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Abstract

Climate change is a difficult research problem, requiring insight from vast fields such as chem-

istry, biology, climatology and oceanography. As the ever increasing publishing of information

in these fields continue, text mining and knowledge discovery systems are being developed to

alleviate the workload of extracting relevant information from literature. This master thesis fo-

cuses on knowledge discovery from extracted information, and ranking of proposed hypotheses.

A rule-based inference system was implemented i Java using the Jess rule engine. The applica-

tion consist of a set of general and domain specific logic rules, which operate on domain knowl-

edge inputted to the system, and proposes hypotheses based on this input. The system can

also abductively attempt to explain contradictions between expected and inputted knowledge.

The system was tested on the domain hypotheses known as the iron hypothesis and the DOC

hypothesis. The system was able to infer these hypotheses.

Trondheim, 2016-06-01

Knut Harald Ryager
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Chapter 1

Introduction

1.1 Motivation

With an ever growing body of scientific literature, it is harder to follow along with all that is pub-

lished. The result is that scientists become more specialized, and form new subfields. When sci-

entists don’t follow up on the research closely related to their specialized field, the field becomes

isolated, and there is a growing concern that this isolation can lead to knowledge not being uti-

lized by a wider scientific community. Literature-based discovery systems (LBKD or LBD) works

to alleviate this, using text mining and AI methods to connect knowledge from across literature

works.

One of the pioneers in pointing out this issue is the librarian Swanson (1986), who produced

the first results in LBD, which aims to automatically connect knowledge from isolated fields to

form a discovery. The issue is not new however. A good historical example of this happening is

when Darwin wanted to explain how variability within species arose for his theory of evolution.

Mendel on the other hand, had already discovered how variability was inherited, but was not

aware of Darwin’s evolution theory to see this wider implications of genetic variably. It turns out

Darwin actually owned a book describing Mendel’s experiments, yet he had not gotten as far as

reading about them. (Example from Gordon et al., 2001). Much of the research in LBD has been

done in the domain of biomedicine, as this is one of the biggest domains where specializations

and publishing are rampant. In MEDLINE, The U.S National Library of Medicine, 2,000-4,000

references to journal articles are added each day. The issue has been growing also in the domain

2



CHAPTER 1. INTRODUCTION 3

of climate science, with heavy specializations to understand different nature systems, yet a need

to understand the complex interactions between the systems.

The OCEAN-CERTAIN1 project, funded by the EU and coordinated by NTNU, involves 11

partners from Norway, Germany, Belgium, Turkey, Sweden, Australia, Chile and the UK. It fo-

cuses on marine science, and is the first project to begin literature based-discovery in climate

science. The goal is to make a discovery support system, being able to link knowledge from

different sources

1.2 Research goals

The focus of this thesis is on the reasoning component of a literature-based discovery system

intended for OCEAN-CERTAIN. The system developed is not a final system, but an exploration

of inference systems that may guide design decisions. The research goals addressed by the thesis

are:

1. Make a model of the knowledge and inferences to

a) generate hypotheses of new knowledge.

b) Detect contradictions in the system’s knowledge

c) Explain the contradictions through a reasoning process

2. Develop an inference system to implement the reasoning model.

3. Suggest how to visualize the reasoning of the system in ways that can be analyzed by both

AI people and domain experts.

1.3 Limitations

As the text extraction system of the OCEAN-CERTAIN project is not finished, only the previously

manually annotated corpus, along with any other manually entered data, is available to use by

the system. This limits the ability to perform large-scale statistical experiments on big data sets.

1http://oceancertain.eu/what-is-ocean-certain/
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1.4 Approach

The approach taken was to first construct a prototype version of the program, and discuss the

resulting hypotheses generated by the prototype with a domain expert. This is to identify the

most important features and limitations of the system. By going through use cases, the system

was iteratively improved by adding more desired features.

1.5 Structure of the Report

Figure 1.1 shows the workflow of the thesis. First, a domain knowledge model was made, ful-

filling research goal 1. Then the model was implemented in the Jess rule engine, fulfilling goal

2. Then the system was made able to print out the results from running the inference, both as

a Neo4j relational database, and a HTML/JavaScript page, fulfilling research goal 3. Then, some

use cases were tested with the system.
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Figure 1.1: Flow diagram of the work presented in the thesis.



Chapter 2

Background

This chapter reviews the structure of literature-based discovery systems, the OCEAN-CERTAIN

project, and what work has been already done with regards to LBD-systems in OCEAN-CERTAIN.

Then, various AI methods for inferring knowledge is looked at, and compared to the more broader

inference methods used in science. From this, an AI method is chosen for this thesis’ LBD sys-

tem, to address research goal 1 and 2. (See chapter 4).

2.1 Literature-based discovery (LBD)

LBD aims to discover publicly available knowledge in literature, beyond what is already possible

with keyword searches. A knowledge support system can use text mining to extract structured

data of objects and relationships between them. The system can then suggest new hypothesises

based on it’s findings, possibly combined with existing domain knowledge.

Such a hypothesis was first published by Swanson (1986), who used a search algorithm based

on statistical co-occurrence, which he manually ran through some dozens papers related to

Raynaud’s syndrome and/or fish oil. In this literature, it is established that fish oil (A) is able

to reduce vascular reactivity (B), while a reduction in vascular reactivity is able to ameliorate

Raynaud’s syndrome (C). This knowledge, A → B and B → C, can be linked as A → C. Swanson

showed how this connection was plausible from his algorithm, and such linking in LBD is now

referred to as Swanson’s ABC model. DiGiacomo et al. (1989) later confirmed Swanson’s findings

through clinical trials.

6
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LBD can be done in either an open or closed form. In open discovery, a single initial concept

is explored, leading to some new concept. In closed discovery, there are two initial concepts,

and the goal is to find a connection between the two concepts. Figure 2.1 illustrates this with a

graph. This thesis focuses mainly on open discovery.

Figure 2.1: Open discovery (to the left) and closed discovery (to the right). Each node is a con-
cept, raised from node pointing to it.

A typical LBD system has a pipeline consisting of several steps:

Document retrieval: First, documents (scientific articles) are crawled from various scientific

publishers. These publishers have varying document formats and interaction APIs, so the they

are converted to a standard format and indexed. Relevant documents, in oceanography and

related fields, can then be filtered uniformly by some metrics.

Information Extraction: Text documents are converted into structured information. Sen-
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tences are parsed, words are standardized by their semantic meanings, and stored in data struc-

tures as used by programming languages and data bases.

Information extraction is typically divided into three subtasks: In (Named) Entity recogni-

tion (ER), each entity is classified as a category, e.g. “Tom works at Google” could be annotated:

[Tom]person works at [Google]organization. "Named" means that the entity is linked to some

canonical proper name, e.g. if the name "Obama" appears in the text, he may be linked to the

canonical “Barack Hussein Obama II”. Typically the hardest part of ER is to link referring ex-

pressions, such as “him”, which could also refer to "Barack Hussein Obama II", or some other

entity, based on it’s context. Relation Extraction (RE) aims to discover relations existing between

entities in the text. It is common to limit the extracted relations to a predefined set of binary

relations for the task domain, and extract these as (subject,predicate,object) triples. The above

example could yield (Tom,WorksFor,Google), with WorksFor being the canonical binary relation

for “works at”. Event Extraction (EE) involves the extraction of structures more complex than re-

lation triples. It could be n-ary relations, relations having other relations as arguments, or the

elements in a triple could have modifiers describing some condition, like time or space, where

it holds true. ”Tom works at Google in the weekends” could have a modifier AtWeekends either

surrounding WorksFor, or the whole triple. The development of IE have gone from focusing

mostly on ER and RE, to EE receiving more attention in IE-focused domains like biomedicine,

where ER and RE tools have reached some reasonable performance.

Inference engine: Reasoning about structured information can be standardized, which al-

lows a computer to make various inferences, both deductive and abductive, that a human is able

to make from the information. These include causal transitivity, generalizations and specializa-

tions. This thesis focuses mainly on this step of the pipeline.

User interaction: Because the system does not have the understanding of a domain expert, it

is useful for the system to be able to take input to adjust it’s reasoning, such as focusing on what

the user deems more important when investigating reasoning paths. Designing this interaction

is a major job, and as this thesis does not cover the final implementation of the system, it will

only serve in guiding to design this system.
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2.2 OCEAN-CERTAIN

OCEAN-CERTAIN is a cross-disciplinary research project aiming to discover the impact of vari-

ous stressors on the oceanic food web and the biological pump, starting in 2013 and expected to

run for 4 years. The development of knowledge discovery support for the oceanographic climate

science domain is a part of this project.

Food webs are the interconnection of food chains of species in an ecological community, de-

scribing what specifies feed on each other in a graph. Specifies can be divided into two trophic

levels, autotrophs and heterotrophs. Autotrophs consume inorganic material like minerals and

gasses (such as CO2) to produce organic material, which can be consumed by heterotrophs. A

food chain goes from fully autotroph at the bottom, to more heterotroph further up. Thus au-

totrophs lays the foundation for all biomass in the food web, and are as such referred to as pri-

mary producers. The most common primary producer in the ocean are phytoplankton, which

comes in several types. Some are calcifying, meaning that they form a calcium carbonate ex-

oskeleton. Whether calcifying or non-calcifying phytoplankton dominate an environment, is

dependent on various factors, one being the available mineral nutrients. Phytoplankton lives

near the surface of the ocean, as they require CO2 and sunlight. On death, their biomass is

mostly released back into the atmosphere. The shell of calcifying phytoplankton however may

drag some biomass to the bottom of the sea, removing it from the environment. Specifies feed-

ing on phytoplankton may also move the biomass deeper into the sea, and cause it to eventually

reach the bottom. This effect is known as the biological pump, and is a significant mitigator of

increasing CO2 in the atmosphere from man-made activities.

There are however various stressors on the food-web, such as ocean pollution, acidification,

and overfishing, that while directly may only affect one species, may indirectly affect the entire

food web. Thus they may effect the effectiveness of the biological pump, which is dependant on

the food web composition. While stressors’ effects are often well studied in isolation, the overall

effect of all stressors is hard to predict.

Marsi and Öztürk (2015) observes that a common occurrence with variables in the Earth

science domain is that they represent complex entities expressed as noun phrases with up to

multiple modifiers, e.g. oxygen depletion in the upper 500 m of the ocean, rather than sim-
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ple atomic entities often found in biomedicine. Extracting and reasoning about such complex

variables poses a greater challenge. To more easily reason about the variables, they perform

generalizations, e.g. by pruning away modifiers, such as oxygen depletion in the upper 500 m

of the ocean to oxygen depletion. This pruning is done by performing tree transformation op-

erations on the sentence’s syntax tree. They build a browsable variable hierarchy, allowing the

user to inspect all mentions of each variable type, both the original mention in the text and it’s

generalizations. They used text from journals published by Nature Publishing Group, selecting

the top 10k abstracts based on matching with search terms given to them by domain experts.

After tokenization, sentence splitting, POS-tagging lemmatization and parsing, they were left

with 9,586 article abstracts, 59,787 sentences and approximately 4 million tokens. On the lem-

matized syntax trees, they were able to use the Tregex engine (Levy and Andrew, 2006), to match

the trees with regular expressions for changing variables. These patterns were generated from

a small hand-written patterns, yielding 320 patterns. The total number of matched variables in

the corpus is 21,817. Among these, 66% were unique, supporting the need to generalize them

into something more common. The tree transformations for generalizing the Tregex expression

was implemented in Tsurgeon. With different variables being generated based on what trans-

formations were applied, the resulting number of variable instances after the generalizations

was 150,716. The number of variable types, after removing those that appeared only once, was

17,613.

2.3 LBD focus in the OCEAN-CERTAIN project

Based on discussion with a domain expert, Marsi et al. (2014) decided that the focus of the LBD

research of Ocean Certain will be to extract causal relations between events of variables that are

changing - either increasing, decreasing, or an unspecified change. The extracted rules will be

on the form “If variable X increases, then variable Y decreases”. The system will also look for

correlations, without an identified causal direction, and contradictory findings. The system will

then be able to identify chains of change events. A discovery of particular interest in the relevant

domains are feedback loops, where a causal chain forms a circle.

They propose an annotation scheme to capture change events and causal relations. Each
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change event must have a trigger, and the change must apply to a variable. The trigger is tagged

either INCREASE, DECREASE or CHANGE, for undirected changes. The variable of an event is

tagged as THEME. Some examples are

a. [DECREASE reduced] [THEME calcite production] b. [CHANGE significant changes in]

[THEME surface ocean pH]

A cause event has a trigger for the cause relation, tagged CAUSE. They must have a AGENT

representing the cause, and a THEME representing the effect. Some examples are

a. [AGENT rise in atmospheric CO2 levels] [CAUSE causes] [THEME significant changes

in surface ocean pH] b. [AGENT Fe(III) addition in the presence of GA (FeGA)] [CAUSE gave]

[THEME higher Fe(II) concentration]

The extracted if-then rules can be written with an arrow syntax, with ↑ signifying an increase,

↓ a decrease, and l an unspecified change, =⇒ for causal relations, curly arrow for correla-

tions, ⇐⇒ for feedbacks, optionally with + or - for positive or negative feedbacks. The logical

predicates ∧ (and), ∨ (or), ¬ (not) are also supported, and delimited my square brackets. An

example is show below, where sentence a is extracted to rule b.

In the light-limited regime, the carbon:nutrient ratio turns out to decrease with increasing

mixed-layer depth and temperature.

[ ↑ mixed-layer depth ∧ ↑ temperature ] ↓ the carbon:nutrient ratio

2.4 Discussion of LBD prototype with domain expert

One challenge of developing a knowledge discovery system, as with other software systems, is

to align the expectations from the users of what the system will be capable of, with the technical

possibilities and limitations. One issue is that it is often hard for the user to fully express what

they want from the system until they see some working prototype they can comment on. Thus

after making a basic working system, a discussion session was done with a domain expert (Murat

Ardelan), where the prototype was shown off.

First, the input to the rule engine was looked at. This consists mostly of manually annotated

causal relations and syntactical generalizations. As it turns out, some of the input relations were

contradictory, as they came from conflicting studies. The domain expert commented that such
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contradictions would be very important for the user to find.

In regards to the syntactical generalizations, the domain expert commented that when a

process is involved in a complex variable, such as fixation, recycling, enrichment, uptake, re-

moval, generalizing these to a the variable involved in the process could yield bad reasoning.

