
On the Possibilities of Grid Shells
Conceptual design of an elongated grid shell

Magnus Nilsen

Master of Science in  Civil and Environmental  Engineering

Supervisor: Anders Rönnquist, KT

Department of Structural Engineering

Submission date: June 2016

Norwegian University of Science and Technology



 



i 

Abstract 
 
Shell structures has for a long time fascinated both architects and structural 
engineers alike, since interesting geometries as well as incredible structural 
soundness is possible to achieve with them. The analysis of shell structures is hard 
to carry out without the aid of numerical tools, especially if the geometry is very 
complex. These complex geometries may be defined by free-hand by an architect, 
or by other measures. Structurally optimized geometries can also be obtained for 
shells by utilizing different techniques; so-called form finding techniques. By 
utilizing such techniques, the freedom in shaping the structure now gets altered, 
because the shape itself is optimized automatically. The freedom lies in defining 
the architectural constraints, the boundary conditions and the load situation. This 
process is highly dependent on expertise from both an architect and a structural 
engineer, due to the creative and structural nature of the process. This thesis focuses 
on problems arising when utilizing form finding techniques for elongated shell 
structures, or more specifically; grid shell structures. Different “form found” 
geometries are explored with close collaboration with an architect in order to 
conceptualize a good structure. A more thorough analysis of a built grid shell by 
Steinar Hillersøy Dyvik and John Haddal Mork is first carried out in. The results 
from these analysis is then used as a basis for the conceptual design of the elongated 
grid shell. It was found that the desirable shell behaviour was reduced after the 
elongation, and the structure acted more like an arch. This led to the requirement of 
adding edge beams to the structure to increase its stiffness.  
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Sammendrag 
 
Skallkonstruksjoner har lenge fascinert både arkitekter og bygningsingeniører, 
siden de muliggjør interessante geometrier i tillegg til sterke konstruksjoner. Det å 
analysere en skallkonstruksjon er vanskelig uten hjelp fra numeriske verktøy, 
spesielt dersom geometrien er svært kompleks. Disse komplekse geometriene kan 
oppstå når en arkitekt tegner skallkonstruksjonen for frihånd eller på andre måter. 
Det finnes også ulike metoder for å optimere geometrien til skallkonstruksjoner; 
såkalte ”form finding” metoder. Ved å benytte seg av slike metoder, vil friheten til 
å definere konstruksjonens form bli forandret, siden formen blir optimert 
automatisk. Friheten ligger nå i hvordan man definerer randbetingelsene og 
lastsituasjonen. Denne prosessen er derfor svært avhengig av ekspertise både fra 
arkitekt og ingeniør. Denne oppgaven tar for seg hvilke problemer som oppstår 
dersom man benytter seg av ”form finding” metoder for avlange 
skallkonstruksjoner, eller mer spesifikt; gitterskallkonstruksjoner. Ulike former ble 
utforsket i nært samarbeid med en arkitekt for å designe en god konstruksjon. Først 
ble en mer grundig analyse av et bygd gitterskall av Steinar Hillersøy Dyvik og 
John Haddal Mork utført. Deretter ble resultatet av denne analysen benyttet som et 
utgangspunkt for det konseptuelle designet av det avlange gitterskallet. Det kom 
frem at de gunstige skalleffektene ble redusert ved et avlangt gitterskall, og 
konstruksjonen oppførte seg mer som en bue. Dette førte til at kantbjelker måtte 
påføres konstruksjonen for å øke stivheten.  
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Preface 
 
This paper is meant to serve as a concluding thesis for the master programme in 
structural engineering at the Norwegian University of Science and Technology. 
 
As a part of their master’s thesis, Steinar Hillersøy Dyvik and John Haddal Mork 
designed and built a kinematic grid shell in Trondheim, spring 2015. A kinematic 
grid shell is a type of shell which is assembled on a flat plane, and thereafter “bent” 
into the desired shape. The shape in which the grid shell bends into, is found by 
structurally optimizing the shape so that mainly membrane forces act on the 
structure. How this structure react to different loading is studied, both by tests on 
site and numerically. The grid shell stood as a 10×10$ temporary pavilion, and 
was therefore loaded to its ultimate failure load. 
 
Shell structures, especially kinematic grid shell structures, quickly became very 
appealing to me when I first learnt about them. The extreme thinness and lightness 
that is possible to achieve, together with the interesting structural behaviour makes 
such shells intriguing to me. Since very few large scale grid shells exist in the world, 
it would be highly fascinating to assess the structural behaviour of them and 
investigate the possibilities and challenges they bring. 
 
In addition, architecture, especially the interface between architecture and structural 
engineering, has always fascinated me, and I wanted to write my thesis while 
collaborating with an architect. 
 
This research paper’s main objective will be to examine the structural behaviour of 
the shell by Steinar and John, and use the result from this analysis to conceptualize 
a larger, elongated version of the shell. Secondly it serves as an exploration of 
conceptual design in which architects and engineers not only collaborate closely, 
but also simultaneous. 
 
Since this thesis focuses on conceptual design, detailed design using building codes 
is not considered and no, or little, thought has been given to the design of 
connections or support details. It is also chosen, for simplicity, to only consider 
elastic, homogenous and isotropic material behaviour. Dynamic behaviour is also 
not considered, but the first eigenmodes and –frequencies are obtained. 
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1 Introduction 
 
1.1 Architects and engineers 
 
In ancient and renaissance times, the architect and the structural engineer usually 
was the same person (although these labels were not used at the time). One prime 
example was the famous renaissance genius Filippo Brunelleschi [1]. He is most 
known for designing the dome for Santa Maria del Fiore cathedral in Florence, 
which was the longest spanning dome ever built at that time. Brunelleschi’s success 
can be attributed, in no small degree, to his technical and mathematical capabilities, 
as well as his creative mind and knowledge about architecture. Other examples 
include Robert Hooke, Christopher Wren and Isidore of Miletus [1]. 
 
Today, architecture and structural engineering is separated into two different 
disciplines. It is in modern times a widespread misunderstanding that architects are 
the designers of a building from concept to detail, whereas the structural engineer 
only care for its stability [2]. In reality, it is the function of the building which 
defines the two roles. The architect could solely design a building if it is 
multifunctional in a social context, for example a family house where no engineer 
is needed. Similarly, an engineer could design a building alone if it serves a singular 
structural purpose, for example infrastructure such as bridges where no architect is 
typically needed. A high-rise building typically needs expertise from both [2].  
 
Shell structures play a special, important role for engineers, because their shape 
directly defines their load-bearing behaviour. For thin shells this is crucial, where 
certain shapes can eliminate all bending forces and the shell exhibits membrane 
forces only, making the shell structure dramatically more efficient. But even though 
such optimized shapes initially doesn’t leave much space for an architect (nor for 
the engineer’s imagination), it is fortunately not unusual that architects and 
engineers collaborate strongly upon designing such structures [2].  
 
 
 
 
 
 
 
 



2 

To construct thin-shell geometries which exhibits bending forces only, one usually 
adopt so-called form finding techniques. When using such techniques, it is key that 
engineers and architects collaborate tightly. Firstly, because the shapes from form 
finding techniques are highly sensitive to architectural constraints, and secondly, 
because there are extremely numerous realizations of a given set of constraints and 
which one to choose should not be chosen according to structural efficiency alone 
[3]. This type of structures is therefore highly dependent on expertise from both 
architects and engineers, and it is these type of structures this thesis will focus on.  
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1.2 State of the art structures 
 
When designing new structures, it is a good idea to examine similar structures from 
history. This chapter will study six different state of the art shell structures in which 
architects and engineers have cooperated tightly, and where innovative solutions to 
different challenges have been assessed. 
 
Mannheim Multihalle 
Mannheim Multihalle was constructed as part of the Mannheim Bundesgartenschau 
(federal garden exhibition) in 1975 [4]. The Bundesgartenschau is a government 
sponsored gardening show held every two years in a major city of West Germany. 
In essence, the Bundesgartenschau consists of a large, open park area redeveloped 
and landscaped in order to display new and unusual species of plants from various 
growers and nurseries around Germany. 
 
In 1970, the city of Mannheim was chosen as the site for the 1975 exhibition, and 
the planning began immediately. It was decided that a multipurpose event hall 
should be built and a design competition was held in order to see which idea would 
serve the city best for its moment in the spotlight [4]. Several different design 
proposals were considered, but all of them was abandoned due to high material and 
construction costs. Eventually they asked Professor of Architecture, Frei Otto, to 
assist in the design of the project [5]. 
 
After discussions with Frei Otto, a lattice gridshell structure was chosen for the best 
design for achieving the open, airy nature they desired, while also fulfilling the 
structural purpose of the hall. Timber was used for the gridshell for both structural 
and aesthetical reasons. Aesthetically, it was light and fit with the theme of a garden 
show, and structurally, it was stiff enough to resist buckling, but flexible enough to 
be able to bend all members from an initially flat grid. When the whole grid 
structure is initially flat, and eventually bent and locked into place, it is called a 
kinematic grid shell (more on this in chapter 2.5). 

Figure 1.1: Mannheim Multihalle, interior 
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The idea of a large timber gridshell was an innovative idea, but one still very rare 
in practice. Thus, very little was known about the detailed structural behaviour of 
these types of shells, and how that behaviour would affect the materials in the 
structure. The original engineers contracted resigned after stating that the structural 
calculations were too difficult. The clients then hired structural engineering firm 
Ove Arup and Partners, together with other important contributors (Buro Happold). 
 
Kinematic grid shell structures rely upon carrying forces in membrane action only. 
As mentioned in chapter 1.1, in order to design such structures, one needs to adopt 
some sort of form-finding method. Computational analysis was still in its infancy 
when the Mannheim Multihalle was built, and it was more common to rely on 
physical models. Thus, the decision was 
made to build a scale “hanging chain” model 
in order to find the appropriate form which 
only exhibits membrane forces (Figure 1.2: 
Hanging chain model of Mannheim 
Multihalle.). The hanging chain model 
could not be used to design the structure 
alone, due to possible errors in the 
mechanical construction of the model as 
well as measurement errors. Therefore, a 
technique known as the force density 
method was used to further verify the 
structure (the force density method is 
described in more detail in chapter 1.6). 
 
The architect had previously decided that the grid laths should be no larger than 
50×50$$, but this was shown not to be adequate. It was then decided that the grid 
should be composed of two layers, so that the second moment of area was large 
enough (although the shape is optimized to carry membrane forces only, wind loads 
and other skew loads will introduce bending forces on the structure). The problem 
then becomes that the structure will be too stiff to be able to shape it from a flat grid 
without introducing too high bending forces. The solution was then to drill 
elongated holes for the bolts, so that the two layers work almost independently of 
each other during erection. When the final shape was established, the bolts were 
tightened and the two layers were connected via so called shear blocks in order to 
obtained the desired stiffness for the structure. 
 
 

Figure 1.2: Hanging chain model of Mannheim 
Multihalle. 
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The Multihalle is a structure where architects and engineers have cooperated really 
tightly, and it is created from rigorous mathematical investigations as well as 
practical form finding methods. The idea behind the structure was revolutionary for 
its time in the 1970’s and continues to serve as an inspiration today. 
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Downland gridshell 
The Weald and Downland Open Air Museum is a leading international centre for 
historic timber buildings. In their commission, the Museum wanted a modern 
structure, which would extend the lineage of the historic timber buildings into the 
21st century. Edward Cullinan Architects won the commission, and Buro Happold 
was assigned as structural engineer.  
 
The Downland Gridshell Building was the first timber gridshell to be constructed 
in the United Kingdom, and is regarded as an iconic building by both architects 
engineers [6]. The building was completed in 2002 and is a lightweight structure 
made of oak laths. To prepare the oak laths for use all defects were removed and 
the resulting pieces finger-jointed together into standard lengths of 6m. Six of these 
pieces were then joined to form 36m laths. The laths have a cross section of 
50×35$$, with 1$ spacing. Like Mannheim Multihalle, The Downland 
Gridshell is also a kinematic gridshell structure. The timber laths were bent into 
shape, and then locked by edge beams running along the sides of the whole 
building. Downland grid shell’s grid is also doubly layered, but in addition consists 
of a triangulating timber bracing. 
 
Where Downland Gridshell differ the most from Mahheim Multihalle, is in the 
hinge connections in the grid. In Downland, the laths are connected at the nodes of 
the grid with a patented system of steel plates and bolts, which is visible in the top 
left corner in Figure 1.3: Downland Gridshell interior. 
 
The shape of the gridshell is primarily driven by stiffness requirements. At first 
glance, the gridshell might look like a barrel vault, but it has double curvature which 
generates geometric stiffness and is fundamental to its structural action in resisting 
asymmetric loads [7]. The form finding process used was a combination of physical 
modelling and computer simulations. 
 

Figure 1.3: Downland Gridshell interior 
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Under construction, the Downland Gridshell was bent into shape without relying 
on cranes or any other upward lifting force. The flat grid was built on top of a 
smaller platform, which then caused the initially flat grid to bend at the edges due 
to gravity. Then, the grid was pulled towards CLT edge beams and eventually 
locked into place. 
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The Savill Garden Gridshell 
The Downland Gridshell got quite a lot of attention in the British architecture 
environment, and when the park area in Savill Garden in Berkshire submitted a 
commission for a new visiting centre, the architect Glenn Howell saw an 
opportunity to include a grid shell in his design. It would be the largest gridshell in 
England, measuring about 90×25$, and the first place where a gridshell is used as 
a roof construction. Once again, Buro Happold was assigned as the structural 
engineer. 
 
The laths is again made up of wood, more precisely local larch with a characteristic 
strength of about 30) $$

*. The cross section of each lath is 80×50$$, and the 
grid spacing is 1$. 
 
The shell’s geometry is defined analytically. The building’s plan is defined as two 
intersecting circle sections, and the gridshell itself is defined by sinusoidal functions 
and parabolas. This made it easy for the architect and engineer to construct both a 
practical and aesthetically pleasing shape easily by modifying different parameters, 
but it does makes it harder to define a regular grid along the surface (more on this 
in chapter 2.2). 
 
The main challenge with this building, is the flat geometry of the shell. This makes 
the roof act more like a slab than a shell, and is highly subjective to asymmetrical 
loading. Because of this, there was need for even larger spacing between the two 
grid layers, which again required larger shear blocks. This makes the roof too stiff 
to be bent like the previous mentioned shells, so they had to approach it differently. 
The solution was to first bend the bottom grid layer, and then assemble the shear 
blocks and the top layer on top of it. To lock the shape in place the whole grid is 
covered with CLT panels, which stiffens the shear deformations of the 
quadrilaterals. 
  

Figure 1.4: Savill Garden Gridshell interior 
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The YAS Hotel 
Until now, only timber grid shells have been studied. The YAS Hotel in Abu Dhabi, 
is a steel grid shell, and is the world’s first hotel to have a Formula 1 race track built 
around it [8]. At the time it was built it was also the world’s largest LED project. 
The main attraction is, however, the curvilinear gridshell covered with over 5 300 
diamond shaped steel panels, containing nearly 5 000 LEDs. 
 
The shape of the gridshell that surrounds the hotel, is not defined by form finding 
nor analytical expressions. It is a so-called free-form geometry, where the architect 
has taken complete liberty when defining curvatures and overall shape. This, like 
the Savill Garden Gridshell, makes it hard (sometimes impossible) to divide the 
whole shell surface into equal quadrilaterals. The YAS Hotel gridshell is not made 
up of equal quadrilaterals at all, and is a product of careful computational meshing 
of an already defined surface. This greatly increases production and construction 
costs compared to earlier mentioned gridshells, because each grid member must be 
tailored to fit at every point. 
 
