
Whole Team Thinking and Success
Factors in Large Scale Agile
Development
An Exploratory Case Study

Tina Christin Syversen

Master of Science in Computer Science

Supervisor: Torgeir Dingsøyr, IDI

Department of Computer and Information Science

Submission date: May 2016

Norwegian University of Science and Technology

Abstract

Agile software development has been the preferred method since it was introduced as
a software development method in 2001. It was originally intended for small co-located
teams but in later years it has experienced widespread acknowledgement also in large scale
development projects. One thing that is not known is how to best achieve success in these
kinds of projects.

In this thesis we have explored two different cases of large scale projects. Because of the
complexity which arise in large scale projects it is difficult to know how they can be con-
ducted in the best possible way. The number of people involved, the need for coordination,
and locating the different teams are some of what complicates a large scale agile develop-
ment project and it is therefore hard to know how to best achieve success when considering
these new complexities. From the literature research we therefore found several possible
success factors, and the factor whole team thinking became the focus. The reason for this
is that there is a difference when working in a project with one team and a project with
several teams which depend on each other. Whole team thinking is about all teams think-
ing in the same direction and having the same goals throughout the projects, e.g. having
shared mental models across all teams involved. These factors were investigated in the
two cases and it was discovered how they affected the different cases; Omega and Tellus.

From the results we could see that whole team thinking was one of the factors holding the
two projects together. This was noticable when the teams in the project considered the fact
that they were working together and not competing against each other. When the teams
noticed how important it was to collaborate they were more helpful toward the other teams
and they understood the whole project more than when they just thought about their own
team and their own part of the project. When they did not consider the project they were
more quick to blame the other teams and hinder the project’s progress.

Keywords: Agile, large scale, multiteam system, shared mental models, success, whole
team thinking.

i

ii

Sammendrag

Smidig utvikling har vært den foretrukne metoden siden den ble introdusert som en metode
i programvareutvikling i 2001. Opprinnelig så var den tenkt for små samlokaliserte team,
men i de senere år har det blitt mer og mer utbredt også i større prosjekter med flere team.
Noe som har vært uvisst er å finne ut hvordan man kan oppnå like stor suksess i de store
prosjektene som i de små.

I denne studien har vi sett på to ulike stor-skala prosjekter. På grunn av kompleksiteten
som oppstår i stor-skala prosjekter er det vanskelig å vite hvordan disse kan lykkes på
best mulig måte. Antall personer involvert, behovet for koordinering og det å lokalisere
alle teamene er noe av det som kompliserer stor-skala smidige prosjekter og som gjør det
vanskelig å vite hvordan en kan oppnå suksess når en vurderer disse aspektene. Fra littera-
turen har vi derfor funnet flere mulig suksessfaktorer, og vi har valgt å fokusere på ”whole
team thinking”. Denne faktoren går ut på at alle team skal tenke i samme retning og ha de
samme målene gjennom hele prosjektet, for eksempel ved å ha felles mentale modeller på
tvers av alle teamene. Disse faktorene har blitt sett sammen med de to casene; Omega og
Tellus, og hvordan de påvirket prosjektene.

Fra resultatene kan vi se at ”whole team thinking” var en av faktorene som holdt prosjek-
tene samlet. Dette var spesielt merkbart når teamene ikke konkurrerte mot hverandre, men
jobbet sammen. Når teamene så hvor viktig det var å samarbeide var de mer hjelpsomme
med tanke på andre team og de forsto helheten i prosjektet og tenkte ikke bare på sin egen
del av prosjektet. Når de ikke tenkte på helheten så var de raskere til å skylde på hverandre
når ting ikke fungerte og hindret fremgangen til prosjektet.

Nøkkelord: Smidig, stor-skala, multiteam systemer, felles mentale modeller, suksess,
helhetlig tenkning

iii

iv

Preface

This paper was written as the master thesis in my final year on the Master Program in
Computer Science at the Norwegian University of Science and Technology, NTNU. My
specialization has been on software systems, where I have learned much from the different
courses taken over the years. Agile development has been interesting through these years
and I have been able to use this knowledge in some of the project courses, and in my sum-
mer job for Avanade in 2015.

The reason for choosing the subject of success factors in large scale agile was because I felt
there was possible to contribute something. This area is still relatively new and therefore it
is exciting to research something not many else have had the possibility of discovering yet.

This author would like to thank the supervisor of this paper, Torgeir Dingsøyr. With his
help I was able to investigate actual cases, and without his support and knowledge on this
subject this thesis would not be possible. There is also necessary to thank some other stu-
dents who have also contributed. The thesis of Espen Andreassen was helpful throughout
this project because of the knowledge of the subject and Omega case, and the observations
of Aravinthan Yogarajah was helpful in the investigation of the Tellus case. The work with
this thesis is related to the Agile 2.0 project funded by the Research council of Norway
through grant 236759, and supported by the companies Kantega, Kongsberg Defence &
Aerospace, Sopra Steria, and Sticos.

Trondheim, May 31, 2016

Tina Christin Syversen

v

vi

Table of Contents

Abstract i

Sammendrag iii

Preface v

Table of Contents ix

List of Tables xii

List of Figures xiii

Abbreviations xiv

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Description and Background 2
1.3 Scope and Limitations . 3
1.4 Contribution . 4
1.5 Target Audience . 4
1.6 Report Outline . 5

2 Theory 7
2.1 Agile Software Development . 7

2.1.1 Agile Methods . 7
2.1.2 Team Performance . 12
2.1.3 Research on Agile . 14

2.2 Large Scale Projects . 15
2.2.1 Large Scale Agile . 15
2.2.2 Example: Spotify . 17
2.2.3 Multiple Teams . 18
2.2.4 Co-Located vs Distributed . 19

vii

2.2.5 Frameworks and Scaling Methods 20
2.3 Success Factors . 24

2.3.1 Introduction . 24
2.3.2 Customer Collaboration . 25
2.3.3 Agile Software Engineering Techniques and Agile Evangelist . . 26
2.3.4 Responding to Change . 26
2.3.5 The Team . 26
2.3.6 Leadership . 27
2.3.7 Bridgehead . 28
2.3.8 Co-Location . 29
2.3.9 Product Owner . 30
2.3.10 Whole Team Thinking . 32

2.4 Whole Team Thinking and Shared Mental Models 33
2.4.1 Shared Mental Models Theory 33
2.4.2 Agile Practices and Shared Mental Models Theory 35
2.4.3 Why is Whole Team Thinking Important? 36

3 Method 39
3.1 Literature Review . 39

3.1.1 Parts and Objectives of a Literature Review 39
3.1.2 Selection Strategy and Research Question 40

3.2 Case Study . 42
3.2.1 Data Collection . 42
3.2.2 Data Analysis . 46

4 Results 49
4.1 The Cases . 49

4.1.1 Omega . 50
4.1.2 Tellus . 51

4.2 Success Factors . 52
4.2.1 Agile Software Engineering Techniques and Agile Evangelist . . 52
4.2.2 Responding to Change . 53
4.2.3 The Team . 53
4.2.4 Leadership . 54
4.2.5 Bridgehead . 55
4.2.6 Co-Location . 57
4.2.7 Product Owner . 58
4.2.8 Whole Team Thinking . 60

5 Discussion 63
5.1 Research Question and Success Factors 63

5.1.1 Research Question . 63
5.1.2 Responding to Change . 64
5.1.3 The Team . 64
5.1.4 Leadership . 65
5.1.5 Bridgehead . 65

viii

5.1.6 Co-Location . 66
5.1.7 Product Owner . 66
5.1.8 Whole Team Thinking . 66
5.1.9 Summary . 68

5.2 Evaluation of the Study . 71
5.2.1 Research Process . 71
5.2.2 Generalisation . 71
5.2.3 Are the Cases Agile? . 73

6 Conclusion 75
6.1 Research Question . 75
6.2 Implications for Practice . 77

7 Future Work 79
7.1 Suggestions for Future Research . 79

References I

A Reasoning for Success Factors a
A.1 Overview of Articles for each Success Factor a

B Observation Template m
B.1 The Template . m

C Supporting Information q
C.1 Agile Software Development . q

C.1.1 XP . q
C.1.2 Enterprise Agile . s

D Success Factors not Discussed in the Thesis u
D.1 Success Factors . u

D.1.1 Planning . u
D.1.2 Testing . v
D.1.3 Governance . w
D.1.4 Divide after You Conquer . x
D.1.5 Continous Integration . x

ix

x

List of Tables

2.1 The Different Scrum Processes . 11
2.2 The Different Scrum Roles . 11
2.3 Summary of Distribution Between the Teamwork Components 13
2.4 The Five Scaling Cases by Scheerer and Bick 23
2.5 Success Factors in Small and Large Scale Agile 25
2.6 Strode’s Implicit Coordination Factors 37

3.1 Objectives of a Literature Review . 40
3.2 Search Words Used for this Thesis . 41
3.3 Databases Used for this Thesis . 41
3.4 Taxonomy of Scale by Dingsøyr et al. 43
3.5 The Researchers Interpretation of the Principles of Klein and Myers . . . 45

4.1 An Overview of the Cases . 49
4.2 The Different Arenas in Tellus . 55
4.3 The Different Arenas in Omega . 56

5.1 Success Factors Applicable Found in the Cases: Y= found, S= found in
some degree, NF = not found . 69

5.2 Strode’s Implicit Coordination Factors for Omega 70
5.3 Strode’s Implicit Coordination Factors for Tellus 70
5.4 The Researcher’s Use of the Principles of Klein and Myers 72
5.5 Criterias to be Agile . 74

6.1 Success Factors Applicable in all Large Scale Agile Projects: A = always
applicable, M = maybe always applicable, NF = not found in the cases . . 76

6.2 Success Factors Whole Team Thinking have been seen in Conjunction
with: Y= yes, N= no, NK = not known 76

7.1 Revised Research Agenda for Large Scale Agile by Dingsøyr and Moe . . 80

xi

A.1 Customer Collaboration Articles . b
A.2 Agile Software Engineering and Agile Evangelist Articles c
A.3 Responding to Change Articles . c
A.4 The Team Articles . d
A.5 Leadership Articles . e
A.6 Planning Articles . e
A.7 Testing Articles . f
A.8 Governance Articles . g
A.9 Divide after You Conquer Articles . g
A.10 Continous Integration Articles . h
A.11 Bridgehead Articles . i
A.12 Co-Location Articles . j
A.13 Product Owner Articles . k
A.14 Whole Team Thinking Articles . l

xii

List of Figures

2.1 The Waterfall Model . 9
2.2 The Scrum Cycle . 10
2.3 Salas Big Five . 13
2.4 From Small to Large Scale . 16
2.5 An Overview of Scaling at Spotify . 18
2.6 LeSS Framework up to Ten Teams . 21
2.7 DAD Scaling Factors . 22
2.8 Components of Coordination Effectiveness from Strode et al. 37

4.1 An Overview of the Open Work Area at Omega 50
4.2 An Overview of Tellus . 51

C.1 Extreme Programming Overview . r

xiii

Abbreviations

NTNU = Norwegian university of science and technology
IT = information technology
QA = quality assurance
UI = user interface
UX = user experience
XP = extreme programming
IS = information systems
PO = product owner
CPO = chief product owner
APO = area product owner
PPO = proxy product owner
EPO = epic product owner
FPO = feature product owner
SM = scrum master
TDD = test driven development
COP = communities of practice
MTS = multiteam system
LeSS = large scale agile (framework)
SAFe = scaled agile framework
DAD = disciplined agile delivery

xiv

Chapter 1
Introduction

The first chapter is a short introduction of the motivation behind this thesis together with
the problem description and background. The scope with its limitations, contribution and
the target audience will also be presented. In the end there will be a brief report outline
which explains what to expect in the forthcoming chapters.

1.1 Motivation
Agile software development methodologies have been widely accepted since the introduc-
tion of the agile manifesto in 2001 [1]. This transformation witnessed the introduction of
several software methods, tools and techniques. Agile methods were said to:

”best suit co-located teams of about 50 people or fewer who have easy ac-
cess to user and business experts and are developing projects that are not life
critical” [2]

Even so companies have started applying agile practices to large scale projects.

When applying agile in large scale projects it is necessary to sort out requirements with
potential dependencies across the different teams. This creates new forms of coordination
mechanisms that do not exist in small scale [3]. At XP2013 and XP2014 Dingsøyr and
Moe conducted a workshop about the principles of large scale agile development which
resulted in a research agenda in 2013, and a revised research agenda in 2014. One of the
topics with the highest priority included variability factors in scaling. This involved iden-
tifying what factors are important in large projects that influence the development process
[2].

Today there are several projects which are working agile in large scale. One example
of this is Spotify [4]. At Spotify they have implemented a matrix structure and they change
their way of working constantly to find the best solutions for their business. SAP is another
example of a company working in large scale [5]. What we do not know exactly is how

1

Chapter 1. Introduction

these companies can work agile in large scale and achieve success with their methodology.

The challenges which arise in large IT-projects are many. The number of people, de-
pendencies and locations are just some of what needs to be considered. With so many
new varying conditions it is difficult to discover how and why they can inhibit a project’s
success. The teams should also communicate and coordinate with each other, which can
be difficult because agile teams are supposed to be self-organizing [6]. This indicates that
there is a difference when applying agile to large projects. This is an area where there is
little information for those applying agile to large projects.

This master thesis has therefore examined the different factors improving the project
success in large scale agile development. The focus has been on the factors and in which
way these assist the project to success. Because of this we have studied some of the large
organisations and projects which have implemented agile techniques, together with two
cases that the researcher have been lucky enough to follow during the duration of this the-
sis.

The reason for choosing this subject is because little is known about it today. It is
exciting exploring a field where much is still undiscovered and to hopefully contribute
something to the cause. This thesis might not change much today, but it might bring a new
outlook on large scale agile in the future.

1.2 Problem Description and Background
There are today several different organizations and projects that benefits from agile prac-
tices, some of these are Spotify [4] and SAP AG [5]. Because of the benefits agile method-
ologies have proven to offer SAP AG, the world’s leading producer of enterprise software
have transitioned from a waterfall-like process model to an agile development model [5].

The revised research agenda for large scale agile software development by Dingsøyr
and Moe [2] had high priority on the topic of factors in scaling. After studying several
lessons learned-articles it was clear that there were many different success factors that
were applicable in both large and small scale agile. Misra et al. [7] and, Chow and Cao
[8] have researched the potential success factors in small scale agile. These have therefore
been compared with both the lessons learned-articles, and the cases involved in this thesis.

There is not much information on this topic in existing papers, which is probably why
it was a high priority topic on the revised research agenda by Dingsøyr and Moe [2]. This
is why the topic is highlighted in this thesis which focus on different success factors in
large scale agile development projects.

A project is usually a planned set of interrelated tasks to be executed over a fixed period
and within certain costs and other limitations1, but in this thesis the project can also last

1http://www.businessdictionary.com/definition/project.html

2

1.3 Scope and Limitations

for an unknown amount of time, e.g.: Spotify which is always improving to better fit the
customers requirements. The purpose of this master thesis is:

• To add to the body of knowledge on large scale agile project

• To solve a problem by improving a large scale agile project

• To find out what happens when regarding the factors in a large scale agile project

• To find evidence to inform practice of how to best conduct a large scale agile project

• To develop a greater understanding of people and their world in a large scale agile
project

• To contribute to other people’s well-being in a large scale agile project

The end product will therefore be a combination of these purposes [9].

This thesis will be an ”in-depth study of a particular situation” [9] where we will focus
on two different cases. In addition it will be ”an exploration of a topic, area, or field”
with focus on the different factors in large scale agile, together with a more thorough
investigation into large scale agile projects.

1.3 Scope and Limitations
This thesis is about possible success factors and whole team thinking as a success factor
in large scale agile development projects. The time limit on this master thesis has been
twenty weeks. All of the work for this thesis has been completed during those weeks, in
addition to some of the material being found and researched during the preliminary pa-
per [10], which also focused on success factors and whole team thinking. The preliminary
paper consisted in finding the research question and material for that, and is where the suc-
cess factors were found. The preliminary paper were therefore more of a research study
while this thesis only uses the information gathered there together with new information,
and it is compared with the two cases; Omega and Tellus.

Because of the time constraints it was not possible to get more material from the two
cases. With more time it might have been possible to conduct interviews in one or both of
the cases, which could have shed more light on the research question and success factors.
With more time it would have been possible to delve deeper into the cases, and maybe even
follow other relevant cases. It could have been possible to ask more about how they are
affected by the different factors, if they think about them at all. This was difficult because
of the necessity for an ongoing or newly concluded project, preferably close by.

Since this research field, large scale agile, was fairly new, there was not that much
information on the subject, which is another reason of why it was chosen. The field had
not been investigated thoroughly according to Dingsøyr and Moe [2] in a conference paper
from XP2014, where variability factors in large scale agile development was proposed as

3

Chapter 1. Introduction

a future research field. This thesis therefore gives an overview over what has been found
in other papers, both about agile development, large scale agile, and the different factors
found in the different papers. This thesis is not about how to best scale an agile develop-
ment project, but it is about the factors that can help large scale projects heavily influenced
by the whole team thinking factor which will be explained later in this thesis.

The problems with large scale agile projects is the fact that an agile team is supposed
to be self-organized [11]. In a project with several self-organized teams this would com-
plicate the project, which implies that they can only be self-organized to a certain degree.
The number of people involved increases the chances for dependencies and it is difficult
for everyone involved in one project to not communicate and coordinate with each other.
Spotify has over 30 teams across three cities [4]. The fact that they are too many to be
placed in one location suggests the complexity of working in a large scale agile project.

The focus on this thesis is therefore on the possible success factors. These are found
in other journals and lessons learned-articles, and compared with the two cases. We will
discuss these factors individually and together with the factor whole team thinking which
is the main focus. We will see how they affect the two cases both positively and negatively,
and how they can help the projects to achieve success. We can therefore see the difference
in how necessary they are, and how they affect the different projects. The scope for this
thesis is therefore about what factors that need to be considered to achieve success in a
large scale agile project, and how they can be used for the best results.

1.4 Contribution

The contribution this thesis will provide is to the topic of success factors in large scale
agile. After suggesting possible success factors we will try to display them in the two
case studies and how they have affected these projects. We will compare the two different
cases and see how each of them have solved the factors in their project. We will see which
factors are applicable to both projects, and therefore factors which might be applicable to
most projects and which factors depend on the case. In the end we will focus on the factor
whole team thinking and see how this affects both the cases and the other factors found.

1.5 Target Audience

The target audience for this thesis is primarily people interested in large scale agile projects.
It is for those conducting large scale agile projects that are interested to know how they can
best achieve success. This is relevant especially for the two cases followed and also for the
supervisor and the Agile 2.0 project. This paper will be available through NTNU which
indicates that other students can use it for inspiration either they write about agile or large
scale agile development. For those who practice agile in large scale projects this thesis can
help in understanding how to best conduct these types of projects by reading about the suc-
cess factors and how they are implemented in the cases. For scientists in large scale agile

4

1.6 Report Outline

how the success factors influence the projects in both positive and negative is something
that could be interesting regarding other research fields in the future.

1.6 Report Outline
Chapter 1 Introduction:

This chapter is to give a brief overview of the thesis, this includes the motivation,
background, scope, contribution and target audience.
Chapter 2 Theory:

The theory chapter brings a listing of agile software development and what lies in
whole team thinking and shared mental models. Large scale is given an explanation and
there is an overview over the different success factors found in different articles.
Chapter 3 Method:

Here the literarture review is carried out, with the selection strategy and research ques-
tion. In addition this chapter contains how the data collection and analysis were perfomed
and how thesis was completed.
Chapter 4 Results:

The results chapter holds the findings from the two cases. These are seen in context
with the success factors from the theory chapter.
Chapter 5 Discussion:

The results are discussed further and the two cases are compared. The focus here will
be on whole team thinking alone and together with the other factors. An evaluation of the
study is also conducted.
Chapter 6 Conclusion:

This chapter includes the conclusion of this thesis in conjunction with the research
question. This chapter also collects the loose threads.
Chapter 7 Future Work:

In this chapter suggestions for future work in large scale agile development is given.

5

Chapter 1. Introduction

6

Chapter 2
Theory

The theory chapter will present the relevant literature for this thesis. First we will briefly
explain agile software development together with one of its methods. After this we will
give an introduction to large scale agile before presenting the different success factors
found, together with an explanation. In the end we will delve deeper into one of the
factors and shared mental models.

2.1 Agile Software Development
In this section we will introduce agile software development and discuss how it is different
from the waterfall-model. We will introduce one of the methodologies scrum, before
considering team perfomance in an agile project. In the end we will focus on earlier
research on agile software development.

2.1.1 Agile Methods
In the late 1990’s there were several methodologies that had started gaining increased
public attention, each with a different combination of new and old ideas. What these
had in common was the close collaboration of the development team and the business
stakeholders1. When seventeen software development practitioners gathered in 2001 they
tried to find a common ground2. From this the Agile Software Development Manifesto3

emerged, which was based on four values:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

1https://www.agilealliance.org/agile101/what-is-agile/
2http://agilemanifesto.org/history.html
3http://agilemanifesto.org/

7

Chapter 2. Theory

While there is value in the items on the right, the left ones are valued more.

Agile software development offers a professional approach to software development
that encompasses human, organizational, and technical aspects of software development
processes [12]. Agile software development is an umbrella term for a set of methods and
practices based on the values and principles from the agile manifesto. The word ”agile”
by itself indicates that something is flexible and responsive, so agile methods implies its
”ability to survive in an atmosphere of constant change and emerge with success” [8]. Ag-
ile methods are people-centric, recognizing the value of competent people and what their
relationships bring to software development [13]. It focuses on providing high customer
satisfaction and extensive documentation are of little value to the developers. The key
point is that agile approaches plan features, not tasks, as the first priority because that is
what the customers understand. Agile approaches recommend short iterations in the two-
to-six weeks range. By having dynamic prioritization the customer can always reprioritize
their features at the end of an iteration [14]. At the core of agile practices is the idea of
self-organizing teams where the members work at a pace that sustain their creativity and
productivity [1]. This implies that the team is responsible for the whole product or service,
that they control the members’ task behaviour and have the authority to make decisions
about task assignment and work methods [15].

Agile methods are, according to Cohen, Lindvall and Costa [9], a reaction to the tra-
ditional ways of developing software, and acknowledge the ”need for an alternative to
documentation driven, heavyweight software development processes”. It is the focus and
values behind the agile methods that differentiate them from the traditional methods. The
waterfall model, see figure 2.14, was a way of assessing and building for the users’ needs.
The model starts with a complete analysis of user requirements, then engineers establishes
a definitive and exhaustive set of features etc. which are all well-documented. Next phase
is the design phase before the programmers implement the well-documented design and
the system is tested and shipped. Problems with this model was the fact that users changed
their minds and that requirements changed. The waterfall model therefore worked best
when change rates were low. Other incremental and iterative techniques took the process
behind waterfall and repeated it through the development lifecycle [9].

