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Abstract 

A constant increase in elderly population in developed countries closely followed by a 

continuous reduction of costs, inter alia in healthcare, calls for inventing efficient methods in 

eldercare. For that purpose, this study is devoted to an introductory elaboration of a computer-

based monitoring system that extracts patient information based on respiration analysis. By 

combining the field of respiratory medicine with machine learning, an empirical study has been 

conducted in accordance to prior methodical review of the state-of-the-art research. 

Consequently, Sleep Apnea-Hypopnea Syndrome is explored in the context of automated event 

classification by applying Artificial Neural Network and Support Vector Machine classifiers. 

Experiments have not resulted in revolutionary findings, however this thesis contributes with 

several valid suggestions and may be used as an introduction to the field and a foundation for 

further research.  
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Sammendrag 

Som en følge av en konstant økning i andelen av eldre i utviklede land, samt en kontinuerlig 

kostnadsøkning i helse- og sosialtjenester, oppfordres forskningsmiljøet til å utvikle  stadig mer  

effektive metoder innen eldreomsorg. Formålet med denne avhandlingen er derfor å utforme et 

automatisert overvåkningssystem som baserer seg på analyse av pasientenes åndedrett for å 

overvåke deres tilstand. Avhandlingen er en fusjon av lungemedisin og maskinlæring, og har 

resultert i gjennomføringen av en empirisk studie som følge av en omfattende 

litteraturgjennomgang innen dette forskningsområdet. Rapporten utforsket i den forbindelse 

Søvnapne-Hypopne Syndrom ved hjelp av klassifisering av søvnrelaterte hendelser. 

Klassifiseringen ble utført ved hjelp av et nevralt nettverk (ANN) og en støttevektormaskin 

(SVM). Eksperimentene indikerte ikke signifikante forbedringer, men denne avhandlingen 

bidrar med nyttige innspill angående databasert pasientovervåkning. I følge resultatene utviste 

begge klassifiseringsmetodene tilsvarende ytelse. Likevel utgjør avhandlingen en god 

introduksjon til forskingsfeltet og et grunnlag for videre forskning. 
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1 Introduction 

The following is an introductory chapter presenting the essence of this research. A brief 

description of the background and motivational factors is given in the first section, which 

furthermore will be extended in the next chapter. Subsequently, the goal and research questions 

are defined, followed by an explanation of research method and structure of this paper. 

 

1.1 Background and Motivation 

Computer-based systems are becoming a reality in nearly all areas replacing processes hitherto 

executed by humans. Some of them – such as medicine – requires a major effort put into 

research due to tremendous emphasis on reliability. Furthermore, social factors such as the 

increase in the elderly population closely and a continuous cost reduction in healthcare 

motivates to devote this study to partly elaborate an automated monitoring system. Moreover, 

a closer consideration of sleep disorders has revealed the importance of Sleep Apnea-Hypopnea 

Syndrome, which has a prevalence between 3 and 7 per cent among the adult population. 

Present practice of diagnosis is cumbersome and leaves a lot to be desired resulting in patients’ 

unawareness of the disease’s presence. As a consequence, an ambient, movable and cheap 

monitoring system is desired, hence some steps towards it will be taken by this study. Among 

a numerous of available approaches, it has been decided that an interesting aspect related to 

extraction of respiratory information will be addressed by current research. For that purpose, 

an entirely automated recognition of SAHS-events will be examined utilizing the two most 

frequently used classification algorithms inferred from the structured literature review of the 

field. 

 

1.2 Goal and Research Questions 

Goal Elaborate an intelligent monitoring system for detection of Sleep Apnea-Hypopnea 

Syndrome (SAHS) based on respiratory information analysis. 

  

In this thesis, there will be taken steps towards making a machine learning based monitoring 

system that extracts useful information from breath. Although there are many interesting 

features that one might consider, the focus will be on detection of Sleep Apnea-Hypopnea 

Syndrome. 
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Research question 1 Which of the following machine learning algorithms; Artificial Neural 

Network or Support Vector Machine, performs better on classification of SAHS? 

  

Research question 2 Which signal pre-processing technique will result in better performance 

when considering the first research question? 

 

1.3 Research Method 

The methodology applied for this research is a practical approach consisting of an empirical 

study. The best way of addressing the research questions stated above is to conduct the 

experiments. The software for data pre-processing has been developed for this purpose, making 

it possible to perform desired tests. By designing the study in such a manner, various algorithms 

with equivalent setups can be compared against each other using the same dataset. This will in 

turn lead to more reliable and valid results. 

 

1.4 Structure 

This document consists of five chapters followed by a bibliography and an appendix. Lists of 

content, figures, tables and abbreviations can be found in the front matter. Each chapter starts 

with a short introductory paragraph describing its content. The first chapter introduce readers 

to the content of this thesis. Chapter two provides the fundamental theory needed to understand 

the field of study. Subsequently, the literature review protocol is specified followed by the 

motivation for research. The third chapter contains an overview of a model of the proposed 

system, a detailed explanation of the database, and a description of pre-processing software 

developed in order to conduct the tests. The experimental plan with the obtained results are 

described in the following chapter. In the last chapter the evaluation and discussion of results 

is given in addition to contributions made to the field, several suggestions about further work 

and a brief summary of this study. 
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2 Background Theory and Motivation 

This chapter provides the fundamental theory needed to entirely understand this field of study. 

Background theory is followed by a section specifying the structured literature review protocol 

used in the first phase of research, where the field was explored and state-of-the-art knowledge 

gained. This laid the foundation for the motivation described in the last subchapter. 

 

2.1 Background theory 

Essential knowledge from the field of respiratory medicine and machine learning is provided 

in this section. A description of present techniques for respiration rate monitoring and 

specification of equivalent events is given, followed by an explanation of adequate topics within 

machine learning and signal processing. 

 

2.1.1 Respiration rate monitoring 

Respiratory monitoring can typically be classified into two groups based on whether the 

measuring instruments makes physical contact with the patient or not. Contact based 

instruments are still the most used in clinical environments, due to their reliability and maturity. 

Unfortunately, wearing sensors implies decrease of the patient’s comfort, thus other approaches 

are being explored. Despite the major interest of noncontact methods for respiration rate 

monitoring, the safety aspect is yet not entirely solved. The main concerns are associated with 

data acquisition obstructions and noise, which may lead to inaccurate or even absent 

measurements. 

 

An overview of currently used monitoring techniques can be found in (F.Q. AL-Khalidi, 2011), 

where the authors present the state of art within the field. Together with (C. Brüser, 2015) who 

discusses complementary unobtrusive techniques, they constitute an overview of up-to-date 

respiration rate monitoring methods. A comprehensive list of those techniques with 

corresponding parameters can be found in Table 2.1 and Table 2.2. It is worth to mention that 

they can be combined into multimodal systems, which may result in uncertainty reduction and 

safety enhancement. 
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Contact based respiration monitoring Parameters measured 

Acoustic Breathing sound 

Airflow Inhaled / exhaled air volume, temperature, 

pressure 

Chest and abdominal movement detection Band stretching 

Transcutaneous CO2 monitoring Skin temperature 

Oximetry probe Blood saturation 

ECG-Derived Fluctuation in ECG 

Table 2.1 Contact based respiration monitoring methods. 

  

Noncontact based respiration monitoring Parameters measured 

Radar Chest movement – Doppler (microwaves) 

Optical based Visible range image, depth image 

Thermal imaging Thermographic image, temperature 

Ballisto- and seismocardiography Mattress pressure, deformation, vibrations 

Laser Laser dot position, vibration 

Electrical/Magnetic impedance Change of organ volume and electric 

properties 

Photopletysmographic Imaging Skin color variation caused by blood volume 

changes 

Table 2.2 Noncontact based respiration monitoring methods. 

 

2.1.2 Respiratory events  

Respiratory events are sleep disorders or patterns associated with abnormal breathing or 

periodical absence of breath. There are several types of sleep disorders differentiated by the 

scale of duration and the reason of occurrence. A present standard defining the rules of scoring 

respiratory events has been commissioned in 2004 by American Academy of Sleep Medicine 

(AASM) based on the original Rechtschaffen and Kales (R&K) manual from 1968 (M. H. 

Silber, 2007). In the following, the description of respiratory events is given according to 

(Thorpy, 2012) and the definitions in (R. B. Berry, 2012). 
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Sleep disorders are divided into two main groups; central and obstructive. Central sleep 

disorders are characterized by breath cessation caused by respiratory effort reduction or its 

absence. Respiration failure is caused by a temporal brain dysfunction that results in the absence 

of the signal that was supposed to be sent to the muscles responsible for inhaling. On the other 

hand, obstructive disorder is a breath cessation caused by an obstruction in the upper airway, 

usually as an effect of laxity of the throat muscles. Additionally, a combination of both 

aforementioned groups is referred to as mixed sleep disorder. Depending on the extent of 

respiration disruption, sleep disorders are further divided into apnea and hypopnea events. 

According to the AASM-definition of an apnea, the amplitude is reduced by at least 90 % 

implying a significant or complete breath interruption. A hypopnea is rather an overly shallow 

breathing where, by definition, the amplitude is reduced by at least 30 %. In both cases the 

event must last for 10 seconds or longer in order to be accepted. 

 

Furthermore, due to the occurrence of sleep patterns in the utilized database (3.3), an 

explanation is hereby given for the theory completeness. Cheyne-Stokes is a breathing pattern 

of at least three consecutive cycles consisting of a progressively increasing then gradually 

decreasing signal, followed by an apnea or hypopnea. Periodic breathing is a breathing pattern 

of at least three consecutive cycles consisting of breathing signal, followed by an apnea or 

hypopnea. 

 

Present standard procedure for diagnosis of sleep disorders is called polysomnography. It is an 

overnight sleep study conducted in a clinical environment that records multiple physiological 

parameters. Monitored body functions may vary yet a typical PSG includes; activity of the brain 

[EEG], eyes [EOG], muscles [EMG], hearth [ECG], and respiratory measurements in form of 

airflow, effort and oxygen saturation. 

 

2.1.3 Machine learning 

Supervised learning 

Machine learning technique that learns a model based on labeled training data entries consisting 

of an input in the form of a feature vector with a corresponding output value. Mainly used for 

tasks as classification and regression. 
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Unsupervised learning 

Machine learning technique that learns a model based on unlabeled training data entries, used 

for tasks such as clustering and dimensionality reduction. 

 

Artificial Neural Network (ANN) 

Biologically inspired machine learning algorithm that attempts to model the human brain, 

applicable to various tasks such as classification, regression, clustering and association (S. B. 

Maind, 2014). The model is built of units called perceptrons – equivalent to biological neurons 

– consisting of an input vector x = [x1, …, xn], a weight vector w = [w1j, …, wnj] and an 

activation function (see Figure 1). The output of a perceptron is decided by a threshold function 

that process the weighted sum of the inputs. A feedforward ANN is a network of perceptrons 

arranged in layers, where each perceptron is connected to all perceptrons that belong to the 

subsequent layer as shown in Figure 2. In that manner, the network becomes acyclic with one-

directional flow of information. Backpropagation is a method for supervised learning in a 

feedforward ANN with the objective of modifying weights in order to minimize the value of a 

cost function, by calculating the gradient with respect to the weight vectors. 

 

 

 

Figure 1 Logical representation of a perceptron with the input vector x, the weight vector w. 
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Figure 2 A feedforward Artificial Neural Network with one hidden layer.  

 

Support Vector Machine (SVM) 

Supervised learning algorithm applicable for classification and regression that separates 

hyperplanes by maximizing the distance between the hyperplane boundary and the closest 

samples as shown in Figure 3 (V. Vapnik, 1995). Originally intended for linearly separable 

data, however extendable to nonlinear problems by a technique called a kernel trick, which 

transforms the input into a feature space of higher dimensionality. A Gaussian radial basis 

function (RBF) kernel is the most common among kernel functions that may be utilized for this 

kernel trick. 

