
Ultra-Wideband Radar Simulator for
classifying Humans and Animals based
on Micro-Doppler Signatures

Helge Langen

Master of Science in Electronics

Supervisor: Lars Magne Lundheim, IET
Co-supervisor: Jan Roar Pleym, Novelda AS

Department of Electronics and Telecommunications

Submission date: June 2016

Norwegian University of Science and Technology

Abstract
A system has been developed to allow computers to autonomously classify radar
targets based on their micro-doppler signatures. The solution consists of an algo-
rithm for generating a targets micro-doppler signature through frequency analysis
of the radar signal, a multi-layer artificial neural network for classifying the tar-
get based on the information in the processed signal, and a generator that creates
synthetic data for training the artificial neural network.

The neural network is trained using deep learning techniques. Point scatterer
models of walking humans, dogs and domestic cats and a mathematical model
of an ultra-wideband pulse-doppler radar was used when generating the synthetic
training data. Random variations were applied to the model parameters to mimic
the real-world diversity experienced between the different specimen of the same
species.

In a set of synthetically generated evaluation data, the system was able to
correctly classify 444 out of 500 targets (accuracy of 89%). The best results were
obtained when the network was fed with a combination of micro-doppler signature
data and selected portions of the raw baseband radar frames. It was also shown
that the accuracy increased when the synthetic training data was generated with
a higher simulated pulse repetition frequency.

Some real recordings were made using a Novelda radar module featuring their
X2 radar system-on-chip (SoC). The system was able to correctly classify the tar-
gets in the recordings with a very high confidence. While the number of real
recordings used to evaluate the system is too low to conclusively qualify the solu-
tion as successful in real life conditions, it indicates that it might be possible to
avoid costly data gathering by generating the training data synthetically, which is
an interesting find in itself.

I

Sammendrag
En løsning for automatisk gjenkjennelse av radarm̊al basert p̊a mikro-doppler-
signaturer har blitt utvilket. Løsningen best̊ar av en algoritme for frekvensanalyse
av radarsignalet, en maskinlæringsentitet basert p̊a kunstige nevrale nett, og en
generator som lager syntetiske treningsdata for maskinlæringsentiteten.

Det nevrale nettet blir trent ved hjelp av dyp læring. Modeller av g̊aende
mennesker, hunder og huskatter basert p̊a punktspredere, samt en matematisk
modell av en ultra-bredb̊andig pulse-doppler-radar ble brukt ved generering av
syntetiske treningsdata. Tilfeldige variasjoner ble lagt p̊a modellparametrene for å
gjenskape eksemplarvariasjonene man finner i den virkelige verden.

Av et sett med syntetisk genererte testdata var systemet i stand til å kor-
rekt gjenkjenne 444 av 500 radarm̊al (89% treffsikkerhet). Den største treffsikker-
heten ble oppn̊add ved å mate nettverket med en kombinasjon av mikro-doppler-
signaturen og utvalgte deler av r̊adataene fra radaren. Større treffsikkerhet ble ogs̊a
oppn̊ad ved å bruke en høyere simulert pulsrepetisjonsrate.

Noen opptak av virkelige m̊al ble gjort ved hjelp av en radarmodul fra Novelda
AS, utstyrt med en Novelda X2 radarbrikke. Systemet klarte å gjenkjenne m̊alene
fra disse opptakene med høy nøyaktighet. Selv om antallet opptak av virkelige
m̊al er for lavt til å kvantifisere ytelsen til systemet i virkelige situasjoner, viser
det at det er mulig å trene opp nettverket til å gjenkjenne virkelige m̊al ved bruk
av syntetiske treningsdata, hvilket er et interessant resultat i seg selv. Bruk av
syntetiske treningsdata reduserer behovet for å gjennomføre kostbare innsamlinger
av virkelige treningsdata.

II

Preface
Machine vision is a term most oftenly associated with computers being able to
identify objects in a two-dimensional plot of light intensity values, and sometimes
also with color information, generated by a CMOS imaging sensor. The signal from
an imaging sensor benefit from a very good lateral spatial resolution, allowing the
computer to identify features down to a micrometer level, depending on the type
of optics used to focus the image on the image sensor plane.

What imaging sensors aren’t especially good at, is resolving objects in range.
Sure, solutions exist using an angled laser beam that estimates range based on the
lateral displacement of the laser dot in the image, but this requires the laser to be
aimed precisely at the object for which the range is to be measured. So what if
computers could ”see” in range, with a wide viewing angle?

With ultra-wideband (UWB) pulse-doppler radar modules, computers can re-
solve solid objects in range. The ultra-wideband radar pulse and comparatively
high carrier frequency facilitates a range resolution down to a sub-centimeter level.
UWB radars gives computers depth vision - where the width of the field of view is
determined by the antenna used.

Novelda AS is a company specializing in low-power, low-cost system-on-chip
(SoC) solutions for ultra-wideband pulse-doppler radars. They proposed in 2014 a
project for demonstrating the capabilities of their products with respect to analyz-
ing the motion pattern of a moving radar target. The ultimate goal was to analyze
time-varying patterns in the doppler frequency shift caused by a target moving ra-
dially with respect to the radar, and use this pattern as a basis for identifying the
type of target. Time-harmonic variations in the doppler spectrum of a radar signal
is known as the micro-doppler effect, and the pattern of these variations associated
with a type of target is known as the target’s micro-doppler signature.

We will in this project continue exploring these capabilities, attempting to use
the findings from previous work to build a system using micro-doppler processed
data as basis for classifying radar targets.

III

Acknowledgments
Acknowledgments is given to Novelda AS and in particular Jan Roar Pleym for
providing this project opportunity, for providing the tools necessary for solving this
task, and for sharing their extensive knowledge within the field of ultra-wideband
pulse-doppler radar technology.

I further want to thank professor Torbjørn Svendsen and associate professor
Magne Hallstein Johnsen, both from the NTNU Department of Electronics and
Telecommunications, for pointing this project in the right direction and sharing
their knowledge in the field of machine learning.

Finally, big thanks are given to professor Lars Lundheim at the NTNU Depart-
ment of Electronics and Telecommunications for taking the task of supervising this
project, and for providing frequent and valuable guidance, feedback and fruitful
discussions, and for motivating me to keeping a high standard in my work.

Helge Langen
Trondheim, June 10th, 2016

IV

Contents

Abstract I

Sammendrag II

Preface III

Acknowledgments IV

Table of Contents V

List of Tables VIII

List of Figures IX

1. Introduction: Radar Target Classification using Micro-Doppler Signa-
tures 1
1.1. Problem Description . 1
1.2. Gait Motion, Gait Frequency and Gait Cycle 1
1.3. The Micro-Doppler Effect in Radar 2

2. Radar Signal Capture and Feature Extraction 4
2.1. Radar Module Signal Processing . 4

2.1.1. Radar Module Overview . 4
2.1.2. Generating the Pulse . 7
2.1.3. Propagation Loss and Delay 9
2.1.4. Receiver Noise . 10
2.1.5. Digitizing the Signal . 11
2.1.6. Digital Down-Conversion . 12
2.1.7. Matched Filtering . 12
2.1.8. Calculating Doppler Frequency Shift 12

2.2. Feature Extraction . 14
2.2.1. Feature Extraction Overview 14
2.2.2. Frame Buffer, Clutter Removal and Windowing 18
2.2.3. Range-Frequency Analysis . 19
2.2.4. Time-Frequency Analysis . 21
2.2.5. Gait-Frequency Analysis . 22
2.2.6. Feature Extraction Summary 24

3. Pattern Recognition and Classification with Neural Networks 25
3.1. Artificial Neural Networks . 25

3.1.1. The Neuron . 25
3.1.2. Neural Network Structure . 26

V

Contents

3.2. Neural Network Evaluation . 28
3.2.1. Error Functions . 28
3.2.2. Confusion Plots . 29

3.3. Neural Network Training . 30
3.3.1. Weight Update with Error Gradients and Backpropagation . 31
3.3.2. Bias Neurons . 34
3.3.3. Deep Architectures and Deep Learning 35
3.3.4. Training with Autoencoders 35

3.4. Designing a Neural Network for Radar Target Classification 38
3.4.1. Target Classification Process Parameters 38
3.4.2. Preparing the Input Data . 38
3.4.3. Type 1 Feature Vector . 40
3.4.4. Type 2 Feature Vector . 41
3.4.5. Network Layer Structure . 44
3.4.6. Activation Functions . 45

4. Testing and Results 49
4.1. Generating synthetic Training Data 49

4.1.1. Micro-Doppler Simulator . 49
4.1.2. Generating a Dataset . 49

4.2. Real Input Data . 52
4.3. Testing the Neural Network . 54

4.3.1. Neural Network Training . 54
4.3.2. Performance Measurements 57
4.3.3. Comments to Performance Measurements 59

5. Discussion 61
5.1. Comments to the Testing Procedure 61

5.1.1. Effect of the Network Weight Initialization 61
5.1.2. Advantages and Disadvantages of using synthetic Training

Data . 62
5.1.3. PRF Limitations and Aliasing 63
5.1.4. No Clutter in synthetic Data 64

5.2. Further Work . 64
5.2.1. Gathering real Training Data 64
5.2.2. Implementation and live Processing 64
5.2.3. Create Decision Limits for separating Classes 65
5.2.4. Optimizing Feature Extraction for Machine Learning 66
5.2.5. Try different Network and Input Data Configurations 67

6. Conclusion 68

Bibliography 69

Appendix A. Target Model Parameters, Position and Range calculation 70

VI

Contents

Appendix B. Synthetic Training Data Parameters 72

Appendix C. Confusion Plots for Network Evaluation 75
C.1. Confusion Plots for ReLU Network 75
C.2. Confusion Plots for Sigmoid Network 75

VII

List of Tables

2.1. Parameters used in Radar Module 8
2.2. Variables used in Radar Module . 8
2.3. Signal Processing Steps in Radar Module 9
2.4. Steps in the Feature Extraction Process 16
2.5. Parameters used in the Feature Extraction Process 16
2.6. Variables used in the Feature Extraction Process 17

3.1. Explanation of Confusion Plot Cells 30
3.2. Parameters and Variables used in the Target Classification Process . 39

4.1. Synthetic Training Data Generation Algorithm 50
4.2. Syntetic Training Datasets . 51
4.3. Neural Network Structure and Training Parameters 55
4.4. Description of Variables in Training Algorithm Pseudocode 55
4.5. Target Classification Network Training Algorithm 56
4.6. Performance Metrics - ReLU Network 58
4.7. Performance Metrics - Sigmoid Network 58

B.1. Human Body Model Scatterer Parameters used in synthetic Data
Generation . 72

B.2. Dog Body Model Scatterer Parameters used in synthetic Data Gen-
eration . 73

B.3. Cat Body Model Scatterer Parameters used in synthetic Data Gen-
eration . 73

B.4. Standard Deviations for the random Variations applied to each Body
Model Parameter in synthetic Data Generation 73

B.5. Radar Parameters used in synthetic Data Generation 74
B.6. Feature Set, Feature Extraction and Classification Parameters used

in synthetic Data Generation . 74

VIII

List of Figures

2.1. Radar Module Block Diagram and Parameters 6
2.2. Radar Module Signal Processing Steps and Parameters 7
2.3. Feature Extraction Process Block Diagram and Parameters 15
2.4. Slow and fast Time Scales . 15
2.5. Example of Range-Doppler Power Spectrum 20
2.6. Example of Time-Frequency Power Spectrum 22
2.7. Example of Gait-Frequency Power Spectrum 23

3.1. Generic Model of a Neuron . 26
3.2. Generic Model of a Feedforward Network with two Hidden Layers . . 27
3.3. Example of Confusion Plot with 500 Input Feature Sets 29
3.4. Parameters related to calculating Error Gradient and Weight Deltas 34
3.5. Generic feedforward Network with Bias Neurons 34
3.6. Example of Autoencoder Network . 36
3.7. Example of Type 1 Feature Vector 41
3.8. Example of Type 2 Feature Vector, Target Class 1 43
3.9. Example of Type 2 Feature Vector, Target Class 2 44
3.10. Overview of full Neural Network . 45
3.11. Logistic Sigmoid Activation Function 46
3.12. ReLU Activation Function . 47
3.13. Softmax Layer Structure . 48

4.1. Human Body Model . 52
4.2. Dog Body Model . 52
4.3. Cat Body Model . 52
4.4. Type 2 Feature Vector from Radar Recording of Cat 53
4.5. Type 2 Feature Vector from Radar Recording of Human on Treadmill 53

5.1. Development of Confidence with good initial Weights 62
5.2. Development of Confidence with poor initial Weights 62

A.1. Coordinate System . 71

C.1. Confusion Plot, ReLU, T1D60 . 76
C.2. Confusion Plot, ReLU, T1D200 . 76
C.3. Confusion Plot, ReLU, T2D60 . 76
C.4. Confusion Plot, ReLU, T2D200 . 76
C.5. Confusion Plot, ReLU, T1C60 . 77
C.6. Confusion Plot, ReLU, T1C200 . 77
C.7. Confusion Plot, ReLU, T2C60 . 77
C.8. Confusion Plot, ReLU, T2C200 . 77
C.9. Confusion Plot, Sigmoid, T1D60 . 78

IX

List of Figures

C.10.Confusion Plot, Sigmoid, T1D200 . 78
C.11.Confusion Plot, Sigmoid, T2D60 . 78
C.12.Confusion Plot, Sigmoid, T2D200 . 78
C.13.Confusion Plot, Sigmoid, T1C60 . 79
C.14.Confusion Plot, Sigmoid, T1C200 . 79
C.15.Confusion Plot, Sigmoid, T2C60 . 79
C.16.Confusion Plot, Sigmoid, T2C200 . 79

X

1. Introduction: Radar Target
Classification using Micro-Doppler
Signatures

1.1. Problem Description

Modern ultra-wideband radar offerings are capable of detecting moving targets
with high precision at a few meters range. In alarm and surveillance applications
it is desirable to be able to discern humans and animals from each other. Previous
work [2] [5] has been conducted focusing on extracting the micro-doppler features
present in the recorded radar signal as a basis for target classification (see section 1.3
for an explanation of micro-doppler features, micro-doppler signatures and the
micro-doppler effect in radar).