He suggested that these processes should be recognized as processes within an ontology, which

would allow for some more accurate reasoning in regards to them. For example, "uptake" is

often correlated with "removal", which could mean that a variable is decreasing. Another issue

with syntactical generalizations are such as "growth rate of phytoplankton" being generalized to

"phytoplankton", as a change in growth rate of a variable does not necessarily imply the same

change in that variable, based on consumption of that variable. This is among those generaliza-

tions that have been shown useful however, as one of the rules from an article, "iron increasing

causes growth rate of phytoplankton increasing" are among those that helps to yield the iron

hypothesis. So whether ultimately whether this generalization will prove too problematic or

mostly useful, will have to be judged on a larger data set.

In regards to the inferred rules, the domain expert commented that some variables were too

general or specific to inherit relationships, e.g. the variable "plant growth in the sea" which

shown up in a rule, is too general. Phytoplankton is an example of ocean plants that are very

important however, and it may be useful to generalize a relationship from one species of phyto-

plankton into phytoplankton. Which generalizations that are more plausible or useful ,is heavily

on the domain side of knowledge, and may be part of the ontology used by the application.

2.5 Inference methods

Here is presented some of the basic reasoning forms most used, both in science and daily life,

before we look at reasoning forms in AI.

2.5.1 Deduction

Deductive reasoning begins with a set of premises, and infer new conclusions based on some

logical rules. The conclusions holds true as long as the premises are true, and deductions are

thus valid. One of the simplest and well-known deductive rules is modus ponens, which uses
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the rule "a implies b", written a → b. With the premise that a is true, written simply a, the

deduction goes

a

a → b

∴b

With the premises above the horizontal line, and the conclusions below it.

2.5.2 Induction

Unlike deductions, inductions may infer conclusions without a definite logical rule implying the

conclusion based on the premises. They are said to be top-down, unlike deductions which are

bottom-up. Most commonly, inductions are generalizations, justified by statistical plausibility.

Induction must not be confused with mathematical induction, where a generalization is proved

to hold for every possible scenario, which actually constitutes a deduction.

2.5.3 Abduction

Abduction is the process of finding the most likely explanation for an observation. It is thus said

to be reasoning "backwards" rather than "forwards". Falkenhainer (1990) uses the following

notion of abduction:

D is a collection of data

H explains D

No other hypothesis explains D as well as H

∴Therefore, H is correct

Like with induction, the conclusion is not guaranteed. First, the reasoning used to construct

H may include non-valid reasoning, such that H may not be valid. Second, there is no guaran-

tee that all possible hypotheses are actually considered. Third, the most likely hypothesis may

differ based on the measure of how probable hypotheses are.
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2.6 AI inference methods

2.6.1 State space search

In AI, problems are often considered as a state space; a set of states and operations that can be

applied to states to transform them to different states in the state space. One of the states is an

initial states, and at least one is a goal state. Applying the operations to the initial state and the

following generated states in an attempt to reach a goal state, constitutes a state space search.

A state space constitute a graph, with states being the nodes and operations the edges. Thus,

any graph searching algorithm, such as breadth-first or depth-first, can be used for a state space

search. However, AI methods usually bias the search order in such a way that fewer states will

have to be considered than in an exhaustive search. Rules that disregard certain states from the

search are called pruning rules. Pruning is often done by ranking each state by how promising

they are, such that the most promising branches can be searched first. Such ranking rules are

called heuristics.

When a state space has more than one goal state, one may not just want to find any goal,

but the goal with the shortest path to the initial state. An algorithm that can do this is the A*

search algorithm. It uses heuristics which ranks states based on an estimated path length from

the initial state, through that state, and to a goal state. If the estimate is guaranteed to never

overestimate the path length, the heuristic is said to be admissible. With an admissible heuristic,

A* is guaranteed to find the shortest path to a goal state. The shortest path problem in graph

can be mapped to typical shortest paths problems found in real life, such as that of finding

the shortest path between two points on a geographical map. An admissible heuristic in this

scenario is to take the direct flight path to the goal destination, as there are no possible shorter

paths.

In other problems, finding a goal state may be the only real concern. In an equation solving

problem, the unsolved equation is the initial state, algebraic operations are the operations to be

applied on states, and an equation with the unknown variable isolated on one side, is the goal

state. The ranking of states in this problem is more concerned about the remaining path length

of a state to the goal, rather than the path length from the initial state.

In a chess game, the goal states are those positions where a player has won, with a state
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search attempting to reach such a state for one of the players from the current board state. Here

the opponent decide where the search will go for every other move, and the search prunes away

the branches from those moves where the opponent is considered not to make good plays.

Often, there are no efficient admissible heuristics known to solve a problem. Often however

inadmissible heuristics may perform well in a range of problems. Here we look a some common

AI heuristic types.

Means-End Analysis

Means-End Analysis takes into account both an initial state and a goal state while reasoning. It

works by considering the differences in the initial and goal state, and attempts actions that will

reduce the number of differences. In an equation solving system, with the logical operations

add, subtract, multiply, divide and factor out, a difference between the unsolved and solved

equation can be that the unknown variable x have several occurrences, as opposed to one. If

two terms ax +bx in the equation are being considered, Means-End Analysis thus suggests the

factoring operation to derive x(a +b).

Means-End analysis thus provide similarity measures as search heuristics. It can be em-

ployed in forward chaining, for a more depth-first search. The heuristics may however not be

admissible, such that the required number of moves to the goal state increases rather than de-

creases by applying a move suggested by the heuristic. In the above example, if the full equa-

tion was ax + bx = ax + c, the factoring, while getting closer to the solution by the metric of

x-occurrences, would only pull further away from the goal state, as opposed to subtracting ax,

which lead to the goal state in just one additional operation.

Closed LBD, where both search terms are searched for a connection to the search graph

springing from the other term, is an example of means-end analysis.

Hill climbing

Like Means-End Analysis, Hill climbing attempts to reach a goal state by changing a state into

a more similar one to the goal state. For a continuous function f (x), where the max value of f

is the goal state, hill climbing on the x-axis is equivalent to travelling in the positive direction

of f ′(x), or ’climbing’ the graph of f (x). For a many-dimensional search space, where several
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parameters must fulfil a goal state, hill climbing combines all the parameters into a single simi-

larity measure, equivalent to traveling in the direction of the largest positive derivative.

Hill climbing is prone to local optimums. One way to avoid local optimums is to run several

instances of hill climbing from different initial conditions and choose the best result, or during

the search, randomly move in either the direction of the derivative or some other direction. In

simulated annealing, a "temperature" variable T dictates the chance of moving in a random

direction, with a high T giving a high chance for random movement. During the simulated

annealing session, T begins at a high value, and then decreases towards 0 at a rate of d t . At

T = 0, either the global or some local maximum has been reached. For the chance p of reaching

the global maximum, p → 1 as d t → 0, typically much faster than for an exhaustive search, but

how much faster depends on the structure of the state space.

2.6.2 Knowledge based reasoning

Some problems are more difficult to model as a simple state space search, as the number of

states would be too high. A knowledge system that contain a potentially large number of knowl-

edge statements, from which new knowledge statements can be derived, would require one

state for each combination of possible knowledge statements. This problem can be more eas-

ily modeled by a graph, where each node represents a knowledge statement, and new nodes of

knowledge are reached by applying logical rules to knowledge already reached. This is called

knowledge based reasoning.

A logical rule may take several knowledge statements as antecedents, thus the problem can’t

be narrowed down to just finding a short path through the graph to a desired goal, as the goal

node may be dependent on having discovered some number of other nodes. The process of

finding new knowledge statements by such repeated application of rules is called forward chain-

ing. Forward chaining is said to be data driven, as the initial data determines what inferences are

made and what conclusions are reached. The challenge in forward chaining is to apply the most

useful inferences to the data, which will ultimately lead to some goal statement. Deduction and

induction is often used in forward chaining.

The opposite of forward chaining is backward chaining, which begins with a goal statement,

and attempts to infer some satisfying initial statements that would imply the goal statement. It



CHAPTER 2. BACKGROUND 17

can thus be seen as reasoning in the opposite direction of forward chaining, and is fit for ab-

ductive reasoning. Backward chaining is said to be goal driven, as the focus is on explaining a

specific goal. The advantage of backward chaining, is that searching the graph does not require

the consideration of several nodes at once to expand and explore additional nodes. The disad-

vantage however, is that expanding a new node may require other new nodes to be expanded,

causing more "loose ends" that have to be explained with initial statements.

An inference system for knowledge based reasoning requires formal definitions of how knowl-

edge can be used along with logical rules. Figure 2.2 shows an example informal inference

graph for a mathematical proof, where several knowledge statements are used at once to infer

new knowledge. Here, it is rather unclear what the set of applicable logical rules may be - the

inference rules seems to include a lot of background knowledge not shown in the figure, such as

properties of expressions containing prime numbers, which may be better modeled as pattern

rules evaluating input expressions against each piece of knowledge, rather than rules for apply-

ing particular knowledge to particular expressions. And in general, the "consider"-rule may have

a selection of operators such as +, −, × or /, and raise an infinite number of possible expressions

using these operators in combination with known or newly proposed constants and variables,

making the problem intractable with a breadth-first expansion strategy.

An inference system that were to discover this proof, must either restrict the number of pos-

sible inferences, such as by making them more general, or bias them in a sensible way between

breadth and depth exploration. For example, examining the expressions raised for considera-

tion in the figure, reveals that they have very important properties related to prime numbers.

A selector for expressions to consider, may limit the selection to only expressions with such in-

teresting properties. Then if no proof is found after inferring a graph when considering these

interesting expressions, new expressions with less interesting properties may be considered.
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Figure 2.2: Proof by contradiction of infinite primes. (Variables can only have positive integer
values.)

2.7 Semantic networks

Semantic networks represents knowledge in a graph of concepts (nodes) and semantic relations

(edges) between the concepts. Reasoning can be performed along the edges by looking at the

concepts associated with the concept in question.

Figure 2.3 shows a semantic network for a car. Such a network could be utilized by a diag-

nostics system to determine why a car is not working properly, by searching through the graph

for potential causes to the problem. Commonly, statistical reasoning is applied to semantic

networks, such that if the problem description for the car was "engine makes noise", the edge

leading through the engine node may be rated the most relevant, simply due to containing a

problem description word. From engine, the path to fuel could be followed associatively, and

end up as the suggested issue due to the it having the "requires" relation for engine, which sig-

nals a possibility for inadequacy. It is however also possible to employ more knowledge intense

reasoning for semantic networks.



CHAPTER 2. BACKGROUND 19

Figure 2.3: A simple semantic network of a car.

2.8 Production rule systems

Production rule systems are among the most widely used knowledge representations, much due

to their use in constructing expert systems. (Reichgelt (1991)). They are commonly used in

cognitive psychology to model human brain processing, such as by the cognitive architecture

Soar (Laird et al. (1987)).

A rule is on the modus-ponens form ’IF (conditions) THEN (actions)’. The conditions (called

the left-hand side or LHS), can be a pattern of data structures and variables that must be matched,

while the actions (the right-hand side, RHS) can be any procedure. The memory containing the

matchable structures is referred to as the working memory (WM), or knowledge base (KB). (In

this thesis, it is referred to as KB.) The result of performing actions, called firing of rules, is often

that elements are added to or removed from the KB, allowing new rules to fire.

An advantage of production rule systems is their modularity, in that knowledge can be loaded

into and removed from temporary memory, while a permanent memory (the rule base) remains.

This allows a large system to be partitioned into more efficient sub-systems. One variant is the

blackboard system, where each subsystem communicates with each others by writing data to

the blackboard. (A part of memory that remains when running subsystems are switched).
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One weakness of production rule systems is dealing with uncertain knowledge. Experts often

deal with rules that are only true in most cases, such as "birds can fly". One way of dealing with

this is to have these rules as default reasoning, while an exception rule may trigger at a in the case

of the rule not holding up, and preventing it from firing. Another way is to assign each piece of

KB elements and inference a confidence rating, so that a confidence in new inferred elements

can be estimated. This is done in the architecture outside of the rule engine, which runs like

before. It is common to separate confidence into belief and disbelief, such that a confidence

p in an assertion does not imply a confidence (1−p) in the negated assertion. (Which follows

from Bayes’ theorem under standard probability theory).

Another weakness of production rule systems is their computational efficiency, as the match-

ing process is slower the more rules are in the system, and the more working elements are in KB.

This can be mitigated by more computational efficient matching capabilities however, such as

auto-associative memory.

2.8.1 Rete algorithm

The Rete Math Algorithm (Forgy (1982)) is an efficient approach for comparing a large collec-

tion of patterns to a large collection of objects, compared to a naive approach of checking every

combination of object and pattern on each rule firing. Each LHS has a list of working memory

elements it matches. Instead of iterating over the working memory elements on each rule firing,

the LHS lists are updated when a working memory element changes. Thus to detect a pattern

match, it is only necessary to look through each pattern’s list of working elements. The pro-

ductions are indexed in a tree structure with each condition of an LHS being a node, grouping

rules that tests for the same thing together. Working element changes produces a token, which

is propagated through the tree. From each affected pattern by the token, the agenda, a list of

all pairs of productions and the matching status of their elements, is updated. Afterwards, all

applicable productions in the agenda forms the conflict set, from which a production can be

selected for the next firing.
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2.8.2 Jess rule engine

Jess (Friedman-Hill (2003)) is a expert system consisting of a functional scripting language Jess,

interpreted in Java, and a pattern matched-based production rule system. It is owned by Sandia

National Laboratories. It uses an enchanted version of the Rete algorithm to solve the many-to-

many matching problem. When the Jess engine is run, it will run until no more rules can fire,

thus the amount of working elements in it’s KB must be kept to a manageable amount to prevent

the engine from running out of memory.

Jess variables and facts

Jess allow variables of regular Java format, and Jess template variables used for pattern match-

ing. Each template has a name, and some number of fields with a name and value. Syntax:

( deftemplate TEMPLATE1

( s l o t SLOT1)

( s l o t SLOT2) )

An instance of a template (with some values in it’s slots) can be asserted as a Jess Fact. A Jess fact

is uniquely identified with an integer ID, starting at 0 and increasing by 1 for each asserted fact.

Only Jess facts are used during pattern matching. The syntax is

( a s s e r t (TEMPLATE1 (SLOT1 3) (SLOT2 "abc " ) )

which asserts a TEMPLATE1 with SLOT1 of value 3, and SLOT2 of value “abc”. By using other

template instance as the slot values, a graph structure can be built for use with pattern matching.

A variable in Jess must have a name starting with the ‘?’ character. During pattern matching,

every variable identifier is used for matching. The syntax for binding variables is

? template1 <− (TEMPLATE1 (SLOT1 ? value1 ) (SLOT2 ? value2 ) )

Here the template called TEMPLATE1 is bound to ?template1, while it’s slot values is bound

to ?value1 and ?value2. Further pattern matching statements can specify properties of these

variables.