By choosing steel as the material for the gridshell, a kinematic approach is 
problematic. Because of steel’s high Young’s modulus, huge forces or very thin 
cross sections would have been necessary in order to bend the steel grid into the 
desired shape. On the plus side, by using curved members, no initial bending 
stresses are introduced to the finished structure and the shell can work in purer 
tension or compression. More on the differences between different types of 
gridshells is discussed in chapter 1.7. 
  

Figure 1.5: The YAS Hotel, Abu Dhabi, exterior 
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Cascara bridges 
West 8 and MRIO architects was responsible for the master plan for the reclaimed 
river banks and several other areas around Madrid. There are three identical 
pedestrian bridges which spans the Cascara river. The “roof” of these bridges are 
dome-like and made of reinforced concrete, and does also bears the deck for the 
pedestrians. The deck is connected to the concrete shell by numerous thin vertical 
cables, which make the bridge appear open and lightweight. 
 
The shell structure spans 41$, and is about 8$ high at the apex. The shape of the 
openings in the longitudinal direction appears to be a catenary or a parabola. 
Standard for arch bridges is that the arch is a parabola, since the main loads from 
the weight of the deck and traffic, are basically uniformly distributed loads, and the 
optimal curve for bearing such loads is the parabola (this is explained in chapter 
2.3). The top part of the shell in this bridge is, however, “flattened” on top.  
 
This shell is obviously not kinematic for several reasons. Firstly, the low tensile 
strength of concrete would not allow for such large bending deformations, and 
secondly, the shell is continuous which makes it way too rigid against shear 
deformations in order to produce any double curvature. 
  

Figure 1.6: One of the shell bridges that span the Cascara river in Madrid. 
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The Bridge of Peace 
The Bridge of Peace is a pedestrian bridge in the capital of Georgia, Tbilisi, which 
spans 160$. The pedestrian deck is suspended from a steel gridshell supported 
solely by the four supports on its two embankments. This shell is also not kinematic. 
The bending of the relatively large cross-section of the steel beams, would give rise 
to very large bending stresses. In addition, by inspecting the quadrilaterals the 
gridshell is made out of, one can see that not all of the quadrilaterals are of the same 
size, which means that the gridshell would display too much shear stiffness (see 
chapter 1.7). 
 
It is not as easy to say if the shape has been form found, but good insights about 
shell geometry is nevertheless displayed. The cantilevering parts at the end of the 
bridge is “bent” upwards, which helps the structure to carry loads to the supports 
(see chapter 1.5), and the transverse beams seem to correspond to parabolas or 
catenaries. 
 
  

Figure 1.7: The bridge of peace, Tbilisi, Georgia 
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1.3 Geometry and structural performance 
 
When talking about structural performance, one could mean a number of things. 
One could talk about the structure’s efficiency in terms of its material usage, or for 
example the costs, taking both material usage and construction costs into account. 
This part will mainly focus on the efficiency in terms of material usage, hereby 
named mechanical structural performance. It is challenging to propose a precise 
and rigorous definition of structural performance, but some good qualities of 
structures that perform well are: 
 

• Minimal material usage 
 

• Robust equilibrium solution 
 

• Smooth flow of forces 

 
The advantage of robust equilibrium solutions is that the structure is not prone to 
sudden stability failures, such as snap-through buckling or lateral torsional 
buckling. For example, if a structure has an “optimized” cross section at each point 
for a given load case, so that the value of stress is uniform along the whole structure, 
one could say that the structure has been optimized structurally in terms of material 
usage. But having a uniform stress distribution along the whole structure makes the 
structure equally likely to fail at every point, which could be very dangerous if the 
load is close to the design load. 
 
A smooth flow of forces circumvents having stress concentrations, which gives rise 
to unreasonably high stresses at small spatial areas. Having a smooth force flow 
usually reduce the material usage, but by optimizing the stress distribution, one does 
not necessarily optimize the material usage. 
 
Bending and membrane action 
It was mentioned in the introduction that by eliminating bending forces, and having 
pure membrane (compression and tension) action in the structure, dramatically 
increase the efficiency of the given structure. The reasons behind this is discussed 
in more detail in this section. For simplicity let’s compare two beams; one beam in 
pure bending about the .-axis (see Figure 2.1 for coordinate system definition), and 
another in pure compression. 
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Both beams are made up of a perfect elastic, isotropic material, and consist of a 
uniform rectangular cross section with height ℎ. The stress utilization at a distance 
0 from the neutral axis is then given by: 
 

1 0 =

3 0

3
4

	, 

 
where 3(0) is the stress in the beam at a distance 0 from the neutral axis and 3

4

 is 
a reference stress value, for example the yield stress. In pure bending, the stress in 
the beam is given by (tension is positive): 
 

3
9:;<=;>

0 = −

20

ℎ

3
4

	, 

 
where ℎ is the total beam height. 
 
For a pure compressional beam, the stress 3

@ABCD:EE=A;

 is simply equal to the 
reference stress 3

4

 in magnitude. The two different stress utilizations then become: 
 

1
9:;<=;>

0 =

2

ℎ

0  

 
and 

1
@ABCD:EE=A;

0 = 1. 
 

a) b) 

Figure 1.8: a) Beam in pure bending about the z-axis. b) Beam in pure compression 
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A more useful quantity is the average stress utilization over the entire cross section, 
which can be defined as: 
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which for the pure bending beam gives: 
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The average stress utilization for the pure compressional beam, 1

@ABCD:EE=A;

, is 
obviously equal to one, since 1

@ABCD:EE=A;

 does not depend on 0. Therefore, one 
could say that, on average, a beam in pure compression (or tension) is twice as 
effective as a beam in pure bending. The same principle applies for thin plates and 
shells. Techniques for eliminating bending action is discussed in more detail in 
chapter 2.3 and 2.4. 
 
Compression and tension 
How a structure react differently in compression and tension, is highly dependent 
of the material used. Concrete, for example, has a very low tensile strength, which 
makes concrete structures perform better when in compression. On the other end of 
the spectrum, we have textile membranes or cables, which doesn’t work in 
compression at all, but can be very strong in tension. 
 
Generally, for a generic material which work similarly in compression and tension, 
like steel, structural members give rise to more robust equilibrium solutions when 
working in tension. This is because compressional forces may give rise to buckling 
instabilities, which requires larger members to take care of. One interesting family 
of structures which takes advantage of the different properties of tensional and 
compressional members are so-called tensegrity structures. When designing 
tensegrity structures, one identifies which parts of the construction that exhibits 
tension and which parts that exhibits compression. This can make aesthetically 
interesting structures which are highly effective. 
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The most notable example of a tensegrity structure is perhaps the largest spanning 
dome in the world, namely the Millenium Dome in London. Here, pillars of steel 
together with steel cables, bears the huge textile membrane which spans a whopping 
365$ [9]. The membrane is only a few millimetres thick, making the span-to-
thickness ratio of the dome roughly one hundred of that of an egg. Some might 
argue that it is not a dome since the roof is not self-supporting, but nonetheless it 
stands out as an impressive structure. The structural engineers behind the dome is 
Ove Arup & Partners. 
 
Curvature 
A curved beam does not exhibit the same forces as a straight beam. To investigate 
this, a continuous, curved beam, whose shape is given by the height from the left 
support, ℎ(K), is considered (Figure 2.3). 
 
 

 
Figure 1.10: A curved beam given by the height function, h(x) subjected to forces as shown 

The moment at a distance K from the support, L(K), can be found by taking moment 
equilibrium about the point in which it acts: 

Figure 1.9: The Millenium Dome, London by Sir Richard Rogers 
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L K = L
4

+ M
N4

	 ∙ K − M
P4

∙ ℎ K − L
Q

K 	, 
 
where L

Q

(K) is the moment due to the external vertical load, which might depend 
on ℎ(K).  
 
It is clear that the moment along the beam, L(K), depends on the height function 
ℎ(K). It is notable that L(K) is also dependent of the loading R(K), which means 
that an optimal function ℎ(K) is load dependent. In chapter 1.5 and 1.6 it will be 
discussed how to choose ℎ(K) so that the moment L(K) vanishes completely for a 
given load situation, and only membrane forces are left. 
 
 

The same principles can be applied to curved shells, but here one needs to 
distinguish between singly curved and doubly curved shells. Singly curved shells, 
like barrel vaults, act similar to a curved beam (arches). Doubly curved shells on 
the other hand is much stiffer, since their so-called intrinsic geometry resists out of 
plane deformations [10]. The mathematical framework which describe this is the 
theory of differential geometry. Differential geometry, and its mathematical 
treatment, is way beyond the scope of this thesis, but qualitative descriptions of 
some of the ideas will hereby be given. 
 
Asking the question whether a two-dimensional surface is singly or doubly curved, 
is related to asking the question if a given two-dimensional surface can be 
embedded in a plane (laid out flat) in three dimensions without straining the surface 
[11]. Imagine taking a flat piece of paper, and bend it like a barrel vault. This can 
easily be done without straining the paper. Now imagine taking the same piece of 
paper and bend it into the shape of a dome. This is not possible without straining 
the paper. Consequently, if a dome surface is given, it is not possible to lay it out 

Figure 1.11: a) Singly curved shell in the form of a barrel vault. b) Doubly curved shell in the form of a dome-like 
structure 

a) 
b) 

(1.1) 
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flat. This is the reason why two-dimensional world maps cannot depict distances 
and areas of the earth precisely. If a given surface cannot be laid out flat, it is said 
that the surface displays intrinsic curvature. 
 
A useful measure of the intrinsic curvature of a surface is the Gaussian curvature. 
It is defined at each point as the product of the principal curvatures at that point. 
The principal curvatures are illustrated in Figure 1.4 for a barrel vault and a dome-
like structure. For a barrel vault, the curvature along the vault’s longitudinal axis is 
zero, so the Gaussian curvature is also zero. For a hemisphere, the curvature along 
any direction is 1 S, so the Gaussian curvature is 1 S

* along the entire surface. 
 
In shell structures, the intrinsic curvature of a surface can be used to the structure’s 
advantage. By exploiting surfaces which displays intrinsic curvature, the shell will 
be resistant to certain deformations. This is the reason why doubly curved surfaces 
are generally more robust than singly curved surfaces. 
 
Even though shells are modelled as two-dimensional surfaces, the mathematical 
theory of shells introduce a sort of “fictitious” shell thickness which give rise to 
what we call bending stiffness. This will introduce strains in the shell even though 
the two-dimensional surface which defines the shell is unstrained. For example, if 
the piece of paper from earlier had been thicker, bending stresses would have been 
introduced when bending it into a barrel vault, since the inner and outer parts of the 
paper would be of different lengths. The same holds true for beams, but since beams 
are one-dimensional elements, they cannot have intrinsic curvature. This makes 
sense if we imagine an extremely thin beam, like a string, which can be shaped into 
any curve without introducing strains.  
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1.4 Freeform structures 
 
Freeform, free-curved or sculptural structures are structures which are generated 
without particularly taking structural performance into consideration. They can be 
defined by pen or paper, or digitally, where they are often described by higher 
degree polynomials, like NURBS (Non-Uniform Rational Basis Splines). The 
shape generated is often inspired by organic forms, like hills and valleys. 
 
One particularly interesting quality about freeform structures, is that they often tend 
to be stronger under asymmetrical loading than optimized shells. This is due to the 
fact that the shell is not optimized for a certain load configuration. 
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1.5 Funicular geometry 
 
In contrast to freeform geometries, funicular geometries are geometries which are 
guided by the structural performance alone. As mentioned earlier, if the geometry 
of a structure is carefully chosen for a given load situation, no bending forces will 
act on the structure. Such a geometry is defined in this thesis as funicular, and only 
exhibits membrane forces. 
 
Arches 
A hanging chain is a typical example of funicular geometry. The chain is unable to 
carry any compression or bending forces, so a hanging chain, must carry all of its 
weight by tension. Robert Hooke postulated in 1676 that by inverting the shape of 
a hanging chain, one will obtain a geometry which only acts in compression. This 
was a beautiful idea, and is an extremely effective and intuitive way of finding an 
optimal shape for a compressive arch [3]. 
 
By considering equation (1.1) from chapter 1.3 again, we can investigate which 
constraints ℎ(K) must fulfil in order to make the bending moment L(K) vanish 
everywhere: 
 

L K = L
4

+ M
N4

	 ∙ K − M
P4

∙ ℎ K − L
Q

K = 0	. 
 
By rearranging and solving for ℎ(K) one obtains:  
 

ℎ K =

1

M
P4

L
4

+ M
N4

K − L
Q

K 	. 

 
Constants are not relevant when trying to obtain the overall shape, so the height 
function ℎ(K) can be written on the form 
 

ℎ K = T
4

+ T
U

K + T
*

L
Q

K 	. 
 
The expression for the bending moment due to the external load L

Q

(K) is given by: 
 

L
Q

K = V K R K

P

4

IK	, 

 
where V(K) is the centroid of the load area between 0 and K, measured from K. The 
expression for V(K) in this equation can be written as: 

(1.2) 

(1.4) 

(1.3) 
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V K = K −

K	R K IK

P

4

R K IK

P

4

	, 

 
which inserted into equation (1.4) gives  
 

L
Q

K = K R K IK

P

4

− K	R K IK

P

4

	. 

 
Using integration by parts on the last term, the equation can be simplified to: 
 

L
Q

K = K R K IK

P

4

− K R K IK

P

4

− R K IK

*

P

4

= R K IK

*

P

4

	. 

 
Let us now consider a uniform distributed load R K = R. This gives L

Q

K =

U

*

RK

*, which inserted into equation (1.3) gives: 
 

ℎ K = T
4

+ T
U

K + T
*

K

*

	, 
 
which is the mathematical description of a parabola, which is well known from 
literature to be the funicular curve for a uniformly loaded structure [12]. 

 
A beam only subjected to gravity, has a load situation which is dependent of its 
shape, because the steeper the curve, the more mass is present in a unit horizontal 
length (Figure 2.5). The load distribution R(K) is therefore a function of the shape 
function ℎ(K). To obtain this relation, imagine a hanging chain, which is horizontal 
at K = 0. 

 
Figure 1.12.: A curved beam with distributed load due to gravity 

(1.5) 
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An infinitesimal peace of the beam of length IW subjected to gravity, will feel a 
force IM = XY	IW, where X is the mass per unit length (assumed constant) and Y is 
the acceleration of gravity. The same force can be described by the distributed load 
R(K) as IM = R K IK. Since these must be equal, the distributed load as a function 
of the shape function ℎ(K) can be obtained: 

IM = XY	IW = XY IK

*

+ Iℎ

*

= XY 1 +

Iℎ

IK

*

IK = R K IK	. 

Thus, 

R K = XY 1 +

Iℎ

IK

*

	. 

 
The contribution to the bending moment for this load then becomes (by equation 
(1.5)): 

L
Q

K = XY 1 +

Iℎ

IK

*

IK

*

P

4

	. 

 
inserting into equation (1.3) and differentiate with respect to K gives: 
 

Iℎ

IK

= T
U

+ T
*

1 +

Iℎ

IK

*

IK

P

4

	, 

 
which is known to be the differential equation for the catenary curve [13]. Solving 
this differential equation yields: 
 

ℎ K = V cosh

K

V

− 1 	, 

 
where V is a constant. Both the catenary and 
the parabola is plotted in Figure 1.13: 
Comparison between a parabola (blue) and a 
catenary (red)., to illustrate the difference 
between the funicular curve for a uniformly 
distributed load and a load due to gravity. 
 
