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Abstract

This thesis presents an approach to free-form surface manipulations,
which conceptually improves an existing cap system that constructs
surfaces by smoothly interpolating a network of intersecting curves.
There are no regularity requirements on the network, which already
yields superior modelling capabilities compared to systems that are
based on industry-standard Nurss surfaces.

Originally, the shape of such a surface can be modified only locally
by manipulating a curve in the network. In this process there is an
inherent danger that the curve is being pulled away from intersections
that it has with other curves. When this happens, the network is
invalidated as a surface representation, and many curves may have to
be adjusted to restore network consistency and surface quality. This
thesis contributes a method that solves these problems by propagating
changes that are made in one curve to curves in its vicinity. How and to
what extent curves react to changes is controlled by two parameters
that can be varied along the curve that is being manipulated. Any
curve may be constrained in one or more degrees of freedom. The
integrity of the curve network is implicitly conserved, as well as the
geometric continuity of the surface.

The result is a tool for the modification of curve-interpolating
surfaces, which can easily be applied to large areas on models with
any level of detail. This allows designers to concentrate on the creative
process, rather than on planning chains of actions. They can explore
different design variations, optimise shapes further, and generally be
more productive.
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2D -
3D -
eG? .

Glossary

two-dimensional.
three-dimensional.

almost curvature continuous. The magnitude of dis-continuities
in curvature are kept reasonably low due to discrete but closely
spaced constraints. See also the definition of G* on page

ANSI - American National Standard Institute.

B-rep - boundary representation, a popular scheme to represent solid

models of physical objects [Zeid|[1991]]. A B-rep defines the solid
by means of its boundary, and on which side of this boundary
the solid exists.

B-spline - basis spline, a popular approximation technique for curves

.

ct.

Cc?-

and surfaces, based on the blending of control vertices. The
polynomial degree and local support of the blending functions
(basis functions) can be specified independently of the number
of vertices. Bézier curves and surfaces are contained as special
cases of B-spline curves and surfaces. See also the definition of

NURBS On page [X%}

having parametric continuity of order 0, or based on piecewise
polynomials that are not everywhere differentiable. This implies
being G’, as defined on page

first order parametrically continuous, or based on piecewise poly-

nomials that are once differentiable everywhere. This implies
being G!, as defined on page See also the definition of C?
below.

second order parametrically continuous, or based on piecewise
polynomials that are twice differentiable everywhere. This im-
plies being G?, as defined on page Parametric continuity
is more strict than geometric continuity: a C> non-degenerate
spline is always also G?, but a G? spline may have a parametric
continuity lower than C?. Nevertheless, the appearance of one
is not ‘less smooth’ than the other.
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XViil

CACD

CAD -

CAE -

CAGD -

CAM -

CAS -

CDRS

CFD -

CSG -

- computer-aided conceptual design. Use of the computer in
the conceptual design phase is still not very successful, because
models must be generated with almost the speed of thought in
order to support idea generation, which is essential in this phase.

computer-aided design. Honestly though, most design actions
take place on paper with quick pencil strokes, and often it is
more appropriate to talk of Computer Aided Draughting [Law-
son, 1997, page 303]. When the computer helps with more than
just draughting, we often speak of computer-aided engineer-
ing (caE). The term of cacp (see the definition of cacp above)
is sometimes used to emphasise idea generation in the design
process.

computer-aided engineering, meaning that the computer helps
predicting the performance of designs. See also the definition of
cAD above.

computer-aided geometric design, a term used in stead of cap
when an emphasise on geometric aspects is intended.

computer-aided manufacturing.

computer algebra system, a system for symbolic computation,
such as Maple, Mathematica or GNU Maxima.

- Conceptual Design and Rendering System, a geometric mod-

elling system developed by Evans & Sutherland Computer Cor-
poration (E&S), and written entirely in Common Lisp.

computational fluid dynamics.

constructive solid geometry, a scheme to represent solid mod-
els of physical objects, based on boolean operations between
primitives. See also B-rep.

D-NURBS - dynamic NURBS, an extension of the NURBs scheme (as de-

E&S -

fined on page [xx) with physical properties for virtual sculpting
and other applications.

Evans & Sutherland Computer Corporation, makers of the Con-
ceptual Design and Rendering System (cprs). Ivan Sutherland
invented the first interactive graphics system, ‘Sketchpad’, in
1963 [Farin, [2002b].



Glossary

Fairway - in the context of this thesis: a geometric modeller for the
design of (the exterior of) ship hulls, developed by sarc, and
written in Extended Pascal. In most other contexts: “The nav-
igable part of a river, bay, etc., through which vessels enter or
depart; the part of a harbour or channel which is kept open and
un-obstructed for the passage of vessels” [Webster’s Revised
Unabridged Dictionary, 1913].

FEA - finite element analysis, using the finite element method (rem).

FEM - finite element method, a method for solving an equation by
approximating continuous quantities as a set of quantities at
discrete points.

FFD - free-form deformation, a method for manipulation of the global
shape of a geometric object, by warping the space in which it is
defined.

FoB - flat of bottom, the area at the bottom of a ship hull that is
completely planar, typically horizontal. Often present in cargo
ships and larger passenger ships.

FoS - flat of side, the area on the side of a ship hull that is completely
planar, typically vertical. Often present in cargo ships and larger
passenger ships.

rsp - Fast Shape Designer, a geometric modeller for cacp (as defined
on pagelxviii), developed at Delft University of Technology, and
written in G+ with Inventor.

G - positionally continuous, or having geometric continuity of order
0. Also notated as GC°, and V° or VC' for visual continuity.

G' - tangentially continuous, or having first order geometric continu-
ity, as well as positional continuity. Also notated as GC', and V!
or VC' for visual continuity.

G? - curvature continuous, or having second order geometric conti-
nuity and all lower orders. Also denoted as GC?, and V2 or VC?
for visual continuity. See also the definition of eG* on page

genus - a property of a surface defined as the largest number of non-
intersecting simple closed curves that can be drawn on the sur-
face without separating it. Roughly speaking, it is the number of
holes in a surface; a sphere has a genus of 0, a torus has a genus
of 1.
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XX

Gk - arbitrarily continuous, or having geometric continuity of order
k and all lower orders. Also denoted as GCk, and V* or VC for
visual continuity.

GP - generic programming, a programming concept that allows the
definition of procedures, concepts, structures and algorithms
independently from the data type on which they will work.

Gul - graphical user interface, the means of a computer program to
communicate with the user through graphical elements such as
windows, buttons, sliders, menus etc.

H-rep - hybrid model for ship hull representation, a geometric mod-
elling technique integrating wire-frame, surface and solid rep-
resentation, see Section This should not be confused with
other modelling techniques that can be called hybrid, e.g., be-
cause they support both the boundary representation (B-rep)
and constructive solid geometry (csc).

IGEs - Initial Graphics Exchange Specification, an ansr standard for
the exchange of geometric data between computer programs.

150 - International Organisation for Standardisation.

lattice - the arrangement of control points in a regular periodic pattern
in three dimensions, on which a tri-variate spline volume is

defined.

LeSS - localised hierarchy surface splines, surface splines that support
manipulation at multiple levels of detail.

LGPL - Lesser General Public License, a license for “copyleft” (as op-
posed to “copyright”) software libraries [Free Software Founda-
tion), [2000].

McAD - mechanical computer-aided design, cap with a focus on the
design of machines and appliances.

NTNU - Norwegian University of Science and Technology, or Norges
teknisk-naturvitenskapelige universitet.

NURBS - non-uniform rational B-spline, an extension of the B-spline
scheme (as defined on page[xvii) that is capable of representing
the curves of conic sections and surfaces of revolution, ellipsoids,
etc. The term NuURss is rather unfortunate, because it suggests
that uniform B-splines are explicitly excluded — which is not
the case.