Here, a second type of template, called TEMPLATE2, also with slots SLOT1 and SLOT2, is

specified as also required to contain ?template1 and ?value1 for a pattern match:
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(TEMPLATE 2 (SLOT1 ? template1 ) (SLOT2 ? value1 ) )

Rules and pattern matching

In the Jess rule engine, the LHS of a rule is a pattern matching, leading to Jess statements in

the RHS clause being executed for each combination of variables that matches the pattern. The

syntax is

( defrule RULE1

( conditions )

−>

( execute statements ) )

The statements to be executed will be function calls. Function calls can be indistinguishable

in syntax to pattern matching, E.g. the Jess display facts function is written (facts), the same as a

template named facts with no slots referred. However, everything in the LHS will be interpreted

as pattern matching, while everything in the RHS will be interpreted as function calls. In the

RHS, a variable binding is done with the function call (bind variable), rather than the arrow

syntax used in the LHS.

2.9 Neo4j

Neo4j is a relational database that can be accessed through it’s APIs, available in Java, Python,

or a web page. It allows for creation of nodes with relationships between them, serving as edges

in a graph. This graph can be searched with the declarative query language Cypher, returning a

graph result that can be displayed graphically.

2.9.1 Cypher

Much like SQL, Cypher uses the MATCH keyword to express a pattern to be matched, and WHERE

to pose restrictions on variables in the pattern. The RETURN keyword declares what variables

(typically nodes) to be included in the query result. All relationships between those nodes will

also be included. The query
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MATCH (n) WHERE a .name = "a" RETURN n

Will return all nodes and relationships in the database with a property name with the value a.

Relationships between two nodes a and b can be expressed with the (a)-[:tag]->(b) notation:

MATCH ( a ) −[:KNOWS]−>(b) RETURN a , b

This query return any pair of nodes a,b where a has a KNOWS relation to b.



Chapter 3

Literature review of related work

This chapter looks at relates work in knowledge discovery, starting with the more knowledge-

based and moving to the more literature-based.

3.1 Early knowledge intensive discovery systems

Shrager and Langley (1990) describe computational approaches to scientific discovery. With

backgrounds in both computer science and cognitive psychology. They divide scientific be-

haviour in a domain into knowledge structures and processes operating on them. Knowledge

structures include

• Observations - recordings from the environment

• Taxonomies - defines domain concepts and subsumption relationships between them

• Laws - statements that summarize relations between variables, objects or events that can

be observed

• Theories - hypotheses about the structures or processes in the environment, making ref-

erences to unobservable objects

• Background knowledge - beliefs or knowledge about the environment not belonging to

the domain

24
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• Models - describes both observable and unobservable environmental conditions in a par-

ticular setting

• Explanations - connects a theory or hypothesis to a law by a chain of inferences

• Predictions - expected observations how the environment will develop from specific con-

ditions, based on laws

• Anomalies - observations that cannot be predicted by laws

Scientific processes include the generation of observations, taxonomies, inductive/deduc-

tive laws, theories, models and predictions. Experiments, where physical settings are manipu-

lated to correspond to a model, allows Evaluations - the comparison of observations with pre-

dictions. The explanation process connects a theory to a law, where an anomaly arise in the case

that an explanation cannot be constructed.

They explain the advances in machine discovery, constituting mainly of representations of

observations, laws, models and theories. Various systems by various authors for knowledge dis-

covery are presented.

Langley et al. (1992) treats scientific knowledge as a search problem in a problem space con-

sisting of symbols and operators operating them to achieve a goal state. A problem solver may

use heuristics such as hill-climbing and means-end analysis to prune the search space. An ex-

pert in a field may have production rules that generate a useful operation based on recognizable

problem states. They place problems on a continuum of structured vs. ill-structured. Prob-

lems must have a definite mechanically applicable criterion for testing any proposed solution,

a problem space that can represent the initial state, goal state, and all other states that could be

considered while attempting to solve the problem, and state changes that can be represented

in some problem space. Knowledge the problem can acquire about the problem must also be

representable in a problem space. The problem fall on the the continuum of well structuredness

depending on whether the conditions are met with a practicable amount of computation.

They construct the BACON.1 program, using the production system language PRISM, to

perform heuristic searches and discover empirical physical laws. One such is Kepler’s Law, re-

garding the relation between a planet’s distance D from the sun and it’s period P , and it states
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D3/P 2 = c, where c is a constant. BACON.1 is allowed to make observations about some planets

A,B ,C , such as "For planet A, what is P?" It also has 3 heuristics: 1. "If the observed values of a

term are all the same, infer it as constant.", 2. "If two terms increase together, consider the ratio

of the terms.", 3. "If one term increase while another decrease, consider their product."

Starting by observing P,D for all planets, BACON.1 observes P A = 1.0,D A = 1.0, PB = 8.0,DB =
4.0 and PC = 27.0,DC = 9.0. From these observations, D increases with P , the second heuris-

tic applies, and BACON.1 considers the ratio ter m1 = D/P . Calculating it finds ter m1A = 1.0,

ter m1B = 0.5, ter m1C = 0.333. BACON.1 spots that D increases as ter m1 increases, so it con-

siders their product, ter m2 = D(D/P ) = D2/P , giving ter m2A = 1.0, ter m2B = 2.0, ter m2C =
3.0. The second heuristics applies again, with ter m1 and ter m2 increasing together, and BA-

CON.1 defines their product: ter m3 = (D/P )(D2/P ) = D3/P 2. With ter m3A = 1.0, ter m3B =
1.0, ter m3C = 1.0, BACON.1 is finally able to apply the first heuristic, that ter m3 is constant,

which so happens to be Kepler’s law.

BACON.1 was able to generate this protocol using it’s production rule system, consisting of

16 production rules, 5 of them involving gathering of data, another 5 detecting regularities in

data, 3 proposing higher-level terms, and 3 performing garbage collection on memory. Other

laws found by BACON.1 includes Boyle’s law, Galileo’s law of uniform acceleration, and Ohm’s

Law. They also describe a later version of BACON, BACON.3, which is able to discover more

complex laws, such as Coulomb’s Law and the Ideal-Gas Law.

Falkenhainer (1990) argues that when constructing plausible explanations for phenomenas,

separating between deduction, abduction and analogy is superfluous. He refers to finding can-

didate hypotheses while making assumptions about missing knowledge, as the interpretation-

construction task.

He proposed the similarity conjecture, which states that all interpretation-construction tasks

fall on a continuum of explanatory similarity between the current scenario and some previous

scenario. The previous scenario may be an actually recorded experience, a prototypical (gener-

alized) experience, or imagined from existing knowledge. He divides the spectrum into 4 scenar-

ios. In the deduction scenario, an observed phenomena’s explanation can be directly deduced

from known facts. In the assumption scenario, the phenomena cannot be deduced from known

facts, but by making a consistent set of assumptions about some unknown facts. In the gen-
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eralization scenario, a inferred candidate explanation is known to be false, due to a required

condition is false, yet by replacing the condition with a next most general relation, it is true. In

the analogy scenario, no candidate explanation is found directly. A serial of assumptions, taken

from an assumed analogical situation, can however produce a candidate explanation.

He created the system PHINEAS to illustrate this on various physical systems. PHINEAS has

3 sources of knowledge, it’s initial domain theory, prior experiences, and observations, which

are the current target for the interpretation-construction task. PHINEAS runs in 4 stages: The

access stage, where memory is searched for similarity to an behavioural abstraction of the cur-

rent observation. In the mapping and transfer stage, an initial hypothesis is generated. It begins

by retrieving the model used to explain the recalled earlier experience, and mapping them over

to the current observation. This gives rise to candidate inferences for the explanation. These

may however be incomplete. For example, the inferences may reference objects that existed in

the recalled experience, but not in the current observation. The domain theory is consulted to

retrieve more details about each candidate inference. This may repeat in cycle until an can-

didate explanation is formed. In the verification stage, simulations are performed to compare

the observations with simulation results. In the revision stage, inadequate hypotheses are anal-

ysed based on the differences in observation and simulation results. This stage is however not

implemented.

3 examples are used to illustrate the similarity continuum, using liquid flow as PHINEAS’ do-

main theory. An observation of liquid flow is directly explained as a liquid flow instance, osmosis

is explained as a close generalization of liquid flow, and heat flow is explained by conjecturing

the existence of temperature-affecting fluid.

From an initial knowledge consisting of 9 processes - liquid flow, liquid drain, heat flow, boil-

ing, heat-replenish, dissolve, osmosis, linear motion and spring-applied force, when presented

with an observations of harmonic motion, including an LC circuit, a cantilever pendulum and a

torsion oscillator, PHINEAS was able to explain them using the spring-mass knowledge.

3.2 Literature based discovery systems

Swanson and Smallheiser (1997) created the open discovery support system Arrowsmith. The
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user’s goal is to perform a Swanson linking A → C , through an intermediary B . The discov-

ery process is split into two parts: Procedure I and procedure II. For procedure I, the user pro-

vides the A term. Arrowsmith collects all titles from MEDLINE containing A, and extracts all

unique words from those titles. This constitute all potential B candidates. The list is filtered

with an a priori stop list of 5000 words, containing both generic non-domain words (such as

’able’,’about’), and also domain words deemed too general to meaningfully link terms (such as

’clinical’, ’drugs’). Then, all B candidates are searched in MEDLINE, to find the total amount of

titles they occur in. Only those B terms that occurs more frequently in titles along with A than

in titles without A are kept. After that, the user is presented with the B-list, and can further re-

move candidates that is deemed too broad. The remaining words each forms the basis for a new

MEDLINE search, with a new restriction: Each set of records from these searches are narrowed

down to particular record categories, (such as ’deficiencies’, ’toxins’), chosen in advance for their

likelihood of containing particularly interesting target words. After executing the search, a list of

A −B linkages is formed, such that each A term now links with other A terms through B , form-

ing an A → B →C Swanson link discovery candidate. Each candidate is ranked according to the

amount of B-words participating in the A → B →C linkage.

Arrowsmith was able to rediscover Swanson’s earlier linkages between Raynaud’s Syndrome/-

Fish Oil and migraine/magnesium, but failed to link the earlier discovery of somatomedin C and

arginie, due to a Swanson link never occurring in the titles of the MEDLINE records.

Wilkowski et al. (2011) proposed the term "discovery browsing", an open discovery form

where a user interactively assist in the knowledge discovery process, by marking interesting

findings for further investigation. It uses semantic predications from the SemRep (Cutting et al.

(1992)) relation extraction tool to form a graph with predication arguments as nodes, and pred-

icates as edges. The user is presented with paths in the graph, forming chains of relationships.

Their goal was for the exploration of this path to form extension of Swanson linking with several

intermediate B terms: A → (B1 → B2 → ... → Bn) → C . They rank expansion suggestions by the

node’s degree centrality, a measure of how much other nodes are connected to it.

They tested the system with Depressive disorder, with serotonin as the starting node for

browsing. Although no new discoveries were made, the top ranked concepts related to depres-

sion were not all studied together, and the authors suggest the system may highlight areas that
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benefit from further study.

Camerona et al. (2013) used a graph-based approach to recover and decompose Swanson’s

Raynaud Syndrome-Fish Oil hypothesis. They extended Anyanwu’s notion of a semantic asso-

ciation to include reachability, so that any vertex in a directed graph is semantically associated

with the other vertexes it can reach. They criticized Wilkowski et. al.’s degree centrality ap-

proach, due to it’s potential of eliminating outliers.

Leveraging the semantics of assertions extracted from literature in combination with back-

ground knowledge, they recovered the 3 informative associations commonly considered to make

up Swanson’s hypothesis, and further decomposed it into 16 additional associations, formu-

lated as chains of semantic predications. They do however point out some issues with LBD.

First, most of the literature they leveraged in their experiment was not part of article titles or ab-

stracts, meaning the full article texts may be necessary for throughout LBD. Second, they were

not able to extract all the semantic information from the articles, relying so far on manual an-

notation. Third, the heavy performance cost of traversing large graphs is a hindrance, causing

many query execution platforms to time-out.

3.3 Evaluation of hypotheses

Lee et al. (2011) extended Swanson’s ABC model to include context information, using context

vectors, which consists of term frequencies of various terms in an article. They used Cosine

similarity and Spearman Correlation to assess the similarity of the vectors. Thus two abstracts,

one containing A → B , and the other B → C were ranked based on the similarity score of their

context vectors. They looked only at ABC patterns of the form disease-gene-drug.

The experiment was done on PubMed literature related to Alzheimer’s disease. ER was done

using a Conditional Random Field-based sentence detector, and terms were categorized into

four categories: Gene, Drug, Disease and Symptom. This was done using PharmGKB (Phar-

macogenetics Knowledge Base) and CTD (Comparative Toxicogenomics Database) entity dic-

tionaries. Then the entities were mapped to the UMLS (Universal Medical Language System)

entity dictionary, to obtain the context vectors.

To evaluate their system, they measured the precision of the results when matched with
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known answer sets in the PharmGKB and CTD database. They grouped the results in top 100,

top 500 and top 1000, and as a baseline, compared the groups to the precision of the frequency

based ABC model. A hybrid score, utilizing both the frequency information, and the context

similarity, was able to outperform the baseline for all cases.

Anyanwu and Sheth (2002) Argues that different simple and complex notions of relation-

ships between entities will be important to reason about in query languages for the Semantic

Web. They illustrate this with a framework for finding semantic associations between entities,

and illustrates it’s use with the semantic web knowledge modeling standard RDF. They define a

notion of semantic association, and a semantic association query (SAQ) operator, named the ρ

operator, which return ranked sets of relations connecting the entity pair being queried.

They formally define a property sequence, which connects two RDF properties through re-

lationships. Property sequences can be ρ-isomorphic, such that paths along subproperties of

the corresponding properties in another path, are ρ-isomorphic. Other similarities between

corresponding properties in two property sequences, such as being a subproperty of the same

property, are also considered isomorphic. They define a semantic association as follow. Prop-

erty sequences can also be joined, meaning that both sequences intersects at some property

node.

Finally, a semantic association between two properties x, is defined as either x and y being

the end of a property sequence, or x and y being the origin node of two property sequences that

are either joined or ρ-isomorphic.

The ρ operator attempts to find ρ-isomorphic relationships. First prunes the search space

using schema knowledge to check if the query entities belong to a common class, parent class,

or classes related by a subclass relationship, as it they cannot be ρ-isomorphic. The user can

enter a context for the query, consisting of scope declarations such as RDF schemas, limiting the

search space. Optionally, relevance rankings can be used to assign RDF properties an ordered

relevance. Higher ranking can also be assigned for longer or shorter sequences.