Agility, ultimately, is about creating and responding to change. It is not the practices
that they use that are new, but their recognition of people as the primary drivers of project
success, coupled with an intense focus on effectiveness and maneuverability [14]. Agile
approaches is often used in the development of web-based applications [16]. As an itera-
tive and incremental method to software development, the agile method is implemented in
a very interactive manner to make good quality software that answers the alternating needs
of its users.

According to Scott Ambler [6] there are five criterias that determine whether a team is
agile or not. It is important to note that these are just suggestions and that different projects
might require different methods. For example; some agile teams produces working soft-

4http://www.sharonencyclo.com/waterfall-model-sharon-encyclopaedia/

8

2.1 Agile Software Development

Figure 2.1: The Waterfall Model

ware every two weeks, while others might not do this as often because of a more complex
situation. The first criteria is that the agile team provides a value to their stakeholders at
a regular basis. The second is the validation criteria. This implies that for agile teams
it is necessary to do continous developer regression testing and that the disciplined agile
teams take a test driven development approach to validate their work. Active stakeholder
participation is the third one. Here the importance of working closely with the stakehold-
ers, ideally on a daily basis, is recommended. The fourth one is self-organization and that
is the criteria that is the most challenging to fulfill. Agile teams are self-organizing, and
disciplined agile teams work within an appropriate governance framework. The last and
fifth criterion is improvement. The agile teams have to regularly reflect on, and disciplined
teams should measure, how they work together, and then act to improve on their findings
in a timely manner.

Agile software development has followed the general trend in product development
organizations towards a team-based structure with the idea of self-organizing teams [17].
Teamwork has been found to be a key driver to successful software development and it
provides a better solution to organizational problems. Agile team behaviour might affect
the ”ability to make the necessary modifications in order to meet new challenges” [17].
It is said that members of effective teams are aware of team functioning and of changes
in the team environment. This team-based structure can be seen in several of the agile
methodologies. According to a world-wide survey [18] with professional software devel-
opers completed by VersionOne in 2012 the two most widely used agile methods among
professional software developers today are scrum and extreme programming (XP).

9

Chapter 2. Theory

Scrum

In 1996 scrum was defined as a process that ”accepts that the development process is un-
predictable,” and formalizing the ”do what it takes” mentality [19]. A scrum is a team of
eight individuals in rugby. Everyone in the pack acts together with everyone else to move
the ball down the field. The entire team have one single focus, work closely together and
has clear priorities [20]. The focus of scrum in software development is project leadership
and requirements management [6].

Scrum projects are divided into iterations, also called sprints, which lasts for two-to-
four weeks, see figure 2.25 for an overview of the scrum cycle. Each sprint consists of a
sprint planning session, daily stand-up meetings, sprint demo and a sprint retrospective. In
the sprint planning the product backlog, a list of prioritized items from the product owner,
is discussed and items are taken from this and into the sprint backlog6.

Figure 2.2: The Scrum Cycle

The daily stand-up meetings are held everyday, involves the whole team and is fascil-
itated by the scrum master. There is usually three questions that is answered during these
meetings [20]:

• What have you done since last time?

• Are there any obstacles in your way?

• What will you do next?

These meetings usually last about 15-30 minutes and are not used to brainstorm ideas or
solving the problems they have [20]. In the end of a sprint a demo will be held. Here the

5http://www.rapidsoftsystems.com/agile-development-process.html
6https://www.scrumalliance.org/why-scrum

10

2.1 Agile Software Development

Table 2.1: The Different Scrum Processes

Process What
Product backlog An overview of the requirements requested by the customer/

PO which is prioritized after each sprint
Sprint An iteration which lasts between two-to-four weeks where

there hopefully will be produced working software
Sprint backlog Requirements at the top of the product bakclog which are to

be completed during the sprint
Sprint planning Planning of the sprint where requirements are taken from the

backlog, divided into tasks and is given a duration
Daily stand-up A meeting every day at approximately the same time where

everyone explains what they are doing
Demo A presentation at the end of the sprint of the product to the

customer/ PO
Retrospective A discussion of how the sprint was conducted with positive

and negative items which focus on how to conduct the next
sprint better

different stakeholders usually meet and they are shown what the team have managed to
produce during the sprint. After this there might be reprioritizing of the product backlog.
In the end the team has a retrospective where they discuss how the sprint went, and how
the next sprint can be conducted even better than the last. For an overview of the different
artifacts in scrum see table 2.1.

Table 2.2: The Different Scrum Roles

Scrum roles Who What
Product owner A person from the customer

with an interest and knowledge
in the product

Manages customer require-
ments and communicates these
to the team

Scrum master One team member with leader
responsibilities

Facilitator between PO and
team, and a team member

Team Software engineers, architects,
programmers, analysts, QA ex-
perts, testers, UI designers

Responsible for developing the
product

A scrum team consists mainly of three different roles. These are the: product owner,
scrum master and team7. The product owner is responsible for managing customer re-
quirements and communicating these to the team. The scrum master is the fascilitator
between the product owner and the team, and works to remove any impediments that are
obstructing the team from achieving its sprint goals. The team is a small development team

7http://scrummethodology.com/

11

Chapter 2. Theory

responsible for self-organizing to complete work, with a mix of software engineers, archi-
tects, programmers, analysts, QA experts, testers and UI designers. The team is normally
not more than ten people. For an overview of the different roles see table 2.2.

2.1.2 Team Performance
A common definition of a team is:

”a small number of people with complementary skills who are committed to
a common purpose, set of performance goals, and approach for which they
hold themselves mutually accountable” [21]

Collaborative work in teams can promise the potential of greater adaptability, productivity
and creativeness as compared to individual work [17]. Teamwork is at the core of agile
development [22]. In agile development it is necessary for a team to be adaptable because
of the everchanging needs of the customer, and it has been found that a team’s adaptability
is a key determinant of team effectiveness [23].

Teams have the potential to provide complex, innovative, and comprehensive solutions
to organizational problems [24]. There are several models available but it is important
to distinguish between team performance and team effectiveness. Team performance ac-
counts for the outcomes of the team’s actions regardless of how the team may have ac-
complished the task. Team effectiveness takes a more holistic perspective in considering
both how the team completed their task and how the team interacted to achieve the team
outcome. The important factors of teamwork found by Salas et al. [24] is the ones called
the ”Big Five”, see figure 2.3. These core components of teamwork include team lead-
ership, mutual performance monitoring, backup behaviour, adaptability and team orienta-
tion. These components have three coordinating mechanisms which are: shared mental
models, closed loop communication and mutual trust.

In 2013 Dingsøyr and Lindsjørn [21] conducted eighteen focus group sessions to inves-
tigate what factors agile software practitioners perceive to influence effective teamwork.
They chose to use the research-based Salas et al. model of the ”Big five” as a basis for
this research. The questions asked during the focus groups was: ”What fosters effective
teamwork?” and ”What hinders effective teamwork?”. In total there were 1183 items that
were placed in the eight teamwork component groups, see table 2.3. As we can see from
the table shared mental models was one of the components that received the most items on
fostering team performance, together with closed-loop communication and mutual trust,
all of which are the coordinating mechanisms of the model.

The components were clustered into three main groups after they were reviewed:

1. Team leadership and closed loop communication

2. Shared mental models, team orientation and mutual trust

3. Mutual performance monitoring, backup behaviour and adaptability

12

2.1 Agile Software Development

Figure 2.3: Salas Big Five

Table 2.3: Summary of Distribution Between the Teamwork Components

Team Component Foster Hinder Total
Team leadership 90 139 229
Mutual performance monitoring 49 22 71
Backup behaviour 44 57 101
Adaptability 46 50 96
Team orientation 91 65 156
Shared mental models 104 59 163
Closed-loop communication 97 58 155
Mutual trust 122 90 212
Sum 643 540 1183

13

Chapter 2. Theory

The research confirms the fact that teamwork is of high relevance to agile software devel-
opment teams. Agile teams are said to be self-managing, while the ”Big Five” model is
not particularly tailored for self-managing teams. Even though we can see that the model
is applicable for the self-organizing teams in agile software development.

If we focus on shared mental models team leadership is influenced by this in how the
team leader has a role in the creation, maintenance and accuracy of the team’s shared men-
tal model. For mutual performance monitoring it is important with shared mental models
because it provides teammates an understanding of what other team members are sup-
posed to be doing. Shared mental models are necessary antecendents to effective backup
behaviour because they form the foundation for decisions of when a team member must
step in to provide backup, who should step in, and what assistance is necessary.

As we can see from figure 2.3 there are ten research propositions, where three of these
come from shared mental models. These are:

P3: Effective mutual performance monitoring will only occur in terms with
adequate shared mental models and a climate of trust.

P6: Effective backup behaviour requires the existence of adequate shared
mental models and mutual performance monitoring.

P8: Effective availability requires the existence of adequate shared mental
models and effective engagement in mutual performance monitoring and backup
behaviour.

These propositions between the variables represents the interrelationships of the ”Big
Five”, and as we can see the ”Big Five” cannot function without their coordinating mech-
anisms, which include shared mental models.

2.1.3 Research on Agile
In 2008 Dybå and Dingsøyr [25] published a systematic review of empirical studies on
agile software development. The objective of the study was:

1. What is currently known about the benefits and limitations of agile software devel-
opment?

2. What is the strength in support of these findings?

3. What are the implications of these studies for the software industry and research
community?

They identified 36 empirical studies on agile software development where thirty-three
were primary studies, and three secondary studies. Most of the studies reviewed that
investigated agile projects dealt with employees that were new to agile development and
they were also published in conferences. According to Dybå and Dingsøyr [25] the re-
search published before 2005 revealed a lack of theoretical and methodological rigor.

14

2.2 Large Scale Projects

Some of the benefits reported by the studies from Dybå and Dingsøyr [25] was cus-
tomer collaboration, work processes for handling defects, learning in pair programming,
thinking ahead of management, focusing on current work for engineers and estimation.
One of the recurring themes found was human and social factors and how these factors
affect agile development methods. One problem with the studies was that the strength of
evidence were low, which made it difficult to offer specific advice to the industry.

In 2012 Dingsøyr et al. [1] did a literature search on the ISI Web of Science where
they identified 1551 research papers on agile software development published from 2001
to 2010. The majority of the articles originated in the US, Canada. and Western Europe,
but there were 63 countries in total on all continents which had had agile development as
a research theme. Most of the articles published came from conferences, most notably the
International Conference on Agile Software Development.

Nerur and Balijepally [13] revealed in 2007 that the progression of ideas in agile soft-
ware development were remarkably similar to conceptual pattern shifts in software design.
They looked at agile software teams as holographic organizations. Everything which is in
the whole hologram can be accessed through any of its parts since each one is a reflec-
tion of the whole. Agile philosophy facilitates their formation of holistic teams through a
culture that encourages the changing of roles and jobs based on independence.The team’s
skills enable it to function even when some members are unable to perform [13]. This
can be explained by the fact that the agile teams are self-organized and therefore are less
dependent on one single person.

2.2 Large Scale Projects
In this section we will introduce the concept of large scale projects before delving deeper
into Spotify, which is an example of a large scale agile project. After this we will discuss
multiple teams working together and how to locate the teams in a large scale project. In the
end we will discuss different frameworks and different ways to scale a large agile project.

2.2.1 Large Scale Agile
The success and wide use of agile software development has inspired use in new domains
and companies have been increasingly applying agile to large scale projects [26], see fig-
ure 2.4 [27]. The discussion on the ability of agile practices to scale to larger software
development efforts has been widely debated in recent years [28]. It is still important to
remember that agile is not a tool-based technique that can easily be rolled out across large
organizations, it is value based and needs buy-in [29].

When describing agile development in everything from large teams to large multiteam
projects that make use of principles of agile development in a whole organization, the term
”large scale agile development” has been used [26]. The definition given by Dingsøyr et
al. [26]is the following: ”agile development efforts with more than two teams”. In addi-
tion they define very large scale as ”agile development efforts with more than ten teams”.

15

Chapter 2. Theory

Figure 2.4: From Small to Large Scale

16

2.2 Large Scale Projects

With these definitions we exclude agile methods applied in large organizations, also called
”enterprise agile”. For more information about this see appendix C.1.2.

When large teams are supposed to produce software functionality quickly, the agile
methods must scale to meet the task [30]. There has been said to be eight scaling factors
for agile [16; 6]. These are: team size, geographical distribution, regulatory compliance,
organizational complexity, technical complexity, organizational distribution, domain com-
plexity and enterprise discipline. These scaling factors are ranges and all will not be ap-
plicable to any given project [16; 6]. According to Saeeda et al. [16] there are two terms
when discussing scalability of agile. These are ”scaling out” and ”scaling up”. Scaling up
is concerned with the use of agile methods for developing large software systems that can-
not be developed by smaller teams. Scaling out is more concerned with how agile methods
can be introduced across a large size project with many years of software experience [16].

When deciding how to divide the teams in large scale agile it is common to divide into
feature teams or component teams [31]. When using feature teams the teams are grouped
into areas that are customer- and not architecture-centric. Component teams divide their
work based upon the system architecture. When choosing which way to divide the teams
the customer should be in focus. The reason for this is the fact that when choosing compo-
nent teams the requirements and backlogs are more technical of nature, this indicates that
the product owner should be technically savvy or the team will have to translate technical
requirements into needs for the product owner [31]. The mix of feature and component
teams is one of the reasons for occuring inter-team dependencies [32].

2.2.2 Example: Spotify
Spotify is a good example of scaling agile, see figure 2.5 [4]. In an article from 2012 the
scaling at Spotify is explained by Kniberg and Ivarsson [4]. It is important to note that
Spotify is a company which is evolving fast and this article by Kniberg and Ivarsson is
just a snapshot of how Spotify worked at the time of the article, and there have most likely
been several changes since then.

At Spotify a squad is the same as a scrum team and it is designed to feel like a mini-
startup. The squad has a long-term mission which can be e.g.: building and improving
the android client. Because they are on a long-term mission they become experts in that
area. The squads have a workspace which includes a desk area, lounge area and a personal
”huddle” room. Most of the walls are whiteboards. Each squad is encouraged to spend
about ten percent of their time on ”hack days” where they can do whatever they want.
They have a product owner which is responsible for prioritizing the work conducted by
the team, and the product owners of different squads collaborate with each other.

A tribe is a collection of squads that work in related areas, like the music player. The
tribes have a tribe lead and they are physically in the same office. They are based on the
concept of the ”Dunbar number” which implies that people cannot maintain a social re-
lationship with more than about one hundred people. This is because of the increase in
restrictive rules, bureaucreacy and other things that could get in the way. The tribes hold

17

Chapter 2. Theory

Figure 2.5: An Overview of Scaling at Spotify

regular gatherings which is an informal get-together.

Dependencies is helped by the squads regularly being asked which squads they depend
on and if these dependencies are blocking or slowing them down. Scrum of scrums happen
only on demand because the squads are fairly independent. Chapters and guilds are used
to glue the company together. A chapter is a family of people which have similar skills
and are working in the same general competency area within the same tribe. They meet
regularly but are not necessarily evenly distributed across the squads. The guild is referred
to as more of a ”community of interest” where those who want can share knowledge, tools,
code and practices. Guilds cut across the whole organization.

Anyone is allowed to edit the system, but to make sure that someone focuses on the
integrity of the whole system they have the role ”system owner”. All systems have one or
two system owners, when there are two; one has a developer perspective and the other an
operations perspective. This person is not responsible for doing the job, but for making
sure it is implemented. Normally this person is a squad member or chapter lead with other
day-to-day responsibilities.

2.2.3 Multiple Teams
When there are multiple teams working together it is often called a multiteam system. A
multiteam system (MTS) is:

”two or more teams that interface directly and interdependently in response to

18

2.2 Large Scale Projects

environmental contingencies toward the accomplishment of collective goals”
[33; 34; 35].

This is when there are several independent teams that work together in a team of teams,
or multiteam, setup [34; 35]. Typically this structure has been based on the modularised
component of the software architecture. In such a setting each team owns the development
and maintenance responsibility for one component [35]. The collective goal of this sys-
tem can be broken down into a goal hierarchy and constitutes a key characteristic of any
multiteam system [34]. All teams within a multiteam system share at least a distal goal8,
while the individual teams pursue their more proximal goals9 [34; 36]. This goal structure
leads to teams displaying input, process and outcome interdependence with at least one
other team [35; 36].

MTS have received growing attention in organizational psychology over the last decade,
but the aspect of coordination is underdeveloped acoording to Scheerer et al. in different
articles [33; 34]. This indicates that only the different areas and linkages have been ex-
plored. Cross-team processes have later been proved to have the most value in MTSs with
a high independent goal hierarchy. This implies that well-managed MTS processes was
influenced positively, but it did not support the team-level action processes.

Coordination is the management of dependencies. Inter-team coordination is the co-
ordination of activities between two or more teams within an MTS [15]. There are two
coordination types. The first is explicit coordination which consists of mechanistic ele-
ments like plans and rules. The other is implicit coordination which consists of cognitive
elements like shared mental models and team expertise [37]. In a study of leadership in
MTSs the leader teams were trained in two ways by either facilitating strategy develop-
ment or coordination [33]. The strategy training was positively related to explicit coordi-
nation while coordination training affected the implicit coordination much stronger. This
indicates that an unidentified mechanism like shared mental models seemed to influence
inter-team coordination [33].

2.2.4 Co-Located vs Distributed

One of the scaling factors presented by Ambler [11] is geographical distribution. When
working in a large scale project it is difficult to co-locate everyone in the same place, and
some projects even go across several countries. Vlietland and van Vliet [38] present three
main issues arising with distribution of software practices:

• Spatial separation

• Time zone differences

• Cultural differences

8A long-term goal, in this case the end product
9A short-term goal, here the sprint goals

19

Chapter 2. Theory

Spatial separation leads to exacerbation of communication and coordination. Time zone
differences can make it difficult for teams to meet, and it can therefore make it harder to re-
ceive answers to questions and dependencies. Schnitter and Mackert [39] propose that time
zone differences of more than three hours makes it difficult to agree on common time for
daily scrum meeting, and this implies scheduling meetings in general. Cultural differences
is about the culture in the teams. Teams in different countries might have another way of
working than others do. In the lessons learned-article from Scnitter and Mackert [39] they
mentioned that multicultural teams typically broke up within two months mainly because
the role of the scrum master is interpreted very differently among European, Asian, and
American people. A scrum master from one culture found it hard to meet the expectations
of team members from another culture.

Larman and Vodde [40] recommends co-located teams, but open up for the possibility
that the teams can be in different sites. It is more important to avoid a single dispersed
team with scattered members. Martini, Pareto and Bosch [41] found ten root factors and
recommendations for them. One of the root factors was ”No co-location”. With large scale
it is almost impossible not to distribute teams because of the lack of space, and even the
distance of one floor can make the teams distributed. They therefore recommended that
especially teams that interact more intensely should be located closer.

2.2.5 Frameworks and Scaling Methods

In a response to the rapid adoption of agile software development in large scale settings,
several frameworks have been propsed by practitioners and agile evangelists. The most
known are: Large Scale Scrum (LeSS), the Scaled Agile Framework (SAFe), the Nexus
Framework and Disciplined Agile Delivery (DAD). Out of these frameworks Nexus is the
closest to scrum with a lot of the same practices and processes on an inter-team level with
a group of scrum teams, called a nexus. Nexus is said to be the exoskeleton of scaled
scrum10.

LeSS, see figure 2.611, provides two different large scale frameworks; LeSS and LeSS
Huge which can have up to a few thousand poeple on the project. Most of the scaling
elements are focused on directing the attention on all teams over to one product instead of
”my part”12. LeSS introduces the concept of requirement areas as a means to group teams
by areas of strongly related customer requirements headed by area product owners. All
teams are in a common sprint to deliver a shippable product every sprint. Some of what
distinguishes LeSS from normal scrum is the fact that there are two sprint plannings; one
for everyone and one for each team, and the overall retrospective. The overall retrospec-
tives purpose is to explore improving the overall system rather than focusing on one team.

10https://www.scrum.org/Resources/The-Nexus-Guide
11http://agileatlas.org/articles/item/large-scale-scrum-more-with-less
12http://less.works/less/framework/index.html

20

2.2 Large Scale Projects

Figure 2.6: LeSS Framework up to Ten Teams

SAFe is based on a number of immutable, underlying lean and agile principles13. It up-
holds four core values: alignment, built-in-quality, transparency and program execution14.
SAFe is a scaled agile application in the enterprise and targets seven areas to achieve par-
allell scrum development [16]. These seven targets are:

• Cross-functional teams

• Standardized planning and tracking

• Standardized iterations

• Smaller, frequent releases

13http://www.scaledagileframework.com/safe-lean-agile-principles/
14http://www.scaledagileframework.com/safe-core-values/

21

Chapter 2. Theory

• Concurrent testing

• Continous integration

• Regular reflection and adaption

SAFe is based on a number of newer paradigms in modern system and software engi-
neering. This includes lean and system thinking, product development flow and agile
development15.

DAD is a hybrid framework that builds upon the solid foundation of other methods
and software process framework16. The approach combines scrum with the best practices
from multiple methodologies like XP, Rational Unified Process, Kanban, etc. The focus
of DAD is on the delivery and a full product lifecycle goes from the initial idea, through
delivery, to operations and support. See figure 2.717 for an overview of the scaling factors
in DAD.

Figure 2.7: DAD Scaling Factors

The frameworks concentrate on the practices, but they do not say much about the de-
livery mode, planning and coordination. In November 2015 Scheerer and Bick had a pre-
sentation in Trondheim about ”Five Ways to Scaling Agile Coordination in Large-Scale
Agile Software Development” [27]. Scheerer and Bick both work in SAP and have writ-
ten several articles based on the scaling there [23; 33; 34; 35; 36]. In the presentation they

15http://www.scaledagileframework.com/lean-agile-mindset/
16http://www.disciplinedagiledelivery.com/introduction-to-dad/
17http://www.ibm.com/developerworks/rational/library/automate-software-development-processes/

22

2.2 Large Scale Projects

Table 2.4: The Five Scaling Cases by Scheerer and Bick

Case Delivery Mode Planning Coordination
Traditional 4-week sprints Central teams assign epics to Teams via PO

1-year release
cycle

development teams

Cloud 2-week sprints
1-month release
cycle

Virtual CPO/PO round Teams via POs,
SMs and develop-
ers

Distributed 2-week sprints
4-month release
cycle

Central architecture team
proposes technical solutions
for requirements

Teams via POs and
central architecture
team

Co-located 4-week sprints
3-month release
cycle

Quarterly release planning
workshop with all members

Teams via POs or
developers

Modular 4-week sprints
3-month release
cycle

Individual POs plan work
packages in accordance with
CPO

Teams occasion-
ally via POs

explained five different scaling methods, see table 2.4, and how they can be coordinated.

The first case is the traditional case with scaling through central team directives. Here
there are about thirteen teams with one hundred and forty people at four locations. They
are component-based, which indicates that they are business process-oriented. In this case
there is a central team which assigns epics via top-down directives but there are little
bottom-up feedback from the development teams. Cloud is the second case with ten teams
and about one hundred and five people at two locations. The scaling here is via iterative
proxy collaboration. The organizational structure is feature-based and the solution to prob-
lems are often merely reported to CPOs (chief product owners).

