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Abstract

Active Learning has been a highly promoted form of learning the last decades.
One of the exercises Active Learning makes use of is task and problem
solving. Utilizing examples solving similar problems, can be very help-
ful when performing these exercises. Therefore this project will create a
searchable database of examples, to help users finding relevant examples
which can aid them in exercises involving solving tasks and problems. We
will use Wikipedia as a source of examples. The system will extract exam-
ples found in an XML dump of Wikipedia, transform them into example
objects, which will be inserted into a database. A user interface will be
created for searching the database and displaying the examples for the user.
A software pipeline will be used as the system’s main architectural pattern.
The independent processes in a software pipeline is very beneficial in the
time consuming task of parsing the XML dump of the entire Wikipedia.

The work of the thesis resulted in a system that can parse the XML
dump of Wikipedia and create a database of examples. A search interface
lets the user enter keywords and displays the returned examples. The sys-
tem is able to find relevant examples to a satisfactory degree. Since the
final implemented system acts as a minimum viable product, a number of
propositions for future improvements are also included in the thesis.
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Chapter 1
Introduction

1.1 Motivation

Learning has always been, and will most likely always be one of the central
pillars of human success. Humans are very passionate about learning, and
therefore continually improve on techniques for acquiring knowledge. The
traditional way of learning has been Passive Learning, but Active Learning
has been more prevailing, especially for schools and universities [1]. Al-
though the classical passive learning technique, lectures, are still heavily
used, discussions, problem solving, tasks and student presentations have
become a big part of a normal school day. J. P. Lalley and R. H. Miller
discusses the learning pyramid produced by Edgar Dale [2]. Figure 1.1
depicts the learning pyramid displaying different learning techniques, and
how much knowledge you retain after using them. Edgar Dale’s research
has been disputed since the original data, regarding retaining knowledge,
was not recorded. Despite the retention values may be inaccurate, it gives
an overview of different learning techniques.

Almost at the bottom of the pyramid, the technique Practice by doing
can be found. Practice by doing is a very popular technique, often in the
form of assignments based on solving tasks or problems. From personal
experience in solving tasks, making use of examples that solves similar
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Figure 1.1: A typical representation of the learning pyramid, showing passive and
active learning techniques and how much knowledge retained.

tasks can be of great help. Finding helpful examples among the massive
information accessible through the web is sometimes challenging though.

Educational Technology could be applied to improve the process of
finding helpful examples. The article Facilitating Learning [3] uses AECT’s1

definition of Educational Technology, ”Educational technology is the study
and ethical practice of facilitating learning and improving performance by
creating, using, and managing appropriate technological processes and re-
sources.” The article highlights the use of the term facilitation in the def-
inition. They argue that Educational technology’s primary purpose is to
help people learn, not control or manage it, which older definitions leaned
towards. This project will facilitate the users’ learning by creating a techno-
logical process that will gather and manage a collection of examples. The

1The Association for Educational Communications and Technology
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collection can be used as a tool for learning new subjects or solving tasks.

To accomplish this, the thesis will look closer into the examples them-
selves. We want to discover what separates a good example from a bad
one, and if there is a particular structure reflecting the quality of the ex-
ample. With this knowledge, we will explore the possibility of creating a
database consisting purely of examples. Publicly available examples found
in Wikipedia will be transformed into structured example objects, and then
inserted into a database that users can access through a search interface.

1.2 Research Goals

The overall goal of our work is to build a platform where users can find ex-
amples, which will aid them in learning. To help aim the work towards the
thesis’ overall goal, four research questions have been defined. Completion
of these goals will ensure good quality of the implemented system.

1 - Set up a pipeline

The first goal of this study will be to setup a software pipeline in the most
beneficial way. The pipeline should extract examples from Wikipedia. The
output of the pipeline should be a searchable database of the examples.

2 - Define a good example by using their structure and content

To be able to create a high quality database consisting of examples, a deeper
understanding of the examples themselves is needed. Therefore the second
research goal in this study will focus on the nature of the examples. The
study will look into how the examples are structured, what properties are
preferable in certain circumstances and what the content of an example
should be in regards to its domain.
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3 - Create and populate a database of examples

• To be able to populate the database, we first have to create it. Which
database management system to use is essential, since it will directly
affect the process of inserting and retrieving examples. The modeling
of the database in terms of possible entities, relations and properties
will also have to be considered.

• When the database is created the next step will be to populate it with
examples. Based on the models decided for the database, queries will
be created that insert all relevant examples.

4 - Implement a user interface for searching examples

• Showing how the created database of examples can be used to be
queried and present the relevant example information to the user.
This includes different search queries facilitating different objectives
that can be served by the example database.

• An interface is needed to make the user able to execute the queries.
The interface also has to present the result of the queries to the user.

1.3 Structure of thesis

This thesis will describe the process of creating a searchable database con-
sisting of examples. In order to accomplish the end results, four research
goals have been formulated. The project starts with a large dump of source
data from Wikipedia, for this data to be fully used, it first has to be filtered
and structured by using a pipeline (Research Goal 1). To better understand
examples, and thus improving search results, we will also look into what
defines a good example (Research Goal 2). The end result of the pipeline
is a database populated with examples. The database has to store the exam-
ples in a way that makes them easy to retrieve (Research Goal 3). Finally, a
user interface is needed to search for examples from the database. Queries
with keywords as user input will be used to retrieve relevant examples.

4



Chapter 2 will explore the related work in field of information retrieval
and extraction. In particular, it will look for data extraction from wiki sites,
and data retrieval of semi-structured text. In addition, the chapter will also
explore an alternative approach, SMILA, and look at some techniques used
in this project.

Chapter 3 will elaborate on the conceptual design of the project. The
main reasons for using a pipeline and how the pipeline refines the source
data, will be explained. The chapter will also explain how the project intend
to search for examples. Finally a thorough analysis of examples, reflecting
Research Goal 2, will be presented.

Chapter 4 explains the implementation of the system. The chapter will
start by stepping through the pipeline, explaining each subprocess used to
refine the data. Meanwhile it will elaborate on the role of different files
in the project, what libraries used to help and storage systems used. The
search interface created for fetching the examples will be described, includ-
ing its interaction towards the rest of the system. Finally a more detailed
explanation will be given for the main tools used by the system.

Chapter 5 will discusses whether and how the Research Goals are ac-
complished. It will try to answer for each one of them in order, either by
elaborating in how the goal is achieved already by the system or in the the-
sis, or by conducting experiments to verify that the system produces the
intended results.

Chapter 6 will conclude our thesis. With the results of the experiments
in Chapter 5 and the following discussion, the chapter will try to answer
whether the research goals have been reached or not. As an ending for the
chapter and the thesis, the future of the system will be discussed.
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Chapter 2
Literature Review and Background

This chapter consists of two parts, Related work and Methods. Section
2.1 attempts to place our work among already existing work in the field
of information retrieval and information extraction. The subsections will
explore work done by other researchers, and discuss whether aspects of
their work can be applied to our work. Section 2.2 will briefly explain two
key methods used in our project, and why they are used.

2.1 Related work

2.1.1 Semi-structured text

When extracting information from a textual document, it is important to
know how structured the text is. There are two extremes that the document
most likely falls between, structured data and free text [4] also called un-
structured data. Structured data is using data models for organizing and
standardizing data elements, also including their relations. The other ex-
treme, free text, is unstructured as a newspaper article. Wikipedia’s articles
exists somewhere between these two extremes. We define a Wikipedia arti-
cle as semi-structured text. We define it as semi-structured because the ar-
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ticles from Wikipedia are created using a comprehensive markup language.
The articles are also stored in the form of this markup language. Because of
that we can extract the information from the article’s markup and not from
the page presented to the readers at the Wikipedia page.

The fact that the articles are semi-structured is an advantage when ex-
tracting information. In Wikipedia’s case all sections has a header, which
lets us not only know the subject of the sections content, but it also shows
its position in the hierarchy of all the article’s sections. These added tags
to the text makes it self-describing, making it possible for us to find the
semantics of the text easier. It also defines the hierarchy of different parts
in the text, like sections, records or fields. In free text subtle inferences
are required based on grammar to create domain objects, which in turn will
describe the semantics of the text.

2.1.2 Wikimedia

Wikimedia [5] is an organization that supports and manages many different
knowledge projects. Their goal is to make free knowledge accessible any-
where and on any platform. Their income comes primarily from donations.
They do not make us of ads, because they believe it could jeopardize their
reliability as a neutral source of information.

Wikimedia is mostly known for Wikipedia [6]. Wikipedia is the largest
collection of free, collaborative knowledge that exists. Wikipedia can be
found in over 290 languages and across those, contains more than 35 mil-
lion articles. Our project will make use of the English Wikipedia, which
contains more than 5 million articles. Wikipedia uses a software called Me-
diaWiki [7]. It is a server side software used for hosting wiki sites. Many
of the wiki sites under the Wikimedia umbrella makes use of MediaWiki.
A part of the MediaWiki software is the markup language used for writing
articles. This markup, written by contributors, will then later be translated
into HTML when displayed for users in their web browser. This markup
is used to create elements such as tables, equations, lists and links. Wiki-
media regularly backs up Wikipedia and makes it publicly available as a
large XML file. The XML file provides access to the raw data of articles,
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which is the article’s metadata and the content of the article in MediaWiki
markup. The metadata gives access to useful information such as id, title
and revision. The revision data includes author and timestamp. The meta-
data also let us determine if the article contains content itself or if it just
redirects to another article.

Public access to this information gives a lot of opportunities. Alberto
Montero-Asenjo and Carlos A. Iglesias used a XML dump from the Span-
ish Wikipedia for language research [8]. They created a piece of software
that processes the raw source data from the XML dump. It starts by con-
verting the Wiki markup into plain text and then use further operations on
the plain text to make the end result of useful data. While they use only
plain text as data for the language research, we need to extract information
by treating the source data as semi-structured text. Information can be ex-
tracted as semi-structured text by looking at the markup. Section headers,
references, code tags and categories, are examples of extra information the
markup makes available. To gain the extra information made available by
the markup, the syntax and the semantics behind it has to be interpreted,
instead of filtering it away. How to interpret the semantics that the markup
reveals, has been touched on and discussed in section 2.1.3 and a couple
of articles [9] [10]. There is though a surprisingly lack of work about the
interpretation of the markups syntax itself. Because of this, we have had to
build this from the ground up, with help from a Wikipedia page created for
assisting people writing the articles1. You can read more about our work on
this issue in sections 3 and 4.

2.1.3 Text data mining

This projects aims at extracting example sections from articles on Wikipedia
and then finding relations among them. Therefore this project is related to
two research fields. One of the research fields is information retrieval (IR),
which is mainly about helping users finding documents of their needs [11].
The other research field is text data mining (TDM), where the goal is to
discover useful information from textual data. Hearst discusses methods
that can help us find and extract example sections from Wikipedia in her

1https://en.wikipedia.org/wiki/Help:Wiki_markup
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work, Untangling text data mining [12]. She explains how to find pat-
terns across data sets and finding relevant information among a collection
of mostly irrelevant data. She achieves this by focusing on a mixture be-
tween computationally-driven and user-guided analysis, rather than a fully
artificial intelligent text analysis.

To be able to discover relevant data from the Wikipedia articles, Wiki-
media’s markup language has to be interpreted. To interpret the articles, we
will focus on the structure that we can derive from its markup. The articles’
structure mainly consists of section headers followed by the textual content
of the section. There is also other information that can be extracted. To
find relations between articles we would also need to look at the seman-
tics from this information, such as lists, categories and references, amongst
others. YAWN2, is a project that created an XML version of Wikipedia
with focus on semantic information [13]. The XML corpus produced by
YAWN is general for the whole Wikipedia and the entire article collection.
Our project focuses only on the articles that are relevant for educational
purpose and comprising examples to explain its content. Although YAWN
does more than what is needed for our purpose, we can use key concepts
and techniques for exploiting the Wiki markup to classify examples, in our
work. The most interesting for this project is how it finds semantic anno-
tations for Wikipedia pages. In order to do so, it uses a combination of
exploiting information about categories assigned to articles and deriving
information from the structure of an article. The categories are added by
the author to place the article among related articles in specific domains.