Anyanwu et al. (205) presents SemRank, which ranks semantic associations using semantic

and information-theoretic techniques.

The SemRank value of a query result combines the metrics predictability, refractions, and

semantic matches.
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Predictability is the amount of information gained by a user from seeing a search result. This

depends on the likelihood of whether the user could have predicted the result beforehand. By

measuring the information conveyed by a result, the

Refractions are deviations by a path from that specified in an RDF schema due to multiple

classifications of nodes.

A semantic match (S-Match) of a user provided property is a match between a itself or it’s

super/subproperty. The degree of the match depends on the distance from the search property

to it’s match in the property hierarchy, resembling the similarity score between concepts in an

ontology.

A user provided context adjusts what metrics are considered the most relevant for ranking,

example being a conventional or investigative context. In a conventional context, results with

a high predictability score are favored, while in an investigative context, results with a low pre-

dictability score are favored.

To compute the SemRank values, they introduce the SSARK (Semantic Searching of A dif-

ferent K ind) system, producing the top-K results. To save computational time, the resulting

ordering is only approximately correct.

Wren et al. (2004) discovered and ranked relationships between objects of interest in ti-

tles and abstracts taken from MEDLINE, based on co-occurrence of terms. If an object A co-

occurred with another object B, and B co-occurred with another object C, then A and C are said

to be implicitly related

As each co-occurrence may not constitute a meaningful relationship, they manually sur-

veyed each co-mentioned object within a MEDLINE record sample, and assigned them a fuzzy

probability of being meaningful. The strength of the relatedness between objects was based on

this probability and the number of co-occurrences. They used entity recognition of primary

names/synonyms for medical entities, such as genes, diseases and phenotypes from databases

such as OMIM, HGNC and Genome Ontology.

An expected observation count, based on how often two terms would be connected based

on pure chance, was found based on a network of randomly connected nodes. Thus rare terms

in the literature, such as specific transporter genes, would be less expected to serve as the B

object connecting A and C. The ranking of results was based on the observed to expected ratio
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Figure 3.1: Direct versus implicit relationships (diagram by Wren et al.)

(Obs/Exp), such that nodes observed more than expected were higher ranked.

A total of 12 037 763 records were used, yielding a network of 3 482 204 unique relationships.

When comparing the number of direct relationships to the number of implicit relationships,

they found that the amount of implicit relationships quickly adds up to similar numbers for

those objects with fewer direct relationships, to those with more. (As seen in figure 3.1.) Thus,

ranking of the relationships constitutes a much bigger task than discovering potentially useful

relationships.

Based on their resulting ranking of terms related to cardiac hypertrophy, Wren et al. were

able to hypothesise that the drug Chlorpromazine (CPZ) may provide an anti-hypertrophic ef-

fect in the heart. They confirmed this to be the case in experiments on rodents.

Lally et al. (2014) built on the IBM Watson question answering system to be used with med-

ical questions with a higher accuracy than the base Watson system. The system, WatsonPaths,

takes as input a natural language scenario, which can be divided into subquestions. The sub-

questions and inferences made from them make up an assertion graph. For the scenario’s they

used a set of medical test preparation questions, which includes a section of information, fol-

lowed by a diagnostics question.

The system has several stages. First, scenario analysis identifies important factors in the in-

put scenario, such as patient age, gender, preexisting conditions and test results described for

the scenario. Each factor becomes a node in the graph. Second, Node prioritization, the pri-

ority of exploring paths from each node is determined, in the case that exploring all of them is
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not feasible. One measure used is the confidence in the node’s factor, and how fruitful expan-

sion of the node is expected to be. Third, Relation generation constructs edges in the assertion

graph. By taking some factors x, y , the base Watson system is asked question such as "How

does x relate to y"? Using a medical ontology to classify the factors, a recognized disease z may

pose the question "What symptoms does z cause?". The answers to the questions are added as

nodes to the graph, with edges to all factors used to pose them. Next, belief computation calcu-

lates the confidence in each assertion in the graph. These steps may be repeated, adding new

subquestions based on previous subquestion. After each iteration, hypothesis identification is

performed, marking some nodes as potential final answers to the scenario.

To acquire good edge confidence scores, WatsonPaths was trained with machine learning,

using both full scenarios and atomic subquestions as training data. Their future plans involves

cooperation between WatsonPaths and users, so that both can learn through it’s usage.

3.4 Summary

Knowledge discovery started out with traditional AI methods, using knowledge intensive tech-

niques such as expert systems. Assembling the knowledge that the systems require however, is

expensive. Like much of AI, the research moved in the direction of using more statistical meth-

ods, from Swanson’s manual attempts, to analysis of big data bases of scientific records retrieved

through the modern Internet.

While statistical methods are very successful at linking potential related knowledge together

by uncovering implicit relationships, just uncovering these implicit relationships is often too

shallow to be helpful. With some huge efforts being put into various knowledge bases and sys-

tems, such as semantic web and open ontologies, more knowledge intensive methods are be-

ginning to make a comeback. The use of IE techniques are now more common, as extracted

knowledge can be linked with the semantic web knowledge bases. The importance of ranking

hypotheses, to sort out the good ones from more spurious candidates, has been grown with the

systems’ abilities to suggest more hypothesis candidates.

One big problem in LBD system, is to evaluate their performance. Although newer systems

are believed to perform better than the older systems, there is currently no standardized evalua-
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tion procedure to verify this. One challenge is that more knowledge-intensive systems may rely

on very domain-specific tools and resources, making them hard to compare to domains without

the same resources and tools.

A new trend is LBD on a more cross-disciplinary level, such as OCEAN-CERTAIN, which in-

volves several large fields (biology, chemistry) related to the biological pump. With such large

fields playing an important in a system, the potential for isolated knowledge is high.

The knowledge discovery system developed in this thesis follows this development path,

being part of the OCEAN-CERTAIN project, and using knowledge intensive inferences which are

to be used along with NLP-extracted domain knowledge. The contradiction detection goal of the

system closely follows Shrager’s et al.’s model of scientific behaviour, by comparing observations

from experiments with expected results based on background knowledge, similarly to the early

PHINEAS system by Falkenhainer. A challenge in the climate/oceanographic domain however

is that unlike in physics, a lot of the knowledge is typically handled informally, while knowledge

discovery systems rely on formal knowledge. The next chapter seeks to address this issue.



Chapter 4

Conceptual modeling

The conceptual architecture consists of two main components: A knowledge base consisting of

entities and relations, and an inference engine along with inference rules, for use with literature-

based knowledge discovery. The important consideration for such a representation is that of on-

tological commitment - that it is expressive enough to hold the necessary knowledge and reason

about it, while being computationally tractable, which often falls at odds with expressibility. For

the OCEAN-CERTAIN project, the focus is on reasoning with causal relations between change

events, and the inference engine chosen is a production rule system, which commits to using IF-

THEN rules, where concepts and their relations utilized by the rules are encoded in a semantic

network (the domain ontology). The use of a production rule system excludes the use of other

techniques such as cased-based reasoning.

The system makes a distinction between working memory (WM) and the Knowledge Base

(KB). Only the KB is accessible to the inference engine, which consists of a set of general and

more domain specific inference rules operating on the knowledge in KB. Initially, the KB con-

tains background knowledge from the domain, such as a domain ontology (. Figure 4.1 shows

an overview of the system. as new observations enter the system, they are first entered into

the WM, from which the system decides which knowledge is transferred to the inference en-

gine’s knowledge base. New statements inferred from the inference engine are again evaluated

in working memory before being able to enter the knowledge base. Section 4.4.2 explains how

the knowledge is evaluated.

35
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Figure 4.1: Overview of the system.

4.1 Domain knowledge modeling

The main knowledge representation is split into two types, the domain independent knowledge

and domain dependent. The domain independent rules are committed to handle inferences

with causal relations between change events, while the domain dependent can be seen as ex-

tendable to handle more use cases.

Variable

A variable corresponds to a concept as expressed in the domain literature, be it a single term like

"iron" or "phytoplankton", or a longer expression such as "pco2 last ice age". The system has

knowledge about variables based on relations involving the variable, such as "CO2 is-a chemical

substance", where metal is another variable, however the system has an open-world assumption

of any variables, such that possibilities such as also "CO2 is-a species" are not excluded even if

they are not in the system’s knowledge base. For ontological purposes, it is useful that variables

has canonical forms, so that the system may recognize that two variables, such as "iron" and

"Fe" refer to the same concept. (See section 4.4.1 regarding ER.)

Event

An event has a variable that the event involves, and a type. Event types, range from increasing,

decreasing or changing for an unspecified change, to more domain specific such as limitation.

Events can be written in predicate form, as event (var i abl e, t y pe), or in arrow notation for
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change events. (↑X, ↓Y, lZ). Too indicate the observation of an event, the event must be enclosed

by the predicate Obser vati on(), e.g. Obser vati on(↑ X ), or when the system has inferred that

an event should take place, E xpectedObser vati on(↑ X ).

Causal relation

A causal relation has two events, a cause event and effect event. If E1 is the cause event of a

causal relation, and E2 is the effect event, the relation can be interpreted as "event E1 causes

event E2". The predicate form is causal (E1,E2), and the arrow notation is E1 =⇒ E2.

Correlation

A correlation relation states a correlation between two events E1 and E2, without a known direc-

tion. It can be written cor r el ati on(E1,E2), or E1 E2. While correlations may not themselves

be conclusive regarding any causal direction, they may serve as weaker evidence for some other

reasoning path.

Subsumption

A subsumption has two variables, the general variable and the specific variable. If X is the spe-

cific variable of a subsumption, and Y is the general variable, the relation can be interpreted

as "X is subsumed under Y ", "X is-a Y ", or "X is an instance of Y ". The predicate form is

i s −a(X ,Y ).

Subsumptions are important during reasoning, for example if a person P1 asks P2 ’Do you

have a car?’ and P2 answers ’I own a truck’, then P1 can use a subsumption tree (See figure 4.2)

to generalize ’truck’ and ’own’ to reason that indeed, P2 has a car.

It is important to note that in the domain, a subsumption may not hold strictly. For a sub-

sumption "X is-a Y " one may say that "Y has property Z ", when a majority of Y has property

Z , without necessarily X having property Z . Strict subsumptions are often found in mathemat-

ics, such as "every natural number is a real number", which hold true for the infinite amount of

natural numbers. Less strict subsumptions however, called defeasible logic rules, such as "birds

can fly", may hold true only for a large fraction of birds, but have some exceptions, (such as
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Figure 4.2: Example subsumption hierarchies.

penguins). Thus, if P1 tells P2 ’A bird zoomed past in front of my face!’ P2 may plausibly assume

that a bird was flying past P1. If P1 adds however, ’On my boat expedition to Antarctica.’ another

plausible inference arises, as the bird may have instead been a penguin being thrown around by

playful killer whales, as the ’birds can fly’ rule is not nearly as plausible in Antarctica.

As such contexts plays a huge rule in determining what inferences are plausible, subsump-

tions in the model also comes with a bound property, either "upper", "lower" or "none", for

use during inferences. An "upper" bound means that relations cannot be generalized from the

specific variable to the general variable. A "lower" bound means that relations cannot be inher-

ited from the general variable to the specific variable. A "none" bound has no such restrictions.

Some such bounds that may be appropriate for figure 4.2 is an upper bound for vehicle in re-

gards to plane and boat, as it may not be as plausible if P1 says ’I have a vehicle’ for P2 to infer

that the vehicle may fly through the skies, as it is to assume that it may ride on the road.

While there is an important distinction between subsumptions that represents an is-a rela-

tion that may have been crafted for an ontology, such as penguin fitting into a species hierarchy

of biology for birds, and a syntactical generalization such as ’pco2 last ice age’ to ’pco2’, for the

purpose of this modeling they are both treated as a subsumption relation, but given different

confidences. (See section 4.4.2)

Domain specific relations

Domain specific relations are relations such as eats, produces and outcompetes. In predicate

form, they are written with the subject as the first parameter, and the object as the last param-
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eter, such that eat s(X ,Y ) means "X eats Y." This knowledge comes from the domain ontology

created for use with the system, and contributes to the background knowledge necessary to

make inferences.

4.2 Inference engine

Inference rules produce new domain knowledge from existing domain knowledge. The reason-

ing employed is not sound, but is reminiscent of plausible reasoning performed both in science

as well as in daily life. Among the most common such reasoning is the transfer of properties

from one entity to another, such as "milk contains bacteria, and bacteria may cause food poi-

soning, therefore maybe milk may cause food poisoning".

Each inference has some input statements and output statements. The system uses six do-

main independent and three domain dependent inferences, each taking some input statements

which are relations between variables, and produce some number of output statements. For

rules involving causal relations, the unspecified change direction (l) is given to mean that all

change events in the rule must have the same direction.

4.2.1 Domain independent inferences

IR1 Causal transitivity connects two causal relations between events. It corresponds to

l X =⇒l Y

l Y =⇒l Z

∴ l X =⇒l Z

IR2 Generalization of cause poses that if the variable in the cause event of a causal relation is

a specific variable in a generalization relation, then the general variable of that general-

ization is also the cause event variable in a corresponding causal relation. It corresponds

to

l X =⇒l Y

X is-a Z

∴ l Z =⇒l Y
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IR3 Generalization of effect poses that if the variable in the effect event of a causal relation is

a specific variable in a generalization relation, then the general variable of that general-

ization is also the effect event variable in a corresponding causal relation. It corresponds

to

l X =⇒l Y

Y is-a Z

∴ l X =⇒l Z

IR4 Specialization of cause poses that if the variable in the cause event of a causal relation is

a general variable in a generalization relation, then the specific variable of that general-

ization is also the cause event variable in a corresponding causal relation. It corresponds

to

l X =⇒l Y

Z is-a X

∴ l Z =⇒l Y

IR5 Specialization of effect poses that if the variable in the effect event of a causal relation is

a general variable in a generalization relation, then the specific variable of that general-

ization is also the effect event variable in a corresponding causal relation. It corresponds

to

l X =⇒l Y

Z is-a Y

∴ l X =⇒l Z

IR6 Modus ponens infers expected observation from earlier observations through causal rela-

tions.

l X =⇒l Y

Obser vati on(l X )

∴E xpectedObser vati on(l Y )

4.2.2 Domain dependent inferences

The domain dependent inferences are mostly used during the abduction phase to plausibly ex-

plain contradictions, where the predicate MustE xpl ai n is used to restrict the activation of the
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inferences. (See section 4.4.3 for when they are applicable).

