Infrastructure (VDI), which
will be hosted by one or more servers. One of the main challenges of BYOD exams
is all the different technologies, equipment, operating systems and devices that the
exam system need to support. There are a need to test the compatibility of student
equipment prior to an exam, to make sure all examinees manage to run the system.

In the UNINETT report [36], they further investigate different relevant BYOD
solutions focusing mainly on requirements regarding cheating, loss of data, scal-
ability, anonymity and storing of data. They recommend two methods for con-
ducting BYOD exams, one VDI solution and one solution using only LMS, both
with SEB. These solutions fulfill the main requirements, is scalable and can in-
clude different tools and software in the controlled environment. The first solution
that was mentioned, is a relatively expensive solution, with the need to invest in
physical servers, necessary licenses, and operations. The second solution they rec-
ommend is to install SEB on the student’s Operating System (OS), to run a cloud
based learning management system that contains the exam, and tools to answer
and deliver it. This service is provided by Inspera, and they do the technological
setup for exams by using Amazon cloud services. The Evry report was made before
Inspera was able to give an exact cost estimate, but it seems to be the cheapest
solution. To be able to conform with the restrictions in Norwegian laws about
privacy and archiving personal documents, the cloud service that are to be used
have to fulfill certain demands, stated in a Norwegian report on the legal aspect of
digital assessment in [15]. All documents that contain personal information, such
as delivered exams and results, can not be stored for any longer than necessary.
This information can only be stored by a service that is pre approved, and stores
the data safely. There is no need to invest in servers or equipment for this solution,
if an approved cloud storage service can be used. The institution is responsible for
any consequences if the data gets compromised, and they have to strictly evaluate
the cloud storage service. The Amazon Web Service used by Inspera is located
within the EEA (European Economic Area), and they have to follow the EU data
protection laws, This is one of the properties, recommended by the legal report[15],
that ensures a sufficiently secured cloud storage service

NTNU is currently cooperating with Inspera to test and scale a digital exam so-
lution. Lecturers of small courses have the possibility to run their exam digitally,
using SEB to run Inspera Assessment (IA). Students use a predefined configura-
tion file to run IA in Safe Exam Browser (SEB), which provides authentication,
distribution of exams, a text editing tool, a multiple choice environment, and more
exam assignment features in a locked environment. It administers delivery options

2.2. CHEATING BEHAVIORS 11

to the user, or IA delivers automatically, when the exam time is up. For the pur-
pose of this thesis, I will assess an exam environment that should be similar to
the environment used at NTNU. Moodle will replace Inspera Assessment as the
learning management system, while SEB will be used as intended.

2.2 Cheating Behaviors
There have been attempts to research academic cheating, but this is difficult due
to the ethical and moral aspects of the problem [8]. The attempts that have been
made by surveying students and faculty with regard to cheating, have the risk of
receiving few and dishonest responses, as students can be hesitant to admit to
cheating. There are several ways to define cheating, and the perception of what is
considered to be cheating behavior may be subjective. Cheating can be described
as all behaviors that are not strictly correct, it can involve academic achievements
through immoral behavior, or as defined in [25], behaviors that compromise aca-
demic integrity. They define cheating as ”a transgression against academic integrity
which entails taking an unfair advantage that results in a misrepresentation of a
student’s ability and grasp of knowledge”[25]. For this thesis we will use this defi-
nition of cheating behavior.

The problem of cheating is familiar to any university, but has rarely been researched
and explored. According to [8], cheating is relatively normal, while detection rates
can be as low as 1,3%. This implies that cheating behavior for the most part gives
students an advantage, with little risk of consequences.

McCabe [30] describes six cheating behaviors which he uses as examples of cheat-
ing for his student and faculty surveys. Some of these behaviors include, learning
what is on a test beforehand, copying off of another student, help someone cheat
and using unauthorized crib notes. He surveys students about their perceptions of
the different behaviors, and discovers that the degree of average acceptance toward
certain behaviors is reflected by the number of students who have actually partici-
pated in these behaviors. This tendency was also recognized in a study on password
policies in organizations[10]. The perception and understanding of different policies
were reflected in how employees followed their strict, and sometimes impossible,
password policies. The more a behavior is accepted and understood, the more it
is being used. McCabe’s surveys have a response rate average of 10-15%, and the
answers are subjective, which makes it important to understand that the results
are not a perfect general picture of the cheating climate. It still contributes to give
a relative indication of cheating behavior tendencies.

A similar study conducted with first year IT students [47], shows a tendency to-
wards toleration and use of cheating behaviors amongst students. The study shows
that more than half the participants admitted to having cheated, and also would
not report it if they see someone else cheat. These studies indicate that cheat-
ing is not a particularly new phenomenon, and it is an important threat against

12 CHAPTER 2. BACKGROUND RESEARCH AND RELATED WORK

assessment quality.

2.3 Cheating Behaviors and Digital Exams
The need to conduct digital assessment in higher education is increasing. Digital
assessment of different study assignments are already being used in practice, but for
exams with controlled environment, the majority is still done with pen and paper.
King et al. conducted a study with 121 business students’ perceptions on online
exams and cheating [25]. The majority of these students believe that cheating is
easier with online assessment, and cheating in online exams were less disdained
than cheating in traditional exams.

The results presented above creates a motivation to further investigate the cheating
possibilities in digital exams, particularly in comparison with the existing cheating
threats of pen and paper exams. Sindre and Vegendla presents such a study [49],
where they discuss the pros and cons for digital and paper based exams. They
focus on a digital Bring Your Own Device (BYOD) solution, which is presented
as the most affordable, digital solution in a study performed by the Norwegian
company and ordered by UNINETT [36]. Sindre and Vegendla claim that, even
though a digital BYOD exam presents more possibilities for cheating, it also cre-
ates more methods to mitigate cheating. Examples of such mitigation strategies
could be desktop and network surveillance, biometric identification of examinees,
mixed seating and non-uniform questions.

Sessink et al. suggests a secured online exam solution by using a lock-down browser
and a learning management system [45]. They suggest to use this, together with
supervision of the client computer and network activities, which can only be suffi-
ciently implemented on institution owned equipment. Hillier and Fluck argue, in
their paper, on the benefits of digital assessment [20], and how it is about time
to develop a stable solution for this purpose. They recommend BYOD exams, be-
cause of the costs, maintenance requirements and that most students already own
a computer that they are familiar with.

Dawson [13] presents his research into digital BYOD exams by presenting 5 dif-
ferent ways that he has managed to hack different systems and was able to cheat.
He states that this form of digital assessment is not sufficiently secure, in order to
ensure equal or less cheating than with traditional pen and paper exams.

There are several approaches that can be taken to mitigate cheating in high-stakes
exams. One way is to use risk avoidance, and avoid the risk completely, by not
having exams. This is not an option as it removes any indication of the individual
achievements by students. It could be possible to allow behaviors that are consid-
ered cheating. This could be a valid option for some forms of assessment, but if
communication is allowed, it is hard to ensure that the grades ill sufficiently re-
flect a student’s skills. To allow certain tools, not related to communication, could

2.4. SAFE EXAM BROWSER 13

not only limit cheating behaviors, but also make the exam a better representation
of a real-life situation. Cheating detection is a valid approach but, as previously
stated, it is expensive to prosecute student. The final approach is to eliminate all
cheating behavior by, using preventive actions. At a certain point, cheating be-
haviors become sufficiently rare, and the costs of further mitigation will outweigh
the benefits. SEB is software that attempts to prevent cheating behaviors, but it
only mitigates threats that are related to the digital BYOD environment. Other
behaviors, for example impersonation, are not mitigated.

2.4 Safe Exam Browser
There are to versions of Safe Exam Browser, one for Mac and one for Microsoft
Windows computers. This master thesis will focus on the version of SEB made for
Microsoft Windows machines because this is the operating system that has regis-
tered the highest number of users, and one of these users is the author. The thesis
will not assess the SEB version designed for Mac users, due to time limitation and
limited access to equipment. The newest version available is Safe Exam Browser
2.1.2 for Windows, which was released on March 24th 2016 [6]. The version that
was used for the prestudy was Safe Exam Browser 2.1, which is the main rea-
son why this master thesis will continue to work on this version. The differences
between 2.1 and 2.1.2 will be discussed in chapter 3. SEB 2.1 is optimized for
Microsoft Windows 7 and 8/8.1, including a touch optimized mode for Windows
tablet computers [1].

As previously mentioned, SEB creates a locked-down kiosk environment, contain-
ing a browser with restrictions on web navigation. It is designed to open the LMS
which contains the exam, in a full screen browser window. SEB provides features
such as process surveillance, it detects if it is running on a VM, access to allowed
third party applications and a built in browser that can communicate with any
LMS available [1]. When SEB is running, it prevents the user from using certain
shortcut keys that can help access text, other programs or exit SEB. It prevents the
user from right clicking, switching applications, accessing menus, accessing Win-
dows Security Screen and using the print screen shortcuts. SEB monitors processes
and stops new ones from being initiated while the exam is running. It prevents the
computer from going idle or into sleep mode. SEB has a graphical user interface to
edit and save configuration settings, where security features can be activated and
disabled, such as allowing a third party application to run with SEB. This graphi-
cal configuration tool is meant to be used by the exam and course administrations,
to configure and secure settings as files to be distributed to the students. To make
sure that all students use the same configuration file, a browser exam key is gener-
ated by using the software version and configuration settings. If SEB is supported
by the LMS that is being used, the LMS will use this key to check whether the
configuration and software version are correct and that the source code has not
been modified[43].

14 CHAPTER 2. BACKGROUND RESEARCH AND RELATED WORK

Figure 2.1: Illustration of an online exam with SEB. [1]

Figure 2.2: Illustration of SEB’s architecture. [2].

2.5. MOODLE 15

SEB uses a browser engine called Gecko made by the Mozilla Foundation [1],
licensed under MPL. They use the programming languages C#, with the .NET
framework, and JavaScript. Safe Exam Browser for Windows consists of a kiosk
application and a browser, (see figure 2.1). The kiosk application opens a controlled
Windows desktop environment, which runs third part applications, that have to
be defined in the configuration settings, and Mozilla’s Gecko. SEB for Windows
uses Gecko, which provides the framework for running SEB, the browser does not
contain any navigation options and status bar, to make sure the user will remain
in the preconfigured LMS environment (see figure 2.2).

The application that provides a user interface for editing the settings, is called
SEB ConfigTool, which is described in section 3.4. This configuration tool will be
used for creating a default, exam configuration file for all the tests, and for creat-
ing modified, ’malicious’ settings, represented in XML in appendix B.2. The SEB
developers recommend to only use encrypted configuration files, when giving the
settings to the examinees, or the settings can be directly manipulated in a text
editor.

SEB 2.1.2 has a few new features and fixes that does not exist in the version
that is being researched in this thesis. The major functionalities that will be as-
sessed in this thesis, by reviewing and testing SEB v. 2.1, should be the same in
the different versions. Some of these features are hardware acceleration, Windows
10 compatibility and touch mode is enabled [5].

2.5 Moodle

Moodle is an open source learning management system, and can be used directly
as a learning management system or as a framework for a LMS. Moodle is a web
application written in php and HTML, and can be downloaded, modified and/or
installed on any server of your choice. The Moodle source code can be downloaded
from the moodle web page [3]. On the default Moodle version, it is possible to cre-
ate tests and quizzes, using different question types. One can create multiple choice
questions, questions were the student can pair different alternatives, and short and
long text answer questions. Moodle includes logic that can automatically evaluate
the appropriate question types, such as multiple choice questions.

One of the modifications that can be done on a customized Moodle installations,
is to install the Safe Exam Browser plug-in specifically designed for Moodle. This
enables you to use SEB to create a secured exam, that only allows access a quiz if
the correct SEB browser exam key is used. This is made to ensure that, if an exam
is made as a quiz in Moodle (with different question types) it can only be accessed
from the specified, secured environment.

16 CHAPTER 2. BACKGROUND RESEARCH AND RELATED WORK

Figure 2.3: Schematic of the technical setup for
browser-based online exams, using SEB [18].

2.6 Digital Exam Solutions in Practice

There are several different ways to conduct digital exams. For Norwegian high-
schools, students use their own computers connected to a restricted network where
they can only access and deliver the exam. They are allowed to access and use all
resources and tools that are stored on their personal computers, as long as they do
not communicate, which includes Internet access [51]. For higher-education there is
a need to conduct digital examinations in controlled environments, similar to that
of pen and paper exams in a controlled location, with invigilators. This makes the
digitization process more complicated. Examples of proposed digital solutions are
to use thin clients in fixed computer labs [18], to boot the exam system from a USB
or DVD[13, 16, 20] or to use a Lock-Down Browser (LDB) [12, 13, 18], or various
combinations of these.

One of the many institutions to introduce digital exams is the Swiss Federal Insti-
tute of Technology (ETH Zurich). In 2007, they launched the ”Online Exams at
ETH Zurich” project [18]. The goal was to improve learning outcome by making
examinations more meaningful and motivating for students. Their objective is to
improve the overall assessment-, scoring- and pedagogical processes by implement-
ing a secured digital exam environment. They use Safe Exam Browser (SEB) along
with the Learning Management System (LMS) Moodle in fixed computer labs on
virtual desktop computers, where the examiners can control network access. SEB is
developed as an Open Source Software (OSS) project at Swiss Federal Institute of
Technology (ETH Zurich). and is continuously being improved and maintained by
the developers of this project. Figure 2.3 shows how SEB can be used in a computer
lab to conduct digital exams in a controlled environment. By using invigilators,
controlled computer labs, good service design and operations, ETH Zurich man-
ages to conduct secure and reliable digital exams. Some important properties of a
digital exam solution is scalability as well as reliability.[20, 49]

2.6. DIGITAL EXAM SOLUTIONS IN PRACTICE 17

It is normal for institutions of higher education to conduct exams at the end of
each term for a large proportion of courses. This makes the necessity to conduct
a big number of exams concurrently. At ETH Zurich in 2014, they had enough
computers to conduct exams for about 548 examinees daily [18]. At a seminar,
hosted by Inspera, in September of 2015, the SEB lead developer Schneider stated
that they are able to conduct digital exams for more than 50 courses and 5000
students and that they will continue to expand the capacity[44]. The system they
developed have the possibility to be extended to work for a much bigger amount
of examinees, the problem is the number of computers and computer labs. Their
solution is not scalable enough, and to increase the capacity, without adding more
computers and computer labs. They plan to increase the capacity at a regular
pace, while testing the system, until they meet the needed number of concurrent
exams, but this is a costly and time consuming process.

One possible way to decrease the costs of making a digital exam solution scal-
able, could be to use BYOD. Most students today have their own personal laptop,
which they use regularly for, amongst other things, school work. If they can answer
an exam, using their own computers, the investment costs for the institutions will
decrease and the scalability will increase. BYOD stands for Bring Your Own De-
vice and is a concept used mostly to describe how employees, of an enterprise, are
allowed to access internal corporate resources with their own personal devices [39].
BYOD can also be applied in education, for example if students downloads and
runs a digital exam system on their personal computers. The exams no longer have
to be held in computer labs, with loads of expensive University owned equipment.
This Bring Your Own Device (BYOD) solution is harder to invigilate and control,
than ETH Zurich’s solution.

In Norway, the number of digital exams are increasing. The government owned
company UNINETT has developed guidelines to aid the process of digitizing ex-
aminations in higher education. The University of Oslo use at least 3 different
approaches to conduct digital exams, where law students and medical students
use other, specialized digital exam solutions. One of the solutions is provided
by Inspera. Inspera organizes digital BYOD exams using Safe Exam Browser,
and their own learning management system called Inspera Assessment. Inspera
is working with several institutions all around Norway, for example the Univer-
sity of Agder, the University of Bergen, ’Høgskolen i Sør-Trøndelag(HIST)’ and
NTNU[9, 11, 29, 37]. HIST and NTNU was merged January 1th, but their coop-
eration with Inspera continues.

According to Schneider, who created SEB, the lock-down browser is only secure to
a certain point for BYOD exams [44]. He explains that there are known vulnera-
bilities, for example if you run a third party application within the browser. The
third party application may grant the examinee access to local computer files. The
software was mainly created for virtual clients, but features to secure a local BYOD

18 CHAPTER 2. BACKGROUND RESEARCH AND RELATED WORK

environment have been added along the way. SEB can be, and is being, used for
different digital exam setups. It is used to secure a lo environment on a BYOD
computer, either through a bootable OS device or by creating a new desktop on the
local computer OS. It can also be used in different virtual desktop infrastructures,
either on student or University owned equipment. NTNU uses a solution provided
by Inspera, which uses SEB, installed on the computers existing OS, to access the
learning management system, Inspera Assessment. Monitoring of activities on a
personal computer during a BYOD exam is a legal question in Norway. There are
no current law to restrict or allow this, but in general it is only recommended to
use surveillance for technical support purposes. Examinees in Norway would at
least have to sign a written agreement to allow such monitoring [15].

2.7 Prestudy
I have previously conducted a preliminary penetration test on NTNU’s chosen exam
software in a lab setting. I focused on cheating during an exam, not prior or post
exam. The focus was to test possibilities to access resources or to communicate us-
ing the BYOD computer, while running SEB. The results are summarized in table
A.1. There were some successful attacks that have been reported to the stakehold-
ers. Some attacks were unsuccessful, implying that the solution protects against
those security threats. Attacks related to modifying source code, and configuration
settings where difficult to confirm without the use of a LMS. A LMS which has the
functionality to work with SEB should check the software version and configura-
tion settings, by using a browser exam key [43]. During the prestudy, I tested the
security of SEB without a LMS and was not able to test the functionality of the
browser exam key. The tests were conducted in a lab environment with up to two
laptops (See figure 2.1). The fact that some of these tests where successful in this
test environment, does not mean they will be possible during an exam. The tests
do not consider network access restrictions or monitoring, invigilators, what other
students might notice, or security functions provided by the LMS and the system
operations.

The tests that were unsuccessful, was to share the screen using a chat program,
running on virtual machine and the use of clipboard, by coping and pasting crib
notes. This does not mean that these threats are not viable, there might exist
more advanced technologies that could bypass existing security features of SEB.
The virtual machine detection settings can be changed, to be able to use SEB in
virtual desktop infrastructure exams. The settings can be set to either exit SEB
if a VM is detected, to give a warning that a VM is detected, or to run with not
restrictions on the VM. SEB does not disable the copy/paste shortcuts for Win-
dows machines, but any clipboard content that was copied before starting SEB is
deleted, it is still possible to copy/paste within the exam environment.

The unconfirmed tests, shown in table 2.1, was not possible to test sufficiently
without a way to test the browser exam key functionality in practice. This can be

2.8. PENETRATION TESTING 19

Confirmed Unsuccessful Unconfirmed
USB key injector Run exam environment on

virtual machine
Modify source code to access
resources and/or communi-
cation tools

Run SEB on remote com-
puter to access resources

Use clipboard to access crib
notes

Modify configuration set-
tings to access resources
and/or communication tools

Accomplice accesses exam
environment by connecting
remotely

Use a sharing desktop tool, in
the background, to get assis-
tance

Audio/video communication
in the background

Table 2.1: Overview of tests

tested by using a LMS, with a test exam and configuration file setup.

The USB key injector is hard to mitigate without disabling external keyboards, as
it is perceived by the computer as a regular keyboard. It will be possible to avoid
by ensuring that invigilators will discover and confiscate any USB flash drives that
are being used. An external keyboard could maybe be modified to be a USB key
injector, which has the potential to make this attack even harder to detect.

The remote desktop connection attacks were successful, but could easily be miti-
gated by surveillance and/or restricting the Internet access during the exam. Net-
work restrictions can also mitigate the audio/video communication attack. Another
method to mitigate communication could be to implement the exam environment
to block web camera, microphone and audio on the examinee’s computer.

New technologies for malicious purposes are continuously being developed and if
digital exams become more normal, more people will start inventing and investigat-
ing different cheating tactics, using technology. This is similar to the race between
software developers and malicious attackers. ”As better defensive measures get de-
ployed, more sophisticated attacks are developed, leading to an endless arms race
and an increasing complex system” [28].

2.8 Penetration testing
The most frequently used practice for software security is penetration testing [7].
Testing is used to ensure sufficient security throughout a system’s life cycle, and
enables developers to get a better view of how an attacker can exploit existing
vulnerabilities. It is also a tool to help identify, assess and mitigate the vulnera-
bilities in a system. There are no common standard process to software security
assessment, and practices varies in method and frequence. Akin et al. [7] discuss
a better approach towards creating a secure system. They suggest to apply well
known approaches in a software development life cycle, which include abuse cases,
security requirements risk analysis and penetration testing. To continue to apply

20 CHAPTER 2. BACKGROUND RESEARCH AND RELATED WORK

security testing, both automated and manual, to find and review existing and future
security flaws in an application. Penetration testing can be made more effective
by basing it on well structured methods and approaches to discover vulnerabilities,
threats and risks.