Making heavy use of categories is a straight forward method to discover
relations between examples. However making use of other information in
the articles, would further increase the accuracy of the relations discov-
ered. Internal links between articles is another way we can mine data about
relations between articles. Links also force us to consider the difference
between a link going into an article, and a link going from one. Evgeniy
Gabrilovich and Shaul Markovitch used Wikipedia as a knowledge repos-
itory in an effort to enhance text categorization [9]. They made use of
links and their sometimes differing anchor texts3 to improve their text cat-
egorization. A concept they took advantage of were that different anchor

2Yet Another Wikipedia Annotation project
3Display text of the link
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texts for the same link can indicate that the links are used in different con-
texts in the articles. They also looked at number of incoming links to an
article. In contrast, our project aims to look deeper into the relationships
between articles. We aim to utilize the information about how one article
links to another and if that makes them related. David Milne and Ian H.
Witten look more into this connection between articles in their approach,
Wikipedia Link-based Measure (WLM) [10]. Here they used mainly two
methods to measure the relatedness between two articles, based on links.
The first one is an approach similar to TF-IDF4, a information retrieval al-
gorithm explained in section 2.2.2, where they count links instead of terms.
They then create vectors according to the vector space model and then find
the similarity between two articles based on the angle of their vectors. The
second method they use are modeled after the Normalized Google Distance
[14]. Here they simply assume that two articles’ containing the same link
indicates relatedness. On the other hand, if one article contain a specific
link which the other do not, it indicates they are not related.

2.1.4 SMILA

In the early stages of our project, an existing tool called SMILA [15] was
explored. SMILA is a system with its first release in 2010, it is used to
search and access unstructured information. SMILA crawls the web to ex-
tract information and then indexes and stores that information. It has a
REST API to control the system and for searching the index. The SMILA
architecture is also based on the pipeline architecture containing the follow-
ing processes; jobs, crawling, storage, indexing and querying. Since 2010,
6 new versions has been released adding more features to SMILA. With
SMILA being very complex, it gains asynchronicity as its biggest benefit
from the pipeline architecture. The SMILA pipeline also allows custom
made pipelets to be inserted into the pipeline. A pipelet is a subprocess
inside a pipeline. By creating pipelets, the behaviour of SMILA could be
tailored into extracting relevant information from Wikipedia.

The releases for SMILA has been dwindling the last three years with
only 1 release in 2015. If you add that to the fact that all the different fea-

4term frequency inverse document frequency
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Figure 2.1: An overall overview of the SMILA architecture

tures of SMILA makes it very complex, the usability and stability suffers.
This was experienced during testing of the program during this project.
Nevertheless the utility that the SMILA system offers could be taken ad-
vantage of in this project. Either by utilizing SMILA itself, or look at how
SMILA retrieves data from the web, processes it and produces a data set as
a result.

2.2 Methods

2.2.1 Pipeline

A software pipeline is a chain of processes where the output of one process
is fed as input into another. If these processes are arranged correctly, the

12



result is a pipeline. A software pipeline is actually a design pattern, where
it is better known as pipes and filters [16]. The two big advantages of a soft-
ware pipeline is modularity and parallelity [17]. The reason for parallelity
is that the data can be spread across several processes. This means that the
data can be processed in different instances of the program. Another case
is more like a conveyor belt, where data is propagated through the pipeline.
So while some of the data are being inputted into the first stages, another
part of the data is finalized at the end. The other advantage, modularity,
simply means that it is easy to replace a part of the pipeline. The reason
for this is that the subprocesses are loosely coupled, so changing one part
of the system will not affect the rest in any way.

The first mentioned advantage, parallelity, is not used to a significant
extent in this project. This is mostly because performance has not been
an important quality attribute. Instead the focus has been more on func-
tionality. For this reason the modularity part has been very valuable. It
has allowed different parts of the system to be easily replaced or altered in
conjunction with the changes of the requirements.

2.2.2 TF-IDF

TF-IDF is a statistical measure which evaluates how important a word is
to a document based on the document itself and the collection it is part of.
Based on this it is possible to decide how likely it is for the document to
be relevant. TF-IDF is used as the standard similarity measure in Elastic-
Search, see section 4.3.1.

TF-IDF can be divided into two parts, term frequency and inverse docu-
ment frequency. Term frequency is how often a term appears in a document.
The more instances the document has of the word, the higher is the chance
of the document being relevant. Inverse document frequency looks at how
often a term appears in the whole collection of documents. The more often
a term appears, the less relevant is the term. This means the common terms
will have less weight than rare ones, when calculating the likelihood of the
documents relevance.

To calculate the similarity the formula needs a term t, a document d and
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a document collection D. TF-IDF is then calculated as

tfidf(t, d,D) = tf(t, d) · idf(t,D)

Both the term frequency and the inverse document frequency can use vari-
ous ways to determine the exact values, following is two simple variants:

tf(t, d) = ft,d

idf(t,D) =
|D|

|{d ∈ D : t ∈ d}|
Here ft,d denotes the raw term frequency of t and |{d ∈ D : t ∈ d}| is
how many documents t appears in. A high measure weight for the term
will then be given by it having a high frequency in the document, but a low
frequency in the overall collection.
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Chapter 3
Conceptual design

This chapter will explain how the system will extract examples, add them
to the database and make them searchable for an end user, on a conceptual
level. It will start by briefly explaining the overall approach, before going
more into details regarding the pipeline, and how the examples produced
by the pipeline are managed for search purposes. The chapter will finish
with an analysis of examples, to help us better understand them, which in
turn can improve the performance of the system when it is implemented.

3.1 Overall Approach

The goal of our approach is to create a searchable index for a collection of
examples. The first step is to find examples and store them in a database.
Wikipedia was chosen as a resource for extraction of examples. Wikipedia’s
articles have a reliable and consistent format. It is also the largest collection
of open information, which gives us a sufficient amount of source data to
work with. The source data is acquired from a XML dump that Wikime-
dia publishes regularly. Except for the markup itself, the articles contain
no structure. From the dump we obtain the article’s markup and additional
meta data. Therefore a considerable amount of processing is required to
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locate and extract relevant examples that can be inserted into the index. To
achieve this we created a software pipeline where several independent pro-
cesses work together by using the output from one process as input to the
next process. We start by feeding the pipeline with the raw XML file. The
pipeline parses the XML and markup of each article. The relevant articles
are stored in a relational database. A new process creates examples based
on the data in the database. Last, an index is built from these examples.

3.2 Pipeline

3.2.1 Creating the pipeline

Figure 3.1: A conceptual overview of the pipeline used to extract and index ex-
amples

Based on what was discussed in section 2.1.4, it was decided not to use
the SMILA system and its utilities itself, but instead look at how SMILA
approaches the problem and take inspiration from that. Therefore other
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methods were considered, which mainly consisted of building the pipeline
from scratch. Tailoring the different sub-processes for our project and or-
ganizing them in a pipeline, was decided to be the best course of action.
The first issue to be settled regards the format of the source data. SMILA
fetches information by crawling the web, in our case Wikipedia1, but using
a web-crawler is a very general method. Since our project will only use
Wikipedia, the extraction method could be more specific. An XML-dump
from a snapshot of Wikipedia’s database fits perfectly in terms of simplicity
and stability for our project. The dump contains all the articles of Wikipedia
in their newest version.

To transform the XML-dump into useful data, several sub-processes
will be utilized. All the sub-processes in the pipeline are loosely coupled,
which means that they are fully independent given the correct input. Be-
ing fully independent allows the pipeline to easily swap out or alter sub-
processes without affecting the rest of the system. The SMILA pipeline
also delivered a high degree of parallelity. Parallelity is a property the cur-
rent version of the pipeline created from scratch does not have. The pipeline
implemented will not focus on parallelity because functionality will be pri-
oritized higher than efficiency and performance.

3.2.2 Extracting data from XML-dump

Parsing the source data and then extracting examples from it, is the first
task the software pipeline performs. The source data used for input to the
pipeline uses the XML format. On the top level of the XML documents
there exists article elements marked with an article tag. Each article ele-
ment represents a page on Wikipedia and thus contains metadata about the
page as well as the content itself. All the data forms an XML document
with a size of 50 gigabyte. Because of the document’s huge size, the pro-
cess reads the XML-document as a stream, buffering line by line, and then
identifies article elements and saves the relevant data from it to an object
in memory. For each article, the process looks at the sections and selects
the ones that contains an example. It parses those articles into an object
with the relevant data. A relational database is created to store information

1www.wikipedia.org
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about the examples. When iterating over the articles, the process populates
the relational database with data from relevant sections and articles. The
database stores meta data from the articles, content from specific sections
and references in the sections. Relations between articles, sections and ref-
erences are also stored, and are used in the next step of the pipeline, when
the data will be used to form example entities.

3.2.3 Building an index of examples from SQL

The first step in building the index is fetching data from the database to form
examples. Virtual tables called views, are used in the database to normalize
the data on a format which the index will be using.

Elasticsearch was chosen as the tool for building the index. Section
4.3.1 explains why it is a good choice for this project. A simple Java pro-
cess fetches the views from the database and creates objects representing
examples. References to other examples and which categories the exam-
ples are also added here. The example model has a one-to-one relationship
to the examples represented in the Elasticsearch index, so the objects are
directly converted to JSON and inserted into the index. To configure and
query the index, Elasticsearch serves a HTTP API. The API is used before
building of the index to specify behaviour of different fields, and after for
searching the complete index.

3.3 Search examples

3.3.1 General idea

When the source data consisting of Wikipedia pages has been processed
through the pipeline described in section 3.2, the final result is an index built
up of examples. Having just an index is not very useful without an easy way
of interacting with it though. Therefore a user friendly, web based search
interface has been created. Figure 3.2 displays the interaction between the
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user and Elasticsearch with the two methods for querying, which are by
using keywords or a selected example.

Figure 3.2: A simple overview of the user’s interaction with the examples

The main objective of the interface is to assist the user in finding rele-
vant examples and to present these examples to the user in a helpful man-
ner. To present the examples, the interface use HTML and CSS from the
live version of Wikipedia from its web server. To find relevant examples,
the interface helps the user in two ways. The first one is simply using key-
words entered in a search field by the user. The second is when the user has
already selected an example that is relevant, the search interface will then
use this example to find similar examples.

3.3.2 Querying by keywords

The user’s first interaction with the interface is by interacting with the
search field. In this field the user will type in keywords which will be used
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in a query sent to Elasticsearch. Elasticsearch will then use the TF-IDF al-
gorithm to match the search phrase to fields contained in the example. The
fields used for matching the search terms are introduction, content, title and
categories. By boosting the importance of some fields, the query can be
fine tuned into delivering a more relevant collection of examples based on
the keywords in the search phrase.

3.3.3 Querying by examples

The collection of examples returned by the user’s first query is presented
in a list. The list allows the user to browse through the returned examples
and select an example. The selection of an example triggers a new query,
which is automatically sent to Elasticsearch and executed. The query uses
data from the selected example and the previous search. By comparing the
categories of the selected example, and categories from the search, the most
popular category is identified. The most popular category is a category from
the selected example’s set of categories, and appears most times among the
best results of the initial search. The most popular category is then used
by Elasticsearch to retrieve related examples. The set of returned examples
are then rated after how good a match they are to the selected example’s set
of categories, and then ordered in two lists based on their rating. One list
contains examples with a perfect match, while the other contains the ten
best examples that partially match.

3.4 Analysis of examples

3.4.1 An example

An example is used as a tool to better understand a topic. It is usually used
together with an explanatory text, where the example is a minor part of it.
Examples are rarely presented standalone since they often required a certain
degree of context. If this context is fused into the example, it often tends
to make the example very complex and too troublesome to use efficiently.
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Because of this, an example can often be looked at as an appendix to a text
regarding a subject.

People who want to learn about a certain topic, but already know the
basic context may prefer to skip the explanatory text and only look at the
examples. This project tries to exploit the fact that examples act as an
appendix to a subject. Therewith, we attempt to give persons trying to
expand their knowledge within a topic a more preferable way of doing so.
In order to develop a better tool helping these persons, Research Goal 2
focuses on reaching a deeper understanding of examples. We hope that a
better understanding of examples will lead to more success when finding
search results and recommending related examples.

3.4.2 Comparing examples

Finding common properties of examples is very difficult and nearly impos-
sible if compared across different domains. When comparing two examples
within the same domain and topic, there will still be different approaches
and techniques of explaining, which still makes it hard to directly compare
them. As a consequence, a highly qualitative and subjective analysis has
been made for examples within the Game Theory domain.