 

 

 

Figure 3 A hyperplane boundary separating two classes with equivalent margin indicated as the 

area between dashed lines. 
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Classifier evaluation 

An analysis of a classifier involves a consideration of various metrics calculated on the basis of 

obtained classification results. A confusion matrix is often used for the purpose of a systematic 

performance visualization. A table of confusion including equivalent metrics used in the 

evaluation of the conducted tests is provided in Figure 4. Additionally, metric definitions with 

brief intuitive descriptions are provided in Table 2.3. 

 

 Predicted condition 

 
 Total population 

Predicted 

positive 

Predicted 

negative 

True  

condition 

Positive True positive False negative 

True positive 

rate (TPR), 

Recall 

Negative False positive True negative 

False positive 

rate (FPR), 

Fall-out 

 Accuracy Precision  

Figure 4 A table of confusion presenting the relationship between important evaluation metrics. 

 

Metric Formula Description 

Accuracy 

(ACC)  

Σ True positive + Σ  True negative

Σ  Total population
 

The amount of correctly classified 

entries 

Recall Σ True positive 

Σ  True positive + Σ  False negative
 

The amount of true positives that were 

found 

Precision Σ True positive 

Σ  True positive + Σ  False positive
 

The amount of found entries that were 

correct 

F-measure 
2∙

precision ∙ recall

precision + recall
 

Harmonic mean of recall and precision 

 ROC area 

(AUC) 

∫ TPR(T)FPR(T)dT 
Chance that a positive entry is ranked 

higher than a negative one 

Table 2.3 Definition and description of important classifier evaluation metrics. 
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2.1.4 Signal processing 

Discrete Wavelet Transform (DWT) 

A wavelet transform of discrete signal x that preserves both frequency and temporal 

information. A DWT(x) is calculated by simultaneously passing the signal through high- and 

low-pass filters, denoted as h[n] and g[n] respectively. Each iteration results in detailed 

coefficients of equivalent level obtained by the high-pass filter, and approximation coefficients 

given by the low-pass filter that are used for further decomposition. The filters remove half of 

the frequencies of x, thus due to the Nyquist’s rule the output is downsampled by 2. Figure 5 

illustrates a level 2 discrete wavelet transform. 

 

 

Figure 5 A diagram of discrete wavelet transform of level 2 

 

Fast Fourier Transform (FFT) 

A discrete Fourier transform that decomposes a signal x into its corresponding representation 

in a frequency domain. The transform results in coefficients of sinusoids ordered by the 

frequency. Given the sequence of N complex numbers, the definition is as follows: 

 

Xk = ∑ xn∙ e
-2πikn

N

N-1

n=0

 , k ∈ ℤ 

 

2.2 Structured literature review protocol 

The first phase of the research comprised the literature review. For that purpose a structured 

protocol is specified in order to execute this task in an efficient and comprehensive manner. 

Search engines, keywords, and the evaluation and inclusion criteria used during the literature 

review are defined in this section. 
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2.2.1 Search engines 

It is important to use trustworthy and reliable sources during exploration of scientific papers. 

In order to ensure a most comprehensive search, a set of academically recognized search 

engines have been used. A complete list of engines can be found in Table 2.4. The structured 

procedure of using those engines is to traverse through the entire list given in Table 2.4 and 

search for the keywords specified in subsection 2.2.2. Conducting the search in such a way may 

cause overlapping results, since articles are often available at several locations simultaneously.  

 

ID Search engine Link 

L1 ACM Digital Library http://dl.acm.org/ 

L2 IEEE Xplore Digital Library http://ieeexplore.ieee.org/Xplore/home.jsp 

L3 ISI Web of Knowledge http://apps.webofknowledge.com/ 

L4 ScienceDirect http://www.sciencedirect.com/ 

L5 CiteSeerX http://citeseerx.ist.psu.edu/ 

L6 Springer Link http://link.springer.com/ 

L7 Academia https://www.academia.edu/ 

L8 Hindawi http://www.hindawi.com/ 

L9 National Centre for 

Biotechnology Information 

http://www.ncbi.nlm.nih.gov/ 

L10 Wiley Online Library http://onlinelibrary.wiley.com/ 

Table 2.4 A comprehensive list of search engines used during the literature review. 

 

2.2.2 Keywords 

Once the search engines are specified, it is time to perform the most crucial part of the literature 

review, namely to find the appropriate keywords for searching. This task is essential in order to 

obtain a broad knowledge in a field of interest and it should be well-thought-out. This study 

concatenates several disciplines – computer science, signal processing, biotechnology and 

medicine – that all have been considered both in a separate and combined manner. Furthermore, 

it is important to be aware of the significance of using alternative words such as synonyms and 

scientific terms. Taking that into consideration, a list of keywords used for searching during the 

literature review have been created, and a subset with the most significant entries can be found 

in Table 2.5. 
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ID Keyword Alternative (synonym, variation, scientific term) 

W1 Breath Breathing, respiration, respiratory, airway 

W2 Monitoring Detection, observation, diagnosis 

W3 Noninvasive Non-invasive, unobtrusive, unconstrained, ambient, 

non-intrusive, video-based, Kinect 

W4 Rate Rhythm, response 

W5 Disorder Event, sleep disorder 

W6 Apnea Sleep Apnea-Hypopnea Syndrome, SAHS, 

hypopnea, sleep apnea 

W7 Automated Computer-assisted, computer-aided 

W8 Anomaly Abnormal 

W9 Polysomnography PSG, sleep study 

W10 Patient Ribcage, chest, abdomen, abdominal 

W11 Learning Machine learning 

W12 Classification Artificial neural network, ANN, support vector 

machine, SVM 

W13 Feature Feature extraction, informative feature, wavelet, 

energy based, fast Fourier transform, FFT 

Table 2.5 List of significant keywords used for searching during the literature review. 

 

2.2.3 Inclusion criteria 

Searching in search engines specified in subsection 2.2.1 by using keywords listed in subsection 

2.2.2 resulted in an enormous amount of scientific papers. Reading extensively through all of 

them would be very inefficient – if possible at all – thus, the inclusion criteria are introduced in 

order to filter out an satisfactory articles. The inclusion criteria ordered by the importance are: 

1. Title 

2. Publication year 

3. Abstract 

4. Introduction 

5. List of references 

Titles contain significant information and are often a good indicator of the articles’ content. 

Considering the fact that disciplines of this study are expanding rapidly, it urges for using the 
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publication year as the second criterion. It is often preferred to use up-to-date research, besides 

relevant older publications will often be found as references in more recent work. The 

succeeding task is to read through the abstract and introduction, which hopefully will provide 

an overview of the content. Finally, it might be a good practice to check the list of references 

that will ensure the credibility. 

 

A review protocol is defined as follows; start with the inclusion criterion of highest importance 

and move to the lower level only when the current criterion is fulfilled. The article should be 

added to the list of relevant scientific papers for in-depth examination when all inclusion criteria 

are satisfied. An example-record of a research paper that successfully has passed all criteria can 

be found in Table 2.6. 

 

Search engine ID L6 

Keyword ID W1, W2, W3 

Title Vision-based patient monitoring: a comprehensive review of 

algorithms and technologies 

Publication year 2015 

Link http://link.springer.com/article/10.1007/s12652-015-0328-1 

Notes Good collection of currently used methods, different 

approaches for patient monitoring 

Table 2.6 An example of a record in the list of accepted research papers. 

 

2.3 Motivation 

This section presents motivating factors behind the research, including reasons for choosing 

this field and the importance of addressing the stated goal and research questions. Additionally, 

significantly important research related to current study will be reviewed. The structured 

literature review protocol defined in section 2.2 has been used during the knowledge acquisition 

phase. 

 

Rapid growth of computer science with equivalently increased research activity in the field 

opens new opportunities. Some industries and professions are being exposed for partial or 

complete computer-based replacement. Medicine is a discipline wherein scientists are 

endeavoring to automate the processes executed by healthcare professionals. However, when 
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human health and life are involved, and even a slight mistake can have colossal consequences, 

the expectations tend to be very high. Thus, a major effort put into research is essential, which 

motivates to delve into it. 

 

The increase in the elderly population in developed countries, continuous cost reduction in 

healthcare, and human desire for independence motivates to create an intelligent, entirely 

automated, patient monitoring system (P. Rashidi, 2013). Different approaches have been 

proposed – both contact based and ambient, measuring single and multiple parameters – 

although current research tend towards noninvasive, preferably multimodal solutions (S. 

Sathyanarayana, 2015). Such ambient approaches emphasize the patients’ comfort in addition 

to the desired functionality and reliability. Due to the limits of this study, which restricts both 

time and human resources, there will only be taken a few steps towards the aforementioned 

monitoring system focusing on the extraction of interesting information from breathing. 

 

An exploration of relevant literature through searching for useful respiratory information has 

led to the disclosure of a very interesting and important area. Sleep Apnea-Hypopnea Syndrome 

(SAHS) is a medical condition causing morbidity or even mortality (G.C. Mbata, 2012) 

characterized by its underdiagnosis issue (V. Somers, 2008). Present practice of diagnosis 

method includes an overnight clinical polysomnography (see section 2.1.2) followed by manual 

analysis of results by a physician. Here, however, a problem arises. Symptoms must have been 

perceived in order to get a medical referral, which unfortunately is not an easy task mainly 

caused by patient’s unawareness. Furthermore, polysomnogram-analysis is a demanding task 

that entails major cost in both time and effort by the clinician, consequently consuming human 

resources and increasing medical centers’ economic cost (D. Alvarez-Estevez, 2015). This 

motivates to elaborate an automated scoring method that can substitute the manual procedure, 

simultaneously making the analysis more efficient.  

 

The essential part of making a computer-aided scoring system, for the purpose of finding and 

labeling SAHS-events in polysomnograms, is to find proper classification algorithms. Different 

approaches have been proposed as the result of recent research in this area. Despite the huge 

progress, there has not yet been proposed any solution that satisfies the reliability required in 

medical tools. A relatively recent review written by (D. Alvarez-Estevez, 2015) has been found 

very useful as the starting point for further study. It contains a structured and comprehensive 

review of currently applied methods for computer-assisted diagnosis of SAHS with equivalent 
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comparison of results. However, the main issue with reviews is that the experiments are 

conducted with different datasets in various environments, thus a direct comparison is 

inadequate. Although, it provides an indication of the performance and, more importantly, 

allows to get a quantitative overview of frequently used methods. Two algorithms, Artificial 

Neural Network (ANN) and Support Vector Machine (SVM), have distinguished themselves 

among the approaches proposed for classification of SAHS-events. The research questions of 

this study have consequently been defined, and can be found in section 1.2. 

 

Addressing the research questions require an in-depth knowledge of machine learning and 

signal processing, thus further literature review has been proceeded. Articles of major 

significance related to topics of classification are hereby discussed. The following articles (M. 

Emin Tagluk, 2010) (M. Tagluk, 2010) (N. Sezgin, 2009) compose an implicit series of research 

conducted by an almost unchanged group of scientists. The introduced approaches, with slight 

variations, propose the use of ANNs for classification of SAHS-events with Discrete Wavelet 

Transform as a suggested signal pre-processing and feature extraction method. Although those 

articles appear as independent, the experimental reproducibility has been impeded due to an 

incomplete description, forcing readers to consider all of them to get a sufficient explanation. 

The idea of taking advantage of ANNs together with wavelet transform in the context of SAHS 

classification has been confirmed by other studies such as (O. Fontenla-Romero, 2005) and (B. 

Guijarro-Berdiñas, 2012). The latter research attempts to combine ANNs with SVM in order to 

improve the classification accuracy and precision, constructing a multimodal expert system. 