DR1 Eats-rule tries to explain change events, in the case that some entity is eating the entity in

the change event. Using the predicate opposi teC hang e(t y pe) to express

opposi teC hang e(i ncr easi ng ) = decr easi ng

opposi teC hang e(decr easi ng ) = i ncr easi ng

Given event E1(X , a) and event E2(Y ,opposi teC hang e(a)):

MustE xpl ai n(E1)

Y eats X

E2 =⇒ E1

DR2 Produces-rule tries to explain change events, in the case that some entity is producing the

entity in the change event. Given event E1(X , a) and event E2(Y , a):

MustE xpl ai n(E1)

Y produces X

E2 =⇒ E1

DR3 Outcompete-rule works in the case of variables limited by some other variable. It states

that the outcompeted variable is expected to decrease, while the limitation has no effect

on the other variable.

Obser vati on(event (X , l i mi t ati on))

Obser vati on(event (Y , l i mi t ati on))

Outcompetes(X ,Y )

E xpectedObser vati on(↓ Y )

4.2.3 plausibility of inferences

For the domain independent inferences, only causal transitivity and modus ponens are logically

valid. The remaining four rules are examples of plausible inferences that are often used by do-

main experts. The plausibility of the inferences are dependent on the properties of the particular
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variables involved. Constructing hypothesises using these inferences is therefore a balance be-

tween breadth of hypothesises constructed, and plausibility. One thing to note however is that

since the events in causal relations all are in the category of change, whether it is "increasing",

"decreasing" or "changing", the generalization of effect will typically hold true. specialization

of cause would be valid for generalizations that held strictly true for all members, but remains

merely plausible for non-strict generalizations. Generalization of cause and specialization of

effect are usually the least plausible inferences, and more akin to begging a question.

For the domain dependent inferences, none of them are valid, and due to the more complex

interactions that can take place in the domain, they are only considered only slightly plausible.

4.3 Domain ontology

For this thesis, a small ontology was created ad hoc, shown in figure 4.3. The system’s back-

ground domain knowledge is comprised of statements using he entities and relations in this

ontology.

Figure 4.3: Domain knowledge model.
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4.4 Work flow of the LBD process

When knowledge statements from the literature are entered into the system1, they are first en-

tered in WM (see figure 4.4), where syntactical generalization and ER is performed. The gen-

eralizations created by syntactical generalization is marked with a lower bound, to prevent spe-

cialization rules from utilizing the non-generalized statements. The same is done for manually

entered generalizations that represents syntactical generalizations.

Then the system starts a new round of discovery process on the knowledge in KB, explained

in Algorithm 1. An inference rule of which all antecedents match with some literature knowl-

edge and other knowledge in the KB can be fired and produce new statements. The inferred

statements can in turn trigger new inferences. A discovery round continues as long as there are

inference rules that can fire using knowledge in the KB.

Algorithm 1 A round of discovery process

Li tK now ⇐ new causal relation from literature
if cause or e f f ect part of Li tK now can be generalized then

Li tK now ⇐ Li tK now ∪ GENERALIZE(cause,e f f ect )
end if
W M ⇐W M ∪Li tK now
K B ⇐ K B ∪Li tK now
hy pC andi d ates ⇐;
while an inference rule I Ri can fire do

K ⇐;
for all antecedents S j in I Ri do

Ki ⇐ statement in K B matching S j

K ⇐ K ∪Ki

end for
newK nowled g e ⇐ EXECUTE(I Ri ,K )
if confidence of newK nowled g e ≥ thr eshol d then

K B ⇐ K B ∪newK nowled g e
hy pC andi d ates ⇐ hy pC andi d ates ∪newK nowled g e

end if
i n f er encePath ⇐ link K with newK nowled g e
update W M with i n f er encePath

end while

1Note that while the goal of the OCEAN CERTAIN project is to extract causal relations from literature, this has
not yet been achieved, and knowledge statements are either added to the system from manually annotated files, or
ad-hoc.
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Figure 4.4: Diagram of the work flow.

4.4.1 Syntactic generalization and ER

Variables in natural sciences tend to be complex rather than atomic entities and expressed as

noun phrases containing multiple modifiers Marsi and Öztürk (2015), e.g. oxygen depletion in

the upper 500 m of the ocean or timing and magnitude of surface temperature evolution in the

Southern Hemisphere in deglacial proxy records. Generalizing these variables by stripping away

these modifier words and using canonical names for entities, such as equating PCO2 with CO2

allows the system to connect such expressions from different literature sources. A simple entity

recognition scheme, consisting of looking for entity names and it’s list of synonyms in a variable

expression, was used for the manually annotated corpus.

**Consider the causal relation "↑net high latitude productivity =⇒ ↓PCO2 of the last ice age"

extracted from a literature paper. Upon entering the system, entity recognition is performed on
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each of the variables in the relation. "PCO2 of the last ice age" does not have it’s own entry, but

is recognized as CO2, yielding the relation "PCO2 of the last ice age is-a CO2". "Net high latitude

productivity" is recognized as "productivity", yielding "net high latitude productivity is-a pro-

ductivity". is-a relations can by the system be assigned a bound property, taking the value UP-

PER, LOWER or NONE, which prevents generalization and specialization inferences from being

being made regarding is-a relations with UPPER and LOWER bound respectively. These syntac-

tically relations are assigned the bound property LOWER, and an for the relation is inserted in

the WM inference graph with a confidence corresponding to syntactical generalization. If the

confidence meets the confidence threshold, it is asserted in KB. When IR matching occurs, the

causal relation from literature may match with the generalization of cause rule with the CO2

generalization, forming "↑net high latitude productivity =⇒ ↓CO2".

If the confidence for this new hypothesis was above the threshold, it is asserted in KB, and

matching with generalization of effect and the primary productivity relation may produce ↑productivity

=⇒ ↓CO2.

4.4.2 Hypotheses generation

Whenever one of the inference rules is executed and produces a statement, the LBD system will

try to judge how much confidence it has in the inferred statement, based on it’s confidence in

the input statement to the inference, and the confidence in the used inference rule. When an in-

ference I Ri (X ,Y ) =⇒ I is performed, confidence of the newly inferred statement I is calculated

as

c(I ) = c(X )× c(Y )× c(I Ri ) (4.1)

If the knowledge inferred in this way have a high enough confidence, and does not exist in

any of the inputted knowledge to the system, it will gain the status of Candidate Hypothesis, to be

further evaluated by the system. If it is judged by the system to be interesting then it qualifies as

Discovery Hypothesis, and if appreciated by the researcher(s) then it is considered a discovery.

The inference rules causal transitivity, generalization of effect and specialization of cause are

assigned a high confidence, c(I R1) = c(I R3) = c(I R4) = 0.95 while generalization of cause and
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specialization of effect are assigned a lower confidence, c(I R2) = c(I R4) = 0.5. The outcompete

domain rule is assigned a medium confidence, c(DR3) = 0.75, while the abductive domain rules

are assigned a low confidence, c(DR1) = c(DR2) = 0.25.

Update of Confidences in Working Memory

To reduce the computations of finding hypotheses, a confidence threshold is set such that any

inferred statement below that confidence threshold will not be a candidate for discovery hy-

pothesis. However, this leads to a problem: When there is more than one inference path to an

inferred statement, the statement may first be disregarded due to low confidence (computed

using Eq.4.1) but it may later get a confidence above the threshold through another inference

path. When an inferred statement has sufficient confidence, it may be used as an antecedent to

infer further knowledge.Therefore, disregarded hypotheses are still kept "in mind", in the work-

ing memory. When a discovery round has finished, the confidence value of each statement in

the WM is updated to the maximum confidence value it can be obtained through the best in-

ference path that leads to it. At the same time, each statement is attached to this best inference

path that maximizes its confidence.

Algorithm 2 shows how confidence of statements are propagated in WM.

1. For example, the following is an instantiation of IR4, specialization of cause rule:

X: algae IS-A primary producer

Y: ↑ primary producer =⇒ ↑ productivity

∴ I: ↑ algae =⇒ ↑ productivity

Here X and Y is background knowledge, giving c(X ) = c(Y ) = 0.98 and c(I R4) = 0.95. This

yields c(I ) = 0.98×0.98×0.95 = 0.932.

When other statements have been used to infer a new one, the confidence of the inferred

statement is recursively defined based on the statements it was inferred from (following from

Equation 4.1). Assume that an statement is inferred a second time using a second inference

path and obtained a better confidence than before. Assume also that this statement was further

used as antecedent to infer another statement. When the confidence value of the first statement

increases, it propagates to the second one and consequently the latter also receives a better
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Algorithm 2 Update confidence of statements in WM

procedure CALCULATECONFIDENCE(W M)
for all statement Si in W M do

ci ⇐ CALCULATECONFIDENCE(Si )
end for

end procedure
function CALCULATECONFIDENCE(S)

if ISINPUTKNOWLEDGE(S) then
c ⇐ c(S)

else
c ⇐ 0
for all rule I Ri in inferences that led to S do

ci ⇐ ci (I Ri )
for all statement S j in ANTECEDENTS(I Ri ) do

ci ⇐ ci× CALCULATECONFIDENCE(S j )
end for
c ⇐ MAX(c,ci )

end for
end if
return c

end function
2

confidence score than it previously had. Each statement prefers the inference path that gives it

the maximum confidence and re-routes its inference path accordingly.

For example, consider the inference path in Figure 4.5 where each newly inferred statement

has a 0.1 lower confidence than the preceding statement on its inference path. For simplic-

ity, each inference (IR) have only one antecedent in the example. Assume that the confidence

threshold is 0.5. At first, H2 is inferred from H1 where they have confidence values 0.6 and 0.5 re-

spectively. When H3 is inferred from H2 with 0.4 confidence it stays under confidence threshold.

Black arrows show the statements above the threshold. Assume that later, H4 yields H2 through

another inference rule, where H2 ultimately obtains 0.7 confidence. The new confidence score

propagates to H3 which follows H2 on the inference path and H3, with 0.6 now, comes over the

confidence threshold. H2 reroutes its inference to H4 instead of having H4. Let further running

of the system yield H5 from H3. Then a background statement, S14, is used to infer H3, which

gives higher confidence (0.6) to H3. Then H3 reroutes its inference path to S14 instead of H2.

One potential issue is the case of H4 depending on H2. In that case, H4 is not appropriate to
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Figure 4.5: Multiple paths to a statement may give it different confidence scores. Arrows leading
to hypotheses represents hypothesis candidates.

explain H2. This does not occur in the system however, as a hypothesis can not have a stronger

confidence than those it is dependent on.

4.4.3 Contradiction detection and abduction

When it is impossible for two statements to hold true at the same time, they contradict each oth-

ers. The system operate with contradictions between causal relations, or observations. On pred-

icate form, they are written Contr adi ct i on(↑ X =⇒↓ Y ,↑ X =⇒↑ Y ), Contr adi ct i on(Obser vati on(↑
X ,↓ X )). These contradictions may represent inconsistent findings in literature, or simply state-

ments made in different contexts. In the same context, they may indicate feedback loops. It is

left to the user of the system to judge what contradictions between causal relations mean, while

the system itself will try to explain contradictions between observed events.

After new knowledge is generated, the system enters the contradiction detection/abduction

phase, where it compares each causal relation each of the other causal relations, and each event

with each of the other events, and generate contradiction statements for those found to be in

contradiction. When two events are in contradiction, the system will also assert MustE xpl ai n

predicates into the knowledge base for events in the contradiction, which doesn’t currently have

an explanation in the system. These are the user inputted event observations - expected obser-

vations are already explained by their inference path.

With the MustE xpl ai n predicates in the knowledge base, abductive inferences that depend
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on the MustE xpl ai n predicates such as the eats and produces rule may be able to fire. The

explanation phase will continue as long as possible, and it’s up to the user to decide whether the

explanation is sufficient to explain the observation, and what statement in the contradiction’s

inference path may be potentially wrong.

4.4.4 Ranking of hypotheses

It is easy to generate a lot of hypothesis candidates, a bigger challenge is to rank the candidates

generated by the application, so that the most interesting ones are shown first Wren et al. (2004).

We define i nter est i ng ness(H) in terms of both the confidence, c(H), and a significance rating,

s(H):

Inter est i ng ness(H) = c(H)× s(H) (4.2)

The significance measure is used to rate how interesting a hypothesis is, in the case that it

is indeed true. Significance combines several metrics, such as how many inferences was nec-

essary to generate a hypothesis and how isolated the knowledge was required to perform the

inferences. The idea is that with a high significance score, a human would be less likely to have

considered the hypothesis. If a the user has an interest in particular variables, that is clue to

rate candidates containing those variables higher. The significance ranking of a hypothesis is

thus split into si n f er r ed , ssour ces and squer y . These are explained separately in the following sec-

tion. Then, the method of combining these scores to the final significance score is shown in a

Algorithm 3.

Along inference paths, significance ratings develop in the opposite direction of confidence

ratings, because a hypothesis with little confidence, would be interesting if proven true. Thus

confidence decreases with longer inference chains while significance increases. Like confi-

dences, the inference significance si n f er r ed rating is given to a hypothesis both based on an

inference’s antecedents and the inference type. For inference I R(X ,Y ) ⇒ H : si n f er r ed (H) =
s(X )×s(Y )×s(I R). Significances used for the rules were chosen so that the system goal findings

(causal transitivity and contradictions) are rated the highest, abductively generated explana-

tions also have a high significance, while the generalization and specialization inferences are
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considered more trivial. The values used are s(I R1) = 5, s(I R2) = s(I R5) = 1.5, s(I R3) = s(I R4) =
1.1. s(DR1) = s(DR2) = 3, s(DR3) = 1.25. Detected contradictions also have a significance rating

of 5.

Literature sources can be rated significant based on how many of them supports the same

hypothesis, and whether sources connected through inferences were isolated (e.g. from differ-

ent domains, or have a long path to each other in a citation network). It is however a com-

plicated task to determine how independent different sources truly are from one another. In

the current system, the source significance ssour ces was simply set to an exponentially grow-

ing value based on the number of sources appearing during the in a hypothesis’ inference path:

ssour ces = Sour ceCountSi g ni f i cance sour ceCount , where Sour ceCountSi g ni f i cance was set

to 2. Note that currently the system rates the sources involved in each inference path separately.

By using a query of expressions from the user, such as ["iron","PCO2"], all hypotheses con-

taining the query variables "iron" or "PCO2" can be rated as more significant. The resulting

squer y depends on how many times these variables appear in a hypothesis or it’s inference path.

By querying for either one or two variables, squer y allows for both open and closed discovery

browsing based on variables.