Different key properties have been identified and examined across dif-
ferent topics. Some properties are connected to the structure and presen-
tation of the example, while others are based on the contents. Through
examining topics within Game Theory, a list of properties of an example
were designed. Table 3.1 displays these properties with a brief explanation.

3.4.3 Structure of a good example

The structure of an example is mostly defined by how it utilizes the proper-
ties mentioned in table 3.1. Simply checking which examples has the most
properties is inaccurate and misleading. A good example does not need
to have all the properties and counting them will not result in finding the
best. Instead the combination of the values these properties contain are sig-
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Name Description

Figures Graphics and drawings referenced in the example.
Length The length of the example, can be both words and charac-

ters.
Domain Which domain the example belongs to.
Source code If source code is used for explaining principles.
Equations If equations are used to explain the example
Analogies When an real world example is used to explain a theoreti-

cal one.
Subsections An example that is divided up in smaller parts or sections

that offer different angles of explanations for the example.
Walkthrough A step by step guide that solves a problem.
Iterations Several iterations that gradually increase the complexity

of the explanation.
References How often the example refers to figures or other examples

and articles.

Table 3.1: Properties of an example and a description of them.

nificant, especially the property describing the domain, as some domains
could generally benefit from a different composition of properties than oth-
ers. This leads to a more narrow approach domain-wise, when looking into
different examples. When trying to identify the structure of a good exam-
ple, there have been selected a few topics within the Game Theory domain.
Then for a certain topic, for instance Pareto Efficiency, two or three exam-
ples have been compared to each other.

For the topic Pareto efficiency two examples were examined. Pareto
efficiency is about reaching a state of allocation of resources where it is
not possible to make one part better of without making another part worse.
The first example is named Examples and exercises on Pareto efficiency.
This example builds up its explanation step by step with several iterations.
Each iteration is a bit more complex than the previous. This enables the
example to cover the topic with a certain depth. The second example is
named Robinson Crusoe example. This example is very long and detailed.
In addition to a large amount of text, it also uses equations to a substantial
degree. Initially the first example seems better, it definitely makes it easier
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to grasp the concept of Pareto efficiency. The second example focuses more
on the mathematical part, and there will most likely exist some persons who
prefer this. See appendix B for both examples.
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Chapter 4
Implementation

This chapter will explain in detail how the final system was implemented.
Based on the concept described in section 3.2, a pipeline will transform
Wikipedia’s source data into structured example objects. The system’s ar-
chitecture and the format of the source data will be displayed in figures,
which will explain how the system creates examples from the source data.
The last part of the chapter will mention the tools used in our project, that
were of great significance.

4.1 Pipeline

4.1.1 Overview

Wikidump Parser is the first part of the pipeline. It transforms the XML
dump of the whole Wikipedia into a database with relevant data from ar-
ticles. The Wikidump Parser is written in JavaScript and executed by a
Node.js process. To insert the relevant data from the XML into a database,
it parses the XML, then parses the Wiki markup and lastly inserts relevant
articles into the SQL database. These separate processes are managed by a
master process executed from the main file index.js.
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The second part of the pipeline is called Example Indexer. Example
Indexer fetches data from article, section and category tables in the SQL
database and combines the data into examples. To fill the index with ex-
amples related to specific domains, a whitelist is used to include examples
based on their categories before it builds an index in Elasticsearch with
these examples.

Example Search is the last part of the pipeline. When the pipeline is fin-
ished with processing the data into examples, Example Search can fetch the
examples from the index, and display them for the user. Example Search is
a web based search interface that queries the index over HTTP and displays
the results.

Figure 4.1: Architectural overview of the pipeline

Figure 4.1 displays these three parts of the whole system, where arrows
indicates the data flow. The different parts of the system does not com-
municate with each other directly, but by inserting and fetching data from
permanent storage.
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4.1.2 Wikidump Parser

4.1.2.1 Architecture

Wikidump Parser has a very simple architecture. As shown in table 4.2, two
main processes are responsible for inserting relevant articles and sections
from the XML dump into the SQL database. XMLParser uses a stream to
parse the XML and uses an event pattern to notify every time an article
has been parsed. Markup Parser then parses the article received from each
event. If the article contains an example, Wikidump Parser inserts it into
the SQL database.

Figure 4.2: Architectural overview of Wikidump Parser

4.1.2.2 XML parser

The data dump that is fed into the beginning of the pipeline is on the XML
format. Figure 4.3 shows how the XML is structured. The file is composed
of page elements at the top level with the page tag. Each page element
represents an article in Wikipedia. The page has several sub elements, but
the most interesting element, is the one with the revision tag. Wikipedia
saves several revisions of a page, but in the XML dump used, only the
newest revision is included. It is inside this element that we find the article’s
content in the form of Wiki markup. Line number 18 in figure 4.3 contains
a comment marking where the whole article’s markup is found.

In our project the JavaScript class XMLParser.js handles the pars-
ing of XML. It detects where an article in the XML document starts and
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Figure 4.3: The XML structure used in the XML dump of Wikipedias database

where it ends by looking at the element tags, then proceeds to send the
content to index.js. The document is read as a stream, which gives the
advantage of only keeping a small bit of the document in memory. The li-
brary sax1 is used to read the document as a stream. Sax then creates events
indicating where in the document it is currently reading, and what elements
it is entering or exiting. Our project listens to the events for an open tag,
close tag and content. By saving the state of which element Sax currently is
inside we extract content, title, id and timestamp from the article element.
When we detect the end of an article element, the data extracted is passed
to index.js.

1https://www.npmjs.com/package/sax
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4.1.2.3 Markup parser

When extracting data from Wikipedia articles, the article’s markup is parsed.
The markup is called wiki markup, figure 4.4 demonstrates how the markup
might look like for an article. When looking at the XML in figure 4.3, the
entire wiki markup for an article is found at line 18.

Figure 4.4: A short outline from an article’s wiki markup, with important aspects
highlighted and marked.

Figure 4.4 points out some important aspects of the markup language.
For a complete guide, Wikipedia has its own help page2. Mark A shows how
to refer to an image or other graphic. The first piece of information is about
where to find it in Wikipedia’s database, while the rest is for the visual
presentation of the image. Mark B is the most important markup when
dividing the article into sections. The equal signs at each side indicates a
header for a section. The number of equal signs range from one to six. One
is the Article title, two is section, three is subsection and so on. By using
the hierarchy, we can both separate out sections from each other and find
each sections parent section.

2Help:wiki markup - https://en.wikipedia.org/wiki/Help:Wiki_
markup
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The markup by Mark C is used for special formatting between the tags.
In the case of figure 4.4, mathematical expressions are shown. Code is an-
other format that is often included in examples, it is tagged in the following
way; <source lang="java">, where the value of lang is the pro-
gramming language. Mark D shows how one Wikipedia article refers to
another. When parsing the sections, all these references are stored. These
references are later used for finding relations and relevance between two
articles. The words right of the pipe is the reference name, while the ones
on the left are the names of the articles that are linked to.

Each article sent to index.js from XMLParser.js is assessed on
whether it contains examples or not. Articles not containing any exam-
ples, are discarded completely from the final collection. In order to as-
sess the articles, the markup is parsed into objects. This is the task of
MarkupParser.js. The parser uses several steps to extract the de-
sired information from the markup. The first steps parses the entire article’s
markup. The result of the first step is objects for each section, including the
introduction. The sections contain a header, what level they belong to in
the section hierarchy and the content of the section.

The next step iterates through the list of sections to determine if some
of them is an example. Sections that are not an example is discarded. If no
examples are found, the whole article is discarded at this point. References
to other articles and categories are then extracted from the markup. The
data is finally inserted into the database pictured in figure 4.5.

4.1.3 SQL Database

Section 3.2.1 explains that the source data is fed into the pipeline as a
snapshot of Wikipedia at a particular time. The size of the source data
is an approximately 50 GB XML-document. Most of the data has no link
or relation to examples, making it uninteresting for this project. There-
fore Markup parser excludes most of it before it is organized in the SQL
database.

Figure 4.5 displays the tables of the database and the relations between
them. If an article with a relevant section is discovered, the article is in-
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Figure 4.5: A simple overview of the database tables and their attributes

serted into the pages table in the database, with only metadata and the arti-
cle’s introduction. The relevant sections are then extracted from the article
and stored in the database with relation to the article. The categories of
the article is also kept, because it will be helpful when searching among
examples in the finished index. At the end of the process of inserting one
example into the database, the references are stored with a connection to
the section they are used in.

The database acts as a temporary buffer for the data going into the in-
dex. Having a buffer separates the parsing, from the building of the in-
dex. Therewith changes made in the parsing, will not affect the rest, so the
database acts as an interface between the parser and the indexer. The data
is stored on disk, so also the point in time when the programs are executed
can happen independently. This is preferred since the parsing is a very time
consuming process, using about nine hours completing a full parsing run.
Having it structured in SQL with its metadata helps showing how success-
ful the parsing was. Some of the metadata is also irrelevant for the index,
so only keeping it in the database makes the end result less complex.

4.1.4 Example Indexer and Whitelist

A Java program queries the database for all sections. The relations and data
from the other tables are incorporated into the section. Now the section is
an object with all the data needed to independently represent an example.

Although all the sections extracted from Wikipedia articles are exam-
ples, not all are relevant for a specific search purpose. Therefore the ex-
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amples can be filtered through a whitelist before they are inserted into the
index. By filtering the examples before adding them to the index, we can
assure that only examples of interesting domains are added. This can then
improve the results returned from the index after a search. Appendix C
contains an example of a whitelist used to keep desired examples. A to-
tal of 4 whitelists have been created, to be used in different combinations.
The whitelists can be found in the Example Indexer resource folder, at
src/main/resources. The whitelists were created by extracting the
complete list of all categories from the SQL database. Next, the categories
were sorted by how many articles that had a relation to them. Finally, the
list was manually altered into three different versions. A fourth version
was created based on Wikipedia’s category hierarchy. If one of the cate-
gories linked to a specific example also exists in the applied whitelist, that
example will be included in the index’s corpus.

The purpose of using whitelists was to reduce the amount of examples
in the index. The whitelist can then reflect a chosen domain by includ-
ing only examples related to predetermined domains, consequently giving
the corpus a specific scope. A more specific scope for the corpus, should
improve the quality of the results returned.

Figure 4.6: A venn diagram showing how whitelists act as subsets of all categories

The four different whitelists were given the names Edu, Top200Edu,
MathTech and MathTechWiki. The names reflect the set of categories in-
cluded for each whitelist. Edu and Top200Edu contains the categories
which are most popular and also educational. Edu contains all educational
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topics, while Top200Edu is restricted to the top 200 categories. Math-
Tech narrows the selection further by only including categories related to
mathematics and technology. The last list, MathTechWiki, is based on the
main categories from Wikipedia’s main category overview3. Mathemath-
ics, Logic, Mathematical Sciences, Computing and all of their immediate
sub-categories are included. Figure 4.6 demonstrates how one whitelist is
a subset of another category list.

Whitelist Categories Examples
No whitelist 17 170 28 110
Edu 17 132 22 977
Top200Edu 200 6 364
MathTech 157 5 037
MathTechWiki 64 1 003

Table 4.1: Statistics for examples and categories included when applying different
whitelists for filtering of the example collection.

Table 4.1 display the statistics after each whitelist has been used on its
own to filter examples. Table 4.1 shows total number of categories included
in each list and how many examples included in the final corpus. When
building our index, Top200Edu and MathTechWiki are being used, which
keeps examples related to the most popular and important categories. Ex-
amples only related to less popular categories or irrelevant ones, are as a
result discarded.

Before the examples are inserted into the index, the index is created
with the Elasticsearch java API4. Our project uses the default settings, so
only the cluster name is needed to be defined beforehand, the rest happens
automatically by Elasticsearch. Lastly a mapping for the example object is
passed to Elasticsearch. Figure 4.7 shows the mapping passed. It defines all
the fields with its types. The mapping sets categories to not analyzed,
so it will match the exact category names.