 
 
 

Figure 1.13: Comparison between a parabola (blue) 
and a catenary (red). 
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Shells 
A barrel vault, which is continuously supported along the sides, is structurally 
similar to an arch. Therefore, a funicular geometry of a continuously supported 
barrel vault subjected to gravity is simply an “extruded” catenary. But when 
exploring funicular geometries for two-dimensional surfaces, one quickly finds that 
there exists an infinite number of funicular geometries given support conditions and 
a load situation [3]. When trying to find funicular geometries for more complex, 
doubly curved surfaces, the problem becomes much harder and closed form 
solutions usually don’t exist for a given load situation. Therefore, alternative 
techniques must be exploited in order to find funicular geometries for shells. 
 
The most popular technique for identifying funicular surface geometries, is by 
utilizing form-finding methods, which is discussed in more detail in chapter 2.4. In 
this chapter, a qualitative description of funicular shells will be given, in order to 
develop an understanding of what to expect from two-dimensional funicular 
geometries. Multiple scenarios are explored and discussed. For simplicity, only 
gravitational forces will be considered henceforth. 
 

 
Figure 1.14: Doubly curved shell continuously supported on a square. Catenary 

curves are shown in red. 

Consider a shell which is continuously pin-supported along all 
four sides of a square. In order to estimate a geometry which 
eliminates all bending forces in such a shell, one could imagine 
an infinite number of catenaries, all with a common apex, 
spanning from one side of the square to the opposing side, 
collectively constructing a surface. A similar technique could 
be employed for a shell supported on a circle, which was 
actually done by Christopher Wren in 1669 when designing 
the inner dome for the St. Paul’s Cathedral in London [14]. 
 

Figure 1.15: Cross section of St. 
Pauls Cathedral (Photo from 
wikipedia) 
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Now let’s imagine what happens if the shell is only supported on three of the sides. 
By using the same technique as before, one could again imagine taking an infinite 
number of catenaries with a common apex, but now the “open” side itself will also 
work as a catenary (Figure 1.16: Doubly curved shell continuously supported on 
three sides of a square). 

 
Figure 1.16: Doubly curved shell continuously supported on three sides of a square 

Another approach, is to recall that a truncated catenary is still a funicular shape for 
a curved beam, and use the same logic to guess that a truncated funicular shell, is 
still funicular. Imagine now a vertical imaginary plane, that “cuts” through the 
surface like shown in the figure below. The former shell was a special case of a cut 
like this, where a rectangular shell was cut in equal halves. 
 

 
Figure 1.17: Doubly curved surface, truncated vertically 
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It is expected that both of these truncated shells should act funicular, but they have 
however lost some of their horizontal stiffness due to the non-supportive side. A 
possible remedy for this is to instead of cutting the surface through a plane, one can 
“tunnel” the surface itself, preserving more of the catenary-like geometry (Figure 
1.18: A shell continuously supported on three sides, where the opening has been 
"tunnelled" through the surface.).  

 
Figure 1.18: A shell continuously supported on three sides, where the opening has been "tunnelled" through 

the surface. 

As mentioned earlier, there exists an infinite number of solutions to a funicular 
surface for a given set of boundary conditions and loads. One interesting family of 
solutions, are solutions where parts of the surface is cantilevering. We can examine 
some possible solutions by using the same three-sided boundary condition as 
earlier, but where the “free” side is cantilevering (Figure 2.12a). 

In this example, the cantilevering part is intuitively loaded in tension. It could still 
be a geometry absent of bending forces, but when designing for example concrete 
shells, it is desirable that the entire shell should be loaded in compression. This is 
possible to achieve by inverting the Gaussian curvature in the parts which is 
cantilevering, so that every place that initially was loaded in tension, is now 
loaded in compression (Figure 2.12b).  

Figure 1.19: Cantilevered shell where the cantilevering part is loaded in a) tension and b) compression. 

a) b) 



31 

1.6 Form finding 
 
In the previous chapter, some qualitative descriptions of different problems 
regarding funicular geometries were mentioned. In this chapter, more quantitative 
descriptions of different methods used to find funicular shapes is given. These 
methods are called form finding methods. 
 
Physical form finding 
The first idea of form finding was first presented by the English engineer and 
scientist Robert Hooke in 1676. Ha postulated that “As hangs the flexible line, so 
but inverted will stand the rigid arch” [3]. The idea was simple: invert the shape of 
the hanging chain, which by definition is in pure tension and free of bending, to 
obtain the equivalent arch that acts in pure compression. If the chain is loaded in 
different ways, for example by some weights, the principle still holds true. If the 
chain is only subjected to gravity, the shape of the curve will be that of a catenary, 
which was derived in chapter 2.3. 
 
For shell surfaces, it is possible to use a similar approach. One could for example 
hang a piece of cloth, which also acts in pure tension, and invert it to obtain a surface 
in pure compression. The main disadvantage of using ordinary cloth, is that it has 
some shear stiffness, which makes the cloth “buckle” (fold or wrinkle) when loaded 
in shear. This reduces the possible solutions to surfaces which cannot exhibit in-
plane shear forces. To overcome this disadvantage, one could for example use 
special materials with negligible in-plane shear resistance or make a net by hinge-
connecting numerous strings together. By recalling the Mannheim Multihalle from 
chapter 1.2, the “hanging net” model in Figure 1.2. was used as a form finding tool, 
together with numerical form finding. 
 
Numerical form finding stands in contrast to physical form finding in that it is a 
form finding technique which utilizes a computer to numerically obtain a funicular 
shape for a given structure and load situation. There exists multiple different 
numerical form finding methods, and a few of them is hereby described. 
 
Force density method 
The force density method is based on constructing a net of pin-connected bars of a 
given axial stiffness and initial length [15]. Its mathematical formulation gives rise 
to a system of linear equations, making the force density method a quick and 
effective form numerical finding method. The governing equations of the force 
density method are: 

^
_

`
_

= a − ^
b

`
b

	, 
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where ^
_

 and ^
b

 are matrices which are dependent of the topology (how the bars 
are connected) and the force densities (axial forces per unit bar length) of the net. 
`
_

 is an unknown vector containing the position of all nodes of the net which is not 
fixed, a is a vector representing the forces at each node and ̀

b

 is a vector containing 
the position of all fixed nodes of the net. 
 
The force density method allows, especially in the early stages of a project, the 
instant exploration of large number of alternative, feasible solutions [15]. It has 
been applied to the design of many built structures, like the Mannheim Multihalle 
which was presented in chapter 1.2. 
 
Thrust network analysis 
The thrust network analysis (TNA) method for form finding is appropriate for the 
form finding of compressive funicular shells, like concrete or brick shells. The 
concept of TNA is to generalize the two-dimensional thrust line theory to three 
dimensions. Thrust line analysis, together with graphic statics, has been used to find 
stable forms of compressive masonry arches. A thrust line is a line connecting the 
resultant axial forces in each cross section of a structure [16]. The three-
dimensional version of a thrust line is called a thrust network. 
 
In TNA, only vertical loads are considered, thus the equilibrium of the horizontal 
force components in the thrust network can be computed independently of the 
chosen external loading. This allows splitting the form finding process into two 
steps: first solve for equilibrium of the horizontal thrust, and secondly, solve for the 
heights of the nodes of the thrust network, based on the external vertical loads, 
boundary conditions and the obtained horizontal equilibrium. 
 
TNA allows the full control of three-dimensional equilibrium, and thus the ability 
to steer the shape in a very intuitive and flexible manner. The design process starts 
by constructing a flat grid, and then a corresponding force diagram is constructed 
from that grid. This diagram can tell you something about the overall distribution 
of forces, and can be used to make better performing structures. A three-
dimensional shape is then constructed out of the equilibrium of the force diagram. 
 
Dynamic relaxation 
Dynamic relaxation (DR) was invented by Alistair Day in 1965 and is a very 
popular form finding methods for gridshells (gridshells is discussed in more detail 
in the following chapter), and includes the effect of bending stiffness of the shell 
[17]. Summarized, the technique traces the motion of the structure through time 
under applied load. 
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The basis of the method is to trace step by step for small increments, cd, the motion 
of each point is changed until the entire structure comes to rest in static equilibrium. 
During the form-finding process, the numerical values of axial, and bending 
stiffness are arbitrary since it is only their ratio that affect the shape. If the bending 
stiffness is zero, the resulting shape is that of an optimal two-dimensional surface 
embedded in three dimensions. 
 
The DR formulation uses Newton’s second law of motion. The residual force at 
node e in the K-direction at time d is 
 

f
=P

d = L
=

g
=P

(d) 
 
where g

=P

 is the acceleration at node e in direction K. It is the sum of all the forces 
acting on a node from the members connected to it and the applied loading. L

=

 is 
the lumped mas at node e. 
 
Expressing the acceleration term in equation (1.6) in a first-order Taylor series 
expansion around time d + cd gives 
 

g
=P

d + cd = g
=P

d +

f
=P

(d)

L
=

cd 

 
and hence the updated geometry is obtained as 
 

K
=

d + cd = K
=

d + g
=P

d + cd ∙ cd	. 
 
Having obtained the complete, updated geometry, the new member forces can be 
determined to give the updated residuals. This process is continued, through each 
iteration, to trace the motion of the structure. But without any damping the solution 
will begin to oscillate. To prevent this, damping must be introduced. By introducing 
damping, the motion of the structure will oscillate with lower and lower amplitude, 
but never quite reaching static equilibrium. By introducing a tolerance criterion, the 
static equilibrium can be reached for all practical purposes. 
 
In summary, the value of using DR as a form-finding tool, comes from its ability to 
interactively model variations in geometry due to changes in stiffness parameters. 
  

(1.6) 
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1.7 Grid shells 
 
There are broadly two different types of gridshells: kinematic (strained), and 
unstrained gridshells [5]. Strained gridshells are constructed by bending a lattice of 
beams or laths into a shell, which introduces bending stresses in the process of doing 
so. The main advantage of this type of gridshell is that a large number of similar 
elements can be assembled together into a flat grid, which greatly reduces the 
manufacturing costs compared to unstrained gridshells, where members and joints 
must be specially made to be suitable for its specific geometric location. The 
disadvantages are that bending stresses are introduced (which was shown in chapter 
2.1 was undesirable), and a lot of time is spent on site constructing the gridshell. 
Unstrained gridshells can be constructed entirely at the manufacturer, which greatly 
reduces the time spent on site. 
 
Kinematic gridshells 
As mentioned earlier, the shear stiffness of a surface makes it harder to shape the 
surface into a desirable geometry. A particular elegant remedy for this issue, is to 
use kinematic gridshells. Kinematic gridshells are made up of a quadrilateral lattice 
of beams or laths, hinge-connected at their intersections. Since one quadrilateral of 
the lattice is made up of four hinge-connected members, it has no shear stiffness. 
This gives the quadrilateral two additional rigid body modes compared to a 
continuous, rectangular element (illustrated in Figure 2.13 on a Q4 plane stress 
element and Figure 2.14 on a gridshell quadrilateral). 
 

 
 

Figure 1.20: Rigid body modes of a Q4 plane stress element. a) and b) corresponds to translations, and c) to 
rotation. 

a) b) c) 
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Figure 1.21: Rigid body modes of a plane gridshell quadrilateral. a) and b) corresponds to translations, c) to 
rotation, and d) and e) to shear deformation. 

 
These additional rigid body modes, makes the gridshell much more flexible than a 
continuous shell, and is a key property for kinematic gridshells in order to shape 
the shell into the desired shape. But even if a quadrilateral gridshell can be used to 
find numerous shapes, not all geometries can be obtained. A sphere for example, 
cannot be divided into quadrilaterals, so it is not possible to form a perfect 
hemisphere from an initially flat gridshell. 
 
These rigid body modes could also be the downfall of the shell. When the shell has 
obtained its final shape, it is still very flexible, and large deformations will occur 
when asymmetric or concentrated loads act on the structure. To overcome this issue, 
the rigid shear modes must again be eliminated after the shape has been obtained. 
At Mannheim Multihalle (see chapter 1.2), cross bracings made of steel cables were 
added to introduce shear stiffness to the grid’s quadrilaterals, whereas at the 
Downland gridshell, diagonal timber laths were added. At the Savill Garden 
gridshell, the roof cladding itself provides shear stiffness to the gridshell. 
 
The laths’ layout of the flat gridshell, also affects the possible shapes. The lattice-
like nature of a gridshell, basically gives rise to an orthotropic surface behaviour. 
This means that if the grid was laid out differently, the set of solutions of funicular 
shapes of the grid is altered. 
 

a) b) c) 

d) e) 
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Unstrained gridshells 
For unstrained gridshells, the grid does not need to be made up of quadrilaterals, 
since the additional rigid body modes are only useful when the grid should be 
deformed into shape. In fact, the missing shear stiffness of quadrilaterals, makes it 
unsuitable for shell structures. However, if the quadrilaterals are irregular (for 
example if the four sides are of different lengths), some shear stiffness is introduced. 
Free-form gridshells, is usually not made up of shapes which can be defined by 
equal quadrilaterals, so irregular quadrilaterals are often used (like the YAS Hotel 
and the Bridge of Peace from chapter 1.2). Methods for making a quadrilateral grid 
from a free-form surface does exist, but is not discussed further in this thesis. 
 
Grid optimization 
How to optimize a grid, given a funicular surface, is an interesting question. This is 
most useful for unstrained gridshells, where the grid does not need to be made up 
of quadrilaterals. Topology optimization, the homogenization method and 
eigenshells, are all techniques used for optimizing a grid. Some effort was done to 
optimize the grid in this thesis, by first optimizing the thickness of a continuous 
shell, and then define a function which construct a grid from the optimized 
thickness distribution. The “optimized” grid was not used in any analysis, so is not 
discussed further. 
  



37 

2 Analysis 
 
The analysis of shell structures with nontrivial geometries is fairly complex, and 
closed form solutions rarely exist [18]. Therefore, numerical models, and 
sometimes even scale models, plays an important role when designing shell 
structures. 
 
This chapter will describe different analysis aspects when designing two different 
gridshell projects. The first, is a small pavilion built by two master students at 
NTNU, spring 2015, and the second is a conceptual exploration of the challenges 
that arises when a gridshell is elongated in one particular direction. The second 
gridshell uses results obtained from both numerical and physical tests of the former 
gridshell. The following chapter, chapter 3.1, describes the overall analysis 
procedure which is adopted for both gridshells. 
 
2.1 General procedure 
 
The applied analysis procedure which were adopted when analysing the two 
gridshells have certain common traits. They both rely heavily on the finite element 
method, and they both require a thorough understanding of the geometries involved. 
 
Form finding 
After the architectural constraints have been defined (i.e. sun conditions, maximum 
height, maximum span), the form finding process can begin. The constraints must 
be fulfilled to a certain extent when trying to obtain a funicular shape for the 
structure. Sometimes though, by fulfilling all constraints exactly, impractical 
solutions, which may exhibit unnecessary high stresses or deformations, can occur. 
Therefore, when utilizing form finding, one either must introduce weights to the 
architectural constrains, representing how important it is for the designer that these 
constraints are fulfilled, or describe the architectural constraints as mutable 
parameters, so that the architect can make qualified choices regarding the 
constraints. In these projects, parametric modelling is used, as this gives rise to a 
more dynamic collaboration between the architect and the structural engineer. 
 