Wang, Wong and Xu [53] present a threat model driven approach to detect unde-
sirable threat behavior at runtime. They suggest to us Unified Modeling Language
(UML)sequence diagrams to model the threats towards an application’s security.
Then use these models to make test cases and identify threats that are present in
the system.

2.9 HARM
The original HARM method was presented as a combination of well-known mod-
ern security modeling techniques, used to represent complex and creative hacker
attacks from multiple perspectives [24]. The HARM method intend to create and
overview of the attack surface, by using modeling techniques such as for example
Attack Sequence Descriptions (ASDs), Attack Defence Trees (ADTs), Misuse Case
Maps (MUCMs) and Misuse Sequence Diagrams (MUSDs). Firstly, the outline of
the intrusion is described with ASDs and MUSDs representations. Then, for more
details, the attacking activities should be modeled as MUCMs, but one can also use
the same modeling approaches that was used for the initial step. The functional
context should be represented by misuse case diagram and attack trees.

Vegendla et al. propose to extend the HARM method to help plan penetration
tests [52]. Their approach is to use predefined security requirements to develop
and model figures, and then use the models to determine the vulnerabilities. These
vulnerabilities are meant to be used to develop the penetration test cases. They
present different approaches, either a top-down or bottom-up approach, or a free
combination os these. The top-down approach is to use each security requirement
to develop attack trees, and then use these trees to make misuse case diagrams,
ASDs, MUCMs and MUSDs. The bottom down approach is to first use existing
attacks, aimed at the security requirements, and represent them in diagrams. Then
these attack are categorized and used to create an attack tree [52]

In this thesis, I will apply the bottom-approach proposed by Vegendla et al. In the
prestudy [46], I defined attack goals, which can be redefined into security require-
ments. I will model the attacks that were performed in the prestudy to create a
basis for potential attacks. I will modify the unsuccessful attacks, to make them
more likely to succeed in the new test environment. The remaining attacks should
also be adjusted, to target the changed attack surface.

Attack trees have the potential to present new ideas for attack approaches. Kordy

2.9. HARM 21

et al. [28] suggest a different attack tree modeling approach, by adding mitigation
strategies. They call these models for attack defense trees, and help to create a
better overview for mitigation strategies. The main difference between the original
attack trees approach, is the addition of defense nodes, and it becomes easier to
see how to mitigate vulnerabilities at a higher level. For example if an examinee
should attempt to use Skype, to communicate during an exam, SEB has the pos-
sibility to block Skype. In an attack defense tree, which makes visible, that it is
more efficient to mitigate several communication attacks by restricting the overall
Internet access in the exam venue. I will use attack defense trees instead of regular
attack trees, to also be able to investigate mitigating possibilities.

22 CHAPTER 2. BACKGROUND RESEARCH AND RELATED WORK

Chapter 3

SEB: Code and
Architectural Overview

In this chapter I present the code and architecture of Safe Exam Browser. I have
read through user manuals, developer guides and documentation regarding SEB,
and I have downloaded and explored the source code. The first section presents
SEB, what it can provide and how to use it. I also describe the different log
files that SEB generates and what they contain. The second section gives an
architectural overview, to make it easier to understand what the different elements
of SEB provide to the overall application. Then sections 3, 4 and 5 illustrate the
architecture and functionalities of the three sub applications, that are parts of the
default SEB installation package. Section 3 describes the SEB Windows service
and registry resetter, which is used to edit registry settings to lock/unlock certain
Windows options that can potentially compromise the locked-down environment.
Section 4 describes the SEB ConfigTool user interface, and section 5 illustrates
the ConfigTool’s architecture and functionalities. The main SEB application’s
architecture, and how it benefits from the sub application is described in section 6.

3.1 General
The source code for SEB is located on GitHub [14] and it is free to view and
download. In reality, SEB consists of 4 main applications, that cooperate and take
advantage of each other to provide a secured lock-down browser application. The 4
applications are SebRegistryResetter, SebWindowsClient, SebWindowsConfig and
SebWindowsServiceWCF, but I will refer to them as SEB Resetter, SEB Client,
SEB Config and SEB Service, respectively.

The SEB Service provides a service that is permanently running on the host com-
puter and the SEB lock-down browser normally will not run unless the service is
running. The main task of the SEB Service is to provide the registry editing, that
is needed to ensure a secured locked down environment for SEB. The SEB Service

23

24 CHAPTER 3. SEB: CODE AND ARCHITECTURAL OVERVIEW

will be discussed further in section 3.3.

When SEB is initiated, it sends a signal to the SEB Service and tells it to change
the registry so that for example access to the task manager is disabled. When SEB
is exited, it asks the SEB Service to change the registry back to normal. There
has been an issue with this when for example SEB crashes, and the registry is not
reset. That is the reason for the SEB Resetter, which is now included in the SEB
installation. It is a simple command prompt application that changes the registry
back to normal, by calling the SEB Service.

The SEB Config contains the source code for the SEB ConfigTool. This aspect
of SEB will be discussed in detail in section 3.5. Finally we will review the code in
SEB Client, which contains the main application. This is the part of the applica-
tion that currently uses the browser engine Gecko, by Mozilla, and takes advantage
of the small applications previously mentioned; SEB Service and SEB Config. This
part will be described in section 3.6.

The configuration files that can be generated with the SEB ConfigTool has the
file ending ’.seb’, and can be used to initiate SEB. SEB ConfigTool presents the
option to encrypt this file, which is recommended to avoid student tampering. An
unencrypted version of the configuration file is in the form of XML, and an example
can be found in B.2. It shows the SEB version, the startup url and the browser
exam key, and other settings elements on XML format.

In a legal report [15], the subject of monitoring devices during digital exams is
discussed, particularly with regard to BYOD exams. The discussion concludes
that the surveillance of students’ computers are only allowed for technical pur-
poses, for example to discover what went wrong if something crashed. Norwegian
laws are unclear on whether student owned laptops can be monitored legally, but
the report does not recommend it from a legal standpoint [15]. With regard to
network usage, the rules of surveillance are different, because of the fact that the
network (usually) is the property of the institution that organize the exam.

SEB generates a number of different log files, that could be used for this pur-
pose. Appendix C contains examples of the content in different logs that SEB
generates. There are 4 type of log files, ’seb.log’, ’SebClient.log’, ’sebswindowser-
vice.log’ and ’SebConfig.log’. The ’seb.log’ file, shown in C.1, contain the browser
log. This log shows that after a force shutdown signal has been sent, the browser
attempts to clear all of the user data. There are limited data that could be used to
prove any malicious use during an exam session. The ’SebClient.log’, on the other
hand, provides information on different events that are initiated by SEB(see C.2).
As an example, it shows the attempt to load the settings file, where it is stored
and what it is called. It also shows the computers user name, OS, computer model,
and that the clipboard has been cleaned, which is only parts of the information.
The service log saves when and what have been changed in the Windows registry,

3.2. ARCHITECTURAL OVERVIEW 25

Figure 3.1: An overview of the dependencies between
the different SEB applications

an example can be found in C.4. The final log file, ’SebConfig.log’(see C.3) does,
as far as I can see, only contain the date and time of when a SEB session has
loaded a configuration file (usually the default). These log files are stored on the
host computer, and has to be manually sent from an examinee to the exam and/or
technical staff for them to review the logs.

3.2 Architectural Overview
In this section, I will present an overview of the architecture of SEB, and the main
dependencies between the different partitions. I will also lay the groundwork for
understanding the models used in the rest of this chapter. The following models in
this chapter are simplified UML class and/or package diagrams, to formally docu-
ment and explain the architecture of SEB. The models does not contain all of the
packages, files, classes and functions in SEB, but should represent the functional-
ities and architecture in an understandable way. The application has a complex
code basis, with many dependencies, that are not significant for understanding the
architecture of the cheating mitigation mechanisms. Some of the methods and
dependencies have been simplified, or excluded, to reduce the complexity of the
models. Some of the names of attributes within different classes are marked with
quotation marks(””) to emphasize that they are group descriptions for several sim-
ilar attributes that are present in the class.

Figure 3.1 shows a simplified model to give an overview of the application. As
I discussed in the previous section, SEB consists of 4 applications. These applica-
tions are organized as packages, similar to how it is displayed in figure 3.1. I have
chosen to represent the different applications in different colors, to emphasize which
sub-package is a partition of which application package. The ServiceWCF applica-

26 CHAPTER 3. SEB: CODE AND ARCHITECTURAL OVERVIEW

tion package, represented in blue, has two sub-packages that have been modeled.
The ServiceImplementation package is used by the RegistryResetter(yellow), to edit
the registry. The ServiceContracts package is used by the ServiceUtils, to signal
the WCF service. The Config application package uses the ConfigurationUtils(red)
package to access and manage the configuration settings. The main application,
that contains the Lock-Down Browser, is in the Client application package. This
is the biggest application, and has several sub-packages that are not represented
in this overview. The Client application will be discussed in more detail in section
3.6. Figure 3.1 shows the two sub-packages of the client application(green), that
are used to communicate with other SEB applications. The registry application is
a simple console application that calls methods in the Service application to pro-
vide functionality. The Config application is merely a user interface, that calls on
methods from the main Client application.

3.3 SEB Windows Service and Registry Resetter
SEB creates and maintains a Windows Communication Foundation (WCF) ser-
vice, that is hosted as a Windows Service. It uses the ServiceBase class in the
System.ServiceProcess package, provided by the .NET framework. This service
runs permanently as one of your computer’s services, and is named the ’SEB Win-
dows Service’. The service can modify your registry, C.4 shows an overview of
which registry entries and values are being modified. It disables the possibility
to lock the work station, access to the task manager, changing of passwords, user
switching, log out and close. The entries that are named EnableShade and Enable-
ShadeHorizon disable the drop down menu at the top of the screen if the exam is,
for example, conducted with VDI. There are two entries for this to ensure that it
covers different OS versions and different VM tools. They input the same value
and variable, but they use different paths. An example of a registry entry path is:
’HKEY USERS{UserID}\Software\Policies\VMware, Inc.\VMware VDM\Client’
The EaseOfAccess entry controls the ease of access option on the log on screen of
a virtual workspaces. These three registry settings are not relevant for an environ-
ment that is not created with some sort of virtual machine or client.

The ServiceBase class provides functions and methods to help run a service, and
the main SEB Service class (SebWindowsServiceWCF) inherits from the service
base class. The SEB Service class creates a servicehost, which is used by the Ser-
viceBase. The servicehost uses the RegistryService class to define the service type,
and a service contract, which consists of the IRegistryServiceContract interface,
and the RegistryIdentifiers enum. The RegistryIdentifiers are used to identify sep-
arate RegistryEntry object, for example ’RegNoLogOff’ and ’RegNoClose’. These
objects represents specific registry items, and can enable or disable their system
settings to increase the security of the locked-down exam environment. The reg-
istry editing methods inherit the RegistryEntry class. The enum identifiers and
RegistryEntry objects are stored in a dictionary, which again is stored as a file.
The file content is accessed and edited by methods in the PersistenRegistryFile

3.3. SEB WINDOWS SERVICE AND REGISTRY RESETTER 27

Figure 3.2: A class diagram representation of the
architecture behind SEB Service

28 CHAPTER 3. SEB: CODE AND ARCHITECTURAL OVERVIEW

class, which is controlled by the RegistryService class. Figure 3.2 shows a model
of the the architecture of the SEB Service in a simplified class diagram.

The Service also provides features for disabling and enabling of Windows Update,
and for resetting the registry to its default Windows settings. The SEB Resetter
consists of only one main class and that is it. It takes advantage of the func-
tionalities of the SEB Service, to reset the host computer registry settings to its
original default state. It is a simple, console application, that needs to be run in
administrator mode. First it attempts to locate the file created by the Persisten-
tRegistryFile, and use the already existing functions to reset the registry values,
and enable Windows Update.

3.4 SEB ConfigTool
In this section I will go through the different settings that can be decided, cre-
ated and distributed to examinees, prior to an exam. The configurations can be
changed to better suit the exam environment that SEB is used with, for example
thin clients and/or for BYOD exams. I will use the SEB ConfigTool as a graphical
representation of the contents in a configuration file. B.1 in the appendix contains
screenshots from each of the categories (represented as tabs) of the ConfigTool.

The General tab, shown in figure B.1, contains a start URL, administrator and
quit passwords and exit settings. The start URL is the Internet address of the first
page that SEB visits when it is started with these settings. This should contain
the address of the LMS exam. The administrator password is used to open the
settings file with the ConfigTool, to be able to edit the settings. This is to protect
the settings from being modified by the examinees, as they need to download a
copy of the settings file. There is also an option as to whether or not the examinee
should be able to quit SEB during an exam, this could give access to all underlying
resources. An examinee should be able to exit the program when he/she delivers,
this could be possible to control by setting a quit password, which have to be cor-
rect for the student to be able to exit the program. It is possible to set a sequence
of keys, that will exit the browser, but SEB also has an exit button in the user
interface for this purpose.

Figure B.2 contains settings regarding the configuration file. The administrator
needs to chose what the settings file should be used for, to either start an exam or
to configure a client. This is also were the encryption settings of the file can be set,
and an decryption password needs to be set. This password is prompted for when
starting an instance of SEB with these settings. There are also some options for
saving, loading and use the current settings, as well as to revert them to default
values.

The user interface(see figure B.3) can be configured for specific needs, for example
to adjust the screen size and the task bar menu options. Figure B.4 shows the

3.5. SEB CONFIGURATION SETTINGS 29

browser options. Plug-ins can be enabled and disabled, such as javaScript. The
user agent is by default set to Mozilla’s Gecko, but this can be changed in the con-
figuration file. It is also possible to disable the entire browser application of SEB
and only use the kiosk environment to run third party applications, for example a
thin client application or a text editor.

Most of the Down/uploads settings in figure B.5 are only available for Mac OS
and I will not discuss these as I am mainly working in Windows OS. The only
available Windows option is whether to allow the download of a new SEB configu-
ration file, using the SEB browser. The exam tab (see figure B.6)shows the browser
exam key, which has to be copied into the settings of the SEB plug-in for the exam
in the LMS. This key is generated by the ConfigTool, and should not be edited
manually. There are also some options to include different URLs to, for example,
restart and quit SEB. When an examinee clicks on a link(within the LMS) that
equals the quit URL stated here, SEB will quit automatically.

The application tab (see figure B.7) presents settings regarding the management
of processes on the host computer. The settings can be set to allow or prohibit
given processes from running in the background. By default, these setting permits
XULRunner to run in Windows, to be able to run the browser engine Gecko that
is used by the SEB browser. These settings also include options for third party
applications. The network settings, in figure B.8, allows to blacklist and whitelist
certain URL’s. This feature enables the exam administration to allow access to
certain allowed resources, while at the same time ensuring no malicious network
usage. This tab also manages network proxies and certificates.

The security settings, managed in the security tab in figure B.9, presents the possi-
bility of allowing, for example, the use of a virtual machine. The administrator can
also manage the logging options. In this tab, one can choose which type of kiosk
mode to use. It can create an entirely new Windows desktop, or just disable the ex-
plorer shell. The explorer shell is the menu with tabs to open running applications
and the Windows start menu. There is also an option to not use kiosk mode at all.
This setting is mainly designed for debugging. Figure B.10 showa which registry
options that should be disabled/enabled by the SEB Service. Finally, the hooked
keys tab (figure B.11) allows management the use of special keys, key shortcuts
and function keys.

3.5 SEB Configuration settings
A relatively new feature of SEB is the SEB ConfigTool, witch assists exam distrib-
utors and operators to create a configuration file for SEB without having extensive
technological skills. Most of the logic behind the SEB ConfigTool and the config-
uration file is located in the main SEB Client application. In this section we will
look into this logic, and also give an overview of the different settings that are used,
to ensure a secured exam environment.

30 CHAPTER 3. SEB: CODE AND ARCHITECTURAL OVERVIEW

Figure 3.3: A class diagram representation of the
architecture behind SEB Config

The source code folder called SebWindowsConfig, contains the GUI utilities for
the user interface of SEB ConfigTool. There is one main class (SebWindowsCon-
figProgram), that initiates the program and calls the SebWindowsConfigForm. The
ConfigForm class contains all of the GUI objects, with their global and static vari-
ables. When the SEB ConfigTool is initiated, the application ’asks’ the client
application to provide either the default settings or upload the settings of a given
settings file. This is provided by the SebSettings class in the SEB client application,
as shown in figure 3.3. The SebSetting class maintains two versions of the settings,
one with default and one with current values. The configuration tool stores the
changed settings by changing the values of the current settings in SebSettings, and
use SebSettings methods for storing, either encrypted or unencrypted XML in a
.seb file. The SebClientInfo class, also from SEB client, provides the configuration
application with paths to stored files and log files(String Constants), together with
info about the SEB version and methods to help with logging. Finally, as shown
in figure 3.3, the configuration application generates and stores a version of the
browser exam key. This is done by using the SEBProtectionController class, also
provided by the client application. The controller gets the settings in XML format,
from SebSettings.CurrentSettings, and uses this, together with the SEB execution
file to compute a browser exam key.

3.6 SEB Client Application
SebWindowsClient is the main application included with SEB. This application
provides the Lock-Down Browser, by locking down the host computer and opening
a browser. The other applications of SEB are merely tools to provide security to
this LDB. The previous sections in this chapter should have created a basis to

3.6. SEB CLIENT APPLICATION 31

Figure 3.4: The utilities (utils) of the SEB main
application, also called SEB Client

better understand the main application. SEB Client consists of many packages,
most of them in the form of utilities, or tools. There are 8 utility packages in the
Client application, and they are shown in figure 3.4. Some of these utility packages
provide general functionalities, such as Wlan, which is conserned with wireless net-
working. I will focus, primarily, on utilities that provide security features to the
Lock-Down Browser environment. These utilities include BlockShortcuts, Service,
Process, Desktop, Configuration and Cryptography. I will not discuss the GUI
implementation the gecko browser and other functionalities that are not relevant
for securing the exam environment from cheating examinees.

The BlockShortcutsUtils package, contains methods for filtering keys, shortcut
keys and special keys, that could potentially compromise the environment. The
ServiceUtils package consists of a service controller, to communicate with and ex-
ecute methods provided by the SEB Service. The ProcessUtils package manages
the underlying processes, with regard to which processes are prohibited/allowed in
the current settings. The ProcessUtils also controls the native Windows clipboard
manager. The cryptographyUtils package includes methods for encryption and de-
cryption of files and passwords. This also includes computing the browser exam
key and managing encryption certificates. The ConfigurationUtils package man-
ages the configuration setting. It can load and store configuration files, generate
an XML string version of the settings. Manage constants, for example file path
strings, configuration entries and software information. The DesktopUtils package
enable and manages the kiosk mode. The settings for kiosk mode can be to either
create a new desktop or to disable the explorer shell, which we explained in section
3.4.

The SEB client application is a complex application and I will attempt to present
an architectural overview of the main functionality and aspects that could prove to
be relevant for the penetration testing that I will to conduct. The different utility
packages presented in figure 3.4, each contain classes and functionalities that are
correspondent with their package names.

32 CHAPTER 3. SEB: CODE AND ARCHITECTURAL OVERVIEW

Figure 3.5: A simplified representation of the SEB
Client application

3.6. SEB CLIENT APPLICATION 33

The CryptographyUtils package consists of one class, called SEBProtectionCon-
troller. This class manages the cryptography aspects and provides methods to help
with encryption and decryption. It manages certificates and encryption and de-
cryption with these certificates. It provides methods for encrypting and decrypting
with a passwoerd. Finally it computes the browser exam key, using the current
SEB settings, the SEB execution file, the XULRunner configurations for SEB and
a salt that is stored in the settings.

The DesktopUtils package consists of two classes that help with managing the SEB
desktop, and uses methods from the .NET system to do this. In the description in
the code, the main objective is to encapsulate the Desktop API. The ProcessUtils
package handles the allowed and prohibited lists described in section 3.4, as a part
of the application tab. These are lists for allowing or blocking processes, executions
and third party applications. It monitors, restricts and disables outlying resources.
The ProcessUtils package also includes the class called SEBClipboard, which con-
tains a method for emptying the clipboard content.

The ServiceUtils package contains a class called SEBWindowsServiceController,
which initiates and checks the SEB Windows Service, and tells it how to edit
the registry. The BlockShortcutUtils package tracks, captures and blocks key se-
quences and shortcuts for executing any outside resources.