The focus of this project will be to see if it is possible for a computer to
determine if a moving target belongs to one of two classes, one class representing
humans, the other representing pet animals. The prime hypothesis will be that the
information contained in the target’s micro-doppler signature, as extracted from
the recorded radar signal, is suitable as input data for such an automated target
classifier. Since it was identified in [5] that some information is lost in the micro-
doppler extraction process, alternative ways of processing the radar signal prior
to being input to the classifier will also be explored. The solution will primarily
be evaluated using synthetic data generated using the simulator developed in [5],
supported by some limited tests with real data when possible.

1.2. Gait Motion, Gait Frequency and Gait Cycle

The term ”gait” will be used frequently throughout this report. ”Gait” simply
means ’the pattern of movement of the limbs of animals, including humans, during
locomotion over a solid substrate’ (Wikipedia), and we define the frequency of
which the motion pattern repeats itself as the gait frequency, and one cycle of the
motion pattern as a gait cycle.

Some typical properties of the gait pattern of a human is e.g. that each arm

1

Introduction: Radar Target Classification using Micro-Doppler Signatures

and each leg will swing back and forth once during each cycle, the arms will swing
in opposite phase to each other, each leg will swing in phase with the opposite arm,
and the torso and head will have a minor oscillation at twice the gait frequency. A
dog’s gait pattern has similar properties, where each leg will swing back and forth
once during each cycle, legs on the left side in opposite phase with the right ones,
the rear legs in phase with the opposite front leg, and the head/torso with a small
oscillation twice per cycle.

1.3. The Micro-Doppler Effect in Radar

Taking advantage of the doppler effect to detect moving target in the presence of
stationary clutter has been a well-known technique for decades. With the advent of
digital signal processing techniques (and computers with the processing power to
support it), continuous analysis of the frequency spectrum of the radar return signal
allowed the detection of time-varying patterns in the signal’s doppler spectrum
by performing joint time-frequency analysis. Moving targets with rigid as well as
articulated bodies frequently have oscillating micro-motion components in addition
to the bulk motion vector, which again will cause larger or smaller variations to the
doppler shift of the return signal already caused by the bulk motion. These time-
harmonic doppler frequency variations are known as the micro-doppler effect, and
the pattern of the doppler frequency variations produced by a specific type of target
over at least one gait cycle is known as the target’s micro-doppler signature [1].

As mentioned in the preface, it is suggested that these micro-doppler signature
patterns provide information that allows us to identify a radar target. This is
possible because distinct features in the micro-doppler signature relates to physical
features of the target and its motion pattern. Such features includes the number of
distinguishable sinusoids, the amplitude and frequency of each sinusoid, the phase
difference between the sinusoids and the power in each sinusoid. One example
given in [1] is the use of micro-doppler processing in air surveillance radars to
classify helicopters, where it is possible to determine the number of rotor blades
(from the number of sinusoids), the angle between each rotor blade (from the
phase difference between the sinusoids), the rotational speed of the rotor (from
the sinusoid frequency), the tangential speed of the tips of the rotor blades (from
the amplitude of the sinusoids) and the length of the rotor blades (by combining
the knowledge of tip tangential speed and rotational speed). In combination with
knowledge about the target’s radar cross section (RCS) and air speed (which we

2

The Micro-Doppler Effect in Radar

do not need micro-doppler processing to calculate), we have a list of features that
limits the number of possible helicopter types matching these criterions to a very
small one.

3

2. Radar Signal Capture and Feature
Extraction

2.1. Radar Module Signal Processing

Most of the derivations in this section have been previously published in [2] and [5].
They are repeated here for reference and to provide consistency when developing
the mathematical foundation for the target classification process.

2.1.1. Radar Module Overview

The radar module is shown as a block diagram in figure 2.1, where each block
represents a submodule performing one operation. Figure 2.2 represents the same
module as a signal processing flowchart showing the relationship between the pa-
rameters and process steps and how they affect the received signal. A thorough
explanation of how the output signal ri,bb[n] appears as a function of time, the
input parameters to the radar and the size, position and motion of the target will
be given throughout the rest of this section, but a brief explanation of the blocks
in the figures is as follows:

• The frame timer signalizes the start of a new frame every 1/fp seconds
• The discrete sine wave c[n] is mixed with a pulse shaping filter with impulse

response p[n] each time the frame timer signalizes start of a new frame to
form the transmitted pulse waveform

• The pulse waveform is converted to an analog signal and amplified by the
power amplifier (PA) to the transmitter power level Pt before being radiated
by the Tx antenna

• The pulse is reflected by the target and received by the Rx antenna with a
propagation loss L(t) and propagation delay τ proportional to the target’s
range R(t) and radar cross section (RCS) σ

• The received pulse is amplified by the receiver low-noise amplifier (LNA)
• The analog to digital converter (ADC) digitizes the signal at a sampling

frequency fs starting at the frame offset time ts after the new frame signal is
received, and continues until N samples have been digitized.

• The digital down-converter creates a complex phasor by summing the carrier

4

Radar Module Signal Processing

with an imaginary component with the same amplitude 90◦ out of phase, and
mixes it with the received signal ri[n]

• The down-converted signal ri,bbu[n] is mixed with a matched filter with im-
pulse response p[−n], which maximizes the signal to noise ratio, removes the
unwanted high frequency parts of the signal, and outputs the filtered base-
band signal ri,bb[n]

Note that the radar module can be set to output either ri,bb[n] or to output ri[n]
directly, in which the latter two steps are skipped.

Tables 2.1 and 2.2 lists the constant and variable signal processing parameters
shown in figures 2.1 and 2.2, while table 2.3 lists the signals and signal processing
steps and on which page their relevant formulas are given.

5

Radar Signal Capture and Feature Extraction

Local oscillator
fc

Pulse filter
Tp, σ

2
p

PA
Pt

Frame timer
fp

Target
σ

Tx antenna
Gt

si(t)

ADC
fs, ts, N

LNA
Fn, GRx

Digital down-
converter

Matched filter
Tp, σ

2
p

ri,bb[n]

Rx antenna
Gr

ri(t)

R(t)

ri[n]

ri,bbu[n]

Figure 2.1.: Radar Module Block Diagram and Parameters

6

Radar Module Signal Processing

p[n] R(t) L(t) d(t)

c[n]
DAC Pt δ(tf − τ)

j GRx ADC

90◦

p[−n]
rbb[n]

s(tf)

r(tf) r[n]

rbbu[n]

Figure 2.2.: Radar Module Signal Processing Steps and Parameters

2.1.2. Generating the Pulse

In the time domain, the transmitted signal for the ith frame is given by

si(t) = p(t− iTf) · cos(2πfc(t− iTf) (2.1)

which is the ideal output from the power amplifier following the DAC in figure 2.2
(we assume a normalized power level to leave Pt out of the equation). Here, Tf is
the duration of the frame given as the inverse of the pulse repetition frequency fp:

Tf = 1
fp

(2.2)

fc is the radar carrier frequency, and p(t) is the gaussian pulse shaping filter func-
tion defined as

p(t) = a · exp
(
−

(t− TP

2)2

2σ2
p

)
(2.3)

where a is the gain of the filter, Tp the duration of the pulse and σ2
p the variance

defining the steepness of the filter lump.
Following the notation in [2], we define a local frame time variable tf as

t = tf + iTf tf ∈ [0, Tf] (2.4)

7

Radar Signal Capture and Feature Extraction

Table 2.1.: Parameters used in Radar Module

Symbol Parameter Unit
fp PRF/framerate Hz
Tf Frame duration (inverse of fp) seconds
Tp Pulse-shaping filter width seconds
σ2
p Pulse-shaping filter steepness seconds
Pt Radar output power Watts
fc Carrier frequency Hz
Gt Transmitting antenna gain dBi
Gr Receiving antenna gain dBi
R(t) Range to target meters
σ Target equivalent radar cross section (RCS) m2

Fn Receiver amplifier noise figure dB
GRx Receiver amplifier gain dB
fs ADC sampling frequency Hz
ts ADC sampling offset seconds
N Samples per frame

Table 2.2.: Variables used in Radar Module

Symbol Parameter Unit
i Frame number
n Sample number within frame
t Global time since recording started seconds
tf0 Frame start time relative to global time seconds
tf Local frame time (difference between

global time and frame start time)
seconds

8

Radar Module Signal Processing

Table 2.3.: Signal Processing Steps in Radar Module

Symbol Description Inputs Output Page
Local oscillator fc, t c(t) 7

H(f) Pulse-shaping filter
and power amplifier

c(t), Tp,
σ2
p, Pt

s(tf) 7

Propagation delay R(t) τ(t) 9
Signal propagation loss R(t), Gt,

Gr, σ, fc
L(t) 9

Receiver noise Fn, fs d(t) 10
Propagation s(tf), τ(t),

L(t), d(t),
GRx

r(tf) 9

ADC Digitizer r(tf), fs, ts r[n] 11
DDC Digital downconverter c(t), r[n] rbbu[n] 12
H−1(f) Matched filter rbbu[n], Tp, σ2

p rbb[n] 12

which gives us the relationship tf = t − iTf when 0 < tf < Tf . The transmitted
signal for frame i can then be written as

si(tf) = p(tf) · cos(2πfctf) (2.5)

2.1.3. Propagation Loss and Delay

The returned signal from a single target for the ith frame is given by

ri(tf) = GRx·L(tf)·si(tf−τ(t)) = GRx·L(tf)·p(tf−τ(t))·cos(2πfc(tf−τ(t))) (2.6)

where τ(t) is the propagation delay equal to the radar pulse round-trip time cal-
culated as

τ(t) = 2 ·R(t)
c

= 2 ·R(tf + iTf)
c

(2.7)

L(t) is the free space loss given by the square root of the ratio between the trans-
mitted power Pt and the received power Pr:

L(t) =

√
|Pr|
|Pt|

(2.8)

9

Radar Signal Capture and Feature Extraction

The received signal power Pr from a target at the LNA input is given by the radar
equation [3]:

Pr = PtGtGrλ
2σ

(4π)3R2
tR

2
r

(2.9)

where Gt and Gr is the gain of the transmitting and receiving antenna respec-
tively, λ the wavelength of the radar carrier signal, σ the RCS of the target and
Rt, Rr the range from the transmitting antenna and receiving antenna to the target
respectively.

For the moving targets present in the signals we will be analyzing, R will be a
time-dependent function R(t). We assume that the radar module is a monostatic
configuration, which means that similar antennas placed at nearly the same location
is used for transmitting and receiving, which lets us simplify GtGr to G2 and R2

tR
2
r

to R4 (or R4(t) to highlight its time dependency). We then have

Pr(t) = PtG
2λ2σGRx

(4π)3R(t)4 (2.10)

which gives us the expression for L(t) as

L(t) =

√
G2λ2σ

(4π)3R(tf)4 (2.11)

and consequently, the expression for the received signal becomes

ri(tf) =GRx · L(t) · p
(
tf −

2 ·R(tf + iTf)
c

)
· cos

[
2πfc

(
tf −

2 ·R(tf + iTf)
c

)] (2.12)

2.1.4. Receiver Noise

The amount of noise experienced at the input of the ADC depends on the antenna
noise temperature, the receiver noise temperature, receiver bandwidth and receiver
gain. We assume that the noise appears as gaussian white noise from which we can
estimate an average noise power based on the aforementioned parameters.

We start by calculating an equivalent noise temperature Te for the cascade
formed by the antenna and receiver amplifier:

Te = TA + TRx
GRx

(2.13)

10

Radar Module Signal Processing

Where TA is the antenna noise temperature, TRx the receiver noise temperature
and GRx the receiver gain. The average noise power N0,in at the input of the
receiver is calculated as

N0,in = kTeB [W] (2.14)

where k is Boltzmann’s constant, Te the noise temperature from equation 2.13
and B the receiver bandwidth, which when sampling directly at carrier frequency
corresponds to the ADC sampling frequency fs. When referenced to the ADC
input, N0,in is multiplied with the receiver gain GRx.

We will not include the receiver noise in the calculations in the subsequent
sections, since we will assume that the matched filter stage described in section 2.1.7
will improve the signal to noise ratio to a level where the noise can be ignored.

2.1.5. Digitizing the Signal

The signal is digitized by sampling at (ts + nTs) where ts is the frame offset time
defining the minimum range of the radar, Ts is the sampling period defined by the
ADC sampling frequency fs as Ts = 1

fs
and n = 0, 1, 2, ...N − 1 where N is the

number of samples to be recorded for each frame defining the maximum range or
range span. The discrete-time signal is then given by

ri[n] = ri(ts + nTs) = GRx · L(ts + nTs) · p
(
ts + nTs −

2 ·R(ts + nTs + iTf)
c

)
· cos

[
2πfc

(
ts + nTs −

2 ·R(ts + nTs + iTf)
c

)]
(2.15)

Since the distance we expect a target to travel throughout the duration of a
frame will be several orders of magnitude smaller than the range, we introduce the
following simplification

R(ts + nTs + iTf) ≈ R(iTf) (2.16)

which is akin to saying that the range to a target will be approximately the same
throughout the frame as it was at the beginning of the frame. We use this simpli-

11

Radar Signal Capture and Feature Extraction

fication to write equation (2.15) as

ri[n] ≈ GRx · L(ts + nTs) · p
(
ts + nTs −

2 ·R(iTf)
c

)
· cos

(
2πfc

(
ts + nTs −

2 ·R(iTf)
c

)) (2.17)

2.1.6. Digital Down-Conversion

ri[n] will then need to be digitally down-converted to baseband by multiplying with
a complex phasor with the same frequency as the radar carrier frequency:

ri,bbu[n] = ri[n] · exp(−j2πfc(iTf + nTs))

= GRx · L(ts + nTs) · p
(
ts + nTs −

2 ·R(iTf)
c

)
· 1

2

[
exp

(
−j4πfcR(iTf)

c

)
+ exp

(
−j4πfc

(
ts + nTs −

R(iTf)
c

))]
(2.18)

2.1.7. Matched Filtering

Finally, the signal is filtered using a time-reversed version of the pulse-shaping filter
function given in equation (2.3), which then forms a matched filter that maximizes
the signal to noise-ratio and removes the high-frequency component present in
equation (2.18):

ri,bb[n] = 1
2 ·GRx · L(ts + nTs) · p

(
ts + nTs −

2 ·R(iTf)
c

)
· exp

(
−j4πfcR(iTf)

c

) (2.19)

The frames that make up one recording are stored in matrix Υi, where i =
0, 1, 2, · · · I − 1 and I is the number of frames in one recording.