Form finding is a process that requires instant feedback when changing different 
architectural parameters. Therefore, the form finding technique used have to be 
quick and intuitive, so exploration of different is done effortlessly. At the same 
time, it has to represent stresses and be as accurate as possible. In both of the 
gridshells that is considered in this thesis, dynamic relaxation (DR) (see chapter 



38 

2.4) has been used, since it takes bending stresses of the laths into account under 
the form finding process. DR has been implemented in Rhino® using grasshopper. 
DR in grasshopper alone is not suitable for undertaking detailed analysis, thus after 
a suitable shape has been acquired using DR, the geometry must either be 
reproduced in or exported to a finite element software. Both shells in this thesis has 
been reproduced in Abaqus® after the shape has been acquired. This method is 
chosen mainly because when exporting the final geometry from the form finding 
process, the information regarding how it acquired this geometry is lost. This is 
most relevant for kinematic gridshells, where it is crucial to know if the shell can 
be built from a flat grid. In addition, the largest stresses may occur during the 
erection process, which makes it necessary to trace the motion of the grid from flat 
to curved. 
 
Finite element modelling 
When reproducing the gridshell in Abaqus, it would be highly cumbersome to 
model the gridshell by hand using the graphical user interface. This is because a 
gridshell consists of numerous nodes that has to be placed in the correct location, 
and then, beam elements with correct orientation must be defined between all nodes 
and finally, each node must be defined as a hinge connection. Therefore, it is much 
easier to define the gridshell by parameters. Nathalie Labonotte from SINTEF, 
made a python script in 2015 which produces a gridshell geometry in Abaqus given 
different parameters. The script correctly places all nodes, defines all beam 
elements with correct orientation, mesh and element type as well as defining each 
node as “elastic hinges”. It is highly timesaving to use this script, especially if the 
geometry has to be changed later on. 
 
In Rhino, the laths of the flat gridshell all lie on the same plane, and the connection 
between them is a perfect hinge. In Abaqus, the gridshell is best modelled by putting 
the laths on top of each other. This is because a hinge in Abaqus requires two 
different nodes to be defined. This is also how gridshells usually is assembled on 
site as well. By putting the laths on top of each other, an additional level of 
asymmetry is introduced to the grid, since the bottom layer must be curved more 
than the top layer (in the case of a compressional shell), which could possibly 
change how the grid works. 
 
Each connection that link perpendicular laths in the grid are modelled as perfect 
hinges in Rhino. In Abaqus however, the hinge-connection must have some 
stiffness in order to make the calculation converge. Without any stiffness, a small 
moment in the hinge would give rise to infinite rotations. The numerical values of 
the stiffness should be very small, or else they would consume too much elastic 
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energy for the structure to function as designed. When the structure has reached its 
final shape, these connections are usually tightened in order to increase the stiffness 
of the structure. This could also be modelled numerically, but which value to use 
for the rotational stiffness of the hinge is not trivial. Therefore, the stiffness of the 
hinges is not changed in the following analyses (this is also a conservative 
assumption). 
 
In kinematic gridshells, the structure is stiffened after the shell has got its desired 
shape. This change in the structure should be reproduced in some way in Abaqus. 
Abaqus do have a function called “model change”, in which it is possible to add or 
remove elements in a step. It is important that these elements should be stress-free 
when added (the elements will most likely have gotten stretched or compressed 
during erection).  
 
Finite element analysis 
The analysis of a kinematic gridshell must usually be done in two consecutive steps: 
Firstly, from an initial flat grid, the given forces and boundary conditions erect the 
gridshell into a curved shell. Secondly, design loads are added to the curved 
gridshell. If, however, the bending stresses that arises during erection is small 
compared to the design stress of the material, these two steps may be investigated 
independently. In other words, consider the curved shell as stress-free, add the 
design loads to the structure, and add the resulting stresses to the bending stresses 
due to erection. In order to check whether this is a valid approximation, an 
investigation of the strain energy may be in place. If the strain energy behaves 
linearly in both steps, the approximation may be valid. If not, the two steps must be 
carried out successively. It should be noted that the erection process is highly 
geometrically non-linear because of the large deformations, so a non-linear analysis 
must be carried out. However, when the structure approaches its final geometry, the 
deformations become smaller compared to the loads, so the final structure may act 
linearly anyway. 
 
The main concern in these analyses is stresses. Since the gridshell laths are made 
out of beam elements, it is possible to check the stresses due to axial, shear and 
bending forces in the laths. These forces are coupled to each other due to the 
geometric stiffness, so the stresses cannot in general be checked independently. 
However, since the laths are thin and the stresses are small compared to the 
deformations, shear stresses may be neglected and all stresses can be considered as 
normal stresses along each lath due to bending and axial forces. Also, by cross 
bracing or other similar techniques for stiffening the kinematic gridshell after 
assembly, all stresses in the stiffeners may be regarded as normal stresses. This 
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simplifies the analysis compared to continuous shells, where the in-plane shear 
stresses must be considered and the direction of the normal stresses must be 
determined. If, however a continuous cladding is used for shear stiffening the 
gridshell (as in the Savill Garden Gridshell), this cladding must be considered as 
continuous.  
 
Approximations 
Dynamic properties are not studied in detail in these gridshells, but the first 
eigenmodes and the corresponding eigenfrequincies are calculated. 
 
Loads of interest in these structures are a few of the realistic loads which may occur 
during the structure’s lifetime. Only static loads will be considered, so wind and 
earthquake analysis is not carried out. In addition, temperature, humidity and soil 
conditions are also neglected.  



41 

 

2.2 Grid shell by Steinar and John 
 
Description 
As a part of their master’s thesis, Steinar Hillersøy Dyvik and John Haddal Mork 
designed and built a kinematic grid shell in Trondheim, spring 2015. The structure 
was made of wood and spanned 10×10$, with a maximum height of 4.5	$. When 
flat, the grid could be thought of as a truncated square with an orthogonal grid mesh 
(Figure 2.1a). The four shortest edges act as supports (Figure 2.1b), and the shape 
of the grid was obtained by digital form finding using dynamic relaxation. 
 

Figure 2.2: Grid shell by Steinar and John. Concrete blocks and the diagonal laths that were used to fix the 
structure is visible. 

Figure 2.1: a) Flat grid projection as a part of a larger square. b) concept illustration 

a) b) 
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When Steinar and John built the grid shell, they made a custom platform which was 
placed at midpoint under the grid and was used to lift the grid vertically. 
Subsequently, gravity pulled down the outer parts of the grid as the platform was 
lifted higher and higher. Eventually they forced each supporting edge to the desired 
position, and attached them to a corresponding concrete block (these concrete 
blocks are visible in Figure 2.2). In order to increase the in-plane shear stiffness, 
diagonal laths were added after the final shape was found (these laths are also 
visible in Figure 2.2). 
 
Material and cross section 
In 2015, several students at NTNU conducted a number of material tests on the 
timber laths that were used in this actual gridshell. Three- and four-point bending 
tests were carried out, and it resulted in an average Young’s modulus value of about 
10	000) $$

* and an average fracture strength of 55) $$

*. During the 
following analysis of this gridshell, these are the values that are used. Since most 
of the action in the gridshell are along the lath’s grain orientation, a homogenous, 
elastic material model is implemented. 
 
The cross section of the laths is rather complex, since both the position of the neutral 
axis and the height of the section is varying along each lath (Figure 2.3). This may 
lead to unfortunate stress concentrations where the cross section is thinner, due to 
a sudden change in geometry (as mentioned in chapter 1.3). 
 

 
Figure 2.3: How the alternating lath design lead to a varying position of the neutral axis (red). 

In addition, since the neutral axis is varying, additional bending moments will be 
introduced in the laths in the presence of axial forces. These bending moments can 
be estimated. If ℎ is the height of each lath, and by examining Figure 2.3, it is 
evident that the maximum bending moment due to a horizontal axial load ) is 
1 2)ℎ (Figure 2.4). This effect is initially neglected during the analysis, but by 
first calculating the maximal axial forces due to straight beams, the accuracy of the 
approximation can be evaluated. 

 
Figure 2.4: Bending moment due to the antisymmetric design of the beams 
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Analysis overview 
History and experiments shows that the stresses which arise during construction of 
a kinematic grid shell, could be the largest stress values the structure is exposed to. 
Because of this, it is important to account for these stresses in a controllable and 
reliable manner. The construction process can be rather complicated to model 
numerically, since it is highly nonlinear. In addition, the loads which are forcing 
the structure in place can be difficult to predict in advance. When analysing this 
gridshell, two different approaches were studied: 
 

• Applying an inverse gravity load on the flat grid, and 
 

• introduce small perturbations, followed by fixed displacements of the 
supports. 

 
Inverse gravity method 
The inverse gravity method is interesting to investigate since this is what the 
architects used in Rhino when they originally ran the form finding analysis. First, 
the flat grid was defined and constraints representing the supports were added. The 
support constraints were defined by the architects to be curved. This was done 
because they felt like the curvature of the shell became more apparent. From a 
structural engineering viewpoint, it could also be beneficial for the structure, since 
this additional curvature may give the shell more doubly curvature near the supports 
(see chapter 1.3). However, this will most likely introduce additional bending 
moments in the support laths, so this should be taken into account. 

 
Figure 2.5: The initial support conditions when the inverse gravity method was used. 
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When modelled in Abaqus, the supports were defined a bit differently. Here, the 
outmost laths of the supports were “simply supported”, and the other ones were 
pinned to the ground (see Figure 2.5). This was done because it was desirable to 
investigate how the supports would naturally differ from a straight line during 
erection. The magnitude of the inverse acceleration of gravity was then adjusted 
until the structure obtained its designed height and width. Finally, the acceleration 
of gravity is reversed to its natural, downward-pointing direction. The result can be 
seen in Figure 2.6.  
 

 
 

Figure 2.6: Different steps in the erection process, when the inverse gravity method is used. 

It is evident that the edges of the support remain virtually straight by using this 
technique. One might add additional boundary conditions which displaces the 
supports into a curve, but this was not done here. It is important to understand that 
when using this method, there is no downward-pointing gravity during the erection. 
First after the shape is realized, the boundary conditions are locked in place and 
gravity is added. This may lead to an unrealistic solution, that might be very 
difficult to build in real life. The next method introduces a technique for obtaining 
the shape while gravity acts on the structure. 
 
Buckling the grid 
By displacing the supports to the correct position right away, the gridshell will 
intuitively “buckle” into shape. Some small perturbations must be introduced in the 
gridshell before the supports are displaced, or else the perfectly flat grid might 
buckle locally, or the incorrect global buckling mode might be activated. The 
prescribed displacements are only applied to the middle laths of the support, in 
order to get the curved support conditions that the architects designed (Figure 2.7). 
The result of this method can be seen in Figure 2.8. 
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Figure 2.7: Diagram showing how the middle laths of each support gets displaced. j

4

 is the gridshell’s 
length when flat, and j is the span length after the desired shape is obtained 

 

 
 

Figure 2.8: Different steps in the erection process, by displacing the supports into the desired position. The 
colours represent the vertical displacement measured in $$. 

The main difference here, is that the supports now have obtained its curvature. By 
using this method, not only does the supports get the desired curvature but in 
addition, it is a more realistic model of the erection process, since gravity acts on 
the structure during the whole process. It is also much easier to obtain the desired 
result with different parameters because the displacements are prescribed, in 
contrast to the former method, where the inverse gravity must be fine-tuned in order 
to get the desired result. Therefore, this is the model that is used henceforward.  
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Stresses due to assembly and gravity 
The first stress state to examine, are the normal stresses (first principal stresses) in 
the laths after assembly. It is expected that the maximum values of the normal 
stresses occur in the lath with the most curvature since the axial stress should be 
virtually uniform in each lath. The deformed structure coloured in with normal 
stress values is shown in Figure 2.9. 

 
Figure 2.9: Plot of the normal stress distribution after erection. The stresses are measured in ) $$

* 

It is notable that the highest normal stress values occur where the curvature appear 
to be the highest, which was expected. What is not so obvious is why the adjacent 
sides, which appear to have similar curvature, does not have the same stress values. 
This is probably due to the fact that the laths lie on top of each other, introducing 
an additional level of asymmetry to the structure. It is, however, bizarre that the 
section forces shown later are very symmetrical. In other words, the asymmetry in 
the stress distribution must be caused by something else than the section forces. 
 
It is most alarming that already after assembly, the structure exceeds the fracture 
strength. This was actually noticed on site as well, since a lot of the laths broke 
while assembling them. Two possible remedies for this includes: use a stronger 
material, and utilizing a doubly layered gridshell, as was done in Mannheim 
Multihalle (see section 1.2). By adding diagonal stiffeners after erection, the 
structure may also be able to carry larger loads. 
 
The next stresses of interest are the shear stresses (second principal stresses). Since 
the geometry of the gridshell should be funicular, it is expected that very little shear 
stresses due to bending moments should arise. Again, a plot showing the shear 
stresses is given in Figure 2.10.  
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Figure 2.10: Deformed plot of the gridshell showing the shear stresses in ) $$

* 

Apparently, some shear stresses arise at the cantilevering parts of the gridshell. One 
might first think that these stresses arises due to defects in the geometry that 
produces bending moments, but in reality, these shear stresses arise due to torsional 
deformation of the laths. These values are also alarming, since the shear strength of 
timber is usually taken to be about 5	)/$$*. A magnified view of the torsional 
deformation can be seen in Figure 2.11. 
 

 
 

Figure 2.11: The rotation of the lath's cross section (torsion) gives rise to shear stresses. 
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To verify that it actually is torsion that produces these shear stresses, the torsional 
moment is shown in Figure 2.12. One possible remedy for these stresses is to attach 
diagonal stiffeners, which helps restrain the torsional rotation of the laths. 

 
Figure 2.12: Contour plot of the torsional moment of the laths. 

 
Bending moments 
In addition to the torsional moment, it is also interesting to look at the bending 
moments. Since the laths are bent about two different axes, the bending moment 
about both the minor and major axes (assuming l×ℎ = 48×23$$) are shown in 
Figure 2.13 and 2.14 respectively. 

 
Figure 2.13: Contour plot of the bending moment about the lath’s minor axes. 
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Figure 2.14: Contour plot of the bending moment about the lath’s major axes. 

The maximum bending moments appears on the support laths on Figure 2.13. The 
curvature imposed on the supports may therefore be too extreme. If the bending of 
the support lath is ignored, the largest bending moments apparently emerges in the 
“horizontal” laths (Figure 2.14). These bending moments gives rise to maximum 
bending stresses about 50	)/$$*, which is fairly close to the failure strength. 
These laths however, does does not undergo as much axial compression as the 
vertical laths. Consequently, the total stresses in the vertical laths might be higher. 
 
Stresses due to additional loading 
In fall 2015, after the gridshell was built, numerous load tests were conducted on 
the gridshell. The tests were carried out by hanging weights on different parts of 
the gridshell. Subsequently, the deformation of the structure was measured by both 
a handheld laser scanner and a 3D point-cloud scanner. 
 
The tests showed that the gridshell with cross bracings was remarkably effective 
when carrying symmetrical loads. When loading the gridshell with the maximum 
load that was available, it was loaded in 8 nodes with each weight weighing 90kg. 
The maximum deflection that was measured was a total deflection of about 86mm. 
This deflection was located on the apex of the gridshell, and was hardly noticeable 
to the naked eye. 
 
When the cross bracing was removed, the same load gave a maximum deflection 
of about 300mm. On site, this deflection was quite noticeable and also amplified 
some asymmetries in the structure. These asymmetries probably have roots in an 
imperfect assembly, but could also be due to the fact that the structure began to 
contact a tree on one side of the gridshell. 
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In Abaqus, only the situation where the cross bracing was not present was studied. 
This was done in order to simplify the modelling process and because the small 
deflections measured was too small to do any decent numerical comparison with. 
Figure 2.15 shows the Abaqus model with cross section l×ℎ = 48×23$$, and 
how that model deflected when subjected to the symmetric loading. 