3https://en.wikipedia.org/wiki/Portal:Contents/Categories
(Last visited 7. Mars 2016)

4https://www.elastic.co/guide/en/elasticsearch/client/
java-api/current/index.html
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Figure 4.7: Mapping used to define an example in Elasticsearch

The examples needs to be converted into JSON format first in order
to put them into the index. A simple method maps all fields over to their
equivalent attributes. Attributes in JSON are key-value pairs, key name and
the field’s value. The Java API sends each example to Elasticsearch as a
document on the JSON format, which then indexes it.
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4.1.5 Index

As already mentioned, Elasticsearch is the chosen tool for indexing the
examples. By using its simple RESTful API, examples can be stored as
JSON documents, which Elasticsearch then indexes automatically by de-
tecting the example’s data structure and type. Hence, we can focus more on
the queries used to retrieve examples, instead of building the index. Elastic-
search manages the whole index, and leaves a simple web based interface
for communication.

During this project, Elasticsearch was run on the same computer as
both Example Indexer and Example Search. Therefore the communication
between these programs happens with HTTP request over localhost. Lo-
calhost is used when communicating between different processes on same
computer. By resolving to the IP address 127.0.0.1, which is a loopback ad-
dress, only the right port is needed. Consequently, Elasticsearch, Example
Search and Example Indexer, which all are web applications, communi-
cates with each other without an internet connection. During the project,
having them all on same computer was the easiest option. For possible fu-
ture use, hosting the index on a separate server, only the ip address would
have to be changed.

Although Elasticsearch mostly handles the customization for us, we
have chosen the cluster and node setup. All the data is gathered in one
cluster, running on one node, named wiki cluster. There is also only
one index, wikipedia. To make the index as simple as possible, only one
document model exist to represent the examples, which naturally is named
example. A query for a specific example will then look like this:
GET http://localhost:9200/wikipedia/example/1
The request above specifies 1 at the end of the line, which makes Elastic-
search return the example with id 1. The web server mostly uses queries
for its searches, here is a possible example of how to perform a query:

GET
’http://localhost:9200/wikipedia/example/_search’ -d ’{

"query" : {
"term" : { "title" : "Prisoners Dilemma" }

}
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The above search only makes use of the examples title field, while the dif-
ferent queries performed by the search interface utilizes most of the fields
of an example.

4.2 Example Search

Figure 4.8: A sequence diagram showing the interactions between the actors when
searching for examples

Example Search is responsible for managing queries passed from the user.
It serves a web page that allows the user to enter queries for examples.
Express5 is used as a framework to effortless set up a web application with
a HTTP API.

For the web page, Jade6 is used as a template engine to build the HTML
structure. Using a template engine allows easy reusing of markup code.
Also control structures and programming statements can be used directly
in the file. Jade offers its own syntax that is faster to write than the standard
HTML syntax. For simplicity, the web page is mainly styled by Wikipedia’s
style sheets, with a few adjustments. When the user wants to query for

5http://expressjs.com/
6http://jade-lang.com/
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examples, the web page offers a search box. The search box sends a HTTP
request to the web server with the query.

For the web page to return examples after a search, a series of requests
are made to different actors, figure 4.8 gives a quick overview of the actors
and their interaction. The interaction starts when the server receives the
HTTP request, Express routes the request to the right function. The routing
functions can be found in routes/index.js. When the request is re-
ceived, a new function in elasticsearch/api.js is called. api.js
queries Elasticsearch directly by using the official Elasticsearch JavaScript
library7. Elasticsearch divides the keyword into terms, then it matches the
terms with the inverted index created from all the examples. Finally Elastic-
search uses TF-IDF to measure the relevance of the examples. The response
is sent back, ordered by relevance, to the routing function asynchronously
using a callback.

To display the page in the same way that Wikipedia does, the article’s
link is used to scrape the page from en.wikipedia.org. By scraping the page,
we get access to the complete HTML structure of the actual page. From the
HTML structure the example section is extracted. A list of all the relevant
examples with their corresponding HTML is sent back to the web page in
JSON format.

The web page uses AJAX8 to handle the response from the server and
displaying the results in a table. In the table a link for each example is cre-
ated. This links leads to a view where only that example is displayed. In
addition, related examples are shown. The related examples are found by
sending a new request to the web server. The web server forms a new query
to Elasticsearch. By using the selected example and results from the previ-
ous search, the web server tries to return the most related examples. First
an algorithm detects the most popular category based on the first search.
Then the most popular category is used to retrieve all examples that is re-
lated to it. Finally, a formula is used to measure how related the examples
actually are. The formula used to sort the relatedness of examples based
on categories are: |M |

|C| where M is matching categories one related example
has with the selected example and C is all the categories for the selected

7https://www.npmjs.com/package/elasticsearch
8AJAX - Asynchronous JavaScript and XML
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example. With the selected example and its related examples returned to
the web page, the user can browse between examples by using the links
created for each example.

4.3 Tools

4.3.1 Elasticsearch

Elasticsearch is a tool used in this project for indexing the examples. Elas-
ticsearch is built on top of Apache Lucene9, which is a information retrieval
library, written in Java. Internally in Elasticsearch, data is stored as struc-
tured JSON10 documents. The API11 for communicating with Elasticsearch
is a RESTful12 API using JSON over HTTP. The API can be used for con-
figuring Elasticsearch, building the index and querying it.

Elasticsearch is built for scalability. Being scalable means handling
growth of both the dataset and interactions on it. Elasticsearch scales by
having a cluster of many nodes. If the system needs to scale, new nodes
can easily be added, and Elasticsearch will distribute resources to the newly
added nodes. Different nodes can exist on different servers. However this
project does not need or take advantage of this scaling, and will only run
on one node.

There are two ways of implementing a search in Elasticsearch, filter and
query. The filter is utilizing terms to decide whether a document should be
returned or not. Searching with a term is very similar to how one would use
SQL. Searches can for instance consist of text strings, numbers, ranges or
dates, and Elasticsearch will return everything that matches. It also allows
for boolean operators and nesting of these. Using a filter is very quick and
should be used if the relevance of the documents is insignificant.

9https://lucene.apache.org
10JSON - JavaScript Object Notation
11API - Application Programming Interface
12REST - Representational State Transfer
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If relevance score is important then the second option, query, should be
chosen. If a query is combined with a term, Elasticsearch is looking for the
exact value in its index. A score is then returned based on the documents
TF-IDF relevance to the term. If a match is used instead, an analysis will be
performed, creating a list of terms from the query, and then executing low-
level queries for each of the terms. The results are combined to produce the
final relevance score. These two methods can also be combined or extended
with other methods to customize the search further.

4.3.2 NPM and Node.js

In our project, both the programs Wikidump Parser and Example Search are
written in JavaScript, which is normally executed by browsers. Node.js[18]
allows the code to be executed from a terminal instead, which enables
JavaScript to be used on servers. Node.js is an asynchronous event driven
framework. By embracing to event loop in this manner, Node.js avoids
thread management and blocking of those. Instead callbacks are pushed to
the event loop and Node.js runs until there are no more callbacks to per-
form. This makes Node.js ideal for simpler and less complex systems, and
is therefore chosen for this project.

Node.js also comes with a packet manager called Node Packet Man-
ager(NPM). NPM allows any Node.js project, to include libraries and other
JavaScript projects published to their Open Source Registry 13. This is done
by a simple API call to the NPM executable in the terminal.

Using code from open source libraries saves a lot of time during devel-
opment while still having full control and overview of the code executed.
Hence we decided to include several libraries. Examples of libraries used
are sax for reading the XML file line by line as a stream. wtf wikipedia14 to
parse some of the Wikipedia markup; request15 to fetch a HTML file from
a server with a GET call; cheerio16 for iterating through an HTML struc-
ture while supporting filtering, reading and editing of the HTML. Using

13https://www.npmjs.com/npm/open-source
14https://www.npmjs.com/package/wtf_wikipedia
15https://www.npmjs.com/package/request
16https://www.npmjs.com/package/cheerio
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libraries results in the system being more modular, which makes it easier
to alter during development. This has been highly advantageous for this
project, since requirements have been continually changed.
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Chapter 5
Experiments, Results and
Discussion

Chapter 3 discussed the different concepts regarding the pipeline and the
examples data managed by it. Chapter 4 explained how the pipeline is im-
plemented. In this chapter we will use the information made available in
Chapter 3 and 4 and explore to which degree the research goals have been
accomplished.
First, for Research Goal 1 we will decide whether the pipeline created is sat-
isfactory or not. Regarding Research Goal 2, we will conclude the analysis
conducted in Chapter 3. Next, we will investigate if the database chosen
to manage the collection of examples is satisfying the purpose of Research
Goal 3. Finally, a series of experiments will be performed to evaluate the
search results produced by the search interface. A comparison of the results
will help to determine if Research Goal 4 is fulfilled.
Each section in Chapter 5 will discuss on of the research goals. Table 5.1
gives a quick overview of which research goals are being discussed by the
different sections.
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Goals Section
1 5.1
2 5.2
3 5.3
4 5.4, 5.5 and 5.6

Table 5.1: Mapping of which sections discusses the different research goals.

5.1 Resulting Pipeline

We tested the final pipeline by using the English Wikipedia’s database
dump from February 4. 2016. With a size of 56.3 GB, the XML file con-
tains over five million articles. The process of extracting the relevant data
and inserting it into the SQL database lasted nine hours. After the last sec-
tion was added, the database contained 28 110 example sections deemed as
relevant sections. The process was run on a mid end MacBook Pro from
late 2013 with four cores, each with a processor speed of 2 GHz and 2x4
GB of memory with a speed of 1600 MHz.

When the process that extracts relevant sections were finished, a new
fully independent process was started for the next step. First, the process
queries the SQL database for sections1. By using the relations from the
sections stored in the SQL database, the process builds examples. Next, a
whitelist is used to filter the examples based on their categories. By filter-
ing the examples we can avoid irrelevant categories, for instance examples
concerning history. Finally, the collection of examples left are used to build
an index with Elasticsearch. The Elasticsearch index offers an HTTP API
that can be used to query for examples.

1A section is a part of an Wikipedia article.
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Value
XML file size in Gigabytes 56.3
Number of articles 5 100 000
Extraction duration in hours 9
CPU speed in GHz 2.0
Memory size in GB 8

Table 5.2: Results from processing the XML dump through the pipeline

5.2 Describing a good example

Finding examples that later can be presented to the user is the overall goal
of our work. To make the system we have created perform well, we want to
fill the database with useful data in the form of good examples. This project
uses Wikipedia as a source to automatically identify and extract examples.
To make the best out of the examples extracted, we performed an analysis
on what differentiates a good example from a bad one. A more detailed
account of the analysis can be found in section 3.4. This section will use
the main points from section 3.4 to draw a conclusion.

The analysis was performed based on examples from Wikipedia, but to
manually compare examples for the same topic, examples from a normal
Google search were also used. Game Theory is used as an overall domain
for the analysis. The examples were chosen to walk through the unim-
plemented system. The analysis let us discover how the examples would
affect the system, and depending on the system’s input, the structure of the
examples could be fitted to the system’s needs. The topics were chosen
to reveal strengths and weaknesses of our approach. The following top-
ics were chosen to find examples: Prisoner’s Dilemma, Nash Equilibrium,
Pareto Optimality, Zero sum, Parrondo’s Paradox. Appendix B contains
samples of two examples chosen for the subject Pareto Optimality.

Based on these subjects, a list of properties that examples might possess
was compiled, table 3.1 contains these properties with a short description
of each. The properties listed in table 3.1 are all favourable, but we experi-
enced that when an example contains too many of them, the content of the
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example becomes very complex. A complex example is not necessarily a
bad thing. Although a more complex example requires more prerequisite
knowledge from the reader, which may exclude some readers. The extent
of use for each property is also a considerable factor for determining com-
plexity. Although more properties often make the content of the example
more complicated, some are always needed. A simple example will have
a hard time explaining the more complicated aspects of a subject. There-
fore an example should fall in between a golden mean of complexity. This
golden mean is hard to define, but ought to be quite large. There is some
techniques though, that lets an example explain more complicated subjects,
without increasing complexity. Pictures or equations that are methodically
referenced to from a descriptive text, is one way. Also the combination
of the properties analogies, walk-through and iterations improve examples
without making them more complex.

The analysis in section 3.4 gave a better understanding of examples.
Consequently rating and ordering of examples can be improved based on
the analysis. The improvement can result in the collection of examples hav-
ing a higher quality and also lead to a better user experience. An instance
were better understanding of examples can lead to better user experience
is when the user is browsing through examples. The list of related exam-
ples can then be arranged in fashion that gives the user a natural feeling of
progress when learning about a subject.