Glossary

ooD - object-oriented design, the design of software systems in ac-
cordance with the object model, which is a paradigm in which
problems are abstracted into objects and classes. The oop is
usually followed by implementation using object-oriented pro-
gramming (oop).

oopP - object-oriented programming, or programming in accordance
with the object model, which is a paradigm in which prob-
lems are abstracted into objects and classes. For a successful
application of oor it is important to follow prior object-oriented
design (oop).

patch - a finite surface of  sides, where # is usually 4, described by a
single mathematical relation.

pTC - Parametric Technology Corporation, the company behind the
caD package Pro[ENGINEER.

sarC - Naval Architectural Software and Engineering Centre, or
Scheepsbouwkundig Advies en RekenCentrum, the company behind
Fairway.

scI - Silicon Graphics Incorporated, a graphics hardware and soft-
ware company, having produced the OpenGL high performance
graphics language, amongst other things.

sTEP - Standard for the Exchange of Product Model Data, ISO 10303

stL - standard template library, a collection of generic algorithms and
containers for use with the C++ programming language.

uML - unified modelling language, a graphical language for the nota-
tion of object-oriented designs.

valence - property of a node in a graph, equal to the number of edges
joined to it. Also called valency or degree. In the context of
surface patch assemblies: the number of shared patch sides em-
anating from a shared patch corner.

vDAFs - Verband Deutscher Automobilhersteller FlichenSchnittstelle, a
Surface Data Interface format developed by the German Auto-
mobile Manufacturers Association. vbars is a German national
standard published as DIN 66301.
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a parametric curve, variation on c(t), page 109.

shortest distance between data point i and the base of selection
field j, page 98.

normalised distance, d; ;/7;, see equation (6.2), page 98.

radial decay function for the intensity of selection field j,
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radial function belonging to a de-selection field, which scales
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index of de-selection fields, page 105.
mapping from ¢ to f, page 115.
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control polygon, page 110.

extent of selection field j, page 98.
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curve parameter, page 109.

xxiii






CHAPTER

Introduction

In computer-aided design (cap), or more precisely, computer-aided
geometric design (cacp), there are two different paradigms for the
description of surfaces in geometric models, each with an equally
long history. One is based on the continuous approximation of dis-
crete points, the other on transfinite interpolation of curves. For an
introduction on these surface representations and their difference, the
reader is referred to standard texts such as [Rogers and Adams,|[1990;
Foley et al.,[1990; | Zeid, 1991} Piegl and Tiller, [1997; |Farin| |2002b]. The
industry standard for surface description uses so called non-uniform
rational B-spline (NuUrss) surface patches, which follow the first pa-
radigm and form the basis of most established systems for computer
aided design, manufacturing and engineering (cap/cam/cak). This fact
puts the second paradigm somewhat in the shade, and very few com-
mercial systems are based on it.

1.1 Motivation

This study was initiated out of frustration, from an engineering and
design point of view, with the shortcomings of existing Nurss-based
systems. These shortcomings consist of two main problems. Firstly,
there is a conflict between the description of detailed surface features
and larger-scale surface fairness. Secondly, many engineering prob-
lems demand a patch layout or topology that differs from a regular
checkerboard. That is, either the number of patches meeting at a patch
corner is not necessarily four, or patches have not necessarily four




1. INTRODUCTION

sides, or both. Geometries with this property are usually denoted as
having arbitrary topology”*. Patches that are not quadrilateral are not
covered by data exchange standards and therefore rarely supported
by commercial cap/camM/caE systems. In addition, the upholding of
tangential and curvature continuity across patch boundaries is usu-
ally badly supported, especially around irregularities in the patch
layout. Chapter 2 describes these shortcomings in more detail.

Consequently, I engaged in attempting to address these deficien-
cies. Unfortunately, I was rather ill informed about the state of the art,
and I have used a considerable amount of time reinventing wheels
and creating an infrastructure that I never used. Eventually, I discov-
ered the appropriate channels of communication, and I learned that
the problems had been identified and were being addressed. One par-
ticular idea that I had, which I thought could solve some of the detail
versus fairness problems and which was the primary motivator for
engaging in this study, appeared to have been published only three
years earlier [Léon and Trompette}[1995, see Section5.5.3]in this thesis].
Most contributions are coming from the fields of applied mathematics
and computer science, and so the action is taking place in a different
scientific arena than where I grew up in. I was foreign to the vocabu-
lary that is being practised there, which explains to some extent why
these advances remained outside my horizon initially.

I realised that I was lacking the appropriate background and that
the state of the art had advanced beyond the point were Iwould be able
to contribute significantly to the approximation paradigm, within the
time remaining for the study. Chapter 3|gives a survey of some of the
solutions that have been proposed for the definition of surfaces with
arbitrary topology, within the approximation paradigm, and Chapter
surveys methods that address the detail versus fairness conflict by
means of global manipulation.

The interpolation paradigm advances in a slower pace. I have
practically been aware of the state of its art since I studied for my
Bachelor degree, when I had the opportunity to visit a company
called Naval Architectural Software and Engineering Centre (sarc)
to attend a demonstration of a computer program that was being de-
veloped there, for the geometric design of ship hulls. Its modelling

“In this thesis, the term “topology” is used to abstract the inherent connectivity
of objects while ignoring their detailed form. “Arbitrary topology” thus means that
there are no rules on the connectivity; surface elements may connect arbitrarily (as
long as they describe a 2-manifold). There is also a formal definition of topology de-
fined in terms of set operations [Weisstein} 2004] where “arbitrary topology” could be
interpreted as “no topology at all”. That would be a misunderstanding.
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methodology is based on transfinite surfaces that interpolate an ar-
bitrary network of intersecting curves, and thus supports geometries
with arbitrary topology. The method effectively restores the tradi-
tional way of lines plan draughting in a computer method. Although
I was impressed with the achievement and could clearly see the ad-
vantages of computerisation, I also saw that the biggest limitation
inherent to lines plan draughting was not addressed. In particular, it
remained the designer’s responsibility to make sure that curves that
should intersect each other, also really do. This has the effect that the
freedom to make changes in the design decreases as the number of
curves in the model grows. Because the surface description is easily
invalidated,  had dismissed the interpolation paradigm as inferior to
the approximation paradigm at that time.

By chance, the interpolation paradigm was brought to my attention
again when I stumbled over the PhD thesis of the man behind the
above mentioned computer method, Herbert |Koelman| [1999]. His
thesis describes the conception and implementation of said method.
This time I was better informed, and I started to doubt the fundamental
value of the approximating paradigm for engineering applications. In
engineering, precision is often more important than aesthetics. Often a
model has to adhere to a prescribed geometry within a tight tolerance.
In this regard it is important to observe that a curve is much easier
controlled than a surface. Also, many stylists are used to think in terms
of so called feature curves. For both these reasons, it probably makes
more sense to work with a surface that is defined by curves than the
other way around. In addition, when the object being engineered is
essentially a plate construction, like a ship, the information required
for computer-aided manufacturing (cam) consists of plate contours.
When both the input and output consists of curves, there is reason to
argue that the modelling methodology in between, be based on curves
as well. This way, the designer gets direct control over the shape of
the parts being manufactured. Chapter |4 gives a detailed covering
of how the interpolation paradigm has evolved over the last decade,
with respect to modelling shapes with arbitrary topology.

Still, the interpolation paradigm is lagging behind the approxima-
tion paradigm, as it has not received the same amount of attention to
resolve remaining limitations; at least in theory that is, as very few
approaches that are presented in chapters [3| and [5| have made it to
mainstream implementations yet. For the interpolation paradigm, the
main remaining limitation is the decrease in modelling freedom as
the design progresses, as mentioned earlier. Section [4.6| discusses the
details of this limitation.
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1.2 Focus

The interpolation paradigm has good prospects from an engineering
point of view, and contrary to the case of approximation I could still
see opportunities to contribute. Therefore, I switched my focus of
research from the approximation paradigm to the interpolation para-
digm. The focus of this thesis is therefore computer-aided geometric
design (cacp) of smooth surfaces without regularity constraints, i.e.
with arbitrary topology, in particular by means of interpolation of a
network of arbitrarily intersecting curves.

1.2.1 Research Questions

With the above focus, this thesis will seek an answer to the following
questions:

1. How can the designer be freed from the responsibility to main-
tain curve intersections everywhere?

2. How can the designer apply larger-area changes in the geometry
without damaging detail or surface fairness?

3. How does the resulting method compare with methods that
follow the approximation paradigm?

Questions one and two are answered in Chapter || and the third
question is answered in Section

1.3 Method

In discussing research method, it is important to differentiate between
science on the one hand and technology or engineering on the other.
Science is concerned with the discovery of truth, while technology is
concerned with the application of scientific knowledge for the well-
being of mankind. As Carl Mitcham puts it:

”The questioning of distinctly technological ideas has a dif-
ferent content than the questioning of scientific ideas. The
assumption among technologists is not that the technolog-
ical ideas are true but that they work, and that the works to
which they give rise are good or useful.” [Mitcham) [1994]

In the search for truth, rigour is essential, and since long has the
Positivist doctrine set rules for the demarcation of scientific knowl-
edge from other forms of knowledge and beliefs. There is a desire to
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impose the same rigour on engineering, but the Positivist view on
practice is not as successful as it is on science. “Increasingly we have
become aware of the importance to actual practice of phenomena —
complexity, uncertainty, instability, uniqueness, and value-conflict —
which do not fit the model of Technical Rationality [i.e., the Positivist
epistemology of practice]” [Schon,[1983| p. 39]. Apparently, the prob-
lem manifests itself not only in the application of scientific knowledge,
but also in the making if it. “From [the Positivist] perspective, we tend
to see science, after the fact, as a body of established propositions de-
rived from research. [. . . ] But we may also consider science before the
fact as a process in which scientists grabble with uncertainties and
display arts of inquiry akin to the uncertainties and arts of practice”
[Schon), 1983, p. 48—49]. This view is shared by |Latour| [1987], who
considers the situation of scientists and engineers while they are do-
ing their job. He finds that their struggles carry great similarities, to
the point that science and technology in action, before the fact, can be
covered by the single term technoscience. Technoscience is compared
with an open box of Pandora: there is uncertainty, there are deadlines,
passions, decisions, traps and dead-ends. When the science is done
and facts have been produced, the box closes and all this danger dis-
appears inside. First then it becomes a black box, a fact of truth or
a functional system, which can be accepted without questioning and
with which further science can be build.