 
Figure 2.15: Deformation and bending due to symmetric loading by eight 90kg weights. 

As is evident, the deformation in Abaqus exceeds 300mm quit a lot. The maximum 
deflection measured in Abaqus is about 2500mm. Presumably, the cross section is 
too small in Abaqus to carry these weights, consequently the cross section should 
perhaps be altered. If it is assumed that the cross section is l×ℎ = 48×48$$ 
instead, the following deformation pattern is obtained (Figure 2.16). 

 
Figure 2.16: Deformation and bending due to symmetric loading, with l×ℎ = 48×48$$ laths 

Now, the deformation measured in Abaqus is about 150mm, which more accurately 
resemble the real structure. However, two problems now have appeared. Firstly, the 
bending moments emerging due to the erection of the gridshell are now three times 
higher. This gives rise to a bending stress of about 118	)/$$*, which clearly 
would break the laths. Secondly, the “openings” of the shell, is too shallow, 
measuring about 1.5m above ground, which is 500$$ lower than the real 
structure. This discrepancy could be due to the cross section of the laths, which act 



51 

differently than expected since the two layers of the cross section, may have some 
complex interactions between them. Another possibility, is that since these tests 
were conducted 4 months after the gridshell was built, the timber may have 
undergone relaxation and sliding movement due to viscous material behaviour and 
friction, which may have changed the shell’s structural performance. 
 
During erection, the connections were fairly “loose”, making the two layers of the 
gridshell act more independently. After the final shape was obtained, the 
connections were tightened, and the two layers acted more dependently after that. 
This might explain why the structure did not break during assembly, but at the same 
time is strong enough after assembly to resist heavy loads. To model this, a higher 
“effective cross section” may be used. By altering the cross section to l×ℎ =
48×40$$, the correct deflection is obtained. This is not a conservative 
assumption, but it is nonetheless interesting to think about what might be the cause 
of the differences between the numerical values and the measured values. 
 
The more interesting situation is when the loading is asymmetrical. When loading 
the gridshell asymmetrically, one of the laths at the support failed after seven point 
loads of 90kg (See Figure 2.17). The failure appeared due to a combination of large 
bending moments and compression. The result from Abaqus, when the model is 
subjected to the same loading is seen in Figure 2.18. 
 

 
Figure 2.17: The outmost lath of the support failed in bending under asymmetrical loading 
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Figure 2.18: Deformation due to asymmetrical loading. Large bending moments near the supports are visible. 

The figure shows the bending moments in the laths, and the largest values are 
consistent with where the failure actually happened. The large bending moment of 
the horizontal support laths is not particularly realistic, since the real structure is 
able to rotate this part without much bending arising. The large bending moment in 
the Abaqus model surface due to the way the boundary conditions are defined. 
 
Eigenmodes and -frequencies 
An examination of the first eigenmodes and –frequencies is interesting, because 
these properties give insight to the overall stiffness of the structure as well as which 
load situations that are most critical. The first two modes are similar modes in 
different planes, and give rise to the same frequency (Figure 2.19). 
 

 
Figure 2.19: (Side view) The first and second eigenmodes corresponds to translation of the top part of the 

gridshell. 

These mode’s eigenvalues were calculated to be about 0.56	m., which is very low. 
The stiffness of the structure in the horizontal direction is in other words small 
compared to the vertical stiffness, which is not surprising given the shearing rigid 
body modes that are present (see chapter 1.7). The asymmetrical loading from 
before showed the same phenomena, where asymmetric loading gave rise to large 
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deflections. By bracing the structure, the structure’s stiffness increases, and so will 
the corresponding eigenfrequencies. 
 
The third mode corresponds to a rotation of the top part of the gridshell, and 
displayed an eigenvalue of about 1.00	m. (Figure 2.20). 

 
Figure 2.20: (Top view) The third mode corresponds to a rotation of the top part of the gridshell. 

The frequency of this mode is also quite small. The same phenomenon is displayed, 
namely that the in-plane shear stiffness is very low. Again, bracings would have 
stiffened this mode as well, simply because it is the shearing that gives rise to the 
low frequency. 
 
The fourth mode is particularly interesting, since it by inspection almost exclusively 
consists of shear deformations of the quadrilaterals (Figure 2.21). If the gridshell 
laths had lacked bending resistance, this mode would perhaps be the lowest mode. 
The bending resistance of each lath helps stiffen this mode. 
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Figure 2.21: (Top view) The fourth mode corresponds to “squeezing” the top part of the gridshell. 

The calculated eigenfrequency of this mode was found to be about 1.53	m.. It is 
still a low frequency, but nevertheless three times larger than the two lowest 
frequencies. This mode would clearly benefit from bracing, as almost all motions 
consist of shearing the quadrilaterals in the grid. 
 
Summary 
To summarize, the gridshell works very well when subjected to symmetrical loads, 
and, by adding the bracing, the shell is stiffened a whole lot. It was seen that the 
first four eigenmodes were modes in which bracings would have increased the 
stiffness significantly. The problem arises when the loading is asymmetrical and 
the bracing is removed. High bending stresses appear near the supports, which 
introduces a possible failure mode. The experiment that was conducted on site 
showed that the structure failed in that area. In addition, the lath, not surprisingly, 
failed where the cross section was the smallest. 
 
Together with Nathalie Labonette, John Haddal Mork, Steinar Hillersøy Dyvik, 
Anders Rønnquist and Bendik Manum, it was written a paper for the WCTE (World 
Conference of Timber Engineering) 2016 regarding snow loads on this gridshell. 
The paper concluded that the gridshell was not able to resist the (asymmetrically 
loaded) design snow loads in Trondheim. The full paper can be read in appendix 1. 
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2.3 Elongated gridshell (gridshell bridge) 
 
Description 
After studying the gridshell built and designed by Steinar and John, thoughts around 
larger gridshell immediately surfaced. What happens with the structural 
performance if the size of the gridshell was much larger? Mannheim Multihalle 
(section 1.2) is perhaps the best example of a gridshell structure where the 
possibilities of large gridshell structures was addressed. Where the Mannheim 
gridshell differs the most from Steinar and John’s gridshell, except for its size, is 
that the Mannheim gridshell is continuously supported almost around the whole 
structure, whereas at Steinar and John’s gridshell, only a portion of the shell’s total 
circumference acts as supports. This often leads to more interesting and surprising 
funicular geometries during the form finding, but also requires more load to be 
taken by the support laths. 
 
My supervisor, Nils Erik Anders Rønnquist, proposed to study a gridshell structure 
which not only was large, but was way larger in one spatial direction than the other: 
an elongated gridshell. The gridshell should not be continuously supported, like that 
of Mannheim, because this would lead to a barrel vault-like funicular geometry. 
The basic idea was to take the gridshell that Steinar and John had designed, and 
“stretch” it in one direction (Figure 2.22). Rønnquist got the idea when studying the 
Cascara bridges in Madrid (Figure 1.6), and wondering how bridges like these 
would have looked like if they were gridshells. The cascara bridges do have some 
striking shell geometries, but the continuous concrete surface also absorbs a lot of 
light from the surrounding environment. The gridshell spans on the YAS Hotel in 
Abu Dhabi (Figure 1.5) and on the Bridge of Peace in Tbilisi (Figure 1.7) are 
perceived as lighter structures, and does not absorb as much light from the 

Figure 2.22: Elongating the square grid shell, concept illustration. 
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environment. Both the YAS Hotel and the Bridge of Peace are freeform shells, and 
is therefore not a direct product of form finding. On The Bridge of Peace, especially, 
it looks like the steel members have larger cross sections than they need to, and this 
could be avoided by a combination of having a denser grid (like on the YAS Hotel) 
and/or by utilizing form finding to make sure the geometry is funicular. 
 
The question whether the elongated gridshell should be kinematic or not, will 
remain an open one, but it is initially assumed that the gridshell is kinematic. This 
is chosen because the gridshell by Steinar and john is kinematic, and it is desirable 
to investigate the effects of elongating this particular gridshell. In addition, when 
the gridshell is kinematic, the “meshing” (dividing the gridshell up into grids) is 
much easier because it is done on a flat surface. Some discussion about optimizing 
the grid will surface later on, and then the gridshell is no longer considered as 
kinematic. 
 
Predictions 
When the gridshell is elongated as shown in Figure 2.22, the structure will probably 
act more like an arch, and less like a shell. This means that the geometry 
perpendicular to the span will be of less importance, or in other words; the 
beneficial effects due to double curvature may vanish. The span-to-width ratio of 
the shell should therefore not be too extreme in order to preserve the shell 
behaviour. 
 
It is expected that, due to the small supports compared to the size of the structure, 
that the beams near the supports will exhibit a lot of axial forces, especially under 
asymmetrical loading, which were the weakest parts of the previous shell as well. 
Since the structure would act more like an arch when elongated, it is expected that 
it is even more prone to asymmetrical loading. It will also probably be necessary to 
introduce “edge beams” in order to make the shell withstand heavier loads. 
 
Numerical form finding 
During the form finding process, tight cooperation between engineer and architect 
was desirable in order to, not only make a shell that is structurally sound, but also 
a shell that is aesthetically pleasing and fulfil the architectural constraints in a good 
way. In addition, Steinar as the architect, has experience with form finding from 
earlier, and he is able to obtain numerous funicular shapes very quickly given 
parametric boundary conditions and constraints. Dynamic relaxation, implemented 
in Rhino and Grasshopper, is the form finding method used. 
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When defining the boundary conditions, the Cascara bridges were used as a 
reference because it was not clear how the flat geometry should be defined in order 
to obtain a pleasing result. If one of the Cascara bridges had been laid out flat, the 
geometry would have been something like the illustration on Figure 2.23. 
 

 
Figure 2.23: A flattened version of one of the Cascara bridges 

Initially, we made a gridshell out of the same geometry, but due to the “meshed” 
nature of the flat grid shell, the curves became jagged which did not look 
particularly good. A simple, square grid plan was then proposed, keeping the same 
boundary conditions (Figure 2.24a). The geometry of this plan was expected to turn 
out like the geometry seen in Figure 2.24b.  
 

 
Figure 2.24: A square grid plan (a), and how its expected funicular geometry would look like (b) 

From their previous gridshell, Steinar and John learned that the orientation of the 
grid alters the funicular geometry quite drastically because the directions of 
anisotropy changes. Different orientations of the flat grid were therefore tested in 
order to see how this affected the shape. In addition, he introduced a “curved” 
support line (like in the previous shell) in order to impose some double curvature.  
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First, we tried with a regular, orthogonal grid (Figure 2.25). 

 
Figure 2.25: Solutions to the form finding process with an orthogonal grid mesh. a) Front view. b) 

Perspective view. c) Side view. 

As can be seen, the openings at the ends act like simple barrel vaults, while the 
middle part acts more like a wide arch. It is interesting to see how the barrel-vault-
like geometry merges into the arch, forming a sort of hybrid structure. There is an 
absence of double curvature in the middle part, which was expected. It is possible 
to impose some double curvature on the geometry by remembering that funicular 
geometry is dependent on the load situation. In other words, by introducing 
permanent loads to the structure, the following funicular geometry should change. 
If we now assume that the elongated shell structure should be a bridge, and the 
weight of the load is carried by cables, we can use this as our additional loading. 
Figure 3.26 shows a geometry where the middle part of the structure has been pulled 
down. 
 
 
 
 
 

a) b) 

c) 
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Figure 2.26: Solutions to the form finding process with an orthogonal grid together with edge loading. a) 

Front view. b) Perspective view. c) Side view 

Now, the shell looks more like a long barrel vault where the middle part is supported 
higher above ground. The imposed loads naturally lower the total height of the 
bridge as well, which makes the bridge act like a barrel vault which is supported at 
the ends. This will probably lead to some longitudinal tension forces in the bottom 
part of the shell, and longitudinal compression forces in the top part (bending 
action). From chapter 1.3 it was shown that such action lowered the utilization grade 
of the structure, so it should be avoided. What is good with an orthogonal grid mesh 
is that the curves on the edges that arises during the form finding process is very 
smooth and visually pleasing. The main disadvantages are that a significantly 
amount of the shell is singly curved like a barrel vault, and that the flow of forces 
is not directed towards the supports. The forces must therefore change direction in 
order to get absorbed by the supports, which can be made possible by introducing 
edge beams. 
 
By choosing a diagonal grid mesh instead, very different results are obtained. We 
first tried without pulling down the middle part of the shell, and acquired some 
troubling shapes (Figure 2.27). 
 
 

a) b) 

c) 
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Figure 2.27: Solutions to the form finding process with a diagonal grid mesh. a) Front view. b) Perspective 

view. c) Side view 

Due to the low shear resistance of the grid, the shell became extremely elevated in 
the middle part, which again led to that the parts near the supports became too 
shallow compared to the desired result. What is interesting, is that the edges on the 
middle part actually bend upwards. The gridshell was able to do this, again, because 
of the low shear stiffness in that direction. By again introducing forces resembling 
the cables of the bridge, a much more pleasing results was acquired (Figure 2.28). 

a) b) 

c) 
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Figure 2.28: Solutions to the form finding process with a diagonal grid with edge loading. a) Front view. b) 

Perspective view. c) Side view 

Now, the shell clearly has obtained its desirable double curvature as well as 
sufficiently high openings at the ends. Due to the diagonal layout, the flow of forces 
is also more directed towards the support, which helps smoothing out the stress 
distribution. The main downside with this shape is that the jagged edges obstruct 
the smooth curves obtained when using an orthogonal grid. A possible remedy is to 
introduce edge beams to smooth out the jagged lines as well as providing stiffness 
and additional strength to the structure. The shape obtained here is what will be 
used as a reference further on during the analysis. 
 
Physical form finding 
A quick physical “hanging chain” model 
was made to assess how the physical 
model differed from the numerical one 
(Figure 2.29). The physical form finding 
model showed that by pulling down the 
middle part of the shell, double curvature 
will be imposed. In addition, near the edge 
openings, the shell “bends” upwards as it 
did on the numerical model. 
 
 
 
 
 
 

Figure 2.29: Physical form finding model (upside 
down) with edges outlined for clarity. 

a) b) 

c) 
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Preliminary analysis 

 
In order to check whether the grid shell will realistically withstand the prescribed 
loads, it might be a good idea to do a quick, simple calculation of the compressive 
stresses at the supports. To achieve this, some assumptions are introduced for 
simplicity: 
 

• All loads are distributed equally to each support, i.e. one quarter of the total 
load is taken by each support (non-conservative). 
 

• The live load is uniform and in the vertical direction along the whole flat 
grid (conservative).  

 
• Every lath at each support carries the same load (non-conservative). 

 
• The stress in each lath should not exceed half of the compressive stress 

capacity (conservative). 
 
 
Let ) be the number of laths at each support. Then, the force M at each lath is given 
by: 
 

M =

1

4)
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>D=<
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a) b) 

Figure 2.30: a) The flat grid as a part of a larger equilateral quadrilateral. u
P

 and u
N

 represent the number of 
quadrilaterals in the length and width of the grid respectively. b) Volume of each quadrilateral is given by 
considering half the width of the laths. Definitions of T

P

 and T
N

. 
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(2.1) 

where n is the density of wood, Y is the gravitational constant, o
>D=<

 is the total grid 
volume, R is the live load, p

qAr<

 is the area of which the load act, t is the 
compressive stress capacity and l and ℎ is the width and height of each lath 
respectively. 
 
Solving for ) gives:  
 

) >

nYo
>D=<

+ Rp
qAr<

2tlℎ

	. 