2.1.8. Calculating Doppler Frequency Shift

The doppler frequency shift of the returned signal is given in [3] as:

fd = −2vr
λ

(2.20)

12

Radar Module Signal Processing

where the negative sign is used because an approaching target, which will cause a
positive doppler frequency shift, will have a negative rate of change of the range
and consequently a negative radial velocity. The radial velocity vr is defined by

vr = dRj(t)
dt

(2.21)

and the carrier wavelength λ by
λ = c

fc
(2.22)

By using the relation in equation (2.22) we can rewrite equation (2.19) high-
light the relationship between the range and the phase of the baseband signal in
terms of number of wavelengths:

ri,bb[n] = 1
2 ·GRx · L(iTf) · p

(
ts + nTs −

2 ·R(iTf)
c

)
· exp

(
−j4πR(iTf)

λ

) (2.23)

We define the phase term φi as

φi = −4πR(iTf)
λ

(2.24)

Using the relations described in equations (2.20) and (2.21), the derivative of the
phase term gives the doppler frequency of the signal:

fd,i = ωd,i
2π = 1

2π
dφi
dt

= −2
λ

dR(iT)
dt

= −2vr,i
λ

(2.25)

which is the same as equation (2.20).

13

Radar Signal Capture and Feature Extraction

2.2. Feature Extraction
The algorithms used for feature extraction was developed and described in [2].
They are presented here for reference and to show how we arrive at the data used
as input to the target classification algorithms.

2.2.1. Feature Extraction Overview

An overview of the process steps and variables is shown in figure 2.3. We will work
with time scales in two different dimensions throughout this chapter, and for this
we use the terms slow time and fast time, which are linked to the discrete counter
variables i and n, respectively.

Figure 2.4 shows how the slow and fast time scales relate to the counter vari-
ables in a radar recording consisting of I frames, each with N samples (or range-
bins). i represents the number of the frame, and is conversely incremented at a
rate equal to the pulse repetition frequency fp. n represents the number of a sam-
ple within one frame, and is incremented at a rate equal to the ADC sampling
frequency fs.

Table 2.5 lists the radar parameters that we need to know to perform the
feature extraction process, while table 2.6 lists the variables that will be used. The
different process steps, along with on which page each step is described are listed
in table 2.4.

14

Feature Extraction

Radar Frame buffer

Clutter removal
& windowing
M,w[m]

Range-frequency Time-frequency Gait-frequency

Target classification process

Υi[n]

Yi

Fi

Gi µ

D

Figure 2.3.: Feature Extraction Process Block Diagram and Parameters

Slow time (frame number i)

Fast
tim

e
(sam

ple
num

ber
n)

1
2
3
...
N

1
2
3
...
N

1
2
3
...
N

1
2
3
...
N

1
2
3
...
N

1 2 3 . . . I

Figure 2.4.: Slow and fast Time Scales

15

Radar Signal Capture and Feature Extraction

Table 2.4.: Steps in the Feature Extraction Process

Description Inputs Output Page
Frame buffer Υi[n],M Yi 18
Clutter removal & win-
dowing

Yi,M,w[m] Fi 18

Range-frequency analysis Fi,M, fp, fs, ts Gi 19
Time-frequency analysis Gi, I,N µ 21
Gait-doppler analysis µ Di 22

Table 2.5.: Parameters used in the Feature Extraction Process

Symbol Parameter Unit
fp PRF/frame rate Hz
Tf Frame duration (inverse of fp) seconds
fc Carrier frequency Hz
R(t) Range to target meters
fs ADC sampling frequency Hz
ts ADC sampling offset seconds
w[m] Window function
N Samples per frame
M Window length frames
σw Window function variance seconds

16

Feature Extraction

Table 2.6.: Variables used in the Feature Extraction Process

Symbol Parameter Unit
i Frame number (slow time)
n Sample number within frame (fast time)
t Global time since recording started seconds
tf0 Frame start time relative to global time seconds
tf Local frame time (difference between

global time and frame start time)
seconds

I Total number of frames in recording
T Global time when recording stopped seconds
fd Doppler frequency Hz

17

Radar Signal Capture and Feature Extraction

2.2.2. Frame Buffer, Clutter Removal and Windowing

The input to the analysis process is the digitally down-converted and low-pass
filtered frames Υi[n] where i = 0, 1, 2, · · · , I−1 of which I is the number of frames
recorded given by I = fp · T , T is the time over which the frames were recorded
and n = 0, 1, 2, · · · , N − 1 where N is the number of samples per frame.

We start by creating the framebuffer matrix Yi, given by

Yi =


y0,0 y0,1 · · · y0,M−1

y1,0 y1,1 · · · y1,M−1
...

...
. . .

...

yN−1,0 yN−1,1 · · · yN−1,M−1

 (2.26)

where M is the window length and

yn,m = Υi+m−M
2

[n] m = 0, 1, 2, · · · ,M − 1 (2.27)

which tells us that each column contains one frame with the center column con-
taining frame Υi[n], and each row representing the activity within one range bin
over the window time period, which will be M/fp seconds long.

From this we create matrix Fi where stationary clutter has been removed and
a gaussian window function has been applied to avoid smearing of the doppler
frequency spectrum in the range-frequency analysis step. Fi i given by

Fi =


z0,0 z0,1 · · · z0,M−1

z1,0 z1,1 · · · z1,M−1
...

...
. . .

...

zN−1,0 zN−1,1 · · · zN−1,M−1

 (2.28)

where

zn,m = w[m] · (yn,m −
1
M

M−1∑
m=0

yn,m) (2.29)

w[m] = exp
(
−1

2

(
m− (M − 1)/2
σw(M − 1)/2

)2
)

(2.30)

where the step of subtracting the complex average value calculated across the

18

Feature Extraction

window length in equation (2.29) serves to remove stationary clutter. N and M

are the same as in equation (2.26).
The duration of the gaussian window function w[m], as given in equation (2.30),

is in theory infinitely long. However, it decays quite quickly, and can safely be trun-
cated once it has decayed below a certain level.

How quickly it rises and decays is governed by the window steepness σ2
w. The

exact value of this parameter is not critical to the functionality of the window, but
should be set wide enough to attenuate the data as little as possible, while still
decaying sufficiently towards the end of the window. If we want it to decay to e.g.
one tenth of the maximum value towards the ends, the Full width at a tenth of a
maximum (FWTM) of the gaussian window function is found by treating m as a
continuous variable and solving equation (2.30) to find the distance between the
two points where w(m) = 0.1 (since the maximum value is 1). This distance turns
out to be

FWTM = 2
√

2 ln 10σw ≈ 4.29193σw (2.31)

For the FWTM to be equal to the window duration we simply set FWTM = M−1
fp

,
which lets us express σw in terms of M :

σw = M − 1
4.29193 · fp

(2.32)

Both the clutter removal and windowing steps are performed in the slow-time
dimension, which follows the row direction in matrix Fi.

2.2.3. Range-Frequency Analysis

The range-doppler matrix Gi is calculated for each point in time using Fi as input.
It is defined as:

Gi =


g0,0 g0,1 · · · g0,N−1

g1,0 g1,1 · · · g1,N−1
...

...
. . .

...

gM−1,0 gM−1,1 · · · gM−1,N−1

 (2.33)

where

gk,n =

∣∣∣∣∣
M−1∑
m=0

zn,m · exp
(
−j2πkm

M

)∣∣∣∣∣
2

k = 0, 1, 2, . . . ,M − 1 (2.34)

19

Radar Signal Capture and Feature Extraction

Range [m]

1 1.5 2 2.5 3

D
o
p
p
le

r
fr

e
q
u
e
n
c
y
 [
H

z
]

-100

-80

-60

-40

-20

0

20

40

60

80

100
Range-Doppler diagram, simtime 1.88s

Figure 2.5.: Example of Range-Doppler Power Spectrum

An example plot of the range-doppler matrix Gi for one frame is shown in
figure 2.5. The color represents the power at a certain range and doppler frequency,
where a brighter color corresponds to more power. The doppler frequency is plotted
on the y-axis with a scale corresponding to the pulse repetition frequency fp and
a resolution equal to the window length M :

fd[m] = fp

(
m

M − 1 −
1
2

)
[Hz] m = 0, 1, 2, . . . ,M − 1 (2.35)

and the range along the x-axis with a scale corresponding to the ADC sampling
frequency fs:

R[n] = c

2

(
ts + n

fs

)
n = 0, 1, 2, . . . , N − 1 (2.36)

In this plot, we can visually distinguish five scatterers, all in the range between
2.5 and 3 meters. Three of the scatterers appear at around fd = −40 Hz, and
the remaining two scatterers around fd = 80 Hz. This plot was generated using
synthetic radar data where fp = 200 Hz, M = 20 frames, fs = 41 GHz, ts = 6 ns,
and fc = 6.8 GHz. Using equation (2.25) and finding the wavelength λ = c

fc
this

gives a radial velocity vr = 0.9 m/s and vr = −1.5 m/s, respectively (a negative

20

Feature Extraction

velocity means the target is approaching the radar).
As can be seen in figure 2.5, and also by examining equation 2.33, matrix Gi

is transposed compared to the Yi and Fi matrices (equations (2.26) and (2.28),
respectively). This means that the slow-time variable m now follows the vertical
axis and that the fast-time variable n follows the horizontal axis, since this is more
intuitive by giving us the range horizontally in figure 2.5.

2.2.4. Time-Frequency Analysis

The micro-doppler signature matrix µ is given by

µ =


u0,0 u0,1 · · · u0,I−1

u1,0 u1,1 · · · u1,I−1
...

...
. . .

...

uM−1,0 uM−1,1 · · · uM−1,I−1

 (2.37)

where each column in u contains the row-wise sum of all range bins in each range-
doppler matrix gi:

um,i =
N−1∑
n=0

gn,m,i i = 0, 1, 2, . . . , I − 1 (2.38)

where the added i index indicates that this is the gn,m matrix associated with frame
i, which was defined in equation (2.33).

Figure 2.6 shows an example plot of a time-frequency matrix µ. As in fig-
ure 2.5, brighter colors indicate higher power. The parameters used here are
recording time T of 2 seconds, pulse repetition frequency fp of 200 Hz (giving
I of 400 frames) and window length M of 27 frames. The data was synthetically
generated. It can be visually interpreted that the target is approaching the radar,
given the positive average doppler frequency shift, and that the gait frequency is
approximately 2 Hz, given the repetition rate of the pattern in the plot.

The brighter background color on the left side of the plot is caused by a
combination of the poorer signal to noise ratio experienced when the target is far
from the radar, and the normalization of the power level within the frame (without
normalization, both the background color (noise) and the signal pattern would be
darker on that end of the plot). We can also see from the dark horizontal line
in the middle of the plot that the clutter removal step also removes much of the

21

Radar Signal Capture and Feature Extraction

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time [s]

-100

-80

-60

-40

-20

0

20

40

60

80

100

D
o
p
p
le

r
fr

e
q
u
e
n
c
y
 [
H

z
]

Time-frequency power spectrum

Figure 2.6.: Example of Time-Frequency Power Spectrum

uncorrelated noise around the 0 Hz doppler frequency.

2.2.5. Gait-Frequency Analysis

The final analysis of the recorded data is the creation of the gait-doppler matrix
D, defined by

D =


d0,0 d0,1 · · · d0,I−1

d1,0 d1,1 · · · d1,I−1
...

...
. . .

...

dM−1,0 dM−1,1 · · · dM−1,I−1

 (2.39)

where each row dm,k is the DFT of the corresponding row in the micro-doppler
signature matrix µ:

dm,k =

∣∣∣∣∣
I−1∑
i=0

um,i · exp
(
−j2πki

I

)∣∣∣∣∣ k = 0, 1, 2, . . . , I − 1 (2.40)

The result of this operation gives us the frequencies at which events are occurring
in the time-frequency plot, which again will tell us something about the frequency
components of the motion pattern of the target(s).

Figure 2.7 shows an example plot of a gait-doppler matrix. We can see that the
target is moving away from the target given the negative average doppler frequency,

22

Feature Extraction

0 2 4 6 8 10 12
Gait frequency [Hz]

-10

-5

0

5

10

D
o

p
p

le
r

fr
e

q
u

e
n

c
y
 [

H
z
]

Gait-doppler power spectrum

Figure 2.7.: Example of Gait-Frequency Power Spectrum

and that we have some bright spots around the 2 Hz gait frequency. Little or no
information is found beyond approximately 5 Hz. The large concentration of power
around the 0 Hz gait frequency is most probably caused by the noise, or more
precisely the poorer signal to noise ratio experienced when the target is far away
(seen as the brighter background on the left half of figure 2.6).

23

Radar Signal Capture and Feature Extraction

2.2.6. Feature Extraction Summary

The feature extraction process seeks to manipulate the recorded radar data in order
to extract information that has a physical meaning, such as the gait frequency
(found from the D matrix) and the stride length of a moving target (found by
combining the information about the gait frequency and the average velocity).
While this might not prove all that useful for an automated target classification
system, which does not have any understanding of these physical phenomena in the
first place, it also serves the task of reducing the size of the input data, which will
both make the classification process less computationally intensive, and simplify
the task of shaping the data into a standardized format.

Nevertheless, we will keep using the feature extraction processes presented in
this chapter for preparing the input data for the classification system, and leave
any optimization for machine input friendliness as a future task discussed in 5.

24

3. Pattern Recognition and
Classification with Neural
Networks

3.1. Artificial Neural Networks

Artificial neural networks (ANNs) are mathematical models that attempt to re-
semble the way an animal brain learns how to predict the outcome of an event
based on the knowledge about the outcome of previous, similar events. Their pri-
mary usage is pattern recognition problems (in fact, in its purest sense, pattern
recognition is the only task an ANN is able to perform), of which classification
problems are a subcategory. We therefore identify ANNs as a possible solution to
our target classification problem, and will delve deeper into this subject throughout
this chapter.

We adopt the notation used by Heaton [8] and others, where the term ’neural
network’ always refers to ANNs, and is not to be confused with biological neural
networks (BNN). From this point on, whenever the term ’neural network’ is used,
it always refers to an ANN, unless specifically stated otherwise.