The configurationUtils package contain several classes, of which 2 are worth some
discussion. These are the SEBSettings and the SEBClientInfo classes (see figure
3.5). The SEBSettings class has already been shown in figure 3.3, to explain its
contribution to the functionality in the SEB ConfigTool. For the client appli-
cation, the SEBSettings class keeps all the settings and key strings as constants
or static values, ordered and maintained in lists and dictionaries, so that other
classes can access this information. It also loads and encrypts the settings from
file. SEB access decryption tools from the CryptographyUtils class called SEBPro-
tectionController. The SEBClientInfo class stores private application information
as constants as well as more dynamic values, strings and objects which provides
and maintains data for the application, other than settings. The clientInfo keeps
track of system specific strings and application objects, for exampel the ClientForm
object. The ClientInfo class gives access to settings of SEBSettings, by using a get-
SebSetting dictionary, that can access certain setting values from the SEBSettings
class, based on their key string, stored as constants in SEBSettings. SEBClientInfo
also manages DesktopUtils, process, execution and window handling, the browser
engine configurations and logging.

Figure 3.5 shows a simplified version of the SEB client application architecture,
with only a sample of the utilities, classes and dependencies that are present in the
client application. All of the different utilities are used by the SEBWindowsClient-
Main to create the strict locked-down digital exam environment. These descriptions
and figures are made to describe the security functionality, and I have not included

34 CHAPTER 3. SEB: CODE AND ARCHITECTURAL OVERVIEW

GUI aspects and the logic behind using a bowser engine, how the program uses
Internet access, and/or restricts the Internet access to conform with some of the
network settings that can be given with the SEB ConfigTool. The Internet settings
provided by SEB can only limit the access from within the locked-down browser,
once an examinee escapes SEB, the Internet settings in SEB can not control Inter-
net access for a regular browser on the same computer.

Chapter 4

HARM, Vulnerabilities and
Risks

This chapter will describe how HARM was used to develop penetration test cases,
by identifying vulnerabilities and risks. The first section describes the security
requirements and how HARM is used. The second section will explain the attacks
and the models of the attacks from the prestudy, and which vulnerabilities the
different attacks can potentially compromise. This section will also include attack
defense trees for each of the security requirements. Section 3 will summarize the
vulnerabilities that were discovered, how they can be mitigated and what kind
of threats they include. The vulnerabilities and threats will be discussed further,
to create penetration test cases, which are also presented in section 3. The fourth
section discuss the risk assessment of the different threats that have been discovered.

4.1 Introduction
The prestudy (see section 2.7) describes the planning and execution of some simple
penetration tests of SEB without a LMS. These tests are based on the premise
that to cheat during an exam is mainly about getting access to prohibited re-
sources and/or communication. This can be transferred into the following security
requirements.

• Security Requirement 1: An examinee should not be able to access re-
sources, unless specified.

• Security Requirement 2: An examinee should not be able to communicate
with anyone, except for invigilators and other exam related personnel.

Hacker Attack Representation Method (HARM) [24] is a framework to help model
and represent hacker attacks, to understand the present vulnerabilities. The exten-
sion of HARM, presented by Vegendla et al. [52] describes how to take advantage of
HARM for penetration test planning (see section 2.9). It will help us to model the

35

36 CHAPTER 4. HARM, VULNERABILITIES AND RISKS

threats and attacks to be performed, and to brainstorm for further related vulnera-
bilities. The security requirements was used in the prestudy to derive the different
attacks, these attacks will be extended to also consider the change of test environ-
ment. The test environment will still be a lab setting, but we introduce Moodle,
with a SEB plug-in which adds security functionality. We will use the browser exam
key feature with Moodle, and create test exams with similar security as for a real
life exam. The main elements, which is important in an exam environment that we
will not test, is detectability and network restrictions. There is always a risk that
invigilators or other examinees detect suspicious activities during an exam, and
report it. An exam environment should have restricted Internet access to prevent
access to prohibited resources and communication. I will not attempt to evalu-
ate such mitigation strategies, but they are important to consider for the purpose
of transferring the test results to realistic vulnerabilities of digital exams with SEB.

The results from the prestudy can be divided into three categories, confirmed,
unsuccessful and unconfirmed, see table 2.1. I will investigate whether cheating
behaviors are prevented, logged by Moodle or SEB or by any changes in the con-
figuration settings. The previous, unsuccessful attacks will be reviewed to see if
any new insights of the source code and Moodle will help us make improved and
more sophisticated attacks. I will attempt to use new approaches to the uncon-
firmed tests, which I was unable to test sufficiently in the prestudy, due to the
test environment being too simple. These attacks are angled towards the possi-
bility to modify source code and/or the configuration settings, while still getting
access to the exam. According to Schneider [43, 44], a LMS with support for Safe
Exam Browser, will detect that the correct configuration settings and SEB version,
with unmodified software, are used, by comparing browser exam keys sent in the
URL-header. This will be possible to test by using Moodle and SEB together.

4.2 Background for penetration test cases
I will use extended HARM [52], described in section 2.9, to develop penetration
test cases. The extended method includes a bottom-down approach, which is to
initiate penetration test planning, by using modeling of specific attacks. For each
security requirement, one should describe the specific attacks that can be thought
of, with Attack Sequence Descriptions (ASDs) first, and then with Misuse Case
Maps (MUCMs) and/or Misuse Sequence Diagrams (MUSDs). The different at-
tacks described can be categorized and grouped together in an Attack Defence
Tree, to see relationships between the different attacks and possible mitigation ap-
proaches. This attack tree could also be used to encourage new attack ideas. This
different descriptions and models will help create a basis for making penetration
test cases.

I used the security requirements stated in section 4.1 to develop and categorize
the test cases in the prestudy. I will describe these test cases using ASDs, MUCMs
and MUSDs and attempt to make an Attack Defence Tree (ADT) to categorize

4.2. BACKGROUND FOR PENETRATION TEST CASES 37

the attacks and suggest mitigation strategies, as proposed by HARM’s bottom up
approach.

4.2.1 Security Requirement 1: Prohibit accessing of resources
During an exam, there are strict rules on what resources an examinee should have
access to, and the rules varies between different courses. Examinees could attempt
to sneak crib notes containing parts of the curriculum into the exam location and
peek at it when it seems necessary. The newer risks introduced with digitization,
is that the amount of notes are no longer restricted by their physical size. There
are suddenly no limit to the type and amount of resources that could be accessed
on the computer that runs the exam environment, and it becomes that much more
important that the exam program prevents such access.

The digital exam environment can be compromised on this regard in two ways;
either by getting resources into the exam program, or by escaping the exam pro-
gram to access local computer resources during an exam. SEB attempts to prevent
such activities, and we will attempt to evaluate their effectiveness. In the prestudy,
I used a USB key injector to inject crib notes into the exam environment, the At-
tack Sequence Description is located in table 4.1. In figure 4.1 you see a Misuse
Case Map representation of the key injection attack. The key injector should be
detected by the computer as an external keyboard, and the injected notes are reg-
istered as if someone is typing on this imaginary keyboard. Thus, it is difficult
to implement preventive mechanisms into the exam software, without the risk of
actually disabling all or several types of keyboards. Thus the USB-port provides a
serious vulnerability(V1) that is difficult to mitigate. The second major vulnerabil-
ity(V2) is that suddenly a big amount of text is inserted into the exam workspace,
initially faster than it is possible to type manually, without being noticed. It should
be possible to have mechanisms to detect such activities. On the other hand, it is
also possible to write a script with typing delay, so that the notes are injected in
approximated typing speed. Figure 4.2 shows the key injection attack as a Misuse
Sequence Diagram, notice that there are no invigilator actor, as I have chosen not
to investigate discovery by manual detection. The V1 vulnerability is the same
as for the MUCM, which is concerned with detection of the key injector. V2 and
V3 are similar to V2 in the MUCM, and consider detection of suspicious typing
activities, either automatic or manual.

Another way to access resources from within the exam environment is to use the
built in windows function called clipboard, which enables the user to move text and
resources between and within applications. This was attempted in the prestudy,
where it was discovered that SEB deletes the content of the clipboard when it is
started. For this attack, one has to modify the source code of SEB so that the clip-
board is not emptied. The ASD for this attack is shown in table 4.2. This attack
has been modeled in a MUCM (see figure 4.3) to show the different elements of
the attack. The first vulnerability (V1) is concerned with which modifications SEB
can do to the clipboard content. SEB allows the use of clipboard within the exam

38 CHAPTER 4. HARM, VULNERABILITIES AND RISKS

Figure 4.1: MUCM of key injector attack

Figure 4.2: MUSD of key injection

environment, but after the content has been emptied. Can clipboard activities be
prevented and/or detected? The second vulnerability (V2) is concerned with the
browser exam key, which is used to protect against code modification, will the
modifications done in the first step prevent the cheater access to the exam?

The attacks described here, are ways to insert prohibited resources into the exam
environment, similar to bringing crib notes to a pen and paper exam. Further, I
will look into ways to access resources that are already stored on the computer,
but where SEB should prevent this. SEB is made to lock down your computer, so
that you cannot access any locally stored resources, unless they are specified in the
settings. In the configuration settings, you can choose whether to allow a student
to, for example, run the exam environment inside a Virtual Machine (VM) or not.
For exams at NTNU you should not be able to use VMs, because it allows you

4.2. BACKGROUND FOR PENETRATION TEST CASES 39

Figure 4.3: MUCM of using clipboard to inject crib
notes

Steps Description
1 Save injection script with crib notes onto USB injector => Prepared key injector
2 Start the Moodle localhost server => Can access Moodle
3 Open SEB with default settings => Exam started
4 Put USB injector into the computer’s USB port => Crib notes are injected
5 Deliver exam and quit SEB => Finished

Table 4.1: An Attack Sequence Description (ASD) of the key injector attack, in a
lab environment

Steps Description
1 Modify source code => Will no longer empty out clipboard when SEB initiates
2 Copy crib notes(right click, copy) => Notes are saved onto clipboard
3 Start the Moodle localhost server => Can access Moodle
4 Open (modified) SEB, with default settings=> Exam started
5 Paste crib notes from clipboard into a text editor inside the exam (ctrl+v, right click

should be disabled) =>The crib notes are in the exam text editor
5 Deliver exam and quit SEB=>Finished

Table 4.2: An ASD of using the clipboard to inject crib notes

40 CHAPTER 4. HARM, VULNERABILITIES AND RISKS

to minimize the exam environment and access prohibited resources. What if you
disable the VM blocker directly in the source code? Table 4.3 contains a Attack
Sequence Description of this. Figure 4.4 shows the attack in a Misuse Case Map,
with the most important vulnerability concerns. Vulnerability 1 represents that
the browser exam key should detect that the SEB version has been modified, and
disable access to the exam. Also, trained invigilators should be able to discover
the suspicious activity on the examinees computer screen, while the VM is mini-
mized, to access resources, which is shown as vulnerability 2. A clever examinee
can make the outside environment look like the digital exam environment, to make
the attack harder to spot. Finally, the exam service should be able to detect some
sort of malicious activity. For example the network activity if the examinee access
online resources from the local host computer.

Table 4.4 describes how to run the exam system on a remote computer, so that the
examinee only needs to minimize the remote connection and access locally stored
resources. Which is the same principle as for using a VM, without the risk of
it being detected or blocked by the existing VM detection mechanisms of SEB.
Figure 4.5 shows a Misuse Sequence Diagram of this attack. The examinee needs
to have an extra computer, with Internet connection, at a remote location. This
attack should get the same resource access as you get when you run the exam en-
vironment on a VM. The biggest vulnerability of this attack is the Internet access.
For V1 and V2, the remote connection should be detected and prevented by the
network administration, which is not directly a part of SEB’s security mechanisms.
Vulnerability 3 is that you should be spotted. It should not be possible to exit the
entire exam environment without anyone noticing.

The last threat for this security requirement is a more general attack that enables
a lot of different opportunities for a cheating examinee. As described in previous
sections, there is a browser exam key, that prevents examinees from accessing the
exam with the wrong configuration settings and/or modified SEB software. If we
are able to bypass the browser exam key, by modifying the source code, a cheating
examinee could do the exam with any form of configuration file, and code mod-
ifications that enable access to resources and communication. Table 4.5 shows a
general Attack Sequence Description of such an attack. Figure 4.6 shows a Misuse
Sequence Diagram of this attack, to give a better overview of the key elements and
how the modifications made to bypass the security is planed. The vulnerabilities
here are that the modifications are detected. Either by V1 and V2, by setting the
wrong path in the source code, or overlooking some important code that makes
sure these changes will work as suspected. Vulnerability 3 is concerned with that
the expected browser exam key, matches the key generated by the modified code.

To follow the extended HARM bottom-up approach, these attacks have been cat-
egorized by their approaches and vulnerabilities, to make an Attack Defence Tree,
shown in figure 4.7. It shows that there are several attacks that will attempt to
modify the code , without being prohibited by the browser key mechanism, which

4.2. BACKGROUND FOR PENETRATION TEST CASES 41

Figure 4.4: MUCM of running SEB on a Virtual
Machine, to be able to access locally stored resources.

Steps Description
1 Localize and disable the virtual machine detection functionality in the source code

=> Can run SEB on virtual machine
2 Start the Moodle localhost server => Can access Moodle
3 Start the virtual machine and send it the modified code=> Can run modified SEB

on VM
4 Open (modified version of) SEB with default settings on virtual machine =>Exam

started
5 Minimize the virtual machine (with SEB running) => Can access locally stored

resources
6 Deliver exam and quit SEB on the VM => Finished

Table 4.3: An Attack Sequence Description (ASD) of how run SEB on a virtual
machine to access local computer resources, in a lab environment.

Steps Description
1 Initiate remote connection with remote computer =>Remote connection established
2 Start the Moodle localhost server(on remote computer) => Can access Moodle
3 Open SEB with default settings on remote computer => Exam started
4 Minimize the remote connection window(with SEB running) => Can access locally

stored resources
5 Deliver exam and quit SEB on the remote computer => Finished

Table 4.4: An Attack Sequence Description (ASD) of using remote desktop to
access local computer resources, in a lab environment

42 CHAPTER 4. HARM, VULNERABILITIES AND RISKS

Figure 4.5: MUSD of running an exam on a remote
computer to access resources

Steps Description
1 Locate and analyze the Browser Exam key functionality in the source code =>

Creates a knowledge base to be able to modify the code so as to bypass this
mechanism

Comment The Browser Exam key is generated by using the (predefined)configuration file
and the correct SEB execution file, using paths to the two files

2 Change the path of the configuration file in the source code, to the location where
the predefined configuration file is located(NOT necessarily the configurations
that are being used) => Can use self defined configurations to run the exam
environment

3 Change the path of the execution file in the source code, to the location where
the original approved execution file is located (NOT necessarily the execution file
that are being used) => Can use modified version of the SEB software

4 Start the Moodle localhost server => Can access Moodle
5 Open SEB with configuration settings and (modified) execution file of your choice

=> Exam started
6 Deliver exam and quit SEB => Finished

Table 4.5: An Attack Sequence Description (ASD) of how to bypass the browser
exam key security mechanism.

4.2. BACKGROUND FOR PENETRATION TEST CASES 43

Figure 4.6: MUSD to show how to modify the source
code to bypass the security mechanisms of the browser

exam key.

we also have described an attack against. For the USB injection attack, there are
no current protection mechanisms. The other countermeasure nodes have not been
discovered as a part of our current test environment, and are only suggestions of
ways to improve the security against cheating behaviors.

4.2.2 Security Requirement 2: Prohibit communication
In this section, I will discuss attacks that provide the cheating examinee with a
way to communicate with others, preferably with an expert on the exam subject,
to get assistance. This is also an existing security threat for paper based exams,
but might be more challenging than, for example, to bring cheat notes. An ex-
aminee could maybe sneak in a mobile phone with a small, unnoticeable hearing
device, to be able to hear the outside expert. Two or more examinees could also
develop undetectable ways to communicate inside the exam venue, by using for
example coughing or body language. They could even manage to meet up during
synchronized, planned bathroom breaks. For this requirement I will focus the at-
tacks on using the BYOD computer for the purpose of communicating. Even if
an exam environment has restricted Internet access, an examinee could be able to
access the Internet through an external, hidden device, such as a mobile phone.
This is not a aspect of the security of SEB and will not be assessed in this thesis.
Communication tools can be accessed on the BYOD computer, as a locally stored
resource, which mean that some of the attacks for security requirement 1 also can
be used to access communication tools. This includes all the attacks described for
accessing underlying resources, not the attacks that insert crib notes into the exam
environment. We will therefore focus these attacks on accessing communication,
whilst running the exam environment.

Table 4.6 describes using a remote connection to communicate. This attack is
similar to the remote connection attack, used to access resources. To gain resource

44 CHAPTER 4. HARM, VULNERABILITIES AND RISKS

Figure 4.7: This is an Attack Defence Tree (ADT) [27],
to show the relationships between different attacks with

the aim to access prohibited resources.

access, the exam environment are run on a remotely located computer. The main
difference in the communication attack is that the remote computer controls the
computer used in the exam location, and that the remote computer is controlled by
an accomplice. This means that for communication, the exam environment run on
the examinee’s computer at the exam venue. The fact that the examinee is always
locked into the exam environment, even though he gets assistance, should make
the suspicious activity harder to detect. Figure 4.8 is a Misuse Sequence Diagram
that shows the attack in more details. The main vulnerability here is that network
restrictions and/or surveillance should either detect the suspicious network activity
or prevent the remote network connection from even being established.

Another approach to establish communication is to run a communication tool in
the background of the exam environment. This tool should be initiated before the
exam environment, to take advantage of communication with audio, video or even
shared desktop. Table 4.7 shows an ASD of how to use communication tools in
the background. The prestudy established that there are mechanisms in SEB that
block desktop sharing, while SEB is running. This attack will attempt to disable
these mechanisms. Figure 4.9 shows a detailed sequence diagram of this attack.
Vulnerability 1 for this attack is that network access in the exam location should be
restricted, so that no unknown network communication channels should be possible
to establish. If the communication gets established, it should be detected by auto-

4.2. BACKGROUND FOR PENETRATION TEST CASES 45

Steps Description
1 Initiate remote connection from the accomplice’s computer, to the examinee’s com-

puter => Remote connection established and accomplice is able to control exami-
nee’s computer

2 Start the Moodle localhost server (on examinee’s computer) => Can access Moodle
3 Open SEB with default setting on examinee’s computer => Exam started
4 Both examinee and accomplice can cooperate within the exam environment to answer

the exam questions => Gets access to accomplices knowledge when answering the
exam

5 Deliver exam and quit SEB => Finished

Table 4.6: An Attack Sequence Description (ASD) of how to use remote desktop
to get assistance on an exam, in a lab environment

Steps Description
1 Locate and disable the mechanisms that block shared desktop => Enables examinee

to share exam tasks with outside accomplice
2 Establish a communication connection => Examinee can communicate (using audio

and video) with accomplice
3 Activate the shared desktop option for the communication channel => Accomplice

can view the examinee’s computer screen
4 Start the Moodle localhost server => Can access Moodle
5 Open SEB with default settings => Exam started
6 Accomplice and Examinee communicate to finish the exam => Get outside assis-

tance
7 Deliver exam and quits SEB => Finished

Table 4.7: An Attack Sequence Description (ASD) of how to communicate using
audio/video communication and shared desktop with a background application, in
a lab environment

matic network monitoring. The second vulnerability is that of the browser exam
key, which should detect that the code has been modified, and thus deny access to
the exam. Vulnerabilities 3 and 4 are based on the fact that SEB includes process
monitoring and should be able to prevent the use of share desktop tools in a suffi-
cient way. The audio and video based communication methods could also be used
without the shared desktop since they are not blocked. This provides the cheating
examinee with a different issue, which is how to communicate the exam questions
to the examinee. The accomplice should be able to hear the examinee through the
audio channel, but the examinee will most likely be discovered if he attempts to
speak the exam questions in an invigilated exam. It could be possible to mumble or
whisper the questions through a small microphone, if there already are background
noises in the exam location. The accomplice can also see the examinee, while the
examinee can only hear the accomplice(through an undetectable hearing device)
and will see the exam environment. They can also attempt to use code signals and
other creative methods for communicating without being detected.

Figure 4.10 shows the Attack Defence Tree that categorize the attacks on secu-
rity requirement 2. Communication with an outsider is naturally dependent on

46 CHAPTER 4. HARM, VULNERABILITIES AND RISKS

Figure 4.8: MUSD to show how to get outside
assistance on the exam by using a remote connection

tool.