 
To obtain o

>D=<

 it is convenient to consider the flat grid as a part of a larger 
equilateral quadrilateral mesh as show in Figure 2.30a. The grid’s total volume can 
be calculated as the sum of the volumes of each quadrilateral in the desired grid 
plus half the volume of the quadrilaterals which lie on the edges of this grid: 
 

o
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	. 

 
The total number of quadrilaterals in the desired grid is obtained by taking the sum 
of all quadrilaterals and subtracting the parts which lies outside the desired grid:  
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The two sums in the expression is the triangular number, which counts the number 
of objects in a discrete equilateral triangle. It can easily be shown that such a sum 
equals 1

2

u(u + 1), where n is the number of objects on each side of the 
equilateral triangle. Therefore 
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The number of quadrilaterals which lie on the edges of the desired grid is obviously 
the circumference of the grid: 
 

)
Qwr<E,:<>:

= 2 u
P

+ u
N

	. 
 
By considering the volume enclosed by the neutral axes of one quadrilateral (see 
Figure 2.30b), one will obtain the volume of each quadrilateral in the grid: 
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The live loads may vary nontrivially in space, but for simplicity the load is 
considered uniform in space and acts along the whole flat grid, such that 
 

p
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Inserting into (2.1) gives: 
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By expanding the square term and summing we get: 
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By assuming the same timber as earlier we have t = 55	)/$$

*, n = 350	xY/$

h, 
Y = 9.81$ W

*, l = 48	$$, ℎ = 23	$$ and live load R = 5x) $

* we get: 
 

) > ~40	. 
 
Clearly, 40 laths at each support would be way too dense. By learning from 
Mannheim Multihalle, a second grid layer could be introduced, which gives the 
approximate number of required laths to become 20. This means, firstly, that the 
load due to self-weight of the structure is negligible compared to the live load, and 
secondly, that the number of laths is still too big, requiring a dense grid. One 
solution to this problem is to use edge beams. If it is assumed that the edge beams 
are able to absorb half of the axial forces in each support, about 10 laths is needed. 
 
When trying out different form finding shapes, it was found that if about 80% of 
the total length of the bridge is spanning, a satisfactory shape was found. Therefore, 
with 10 laths in each support and a total length of 100m, 80m of the bridge should 
be spanning, and 10m on each side acts as supports. In other words, the grid spacing 
in the longitudinal direction will be 1m. To obtain the grid spacing in the other 
direction, consider the following diagram (Figure 2.31). 
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Figure 2.31: It was desirable that the relationship between T

P

 and T
N

 was such that a diagonal spans 
diagonally over to another support 

By choosing that the diagonal lath (highlighted in the figure above) will span like 
shown, the grid spacing can be obtained by equal triangles: 
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Here, m = 26$, j = 110$ and T

P

= 1$. 
 
Numerical modelling 
It was quickly seen that the analyses would have been too time consuming in 
Abaqus if the grid were to be modelled exactly. Therefore, only one sixth (1/6) of 
the laths in the grid was modelled (similar to what was done when modelling the 
Mannheim Multihalle). It is still believed that the end result would be the same, 
except that the section forces would be higher in each lath than they would be in 
reality. The script from Nathalie was again used to define the geometry of the 
gridshell 
 
The same technique to “lift” the gridshell as was used in the previous gridshell, the 
buckling method, is used here as well. The boundary conditions are defined as 
shown in Figure 2.32. 

 
Figure 2.32: Boundary conditions. The values depicted correspond to the movement of the red dot. The black 

dots corresponds to Ä
Å

= 0. 
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Like on the previous shell, there is a mixture of imposed and “free” boundary 
conditions. The black dots on Figure 2.32 represents the “free” constraints and are 
chosen to be free in order to assess how the curve is formed during erecting the 
shell. 
 
First, the structure after the erection without self-weight is considered. This is 
chosen because the analysis will become very unstable when gravity is enabled 
during the erection process. The acquired shape in Abaqus is shown in Figure 2.33. 
 

 

It is evident that the middle part of the structure has not been pulled down 
significantly. It is also noticeable that it differs quite a lot compared to the solution 
from the form finding. This discrepancy is probably caused by the stiffness of the 
joint which are necessary in Abaqus in order to get a convergent solution. There are 
many more joints in this model than in the previous one, so the error is more 
apparent here. From this analysis it can be seen that it is a good idea to run the 
erection step in Abaqus, to see where it will differ from the form finding. The largest 
bending moments due to the curvature appear in one of the laths near the supports, 
which did not appear in the form finding model. It should be noted that these 
bending moments are very small, due to the sheer size of the structure compared to 
the small cross sections of the laths. 
 
 
 
 

Figure 2.33: Solution in Abaqus after assembly (Bending moment plot). 

a) 
b) 

c) 
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To get rid of these high curvatures proved to be a nontrivial task. In order to do so, 
the edge loading, representing the bridge cables, had to be introduced. In addition, 
supplementary spurious forces were defined near the supports to “force” the ends 
into a barrel vault. The final result can be seen in Figure 2.34. 
 

 
Figure 2.34: Solution in Abaqus with edge loading. (vertical displacement plot) 

Now, the structure more closely resemble the geometry found by the form finding 
process earlier. The main differences are that the edges near the bridge’s openings 
does not “bend” upward as much, and the middle part is “flatter”. These 
dissimilarities occur due to the rotational stiffness of the joints in Abaqus, and also 
due to the fact that the grid layout is different (the angle between the crossing laths 
is less than 90°). 
 
By examining the stress-strain history of different elements, some pointers about 
the nonlinearity of the erection process can be obtained (Figure 2.35). As can be 
seen, the behaviour is quite non-linear at first, but tends to behave more and more 
linearly. This is due to the fact that the structure becomes stiffer as the shell erects, 
which leads to less large, rigid motions and more elastic deformations. 

 
Figure 2.35: Typical stress-strain curve in the shell. 

a) 
b) 

c) 
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Bending moments 
As mentioned, the bending moments that arises are very small, virtually negligible. 
However, it could be useful to examine where the structure has the most curvature. 
The moments are shown in Figure 2.36. 

 

 

 
Figure 2.36.: Bending moments about the a) first principal axis, b) second principal axis and c) torsional 

moment 

a) 

b) 

c) 



69 

Even though these bending moments are small, it can be seen that the largest values 
accumulate near the supports, both in torsion and in bending. This, together with 
the fact that the normal stresses near the supports are high (from the preliminary 
analysis part), means that the supports will likely be the most vulnerable part of the 
structure. 
 
Asymmetrical loading 
The global stiffness of the structure, is expected to be low, due to the fact that the 
bridge acts more like an arch than a shell. It is therefore expected that the structure 
will be highly prone to asymmetric loading. One possible remedy for this, is to use 
a cable layout which distribute the asymmetrical loading evenly (given that the 
loading is on the road, and not on the shell itself). Another one is to introduce strong 
edge beams, which will help increase the overall stiffness. 
 
Sadly, no convergent solution was able to be carried out to verify the expected 
response. 
 
Cable layout 
The layout of the cables is not studied in detail in this thesis, but some discussion 
is given henceforth. In the Cascara bridges in Madrid, the cables were densely laid 
out in order to use thinner cables which did not obstruct the view of the 
environment. The straight, vertical layout also minimized the obstruction. There 
are, however, more effective cable layouts to use for bridges. Per Tveit, a professor 
emeritus at the University of Agder, has studied cable layouts for suspension 
bridges extensively [19]. He has been studying network arch bridges, especially, 
and these all use a similar cable layout (Figure 2.35). 
 

 
Figure 2.37: A network arch bridge, with its characteristic cable layout. 

 
The main advantage of this type of layout, is that the bending under asymmetrical 
and concentrated load of the arch (which is the shell in this case) is greatly reduced. 
By utilizing the same cable layout in a shell bridge, the shortcoming under 
asymmetrical loading will very likely not be as evident. In addition, the cables can 
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be thinner with this type of layout, providing the pedestrians with a better view from 
the bridge. It would be interesting to study the behaviour of the gridshell bridge 
with this layout, but this analysis is not carries out in this thesis. 
 
Summary 
In this shell, like the previous one, it is under asymmetrical loading in which the 
shell is weakest. Even more so in this one, since the shell acts more like an arch, 
which is known to be prone to asymmetrical loading. In other words, the double 
curvature of the shell becomes less important as the structure is elongated. One 
possible remedy for this, is to use the cable layout as studied by Per Tveit (Figure 
2.35). This will make sure the asymmetrical loading is distributed evenly along the 
whole shell. 
 
The in-plane shear stiffness of the shell can be greatly increased by the same 
techniques as used in previous gridshells, namely to introduce bracing. By using 
cables as cross bracing, the quadrilateral grid will be maintained, and the structure 
will appear lighter (as in Mahheim Multihalle). If edge beams are added, they also 
contribute to the in-plane shear stiffness as well, since they are placed parallel the 
diagonals of the grid. 
 
If the grid is chosen to be regularly meshed, kinematic, made of timber, and consist 
of quadrilaterals, the density of the grid must be very high. A similar design as was 
used in Mannheim Multihalle was chosen, where the grid consists of small cross 
sections and two layers. This reduced the number of required laths on the supports, 
but first when combined with edge beams, the number of required laths near the 
supports were acceptable.  
 
The edge beams also help stiffen the shell a lot, both under asymmetrical loading 
and under in-plane shear motion, and must be considered as a necessity. In addition 
to the structural purpose, it also serves an aesthetic purpose by hiding the “jagged” 
lines produced by the diagonal grid. One interesting question about the edge beams 
becomes; how much does the actual geometry of the shell carry the loads if the edge 
beams are there? If the shell itself could be extremely thin (like chicken wire) and 
the edge beams still is able to carry the loads, the shell geometry is irrelevant to the 
structural purpose of the bridge. On the other hand, it is known that shell behaviour 
carries loads more efficiently than beam behaviour, so there must exist a “sweet 
spot” in the span-to-width ratio where a shell is the better solution compared to 
primary bearing edge beams.  
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3 Discussion and concluding remarks 
 
3.1 Form finding as part of conceptual design 
 
Challenges and opportunities 
Form finding is a great technique for designing good performing structures. Firstly, 
it gives the designer pointers to how the geometry of the structure should be defined 
in order to minimize the bending moments, and secondly, the designer can explore 
different interesting shapes in a quick and easy way. The shapes found by the form 
finding technique was found to be highly dependent on the imposed boundary 
conditions. If the architectural constraints of a given project are not rigorously 
defined, this gives rise to basically an infinite possible solutions of funicular shapes. 
Some natural question then arises; how should the designer pick these constraints? 
And if a given set of constraints gives rise to a well-defined solution, why should 
the designer continue the form finding process? 
 
Defining constraints 
When using form finding for the gridshell bridge, it quickly became clear that the 
shapes are highly dependent on the imposed constraints. The first shapes we 
obtained, did not look like anything we wanted or expected. Either, the openings of 
the bridge became too shallow, or, the shell became too flat. The design process 
then quickly changed from “optimizing” a shell geometry to altering the constraints, 
such that the result was satisfactory. Both engineering and architecture expertise 
was therefore necessary in order to design a good structure. To oversimplify, the 
architect had insight about some of the form-found shapes and how it could be 
altered, and the engineer had insights about how to change the constraints in order 
to fulfil the architect’s input. This eventually led to a form that was not only visually 
pleasing, but also structurally sound. 
 
FEM for form finding 
Using Abaqus for form finding felt very tedious and unnecessary. If the designer 
must wait 30 minutes in order to get a proposition for a funicular geometry, the 
conceptual design phase would have taken too much time. By utilizing form finding 
techniques, such as dynamic relaxation, it is possible to get a realistic solution in 
real-time, and the designer can explore numerous shapes much more efficiently. 
After picking a particular shape from the form finding process, a more detailed and 
thorough analysis can be carried out in a FEM-software, like Abaqus. The problem 
then becomes how to get the funicular geometry over to Abaqus. One possibility is 
to simply export the final geometry, and carry out FEM-analysis on that. This 
completely ignores the erection process (for kinematic gridshells), which was 
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shown earlier to be a very important step. Another possibility is to derive the 
stresses directly from the curvature of the beams. From the previous analyses, it 
was shown that the stress state was more complex than so. Geometrical 
nonlinearities gave rise to different stresses than what would have been the case if 
the stresses arose solely by the current deformed configuration. This makes 
kinematic gridshell structures very interesting and complex to model numerically. 
 
Form finding vs free forming 
What would have been a very interesting experiment is to compare two gridshells; 
one in which its geometry is defined by a form finding process, and another, similar 
structure, which its geometry is drawn by free hand. It was mentioned in chapter 2 
that “optimized” structures, such as those defined by form finding, are often prone 
to instabilities such as buckling, especially for loading in which the structure is not 
specifically optimized for. Free formed shells on the other hand, may have some 
geometry which is not specifically optimized for a specific load, and is therefore 
often more resistant to different load situations. A possible approach to get the best 
of both worlds could then be to use the form found model as a basis for further free 
formed design. 
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3.2 Architect and engineer cooperation 
 
As mentioned earlier, designing a structure with help from the form finding 
technique, proved to be a process in which the architect and the engineer really 
benefits from cooperating with each other since it lies in a place with overlapping 
competence (Figure 4.1). Both roles play an important part: For the architect, since 
he by using form finding techniques are able to explore funicular shapes quickly, 
and for the engineer, because he is able to define constraints that gives rise to 
sensible structures. Since form finding is very quick and intuitive, the architect and 
engineer can cooperate simultaneous during the form finding process, and they can 
give each other instant feedback during the exploration of forms. This is essential 
during the form finding process, and makes it possible to design extraordinary 
structure, both architecturally and structurally.  

 
Figure 3.1: Venn-diagram showing intersecting shell competence for architects and engineers. 

The architect, Steinar, had this to say about the collaboration: 
 

“I think the collaboration have been nice, and would’ve liked to 
spend more time with the design and details on the bridge 
(materials and placement). I believe these problems would’ve 
altered several aspects of the design, and also provide us with 
some missing input, but this is maybe the architect’s job?” 
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3.3 Elongating the Square Grid Shell 
 
By studying the square grid shell by Steinar and John, it was apparent that the shell 
worked very well under symmetrical loading. The diagonal bracings were also 
found to stiffen the structure quite a lot, which became very apparent when testing 
the shell under asymmetric loading. When the bracings were removed and 
asymmetric loading was present, the deformations were large and the shell 
eventually failed. 
 
My supervisor, Anders Rønnquist, then asked the question: What happens if the 
gridshell gets elongated in a particular spatial direction? The question was 
interesting because very few structures were to be found where a gridshell has been 
elongated. The Downland Gridshell could be thought of as an elongated gridshell, 
but it is continuously supported along the sides. We wanted a gridshell that had a 
larger span. The Cascara Bridges in Madrid (See chapter 1.2) are more like the sort 
of shell structure we wanted to consider. These bridges are, however, not gridshells, 
but continuous concrete shells, which absorbs much of the light from the 
environment. The idea of a grid shell bridge was thus born. The architect, thought 
the grid shell bridge was a good idea architecturally, since it gives rise to both a 
slim and elegant form, and at the same time solve the structural purpose. 
 
The analysis of the grid shell bridge proved to possess some challenges. When the 
shell is elongated, the structural behaviour becomes more arch-like and less shell-
like, which give rise to instabilities when acted on by asymmetrical loading. By 
utilizing the cable layout studied by Per Tveit (see Figure 3.35), part of this 
shortcoming is expected to disappear. Another challenge was that due to the small 
support area, compared to the size of the structure, a large number of laths were 
required for the laths near the supports to not fail in compression. To overcome this 
issue, a double layered gridshell was proposed, together with edge beams in order 
to increase the area which is supporting the structure. 
 