Pure use of SVM approach has been proposed by (Y. Maali, 2012) with preceding extraction 

of statistical information from a wavelet transform. All aforementioned approaches – 

henceforth referenced to as focus collection – have produced satisfactory results, but have been 

conducted with different data making direct comparison inadequate. Taking that into 

consideration has motivated current study to perform an equitable comparison of used 

algorithms by reproducing the approaches and conducting experiments with the same dataset. 
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3 Model 

The focus of this chapter is directed towards the model of classification process. Prior to that, 

however, an introductory description of an automated monitoring system is provided. Finally, 

a specification of the utilized database is given as the last part of this chapter. 

 

3.1 Monitoring system 

This section concentrates on computer-aided monitoring system deduced by the goal of current 

study. The intention is to acquire an overall overview of the system architecture that will 

constitute the context. Thus, some ideas and thoughts regarding possible functionality are being 

presented. 

 

Elaboration of a system for medical purpose demands careful consideration of the requirements. 

Reliability and decision correctness should ideally be – or considering a more realistic scenario 

– approach 100 per cent. Additionally, real time performance is desired in order to enable quick 

reaction to anomalies. Anomalies in this context are events caused by abnormal breathing that 

are to be detected by the system. 

 

The proposed patient monitoring platform consists of three main modules; data acquisition 

component, learning unit, and anomaly handler. The first module is intended to gather the 

information about the patient that in turn constitutes the input data for the learning unit. Various 

channels can be utilized for this purpose according to desired parameters to be monitored. This 

research, however, exploits channels associated with respiration. Considering an ideal scenario 

all channels are noncontact-based surrounding the patient in an unobtrusive way. Preferring 

ambient sensors, as opposed to contact-based, ensures that the patient’s comfort remains intact 

making the system imperceptible. Unfortunately, present technology does not allow to fulfill 

that ideal scenario without compromising other requirements, thus in some cases contact-based 

sensors are necessary. Some ambient breath monitoring approaches that can be proposed are 

those tracking chest and abdomen movement, taking advantage of thermal features, or utilizing 

traits of pressure and sound. Adequate devices may be video cameras capturing visible and/or 

invisible light, thermal cameras, audio recorders and pressure mats. However, as is the case for 

the majority of noncontact-based devices, multimodality is preferable due to exposure to noise 

caused by environment distortion. 
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The learning unit is responsible for machine learning and anomaly recognition tasks. Plenty of 

useful information can be extracted from data acquired by the first module according to the 

sensors that have been utilized. With proper processing such respiratory data can be used for 

detection of sleep disorders or falls. Additionally, general information about the subject such 

as age can be estimated, followed by vital signs, sleep stage, mood and emotion recognition. 

Anomaly recognition is done by applying machine learning methods for classification and 

regression. As mentioned above, real time performance is desirable, thus analyzing a 

continuous signal is an apt choice. Nevertheless, classification performed on discrete chunks of 

data proves to be relevant for instance during scoring of SAHS-events. Thus, both unsupervised 

and supervised learning may be considered depending on the current task and the amount of 

disposable data. 

 

The last module is an anomaly handler that aims to perform actions in case of an aberration 

occurrence. The list of possible actions is long, thus just a few examples will be presented. The 

obvious choice is to start the alarm procedure by notifying responsible personnel such as a 

nurse. Another possibility is to add functionality to tune the appropriate parameters in the 

corresponding medical treatment devices. The latter suggestion would result in an entirely 

automated system but implies an enormous liability and the need of total reliability and trust of 

the system. Proposition to a less responsible yet valid function of this module would be to play 

some kind of relaxing music or show a pleasant image, in order to improve the patient’s mood 

or evoke positive emotions. Furthermore, all learned data can be stored and used for further 

diagnosis or treatment. 

 

3.2 Classification model 

This section describes the model including the software that has been developed for the purpose 

of this study. The implementation and design decisions will hereby be discussed. 

 

Recall that the classification of SAHS-events is the motivation main behind this study and 

consequently also the main focus of the experiments. As discussed in section 2.3, there have 

been chosen six studies (focus-collection articles) that produce the best results on SAHS 

classification task, and equivalent approaches has been reproduced in this study. In order to 

conduct a comparison of most the used classification algorithms in the SAHS context, a testing 

platform was needed. A model depicting the classification process can be found in Figure 6. 
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The reader is highly encouraged to get familiar with its content as it will be of help to understand 

the rest of this thesis. 

 

Figure 6 Model of classification process consisting of raw data input, processing unit, learning 

unit and classification output. 

 

The classification process starts with acquisition of raw patient data. As discussed in section 

3.1, such data can be acquired in a contact-based or unobtrusive manner, utilizing various types 

of sensors. Obtaining sufficient amount of data by carrying it out as a part of this thesis would 

require additional resources and may lead to an uncomplete study, which has been main 

motivation to decline this option. Thus, the raw data used for the experiments has been acquired 

from a freely accessible database that is described in the following section (3.3). 

 

When the raw data is acquired, the subsequent step is to process the input data and make it 

suitable for classification step. Thus, a design and development of an adequate processing 

software has been required. Java programming language with corresponding libraries listed in 

Table 4.1 has been used for this purpose. The first stage of processing consist of reading raw 

signal samples and annotations into the program. Respiratory annotations are given as external 

text files – each corresponding to one patient. As described in section (3.3) signal samples have 

been downloaded in the comma-separated values-format (.csv) with four input channels in 

addition to a timestamp. During the second stage, the focus is on extracting significant features 
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from the signal that will constitute a feature vector – an entry in the training data. More thorough 

explanation; every scope of samples corresponding to a single respiratory annotation is grouped 

into a signal chunk that subsequently is transformed into a frequency domain. There are two 

main arguments why taking direct use of raw signal in the time domain is a bad idea. The first 

concerns the nature of SAHS-event of which the length may vary, while a classifier requires a 

fixed number of inputs. Furthermore, considering a sampling rate of 128Hz and the definition 

of SAHS-events which states its length to last for more than 10 seconds, the smallest chunk 

contains 1280 samples. Such a high number of inputs would cause overfitting making the 

classifier to perform very poorly. In order to allow a wider spectrum of experiments, current 

implementation supports multiple approaches of signal chunk transform and feature vector 

composition. According to focus-collection the discrete wavelet transform (see subsection 2.1.4 

for description of DWT) is recommended as the pre-processing technique of raw input signal. 

The reasoning behind that postulate is that respiratory signals may change much over time – a 

characteristic of non-stationary signal – making it desired to recognize variations by preserving 

both frequency and temporal information. Furthermore, the support for three wavelet transform 

methods – Haar, Symlet and Daubechies – has been added to current implementation. Wavelet 

transform results in a list of coefficients ordered by a descending detail level. Two approaches 

– coefficient- and statistics-based – has been independently tested while creating a feature 

vector according to focus-collection studies. The most popular method is to form the feature 

vector by taking the mean value of all coefficients corresponding to each detail level of wavelet 

transform. In such a manner, given a certain level of detail, the feature vector will as desired 

have a constant length regardless of SAHS-event duration. Second method utilizes both original 

time domain signal as well as frequency domain by analyzing its statistical characteristics. As 

proposed by (D. Alvares, 2012) statistical features includes arithmetic mean, variance, 

skewness and kurtosis for both time and frequency domain, in addition to median frequency, 

total spectral power and peak amplitude. Once the feature vector is composed, equivalent 

annotation class is added as the last element, subsequently adding a new line to training file in 

the attribute-relation file format (.arff). The last stage of processing is to combine data in a 

desired way by joining several training files. This procedure enables to create training files that 

are based on multiple patients simultaneously providing a better learning basis. A sequence 

diagram of processing module described above can be found in Figure 7. 

 

So far in the classification process, the acquired patient-data has been preprocessed and is now 

ready for the main stage, classification. For that purpose, the open-source software Weka 3.8, 
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which provides a collection of machine learning algorithms has been used. Weka is using 

previously mentioned (.arff) as the main input file format, thus all training files are created 

accordingly. Due to the objective of this study, classifiers being utilized are 

MultilayerPerceptron and LibSVM, which corresponds to a feedforward Artificial Neural 

Network with backpropagation and Support Vector Machine classification algorithms (see 

subsection 2.1.3 for detailed explanation). After choosing an appropriate machine learning 

algorithm with equivalent settings, the classifier is trained and the obtained model is saved in 

(.model)-format for eventual future reuse. Testing is conducted by performing classification 

with previously saved model on data acquired from a new patient. Classifier output contains 

valuable information that is used for evaluation and comparison of performance. Adequate 

parameters will be discussed in the following chapters, but firstly it is highly recommended to 

get familiar with subsection 2.1.3 where an explanation of classifier metrics is given. 
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3.3 Database 

In order to find proper data that satisfy the requirements, a certain number of inclusion criteria 

were needed. Thus, while choosing database the main concern was on the presence of 

respiratory rate signal, respiratory event annotations, the duration, environment and the number 

of subjects. This section contains a detailed description of the database used in this study. 

 

For the purpose of this thesis an adequate database have been found using the free access 

collection of recorded physiologic signals provided by PhysioNet1. The recordings were 

collected and assembled at St. Vincent’s University Hospital Sleep Disorders Clinic by (W. 

McNicholas, L. Doherty, S. Ryan, J. Garvey, P. Boyle, E. Chua). The database contains 

overnight polysomnograms, sets of vital parameters recorded during sleep, from 25 adult 

subjects with suspected sleep-disordered breathing. Complete list of input signals included in 

PSGs with corresponding explanation can be found in Table 3.1. 

 

Input channel Explanation 

Electroencephalography [EEG] Electrical activity of the brain, measured in 

areas (C3-A2), (C4-A1) 

Left Electrooculography [EOG] Left eye movement 

Right Electrooculography [EOG] Right eye movement 

Submental Electromyography [EMG] Electrical activity produced by muscles in 

submental space (located in the midline 

under the chin) 

Electrocardiography [ECG] Electrical activity of the hearth 

Oro-nasal airflow Air-pressure measured by thermistor  

Ribcage movements Strain gauge (uncalibrated with abdomen) 

Abdomen movements Strain gauge (uncalibrated with ribcage) 

Peripheral oxygen saturation [SpO2] Concentration of oxygen (O2) in the blood 

measured by finger pulse oximeter 

Snoring Sound measured by tracheal microphone 

Body position  

Table 3.1 Input channels included in polysomnograms of this database. 

                                                
1 https://physionet.org/ 
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This database contains two types of annotations – sleep stages and respiratory events – 

annotated by an experienced sleep technologist. Sleep stages are divided into eight categories; 

wake, REM, stage 1, stage 2, stage 3, stage 4, artifact and indeterminate. Considering the fact 

that the focus of this thesis is on respiration rate rather than on sleep monitoring, details of sleep 

stages are omitted. As described in theory subsection 2.1.2 we can differentiate several 

respiratory events. Those annotated in the database are divided into three groups and can occur 

simultaneously. First group is a set of sleep disorders containing obstructive sleep apnea 

(APNEA_O), central sleep apnea (APNEA_C), mixed sleep apnea (APNEA_M), obstructive 

sleep hypopnea (HYP_O), central sleep hypopnea (HYP_C) and mixed sleep hypopnea 

(HYP_M). The total number of respiratory event occurrences related to first group is listed in 

Table 3.2. The second group are patterns including periodic breathing (PB) and Cheyne-Stokes 

(CS), while the third group indicates presence of heartbeat arrhythmia. Capital letters in 

parenthesis corresponds to description of given events used in annotation-files. 

 

Event APNEA_O APNEA_C APNEA_M HYP_O HYP_C HYP_M 

Number of 

occurrences 
167 266 106 1446 974 109 

Table 3.2 Total number of all annotated sleep disorder events in the database. 