Figure 4.9: A MUSD to show how to get outside
assistance by using shared desktop and audio/video

communication

4.3. THREAT DESCRIPTIONS AND PENETRATION TEST CASES 47

Figure 4.10: This is an Attack Defence Tree (ADT)[27],
to show the familiarizations between different attacks

with the aim to communicate during the exam.

the examinee being able to use the Internet connection at the exam venue freely,
which could be a sufficient method to mitigate these vulnerabilities. One should
notice that the browser exam key attack, presented in section 4.2.1, could be used
to modify the source code and/or the configuration file to access communication,
without being detected.

4.3 Threat Descriptions and Penetration test cases
This section will summarize the vulnerabilities that were discovered by using HARM
in the previous section. I will discuss these vulnerabilities and present some of the
related threats. These threats will be presented as threat descriptions, which will
help further with the development of penetration test cases for this project. The
tests described in this section are lab penetration tests, which focus on penetrating
the security of the exam software. Table 4.8 is an informal representation of some
of the vulnerabilities discussed in the last section to give an overview, and create
the basis to discuss threats and test cases to be performed. As previously men-
tioned, I will not directly test vulnerabilities regarding detection and surveillance,

48 CHAPTER 4. HARM, VULNERABILITIES AND RISKS

ID Description Mitigation Threat
V1 Key injection None Confirmed with key injec-

tion
V2 Suspicious typing activity None key injection, clipboard,

remote communication
V3 Can access clipboard con-

tent
Empty clipboard Code modification, save

crib notes on clipboard
V4 Run with modified source

code
Browser Exam Key Code modification

V5 Run with modified config-
uration

Browser Exam Key Code modification

V6 Escape SEB Locked down environment VM, Remote desktop,
switch user, access task
manager

V7 Internet access Internet restrictions Remote resource and com-
munication, audio/video
communication, shared
desktop,

V8 Run in VM VM detection Modify source code, mod-
ify configuration

V9 Run background processes Process monitoring? Confirmed by audio/video
communication attack,
get assistance by being
remotely connected

V10 Modify SEB Service None Modify service source
code, run with all registry
settings disabled, escape
SEB

Table 4.8: An informal summary of the vulnerabilities discovered with HARM and
code reviewing

4.3. THREAT DESCRIPTIONS AND PENETRATION TEST CASES 49

even though it has been discussed to a certain degree in the previous sections. The
risk of being discovered by for example another examinee and/or an invigilator
should be considered and discussed. I will attempt to research whether some of
the malicious activities have the possibility of being detected, through network
surveillance and existing logging functions, by going through this information dur-
ing a test case. Vulnerability V7(Internet access) in table 4.8 will therefore only
be discussed, based on this information, but it will not directly be assessed. This is
mainly due to the fact that there are no detailed information available about how
this vulnerability is mitigated in digital exams at NTNU, and I have no basis to
be able to set up an equivalent test environment.

Some of the vulnerabilities have already been successfully exploited in the prestudy
[46], and there is no indication that these will be better mitigated with Moodle.
The confirmed vulnerabilities are V1, V6 and V9 from table 4.8. V1 were proven
by using a USB rubber ducky key injector, and can not be mitigated in an exam
environment by network restrictions.V6 was confirmed in a lab setting by connect-
ing with a remote computer, but this attack’s success depends on which network
restrictions are used at the exam venue. Ideally, one could get the same result
without any network access, by using a VM to run the exam environment on. V9
has also been successfully penetrated with two different communicating tools in
the background of SEB, and we know that it is possible to use partial audio and
video communication while an exam is running. This attack also depends on un-
restricted access to the Internet, and it provides limited ways of communicating,
where the accomplice can see and hear the examinee, but the examinee can only
hear the accomplice, and talking should be difficult in a traditional exam setting,
without causing suspicion. V9 also proved vulnerable to remote desktop connec-
tion, as the accomplice was able maintain a remote connection with the examinee
during an exam, and could participate in answering the exam by controlling the
examinee’s computer. This attack is also dependent on unrestricted Internet access.

Something that becomes more clear with the HARM approach and this table of
vulnerabilities, is that some mitigation mechanisms and threat approaches are re-
peated for different vulnerabilities. These are source code modification, and the
use of Internet. Most of the vulnerabilities that has not yet been successfully ex-
ploited, has the possibility of being compromised by modification of the source
code. These threats are only relevant because of the fact that SEB is an OSS that
is installed on the student’s BYOD computer, and anyone could be able to make
and/or distribute a modified version of the software, legally. If V4 and V5 in
table 4.8 are compromised, it opens for the possibility for the attacker to disable
mitigation mechanisms that already have been proven sufficient. Examples of such
vulnerabilities can be found as V3, V6, V8 and V9. There is also left to prove
that the browser exam key protects against small code modifications, such as dis-
abling the VM detection mechanism or to disable the method that empties the
clipboard. But if it is possible to manipulate the browser exam key, one could in
theory disable and enable mechanisms freely, both in the source code, and in the

50 CHAPTER 4. HARM, VULNERABILITIES AND RISKS

Description Inject crib notes using clipboard
Threat target Access content on clipboard
Risk
Attack techniques Disable the empty clipboard method in the source code
Tool usage Visual Studio 2015(for code editing), existing operating system func-

tion(clipboard)
Countermeasures Disable right clicking, empty clipboard, browser exam key
Expected outcome Will not be able to access the exam, due to wrong browser exam key

Table 4.9: Threat description

Description Run SEB on VM to access local resources
Threat target Access local resources
Risk
Attack techniques Disable the VM detection method in the source code
Tool usage Visual Studio 2015, Virtual Box 5.0.10, Oracle
Countermeasures VM detection, browser exam key
Expected outcome Will not be able to access the exam, due to wrong browser exam key

Table 4.10: Threat description

configuration settings. The browser exam key is computed by using the settings
file, the execution file for the SEB client application and some XULsettings that I
have not looked into in details. The SEB Windows Service has it’s own execution
file, that is not being used to compute the browser exam key. If this was modified,
without changing it’s behavior towards the main application, it would most likely
not be detected by the browser exam key. This is presented as vulnerability V10

Threat risk modeling is an important part of developing and maintaining a secure
application [41]. The objective is to identify vulnerabilities and threats, and to mit-
igate them to develop a more secure application. The OWASP guide recommends
using a structured method for threat risk modeling, to be able to maintain a secure
application, and refer to the Microsoft threat modeling process as a suggested ap-
proach. This method is mainly designed for assessing web applications from being
exploited by malicious users, and SEB is not a web application. It is still possible
to apply an approach of the Microsoft threat modeling to assess the threats of SEB.
The main steps of this methodology are to (1) identify the assets, (2) create an
architectural overview, (3) decompose application, (4) identify threats, (5) docu-
ment threats and (6) Rate the threats [31]. The assets have already been identified
as the security requirements in section 4.1. Chapter 3 presents an architectural
overview and decomposition of SEB. The application threats and countermeasures
are discussed in sections 4.2.1 and 4.2.2, with the help from HARM.

The threats that are derived from the HARM analysis is to try and disable the
browser exam key, and/or disable emptying of the clipboard and prevention of
running on a virtual machine. To be able to recommend sufficient Internet set-
tings during an examination, it will also be beneficial to look into the threat of

4.3. THREAT DESCRIPTIONS AND PENETRATION TEST CASES 51

Description Communicate by shared desktop, audio and video
Threat target Accomplice can talk to examinee and view exam assignment
Risk
Attack techniques Enable sharing of desktop by modifying source code
Tool usage Visual Studio 2015, Skype V.7.23
Countermeasures New desktop kiosk mode
Expected outcome Will not be able to access the exam, due to wrong browser exam key

Table 4.11: Threat description

Description Modify SEB Windows Service
Threat target Run SEB without modified registry settings
Risk
Attack techniques Avoid registry editing by modifying the source code
Tool usage Visual Studio 2015
Countermeasures None
Expected outcome Should be able to run undetected

Table 4.12: Threat description

Description Generate the expected browser exam key for the url header
Threat target Enables the use of cheating settings and software modifications during

an exam
Risk
Attack techniques Modify the browser exam key generation mechanisms, to generate the

key as if the code and configuration are correct
Tool usage Visual studio 2015
Countermeasures browser exam key
Expected outcome If correct modification; success, else; no access to the exam

Table 4.13: Threat description

52 CHAPTER 4. HARM, VULNERABILITIES AND RISKS

Action Success criterion
1 Modify the SEB source code Browser Exam Key gets generated by using

original, unmodified versions of SEB and
the configuration file, runs error free

2 Start the Moodle server and open SEB
with a manipulated configuration file of you
choice

Access to exam granted

Table 4.14: Penetration test case for disabling the Exam Browser Key mechanism
for code and setting control.

Action Success criterion
1 Disable the empty clipboard method in the

source code and save crib notes on clip-
board

Runs modified code error free

2 Start the Moodle server and open SEB with
correct configuration settings

Access to exam granted

3 Paste notes from clipboard into exam Confirms that clipboard is no longer
deleted

Table 4.15: Penetration test case for using clipboard by disabling the empty clip-
board method in the source code.

sharing desktop with audio and video communication. The threat descriptions are
presented in tables 4.9, 4.10, 4.11, 4.12 and 4.13. I will attempt to exploit these
threats by applying penetration tests, which are described in tables 4.14, 4.15, 4.16,
4.17 and 4.18

4.4 Risk Assessment
This section will contain risk assessment, which is the final step of the Microsoft
threat modeling method [31], introduced in section 4.3. In software security, the
generic way of assessing risk, is to consider the two factors, likelihood and impact.
Likelihood is the probability of exploitation, which considers how easy the threat
is to exploit and discover. The impact is the damage, caused by an attack, to the
application. I will use Microsoft’s DREAD threat-risk ranking model, to assess the
risks in this thesis[31, 41]. This method uses 5 different factors, and rank these
factors on a scale from 1(lowest) to 3(highest). The rankings of the different factors
are added to calculate the overall risk of the threat. If the score is between 5 and

Action Success criterion
1 Disable the VM detector in the source code Modified source code runs error free
2 Start Moodle server and run SEB on virtual

machine with correct configuration settings
SEB is not blocked and access to exam is
granted

Table 4.16: Penetration test case for running exam environment on a VM by dis-
abling the VM detector in the source code

4.4. RISK ASSESSMENT 53

Action Success criterion
1 Modify source code to enable shared desk-

top
Modified program runs error free

2 Establish skype connection between ac-
complice’ and examinee’s PCs, examinee
shares his screen with accomplice

Connection established

3 Start Moodle server and run SEB with cor-
rect configuration settings

Access to exam is granted while still be-
ing connected through skype in the back-
ground

4 Communicate Examinee can hear accomplice, accomplice
can talk to examinee, accomplice can see
the exam environment, on the examinees
computer, through the shared desktop fea-
ture. Accomplice can see examinee

Table 4.17: Penetration test case for the sharing desktop, while running SEB, by
enabling it in the source code

Action Success criterion
1 Modify the SEB Service source code Run Service without modifying registry en-

abled
2 Start the Moodle server and open SEB Access exam, can use for example task

manager and switch user

Table 4.18: Penetration test case for disabling registry editing

7, the risk is low, between 8 and 11 gives a medium risk, and a threat of high risk
should have a score between 12 and 15.

The factors of DREAD are Damage, Reproducibility, Exploitability, Affected users,
and Discoverability. The damage potential depends on how bad the damage will
be, similar to the generic factor of impact, if the vulnerability gets exploited. The
reproducibility of a threat is how easy it is to reproduce, dependent on factors that
could be outside of the attacker’s control, such as a race condition. Whether the
attacker needs to have extensive technical skills and knowledge or not is measured
with the exploitability factor. The affected user factor measure the amount of neu-
tral users, in this case examinees, which may be affected by an exploitation. The
discoverability factor can easily be misinterpreted in the context of this thesis. I
have used the term discoverability to describe how a cheating examinee can be dis-
covered by, for example network monitoring and invigilators. In DREAD context,
discoverability is concerned with how easy it is for the attacker/cheater to discover
the vulnerability that they can exploit.

Table 4.19 contains the DREAD risk assessment model of the threats I have de-
scribed. They all where rated as of medium or high risks. The overall damage
factor were high, I chose to interpret the damage factor in this context as the
increased performance one can gain by a successful exploit of the vulnerability.
All the threats, except for T1(Clipboard) and T3(Skype). The attacks should be

54 CHAPTER 4. HARM, VULNERABILITIES AND RISKS

Threat D R E A D Total Rating
T1. Inject crib notes using clipboard 2 2 2 2 3 11 Medium
T2. Run SEB on VM to access local resources 3 2 2 2 3 12 High
T3. Communicate by shared desktop, audio
and video

2 2 2 2 3 11 Medium

T4. Generate the expected browser exam key
for the url header

3 2 1 2 2 10 Medium

T5. Modify SEB Windows Service to not
modify registry

3 2 2 2 2 1 Medium

Table 4.19: DREAD model [31]

easy to replicate, as there are now race conditions or network traffic dependencies.
There is the issue of Internet access, which may or may not affect the reproducibil-
ity factor for different set ups of an exam environment. There are also some degree
of preparations involved with all of the attacks. The skill levels necessary for these
attacks is high. One needs to know how to read, interpret and modify the source
code, however. It might be possible to get access to or buy already modified soft-
ware versions of the code, but I assume that there are limited options available
if one is not able to to the modifications independently. An attack aimed against
the security features of SEB as a single, locally installed software on a personal
computer will have little or no impact on other users at the same location with
their own SEB version installed on their own separate computers. On the other
hand, if a student gain better results on an exam due to cheating, it could affect the
grading statistics, so that other students receive a lower grade. In the bigger pic-
ture, cheating students, with better grades than non cheating students, could get
better jobs, they could get into a better educational institutions. The probability
of discovering vulnerabilities related to the fact that SEB is open source is small.
The most likely of the threats to be discovered (DREAD definition of discovery) is
probably T3, but because it is known that SEB prevents VM and clipboard, it is
also possible for an attacker to see this as an opportunity.

Chapter 5

Penetration Testing

This chapter describes the test setup and test results of the penetration test cases
that were described in chapter 4. The first section describes how the test environ-
ment were set up and which tools and software that was used. Section 2 presents
the configuration settings that was used for all of the tests and section 3 describes
the test results. The final section presents the final results together, discuss their
consequences and generalizes the findings.

5.1 Test setup
To be able to run through the tests as painless as possible, we prepared by setting
up all of the underlying tools beforehand. This section describes which tools we
used, which versions and how they were set up. Safe Exam Browser is the soft-
ware that is being tested, and the software is described in detail in section 2.4
and in chapter 3. The testing will be done on version 2.1 of SEB for Windows,
because this software is open source, any examinee can access the code and infor-
mation on the Internet and use this knowledge to potentialy cheat. This is the
reason why some of the tests are based in attempting to modify the source code
and/or the configuration settings used during an exam. The test computer is an
approximately 5 year old Acer Aspire with 64-bit Windows 10 OS installed. It
has previously been used by the author to do school work and should be a good
example of a computer that a student could bring to conduct a BYOD exam on.
I work under the assumption that, everything I am able to accomplish by modify-
ing and testing, could also be done by a cheating examinee. On the other hand,
the attacks presented in this thesis is unlikely to achieve the exact same outcome
during an exam, as I do not test network restrictions, and the risk of being detected.

Safe Exam Browser provides a tool called SEB ConfigTool, which is described in
section 3.4. This configuration tool will be used for creating a default, exam con-
figuration file for all the tests, and for creating modified, ’malicious’ settings. The
SEB developers recommend to encrypt configuration files that are to be distributed

55

56 CHAPTER 5. PENETRATION TESTING

to examinees, or they can be directly manipulated in a text editor. Description of
the settings used for the penetration tests can be found in section 5.2

NTNU uses IA as the LMS to create, distribute, deliver and authenticate the
exams, and more exam related services to assist the administration. I made at-
tempts to get access to IA to use for the penetration tests. I had some e-mail
correspondence with Inspera as well as a phone call, regarding the possibility of
cooperation. They seemed optimistic and interested in the possibility, but due to
the long response time I experienced, I had to continue my work, and find a tool
to replace IA. For the tests, I ended up using the LMS called Moodle(described in
section 2.5), which is open source and the code can be downloaded and installed as
preferred. For this project, Moodle was installed as a local web server on the test
machine, using the lightweight, cross platform web server solution stack package
XXAMP [54]. Moodle was configured using default settings. The SEB Moodle
plugin was installed on the local server [22], to be able to make exams in Moodle
that can only be accessed when using unmodified SEB and the predefined config-
uration settings. I made test users and test exams in Moodle with different types
of questions to run the penetration tests with

I installed Skype v. 7.23 to use for audio, video and sharing of desktop, but there
was a port number conflict with XXAMP, that was also using port 80, and I could
not use the two applications at the same time. I had to change the port numbers
used by XXAMP, so as to be able to run my Moodle server at the same time as I ran
Skype. I installed Oracle’s free VM tool called virtualBox 5.0.10, where I installed
a machine with Microsoft Windows 8.1 OS. I also had to download a version of
the SEB source code [14], in addition to the SEB software I already had installed
[5]. The descriptions and recommendations I found related to of SEB source code,
recommended to use the Visual Studio 2015 IDE [2] which is specialized for C#
and .NET software development, which is the coding languages used to create SEB.

An empty clipboard method are called from the method InitSEBDesktop, in the
class called SebWindowsClientMain, and that method is located in SEBClipboard,
which is located in ProcessUtils. It imports functions, by using Dllimport on
the user32.dll system file, for emptying, opening and closing the clipboard, which
are the Windows native clipboard functions [32]. The OpenClipboard() function
reserves the clipboard content from other applications and enables editing. The
EmptyClipboard() function empties the clipboard and all data references contained
in it. Finally, SEB evokes the CloseClipboard() function, which close and release
the clipboard for regular use. It should be sufficient to only remove the call to the
EmptyClipboard() function for this test.

The VM detection method is also located in the class called SebWindowsClient-
Main, and the method are called CheckVMService(). This method checks if VM
is allowed by the configuration file, and whether the program is being run inside
a virtual machine. It finds this information using a ManagementObjectSearcher,

5.2. CONFIGURATION SETTINGS 57

which is used to query for management information [33]. It finds the manufacturer
and model of the OS and searches for known distributors and services, such as
VMWare, parallels software, xen and virtualbox. Not only does this make it easy
to discover a potential VM tool, that are not present in the system query, just by
looking at the code. Any VM tool not checked in the source code will probably not
be detected by SEB. For this test, where I use virtualbox, I can remove the fracture
of code that asks for that and it may not be noticed with the browser exam key
checker.

The methods in the source code that disable shared desktop is harder to locate.
I will have to test several mechanisms that could maybe be responsible for the
shared desktop blocking. In the prestudy, I discovered that the shared screen that
the accomplice could see was either black, or shows the same screen as from before
SEB was initiated. This result gives me reason to assume that there is some code
that assures this. After the detailed code review I conducted (described in chater
3), I have an idea of what mechanisms could be doing it. There are a file called
Interop.cs in the WlanUtils folders that flags and alert settings that could be re-
sulting in the blocking. There is also several system functions that are imported
and called, which should be researched further. They are mainly located in the
SebWindowsClientMain. I have spent a lot of time researching the registry service
and are reasonably sure that this is not what block the desktop sharing.

For network surveillance, I have installed Fiddler for .NET4 version 4.6.23. I also
want to look at the traffic between the SEB browser and the localhost, and there-
for, I have installed a socket sniffer called CapRaw v. 0.1.5.0 from NETRESEC,
which creates capture files that I can view in Fiddler.

5.2 Configuration Settings
For the penetration tests I will use the test exam that I made in Moodle, and I
need to have a configuration file which represents the configuration settings for a
real-life BYOD exam. I will create separate configuration files for running SEB in
VM and running on host machine. This is only to change the start URL which
will be different when accessing a local host server from a VM. There will be one
encrypted and one unencrypted version of the settings file, but I will mainly use the
encrypted versions, encryption will be done using a password. The start URL of the
settings for use without a VM is http://127.0.0.1:82/mod/quiz/view.php?id=2, to
get access to the test quiz on the local host XXAMP server. The port number has
been changed from 80 (default) to 82, to avoid conflict with skype. The settings
will have an administrator password, to avoid modification by examinees, and it
will be possible for the examinee to exit the browser, by using a specified password.
The exit key sequence is disabled. The IP address used to access the Moodle server
from the virtual machine is 10.0.2.2, and has to be changed for the startup URL.
It is also important to use the original SEB, execution file when the browser exam
key is generated in the config tool. If the browser exam key is generated with the

58 CHAPTER 5. PENETRATION TESTING

modified version of SEB it defeats the purpose of these tests and will create a cor-
rupt and unrepresentative outcome. When administrators create the configuration
file and browser exam key, they use the original SEB version, and this is what I
am trying to imitate in this setup.