As a better epistemology of practice, and in search for rigour
in practice, [Schon| [1983] proposes the concept of reflection-in-action,
which has been summarised as follows:

[Schon] describes professional work as a reflective dialogue
with the problem situation, where new designs (solution
hypotheses) are continually developed and tested. To at-
tack wicked problems, problem setting (framing, analysis,
understanding) and problem solving must be intertwined.
Each new proposal may contribute to solving the current
problems, but also to building an understanding of the
problem, trigger new perspectives and ideas for solution.
Social dialogue, rules of thumb, tacit and personal knowl-
edge are paramount for testing and assessment. [...] The
technological process is thus less explicit and formal than
the scientific method [...], and its problem-hypothes][i]s-
testing-evaluation cycles are more rapid. [Jergensen, 2004,
app. A.2.1]
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1.3.1 Research Approach

As this is an engineering thesis, we will adopt Schén’s model of
reflection-in-action. After framing the problem, we will find that there
is more than one way of solving it; after all, the product of engineer-
ing is not a truth value, but a relative answer of variable value. At
the same time, resources permit only the exploration of one trail. This
section will present a plan for research that is intended to select the
right trail that will lead us to a solution of good value. The success
of this selection will be evaluated at a conceptual level by comparing
the value of the resulting solution with the expected value of other
approaches.

The plan is to take three rounds of research, with three different
objectives, depicted schematically in Figure [1.1| below. Because this
study went through a paradigm shift with regard to surface represen-
tation, we will not loose the former out of sight completely.

Limitations Relevance

Novelty
Comparison

action reflection

Interpolation Manipulation

Charting

Approximation NURBS

Figure 1.1: Diagram of the structure of this thesis.

Our first round will be of a charting character and have a wide di-
ameter. Our point of departure is the discussion of the industry stan-
dard of surface representation, where we will familiarise ourselves
with the problem. We will pass through both paradigms of alternative
surface representations, making out the state of the art, and end in the
coverage of various methods for shape manipulation. This gives us
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overview, understanding and context of the problem, and it gives us
an idea of the existing solution space and sources of inspiration.

In our second round we will tighten our grip and move in smaller
circles, zooming in on one surface representation of industrial rele-
vance and one method for shape manipulation. These are combined
and adapted to each other to develop an improved modelling method-
ology. Reflection-in-action [Schon), [1983] will be facilitated by means
of computer implementation of experiments for validation and eval-
uation of hypotheses and ideas. This gives rise to new ideas and
inspiration to fuel another round of development. Thanks to a col-
laboration with sarc, the programming could be done integral to the
commercial computer code of [Koelman/[1999].

When the method has evolved to an effective and useful tool, we
will will move on to a higher plane, widening our view. Here we will
consider the practical value and limitations of our contribution, and
its relevance and novelty. We will make conceptual comparisons with
the expected performance of other approaches that were identified in
the first round, and we will make an updated comparison between
the approximation paradigm and interpolation paradigm in general.

1.3.2 On the Relevance of Ship Design in a Broader Context

The design of ship hulls is a good benchmark for geometric modelling
frameworks, due to a number of special requirements:

e The modelling of ship hulls favours methods that allow mod-
elling with arbitrary topology. Systems that use standard para-
metric surface patches typically exhibit problems in modelling
the bow and stern regions.

¢ In applications of industrial design or the entertainment indus-
try it is generally sufficient that the model “looks good”. In ship
hull design often much stricter requirements are in effect. An
exact shape can be dictated by hydrostatical and hydrodynam-
ical principles, by internal space requirements, or by practical
reasons such as the construction of sponsons that must connect
seamlessly to the existing hull of a ship that is being modified,
to improve its stability.

o Cargo vessels typically have areas on their shell that are com-
pletely planar, the so-called flat of side (FoS) and flat of bot-
tom (FoB). The modelling system must not allow deviations
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from these planes and at the same time provide a fluent transi-
tion to the curved parts of the hull.

e Naval architects often require explicit geometric discontinuities
in the ship hull. Sharp edges (knuckle lines) are an obvious
example where tangents are discontinuous. Discontinuities of
curvature also exist, e.g., when the transition between the FoS
and the FoB at the mid-ship section (the bilge) is designed to be
circular. Obviously, a circular bilge has constant curvature, and
the FoS and FoB have no curvature at all, so there is a curvature
discontinuity where these meet*. Curvature discontinuities can
also arise implicitly, for example when water lines are designed
to be parabolic in the bow region’. An optimal design system
should allow free orientation of these discontinuities, and allow
them to vanish over distance.

o The design of ship hulls put high demands on surface fairness.
Here a mathematical guarantee of geometric continuity of some
degree is not sufficient. The process of fairing a hull is almost an
artistic activity, in which one works out unwanted variations in
surface curvature, and at the same time purposely accepts sud-
den changes or even discontinuities in curvature, as described
above. This is a process that is difficult to automate, and a good
hull design system should provide means to evaluate and im-
prove surface fairness, and allow a good deal of human control
in the process.

e In the maritime industry, there are strict and tight bounds on
the availability of time and funding. Before a shipyard can per-
suade a customer to sign the contract for an order, a precise
estimation of the cost and performance of the vessel needs to be
made. Because of the complexity and speciality (individuality)
of ships, this often involves doing much of the design work,
including hull shape design [Abt et al.,[2001]. Due to the capital
cost of the products, customers of course do price inquiries at
more than one place, and shipyards are competing for the same
orders world wide. This way, many a hull is designed in return

*A circular bilge is a tradition that stems from the time when lines plans were
drafted by hand. But a bilge that is curvature continuous with the FoS and FoB can be
easier to build, and in this age of cam, there is no real reason why the bilge should be
circular.

Likewise, this is a design trick with a long history, but not one that necessarily
produces a bow of great beauty.
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for nothing, because the order went somewhere else. The con-
tract itself often includes financial penalties for delayed delivery,
which can be so severe that they have the potential to bankrupt
the shipyard in case of violation (which is another reason to be
precise in the preliminary design).

This stands in contrast with the automotive industry, where
series are typically very large and there is more time to perfect
the shape of visual surfaces. One can also afford to assign more
people to this job. But most importantly, the relations of shape
with other design variables are fewer and simpler; e.g., a change
in weight or the length centre of gravity does not require changes
in shape, unlike in ship building.

1.4 Contribution

The contribution of this thesis consists of a method to preserve curve
intersections automatically during curve editing of a network of inter-
secting curves. When working with a surface that interpolates such a
network, this gives the designer the freedom to make design changes
independently of the number of curves and curve intersections in the
model. With two extra parameters that can be varied along the curve
that is being manipulated, the designer is able to control how and to
what extent the surface that surrounds the curve follows the changes
in the curve.

Larger area shape variations in a model can be accomplished by
means of a simple spatial deformation, in which selected features of
the model can be constrained in one or more coordinates. Smoothness
conditions and shape details that exist in the model are preserved
throughout the variation. The method is purely geometric and there-
fore interactive to a great extent.

1.5 Overview

This thesis has [8| chapters. This introduction has outlined the mo-
tivation, focus, method and contribution. Chapters provide the
background for the work and cover the lower cycle in Figure
Chapter [6| contains the contribution of this thesis and represents the
middle cycle. The upper cycle, validation and evaluation, is contained
in Chapter






CHAPTER

Where Standard Surface
Methods Come Short

In this chapter the reader is introduced to the fundamental problem
that motivates this thesis. Occasionally, I will use terms from basic
spline theory without prior introduction. Knowledge of their meaning
will not be necessary to understand the essence in this chapter. The
interested reader is referred to one of the standard texts on curve and
surface theory [Rogers and Adams)(1990; Foley et al.,[1990;|Zeid) 1991;
Piegl and Tiller| (1997; Farin, [2002b].

2.1 Standard Surface Methods

Before discussing any shortcomings, we should decide on what we
understand as standard surface methods. A good place to start is in
the vendor neutral standards for data exchange between geometric
modellers.

2.1.1 Standards

There is more than one standard for data exchange between geomet-
ric modellers. The Initial Graphics Exchange Specification (1Ges) is
an American national standard, and widely supported. The German
automotive industry has produced the Verband Deutscher Automobil-
hersteller FlichenSchnittstelle (vbars), which is a national standard in
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Germany. There are several others, and more recently the Interna-
tional Organisation for Standardisation (1s0) reached an international
standard known as the Standard for the Exchange of Product Model
Data (steP). As sTEP is meant to cover and replace 1GEs, vDbaFs and
other standards (see Figure below) it suffices for us to consider
only STEP.

[1cam |—»{ 1GEs1 || 1GEs 2 | 1GEs 3 |—{ 1GES 4 }—{ 1GES 5 |
v
[ MIL-D-28000 ] cALS |—»] PDES |——»f

MmO

CAD*
[ vDA-Ps —{ cADLIB |—{ caDLIB2 |——

Figure 2.1: Migration of standards towards sTEP. (Source: www.prostep.org.)