To avoid the accumulation of significance score from sources and query significance, the

final significance s calculation for each hypothesis is split into in several steps.
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Algorithm 3 Calculate significances of statements in WM

procedure CALCULATESIGNIFICANCE(W M)
for all Candidate hypothesis Hi in W M do

si ⇐ SELFSIGNIFICANCE(Hi )
end for
for all Statement Si do

si ⇐ si × sisour ces

si ⇐ si × siquer y

si ⇐ log (si )
end for

end procedure
function SELFSIGNIFICANCE(S)

if ¬ ISINPUTKNOWLEDGE(S) then
s ⇐ 1

else
s ⇐ si n f er r ed (I R)
for all statement S j in ANTECEDENTS(I R) do

s ⇐ s× SELFSIGNIFICANCE(S j )
end for

end if
return s

end function
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Implementation

The system was implemented in the Jess production rule system, using Java. The Neo4j database

was also utilized.

5.1 Input knowledge

The input knowledge are Jess Facts assertions of variable, event, causal and generalization (sub-

sumption) templates, while other predicates such as contradiction, observation and mustEx-

plain also have Jess templates. For the purpose of easily asserting all the necessary Jess facts, the

application have corresponding Java classes for each template, such that variables will only have

to be declared once, and the Java object can be referenced when it’s Jess fact is used in further

declarations. When referring to events of a variable, one can call methods that will automati-

cally assert these events, and return their Java object. To assert the causal event “iron increasing

causes phytoplankton increasing”, one writes:

Variable iron = new Variable ( " iron " ) ;

Variable phytoplankton = new Variable ( " phytoplankton " ) ;

Causal iron_phytoplankton = new Causal ( iron . increasingEvent ( ) ,

phytoplankton . increasingEvent ( ) ) ;

Phytoplankton is a primary producer:

Variable primaryProducer = new Variable ( " primary producer " ) ;

52
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phytoplankton_producer = new Generalization ( phytoplankton , primaryProducer )

;

5.2 Sources

Each input relation should have a SourceType. These types are literature, background knowl-

edge or syntactical generalization. These source types have different assigned confidences, just

like the inference types. We declare the source for Ryther and Kramer’s paper (from section

6.1)with a URL location:

Source rytherKramerPaper = new Source ( SourceType . LITERATURE,

" Ryther and Kramer " ," Ryther_Kramer_1961 . pdf " ) ;

And add it to our iron-phytoplankton relation (the second page):

iron_phytoplankton . setSource ( rytherKramerPaper . getSourceAtPage ( 2 )

, SourceType . LITERATURE) ;

We declare the phytoplankton primary producer relation as background knowledge:

phytoplankton_producer . setSource ( SourceType .BACKGROUND_KNOWLEDGE) ;

Input classified as background knowledge have a high confidence rating, regardless of whether

it has a source. The default source type, when no source has been given, is “unknown”, and has

a very low confidence rating.

5.3 Implementation of inference rules

The application contains a Jess rule corresponding to each of the domain independent and de-

pendent rules. They operate on Jess templates for variables, events, causal relationships and

generalizations.

5.3.1 Domain independent rules
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( defrule causal−t r a n s i t i v i t y

? event1 <− ( event ( type ? t1 ) ( variable ? v1 ) )

? event2 <− ( event ( type ? t2 ) ( variable ? v2 ) )

? event3 <− ( event ( type ? t3 ) ( variable ? v3 ) )

? causal1 <− ( causal ( cause ? event1 ) ( e f f e c t ? event2 ) )

? causal2 <− ( causal ( cause ? event2 ) ( e f f e c t ? event3 ) )

=>

( ? * e x t e r na l _ c l a s s * examineCausalConclusion

? event1 ? event3 ? causal1 ? causal2 ( SourceType .DEDUCTION_ABC) ) )

The function examineCausalConclusion (called by an external Java class) will analyze and

record the conclusion, before asserting as a Jess fact (if applicable):

( a s s e r t ( causal ( cause ? event1 ) ( e f f e c t ? event3 ) ) )

The assert statement returns the unique ID of the asserted fact, or false if the fact is already

asserted. For each template, an external function assertTemplateIfNew was made, which return

the ID of the asserted fact, regardless if it was already asserted or not, which is used instead.

The RHS of the remaining rules operate similarly with a examineCausalConclusion call, but

for simplicity are presented only with a variable binding call to assert the new event instance and

bind the fact ID to a variable, and a Jess assertion call for asserting the conclusion fact. Although

this new "event3" could be asserted beforehand for every combination of variable with event

type of either increasing/decreasing, as it in some cases will have been already, this is not done,

to avoid unnecessary matching efforts.

For abductive reasoning, a causal relation or observation may be marked as MustExplain

when a contradiction is detected. It can be written MustE xpl ai n(Obser vati on(↑ X )) or MustE xpl ai n(↑
X =⇒↓ Y ).

( defrule generalize−cause

? general ization <− ( general ization ( s p e c i f i c ? s p e c i f i c ) ( general ?

general ) )

? event1 <− ( event ( type ? t ) ( variable ? s p e c i f i c ) )

? event2 <− ( event ( type ? t2 ) ( variable ? v2 ) )
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? causal <− ( causal ( cause ? event1 ) ( e f f e c t ? event2 ) )

=>

( bind ? event3 ( ? * e x t e r na l _ c l a s s * assertEventIfNew ? t ? general ) )

( a s s e r t ( causal ( cause ? event3 ) ( e f f e c t ? event2 ) ) ) )

( defrule generalize−e f f e c t

? general ization <− ( general ization ( s p e c i f i c ? s p e c i f i c ) ( general ?

general ) )

? event1 <− ( event ( type ? t ) ( variable ? v1 ) )

? event2 <− ( event ( type ? t2 ) ( variable ? s p e c i f i c ) )

? causal <− ( causal ( cause ? event1 ) ( e f f e c t ? event2 ) )

=>

( bind ? event3 ( ? * e x t e r na l _ c l a s s * assertEventIfNew ? t2 ? general ) )

( a s s e r t ( causal ( cause ? event1 ) ( e f f e c t ? event3 ) ) ) )

( defrule special ize−cause

? general ization <− ( general ization ( s p e c i f i c ? s p e c i f i c ) ( general ?

general ) )

? event1 <− ( event ( type ? t ) ( variable ? general ) )

? event2 <− ( event ( type ? t2 ) ( variable ? v2 ) )

? causal <− ( causal ( cause ? event1 ) ( e f f e c t ? event2 ) )

=>

( bind ? event3 ( ? * e x t e r na l _ c l a s s * assertEventIfNew ? t ? s p e c i f i c ) )

( a s s e r t ( causal ( cause ? event3 ) ( e f f e c t ? event2 ) ) ) )

( defrule special ize−e f f e c t

? general ization <− ( general ization ( s p e c i f i c ? s p e c i f i c ) ( general ?

general ) )

? event1 <− ( event ( type ? t ) ( variable ? v1 ) )
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? event2 <− ( event ( type ? t2 ) ( variable ? general ) )

? causal <− ( causal ( cause ? event1 ) ( e f f e c t ? event2 ) )

=>

( bind ? event3 ( ? * e x t e r na l _ c l a s s * assertEventIfNew ? t2 ? s p e c i f i c ) )

( a s s e r t ( causal ( cause ? event1 ) ( e f f e c t ? event3 ) ) ) )

( defrule modus−ponens

? event1 <− ( event ( type ? t1 ) ( variable ? v1 ) )

? event2 <− ( event ( type ? t2 ) ( variable ? v2 ) )

? causal <− ( causal ( cause ? event1 ) ( e f f e c t ? event2 ) )

? observation <− ( observation ( event ? event1 ) )

=>

( ? * e x t e r na l _ c l a s s * examineObservationConclusion ? event2

? causal ? observation ( SourceType .MODUS_PONENS) )

)

5.3.2 Domain dependent rules

( defrule outcompete−rule

? observation1 <− ( observation ( event ? event1 ) )

? observation2 <− ( observation ( event ? event2 ) )

? event1 <− ( event ( type p−l i m i t a t i o n ) ( variable ? v1 ) )

? event2 <− ( event ( type p−l i m i t a t i o n ) ( variable ? v2 ) )

? outcompete <− ( outcompete ( winner ? v1 ) ( l o ser ? v2 ) )

=>

( bind ? event3 ( ? * e x t e r na l _ c l a s s * assertEventIfNew decreasing ? v2 ) )

( ? * e x t e r na l _ c l a s s * examineObservationConclusion

? event3 ? observation1 ? observation2

? outcompete ( SourceType .DOMAIN_RULE) )

)
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( defrule eats−rule

( isExplanationMode ( isExplanationMode TRUE) )

? eat <− ( eats ( eater ? eater ) ( eaten ? eaten ) )

? mustExplainEvent <− ( event ( variable ? eaten ) ( type ? type ) )

? mustExplain <− ( mustExplain ( mustExplain ? mustExplainEvent

( reason ? reason ) )

=>

( bind ? event1 ( ? * e x t e r na l _ c l a s s * assertEventIfNew ( ? * e x t e r na l _ c l a s s *

getOppositeEventType ? type ) ? eater ) )

( bind ? causal ( ? * e x t e r na l _ c l a s s * examineCausalConclusion ? event1

? mustExplainEvent ? eat ? reason ( SourceType .ABDUCTION) ) )

( ? * e x t e r na l _ c l a s s * assertMustExplainIfNew ? event1 ? causal )

)

( defrule produces−rule

( isExplanationMode ( isExplanationMode TRUE) )

? produce <− ( produces ( producer ? producer ) ( produced ? produced ) )

? mustExplainEvent <− ( event ( variable ? produce ) ( type ? type ) )

? mustExplain <− ( mustExplain ( mustExplain ? mustExplainEvent )

( reason ? reason ) )

=>

( bind ? event1 ( ? * e x t e r na l _ c l a s s * assertEventIfNew ? type ? producer ) )

( bind ? causal ( ? * e x t e r na l _ c l a s s * examineCausalConclusion ? event1

? mustExplainEvent ? produce ? reason ( SourceType .ABDUCTION) ) )

( ? * e x t e r na l _ c l a s s * assertMustExplainIfNew ? event1 ? causal )

)

5.4 HTML browser view of system results

When the system has run, it will output it’s hypotheses, along with the path of input knowledge

and previous hypotheses required to reach it, referred to as the inference path. Such an inference
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(a) Found in literature, a statement interpreted from
a paper

(b) Background knowledge, drawn from some do-
main ontology

(c) Generalized by syntactical manipulation of input
phrases

(d) Inferred by the rule engine using a domain inde-
pendent rule.

(e) Inferred by the rule engine using a domain de-
pendent rule.

(f) Inferred by the rule engine, using abduction.

Figure 5.1: Node types in the inference tree

path forms a tree structure. Expressing all of the inference paths at the same time to the users

may get cumbersome, the system has a HTML results view where each hypothesis is shown only

with their most confident inference path. Each outputted hypothesis is numbered from 1 and

upwards, beginning with the inputs to the rule engine. (Extracted rules, background knowledge,

and syntactical generalizations.) A HTML/JavaScript document is produced, where each output

hypothesis is presented with links to it’s inference sources, such a literature text or another gen-

erated hypothesis. A graph tree is also produced for each hypothesis, with nodes shaped and

color based on their sources. Figure 5.1 shows the different type of nodes in the inference tree.

Input nodes are either square, representing a rule mined from the literature, or a circle. Circles

are either purple, representing background knowledge that the system has, and which it asserts

a high confidence. Blue circles represent syntactically generalized statements, and thus they are

more prone to error. Triangles represents inferences, where orange triangles may be less likely

to be plausible than green triangles. Figure 5.2 shows an inference tree produced by the system.

Figure 5.3 shows the full view of the HTML page, with both the inference path for a selected

hypothesis, a top list of best ranked hypotheses, which is followed by a list of "findings", where

each hypothesis has all the inferences that lead to them listed, along with potentially related
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Figure 5.2: An inference tree created by the rule engine. Each node’s corresponding output hy-
pothesis statement is shown when hovering over it.

hypotheses. (Figure 5.4)

Figure 5.3: The user a list of all hypotheses on the right, and click a number on the left to see the
most confident inference path for each hypothesis.
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Figure 5.4: Each hypothesis is listed, along with the evidence that led to it. When the source is a
literature source, the hyperlink leads to the literature source. Numbered links leads to the listing
for the hypothesis of that ID number.

5.5 Neo4j graph view of system results

The system can write the results to a Neo4j database, allowing the user to view graphs retrieved

with Cypher queries, shown below. Figure 5.5 shows a result view. The nodes are color coded,

with input nodes being red for literature sources, purple for background knowledge, blue for

inferred knowledge, and green for inference nodes. Yellow nodes are event or generalization

nodes, while the remaining nodes (causal relations, variables) are gray.
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Figure 5.5: Neo4j view of the system’s results.

MATCH n

RETURN n

Shows every node in the database. As seen in figure 5.6, the result can be very clustered and

hard to comprehend.

MATCH b −[:EFFECT]−> a

MATCH c −[:CAUSE]−> a

MATCH b −[:THEME]−> d

MATCH c −[:THEME]−> e

RETURN a , b , c , d , e

Shows all causal relations.

MATCH a −[:THEME]−> b WHERE b .name = " iron "

MATCH c −[:THEME]−> d WHERE d .name = "CO2"

MATCH a −[:CAUSE]−> e

MATCH c −[:EFFECT]−> e

RETURN a , b , c , d , e

Shows a specific causal relation (in this example, the iron hypothesis).
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Figure 5.6: Result of "MATCH n return n".

MATCH ( a :RESULT)

MATCH (b :INFERENCE)

MATCH ( c :INPUT)

RETURN a , b , c

Shows only inference path nodes. (Not events/relations/variables).
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Use cases

As part of the development of the LBD system, domain experts were asked to give some example

hypotheses that has been important in the domain, and that may have been found by an LBD

system system if it had been available at the time of their conception. Currently, two hypothe-

ses related to the food web and biological pump has been worked out to be expressed by the

knowledge representation used by the system.

These use cases has helped demonstrate what sort of reasoning the inference system may

utilize to construct hypotheses, and has served as the testing ground for the system.

6.1 Iron hypothesis

Proposed by Martin and Gordon (1988), and independently by Gribbin (1988), the iron hypoth-

esis links together already long known knowledge in that phytoplankton, an important actor in

removing CO2 from the atmosphere through photosynthesis, is often limited by iron deficiency.

This leads to the possibility that iron fertilization of the ocean may help mitigate global warm-

ing. While the hypothesis didn’t appear until 1988, the link between iron and phytoplankton has

been studied all the way back to 1933.