5.3 Collection of examples

Research Goal 3 aims to obtain a collection of examples that we can pop-
ulate a database with. The database accepts all kinds of examples, con-
sequently the examples are represented in a generic way. We are using
Wikipedia as source for all the examples, therefore we have to strip away a
large amount of the information from the articles used.

After an article is extracted from the XML document, data is stored in
a relational database. To form an example, data is fetched from the tables
by using the relations defined in the SQL database. In addition to the con-
tent, categories and references associated with the example are included.
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These properties are needed for an example in our system, so we later can
perform queries on the collection. With Wikipedia having no limits for its
domains, whitelists are used to narrow the examples down into only rele-
vant domains for our project. During implementation whitelist Top200Edu
and MathTechWiki were used.

After the processing, the collection now contains relevant elements,
with a structure that represents a general example. This collection can then
be indexed by Elasticsearch, which is the database containing all examples.
Other examples from different sources can separately be included to Elas-
ticsearch’s example index, as long as the examples are structured correctly
according to the mapping described in section 4.1.4. Table 5.3 shows how
many examples were extracted from Wikipedia and how many examples
that ended up in the final index.

Value
Number of section after extraction 28110
Number of examples after filtering 6593

Table 5.3: Statistics from the index after original implementation.

5.4 Search interface

Figure 5.1: A screenshot of the search interface before a search is performed.

Figure 5.1 shows the search page of Example Search, before a search is
performed. The design is very minimalistic with main focus on highlighting
functionality. When a search is performed the now empty table will be
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filled with results. The columns Score and Categories are mainly for help
to evaluate and debug the system by using the returned results.( Would not
be necessary in a finished version.) Meanwhile Title displays the name of
the Wikipedia article and Content contains the actual example.

Figure 5.2: A screenshot of the search interface after a search is performed, show-
ing the returned results.

When a search has been entered, the table expands and displays the
examples returned. Figure 5.2 demonstrates how the interface looks after
the search term sigmoid has been used. Every example has a link as its
first line, which leads to a page specific for that example. When the link
is clicked, the web server starts the process of finding related examples by
sending a query to Elasticsearch and evaluating the returned results. The
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selected example and its related examples are then sent to the web page and
displayed there.

This page can been seen in figure 5.3. The page has the main example
displayed in the middle, while the columns at each side of it contains a list
of related examples. The two lists contain the name of examples and a link
to their own page. The Total matches list on the left side contains related
examples with a total match, while on the right side is the Partial matches
list, which contains top ten of the examples that partly match. A search
based on the category sets from the original search and the main example
is used to find and order the relevant examples.

Figure 5.3: A screenshot of the search interface when a specific example has been
chosen.

5.5 Querying by keywords

5.5.1 Experiment I: Search examples

In this project we have filled a database with examples, indexed those exam-
ples and created an interface that we can use for searching them. In order to
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perform searches, we have created queries that Elasticsearch executes. To
evaluate how well these queries perform we have created a list of keywords.
We evaluate the accuracy of the queries by measuring the precision of the
results returned from a search with the selected keywords. Precision is the
fraction of returned examples that are relevant. It is calculated as follows:

|R ∩ E|
|E|

In the equation above R is the set of all relevant examples and E is the set of
all the retrieved examples. In our experiments E, representing all retrieved
examples, is limited to the first five results in the top 5 tests, and similarly
first ten in the top 10 tests. By limiting the size of E, manual inspection
can be used to check whether an example is actually relevant, which would
also place it in the set R.

Keyword Total hits Top 5 Top 10
Logic 362 1 0.9
Programming 884 1 0.9
Heuristic 44 0.8 0.7
Algebra 1046 0.8 0.7
Game Theory 2757 1 0.9
Fuzzy Logic 365 1 0.7
Java 269 1 0.9
Bayes Network 345 1 0.9
Derivation 67 1 0.8
Chain Rule 530 1 0.6
Prisoner’s Dilemma 39 1 0.6
Nash Equilibrium 101 1 0.8
Cartesian Product 789 0.8 0.6
Parrondo’s Paradox 49 0.6 0.4
Zero Sum 1017 0 0

Table 5.4: The precision of the queries evaluated by a set of keywords and the top
ten and top five results

Table 5.4 contains the keywords and the results of the experiment. The
keywords were chosen from the domains mathematics, artificial intelli-
gence and programming. Those retrieved examples that are faulty2 or are

2Faulty examples can be caused by a bug in the pipeline or XML dump out of sync
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examples for another subject are judged as an irrelevant result. Total hits
reflects the amount of examples that the system found relevant to any de-
gree. The different keywords have been divided into three different groups.
The groups are listed in descending order by the degree of how general the
keyword is perceived. The horizontal line in the table separates the groups.
There is no specific order among the keywords within a group.

Figure 5.4: Average precision for the three different groups

Figure 5.4 shows how the three different groups’ score in the experi-
ment. The top and middle group has a very good score, both for top 5 and
top 10, while the bottom group score a bit lower. The average score of top
5 and top 10 for all three groups is 0.8, which entails that only 2 out of 10
examples are not relevant. This indicates that the system does a good job
retrieving relevant examples.

The score in the top group for top 5 and top 10 are very similar, with
a 0.1 difference. In contrast the bottom group where the subjects are more
specific, the score for top 10 results is remarkably lower with a difference

with the live Wikipedia page
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of 0.23. Having a relatively small database of examples for specific topics
is assumed to be the explanation, since the set of examples that can be
recalled is not big enough. A richer selection of examples for the different
topics could increase the precision for the bottom group.

Another interesting remark to note is that the top 5 results are consis-
tently better than the top 10 results. Top 5 being better than top 10, is
caused by at least half of the relevant examples which are returned, are
found among the first five results. Therefore we can conclude that the rank-
ing of the examples functions as intended.

There exist one substantial irregularity in table 5.4 though, the keyword
Zero Sum achieve a score of zero on both measures, meaning all of the ten
first results returned is deemed irrelevant. The fact that no relevant results
are found among the first ten retrieved examples indicate that either there is
a fault in the system or there is no relevant example in the system.

While performing the experiment, the error occurred when searching
with the keyword zero sum.Upon closer inspection, we found out that there
is a Wikipedia article called Zero-sum game 3 which the system is expected
to retrieve. An error analysis will help determine why that did not happen,
and in case of a system error, where in the system the error could have
originated.

To find the potential error we start at the beginning of the pipeline, to
explore whether the example is retrieved from the XML dump. We find the
answer in the SQL database. First we find a row in the pages table with
the name zero sum game. Next, using the primary key of this row, we can
find all related rows in the table page sections. A query on the column
page id in page sections returns one result. This result is the same
section found in Wikipedia’s article, thus we can conclude that Wikidump
parser successfully inserts the section into the SQL database.

The next step is to verify that the section is transformed to an exam-
ple and indexed by Elasticsearch. The examples in Elasticsearch shares
the same id as the sections primary key in the SQL database. Querying

3https://en.wikipedia.org/wiki/Zero-sum_game#Example (Last
visited 28. April 2016)
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Elasticsearch by id returns no results, therefore we know that the zero sum
example never reaches Elasticsearch. Between the SQL database and Elas-
ticsearch a whitelist filters the examples. If the zero-sum game article does
not contain a category that exists in the whitelist, the example will be dis-
carded. The article contains the categories Non-cooperative games and
International relations theory. Matching the article’s categories with the
complete category list reveals that there exist only 4 occurrences of articles
with Non-cooperative games as category and 7 with International relations
theory, which is a low number. Whitelist Top200Edu and MathTechWiki
were used for the filtering, section 4.1.4 explains whitelist’s implementa-
tion and their function in our project. Top200Edu includes only the top
200 relevant articles and MathTechWiki use only the top level categories in
the Wikipedia’s category hierarchy. In conclusion, the article’s categories
are not included in any of the whitelists, and therefore the example is not
indexed.

If the article’s list of categories had been richer, the example would have
been included more likely. Although richer category lists for Wikipedia’s
articles would have solved the problem, it is not something our project can
affect. Instead a whitelist that accommodates the less popular categories is
a better solution. The problem is that all the categories have to be manually
added to whitelists. The Whitelist Edu deals with the problem by including
all categories, but also examining the most popular and removing the irrele-
vant categories from the whitelist. The disadvantage obtained by using Edu
is that irrelevant categories will be included, but on the other hand, they are
not connected too many articles.

5.5.2 Experiment II: Whitelist

The result of the error analysis in section 5.5.1 points out the significance
of the whitelists used for the end result. Based on that, Experiment II will
be conducted to explore to what degree the whitelists affect the results re-
turned, and which of them are best to use. The tables used to display the
result, will be identical to table 5.4 used in section 5.5.1 with one exception.
The tables in this section also include the percentage of hits compared to
the number of examples in the index, when each specific whitelist has been
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applied.

The first step in the experiment is to check what the system returns when
there is no whitelists used. When no whitelists are used, there exist 28 110
examples in the index. Table 5.5 shows the results.

Keyword Total hits % of hits Top 5 Top 10
Logic 898 3.19 1 1
Programming 2135 7.60 0.8 0.9
Heuristic 81 0.29 1 0.8
Algebra 1629 5.80 1 0.9
Game Theory 6301 22.42 0.8 0.9
Fuzzy Logic 913 3.25 1 0.7
Java 523 1.86 0.8 0.9
Bayes Network 1370 4.87 0.8 0.9
Derivation 178 0.63 0.6 0.5
Chain Rule 1760 6.26 0.8 0.6
Prisoner’s Dilemma 141 0.50 0.8 0.5
Nash Equilibrium 350 1.25 1 1
Cartesian Product 2119 7.54 0.6 0.7
Parrondo’s Paradox 159 0.57 0.2 0.2
Zero Sum 2330 8.29 0 0.1

Table 5.5: The precision of the queries when all examples are included.
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In the next step whitelist Edu will be evaluated. Edu contains most of
the categories from the original category list, with the exception of cate-
gories that are popular, but not educational, being removed. A category’s
popularity is measured in how many examples links to the category. When
the examples are filtered through Edu, 5 133 examples are discarded from
the original 28 110. The results of the evaluation can be found in table 5.6.

Keyword Total hits % of hits Top 5 Top 10
Logic 737 3.21 1 1
Programming 1783 7.76 0.8 0.9
Heuristic 72 0.31 1 0.8
Algebra 1337 5.82 1 0.8
Game Theory 5230 22.76 0.8 0.9
Fuzzy Logic 750 3.26 1 0.8
Java 442 1.92 0.8 0.9
Bayes Network 1171 5.10 0.8 0.9
Derivation 145 0.63 0.4 0.5
Chain Rule 1374 5.98 0.8 0.6
Prisoner’s Dilemma 115 0.50 0.8 0.5
Nash Equilibrium 60 0.26 1 1
Cartesian Product 1739 7.57 0.6 0.6
Parrondo’s Paradox 128 0.56 0.2 0.2
Zero Sum 1842 8.02 0 0.1

Table 5.6: The precision of the queries when whitelist Edu is used to filter the
collection beforehand
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The third evaluation is conducted on whitelist Top200Edu. Top200Edu
is similar to Edu in terms of what type of categories are removed from
the original list, with one big difference. Top200Edu only keeps the 200
most popular categories, which means the educational categories which are
not popular enough, are not included. Using Top200Edu results in 21 746
examples being excluded from the index. Table 5.7 displays the results.

Keyword Total hits % of hits Top 5 Top 10
Logic 338 5.31 1 0.9
Programming 864 13.58 0.8 0.9
Heuristic 31 0.49 1 0.5
Algebra 1034 16.25 1 1
Game Theory 2701 42.44 0.8 0.8
Fuzzy Logic 341 5.36 0.8 0.5
Java 267 4.20 1 1
Bayes Network 315 4.96 1 0.9
Derivation 62 0.97 1 0.9
Chain Rule 515 8.09 1 0.6
Prisoner’s Dilemma 38 0.60 0.8 0.5
Nash Equilibrium 100 1.57 1 1
Cartesian Product 748 11.75 0.6 0.6
Parrondo’s Paradox 46 0.72 0.4 0.4
Zero Sum 1842 28.94 0 0

Table 5.7: The precision of the queries when whitelist Top200Edu is used to filter
the collection beforehand
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In the fourth step, we evaluate whitelist MathTech. MathTech is based
on Top200Edu, but it narrows the domains of the categories deemed rel-
evant to only concern Technology and Mathematics. MathTech is a bit
smaller than Top200Edu, with 157 different categories. 23 073 examples
are filtered out, when MathTech is used. Table 5.8 reflects the results of the
evaluation.