The third case is distributed which involves seven teams with about seventy people
over six locations. This is scaling via central planning based on team inputs. This case
is component-based and software module-oriented. They have a central architecture team
and the planning is based on feedback from team architects and POs. Co-located is the
fourth case and is scaling through full collaboration. Here there are six teams with approx-
imately 85 people in one location. This case is another one which is component-based
and business process-oriented. They have regular information-sessions between selected
teams and maintenance of a detailed wiki. The fifth and last case is the modular case which
is scaling via ad-hoc communication. There are four teams with around forty people over
three locations and they are feature-based. Here there is a high involvement of, and guid-
ance by, the CPO.

As we can see there are several ways of scaling a large scale agile projects. In addition
to finding a framework it is necessary to find out how to coordinate the teams: bottom-up
or top-down. Number of people and locations therefore have to be considered together

23

Chapter 2. Theory

with the influence from the management. When scaling agile methods it is important to
scale them without sacrificing the underlying principles of the agile manifesto [30].

2.3 Success Factors

In this section we will introduce the different possible success factors for this thesis, but
first we will introduce the background for these factors.

2.3.1 Introduction

In 2014 Dingsøyr and Moe held a workshop during XP2014 [2]. Here they found a revised
research agenda for large scale software development. From here the original research
question for this thesis appeared:

”What are the possible success factors in large scale agile development?”

This could appear to be a broad topic since there might be a number of factors that can
make a project successful. After researching and reading through several papers, see ap-
pendix A, there were a lot of possible ideas as to what could be a success factor. A factor
was categorized as a success factor if it was:

• Important for the project’s success

• Mentioned as a missing piece

• Mentioned as a recommendation

• Mentioned as a problem or challenge

The factors found can be seen in table 2.5.

All factors come from at least one article, most come from either a conference article
or journal article, while some are lessons learned. The factors in lessons learned might
only have been applicable in that case, but since they are mentioned they are important in
some degree. Most of these factors are cited in multiple articles which gives support to
both conference and lessons learned-articles. Some of the factors are only applicable in
large scale while most are applicable in both large scale and small scale. The way they
affect the project, and in what degree, can be somewhat different for some of the factors.
The factors with the least data according to the research question, those marked with * in
the table, can be found in appendix D.

24

2.3 Success Factors

Table 2.5: Success Factors in Small and Large Scale Agile

Success factor Small scale Large scale
Customer collaboration X X
Agile software engineering techniques and agile X X
evangelist
Responding to change X X
Team X X
Leadership X X
Planning* X X
Testing* X X
Governance* X X
Divide after you conquer* X
Continous integration* X
Bridgehead X
Co-location X
Product owner X
Whole team thinking X

2.3.2 Customer Collaboration

The customer is an important part of agile methodologies since the customer is involved
the whole way opposed to just the beginning and the end. In Chow and Cao’s [8] survey
study they had a list of twelve possible critical success factors. One of these were customer
involvement and in the end of the article they state the importance of strong customer in-
volvement. In agile it is important for the customer to understand agile principles, if not
the road can be a bit bumpy as experienced in the article from Koski and Mikkonen [42].
The effort that the customers have to put in an agile project is much more essential than in
other projects, and several customers do not understand this before undertaking an agile
project. The product owner is a good example of customer collaboration. The product
owner is one of the most critical roles in scrum, and difficult to implement successfully
[31]. The product owner is therefore the main contributor, but can in addition be the main
bottleneck because of this [42]. When beginning an agile project it is therefore necessary
to explain to the customer what is expected from them.

Another important thing when it comes to customers is involving the right people, or
the key stakeholders [43]. It is essential to identify the correct stakeholders, if not the
whole project can fail. It is not necessarily the leaders that are the correct stakeholders, but
the people who are going to benefit from the system. For understanding the system goals
and features it is important to know which stakeholders that are target for the system’s fea-
tures and functions. The customer should be able to prioritize scenarios or requirements if
they are to be satisfied with the product, if not they might not get all the necessary require-
ments they need to do their job. Factors like customer satisfaction, customer collaboration
and customer commitment is significant to the project success [16]. This applies to both
small and large scale, and we will describe the importance of scaling the PO-role more in

25

Chapter 2. Theory

2.3.9.

2.3.3 Agile Software Engineering Techniques and Agile Evangelist
One of the three critical success factors for agile software development projects presented
by Chow and Cao [8] is agile software engineering techniques. The team has to practice
rigorous agile software engineering techniques. Not all projects that are supposed to prac-
tice agile have practiced it before, and it is therefore necessary to have top-notch agile
consulting [44]. This can be accomplished by an agile evangelist who coordinates training
and rollout. Early coaching is important and especially when no one have practiced agile
earlier.

Benefield [45] explains how they introduced agile development to Yahoo. There the
pilot teams received some early coaching from leading agile thinkers like Ken Schwaber,
Paul Hodgetts, Mike Cohn and Esther Derby. As the program expanded they established
an internal coaching team at Yahoo to evangelize the benefits of scrum throughout the
company, and to train coaches and support the teams that wished to use it. Since they did
not have enough capacity at a time they experienced that teams that went ahead without the
training failed and performed mini-waterfalls instead of being agile. The coaches, or agile
evangelists, should be people with strong skills in collaboration and building consensus.
Yahoo is an example of enterprise agile and therefore it is stated that finding good people
who really understand the agile principles, and training them to help their own teams, are
keys to scaling effectively in a large organisation. Even though scaled agile is highlighted
it is still important for any agile team to be familiar with agile techniques and practices.

2.3.4 Responding to Change
In essence, agility means responding to changes quickly and efficiently [46]. Daneva et al.
[47] accentuates the necessity to embrace change, especially when (re)prioritizing require-
ments. This necessity have an impact on how agile requirements prioritization happens in
both large and small projects together with project constraints. Responding to change is
one of the four values which constitutes the essence of agile development methods [36].
Agile development beautifully handles changes in regard of the client’s market advantage
[16]. Being respondent to change is one of the things that makes agile so customer friendly,
and displays how it can adopt to changing business situations [46]. There are two types of
changes different events can lead to. First-order changes are caused by events leading to
incremental adoption, while second-order changes lead to brief periods of upheaval, which
change the systems deep structure [34].

2.3.5 The Team
Chow and Cao [8] identified three critical success factors in agile software projects, where
one of them were team capability. In agile development it is the self-organizing scenario-
based team which is important for the project’s success [11; 48]. The reason for the self-
organizing teams being a success might have something to do about the fact that the best
people for planning are the ones who are going to implement it [11]. Scrum gives teams

26

2.3 Success Factors

more power to make decisions concerning development speed and quality, which have lead
to wide acceptance among teams [39]. Self-organization is therefore one of five criterias
that Ambler [6] proposes to determine whether a team is agile or not, and in addition it is
where most teams fail.

For successfully adopting the principals and practices of agile software development
the team members should posess the ability to think and act like ”Global Citizens” or
”Tribe Members” [49]. This is especially important in large scale where the primary chal-
lenge is finding the right people to form this ”tribe”. This is recommended by Dr. Dobb,
one of the pseudonyms of Scott Ambler, that the easiest way to scale agile techniques is
to hire good people [50]. As mentioned by Moore and Spens [49] their number one rule
is to not base your decision on agile experience when finding people to a large scale agile
project. Even though people are good at agile, it does not imply they are good when there
are suddenly multiple teams opposed to just one team.

Another important aspect is that it is important to avoid the ”super team” [43]. The su-
per team is not necessarily healthy to the success of a project. This is because they tend to
create thick silos within which they do great work, but can totally ignore anything outside
this silo. Instead of focusing on delivering business value to their customer, they focus on
the success of their part of the system. Other problems with the super team is the fact that
they might have to much work because there is no other team with their abilities and they
can end up slowing down the whole process. The scenario-based teams help mitigate the
formation of a super team since in order to make a scenario work, team members collabo-
rate on interfaces across multiple components and technologies [43].

Optimizing the collaborative teamwork is more important than optimizing individual
productivity in agile development [51]. Schmidt et al. [18] found, in a case study at SAP,
that there is a higher motivation in the team and a better common understanding among the
team members when they do pair programming. Moore and Spens [49] mention that espe-
cially in large scale projects it is necessary for team members to participate in cross-team
activities and many teams then struggle with balancing their identity as a team member
against their membership in the larger project.

According to Scmidt et al. [17] in their paper about team adaptability they propose
that agile team behaviour might affect the ”ability to make the necessary modifications
in order to meet new challenges”. There are differences in how the team is a factor in
accomplishing success in small and large scale agile development, but it is still one of the
most important aspects in both. Even though there are several teams in large scale they are
still self-organizing, and it is still important to hire good people. The difference in people
might be the fact that in small scale it is an advantage to know agile practices, while in
large scale this could be a disadvantage because they forget to look outside their own team.

2.3.6 Leadership
A leader is the person who drives the project. The leader in an agile development team
is often the scrum master, if scrum is the chosen methodology. A product owner can also

27

Chapter 2. Theory

be seen as a sort of leader. This is because the product owner is the person who has the
most influence on the project since he or she usually comes from the customer and has
a customer-view. We will discuss the product owner more in 2.3.9. According to Erik
Moore [52] the key to successfully scaling agile was finding leaders who understood as
Grace Murray Hopper said:

”You manage things; you lead people”18

The organization structure may influence certain leadership behaviours, but not all.

The overall project manager is responsible for planning the whole project and making
sure that eventual sub-projects are going in parallell in a timely manner [53]. In small scale
it is usually only called the project manager, while in large scale it might be necessary to
have one overall project manager and several sub-project managers. This is depending on
the size of the project where there could be multiple levels in the hierarchy. According to
Moore [52] it was important that leaders exhibited the following behaviours:

• Leading instead of managing

• Flexing team boundaries

• Driving both team and project success

• Balancing team and individual needs

This implies that it is necessary for a leader to set direction for their teams, recognize the
necessity to maximize team velocity, understand that one team’s success does not drive the
project, and recognize that a team consists of individuals.

Because of the increase in size there are some new factors that appear in large scale
agile projects. This could be project management teams which have the overview of the
entire project. These are necessary to hold the project together and to make sure that the
teams are aware of steps taken by the other teams.

2.3.7 Bridgehead
Having a bridgehead between the teams is extremely important in large scale because
it helps with the coordination among them. Coordination is long recognized as one of
the fundamental problems of software engineering [54]. This is one of the root factors
proposed by Martini et al. [41] where they recommend that a bridgehead can help coordi-
nation and that face-to-face communication is benefical. This is especially important when
locating dependencies among the teams. As Moore and Spens [49] mention it is important
in large scale that team members participate in cross-team activities and allocate time to
project-wide activities. They explain that the team technical leads are required to dedicate
significant portions of their time outside the team room. This can be compared with Spo-
tify [4] where the system owner takes a ”system owner day” to do housekeeping work on

18She was a computer programmer that helped develop a compiler that was a precursor to the widely used
COBOL language - http://www.biography.com/people/grace-hopper-21406809

28

2.3 Success Factors

the system, see 2.2.2.

One of the different coordinating mechanisms that has been proposed are the scrum of
scrums, also called metascrum, which have been presented by several papers [5; 26; 34; 36;
38; 55]. Whether the scrum of scrums actually work have been researched by Paasivara et
al. [56]. Their findings concluded with the fact that scrum of scrums worked poorly. Con-
trary to these findings Dingsøyr et al. [26] found scrum of scrums to be a well-functioning
coordination mechanism in the Omega case. In scrum of scrums the scrum masters of the
different teams brief the other teams what they are working on. It has the same function
as the stand-up meeting, but instead it is about the teams and not individuals in a team. In
some cases people from other teams attend the stand-up to ensure information exchange
between teams everyday [53].

Another coordination mechanism is the communities of practice (COP). A community
of practice is a ”group of people who share a concern, a set of problems, or a passion
about a topic, and who deepen their knowledge and expertise in this area by interacting on
ongoing basis” [57]. They have three important characteristics which are domain, com-
munity and practice. Communities of practice can provide a long range of both long-term
and short-term benefits to both the organization and to the members of the community. At
Spotify they have ”chapters” and ”guilds”, these are explained in 2.2.2. They meet reg-
ularly to discuss their area of expertise and their specific challenges. A guild resembles
more a community of practice where people who want can share knowledge, tools, code
and practices which cuts across the whole organization.

Dingsøyr et al. [26] saw in their research of the Omega case that coordination with a
large number of arenas made coordination efficient. Some of these arenas were:

• Board discussions

• Experience forum

• Instant messaging

• Lunch seminars

• Rotation of team members

• Technical corner

The rotation of team members is also recommended by Elshamy and Elssamadisy [53] as a
practice to help with problems of consistency and duplication. This can be compared with
dependencies. There are normally dependencies between teams that work on the same
project and a bridgehead, or cross-team activities, is therefore an important aspect in large
scale to discover and fix these dependencies.

2.3.8 Co-Location
It is said that agile methods ”best suit co-located teams of about 50 people or fewer who
have easy access to user and business experts and are developing projects that are not life-

29

Chapter 2. Theory

critical” [26]. In large scale there might be multiple people and it becomes increasingly
difficult to place everyone at the same location. Geographical distribution is presented as
one of the scaling factors by Ambler [11]. Even being in different cubicles within the same
building can erect barriers to communication, let alone being in different cities or even on
different continents. The distance can lead to delays and lack of communication and com-
mitment [41]. In Schnitter and Mackert’s papers on SAP [5; 39] they mention co-locating
all product team members as one of the prerequisites for a product team to function prop-
erly. In addition they considered it essential to bring all team members together in one
location during project kick-off meetings. Even though it is necessary with co-located
teams it is more important to avoid a single dispersed team with scattered members [40].
One of the recommendations by Martini et al. [41] is that teams that have to interact more
intensely should be located closer.

When Giblin et al. [29] interviewed the development teams at the beginning of the
agile introduction the open plan area provoked negative responses. After working with
agile methods for a period of time, the necessity for co-location was strongly recognized
by the developers. A good example of locating teams that need to work more intensely
together is Spotify [4]. They have scaled to over thirty teams across three cities. As
mentioned in section 2.2.2 the squads working in related areas are all physically in the
same office, most often next to each other. The lounge areas they have are there to promote
collaboration between squads.

2.3.9 Product Owner
The product owner (PO) is the person who prioritizes the requirements and provides de-
tailed information about the business to developers [6]. In scrum it is the product owner
that makes the decisions [58]. The product owner is the key contributor, but can also be
the main bottleneck [42]. The PO owns all the requirements and communicates all the
functional and non-functional specifications to the developers. The PO role is pivotal in
providing a bridge between the development and project management team. It is therefore
necessary to have the right person in this task [48]. This is the same for both small scale
and large scale. But the difference when it comes to large scale is the necessity of scaling
the PO role. One of the recommendations from Koski and Mikkonen [42] was to split the
responsibilities of the PO for a number of persons. This was to be able to communicate
with both the customer and teams effectively.

A single PO is not able to work with all the teams [31]. The number of teams one PO
can be responsible for varies in the different papers. Paasivara et al. [31] have found that
Pichler recommends that a PO works with no more than two teams simultaneously, while
Larman and Vodde [40] thinks a single PO can have up to ten teams. Several articles sug-
gest the use of area product owners (APO) [5; 31; 39; 40]. APO concentrate on specific
areas of the product. The areas can be compared to the tribes at Spotify [4], see 2.2.2.
There is normally one overall PO and several APOs that form the PO team [40]. Other PO
roles that have been presented are the feature product owner (FPO) and epic product owner
(EPO) [59]. A FPO owns the functionality of a set of features, while EPO is accountable
for the unique priority of each feature on the feature backlog.

30

2.3 Success Factors

From the papers about SAP by Schnitter and Mackert [5; 39] they present product
teams as a second organizational layer above the scrum teams. A product team is respon-
sible for the work of up to seven development teams and consists of the product owners
from those teams. This allows for full engineering coverage of all problem areas expected,
well-organized communication among the teams, and direct communication with the de-
velopment teams to detect and mitigate risks. In the product team they have these roles:

• Chief product owner

• Product team

• Scrum master

• Software architect

• Delivery manager

• Knowledge management and product documentation expert

• User interface designer

• Stakeholder representative

These roles are taken by dedicated people or by development team members. Also at SAP
they have an additional, intermediate, layer between product team and scrum teams. These
are called area product teams.

The divison of responsibility between the PO team members depend on how the work
is divided between the scrum teams. The two main lines of thought are requirement areas
with feature teams or component teams [31], as mentioned in section 2.2. In one of the
cases presented by Paasivara et al. [31] they divided the APO role between two persons;
one system architect and one solution architect. The system architect was a technical per-
son who worked closely with the devleopment teams and communicated with the solution
architect. The solution architect was a product management representative with either a
business or technical background and did not communicate with the teams, which implies
that they only had one PO to interact with. In the other case they had a product ownership
team with one PO and ten proxy product owners (PPO). A large feature could have up to
three PPOs, while a single PPO might be responsible for a couple of small features. The
shared responsibility proved hard and the PPOs eventually had their own features since
they all had specific product areas they were most familiar with.

There are many different ways of scaling the PO role, and it is usually accomplished
with a hierarchy of POs [58]. The most important criteria to make the PO a success factor
is to enable face-to-face communication with the development teams and having a clear
prioritization which is efficiently communicated to all POs. It is positive if the PO has a
technical background, but it is not necessary. A PO should be good at collaborating, this
was mentioned in 2.3.2.

31

Chapter 2. Theory

2.3.10 Whole Team Thinking

Ambler proposed that for agility in the large to succeed the team members should share
the same philosophical mindset [50]. Whole team thinking can have many names like
shared mental models, understanding overall situation, full lifetime cycle or sharing the
same philosophical mindset. In section 2.4 we will discuss shared mental models and how
they work in both normal and agile teams. Now we will explain why whole team thinking
is believed to be an important success factor in large scale agile. In small scale there is
only one team and they all work toward the same goals already, which is why it is not that
big of a problem. Most of the scaling elements are focusing the attention of all the teams
to the whole product instead of ”my part” [40], but this does not imply that this is how it
works in real life. Improving the shared understanding of requirements is a key enabler
for increased productivity in software projects [60]. One of the reasons for having to look
at the bigger picture has to do with dependencies. In a large scale project it is hard not to
encounter dependencies to other teams. One of the root factors presented by Martini et al.
[41] is that when people discover that interaction is necessary they consider it a low pri-
ority and they delay tasks and communication, thus hindering the other team(s) involved.
It is therefore necessary for tools creating awareness to help them understand the overall
situation of the involved teams. As proposed by Brown et al. [51] it is more important to
optimize collaborative teamwork than to optimize individual productivity.

Moore and Spens [49] present several challenges when it comes to whole team think-
ing. When establishing a consistent culture of working builds there were only a few in-
dividuals that were passionate about this, for more information see appendix D.1.5. They
hoped that team ownership of code would drive people to solve integration challenges,
but sadly it did not. They also pointed out one other problem in large scale, which is that
team members must participate in cross-team activities and allocate time to project-wide
activities. This could be by the scrum masters having to participate in scrum of scrums,
the architects having to gather to discuss architecture etc. In a large scale project it is
necessary to do these things to ensure that everything is working according to plan. All
the teams therefore struggled with balancing their identity as a team member against their
membership in a larger project. This had to do with the demand to participate in these
other meetings. The lessons learned by Lindvall et al. [61] is that a part of the project can-
not truly be independent, but must interact with and follow the rules of the project overall.

A problem found at SAP [5] was that there had been competition among the team
members. Team members felt expected to work harder than was sustainable and they
chose more from the backlog than they could implement. This was because the teams saw
it more as a competition than a collaboration. They did not think about dependencies or
the project as a whole, but only that their team should be the best team. This is one of
the reasons that it is important to think about the whole project and not only ”my part” as
proposed by Larman and Vodde [40]. It does not help that one team has finished all their
work, if there are still tasks left at other teams. The project is not finished until everything
is completed. In large scale projects there is a need to sort out the dependencies across
the different teams [3]. If this is saved until the end it will only cause more problems.
The main cause of communication breakdowns is a ”weak vision of overall goal” [3]. If

32

2.4 Whole Team Thinking and Shared Mental Models

the dependencies are not communicated the team(s) or team members have a weak vision
of the overall goal. Without a shared vision redundant work might be conducted and the
system might not fully satisfy the user’s requirements [62].

2.4 Whole Team Thinking and Shared Mental Models
This section will introduce the shared mental models theory. Following this is examples
of how shared mental models can be applied together with agile practices. In the end we
will discuss why whole team thinking is important.

2.4.1 Shared Mental Models Theory
Shared mental models theory is a concept among team members where they are offered a
means to explain coordinated performance in teams, especially in conditions where there
are a high workload [63]. The theory investigates the role of shared understanding on team
performance and has prescribed methods for fostering shared mental models [64]. Shared
mental models are thought to provide team members with a common understanding of
who is responsible for what task and what the information requirements are. This can al-
low them to anticipate one another’s needs so that they can work in synchronization [63].
Shared mental models is an organizing knowledge structure of the relationships among the
task the team is engaged in and how the team members will interact [24].

The term mental model has been used as an explanatory mechanism in a variety of
disciplines over the years. Mental models are organized knowledge structures that allow
individuals to interact with their environment. They also allow people to predict and ex-
plain the behaviour of the world around them. Mental models serve three crucial purposes
and that is that they help people to describe, explain, and predict events in their environ-
ment [65].

There are two types of mental models: team-related and task-related. The team-related
mental models is about how the team is functioning and the expected behaviours of the
team [24]. It is the shared understanding related to the other team’s interaction and coordi-
nation, such as communication patterns, roles and responsibilities of team members, role
interdependencies, and background knowledge of each team member [64]. An example of
team-related mental models is when a group of students discuss which grade they would
like to achieve in a project and how to work together to reach this grade. The task-related
mental models contain information regarding the materials necessary for the task or the
manner in which equipment is used [24]. It focuses on performing the tasks as a team,
such as understanding goals, complexities, challenges, interdependencies, and procedures
of accomplishing tasks as a group [64]. An example of task-related mental models is when
the students decide between the different equipments and frameworks to use in the project
and discuss how this will affect them.

Shared mental models have been used to explain team functioning for years [65]. It
facilitates the team’s progression toward goal attainment by creating a framework that

33

Chapter 2. Theory

promotes a common understanding and action [24]. Shared mental models can be used to
explain how teams are able to cope with difficult and changing task condition [65]. Teams
that share similar mental models communicate more effectively, perform more teamwork
behaviours and they generally perform better [24]. Shared mental models theory focuses
on the thought processes or activities that occur at a team level and it proposes that effec-
tive teams should maintain a shared understanding within a team. Accomplishing team
goals without commonality between team members would be nearly impossible [64]. This
does not indicate that cooperative or happy teams will always be successful [65]. This only
implies that individual members may be headed toward different goals without a shared
understanding, which may lead to ineffective feedback or assistance, or the inability to
anticipate each other’s actions or needs [24]. This implies that having the same goals and
being in a cooperative and happy team is not necessarily the same.