The hypothesis serves as a good test candidate for LBD, with the knowledge pieces being

linkable through Swanson linking. It also fits well with the OCEAN-CERTAIN project, as it can

be expressed though the causal relation between events of changing variables. It is also a good

example of what open discovery could uncover, as there is a huge interest in reducing CO2, but

63
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a lack of understanding of the complex mechanisms that contribute to changing CO2 levels.

Marsi (2016) shows how the hypothesis can be extracted from two literature sources pub-

lished before 1988, using the above discussed methods of syntactical generalization of variables,

extraction of causal relations between change events, and by transferring these causal proper-

ties along variables connected with is-a relations, found in background knowledge. Following is

his method, adapted to this thesis’ inference system. Background knowledge is abbreviated B ,

literature sources are abbreviated L, inferred statements are abbreviated I , and statements that

were syntactically generalized abbreviated as G .

The following statement, from Ryther and Kramer (1961) states the importance of iron for

phytoplankton:

(1) Gran (1933) was among the first to demonstrate that the addition of iron to seawater may

stimulate the growth of phytoplankton.

Using the method of extraction of change events, causal relations and syntactical generalization

(see section 2.3), "addition" can serve as the trigger for an increase event pertaining to "iron".

"Stimulate" signals a causal relation between two events, and "stimulate" servers as a trigger for

an increase in the second variable, "phytoplankton". This could yield the relation

L1 : i r on ↑ =⇒ phy topl ankton ↑

Now, assuming a background knowledge containing a subsumption relationship:

B1 : phy topl ankton i s −a pr i mar y pr oducer

It can be inferred, using generalization of effect (IR3 from section 4.2):

I1 : i r on ↑ =⇒ pr i mar y pr oducer ↑

Now assuming a background knowledge:

B2 : pr i mar y pr oducer ↑ =⇒ pr oducti vi t y ↑
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Which with causal transitivity (IR1) yields:

I2 : i r on ↑ =⇒ pr oducti vi t y ↑

The second transitive link between iron and CO2, the relation between productivity and CO2 is

also well known in the scientific literature. Marsi uses an example from Sarmiento and Togg-

weiler (1984):

(2) A major contribution to the low PCO2 of the last ice age may have been an increase in

the net high latitude productivity, possibly coupled with a decrease in the thermohaline

overturning.

"PCO2 of the last ice" is recognizable as a variable, in a decrease event with "low" as trigger word.

The second variable "the net high latitude productivity" is recognized as increasing. "A major

contribution to" suggests that the first event is triggered by the second. This can be represented

as

L2 : the net hi g h l ati tude pr oducti vi t y ↑ =⇒

PCO2 o f the l ast i ce ag e ↓

Syntactical generalizations, stripping away the adjectives ("net" and "high latitude"), and prepo-

sitional modifiers, ("of the last ice age"), and ER of PCO2 as CO2 yields

G1 : the net hi g h l ati tude pr oducti vi t y i s −a pr oducti vi t y

G2 : PCO2 o f the l ast i ce ag e i s −a CO2

now using generalization of effect and generalization of cause, (IR2 and IR3) yields

I4 : pr oducti vi t y ↑ =⇒ PCO2 ↓
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Thus allowing the linking of iron and PCO2 through I2 and G1 by causal transitivity (IR1):

I5 : i r on ↑ =⇒ PCO2 ↓

Figure 6.1 shows each inference step. Note that the syntactical generalization is done in two

steps.

Figure 6.1: Inference steps for the iron hypothesis.

6.1.1 Additional literature statements for inferring the iron hypothesis

An attempt was made to locate more causal relations of change events to use for inferring the

iron hypothesis in papers before 1988. While there was no direct such causal relations, a similar

expression, involving limitation, is often used to express a similar relation. When a biological

species or chemical entity x is limited by a factor y , that factor is what’s most required to create

more of x. Such a limitation is usually discovered by observing that adding the limiting y to

x causes x to increase. In other words, statements of the form "y LIMITS x" can plausibly be

converted to the form ↑ y =⇒ ↑ x. Four such statements were found in Ryther and Kramer
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(1961) and converted to a causal form.

(3) Since then many workers have proposed that iron may, at times, limit plant growth in the

sea.

This could yield

L3 : i r on ↑ =⇒ pl ant ↑

The subsumption relation

B3 : phy topl ankton i s −a pl ant

would allow specialization of cause to yield literature statement L1, but with less confidence

compared to directly extracting L1.

(4) Recent experiments by Menzel and Ryther (1961) have shown rather conclusively that iron

is the most critical nutrient limiting primary production in the tropical and semi-tropical

Western Atlantic.

This statement on the other hand, cuts to the chase and link iron directly with primary produc-

tion:

L4 : i r on ↑ =⇒ pr i mar y pr oducti on ↑

(5) After one or 2 transfers through this medium, all the algae with one exception were obvi-

ously iron-limited and had ceased growing.

This could yield

L5 : i r on ↑ =⇒ al g ae ↑

Similarly to before, this can lead to L1 through a subsumption

B4 : phy topl ankton i s −a al g ae
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(6) Maximum populations of Isochrysis, Skeletonenia and Pyramimonas were attained at the

highest level of iron used, at which point growth may still have been iron limited.

This statement mentions several species of algae conjunctively with "and". This could yield

L6 : i r on ↑ =⇒ [I sochr y si s ↑ ∧Skel etoneni a ↑ ∧P yr ami monas ↑ ]

Which can be split into the corresponding causal relations for each variable in the conjunction.

These are all algae species, and generalization of effect would, along with B4, yield L1.

6.2 Dissolved organic carbon (DOC) hypothesis

Phosphorus (P) is another important mineral nutrient. Thingstad and Rassoulzadegan (1995)

looked at the situation in the Mediterranean Sea, where evidence suggests that P is a limiting

factor of both phytoplankton and bacteria. As known from background knowledge, in a com-

petition for phosphate, bacteria outcompetes phytoplankton. Figure 6.2 shows a simplified

domain model.

As phytoplankton is an important producer of DOC, and bacteria is a consumer of DOC, one

may expect that DOC in the sea would be reduced. Observations on the other hand, indicate

that DOC is accumulating. Frede et al. suggested that this anomaly may be explained by het-

erotrophic microzooplankton, known for short as "grazers", who feed on bacteria. Stated in the

notion of change events, the relation between grazers and DOC (the DOC hypothesis) is thus

Gr azer s ↑ =⇒ DOC ↑

While the full explanation of the anomaly may be more complicated due to the additional

interactions in the full food web, the DOC hypothesis serves as an entry point for further inves-

tigation into the issue. We now look at how the DOC hypothesis may be inferred from domain
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Figure 6.2: DOC hypothesis ontology. Flagellates are small organisms with whip-like organelles
which allows for swimming. Autotrophs produce their own energy through photosynthesis,
while heterotroph rely on feeding on others.

background and literature knowledge.

This use case is explained from the inference engine’s perspective, and each knowledge

statement is named as simply their knowledge ID when entering the system, such as S1, S2,

S3, ... Internal statements to the system, are labeled S1’, S2’, S3’, ... To begin, we have in the

knowledge base the following variables

Variables: P, phy topl ankton,bacter i a,DOC , g r azer s

And background knowledge:

S1 ↓ phy topl ankton =⇒↓ DOC

S2 E at s(bacter i a,DOC )

S3 E at s(g r azer s,bacter i a)

S4 Pr oduces(phy topl ankton,DOC )

S5 Outcompetes(bacter i a, phy topl ankton)

And literature knowledge:
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S6 Obser vati on(↑ DOC )

S7 Obser vati on(event (bacter i a, p_l i mi t ))

S8 Obser vati on(event (phy topl ankton, p_l i mi t ))

Considering the limitation of P for phytoplankton and bacteria (S7,S8) and that bacteria out-

competes phytoplankton (S5), we infer a new expected observation using the outcompete rule

(DR3):

S5 Outcompetes(bacter i a, phy topl ankton)

S7 Obser vati on(event (bacter i a, p_l i mi t ))

S8 Obser vati on(event (phy topl ankton, p_l i mi t ))

∴S9 E xpectedObser vati on(↓ phy topl ankton)

The newly inferred S9, together with S1 and modus ponens (IR6) leads to:

S1 ↓ phy topl ankton =⇒↓ DOC

S9 E xpectedObser vati on(↓ phy topl ankton)

∴S10 E xpectedObser vati on(↓ DOC )

Contradiction is detected between the expected an actual observation of DOC. With the con-

tradiction occurring, the system decides that S6 must be explained, as it contradicts what the

system has inferred from it’s knowledge. (S1′). The expected observation S10 must however not

be explained, as it is already explained by the inference path the system used to infer it.

S6 Obser vati on(↑ DOC )

S10 E xpectedObser vati on(↓ DOC )

∴S11 Contr adi ct i on(S6,S10)

S1′ MustE xpl ai n(↑ DOC )

Now, during the abduction phase of the system, the eats-rule (DR1 from section 4.2.2) can

be applied:
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S1′ MustE xpl ai n(↑ DOC )

S2 E at s(bacter i a,DOC )

∴S12 ↓ bacter i a =⇒↑ DOC

S2′ MustE xpl ai n(↓ bacter i a)

DR1 can be applied again for grazers and bacteria:

S2′ MustE xpl ai n(↓ bacter i a)

S12 ↓ bacter i a =⇒↑ DOC

S3 E at s(g r azer s,bacter i a)

∴S13 ↑ g r azer s =⇒↓ bacter i a

S3′ MustE xpl ai n(↓ bacter i a)

Finally, causal transitivity (IR1) connects grazers with DOC. This rule does not require S3′.

S13 ↑ g r azer s =⇒↓ bacter i a

S12 ↓ bacter i a =⇒↑ DOC

∴S14 ↑ g r azer s =⇒↑ DOC

6.3 Annotated corpus

In addition to the above domain hypotheses, an experiment was done with some literature

sources not intended for any particular discovery. The goal of this experiment was not to see

any particular hypothesis proven, but to see what unknown connection the system could po-

tentially make to either aid in relation to the iron/DOC hypotheses, or some discovery that was

otherwise interesting.

Marsi et al. (2014) developed an annotation scheme for the OCEAN-CERTAIN project. Using

this scheme, they performed manual annotation on a selection of 12 nature abstracts from the

domain literature, chosen by domain experts. The brat rapid annotation tool was used, and the

annotations stored in .brat files. A .brat file contains an entry for each entity and relation of the

annotated file, marking it’s entity/relation type, location span in the text, and giving it a unique
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ID. Figure 6.3 show an example of an annotated text, where two increase event together cause a

decrease event.

7-2-14 20:50 brat

Page 1 of 1http://127.0.0.1:8001/index.xhtml#/ocwp1-pilot-annotations/abstracts/Gao12

Carbon dioxide and light are two major prerequisites of photosynthesis.

Rising CO2 levels in oceanic surface waters in combination with ample light supply are therefore often considered 

stimulatory to marine primary production.

Here we show that the combination of an increase in both CO2 and light exposure negatively impacts 

photosynthesis and growth of marine primary producers.
When exposed to CO2 concentrations projected for the end of this century, natural phytoplankton assemblages of the 

South China Sea responded with decreased primary production and increased light stress at light intensities 
representative of the upper surface layer.
The phytoplankton community shifted away from diatoms, the dominant phytoplankton group during our field campaigns.
To examine the underlying mechanisms of the observed responses, we grew diatoms at different CO2 concentrations and 
under varying levels (5–100%) of solar radiation experienced by the phytoplankton at different depths of the euphotic zone.

Above 22–36% of incident surface irradiance, growth rates in the high-CO2-grown cells were inversely related to 

light levels and exhibited reduced thresholds at which light becomes inhibitory.

Future shoaling of upper-mixed-layer depths will expose phytoplankton to increased mean light intensities.

In combination with rising CO2 levels, this may cause a widespread decline in marine primary production and a 
community shift away from diatoms, the main algal group that supports higher trophic levels and carbon export in the 
ocean.

Increase Variable And Variable Cause
PartTheme Theme

AgentPart2

Increase Variable
ThemeTheme

Increase Variable And Variable Decrease
Part Part2

Theme Theme
Agent

Variable And Increase Variable
Part2Part Theme

Theme

Decrease Variable And Increase Variable
Part2 ThemeTheme

Part

Variable Correlate * Co-themeTheme

Variable Decrease Variable
Co-theme Theme

Increase Variable
Theme

Coref

And Increase Variable RefExp Cause Decrease Variable
ThemePart ThemeTheme

Part2

Agent
Coref

1

2

3

4

5
6

7

8

9

brat/ocwp1-pilot-annotations/abstracts/Gao12

Figure 6.3: Example of causal relation extracted from a pair of sentences.

A simple parser was written in Java to read all the all the .brat files, and enter the entities

and relations into the inference system. A simple entity recognition procedure, based on a list

of synonyms for known entities, such as (iron,Fe(II),Fe(III)) was used to identify entities, and

syntactical generalization simply stripped away all other words from a variable containing a

known entity. For causal or correlation relationships containing AND, such as ↑X =⇒ [ ↑Y ∧ ↑Z

], the conjunction was split into two expressions, e.g. ↑X =⇒ ↑Y and ↑X =⇒ ↑Z. Other more

complicated (containing OR/NOT/FEEDBACK) were ignored. The resulting input to the system

was 21 causal relations and 2 correlation relations. Table 6.1 shows the resulting input to the

inference system. Note that the statement "organic carbon ↑ =⇒ organic carbon ↓" is filtered

out, as the system doesn’t intend to explain contradicting statements that were not discovered

by the system.
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Relation
iron ↑ =⇒ phytoplankton growth rate l

iron ↑ =⇒ the harmful effect of UV on the phytoplankton population l
iron ↑ =⇒ Fe(II) concentration ↑

iron ↑ =⇒ growth rate of phytoplankton ↑
atmospheric CO2 levels ↑ =⇒ surface ocean pH l

calcification ↓ =⇒ the ratio of calcite precipitation to organic matter production ↓
atmospheric CO2 concentrations ↑ =⇒ production of C carbonate in the surface ocean ↓

labile dissolved organic C ↑ =⇒ phytoplankton biomass and activity ↓
labile dissolved organic C ↑ =⇒ rate at which total organic carbon accumulated ↓

organic carbon ↑ =⇒ organic carbon ↓
CO2 levels ↑ =⇒ marine primary production ↓

CO2 levels in oceanic surface waters ↑ =⇒ marine primary production ↑
some essential metals ↓ =⇒ concentrations in surface seawater ↓

CO2 partial pressures ↑ =⇒ net primary production in coccolithophore species (...) ↑
CO2 partial pressures ↑ =⇒ calcification ↑

atmospheric CO2 ↑ =⇒ the spread of suboxic regions in the ocean ↑
N recycling ↓ =⇒ export of accumulated organic matter ↑

N recycling in nutrient-poor oligotrophic environments ↑ =⇒ C export/unit limiting nutrient ↑
stoichiometry of exported organic matter l =⇒ modelled POC export l

atmospheric CO2 ↑ =⇒ carbon ↓
CO2 ↑ =⇒ cellular particulate inorganic carbon ↑

Fe(II) concentration ↑ growth rate of phytoplankton ↑
coccospheres ↑ coccoliths ↑

Table 6.1: Statements extracted from the literature constituting the .brat annotation files. Before
application of syntactical generalization and ER. Some expressions were shortened to fit page
width.
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Experiments, results and discussion

Experiments were done for each use case to see if the system was able to infer the targeted hy-

pothesis, or in the case of the annotated corpus, infer something unplanned of interest. First,

One separate experiment was conducted for each use case, using only the knowledge related to

that use case as the input to the system. Then, an experiment was executed where inputs from

all use cases is given to the system, to collect a top list of best ranked hypotheses. For the ex-

periments, each statement is given a predefined confidence value based on it’s type and source.