Keyword Total hits % of hits Top 5 Top 10
Logic 326 6.47 1 0.9
Programming 852 16.91 0.8 0.9
Heuristic 19 0.38 0.8 0.6
Algebra 991 19.67 1 1
Game Theory 2386 47.37 0.8 0.9
Fuzzy Logic 329 6.53 0.8 0.5
Java 265 5.26 1 1
Bayes Network 262 5.20 1 0.9
Derivation 56 1.11 1 1
Chain Rule 402 7.98 1 0.6
Prisoner’s Dilemma 33 0.66 0.8 0.5
Nash Equilibrium 87 1.73 1 1
Cartesian Product 606 12.03 0.6 0.6
Parrondo’s Paradox 37 0.73 0.4 0.4
Zero Sum 917 18.21 0 0

Table 5.8: The precision of the queries when whitelist MathTech is used to filter
the collection beforehand
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In the final step we evaluate the most conservative whitelist, Math-
TechWiki. MathTechWiki is based on Wikipedia’s category hierarchy, were
Mathematics, Logic, Mathematical Sciences, Computing and their sub cat-
egories have been included. Applying MathTechWiki leads to the removal
of 27 107 examples. Table 5.9 contains the results of the final evaluation
for Experiment II.

Keyword Total hits % of hits Top 5 Top 10
Logic 100 9.97 1 1
Programming 107 10.67 0.2 0.3
Heuristic 20 1.99 0.6 0.4
Algebra 165 16.45 0.8 0.6
Game Theory 476 47.46 0.8 0.8
Fuzzy Logic 101 10.07 1 0.6
Java 9 0.90 0.4 3/9
Bayes Network 102 10.17 0.8 0.6
Derivation 22 2.19 0.6 0.4
Chain Rule 120 11.96 0.2 0.1
Prisoner’s Dilemma 8 0.80 0.4 2/8
Nash Equilibrium 17 1.69 1 0.9
Cartesian Product 126 12.56 0 0.1
Parrondo’s Paradox 18 1.79 0 0
Zero Sum 169 16.85 0.2 0.1

Table 5.9: The precision of the queries when whitelist MathTechWiki is used to
filter the collection beforehand
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5.5.3 Experiment III: Evaluation by F-score

To further explore the systems ability of retrieving relevant examples, we
will use F-score to measure the system’s performance. F-score is a weighted
average between precision and recall, therefore both has to be measured to
calculate the F-score.

While precision measures the quality of the retrieved examples, recall
measures the quantity of relevant examples returned. Recall is calculated
as follows:

|R ∩ E|
|R|

In the equation above R is the set of all relevant examples and E is the set
of all the retrieved examples. If no relevant examples are returned the recall
is 0, and if all the relevant examples are retrieved the recall is 1. To properly
measure recall all the examples have been manually inspected beforehand,
to decide which examples are relevant or not relevant for a search with a
specific keyword. When a measure for both precision and recall has been
acquired, F-score can be calculated. We will calculate the F-score in the
traditional way, which is also known as balanced F-score or F1score. For
F-score the best value is 1 and the worst is 0, it is calculated in the following
way:

F1 = 2 · precision · recall
precision+ recall

Before performing the experiment, a selection of 66 examples was cho-
sen from the database based on three chosen keywords. Then, each exam-
ple was evaluated regarding its relevance to the keywords. The keywords
chosen were java, algebra and nash equilibrium. Finally, the keywords
were used for three individual searches and the results were recorded. Ta-
ble 5.10 shows the result of the experiment. The column Total hits contains
the number of all examples retrieved by that search. Relevant hits contains
how many relevant examples the search returned, while Total relevant has
the number of how many relevant examples there exist in the entire exam-
ple set for that specific keyword. Based on the numbers in the first three
columns the F-score is calculated and displayed in the last column.
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Keyword Total hits Relevant hits Total relevant F-score
Algebra 26 20 20 0.870
Java 24 18 18 0.857
Nash Equilibrium 16 15 15 0.968

Table 5.10: Results of how well the system retrieves example from a manually
inspected set.

5.5.4 Discussion of results

Figure 5.5 shows the average precision for each whitelist. It gives an
overview of how the different whitelists performed during Experiment II,
making a comparison between them easy. While the score for top 10 has
a very low deviation, Top200Edu and MathTech separates themselves from
the rest for the top 5 measure. This indicates that keeping the most pop-
ular 200 categories can work well as a general strategy. The rest of this
section will discuss different observations made during and after the exper-
iment. Charts showing the results of different keywords have been added
and is referenced to in the discussion, see appendix D for charts over all
keywords in Experiment II.

Figure 5.5: Average precision for all whitelists
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Figure 5.6: Precision score when the keyword Java is used as a search phrase,
with the different whitelists applied.

Few returned documents

In table 5.9 we note that many of the keywords have very few total hits.
In particular, the keywords java and prisoner’s dilemma returns less than
10 results, making the top 10 test inaccurate. Having so few total hits is
reflected in the precision also dropping quite low. In figure 5.5 we can
see that the whitelist MathTechWiki separates itself from the rest of the
lists with almost 50 percent worse precision. This big loss of precision
indicates that the whitelist excludes too many relevant examples from the
index’s corpus. Figure 5.6 demonstrates how the keyword java overall has
extremely good results, but when MathTechWiki is applied, the score drops
significantly lower.

Excluding irrelevant examples

Whitelists were used to exclude irrelevant examples by focusing on a par-
ticular domain. There is though a golden middle ground of how inclusive
the whitelist should be. The whitelists Top200Edu and MathTech seems
to have more or less the right amount of inclusiveness. In Figure 5.5, they
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Figure 5.7: Precision score when the keyword Derivation is used as a search
phrase, with the different whitelists applied.

have the best average score for the top 5 results, and they are equal with Edu
regarding top 10. When the keyword derivation was evaluated, Top200Edu
and MathTech accomplished a perfect score, except for one irrelevant result
among top 10 for Top200Edu. Figure 5.7 shows how the score is signifi-
cantly better than when the other lists were evaluated. The results returned
explains the big difference. A lot of results related to spoken languages and
the word derive lead too many irrelevant examples. Since Top200Edu and
MathTech are much stricter whitelists, those irrelevant examples was not a
part of the index’s corpus.

Multiple words in search phrase

While discussing the results from keyword zero sum, poor handling of
the keyword, was a part of the conclusion. The poor handling is experi-
enced by highly unrelated examples being returned after a search. Zero
sum demonstrates the most extreme side of the issue, but similar behaviour
exists for other keywords also. The problem occurs when the keyword uses
two words because Elasticsearch splits the keyword into two search terms.
Elasticsearch will not prioritize or reward examples which contains those
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two words directly next to each other. The rarity of the words also has a
big part to play. For instance nash equilibrium also contains two words,
but both are pretty rare. ”Nash” is never used without being accompanied
by ”equilibrium”. Although ”equilibrium” exist in some examples which
are not related to Nash Equilibrium, they are very few. Some keywords
have one rare word and one common, for instance prisoner’s dilemma and
cartesian product. These keywords achieve a mediocre result, with an av-
erage precision around 0.6. When considering the effects rarity of the word
causes for keywords containing two words, it makes sense that zero sum,
which has two common words, have such a low precision.

Order and proximity of the words are not a new problem in the field of
information retrieval. Boosting the score of results based on how close the
words appear, and if in right order, is a common technique. It could be done
for this system, but it might end up being a to complicated solution, for an
pretty straightforward problem. A simpler solution is to surround the words
with quotation marks. The quotation marks will tell the index to handle all
words between the quotation marks as a single search term. Since users
often will search after name of examples or subjects, it will be enough to
only accept examples where the terms are directly next to each other when
the quotation mark surrounds the keyword.

Lack of relevant results

Figure 5.8 displays the results when all the different whitelists have been
applied when the keyword zero sum has been used as search phrase. All the
whitelists have very low precision, either zero results or only one among
the top ten. Although the results are inadequate, they do contradict the
claim in section 5.5.1’s error analysis, which suspected that no Zero Sum
examples existed in the collection. Section 5.5.1 drew that conclusion be-
cause the main article about Zero sum was not included in the collection.
When only MathTechWiki were evaluated, one relevant example was re-
turned. This leads us to believe the abnormality was caused by using a bad
combination of whitelists, making the other example not appearing among
the top ten. The more thorough evaluations in experiment II, also points to
the query not handling the keyword as a search phrase very well, because
of the two common words used to form the search phrase. In conclusion,
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the combination of faulty whitelist union and poor handling of the search
phrase, are the reasons for the Zero sum’s complete lack of relevant results
in Experiment I.

Figure 5.8: Precision score when the keyword Zero Sum is used as a search phrase,
with the different whitelists applied.

Union of whitelists

In Experiment II, the union of two whitelists were used, Top200Edu and
MathTechWiki. This union gave the average score of 0.8, none of the
whitelists in Experiment II matched this score, MathTech was closest with
0.76. Although this whitelist union gave better results than any indepen-
dent whitelist, it showed weaknesses for other cases, in particular the case
of no results for zero sum, and algebra achieving a perfect precision for
MathTech. With that in mind, a new union of whitelists should be formed,
that also could handle edge cases, either by finding a new combination or
creating new whitelists.
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Recall of 1

In Experiment III, all three keywords achieved a recall of 1, the highest
possible score for recall, which means that all relevant examples for each
specific keyword was returned. Based purely on these results, the system
seems to handle recall well. Although the measure of recall achieves a
score of 1, it does not mean it is handled optimally. In any collection of
documents, it is possible to achieve a recall of 1 by simply returning all
documents in the collection, but as a consequence the precision will be
significantly lower. The precision will be lower because of the trade-off
relationship between precision and recall, increasing one will often lead to
decreasing the other. The column in table 5.10 Total hits shows that return-
ing all documents in the database is not the case for our system. However,
it is still possible that the recall of 1 in our system lowers the precision.

A lower precision than necessary can be a problem for our system since
it acts similar to a web search. In a web search users search by keywords
and rarely look at results beyond the first page, hence precision becomes
very important. The earlier experiments revealed that our system’s preci-
sion is satisfactory, but by making the search even stricter, the precision
might increase even more with an acceptable loss of recall.

F-score

Although the recall achieved a perfect score in Experiment III, the F-score
did not. As already discussed, this is because good recall often sacrifices
good precision and vice versa. F-score represents the harmonic mean be-
tween these two, as both equally influences the F-score. Consequently,
F-score can tell us something about the efficiency of our system. With all
three scores above 0.85, the system performs well in terms of F-score.

Since the examples included in the subset for Experiment III, was par-
tially chosen based on the three keywords, and not totally random, some
bias may exist in the set. If the experiment had been scaled from the 66
examples to all 28 110, the score would most likely decrease. Using all
examples would be more accurate, but classifying all examples were not
possible during this project. Another way of altering the F-score is to add a
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weight that is multiplied with the precision. The value of this weight would
decided how much precision influences the final score. If we for instance
assumed that our system should prioritize precision above recall, this ver-
sion of F-score would be beneficial. Since we have no clear notion of what
is most important, the experiment found the equally weighted version best.

5.6 Querying by examples

5.6.1 Experiment IV: Finding related examples

When querying by examples, relevant examples that assists in learning of
the subject, are expected to be returned. To evaluate how the system ac-
complishes this, we will make us of observations from section 5.5. The
observations will be used to create an optimal environment, by choosing
the best performing whitelist and a keyword with perfect precision. The
whitelist MathTech performed best for the top ten results with an average
precision of 0.72, and will therefore be the whitelist chosen. As keyword,
Java will be used for mainly three reasons. First, it is one of the keywords
with a perfect score when MathTech was applied as whitelist. Second, java
is a search phrase, but at the same time not the exact name of a category.
Finally, it is very easy to consistently judge whether an example is about
java or not, since it often contains java code. For an example to be deemed
relevant, it will be satisfactory for the example to be an example within the
Java domain.