There are four specific stages for developing a shared mental model within a team
according to Yu and Petter [64]. These four are knowing, learning, understanding and
executing. Knowing refers to the stage in shared mental models where team members are
exposed to information that is relevant for accomplishing team tasks or projects. When a
team is established they will engage in various kinds of information exchange activities,
ranging from casual team chat to team building exercise to a formal team meeting. All of
these are knowing activities that expose the team members to information that is relevant
for accomplishing the team’s goals. The team members are in this stage encouraged to
share information previously possessed individually by each team member to others in the
team [64].

In the learning stage the team members begin to integrate the information they ob-
tained in the knowing stage. The outcome of the learning stage is essential for knowledge
construction at the team level. The understanding stage is when the team members develop
shared understanding about tasks and the team by solidifying the views and perspectives
that each team member holds individually [64]. The goal of this stage is for the team
members to reach a consensus and build a common ground so they are ready for the next
stage. The executing stage happens when teams develop a shared understanding and start
executing their team goals [64].

Shared mental models theory was originally used to account for the performance of
military teams, such as whether or not a group accomplished a mission successfully [64].
Stout et al. [63] have explored the relationship between team planning, shared mental
models and coordinated team decision making, and performance. The results indicated
that effective planning increased the shared mental models among team members. The
team members shared an understanding of each other’s needs and informational require-
ments [63]. These studies completed identified that teams that possessed shared mental
models were better at predicting other team members’ behaviours and needs [64]. It is
said that shared mental models have a tendency to shrink with the increasing specializa-
tion of team members [22].

34

2.4 Whole Team Thinking and Shared Mental Models

2.4.2 Agile Practices and Shared Mental Models Theory

The members in a software team are jointly responsible for the end product and they must
develop shared mental models by negotiating shared understandings about both the team-
work and the task [66]. According to Vlietland et al. [59] shared mental models are imple-
mented by grouping people together and stimulate communication and feedback, such as
with the scrum of scrums practice. There have been several studies on shared mental mod-
els in information systems development performance [64]. Shared mental models among
information systems development teams facilitate information sharing between develop-
ers, reconciles conflicts between client representatives and software development project
leaders. In addition it can improve the overall quality of the software according to some
of these studies [64]. By having customer representatives on site they can be part of the
development team, which leads to a shared sense of trust, norms and values which could
improve the project success. There are different primary goals for the developers and
testers in a team, if these can develop shared mental models there could be a greater un-
derstanding of the dissimilarities and they can work together to address other issues that
could negatively impact the outcome of a software development process [64]. Yu and Pet-
ter [64] explained how three agile practices can be seen related to shared mental models.

The system metaphor in agile software development is employed at the beginning of
the project to develop a story that makes people understand key concepts of the system
and allow them to raise questions. It is used in the extreme programming method, see
appendix C.1.1 for more information. This practice encourages the agile team to create an
open environment and use metaphors or stories to develop shared understandings regard-
ing system goals, key concepts, major system functionalities, and roles and expertise of the
agile team members. The system metaphor is used for the same role as the shared mental
model planning practice for the development team’s shared mental models. This practice
helps the agile team developers to be more effective in the knowing and learning stages,
and it allows agile teams to identify unshared information, and quickly communicate with
customers in a common language. It improves the team’s taskwork mental models in terms
of similarity and accuracy in that developers and customers will create a shared and correct
understanding of one another’s roles, responsibilities, and technical backgrounds. There
are two benefits of the system metaphor integrated with shared mental models. The first
is that it provides a systematic approach for agile teams to generate system metaphors
by ensuring the important aspects relevant to the task and the team are discussed among
the users and developers. The second benefit is that the system metaphors enhances the
communication effectiveness within the development team by enabling more correct an-
ticipations of one another’s informational requirements [64].

Stand-up meetings are used in scrum and are conducted daily. These meetings are
short and involve the entire team. Some of the benefits are: daily monitoring and con-
trol of the project’s progress. The shared mental models in stand-up meetings provide an
opportunity to increase team’s shared understanding about taskwork through these bene-
fits. It incorporates the shared mental models practices of leader briefings, which is leader
communication within teams, and reflexivity. Reflexivity is ”the extent to which group
members overtly reflect upon the group’s objectives, strategies, and processes and adapt

35

Chapter 2. Theory

them to current or anticipated endogenus or environmental circumstances”. The stand-up
meeting improves similarity and accuracy of the taskwork and teamwork mental models.
The meetings help to identify cognitive differences and goals between scrum master and
the team. Through all of the interactions in stand-up meetings team members develop
shared understandings of the consequences of the current approach and future steps [64].

The on-site customer in agile practice states that the customer should be present with
the development team on a full time basis participating in planning game sessions, accep-
tance testing, and retrospective sessions. When the on-site customer is looked at from a
shared mental models perspective, we can see that it helps the agile teams develop greater
taskwork mental models by implicitly implementing the shared mental models practice:
cross-training. Cross-training is an instructional strategy in which the team members is
trained in the duties of his or her teammates to increase the accuracy and similarity of the
team’s shared mental models. The team members develop greater taskwork mental models
and are able to compensate for teammates’ limitations through cross-training. The on-site
customer enhances the agile teams’ understanding and executing stages, and it builds simi-
lar and accurate taskwork mental models for the team. There are two benefits of integrating
shared mental models with on-site customer. The first is that it offers a guideline for agile
team developers when communicating with the on-site customer. The other is that it offers
alternative approaches to learn about the customers’ needs [64].

2.4.3 Why is Whole Team Thinking Important?
In a presentation by Moe and Dingsøyr from the Norwegian agile conference ”Smidig
2015” they explained why shared understanding is so important [67]. In distributed teams
a shared understanding is important for trust. All teams should understand:

• Which agile workprocess do we want?

• What do we wish to accomplish?

• Who knows what?

If the teams do not use the same methods this can be an issue of trust, because they do not
trust that the methods of one team works. Having the same goal is also important. If the
teams work towards different goals there will be a problem when the different parts are
assembled in the end.

Coordination effectiveness is the outcome of a coordination strategy [37], see figure
2.8. The explicit components encompasses the objects involved in the project, while the
implicit is concerned with coordination that occurs within work groups without explicit
speech or message passing. A definition for coordination effectiveness is:

”Coordination effectiveness is a state of coordination wherein the entire agile
software development team has a comprehensive understanding of the project
goal, the project priorities, what is going on and when, what they as indi-
viduals need to do and when, who is doing what, and how each individuals
work fits in with other team members work. In addition, every object (thing

36

2.4 Whole Team Thinking and Shared Mental Models

Figure 2.8: Components of Coordination Effectiveness from Strode et al.

Table 2.6: Strode’s Implicit Coordination Factors

Component Description
Know why This implies that each individual working on the

project understands the overall project goal and under-
stands how a task contributes to the overall goal

Know what is going on and
when

Each individual has an overall idea about the project
status, which is tasks currently underway and tasks that
need to be performed in the future

Know what do to and when Each individual who works on the project knows which
task they should be working on and when they should
be working on that task relative to all of the other tasks
that must be completed

Know who is doing what Each individual knows what tasks others are currently
working on

Know who knows what This addresses expertise location

37

Chapter 2. Theory

or resource) needed to meet a project goal in the correct time and in a state
of readiness for use from the perspective of each individual involved in the
project” [37]

According to Strode et al. [37] there are five factors for implicit efficient coordination
which can be seen in the figure and further explained in table 2.6. The five factors are
necessary in whole team thinking. Without whole team thinking you risk having several
puzzle pieces that do not fit together in the end.

38

Chapter 3
Method

The method chapter will first give an overview of the literature review before explaining
the data collection and data analysis of the case study. This includes explanation of case
choice, observations and how the study was completed.

3.1 Literature Review

In this section we will discuss the different parts of a literature review together with its
objectives. The selection strategy and research question for this thesis will also be intro-
duced.

3.1.1 Parts and Objectives of a Literature Review

There are two parts of literature review according to Oates [9]. One of them is when a
research student explores the literature to look for a suitable research idea and discover
relevant material about any possible research topics. This will help the students to get a
feel for the area and define a research problem. The other part begins after the topic is
chosen and continues until the research is ended or published. Here the aim is to gather
and present evidence to support ones claim. Since this also is a case study there are certain
elements that a plan should have [68]:

• Objective - what to achieve?

• The case - what is studied?

• Theory - frame of reference

• Research questions - what to know?

• Selection strategy - where to seek data?

39

Chapter 3. Method

To have a successful literature review most of the objectives in table 3.1 must be met. The
main objective in this thesis is to see if what we have hypothesized can be accompanied
by a result that can confirm it. This does not imply that it is necessary that it is correct in
all cases, but at least in some cases.

Table 3.1: Objectives of a Literature Review

Objectives of a Literature Review [9]:
- Show that the researcher is aware of existing work in the chosen topic area
- Place the researcher’s work in the context of what has already been published
- Point to strengths, weaknesses, omissions or bias in the previous work
- Identify key issues or crucial questions that are troubling the research community
- Point to gaps that have not previously been identified or adressed by reserachers
- Identify theories that the researcher will test or explore by gathering data from the
field
- Suggest theories that might explain data the researcher has gathered from the field
- Identify theories, genres, methods or algorithms that will be incorporated in the
development of a computer application
- Identify research methods or strategies that the researcher will use in the research
- Enable subsequent researchers to understand the field and the researcher’s work
within that field

3.1.2 Selection Strategy and Research Question

For this thesis a supervisor together with a topic was chosen first. After this the supervisor
provided several articles on the theme so that it was possible to find a research question.
The topic chosen was:

Large scale agile development

After reading through several of the papers provided by the supervisor it was possible to
narrow down the topic even more to:

What are the possible success factors in large scale agile development?

Since this was still a broad research question it was necessary to reduce it even more,
but this was not possible until the success factors had been researched. After finding the
possible success factors and analyzed them, the ultimate research question was produced:

Is whole team thinking a possible success factor in large scale agile devel-
opment?

After choosing the success factor to focus on, it was necessary to research these more.
This then lead to all the search words used for this thesis, see table 3.2. When finding rele-
vant research papers several online databases relevant to IS and computing were searched
through, those can be seen in table 3.3. These databases were proposed by the supervisor
and by Oates in the book ”Researching Information Systems and Computing” [9].

40

3.1 Literature Review

Table 3.2: Search Words Used for this Thesis

Concept Keywords
Agile agile
Large scale large scale, large-scale, multiteam system
Success factors success, factors, tips, recommendation
Whole team thinking whole team thinking, goal, shared mental models

Table 3.3: Databases Used for this Thesis

Database Website
ISI web of science http://apps.webofknowledge.com/
IEEE Xplore Digital Library http://ieeexplore.ieee.org/Xplore/home.jsp
Scopus http://www.scopus.com/
ACM Digital Library http://dl.acm.org/

Article Selection

At the beginning the supervisor and other students provided articles based on agile de-
velopment and large scale agile. After reading through these and proposing a research
question the individual study began. The article selection was based on several items:

• Does the article seem relevant from the abstract?

• Does the article have many references?

• Is the article referenced by other papers?

Since there are few articles on large scale agile today, a lot of the papers found were printed
out and read through, even though they did not meet all criteria. This was to make sure
nothing was missed. Some of the articles that proved irrelevant to the research question
could still include theory about the theme and they were therefore looked through briefly.
It was necessary to see through the abstract if the article was about an agile development
project, preferably large scale, if not the article was probably not relevant for the thesis.

If the abstract was approved the number of references would be checked. The number
of references is important especially for a scientific article, because it makes it apparent
that there has been research on the theme(s) presented. If there were few references it
could imply that it was a lessons learned-article, or based on experiences discovered in the
field, which is important since they can say firsthand what worked. These articles were not
excluded, but were looked at with a more critical eye. Even though an article did not have
many references it did not imply that it was irrelevant, just that it was important to check
the facts in other papers. It was therefore checked if the article was referenced by other
papers, this was to prove the validity of the article. An article referenced by other papers
is often well researched. Checking these two last items was especially important when
choosing the final research question after finding the success factors. The success factor
chosen could not be mentioned by only one article with few references and no citations.

41

Chapter 3. Method

The reason for this is that it might not actually be a success factor if it is not mentioned by
any other articles, and it might not have been researched sufficiently.

In addition to searching for articles, the references in all found articles were checked to
see if there were other relevant papers that should be included in this research. From these
papers it was again possible to check the references and so forth. This is called snowball
sampling [9], when you use the gathered data to find more data. This is useful when it
comes to finding persons with similar interests. From this, additional relevant papers were
found that contributed to the research question.

Several of the articles found was conference articles and there were few journal articles
that mentioned different success factors and lessons learned from large scale agile. This
indicates that in some cases there might be the personal opinions of the author(s) or the
opinions of some of the people that worked on the projects. Most of the articles were based
on one case.

3.2 Case Study
In this section we will discuss the data collection for this thesis, together with choice of
case, observations and qualitative data. After this we will discuss the data analysis for this
thesis which includes information about the cases and how this study was conducted.

3.2.1 Data Collection
This thesis is a case study where the main goal is to see if there is any truths to the re-
search question. A case study is an empirical method which is purely observational. It can
contain different research methods, but interviews and observations are mostly used for
data collection in case studies [68]. The idea behind this case study is to find out what is
happening, seek new insights and generating ideas and hypothesis for new research, which
makes this thesis exploratory. The research process can be characterized as either fixed or
flexible. Fixed indicates that it is defined at the launch of the study, while in flexible the
key parameters may be changed during the course. Case studies are typically flexible, and
that is also the case for this thesis. The primary data source for this thesis is qualitative,
see more in 3.2.1.

One of the reasons for choosing an exploratory study is the fact that there have been
few studies on the field. This is both when it comes to large scale agile and whole team
thinking in large scale agile.

Choice of Case

When conducting a case study the case and the units of analysis should be selected inten-
tionally. The reason that the choice of case study is important could be when someone
wants to replicate the study. It can be literally replicated, which indicates that the case
is selected to predict similar results, or theoretically replicated where the case is selected

42

3.2 Case Study

Table 3.4: Taxonomy of Scale by Dingsøyr et al.

Level Number
of teams

Coordination Approaches

Small scale 1 Coordinating the team can be accomplished using ag-
ile practices such as daily meetings, common planning,
review and retrospective meetings

Large scale 2-9 Coordination of teams can be achieved in a new forum
such as scrum of scrums

Very large scale 10+ Several forums are necessary for coordination, such as
multiple scrum of scrums

to predict contrasting results for predictable reasons. When choosing cases for this thesis
there were several selection criterias that needed to be fulfilled. These were:

• Agile development project

• Large scale

• Available

When deciding if a project were large scale or not we used the definition given by Dingsøyr
et al. [69] which can be seen in table 3.4. From this it is necessary with a case which have
from two to more than ten teams. When it comes to the availability criteria this is natural
because in practice many cases are based on availability [68]. With the limited time and
resources that is this thesis it might not always be possible to find good cases, but it is
normally better to have one case than none. The researcher has been lucky enough to have
two cases for this study. One of them finished a couple of years ago which have lead to
information that others have collected. The other case is an ongoing project where it has
been possible to observe several meetings.

Data collection techniques can be divided into three levels [68].

• First degree

• Second degree

• Third degree

First degree implies that the researcher is in direct contact with the subjects and collects
data in real time. Second degree is when the researcher collects raw data without actually
interacting with the subjects during the data collection. Third degree is independent anal-
ysis of work artifacts where already available and sometimes compiled data is used. For
the Omega case only the third degree was possible, while for Tellus it was possible with
second and third. Second is implemented through observations, and third through obser-
vations from other students also observing. It was not possible for this thesis to collect
data from first degree.

43

Chapter 3. Method

Observations

”Fieldnotes are gnomic, shorthand, reconstructions of events, observations,
and conversations that took place in the field. They are composed well after
the fact as inexact notes to oneself and represent simply one of many levels of
textualization set off by experience”
-Van Maanen (1988) [70]

According to Wolfinger [70] there are two methods for writing fieldnotes. The first is the
salience hierarchy where whatever observations struck most noteworthy is described first.
What makes an observation salient is highly subjective and depends upon the particular
research context. The second strategy is comprehensive note-taking. Here one does the
note-taking from the beginning to the end. One of the advantages with this last strategy is
that the researcher often describes events that might otherwise seem to mundane to anno-
tate, but later the data can prove to be valuable.

Observations can be conducted in order to investigate how a certain task is imple-
mented by software engineers. There are two main types of observation: systematic, also
called direct, and participant. In the direct observations you decide in advance the par-
ticular type of events you want to observe, and use a pre-designed schedule to note their
frequency in duration. This can be called a pre-defined system of observations and direct
observations is a fairly structured form of data collection. The participant observations is
where the researcher takes part in the situation under study and experiences it from the
point of view of the others in that setting. This can be completed either by people knowing
that you are observing them or not. Here there are several things that are noted and not
only pre-defined observations [9].

For this study direct observation is chosen, since it is not possible with participant ob-
servation. Participant observation in this case would require training and it is not necessary
for the case. Direct observation is primarily a quantitative technique in which the observer
is explicitly counting the frequency and/or the intensity of specific behaviours or events or
mapping the social composition and action of a particular scene. Since data captured can
be observed, and do not require any interaction between observer and those studied, an
audio or video recording setup could be enough [71]. For this case the observer is present
and without any audio or video recording setup. Some of the reasons for this is the fact
that it is not necessarily what is said that is of importance. The observation template is
available in appendix B.

Qualitative Data

Qualitative data is all non-numeric data like words, images and sounds. This is the primary
type of data generated by case studies. It is possible to do a quantitative analysis on quali-
tative data, for example by counting number of times a word or phrase occurs [9] Since a
case study is a flexible research method qualitative data analysis methods are widely used
[68]. The advantage with qualitative data analysis is that it can be rich and detailed and the
fact that it is possible with alternative explanations. This indicates that there is possible

44

3.2 Case Study

for different researchers to reach different, but equally valid conclusions.

In this thesis the researcher have gathered data from observations and focus group
interviews. In the observations there have been possible with words, images and sounds,
while in the focus groups there were only words because they had been conducted by
others. There have not been conducted a quantitative analysis by counting words, but
words and sentences, and interpretations by researcher in conjunction with these, have
been gathered under the different factors.

Principles for Interpretive Field Research

When it comes to the nature of the study it was chosen to do an interpretive view. Inter-
previtism is:

”associated with the philosophical position of idealism, and is used to group
together diverse approaches, including social constructionism, phenomenol-
ogy and hermeneutics; approaches that reject the objectivist view that mean-
ing resides within the world independently of consciousness”
Collins 20101

The studies ususally focus on meaning, while in positivism they believe there is a connec-
tion. The principles for interpretive field research by Klein and Myers [72] are a set of
principles used for interpretive research in information systems research community. See
table 3.5 for the seven principles.

Table 3.5: The Researchers Interpretation of the Principles of Klein and Myers

Principle Summary
The fundamental principle
of the hermeneutic circle

All understanding is achieved by the equal importance
between parts and the whole that they form

The principle of The subject of investigation must be understood in both
contextualization its social and historical context
The principle of interaction
between the researcher and
subjects

Meaning is produced through the different interactions
between the researcher and the participants

The principle of abstraction
and generalization

Specific instances of phenomena should be articulated
in terms of abstract categories or broader ideas and con-
cepts

The principle of dialogical
reasoning

The researcher should make own predjudices and
philosophical assumptions explicit

The principle of multiple The researcher should explore the varying viewpoints
interpretations of stakeholders
The principle of suspicion Sensitivity to possible ”biases” and systematic ”distor-

tions” in the narratives collected from the participants

1http://research-methodology.net/research-philosophy/interpretivism/

45

Chapter 3. Method

3.2.2 Data Analysis

The data analysis phase is where the research is collected and worked through. This is
where we begin to compare the findings with the research question. Here we will further
explain how we have conducted the data analysis. First we will shortly describe the cases
before we explain how this study was conducted. In the end we will display the views of
the subject after the researcher presented the results of this thesis in member checking.

The Cases

For this thesis the researcher has been able to follow two cases. The first one is Omega.
Omega is a finished project that the supervisor has followed earlier. Therefore I have
been granted access to three focus group interviews for this thesis. The codenames is the
same as the ones used in other articles. There is one focus group for each of the suppliers
and several of the interviewees have been in project management at one point during the
project. The background material for the case comes from a Master Thesis from 2015 [73]
and an article which is still a work in progress which is about the case [26].

The other case is Tellus, which is a codename given by the researcher since it is a
relatively new ongoing project where few others have been included. This case consists of
six observations, four conducted by the researcher and two conducted by another student.
These consist of: two backlog groomings, two sprint plannings and two retrospectives.
Because there has been no interviews the case is based solely on the researcher’s interpre-
tations of these observations.

Both of the case studies were conducted in Norwegian since that is the native lan-
guage of the people involved. This indicates that all quotations used are translated from
Norwegian to English. Since the material have been obtained by various methods and in
different terms it might not be ideal to compare the different cases. Another fact is that
while the Omega-case is finished, the Tellus-case is still ongoing. It is therefore important
to state that many of the findings are from the interpretations of the researcher. Others
might interpret things differently and might reach other conclusions than the researcher.
This is especially important at Tellus where there are only observations and no interaction
with the people involved. They might experience the meetings observed in a completely
different way from the researcher of this thesis.

Conducting the Study

When exploring the qualitative data the researcher decided to see it with regards of the
success factors found in the theory. After reading through the material for each of the two
cases the different aspects were put into the different factors that best suited the statements
and interpretations of the text.

From the Omega case there was focus group interviews conducted by other researchers.
These interviews were first read through and then all the important keywords and state-
ments were collected in its own document. The keywords and statements which were

46

3.2 Case Study

interrelated were put together from this point to simplify the next processes, but each in-
terview were segregated so it was easy to find which keywords and statements which came
from what interview.

The observations from Tellus already had keywords and interpretations because they
were completed by the researcher and this step was therefore not necessary for that case.
After the first step the keywords, statements and interpretations found were put in each
factor. This can be called coding of data where parts of the text is given a code represent-
ing a certain theme, area or construct [68] which here is the different factors. This was
conducted separately for each case and can be compared to tabulation where the coded
data is arranged in tables to get an overview of the data [68]. Some items were harder to
place and was therefore put in an undecided factor. After all text was undergone by the
researcher these were once again attempted to place in one of the existing factors.

This thesis have benefited from several approaches. The immersion approach has a
low level of structure and is reliant on intuition and interpretive skills of the researcher
[68]. This approach have been used to some degree because the researcher has not had
the ability to interview and has relied on observations and interviews conducted by other
researchers. The editing approach include codes based on findings of the researcher, which
is the different factors found earlier. These have been used when reviewing the two cases
and compared them to each other. The last approach used is the template approach where
the research is based on research questions [68]. The quasi-statistical approach, where
there can be a calculation of frequencies of words and phrases, did not seem appropriate
in this thesis and has therefore not been utilized.