Figure on the next page shows the surface types that are
supported by sTeEP. An important entity is the bi-parametric basis
spline (B-spline) surface and its rational variant. The standard speci-
fies special cases of the B-spline surface explicitly by constraining the
knot vector, which allows a more compact description of the model
data. Also, implementations may be able to do optimisations based
on the specialisation. However, all specialisations are covered by the
general (rational) B-spline surface definition. Surfaces of this kind are
often popularly denoted as Nurss surfaces[Piegl and Tiller, [1997].

In the standard, the B-spline surface is categorised as a bounded
surface, meaning that it can describe only surfaces with a finite area.
This as opposed to the elementary surfaces, which are in principle
un-bounded. From the other examples of a bounded surface we see
that a surface may be trimmed by a curve drawn on the surface,
producing a curve bounded surface. This causes a partition of the
surface to be hidden, but it is important to realise that the surface data
remains in the model and participates in the definition of the visible
part of the surface. Another way to trim bi-parametric surfaces is to
regard only a sub-domain in either parameter direction, resulting in
what the standard calls a rectangular trimmed surface. Surfaces may
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surface

—-I elementary_surface |

—-I cylindrical_surface |

—-| conical_surface |

—-I spherical _surface |

—D| toroidal_surface |

—-I swept_surface

—D| surface_of_linear_extrusion |

—'| surface_of_revolution |

—D| bounded_surface |

—-I b_spline_surface |
—>| b_spline_surface_with_knots |<— -
|
—>| uniform_surface |¢ ————— -

—>| quasi_uniform_surface |< —————— A

bezier_surfacef¢----------- -

—>| rational_b_spline_surface |— ———-

—-I rectangular_trimmed_surface |

—D| curve_bounded_surface |

—-I rectangular_composite_surface |

offset_surface
—-I surface_replica |

Figure 2.2: The stEP surface entity hierarchy, distilled from online appli-
cation protocols (www.steptools.com/support/stdev_docs/express/). The
instance rational _b_spline_surface and the dashed reversed arrows mean
that the b_spline_surface and all its specialisations may also be rational.
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also be combined into a complete checkerboard arrangement, where
four surfaces meet at internal corners, to form a rectangular composite
surface. The latter entity does not contain any actual geometry, itis just
a list of references to surfaces and a documentation of the geometric
continuity constraints that exist between them.

Summarising the parametric surface capabilities that are covered
by the standard, we can say that the standard (only) defines bi-
parametric surface patches *, which are rectangular unless they are
degenerate, and (only) regular combinations of them, producing rect-
angular composites. The term “rectangular”, however common, is
somewhat misplaced, as these surfaces have little if anything to do
with right angles. The point is that they have four sides, which is
accurately covered by the term “quadrilateral”.

The offset surface and the surface replica entities only contain a
reference to another surface. It is possible to represent all elemen-
tary surfaces in the standard with a Nurss definition if one allows
patches to be degenerate, and because a NURBs curve can describe any
supported sweep curve, NURBs surfaces can also represent the swept
surfaces in the standard. We conclude that the quadrilateral NURBs
surface definition covers all surface entities from the step standard,
and thus can be regarded a standard surface method. Although tri-
angular NURBs (or should we say “trilateral” Nurss) do exist [Qin and
Terzopoulos} [1997], they are not in the standard.

But in order to get an overview of standard surface methods, it is
not enough to look at data exchange standards alone. A good stan-
dard for data exchange needs to cover the common denominator of
established commercial software. But a single implementation may
brake loose from the pack and advance further. Therefore we will
change perspective and have a quick look at commercial software in
the following section, with respect to surface definitions.

2.1.2 Commercial Software

We will focus on the automotive industry because of the strict re-
quirements on geometric continuity of body panels, which is due to
their specular finish. In the automotive industry, it is tradition to dif-
ferentiate between three classes of surfaces, as a specification of their
required quality.

*The number of surface parameters can be concluded from a further inspection
of the standard, omitted here. Triangular parametric surfaces usually are defined
on barycentric coordinates, which consist of three coordinates, which are clearly not
present in the standard.
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Class A - All visible surfaces, be it interior or exterior. No aesthetic
defects are tolerated.

Class B - Secondary surfaces that can be seen sometimes, but are less
important. Examples are the inside of the glove compartment
and the door aperture.

Class C - Surfaces that are not visible during normal use, like the seat
mounting under the carpet or the shell of the fuel tank.

Beware that this is a classification of surface requirements, not of
surface properties. Much less should the classes be understood as
surface definitions.

Most vendors have a history in mechanical computer-aided de-
sign (Mcap), and their products reflect that. Parametric Technology Cor-
poration (prc) has ProlENGINEER. Dassault Systemes has Catia and Solid-
Works. UGS PLM Solutions has SolidEdge, I-DEAS and Unigraphics,
the latter two of which are in the process of being merged into one
product called NX. When looking at the surface technology that they
are based on, clearly “NUrss” is the recurring buzz-word. It is hard to
back this statement up with facts, but internally, probably all of them
use the quadrilateral NurBs surface definition exclusively”.

It is not surprising that NURBs are thriving in mcap, as most shapes
in mechanical engineering are primitive: planar, cylindrical, conical,
spherical, etc. They result from the common solid modelling oper-
ations such as extrude, sweep, revolve and fillet, without the need
for surface manipulation. The NURBs representation supports all these
shapes, which is an advantage for the programmer as algorithms are
required for one single surface representation only.

Designing free-form shapes’, as are demanded in industrial de-
sign, has traditionally been more cumbersome in these systems. The
trend is now towards curve based surface editing, which seems to
be an improvement over low level control net editing. It is being
sold as a new technology, with names as “BlueSurf” in the case of
SolidEdge, but in fact it is just a new interface on the standard quadri-
lateral patches and rectangular composite surfaces. The situation has
improved for the designer, but the fundamental limitations remain.

There will be more on this later, but one of the fundamental
problems that designers face, sooner or later, is breaking loose from

*If you are thinking right now “but I can choose to work with Bézier surfaces as
well”, remember that Bézier surfaces can be represented by a Nurss definition as a
special case; just like a circle is a special case of an ellipse.

*Synonyms are sculpted shapes and organic shapes.
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the checkerboard lay-out of surface patches. SolidWorks has a nice
demonstration (Figure[2.3)on page[18) suggesting to have come a long
way in this, by matching a curve trimmed surface to four other patches
with tangent plane continuity. It is possible to recognise the work of
Celniker and Welch|[1992] in this. This is a vendor-provided demon-
stration, so the presented case may well be arranged in favour of the
algorithm behind it; it is not difficult to imagine situations where it
cannot be expected to perform as well, if at all. In their conclusion,
Celniker and Welch|[1992] warn that a “discretisation error for curve
constraints results in the surface pulling away from the constraint
curve when its ability to exactly represent the solution curve is ex-
ceeded”. However impressive, the transition is still only tangentially
continuous (G), and only up to a bounded precision; even the posi-
tional continuity (G") cannot be absolute. [Farin| [2002a} section 16.9]
reminds us that

Trimmed surfaces should be seen as an “engineering”
extension of tensor product surfaces®. That is to say, they
are no panacea to all surface problems either. Consider, for
example, the problem of joining two trimmed surfaces in
a smooth way. If they are to join along trim curves, there is
no known method to ensure exact tangent plane continuity
between them, as was the case for standard tensor patches.
Such smoothness questions must be dealt with on a case-
by-case basis, which is clearly not very desirable.

Obviously, the capabilities of main-stream mcap software do not
suffice for the geometric modelling of class A surfaces, at least not
for high quality products with a shiny finish. For this job, dedicated
software exist. ICEM is a company that specialises in class A surfaces,
with its Surf product. Alias, although having its main focus on the
entertainment industry, is nonetheless a strong competitor in this seg-
ment with SurfaceStudio. UGS PLM Solutions has its own ImageWare,
which is sold as a component in NX. Also Dassault Systemes has a
dedicated module for Catia, called Automotive Class A (ACA).

By browsing the technical specifications of these products, it ap-
pears that the underlying surface mathematics is not different from
pure McaD software. We exclusively encounter the same old quadrilat-
eral surface patches. This software fights the symptoms of the limita-

*The tensor product is a method to generate quadrilateral surfaces using curve
methods. Nurss surfaces are an example.
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tions of quadrilateral patches rather than to address the cause®. Their
special features consist generally of the following;:

1. Extended surface fitting and reverse engineering capabilities.
This is used to create surfaces from the three-dimensional (3D)
scans of physical clay models, in which much of the styling still
takes place.

2. Thorough surface manipulation techniques and constraint solvers.
This is for tuning the surface patches to work out unwanted
bulging and attaining a high degree of geometric continuity
across patches '. This is a time consuming task.

3. An array of analysis and surface inspection tools. The human
senses of touch and vision are extremely sensitive to small ge-
ometric discontinuities. Typical tolerances are 0.00lmm for po-
sitional continuity and 0.05° for tangential continuity. The tol-
erance on curvature continuity is dependent on the application,
and this continuity is best evaluated visually on screen using
different kinds of curvature plots and zebra plots.