The browser will be in full screen mode, with all available SEB taskbar options
visible. The browser security will disable plug ins and popups, and delete user
information. Down/uploading is disabled and there are no restart and quit URL’s
defined. The option to send the browser exam key in the header is checked. In
the permitted processes table, I added two network surveillance application, for
documenting of the network activity. They will not directly affect the security in
any way. These processes are CapRaw and Fiddler, presented earlier. There will
be no processes in the prohibited list, and I will use default proxy, network and
certificate settings. SEB will only run if the SEB Windows Service is detected and
running. VM is not allowed. Logging is enabled and saved at a default location
on the computer that runs the exam environment. The registry settings are all
checked, and should ensure that all the registry settings are changed for the du-
ration of the exam. Finally, there are no special keys enabled and no print-screen
possibilities. The chosen kiosk mode are to create a new desktop entirely.

5.3 Test Results

5.3.1 Inject crib notes using clipboard
This test is the simplest, and hardest to detect with both digital monitoring and
invigilating. The objective of this test is to get a grasp on the code details and
modifications that will be detected by the browser exam key functionality. This
digital cheating behavior can be compared with bringing prohibited crib notes to
a pen and paper based exam. The notes that are used to cheat, have to be created
and prepared prior to the exam and, in this case, saved on the clipboard.

First, I ran a test for comparison, with the original code and configuration set-
tings as described in 5.2. I stored test notes on the clipboard prior to initializing
SEB. The exam environment ran as expected and the notes, that was stored on
the clipboard, was gone. It was, however possible to use the clipboard within the
environment. This is a useful tool for exams, particularly with bigger writing as-
signments. The browser exam key check was successful, and access to the exam
was granted.

I also tested to run the exam with the wrong configuration file, both for the modi-
fied and unmodified SEB version. The tests ran as expected, and I was able to run
the program, but access to the exam was denied by the LMS. The exam’s entry
web page, suggested to use the correct SEB version to get access to the exam, and

5.3. TEST RESULTS 59

the access button was changed to a ”go back” button.

For the main test, I had to do code editing. There is a separate class called
SEBClipboard, which is located in the processUtils package of SEB Client. For
this attack I commented out the functionality that empties the clipboard, which is
called from the main class of SEB Client. I also made sure that the entry ”Clip-
board cleaned” still appeared in the client log. I saved some test notes on the
clipboard. Then I replaced the original with the modified execution file, and ran
SEB as an examinee normally would. The program ran as expected, I could paste
my test notes into the system. The most surprising result was that I could still
access the exam. Which implies that the browser exam key functionality did not
detect the minor code modifications that had been done. For this test, there were
no malicious network activities and therefore network surveillance was unnecessary.
The logs did not detect anything suspicious, as was expected.

5.3.2 Run SEB on VM to access local resources
This test also includes code modification. First, I attempted to run anunmodified
SEB version on the VM. First, I used a configuration file, with settings to allow
virtual machine. For this test I was able to run SEB, but I was not granted access
to the exam. This was because the browser exam key functionality detected the
use of the wrong configuration settings. Then I attempted to run on the VM, with
the correct configuration file. SEB refused to run, it gave a warning pop-up box
and exited at once.

Then I made a version of the software with the VM checker disabled. I attempted
to run the modified code on the VM with a modified configuration file, and was
denied access to the exam, just as with the same test and the unmodified software
version. Finally, I ran the modified code with the correct configurations on the
VM. This was a success. I was allowed to run the software, regardless of the VM
detector. I was also granted access to the exam and could minimize the Virtual
Machine to access resources.

This attack allows the cheating examinee to access both local resources, Inter-
net resources and communication. It is an attack that can be done either with or
without free Internet access. The interesting question is whether the allowed Inter-
net activity looks different, than when the examinee is not using VM. The answer is
no. The VM is undetectable through network surveillance, and the network traffic
will look like it came from the host machine. On the other hand, if the examinee
attempts to access the Internet from the host machine, it can be detected. This
attack can still grant access to locally stored resources.

The log files have the potential to disclose suspicious activity though. The log
files will be stored on the virtual machine, and not on the host computer. The log

60 CHAPTER 5. PENETRATION TESTING

files on the host machine, if they exist, will not contain information about SEB
that is being run inside a VM. The log files stored on the virtual machine, may
disclose that a VM has been used. In the ’SEBClient’ log, the manufacturer is
shown, and in this case that is VirtualBox.

5.3.3 Communicate by shared desktop, audio and video
This attack was attempted in the prestudy (see section 2.7), and was proven un-
successful. It was also unclear in the prestudy, why this attack failed, but remote
desktop worked. By intensive code reviewing and research I suspect that this is
caused by the kiosk mode. The settings can be configured to choose what type of
kiosk mode the exam environment will to use. The choices are; to create a new
desktop, to kill explorer shell or to use nothing. The last option is for debugging
purposes only. By default, SEB creates a new desktop. This could explain what
happened in the prestudy. When I attempted to share the examinee’s desktop,
using Skype, the accomplice could still see the underlying windows. When you use
the kiosk mode setting called kill explorer shell, SEB closes or minimizes all other
applications. The Microsoft start menu, taskbar and file explorer windows are min-
imized, closed or blocked. The examinee ca neither access minimized applications
or start new ones, because the taskbar and start menu is blocked.

I attempted to run shared desktop, using Skype, while running the original SEB
software with the kill explorer shell kiosk mode chosen in the settings. The ac-
complice was then able to see the examinee’s screen including the SEB browser
window. The examinee could not access the exam in this kiosk mode, because of
the changed settings being detected by the browser exam key functionality.

These two kiosk mode options, in the SEB settings, creates two major different
executions of SEB, and thereby also requires code modifications in several areas.
The simplest ways to fix this, would be to override the values of the current settings
variables. There are two relevant setting variables that hold these settings, but the
browser exam key is generated by using all setting variables, including these. I first
attempted to do this, and ran the correct configuration with these variables being
overwritten in the source code. I was not granted access to the exam by Moodle.
This code manipulation will appear as if the wrong configuration settings were used.

I then had to locate and modify the code, whenever these variables were checked,
without actually changing them. This resulted in modification of at least 4 dif-
ferent classes in the SEB Client source code. I ran the modified code, with the
intended configuration settings, and SEB opened by killing explorer shell, even if
the settings said to create a new desktop. The browser exam key detected these
modifications and denied access to the exam. This attack turned out to be unsuc-
cessful. However, if the exam environment kiosk mode is set to kill explorer shell
by an exam administrator, remote desktop communication will be possible.

This attack requires network usage, and the Skype activities with detected by

5.3. TEST RESULTS 61

Fiddler, and will hopefully be blocked in a real-life exam environment.

5.3.4 Modify the SEB Windows Service
This test is based on the new knowledge that was acquired by code reviewing
and architectural inside into the application, which is presented in chapter 3. The
knowledge that created the basis for this test is regarding the browser exam key.
This key is generated by the current settings that are used, the main client appli-
cation execution file and XULRunner configurations. The SEB Windows Service
however, has it’s own execution file and code basis, which is not assessed by the
browser exam key. This service can modify the Windows registry, which is con-
cerned with options such as logging off, switching user, and accessing the task
manager. If one can change the features of the service, to not modify the registry,
it should not be detected by the browser exam key, and affect whether access to
the exam is granted.

I started by researching how the service works and attempted to run SEB with
and without the service running. When I used the test settings configuration file
described in section 5.2, without the service running, I got a warning about the
missing service and SEB did not even start. I attempted to to this with the wrong
configuration file, and SEB started normally but Moodle denied access to the exam
due to the wrong browser exam key. If I ran the service and used the correct set-
tings, everything worked just as expected, SEB ran smoothly and access to the
exam was granted.

For the major test, I modified the source code of the SEB Windows service to not
edit any registry settings, but I still wanted it to act as expected toward the main
SEB application. I switched the original service with the modified version, and ran
SEB. SEB started without any problems and access to the exam was granted. I was
now able to for example access the task manager, log off, close the computer and
switch users while answering an exam in the exam environment. The most advan-
tageous of the new possibilities appears to be the switch user option. An examinee
can switch the active user, so that SEB runs on one user, and a different user can
be used to access resources and even the Internet. On the other side, this cheat-
ing behavior will probably be easy to detect for invigilators and/or other examinees.

This attack was detectable in the service log. The service log records every registry
editing, as shown in the appendix, section C.4. While applying this attack, the only
entries added to the log, is that of disabling and enabling the windows updater,
which is not a registry editing feature of the SEB Service, this is also shown in the
appendix (C.4). It should be possible to modify the service so that the log will
show that the registry settings has been changed, even they have not. This is not
tested further as it is not legal to use log files to detect cheating behaviors.

This attack is independent of Internet access, restrictions and/or monitoring. I
will therefor not assess the network usage of this attack.

62 CHAPTER 5. PENETRATION TESTING

5.3.5 Generate the expected browser exam key for the url
header

This attack is the most ambitious of the attacks in this thesis and, it turns out,
requires major code editing and knowledge of the application, libraries that are
used, contents of SEB related files and folder, and the coding convention and ar-
chitecture of the source code. This attack did not require Internet access, which is
why I did not use network monitoring tools.

The motivation for this attack is that all of the source code should be available to
any examinee with Internet access, and he can attempt any code modification of
his choice, only limited by skills, knowledge and creativity. The browser exam key
is the main functionality to ensure the solution’s integrity, and to compromise it,
makes all sorts of cheating activities possible.

The browser exam key is generated by creating a hash from the currentSettings dic-
tionary saved by the SEBSettings class, the Safe Exam Browser execution file, and
a string called XULRunner hash. The XULRunner hash is generated by creating
a string from all files that contain the string ”SafeExamBrowser”. The idea of this
attack is to create a fake current settings dictionary, from the intended settings file,
while actually using freely chosen settings. Because these code modifications will
most likely change the execution file, it should also be necessary to use the original
execution file for SEB, even though this is not the version of SEB that is being run.

I copied the SEBSettings class, and made a completely identical class called SEB-
FakeSettings. I used this class, and the methods within it to load and store the
intended settings from a file and into the variables of the fake class. I then saved
the original SEB execution file with a different name, and changed the pathname
in the ComputeBrowserExamKey() method accordingly. Then I ran the modified
version with a configuration file that should not be accepted by the browser exam
key check.

SEB ran normally, but I was unable to access the exam. I attempted several
different code modification approaches and fixes, but was unable to make it work.
There could be several reasons why this attack failed. The fake SEBSettings class
use other classes of SEB to modify the settings, and they modify the settings
directy, using ”SEBSettings.variablename”. I attempted to follow all these depen-
dencies and write fixes so this would work for the fake settings, but some of the
dependencies may have been overlooked. The name of the original execution file,
was changed, and could maybe affect how it is hashed by the hash function. The
changes of the code, and file organization could have changed the XULRunner
hash. The SEB Browser exam key is salted by a variable which is stored in the
settings. I attempted to modify the fake settings class to store the correct salt for
the original settings, as well as to modify the browser exam key to use the ”fake”
salt, but this may not have worked.

5.4. RESULT SUMMARY 63

Attack Result Conclusion
T1:Clipboard The modified SEB worked, access to exam was

granted
Success

T2:VM The modified SEB on VM worked, access to
exam was granted

Success

T3:Shared Desktop The modified SEB worked, access to exam de-
nied

Failure

T4:Browser Exam Key The modified SEB worked, access to exam de-
nied

Failure

T5:Service The modified service worked, original SEB
worked, access to exam granted

Success

Table 5.1: Summary of the results of the penetration tests.

The number of different setting values stored by SEBSettings is extensive, and
it is difficult to debug them and those of the fake settings class. The time limi-
tations of this project affected the amount of time that could be directed towards
this particular attack.

Even though this attack was unsuccessful, it is not evidence that the browser exam
key function is bullet proof. There are several aspects of this attack that I would
have liked to investigate further. The results of this attack does confirm that to
perform this attack, one needs to be an expert in the related libraries, configura-
tion and SEB software. To perform this attack without extensive prior knowledge,
would probably be more demanding than for an examinee to actually prepare for
the exam, without cheating.

There are aspects of the preparation for this attack that could have been bet-
ter, to maybe make it succeed. I could have done more extensive research into
the XULRunner hash and the hashing libraries that are used. I also had limited
experience with C#, .NET and Visual Studios, prior to the thesis. If I had had
more knowledge beforehand, I probably would have had fewer struggles with the
code modifications.

5.4 Result Summary
Table 5.1 summarizes the results from the different tests. The attacks that include a
small number of code modifications were generally successful, when checked against
the browser exam key. T1 and T2 are threats that were able to exploit vulnera-
bilities. T5 required more code modification than T1 and T2, but there are not
mitigation mechanisms discovered to prevent the use of a modified version. The
remaining attacks required more code modification, and they were prevented by
existing mitigation mechanisms.

The browser exam key certainly provide important security to Safe Exam Browser.
Unfortunately, it does not work to detect the smallest changes. The browser exam

64 CHAPTER 5. PENETRATION TESTING

key limits the possibilities for the cheater to take advantage of the fact that the
software is freely available, and the key is able to prevent significant code modifica-
tions. The vulnerability of accessing crib notes in a digital exam, can be compared
with bringing physical paper based crib notes to a pen and paper exam. This is
one of the more used cheating behaviors and is relatively simple to do, but it also
limits the amount and content of sources that the student can access. T2 and
T5 could have a bigger impact on the amount of resources that become accessible.
Even if there is restriction on the Internet access, the cheating examinee could have
prepared to cheat by downloading all sources that could prove useful.

It is evident that the browser exam key is efficient to protect against using mali-
cious setting files, but the way in which it checks the execution file is not sufficient
to detect malicious software modifications. It proved to be challenging to get us-
able network surveillance data during the testing. The major issue with this was
because I ran the LMS on a local host which made the network monitoring data
regarding Moodle difficult to relate to a real life situation. The general conclusion
that can be made from the Internet traffic, is that network restriction can mitigate
efficiently against communication, and limit the consequences of attacks that cre-
ate the possibility to give the examinee access to a Internet browser outside of the
kiosk environment.

Chapter 6

Discussion

This chapter will discuss the processes and the results that have been presented
in this report. The first section is a discussion of the test results, and how it con-
tributes to the discussion about cheating behaviors in digital exams. The second
section will discuss mitigation strategies to limit vulnerabilities of the exam en-
vironment, both technical and non-technical approaches. Section 3 will compare
the solution that are used at NTNU, which I have elaborated and tested in this
thesis, with other digital and non-digital exam solutions that have been presented.
Finally, I will discuss the benefits and weaknesses I have experienced when using
HARM to plan penetration testing.

6.1 Test Results
The results from the penetration tests have been summarized in section 5.4, and
there are to major vulnerabilities that have been discovered. One of these vulner-
abilities is the SEB Windows service, which has no mechanism to ensure that it
has not been compromised. As long as the service can be detected and is running,
there should be no indication that the service is modified. This vulnerability has
the potential to give a cheating examinee access to all locally stored resources,
and even though the attack could be easily spotted by invigilators, it should be
discussed and potentially mitigated better.

The other vulnerability that was discovered is regarding the browser exam key.
The browser exam key does prevent the use of the wrong configuration file, but
it does not sufficiently protect against code manipulation of the main application.
The code is open source, and it is necessary to assume that a student, or outsiders
who want to sell malicious exam software, can manipulate and distribute code that
can enable cheating behaviors. That the code is open source enables institutions
to make specified adapted versions to better suit their exam setup, and it allows
outside developers to contribute with useful functionality. It is free to use, which
encourages institutions to choose it for their digital exams, while still maybe mak-

65

66 CHAPTER 6. DISCUSSION

ing donations towards the development of SEB. The downside is that, because it
has to be installed individually on each device, which is owned by student, there
is a risk of the installations to be corrupt. The more SEB is used and known,
the more people can possibly make contributions and donation to make it an even
better solution. Unfortunately, the more regular users, the more malicious users,
and it is more likely that modified versions can be developed, distributed and even
sold for a profit.

To be able to pull off any of the attacks that have been presented in this the-
sis, the attacker needs to have at least some basic programming skills, which may
limit the extend of the threats. As previously mentioned, an examinee can poten-
tially purchase modified versions of SEB. All of the attacks require some technical
knowledge, but if the program gets more used, more malicious, modified versions
can be distributed online. The possibilities for attacks in digital exams should be
continuously mitigated, and institutions that conduct digital exams needs to be
aware of the existing and new threats and vulnerabilities.

6.2 Mitigation Strategies
First, I will discuss how to mitigate the attacks that were successful in the prestudy
(see 2.1), and I will discuss mitigation strategies for the vulnerabilities that were
exploited during this thesis. Finally I will discuss general mitigation strategies that
should always be used to create a sufficiently secured digital exam environment.

In the prestudy [46] the simplest attack that was successful was the Key Injec-
tor. This attack was inspired by Dawson [13], and he discuss the possibilities to
mitigate this attack. To disable USB typing devices is not recommended, as this
can disable certain keyboards, which is not ideal for an exam in which the exami-
nee has to type longer answers. The exam environment could monitor the typing
speed, and give a notification if the typing speed is suspiciously fast. The key
injector script can, unfortunately, be written with a typing delay. Which makes it
harder to detect by any technical monitoring, even screen monitoring would not
be able to detect whether the typing is done by the examinee or an injector. This
attack can be detected by invigilators, if the key injector have not been sufficiently
hidden or disguised as a regular keyboard. This attack is similar to the clipboard
attack that has been performed in this thesis. The clipboard attack can not adapt
the speed in which the text is pasted into the environment, which makes it vulner-
able to screen monitoring. Whether device monitoring and logging can be used to
mitigate cheating raises ethical and legal questions. Monitoring of student devices,
will probably only discover a fraction of cheating behaviors that could not have
been caught by invigilators. The legal issues, and costs, are valid arguments to
prevent device monitoring and logging to be used to mitigate cheating.

The attack, using Skype for audio and video communication have been extended
in this thesis to include shared desktop. The shared desktop was unsuccessful, and

6.3. EXAM SOLUTION 67

has proven difficult to accomplish, but communicating with audio and video need
to be better mitigated. A locked-down digital exam environment should disable
the use of microphone, sound and camera, which is not done sufficiently with SEB.
This can be done by, for example registry editing, which have been discussed as
part of the SEB Windows service. Another approach could be to better monitor
and close background programs. SEB documentations claim that SEB closes ex-
isting processes if they are in the prohibited list, but this list would have to be
extensive to include all possible applications that can possibly be used to cheat.
This is a vulnerability in SEB for BYOD exams that was admitted by Schneider
during the Inspera seminar [44]. If possible, it could maybe be beneficial to close
all background processes that are detected.

Attacks that attempt to use a remote desktop connection are dependent on un-
restricted Internet access, which makes Internet restrictions the best approach to
mitigate for these attacks. Restrictions of the Internet access, by for example only
allowing examinees to access the LMS, will mitigate all kinds of communication
attacks that does not use an external device. The use of an external device, should
be mitigated by using well trained invigilators to detect and remove such devices.
To restrict the Internet access can also contribute the consequences of attacks that
are able to escape the exam environment, by using for example a virtual machine
or switching users. The cheaters may still access local resources, but they will not
be able to communicate or access Internet based resources. If Internet access is
restricted, it may not be necessary to disable camera, microphone and audio in the
exam environment, unless external devices with Internet access are used.

The attacks that have been conducted in this thesis already have existing mitiga-
tion strategies, and the attacks that succeeded revealed which of these mitigation
mechanisms that are insufficient. I would like to suggest that the browser key gets
improved. It works perfectly when checking the configuration file, but it does not
work sufficiently when checking execution files. If the browser exam key finds a
better approach to check the source code of the running SEB system, it would help
mitigate the simplest attacks, such as clipboard and VM. The key could also be
changed to include checking that the SEB Service has not been modified a well.
Event hough it should be possible to develop a version of SEB that avoids detection
of the wrong browser exam key, this is a lot more difficult to accomplish, than for
example the clipboard attack.