3.1.1. The Neuron

Heaton [8] describes the neuron as the basic building block of the neural network.
It can take on one or both of the roles as hidden or output neuron.

Let x be an input vector of size R presented to the neuron’s input nodes,
and w a vector of the same size containing the weight values associated with the
respective input nodes. The neuron’s output value f(x,w) is then given by

f(x,w) = φ (y) (3.1)

y =
R−1∑
r=0

(wr · xr) (3.2)

where φ(y) is the neuron’s activation function, and y is the sum of all inputs to the
neuron, multiplied with the weights associated with each of the neuron’s inputs [8].

25

Pattern Recognition and Classification with Neural Networks

x0 x1 x2

φ(y)

f(x,w)

w0 w1 w2

y

Figure 3.1.: Generic Model of a Neuron

The activation function is the neuron’s transfer function. We are at liberty to
choose any function as activation function, however, as one might suspect, there are
certain types of functions that are more suit for the task than others. Section 3.4.6
will introduce some common activation functions that will be used in this project.

The weight values w are essential to the functionality of the neural network.
Most oftenly they are initialized to a random value, and then adjusted to suit the
patterns the network is designed to recognize through the training process which
is described in section 3.3. The number of input nodes depends on the network
structure and the role of the neuron within the network, and will be discussed in
the next section.

For equation 3.1 to provide meaningful output, we see that neurons, and also
the neural networks, take real numerical values as their only valid input data type.

Figure 3.1 shows a schematic model of a neuron with three input nodes and
weight values.

3.1.2. Neural Network Structure

A neural network consists of neurons organized in layers. Figure 3.2 shows an
example of a neural network with an input layer, two hidden layers and an output
layer. A neural network does not need to have all three types of layers, and as
mentioned in the previous section, one neuron can take the role of both hidden and
output neuron (in which the network would only have one neuron layer).

26

Artificial Neural Networks

...
...

...
...

p0

p1

p2

p3

p4

pQ−1

h1,1

h1,2

h1,3

h1,4

h1,H1

h2,1

h2,2

h2,H2

o1

oC

Input
layer Hidden

layer 1 Hidden
layer 2 Ouput

layer

Figure 3.2.: Generic Model of a Feedforward Network with two Hidden Layers

The network in figure 3.2 is a feedforward network, where the neurons only feed
their output values forward to the next layer, and never backwards. Feedforward
networks are one of the most commonly used neural network architectures due to
their versatility and is especially popular in classification applications [8], which is
why we will primarily be investigating this type of neural network for our problem.

Neurons in a feedforward network connect to each other in the following ways:

• The first layer, the input layer, does not have neurons, just input nodes (in
some texts, the input layer is not considered a layer at all - just inputs to the
first hidden layer)

• Neurons in hidden layers and output layers are connected to all the neurons
or nodes in the preceding layer, which means that each neuron has the same
number of input nodes and associated weight values as the number of neurons
or input nodes in the preceding layer

• Neurons only have one output node, ie. they only output one value. This
same value is fed to all neurons connected this neuron’s output. In the final
layer, the output layer, the number of neurons correspond to the number of
values the network is designed to output

27

Pattern Recognition and Classification with Neural Networks

The example network shown in figure 3.2 is drawn so to indicate that each
layer is consecutively smaller (in terms of number of neurons) than the previous
layer. This is common in applications such as classification problem, where a large
input vector is to be categorized into a limited number of target groups. It should
be noted, however, that this is not always the case, and that there are applications
where a layer will have more neurons than the preceding layer.

All neurons in one layer have the same activation function. The different layers
can, however, have different activation functions.

3.2. Neural Network Evaluation

Before advancing to the neural network training process, we will need some means
of evaluating the performance of a neural network.

3.2.1. Error Functions

Error functions quantify the performance of a neural network in a single score value
based on the difference between the ideal and actual output for all output neurons.
Error functions are also known as performance functions or objective functions,
and in addition to assessing the performance of a neural network, it also serves an
important task in the training process, which will be explained in section 3.3.

The input to the error function are the vectors o and ô, where o represents
the desired, ideal output from all output neurons for a given set of input data,
and ô holds the actual output from the network in its current training state when
presented with the same set of input data.

Several different error functions exist. For classification problems, a common
error function is the cross-entropy error function. It is defined as

E(o,ô) = − 1
U

U∑
u=1

C∑
c=1

[ou,c ln(ôu,c) + ((1− ou,c) · ln(1− ôu,c)] (3.3)

where U is the number of training data feature sets, C the number of target classes,
ou,c is the desired output from output neuron c for input feature set u, and ôu,c is
the actual output from the network for the same input feature set.

A neural network is regarded to perform better when the score calculated
from the error function is as low as possible, which means that the degree of error
is lower. The second term in the cross-entropy error function requires that the

28

Neural Network Evaluation

1 2

Target Class

1

2

O
u

tp
u

t
C

la
s

s

 Confusion Matrix

217
43.4%

27
5.4%

88.9%

11.1%

29
5.8%

227
45.4%

88.7%

11.3%

88.2%

11.8%

89.4%

10.6%

88.8%
11.2%

Figure 3.3.: Example of Confusion Plot with 500 Input Feature Sets

output values are in the range 〈0, 1〉 for this to hold true. For networks that are
to be evaluated using the cross-entropy function, the network must be designed to
give output in this range.

3.2.2. Confusion Plots

A confusion plot is a visual representation of a neural network’s degree of correct
and erroneous classifications. An example confusion plot for a network with two
possible outputs is shown in figure 3.3. The horizontal axis, ’Target Class’ shows
which class the input feature sets belongs to, while the vertical axis, ’Output Class’
shows which class the network predicts that the feature set belongs to. A full
explanation of the numbers in each cell is given in table 3.1.

29

Pattern Recognition and Classification with Neural Networks

Table 3.1.: Explanation of Confusion Plot Cells

Number of elements
correctly predicted as

class 1

Number of elements
belonging to class 2 but

predicted as class 1

Percentage of elements
predicted as class 1
which was correct

Percentage of elements
predicted as class 1

which actually belonged
to class 2

Number of elements
belonging to class 1 but

predicted as class 2

Number of elements
correctly predicted as

class 2

Percentage of elements
predicted as class 2
which was correct

Percentage of elements
predicted as class 2

which actually belonged
to class 1

Percentage of elements
belonging to class 1

which was predicted as
class 1

Percentage of elements
belonging to class 1

which was predicted as
class 2

Percentage of elements
belonging to class 2

which was predicted as
class 2

Percentage of elements
belonging to class 2

which was predicted as
class 1

Percentage of elements
predicted correctly

Percentage of elements
predicted wrong

3.3. Neural Network Training

Training is the process of adjusting a neural network to fulfill the tasks it was
designed for. Prior to training, the output from a neural network is garbage that
serves no purpose. The training process achieves this adaption by adjusting the
neuron input weights to reduce the error produced when presenting a given input
feature set to the network.

Successful training of a neural network requires access to a large set of training
data. Gathering this data is usually the most cumbersome task when attempting
to solve a problem using neural network.

Many approaches to neural network training exists. Training can be performed
either supervised, in which the network is presented with a desired outcome for a
given input feature set, or unsupervised, in which the network tries to figure out
patterns in the input data without knowing the desired outcome.

30

Neural Network Training

We will in this text mainly focus on the training methods we will actually
be using in our application. We will start by describing the process of training a
network with one hidden layer only, in a supervised fashion. Training a network
with multiple hidden layers requires an expansion of this process known as deep
learning, which will be introduced in section 3.3.3.

Prior to training, the weights in the network are initialized to a random value.
How the initial weight values are found is actually a factor affecting to which degree
the network can be successfully trained, which has led to weight initialization being
a subject of research in itself. According to Heaton, the most promising algorithm
for weight initialization is the Xavier algorithm, which generates random numbers
with a normal (gaussian) distribution [8].

3.3.1. Weight Update with Error Gradients and Backpropagation

Training is an iterative process, where for each iteration, the network process some
training data, calculates new values for the weights in the network, and evaluate
the result. Different approaches to how many elements of the training data that
shall be processed for each iteration exists, the most common ones being online
training, where only one training data element is processed for each iteration, and
batch training, where a number of training data elements are processed for each
iteration.

Recall that vector w contains the weight values for the entire network. Let
∆w contain the weight deltas which is the amount of change to be applied to each
weight after an iteration has completed. We use the counter variable z to keep
track of the number of iterations, and since both w and ∆w will change for each
iteration, we define them to be functions of z as w(z) and ∆w(z). We then have

w(z + 1) = w(z) + ∆w(z) z = 1, 2, 3, . . . , Z (3.4)

where Z is the total number of iterations to perform during one epoch, where one
epoch is completed when the entire set of available training data has been evaluated
one time.

∆w(z) contains the weight deltas ∆wr associated with neuron r, where r =
1, 2, 3, . . . , R and R is the total number of input nodes in all hidden and output
neurons in the network. The weight deltas are found using

∆w(z) = −η∇E + α∆w(z − 1) (3.5)

31

Pattern Recognition and Classification with Neural Networks

where ∇E is the error gradient, which is the partial derivative of the error function
E(o,ô) with respect to the weight vector:

∇E =



∂E

∂w1

∂E

∂w2

∂E

∂w3
...
∂E

∂wR


(3.6)

where as we remember from section 3.2.1 we are at liberty to choose the error
function E(o,ô) as we desire.

Equation 3.6 reminds us that the output from the error function E(o,ô) de-
pends on the weight vector w, since it is used in calculating the output vector o,
which we can see from equations (3.1) and (3.2). If we imagine a neural network
with only two weight values, the output from the error function with respect to
the weight values would form a continuous surface, for which the gradient can be
calculated to tell us in which direction the weight values must change in order to
converge towards the lowest point on the surface - which will be the weight values
producing the lowest error score.

We call this surface the error surface, and although it cannot be interpreted as
a surface in three-space in networks with more than two weight values, the concept
remains the same, we want to find the lowest point on the error surface, which is
found through the gradient descent method of equation 3.5, which in an iterative
manner moves along the error surface in the direction of the steepest negative
gradient.

Equation (3.5) also contains parameters η and α. η is the network’s learning
rate. It is usually chosen to a value less than 1, to prevent the training process from
overstepping the optimal point on the error surface. α is the network’s momentum,
a factor added to prevent the network from getting stuck at a local minimum on
the error surface which is not the global minimum by adding a part (usually less
than 1) of the previous weight delta into the calculation of the current weight delta.

The error gradient is calculated individually for each weight wr. If wr is the
weight associated with input node r to neuron i, where i can be any of the hidden or
output neurons in the network, the error gradient for that input node is calculated

32

Neural Network Training

as
∂E

∂wr
= xr · δi (3.7)

where xr is the value presented to that specific input node when processing the
current training data element, and δi is the node delta associated with the neuron
the node is input to. The node delta is a helper value which lets us calculate the
error gradient without performing the actual partial differentiation of the error
function. It is calculated differently based on which error function that is in use,
and whether the neuron is in the output layer or in an internal layer.

Figure 3.4 shows a simple feedforward network with two hidden neurons h1

and h2, and output neuron oc. When using the cross-entropy error function shown
in equation (3.3), the node deltas for the output layer is given by

δc = ôc − oc (3.8)

which is simply the difference between the desired and actual output for the current
output neuron. For neurons in an internal layer, such as the hidden neurons, the
node delta formula does not depend on the chosen error function on the output,
but rather on the activation function for the neurons in that layer. Node deltas for
hidden neuron h is defined as

δh = φ′h

(
C∑
c=1

wh,cδc

)
(3.9)

where φ′h is the derivative of the hidden neuron’s activation function, wh,c the
weight value associated with the connection between the current hidden neuron and
output neuron c, and δc the node delta of output neuron c, where c = 1, 2, 3, . . . , C
are all output neurons the hidden neuron is connected to. This backward prop-
agation of errors, or backpropagation, where the error at the output is used for
calculating the gradient at a previous layer, is one of the most common ways of
training a feedforward neural network.

Training continues over multiple epochs until a predefined termination condi-
tion is met. Examples of such conditions are:

• The error gradient falls below a certain limit, ie. we are at or sufficiently
close to the lowest point on the error surface

• The score from a chosen performance function falls below a certain limit
• A predefined number of training epochs are completed

33

Pattern Recognition and Classification with Neural Networks

oc
δc

p0

p1

p2

h1
δh1

h2
δh2

wh1,1, xh1,1

woc,1, xoc,1

Input
layer

Hidden
layer

Ouput
layer

Figure 3.4.: Parameters related to calculating Error Gradient and Weight Deltas

B1

B2

p0

p1

p2

h1

h2

o

Input
layer Hidden

layer Ouput
layer

Figure 3.5.: Generic feedforward Network with Bias Neurons

3.3.2. Bias Neurons

Bias neurons are neurons with no input nodes that output a constant value. Bias
neurons are placed at the end of one or more of the layers in the network, and
allows the network to shift the point where the activation function of the neurons
in the succeeding layer intercept the y-axis. The output value is normally set to 1,
but any sensible value will work since the training process will adjust the weight
value it is multiplied with to work as it is supposed to. This will add an additional
degree of freedom to the network’s learning process [8].

Figure 3.5 shows how bias neurons are connected to the succeeding layers in
a feedforward network.

34

Neural Network Training

3.3.3. Deep Architectures and Deep Learning

The network in figure 3.2 is considered a deep architecture network, a term de-
scribing networks with more than one hidden layer. Using multiple hidden layers
allows the network to learn even more complex patterns with less complex network
structures and also requires less training data than what would be the case with a
single hidden layer. This stems from the fact that a network with e.g. two hidden
layers with 100 and 50 neurons each, respectively, forms 5000 neural interconnec-
tions while just requiring to train 150 neurons. A network with a single hidden
layer would need 5000 neurons to achieve the same number of connections.

Deep architectures have become increasingly popular in the last decade due
to the advent of deep learning methods. While the advantages of multiple hidden
layers were identified quite early in the history of neural network research, it was
difficult to obtain good results with conventional training methods [6]. Although
it should seem trivial to expand the methods described in section 3.3 to calculate
the node deltas and gradients of multiple hidden layers, doing so rarely resulted in
a properly trained network.