The edge beams also serve several other purposes: The thicker edge beams are able 
to absorb forces from the shell and direct them to the supports, and, because they 
are added along the grid’s direction without shear resistance, they increase the in-
plane shear resistance of the shell. The main question regarding the edge beams is 
if the shell behaviour will become negligible if the edge beams are too strong. In 
other words, does it even matter if we used form finding to define a shape for the 
grid shell, if the beams added afterward carry most of the loads anyway? 
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3.4 Further Work 
 
There are a lot more work that can be done in this area of research. For both of the 
gridshells that have been studied, there has not been any analyses regarding 
temperature loads, non-linear material behaviour, soil conditions, wind loads and 
earthquake loads. In addition, the building codes has been completely ignored. 
 
When it comes to the elongated grid shell part, the bridge was only an exploration 
of one particular realization of an elongated gridshell. There are therefore many 
questions that still remain unanswered: 
 

• How long should an elongated grid shell span before the desirable shell 
behaviour is negligible? 
 

• How could the grid layout be optimized in order to maintain the required 
number of laths near the supports, and at the same time not be as dense 
where it is not required? 

 
• How would the shell act if it had multiple spans? 

 
• How could such a bridge actually be built? 

 
• A complete analysis, where all laths are taken into account. 

 
• Detailing, such as supports and connections. 

 
The collaboration between the architect and the engineer could also be even more 
close than it has been in this work. By having the architect and the engineer close 
to each other at all times, all decisions could be taken together, which may produce 
even better structures.  
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EXPERIMENTAL AND NUMERICAL STUDY OF THE STRUCTURAL 
PERFORMANCE OF A TIMBER GRIDSHELL 
 
 
Nathalie Labonnote1, John Haddal Mork2, Steinar Hillersøy Dyvik3, Magnus 
Nilsen4, Anders Rønnquist5, Bendik Manum6 
 
ABSTRACT: The structural performance of gridshell structures is strongly related to shape, but comparisons between 
design and construction shape are seldom reported. This paper documents the evolution of shape following the erection 
of a timber gridshell built in Norway. Structural performance was evaluated using experimental measurements, and was 
observed to be significantly affected by the mechanical characteristics of the connections between the different 
structural members. This study is expected to foster the development of innovative connection methods enabling 
adaptation of the timber gridshell concept to the design of permanent buildings that can withstand harsh climatic 
conditions. 

KEYWORDS: timber construction, gridshell, FEA, Abaqus 
 
1 INTRODUCTION 123 
Shells play a special, singular role for engineers. Their 
shape directly derives from their flow of forces and 
defines their load-bearing behaviour and lightness [1]. If 
well-formed, concrete shells show no bending, but 
membrane forces only (axial compression and tension), 
permitting to save material by creating local 
employment. This usually results in very thin shells, 
such as the famous works of Felix Candela, among 
others Los Manantiales, built in Mexico city in 1957, 
which reveals a radical thickness of only 4 cm [2]. 
 
If regular holes are made in the shell, with the removed 
material concentrated into the remaining strips, the 
resulting structure is a gridshell [3]. The grid may have 
more than one layer, but the overall thickness of the shell 
is small compared to its overall span [4]. 
 
A kinematic gridshell differs from a regular gridshell in 
its construction process. A regular grid of slender laths is 
laid out flat; at each intersection point the members are 
connected by a hinge-type connector; finally the grid is 
shaped so that it takes up a doubly curved form. After 
erection of the lattice, bracing is introduced which 
triangulates the square grid, providing shear strength [5]. 
The prime benefit of a kinematic gridshell is the 
simplicity of the construction sequence. 
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Timber is among the most appropriate construction 
materials for these structures due to its lightweight, its 
small torsional thickness, its capacity to bend and its 
capacity to remain elastic. Timber members can be 
easily bent into shape due to their low bending stiffness. 
Moreover during the construction phase the members 
might be subjected to tighter radii of curvature than the 
ones they will have in their final state [6]. 
 
Very few large-scale timber gridshell structures exist 
worldwide. Frei Otto first developed this type of 
structure in 1972 for the Mannheim Multihalle in 
Germany [7]. Subsequently, in 2002, the Downland 
Museum was built in England by Buro Happolds [8], and 
was followed in 2005 by the Savill Garden Visitor 
Centre, also in England, designed by Buro Happolds and 
Glenn Howells [9]. 
 
Gridshells are complex structures, and several research 
groups are currently investigating ways of improving 
their design. Approaches include the use of composite 
materials [10], the optimisation of cross-section with 
respect to curvature [11], the development of innovative 
joint methods [12] and the development of more 
effective form-finding algorithms [13]. 
 
A major challenge facing designers is in achieving and 
maintaining the shape of the structure during its lifetime. 
Comparisons between design and construction shape are 
seldom reported. The same is true of creep and other 
time-related mechanisms. Since the structural 
performance of such structures is strongly related to 
shape, more knowledge of the evolution of construction 
shape is needed. 
 
This study focuses on quantifying the structural 
performance of a timber gridshell pavilion over time. 
Several measurements were performed on the specimen 
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construction after initial structural settlement. A 
comparison between experimental results and theoretical 
values derived from a finite element model is also 
discussed.  
 
2 MATERIALS AND METHODS 
2.1 THE TIMBER GRIDSHELL PAVILION 
A four-metre high, ten-metre wide timber gridshell  
pavilion was erected in Trondheim, Norway, in June 
2015 [14] (see Figure 1). The 23 x 48 mm grid members 
are organised in four layers. Timber members were all 
made knot-free, and are assumed to be of strength class 
C14.  
 
The innovative modular design of this gridshell pavilion 
is based on 520 identical modules connected to each 
other. Details of this simple and effective solution called 
"segment lath" (see Figure 2 and Figure 3) can be found 
in the detailed study carried out by Haddal Mork and 
Hillersøy Dyvik [12]. 
 
The design procedure for form-finding was implemented 
via a particle-spring model. The form-finding process is 
largely inspired from the work of Pone et al. [15], using 
Grasshopper [16], a graphical algorithm editor tightly 
integrated with Rhino’s 3-D [17] modelling tools. 
 
The gridshell was erected by means of a lifting tower, 
see Figure 4. The grid was assembled by starting with 
the centre module, leaving the bolts un-tightened. The 
anchor-points were pulled towards four already 
positioned foundations using cargo straps.  After 
erection, the bolts were tightened and diagonal members 
of the same timber quality and cross-section were 
mounted to provide shear stiffness. In the rest of the 
study, diagonal members are referred to as "bracing(s)". 
 
2.2 EXPERIMENTAL PROTOCOL 
Three dimensional measurements of the full shape were 
performed with the distancemeter Leica 3D Disto [18]. 
Accuracy is expected to be of 1 mm at 10 m, but was 
assumed in this study to be 10 mm at 10 m, partly 
because of the reflective effect of bolts . Measurements 
were carried out on the gridshell during four test 
campaigns described in Table 1.  
 
Loading was carried out without additional loading 
(Campaign 1), or with additional loading using buckets 
of water (Campaign 2) and weights (Campaigns 3 and 
4). Measurements were carried out on the complete 
structural shape for all test campaigns. Additional 
measurements were carried out on selected members for 
test campaign 3: one diagonal stiffener and two 
transverse members, see Figure 5, Figure 6 and Figure 7. 
 
 
 

 

Figure 1: The built gridshell in Trondheim, Norway. Credits: 
Sophie Labonnote-Weber 

 

Figure 2: The original "segment lath" modular solution, 
reproduced with permission from Haddal Mork and Hillersøy 
Dyvik [14] 

 

Figure 3: The original modular solution, detail from the 
experimental gridshell. Credits: Sophie Labonnote-Weber 

 

Figure 4: The lifting tower during erection. Credits: Steinar 
Hillersøy Dyvik and John Haddal Mork 

 
 
 
 
 
 
 
 
 
 



Table 1. Loading protocol for test campaigns 1, 2, 3, and 4 

Test campaign Test Total 
load  
[kg] 

Point 
loads 
[kg] 

Diagonal 
members 

1 June 2015 1.a 0 - On 
2 August 

2015 
2.a. 0 - On 
2.b. 180 5 On 
2.c. 540 15 On 

3 August 
2015 

3.a. 0 - On 
3.b. 720 90 On 
3.c. 0 - On 

4 September 
2015 

4.a. 0 - On 
4.b. 0  - Removed 
4.c. 400  50 Removed 
4.d. 540 67.5 Removed 
4.e. 720  90 Removed 
4.f 0  - Removed 

 
 
 

 

Figure 5. Experimental protocol for test campaign 2 

 
 
Figure 6. Experimental protocol for test campaigns 3 and 4 
 

 

Figure 7: Different profiles measured under Test campaign 3 

2.3 NUMERICAL ANALYSES  
2.3.1 Features of the numerical model 
Finite element analyses are performed using 
commercially available Abaqus software [19]. Given the 
complexity and the large number of connectors, the 
model geometry and its features are parametrically built 
using third party scripting provided by Python 
programming language [20]. 
 
Gridshell members are modelled as beam elements using 
the general two-node cubic interpolation B33 beam 
element. A mesh size of approximately 10 centimetres is 
selected and corresponds to a converging model. 
  
The modular solution described in section 2.1 is 
modelled as the superposition of four layers of 
continuous beams. In order to represent the gaps in the 
built gridshell between each module (see Figure 8), the 
numerical continuous beams exhibit a regular 
distribution of a two different sections: 

x A "hard" section implementing C14 strength 
class material properties, displayed in orange 
colour in Figure 8. 

x A "soft" section implementing dummy 
isotropic properties with near-zero stiffness in 
order to model the gaps, displayed in yellow 
colour in Figure 8. 

 

 

Figure 8: Modelling of the modular solution with dummy 
sections (in yellow colour) to numerically represent the gaps 
between real timber beams (in orange colour). Connections 
are numerically implemented as constraints along the blue 
dotted lines. 



Material properties for C14 strength class are defined 
and implemented as transversely isotropic, following a 
linear-elastic behaviour. Material properties are adapted 
from Dahl [21] and are given in Error! Not a valid 
bookmark self-reference..  
 
Table 2: Material properties corresponding to C14 strength 
class ("1" applies to the longitudinal direction, "2" and "3" to 
the transversal directions) 
 
E1 7000 MPa 
E2 = E3 230 MPa 
υ12 0.39 
υ13 0.49 
υ 23 0.64 
G12 = G13 440 MPa 
G23 30 MPa 
ρ 350 kg/m3 
 
2.3.2 Connections 
Real untight bolt connections between modules are 
parametrically implemented as numerical connectors, i.e. 
with numerical constraints between two points (see 
Figure 8). Total number of numerical connectors is 7464 
with this method.  
 
Connectors are of type cardan, which allows to 
implement in total six stiffness values: three translational 
stiffnesses and three rotational stiffnesses. For sensivity 
analysis purposes, three sets of values were 
implemented: 

x A set "LOW" with one low rotational stiffness 
in the plane of the gridshell surface in order to 
represent the hinge connection: D66 = 1. 

x A set "MEDIUM" with medium rotational 
stiffness in the plane of the gridshell surface in 
order to represent friction in the hinge 
connection: D66 = 100. 

x A set "HIGH" with high rotational stiffness in 
the plane of the gridshell surface in order to 
represent a rotation-fixed connection: D66 = 
10000. 

 
The three translational stiffnesses and the two remaining 
rotational stiffnesses are set to high values – in the order 
of 100000 - in order to model the behaviour of an untight 
bolt. 
 
2.3.3 Loading and boundary conditions 
The numerical gridshell is originally modelled as flat, 
following the real construction process. The numerical 
construction process is achieved in a non-linear static 
step by imposing the following displacements, see 
Figure 9 : 

x Vertical displacement of the anchor points with 
a value equal to the planned height of the 
gridshell 

x Lateral displacement  of the anchor points 
towards the centre of the gridshell so that the 
floor area of the gridshell corresponds to the 
planned value 

x Fixed translation of a selection of four points, 
corresponding to the four corners of the tower 
used for erection (see Figure 4). 

 

 

Figure 9: Shaping the gridshell in Abaqus: from the original 
flat gridshell (white colour) to the bent gridshell (coloured 
gradient of displacements). 

3 RESULTS AND DISCUSSION 
3.1 Agreement between planned shape and built 

shape 
The construction process imposes: 

x the height of the gridshell, which is given by the 
final height of the lifting tower, and 

x the floor area of the gridshell, which is given by 
the distance between the anchor points. 

 
A good agreement is therefore observed between the 
planned shape and the built shape for these parameters. 
 
However, comparison between the planned shape – 
calculated by the form-finding software described in 
section  2.1 – and the built shape some days after 
erection – measured in Test Campaign 1.a – shows 
substantial discrepancies for the arches of the gridshell, 
see Figure 10. Built arches are lower than their planned 
shape, sometimes as much as 40 cm. 
 
Discrepancies tend to be smaller for areas leading to the 
arches, where again the gridshell members should be 
higher than they are in reality. As a whole, the built 
gridshell looks saggy compared to the planned gridshell. 
 
Figure 10 emphasizes two distinct areas within the 
gridshell: 

x a "strong cross"- which links the opposite 
anchor points and transfers loading down to the 
ground - shows a fair agreement with the 
planned shape, and 

x a "weak cross" - which links the opposite arches 
- shows substantial discrepancies with the 
planned shape. 

 



 

Figure 10: Observed discrepancies between the planned shape 
and the built shape. Measurements are given in [mm]. 

3.2 Sensitivity analysis of the built shape 
The finite element analyses show that the final shape is 
highly dependent on the rotational stiffness of the 
connectors in the plane of the gridshell surface. The 
stiffer the connectors are, the more pronounced the 
arches will be (see Figure 11). 
 

 

Figure 11: Effect of the rotational stiffness of the connectors 
on the final shape. 

 
 
 
 
 

3.3 Structural performance with bracings 
Test campaigns 2 and 3 are dedicated to evaluating the 
structural performance of the gridshell with bracings 
under various loadings, see Table 1. 
 
The total load applied in Test campaign 2: 180 kg, and 
then 540 kg was not high enough to induce 
displacements larger than the precision of the measuring 
equipment. Results from test campaign 2b and 2c are 
therefore disregarded. 
 
During Test campaign 3.b, the loading of the gridshell 
with a total load of 720 kg induces a substantial 
deflection of the top of the gridshell of almost 10 cm. 
Other affected areas include the weak cross that links 
opposite arches, to a lesser extent. 
 

 

Figure 12: Observed deflections during test campaign 3.b. 
Displacements are given in [mm]. 

Profile results (see Figure 13) show an instantaneous 
deflection of about 10 cm for profile #1 and profile #2, 
and about 7 cm for profile#3. For all profiles, a residual 
deflection of about 2 cm is observed. 
 

 

Figure 13: Deflections observed under a 720 kg loading for 
three selected profiles. Distances and displacements are given 
in [cm]. 



3.4 Structural performance without bracings 
Test campaign 4 is dedicated to evaluating the structural 
performance of the gridshell without bracings under 
various loadings, see Table 1. 
 
The observed deflections for the gridshell without 
bracings are almost four times larger than the ones 
observed for the gridshell with bracings. The "strong 
cross" is also substantially more affected: Figure 14 
shows that the gridshell without bracing seems to bulge 
inwards because of lack of strength. 
  
 

 

Figure 14: Deflections observed under various loadings for the 
gridshell without bracing during test campaign 4. 
Displacements are given in [mm]. 