 

This database also contain metadata that may be of interest when considering additional 

features. A set of parameters such as height, weight, gender, BMI and age of each subject is 

listed at the database’s main page2. Furthermore, respiratory annotation files corresponding to 

each patient are provided in text format (.txt) and have been downloaded directly from the same 

location. Raw data samples have been acquired through Cygwin Terminal3 that allows 

Windows-users take advantage of Linux-commands. Due to memory concerns, only the desired 

channels – abdomen, ribcage, airflow and oxygen saturation (SpO2) – have been included in 

the comma-separated values-formatted (.csv) files. Data samples have been downloaded by the 

command given below – in this case samples of subject 25 saved locally as “025_samples.csv”. 

A list of options including corresponding descriptions of the command is provided in Appendix 

B: PhysioNet. 

rdsamp -r ucssb/ucssb025.rec -c -H -v -pd -s abdo ribcage Flow SpO2 

> 025_samples.csv 

                                                
2 https://physionet.org/physiobank/database/ucddb/ 
3 https://www.cygwin.com/ 
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4 Experiments and Results 

The objective of the chapter is to address the research questions defined in section 1.2, by 

applying experimental methodology. The experimental plan is drafted in the first section 

followed by a detailed description of the test environment including the corresponding 

parameters. The results were obtained by conducting experiments in accordance to predefined 

plan, and are presented in the final section of this chapter. 

 

4.1 Experimental plan 

This section presents a plan designed for the empirical part of this thesis. Adopting this strategy 

during the study ensures deliberated experiments conducted in a systematic way. Referring to 

the research questions (1.2), the experimental plan should concern comparison of classification 

algorithms and equivalent pre-processing techniques. The compared algorithms are Artificial 

Neural Network and Support Vector Machine. Several aspects need to be considered in order 

to ensure the completeness of tests.  

 

Firstly, it is important to look into the training file and ponder how to compose it. One option 

is to decide on a certain amount of minutes, M, and use annotations, A, corresponding to every 

subject within the scope of M. Choosing this alternative would result in a diversified training 

file of length 25*A, but it may lead to insufficient training data due to lack of event occurrence 

guarantee during M. Furthermore, an SAHS-event classifier should perform in a generalized 

manner i.e. training must be accomplished beforehand making testing entirely automated, thus 

this option is undesirable. In consequence, a preferred solution of constructing the training file 

is to take advantage of all annotations corresponding to a certain number of subjects, X. It is 

also interesting to find out, to what degree learning will be affected by various values of X. 

Thus, experiments will be conducted utilizing two training files; one consisting of single subject 

(x1) and another joining five subjects (x5), constituting approximately 10 and 50 per cent of all 

events respectively. 

 

Second factor to be considered is whether feature vectors should be taken the absolute value of. 

There is discrepancy between focus-collection studies regarding this topic, thus both 

possibilities will be tested. This will allow to find out if there is any advantage of applying 

absolute value on training entries in the SAHS-event classification context. 
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The subsequent task is to examine the correlation between the input channel and the 

classification performance. The objective is to determine if the current method is transferable 

to other channels, e.g. video-based input. Furthermore, it is interesting to examine how 

classification may be affected by taking advantage of multichannel. For that purpose, three 

single input channels will be tested in sequence. Depending on the outcome, the two obtaining 

best results will subsequently be combined and used for further testing. 

 

Addressing the second research question, data pre-processing methods will be examined. Four 

techniques are being proposed by focus-collection studies. Three of them varies on type of 

wavelet transform function, while the last one utilizes statistical analysis during feature vector 

composition. Moreover, authors of (D. Alvares, 2012) suggests that frequency-based statistics 

should be extracted from signal processed by Fast Fourier Transform, rather than Discrete 

Wavelet Transform as argued by remaining focus-collection studies. In order to verify that 

assertion, both techniques will be used for statistical analysis. Thus, the experiments should be 

conducted with all five pre-processing procedures, which will provide the extent of the impact 

on classifier performance. 

 

The final aspect to be verified is to determine training parameters that will result in the best 

classification outcome. Although it is significant for the end results, the task tends to be time 

consuming. Thus, all experiments defined above will be performed with default training 

parameters. In such a way, results are obtained efficiently and can be compared relatively to 

each other preserving ipso facto validity. However, after the first phase of experiments is done, 

the factors resulting in best classification outcome should be used for further investigation of 

training parameters. Additionally, experimental efficiency can be improved by exploiting 

holdout sets. Thus, cross-validation will be used during the first phase of testing providing 

results for temporary comparison. Utilization of the trained models for testing in a more realistic 

environment will be performed during the second phase, where sleep disorder-events 

corresponding to other patients will be classified. 

 

Ergo, experiments should be conducted in a systematic manner according to Phase I and II 

protocols defined correspondingly in Figure 8 and Figure 9. 
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Figure 8 Pseudocode specifying experimental protocol of Phase I. 

 

 

Figure 9 Pseudocode specifying experimental protocol of Phase II. 

 

4.2 Experimental setup 

In order to deliver a reproducible study, the description of tools used in context of experiments 

is given in this section. 

 

The experiments have been conducted using a tailor made software together with machine 

learning freeware as described in section 3.2. The program that has been developed for the 

purpose of this research is written in Java SE Runtime Environment 8 utilizing the additional 

libraries listed in Table 4.1. The programming environment used for the implementation, 

compilation and running of this program is Eclipse IDE (4.5.1). Furthermore, classification has 

been performed using Weka 3.8 Explorer, which is provided by the Machine Learning Group 

at the University of Waikato. Specifications of the computer used as testing environment for all 

experiments can be found Table 4.2. 

 

For each Pre-processing technique {Haar, Symlet 7, Daubechies 4, 

statistics(DWT), statistics(FFT)} 

For each Input channel {abdomen, ribcage, airflow, 

multichannel*} 

 For each Absolute value of feature vector {true, false} 

  For each Training file composite {x1, x5} 

   Run ANN 

   Run SVM 

Given pre-processing factors resulting in best outcome of Phase I 

For each Classification parameters setup {default, adjusted} 

Run ANN 

Run SVM 
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Library  Version Description 

JWave 160109 Wavelet transforms 

Joda-Time 2.9.2 Date and time 

Apache Commons Math 3.6.1 Mathematics and statistics 

Weka 3.8 Machine learning 

Table 4.1 External libraries used in the implementation. 

 

Feature Specification 

Operating system Windows 8.1 Pro, 64-bit 

Processor Intel® Core™ i7-4770 CPU, 3.40GHz 

RAM (random-access memory) 16 GB 

Table 4.2 Test environment specifications. 

 

Referring to experimental plan defined in the previous section certain variables need to be 

determined. The first aspect to decide is which of the available subjects should be included in 

the classifier training. Careful revision of the respiratory event occurrences led to choosing 

patient number 025 due to abundant and varying events. In order to get a broad representation 

of events when combining five patients (x5), the following subjects has been chosen; 003, 006, 

010, 025 and 027. Secondly, considering the input channels to be used, three signals has been 

chosen for testing – abdomen, ribcage and airflow. The reason for omitting oxygen saturation 

is that it only can be acquired in a contact-based manner, making the transition to ambient 

solutions impossible. The last factor is to determine pre-processing techniques, among which 

the following five has been chosen; Haar, Symlet 7, Daubechies 4, and statistical based on DWT 

and FFT. Applying to the first three methods, as described in section 3.2, the feature vector is 

composed of the mean values of corresponding wavelet transform levels. The latter techniques 

utilizes statistical information such as; first to fourth-order statistical moments in both time and 

frequency domain, median frequency, total spectral power and peak amplitude. A transparent 

summary of parameters mentioned in current paragraph can be found in Table 4.3. 
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Factor Parameter 

Training file x1: 025 

x5: merge{003, 006, 010, 025, 027} 

Input channel abdomen, ribcage, airflow 

Pre-processing 

technique 

Discrete Wavelet Transform:  

- Haar 

- Symlet 7 

- Daubechies 4 

Statistics:  

- time domain: arithmetic mean (M1t), variance (M2t), 

skewness (M3t), kurtosis (M4t) 

- frequency domain: arithmetic mean (M1f), variance (M2f), 

skewness (M3f), kurtosis (M4f), median frequency (MF) 

- spectral features: total spectral power (PT), peak amplitude 

(PA) 

Cross-validation 10-fold 

Multilayer 

Perceptron (ANN) 

Default: 

- Hidden layers: 1 (7 nodes)  

[Weka: a (attributes + classes)/2] 

- Learning rate: 0.3 

- Momentum coefficient: 0.2 

- Training time: 500 

Adjusted: 

- Hidden layers: 2 (15 nodes each) 

- Learning rate: 0.05 

- Momentum coefficient: 0.95 

- Training time: 50000 

  

SVM 

 

 

Default: 

- Kernel type: Radial basis function (RBF) 

- C (cost): 1.0 
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SVM (cont.) - Gamma: 0.0 

Adjusted: 

- Kernel type: Radial basis function (RBF) 

- C (cost): 1.5 

- Gamma: 0.005 

Table 4.3 List of experimental parameters. 

 

 

Figure 10 The distribution of classes in training file composed of five merged subjects (x5). 

 

The Phase II-experiments have been conducted with the pre-processing parameters specified in 

Table 4.4 that resulted in best outcome during the first phase. Furthermore, adjusted classifier 

parameters listed in Table 4.3 for correspondingly ANN and SVM, have been found based on 

focus-collection studies, where all setups have been tested and the very best were chosen. 

 

Factor Parameter 

Training file merge{003, 006, 010, 025, 027} 

Testing file merge{002, 005, 007, 008, 009, 011, 012, 

014, 015, 017, 019, 020, 021, 022, 023, 024, 

026} 

Absolute value of feature vector false 

Pre-processing technique Daubechies 

Input channel Ribcage 

Table 4.4 List of pre-processing parameters used during Phase II. Note: values based on results 

obtained in Phase I. 
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4.3 Experimental results 

This section presents the results obtained from the experiments conducted according to 

experimental plan (4.1) and setup (4.2). The tests have been divided into two phases, thus this 

section contains two subsections describing each stage respectively. 

 

4.3.1 Phase I 

The results gained during the first stage of the experiments are hereby presented respectively to 

the order introduced in experimental plan (4.1). The first interesting aspect is how classification 

is affected by number of entries in the training file. For that purpose, two types of training files 

have been used throughout all tests, containing SAHS-events of correspondingly one and five 

subjects. The appropriate measure chosen to draw out equivalent information was the arithmetic 

mean of correctly classified instances. Table 4.5 shows the results corresponding to both cases. 

Subsequently, the same calculation is performed considering whether the absolute value has 

been utilized. The average of both true- and absolute valued training entries that have been 

classified correctly is shown in Table 4.6. 

 

One subject (x1) Five subjects combined (x5) 

37.67 % 44.44 % 

Table 4.5 Arithmetic mean of correctly classified instances given training files consisting of 

single and multiple subjects. 

 

True value Absolute value 

41.56 % 40.56 % 

Table 4.6 Arithmetic mean of correctly classified instances given training files composed of true 

and absolute values of entries. 

 

Numerous tests have been run in order to examine how the input channels impact classifiers’ 

performance. Due to varying pre-processing techniques that can affect the results itself, feature 

vectors based on both wavelet coefficients and statistical analysis have consistently been used 

for every input channel. Results in form of a column chart are shown in Figure 11, depicting 

the average rate of correctly classified respiratory events in accordance to input channels. 

Computing the arithmetic mean of each channel cumulatively for all methods results in 

following values; abdomen: 40.72 %, ribcage: 42.41 %, and airflow: 37.18 %. 
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Figure 11 Arithmetic mean of correctly classified instances in accordance to input channels 

(abdomen, ribcage, and airflow), given four different pre-processing techniques (Haar- and 

Daubechies wavelet transform, statistical analysis based on Daubechies transform and statistical 

analysis based on Fourier transform). 