4. Photo-realistic rendering. To judge the aesthetic value of the sur-
face model and the design in a realistic setting. This is important,
as there is no way back once the molds have been manufactured.
The next opportunity for evaluation is the real thing coming out
of the factory, in great numbers.

We conclude that NURrss rule the surface definitions in both data
exchange and commercial software. Apparently, breaking loose from
the pack is not attractive as this will break interoperability with other
computer programs. That will not be tolerated by customers. The alter-
native is to advance the standard as well. But since the cost of making
fundamental changes in programs as colossal as geometric modellers
is so enormous, and the number of influential parties is significant,
the standard is so inert that advancing it with regard to surface defini-
tions cannot be done overnight. Quadrilateral NURrBs surface patches
are the standard, and they will remain being the standard for many
years to come. We should now talk about why that should bother us.

*This is understandable, as the class A surface models are passed on to general
McAD systems for further engineering.

*1f the composite surface is not at least curvature continuous (G?), sharp transitions
will be visible in the reflection of an image in the surface. This is perceived as an
aesthetic defect of the surface.
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Figure 2.3: A curve bounded (trimmed) quadrilateral surface can be generated
to close an open shell, with (approximately) tangent plane continuity. (Source:
promotional material, SolidWorks.)

2.2 Shortcomings

Although Nurss surfaces are highly versatile at first sight, they are not
as versatile as one would like in many practical modelling and design
situations. The regular structure of a single patch causes problems in
modelling high quality surfaces that do not match this regularity in
one way or another. This will be the subject of the next subsection.
To reduce these problems, one may try to model the geometry with
several smaller patches. This introduces other difficulties, which will
be discussed successively.

2.21 Control versus Quality

Let us first define control and quality. Later we will see that they are
in conflict.
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2.2.1.1 Control

The shape of a NURBs surface is controlled by a regular quadrilateral
mesh of control points, known as the control net or the polygon net.
The shape of the surface loosely and smoothly follows the control
points, but in general does not pass through them. The control points
are ordered in complete rows and columns in the network, like the
elements in a matrix. Each single control point has influence on the
shape of a quadrilateral sub-domain of the Nurss surface.

The size of the sub-domain is proportional to the polynomial de-
gree of the surface and the spacing of control points. The larger the
degree, the larger the area that each control point has influence on".
The degree is a constant that counts for the entire patch. When control
points are positioned close to each other, the area of the sub-domain
is smaller.

Internal knot spacings also have a say in the size of the sub-domain.
But since there is just one knot vector that is shared by all columns
and another one that is shared by all rows in the patch, it can only
be used to redistribute the size of the sub-domain among the control
points in complete rows and columns, not individual control points.

Altogether, it is only the control point spacing that has local control
over the size of the individual sub-domain that the control points have
influence on.

2.21.2 Quality

Surface quality can be defined as a (rather subjective) measure of
how closely the shape of a surface resembles the intended shape. In
the term “shape” we include the position and several derivatives ev-
erywhere on the surface. In naval architecture, a surface of sufficient
quality is called a fair surface, and the process of detecting imper-
fections and smoothing them away is called fairing. Usually, quality
includes smoothness, or geometric continuity of several orders. This
is a mathematical condition, and can be checked for analytically.
However, geometric continuity in itself is not a sufficient measure
of quality. Undesired undulations in a surface are also regarded as
poor quality. The easiest example is a region in a surface that is sup-
posed to be planar. The curvature should be zero (infinite radius of
curvature), but in practice the surface may undulate slightly above
and underneath the intended plane. When control points are close to

*A higher degree means also that more sub-domains of neighbouring control points
overlap, so that a point on the surface depends on the position of more control points.
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each other this will be obvious as ripples in the surface, but otherwise
it will be like a weak swell and be less obvious. In the case of a planar
region it is not particularly difficult to detect undulations (the curva-
ture will be non-zero and change sign) and neither will be the solution
(constrain relevant control points to the plane).

But mostly, imperfections are less obvious. Often, the intended
shape is not planar but curved, and not even of constant curvature.
Deviations from the intended shape do cause distortions in curvature,
but they may be subtle. They are harder to detect because there is no
prescribed value of curvature (like zero in the planar example). In gen-
eral, detection of imperfections requires careful human evaluation, for
instance of computer simulated reflections in the surface. Elimination
of imperfections generally requires a human expert and is an iterative
process.

2.2.1.3 Conflict

High shape control and high surface quality, as it happens to be, are
often in conflict. In the case of curves, there is a lower threshold on
the number of control points by which a curve can be forged into the
desired shape. Every extra control point will cause a deviation of the
curve from its ideal shape if it is not positioned exactly on the right
spot. The most tranquil shape is obtained with a minimum of control
points.

For curves, it is not complicated to reach an ideal state, as the
spacing of control points can be varied freely along the curve*. But with
quadrilateral Nurss surfaces however, the spacing of control points is
not completely free, because control points are organised in complete
rows and columns. In one region of a surface patch the shape may
require more control points for its definition; but addition of one or
more complete rows and/or columns introduces superfluous control
points in other regions, where they cause noise and make surface
fairing more difficult. See Figure

The conflict is not always instantiated due to a local need for
extra control. The contours of the surface patch itself can also squeeze
control points tighter together than one would prefer, as in Figure
The number of undulations that are possible is not higher in narrow
regions of the patch than elsewhere, but the required accuracy of
the positioning of control points is much higher; it is relative to the
distance between them. To illustrate the point by exaggeration: where

*In practice, the ratio of successive control point spacings will seldom exceed 2:1,
as it can cause unwanted bulging or “over shooting” of the curve.
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control points are one metre apart, an error of one millimetre may
easily go unnoticed; it is only 1%. of the spacing. But where control
points are only a millimetre apart, the same quantitative error amounts
to 100% of the spacing, causing very noticeable turbulence. It requires
much more effort to obtain high surface quality in tighter parts of a
patch than elsewhere.
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Figure 2.4: The control net of a surface patch. When extra control is needed
in some local area of the patch, it causes superfluous control in several other
places.

Figure 2.5: Attaining high surface quality is also difficult when control points
are packed together due to narrowing of a surface patch.

2.2.2 The World is not Quadrilateral

Due to the common Nurss surface patches being quadrilateral and
having a regular control net they are not always flexible enough to
fit the desired shape. Geometries that require some irregularity in
the patch lay-out are often denoted as having arbitrary topology.
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Arbitrary topology means that there are no restrictions on how patches
may connect. Although such geometries are very common, modelling
them does not go without problems.

2.2.2.1 When Control is Never Sufficient

Suppose the shape that is to be modelled looks like the shaded im-
age in Figure 2.6 below. It has a quadrilateral contour, with which a
quadrilateral NurBs patch should be nicely compatible. But the shape
contains a semi-torus like feature. The row- and column-wise organ-
isation of control points does not match up (Figure left). Every
regular quadrilateral control net with a manageable number of con-
trol points will only be able to define an approximation of the shape,
and it will be a bumpy one. The bumps can be decreased by increasing
the number of control points beyond being manageable (Figure
right), for instance for a computer-generated surface fit, but the limi-
tation is fundamental and will not go away:.

Figure 2.6: The control points do not line up with the geometry that is to be
modelled.

This is a constructed problem, but there are many practical sit-
uations in which the structure of control points does not suit the
geometry that is to be modelled. A work-around is to try and find
out whether individual surface features can be modelled by individ-
ual patches, then to trim away the pieces that overlap and stitch the
collection together.
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Figure 2.7 below shows the work-around for our example. The
toroidal feature can be modelled by bending a control net four times,
like a snake biting its tail. The base patch is modelled separately
and can be kept simple in this case. The contour lines of the toroidal
feature are projected onto the base patch to form bounding curves for
trimming away (disregarding) the surplus surface.

Figure 2.7: Modelling features individually is a work-around for the case
when control points do not line up correctly.

A problem with trimmed surfaces is that obtaining geometric con-
tinuity is non-trivial. Even positional continuity is a difficult matter
because the patches do not share boundary control points. This means
that associativity between the surfaces, i.e., the property that one sur-
face remains compatible with its neighbour during changes, is not
available per se. In the case of Figure on page associativity
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may be implemented by rebuilding the trimmed surface whenever a
boundary surface is modified, based on the model history. However,
this may affect the correctness of any references made to the trimmed
surface.

2.2.2.2 Degenerate Surface Patches

Many of the regularity problems that are encountered in practice could
be solved if triangular surface patches would be available. A classical
example is the nose of a zeppelin, where triangular surfaces meet in a
fan formation around a shared corner.Triangular Bézier patches have
been around from the beginning, and the corresponding de Casteljau
algorithm is arguably more elegant than the tensor product definition
of quadrilateral patches [Farin,[2002a} chapter 17]. Even the triangular
equivalent of NURBs patches have been developed [Qin and Terzopou-
los|, [1997]]. But as we have concluded earlier, they are rarely used in
the industry. Instead, a triangular patch is often simulated with a
degenerate quadrilateral patch.

There are two ways in which a patch can be degenerate. One is
by having a collapsed side, called the degenerate side (Figure [2.8).
The other is to have a degenerate corner, which is a corner that is
positioned so that its corner feature vanishes, i.e., its adjacent edges
are flush (Figure[2.9).