With deep learning methods, the hidden layers are trained one at a time in a
semi-unsupervised fashion, allowing the network to learn features in the training
data at different level of abstraction for each hidden layer, from the raw input data
(number sequences such as [0.45, 1.2, 0.99, 0.01]) at the inputs to an interpretation
understandable by humans at the output (Bengio [6] gives an example of a computer
being able to output ’sitting man’ when presented with a picture showing a sitting
man).

After training the individual hidden layers by themselves, the full network can
then be trained further using conventional backpropagation methods.

3.3.4. Training with Autoencoders

Autoencoders are an essential topic within deep learning. An autoencoder is a
neural network with the same number of input and output nodes, and a single
hidden layer with a lower number of neurons than the input and output layers.
The autoencoder is then trained with the same vector used as both input and
desired output, which causes the autoencoder to attempt to recreate its input at
its output. This allows the autoencoder to learn a compressed representation of
the input data.

Figure 3.6 shows an example of an autoencoder designed to learn to represent
an input feature set with 784 elements using a hidden layer with 100 neurons. In

35

Pattern Recognition and Classification with Neural Networks

InputInput

784
b

W

HiddenHidden

100

b

W

OutputOutput

784

OutputOutput

784

Figure 3.6.: Example of Autoencoder Network

this figure, the rounded rectangles represent a neuron layer, with the number of
neurons in the layer displayed below it. The size of the input and output is shown
at each end.

When training a multi-layer feedforward network using deep learning tech-
niques, one creates an autoencoder network for each hidden layer, where the au-
toencoder’s hidden layer has the same size and the same activation function as
the corresponding hidden layer in the main network. The autoencoders are then
trained one at a time in the following way:

• The first autoencoder, corresponding to the first hidden layer in the main
network, has the same input size as the main network, and is trained using
the training data meant to be input to the main network.

• After training the first autoencoder, the weight values from the hidden layer
in the first autoencoder are copied to the first hidden layer in the main multi-
layer network

• One then creates a new network with just an input and an output layer,
where the output layer has the same size as the hidden layer in the first
autoencoder, and the weights from the hidden layer in the first autoencoder
are copied to the output layer of the new network.

• The new network is then used to create a new, compressed representation of
the training data by using it to process the original training data. The new
training data will have a dimensionality equal to the size of the first hidden
layer of the main network.

• The second autoencoder, corresponding to the second hidden layer in the
main network, has an input and output layer, both with the same size as the
size of the first hidden layer of the main network. It also has a hidden layer
with a smaller size than the input and output layer, corresponding to the size

36

Neural Network Training

of the second hidden layer in the main multi-layer network.
• The second autoencoder is trained in the same manner as the first, but using

the compressed training data as input and desired output. The weights of
the hidden layer of the second autoencoder is copied to the second hidden
layer of the main multi-layer network.

• The process is repeated for all hidden layers of the main network. New
training data with even higher level of compression is created by processing
the compressed training data generated in the previous step, for as many
iterations as necessary.

37

Pattern Recognition and Classification with Neural Networks

3.4. Designing a Neural Network for Radar Target
Classification

3.4.1. Target Classification Process Parameters

Table 3.2 shows the parameters and variables that will be encountered when de-
scribing the target classification process throughout this chapter (except for those
that were already defined in chapter 2), as well as on what page you can find their
definitions.

3.4.2. Preparing the Input Data

Remember from section 3.1 that the feature set input to a neural network should be
organized in a one-dimensional vector of floating point numbers, since the network
input layer only has one dimension. This will be vector p in figure 3.2. The vector
contains the observation data (recorded from the radar, or generated synthetically),
and has a size sufficiently large to contain the amount of information required to
identify the target. Each element in the vector corresponds to an input node of the
neural network.

In addition, when dealing with labeled training data, we also need a vector
with a size equal to the number of target classes, which contains the value 1 in the
vector element corresponding to the class the current target belongs to, and zero
in all other locations. This vector is called the label vector, and is only used for
training purposes.

In order to minimize the effects of variations in power level in a signal (we
do not count the average signal power level, which is proportional to the target’s
range and radar cross section, to be a feature useful for classification, since large
pets and small animals can assume a radar cross section (RCS) within the same
order of magnitude). To achieve this, we perform a normalization of the input data
(see equation (3.11)).

We will create two variants of the input feature vector for classification:

• Type 1: a vector based on the gait-doppler matrix D defined in equation (2.39)
• Type 2: a vector based on the center frame (column) in framebuffer matrix

Fi (defined in equation (2.33)) where the target has the largest observed
distribution in range, and the gait-doppler matrix D.

38

Designing a Neural Network for Radar Target Classification

Table 3.2.: Parameters and Variables used in the Target Classification Process

Symbol Parameter Page
p1 type 1 input vector 40
p2 type 2 input vector 43
s label vector
q sample number in input vectors
Q1 type 1 input vector size 40
Q2 type 2 input vector size 43
Pavg,i Average power in a frame 42
SAR Signal to average power ratio in frame 42
Pth,i Threshold level between signal and noise 42
nf,i First sample in frame to exceed Pth,i 42
nl,i Last sample in frame to exceed Pth,i 42
Ne,i Target extent within frame 43
Iα Number of columns in D matrix used in

classification
40

fL frame with largest target extent 43
U Number of feature sets (and labels) in

training data
C Number of target classes/size of label vec-

tor
H1 Size of neural network hidden layer 1
H2 Size of neural network hidden layer 2
φl(y) Logistic sigmoid activation function 45
φr(y) ReLU activation function 46
φs(y) Softmax activation function 47

39

Pattern Recognition and Classification with Neural Networks

3.4.3. Type 1 Feature Vector

Given the gait-doppler matrix D as described in equation (2.39):

D =


d0,0 d0,1 · · · d0,I−1

d1,0 d1,1 · · · d1,I−1
...

...
. . .

...

dM−1,0 dM−1,1 · · · dM−1,I−1

 (3.10)

We transform this into the normalized one-dimensional vector p1 = [p0, p1, . . . , pQ1−1]
given by

p1q = dα,β√∑I−1
i=0

∑M−1
m=0 d

2
m,i

q = 0, 1, 2, . . . , Q1 − 1 (3.11)

where

α = (q mod M) (3.12)

β = q − (q mod M)
M

(3.13)

Q1 = M · I (3.14)

where q mod M means the modulo operation, or the remainder of q
M .

The DFT used for creating D from µ in equation (2.40), which gives us the
frequency content of the target’s gait pattern, might cover a frequency range that
far exceeds what is necessary to record both the gait frequency and several orders of
harmonics. In figure 2.7 we see that we cover a range up to 12 Hz of gait frequency,
while there is nearly no signal power beyond 4-5 Hz. In addition, the range of
the spectra exceeding half the sampling frequency is useless due to exceeding the
Nyquist frequency where aliasing starts to occur. Further data size reduction can
then be achieved by at least limiting q to e.g. (M · I2) − 1 (to remove the aliased
area). For this purpose, we introduce the size Iα which denotes how many columns
of the D matrix (starting from column 0) we want to include when creating the p1

vector, and replaces I in equation (3.14) which is the rewritten to:

Q1 = M · Iα (3.15)

A suitable value for Iα must be found empirically, but it should at least be
lower than I

2 , in order to remove the aliased half of the spectrum. Choosing a too

40

Designing a Neural Network for Radar Target Classification

0 100 200 300 400 500 600 700 800
Sample

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a

liz
e

d
 p

o
w

e
r

Figure 3.7.: Example of Type 1 Feature Vector

low value should also be avoided, since this will cause a risk of discarding valuable
data from the radar recording.

Limiting the size Q1 in this manner is mainly done for practical reasons, as
it reduces the size and complexity of the neural network, which in turn simplifies
training, making it easier to attain good results.

Figure 3.7 shows a plot of an example of a type 1 feature vector. The size
Q1 = M · I of the vector is governed by the window length M used for creating the
range-doppler matrices Gi and the number of frames I used to calculate the gait-
doppler matrix D (actually it’s the length of the DFTs in both cases that govern
the size of the resulting p1 feature vector, however in most cases this is chosen
to be the same as the length of the input data for which the DFT is calculated
over). In this plot, a window length M of 28 frames and a recording length I of
400 frames was used. Iα was then limited to 28 frames due to little or no useful
information found beyond this point in the D matrix, giving a feature vector size
Q1 of 784 elements.

3.4.4. Type 2 Feature Vector

Information about a target’s distribution in range is discarded when the range-
doppler matrices Gi are summed to form the columns in the time-doppler matrix
µ. In an attempt to retain at least some of this information, and use it as part

41

Pattern Recognition and Classification with Neural Networks

of the feature set presented to the neural network, we establish the type 2 feature
vector, where some of this information is included.

In order to keep the size of the vector as compact as possible, we just want
to use information from the input frame showing the greatest expansion in range
that the target assumes while moving. This will require the use of some means
of target tracking, or at least some means of identifying where within the frame a
target exists.

We evaluate the range distribution of a target for each frame in the recorded
signal. To determine if the signal to noise ratio in a frame is good enough to
try identifying a target, we first calculate the average power in the frame (after
removing stationary clutter as described in section 2.2.2):

Pavg,i =
∑N−1
n=0 |zn,M

2
|2

N
(3.16)

where zn,M
2

is the center column of the framebuffer matrix with clutter removed
Fi generated for the current frame as described in equation (2.28). Although this
average power level in many cases will be higher than the actual noise level in the
frame (at least with a positive signal to noise ratio) it will be helpful in determining
if it is possible to detect a target at all. We determine this by simply taking the
ratio between the max and average power in the frame:

SAR ≈
max(|zn,M

2
|2)

Pavg,i
(3.17)

where SAR means signal to average power ratio. The minimum ratio required will
need to be found empirically.

We will also use this number to establish a threshold value for determining if
a target is encountered:

Pth,i = Pavg,i(1 + α · (SAR - 1)) (3.18)

Where α is a value between 0 and 1. A suitable value for α must be found
empirically. We then define nf to be the first sample in a frame with a value
that exceeds the threshold value, and nl as the last sample to exceed the threshold
value. We then only copy the part of the frame from nf to nl to the input vector, to
remove the absolute range information, which does not provide any insight about
the type of target, and also lets us remove the parts of the frame where no target

42

Designing a Neural Network for Radar Target Classification

0 200 400 600 800 1000 1200
Sample

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a

liz
e

d
 p

o
w

e
r

Figure 3.8.: Example of Type 2 Feature Vector, Target Class 1

is present.
If we define a type 2 feature vector to be Q2 samples long, it is composed as

follows:

p2[s] =

fL[s] s < Q2
3

p1[s− Q2
3] Q2

3 ≤ s ≤ Q2

(3.19)

where

fL,n =

zn−nf,M
2 ,large n < Ne

0 Ne ≤ n
(3.20)

Ne = nl,i − nf,i (3.21)

Equation (3.19) shows us that 2/3 of the p2 feature vector is made up of
vector p1. By using the relationship in equation (3.15), we see that the type 2
vector length Q2 must be

Q2 = 3
2M · Iα (3.22)

Figures 3.8 and 3.9 shows example plots of a type 2 feature vector, generated
synthetically using the dog target model (class 1, figure 3.8) and the human target
model (class 2, figure 3.9), respectively. It can be seen that the range distribution
information provides useful insight; the human target model has the major scatterer

43

Pattern Recognition and Classification with Neural Networks

0 200 400 600 800 1000 1200
Sample

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a

liz
e

d
 p

o
w

e
r

Figure 3.9.: Example of Type 2 Feature Vector, Target Class 2

(the torso) centered among all scatterers present, while the dog model has the major
scatterer placed at the end. This holds true as a discerning feature between bipedal
and quadrupedal animals regardless of which direction they are moving with respect
to the radar. For this specific use-case, where the primary objective is to separate
humans from pet animals, one could improve the generalization within one target
class even further by attempting to rectify the range distribution information, ie.
by ensuring that the major scatterer is always to the left of the center (or always
to the right, for that matter), and reversing it if it isn’t.

3.4.5. Network Layer Structure

Our network will feature two hidden layers, and as such be considered a deep
architecture network. The size of the input to the network is governed by the size
of the input feature vector, and will hence be equal to either Q1 or Q2 depending
on which vector type we are using. The size of the output layer is equal to the
number of target classes, which for our application is 2 (Heaton [8] points out that a
classification network with only two possible outcomes could be implemented with
a single output, where a ’1’ indicates one class and a ’0’ indicated the other. We
will, however, use two outputs in order to make it easy to expand the code with
more than two classes if desired in the future).

The two hidden layers will have a consecutively smaller size, in order to reduce

44

Designing a Neural Network for Radar Target Classification

InputInput

784
b

W

LayerLayer

100

b

W

LayerLayer

50

b

W

LayerLayer

2

OutputOutput

2

Figure 3.10.: Overview of full Neural Network

the size of the input data down to the two output nodes.

The third layer, the output layer, will be a softmax layer with the same number
of nodes as the number of target classes. The softmax activation function (defined
in equation (3.27)) is commonly used in the output layer of classification networks
since it transforms the output to a value that gives the probability of the input
data belonging to the target class associated with each node.

Figure 3.10 shows the superficial layout of the network. As in figure 3.6,
the rounded corner rectangles represent a neuron layer, with their respective sizes
shown below each layer (the layer sizes are subject to change).

3.4.6. Activation Functions

Activation functions were first mentioned in section 3.1.1. In this section, we will
introduce some common types of activation functions used in feedforward neural
networks, which we will be using in our radar target classification network.

The value y in all equations in this section refers to the weighted sum of
the inputs to a neuron as seen in figure 3.1, and defined in equation (3.2). The
derivatives of the activation functions are given because they in some scenarios are
needed for calculating the node deltas.

Logistic Sigmoid Function

For hidden layers 1 and 2, we will be trying two different activation functions, and
then evaluate which function gives the best performance in our application. The
first of these is the logistic sigmoid function, which is defined as

φl(y) = 1
1 + exp(−y) (3.23)

45

Pattern Recognition and Classification with Neural Networks

−6 −4 −2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

y

φ
(y

)

Figure 3.11.: Logistic Sigmoid Activation Function

We will also need its derivative to calculate node deltas. The derivative of the
sigmoid function is given as

φ′l(y) = φl(y)(1− φl(y)) (3.24)

A plot of the logistic sigmoid function for y values between -6 and 6 is shown
in figure 3.11. We see that the function tends to zero for low values of y, and
saturates to 1 for high values of y.