 

Once the idea of how various input channels affect the classification output is recognized, a 

decision regarding the composition of multichannel can be made. Although the discussion and 

reasoning will be provided in the next chapter, it was decided to join the abdomen and ribcage 

signals to constitute a multichannel. Setting single- and multichannel to a constant value enable 

the comparison of wavelet transform-based pre-processing techniques. Figure 12 displays the 

average of properly classified events according to wavelet transforms given input channels. 

Mean values were calculated cumulatively for both single and multiple channel corresponding 

to each wavelet technique are as follows; Haar: 41.30 %, Daubechies: 43.79 %, and Symlet: 

43.53 %. Furthermore, it is of interest to collate pre-processing methods that composes feature 

vectors based on wavelet coefficients and statistical analysis parameters. Thus, Figure 13 

presents averaged classification output, based on results of all three single input channels, 

correspondingly taking advantage of the aforementioned pre-processing techniques. 

Daubechies is chosen as the wavelet transform function due to the best results so far. In addition 

to average of pre-processing methods, an explicit division into classification algorithms is 

shown. 
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Figure 12 Arithmetic mean of correctly classified instances in accordance to wavelet transforms 

(Haar, Daubechies, and Symlet), given single (abdomen) and multiple (abdomen + ribcage) input 

channels. 

 

 

Figure 13 Arithmetic mean of correctly classified instances in accordance to pre-processing 

techniques (Daubechies wavelet transform, statistical analysis of Daubechies wavelet transform, 

and statistical analysis of Fourier transform), given all three input channels (abdomen, ribcage, 

and airflow). 
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At last, the arithmetic mean of the classifiers’ accuracy for all experiments that have been 

conducted so far is given in Table 4.7.  

 

Multilayer Perceptron (ANN) Support Vector Machine 

43.39 % 38.73 % 

Table 4.7 Arithmetic mean of correctly classified instances by ANN- and SVM-classifiers based 

on all experiments of the first phase. 

 

4.3.2 Phase II 

The focus of this subsection is directed towards the results obtained during the second phase of 

the experiments. As opposed to the first stage, the emphasis in this section was on actual 

performance of classifiers in a realistic environment rather than pre-processing parameters. 

From inductive reasoning, it has been decided that the parameters resulting in best outcome of 

Phase I-experiments (specified in Table 4.4), will be utilized as the only configuration of 

training entries for the following tests. The succeeding results are obtained by classifiers that 

have been trained on five merged subjects, and tested on the remaining patients. Phase II-

experiments has been repeated twice with correspondingly default and tuned classification 

parameters. 

Results from the first run of Phase II with default classification parameters are presented below. 

The classification accuracy with equivalent amount of both correctly and incorrectly classified 

respiratory events is shown in Table 4.8. Additionally, Table 4.9 and Table 4.10 displays 

significant learning metrics of correspondingly ANN- and SVM-classifier, followed by their 

confusion matrices (Table 4.12 and Table 4.13). 

 

 Correctly classified  Incorrectly classified 

ANN 41.11 % (631 instances) 58.89 % (904 instances) 

SVM 41.89 % (643 instances) 58.11 % (892 instances) 

Table 4.8 The performance of classifiers (ANN and SVM, default parameters) in terms of 

accuracy and an explicit number of classified instances. 
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 Recall Precision F-measure AUC 

APNEA_O 0 0 0 0.511 

APNEA_C 0.733 0.118 0.203 0.788 

APNEA_M 0 0 0 0.606 

HYP_O 0.612 0.531 0.569 0.584 

HYP_C 0.225 0.456 0.302 0.579 

HYP_M 0.057 0.125 0.078 0.532 

Table 4.9 Significant learning metrics (recall, precision, f-measure, and ROC area) of the ANN-

classifier (default parameters). 

 

 Recall Precision F-measure AUC 

APNEA_O 0 0 0 0.5 

APNEA_C 0.6 0.113 0.19 0.704 

APNEA_M 0 0 0 0.498 

HYP_O 0.604 0.526 0.562 0.547 

HYP_C 0.274 0.444 0.339 0.533 

HYP_M 0 0 0 0.5 

Table 4.10 Significant learning metrics (recall, precision, f-measure, and ROC area) of the SVM-

classifier (default parameters). 

 

 Recall Precision F-measure AUC 

P-value 0.377 0.279 0.537 0.016 

Table 4.11 Paired t-test for ANN- and SVM-classifier metrics given in Table 4.9 and Table 4.10. 

Calculated with alpha value equal to 0.05. 
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 APNEA_O APNEA_C APNEA_M HYP_O HYP_C HYP_M 

APNEA_O 0 27 0 49 14 1 

APNEA_C 0 44 0 10 3 3 

APNEA_M 0 8 0 11 6 1 

HYP_O 0 154 2 454 126 6 

HYP_C 0 138 2 307 131 3 

HYP_M 0 2 0 24 7 2 

Table 4.12 Confusion matrix of the ANN-classifier (default parameters). Vertical axes: true 

condition. Horizontal axes: predicted condition. 

 

 APNEA_O APNEA_C APNEA_M HYP_O HYP_C HYP_M 

APNEA_O 0 18 1 46 26 0 

APNEA_C 0 36 0 18 6 0 

APNEA_M 0 7 0 14 5 0 

HYP_O 0 138 2 448 154 0 

HYP_C 0 118 4 300 159 0 

HYP_M 0 1 0 26 8 0 

Table 4.13 Confusion matrix of the SVM-classifier (default parameters). Vertical axes: true 

condition. Horizontal axes: predicted condition. 
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The results from the second run of Phase II, ordered as above, with adjusted classification 

parameters are presented below. The classification accuracy is shown in Table 4.14, the 

significant learning metrics of ANN- and SVM-classifiers are correspondingly displayed in 

Table 4.15 and Table 4.16, and finally the confusion matrices can be found in Table 4.17 and 

Table 4.18 respectively. 

 

 Correctly classified  Incorrectly classified 

ANN 46.38 % (712 instances) 53.62 % (823 instances) 

SVM 49.77 % (764 instances) 50.23 % (771 instances) 

Table 4.14 The performance of classifiers (ANN and SVM, adjusted parameters) in terms of 

accuracy and an explicit number of classified instances. 

 

 Recall Precision F-measure ROC area 

APNEA_O 0 0 0 0.486 

APNEA_C 0.15 0.103 0.122 0.653 

APNEA_M 0.038 0.029 0.033 0.569 

HYP_O 0.836 0.51 0.633 0.58 

HYP_C 0.141 0.436 0.213 0.514 

HYP_M 0 0 0 0.5 

Table 4.15 Significant learning metrics (recall, precision, f-measure, and ROC area) of the ANN-

classifier (adjusted parameters). 

 

 Recall Precision F-measure ROC Area 

APNEA_O 0 0 0 0.5 

APNEA_C 0.033 0.667 0.063 0.516 

APNEA_M 0 0 0 0.5 

HYP_O 0.918 0.504 0.65 0.536 

HYP_C 0.139 0.45 0.213 0.518 

HYP_M 0 0 0 0.5 

Table 4.16 Significant learning metrics (recall, precision, f-measure, and ROC area) of the SVM-

classifier (adjusted parameters). 
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 APNEA_O APNEA_C APNEA_M HYP_O HYP_C HYP_M 

APNEA_O 0 7 1 72 11 0 

APNEA_C 1 9 2 37 11 0 

APNEA_M 0 0 1 20 4 1 

HYP_O 1 26 17 620 76 2 

HYP_C 0 42 13 440 82 4 

HYP_M 0 3 1 27 4 0 

Table 4.17 Confusion matrix of the ANN-classifier (adjusted parameters). Vertical axes: true 

condition. Horizontal axes: predicted condition. 

 

 APNEA_O APNEA_C APNEA_M HYP_O HYP_C HYP_M 

APNEA_O 0 0 0 77 14 0 

APNEA_C 0 2 0 46 12 0 

APNEA_M 0 0 0 20 6 0 

HYP_O 0 0 0 681 61 0 

HYP_C 0 1 0 499 81 0 

HYP_M 0 0 0 29 6 0 

Table 4.18 Confusion matrix of the SVM-classifier (adjusted parameters). Vertical axes: true 

condition. Horizontal axes: predicted condition. 
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5 Evaluation and Conclusion 

An evaluation and discussion of the obtained results is hereby given in this chapter. Moreover, 

key contributions made to the field are presented, followed by several suggestions on how 

current study may be extended in the future. Finally, a compact summary of this thesis can be 

found at the end. 

 

5.1 Evaluation 

The objective of this study, as defined by the research questions (1.2), is to compare the most 

frequently used machine learning algorithms in the context of SAHS-event classification. For 

that purpose, due to empirical characteristics of current research, numerous of experiments have 

been conducted according to the experimental plan defined in the previous chapter. The 

obtained results are evaluated in present section. 

 

The experiments have been designed to address several aspects that ensued from research 

questions. The first issue that needed to be determined was whether to use the absolute value 

of the feature vectors when composing the input files for the classifiers. For that purpose, all 

experiments of Phase I have been run twice, with both true- and absolute values. Evaluating 

Table 4.6, which contains the mean of correctly classified respiratory events given the presence 

of absolute value, leads to a reasoning that it does not improve the classification. Due to an 

accuracy difference of 1 % in favor of true values, it has been resolved that usinf the absolute 

value of the feature vectors negatively affects the output of SAHS-event classification based on 

utilized classifiers. As a consequence, the experiments of the second phase have been run on 

true-valued feature vectors. 

 

Secondly, the extent of impact of experimental parameters on classifiers’ performance is 

considered based on the results. The classifiers have been trained on data consisting of 

respiratory events of correspondingly one and five merged subjects, constituting approximately 

10 % and 50 % of all available events in the database. According to Table 4.5, a significant 

variation in classification accuracy can be revealed caused by the amount of entries in the 

training file. Increasing the number of entries from 10 to 50 per cent causes the rate of correctly 

classified events being raised by 7%. Due to current findings it has been decided to utilize half 

of all available respiratory events during Phase II. 
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An analysis of results allows to determine which of the pre-processing techniques should be 

selected in order to improve classification performance, which directly refers to the second 

research question. Five methods have been proposed according to experimental plan (4.1) of 

which three are functions of wavelet transform. Studying Figure 12 induces that irrespective of 

utilization of single or multiple input channels, the Daubechies transform results on average in 

slightly better classification outcome than Symlet or Haar. This has consequently led to a 

decision of using Daubechies as the default wavelet transform function during Phase II tests. 

Furthermore, both the best- and worst-performing wavelet transform function are collated with 

the remaining pre-processing techniques in Figure 11, where the accuracy in accordance to each 

input channel is depicted. A closer analysis leads to the inference that the Daubechies wavelet 

transform should be the favored pre-processing method when exploiting abdomen and ribcage 

channels. As it turns out in case of airflow channel, variables obtained by statistical analysis of 

raw signal utilizing Fourier transform results in a better outcome. Additionally, it is interesting 

to pay attention to Figure 13 while debating on pre-processing procedures, which shows how 

the accuracy of each classifier is being affected. By averaging classifiers’ performance, all three 

methods result in comparable outcome. However, considering each by itself shows clearly that 

statistical-based classification significantly improves the ANN-classifier, while the 

performance of the SVM-classifier decreases. Moreover, the Daubechies transform can be 

interpreted as the most general pre-processing technique due to approximately equal result of 

both classifiers.  

 

Results provide a valuable insight into the input channels with equivalent information on how 

those correlates with the performance of classifiers. Considering Figure 11 an obvious 

difference in classification accuracy in accordance to the utilized channel is noticeable 

regardless of pre-processing technique. Current findings can be construed in a way that the 

performance of classifiers is dependent on input channels. This indicates that methods cannot 

be directly transferred to other channels without previous consideration of other possibilities. 