There are three numbers that will be considered for the assessment of
the system’s performance in this experiment. First, how many examples are
shown together with the main example. Second, how many of the examples
are relevant. In addition, the number of the main example’s categories will
be included, to explore a possible correlation. The first ten examples will
be used in the experiment. The results will be divided between the right
and the left list.
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Total matches Partial matches
Example Total Relevant Total Relevant Categories

1 2 2 10 10 3
2 2 2 10 10 3
3 2 2 10 10 6
4 2 2 10 10 3
5 4 4 10 10 5
6 4 4 10 10 5
7 0 0 10 10 3
8 27 27 10 10 6
9 2 2 10 10 6

10 3 3 10 10 2

Table 5.11: Statistics when querying by examples with java as keyword

The first column of table 5.11 represents an example, with the number
being its order among the returned examples after the search. The next
column shows total number of examples and how many of them that are
relevant, both for the lists at the left and the right side. The last column
shows how many categories the example have.

A quick look at the results presented in table 5.11, reveals consistently
good results. To verify whether the performance of the system is as good as
the results tell or if Java is a special case, a second evaluation will be per-
formed. The keyword nash equilibrium is chosen, based on the same reason
as why java was chosen. There is one important difference that might make
an impact. Java is more general and therefore has 265 total hits, meanwhile
the more specific nash equilibrium has 87 total hits. In the second eval-
uation, all examples discussing or referencing Nash Equilibrium will be
deemed relevant.
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Total matches Partial matches
Example Total Relevant Total Relevant Categories

1 6 6 9 3 4
2 6 6 9 3 4
3 6 6 9 3 4
4 6 6 9 3 4
5 72 29 0 0 1
6 72 29 0 0 1
7 72 29 0 0 1
8 6 6 9 3 4
9 0 0 10 5 3

10 6 6 9 3 4

Table 5.12: Statistics when querying by examples with nash equilibrium as key-
word

5.6.2 Discussion of results

After conducting the second evaluation, a big variation in the quality of
results occurred compared to the first evaluation. Despite the numbers dif-
fering, one pattern emerged in both evaluations. In table 5.11 example 1,
2 and 4 have the pattern, and 1, 2, 3, 4, 8 and 10 in 5.12. For these ex-
amples, the numbers are completely identical. They are identical because
they come from the same article. Many Wikipedia articles have several ex-
ample sections, which are used to explain the subject. Several examples
originating from the same article not only results in them all achieving very
similar score after a keyword search, but they will also have exactly the
same categories.

A similar pattern emerges between example 5, 6 and 7 in table 5.12.
The difference in this case is that the examples all originate from different
articles. The reason they still achieve the same results is because they all
have the same set of categories in common, since the algorithm used to find
and measure related examples solely uses categories. Game theory is the
only category in this case. Since its only one category, it is also causing the
big difference between the left and the right list. All the examples achiev-
ing a perfect match with the selected example, only need to have Game
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Theory as a category. This leads to related examples either having a total
match or none match at all, with few of the examples having a total match
being related. A solution could either be connecting more categories to the
examples or create a better version of the matching algorithm.

There is some positive patterns that can be noticed to. For instance, all
the related examples returned for the keyword java is also relevant. One
of the things that causes this is already explained, being many examples
originating from the same article. Another factor causing the high degree
of relevance is the observation that many of the examples is included in a
considerable amount of the lists. A big portion of the examples were also
a part of the initial search results. These remarks point towards the system
showing a good tendency regarding finding related examples.
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Chapter 6
Conclusion and Future Work

6.1 Conclusion

The aim of this project has been to augment the use of examples for learn-
ing, by making use of educational technology. A system parsing Wikipedia
articles for the extraction of sections containing examples has been created.
Four research goals were established in chapter 1 in order to manage the
projects workflow into desired results. In chapter 2, other peoples work
regarding text data mining, semi-structured text and Wikimedia was exam-
ined, to help discover the usefulness and possibilities of this project. The
concept of a pipeline turning raw source data from Wikipedia into an in-
dex containing examples, were explained in chapter 3. In addition, how to
search the index was also expressed. To optimize how the system handles
the collecting and serving of examples, an analysis of example’s structure
and content were performed as well. Chapter 4 explained in detail how the
defined concept were implemented into a working system. Finally chap-
ter 5 examined the accomplishment of the research goals. Research goal
1, 2 and 3 were summed up and concluded, while four experiments were
conducted to evaluate the fourth research goal. The first experiment eval-
uated the precision for several keywords when used as a search phrase.
The second experiment evaluated the precision of the results when the four
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different whitelists were applied one at a time. Experiment III evaluated
the system’s F-score on with three keywords used on a small subset of the
whole collection. Finally, the fourth experiment evaluated how well the
system finds related examples when a specific example is selected.

Through Experiment I we showed that the system are able to find rele-
vant examples with the original implementation of applying the whitelists
Top200Edu and MathTechWiki to filter examples before being added to the
index. A set of keywords with different degree of generality and from dif-
ferent domains gave an average precision of 0.8. This is a satisfying num-
ber for the system’s first implementation. The experiment did reveal that
the whitelists applied influences the system to a significant degree. Conse-
quently, Experiment II were conducted to discover how the whitelists influ-
enced the system, and to find the best whitelist. The results of Experiment II
taught us that the system is affected by many different aspects which deter-
mines its performance. Format of the search phrase and amount of relevant
examples in the whole collection revealed patters that had a negative impact
on the precision. All things considered, the two whitelists Top200Edu and
MathTech, gave better results than the others. They had both very similar
score, which reflects that the two lists also are very similar, with MathTech
having excluded 43 categories compared to Top200Edu. Although these
whitelists performed best, the first implemented union of Top200Edu and
MathTechWiki scored better. The experiments revealed some weaknesses
regarding the union of these whitelists though. For instance lacking rele-
vant results for some keywords, where the independent whitelists managed
better. Therefore different unions of whitelists should be combined and
evaluated in attempt of finding one that patches the weaknesses found in
Experiment I and II.

In Experiment III, the system’s F-score was measured with a small sub-
set of manually inspected examples from the database. All possible relevant
documents in the subset were returned for each keyword used, which entails
a recall of 1. With also a fairly high precision, the system performed well
when F-score was measured for all three keywords. Although a recall of 1
seems good, it most likely causes a lower precision for the system. Sacri-
ficing some recall for better precision could give the system a more optimal
performance. If precision also is assumed to be more important than re-
call, weights could be added to the F-score equation to enhance precisions
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importance. It is important to note that the subset most likely reflects the
entire set with a degree of bias, therefore a experiment which covers more
of the complete collection of examples would be more accurate.

Experiment IV evaluated how well the system found and rated related
examples based on an example selected by a user. The query combines
information from the initial search and the categories of the example, which
the user selected. The experiment revealed that the set of categories for the
selected example greatly influenced the results. Since many of the examples
had not a lacking category list, the results ended up being unstable. The
algorithm’s rating of categories worked well when the example had many
categories, but that is not always the case.

6.2 Future Work

There are several aspects of this project which would benefit from an ex-
tended amount of work or research

Firstly the system itself, can be greatly improved by being able to deal
with examples from different sources. The foundation for doing so already
exists in the system, since the idea of extracting examples from different
sources have existed since the beginning. For simplicity and saving time,
this project has focused on only using Wikipedia as source, and therefore is
excessively tailored for Wikipedia articles. But since the different processes
in the pipeline is extremely independent, replacing them to accommodate
other sources should be a trivial task. Accommodating more sources would
result in a richer database of examples, which in turn would help the end
user.

Another aspect that could benefit the system is a deeper knowledge of
examples, and how they relate to each other. A better understanding could
improve both the rating of their relevance score when searched for and dis-
playing related examples. Improvement on finding related examples, can
give a natural learning progress when browsing from one example and to
its related ones.
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The search itself could also be more optimized. Since Elasticsearch
was chosen to manage the database of examples, the search API served by
the Elasticsearch process could be explored further. Elasticsearch offers a
great amount of different customizations that can be applied to the queries
used for the search, which would make the search more complex, but also
could improve the search results. Experiment IV indicated that the system
has a very high recall. Making use of methods available in Elasticsearch’s
search API, a more optimal trade-off between precision and recall could be
achieved.

Improvements can also be made regarding querying for examples based
on a user selected example. The algorithm rating the results rely too much
on categories, when the current collection of examples does not facilitate
use of categories enough. One approach is to alter the algorithm, for in-
stance making use of references in the articles has been explored during
the project, although it was not successful enough to make it in the final
implementation. Another approach could be to change our view of cate-
gories. It could be more beneficial to look at them as tags instead. The
current categories could be converted to tags, and a system for manually
tagging examples could be implemented. This way, tags would work sim-
ilar as they do for a YouTube video, helping both the search and creating
a set of related videos. A combination of the two mentioned approaches,
should improve the retrieval of related examples to a selected example.

Finally usability testing should be conducted. The system is created to
help the user, therefore it is very important to make sure the user interaction
is optimal. Both the design of the user interface and the user interaction
should be tested, and the feedback should be used to learn more about the
system’s purpose and further improve it. By analyzing user’s interaction
with the system, we can also get feedback that will help optimize the search.
Especially in regards with the level of recall and precision. For instance if
users rarely explores the lower ranked results, increasing precision is a good
idea. On the other hand, if the users explores many of the returned results,
good recall can be more beneficial.
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Appendix A
Database statistics
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Category Count
Articles created via the Article Wizard 86
Articles containing video clips 85
Articles containing proofs 76
Ring theory 74
Protein domains 73
Linear algebra 65
Formal languages 57
Algebraic geometry 53
Living people 51
Naval guns of the United Kingdom 51
Commutative algebra 50
Game theory 47
Algebraic structures 47
Topology 45
Stochastic processes 44
Marketing 44
Functional analysis 42
Group theory 42
Coastal artillery 42
Combinatorics 41
Abstract algebra 38
Functional languages 38
Weather warnings and advisories 36
General topology 36
Management 36
Articles with example Java code 36
Victorian-era weapons of the United Kingdom 36
Signal processing 35
Category theory 35
Number theory 35
Social psychology 34
Architectural styles 34
Concepts in physics 34
1067 mm gauge locomotives of Japan 34
Algebra 33

Table A.1: Statistics over most popular categories
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Examples and exercises on Pareto efficiency

Example

Consider an economy that contains only one good, which everyone likes. Then every allocation is Pareto
efficient: the only way to make someone better off is to give them more of the good, in which case
someone else will have less of the good, and hence be worse off.

Example

An economy contains two people and two goods, apples and bananas. Person 1 likes apples and dislikes
bananas (the more bananas she has, the worse off she is), and person 2 likes bananas and dislikes apples.
There are 100 apples and 100 bananas available.

The only allocation that is Pareto efficient is that in which person 1 has all the applies and person 2 has all
the bananas. For any other allocation, one of the persons has some units of the good she does not like, and
would be better off if the other person had those units.

Example

An economy contains two people and two goods, apples and bananas. Person 1 likes apples and doesn't
care one way or the other about bananas (she is indifferent between any bundles (a,b) and (a,b'), where a
is some number of apples and b and b' are numbers of bananas). Person 2 likes bananas and doesn't care
one way or the other about apples. There are 100 apples and 100 bananas available.

The only allocation that is Pareto efficient is that in which person 1 has all the apples and person 2 has all
the bananas. For any other allocation, one of the persons has some units of the good about which she
doesn't care; transferring those units to the other person would have no effect her and would make the
other person better off.

Example

An economy contains two people and two goods, apples and bananas. Both people like both goods, but
value them differently. For person 1, 1 apple is exactly equivalent to 2 bananas: she is indifferent between
any bundles (a, b) and (a  n, b + 2n), where a is some number of apples, b is some number of bananas,
and n is some number). For person 2, 2 apples are exactly equivalent to 1 banana.

An allocation is Pareto efficient if and only if

either person 1 has no bananas
or person 2 has no apples.

Why? Suppose person 1 has some bananas and person 2 has some apples. Then by transferring one
banana from person 1 to person 2 and one apple from person 2 to person 1 we make both of them better
off. On the other hand, if person 1 has no bananas then any trade that makes her better off must involve
her getting at least twice as many bananas as she gives up in apples, which results in person 2 being worse
off. Similarly, if person 2 has no apples then any trade that makes her better off must involve her getting at
least twice as many apples as she gives up in bananas, which results in person 1 being worse off.
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Three of the allocations that are Pareto efficient are those in which

person 1 has all the apples and person 2 has all the bananas
person 1 has all the apples and all the bananas
person 2 has all the apples and all the bananas.