ReLU Function

The other function we will be investigating as hidden layer activation function is
the rectified linear unit, or ReLU activation function. It is defined as

φr(y) = max(0, y) (3.25)

and its derivative is defined as

φ′r(y) =

1 y > o

0 y ≤ 0
(3.26)

46

Designing a Neural Network for Radar Target Classification

−6 −4 −2 0 2 4 6

0

2

4

6

y

φ
(y

)

Figure 3.12.: ReLU Activation Function

(from a mathematical point of view, this isn’t entirely correct, as the derivative of
the ReLU function is not defined for y = 0. When training a neural network using
the ReLU function, however, one might experience situations where the derivative
for y = 0 is needed, for which a zero value is used).

The ReLU activation function is plotted in figure 3.12. The prime difference
between the ReLU activation function and the logistic sigmoid activation function
is that the ReLU function never saturates.

Softmax Function

The output layer will be using the softmax activation function, which is defined as

φs(yoc,yo) = exp(yoc)∑C
j=1 exp(yoj)

(3.27)

where yoc is the weighted sum of the inputs to the current neuron, and yo =
yo1, yo2, . . . , yoC are the weighted sums of the inputs in all the output neurons in
the same layer (yc and yo correspond to the weighted sum y shown in figure 3.1
for the respective neurons).

Figure 3.13 shows how neurons in a softmax output layer connect to the other
neurons in the same layer, which shows that the output from a neuron in a softmax
layer depends on the weighted input sums in all neurons in the same layer. For

47

Pattern Recognition and Classification with Neural Networks

h1

h2

h3

φs(yo1,yo)
yo1

φs(yo2,yo)yo2

o1

o2

o1

o2

o1

o2

Hidden
layer

Softmax
output
layer

Figure 3.13.: Softmax Layer Structure

clarity, the entire inner structure of the softmax neurons is shown in the figure.
The input nodes, bias neurons and their connections to the hidden and output
layer are omitted.

The sum of the outputs from all neurons in a softmax layer is always 1. The
most common interpretation of the output value from a softmax output neuron
is that it gives the probability for the network’s prediction that a set of input
data belongs to the class represented by that neuron. This also ensures that the
softmax function fulfills the range requirements of the input to the cross-entropy
error function, as described in section 3.2.1.

We also present the derivative of the softmax function:

∂φs
∂yc

= φs(1− φs(yoc,yo)) (3.28)

48

4. Testing and Results

4.1. Generating synthetic Training Data

4.1.1. Micro-Doppler Simulator

A simulator for generating synthetic radar output based on a simplified model of
the body of either a human or a dog was created in a previous project. For detailed
explanations on how this simulator is designed, the reader is redirected to [5]. In
short, the simulator takes a list of radar targets treated like point scatterers, each
with their own list of parameters describing their position, motion and radar cross
section. The simulator then calculates the returned radar signal from each scatterer
for each point in time where a radar frame is to be generated (defined by the radar’s
framerate), and then combines these signals to form the radar frames.

The simulator functionally resembles a Novelda X2 radar module, and also
adds receiver noise to the data. The radar signal is calculated based on the targets’
radar cross section and distance (range) from the radar as described in section 2.1.
The available model parameters, and how they are used for calculating the position
of each scatterer and the corresponding range R(t) is described in appendix A.

4.1.2. Generating a Dataset

Table 4.1 shows in pseudo-code how the synthetic training data is generated for
both type 1 and type 2 feature vectors. Radar frames are generated using the
simulator and the human body model developed in [5], while the calculation of
the Gi, µ and D matrices was described in section 2.2. The target model to use
for each iteration is chosen at random in order to improve the results from the
training process, since this avoids creating false patterns in the training data, and
also avoids overfitting the network to one of the target models.

A new body model for domestic cat was developed for test purposes. The
reason for using a cat body model in addition to the dog body model already
available was that a domestic cat was the only critter available for real life testing
of the classifier. The input parameters to the process is listed in appendix B.

We will be creating test data containing both human and dog models and
human and cat models, for vector types 1 and 2 (introduced in section 3.4.2), for a
radar pulse repetition frequency (framerate) of both 60 Hz and 200 Hz. The ratio-

49

Testing and Results

Table 4.1.: Synthetic Training Data Generation Algorithm

for u = 1, 2, 3, . . . , U do
Choose a target class at random
Generate random variations to body model parameters according to table B.4
Generate temporary target model by applying the same random variations

generated in the previous step to all scatterers in the target body model for the
chosen target class, given in table B.1 or B.2

for i = 1, 2, 3, . . . , I do
Generate radar frame of length N

end for
for i = 1, 2, 3, . . . , I do

Calculate range-doppler matrix Gi

if vector type == 2 then
Calculate the extent of the target in the frame
if extent > largest extent experienced so far then

Keep current frame as frame with largest extent of the target
end if

end if
end for
Calculate the time-frequency matrix µ
Calculate the gait-doppler matrix D
Truncate the D matrix to Iα columns
Convert the truncated D matrix to a one-dimensional vector
if vector type == 2 then

Concatenate the frame with the largest extent of the target with the
converted, truncated D matrix

Save the resulting vector to file
else

Save the converted, truncated D matrix to file
end if

end for

50

Generating synthetic Training Data

Table 4.2.: Syntetic Training Datasets

Set Body models Vector type Framerate Abbreviated
1 human, dog 1 60 Hz T1D60
2 human, dog 1 200 Hz T1D200
3 human, dog 2 60 Hz T2D60
4 human, dog 2 200 Hz T2D200
5 human, cat 1 60 Hz T1C60
6 human, cat 1 200 Hz T1C200
7 human, cat 2 60 Hz T2C60
8 human, cat 2 200 Hz T2C200

nale for using two different pulse repetition frequencies (PRFs) is that the current
iteration of the Novelda X2 radar module is limited to a PRF of 60 Hz, meaning
this gives us a realistic view of what is possible with the technology available today.
As we experienced in [5], however, a PRF of 60 Hz will cause aliasing in the doppler
spectrum for targets moving at normal walking velocities. For this reason, we also
generate training data with a PRF of 200 Hz, which will avoid aliasing at normal
walking velocities, to see if this will affect the performance of the neural network.
Novelda expects future hardware revisions to be able to work at higher pulse rep-
etition frequencies, and hence we want to investigate if this will also improve the
classification performance.

Table 4.2 shows an overview of the eight different sets of training data that
will be generated and evaluated. The abbreviations in the rightmost column will
be used for referencing the different data sets in the subsequent sections.

Figures 4.1 - 4.3 shows a birds-eye two-dimensional view of the point scatterer
models used in the synthetic training data generation. They are based on the
parameters in tables B.1 - B.3 in Appendix B, after having moved a few hundred
milliseconds according to the equations given in Appendix A. In figure 4.1, the
largest scatterer represents the torso and head, the mid-size scatterers are the legs,
and the smallest scatterers the arms. In figure 4.2 and 4.3 the largest scatterer
represents the torso and head, the lowermost smaller scatterers are the front legs,
and the uppermost smaller scatterers are the hind legs of the critter to be modeled.

In all three figures, the subjects are moving towards the radar along the y-axis.

51

Testing and Results

−0.3 0 0.3

0

1

2

3

Radar

x [m]

y
[m

]

Figure 4.1.: Human
Body Model

−0.3 0 0.3

0

1

2

3

Radar

x [m]

y
[m

]

Figure 4.2.: Dog Body
Model

−0.3 0 0.3

0

1

2

3

Radar

x [m]

y
[m

]

Figure 4.3.: Cat Body
Model

4.2. Real Input Data
In order to test the neural network’s usability in real life situations, the following
recordings were made using the Novelda X2 radar module:

• Recording of adult male human walking on treadmill
• Recording of domestic cat approaching the radar indoors

These recordings were made at a framerate of 60 Hz, using the radar settings listed
in table B.5. The recordings were processed to generate the Gi and D matrices,
which were then used to generate a type 1 and type 2 feature vector for each
recording.

Figures 4.4 and 4.5 shows the type 2 vectors generated from the recording of
a cat and of a human on treadmill, respectively. By comparing them to the plots
of synthetically generated type 2 vectors in figures 3.9 and 3.8, we see that the
human recording is quite similar to the synthetic one, but that the cat recording
contains more clutter (remembering from equation (3.19) that the first third of the
samples in the type 2 vector is a portion of the radar frame where the target shows
the largest distribution in range).

52

Real Input Data

0 200 400 600 800 1000 1200
Sample

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a

liz
e

d
 p

o
w

e
r

Figure 4.4.: Type 2 Feature Vector from Radar Recording of Cat

0 200 400 600 800 1000 1200
Sample

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a

liz
e

d
 p

o
w

e
r

Figure 4.5.: Type 2 Feature Vector from Radar Recording of Human on Treadmill

53

Testing and Results

4.3. Testing the Neural Network

4.3.1. Neural Network Training

The structure and training procedure for the target classification neural network
was presented in chapter 3. Table 4.3 lists the layer sizes and number of training
epochs used for training the autoencoder networks for each layer in the final, multi-
layer network. We will use a somewhat different approach to training the final,
multi-layer network after copying the weight values from the autoencoder networks.

The reason for this is that in order to assess the network’s capabilities with the
real recorded radar data, we want to find the number of training epochs where the
network’s performance score when processing these real data is as low as possible.

We have also experienced that the performance achieved with real data can
in some events deteriorate when the number of training epochs increase beyond
a certain number. One reason for this is that the network is overfitted to suit
the synthetic data, which will exaggerate the differences between the synthetic
data and the real data. To find the optimum number of training epochs, we train
the final network 100 epochs a time, and evaluate the performance for each 100
training epochs. Continuous evaluation of the performance also enables us to detect
a situation where the initial weight values makes it impossible to train the network.
An elaboration of this phenomena can be found in section 5.1.1.

The network is trained with 4500 of the 5000 elements in the synthetic data
set, while the last 500 elements are used for evaluation.

The procedure for training and evaluating the network for one dataset is given
in pseudocode in table 4.5. Table 4.4 gives a description of the variables used in
the pseudocode.

54

Testing the Neural Network

Table 4.3.: Neural Network Structure and Training Parameters

Symbol Parameter Value
H1 Size of neural network hidden layer 1 100
H2 Size of neural network hidden layer 2 50
C Size of output layer 2

Training epochs for hidden layer 1 500
Training epochs for hidden layer 2 100
Training epochs for output layer 400
Training epochs for final network up to 2000
Number of times the network is trained
using each dataset

10

Table 4.4.: Description of Variables in Training Algorithm Pseudocode

variable name description
bPDataset best performance achieved for this dataset
dSIterations Number of times to repeat the training process for

each dataset
optEpochs The number of training epochs giving the best

(lowest) performance score for this iteration
bPIteration best performance achieved during this iteration
maxEpochs Maximum number of training epochs to run dur-

ing one iteration
cPerformance Performance score calculated over the available

real recorded data

55

Testing and Results

Table 4.5.: Target Classification Network Training Algorithm

bPDataset = 0
for a = 1, 2, 3, . . . ,dSIterations do

Initialize and train first autoencoder using synthetic training data as
input

Generate featureSet1 by using the first autoencoder to process the syn-
thetic training data

Initialize and train second autoencoder using featureSet1 as input
Generate featureSet2 by using the second autoencoder to process

featureSet1

Initialize and train softmax output layer supervised using featureSet2
as input and the labels from the synthetic training data

Initialize final network and copy weight values from first and second au-
toencoder networks and the softmax output layer network

Copy final network with new weight values to temporary network

optEpochs = 0
bPIteration = 0
for b = 1, 2, 3, . . . ,(maxEpochs/100) do

Train temporary network 100 epochs
cPerformance = performance score in current state
if cPerformance > bPIteration then

bPIteration = cPerformance
optEpochs = b · 100

end if
end for
Train final network optEpochs epochs
if bPIteration > bPDataset then

bPDataset = bPIteration
end if

end for

56

Testing the Neural Network

4.3.2. Performance Measurements

Performance measurements have been made for the target classification network
after training it with the datasets listed in table 4.2, with both the sigmoid function
(equation (3.23)) and the ReLU function (equation (3.25)) as activation functions
in the hidden layers. The network was trained ten times with each training dataset
and for each activation function according to the procedure in table 4.5, each time
with new initial weight values, in order to find good initial weight values. The
importance of finding good initial weight values is explained in section 5.1.1. The
performance measurements listed in this section are the best achieved for each
dataset.

The synthetic training datasets and the real recorded data contains targets
belonging to either human or pet animal target classes. For brevity, we assign
numbers to the target classes as follows:

• Target class 1: Pet animal (domestic cat or dog)
• Target class 2: Human

The following performance metrics are measured

• Performance score, synthetic is calculated using the cross-entropy error func-
tion (given in equation (3.3)) over the 500 elements of the training dataset
reserved for evaluation. As we recall from section 3.2.1, a lower score is better.

• Accuracy is the percentage of correctly classified targets in the 500 elements
of the training dataset reserved for evaluation. It is read from the confusion
plots generated for each dataset and activation function, which is found in
appendix C.

• Performance score, real is calculated using the cross-entropy error function
(equation (3.3)) over the available real recorded data.

Table 4.6 lists the performance metrics achieved with the ReLU activation function.
Table 4.7 lists the performance metrics achieved with the logistic sigmoid activation
function. The names of the datasets are referenced to table 4.2.