Member Checking

After the observations and analysis of these were concluded the researcher presented their
findings to the Tellus-project. The people at Tellus did not know the purpose of the project
and therefore they first needed an overview of the study. After this the researcher presented
the findings from the case and compared it to the Omega case. In the end further actions
for the project were presented.

The people involved agreed with what the researcher highlighted and they had already
made several changes since the researcher had observed them. They seemed to appreciate
the feedback given and were interested in how to begin new projects to try to eliminate
some of the problems earlier in the process.

Member checking can bee seen together with the third principle of Klein and Myers
[72]. This principle is about the interaction between researcher and subject. The researcher
did not communicate with the subjects during the observations, but later there were inter-
action where it was possible to find unity between researcher and subjects.

47

Chapter 3. Method

48

Chapter 4
Results

The results chapter contains the results from the two case studies conducted. First we will
give an overview of the two cases. After this we will present the results from each case in
conjunction with the different success factors.

4.1 The Cases

For this thesis the researcher was able to follow two different cases; Omega and Tellus.
Both of them have been anonymized. For more information about the data analysis see
3.2.2. Here the cases are explained with a basis of the project and an overview of the work
areas. For an overview of both projects see table 4.1.

Table 4.1: An Overview of the Cases

Project Omega Tellus
Budget 140 million euro 30 million NOK, exclusive

VAT
Duration January 2008 to March 2012 Fall 2015 to early 2017
Number of people 175 15
Number of teams 13 at most 2 squads in one team
Location Co-located Distributed
Time of sprints 3 weeks 4 weeks
Different companies 5 1
Releases 12 About 10
Tools Jira Jira
Information gathering Focus groups Meeting observations
Conducted by Others The researcher and other
Status Finished Ongoing

49

Chapter 4. Results

4.1.1 Omega
This section is based on the information from Andreassen [73] and Dingsøyr et al. [26].
Omega was a project both initiated and completed by Gamma, a public sector department
in Norway. In Gamma it was necessary with a new office automation system and the
main arguments for initiating the programme were public reform, and because the current
platform was outdated. The reason for choosing the agile development methodology was
because little was known about the public reform at the beginning of the project. This
indicates that there were high levels of uncertainties.

Figure 4.1: An Overview of the Open Work Area at Omega

A little way into the project everyone was placed in the same open work area, see
figure 4.1. The projects were performed across the three organizations: Alpha, Beta and
Gamma. At most they were up to thirteen teams placed on different tables in the open
work area, together with tables from project managements, business, architecture and test.
The scrum teams mainly consisted of about eight to ten members with different roles. In

50

4.1 The Cases

addition to given roles, the members were cross-functional so that they could be e.g.: sixty
percent tester, thirty percent developer and ten percent designer.

It is important to note that the application was recreated from an earlier version only
with improvements. The outcome and the complexity would have been entirely different
with a completely new application. Omega is one of the largest IT development projects
in Norway to date and is considered a success.

4.1.2 Tellus

Figure 4.2: An Overview of Tellus

The Tellus project is a control- and supervision system with an iPad-application and web-
based request tracking-system in the Jupiter department. The competition for the project
was big and in the end the company Mars won the contract. Mars is a small company
based in at least two cities in Norway, and among previous clients we can find banking in
addition to several public departments. The Tellus project is the biggest individual project

51

Chapter 4. Results

in the history of the company. The project is still ongoing and is supposed to last for about
one and a half year with parts of the solution operational later in 2016, and fully opera-
tional in late 2017.

The solution will gather information from underlying registry so that workers in the
Jupiter department do not have to search many systems before supervision. During super-
vision the iPad-application will be used to document findings. It is a requirement that this
solution should be able to synchronize offline. One of the reasons Mars won was because
of their choice in reusing code. This involves Mars reusing code from other deliveries
from earlier and it opens up for other departments possibilities to take use of the system at
a later time.

Mars chose to use agile development methodology for this project because of the
requirement of having short time to market since the department should be friendly to
changeovers. The Tellus project is conducted over one team which is divided into two
squads located in different cities. The customers and product owners is again located in
another city, see figure 4.2. This is some of what makes this project distributed1.

4.2 Success Factors
In this section we will present the findings from the two cases; Tellus and Omega. We will
see both in conjunction with the factors and compared to each other.

4.2.1 Agile Software Engineering Techniques and Agile Evangelist
Both the projects needed to follow agile engineering techniques because of the changing
requirements of customer. For Omega they knew little of the public reform, while for
Tellus it was necessary to have short time to market, and parts of the delivery operational
during project duration.

Both projects used the scrum methodology with sprints. Omega had three-week sprints,
while Tellus had four-week sprints. Tellus noticed the problems with these long sprints be-
cause they did not manage to plan that far ahead.

”It is hard to plan a whole month ahead since it does not get correctly syn-
chronized with Jira.”
Developer at Tellus

They eventually decided to divide the sprint into two parts; a and b. Another change they
made was instead of detailing the tasks together, each developer got to detail their own
tasks. This was to make sure they did not have to work on several tasks that belonged to-
gether, but only one task at a time. At the Omega-project they did some scrumban/kanban
which meant that they needed to finish one task before starting another.

1Sources: official pages of the Jupiter department, regjeringen.no, digi.no, kystogfjord.no

52

4.2 Success Factors

At Omega they had agile evangelists and people were willing to do an effort to be
agile. They took courses to learn the techniques and everyone was eager to soak up more
knowledge. This was because there were few who had had agile experience before enter-
ing the project. For the Tellus-project it is not known whether they were coursed during
the project, but they saw that they did not do the backlog grooming according to the book
during one of the observations. This did not only apply to the team, but to the product
owners who were not good at prioritizing.

Omega were big users of pair programming in their project. Beta introduced it, and
soon all teams were doing it. The goal was for everyone to have programmed with ev-
eryone so that it was possible to create a line between everyone in a team. This was a
hit which ensured everyone on the team aquired knowledge from everyone, and that the
coding resembeled. They therefore tried pair programming across teams, but that was not
a success. The pair programming was good when bringing new people into the project,
but later in the project several people startet programming alone.

4.2.2 Responding to Change
When it came to responding to change this was easier for the researcher to notice in the
Tellus-project since that was still ongoing, while Omega was finished. From what the
researcher observed they were good at taking action when necessary. The case that all
meetings observed were completed in different ways each time display that they were able
to see the need for change. They also decided on a new way of dividing up the tasks in a
sprint. This was eventually up to the developer working on it. This was a way of making
sure that there were not several subtasks that needed to be implemented simultaneously
which could lead to a developer having several unfinished tasks. In addition they decided
to divide the sprint into two parts when they saw difficulties with planning for four weeks.

Whole team thinking can also be found in this factor. After dividing the sprint into
two parts because of the planning difficulties at Tellus they decided to have a common
burndownchart for both squads in each sprint. At Omega they made sure to change the
arenas when they saw that some arenas did not work, more on that can be seen in section
4.2.5.

4.2.3 The Team
The team members at the Omega-project did not necessarily have much agile experience.
Because of this they might not have been so determined when it came to self-organizing in
the team, because they from the start knew that the project involved several teams work-
ing together. They did have people who were interested in learning about agile, which
implied that they should learn while doing, and then customize to their project, and not
agile projects in general. It is not known how much agile experience there is in the Tellus-
project, but with the increase in agile methodology it is likely that some have experience.
At Tellus they prefer to look at themselves as one team with two squads rather than two
teams. This helps with the whole team thinking as well.

53

Chapter 4. Results

At Omega they mentioned the disadvantage with big projects which is that there are
always people coming and going. Instead of creating new teams with the new people they
made sure to separate those experienced so that everyone could be on a team with some-
one experienced with the project. The teams were more specialized in the beginning of
the project. At Tellus it was the locations that decided where people were put. In addition
they saw a problem with people coming and going, even though their project was smaller
than the Omega case.

At Tellus they had a problem with not having a good feeling in the project and low
achievement in sprints. This lead to lack of ownership in the project.

”I really feel like we all want it so bad, but we are more or less frustrated
by the fact that things are moving slow, and we feel like we are still at the
beginning after five months.”
Developer at Tellus

They all saw that they had potential, but they were struggling with acknowledging the re-
sults for themselves. At Omega their biggest problem were the fact that not everyone was
happy when it was necessary to rotate the teams. The teams were very self-organizing and
the people felt more like they were working at Gamma because of the time spent there
compared to where they originally came from.

Omega had many different arenas for people with certain roles. This is because of the
size of the project. This can be compared to whole team thinking because people needed
to spend time outside of their team to ensure that the different pieces of the project could
fit together. For Tellus, a much smaller project, this was not observed, but probably it did
not take much time from other duties.

4.2.4 Leadership

The leadership in the two projects were very different. At Omega there was more of a
hierarchy because of the size of the project, while it was not that visible from only meet-
ing observations at Tellus. In the meetings at Tellus there were someone that usually took
control, but this control was sometimes divided between several persons. They normally
did not have a structured plan of what they should go through and they did not have a
secretary, or someone to write down important aspects that came up during the meetings.
This was however implemented in one of the last meetings observed, by someone making
a list of what everyone should do until next time.

At Omega they had project management teams and different kinds of leaders like scrum
master and others. Even though project management was not in the teams they were visible
and showed interest.

”Just management by walking around, talking around.”
Project management at Alpha

54

4.2 Success Factors

They visited the teams at least once a day and had the opportunity of watching the boards,
which made it easy to see if there were tasks that they struggled with.

The leaders at Omega were also responsible for making sure that the teams did not
only care for themselves. This was illustrated by the leaders trying to encourage everyone
to help each other before being asked to help. They often knew if someone was working
on something they had knowledge about. This was one of the methods the leaders used
to ensure whole team thinking in the project. It was much easier for the leaders to see the
whole project which is why they were responsible for providing the way of thinking down
to the teams.

4.2.5 Bridgehead
A bridgehead is a way of coordinating what happens at different teams in a project. For
the Tellus-project a lot of the meetings are conducted together with both squads and some-
times together with the product owner group, all known arenas can be seen in table 4.2. At
the Omega-project they had several different types of arenas to communicate the project
to the others, all can be seen in table 4.3 [26]. These arenas helped coordinate the project
and ensure that the project in the end was one product and not several different pieces. The
arenas were a way of securing the whole team thinking through the whole project.

Table 4.2: The Different Arenas in Tellus

Arena Description
Demo Demonstration of developed user stories where everyone could

participate
Backlog grooming Completed together with product owner and important people

from both Saturn and Venus
Sprint planning These have been conducted both in the squads, with both

squads and with both squads together with the product owner
Retrospectives Have been completed together with both squads
Tech talks Weekly between the teams
Wiki Different documentations like architectural guidelines, team

routines and retrospective reports were documented in the
project wiki

Jira Tool for managing the backlog and setting tasks and see burn-
downcharts

Live-feed Both squads have live-feed of the other to feel closer to each
other

At Omega the arenas changed over time after what worked best. They were user-
controlled, which implies that when they did not find an arena necessary they ended it,
which opened up for other arenas. Since Tellus is still an ongoing project it is not easy to
know how things will develop later. From what was seen in the observations they changed

55

Chapter 4. Results

Table 4.3: The Different Arenas in Omega

Arena Description
Demo Demonstration of developed user stories where everyone could

participate
Experience forum A forum at subcontractor Alpha for scrum masters, devel-

opment manager and agile coach focusing on development
method

Instant messaging Used for open technical questions and social activities like
wine lottery

Lunch seminar Seminar with two or three short presentations during lunch on
topics like architectural components, project management or
on how to follow up a team

Metascrum Two meetings per week with project managers from develop-
ment, architecture, test and business projects, as well as sub-
project managers from the development projects

Open space Process where all participants suggested topics for discussion
technology where participants were free to join discussion groups of in-

terest
Retrospectives Used mainly on team level, but also on subproject level at

times. All were documented in wiki so everyone could see
Scrum of scrums All three subprojects had scrum of scrums with their teams two

or three times a week. Scrum masters and project managers
attended, and sometimes others like product owners and test
managers

Technical corner Architectural briefings in the subprojects at Beta, where team
architects briefed the team

Wiki Different documentations like architectural guidelines, team
routines and retrospective reports were documented in the
project wiki

Rotation of team
members

Members were sometimes rotated between teams

Open Work area The project with all teams was situated in an open-plan office
space on one floor

Masterplan The programme established a common product backlog as a
master plan, with 2 500 user stories organized in 300 epics

Stand-up The time of stand-up was set so it was possible to visit others
teams’ stand-up

56

4.2 Success Factors

their arenas continously. The first sprint planning was just in the squad, while the other
were divided into three parts with one part with product owner, one within each squad and
one with the whole team, in other words with both squads present.

At Omega they saw a shift from formal arenas into informal arenas:

”I imagine that those arenas are more important at the beginning, but it be-
comes less important when you get to know each other and get used to going
over to talk to the peson you know can help you.”
Person from Beta

These informal or unofficial forums like joint coffee-breaks etc. appeared to become auto-
matic after a while. At Tellus on the other hand, it is not easy having informal arenas since
they are situated in different locations.

There were some problems at both projects when it came to some types of arenas.
At Tellus they discussed the fact that the retrospectives should be conducted face to face,
rather than over video. This was to be able to be closer to each other. At Omega they
noticed that it was hard to get everyone on the same level in the metascrum. Some people
used more time than the ten minutes which were intended for each, and detailed more than
necessary. This resulted in some waisted time since it was not all detailed information
which was necessary for everyone.

4.2.6 Co-Location
Both of these two projects chose entirely different when it came to where the teams were
placed. At Omega they chose to co-locate everyone in an open work space area. This in-
cluded project management and product owner, or functional experts, which were placed
in the same room. In Tellus they chose a completely different practice and worked dis-
tributed within the teams, or squads as they called them. They were not only in different
locations but also in different cities. This included the product owners which did not sit
with any of the squads, but in another city. From the time they were all put at the same
location at Omega, everyone was one hundre percent with their team, while at Tellus they
had one team member that did not sit with everyone else.

Because of the distance between the teams in Tellus they have put up a video live-feed
over the offices so that they can see each other all day long. At one point during the project
one squad, Saturn, lost the others feed. While they were interested in getting it back, the
other squad, Venus, did not really see the point because they did not feel like they were
dependent on the other squad.

”I think that Saturn is more concerned about it than Venus is.”
Developer at Venus

”That is because the arrow of dependencies goes that way [Saturn dependent
on Venus].”
Developer at Venus

57

Chapter 4. Results

In the end they agreed to fix the TV.

At Omega the fact that they were all located in the same room was important. This
was because it opened up for more informal communication arenas, and it made the work
easier for mangement. When they saw a team struggling they could just go up and help
right away, instead of not knowing about the struggle.

”That with being in the same open space I think was an important factor here.
This is something I notice now at Zeta, where we do not have this one space.”
Project management at Alpha

In the Tellus case they saw the necessity to work together at the same location, especially
when working on tasks with dependencies to the other squad.

”I feel that all I have done these last two weeks are coordinating[...]. I feel
that I got a lot more from the ten to fifteen minutes where we booked a meeting
room than I have gotten [from other platforms].”
Developer at Saturn

They discussed the fact that it might be necessary for more traveling between locations.
The only problem is that it requires money from the budget so it is important to decide
what to prioritize.

Both projects saw the fact that it was much easier when having somebody to help. To
aquire good answers to questions, when possible it should be conducted face to face, rather
than sending mails or using other tools.

”What is important in agile, is that you are to deliver something in three
weeks. Then you do not have the time to wait for someone to read all their
mail before getting to the one you sent two weeks ago, because that is at the
bottom of the list. You have to go there and ask for attention. You might not
get the answer in ten seconds, but for him to open the mail, read it and answer,
that takes time.”
Project management at Alpha

It takes a lot less time when getting hold of the person and asking the question, than wait-
ing for an answer which may never come.

When it comes to whole team thinking in this factor the fact that Tellus had a live-
feed ensured that it was easier to collaborate because they were able to see if the person
they needed to be in contact with were available. For Omega this could be accomplished
by checking the open work space. This was less time-consuming than having to wait for
answers on chat or mail which ensures that everyone is more effective in the project.

4.2.7 Product Owner
There is a big difference in the product owner at both Tellus and Omega. At Omega the
product owner was active and used its best people.

58

4.2 Success Factors

”It is really a success criteria - take the best people and give them authority
and responsibility.”
Project management at Alpha

The customer used their best business architects in the project and they were put in the
same open work space ninety-five percent of their time. In eigth out of ten situations they
were able to take a decision then and there. In Tellus at the other hand the customer is
situated in another city than the team. This complicates things when there are questions
that require answers.

At Tellus they are struggling with the product owner not knowing what it entails when
being a part of an agile project. They do not have the information ready, they have to be
constantly reminded of what they should do and they do not prioritize. Since Gamma is
a part of the development in Omega, and have been involved in choosing the agile devel-
opment methodology they seem to have had an understanding of what is required by the
customer.

There were three levels of product owners in Omega. There were one at the top, one
for each of the suppliers, and functional experts.

”My experience of our product owner was that he was more of an administra-
tor, that was formally the product owner role, but the functional experts were
essential since they had a strong connection to the project, and that I think
was crucial for the project going that well.”
Developer at Gamma

It was important in a project that big to have several product owners and they were good
to come up with defined tasks. At Tellus they had a product owner group with people
responsible for the different parts of the project.

According to the observations at Tellus they were happy with their product owner and
felt that they appeared to be open and trusting. They were also good at answering when it
came to technical issues. The problem was that it did not seem like they had the authority
to make snap decisions, or that they talk to each other. In some meetings they disagreed
with each other, and these are things they should have dealt with before, and not during
the meeting. It was apparent that the product owner could be somewhat unclear and was
missing presence.

”Overall they are reactive and not proactive. We need to give them concrete
tasks constantly and then we need to remind them a couple of times before it
goes quiet.”
Developer at Tellus

The team struggled with having to wait for the requirements specification before conduct-
ing some of the developement tasks.

Both of the projects have several POs, which can make it difficult when they do not
think about whole team thinking. At Tellus they did not seem to talk together which im-
plies that they did not display a united front to the teams. Since they did not have a united

59

Chapter 4. Results

front they also struggled with prioritizing, which made it harder for the team to know what
to produce when. The hierarchy at Omega ensured that there were always someone with
the knowledge and authority which indicates that it was less time-consuming because they
were all aware of the whole project in the end.

4.2.8 Whole Team Thinking

Both of the projects had several teams or squads. In both the observations and in the focus
groups they spoke as though the teams were separated in ”us” versus ”them”. In Omega the
teams experienced great team spirit with team names, effects, cheers etc. It was obvious
that everyone was more committed to their team and not the project itself. The priorities
was to do things for the team first, and if there was more time, that could be used to help
other teams.

When it came to the burndowncharts Tellus eventually decided to have a joint burn-
downchart per mini-sprint. It then appears that they had had separate charts earlier. At
Omega they had burndowns per team which might have had a connection to the competi-
tion between the teams. When they noticed this they removed the visible burndowns.

”We tried to run the focus to the fact that we are one provider, and what we
deliver we deliver together.”
Project management at Beta

They saw that how much each team delivered did not matter as long as the cooperation of
the total delivery was good. This was probably one of the reasons for Tellus to choose a
joint burndownchart.

When there was a problem in Omega because of dependencies between the teams peo-
ple were quick to judge the other teams. This was resolved with someone from each team
being put together to solve the problem together. This helped with the fact that people
could no longer blame each other. Omega was also proactive when it came to dependen-
cies and had regular dependency-meetings. At Tellus they were not that proactive when it
came to dependencies. They lacked structure in both planning and meetings, which led to
them not always being able to go through all tasks and see if there are any dependencies.
It was simply not prioritized enough to find the dependencies so they could discuss with
the other squad. When both squads were together in the meeting they did not spend much
time on discussing the dependencies they had found, if they had found any at all. In addi-
tion it was apparent that Venus believed that it was only Saturn who had use of the video
live-feed between the offices.

Another thing at Omega was that the teams that did not depend on other teams, did not
bother to deal with anyone else. There were only the teams with common dependencies,
or working on the same things, which communicated with each other.

”The way everything is build and stitched together makes it painful when
working together so they simply did not have any other choice than to talk

60

4.2 Success Factors

together to find a solution.”
Team architect at Gamma

At Tellus they saw the same problems and the need to talk together when working on the
same problems. There they also saw the necessity of working closer together, in other
words being in the same location when working on the same objects.

One of the biggest problems with being able to do whole team thinking was the con-
tracts. For everyone it was more important to deliver what was in the contract, than think-
ing of the project as a whole. They did however see that there is no winner, either everyone
do well, or everyone do poorly.

”Seeing yourself in a bigger picture. We struggled there...”
Project management at Beta

For Tellus which have only one contract together this is different. They had selected to do
the project distributed, but they still remained one team. Here they just had to be better at
not only saying that they are one team, but also think it. The different squads usually use
the words ”us” and ”them” which inhibits their actual meaning.

At Omega there was said that if a team saw that they were able to finish their tasks,
they should speak up and take some tasks from those not so lucky. This was to better
help each other out. Another item which was brought up was for everyone to be more
proactive when it came to helping each other. This applied particularly when they knew
that someone would require their help. In most cases it appeared that everyone was more
reactive and only helped after being asked. The management did do their best to get
everyone to think more for the whole project than only their own part. For Tellus it was
obvious that later in the sprints the Saturn office did not have as much tasks as Venus.
This was discovered early and Venus were more than happy to provide Saturn with more
tasks. The division of tasks or main components divided earlier could have been somewhat
premature and it might be something that should be implemented more frequently.

61

Chapter 4. Results

62

Chapter 5
Discussion

In the discussion chapter the findings from the results chapter will be discussed. We will
discuss these results according to the research question and together with Strode’s implicit
coordination factors. In the end we will evaluate this study both according to Klein and
Myers and if the cases were agile.

5.1 Research Question and Success Factors
In this section we will first present the research question before discussing the results from
the success factors in regards to the research question. In the end we will give a brief
summary of the findings.

5.1.1 Research Question
Now that we have seen some of the results from the two cases it is important to see it in
regards to the research question and the theory. The original research question was this:

What are the possible success factors in large scale agile development?

Since this subject would be to broad for a master thesis it has been narrowed down to this:

Is whole team thinking a possible success factor in large scale agile devel-
opment?

The discussion here will primarily revolve around the research question and the results
from the observations and interviews for the two different cases; Omega and Tellus.

If we were to explore the other possible success factors we found in the two cases,
mentioned in chapter 4 there would be necessary to explore these fields further. This is
why we will see them together with the whole team thinking factor. Several of the factors
can be seen in regards to whole team thinking.

63

Chapter 5. Discussion

5.1.2 Responding to Change
When it comes to responding to change we can see from both cases that they at times saw
that it was necessary to focus on the whole team and not just the teams separately. At
Tellus they decided to have a common burndownchart instead of one per squad, this can
be seen as a first-order change [34]. They are after all working toward the same goal. This
was not the only thing they decided to have common for the teams:

”Then we agreed to make one overall picture. At least to describe the most
important components and how they interrelate.”
Meeting leader at Tellus

At Omega they tried to encourage everyone to help each other and they found new arenas
where they could collaborate. When they saw that the need for one arena disappeared,
they let it go instead of insisting on using people’s time when they not did believe it was
the right way to go, this can be seen as a second-order change [34]. They saw what the
requirements was for the teams to collaborate and used it to improve at all times for the
project to go as smoothly as possible.