Despite the differing accuracy due to various channels, it is noteworthy that ribcage results in 

best performance irrespective of pre-processing technique. Taking that into consideration 

followed to a decision of choosing ribcage as the default input channel for the second phase of 

experiments. Furthermore, a multichannel composed by merging the two best-performing 

channels – ribcage and abdomen – has been applied for testing. An average of obtained 

accuracies regarding single- and multiple channel of various wavelet functions is depicted in 
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Figure 12. A significant improvement is observable for all transforms where multichannel was 

applied.  

 

So far the evaluated results have been exclusively based on the accuracy. The rates of correctly 

classified instances during each phase are given in Table 4.7, Table 4.8 and Table 4.14, with 

the latter two belonging to Phase II. A quick comparison of the content leads to the conclusion 

that on average classifiers performs better – raising the accuracy by 7 % – given the adjusted 

parameters of the second phase. Furthermore, one may argue that according to the 

aforementioned tables, the SVM-classifier is a relative winner by approaching the rate of 

correctly classified respiratory events of 50 %. However, the accuracy itself may not be a 

sufficient measure when comparing two classifiers. For example, in case of unequally 

distributed training data, the classifier may always prefer the most represented class resulting 

in high accuracy, simultaneously omitting all remaining classes. This issue is known as the 

accuracy paradox that results in poor predictive power, consequently making the classifier 

useless in the given domain. For that reason, other metrics derived from the confusion matrix 

should be considered. 

 

Phase II has been divided into two runs with correspondingly default and adjusted classification 

parameters, assuming that the latter would result in significantly better output. However, 

according to obtained results this assumption turns out to be wrong. Although, as mentioned in 

the previous paragraph the accuracy of the second run has increased significantly, a closer 

analysis of additional metrics proves the opposite. Taking into consideration two pairs of tables 

by collating equivalently Table 4.9 with Table 4.15 and Table 4.10 with Table 4.16, shows that 

averaging recall, precision, F-measure and ROC area results in higher values during the first 

run. In the case of an ANN-classifier, all four measures indicates better performance obtained 

by experiments conducted with default classification parameters, while for SVM-classifier it is 

true in 3 out of 4 metrics. Due to unsatisfactory results of the second run and a desire to preserve 

consistency in the current study, the results of first the run are used as a basis for further 

evaluation of classifiers.  

 

A closer study of confusion matrices of ANN- and SVM-classifier displayed respectively in 

Table 4.12 and Table 4.13 reveals some important characteristics. Both matrices appear fairly 

similar and are most conspicuous by the overall poor predictive power. In the best case scenario, 

the only fields unequal to zero should occur along the diagonal, which is highlighted in green 
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color scale. However, the obtained results deviates from that ideal scenario by numerous of 

wrongly classified instances. Furthermore, an indication of prioritizing overrepresented classes 

by both classifiers is noticeable. In case of the SVM-classifier, both APNEA_O and HYP_M 

classes are being completely omitted, while HYP_O is repeatedly preferred. Many useful 

metrics can be calculated based on the content of confusion matrices. Four chosen metrics of 

ANN- and SVM-classifier – recall, precision, F-measure, and ROC area – are presented in 

Table 4.9 and Table 4.10, respectively. Taking the recall into consideration shows that half of 

the classes are approaching the value of 0, consequently making the corresponding events to 

stay undetected. Furthermore, the same pattern is observable for precision that may indicate a 

large number of false positives. Moreover, the ROC area is almost exclusively higher than 50 

% for all classes, indicating that the classifiers will rank a randomly chosen positive instance 

higher than a negative one. Based on a closer study of all metrics, the classifiers do a weak job 

separating classes that is an undesired behavior leading to a poor predictive power. However, 

it may be interesting to compare the metrics of the ANN- and SVM-classifier against each other. 

An appropriate statistical method for such collation is a paired t-test, which have been 

calculated for each field with the gained results shown in Table 4.11. Given the null hypothesis 

H0 stating that both classifiers perform equally, the P-value is less than α only for the case of 

ROC area. This allows to reject H0 and suggest that ANN-classifier performs better in terms of 

AUC. Due to high P-values of the remaining fields, there is not enough evidence to reject the 

equivalent hypothesis. 

 

5.2 Discussion 

The results have raised several questions that are discussed in this section. The main focus is 

on what could have been done differently in order to obtain more satisfactory results. For that 

reason, various parts of the classification process are addressed together with the limitations. 

 

The most crucial part of the classification process is the training phase, where classifiers learns 

the model based on training entries. This stage has a direct impact on the classifier performance 

and consequently the classification output. Regarding the utilized algorithms, the training may 

be time consuming which is acceptable for the current application, while classification itself 

may be done in real time. Given the obtained results, the performance of the tested classifiers 

with equivalent predictive power leaves much to be desired. However, comparing the outcome 

to the probability of guessing a certain class – more precisely by studying if the values of the 
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ROC area exceeds 0.5 – allows to conclude that while the performance is poor, it is not tragic. 

As mentioned in the previous section, in order to avoid the accuracy paradox, it is important 

that the training entries are equally distributed among all classes. However, regarding Figure 

10 some classes are overrepresented leading to uneven class prioritization. Thus, one possible 

improvement would be to level out the number of training entries for each class, by either 

removing the excess or adding the absent. Considering the fact that the more relevant4 training 

entries the better, the latter suggestion should be preferred. As a consequence, one may 

significantly increase the percentage of all available events to the advantage of training file. 

Due to the limitation in quantity of raw data with equivalent SAHS-event annotations, this 

would lead to a decrease of test entries. Furthermore, another issue associated with the training 

phase is the need for finding appropriate classification parameters, as they may have a 

tremendous effect on the classifier performance. A variety of different setups have been verified 

for both classifiers during current research, leading to unsatisfactory results. However, it does 

not mean that such a setup is nonexistent, but rather imply a need of broader exploration. 

 

In connection of the intent to improve the classification outcome it may be worth to consider 

the characteristics of SAHS-events. It is significant to recall from subsection 2.1.2 that sleep 

events may occur as a result of various physiological or psychological dysfunctions. Humans 

breathe by both thorax and abdomen, but the extent of using each of them tends to diverse 

among individuals. As a consequence, in case of contact-base monitoring it is important to 

carefully consider the placement of sensors, or the area of interest in case of noncontact-based 

solutions. Utilizing only a single sensor increases the risk of omitting events observable in other 

body parts. Furthermore, the movement of corresponding muscles is possible without any actual 

inhaling or exhaling. Thus, the use of multimodality is preferred in order to prevent the system 

to be exposed to ambiguity and to secure exhaustive event recognition. Relating this issue to 

the conducted experiments of this study confirms that, as stated in the previous section, taking 

advantage of multichannel improves the classification output. Moreover, identical events may 

appear differently in the acquired data due to breathing disparity among subjects. A suggested 

solution would be to increase the amount of training entries significantly by adding new 

subjects, which presumably would lead to a better classification model. All aforementioned 

factors together with the wide definition of SAHS-events makes the learning and classification 

tasks very demanding, which led to unsatisfactory results. Applying the changes mentioned 

                                                
4 Not outliers nor causing overfitting. 
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above would most probably result in a better outcome, however due to the limited scope of this 

study – in terms of resources and time – they remain as suggestions for future work.  

 

According to the results obtained from experiments conducted during this study, there does not 

exists any strong evidences to prefer one classifier above another. Although the accuracy of 

SVM-classifier is ipso facto higher, a closer consideration of confusion matrices and inferred 

metrics – recall, precision, F-measure and AUC – indicates an even and comparable predictive 

power on the tested data. There are however noticeable differences in terms of classifiers’ 

performance in accordance to other factors, such as choice of pre-processing or input channel. 

This phenomenon could be exploited by taking advantage of multiple algorithms 

simultaneously, thus building a more intelligent decision platform as proposed by (B. Guijarro-

Berdiñas, 2012). A recommended starting point given the results from the first phase would be 

to pre-process the ANN-classifier with statistical analysis, leaving wavelet transform as the 

more suitable option for the SVM-classifier. Furthermore, based on the experimental outcome, 

it would be suggested to process ribcage channel with ANN, simultaneously dissuading to 

classify data from airflow channel by SVM. 

 

5.3 Contributions 

Several contributions have been made to the field through this study that are discussed in this 

section. Some concrete steps in the form of an empirical study has been taken as a result of 

addressing a broader goal defined in section 1.2. Firstly, due to an adequate coverage of 

background theory together with an extensive up-to-date literature review, this research may be 

used as an introduction to the field of Sleep Apnea- Hypopnea Syndrome and the equivalent 

task of automated sleep event-classification. Additionally, an overview of a monitoring system 

based on breath-data with corresponding design thoughts have been presented and can serve as 

a starting point for further development. Finally, a tailor-made software has been developed for 

the purpose of this research, where two most frequently used algorithms in the context of 

SAHS-event classification – Artificial Neural Network and Support Vector Machine – has been 

tested on the same dataset. The results themselves cannot be counted as a significant 

contribution to the field as they happen to be unsatisfactory and only concern two classification 

algorithms, however the program with attached database may be useful for further research. 
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5.4 Future work 

The current research could be extended in two separate directions that are presented in the 

following. The first one involves a direct continuation of the ongoing work by comparing 

another classification algorithms in the same environment utilizing the same dataset, 

consequently following to a more thorough results and a broader scope of study. Several 

changes have been suggested in the discussion section (5.2) with the purpose of improving the 

prediction power of the already used classifiers. On the other hand, considering the main 

objective of this study, the obvious choice would be to point future work in the direction of 

further elaboration of a breath-based monitoring system. That could involve, depending on the 

available resources, either the focus on other parts of the intended system or a design of a whole 

platform. Some adequate possibilities that may be worth consideration are; detection of sleep 

stages, prediction of subject information such as age and gender, tracking the vital signs, 

recognition of emotions such as pain, depression and anger, detection of fall, and support for 

patient-caregiver communication and alarm modules. Moreover, as mentioned in section 3.1, a 

variety of noncontact-based sensors could be utilized, such as video cameras capturing visible 

and/or invisible light, thermal cameras, audio recorders and pressure mats. There exists 

numerous of studies exploring each of the aforementioned issues that combined may form a 

desired monitoring system. 

 

5.5 Conclusion 

This section provides a summary that concludes the empirical study described in this paper. An 

increase in elderly population together with a rapidly growing field of computer science were 

the main motivating factors to proceed and delve into the issue of automated patient monitoring. 