Degenerate patches introduce a number of complications. A de-
generate corner involves constraints on some of the control points to
preserve the degeneracy throughout surface manipulations. On the
other hand, degenerate sides tend to clutter control points near them
(similarly to Figure[2.5/on page2T) with the adverse consequences for
surface fairing that were discussed in Section[2.2.1.3] Neither solution
is symmetric.

Most importantly, degenerate patches are the cause of numerical
problems. The tangent vectors to a bi-parametric surface are defined
as the first derivative of the two surface parameters. At a degenerate
corner, these are collinear by definition, along the patch boundary.
Generally, the normal vector is defined as the normalised cross prod-
uct of the two tangent vectors. In this definition the normal vector
degenerates into an expression of the form 0/0 because the tangent
vectors are linearly dependent. Fortunately, we are saved by the fact
that the closest neighbouring control points to the degenerate corner
are coplanar with the latter, and the plane in which they lie happens
to be the tangent plane at the degenerate corner. So the tangent and
normal information can be derived, but by another route.



Shortcomings

=T e
_ -k _ - N, -7 -
- - - -
- N, - - N
* T B - ¥
~ - N - 7
~ - N - 4
~o - N -
~ - N 7
S 7 x z
N N 4
N s N s
N 4 N 7
4 ’
N - N
N -, *
7z /
™ ,
\ /
\ /
N /
N ’
N /
N
N4
*

N ~ - Dot 4
N - ~ - s
N SO e 4
* ~_ - s
N - ’
\ ’ N e
N , N ,
N s ~
N ’ S~
N w
N4 4
’
X ’
\
N ’
N ’
N ’
\ ’
\ ’
N
*#

Figure 2.9: A surface patch with a degenerate corner (circled).

The situation is a little worse with patches with a degenerate side,
because one of the tangent vectors is singular. Here too, the normal
vector can be obtained in an alternative way, but only if all control
points in the column next to the degenerate side are coplanar with the
latter. This is not a natural consequence like in the case of a degenerate
corner, so this condition has to be provided for explicitly.

With respect to radius of curvature, the situation of degenerate
patches is much more implicate, and as far as I know it is not yet fully
resolved. For more information the reader is referred to [Wolter and
Tuohy) [1992] and [Yamaguchi), 2000].

Missing surface derivatives cause problems for common algo-
rithms for tasks like the computation of intersections. Undefined nor-
mal vectors cause problems for rendering algorithms that are used for
the generation of shaded or photo-realistic images.
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2.2.2.3 Non-Regular Compositions

There is a way to eliminate the need for triangular patches, and with
it degenerate patches, by transferring the non-regularity from the
number of patch sides to the valence of corners, i.e., to the number
of patches meeting at a shared corner. A sphere-like geometry can be
modelled with six quadrilateral patches where three patches meet at
every corner — like blowing up a dice so that it turns into a marble.

Irregular holes with n sides in a composition of quadrilateral
patches can be filled with n quadrilateral patches that meet half-way
along the sides of the hole, as in Figure on the current page. Note
that n may be three, by which we have an alternative for a three-sided
patch that, unlike a degenerate patch, is symmetric.

Figure 2.10: Filling n-sided holes with n quadrilateral patches. In this example,
n=>.

The downside of corners with a valence different from four is
that there are no simple rules to obtain geometric continuity at and
around such corners. In the case of filling a hole, constraints can
be computed automatically, although support for this is not in the
mainstream geometric modellers*. But mostly, surfaces are custom
constructed and geometric continuity has to be worked for; as one
designer expressed himself on an Internet forum for automotive body
engineering,

“It is pretty tricky sometimes just to get up to curvature
continuity in a patch corner. You can chase yourself around
a corner for days, until it is right.”*

*ICEM Surf supports automatic filling of holes with up to twelve edge curves.
Twww . eng-tips. com, thread “Mathematic criterifon] of cap Class-A surfaces”.


www.eng-tips.com
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2.2.3 Change is Badly Supported

In the shape of a surface, we differentiate between global shape fea-
tures and local shape features. Global shape features are features that
can be recognised from a distance, as, for example, the slightly curved
shape of body panels in the side of a car. For fairness, the defining
data should be sparse. Local shape features are details, like, in the
same example, the impression that makes room for the handle in the
door of a car. To define this, a higher density of surface data is needed.
A surface that does not appear to have local features may still need
dense defining data, to forge it into some prescribed shape within
tight tolerances. In such a case, one may see the generally fair shape
as the global feature, and the compliance with the tolerance as local
features.

This is a manifestation of the fairness versus control conflict dis-
cussed earlier, and a fundamental problem with any method that
defines a continuous surface based on discontinuous data*. Unfortu-
nately, the NURBs method amplifies this fundamental problem, because
extra shape data is not only introduced due to local shape features,
but due to its regular topology as well. This is why some publications
refer to NURBs surfaces as being rigid, i.e., discouraging changes.

The presence of both global and local shape features has implica-
tions for the ability to change the design at a global level. Mainstream
MCAD systems provide one or more of the following means to change
a NURBs surface:

o Change the position of a single control point.

e Change the position of a selection of control points, all in the
same direction over the same distance.

e Direct surface manipulation. The user “grabs” an arbitrary point
on the surface and drags it around, and the system computes
new positions for relevant control points [Fowler and Bartels,
1993].

o Change the shape of a single curve in the set of defining curves
of a lofted, ruled or swept surface.

Suppose one needs to modify the global shape of a surface containing
also local features. As soon as the first single control point is manip-
ulated, the fairness of the global shape is lost. When a selection of
control points is moved, this may preserve the shape within the selec-
tion, but is likely to introduce defects along the border of the selection.

*This includes interpolation of curves, see Section
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Direct manipulation is only slightly less damaging than single con-
trol point manipulation, because a select number of control points is
moved simultaneously. But if the defining data is moderately dense,
global fairness is lost all the same. In addition, direct manipulation can
cause unexpected bulging near the grabbed point. Ruled and swept
surfaces are incapable of directly describing local shape features, and
if a lofted surface has local features, it is usually by means of closer
placed curves®. Global fairness, if it has been obtained at all, is lost
when the first curve is manipulated.

Alternatively, the local feature may be modelled as a separate sur-
face that fills a trimmed-out hole in a larger surface that covers the
global feature, like in Figure[2.7jon page[23] This does not make things
any easier, because when the larger surface is changed by control point
manipulation, the connection between the features is likely to be lost
and the local feature be left behind. When trying to move the local
feature back in place, one may find that the hole in which it fitted, has
been deformed by the global change.

2.3 Chapter Summary and Look Ahead

The standard Nurss surface method comes short in the fact that it is
so complicated to produce high quality surface models of any but the
trivial geometries. The process is characterised on the one hand by
finding a balance in the position of superfluous control points, caused
by the regularity of the control net, and on the other hand by reducing
geometric discontinuities of several orders to within the tolerances.
This task requires special software and expert operators.

Besides quality being expensive to attain, both in equipment and
man-hours, quality does not persist throughout design changes in the
general case’. Therefore, striving for surface quality has to be post-
poned until after the design has evolved to its final state, or improve-
ment of the design is hindered by the chance of loosing the investment
in quality. Especially because the act of geometric designing is about
evolving concepts into new and better ones, the described limitations
of Nurss surface modelling should make you wary of the value of
computer-aided design, with an emphasis on design.

Briefly, I have the following two demands on cacnb:

*Sometimes, it is possible to bring local features into these surfaces by manipu-
lating the control net that results from a ruling, sweep or loft. These are however lost
completely when the surfaces are rebuilt upon a change in one of their defining curves.

*Special deformation techniques exist that try to preserve surface quality.



Chapter Summary and Look Ahead

1. the freedom to design the shape that I want, and
2. the freedom to change my mind and my design.

These demands are not addressed to my satisfaction by the current
state of the industry, at least not both of them in the same product.
The art, i.e., literature, has fortunately advanced somewhat further.
ChaptersB|and [ review how our first demand is addressed using the
paradigms of approximation and interpolation respectively. Chapter
Bl reviews solutions for our second demand. We will see that most
solutions are tailored to the approximation paradigm. Chapter [¢]con-
siders a commercial implementation that adheres to the interpolation
paradigm, and that at least satisfies our first demand. It reports upon
research on how this implementation can be extended to satisfy our
second demand as well.
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CHAPTER

Approximation of
Arbitrarily Connected
Points

This chapter gives an overview of some of the methods that have
been suggested in the literature to remove the regularity requirement
of control nets, by which sculpted shapes with arbitrary topology can
be modelled. We can identify two camps in this endeavour.

On the one hand there are subdivision schemes, inspired by the
observation that in the limit of repeated knot insertion, the control
polygon of a uniform B-spline curve converges towards the curve
itself. Subdivision schemes generalise this principle to sculpted sur-
faces with arbitrary topology by repeatedly cutting the corners and
edges off of arbitrary polyhedra. A surface constructed by this scheme
is always a faceted approximation of the limit surface.