6.3 Exam Solution
At NTNU, and several Norwegian institutions, they run SEB directly on the stu-
dents laptops to create a locked down environment. Other solutions that have
been used include running SEB in an OS on a bootable device on a student lap-
top, running SEB on a virtual client desktop either on a student laptop or on
the institutions own equipment. To use a different independent OS, either with
a bootable device or on institution owned equipment, ensures that local resources

68 CHAPTER 6. DISCUSSION

are completely inaccessible from the exam OS. On the other hand, to run SEB
with VDI on a student computer, uses the original OS to run the virtual client and
the resources will, in theory, be available, similar to just running SEB directly on
the laptop. One BYOD solution is to use SEB to run the virtual client as a third
party application, and then run SEB again inside the VDI to access the exam.
This solution could present the same vulnerabilities as if SEB was run directly on
the computer, and the investment costs of acquiring necessary servers may not be
worth it. The more secure solutions, using institution equipment or a bootable de-
vice, is likely to cost more. If the cheaper solutions are presented as secure enough
to use for digital exams, they will probably be more widely used. The more users,
the more resources will become available to improve the solution.

Paper based exams are also vulnerable to cheating behaviors, and it is not that
difficult to be able to use crib notes for a written exam at NTNU. I personally know
people who have used prohibited crib notes on a written exam, and I know other
people who would never do this even if the possibility was there. For digital exams,
with no paper on the examinees desk, it becomes a bigger challenge to access and
use physical crib notes to cheat. To bring crib notes on paper will be detected by
invigilators, and to be able to access crib notes on the computer, they would either
have to bring a key injector or modified software. This requires more work than to
bring a paper sheet with notes, and could mitigate the occurrence of crib notes at
an exam.

The other, more complex digital attacks, are harder to accomplish and an examinee
would have to be determined to cheat in advance to be able to pull any of them off.
Which is also the case for more complex cheating behaviors in paper-based exams.
If an examinee is determined to cheat, he will be able to, regardless of the type of
exam. According to Vegendla et al. [49], a digital exam does not need to eliminate
cheating, but it needs to be as reliant as paper based exams. As long as cheating
require a significant effort, they should occur less often. BYOD exams with SEB
and a LMS with a SEB plug-in for the browser key check, invigilators and network
restrictions fulfills this requirement.

Norwegian high-schools practice open book exams on student laptops. They al-
low behaviors that have previously been defined as cheating, while using cheating
prevention to mitigate against other behaviors. They restrict Internet access and
allows students to use all the resources available on their computer. Students can
even download the contents of web pages and use this, as long as they don’t plagia-
rize. This exam environment is easier to control, and is a better representation of
what real-life work situations will be like. Usually, when performing work assign-
ments, it is important to use and find good resources in a constructive manner to
produce results of good quality. This could likely be the future for assessment in
higher education, and for an institution to invest in expensive equipment to provide
a locked environment, may not be a profitable, long-term investment.

6.4. HARM 69

6.4 HARM
I used an extended HARM method to investigate system vulnerabilities and pen-
etration test cases. HARM was used together with a architectural review and a
risk assessment method called DREAD to discover vulnerabilities, plan tests and
asses risks in this thesis. I used the architectural review together with security re-
quirements and my prestudy tests and results [46] as a basis. The HARM method
consisted in making diagrammatic descriptions of different attacks, and then cate-
gorize them in attack trees. I used the attacks from the prestudy to develop new
attacks, that could possibly be a threat to the new test system, and described the
new attacks according to HARM.

HARM helped in structuring the vulnerabilities and was helpful to see connec-
tions and similarities between different vulnerabilities, threats and attacks. The
attack defense tree made it easier to discover mitigation strategies, and how to
mitigate more threats at a higher level. The architectural review of the source
code, was a useful tool to discover new vulnerabilities, that would not necessarily
have been discovered in this application of HARM.

The models helped to create an understanding of related attack and which at-
tacks that was aimed towards the same vulnerabilities. This made it easier to
chose which attack to develop, and which would only assess the same threats. The
figures and tables could also be a good way to present vulnerabilities to nontech-
nical stakeholders.

I adapted HARM into what I attempted to be an approach that would fit the
objective of this thesis, and I would recommend to use HARM to develop a tailor-
made approach to plan attacks and assess vulnerabilities. I had done previous tests
that created the basis for the attacks that I modeled, which was helpful. This was
the bottom -up approach, which could be used for continuous assessment of vul-
nerabilities and threats of a system. Most of the vulnerabilities that was presented
and categorized using HARM, had already been discovered to some degree in the
prestudy. The most alarming, new vulnerability that I discovered was discovered
through code reviewing. The HARM models helped me develop new approaches
to attack the, already known, vulnerabilities, more than it helped me discover new
vulnerabilities.

70 CHAPTER 6. DISCUSSION

Chapter 7

Conclusion and Future Work

In this chapter, I will conclude my thesis work and answer the research questions.
The first section concludes the results and the answers to the research questions.
Section two suggests future work that can and should be done on this topic and
based on this report.

7.1 Conclusion
The thesis describes and uncovers threats and vulnerabilities of digital exams. It
also presents different methods that can be used to cheat, from within a digital
exam environment, or by escaping the environment during an exam. Digitization
of exams in higher education is a necessary development, and helps make assess-
ment a better representation of situations in real life, where a good education is
required. It is important to work actively to prevent cheating, by using invigila-
tors, network restrictions, a sufficiently secured digital environment and continued
research. One approach to assess the technical aspect of cheating could be to model
different cheating behaviors that could be possible, for example by using HARM
or a similar modeling approach.

This thesis uncovers existing vulnerabilities in the exam software that is currently
being used to conduct digital exams, and these vulnerabilities can, in a worst case
scenario, be used by examinees to cheat during an exam. The secured exam en-
vironment, provided by SEB and Inspera for conducting digital exams at NTNU,
and the tests and vulnerabilities presented in this thesis, represent only a fraction
of cheating related properties. There are different types of exams where cheating
also should be avoided, for example, home exams, open book exams and oral ex-
ams. Cheating is not a new phenomenon and there are other important factors to
consider than just the technical aspect in which cheating is possible, and for this
thesis, cheating during an exam. I have not discussed cheating behaviors that can
be used before or after an exam has been conducted.

71

72 CHAPTER 7. CONCLUSION AND FUTURE WORK

RQ1 What are the cheating vulnerabilities of SEB and how can they be mitigated?

That SEB is open source, and locally installed on the examinees’ computers, present
different challenges than other solutions. Examinees can make, use and/or pur-
chase versions of the software that enables cheating behaviors that are originally
prevented by SEB. There are other digital exam approaches, that also use SEB, but
they can ensure that it has not been modified. However, the modifications required
to cheat, are complex and time consuming to do, and a small risk of detection is
always present. The consequences of being caught is also severe.

To mitigate existing threats, a combination of different approaches could be used.
Risk prevention can be done, by controlling Internet access. SEB can use URL
filters, and prevent access to certain web pages, but a more effective solution would
be to restrict the access at the exam location. Examinees could be able to bring
external Internet devices, and use them to access the Internet, which can be pre-
vented with for example, trained invigilators.

Risk detection is another, possibly more expensive, approach. The costs of prose-
cuting students is significant. If examinees are aware of that, for example, digital
monitoring is used and can detect cheating behaviors, they will most likely consider
the risks of cheating too high. In this case, risk detection can also be a risk preven-
tive mechanism. The laws on monitoring BYOD devices during digital exams in
Norway, are non existing, but the topic should be investigated from a legal point
of view, so that some sort of digital monitoring can be available for digital exam
solutions in the future.

SEB should be open source, and the fact that the modifications, needed to be
able to cheat, are complex. This can help prevent the risk of corrupt software
usage. Developers and institutions should make themselves aware of available, cor-
rupt software versions that could be accessed online, and prevent students from
accessing and using them.

RQ2 What are the cheating vulnerabilities of SEB used with Moodle during an
exam?

The browser exam key does not sufficiently check if the source code have been mod-
ified, and versions with small modifications will run undetected. The browser exam
key computation should be improved to ensure that the application has not been
compromised, this includes checking the SEB Windows service software. Some of
the vulnerabilities that has been discovered for this solution are the same as for
SEB, which is described above.

The vulnerabilities related to the use of modified code is the SEB service and other

7.2. FUTURE WORK 73

small code modifications that are not detected by the browser exam key. The
browser exam key checks that the configuration settings and software have not
been modified, but it does not check SEB Service for modifications. Small code
modifications of the main SEB application is not detected by the browser exam
key either, which have been proven through the penetration testing conducted for
this thesis.

Background processes could be another vulnerability, and SEB should be able to
detect and close all background processes that potentially can be used to cheat, but
it currently does not. This makes it possible for an examinee to use, for example,
Skype, to communicate with outside experts, during an exam.

RQ3 What are the strengths and weaknesses of HARM used for penetration test
planning?

Some of the strength of HARM that was experienced during the thesis work, was
the way it helped create a good overview of the vulnerabilities and to develop new
approaches to attack known vulnerabilities. It also provided a good basis to better
categorize vulnerabilities and plan mitigation strategies. HARM is flexible and
could probably have been even better adapted to this project. The way I applied
HARM in this project, it did not aid in the discovery of new vulnerabilities. HARM
can be used together with other approaches and methods, such as code reviewing,
which helped with discovering unknown vulnerabilities.

7.2 Future Work
To be able to continue to conduct digital exams with SEB without increasing the
occurrence of cheating behaviors, it is vital to continue developing and researching.
SEB will be continuously developed into newer versions, in which it is necessary
to test existing, known and unknown vulnerabilities through penetration testing.
Testing in a real life setting, where invigilating and network restrictions could be
tested in practice, to assess which threats are most likely to be used and successful
during ordinary exams. The more a digital exam solution is used, the more likely
it is that malicious users will develop new approaches to exploit vulnerabilities,
and an exam software can not be declared impenetrable for all future situations.
Security assessment of the system needs to alway be proactive, to ensure limited
cheating. The following list present some possible approaches to future work on
this topic.

• Test cheating behaviors in real-real setting

• Fix the vulnerabilities that have been discovered in SEB

• Fix the vulnerabilities that have been discovered in SEB with Moodle

• Find new vulnerabilities in SEB

• Test cheating vulnerabilities in other digital exam solutions

74 CHAPTER 7. CONCLUSION AND FUTURE WORK

• Investigate available resources that could be used to cheat

• Develop preventive mechanisms

• Social studies

• Social mitigation

It is necessary to mitigate the vulnerabilities that have been discovered in this the-
sis, regardless of whether or not I was able to exploit them. The vulnerabilities
do not have to be mitigated with technical approaches, but it could be possible
to use preventive mechanisms in an exam environment, outside of the digital SEB
environment. New vulnerabilities can be discovered, by continuing the code anal-
ysis and testing. Also, to test in a more real-life setting, may show that some
of the vulnerabilities are already mitigated, while other, new vulnerabilities be-
comes possible to exploit. If the use of SEB increase, the probability that one or
more modified version of the software becomes available. It could be beneficial to
do research regarding available versions, and how to prevent them from being used.

Finally, it could be advantageous to research the frequency and use of cheating
behaviors in exams, and what makes a student choose to cheat, and how can they
be motivated to avoid cheating behaviors. I find these topics particularly interest-
ing, to be able to for example do an anonymous survey of students’ experiences
when it comes to cheating. A survey of these topics could present possible social
mechanisms that could affect the occurrence of cheating.

Bibliography

[1] About SEB. http://safeexambrowser.org/about_overview_en.html. [On-
line; accessed 2016-03-29].

[2] Developer Manual SEB for Windows. http://safeexambrowser.org/
windows/win_developer.html. [online; accessed 2015-10-14].

[3] Moodle. www.moodle.org. [Online; accessed 2016-4-15].

[4] Safe Exam Browser 2.1.2 for Windows, User Manual. http://
safeexambrowser.org/windows/win_usermanual_en.html. [Online; accessed
2016-03-29].

[5] Safe Exam Browser for Windows, Release Notes. http://safeexambrowser.
org/windows/win_release_notes_en.html. [Online; accessed 2016-04-11].

[6] Safe Exam Browser News. http://safeexambrowser.org/news_en.html.
[Online; accessed 2016-03-29].

[7] Akin, B., Stender, S., and McGraw, G. (2005). Software Penetration Testing.
In IEE Security & Privacy, volume 3, pages 84–87, Los Alamitos, CA, USA.
IEEE Computer Society. [ISSN:1540-7993].

[8] Björklund, M. and Wenestam, C.-G. (1999). Academic Cheating: Frequency,
Methods, and Causes. In European Conference on Education Research ECER,
Lahti, Finland.

[9] Brenner, M. and Sandström, H. (2015). Datoriserad Tentamen.

[10] Choong, Y.-Y. and Theofanos, M. (2015). What 4,500+ People Can Tell You -
Employees’ Attitudes Toward Oganizational Password Policy Do Matter. In Try-
fonas, T. and Askoxylakis, I., editors, Human Aspects of Information Security,
Privacy, and Trust: Third International Conference, HAS 2015, Held as Part
of HCI International 2015, pages 299–310, Los Angeles. Springer International
Publishing. [ISBN: 978-3-319-20376-8].

[11] Clarke, N. (2015). A Rocky Road to Digital Assessment. http://www.
inspera.com/seminar-2015. Presentation at Inspera Høstseminar.

75

http://safeexambrowser.org/about_overview_en.html
http://safeexambrowser.org/windows/win_developer.html
http://safeexambrowser.org/windows/win_developer.html
www.moodle.org
http://safeexambrowser.org/windows/win_usermanual_en.html
http://safeexambrowser.org/windows/win_usermanual_en.html
http://safeexambrowser.org/windows/win_release_notes_en.html
http://safeexambrowser.org/windows/win_release_notes_en.html
http://safeexambrowser.org/news_en.html
http://www.inspera.com/seminar-2015
http://www.inspera.com/seminar-2015

76 BIBLIOGRAPHY

[12] Cordova, J. L. and Thornhill, P. (2007). Academic Honesty and Electronic
Assessment: Tools to Prevent Students from Cheating Online-Tutorial Presen-
tation. J. Comput. Sci. Coll., 22(5):52–54.

[13] Dawson, P. (2015). Five Ways to Hack and Cheat with Bring Your Own
Device (BYOD) Electronic Examinations. In The British Journal of Educational
Technology.

[14] Educational Development and Technology Unit of ETH Zurich (2015). Safe
Exam Browser Source ode. https://github.com/SafeExamBrowser. [online;
accessed 2015-10-28].

[15] Felton, M., Jegersberg, M., Hildring, G., Seim, M., Tho, M.
L. B., Tande, L., Fjeldstad, A. G., Møller, K., Motland, J., and
Veium, K. (2014). Digital Vurdering og Eksamen - en Juridisk
Vurdering. https://norgesuniversitetet.no/files/attachment/2830/
digital-vurdering-eksamen-juridisk-versjon1.pdf. Et samarbeidspros-
jekt utført p̊a oppdrag fra Ekspertgruppen for Digital vurdering og eksamen.

[16] Frankl, G., Schartner, P., and Zebedin, G. (2012). Secure Online Exams Using
Students’ Devices. In Global Engineering Education Conference (EDUCON),
pages 1–7, Marrakech. 2012 IEEE. [ISSN: 2165-9559].

[17] German, D. M. and González-Barahona, J. M. (2009). An Empirical Study
of the Reuse of Software Licensed Under the GNU General Public License. In
Open Source Ecosystems: Diverse Communities Interacting: 5th IFIP WG 2.13
International Conference on Open Source Systems, OSS 2009, Skövde, Sweden,
June 3-6, 2009. Proceedings, Berlin, Heidelberg. Springer Berlin Heidelberg.

[18] Halbherr, T., Reuter, K., Schneider, D., Schlienger, C., and Pendl, T. (2014).
Making Examinations More Valid, Meaningful and Motivating: The Online
Exam Service at ETH Zurich. In European University Information Systems.
Center for Educational Development and Technologi, ETH Zurich.

[19] Hillier, M. (2014). E-Exams with Student Owned Device: Student Voices. In
Proceedings of the International Mobile Learning Festival 2015: Mobile Learning,
MOOC’s and 21th Century Learning, pages 582–608, Hong Kong SAR China.

[20] Hillier, M. and Fluck, A. (2013). Arguing Again for E-exams in High Stakes
Examinations. In Carter, H., Gosper, M., and Hedberg, J., editors, Electric
Dreams, 30th ascilite Conference, pages 385–396. Sydney.

[21] Hovde, P. (2013). Digital eksamen ved NTNU, Sluttrapport fra Forstudiet.
NTNU.

[22] Hunt, T. (2013). Safe Exam Browser Quiz Access Rule for Moodle - Func-
tionality Summary. https://github.com/moodleou/moodle-quizaccess_
safeexambrowser/blob/v0.9/internaldoc/functionality.md. [Online; ac-
cessed 2016-05-06].

https://github.com/SafeExamBrowser
https://norgesuniversitetet.no/files/attachment/2830/digital-vurdering-eksamen-juridisk-versjon1.pdf
https://norgesuniversitetet.no/files/attachment/2830/digital-vurdering-eksamen-juridisk-versjon1.pdf
https://github.com/moodleou/moodle-quizaccess_safeexambrowser/blob/v0.9/internaldoc/functionality.md
https://github.com/moodleou/moodle-quizaccess_safeexambrowser/blob/v0.9/internaldoc/functionality.md

BIBLIOGRAPHY 77

[23] James, H. W. (1927). The Effect of Handwriting Upon Grading. The English
Journal, 16(2):180–185. Published by: National Council of Teachers of English.

[24] Karpati, P., Opdahl, A. L., and Sindre, G. (2013). HARM: Hacker Attack
Representation Method. In Cordeiro, J., Virvou, M., and Shishkov, B., editors,
Software and Data Technologies: 5th International Conference, ICSOFT 2010,
Athens, Greece, July 22-24, 2010. Revised Selected Papers, pages 156–175, Berlin,
Heidelberg. Springer Berlin Heidelberg.

[25] King, C., Guyette, R., and Piotrowski, C. (2009). Online Exams and Cheating:
An Empirical Analysis of Business Students’ Views. In The Journal of Educators
Online, Volume 6, Number 1. University of West Florida.

[26] Klein, J. and Taub, D. (2005). The Effect of Variations in Handwriting and
Print on Evaluation of Student Essays. Assessing Writing, 10(2):134–148.

[27] Kordy, B., Kordy, P., Mauw, S., and Schweitzer, P. (2013). ADTool: Security
Analysis with Attack–Defense Trees. In Joshi, K., Siegle, M., Stoelinga, M.,
and D’Argenio, P. R., editors, Quantitative Evaluation of Systems: 10th Inter-
national Conference, QEST 2013, Buenos Aires, Argentina, August 27-30, 2013.
Proceedings, pages 173–176, Berlin, Heidelberg. Springer Berlin Heidelberg.

[28] Kordy, B., Mauw, S., Radomirovic, S., and Schweitzer, P. (2011). Foundations
of Attack-Defense Trees. In Degano, P., Etalle, S., and Guttman, J., editors,
Formal Aspects of Security and Trust(FAST 2010), volume 6561 of Lecture Notes
in Computer Science, pages 80–95. Springer.

[29] Langaard, M. (2015). Digital Eksamen p̊a Mange Lokasjoner. http://www.
inspera.com/seminar-2015. Presentation at Inspera Høstseminar.

[30] McCabe, D. (2005). Cheating Among College and University Students; A
North American Perspective. International Journal for Educational Integrity,
1(1).

[31] Microsoft (2003). Chapter 3 Threat Modeling. https://msdn.microsoft.
com/en-us/library/ff648644.aspx. [Online; accessed 2016-05-22].

[32] Microsoft (2016a). Clipboard functions. https://msdn.microsoft.com/
en-us/library/windows/desktop/ff468802(v=vs.85).aspx. [online; ac-
cessed 2016-05-23].

[33] Microsoft (2016b). ManagementObjectSearcher Constructor (Object-
Query). https://msdn.microsoft.com/en-us/library/3x6at5a0(v=vs.110)
.aspx. [online; accessed 2016-05-23].

[34] Mogey, N., Paterson, J., Burke, J., and Purcell, M. (2010). Typing Compared
with Handwriting for Essay Rxaminations at University: Letting the Students
Choose. ALT-J, Research in Learning Technology, 18(1):29–47.

http://www.inspera.com/seminar-2015
http://www.inspera.com/seminar-2015
https://msdn.microsoft.com/en-us/library/ff648644.aspx
https://msdn.microsoft.com/en-us/library/ff648644.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff468802(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff468802(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/3x6at5a0(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/3x6at5a0(v=vs.110).aspx

78 BIBLIOGRAPHY

[35] Mozilla. Mozilla Public License 1.1. https://www.mozilla.org/en-US/MPL/
1.1/. [online; accessed 2016-05-30].

[36] Myhre, R., Brede, E., et al. (2013). UNINETT - Digital Eksamensavvikling.