It was decided to address a very interesting aspect related to extraction of the information based 

on breathing. A broad goal with following research questions (1.2) was consequently defined 

pointing the study in the direction of sleep disorder classification. Some general reflections 

regarding the intended monitoring system have been presented, however considering the scope 

of this study, only a few steps towards the goal have in fact been taken. In order to acquire an 

adequate knowledge, a comprehensive literature review has been conducted according to a 

previously prepared structured review protocol (2.2). In the absence of appropriate equipment, 

laboratory and test subjects, it has been decided to obtain necessary data from a free access 

database (3.3). Furthermore, a specific software has been developed for the purpose of pre-

processing of raw data samples that creates an appropriate input for the classifiers. As a result 
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of the literature review, it has been determined to compare two most frequently used 

classification algorithms in the context of Sleep Apnea-Hypopnea Syndrome, utilizing open 

source software Weka. A variety of experiments have been conducted in accordance to 

experimental plan (4.1) testing the performance of Artificial Neural Network and Support 

Vector Machine through the classification of SAHS-events. Despite a precise abidance with the 

guidelines inferred from the focus-collection papers, the obtained outcome differed 

significantly implying unsatisfactory results. Consequently, several improvements with 

proposed directions of further research have been suggested (5.2, 5.4) leaving the topic open 

with none grand conclusions drawn. 
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Appendix A: Results 

Phase I 

Experiment ID Correctly classified instances 

 Accuracy [%] (cross validation) 

*Haar - Single input channel*  

ann0_b1_cA_Haar_abs0 35,8 

ann0_b1_cA_Haar_abs1 31,64 

svm0_b1_cA_Haar_abs0 42,96 

svm0_b1_cA_Haar_abs1 37,18 

ann0_b5_cA_Haar_abs0 41,83 

ann0_b5_cA_Haar_abs1 40,64 

svm0_b5_cA_Haar_abs0 42,82 

svm0_b5_cA_Haar_abs1 42,49 

ann0_b1_cR_Haar_abs0 36,03 

ann0_b1_cR_Haar_abs1 36,03 

svm0_b1_cR_Haar_abs0 43,19 

svm0_b1_cR_Haar_abs1 38,34 

ann0_b5_cR_Haar_abs0 47,32 

ann0_b5_cR_Haar_abs1 42,75 

svm0_b5_cR_Haar_abs0 47,12 

svm0_b5_cR_Haar_abs1 43,28 

ann0_b1_cF_Haar_abs0 38,11 

ann0_b1_cF_Haar_abs1 34,64 

svm0_b1_cF_Haar_abs0 27,25 

svm0_b1_cF_Haar_abs1 25,87 

ann0_b5_cF_Haar_abs0 40,64 

ann0_b5_cF_Haar_abs1 41,43 

svm0_b5_cF_Haar_abs0 38,72 

svm0_b5_cF_Haar_abs1 38,32 

*Haar - Multiple input channel*  

ann0_b1_cAR_Haar_abs0 36,03 



  

ann0_b1_cAR_Haar_abs1 34,87 

svm0_b1_cAR_Haar_abs0 44,57 

svm0_b1_cAR_Haar_abs1 39,03 

ann0_b5_cAR_Haar_abs0 48,05 

ann0_b5_cAR_Haar_abs1 44,93 

svm0_b5_cAR_Haar_abs0 51,16 

svm0_b5_cAR_Haar_abs1 46,79 

*Daubechies4 - Single input channel* 

ann0_b1_cA_D4_abs0 37,88 

ann0_b1_cA_D4_abs1 39,26 

svm0_b1_cA_D4_abs0 45,5 

svm0_b1_cA_D4_abs1 39,49 

ann0_b5_cA_D4_abs0 43,48 

ann0_b5_cA_D4_abs1 43,02 

svm0_b5_cA_D4_abs0 44,14 

svm0_b5_cA_D4_abs1 44,08 

ann0_b1_cR_D4_abs0 43,19 

ann0_b1_cR_D4_abs1 41,57 

svm0_b1_cR_D4_abs0 44,8 

svm0_b1_cR_D4_abs1 43,19 

ann0_b5_cR_D4_abs0 46,13 

ann0_b5_cR_D4_abs1 46,26 

svm0_b5_cR_D4_abs0 46,39 

svm0_b5_cR_D4_abs1 46,39 

ann0_b1_cF_D4_abs0 33,26 

ann0_b1_cF_D4_abs1 39,72 

svm0_b1_cF_D4_abs0 27,02 

svm0_b1_cF_D4_abs1 27,71 

ann0_b5_cF_D4_abs0 41,5 

ann0_b5_cF_D4_abs1 42,03 

svm0_b5_cF_D4_abs0 38,72 

svm0_b5_cF_D4_abs1 38,25 

*Daubechies4 - Multiple input channel* 



  

ann0_b1_cAR_D4_abs0 42,57 

ann0_b1_cAR_D4_abs1 37,88 

svm0_b1_cAR_D4_abs0 46,19 

svm0_b1_cAR_D4_abs1 43,42 

ann0_b5_cAR_D4_abs0 47,92 

ann0_b5_cAR_D4_abs1 46,59 

svm0_b5_cAR_D4_abs0 50,43 

svm0_b5_cAR_D4_abs1 48,78 

*Symlet7 - Single input channel*  

ann0_b1_cA_S7_abs0 39,95 

ann0_b1_cA_S7_abs1 36,72 

svm0_b1_cA_S7_abs0 45,03 

svm0_b1_cA_S7_abs1 37,64 

ann0_b5_cA_S7_abs0 42,89 

ann0_b5_cA_S7_abs1 42,89 

svm0_b5_cA_S7_abs0 44,8 

svm0_b5_cA_S7_abs1 43,61 

*Symlet7 - Multiple input channel* 

ann0_b1_cAR_S7_abs0 37,64 

ann0_b1_cAR_S7_abs1 35,57 

svm0_b1_cAR_S7_abs0 46,19 

svm0_b1_cAR_S7_abs1 44,57 

ann0_b5_cAR_S7_abs0 47,19 

ann0_b5_cAR_S7_abs1 48,71 

svm0_b5_cAR_S7_abs0 51,69 

svm0_b5_cAR_S7_abs1 51,37 

*Single input stats FFT*  

ann0_b1_cA_stats_abs0 45,03 

ann0_b1_cA_stats_abs1 42,03 

svm0_b1_cA_stats_abs0 26,33 

svm0_b1_cA_stats_abs1 35,56 

ann0_b5_cA_stats_abs0 52,28 

ann0_b5_cA_stats_abs1 52,35 



  

svm0_b5_cA_stats_abs0 38,25 

svm0_b5_cA_stats_abs1 38,19 

ann0_b1_cR_stats_abs0 49,19 

ann0_b1_cR_stats_abs1 48,96 

svm0_b1_cR_stats_abs0 26,33 

svm0_b1_cR_stats_abs1 26,33 

ann0_b5_cR_stats_abs0 54,4 

ann0_b5_cR_stats_abs1 53,08 

svm0_b5_cR_stats_abs0 38,39 

svm0_b5_cR_stats_abs1 38,72 

ann0_b1_cF_stats_abs0 44,8 

ann0_b1_cF_stats_abs1 44,57 

svm0_b1_cF_stats_abs0 24,71 

svm0_b1_cF_stats_abs1 24,71 

ann0_b5_cF_stats_abs0 49,11 

ann0_b5_cF_stats_abs1 48,58 

svm0_b5_cF_stats_abs0 38,65 

svm0_b5_cF_stats_abs1 38,65 

*Single input stats DWT* |Best DWT: Daubechies 

ann0_b1_cA_stats_abs0 45,5 

ann0_b1_cA_stats_abs1 43,65 

svm0_b1_cA_stats_abs0 29,56 

svm0_b1_cA_stats_abs1 30,72 

ann0_b5_cA_stats_abs0 48,84 

ann0_b5_cA_stats_abs1 46,86 

svm0_b5_cA_stats_abs0 37,99 

svm0_b5_cA_stats_abs1 37,59 

ann0_b1_cR_stats_abs0 46,88 

ann0_b1_cR_stats_abs1 49,88 

svm0_b1_cR_stats_abs0 27,02 

svm0_b1_cR_stats_abs1 27,25 

ann0_b5_cR_stats_abs0 51,22 

ann0_b5_cR_stats_abs1 51,1 



  

svm0_b5_cR_stats_abs0 38,32 

svm0_b5_cR_stats_abs1 37,99 

ann0_b1_cF_stats_abs0 41,11 

ann0_b1_cF_stats_abs1 42,03 

svm0_b1_cF_stats_abs0 25,87 

svm0_b1_cF_stats_abs1 25,64 

ann0_b5_cF_stats_abs0 45,2 

ann0_b5_cF_stats_abs1 45,73 

svm0_b5_cF_stats_abs0 38,58 

svm0_b5_cF_stats_abs1 38,58 

Table A 1 Phase I results in terms of accuracy. 

 

 Abdomen avg [%] Ribcage avg [%] Flow avg [%] 

|Haar 39,42 41,7575 35,6225 

|Daubechies 42,10625 44,74 36,02625 

|stats FFT 41,2525 41,925 39,2225 

|stats DWT 40,08875 41,2075 37,8425 

|all 40,716875 42,4075 37,1784375 

Table A 2 The accuracy in the context of input channels and pre-processing techniques. 

 

 DWT avg |A DWT avg |AR DWT avg |A & AR 

|Haar 39,42 43,17875 41,299375 

|Daubechies 42,10625 45,4725 43,789375 

|Symlet 41,69125 45,36625 43,52875 

Table A 3 The accuracy in the context of pre-processing techniques and the use of multichannel. 

 

 Daubechies avg Stats DWT avg Stats FFT avg 

|ANN 41,44166667 46,5 48,69833333 

|SVM 40,47333333 32,92583333 32,90166667 

|all 40,9575 39,71291667 40,8 

Table A 4 The accuracy in the context of the classifiers and the pre-processing techniques. 

 



  

abs0 avg abs1 avg b1 avg b5 avg ann0 avg svm0 avg 

41,5571875 40,5578125 37,674375 44,440625 43,3896875 38,7253125 

Table A 5 The overall accuracy in the context of  use of absolute value, training data 

composition and the classifiers. 

 

Phase II 

Test subject ID_algorithm Correctly classified instances 

 Accuracy [%] 

*ANN: Default algorithm setup*  

2_ann0 45,97 

5_ann0 47,37 

7_ann0 43,84 

8_ann0 15,79 

9_ann0 18,42 

11_ann0 37,14 

12_ann0 49,01 

14_ann0 46,15 

15_ann0 37,84 

17_ann0 47,06 

19_ann0 31,73 

20_ann0 38,36 

21_ann0 53,75 

22_ann0 22,22 

23_ann0 48,69 

24_ann0 25,32 

26_ann0 46,43 

  

*SVM: Default algorithm setup*  

2_svm0 46,77 

5_svm0 49,12 

7_svm0 47,95 

8_svm0 52,63 



  

9_svm0 17,11 

11_svm0 42,86 

12_svm0 47,02 

14_svm0 43,96 

15_svm0 48,65 

17_svm0 42,65 

19_svm0 37,5 

20_svm0 43,84 

21_svm0 55 

22_svm0 25,93 

23_svm0 42,41 

24_svm0 27,27 

26_svm0 48,81 

Table A 6 Phase II results in terms of accuracy. 

 

  



  

Run 1 ANN: Default setup 

=== Evaluation on test set === 

=== Summary === 

Correctly Classified Instances         631               41.1075 % 

Incorrectly Classified Instances       904               58.8925 % 

Kappa statistic                          0.0942 

Mean absolute error                      0.2126 

Root mean squared error                  0.338  

Relative absolute error                 90.7158 % 

Root relative squared error            101.807  % 

Total Number of Instances             1535      

 

=== Detailed Accuracy By Class ===                

TP Rate FP Rate Precision Recall 
F-

Measure 

ROC 

Area 
Class 

                0 0 0 0 0 0.511 APNEA_O 

                0.733 0.223 0.118 0.733 0.203 0.788 APNEA_C 

                0 0.003 0 0 0 0.606 APNEA_M 

                0.612 0.506 0.531 0.612 0.569 0.584 HYP_O 

                0.225 0.164 0.456 0.225 0.302 0.579 HYP_C 

                0.057 0.009 0.125 0.057 0.078 0.532 HYP_M 

   0.411 0.315 0.437 0.411 0.399 0.585 
Weighted 

Avg. 

 

=== Confusion Matrix === 

  a   b   c   d   e   f   <-- classified as 

  0  27   0  49  14   1 | a = APNEA_O 

  0  44   0  10   3   3 | b = APNEA_C 

  0   8   0  11   6   1 | c = APNEA_M 

  0 154   2 454 126   6 | d = HYP_O 

  0 138   2 307 131   3 | e = HYP_C 

  0   2   0  24   7   2 | f = HYP_M 

 



  

Run 1 SVM: Default setup 

=== Evaluation on test set === 

=== Summary === 

Correctly Classified Instances         643               41.8893 % 

Incorrectly Classified Instances       892               58.1107 % 

Kappa statistic                          0.0852 

Mean absolute error                      0.1937 

Root mean squared error                  0.4401 

Relative absolute error                 82.6592 % 

Root relative squared error            132.58   % 

Total Number of Instances             1535      

 

=== Detailed Accuracy By Class === 

TP Rate FP Rate Precision Recall 
F-

Measure 

ROC 

Area 
Class 

0 0 0 0 0 0.5 APNEA_O 

0.6 0.191 0.113 0.6 0.19 0.704 APNEA_C 

0 0.005 0 0 0 0.498 APNEA_M 

0.604 0.509 0.526 0.604 0.562 0.547 HYP_O 

0.274 0.209 0.444 0.274 0.339 0.533 HYP_C 

0 0 0 0 0 0.5 HYP_M 

0.419 0.333 0.427 0.419 0.407 0.543 
Weighted 

Avg. 