5.1.3 The Team
In section 2.3.5 we read that Moore and Spens [49] concluded with that it is not necessary
to base the hiring of people on agile experience when working in large scale projects. This
is because people who are used to agile might not thrive in a large scale environment. At
Omega there were several people who were not acquianted with agile methodology. This
probably had something to do with the fact that the project was started in 2008, but still it
showed that it is not necessary with agile experience. Everyone at Omega were eager to
learn about agile and they spent time to improve themselves. The reason that it might not
be necessary with agile experience in large scale projects is because it is more important
that people remember they are only one of several teams working on the same project.

With a growing number of teams and people it is necessary to spend more time outside
the teams, also proposed by Moore and Spens [49]. This is to make sure that everything
in the project is going according to plan. Without these extra meetings there are several
questions that never will be answered. When observing at Tellus it was obvious that several
of the members needed to spend much more time in meetings than with their squad. This
was something mentioned at Omega where there was even more necessary to spend time
outside the teams. This could be seen by this quote from Alpha:

”As an employee at Alpha I had in longer periods no feeling of being an
Alpha-employee. This was where I was. And in periods - both here and in
other projects - where there is so much overtime that you cannot attend Alpha-
arrangements you do feel more like a Gamma-employee.”
Team architect at Alpha

It was necessary to spend time outside the team to get a better overview of the project. It
was why people felt more at home at Gamma since they spent all their time there. This
is something that probably made everyone feel more comfortable with each other and not

64

5.1 Research Question and Success Factors

thinking so much about the fact that they were from several suppliers since they all worked
at the same place.

5.1.4 Leadership
Leadership was important when recognizing the importance of the teams to think as one
unit and not as separate parts in the project. This can be seen by one of the behaviours
presented by Moore: driving both team and project success [52]. Without good leaders
who acknowledge the problems and make it their mission to handle the problems, it is not
possible for the teams to understand they are only one part of the project. The leaders are
the ones who are able to see the project as a whole, which makes it necessary for them to
communicate this to their teams.

”You want people to be able to handle it at the lowest level possible. But
maybe it is necessary to communicate more with regards to project manage-
ment that this is one project, and the important items are this and that, and
get rid of the mental blockage that we first need to think about ourselves and
then maybe help or support others, or ask others for help.”
Project management at Beta

At Omega they tried to remind everyone that it was necessary to help each other. They also
made sure to prioritize and explain when other teams’ tasks was important to prioritize
over others. If they had not done that the people in less prioritized teams would have been
displeased. At Tellus they did not seem to have very clear leadership in meetings, but they
were good at involving everyone which caused them to more conveniently see the bigger
picture.

5.1.5 Bridgehead
The bridgehead is necessary so the teams know where they all are at, also called coordi-
nating [41]. They are all supposed to deliver something together, and if they are not coor-
dinated, this would be extremely hard. At Omega they had several arenas for discussing
parts of the project and updating each other where they all were at. An example are the
scrum of scrums which Paasivara et al. [56] concluded with worked poorly, but in this
project worked pretty good [26]. They had meetings where they mapped the dependencies
so everyone knew which teams they were required to have contact with.

”It has been controlled by what people wanted to discuss, in the end there
were no more themes requested and it was dropped. The project manage-
ment did not invent several themes just to keep it. They were kind of user-
controlled.”
Team architect at Alpha

At Tellus they had joint meetings for the same reasons as at Omega. This made it possible
to see early if they were dependent on each other in cases and who should cooperate more.
Without all these arenas the projects could face issues with a failed final product with parts
that could not communicate. It is necessary for communication and collaboration between
all teams, whole team thinking, when there are several teams and people involved.

65

Chapter 5. Discussion

5.1.6 Co-Location
Without co-location, people always have to consider that they are not the only ones work-
ing on the project and understand the need for cooperating. This is necessary even when
you do not see the ones you have to cooperate with. At Tellus this is an important aspect
and it is why they put up a video live-feed. This simplifies the fact that you can check if the
one you require is actually available or not. At Omega they saw that when everyone were
acquainted they did not have a problem with going to the person and ask when necessary
instead of sending a mail and waiting for an answer. It was easier to go outside their own
teams. This is one of the aspects when you see that people understand the fact that they
are not alone on the project.

5.1.7 Product Owner
In large scale it is necessary to scale up the product owner because it is difficult for one
person to be responsible for several teams [31]. It is difficult to find one product owner
who is familiar with every aspect of the project. At Tellus they had a main (chief) product
owner and a product owner group, just like at SAP [5]. This was necessary to ensure that
all necessary parts of the project were preserved. At Omega they had a hierarchy of product
owners which achieved the fact that every team had access to persons with authority and
responsibility. This ensured that everyone was able to make a satisfactory product in the
end.

”It is really a success criteria - take the best people and give them authority
and responsibility.”
Project management at Alpha

If the product owners did not prioritize they would have made it more difficult for the
teams to choose which tasks is important. This again could result in a failed solution. If
the product owner does not think about the bigger picture, it is hard for the supplier to
think of the bigger picture and the fact that they are all one team. This can be noticed if
one in the product owner group believes that their part of the product is the most important
one.

5.1.8 Whole Team Thinking
As we have seen from the two cases whole team thinking is a subject which is often
brought up. This does not indicate that it is presented in those words but we can read it
between the lines.

”If one can help someone else deliver something more important, that would
be better. Maybe even if we could help someone at Alpha or Gamma to deliver
something which is more important, that would actually be better. Seeing
yourself in a bigger picture. We struggled there... We did not do anything
about it and understood that for the teams it was more important to deliver
what was written in the contract.”
Project management at Beta

66

5.1 Research Question and Success Factors

This can also be viewed by how they talk about the different teams. There is much men-
tioning of ”us” versus ”them”, and the way the teams distinguish themselves from each
other. Because the teams are measured individually instead of together it is necessary for
each team to think of themselves, or their own part as proposed by Larman and Vodde [40].
When the burndowncharts and other measuring components were removed at Omega, and
were no longer visible, it was easier for the teams to not think of the others as competi-
tion. This is probably why Tellus chose to have a joint burndownchart. They are after all
working toward the same goal and if one team delivers and the other does not it is still the
project in whole that suffers.

Whole team thinking, or shared mental models, is when someone work together with
the same goals or philosophical mindsets [50]. In one team this is easier to accomplish
than with several teams working on the same project. The different teams all have their
own goals and work toward them. The problem is not that they have their own goals, the
problem is when they forget that they are not the only ones in the project. It is therefore
necessary to remember that what they are working on probably would have to compile
with what the other teams do.

The dependency problem is a big one when it comes to several teams on the same
project. As we have read from the theory, somtimes people just downgrade the problems
and put them on hold, just like in the paper by Martini et al. [41]. The problem then is that
the problems increase. From Omega we could see that people started blaming each other
for the problems. This is why they put the people from the different teams together to try
to resolve the problems together. When they did work together they did not have anyone
other than themselves to blame.

”There is one thing I remember where we had the most problems finishing
something, there was a lot of things going on and in the end we just needed to
take one developer from each team and put them together [...]. In other words
finding the entirety together.”
Head of development at Alpha

At Tellus they did not appear to be that proactive when it came to the dependencies, which
is why they might have some problems delivering in the sprints. There is a big difference
in how Omega and Tellus handled the dependencies, and it shows that with a bigger project
they are better at being proactive, because it is that much harder when they are not aware
at the beginning. At Tellus on the other hand they are only two squads, which may be the
reason why they do not spend more time. This is probably because they belive that when
the dependencies arise, they will not be that big of a problem.

The division of tasks in large scale is difficult, not only because there is no way of
knowing exactly how much job every task will require, but also because of the level of
competence in the different teams. At Omega they tried to solve this by having the teams
that knew they were able to finish their tasks to take some from those who did not think
they would finish. Since Tellus is of much smaller scale they can divide the tasks more
when they see the need for it because it is easier for them to have a complete overview of
project and tasks.

67

Chapter 5. Discussion

”Saturn struggles in 7b with few tasks and needs more work, but if you only
generate four days there is not much point if it leads to more work for you.”
Saturn developer

Because of the better overview at Tellus it is therefore easier to discuss further work to-
gether.

As presented earlier we can see from the way everyone talks that there is a division
between the teams. At Omega this also applies to the different suppliers in the project,
while at Tellus it applies to the different locations. In both the observation notes at Tellus
and in the focus group interviews at Omega there is much ”us” versus ”them”. At Omega
where the teams had their own names, cheers and people were resistant to switch teams
this was easy to see. This kind of talk might be something of what separates the teams
in the project from each other. This is especially a problem since it comes from project
management, which is the case for several of the people in the focus groups from Omega.
At Tellus we could see that they do their best to be one team with two squads, while at
Omega they saw themselves that it was necessary to explain that they are all working on
the same project. This was to ensure the fostering of shared mental models [64]. These
are ideas that help the shared mental model overall, or as it is called here, the whole team
thinking.

5.1.9 Summary
What can be seen from all this is that there are definitely some things that could be defined
as success factors when it comes to large scale agile development. In addition we can see
from the two different cases that there are several differences in how they approached these
possible success factors. When it comes to location Omega is co-located while Tellus is
distributed, which is the most prominent difference between the two in addition to the
size. Other differences are the teams; where Omega had several teams, while Tellus had
one team which consisted of two squads, and the product owners where Omega had a
hierarchy with functional experts with authority, and Tellus had a product owner group
where they did not appear to always have the authority. We can see clearly that some
of the possible success factors are specifically mentioned both in observations and focus
groups without asking for it in particular. All found success factors for the cases are listed
in table 5.1. NF implies that the factor is not found while S implies that it is found in some
degree, but not so much that it is presented here.

We have discovered that several of the possible success factors can be seen as a rem-
edy for whole team thinking and shared mental models. We can link the different success
factors together by seeing what they have in common. As we can see from table 5.1 not all
factors are found in both or any of the cases. Since there was observations at Tellus, it was
not possible to ask about the different factors. At Omega the researcher was not involved,
which is why it was not possible to ask for more information about them.

It would be hard trying to replicate these two cases for research. This has to do with the
fact that no project is the same and that there always will be a difference in the knowledge

68

5.1 Research Question and Success Factors

Table 5.1: Success Factors Applicable Found in the Cases: Y= found, S= found in some degree, NF
= not found

Success factor Omega Tellus
Customer collaboration S NF
Agile software engineering techniques and agile evangelist Y Y
Responding to change Y Y
Team Y Y
Leadership Y S
Planning Y Y
Testing Y S
Governance NF NF
Divide after you conquer NF NF
Continous integration NF NF
Bridgehead Y Y
Co-location Y Y
Product owner Y Y
Whole team thinking Y Y

and capacity of team members. Another is the fact that there were certain limitations like
the time limit, restriction of resources for the two cases, and the fact that this is mostly
based on the interpretations of the researcher. When it comes to Omega this was also one
of the first large scale agile projects, and not everyone were that familiar with agile as they
might be now.

”We have recreated a lot of the same later. But there is a discussion of how
successfull it has been. There is also a matter of the governing conditions and
settings where you try to recreate it. We have discussed the ability that people
can take decisions on the spot, this is not possible everywhere.”
Head of development at Alpha

Strode and Whole Team Thinking

In the theory chapter, chapter 2, we explained why whole team thinking is important and
we looked more closely on Strode’s components for implicit coordination effectiveness,
see 2.4.3. In table 5.2 and 5.3 we have the findings from Omega and Tellus in conjunction
with the components of Strode.

As we can see from the tables it was easier for Tellus to have an overview over these
five components. This is probably because of the fact that they were so few people in
relation to Omega. At Omega the components were easier fulfilled for each supplier than
the overall project. This might have had something to do with the fact that they were
focused on following the contracts. The last component, know who knows what, was
difficult to answer for both projects. At Tellus there were only meetings observed, and

69

Chapter 5. Discussion

Table 5.2: Strode’s Implicit Coordination Factors for Omega

Component Omega
Know why The project management was aware of the overall goal

and how tasks contributed to the overall goal. The
team members became aware eventually, first aware of
the supplier and their goal, and eventually the whole
project and the overall goal

Know what is going on and
when

Each individual had the opportunity to se the burn-
downchart of other teams, and were aware of what was
in their contracts, but it did not seem like they knew
about all tasks in the project overall

Know what do to and when They were to be aware of which tasks that should be
prioritized, and they helped other teams when they had
little to do, but they seemed to prioritize their team and
supplier before the overall project

Know who is doing what The team members were mostly aware of tasks the
other team members or their supplier worked on. After
a while they also knew if someone worked on some-
thing they had worked on previously

Know who knows what This is not easy to see from the interviews, but they
were aware of which supplier which had the responsi-
bility of the different components

Table 5.3: Strode’s Implicit Coordination Factors for Tellus

Component Tellus
Know why At Tellus it seemed like everyone was aware of the

overall project goal and how tasks contributed to this
through several discussions on dependencies

Know what is going on and
when

Everyone were aware of all tasks in the backlog and
were able to see the burndownchart and which squad
were responsible for what

Know what do to and when At one point Saturn did not have many tasks for the
next sprint that were important to the project and there-
fore decided to help with Venus’s tasks

Know who is doing what Because there were few people it was easy for everyone
to know who did what

Know who knows what This was not possible to observe, but it seemed like
they knew where to find the knowledge required

70

5.2 Evaluation of the Study

since this was not mentioned it is difficult to conclude something. At Omega there were
so many people involved which makes it difficult, but they probably had an idea of who to
ask because of the components they were responsible for.

5.2 Evaluation of the Study

Before concluding this study it is important to evaluate it. This is conducted by the re-
searcher. The reason for doing this is to give an understanding about the research, es-
pecially the cases chosen. It is therefore important to build confidence and credibility in
the study and the researcher. The research process will be discussed together with the
principles of Klein and Myers before discussing if the cases are agile.

5.2.1 Research Process

This is a master thesis with a timeframe of 20 weeks. Because of these time constraints the
researcher had to use material from the Omega case that had been conducted previously
by other researchers. The researcher had to sign a non disclosure agreement, and was only
given three focus group interviews in addition to background information in two other
papers. When it came to Tellus, the researcher was able to observe four meetings, while
another student had observed two additional meetings the researcher gained access to. The
researcher could probably have observed additional meetings, but then there would have
been less time to review the cases and comparing them. It would have been beneficial if
there had been the possibility of interviews which could have given the researcher more
information about the subject at hand.

Klein and Myers Principles

If we see this study together with Klein and Myers principles of interpretive field we can
look more closely on the study conducted. The results can be seen in table 5.4.

5.2.2 Generalisation

The development at Omega was based on producing a new system with all functionalities
of the old system with improvements because the old system was being phased out. It was
therefore unique since everyone was located in not only the same building but the same
room. There were several different suppliers in this project which had to work together.
The fact that many were new to agile methodology is also an important aspect because
of the rise in agile practitioners. At Tellus they were mostly creating a new system, with
the reuse of code from other projects. The team is divided into two squads and they work
distributed. There is only one supplier involved. For the sake of generalising the projects,
the researcher believe that Tellus is the project which most easily can be generalised, but
in both projects there should be possible to discover somewhat the same factors in other
large scale agile projects.

71

Chapter 5. Discussion

Table 5.4: The Researcher’s Use of the Principles of Klein and Myers

Principle How the principles were used
The fundamental principle
of the hermeneutic circle

The different cases were first seen together with the the-
ory and then compared with each other. For each of
the different success factors the cases and situations in
them were described.

The principle of Information on both cases and the reason for these
contextualization projects is given by the researcher.
The principle of interaction
between the researcher and
subjects

The researchers understanding of the cases was devel-
oped through observations; Tellus, and interviews con-
ducted by other researchers; Omega. A presentation
was also held for Tellus where the subject agreed on
the findings from the researcher.

The principle of abstraction
and generalization

The findings are explained together with previous suc-
cess factors presented in theory.

The principle of dialogical
reasoning

The researcher have investigated whether or not the
aforementioned success factors can be seen in the cases
and how they have affected the cases, both in positive
and negative.

The principle of multiple At Tellus all research comes from observations and is
interpretations therefore from the assumptions of the resarcher. At

Omega the interviews have been completed after the
project finished and with people from different teams
that have had different roles during the project duration.
The interviews were conducted by other researchers
that have had other research than this in mind.

The principle of suspicion At Tellus all views come from the researchers point of
view, and other people could see things in a different
manner. At Omega the interviews were with people on
different teams and with different roles, but because of
the size of the project it is not clear if the meanings
expressed here are the meanings of the majority.

72

5.2 Evaluation of the Study

5.2.3 Are the Cases Agile?

According to Ambler [6] there are five criterias that decide if you are really agile. The first
criteria considers whether the agile teams provide value to their customers on a regular
basis. At Omega they were located together with regular meetings like demos. At Tellus
they had regular backlog grooming meetings in addition to demos. Both projects therefore
fulfill the value criteria.

The second criteria is that agile teams should do continous developer regression test-
ing and that they should take a test driven development approach. This approach is not
mentioned in either of the two cases, but we do know that at Omega they either have spe-
cialized testers or developers who also conducted the testing. The conclusion is therefore
that Omega fulfills the validation criteria. At Tellus testing is not much mentioned and
therefore it is unknown whether this criteria is fulfilled.

The third criteria involves the agile teams to work closely with their stakeholders, ide-
ally on a daily basis. At Omega there were stakeholders present at all times and there was
no problem to obtain them. At Tellus we know they had regular meetings, and from the
observation we can read that they sometimes had contact with stakeholders through other
means. Since we do not have the complete understanding for Tellus we are not one hun-
dred percent sure if this is correct, but we know it is correct in some degree. For Omega
we know that the criteria is fulfilled.

Self-organization is the fourth criteria. At Omega there was said that all teams were
self-organizing and even though it was encouraged to pair program, each team was able to
decide for themselves. At Tellus the team is divided into two squads. From the observa-
tions it would appear like the squads are self-organized with e.g. own sprint planning for
squad. Therefore it seems as though this criteria is fulfilled for both, but since we are not
certain when it comes to Tellus they are set to maybe.

The fifth and last criteria is that agile teams regularly reflect on, and measure how they
work together and act to improve on their findings in a timely manner. At both projects
they have retrospectives. At Omega we could see that not only those in the team ensured
that the concerns were handled, this was also accomplished by others who read the ret-
rospectives. At Tellus they divided the sprint into two parts when people had a problem
with planning for four weeks at a time. Therefore we can say that both projects fulfill this
criteria.

73

Chapter 5. Discussion

Table 5.5: Criterias to be Agile

Criteria Omega Tellus
Value Yes Yes
Validation Yes Unknown
Active stakeholder participation Yes Maybe
Self-organization Yes Maybe
Improvement Yes Yes

As we can see from table 5.5 we can confirm that Omega was definitely agile. We do
not have all the facts about Tellus, but from what we have observed four out of the five
criterias were fulfilled. Since these are only suggestions for a project being agile we can
therefore conclude with the fact that both of the projects are agile.

74

Chapter 6
Conclusion

In this chapter we will try to conclude the findings from this thesis. We will do so in
conjunction with the research question given earlier. In the end we will give an overview
of implications for practice.

6.1 Research Question
Is whole team thinking a possible success factor in large scale agile devel-
opment?

As we have witnessed there are several important success factors in large scale agile de-
velopment. All of these do not have to be a success factor in every project, and some can
be hindering even though the project is said to be a success. No two projects will ever be
the same because of different people, motivations, experience etc. One thing it appears as
they have in common is the necessity for whole team thinking.

From what we have discovered in the theory we have fourteen different possible suc-
cess factors. When investigating these two cases we found eleven of these applicable in
one or both of the cases. The reason for not finding the last three could have something
with the focus, which were on whole team thinking. Out of the eleven factors there were
nine more or less applicable in both cases, some of these were only mentioned once or
twice in one of the cases and is therefore not presented in the results chapter. From what
we have seen in these two cases and from the theory there are at least five of the factors
that are factors in all projects, the rest are unsure, see table 6.1.

Whole team thinking does not only affect the factor itself but it can also be seen in
conjunction with several of the other factors, see table 6.2. Whole team thinking is not
visible, but seen between the lines. It is about everyone coming together and doing what
is best for the project and not only the team. Without it there would be difficult not only to
have a workable product, but to finish the project.

75

Chapter 6. Conclusion

Table 6.1: Success Factors Applicable in all Large Scale Agile Projects: A = always applicable, M
= maybe always applicable, NF = not found in the cases

Success factor Applicable
Customer collaboration M
Agile software engineering techniques and agile evangelist A
Responding to change M
Team A
Leadership M
Planning M
Testing M
Governance NF
Divide after you conquer NF
Continous integration NF
Bridgehead A
Co-location M
Product owner A
Whole team thinking A

Table 6.2: Success Factors Whole Team Thinking have been seen in Conjunction with:
Y= yes, N= no, NK = not known

Success factor WTT
Customer collaboration N
Agile software engineering techniques and agile evangelist N
Responding to change Y
Team Y
Leadership Y
Planning N
Testing N
Governance NK
Divide after you conquer NK
Continous integration NK
Bridgehead Y
Co-location Y
Product owner Y

76

6.2 Implications for Practice

From what we have seen in both cases whole team thinking is a factor that affects the
projects in one way or another. At Omega they saw the divison between the teams and
worked toward removing these, while they at Tellus have tried to see themselves as one
team from the beginning. Whole team thinking has definitely been a factor in both of
these projects. This can be seen by the results from Strode’s implicit coordination factors
in table 5.2 and 5.3.

Tellus is not yet concluded and there is no way of knowing if it will be a success or
not. This is not hindering when we conclude with whole team thinking as a success factor.
As already determined there might not be necessary for all success factors in every project
because of the different resources, duration, and technologies. There will still be necessary
for whole team thinking even if it is seen in conjunction with the other factors. Whole team
thinking is one of the factors that will remain in every project, and without considering it
the project will probably fail because of different thoughts of direction between the teams.

From what we have seen both in the theory and in the cases is that it is hard to not
have whole team thinking in mind when doing a large scale agile development project.
Not all lessons learned-papers mention it, but it can usually be seen between the lines, and
in conjunction with other factors for success. Therefore it is safe to say that whole team
thinking is an important success factor in large scale agile development projects.

6.2 Implications for Practice
Now that we can see that whole team thinking is a possible success factor it is important to
know how it can be accomplished. At the beginning of the project it is important to think
about the shared mental models in the whole project and for each team. This should be
conducted for both management, and for everyone involved in the project. This can ensure
that all team members have an understanding of the project as a whole from the beginning.

It is important to find different arenas for the project to provide knowledge from every
part of the team. This can be accomplished by for example scrum of scrums. The big-
ger the project, the more arenas are necessary for the whole project. The arenas work as
a bridgehead between the teams and ensures coordination between them. The architects
should talk together, and the same applies for testers, designers and others. It is very im-
portant that the arenas are not forced on the teams, and can change over time to best suit
the project. There is no point in continuing with scrum of scrums if nobody has the need
for it, it is therefore important to be able to respond to changes.