57

Testing and Results

Table 4.6.: Performance Metrics - ReLU Network

Dataset T1D60 T1D200 T2D60 T2D200
Performance, synthetic 0.369 0.471 0.204 0.449
Class 1 accuracy 59.0% 80.7% 83.2% 84.4%
Class 2 accuracy 63.7% 75.0% 84.0% 83.6%
Total accuracy 61.4% 77.8% 83.6% 84.0%
Performance, real 0.053 0.000 0.091 0.000

Dataset T1C60 T1C200 T2C60 T2C200
Performance, synthetic 0.328 0.218 0.232 0.368
Class 1 accuracy 73.8% 84.4% 79.5% 88.9%
Class 2 accuracy 77.0% 84.4% 80.5% 88.7%
Total accuracy 75.4% 84.4% 80.0% 88.8%
Performance, real 0.050 0.001 0.011 0.000

Table 4.7.: Performance Metrics - Sigmoid Network

Dataset T1D60 T1D200 T2D60 T2D200
Performance, synthetic 0.690 1.019 0.778 0.962
Class 1 accuracy 51.6% 73.8% 82.8% 88.1%
Class 2 accuracy 63.7% 71.1% 78.1% 83.2%
Total accuracy 57.8% 72.4% 80.4% 85.6%
Performance, real 0.000 0.000 0.000 0.000

Dataset T1C60 T1C200 T2C60 T2C200
Performance, synthetic 0.460 0.636 0.730 0.753
Class 1 accuracy 65.2% 85.2% 75.8% 91.4%
Class 2 accuracy 80.9% 80.5% 78.9% 82.4%
Total accuracy 73.2% 82.8% 77.4% 86.8%
Performance, real 0.000 0.000 0.000 0.000

58

Testing the Neural Network

4.3.3. Comments to Performance Measurements

Synthetic Data Classification Accuracy

The classification accuracy for each dataset listed in table 4.6 shows that the higher
pulse repetition frequency improves the accuracy for all vector types and target
models. We also see that for both types of target models and for all pulse repetition
frequencies, the accuracy is better with the type 2 input vector. This indicates that
some merit should be given to the following hypotheses:

• A higher pulse repetition frequency (that will reduce or avoid aliasing in the
doppler spectrum) will improve the ability to classify targets using neural
networks (discussed in section 4.1.2)

• The range distribution information which is discarded when the range-doppler
matrices Gi are summed to form the time-frequency matrix µ, will aid the
network in correctly classifying targets and should not be (entirely) discarded
(discussed in section 3.4.4)

Synthetic Data Performance Score

The performance score achieved with the synthetic data actually shows that the
performance is better (lower score) for the lowest pulse repetition frequency for
all but one dataset/vector type. We also see that the ReLU network consistently
achieved better results than the sigmoid network. This tells us that even though
the aliasing experienced at the lower pulse repetition frequency warps the micro-
doppler frequency data, the patterns in the aliased data might actually be more
easily recognized by a neural network than the patterns found in the alias-free data
generated at higher pulse repetition frequencies.

It is a quite curious find to see that the performance score and accuracy does
not seem to be closely correlated - the datasets that gave the best accuracy did
not give the best performance score for neither network. This tells us that the
performance score is not a perfectly accurate predictor for the network’s ability
to correctly classify targets - at least when deciding the target class based on the
output node with the highest value alone. In section 5.2.3 we will discuss alternate
approaches to interpreting the network output.

Real Data Performance Score

The number of available real recorded data is quite low, and the performance
score calculated for these data cannot be regarded as a qualitative assessment of

59

Testing and Results

the network’s performance. It does, however, show that the network, after being
trained using synthetic data, is applicable to real data as well. In the rare event
that any difference between the different networks and datasets was observed, the
sigmoid network was consistently better, and the networks trained using synthetic
data generated at 200 Hz also produced better results - an interesting result given
the fact that the real data was recorded at 60 Hz. If this tendency manifests
itself when evaluating larger sets of real data, this might indicate that training the
network with synthetic data generated at 200 Hz can in some events produce better
results than training the network with real data recorded at 60 Hz.

60

5. Discussion

5.1. Comments to the Testing Procedure

5.1.1. Effect of the Network Weight Initialization

As we briefly touched in section 3.3, the weights in the neural network are initialized
to random values, and as Heaton mentions, research has shown that the way the
random initial values for the weights are generated will affect the results of the
neural network training [8].

Recall from section 3.4.6 that the output from a softmax output neuron cor-
responds to the probability (as predicted by the network) that a certain input
feature set belongs to the class associated with that neuron. Let the output from
the neuron associated with a target’s correct class (when using labeled training
data we know the correct ”answer” to the classification task) be known as the neu-
ral network’s confidence, which shows the certainty of which the network believes
that the feature set belongs to the correct class. The confidence ranges from 0 to
1 (the confidence is directly related to the performance score, but is more easily
interpreted in this setting).

When training the neural networks with the synthetic training data and then
testing the confidence using the real recorded data, it was observed that the con-
fidence could develop quite differently from one test run to another as the number
of training epochs increased. This is due to how well the initial weight values
generated are suitable for the classification problem at hand. Figure 5.1 shows an
example of a scenario where the initial values of the weights turned out to be quite
good for achieving good confidence scores. We observe that the confidence keeps
increasing towards the end of the plot, meaning we could probably increase the
confidence score even more by increasing the number of training epochs.

Figure 5.2, however, shows a scenario where the initial weight values turned
out to be quite poor for this application. The confidence for the class 1 target drops
rapidly and continues to shrink towards the end of the plot. If such a situation is
experienced, one should discard the current weight values and restart training with
new initial weight values.

61

Discussion

200 400 600 800 1000 1200 1400 1600 1800 2000
Training epochs

0

0.2

0.4

0.6

0.8

1

C
o
n
fi
d
e
n
c
e

Confidence versus training epochs

Class 1 (cat)
Class 2 (human)

Figure 5.1.: Development of Confidence
with good initial Weights

200 400 600 800 1000 1200 1400 1600 1800 2000
Training epochs

0

0.2

0.4

0.6

0.8

1

C
o
n
fi
d
e
n
c
e

Confidence versus training epochs

Class 1 (cat)
Class 2 (human)

Figure 5.2.: Development of Confidence
with poor initial Weights

5.1.2. Advantages and Disadvantages of using synthetic Training
Data

It should come as no surprise that when using synthetically modeled data to sim-
ulate the behavior of real, physical events, the efficacy of these simulations are
limited by the degree of accuracy of which the model correlates with reality. The
extensive use of synthetic data for both training and evaluation of the solution
developed in this project hence limits the certainty of which the solution can be
declared as suitable for the problem it was designed to solve.

With that being said, the results presented in section 4.3.2 clearly demonstrates
that using synthetic data for training can be a viable path for achieving acceptable
performance even when preparing the network to process real data. This will in
turn significantly reduce the amount of real data that need to be gathered for
training, which can be a costly, time-consuming task. If we are able to generate
synthetic data with a quality sufficient for training purposes, we could utilize them
for the following training approaches:

1. Train the network using synthetic data, then evaluate the network using real
data

2. Use synthetic data for initial training, then re-train using real data

Searching through the available bibliography has not revealed any general recom-
mendations for the amount of training data elements required for successful training
of a neural network - not even as a rule of thumb. The general response to this
question when asked at different internet bulletin boards is that the answer in any
event depends on the problem to be solved - and that the training dataset should

62

Comments to the Testing Procedure

to an as large extent as possible cover all expected variations of the input data,
which in most cases will be an exercise solved by experience.

In our testing, we eventually found it sufficient to have 5000 training data
elements available, of which 4500 were used for training and 500 for evaluation.
If we could train the network successfully for operating on real data using 4500
synthetic training data elements and 500 real training data elements, this would
reduce the required amount of data that has to be collected by a factor of 10
compared to having to collect 5000 real training data elements.

5.1.3. PRF Limitations and Aliasing

The current iteration of Novelda radar modules available at the time of writing is
limited to a maximum pulse repetition frequency of 60 Hz. In order to understand
how this limits the feature extraction process and hence the accuracy of the data
input to the target classification process, we recollect from section 2.2.3 that the
DFT that forms the range-doppler matrix Gi is calculated over the slow-time
scale, which means that the pulse repetition frequency fp effectively becomes the
sampling frequency of the motion pattern. Section 2.1.8 showed that the frequency
content of the signal, more specifically the frame-to-frame phase difference of the
signal depends the target’s velocity.

For the radar to be able to accurately measure a target’s velocity (which for a
non-rigid body with independently oscillating parts will be higher than just the av-
erage locomotion velocity), the target cannot move more than one half wavelength
radially from one frame to the next. In radar terminology, the velocity where this
criterion is exceeded is known as the first blind speed [3], and is calculated as

v1 = λfp
2 (5.1)

where fp is the pulse repetition frequency and λ the carrier wavelength.
With normal walking velocities residing in the range from 0.8 to 1.5 m/s, and

individual body parts with an oscillating motion exceeding this in the worst-case
scenarios, we find that the pulse repetion frequency of 60 Hz along with the carrier
frequency of 6.8 GHz will cause aliasing when the velocity exceeds 1.32 m/s.

In section 4.3.2 we found that using a higher pulse repetition frequency of 200
Hz when generating the synthetic training data increased the accuracy, and we
also experienced minor improvements in the performance score with real recorded
data. For these reasons, we also expect that newer, improved radar modules able

63

Discussion

to work at higher pulse repetition frequencies will experience better accuracy. For
the reference, a pulse repetition frequency of 200 Hz gives a first blind speed of
4.41 m/s.

5.1.4. No Clutter in synthetic Data

Removing the effects of unwanted objects in the radar signal, known as clutter,
is an important step in the signal processing that takes place in a radar system
designed to detect moving targets. The simulator developed for the project does
not support any method for simulating distributed clutter types, such as surface
or volume clutter, which both appear frequently in real world scenarios; the only
type of clutter that can be added is in the form of stationary point scatterers.

In the testing performed using real recorded radar data, it was experienced
that the clutter removal approach presented in section 2.2.2 did a sufficiently good
job removing the clutter present in the recordings, to a degree where the level of
clutter in the real recordings were comparable to the synthetic data (where no
clutter was added).

5.2. Further Work

5.2.1. Gathering real Training Data

Given our preceding comments about the limited amount of available real data, it
should come as no surprise that the collection of real radar data for training and
evaluation purposes should be a prioritized task in the continuation of this project.
Even though the findings discussed in section 5.1.2 allows us to get away with
collecting less than the 5000 elements of data used for training during synthetic
testing, a certain number of real data recordings still needs to be collected at least
in order to verify the systems applicability in real world situations.

5.2.2. Implementation and live Processing

All testing so far has been performed as post-processing, ie. the data has been
generated/recorded first, then analyzed batch-wise afterwards. With respect to
the intended usage in presence-detecting alarm systems, this approach will not be
overly useful, since one generally wants the alarm system to respond to events as
they occur.

64

Further Work

In a live alarm system, the radar will be recording and analysing data contin-
uously. One suggested approach to solve the continuous processing task could be
as follows:

• every 1 second, the data recorded during the previous 2 seconds is analyzed.
The time span of 2 seconds has been found to be a good compromise between
gathering enough data to cover at least one gait cycle at even very slow paces,
and not including too much noise in the data. The half period overlap ensures
that no events are missed.

• The process will first remove the stationary clutter from the signal, and then
calculate the remaining power in the recorded signal. If the signal power
with clutter removed is below a certain threshold level, no moving subject is
present, and no further processing is required.

• If the signal power exceed the threshold level, generate a feature vector and
have the neural network process it, and trigger the alarm if the neural network
signals a human intruder.

The network will be trained offline, which means that one uses a comparatively
powerful computer to train the network in order to find the best weight values for
the network, and then copy these weight values to the network implemented on the
processing unit attached to the radar. The reason for this is that the radar’s at-
tached processing unit will most probably be a microcontroller unit (MCU), which
is both a cost-, energy-, and space-efficient choice, but does not possess the required
computational capabilities to perform the training process. In a mass production
scenario it also makes sense to have the software, including the network prepared
in advance to be able to install the software quickly to the microcontroller’s flash
memory.

5.2.3. Create Decision Limits for separating Classes

So far we have treated the output from the network as a simple search for the
highest output value to determine whether a target belongs to the human or pet
animal class. This means that if the output from the softmax output layer at a
node is above or equal to 0.5 (for a system with two outputs), the network decides
that the target belongs to the class associated with that node.

In the alarm system application, knowing for certain which class the target
belongs to is not necessarily the most important piece of information. Rather, it is
more interesting to know whether a target is human or not human. While this might

65

Discussion

sound like two different ways of saying the exact same thing, we should acknowledge
the fact that the consequences of making the wrong decision are larger in one event
than the other. If the alarm mistakenly triggers when passed by a pet animal,
it forces the alarm company to investigate the protected premises unnecessarily,
which costs money, but no property is damaged or stolen. If, however, the alarm
mistakenly decides not to trigger when a human intruder is present, the intruder is
free to execute criminal actions without worrying about (immediate) prosecution.

A false negative is hence much worse than a false positive, and the degree of
certainty required for the alarm not to trigger when it thinks that a moving target
is a pet animal should be larger than that required to trigger the alarm when it
thinks that an intruder is present. This can be achieved by setting the decision
limit between the classes at a different level than above or below 0.5, e.g. one
could require that the output node associated with the pet animal class (class 1)
should output a value larger than 0.8 in order to not trigger when a moving target
is present.

Experiences from real world testing will reveal if such biased decision limits
are required to minimize the frequency of false negative alarms.

5.2.4. Optimizing Feature Extraction for Machine Learning

Currently, the feature extraction process is focused around producing metrics that
relate to physical properties of a target’s motion pattern. When using machine
learning to classify targets, this might neither be the best approach nor may it be
necessary, since the machine does not even know how to interpret such metrics in
the first place. Perhaps there are other ways to process the incoming radar frames
in a way that exaggerates the differences between humans and pet animals in a
way that makes it easier for a neural network to separate them - such possibilities
can be investigated as a part of future improvements.

One suggestion has been to simply feed the raw radar frames unprocessed to
the network, and let the network figure out the feature extraction process (including
clutter removal) completely by itself. This will though create an issue with the size
of the input data, since each frame contains 768 values (or more if one wants to
increase the area covered by the radar), and one has to include more than one
frame to retain the information about the target’s motion pattern.

66

Further Work

5.2.5. Try different Network and Input Data Configurations

There are many ways to configure the neural network that we haven’t had the time
to evaluate. The choices we have made has largely been based on the recommen-
dations in the cited works. There might, however, exist other configurations that
will be better suited for our specific problem. Parameters that can be changed in
this respect include (but are not limited to:

• Network layer size
• Activation functions
• Number of layers
• Learning rate and momentum
• Error function
• Training function
• Use sparsity and regularization (these topics are not covered in this text)

67

6. Conclusion
We have shown through this project that using artificial neural networks is an ap-
plicable solution for classifying radar targets. A combination of the radar target’s
micro-doppler signature and the raw, unprocessed radar frames proved to be suit-
able as input data for classifying the targets, and yielded an accuracy of 89% when
classifying 500 synthetically generated data elements.