3.5 Residual deflections after loadings 
Residual deflections observed during test campaigns 3.c 
and 4.f are shown in Figure 15. Previous observations 
(see sections 3.3 and 3.4) are still valid: 

x The gridshell with bracing is affected mainly 
along the "weak cross". 

x The gridshell without bracing is mainly affected 
along the "strong cross". 

x Residual deflections for the gridshell without 
bracing are about five times larger than for the 
gridshell with bracings. 

 
These observations are also corroborated by the analysis 
of the deflected profiles for test campaign 3, see Figure 
13.  

 

 

Figure 15: Residual deflections observed after 720 kg loading 
for the gridshell with bracing (test campaign 3.c) and without 
bracing (test campaign 4.f). Displacements are given in [mm]. 

 
3.6 Evolution of the gridshell with time 
In general, the shape of the gridshell evolves with time, 
even without being submitted to loadings performed for 
scientific purposes.  
 
Figure 16 shows for example settlement observed 
between June and August, without any (known) loading. 
Most affected areas are again the "weak cross" and the 
arches. 

 

Figure 16: Settlement observed between June and August 
without any known loading. Displacements are given in [mm]. 

The cause of the instability of the timber gridshell is of 
high interest since its structural performance directly 
depends on it. 
 
Possible external causes include settlement after erection 
and unknown climatic loadings (e.g. storm). Internal 
causes, i.e. those originating from the structure itself, 
may be related to the complex material properties of 
timber. Wood as a material and as structural element 



indeed exhibits a time-dependent behaviour as a result of 
moisture, temperature and loading conditions [22]. 
Those phenomena also take into account time-dependent 
deformation under constant load and relaxation under 
constant deformation. Wood creep is a well-studied 
phenomenon, but its effects are usually long-term: it is 
unlikely that creep is the cause of the settlement 
observed in a two-month period. 
 
The design itself could then be the cause of the observed 
instability. A fundamental question is therefore to 
quantify the effects of a "non-perfect" shape onto the 
stability of a timber gridshell. 
 
4 SUMMARY AND CONCLUSIONS 
The following conclusions can be drawn: 

x Two distinct areas of the gridshell show 
different behaviours: a "strong cross" which 
links the opposite anchor points and transfers 
loading to the ground, and a "weak cross" 
which links the opposite arches. 

x The strong cross shows good agreement 
between planned and built shape, and is the 
most deflected area under loading (after the top 
area) for the gridshell without bracing. 

x The weak cross shows substantial discrepancies 
between planned and built shape, and is the 
most deflected area under loading (after the top 
area) for the gridshell with bracing. It is also the 
area that is observed to be the most affected by 
settlement without known loading. 

x Residual deflections are always observed after 
known loadings, and are several times higher 
for the gridshell without bracing compared to 
the gridshell with bracing. 

x Shape of the arches is shown to depend on the 
rotational stiffness of the connectors. 

 
Further work include: 

x Upgrading the finite element model to the final 
topology of the gridshell, in order to take into 
account both the diagonal stiffeners and the 
change of connector properties: from rotation 
free to rotation fixed. 

x Performing finite element analses with the final 
topology of the gridshell in order to evaluate 
whether the architectural pavilion meets the 
EUROCODE 5 requirements with respect to 
structural performance. 

x Performing sensitivity analyses to qualify and 
possibly quantify the effect of connectors on the 
structural performance of the gridshell. 

  
In conclusion, this study underlines the need for more 
precise modelling of the connections in order to gain 
precision in predicting the shape, and consequently 
predicting the structural performance of kinematic 
timber gridshells. 
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Abstract 

This paper explains the construction scheme of a modular post formed gridshell. The scheme uses timber modules 
connecting laths of 900mm length into a 2-layer module. The scheme and the module are designed to efficiently 
handle both Form Finding, Fabrication and Assembly, and it is tested through the construction of a full scale 
pavilion. 

Keywords: Timber post formed Gridshell, Timber Structure, Digital Form Finding, Kangaroo, Full scale 
prototype, Segment Lath 

1. Introduction 
Kinematic Gridshells are elegant and light structures that can create complex shapes by simple means. 
Gridshell structures have been constructed in various forms since Edmund Happold started 
experimenting with lattice roofs in the 1960s [1], and Frei Otto designed Mannheim Multihalle in 1975. 
The last decades, timber gridshells returned in the form of the Weald and Downland Museum (2002), 
Chiddingstone Orangery (2004) and the Savill Building (2006). More recently Sergio Pone and Sofia 
Colabella with the group at gridshell.it [3], have done several gridshell experiments on a smaller scale, 
and set the agenda for the development.  

While buildings with simple shapes easily can be constructed by simple, repetitive procedures, advanced 
shapes often demand complex construction schemes. With new tools for both designing and 
manufacturing, the construction of gridshells have again resurrected. The used scheme uses both digital 
form finding with Grasshopper, and manufacturing with CNC milling. The work of Pone and Colabella 
has shown the potential in gridshells, with the construction of several structures the last decade, and 
modelling with Daniel Pikers Kangaroo are crucial for the form finding process. 

However, the examples have all shown common issues, making it more complicated and time 
consuming than necessary to construct. Issues are found in all the three parts of: 1) Form Finding 
(Designing), 2) Fabrication (Production) and 3) Raising (Assembly).  

This paper explains a kinematic gridshell construction scheme, simplifying the whole process. It is 
demonstrated through a 10x10x4m pavilion built in Trondheim, Norway, in 2015.  
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2. The gridshell in Trondheim 
The built pavilion was done as a part of the diploma thesis in architecture at NTNU, Norwegian 
University of Science and Technology. The actual manufacturing and building took 10 days and was 
done by two persons. The shell has a setup of 28x28 nodes of a quadratic grid with c/c 500mm. It is a 
flat grid of 13.5m from foundation point to foundation point, with chamfered edges of 6 nodes width 
[fig.1]. The final shape has an 11.2 m outline, while the foundation edges are moved 2.12 m towards the 
centre. This created openings of 5.4m and heights of 2m in the openings and 4.1m in the centre. The 
construction stood for 6 months, and was tested for structural performance before disassembly. The 
structural performance will be described in another publication.  

 

Photo 1 
Photo of the gridshell pavilion built in Trondheim. 

  

Figure 1 
Dimensions of the planned gridshell pavilion built in Trondheim. The dimensions varied slightly in the 

final pavilion. Left: Size of the flat grid. Right: Sizes of the raised construction.  
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3 Construction scheme 
The scheme [fig.3] is greatly inspired by the work of Pone and Colabella [8] and the built pavilion is 
similar in both scale and techniques to many of their projects, and in the form finding tool (gfft) [8]. 
Through the explanation of the scheme, the aim is to highlight the improvements made in form 
finding, fabrication and raising.  
 

 
Figure 2 

The construction scheme is divided into three parts; form finding, fabrication and raising. The form 
finding can be done without having decided construction principles, thus taking this decision can feed 

back information to the form finding.   
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3.1 Form finding 
The shape is found by using dynamic relaxation with Grasshopper and Kangaroo. The grasshopper code, 
from now on referred to as the code, includes structural analyses taking into account material properties 
and curvature considerations.  

Form finding setup 

1. The code creates a grid with the desired grid direction (orthogonal or diagonal) and grid size. 
The number of nodes is picked approximately to give an outline for the next step.   

2. Define the outer shape of the flat grid by drawing a curve with the desired shape within the 
nodes. The code recognizes the nodes inside the curve, and creates the grid according to them. 

3. Extract the outer points form the grid, and assign the desired ones as anchor points for the 
construction. This should correspond with the actual foundation points later on.  

4. Draw the anchor curve in rhino, to which the anchor points should be pulled towards, and 
connect them to the code. In the double symmetric alternative, one anchor curve is drawn and 
the rest are mirrored in position. A curved anchor curve gives better performance.   

5. The form finding can start. The code is designed with four important physical conditions: 
a. There is an inverted gravity force, that pushes the grid upwards.   
b. There is a bending resistance between each lath, trying to keep them flat. This simulates 

the bending resistance in the timber laths. 
c. All the laths are defined as very strong springs. For the form finding work, the laths 

must be allowed to stretch a fraction of their length.  
d. The anchor curves have been assigned a pull force, pulling the anchor points towards 

the anchor curves. 

Form adjustment 

1. The shape can now be adjusted by moving and adjusting the anchor curve.   
2. The code gives feedback on the curvature of the shell. It is possible to assign a timber type and 

quality, and the corresponding minimum curvature will be checked according to the model. The 
software code colorizes the laths curved over their capacity, and it is possible to adjust the shape 
is adjusted if needed.  

3. The code is also connected to Karamba for structural analysis [6] [Fig. 6].  

 
Figure 4  

The form finding starts by deciding grid size and direction, and drawing an approximate outline of the 
flat grid. The anchor points are then extracted and connected to the code.  
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Figure 5  
Further steps of the form finding. With a minimum curvature analysis based on material quality, the 

model can check if it is possible to construct the found shape.  

Figure 6 
Structural performance testing with Karamba.   
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3.2 Construction method -  The Segment Lath 
A crucial development for this scheme is the design of the segment-lath [Fig. 6]. Instead of finger 
joining, lap joining or irregular extension systems, the exception has been made the rule.The grid is 
constructed with a two-layer module of 900mm laths. Each lath has five milled holes. One in the center, 
for the node, and two on each side, for weaving.The It can adapt to any grid size. The segment lath deals 
with many of the common challenges in a new way. 

1. The segment-lath solves the issue of knot removal [Fig. 7]. The 900mm pieces can be cut 
manually for waste reduced removal of knots, or pre cut and then sorted for a more time efficient 
removal of knots. The wastage will be higher with larger grid sizes.  

2. With overlapping as a rule, there is never an issue acquiring the correct length of the laths [Fig. 
6]  

3. The length of the overlap can vary, but generally, the shear block is included by default in this 
system [fig 8]. Shear blocks are usually added in between the two layers, to increase the total 
moment of inertia and thereby the stiffness. The height of the shear block depends on the actual 
lath heights, but the length can in theory be optimized for the grid to save material and weight.   

4. As the center hole in each piece is circular, and the side holes are either circular or slotted. The 
top and bottom layer has slotted holes, allowing free sliding relative to the central layer.  

5. Cross bracing is not solved as a part of the Segment Lath cross bracing is in this example is 
handled in the outer layer. 

6. Transportation of the grid becomes efficient, as the modules get compact. In the built pavilion, 
the whole grid needed two euro pallets, or about 2m3, for transport from workshop to the site. 
[Photo 2] 

 

Figure 7 
The segment lath. From module to assembly. 

Figure 8 
Knot removal in Saville building. The segment lath gives another solution to these issues. 

 Top: Knots were removed, and finger joint up to 6 meter lengths.  
Bottom: In this case they were also extended from 6 to 36 meters using lap-joints. 

Kommentert [BM2]: Exception ¿??? 
Uansett: for kort forklart. Se Johns paper og lån litt derfra 

Kommentert [BM3]: forklar shear block ¿? 

Kommentert [BM4]: språk 
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Figure 9 
The overlap in the segment lath has the same function as the shear blocks. Same grid size can be 

archived with different overlaps.  
 

Figure 10 
Top: Maximum lath length for the chosen grid size, as in the built pavilion.  

Bottom: Different lath length, but same grid size. 

 
Photo 2 

The segment lath makes transportation very compact. This image shows 50% of the modules in the 
built pavilion.   

"Shearblock": 125mm

"Shearblock": 400mm

Lath lenght: 550mm

Lath lenght: 900mm

Grid size: 500mm

Grid size: 500mm

Kommentert [BM5]: slutt med sentrert tekst!! 

Kommentert [SHD6R5]: Trur tekst-stilen sentrerte seg 
sjøl for bildetekst, men kan endre på.. 
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3.3 Raising 
The erection of the gridshell was done by two persons in the pavilion. The process could have been done 
more efficiently with more hands, but for this scale, it was never necessary. The process from modules 
to assembly goes as follows. 

1. The site is prepared with foundations placed in the correct positions.  In addition to the grid-
bed, which are the the only precision needed to start the raising of the structure. To get a precise 
form, it is also necessary to extract some reference positions, like the height on the top and next 
to the entrances  

2. A grid-bed [Photo 3] is constructed to guide the construction in place. The grid bed has the same 
shape as the final grid at the same position. The bed should will be lifted during the construction 
process. In the built pavilion, it was placed in the centre. This method seems applicable to larger 
scale grid shells. In that case more than one bed could be necessary.  

3. The grid bed is placed on a euro pallet. This allows a step-by-step lifting, adding one pallet of 
100mm for each step. In the built pavilion, a manual pallet jack was used, but if the lifting is 
done gently, a motorized truck would be more efficient.  

4. The manufactured parts are assembled into a grid of a manageable size, slightly larger than the 
grid-bed. It is then placed in position on top of the bed. [Fig. 9] 

5. More elements are added sequentially to the grid, evenly around the center. Because the added 
elements contribute to a slight weight increase, it is easy to keep the shell in balance under 
assembly. [Fig. 10] The shell is connected to the foundations with straps during the raising in 
order to ensure stability.  

 

Photo 3 
The shape if the grid bed is taken directly from the 3D model, and cut to fit the final shape. 

 Figure 11 
Adding pallets raises the shell evenly and will also help keeping a good working height. Gravity will 
help shaping the shell gradually as more weight is added. At a point, temporary bracing is added to 

keep the structure mode in balance. 
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Photo 4 

The pallets can be lifted with a manual pallet jack, but in larger projects a fork lift is more relevant. 

 
Photo 5 

Connecting a new module done in a good working height. Too much tension can make the connecting 
more difficult. 

 Figure 12 
The curved shape of the anchor curve found using Abaqus  
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4. Discussion 
- Further studies could prove that less overlap/shorter shear blocks can provide better structural 
performance. 

- The geometry of the anchor-curves are critical to reach a good result. Straight lines seem to be the 
worst alternative. A form finding test in Abaqus, with anchors free in xy-plane also gave a curved 
shape.  [Fig. 12] Allowing this shape in the final foundations are an important feature of kinematic 
gridshells.  

- A notable found with Karamba is how the structural performance of the shape is significantly improved 
by fine-tuning the geometry of the foundations. [Fig. 5] 

4. Conclusions 
This paper set out to highlight possibilities in a modular kinematic gridshell construction scheme. We 
aimed to improve known challenges of kinematic gridshell construction.  

- The Segment-Lath gave different solutions to many common issues with common gridshell 
construction, including knot removal, shear blocks, fabrication and transportability. 

- The gridshell can get help in shaping from gravity by iteratively lifting of the shell during construction, 
giving a gentle shaping process. 

- Our version of the form finding in the gfft is an efficient method for designing kinematic gridshells.  
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Kommentert [BM7]: Dette hører kaknskje mer hjemme i 
diskusjon / konklusjon enn her i beskrivevele??  
Disse punktene burde kanskje skille mellom prinsippeiell 
metode og konkret urvikling av fromen i detalj???  
Punkt 7 og 8 er jo viktige tema som gjerne kunne utdypes 
noe, mens de andre er mer beskrivende. ¿?? 

Kommentert [JHM8]: Fint å starte med: This paper set 
out to…. ( gjenta problemstillinga di) 

Kommentert [BM9]: Siden anders og jeg ikke er 
medforfatter (som det er  helt ok at vi ikke er), mener jeg i all 
ubeskjedenhet at vi bør ha høy prioritet i acknowledegments, 
og vi bør oppgis med navn og fakultet/institutt – for å 
tydeliggjøre samarbeid mellom ark og ing på NTNU. 
Samarbeid med ingeniørstudentene  bør også nevnes. 

Slettet: –7. 