Copyright © 1997 by Martin J. Osborne
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Robinson Crusoe example
Yossi Spiegel

Consider an island economy with one agent (Robinson Crusoe) who has an endowment of L̄ units

of an input that can be used to produce 2 final goods, x and y. Although this example is

probably not very interesting (presumably Robinson Crusoe can take care of himself and does

not need to rely on a market mechanism, or any mechanism for that matter, to determine how

much x and y to consume), it is nonetheless the simplest example for a production economy we

can imagine that is still non-trivial. For instance, if L̄ could have been used to produce only one

final good, say x, instead of both x and y, then Robinson would have simply converted all of L̄

into x and there would be no problem to analyze. Yet, with two final goods that can be

produced, we can ask how many units of x and how many units of y will be produced and

consumed by Robinson.

To make the problem more concrete, suppose that the production functions for x and y

are given by

(1)

where Lx and Ly are the quantities of L used in the production of x and y, respectively. In

addition suppose that Robinson’s utility function is given by

(2)

Given the description of the economy we will now characterize the set of Pareto efficient

allocations and compute the Walrasian equilibrium and show that the two coincide.

Pareto efficiency

First we need to determine the Production Possibilities Frontier (PPF). In other words, find all

combinations of x and y that can be produced efficiently. That is, all combinations of x and y
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such that there is no way to get more of both x and y by reallocating L̄. To derive the PPF, note

that since Robinson does not want to consume L, he will use all of L̄ in the production of either

x or y. Hence, it must be the case that

(3)

Using this expression, we can express the production functions for x and y as follows:

(4)

or equivalently,

(5)

Using the two expressions in equation (5) we get:

(6)

The equality T(x,y) = 0 characterizes then the efficient combinations of x and y and therefore

defines the PPF.

Having derived the PPF we are now ready to solve for the Pareto efficient allocations.

Noting that the economy here contains only one individual, the set of Pareto efficient allocations

is determined by the following maximization problem:

(7)

The Lagrangian that corresponds to this problem is given by

(8)
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The first order conditions for the problem are:

(9)

(10)

and

(11)

Solving equations (9)-(11), the Pareto efficient allocation is given by:

(12)

Walrasian equilibrium

To characterize the Walrasian equilibrium, suppose that Robinson establishes a firm, buys the

input L̄ from himself for a price of w per unit, then as the owner of the firm, decides how many

units of x and how many units of y to produce to maximize profits given the prices of the two

goods, px and py, and then sells the firm’s output to himself. Moreover, the prices w, px, py, are

called by an auctioneer (question: if Robinson lives on the island all by himself, who is the

auctioneer?) with Robinson responding by submitting his demands and supplies until all three

markets, the market for x, the market for y, and the market for L, are cleared. This obviously

sounds not only schizophrenic (Robinson deals with himself twice at arm-length: as a provider

of the inputs and as a consumer of the final goods), but rather silly: why should Robinson rely
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on an auctioneer to determine the market clearing prices? Yet again, this is an example of how

the market mechanism works and how it leads to Pareto efficient allocations.

To characterize the Walrasian equilibrium, note that what we are looking for is a list, (px*,

py*, w) such that the following conditions are met:

(13)

(14)

and

(15)

where xD and yD are Robinson’s demands for goods x and y given the prices, px*, py*, and w*;

xS and yS are the firm’s supplies of goods x and y given the prices, px*, py*, and w*; and

Lx and Ly are the quantities of input used in the production of x and y. Therefore, equation (13)

is the market clearing condition for good x, equation (14) is the market clearing condition for

good y, and equation (15) is the market clearing condition for the input.

To derive the Lx and Ly, note that the firm’s profit, given the production functions of x

and y is given by

(16)

Hence, the firm’s demands for input are defined by the following first order conditions:

(17)
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and

(18)

Solving these two conditions reveals that

(19)

Given Lx and Ly, the supplies of goods x and y, respectively are:

(20)

Having solved for the firm’s demands for inputs and supplies of final products, the firm’s

profits given the prices px, py, and w are:

(21)

Since Robinson owns the firm, his income is equal to the firm’s profits plus his income from

selling L̄ units of input to the firm at a price of w per unit. Hence, Robinson’s income is:

(22)

Now we are ready to characterize Robinson’s demand for goods x and y. The demands

for x and y are determined by the solution to the following problem:

(23)
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where M is defined in equation (22). The Lagrangian associated with this problem is

(24)

The first order conditions for the problem are:

(25)

(26)

and

(27)

Solving equations (25)-(27), the demands of Robinson are given by:

(28)

Since we already solved for the firm’s demands for inputs in equation (19), the firm’s

supply of x and y in equation (20) and Robinson’s demand for goods x and y in equation (28),

we can determine the Walrasian equilibrium by substituting from equations (19), (20), and (28),
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and recalling that Robinson’s income is given by equation (22) into the equilibrium conditions

in equations (13)-(15). This leads to the following 3 equations that must hold in equilibrium:

(29)

(30)

and

(31)

The Walrasian equilibrium, (px*, py*, w*) is the solution to equations (30)-(32). However,

instead of trying to solve the system of 3 equations directly, we can note that by Walras’ law we

can normalize one of the prices to 1. Since it does not matter which price we normalize to 1,

let’s pick w* = 1. Now, we need to solve the system with w* = 1 and find px* and py*.

To this end, note that equations (29) and (30) can be rewritten as follows:

(32)

and

(33)
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But since the left side of the two equations is the same, it follows that

(34)

Substituting for 2px* = py* and w* = 1 in equation (31), the equation becomes:

(35)

Hence,

(36)

That is, the walrasian equilibrium is given by:

(37)

To verify that the resulting allocation is Pareto efficient, note that given the equilibrium

prices, the quantities of x and y that Robinson will consume are

(38)

which is exactly the Pareto efficient allocation we found earlier.

The conclusion is that the Walrasian mechanism is a way to implement Pareto efficient

allocations in a decentralized manner: Robinson does not need to see the "big" picture. When

he acts as a manager of a firm he responds to the price of the input and the prices of the two

goods and decides how much to produce. As a buyer he simply decides how much to buy given

the prices and his income. Yet, despite the fact that he acts in two different roles, the final

outcome is Pareto efficient exactly as if he were to think about the whole problem of finding the

most beneficial allocation from his point of view.
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Appendix C
Example white lists

Category Count
Articles containing proofs 76
Ring theory 74
Protein domains 73
Linear algebra 65
Formal languages 57
Algebraic geometry 53
Commutative algebra 50
Algebraic structures 47
Game theory 47
Topology 45
Marketing 44
Stochastic processes 44
Group theory 42
Functional analysis 42
Combinatorics 41
Abstract algebra 38
Functional languages 38
General topology 36
Articles with example Java code 36
Signal processing 35
Category theory 35
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Number theory 35
Concepts in physics 34
Architectural styles 34
Social psychology 34
Algebra 33
Polynomials 33
Mathematical relations 33
XML-based standards 33
Object-oriented programming languages 33
Dynamical systems 32
Quantum mechanics 32
Functions and mappings 32
Statistical terminology 31
Decision theory 31
Genetics 30
Model theory 30
Ethology 30
Articles with example pseudocode 30
Procedural programming languages 30
Mathematical optimization 30
Probability theory 29
Matrices 29
Algebraic topology 29
Properties of topological spaces 29
Order theory 29
Cross-platform software 28
Estimation theory 27
Integer sequences 27
Protein families 27
Field theory 27
Semigroup theory 27
Financial risk 26
Fluid dynamics 26
Molecular biology 26
Measure theory 26
Evolutionary biology 26
Cryptography 26
Properties of groups 25
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Combinatorics on words 25
Semantics 25
Statistical theory 25
Metric geometry 25
Cognitive biases 25
Java platform 25
Software design patterns 24
Lie algebras 24
Scripting languages 24
Quantum field theory 24
Differential geometry 24
Representation theory 24
Ecology 24
Economics terminology 24
Mathematical finance 23
Control theory 23
Mathematical logic 23
Statistical models 23
Theory of probability distributions 23
Data management 23
Binary operations 23
Computer file formats 23
Syntax 23
Technical communication 23
Software using the MIT license 22
Object-oriented programming 22
Numerical analysis 22
Measures (measure theory) 22
Software testing 22
Mathematical analysis 22
Diagrams 22
Finance 22
Graph families 22
Classical mechanics 22
Articles with example C++ code 22
World Wide Web Consortium standards 22
Architectural elements 22
Data analysis 21
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Systems theory 21
Bioinformatics 21
Sociological terminology 21
Computational complexity theory 21
Homotopy theory 20
Logic 20
Module theory 20
Markup languages 20
Theory of computation 20
Political terminology 20
Partial differential equations 20
Hydrology 20
Matrix theory 20
Linguistics 20
Chess terminology 19
E-commerce 19
Parallel computing 19
Physical quantities 19
Educational psychology 19
Legal terms 19
Medical terminology 19
Geometric group theory 19
Artificial intelligence 19
Epidemiology 19
Algebraic number theory 19
Numerical linear algebra 19
Articles with example code 19
Rhetoric 19
Unix SUS2008 utilities 19
Factorial and binomial topics 19
Types of functions 19
Knowledge representation 19
Sociolinguistics 18
Articles with example C code 18
Digital signal processing 18
Application programming interfaces 18
Modular arithmetic 18
Source code 18
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Graph algorithms 18
Route diagram templates 18
Mathematical physics 18
Graph theory 18
Equations 18
Deception 18
Geometry 18
Lossless compression algorithms 18
Numerical differential equations 17
Operator theory 17
Probability theorems 17
Mechanics 17
Fourier analysis 17
Design of experiments 17
Urban studies and planning 17
Algorithms 17
Mathematical terminology 17
Regression analysis 17
Encodings 17
Image processing 17
Symmetry 17
Homological algebra 17
Emerging technologies 17
Sustainability 17
Web application frameworks 17
Network protocols 17
Free compilers and interpreters 16
Theoretical physics 16
Free software 16
Financial terminology 16
Scientific modeling 16
Investment 16
Rhetorical techniques 16
Java (programming language) libraries 16
Permutations 16
Regular graphs 16
Windows administration 16
Quadratic forms 16
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Information theory 16
Corporate finance 16
Dynamically typed programming languages 16
Free software programmed in Java (programming
language)

16

Operations research 16
Economic problems 16
Figures of speech 16
Algebras 16
Computability theory 16
Internet protocols 16
Project management 16
Tensors 16
Neuroscience 16
Geomorphology 16
Probability distributions 16
Lie groups 15
Risk 15
Metadata 15
Free software programmed in C 15
Cross-platform free software 15
Programming constructs 15
Fractals 15
Coding theory 15
Statistical mechanics 15
Physical chemistry 15
Statistical ratios 15
Polyhedra 15

Table C.1: Removes categories not related to educational topics within science.
For instance topics regarding history is removed. Includes only the top 200 most
popular categories in the list.
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Appendix D
Charts from Experiment II

Below the charts for experiment II that were not discussed, is included.

Figure D.1: Precision score when the keyword Logic is used as a search phrase,
with the different white lists applied.
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Figure D.2: Precision score when the keyword Programming is used as a search
phrase, with the different white lists applied.

Figure D.3: Precision score when the keyword Heuristic is used as a search
phrase, with the different white lists applied.
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Figure D.4: Precision score when the keyword Algebra is used as a search phrase,
with the different white lists applied.

Figure D.5: Precision score when the keyword Game Theory is used as a search
phrase, with the different white lists applied.
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Figure D.6: Precision score when the keyword Fuzzy Logic is used as a search
phrase, with the different white lists applied.

Figure D.7: Precision score when the keyword Bayes Network is used as a search
phrase, with the different white lists applied.

100



Figure D.8: Precision score when the keyword Chain Rule is used as a search
phrase, with the different white lists applied.

Figure D.9: Precision score when the keyword Prisoners Dilemma is used as a
search phrase, with the different white lists applied.
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Figure D.10: Precision score when the keyword Nash Equilibrium is used as a
search phrase, with the different white lists applied.

Figure D.11: Precision score when the keyword Cartesian Product is used as a
search phrase, with the different white lists applied.
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Figure D.12: Precision score when the keyword Parrondos Paradox is used as a
search phrase, with the different white lists applied.
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