[37] Nielsen, K. G., Petersen, L., Wallstedt, B., Basse, P., Hansen, P. S., Hansen,
S. S., and Sørensen, D. M. (2014). Evaluation of Digital Assessment. In EUNIS
konference. European University Association.

[38] Oates, B. (2006). Researching Information Systems and Computing. Sage
Publications.

[39] Ogie, R. (2016). Bring Your Own Device: An Overview of Risk Assessment.
IEEE Consumer Electronics Magazine, 5(1):114–119.

[40] O’Hara, K. J. and Kay, J. S. (2003). Open Source Software and Computer
Science Education. J. Comput. Sci. Coll., 18(3):1–7.

[41] OWASP (2016). Threat risk modeling. https://www.owasp.org/index.php/
Threat_Risk_Modeling. [Online; accessed 2016-05-22].

[42] Palmer, C. C. (2001). Ethical Hacking. In IBM Systems Journal, VOL 40,
NO 3, pages 769–780. IBM Research Division.

[43] Schneider, D. (2015a). Safe Exam Browser 2.0 How to (install, configure, de-
ploy and use seb 2.0). http://safeexambrowser.org/presentations/HowTo_
SEB2.0.pdf.

[44] Schneider, D. (2015b). Safe Exam Browser News and Future Roadmap. http:
//www.inspera.com/seminar-2015.

[45] Sessink, O., Beeftink, R., Tramper, J., and Hartog, R. (2004). Securing Web-
Based Exams. In Journal of Universal Computer Science, volume 10.

[46] Søgaard, T. M. (2015). Cheating Threats in Digital BYOD Exams: A prelim-
inary investigation. Trondheim. NTNU.

[47] Sheard, J., Dick, M., Markham, S., Macdonald, I., and Walsh, M. (2002).
Cheating and Plagiarism: Perceptions and Practices of First Year IT Students.
In Proceedings of the 7th Annual Conference on Innovation and Technology in
Computer Science Education, ITiCSE ’02, pages 183–187, New York, NY, USA.
ACM.

[48] Sindre, G. and Vegendla, A. (2015a). e-Exams and Exam Process Improve-
ment. In Utdanning og Didaktikk i IT-faga(UDIT)/ Norwegian Information Se-
curity Conference, Ålesund, Norway. Published in Norsk Informatikkerkonfer-
anse. ISSN 1892-0721, http://ojs.bibsys.no/index.php/NIK/index, 2015.

[49] Sindre, G. and Vegendla, A. (2015b). E-Exams Versus Paper Exams: A Com-
parative Analysis of Cheating-Related Security Threats and Countermeasures.
In Norwegian Information Security Conference (NISK).

https://www.mozilla.org/en-US/MPL/1.1/
https://www.mozilla.org/en-US/MPL/1.1/
https://www.owasp.org/index.php/Threat_Risk_Modeling
https://www.owasp.org/index.php/Threat_Risk_Modeling
http://safeexambrowser.org/presentations/HowTo_SEB2.0.pdf
http://safeexambrowser.org/presentations/HowTo_SEB2.0.pdf
http://www.inspera.com/seminar-2015
http://www.inspera.com/seminar-2015
http://ojs.bibsys.no/index.php/NIK/index

BIBLIOGRAPHY 79

[50] Sülzenbrück, S., Hegele, M., Rinkenauer, G., and Heuer, H. (2011). The
Death of Handwriting: Secondary Effects of Frequent Computer Use on
Basic Motor Skills. Journal of Motor Behavior, 43(3):247–251. DOI:
10.1080/00222895.2011.571727.

[51] Utdanningsdirektoratet (2009). Eksamen 2009 og
2010 - erfaringer og vurderinger. http://www.udir.no/
Tilstand/Forskning/Rapporter/Utdanningsdirektoratet/
Erfaringer-av-eksamen-varen-2009-og-vurdering-av-eksamen-2010/.
”[Online; accessed 2015-09-24]”.

[52] Vegendla, A., Sindre, G., and Søgaard, T. M. (2016). Extending HARM to
Make Test Cases for Penetration Testing. In The 6th International Workshop
on Information Systems Security Engineering, WISSE’16, Lubljana, Slovenia.

[53] Wang, L., Wond, E., and Xu, D. (2007). A Threat Model Driven Approach
for Security Testing. In Proceedings of the Third International Workshop on
Software Engineering for Secure Systems, SESS ’07, pages 10–, Washington,
DC, USA. IEEE Computer Society. [ISBN: 0-7695-2952-6].

[54] Wikipedia (2016). XXAMP. https://en.wikipedia.org/wiki/XAMPP. [On-
line; accessed: 2016-05-06].

http://www.udir.no/Tilstand/Forskning/Rapporter/Utdanningsdirektoratet/Erfaringer-av-eksamen-varen-2009-og-vurdering-av-eksamen-2010/
http://www.udir.no/Tilstand/Forskning/Rapporter/Utdanningsdirektoratet/Erfaringer-av-eksamen-varen-2009-og-vurdering-av-eksamen-2010/
http://www.udir.no/Tilstand/Forskning/Rapporter/Utdanningsdirektoratet/Erfaringer-av-eksamen-varen-2009-og-vurdering-av-eksamen-2010/
https://en.wikipedia.org/wiki/XAMPP

80 BIBLIOGRAPHY

Appendix A

Prestudy

A.1 Attack Tree

Figure A.1: Attack Tree from prestudy [46], describing
the test approach.

A.2 Penetration test results

81

82 APPENDIX A. PRESTUDY

Threat Description Result Comment
Inject notes into exam software with
USB key injector

Confirmed We saved the script on the rubber
ducky USB and the text string was
injected into the web page open in
SEB.

Modify source code to access re-
sources and/or communication

Unconfirmed This attack is impossible to confirm
without testing with a LMS with a
SEB Browser Exam key check.

Run SEB on a virtual machine Unsuccessful When initiating SEB, a pop-up win-
dow appears, informing you that SEB
has detected a virtual machine and
will not work. SEB will run in a vir-
tual machine if the configuration file
enables it.

Run SEB on a remote computer Confirmed We managed to control SEB from a
remote computer, while using SEB.

Use clipboard to import notes into
exam software

Unsuccessful We were not able to right click or use
CTRL+P to paste the clipboard con-
tent into SEB.

Get assistance by being accessed
from a remote computer

Confirmed We managed to control and access
an SEB exam environment from a re-
mote computer.

Get assistance by sharing desktop Unsuccessful Neither Google Hangout nor Skype
showed SEB with remote desktop,
when it was initiated.

Get assistance by communicating
with audio/video

Confirmed Both examinee and assistant can
hear each other and use their mi-
crophones. The assistant can also
see the examinee on camera during
a video conversation, but the exami-
nees only sees the SEB environment.

Access resources and/or communica-
tions by modifying the configuration
file

Unconfirmed This is impossible to confirm without
running a LMS inside SEB with the
SEB Browser key functionality acti-
vated.

Table A.1: Result description from prestudy [46]

Appendix B

Configurations

B.1 ConfigTool Screenshots

Figure B.1: Screenshot of SEB ConfigTool, contents of
the ’General’ tab.

83

84 APPENDIX B. CONFIGURATIONS

Figure B.2: Screenshot of SEB ConfigTool, contents of
the ’Config File’ tab.

Figure B.3: Screenshot of SEB ConfigTool, contents of
the ’User Interface’ tab.

B.1. CONFIGTOOL SCREENSHOTS 85

Figure B.4: Screenshot of SEB ConfigTool, contents of
the ’Browser’ tab.

Figure B.5: Screenshot of SEB ConfigTool, contents of
the ’Down/Uploads’ tab.

86 APPENDIX B. CONFIGURATIONS

Figure B.6: Screenshot of SEB ConfigTool, contents of
the ’Exam’ tab.

Figure B.7: Screenshot of SEB ConfigTool, contents of
the ’Application’ tab.

B.1. CONFIGTOOL SCREENSHOTS 87

Figure B.8: Screenshot of SEB ConfigTool, contents of
the ’Network’ tab.

Figure B.9: Screenshot of SEB ConfigTool, contents of
the ’Security’ tab.

88 APPENDIX B. CONFIGURATIONS

Figure B.10: Screenshot of SEB ConfigTool, contents of
the ’Registry’ tab.

Figure B.11: Screenshot of SEB ConfigTool, contents of
the ’Hooked Keys’ tab.

B.2. CONFIGURATION FILE (.SEB-FILE) CONTENTS 89

B.2 Configuration File (.seb-file) contents

<?xml v e r s i o n =”1.0” e n c o d i n g=”u t f−8”?>
<!DOCTYPE p l i s t PUBLIC ”−//Apple Computer //DTD PLIST 1 . 0 / /EN”
” http : / /www. a p p l e . com/DTDs/ P r o p e r t y L i s t −1.0. dtd”>
< p l i s t v e r s i o n =”1.0”>

<d i c t >
<key>o r i g i n a t o r V e r s i o n </key>
<s t r i n g >SEB Win 2.1 </ s t r i n g >
<key>startURL</key>
<s t r i n g >http : / /www. g o o g l e . com</s t r i n g >
<key>sebServerURL </key>
<s t r i n g />
<key>hashedAdminPassword</key>

<s t r i n g >8C6976E5B5410415BDE908BD4DEE15DFB167A9C873FC4BB8A81F6F2AB448A918</s t r i n g >
<key>allowQuit </key>
<t r u e />
<key>i g n o r e E x i t K e y s </key>
<t r u e />
<key>hashedQuitPassword </key>

<s t r i n g >A665A45920422F9D417E4867EFDC4FB8A04A1F3FFF1FA07E998E86F7F7A27AE3</s t r i n g >
<key>exitKey1 </key>
<i n t e g e r >2</i n t e g e r >
<key>exitKey2 </key>
<i n t e g e r >10</ i n t e g e r >
<key>exitKey3 </key>
<i n t e g e r >5</i n t e g e r >
<key>sebMode</key>
<i n t e g e r >0</i n t e g e r >
<key>browserMessagingSocket </key>
<s t r i n g >ws : / / l o c a l h o s t :8706 </ s t r i n g >
<key>browserMessagingPingTime </key>
<i n t e g e r >120000</ i n t e g e r >
<key>sebConfigPurpose </key>
<i n t e g e r >0</i n t e g e r >
<key>allowPreferencesWindow </key>
<t r u e />
<key>browserViewMode</key>
<i n t e g e r >0</i n t e g e r >
<key>mainBrowserWindowWidth</key>
<s t r i n g >100%</ s t r i n g >
<key>mainBrowserWindowHeight</key>
<s t r i n g >100%</ s t r i n g >
<key>mainBrowserWindowPositioning </key>
<i n t e g e r >1</i n t e g e r >
<key>enableBrowserWindowToolbar </key>
< f a l s e />
<key>hideBrowserWindowToolbar </key>
< f a l s e />
<key>showMenuBar</key>
< f a l s e />
<key>showTaskBar</key>
<t r u e />
<key>taskBarHeight </key>
<i n t e g e r >40</ i n t e g e r >
<key>touchOptimized </key>
< f a l s e />
<key>enableZoomText </key>
<t r u e />
<key>enableZoomPage </key>
<t r u e />
<key>zoomMode</key>
<i n t e g e r >0</i n t e g e r >
<key>a l l o w S p e l l C h e c k </key>
< f a l s e />
<key>a l l o w D i c t i o n a r y L o o k u p </key>
< f a l s e />
<key>showTime</key>
<t r u e />
<key>showInputLanguage </key>
<t r u e />
<key>enableTouchExit </key>
< f a l s e />
<key>browserScreenKeyboard </key>
< f a l s e />
<key>newBrowserWindowByLinkPolicy </key>
<i n t e g e r >2</i n t e g e r >
<key>newBrowserWindowByScriptPolicy </key>
<i n t e g e r >2</i n t e g e r >
<key>newBrowserWindowByLinkBlockForeign </key>
< f a l s e />
<key>newBrowserWindowByScriptBlockForeign </key>

90 APPENDIX B. CONFIGURATIONS

< f a l s e />
<key>newBrowserWindowByLinkWidth</key>
<s t r i n g >50%</s t r i n g >
<key>newBrowserWindowByLinkHeight</key>
<s t r i n g >80%</s t r i n g >
<key>newBrowserWindowByLinkPositioning </key>
<i n t e g e r >2</i n t e g e r >
<key>e n a b l e P l u g I n s </key>
<t r u e />
<key>enableJava </key>
< f a l s e />
<key>e n a b l e J a v a S c r i p t </key>
<t r u e />
<key>blockPopUpWindows</key>
< f a l s e />
<key>allowBrowsingBackForward </key>
<t r u e />
<key>r e m o v e B r o w s e r P r o f i l e </key>
<t r u e />
<key>removeLocalStorage </key>
<t r u e />
<key>enableSebBrowser </key>
<t r u e />
<key>showReloadButton </key>
<t r u e />
<key>showReloadWarning</key>
<t r u e />
<key>browserUserAgentWinDesktopMode </key>
<i n t e g e r >0</i n t e g e r >
<key>browserUserAgentWinDesktopModeCustom</key>
<s t r i n g />
<key>browserUserAgentWinTouchMode</key>
<i n t e g e r >0</i n t e g e r >
<key>browserUserAgentWinTouchModeCustom</key>
<s t r i n g />
<key>browserUserAgent </key>
<s t r i n g />
<key>browserUserAgentMac </key>
<i n t e g e r >0</i n t e g e r >
<key>browserUserAgentMacCustom </key>
<s t r i n g />
<key>allowDownUploads </key>
<t r u e />
<key>downloadDirectoryOSX </key>
<s t r i n g >˜/Downloads</s t r i n g >
<key>downloadDirectoryWin </key>
<s t r i n g />
<key>openDownloads</key>
< f a l s e />
<key>c h o o s e F i l e T o U p l o a d P o l i c y </key>
<i n t e g e r >0</i n t e g e r >
<key>downloadPDFFiles </key>
< f a l s e />
<key>downloadAndOpenSebConfig</key>
<t r u e />
<key>examKeySalt</key>
<data>PDwZzUd1beCqTB3ahpZC9M2FYDoUsHwgtwTe+0NxwgA=</data>
<key>browserExamKey</key>
<s t r i n g />
<key>browserURLSalt </key>
<t r u e />
<key>sendBrowserExamKey</key>
< f a l s e />
<key>quitURL</key>
<s t r i n g />
<key>restartExamURL</key>
<s t r i n g />
<key>restartExamUseStartURL </key>
<t r u e />
<key>restartExamText </key>
<s t r i n g />
<key>restartExamPasswordProtected </key>
<t r u e />
<key>m o n i t o r P r o c e s s e s </key>
<t r u e />
<key>a l l o w S w i t c h T o A p p l i c a t i o n s </key>
< f a l s e />
<key>a l l o w F l a s h F u l l s c r e e n </key>
< f a l s e />
<key>p e r m i t t e d P r o c e s s e s </key>
<array>

<d i c t >
<key>a c t i v e </key>
<t r u e />
<key>a u t o s t a r t </key>
<t r u e />
<key>iconInTaskbar </key>
<t r u e />

B.2. CONFIGURATION FILE (.SEB-FILE) CONTENTS 91

<key>runInBackground </key>
< f a l s e />
<key>allowUserToChooseApp </key>
< f a l s e />
<key>s t r o n g K i l l </key>
<t r u e />
<key>os </key>
<i n t e g e r >1</i n t e g e r >
<key>t i t l e </key>
<s t r i n g >SEB</s t r i n g >
<key>d e s c r i p t i o n </key>
<s t r i n g />
<key>e x e c u t a b l e </key>
<s t r i n g >x u l r u n n e r . exe </s t r i n g >
<key>path</key>
<s t r i n g > . ./ x u l r u n n e r /</ s t r i n g >
<key>i d e n t i f i e r </key>
<s t r i n g >XULRunner</s t r i n g >
<key>windowHandlingProcess </key>
<s t r i n g />
<key>arguments </key>
<array ></array>

</d i c t >
</array>
<key>p r o h i b i t e d P r o c e s s e s </key>
<array ></array>
<key>enableURLFilter </key>
< f a l s e />
<key>enableURLContentFilter </key>
< f a l s e />
<key>URLFilterRules </key>
<array ></array>
<key>URLFilterEnable </key>
< f a l s e />
<key>U R L F i l t e r E n a b l e C o n t e n t F i l t e r </key>
< f a l s e />
<key>b l a c k l i s t U R L F i l t e r </key>
<s t r i n g >www. f a c e b o o k . com</s t r i n g >
<key>w h i t e l i s t U R L F i l t e r </key>
<s t r i n g />
<key>u r l F i l t e r T r u s t e d C o n t e n t </key>
< f a l s e />
<key>u r l F i l t e r R e g e x </key>
< f a l s e />
<key>e m b e d d e d C e r t i f i c a t e s </key>
<array ></array>
<key>p r o x y S e t t i n g s P o l i c y </key>
<i n t e g e r >0</i n t e g e r >
<key>p r o x i e s </key>
<d i c t >

<key>E x c e p t i o n s L i s t </key>
<array ></array>
<key>ExcludeSimpleHostnames </key>
< f a l s e />
<key>AutoDiscoveryEnabled </key>
< f a l s e />
<key>AutoConfigurationEnabled </key>
< f a l s e />
<key>A u t o C o n f i g u r a t i o n J a v a S c r i p t </key>
<s t r i n g />
<key>AutoConfigurationURL </key>
<s t r i n g />
<key>FTPPassive</key>
<t r u e />
<key>HTTPEnable</key>
< f a l s e />
<key>HTTPPort</key>
<i n t e g e r >80</ i n t e g e r >
<key>HTTPProxy</key>
<s t r i n g />
<key>HTTPRequiresPassword</key>
< f a l s e />
<key>HTTPUsername</key>
<s t r i n g />
<key>HTTPPassword</key>
<s t r i n g />
<key>HTTPSEnable</key>
< f a l s e />
<key>HTTPSPort</key>
<i n t e g e r >443</ i n t e g e r >
<key>HTTPSProxy</key>
<s t r i n g />
<key>HTTPSRequiresPassword</key>
< f a l s e />
<key>HTTPSUsername</key>
<s t r i n g />
<key>HTTPSPassword</key>
<s t r i n g />

92 APPENDIX B. CONFIGURATIONS

<key>FTPEnable</key>
< f a l s e />
<key>FTPPort</key>
<i n t e g e r >21</ i n t e g e r >
<key>FTPProxy</key>
<s t r i n g />
<key>FTPRequiresPassword </key>
< f a l s e />
<key>FTPUsername</key>
<s t r i n g />
<key>FTPPassword</key>
<s t r i n g />
<key>SOCKSEnable</key>
< f a l s e />
<key>SOCKSPort</key>
<i n t e g e r >1080</ i n t e g e r >
<key>SOCKSProxy</key>
<s t r i n g />
<key>SOCKSRequiresPassword</key>
< f a l s e />
<key>SOCKSUsername</key>
<s t r i n g />
<key>SOCKSPassword</key>
<s t r i n g />
<key>RTSPEnable</key>
< f a l s e />
<key>RTSPPort</key>
<i n t e g e r >554</ i n t e g e r >
<key>RTSPProxy</key>
<s t r i n g />
<key>RTSPRequiresPassword</key>
< f a l s e />
<key>RTSPUsername</key>
<s t r i n g />
<key>RTSPPassword</key>
<s t r i n g />

</d i c t >
<key>s e b S e r v i c e P o l i c y </key>
<i n t e g e r >1</i n t e g e r >
<key>a l l o w V i r t u a l M a c h i n e </key>
< f a l s e />
<key>createNewDesktop </key>
<t r u e />
<key>k i l l E x p l o r e r S h e l l </key>
< f a l s e />
<key>a l l o w U s e r S w i t c h i n g </key>
<t r u e />
<key>enableAppSwitcherCheck </key>
<t r u e />
<key>f o r c e A p p F o l d e r I n s t a l l </key>
<t r u e />
<key>en ab leL ogg ing </key>
<t r u e />
<key>logDirectoryOSX </key>
<s t r i n g >˜/Documents</s t r i n g >
<key>logDirectoryWin </key>
<s t r i n g />
<key>allowWlan </key>
<t r u e />
<key>i n s i d e S e b E n a b l e S w i t c h U s e r </key>
< f a l s e />
<key>insideSebEnableLockThisComputer </key>
< f a l s e />
<key>insideSebEnableChangeAPassword </key>
< f a l s e />
<key>insideSebEnableStartTaskManager </key>
< f a l s e />
<key>i n s i d e S e b E n a b l e L o g O f f </key>
< f a l s e />
<key>insideSebEnableShutDown </key>
< f a l s e />
<key>i n s i d e S e b E n a b l e E a s e O f A c c e s s </key>
< f a l s e />
<key>insideSebEnableVmWareClientShade </key>
< f a l s e />
<key>hookKeys</key>
<t r u e />
<key>enableEsc </key>
< f a l s e />
<key>e n a b l e C t r l E s c </key>
< f a l s e />
<key>e n a b l e A l t E s c </key>
< f a l s e />
<key>enableAltTab </key>
<t r u e />
<key>enableAltF4 </key>
< f a l s e />
<key>enableStartMenu </key>