 

=== Confusion Matrix === 

  a   b   c   d   e   f   <-- classified as 

  0  18   1  46  26   0 | a = APNEA_O 

  0  36   0  18   6   0 | b = APNEA_C 

  0   7   0  14   5   0 | c = APNEA_M 

  0 138   2 448 154   0 | d = HYP_O 

  0 118   4 300 159   0 | e = HYP_C 

  0   1   0  26   8   0 | f = HYP_M 

 



  

Run 2 ANN: Adjusted setup 

MultilayerPerceptron -L 0.05 -M 0.95 -N 50000 -V 0 -S 0 -E 10 -H "15, 15" -G -B -C -R 

LibSVM wrapper, original code by Yasser EL-Manzalawy (= WLSVM) 

Time taken to build model: 222.18 seconds 

=== Evaluation on test set === 

=== Summary === 

Correctly Classified Instances         712               46.3844 % 

Incorrectly Classified Instances       823               53.6156 % 

Kappa statistic                          0.0559 

Mean absolute error                      0.2159 

Root mean squared error                  0.3707 

Relative absolute error                 92.1349 % 

Root relative squared error            111.6765 % 

Total Number of Instances             1535      

=== Detailed Accuracy By Class === 

TP Rate FP Rate Precision Recall 
F-

Measure 

ROC 

Area 
Class 

0 0.001 0 0 0 0.486 APNEA_O 

0.15 0.053 0.103 0.15 0.122 0.653 APNEA_C 

0.038 0.023 0.029 0.038 0.033 0.569 APNEA_M 

0.836 0.752 0.51 0.836 0.633 0.58 HYP_O 

0.141 0.111 0.436 0.141 0.213 0.514 HYP_C 

0 0.005 0 0 0 0.5 HYP_M 

0.464 0.408 0.416 0.464 0.392 0.55 
Weighted 

Avg. 

=== Confusion Matrix === 

  a   b   c   d   e   f   <-- classified as 

  0   7   1  72  11   0 | a = APNEA_O 

  1   9   2  37  11   0 | b = APNEA_C 

  0   0   1  20   4   1 | c = APNEA_M 

  1  26  17 620  76   2 | d = HYP_O 

  0  42  13 440  82   4 | e = HYP_C 

  0   3   1  27   4   0 | f = HYP_M 



  

Run 2 SVM: Adjusted setup 

LibSVM -S 0 -K 2 -D 3 -G 0.005 -R 0.0 -N 0.5 -M 40.0 -C 1.5 -E 0.001 -P 0.1 -seed 1 

=== Classifier model (full training set) === 

Time taken to build model: 0.33 seconds 

=== Evaluation on test set === 

=== Summary === 

Correctly Classified Instances         764               49.772  % 

Incorrectly Classified Instances       771               50.228  % 

Kappa statistic                          0.0519 

Mean absolute error                      0.1674 

Root mean squared error                  0.4092 

Relative absolute error                 71.4465 % 

Root relative squared error            123.2601 % 

Total Number of Instances             1535      

=== Detailed Accuracy By Class === 

TP Rate FP Rate Precision Recall 
F-

Measure 

ROC 

Area 
Class 

0.033 0.001 0.667 0.033 0.063 0.516 APNEA_O 

0 0 0 0 0 0.5 APNEA_C 

0.918 0.846 0.504 0.918 0.65 0.536 APNEA_M 

0.139 0.104 0.45 0.139 0.213 0.518 HYP_O 

0 0 0 0 0 0.5 HYP_C 

0.498 0.448 0.44 0.498 0.397 0.525 HYP_M 

0.033 0.001 0.667 0.033 0.063 0.516 
Weighted 

Avg. 

=== Confusion Matrix === 

  a   b   c   d   e   f   <-- classified as 

  0   0   0  77  14   0 | a = APNEA_O 

  0   2   0  46  12   0 | b = APNEA_C 

  0   0   0  20   6   0 | c = APNEA_M 

  0   0   0 681  61   0 | d = HYP_O 

  0   1   0 499  81   0 | e = HYP_C 

  0   0   0  29   6   0 | f = HYP_M 



  

Paired t-test 

t-Test: Paired Two Sample for Means  

   

  Recall ANN Recall SVM 

Mean 0,271166667 0,246333333 

Variance 0,104903767 0,087162267 

Observations 6 6 

Pearson Correlation 0,983688956  

Hypothesized Mean Difference 0  

df 5  

t Stat 0,969016793  

P(T<=t) one-tail 0,188520908  

t Critical one-tail 2,015048373  

P(T<=t) two-tail 0,377041816  

t Critical two-tail 2,570581836   

   

t-Test: Paired Two Sample for Means  

   

  Precision ANN Precision SVM 

Mean 0,205 0,1805 

Variance 0,0534592 0,0582199 

Observations 6 6 

Pearson Correlation 0,97901027  

Hypothesized Mean Difference 0  

df 5  

t Stat 1,214047106  

P(T<=t) one-tail 0,139469475  

t Critical one-tail 2,015048373  

P(T<=t) two-tail 0,27893895  

t Critical two-tail 2,570581836   

   



  

t-Test: Paired Two Sample for Means  

   

  F-measure ANN F-measure SVM 

Mean 0,192 0,181833333 

Variance 0,0482148 0,053696967 

Observations 6 6 

Pearson Correlation 0,987592808  

Hypothesized Mean Difference 0  

df 5  

t Stat 0,663161015  

P(T<=t) one-tail 0,268286688  

t Critical one-tail 2,015048373  

P(T<=t) two-tail 0,536573375  

t Critical two-tail 2,570581836   

   

t-Test: Paired Two Sample for Means  

   

  ROC area ANN ROC area SVM 

Mean 0,6 0,547 

Variance 0,0097244 0,0063328 

Observations 6 6 

Pearson Correlation 0,940303855  

Hypothesized Mean Difference 0  

df 5  

t Stat 3,60174937  

P(T<=t) one-tail 0,007757315  

t Critical one-tail 2,015048373  

P(T<=t) two-tail 0,01551463  

t Critical two-tail 2,570581836   

 



  

Appendix B: PhysioNet 

Name 

rdsamp - read WFDB signal files 

Synopsis 

rdsamp -r record [ options ... ] 

Description 

rdsamp reads signal files for the specified record and writes the samples as decimal numbers 

on the standard output. If no options are provided, rdsamp starts at the beginning of the record 

and prints all samples. By default, each line of output contains the sample number and samples 

from each signal, beginning with channel 0, separated by tabs. 

Options include: 

-c 

Produce output in CSV (comma-separated value) format (default: write output in tab-separated 

columns). 

-f time 

Begin at the specified time. By default, rdsamp starts at the beginning of the record. 

-h 

Print a usage summary. 

-H 

Read the signal files in high-resolution mode (default: standard mode). These modes are 

identical for ordinary records. For multifrequency records, the standard decimation of 

oversampled signals to the frame rate is suppressed in high-resolution mode (rather, all other 

signals are resampled at the highest sampling frequency). 

-l interval 

Limit the amount of output to the specified time interval (in standard time format; default: no 

limit). If both -l and -t are used, rdsamp stops at the earlier of the two limits. 

-p 

Print times in seconds and milliseconds, and values in physical units. By default, rdsamp prints 

times in sample intervals and values in A/D units. 

-P 

Same as -p, but yields higher precision in the sample values (8 decimal places rather than 3). 

A single character can be attached to either -p or -P to choose the 

format for the printed times in the first column of output. The choices are: 

https://www.physionet.org/physiotools/wag/rdsamp-1.htm#toc0
https://www.physionet.org/physiotools/wag/rdsamp-1.htm#toc1
https://www.physionet.org/physiotools/wag/intro.htm#record
https://www.physionet.org/physiotools/wag/rdsamp-1.htm#toc2
https://www.physionet.org/physiotools/wag/intro.htm#record
https://www.physionet.org/physiotools/wag/intro.htm#time
https://www.physionet.org/physiotools/wag/intro.htm#time


  

-pd (or -Pd) 

Print time of day and date if known, as [hh:mm:ss DD/MM/YYYY]. The base time and date 

must appear in the header file for the record; otherwise, this format is equivalent to "e" format 

(below). 

-pe (or -Pe) 

Print the elapsed time from the beginning of the record, as hh:mm:ss. 

-ph (or -Ph) 

Print the elapsed time in hours. 

-pm (or -Pm) 

Print the elapsed time in minutes. 

-ps (or -Ps) 

Print the elapsed time in seconds. This is the default format when using -p or -P. 

-pS (or -PS) 

Print the elapsed time in sample intervals. 

-s signal-list 

Print only the signals named in the signal-list (one or more input signal numbers or names, 

separated by spaces; default: print all signals). This option may be used to re-order or duplicate 

signals. 

-S signal 

Search for the first valid sample of the specified signal (a signal name or number) at or 

following the time specified with -f (or the beginning of the record if the -f option is not 

present), and begin printing at that time. 

-t time 

Stop at the specified time. By default, rdsamp stops at the end of the record. 

-v 

Print column headings (signal names on the first line, units on the second). The names of some 

signals are too wide to fit in the columns; such names are shortened by omitting the initial 

characters (since names of related signals often differ only at the end, this helps to make the 

columns identifiable). Names of units are shortened when necessary by omitting the final 

characters, since the initial characters are usually most important for distinguishing different 

units. 

https://www.physionet.org/physiotools/wag/intro.htm#signal-list
https://www.physionet.org/physiotools/wag/intro.htm#signal-list
https://www.physionet.org/physiotools/wag/intro.htm#signal
https://www.physionet.org/physiotools/wag/intro.htm#signal
https://www.physionet.org/physiotools/wag/intro.htm#time
https://www.physionet.org/physiotools/wag/intro.htm#time


  

-X 

Produce output in WFDB-XML format (same as the CSV format produced using the -c option, 

but wrapped within an XML header and trailer). This format is recognized and parsed 

automatically by wrsamp. 

Environment 

It may be necessary to set and export the shell variable WFDB (see setwfdb(1) ). 

Availability 

This program is provided in the app directory of the WFDB Software Package. Run make in 

that directory to compile and install it if it have not been installed already. 

The PhysioNet ATM (http://physionet.org/cgi-bin/ATM) provides web access 

to rdsamp (select Show samples as text from the Toolbox). 

See Also 

rdann(1) , setwfdb(1) , wrsamp(1) 

Author 

George B. Moody (george@mit.edu) 

Source 

http://www.physionet.org/physiotools/wfdb/app/rdsamp.c 

 

https://www.physionet.org/physiotools/wag/rdsamp-1.htm#toc3
https://www.physionet.org/physiotools/wag/setwfd-1.htm
https://www.physionet.org/physiotools/wag/rdsamp-1.htm#toc4
https://www.physionet.org/physiotools/wag/rdsamp-1.htm#toc5
https://www.physionet.org/physiotools/wag/rdann-1.htm
https://www.physionet.org/physiotools/wag/setwfd-1.htm
https://www.physionet.org/physiotools/wag/wrsamp-1.htm
https://www.physionet.org/physiotools/wag/rdsamp-1.htm#toc6
https://www.physionet.org/physiotools/wag/rdsamp-1.htm#toc7
http://www.physionet.org/physiotools/wfdb/app/rdsamp.c
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