We have shown that synthetically generated data can be used for training of
a network when a sufficient number of collected real data is not available. This is
an important find, since the process of gathering training data can be a compre-
hensive and time-consuming task, and will have a substantial impact on the cost
and duration of the implementation process of a machine-learning system for radar
target classification.

At the same time, the extensive use of synthetic data and limited testing with
real data makes it impossible to say something conclusive about the solution’s
applicability and performance in real-world conditions. Thorough testing with real
data is required to address this limitation.

We conclude that the path we have chosen for the task of discriminating hu-
mans from pet animals using Novelda radar technology has yielded a promising
solution.

68

Bibliography
[1] Chen, Victor C (2011): The Micro-Doppler Effect in Radar. Artech House.

[2] Fossum, Thor Øyvind (2015): Exploration of Micro-Doppler Signatures Asso-
ciated with Humans and Dogs using UWB Radar. Master’s thesis written at
NTNU, Department of Electronics and Telecommunications.

[3] Skolnik, Merill I. (2002): Introduction to Radar Systems. 3rd edition. McGraw-
Hill Education.

[4] Novelda X2 module datasheet

[5] Langen, Helge (2015): Simulation of Micro-Doppler Signatures in Ultra-
Wideband Radar. Specialization project at NTNU, Department of Electronics
and Telecommunications.

[6] Y. Bengio (2009): Learning Deep Architectures for AI, FNT in Machine Learn-
ing, vol. 2, no. 1, pp. 1–127.

[7] Bell, Jason (2015): Machine Learning: Hands-On for Developers and Technical
Professionals. John Wiley & Sons.

[8] Heaton, Jeff (2015): Artificial Intelligence for Humans, Volume 3: Deep Learn-
ing and Neural Networks. Heaton Research, Inc.p

69

Appendix A.

Target Model Parameters, Position
and Range calculation
Let [x(t), y(t), z(t)] describe the time-varying position of a radar target in a coor-
dinate system where the radar is placed at the origin, as seen in figure A.1. The
components will vary according to the following equations:

x(t) = x0 + vx0t+
3∑
k=1

Ax2k−1 sin((2k − 1)ωxt+ φx) (A.1)

y(t) = y0 + vy0t+
3∑
k=1

Ay2k−1 sin((2k − 1)ωyt+ φy) (A.2)

z(t) = z0 + vz0t+
3∑
k=1

Az2k−1 sin((2k − 1)ωzt+ φz) (A.3)

where the parameters represent

• Initial position (x0, y0, z0)
• Velocity (vx0, vy0, vz0)
• Harmonic frequency (ωx, ωy, ωz)
• Harmonic phase (φx, φy, φz)
• Fundamental amplitude (Ax1, Ay1, Az1)
• 3rd harm. amplitude (Ax3, Ay3, Az3)
• 5th harm. amplitude (Ax5, Ay5, Az5)

Still refering to figure A.1, the range from the radar to the target R(t) is given
by

R(t) =
√
x(t)2 + y(t)2 + z(t)2 (A.4)

70

−4 −2 0 2 4

0

2

4

vx

vy

R(t), vr

Radar

(x(t), y(t))

x [m]

y
[m

]

Figure A.1.: Coordinate System

71

Appendix B.

Synthetic Training Data Parameters
This chapter presents the parameters used when generating synthetic training data
with the simulator described in [5].

Tables B.1, B.2 and B.3 lists the input parameters for the radar target model
of a human, a dog and a cat, respectively. Table B.4 lists the standard deviation
of the normally distributed random variation applied to the target models for each
element in the training data set. A brief explanation of each parameter is given
in appendix A. For a more in-depth description of the parameters and how they
affect the resulting radar signal, please refer to [5].

Parameters not listed in tables B.1, B.2 and B.3 are set to zero. For parameters
not listed in table B.4, no random variation is applied.

Table B.5 lists the radar settings used in synthetic training data generation.
These parameters are explained in section 2.1.

Table B.1.: Human Body Model Scatterer Parameters used in synthetic Data Generation

Scatterer x0 y0 z0 vy0 ωy φy Ay,1 Ay,3 σ
(Unit) m m m m/s Hz rad m m m2

Torso 0 2.5 0 -1 2 π/2 .1 0 10000
Left arm .25 2.5 0 -1 1 π/2 .3 .02 500
Right arm -.25 2.5 0 -1 1 −π/2 .3 .02 500
Left leg .12 2.5 -0.6 -1 1 −π/2 .2 .01 1000
Right leg -.12 2.5 -0.6 -1 1 π/2 .2 .01 1000

72

Table B.2.: Dog Body Model Scatterer Parameters used in synthetic Data Generation

Scatterer x0 y0 z0 vy0 ωy φy Ay,1 Ay,3 σ
(Unit) m m m m/s Hz rad m m m2

Torso 0 2.5 0 -1 2 π/2 .1 0 5000
Left front leg .10 2.5 0 -1 1 π/2 .1 .01 500
Right front leg -.10 2.5 0 -1 1 −π/2 .1 .01 500
Left hind leg .10 3.0 0 -1 1 −π/2 .1 .01 500
Right hind leg -.10 3.0 0 -1 1 π/2 .1 .01 500

Table B.3.: Cat Body Model Scatterer Parameters used in synthetic Data Generation

Scatterer x0 y0 z0 vy0 ωy φy Ay,1 Ay,3 σ
(Unit) m m m m/s Hz rad m m m2

Torso 0 2.5 0 -1 2.6 π/2 .04 0 2000
Left front leg .075 2.5 0 -1 1.3 π/2 .05 .01 200
Right front leg -.075 2.5 0 -1 1.3 −π/2 .05 .01 200
Left hind leg .075 2.8 0 -1 1.3 −π/2 .05 .01 200
Right hind leg -.075 2.8 0 -1 1.3 π/2 .05 .01 200

Table B.4.: Standard Deviations for the random Variations applied to each Body Model
Parameter in synthetic Data Generation

Parameter x0 y0 vy0 ωy φy Ay,1 σ
(Unit) m m m/s Hz rad m %
Standard deviation 0.75 1 0.5 0.25 π/4 0.05 30

73

Synthetic Training Data Parameters

Table B.5.: Radar Parameters used in synthetic Data Generation

Symbol Parameter Value
fc Carrier frequency 6.8 GHz
λ Carrier wavelength 0.044 m
Pt Transmitter power 0 dBm
Tp Pulse duration 1 ns
σ2
p Pulse filter variance 0.2 ns
fs ADC Frequency 41 GHz
ts Frame offset 4 ns
fp Framerate/PRF 60 Hz

200 Hz
N Samples per frame 768
Fn Receiver noise figure 13 dB
GRx Receiver LNA gain 10 dB
Gt Tx antenna gain 4 dB
Gr Rx antenna gain 4 dB

Table B.6.: Feature Set, Feature Extraction and Classification Parameters used in syn-
thetic Data Generation

Symbol Parameter Value
Tsim Simulation time 2 seconds
I Number of frames 120

400
U Number of feature sets (and labels) in

training data
5000

C Number of target classes/size of label vec-
tor

2

Q1 type 1 feature vector size 784
Q2 type 2 feature vector size 1176
M Window length 28
Pth,i Threshold level between signal and noise Pavg,i + 0.2· SAR
Iα Number of columns in truncated D ma-

trix
28

74

Appendix C.

Confusion Plots for Network
Evaluation
The names of the datasets referenced in the figure captions refers to those listed in
table 4.2. Confusion plot metrics are explained in table 3.1.

C.1. Confusion Plots for ReLU Network
The confusion plots in this section was generated when using the rectified linear
unit (ReLU) activation function for the hidden layers, as defined in equation (3.25).

Figures C.1 - C.4 shows the confusion plots generated with the dog body model
and the human body model present in the training data, while figures C.5 - C.8
shows confusion plots with the domestic cat body model and the human body
model present in the training data.

C.2. Confusion Plots for Sigmoid Network
The confusion plots in this section was generated when using the logistic sigmoid
activation function for the hidden layers, as defined in equation (3.23).

Figures C.9 - C.12 shows the confusion plots generated with the dog body
model and the human body model present in the training data, while figures C.13 -
C.16 shows confusion plots with the domestic cat body model and the human body
model present in the training data.

75

Confusion Plots for Network Evaluation

1 2

Target Class

1

2

O
u

tp
u

t
C

la
s
s

 Confusion Matrix

144
28.8%

100
20.0%

59.0%

41.0%

93
18.6%

163
32.6%

63.7%

36.3%

60.8%

39.2%

62.0%

38.0%

61.4%
38.6%

Figure C.1.: Confusion Plot, ReLU,
T1D60

1 2

Target Class

1

2

O
u

tp
u

t
C

la
s
s

 Confusion Matrix

197
39.4%

47
9.4%

80.7%

19.3%

64
12.8%

192
38.4%

75.0%

25.0%

75.5%

24.5%

80.3%

19.7%

77.8%
22.2%

Figure C.2.: Confusion Plot, ReLU,
T1D200

1 2

Target Class

1

2

O
u

tp
u

t
C

la
s
s

 Confusion Matrix

203
40.6%

41
8.2%

83.2%

16.8%

41
8.2%

215
43.0%

84.0%

16.0%

83.2%

16.8%

84.0%

16.0%

83.6%
16.4%

Figure C.3.: Confusion Plot, ReLU,
T2D60

1 2

Target Class

1

2

O
u

tp
u

t
C

la
s
s

 Confusion Matrix

206
41.2%

38
7.6%

84.4%

15.6%

42
8.4%

214
42.8%

83.6%

16.4%

83.1%

16.9%

84.9%

15.1%

84.0%
16.0%

Figure C.4.: Confusion Plot, ReLU,
T2D200

76

Confusion Plots for Sigmoid Network

1 2

Target Class

1

2

O
u

tp
u

t
C

la
s
s

 Confusion Matrix

180
36.0%

64
12.8%

73.8%

26.2%

59
11.8%

197
39.4%

77.0%

23.0%

75.3%

24.7%

75.5%

24.5%

75.4%
24.6%

Figure C.5.: Confusion Plot, ReLU,
T1C60

1 2

Target Class

1

2

O
u

tp
u

t
C

la
s
s

 Confusion Matrix

206
41.2%

38
7.6%

84.4%

15.6%

40
8.0%

216
43.2%

84.4%

15.6%

83.7%

16.3%

85.0%

15.0%

84.4%
15.6%

Figure C.6.: Confusion Plot, ReLU,
T1C200

1 2

Target Class

1

2

O
u

tp
u

t
C

la
s
s

 Confusion Matrix

194
38.8%

50
10.0%

79.5%

20.5%

50
10.0%

206
41.2%

80.5%

19.5%

79.5%

20.5%

80.5%

19.5%

80.0%
20.0%

Figure C.7.: Confusion Plot, ReLU,
T2C60

1 2

Target Class

1

2

O
u

tp
u

t
C

la
s
s

 Confusion Matrix

217
43.4%

27
5.4%

88.9%

11.1%

29
5.8%

227
45.4%

88.7%

11.3%

88.2%

11.8%

89.4%

10.6%

88.8%
11.2%

Figure C.8.: Confusion Plot, ReLU,
T2C200

77

Confusion Plots for Network Evaluation

1 2

Target Class

1

2

O
u

tp
u

t
C

la
s
s

 Confusion Matrix

126
25.2%

118
23.6%

51.6%

48.4%

93
18.6%

163
32.6%

63.7%

36.3%

57.5%

42.5%

58.0%

42.0%

57.8%
42.2%

Figure C.9.: Confusion Plot, Sigmoid,
T1D60

1 2

Target Class

1

2

O
u

tp
u

t
C

la
s
s

 Confusion Matrix

180
36.0%

64
12.8%

73.8%

26.2%

74
14.8%

182
36.4%

71.1%

28.9%

70.9%

29.1%

74.0%

26.0%

72.4%
27.6%

Figure C.10.: Confusion Plot, Sig-
moid, T1D200

1 2

Target Class

1

2

O
u

tp
u

t
C

la
s
s

 Confusion Matrix

202
40.4%

42
8.4%

82.8%

17.2%

56
11.2%

200
40.0%

78.1%

21.9%

78.3%

21.7%

82.6%

17.4%

80.4%
19.6%

Figure C.11.: Confusion Plot, Sig-
moid, T2D60

1 2

Target Class

1

2

O
u

tp
u

t
C

la
s
s

 Confusion Matrix

215
43.0%

29
5.8%

88.1%

11.9%

43
8.6%

213
42.6%

83.2%

16.8%

83.3%

16.7%

88.0%

12.0%

85.6%
14.4%

Figure C.12.: Confusion Plot, Sig-
moid, T2D200

78

Confusion Plots for Sigmoid Network

1 2

Target Class

1

2

O
u

tp
u

t
C

la
s
s

 Confusion Matrix

159
31.8%

85
17.0%

65.2%

34.8%

49
9.8%

207
41.4%

80.9%

19.1%

76.4%

23.6%

70.9%

29.1%

73.2%
26.8%

Figure C.13.: Confusion Plot, Sig-
moid, T1C60

1 2

Target Class

1

2

O
u

tp
u

t
C

la
s
s

 Confusion Matrix

208
41.6%

36
7.2%

85.2%

14.8%

50
10.0%

206
41.2%

80.5%

19.5%

80.6%

19.4%

85.1%

14.9%

82.8%
17.2%

Figure C.14.: Confusion Plot, Sig-
moid, T1C200

1 2

Target Class

1

2

O
u

tp
u

t
C

la
s
s

 Confusion Matrix

185
37.0%

59
11.8%

75.8%

24.2%

54
10.8%

202
40.4%

78.9%

21.1%

77.4%

22.6%

77.4%

22.6%

77.4%
22.6%

Figure C.15.: Confusion Plot, Sig-
moid, T2C60

1 2

Target Class

1

2

O
u

tp
u

t
C

la
s
s

 Confusion Matrix

223
44.6%

21
4.2%

91.4%

8.6%

45
9.0%

211
42.2%

82.4%

17.6%

83.2%

16.8%

90.9%

9.1%

86.8%
13.2%

Figure C.16.: Confusion Plot, Sig-
moid, T2C200

79