B.2. CONFIGURATION FILE (.SEB-FILE) CONTENTS 93

< f a l s e />
<key>enableRightMouse </key>
< f a l s e />
<key>e n a b l e P r i n t S c r e e n </key>
<t r u e />
<key>enableAltMouseWheel </key>
<t r u e />
<key>enableF1 </key>
< f a l s e />
<key>enableF2 </key>
< f a l s e />
<key>enableF3 </key>
< f a l s e />
<key>enableF4 </key>
< f a l s e />
<key>enableF5 </key>
< f a l s e />
<key>enableF6 </key>
< f a l s e />
<key>enableF7 </key>
< f a l s e />
<key>enableF8 </key>
< f a l s e />
<key>enableF9 </key>
< f a l s e />
<key>enableF10 </key>
< f a l s e />
<key>enableF11 </key>
< f a l s e />
<key>enableF12 </key>
< f a l s e />
</d i c t >

</ p l i s t >

94 APPENDIX B. CONFIGURATIONS

Appendix C

Logfiles

C.1 Examle contens of seb.log

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
i n i t i a l i z e l o g f i l e 4/11/2016 , 1 : 0 9 : 0 2 PM
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
seb : messageSocket open : [o b j e c t Event]
seb : s e t ping i n t e r v a l l 120000
seb : c r e a t e a l e r t c o n t r o l l e r . . .
seb : showContent . . . main
seb : messageSocket handled : SEB . c l o s e
seb : h o s t f o r c e shutdown
seb : t r y to remove e v e r y t h i n g from p r o f i l e f o l d e r :
C:\ U s e r s\ t h e a s\AppData\Roaming\SafeExamBrowser\P r o f i l e s
seb : remove : C:\ U s e r s\ t h e a s\AppData\Roaming\SafeExamBrowser\P r o f i l e s \cache2
seb : remove : C:\ U s e r s\ t h e a s\AppData\Roaming\SafeExamBrowser\P r o f i l e s \ c e r t 8 . db
seb : remove : C:\ U s e r s\ t h e a s\AppData\Roaming\SafeExamBrowser\P r o f i l e s \ c e r t o v e r r i d e . t x t
seb : remove : C:\ U s e r s\ t h e a s\AppData\Roaming\SafeExamBrowser\P r o f i l e s \ c o m p a t i b i l i t y . i n i
seb : remove : C:\ U s e r s\ t h e a s\AppData\Roaming\SafeExamBrowser\P r o f i l e s \ c o o k i e s . s q l i t e
seb : remove : C:\ U s e r s\ t h e a s\AppData\Roaming\SafeExamBrowser\P r o f i l e s \ c r a s h e s
seb : remove : C:\ U s e r s\ t h e a s\AppData\Roaming\SafeExamBrowser\P r o f i l e s \key3 . db
seb : remove : C:\ U s e r s\ t h e a s\AppData\Roaming\SafeExamBrowser\P r o f i l e s \mimeTypes . r d f
seb : remove : C:\ U s e r s\ t h e a s\AppData\Roaming\SafeExamBrowser\P r o f i l e s \p a r e n t . l o c k
e r r : seb : [Exception . . . ”Component r e t u r n e d f a i l u r e code :
0 x8052000e (NS ERROR FILE IS LOCKED) [n s I F i l e . remove] ”
n s r e s u l t : x8052000e (NS ERROR FILE IS LOCKED) ”
l o c a t i o n : ” JS frame : : r e s o u r c e : / / modules / seb . jsm : : shutdownObserver . o b s e r v e : : l i n e
108” data : no]
seb : remove : C:\ U s e r s\ t h e a s\AppData\Roaming\SafeExamBrowser\P r o f i l e s \
p e r m i s s i o n s . s q l i t e
seb : remove : C:\ U s e r s\ t h e a s\AppData\Roaming\SafeExamBrowser\P r o f i l e s \ p l a c e s . s q l i t e
seb : remove : C:\ U s e r s\ t h e a s\AppData\Roaming\SafeExamBrowser\P r o f i l e s \p l u g i n r e g . dat
seb : remove : C:\ U s e r s\ t h e a s\AppData\Roaming\SafeExamBrowser\P r o f i l e s \ p r e f s . j s
seb : remove : C:\ U s e r s\ t h e a s\AppData\Roaming\SafeExamBrowser\P r o f i l e s \ s a f e b r o w s i n g
seb : remove : C:\ U s e r s\ t h e a s\AppData\Roaming\SafeExamBrowser\P r o f i l e s \secmod . db
seb : remove : C:\ U s e r s\ t h e a s\AppData\Roaming\SafeExamBrowser\P r o f i l e s \
s e s s i o n C h e c k p o i n t s . j s o n
seb : remove : C:\ U s e r s\ t h e a s\AppData\Roaming\SafeExamBrowser\P r o f i l e s \
S i t e S e c u r i t y S e r v i c e S t a t e . t x t
seb : remove : C:\ U s e r s\ t h e a s\AppData\Roaming\SafeExamBrowser\P r o f i l e s \ s t a r t u p C a c h e
seb : remove : C:\ U s e r s\ t h e a s\AppData\Roaming\SafeExamBrowser\P r o f i l e s \w eb ap p ss to r e . s q l i t e
seb : remove : C:\ U s e r s\ t h e a s\AppData\Roaming\SafeExamBrowser\P r o f i l e s \ x u l s t o r e . j s o n

95

96 APPENDIX C. LOGFILES

C.2 Example contents SebClient.log

Message : −−−−−−−−−− INITIALIZING SEB − STARTING SESSION −−−−−−−−−−−−− Exception type :
D e t a i l s : Event date : 12−Apr−16 1 6 : 0 1 : 0 8 A d d i t i o n a l data :
Event code : 2 Event type : Event d e t a i l code : 0 Message :
Arguments : C:\Program F i l e s (x86)\SafeExamBrowser\SafeExamBrowser . exe Exception type :
D e t a i l s : Event date : 12−Apr−16 1 6 : 0 1 : 0 8 A d d i t i o n a l data :
Event code : 2 Event type : Event d e t a i l code : 0 Message :
Attempting to I n i t S e b S e t t i n g s Exception type : D e t a i l s :
Event date : 12−Apr−16 1 6 : 0 1 : 0 8 A d d i t i o n a l data :
Event code : 0 Event type : Event d e t a i l code : 0 Message :
Could not l o a d S e b C l i e n t S e t t i g s . seb from the Program Data
d i r e c t o r y S y s t e m . IO . FileNotFoundExceptionCould not f i n d f i l e
’C:\ProgramData\SafeExamBrowser\S e b C l i e n t S e t t i n g s . seb ’ .
Exception type : D e t a i l s : Event date : 12−Apr−16 1 6 : 0 1 : 0 8 A d d i t i o n a l data :
Event code : 2 Event type : Event d e t a i l code : 0 Message : User Name :
t h e a s Host Name : l o c a l h o s t Port Number : 57016
Send I n t e r v a l : 100 Recv Timeout : 100 Num Messages : 3
S e b C l i e n t C o n f i g F i l e D i r e c t o r y :
C:\ U s e r s\ t h e a s\AppData\Roaming\SafeExamBrowser\ S e b C l i e n t C o n f i g F i l e :
C:\ U s e r s\ t h e a s\AppData\Roaming\SafeExamBrowser\S e b C l i e n t S e t t i n g s . seb
Exception type : D e t a i l s : Event date : 12−Apr−16 1 6 : 0 1 : 0 8 A d d i t i o n a l data :
Event code : 0 Event type : Event d e t a i l code : 0 Message :
SEB c l i e n t c o n f i g u r a t i o n s e t i n I n i t S e b S e t t i n g s () .
Exception type : D e t a i l s : Event date : 12−Apr−16 1 6 : 0 1 : 0 8 A d d i t i o n a l data :
Event code : 2 Event type : Event d e t a i l code : 0 Message :
OS V e r s i o n : 2050 Exception type : D e t a i l s : Event
date : 12−Apr−16 1 6 : 0 1 : 0 8 A d d i t i o n a l data :
Event code : 2 Event type : Event d e t a i l code : 0 Message :
S u c c e s s f u l l y I n i t S e b S e t t i n g s Exception type :
D e t a i l s : Event date : 12−Apr−16 1 6 : 0 1 : 0 8 A d d i t i o n a l data :
Event code : 2 Event type : Event d e t a i l code : 0 Message :
Attempting to InitSEBDesktop Exception type :
D e t a i l s : Event date : 12−Apr−16 1 6 : 0 1 : 0 8 A d d i t i o n a l data :
Event code : 2 Event type : Event d e t a i l code : 0 Message :
C l i p b o a r d c l e a n e d . Exception type : D e t a i l s : Event
date : 12−Apr−16 1 6 : 0 1 : 0 8 A d d i t i o n a l data :
Event code : 2 Event type : Event d e t a i l code : 0 Message :
S u c c e s s f u l l y InitSEBDesktop Exception type : D e t a i l s :
Event date : 12−Apr−16 1 6 : 0 1 : 0 8 A d d i t i o n a l data :
Event code : 2 Event type : Event d e t a i l code : 0 Message :
e n t e r i n g Opensebform Exception type : D e t a i l s : Event
date : 12−Apr−16 1 6 : 0 1 : 0 8 A d d i t i o n a l data :
Event code : 2 Event type : Event d e t a i l code : 0 Message :
a t t e m p t i n g to p o s i t i o n the t a s k b a r Exception type :
D e t a i l s : Event date : 12−Apr−16 1 6 : 0 1 : 0 8 A d d i t i o n a l data :
Event code : 2 Event type : Event d e t a i l code : 0 Message :
Current d i s p l a y DPI s e t t i n g : 96 and s c a l e f a c t o r : 1
Exception type : D e t a i l s : Event date : 12−Apr−16 1 6 : 0 1 : 0 8 A d d i t i o n a l data :
Event code : 2 Event type : Event d e t a i l code : 0 Message :
T a s k b a r h e i g h t from s e t t i n g s : 40 Current t a s k b a r
h e i g h t : 40 Exception type : D e t a i l s : Event date : 12−Apr−16 1 6 : 0 1 : 0 8 A d d i t i o n a l data :
Event code : 0 Event type : Event d e t a i l code : 0 Message :
OnLoad EventArgs : C:\Program F i l e s
(x86)\SafeExamBrowser\SafeExamBrowser . exe Exception type :
D e t a i l s : Event date : 12−Apr−16 1 6 : 0 1 : 0 8 A d d i t i o n a l data :
Event code : 2 Event type : Event d e t a i l code : 0 Message :
f i n i s h e d t a s k b a r p o s i t i o n i n g Exception type :
D e t a i l s : Event date : 12−Apr−16 1 6 : 0 1 : 0 8 A d d i t i o n a l data :
Event code : 2 Event type : Event d e t a i l code : 0 Message :
Win32 ComputerSystem Manufacturer : Acer , Model : A s p i r e
5951G Exception type : D e t a i l s : Event date : 12−Apr−16 1 6 : 0 1 : 0 8 A d d i t i o n a l data :
Event code : 2 Event type : Event d e t a i l code : 0 Message : i n i t i a l i z i n g wcf s e r v i c e c o n n e c t i o n

C.3. EXAMPLE CONTENTS SEBCONFIG.LOG 97

C.3 Example contents SebConfig.log

Event code : 2 Event type : Event d e t a i l code : 0 Message :
Loading the d e f a u l t l o c a l c l i e n t s e t t i n g s
Exception type : D e t a i l s : Event date : 11−Apr−16 1 3 : 4 6 : 2 1 A d d i t i o n a l data :
Event code : 2 Event type : Event d e t a i l code : 0 Message :
Loading the d e f a u l t l o c a l c l i e n t s e t t i n g s Exception type : D e t a i l s :
Event date : 11−Apr−16 1 4 : 0 9 : 0 5 A d d i t i o n a l data :
Event code : 2 Event type : Event d e t a i l code : 0 Message :
Loading the d e f a u l t l o c a l c l i e n t s e t t i n g s Exception type : D e t a i l s :
Event date : 11−Apr−16 1 6 : 2 0 : 4 5 A d d i t i o n a l data :
Event code : 2 Event type : Event d e t a i l code : 0 Message :
Loading the d e f a u l t l o c a l c l i e n t s e t t i n g s Exception type : D e t a i l s :
Event date : 11−Apr−16 1 6 : 2 4 : 4 1 A d d i t i o n a l data :
Event code : 2 Event type : Event d e t a i l code : 0 Message :
Loading the d e f a u l t l o c a l c l i e n t s e t t i n g s Exception type : D e t a i l s :
Event date : 11−Apr−16 1 6 : 2 9 : 0 7 A d d i t i o n a l data :
Event code : 2 Event type : Event d e t a i l code : 0 Message :
Loading the d e f a u l t l o c a l c l i e n t s e t t i n g s Exception type : D e t a i l s :
Event date : 12−Apr−16 1 1 : 4 5 : 2 9 A d d i t i o n a l data :
Event code : 2 Event type : Event d e t a i l code : 0 Message :
Loading the d e f a u l t l o c a l c l i e n t s e t t i n g s Exception type : D e t a i l s :
Event date : 12−Apr−16 1 2 : 4 5 : 5 4 A d d i t i o n a l data :
Event code : 2 Event type : Event d e t a i l code : 0 Message :
Loading the d e f a u l t l o c a l c l i e n t s e t t i n g s Exception type : D e t a i l s :
Event date : 12−Apr−16 1 3 : 1 1 : 0 3 A d d i t i o n a l data :
Event code : 2 Event type : Event d e t a i l code : 0 Message :
Loading the d e f a u l t l o c a l c l i e n t s e t t i n g s Exception type : D e t a i l s :
Event date : 12−Apr−16 1 3 : 1 5 : 4 9 A d d i t i o n a l data :
Event code : 2 Event type : Event d e t a i l code : 0 Message :
Loading the d e f a u l t l o c a l c l i e n t s e t t i n g s Exception type : D e t a i l s :
Event date : 12−Apr−16 1 5 : 0 8 : 2 8 A d d i t i o n a l data :

C.4 Example content from sebwindowsservice.log

5/11/2016 1 1 : 2 1 : 3 1 AM: Set R e g i s t r y Key D i s a b l e L o c k W o r k s t a t i o n to 1
5/11/2016 1 1 : 2 1 : 3 1 AM: Set R e g i s t r y Key DisableChangePassword to 1
5/11/2016 1 1 : 2 1 : 3 1 AM: Set R e g i s t r y Key DisableTaskMgr to 1
5/11/2016 1 1 : 2 1 : 3 1 AM: Set R e g i s t r y Key H i d e F a s t U s e r S w i t c h i n g to 1
5/11/2016 1 1 : 2 1 : 3 1 AM: Set R e g i s t r y Key NoLogoff to 1
5/11/2016 1 1 : 2 1 : 3 1 AM: Set R e g i s t r y Key NoClose to 1
5/11/2016 1 1 : 2 1 : 3 1 AM: Set R e g i s t r y Key EnableShade to 0
5/11/2016 1 1 : 2 1 : 3 1 AM: Set R e g i s t r y Key EnableShadeHorizon to F a l s e
5/11/2016 1 1 : 2 1 : 3 1 AM: Set R e g i s t r y Key EaseOfAccess to SebDummy . exe
5/11/2016 1 1 : 2 1 : 3 1 AM: Set windows update to F a l s e

∗∗∗∗∗∗∗
5/11/2016 1 1 : 2 4 : 0 2 AM: Set R e g i s t r y Key D i s a b l e L o c k W o r k s t a t i o n to 0
5/11/2016 1 1 : 2 4 : 0 2 AM: Set R e g i s t r y Key DisableChangePassword to 0
5/11/2016 1 1 : 2 4 : 0 2 AM: Set R e g i s t r y Key DisableTaskMgr to 0
5/11/2016 1 1 : 2 4 : 0 2 AM: Set R e g i s t r y Key H i d e F a s t U s e r S w i t c h i n g to
5/11/2016 1 1 : 2 4 : 0 2 AM: Set R e g i s t r y Key NoLogoff to 0
5/11/2016 1 1 : 2 4 : 0 2 AM: Set R e g i s t r y Key NoClose to 0
5/11/2016 1 1 : 2 4 : 0 2 AM: Set R e g i s t r y Key EnableShade to 1
5/11/2016 1 1 : 2 4 : 0 2 AM: Set R e g i s t r y Key EnableShadeHorizon to True
5/11/2016 1 1 : 2 4 : 0 2 AM: Set R e g i s t r y Key EaseOfAccess to
5/11/2016 1 1 : 2 4 : 0 2 AM: Set windows update to True
∗∗∗∗∗∗∗
(FROM ATTACK:)
5/27/2016 4 : 2 7 : 1 1 PM: Set windows update to F a l s e
5/27/2016 4 : 2 7 : 5 4 PM: Set windows update to True

98 APPENDIX C. LOGFILES

Appendix D

Licences

D.1 SEB License
Safe Exam Browser for Windows 2.1

c© 2010-2015 Daniel R. Schneider, Dirk Bauer, ETH Zürich, Educational De-
velopment and Technology (LET), Pascal Wyss, Viktor Tomas, Stefan Schnei-
der, Oliver Rahs, based on the original idea of Safe Exam Browser by Stefan Schnei-
der, University of Giessen.

Project concept: Dr. Thomas Piendl, Daniel R. Schneider, Dr. Dirk Bauer, Kai
Reuter, Tobias Halbherr, Stefan Schneider, Karsten Burger, Marco Lehre, Brigitte
Schmucki, Oliver Rahs.

Safe Exam Browser and the contents of the browser component files (based on
XULRunner) of this project are subject to the Mozilla Public License Version
1.1 (the ”License”); you may only use these files in compliance with the License.
You may obtain a copy of the License at http://www.mozilla.org/MPL/.

Important parts of this project have been carried out as part of the program
”AAA/SWITCH – e-Infrastructure for e-Science” lead by SWITCH, the Swiss
National Research and Education Network and the cooperative project ”Learn-
ing Infrastructure” (part of the CRUS program ”Information scientifique: accès,
traitement et sauvegarde”) coordinated by SWITCH, and was supported by funds
from the ETH Board and the State Secretariat for Education, Research and Inno-
vation (SERI).

Taken from [4]

99

100 APPENDIX D. LICENCES

D.2 Moodle License
// This file is part of Moodle - http://moodle.org/
//
// Moodle is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Moodle is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Moodle. If not, see <http://www.gnu.org/licenses/>.

Taken from the Moodle source code

	Contents
	List of Figures
	List of Tables
	Glossary and Acronyms
	Introduction
	Motivation
	Scope of the Thesis
	Research Questions
	Research Method
	Ethical Issues
	Report Outline

	Background Research and Related Work
	Digital Exams at NTNU
	Cheating Behaviors
	Cheating Behaviors and Digital Exams
	Safe Exam Browser
	Moodle
	Digital Exam Solutions in Practice
	Prestudy
	Penetration testing
	HARM

	SEB: Code and Architectural Overview
	General
	Architectural Overview
	SEB Windows Service and Registry Resetter
	SEB ConfigTool
	SEB Configuration settings
	SEB Client Application

	HARM, Vulnerabilities and Risks
	Introduction
	Background for penetration test cases
	Security Requirement 1: Prohibit accessing of resources
	Security Requirement 2: Prohibit communication

	Threat Descriptions and Penetration test cases
	Risk Assessment

	Penetration Testing
	Test setup
	Configuration Settings
	Test Results
	Inject crib notes using clipboard
	Run SEB on VM to access local resources
	Communicate by shared desktop, audio and video
	Modify the SEB Windows Service
	Generate the expected browser exam key for the url header

	Result Summary

	Discussion
	Test Results
	Mitigation Strategies
	Exam Solution
	HARM

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Appendix Prestudy
	Attack Tree
	Penetration test results

	Appendix Configurations
	ConfigTool Screenshots
	Configuration File (.seb-file) contents

	Appendix Logfiles
	Examle contens of seb.log
	Example contents SebClient.log
	Example contents SebConfig.log
	Example content from sebwindowsservice.log

	Appendix Licences
	SEB License
	Moodle License