These values were chosen to represent a somewhat plausible average confidence one may have

that each type of knowledge is correct compared to each others, e.g. background/literature

knowledge has more confidence than syntactically generalized/ER statements, as some error

may have occured during generalization. The values used were c(backg r oundK nowled g e) =
c(l i ter atur e) = 0.98, c(s ynt acti cal l yGener al i zed) = 0.9. In a real usage scenario of the

system however, there may be different confidence values associated with different knowledge

sources, while the confidence of syntactically generalized subsumption relations may be related

to error rates in the text parser and generalization scheme.

7.1 Iron hypothesis

Figure 7.1 shows the most confident inference path inferred for the iron hypothesis. Each state-

ment is assigned an ID number by the system, shown on it’s node in the graph. The path be-

gins with leaf nodes, which are the input knowledge to the system, progressing through infer-
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ences (triangles) to the root hypothesis, with the text using brackets and indents to show the

antecedent leading to each inferred statement.

The system chose the literature statement relating iron with algae (L5) as the most confident

inference path, however several paths tied in score. The ordering of inferences also differed a bit

from the one used one thought out beforehand, applying one of the syntactical generalization

inferences last. Otherwise, the result is much as planned.

Figure 7.2 shows a Neo4j view of the inference paths, showing that indeed several paths

exists. The path from 7.1 is marked with red, and the iron hypothesis node (ID 83) is encircled.

Figure 7.1: Inference path of the iron hypothesis. Each text statement corresponds to a node in
the graph, and the brackets corresponds to arrows. (Read from bottom to top.)
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Figure 7.2: Neo4j view of all inference paths found for the iron hypothesis.

7.2 DOC hypothesis

Figure 7.3 shows the most confident inference path inferred for the DOC hypothesis, equivalent

to figure 7.1 for the iron hypothesis. Here the result is exactly what as intended, and the IDs for

the graph nodes correspond to those used in section 6.2. Note that events here are marked with

"observation" versus "expected observation", due to the importance of this when the system

chooses which side of the contradiction to attempt explain.
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Figure 7.3: Inference path of the DOC hypothesis. The path shown in figure 7.1 is marked with
red lines.

7.3 Annotated corpus

As the annotated corpus was very small, but still an attempt was made in order to see if the sys-

tem would be able to infer anything from that knowledge. One noteworthy thing spotted by the

system was the contradiction between two opposing views in the domain, whether more CO2

causes an increase or decrease in marine primary production. Figure 7.4 shows the system’s

display of this contradiction, along with evidence for each side. Following the links in the ev-

idence, we see that the first evidence, in support of ↑ CO2 =⇒ ↑ marine primary production,

leads back to an abstract stating:

"Rising CO2 levels in oceanic surface waters in combination with ample light supply are there-

fore often considered stimulatory to marine primary production."

Following the links from the evidence to the contrary, ↑ CO2 =⇒ ↓ marine primary produc-

tion, leads to the same abstract, which later states:

"Here we show that the combination of an increase in both CO2 and light exposure negatively
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impacts photosynthesis and growth of marine primary producers."

The contradiction was thus already known at the time of publication. A scenario where the

finding could be more useful, is one where the publisher’s of the contradictory finding were

not aware of previous findings. Even if the contradiction is known however, the collection of

evidence for each side performed by the system can aid in a literature review of the issue.

Figure 7.4: Contradiction found in the annotated corpus regarding CO2 and primary production.

7.4 Ranking top list

Table 7.1 shows the top ranked hypotheses across all use cases, while table 7.2 shows the rank-

ing for only the use case findings. Notably, only the iron hypothesis makes it to the top 10 list.

Although the use case hypotheses were ranked with a high significance, the system lacked

confidence in them, due to the type of inferences being utilized in their inference paths. The

intermediary step to the iron hypothesis "↑iron =⇒ ↑productivity" got the best ranking, due

to it’s high confidence, while still achieving a notable significance due to the causal transitivity

involved. Worse fared the DOC hypothesis, which had the highest significance ranking, but

among the lowest confidences, due to the system’s poor confidence in abductive reasoning (see

confidences in section 4.2.2). The iron hypothesis was notably beaten by the more specific

"↑iron =⇒ ↓PCO2 last ice age", due it having more confidence by involving less syntactical

generalizations. It may seem a bit counterintuitive that the more specific hypothesis gained
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Hypothesis confidence significance score
↑iron =⇒ ↑productivity 0.858 2.398 2.057

↑labile dissolved organic carbon =⇒ ↓DOC 0.788 2.398 1.890
↑iron =⇒ ↓PCO2 last ice age 0.363 5.106 1.853

↑iron =⇒ ↓CO2 0.311 5.201 1.618
Obs: ↑DOC CONTRADICTS Expected obs: ↓DOC 0.631 2.526 1.594

↑primary producer =⇒ ↓PCO2 last ice age 0.415 2.708 1.124
↑algae =⇒ ↓PCO2 last ice age 0.386 2.803 1.082
↑primary producer =⇒ ↓CO2 0.355 2.803 0.995

↑algae =⇒ ↓CO2 0.33 2.899 0.957
↑iron =⇒ ↑primary producer 0.922 0.788 0.727

Table 7.1: Top 10 most interesting ranked hypotheses.

Hypothesis conf. sign. score
↑iron =⇒ ↓CO2 0.311 5.201 1.618

↑CO2 =⇒ ↑marine p.p. CONTRADICTS ↑CO2 =⇒ ↓marine p.p. 0.189 3.114 0.589
↑grazers =⇒ ↓DOC 0.006 6.738 0.040

Table 7.2: Rankings for the use cases.

more confidence, which is a result of less inferences having been made to reach it. One may

intuitively perceive a more general hypothesis to be acceptable if it holds in many cases, with a

few exceptions being fine, while the more specific hypothesis would need to hold more strongly

in it’s limited coverage. This interpretation is currently not captured by the system. The bottom

five hypotheses are all related to the iron hypothesis, either by substituting "CO2" with "PCO2

last ice age", or being intermediary steps, and as such doesn’t hold much interest.

More interestingly second in the ranking list, labile dissolved organic carbon was linked with

DOC with a high confidence. This is in fact a contradiction, though it is not detected by the sys-

tem, as labile dissolved organic carbon was not resolved to DOC. (DOC range from a spectrum

of labile to refractory - labile is easily edible and fits correctly with DOC in the DOC hypothesis.

Refractory DOC however not so much).

This illustrates another potential entry point to infer the DOC hypothesis from a contradic-

tion, and provide some use in further work on the DOC hypothesis in the system. Following the

trail back to the literature by clicking the URLs to the antecedent statements backwards in the

inference path, leads to one of the nature abstracts, stating
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When bacteria were limited by organic carbon, however, addition of labile dissolved organic

carbon reduced phytoplankton biomass and activity and also the rate at which total organic car-

bon accumulated, explained as the result of stimulated bacterial competition for mineral nutri-

ents."

The annotation contains the variables "labile dissolved organic carbon" and "phytoplankton

biomass and activity". This is generalized by the system to

l abi le di ssol ved or g ani c car bon ↑ =⇒ phy topl ankton ↓

In combination with the following background knowledge used for the DOC use case:

phy topl ankton ↓ =⇒ DOC ↓

Lead to the result by causal transitivity (IR1):

l abi le di ssol ved or g ani c car bon ↑ =⇒ DOC ↓

Once again, the contradiction is presented in the literature source, with the paper’s finding being

described at "counterintuitive", even if an LBD system were to spot the contradiction at the time

of the paper’s release, this would not have constituted a novel discovery. This is why LBD has

better luck being novel by connecting more isolated knowledge.

7.5 Summary of findings

The system was able to infer both of the target hypotheses. From the annotated corpus, along

with knowledge statements used for the DOC hypothesis use case, the system found an alter-

nate contradiction that can be used to infer the DOC hypothesis, however the system did not

detect this contradiction due to lacking ER. Visualizing inference paths of hypotheses where

many paths exists can produce overwhelming graphs, but limiting the view to a single path at a

time can make the output more comprehensible.
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Summary and Recommendations for

Further Work

8.1 Summary and Conclusions

This thesis aimed to build a prototype inference system for literature based discovery, focusing

on domain modeling, hypothesis construction/evaluation, and contradiction detection. A do-

main ontology, along with domain independent and domain independent inference rules were

developed to fulfil research goal 1. Implementation of the model fulfilled research goal 2, with

the HTML/JavaScript view and Neo4j view fulfilling research goal 3. The iron hypothesis, DOC

hypothesis, and annotated corpus use cases allowed the fulfillment of research goal 4.

8.2 Recommendations for Further Work

8.2.1 More use cases

While the iron hypothesis was successfully inferred using only domain independent rules, the

DOC use case showed that a hypothesis may require a lot more domain dependent rules to be

inferred. More use cases could reveal the extent of varying requirements to infer hypotheses.
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8.2.2 Better entity recognition

The entity recognition used for the thesis was a simple list mostly added to cover a few cases

interesting for the use cases, however when use cases where combined, this lead to a lacking

resolution of "DOC" and "dissolved organic carbon", which meant that the system would not

detect a contradiction involving these variables. A more exhaustive entity recognition would be

less likely to result in such failures.

8.2.3 Confidence rating

Currently, the system selects the most confident inference path to represent a hypothesis’ confi-

dence. However, the inference paths may interfere, or be independent. Instead of just choosing

the best ranked one, they could be compared, so that independent inference paths strengthen

the confidence in a hypothesis. For example, the multiple links from the literature between

iron and primary production should increase the system’s confidence in the iron hypothesis.

(Although the links found so far are from the same article, this would compensate for the possi-

bility of errors in each statement.) An Interesting experiments could be to have different sources

of background knowledge, with a different confidence rating, and a large sample of syntactical

generalizations to determine an accurate confidence value.

The iron hypothesis landed 4th in the ranking, being beaten by the more specific PCO2 last

ice age, and the intermediary connection of iron with productivity, which both won due to their

higher confidence rating. It may be a good idea to give an increased confidence rating to a

hypothesis where all variables are generalized, compared to one where only one variable is gen-

eralized, in line with the intuitive view that the confidence of a specific hypothesis does indeed

yield more confidence to that specific hypothesis than more general hypothesis does.

8.2.4 Hypothesis evaluation

The system currently has several ways of scoring a hypothesis as more interesting, such as look-

ing at the amount of literature sources in it’s inference path, or whether inferences such as causal

transitivity were used. However, these features are much more interesting under specific condi-

tions, such as different literature sources being Swanson linked. A more in depth comparison of
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sources, judging their level of isolation from each others, could yield a better ranking scheme.

8.2.5 User collaboration

The system could be extended with interactive discovery browsing, such that the user can choose

to keep or discard proposed hypotheses, altering their confidences and thus what can be in-

ferred from them above the confidence threshold. With a bigger data set, the confidence thresh-

old may start of high and decrease during the system run, for a more breadth-first search to

handle the data without being overloaded. Ranking parameters could also be tuned as part of

the user’s interaction, such as specifying how important some variables are in comparison to

others, and lowering the confidence threshold for hypotheses that are eligible for a high rank.

8.2.6 Performance

As the amount of knowledge in the system increases, the amount of knowledge base facts re-

quired for pattern matching will increase, thus harming performance. It will thus be important

to keep the amount of facts in the KB within sustainable levels. Here various ideas are proposed

to achieve this.

Modularization of the Knowledge Base

Organization of knowledge into modules, where each module can be loaded into or removed

from the KB. This would limit discovery potential, and may require new strategies for determin-

ing what knowledge modules to load into KB.

Hypothesis caching (theorems)

When useful hypotheses are reached by the system, they should be stored so that they do not

have to be recomputed in the future, and so they can be easily used to form new conclusions.

Such useful conclusions in rule engines are referred to as theorems. When a new hypothesis

becomes a theorem however, it stop being a “new” conclusion, thus it achieves the status of

inputted background knowledge, with a high confidence and low significance. In a full work-

ing knowledge discovery system, users’ input could be of use as for marking what conclusions
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should be considered theorems (e.g. if the system produces a hypothesis that happens to already

be well-known background knowledge). For example, given an ontology containing the classes

and predicates umbrella, head-cover, rain, falling-object and protects-against-falling-objects,

and relationships “umbrella IS-A head-cover”, “rain IS-A falling-object”, “protect-against-falling-

objects(head-cover)”, one can conclude that umbrellas protect against rain. This is indeed an

important theorem about umbrellas, yet it is seen as utmost trivial. Thus if the system were to

make this hypothesis, the user may want to inform it that it is to be considered basic background

knowledge that may get loaded into main memory when doing reasoning involving umbrellas.

Reinforcement learning

Although theorems represent an important conclusion one wants to avoid recomputing, part

of the path used to reach the theorem may still be of use in reaching other conclusions. Dur-

ing inferences, a lot of conclusions will be reached on way to a “final” hypothesis that may be

of interest to the user. For example, while every sub-conclusion such “protect-against-falling-

objects(umbrella)” may not be worthy of being cached, this could be useful for concluding that

the umbrella will protect against other falling objects, such as snow. One could remember the

importance of this hypothesis without caching it and loading it automatically to main memory

during umbrella inferences, by having a large database, where each hypothesis formed at one

point by the system is given a back-traced bonus when they lead to a useful hypothesis, or a

penalty for a bad hypothesis. Thus paths of useful inferences can be followed later by looking

up the bonuses given to the nearest inferrable hypotheses.



Appendix A

Acronyms

LBD Literature-based discovery

LHS Left-hand side

RHS Right-hand side

WM Working memory

KB Knowledge base

IE Information extraction

ER Entity recognition

RE Relation extraction

EE Event extraction
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