On the other hand there is the camp that tries to achieve a truly
continuous parametric description of sculpted shapes with arbitrary
topology, preferably using standard surface patches at a lower level.
These constructed surfaces are usually called surface splines, not to be
confused with spline surfaces. Synonyms are G-splines and geometric
continuous patch complexes.

The methods of both camps are fairly good at describing sculpted
shapes that are tangentially continuous (G'). However, attaining higher
orders of geometric continuity appears to be much more complex.
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Before looking more closely at these two approaches we should

mention the hierarchical B-spline surfaces proposed by

[1988]. They do not really fit into this chapter because they
do not solve the arbitrary topology problem, but they do address the

control vs. fairness issue to a great extent and therefore deserve to
be mentioned. Hierarchical B-spline surfaces allow the designer to
add control points locally without having to add complete rows or
columns of them, although they remain structured. As a bonus, the
higher levels of detail follow shape manipulations on lower levels,
preserving consistency. Therefore, the designer can switch between
the design of local features and global shape at will. These surfaces
are a multi-resolution extension of the standard B-spline surfaces and
allow practical design of complex yet fair geometries, exemplified
as shown in Figure B.1|below. Clearly, one can get a long way even
without completely arbitrarily connected control points.

Figure 3.1: The hierarchical levels in Forsey’s dragon example (source: www.
cs.ubc.ca/nest/imager/). The head and the body are modelled with one
hierarchical B-spline surface each and pasted together.

3.1 Subdivision Surfaces

There are many different subdivision schemes. We will limit ourselves
to the discussion of two well known schemes, namely Doo-Sabin
and Catmull-Clark. They are also the first subdivision schemes for
polyhedra of arbitrary topology, and were jointly introduced as early
as 1978.


www.cs.ubc.ca/nest/imager/
www.cs.ubc.ca/nest/imager/

Subdivision Surfaces

3.1.1 Catmull-Clark Subdivision Surfaces

Catmull and Clark|[1978] have proposed subdivision rules for both the
generalisation of bi-quadratic and bi-cubic B-spline surfaces to nets of
arbitrarily connected control points. But since |Doo and Sabin| [1978]]
in their evaluation of these schemes presented better rules for the
bi-quadratic case, only the bi-cubic form is referred to as the Catmull-
Clark subdivision scheme.

Initially, a polyhedron is considered, formed by the control points
and their connections. At each refinement step, every n-sided face of
the polyhedron is subdivided into n smaller faces. For this, one new
vertex is computed for each old face, each old edge and each old
vertex. The rules are as follows:

1. New face points are formed by finding the centroid of the ver-
tices of the old face.

2. New edge points are formed by taking the average of the end
points of the old edge and the new face points on either side of
the edge.

3. New vertex points are computed by taking the following aver-
age:
Q N 2R N S(n—3)
noon n

where 7 is the valence of the old vertex, Q is the average of the
new face points of all faces adjacent to the old vertex, R is the
average of the midpoints of all old edges incident on the old
vertex and S is the old vertex.

(3.1)

Figure [3.2| on the following page illustrates one refinement step.
Note that after the first step, all faces are quadrilateral. The vertices that
have a valence different from four after the first refinement step rep-
resent the irregularities in an otherwise regular mesh of quadrilateral
cells. These irregularities will persist through all further refinements
and are therefore called extraordinary points.

Asmentioned before, the Catmull-Clark algorithm generalises reg-
ular uniform cubic B-spline surfaces, which in the regular case are
curvature continuous (G?). Indeed, Catmull-Clark surfaces are G2 ev-
erywhere — except at extraordinary points. Catmull and Clark|report
that a saddle surface suffers from an imperfection at the extraordinary
point if the valence is high. The analysis of the geometric continuity
at and near extraordinary points performed by Doo and Sabin![[1978]]
reveals that the curvature is actually infinite at this point.
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Figure 3.2: The Catmull-Clark algorithm: There is a new vertex for every old
vertex, edge and face.

3.1.2 Doo-Sabin Subdivision Surfaces

Regarding the generalisation of bi-quadratic B-spline surfaces to nets
of arbitrarily connected control points, Doo and Sabin| [1978] report
better behaviour of the scheme presented by Catmull and Clark|[[1978]
than they did regarding the bi-cubic case. At the same time, they
present even better rules that produce ideally behaved surfaces for
all valences. Hence these surfaces are called Doo-Sabin subdivision
surfaces.

Refer to the example in Figure3.3]on the next page. At each refine-
ment step, every n-sided face of the polyhedron is replaced by a new
and smaller face with the same number of sides that is embedded in
the same plane as the old face. New faces also appear in the place of
old vertices and old edges, by connecting the vertices of the face-faces
across the old edges, and around the old vertices. Note that after the
first step, all vertices have valence four.

The vertices of the refined polyhedron are computed as follows:
(

. . . . 1 .
For each n-sided old face with vertices v;, new vertices v, ) are defined

as a weighted sum of the old vertices,

n
@ — g
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Figure 3.3: The Doo-Sabin algorithm: there is a new face for every old face,
edge and vertex.

with weight factors defined as

n+5 =
R _{H " wheni=j,
ij = 3+2cos =, .,
ym when i # j.

Doo-Sabin subdivision surfaces are tangentially continuous (G!)
everywhere, just as regular bi-quadratic surfaces. Extraordinary points
appear at the centres of faces that are not quadrilateral and near control
points that have a valence different from four. After the first refine-
ment step, when all vertices have valence four, the final number and
position of the extraordinary points are therefore known — they are
invariant across any further refinement.

3.1.3 Interpolation

Just like the control polygon can be found for which a B-spline curve
interpolates a given set of points, the surfaces that were discussed
above can be forced to interpolate selected control points. To top that,
Nasri| [1997] describes recursive subdivision surfaces that interpolate
B-spline curves, where the control polygons of the interpolated curves
are identified as sequences of edges in the original control polyhe-
dron. Interestingly, with this we have almost tumbled into the subject
of Chapter[4 Zorin et al|[1996] propose the “modified Butterfly” sub-
division scheme, which is interpolating by design, and produces C
surfaces of arbitrary topology.
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3.1.4 Value for Engineering Applications

Two limitations of subdivision surfaces that could prevent incorpo-
ration in engineering applications are, firstly, the inherent difficulty
of designing surface features such as cusps, creases, and darts, and
secondly, poor evaluation efficiency. The first limitation has been elim-
inated by the introduction of non-uniform recursive subdivision sur-
faces by [Sederberg et al.|[1998]. Regarding the evaluation issue, Stam
[1998] presents a means of exact evaluation of Catmull-Clark subdivi-
sion surfaces, including all surface derivatives, at arbitrary parameter
values without subdividing. The direct availability of surface deriva-
tives is very important, e.g., for the visualisation of curvatures, for
finding intersections, for detection of interference and for genera-
tion of numerical control (NC) codes for computer-aided manufac-
turing (cam). The technique initiated by [Stam| has been extended by
Wang et al.|[2000] to include the non-uniform scheme of Sederberg
et al.| Fortunately, much has changed on the hardware front since the
inception of subdivision surfaces, which has also much to say for in-
teractive applications using subdivision surfaces. [Bolz and Schroder
[2002] show how Catmull-Clark surfaces can be rapidly evaluated by
optimising for modern computer hardware.

Even without these improvements, subdivision surfaces have be-
come popular in the entertainment industry; Figure 3.4{on the facing
page illustrates their success. But not so in Engineering. [Peters|[2003]
observes

“Yet, at present, no one seems to be ready to base a full
car body design or the crafting of special purpose lenses
on this paradigm.”

The reason is that there are much higher demands on surface quality in
Engineering and Industrial Design than there are in the entertainment
industry. The demand for G* surfaces is relatively low in the enter-
tainment industry, which is primarily concerned with the modelling
of phantasy characters. Yet G? surfaces are an absolute requirement
for the design of high quality class A surfaces. Therefore a scheme is
needed that generalises at least cubic B-spline surfaces, such as the
Catmull-Clark scheme.

By recursive subdivision, n-sided holes at the irregularities in the
control polyhedron are recursively filled with ever thinner rings of
regular polynomial pieces. The problems related to the irregularities
in the control polyhedron of a Catmull-Clark surface are thereby swept
further and further towards the extraordinary points. In video games,
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artifacts” may be pushed beyond the relatively coarse display reso-
lution before they can become noticeable, or they are just accepted.
In motion pictures, artifacts may be retouched away if necessary. In
Engineering and Design however, artifacts are unacceptable.

Figure 3.4: Subdivision surfaces in the entertainment industry; detail of the
control polyhedron (left) and the final rendering (right). (Source: Blender Doc-
umentation, download.blender.org/documentation/)

Peters|[2003] gives several illustrations of curvature misbehaviour
of Catmull-Clark surfaces around extraordinary points. When valence
is moderately high, curvature may change sign and increase without
bound closer to the extraordinary point. This means that the surface
can show to be concave, even when the control polyhedron is convex.
Attempts to bound the curvature exist, but these result in oscillations
of curvature and thus ripples in the surface.