It is not necessary to only hire people with agile experience, as long as they are passion-
ate about learning agile practices. When hiring people with agile experience it is important
that they know that a large scale project is different from a project with only one team. The
leaders should be able to unite the teams and ensure that they understand that they are all
working on the same project, and how important everyone’s contribution is.

77

Chapter 6. Conclusion

The customer should dedicate their time to the project, because if they do not, the
project will most likely fail. It is necessary that they use their best people with the right
knowledge and authority to make decisions. The PO or POs all have to have an under-
standing that they are there for the whole project and not only for their expertise in the
different areas of the project. They have to be able to collaborate and agree on which areas
of the project to use the most resources.

Everyone should know what the other teams are working on and how this affects their
work. In addition the team members should be encouraged to help if they have the ca-
pacity and knowledge. This can easily be seen through the shared mental models already
from the beginning. The shared mental models provide the team members and teams with
a common understanding of the task and the people and teams involved. Everything will
be easier the more co-located everyone is, but as long as they have good replacements, like
a video live-feed, it can work either way. Locating teams working on the same areas of the
project together will help and can bring the teams closer together.

If we add up we can se that the most important practices for whole team thinking is:

• Shared mental models for the whole project

• Different arenas

• Listening to the teams and responding to changes

• Hire people with an understanding of the requirements necessary for a large project

• A customer who understands the needs in a large agile project

Here the shared mental models is one of the most important practices and is something
that are not only necessary from the beginning, but throughout the whole project.

78

Chapter 7
Future Work

The future work chapter will propose further research areas and how to continue the re-
search of whole team thinking in large scale agile development. First we will consider the
revised research agenda from XP2014 before considering this thesis and its findings.

7.1 Suggestions for Future Research
Before proposing new suggestions we should look at the revised research agenda from
Dingsøyr and Moe [2], see table 7.1. In this thesis we have researched the variability fac-
tors. Inter-team coordination have already been a topic widely researched, although there
are different conclusions, for example if the scrum of scrums work [26; 56]. Knowledge
sharing and improvement is something that can be seen together with the shared mental
models and whole team thinking.

It is still difficult to find how to best scale agile practices, and comparing similar
projects with different practices could be a way of studying this more closely. One of
the topics actually mentioned by the Omega case is the contracts. People were concerned
with delivering what was in the contracts which made it difficult to consider the project as
a whole, and it made it difficult to rotate team members between suppliers.

From this thesis we can see that there are several of the success factors which are
present in the two cases, and in the research agenda, and some that have not been found
or discovered, see table 6.1 and 6.2. For future research it might be necessary to explore
these both in a narrow and wide perspective.

When it comes to whole team thinking and shared mental models there are several
interesting ways of discovering the necessity of these. One is to follow a project which is
aware of the importance and which allocates time to nurture the idea. The outcome might
be different when everyone involved is aware of the possible problem or factor from the
beginning. If this is something that helps the project to more success would be an interest-

79

Chapter 7. Future Work

Table 7.1: Revised Research Agenda for Large Scale Agile by Dingsøyr and Moe

Priority Topic Description
High Organisation of large Organizational models, portfolio

development efforts management, governance, project man-
agement, agile productline engineering

High Variability factors in scaling Factors important in large projects which
influence development process

High Inter-team coordination Coordination between teams
High Key performance indicators Identify metrics to monitor progress and

support transparency
High Knowledge sharing and How to ensure feedback for learning,

improvement use of knowledge networks and learning
practices

High Release planning and Coordinating and prioritizing functional
architecture and non-functional requirements, conti-

nous delivery, minimizing technical debt
Medium Customer collaboration Practices and techniques for product

owners and customers to collaborate with
developers

Medium Scaling agile practices Which agile practices can scale and un-
derstand why and when they do

Medium Agile contracts Understand if contracts can change the
mind-set of customers from upfront plan-
ning to agile principles and uncover legal
limitations that reduce agility

Medium Agile transformations Efficient adoption of agile practices
Medium UX design Integration of user experience design

80

7.1 Suggestions for Future Research

ing finding. Then it could be possible to measure the possible success rate in later projects.

This thesis followed two different cases. There were no interviews being conducted
by the researcher. If the researcher had been able to do interviews that focused on the
theme of this thesis, which are success factors and whole team thinking, the answers could
have been something else. It might have been possible to see more of what they did to en-
able whole team thinking and it could have been less assumptions taken by the researcher.
Since the one case was already concluded they could have contributed with suggestions to
what could be conducted in future cases. With more focus on whole team thinking they
might have more to contribute in later agile large scale projects.

It would also be interesting to see if the other factors not found in these cases are
applicable in other projects. There might be different cases which have different factors
important, and discovering what factors cause the different projects in their success. Some
of the factors are so natural that they are not much considered during the project because
they are obvious. With more focus on them it can help people in their next projects. In one
project the fact that the product owner is involved may be taken for granted, which is why
it is difficult to discover the lack of involvement in other projects.

As we can see there are still endless possibilities for further research in large scale
agile development projects. Conducting the same research in more cases, explore the
different factors and continuing to watch the agile development in large scale are just
some possibilities. Every project will be different, not only because no one creates the
same product, but because there are different people with different skills, and there is
always new technologies. This is why there are so many possibilities for further research
in the large scale agile development.

81

Chapter 7. Future Work

82

Bibliography

[1] T. Dingsøyr, S. Nerur, V. Balijepally, and N. Moe, “A decade of agile methodologies:
Towards explaining agile software development,” Journal of Systems and Software,
vol. 85, no. 6, pp. 1213–1221, 2012.

[2] T. Dingsøyr and N. B. Moe, “Towards principles of large-scale management: A sum-
mary of the workshop at XP2014 and a revised reasearch agenda,” in XP2014 Work-
shops, 2014.

[3] K. H. Rolland, “Desperately seeking research on agile requirements in the context
of large-scale agile projects,” in XP 2015 Workshops, May 25-29, Helsinki, Finland,
2015.

[4] H. Kniberg and A. Ivarsson, “Scaling agile @ Spotify,” 2012.

[5] J. Schnitter and O. Mackert, “Large-scale agile software development at SAP AG,”
in 5th International Conference on Evaluation of Novel Approaches to Software En-
gineering, 2011.

[6] S. W. Ambler, “IBM agility@scale: Become as agile as you can be,” 2012.

[7] S. C. Misra, V. Kumar, and U. Kumar, “Identifying some important success factors
in adopting agile software development practices,” Journal of Systems and Software,
vol. 82, no. 11, pp. 1869–1890, 2009.

[8] T. Chow and D.-B. Cao, “A survey study of critical success factors in agile software
projects,” Journal of Systems and Software, vol. 81, no. 6, pp. 961–971, 2008.

[9] B. J. Oates, Researching Information Systems and Computing. SAGE Publications
Ltd, 2006.

[10] T. C. Syversen, “Whole team thinking and possible success factors in large scale
agile development projects.” Preliminary paper at the Department of Computer and
Information Science, NTNU, 2015.

I

[11] S. W. Ambler, “Agile software development at scale,” in 2nd IFIP Central and East
European Conference on Software Engineering Techniques, 2007.

[12] A. Shatil, O. Hazzan, and Y. Dubinsky, “Agility in a large-scale system engineer-
ing project: A case study of an advanced communication system project,” in IEEE
International Confererence on Software Science, Technology & Engineering, 2010.

[13] S. Nerur and V. Balijepally, “Theoretical reflections on agile development method-
ologies,” Communications of the ACM, vol. 50, no. 3, pp. 79–83, 2007.

[14] J. Highsmith and A. Cockburn, “Agile software development: The business of inno-
vation,” Computer, vol. 34, no. 9, pp. 120–122, 2001.

[15] J. A. Ingvaldsen and M. Rolfsen, “Autonomous work groups and the challenge of
inter-group coordination,” Human Relations, vol. 65, no. 7, pp. 861–881, 2012.

[16] H. Saeeda, F. Arif, N. M. Minhas, and M. Humayun, “Agile scalability for large scale
projects: Lessons learned,” Journal of Software, vol. 10, no. 7, pp. 893–903, 2015.

[17] C. T. Scmidt, T. Kude, J. Tripp, A. Heinzl, and K. Spohrer, “Team adaptability in
agile information systems development,” in 34th International Conference on Infor-
mation Systems, Milan, 2013.

[18] C. T. Scmidt, S. G. Venkatesha, and J. Heymann, “Empirical insights into the per-
ceived benefits of agile software engineering practices: A case study from SAP,” in
International Conference on Software Engineering, 2014.

[19] D. Cohen, M. Lindvall, and P. Costa, “An introduction to agile methods,” Advances
in Computers, vol. 62, pp. 1–66, 2004.

[20] L. Rising and N. S. Janoff, “The scrum software development process for small
teams,” IEEE Software, vol. 17, no. 4, pp. 26–+, 2000.

[21] T. Dingsøyr and Y. Lindsjørn, “Team perfomance in agile development teams: Find-
ings from 18 focus groups,” in 14th International Conference on Agile Processes in
Software Engineering and Extreme Programming, 2013.

[22] C. T. Scmidt, K. Spohrer, T. Kude, and A. Heinzl, “The impact of peer-based soft-
ware reviews on team performance: The role of feedback and transactive memory
systems,” in 33rd International Conference on Information Systems, Orlando, 2012.

[23] T. Kude, S. Bick, C. Scmidt, and A. Heinzl, “Adaption patterns in agile information
systems development teams,” in 22nd Conference on Information Systems, Tel Aviv,
2014.

[24] E. Salas, D. E. Sims, and C. S. Burke, “Is there a big five in teamwork?,” Small Group
Research, vol. 36, no. 5, pp. 555–599, 2005.

[25] T. Dybå and T. Dingsøyr, “Empirical studies of agile software development: A sys-
tematic review,” Information and Software Technology, vol. 50, no. 9-10, pp. 833–
859, 2008.

II

[26] T. Dingsøyr, N. B. Moe, T. E. Fægri, and E. A. Seim, “Exploring software develop-
ment at the very large scale: A revelatory case study and research agenda for agile
method adaption.” Work in progress, 2016.

[27] A. Scheerer and S. Bick, “Five ways to scaling agile coordination in large-scale ag-
ile software development,” 2015. SINTEF Symposium Nov 16, 2015 Trondheim
powepoint presentation.

[28] H. Saeda and F. Arif, “Systematic literature review of agile scalability for large scale
projects,” International Journal of Advances Computer Science and Applications,
vol. 6, no. 9, pp. 63–75, 2015.

[29] M. Giblin, P. Brennan, and C. Exton, “Introducing agile methods in a large software
development team: The developers changing perspective,” in 11th International Con-
ference on Agile Software Development (XP2010), 2010.

[30] D. Reifer, F. Maurer, and H. Erdogmus, “Scaling agile methods,” IEEE Software,
vol. 20, no. 4, pp. 12–14, 2003.

[31] M. Paasivara, V. T. Heikkilä, and C. Lassenius, “Experiences in scaling the product
owner role in large-scale globally distributed scrum,” in IEEE Seventh International
Conference on Global Software Engineering, 2012.

[32] B. S. Blau, T. Hildenbrand, R. Knapper, A. Mazarakis, Y. Xu, and M. G. Fassunge,
“Steering through incentives in large-scale lean software development,” Evaluation
of Novel Approaches to Software Engineering, vol. 275, pp. 32–48, 2013.

[33] A. Scheerer, T. Hildenbrand, and T. Kude, “Coordination in large-scale agile soft-
ware development: A multiteam systems perspective,” in 47th Annual Hawaii Inter-
national Conference on System Sciences, 2014.

[34] A. Scheerer and T. Kude, “Exploring coordination in large-scale agile software de-
velopment: A multiteam systems perspective,” in 35th International Conference on
Information Systems, Auckland, 2014.

[35] S. Bick, K. Spohrer, A. Scheerer, T. Kude, and A. Heinz, “Software development in
multiteam systems: A longitudinal study on the effects of structural incongruences
on coordination effectiveness,” in eProceedings of the 9th International Research
Workshop on Information Technology Project Management Auckland, New Zealand,
December 13th, 2014.

[36] A. Scheerer, S. Bick, T. Hildenbrand, and A. Heinzl, “The effects of team backlog
dependencies on agile multiteam systems: A graph theoretical approach,” in 48th
Hawaii International Conference on System Sciences, 2015.

[37] D. E. Strode, S. L. Huff, B. Hope, and S. Link, “Coordination in co-located agile
software development projects,” Journal of Systems and Software, vol. 85, no. 6,
pp. 1222–1238, 2012.

III

[38] J. Vlietland and H. van Vliet, “Towards a governance framework for chain of scrum
teams,” Information and Software Technology, vol. 57, pp. 52–65, 2015.

[39] J. Schnitter and O. Mackert, “Introducing agile software development at SAP AG:
Change procedures and observations in a global software company,” in 5th Inter-
national Conference on Evaluation of Novel Approaches to Software Engineering,
Athens, Greece, July 22-24, 2010.

[40] C. Larman and B. Vodde, “Scaling agile development: Large and multisite product
development with large-scale scrum,” CrossTalk, June 2013. Large Scale Agile.

[41] A. Martini, L. Pareto, and J. Bosch, “Improving business success by managing inter-
actions among agile teams in large organizations,” in 4th International Conference
on Software Business, 2013.

[42] A. Koski and T. Mikkonen, “Rolling out a mission critical system in an agilish way,”
in IEEE/ACM 2nd International Workshop on Rapid Continous Software Engineer-
ing, 2015.

[43] H. Koehnemann and M. Coats, “Experiences applying agile practices to large sys-
tems,” in Agile Conference, 2009.

[44] I. Gat, “How BMC is scaling agile development,” in Agile Conference, 2006.

[45] G. Benefield, “Rolling out agile in a large enterprise,” in Proceedings og the 41st
Hawaii International Conference on System Sciences, 2008.

[46] M. R. J. Qureshi, “Agile software development methodology for medium and large
projects,” IET Software, vol. 6, no. 4, pp. 358–363, 2012.

[47] M. Daneva, E. van der Veen, C. Amrit, S. Ghaisas, K. Sikkel, R. Kumar, N. Ajmeri,
U. Ramteerthkar, and R. Wieringa, “Agile requirements prioritization in large-scale
outsourced system projects: An empirical study,” Journal of Systems and Software,
vol. 61, no. 5, pp. 1333–1353, 2013.

[48] A. W. Brown, “A case study in agile-at-scale delivery,” in 12th International Confer-
ence on XP, 2011.

[49] E. Moore and J. Spens, “Scaling agile: Finding your agile tribe,” in Agile Conference,
2008.

[50] S. W. Ambler, “Supersize me.” http://www.drdobbs.com/supersize-me/184415491,
13.13 PM May 12th 2015.

[51] A. W. Brown, S. Ambler, and W. Royce, “Agility at scale: Economic governance,
measure improvement, and disciplined delivery,” in 35th International Conference
on Software Engineering, 2013.

[52] E. Moore, “Influence of large-scale organization structures on leadership behaviors,”
in Agile Conference, 2009.

IV

[53] A. Elshamy and A. Elssamadisy, “Applying agile to large projects: New agile soft-
ware development practices for large projects,” in 8th International Conference on
Agile Processes in Software Engineering and Extreme Programming, 2007.

[54] M. Cataldo and J. D. Herbsleb, “Coordination breakdowns and their impacts on de-
velopment productivity and software failures,” IEEE Transactions on Software Engi-
neering, vol. 39, no. 3, pp. 343–360, 2013.

[55] K. Kaur, A. Jajoo, and Manisha, “Applying agile methodologies in industry projects:
Benefits and challenges,” in International Conference on Computing Communication
Control and Automation, 2015.

[56] M. Paasivaara, C. Lassenius, and V. Heikkila, “Inter-team coordination in large-
scale globally distributed scrum: Do scrum-of-scrums really work?,” in 6th ACM-
IEEE International Symposium on Empirical Software Engineering and Measure-
ment (ESEM), 2012.

[57] M. Paasivaara and C. Lassenius, “Communities of practice in a large distributed ag-
ile software development organization - Case Ericsson,” Information and Software
Technology, vol. 56, no. 12, pp. 1556–1577, 2014.

[58] M. Laanti, “Implementing program model with agile principles in a large software
development organizations,” in Annual IEEE International Computer Software and
Applications Conference, 2008.

[59] J. Vlietland, R. van Solingen, and H. van Vliet, “Aligning codependent scrum teams
to enable fast business value delivery, a governance framework and set of interven-
tiuon actions,” Journal of Systems and Software, vol. 113, pp. 418–429, 2016.

[60] T. E. Fægri and N. B. Moe, “Re-conceptualizing requirements engineering: Find-
ings from a large-scale, agile project,” in XP 2015 Workshops, May 25-29, Helsinki,
Finland, 2015.

[61] M. Lindvall, D. Muthig, A. Dagnino, C. Wallin, M. Stupperich, D. Kiefer, J. Mary,
and T. Kähkönen, “Agile software development in large organizations,” Computer,
vol. 37, no. 12, pp. 26–+, 2004.

[62] J. E. Hannay and H. C. Benestad, “Perceived productivity threats in large agile de-
velopment projects,” in ESEM, September 16-17, Bolzano-Bozen Italy, 2010.

[63] R. J. Stout, J. A. Cannon-Bowers, E. Salas, and D. M. Milanovich, “Planning, shared
mental models, and coordinated performance: An empirical link is established,” Hu-
man Factors, 1999.

[64] X. Yu and S. Petter, “Understanding agile software development practices using
shared mental models theory,” Information and Software Technology, vol. 56, no. 8,
pp. 911–921, 2014.

[65] J. E. Mathieu, T. S. Heffner, G. F. Goodwin, E. Salas, and J. A. Cannon-Bowers,
“The influence of shared mental models on team process and performance,” Journal
of Applied Psychology, vol. 85, no. 2, pp. 273–283, 2000.

V

[66] N. B. Moe, T. Dingsøyr, and T. Dybå, “A teamwork model for understanding an
agile team: A case study of a scrum project,” Information and Software Technology,
vol. 52, no. 5, pp. 480–491, 2010.

[67] T. Dingsøyr and N. B. Moe, “Agile outside the comfortzone (smidig utenfor komfort-
sonen),” 2015. Smidig 2015, https://vimeo.com/album/3642046/video/144822306.

[68] P. Runeson and M. Host, “Guidelines for conducting and reporting case study re-
search in software engineering,” Empirical Software Engineering, vol. 14, no. 2,
pp. 131–164, 2009.

[69] T. Dingsøyr, T. Fægri, and J. Itkonen, “What is large in large-scale? a taxonomy of
scale for agile software development,” Product-Focused Software Process Improve-
ment, vol. 8892, pp. 273–276, 2014.

[70] N. H. Wolfinger, Qualitative Research, ch. On writing fieldnotes: collection strate-
gies and background expectancies, pp. 85–95. SAGE Publications, 2002.

[71] G. Guest, E. Namey, and M. Mitchell, Collecting qualitative data: A field manual
for applied research, ch. Participant Observation, pp. 75–112. SAGE Publications,
2012.

[72] H. Klein and M. Myers, “A set of principles for conducting and evaluating interpre-
tive field studies in information systemst,” MIS Quarterly, vol. 23, no. 1, pp. 67–93,
1999.

[73] E. Andreassen, “Inter-team coordination in large-scale agile software development -
an exploratory case study,” 2015. Master Thesis at the Department of Computer and
Information Science, NTNU.

[74] D. Badampudi, S. A. Fricker, and A. M. Moreno, “Perspective on productivity and
delays in large-scale agile projects,” in 14th International Conference on Agile Pro-
cesses in Software Engineering and Extreme Programming, 2013.

VI

Appendix A
Reasoning for Success Factors

In this appendix we will present the different articles where we found the success factors
and the words or phrases which supports them. This chapter is to help the reader to know
the reasons for the success factors presented in this thesis.

A.1 Overview of Articles for each Success Factor
Here we will summarize the different factors in different tables. We will present the words
found in the paper that supports the factor, and which article it is from. We will also give
an overview of the numder of referenced articles for each article and number of times the
article have been cited by others. Several of the articles have a question mark where the
number of times cited were to be mentioned. This is because no information has been
found for them.

a

Table A.1: Customer Collaboration Articles

Word/phrase Article Type of article References
+ # of
times ref-
erenced

Customer A survey study of critical Journal 27 + 84
collaboration success factors in agile

software projects [8]
Customer Agile Scalability for larger Journal 64 + ?
collaboration scale Projects: Lessons

Learned [16]
Customer Experiences Applying Agile Conference 3 + 2
collaboration Practices to Large Systems

[43]
Customer The Effects of Team Conference 46 + 0
collaboration Backlog Dependencies on

Agile Multiteam Systems: A
Graph Theoretical Approach
[36]

Customer Experiences in Scaling the Conference 10 + ?
collaboration Product Owner Role in Large-

Scale Globally Distributed
Scrum [31]

Customer Rolling out a mission critical Conference 4 + ?
collaboration system in an agilish way [42]
Part-time experts Improving Business Success

by Managing Interactions
among Agile Teams in Large
Organizations [41]

Conference 26 + 1

b

Table A.2: Agile Software Engineering and Agile Evangelist Articles

Word/phrase Article Type of article References
+ # of
times ref-
erenced

Agile software engi-
neering techniques

A survey study of critical suc-
cess factors in agile software
projects [8]

Journal 27 + 84

Agile software engi-
neering techniques

Agility at Scale: Economic
Governance, Measure Im-
provement, and Disciplined
Deliveryt [51]

Conference 32 + 2

Agile evangelist How BMC is Scaling Agile
Development [44]

Conference 0 + 2

Agile coaching Rolling out Agile in a Large
Enterprise [45]

Conference 5 + ?

Table A.3: Responding to Change Articles

Word/phrase Article Type of article References
+ # of
times ref-
erenced

Embrace change Agile requirements prioritiza-
tion in large-scale outsourced
system projects: An empirical
study [47]

Journal 30 + 13

Responding Agile software development Journal 30 + 1
to change methodology for medium and

large projects [46]
Responding Agile Scalability for larger Journal 64 + ?
to change scale Projects: Lessons

Learned [16]
Responding The Effects of Team Conference 46 + 0
to change Backlog Dependencies on

Agile Multiteam Systems: A
Graph Theoretical Approach
[36]

Changes Exploring Coordination in
Large-Scale Agile Software
Development: A Multiteam
Systems Perspective [34]

Conference 67 + ?

c

Table A.4: The Team Articles

Word/phrase Article Type of article References
+ # of
times ref-
erenced

Team capability A survey study of critical suc-
cess factors in agile software
projects [8]

Journal 27 + 84

Self-organizing
scenario-based teams

Aligning codependent Scrum
teams to enable fast business
value delivery: a governance
framework and set of inter-
vention actions [59]

Journal 71 + ?

Self-organizing
scenario-based teams

Agile Scalability for larger
scale Projects: Lessons
Learned [16]

Journal 64 + ?

Self-organizing
scenario-based teams

Agile Software Development
at Scale [11]

Conference 17 + 3

Self-organizing
scenario-based teams

A Case Study in Agile-at-
Scale Delivery [48]

Conference 8 + 3

Self-organizing
scenario-based teams

Agility at Scale: Economic
Governance, Measure Im-
provement, and Disciplined
Delivery [51]

Conference 32 + 2

Self-organizing
scenario-based teams

Experiences Applying Agile
Practices to Large Systems
[43]

Conference 3 + 2

Self-organizing
scenario-based teams

IBM agility@scale: Become
as Agile as You Can Be [6]

Lessons
learned

10 + ?

Right people Scaling Agile: Finding your
agile tribe [49]

Conference 3 + 4

Avoid ”super team” Experiences Applying Agile
Practices to Large Systems
[43]

Conference 3 + 2

Good people Supersize Me [50] Web 6 + ?

d

Table A.5: Leadership Articles

Word/phrase Article Type of article References
+ # of
times ref-
erenced

Project manager Applying Agile to Large
Projects: New Agile Software
Development Practices for
Large Projects [53]

Conference 13 + 2

Good leader Influence of Large-Scale
Organization Structures on
Leadership Behaviors [52]

Conference 10 + 1

Table A.6: Planning Articles

Word/phrase Article Type of article References
+ # of
times ref-
erenced

Project planning Agile software development
methodology for medium and
large projects [46]

Journal 30 + 1

Planning Perspective on Productivity
and Delays in Large-Scale
Agile Projects [74]

Conference 34 + 1

Two-level planning Agility at Scale: Economic
Governance, Measure Im-
provement, and Disciplined
Delivery [51]

Conference 32 + 2

Adaptive planning Experiences Applying Agile
Practices to Large Systems
[43]

Conference 3 + 2

e

Table A.7: Testing Articles

Word/phrase Article Type of article References
+ # of
times ref-
erenced

Continous testing Agile Scalability for larger
scale Projects: Lessons
Learned [16]

Journal 64 + ?

Test driven Agility at Scale: Economic Conference 32 + 2
development Governance, Measure Im-

provement, and Disciplined
Delivery [51]

Test driven Experiences Applying Agile Conference 3 + 2
development Practices to Large Systems

[43]
Test driven IBM agility@scale: Become Lessons 10 + ?
development as Agile as You Can Be [6] learned
Test cases Empirical Insights into the

Perceived Benefits of Agile
Software Engineering Prac-
tices: A Case Study from SAP
[18]

Conference 17 + 0

f

Table A.8: Governance Articles

Word/phrase Article Type of article References
+ # of
times ref-
erenced

Governance Towards a governance Journal 99 + 2
framework framework for chain of Scrum

teams [38]
Governance Aligning codependent Scrum

teams to enable fast business
value delivery: a governance
framework and set of inter-
vention actions [59]

Journal 71 + ?

Economic Agility at Scale: Economic Conference 32 + 2
governance Governance, Measure Im-

provement, and Disciplined
Delivery [51]

IT governance Agile Software Development
at Scale [11]

Conference 17 + 3

Effective governance IBM agility@scale: Become
as Agile as You Can Be [6]

Lessons
learned

10 + ?

Table A.9: Divide after You Conquer Articles

Word/phrase Article Type of article References
+ # of
times ref-
erenced

Divide after you Applying Agile to Large Conference 13 + 2
conquer Projects: New Agile Soft-

ware Development Practices
for Large Projects [53]

Divide and conquer Supersize Me [50] Web 6 + ?

g

Table A.10: Continous Integration Articles

Word/phrase Article Type of article References
+ # of
times ref-
erenced

Continous Towards a governance Journal 99 + 2
integration framework for chain of Scrum

teams [38]
Continous Agile Scalability for larger Journal 64 + ?
integration scale Projects: Lessons

Learned [16]
Continous Scaling Agile: Finding your Conference 3 + 4
integration agile tribe [49]
Continous Agile Software Development Conference 17 + 3
integration at Scale [11]
Continous Agility at Scale: Economic Conference 32 + 2
integration Governance, Measure Im-

provement, and Disciplined
Delivery [51]

Continous Experiences Applying Agile Conference 3 + 2
integration Practices to Large Systems

[43]
Continous Large Scale Agile: Scaling Lessons 6 + ?
integration Agile Development: Large

and Multisite Product De-
velopment with Large-Scale
Scrum [40]

learned

h

Table A.11: Bridgehead Articles

Word/phrase Article Type of article References
+ # of
times ref-
erenced

Communities Communities of practice in Journal 33 + 1
of practice a large distributed agile soft-

ware development organiza-
tion - Case Ericsson [57]

Scrum of scrums Towards a governance frame-
work for chain of Scrum
teams [38]

Journal 99 + 2

Scrum of scrums Exploring Software develop-
ment at the Very Large Scale:
A Revelatory Case Study and
Research Agenda for Agile
Method Adaption [26]

Journal 56 + ?

Scrum of scrums Inter-team Coordination
in Large-Scale Globally
Distributed Scrum: Do
Scrum-of-Scrums Really
Work? [56]

Conference 14 + 4

Scrum of scrums Large-Scale Agile Software
Development at SAP AG [5]

Conference 20 + 3

Scrum of scrums Exploring Coordination in
Large-Scale Agile Software
Development: A Multiteam
Systems Perspective[34]

Conference 67 + ?

Scrum of scrums The Effects of Team Back-
log Dependencies on Agile
Multiteam Systems: A Graph
Theoretical Approach [36]

Conference 46 + ?

Scrum of scrums Applying Agile Methodolo-
gies in Industry Projects:
Benefits and Challenges [55]

Conference 9 + ?

Bridgehead Improving Business Success
by Managing Interactions
among Agile Teams in Large
Organizations [41]

Conference 26 + 1

Cross-team activities Scaling Agile: Finding your
agile tribe [49]

Conference 3 + 4

Guilds, chapters Scaling Agile @ Spotify [4] Lessons
learned

0 + 2

i

Table A.12: Co-Location Articles

Word/phrase Article Type of article References
+ # of
times ref-
erenced

Co-locating Large-Scale Agile Software
Development at SAP AG [5]

Conference 20 + 3

Co-location Improving Business Success
by Managing Interactions
among Agile Teams in Large
Organizations [41]

Conference 26 + 1

Geographical Agile Software Development Conference 17 + 3
distribution at Scale [11]
Locating teams Scaling Agile @ Spotify [4] Lessons 0 + 2
together learned
Scattered members Scaling Agile Development:

Large and Multisite Prod-
uct Development with Large-
Scale Scrum [40]

Lessons
learned

6 + ?

j

Table A.13: Product Owner Articles

Word/phrase Article Type of article References
+ # of
times ref-
erenced

Product owner Aligning codependent Scrum
teams to enable fast business
value delivery: a governance
framework and set of inter-
vention actions [59]

Journal 71 + ?

Product owner Large-Scale Agile Software
Development at SAP AG [5]

Conference 20 + 3

Product owner Applying Agile to Large
Projects: New Agile Software
Development Practices for
Large Projects [53]

Conference 13 + 2

Product owner A Case Study in Agile-at-
Scale Delivery [48]

Conference 8 + 1

Product owner Implementing Program
Model with Agile Princi-
ples in a Large Software
Development Organizations
[58]

Conference 19 + ?

Product owner Experiences in Scaling the
Product Owner Role in Large-
Scale Globally Distributed
Scrum [31]

Conference 10 + ?

Product owner Rolling out a mission critical
system in an agilish way [42]

Conference 4 + ?

Product owner Scaling Agile @ Spotify [4] Lessons
Learned

0 + 2

Product owner Large Scale Agile: Scaling
Agile Development: Large
and Multisite Product De-
velopment with Large-Scale
Scrum [40]

Lessons
learned

6 + ?

k

Table A.14: Whole Team Thinking Articles

Word/phrase Article Type of article References
+ # of
times ref-
erenced

Project overall Agile Software development
in Large Organizations [61]

Journal 9 + 45

Shared mental Aligning codependent Scrum Journal 71 + ?
models teams to enable fast business

value delivery: a governance
framework and set of inter-
vention actions [59]

Whole team thinking Scaling Agile: Finding your
agile tribe [49]

Conference 3 + 4

Project as a whole Large-Scale Agile Software
Development at SAP AG [5]

Conference 20 + 3

Full lifetime cycle Agile Software Development
at Scale [11]

Conference 17 + 3

Collaborative Agility at Scale: Economic Conference 32 + 2
teamwork Governance, Measure Im-

provement, and Disciplined
Delivery [51]

Overall situation Improving Business Success
by Managing Interactions
among Agile Teams in Large
Organizations [41]

Conference 26 + 1

Whole product Large Scale Agile: Scaling
Agile Development: Large
and Multisite Product De-
velopment with Large-Scale
Scrum [40]

Lessons
learned

6 + ?

Share philosophical
mindset

Supersize Me [50] Web 6 + ?

l

Appendix B
Observation Template

In this chapter the reader can see the observation template used during the observations
at Tellus. The observations were conducted in Norwegian, the native language of the
observer and the subjects. The first page consists of various information which can be
important for the observer at a later time. The next page is the observations conducted.
Here we have an overview of what was said and done during what time. When observing
there were several copies of the second page included.

B.1 The Template

m

Observasjon av:

Dato og tid:

Sted (antall):

Bedrift:
Case:
Personer:

Sitteplasser:

Vindu:
Vær:
Bakgrunnsstøy:
Humør/form:
Romtemp:
Teknisk utstyr:

Div:

Kl: Observasjon:

p

Appendix C
Supporting Information

This chapter includes some theory which were originally in the thesis. The reasons for
removing this from the thesis was because it was not important for the research question.
The reasons for having it in the appendix is because it supports some of the items that are
presented in the thesis.

C.1 Agile Software Development
Here we will present both XP and enterprise agile. XP will be presented because it is
mentioned in section 2.4.2. For those readers that do not know about XP when reading
this thesis an explanation of it is given here. Enterprise agile is briefly mentioned in the
thesis in section 2.2. This is therefore explained here so that it is easy to understand the
difference between enterprise agile and large scale agile.

C.1.1 XP
Extreme programming is often referred to as XP, see figure C.11 for an overview. XP
consists of practices that focus on software development team activities [64]. It is close
to being a full-fledged disciplined agile delivery method, but is missing explicit project
initiation and release practices [6]. XP has the shortest recommended iteration length of
the agile methods with only two weeks [19]. The original XP recipe is based on four
simple values and twelve supporting practices2:

• The planning game

• Small releases

• System metaphor

1https://blogs.msdn.microsoft.com/jmeier/2014/06/06/extreme-programming-xp-at-a-glance-visual/
2https://www.versionone.com/agile-101/agile-methodologies/

q

Figure C.1: Extreme Programming Overview

• Simple design

• Tests

• Refactoring

• Pair programming

• Continous integration

• Collective code ownership

• On-site customer

• 40-hour weeks

• Open workspace

The four values are; simplicity, communication, feedback and courage.

The basic advantage of XP is that the whole process is visible and accountable3. In XP
there are two planning steps. Release planning is where the customer presents the desired
features to the programmers. Here the programmers estimate the difficulty of these fea-
tures. It is important to know that the release plan is revised regularly. The second step is
iteration planning where the customer presents the features desired for the next iteration.
In XP a feature story is never ninety percent complete, it is either finished or not4.

XP is noted for pair programming and it advocates pair programming for feedback
[14]. Instead of using a product backlog, XP uses story cards, but the size of the team is

3http://c2.com/cgi/wiki?ExtremeProgramming
4http://ronjeffries.com/xprog/what-is-extreme-programming/

r

about the same as in scrum with maximum ten people. XP has a focus on communication
and co-location. This indicates that XP does not support distributed teams [19].

C.1.2 Enterprise Agile
Since agile software development has become widely popular several organizations have
wanted to take part in the agile revolution. Dingsøyr et al. [26] refer to enterprise agile as
agile methods applied in large organizations. How this can be accomplished is explained
with Yahoo as an example [45]. The enterprise usually consists of several small projects
which all use agile development methods. This means that the enterprise can have several
independent projects which all use agile methods, but they are not connected. If the orga-
nization had had only one big project this would have been large scale and not enterprise
agile. Large scale is explained in section 2.2.

A number of organizations have taken an interest in agile methods because of the ne-
cessity to seek alternatives to the traditional software development methodologies [61].
The traditional ones are often too cumbersome, bureaucratic and inflexible, and the orga-
nizations feel pressure to produce more at lower cost. This can be seen by this quote from
a team at Motorola:

”Software development teams face a continous battle to increase productivity
while maintaining or improving quality”

The problems in organizations is that a project cannot truly be independent, but it must
interact and follow the rules of the organization overall [61].

Agile practices have been implemented not only at Yahoo, but also in other organi-
zations, or parts of organizations. Lindvall et al. [61] followed ABB, Daimler-Chrysler,
Motorola and Nokia in their pilot projects. BMC [44] and IBM [48] are among the other
companies that have implemented agile practices and are satisfied with the results.

s

t

Appendix D
Success Factors not Discussed in
the Thesis

In this appendix we will give an overview of the success factors that had little or no data
found in the two cases by the researcher. This does not imply that they are not success
factors, or that there is not possible to find them in the cases.

D.1 Success Factors
First we will give an overview of the two factors with results from the cases, these are
planning and testing. Both of this are applicable for both small and large scale and is
followed by governance which is also applicable by both. The two last factors are most
applicable for large scale and they are: divide after you conquer, and continous integration.

D.1.1 Planning
For this factor there are some results from the two cases. Since the results were not relevant
for whole team thinking it was removed from the thesis and put in the appendix.

Theory

Like with many of the other factors planning is important, and it is particularly important
in large projects since there are so many factors to consider. Project planning plays an
important role for the success or failure of a project [46]. The objective in this phase is to
concentrate on the major milestones of the project. If the project planning is not properly
made and documented, a software project might deterioate. Large systems requires a
planning process that accomodates changes and adapts to those [43]. All key stakeholders
should be involved in the planning [74]. In large projects the planning will take place
on different levels in the hierarchy. Top-down planning is an example of this since it is
conceptualized as a mechanistic, centralized approach, e.g. between a team and a superior

u

person or team [34]. Brown et al. [51] found five core practices that constitute the key
prerequisites for efficient adoption of agile approaches, and two-level planning was one of
these.

Results

The planning at Omega was implemented differently at the three suppliers. At Beta they
only used a couple of hours planning the sprint, while at Alpha they used about a day.
Alpha used a lot of the time to detail and ensure that everyone had the same understanding
of the tasks. This made it possible for everyone to work on all tasks since they all had
decided how to do them. Alpha felt better prepared, while Beta did not find it necessary
to use that much time on planning. They believed more in doing the work and plan if
problems emerged.

The meeting agenda and meeting structure seemed to be lacking at Tellus. The meet-
ings were completed differently each time and there were often silent breaks when people
did not know what to do next. They were not tough enough when it came to how much
time they should use on the different items, which sometimes led them to not finish in time.
This was especially a problem when they were to have another meeting next. In addition it
was hard for people getting the answers to their questions, it sometimes appeared that no
one cared about answering the question or knew how to answer. Other problems at Tellus
included the fact that it was hard to plan a whole month ahead in a sprint, which eventually
led to the sprint being divided into two parts.

D.1.2 Testing
For this factor there are some results from the two cases. Since the results were not relevant
for whole team thinking it was removed from the thesis and put in the appendix.

Theory

One of the nine challenges found by Saeeda et al. [16] is challenges in regard to continous
testing. In Ambler’s [6] five criterias for being agile, validation is one of them and focuses
on continous developer regression testing and that the agile teams should take a test driven
development (TDD) approach. Brown et al. [51] also propose test driven development as
one of the five core practices that constitute the key prerequisites for efficient adoption of
agile approaches. Giblin et al. [29] interviewed developers after they had had a training
course on test driven development. They felt that it could improve quality, but what con-
cerned them was the lack of test harnesses for the legacy code.

Test driven development can help validate requirements/ scenarios early in the de-
velopment process [43]. It is a technique where you write a single test and just enough
production code to fulfill that test [11]. Test cases help developers mitigate errors and
consequently minimize rework [18]. Test driven development helps agile teams capture
detailed specifications in the form of executable tests instead of static documents or mod-
els [11]. In addition Brown et al. [51] present the importance of doing integration testing

v

before unit testing. The scope of a unit is not necessarily a class. On large systems, units
are typically a system component with significant behaviours or an interface to other parts
of the system [43].

In a case study from SAP [18] they saw that high test coverage helped the team to
deliver better software quality. It therefore helped to reduce the work stress during devel-
opment sprints and before the end of the releases. This is just one of the cases that displays
how important it is to test from day one since we are continously integrating [43]. This is
a fact that is important no matter the size of the project.

Results

When it came to testing there were different practices at Omega. At Alpha they had spe-
cialized testers, while at Beta they rotated the role.

”To become a specialist you first have to be a generalist”
Project management at Alpha

It was important that the tester understands some code and have somewhat of a technical
background like running SQL and deploy. It was important at Alpha that even though they
had specialized testers that it was still up to the team to deliver, not any individual. The
tester cannot do all tests in a few days. It was important that the tester was able to start as
soon as a task was finished, if not they would not have had anything to do for the first half
of the sprint.

D.1.3 Governance
If you have one or more IT projects then you have an IT governance in place [11]. Gov-
ernance is critical to the success of any IT departments, and especially important at scale.
Agile approaches to governance are based on collaborative approaches which enable teams
to do the right thing. Governance can be classified as:

”Systematically determining who makes each type of decision (a decision
right), who has input to a decision (an input right) and how these people
(or groups) are held accountable for their role” [59].

Ambler proposes [6] that to succeed at scaling agile you will require tools that integrate
easily, and are sufficiently instrumented to provide the metrics required for effective gov-
ernance.

According to Brown et al. [51] it is important to steer using economic governance,
measure incremental improvements honestly, and empower teams with disciplined ag-
ile delivery. The reason for steering with economic governance is that it is an objective
economic foundation for planning, decison making, and progress reporting that resolves
uncertainties earlier and unifies constituencies on a shared set of expected target outcomes.
From past measurement approaches they suggest three genres to software governance:

• Engineering governance

w

• Hybrid governance

• Economic governance

Effective governance is not about command and control, but it focuses on enabling the
right behaviours and practices through collaborative and supportive techniques [11] which
is why it is important both in small and large scale.

D.1.4 Divide after You Conquer
There is no such thing as a 200-person project team, one big project results in many sub-
projects. This indicates that when you scale it is important to divide and conquer [50].
Elshamy and Elssamadisy [53] recommend to start with a core team that builds out a valid
simple business case in a test driven manner. This also involves building out most of
the architecture. This first phase ends when there is a stable code base with a significant
portion of the architecture built out. After this first phase is finished the problem is said
to be conquered and it is time to divide by growing the development team and splitting up
into smaller subteams. Each subteam follows an agile process and interface with the other
teams. There is challenges with having a master build and sustaining it, but this is one way
of starting a large scale project which might prove successfull.

D.1.5 Continous Integration
One of the two key project challenges Moore and Spens [49] met in a large scale global
development effort was continous integration. One of the seven areas SAFe targets is
continous integration [16; 38]. Continous integration is presented as one of the five core
practices that constitute the key prerequisites for efficient adoption of agile approaches by
Brown et al. [51]. Continous integration is a development practice where developers inte-
grate their work frequently, at least daily, where the integration is verified by an automated
build [11]. In small scale this is not a problem since there are so few teams, but in large
scale this is complicated since all code from the different teams are supposed to work to-
gether. Continous integration is important for the coordination of the teams and is often
verified with automated tests, with a ”stop and fix” culture of rapidly fixing a broken build
[40].

Large systems have complex integration challenges such as the shear volume of code
and the variety of code sources. Because integration problems are exacerbated the longer
integration is delayed, most large systems must perform some form of continous and early
integration to reveal integration problems [43]. Moore and Spens [49] describe in their pa-
per that the teams failed to monitor the build beyond their own module-level build. After
a while there was a passionate core of individuals that were made into an integration team.
They were responsible for ensuring the integrated builds were successfull. They were hes-
itant in creating this group because they hoped that team ownership of code would drive
people to solve integration challenges. Sadly it was difficult to expand that passion and
sense of responsibilty across the entire project team of over 300 people.

x

Koehnemann and Coats [43] proposed the following ideas between the developers and
development teams to help facilitate continous and early integration:

• Organize teams around building scenarios, not components

• Solicit stakeholder feedback as often as possible

• Do not call everything a release

• Simplify the process of making changes

• Get all team members on board with continous integration

The reasons for building scenarios and not components is the fact that component teams
can become self-focused and more concerned about their part of the system than the sys-
tem’s overall success [43]. Stakeholder feedback early in the integration process can help
prevent future increments from building incorrect or undesirable implementations. When
it comes to the last item we can see this together with the experiences from Moore and
Spens [49]. Some individuals naturally resist, perhaps unintentionally, the change towards
continous integration [43]. As we can see continous integration is essential to large scale
since the time of integrating increases heavily with the time since the last integration.

y

z

	Abstract
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Motivation
	Problem Description and Background
	Scope and Limitations
	Contribution
	Target Audience
	Report Outline

	Theory
	Agile Software Development
	Agile Methods
	Team Performance
	Research on Agile

	Large Scale Projects
	Large Scale Agile
	Example: Spotify
	Multiple Teams
	Co-Located vs Distributed
	Frameworks and Scaling Methods

	Success Factors
	Introduction
	Customer Collaboration
	Agile Software Engineering Techniques and Agile Evangelist
	Responding to Change
	The Team
	Leadership
	Bridgehead
	Co-Location
	Product Owner
	Whole Team Thinking

	Whole Team Thinking and Shared Mental Models
	Shared Mental Models Theory
	Agile Practices and Shared Mental Models Theory
	Why is Whole Team Thinking Important?

	Method
	Literature Review
	Parts and Objectives of a Literature Review
	Selection Strategy and Research Question

	Case Study
	Data Collection
	Data Analysis

	Results
	The Cases
	Omega
	Tellus

	Success Factors
	Agile Software Engineering Techniques and Agile Evangelist
	Responding to Change
	The Team
	Leadership
	Bridgehead
	Co-Location
	Product Owner
	Whole Team Thinking

	Discussion
	Research Question and Success Factors
	Research Question
	Responding to Change
	The Team
	Leadership
	Bridgehead
	Co-Location
	Product Owner
	Whole Team Thinking
	Summary

	Evaluation of the Study
	Research Process
	Generalisation
	Are the Cases Agile?

	Conclusion
	Research Question
	Implications for Practice

	Future Work
	Suggestions for Future Research

	References
	Reasoning for Success Factors
	Overview of Articles for each Success Factor

	Observation Template
	The Template

	Supporting Information
	Agile Software Development
	XP
	Enterprise Agile

	Success Factors not Discussed in the Thesis
	Success Factors
	Planning
	Testing
	Governance
	Divide after You Conquer
	Continous Integration