Sabin| [2002, sec. 12.7] warns for “first step artifacts”, in which
“the original topology of the [control] polyhedron shines through” on
high end visualisation devices, “in the form of ripples whose spatial
frequency is that of the original [control points]”. Presumably, Sabin is

*In cacp, the term artifact is often used to denote a visual imperfection or a shape
deficiency, like an unintended side-effect of an algorithm.
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speaking of the above described curvature problem at extraordinary
points, but it is not exactly clear.

An inconvenience when modelling with Catmull-Clark subdivi-
sion surfaces is caused by unequal contraction of the surface depend-
ing on the valence rather than the geometry of a vertex. This is due
to the extra dependency on the valence of the S-term in and the
effect can be observed already in Figure[3.2on page[34} Although there
is a high interest in subdivision surfaces and although the remaining
problems are being worked on, they will not be supported by the
mainstream McaD systems any time soon.

3.2 Surface Splines

The surface spline presents itself to the designer, not as a set of indi-
vidual patches that each approximate a different regular control net,
but as a continuous surface, approximating one large irregular con-
trol net. The surface spline can be of arbitrary topology, and it may be
closed and therefore function as the boundary of a solid*.

3.2.1 Tangent Plane Continuous Surface Splines

With regards to surface splines, the earliest reference that I found is
to (Chiyokura and Kimural [1983]]. They describe a modelling system
called mopir, which later led to the Japanese cap/cam system DESIGN-
BASE [Farin,[2002b], owned by Ricoh. Their approach is actually one of
curve interpolation, which is the subject of Chapter[4 It is interesting
to note that the two paradigms regarding modelling with arbitrary
topology, namely approximation and interpolation, share roots this
way.

Based on a B-rep in which each edge is represented by a single cubic
Bézier curve, Chiyokura and Kimura| produce a parametric surface
for each face, interpolating the cubic boundary curves. Faces with
n # 4 sides are split into n quadrilateral sections, each filled with one
quadrilateral surface patch as in Figure on page [26] In order to
achieve tangent plane continuity at vertices with a valence different
from four, they apply a specially constructed surface patch, which they
call the Gregory patch. It is an application of the twist compatibility
correction that Gregory performed on Coons patches, to the Bézier

*One could count such a closed surface spline as a boundary representation (B-rep),
but since the designer manipulates the control points of the surface and not the nodes
and edges of the traditional B-rep, it is not quite the same.
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form. The resulting patch has twenty control points (see Figure
below) and is rational. Written in rational Bézier form, the patch is
bi-septic (degree 7 X 7) and the corner weights are zero, which results
in singularities [Farin) 2002a, section 22.6].

Figure 3.5: Gregory patch in Bézier form, with 20 control points.

Van Wijk! [1986] shows that ordinary bi-cubic patches can be used
tomodel some cases of geometries with irregular topology. The control
polyhedron is restricted to have only quadrilateral faces, and the va-
lence of vertices must either be odd, or be a mix of three and four. The
composition is G! across the patch boundaries. Although the degree
of the patches is modest, the supported topology is not completely
arbitrary.

Sarrangal [1987, [1989] allows more topologic diversity at the cost
of higher order polynomials. Using bi-sextic (degree 6 x 6) Bézier
patches, he allows three, four or five patches to meet at a corner.
The computation of the constraints on many of the control points is
performed by a computer algebra system (cas), by which the patches
are made G' around the corners.

Algebraic conditions for arbitrarily continuous (G¥) patch com-
plexes with arbitrary valence are formulated in[Hahn|[1989]], based on
the theory of differential topology and differential geometry. This pub-
lication is accompanied by an application, namely the development
of a second order parametrically continuous (C?) n-sided interpolant
[Gregory and Hahn) [1989] devised to fill n-sided holes within other-
wise regular C* patch complexes. In practice, local constraint systems
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have to be solved to enforce patch to patch smoothness, which make
it difficult to predict the shape of the resulting surface. It seems you
have to be a mathematician to appreciate this method.

Loop and DeRose|[1989] also propose an n-sided patch, but with
a geometrically comprehensible definition. It is a generalisation of
Bézier surfaces to patches with an arbitrary number of sides, based on
the idea of restricting Bézier simplexes to embedded surfaces, which
they call S-patches. See Figure [3.6| below for an example. S-patches

Figure 3.6: An S-patch with five sides and a “depth” of two.

can be geometrically constructed with a de Casteljau inspired algo-
rithm. In [Loop and DeRose} 1990, see also|Loop}|1992] the authors use
S-patches to propose a generalisation of B-spline surfaces to arbitrary
topology. Two schemes are presented, but neither allows the control
polygon to be completely arbitrary. The bi-quadratic scheme requires
the control polyhedron to have exclusively quadrilateral faces, but the
valence of vertices is unrestricted. In the resulting surface, one patch
appears for every vertex. The bi-cubic scheme produces one patch
for every face in the control polyhedron, and therefore the faces need
not be quadrilateral. In this case however, the valence of vertices is
restricted to four. The composite surface is G across patch bound-
aries, see Figure 3.7| on the next page for an example. |Stoddart et al.
[1994] apply the bi-quadratic scheme to surface reconstruction over
an unstructured point set.

Apart from the fact that S-patches are non-standard surface defi-
nitions, they have the unfortunate property that their computational
complexity is an exponential function of the number of sides. For ex-
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ample, a six sided patch has already 56 control points in the cubic

scheme 1992].

Figure 3.7: A surface spline constructed with S-patches. (Source: 1992].)

Zheng and Ball [1997] provide a different generalisation of Bézier
patches to 3, 5 and 6 sides of arbitrary degree, with fewer control

points. The control points are organised in a flat pattern, i.e., the con-
nections between control points do not cross as in S-patches. For com-
parison, their six sided patch with cubic boundary curves has only 24
control points. These patches can connect to surrounding quadrilat-
eral Bézier patches to form a first order parametrically continuous (C')
composite surface. In the corner twist constraint is re-
moved for patches with an arbitrary number of sides, analogously
to the modification of quadrilateral Bézier patches by [Chiyokura and]
[1983], see Figure[.5/on page[39} This simplifies the construc-

tion of surfaces with arbitrary topology.

discovered that by using two Doo-Sabin refinements
on an arbitrary control polyhedron, the irregularities are topologically
sufficiently separated from each other, by which the problem of con-
structing a smooth patch complex with standard non-rational quadri-
lateral patches becomes simpler. In addition, the refined control net
can be used to determine the position of most of the control points of
the patches, so that no systems of equations need to be solved*. Where
the control polyhedron is regular, bi-quadratic B-spline surfaces are

“In order to guarantee tangent plane continuity also at the irregularities in the
control polyhedron, a perturbation has to be applied to the points in the refined mesh
that are edge-adjacent to corners of irregular cells that have a number of sides that is

41



3. APPROXIMATION OF ARBITRARILY CONNECTED POINTS

42

produced, and irregular faces are covered with bi-cubic patches, with-
out singularities. The faces of the control polyhedron need not be
planar.

We can give a simplified illustration of the surface spline construc-
tion, following [Farin, 2002a, section 21.8]*. Figure [3.8| below shows
how one of the 1 bi-cubic patches, enumerated by i, is positioned to
cover part of an n sided cell in the refined mesh. The nodes of the
refined mesh are indicated by squares; the solid squares surround the
n-sided cell (partly shown). The corner that is shared by all patches
that cover the cell, i.e., Bézier point bss, is simply the average of all

solid squares
Ll
0= = Z ()
by = " L d
=

Figure 3.8: Surface splines: how Bézier control points of a cubic patch i are
derived from refined mesh nodes.

If we disregard an extra dependency on n for simplicity, the “outer”
two rows and columns of Bézier points lie on bi-linear patches (visu-

both even and greater than four. This perturbation is the cause why this construction
needs two refinement steps, so perturbations of different irregularities do not conflict
with each other.

*The simplification leaves out the perturbation discussed in footnoteon the page
before. Some errors that were found in [Farin} |2002a] have been corrected.
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alised by dotted lines) that interpolate the refined mesh. For the four
points in the top corner in the figure, their computation amounts to

boo bo] — . a b .
by bi | c d

The Bézier pOiI‘ltS b30, bzo, b31, b21 and b03, b13, b()z, b12 are found
analogously.
The three remaining Bézier points are determined as follows:

— N
Ul M=
N— N|—
[e)l16}] (o o

(i) (1+1) _ (z dz+] + dz+]+1
o b & (2]
and
b = _Z;":l(_l)jeiﬂ'—l if nis odd,
T\ 2L - )(-1)eij1 if niseven'.

where e; = (1 — c)b(l) + cb(’) and ¢ = 2 cos(2mt/n).

In its standard form the composed surface interpolates the cen-
troid of the faces of the control polyhedron, but the algorithm can
be extended to interpolate the control points instead. Conic blends
(e.g., circular roundings) can be produced with rational patches. The
composed surface is G! across the patch boundaries and follows the
control polyhedron in a predictable way. By varying blend ratios in the
refinement steps, the roundness of the surface can be controlled, so it
can be made to follow the control polyhedron closer, or even interpo-
late it with a crease. |Farin|[2002a, section 21.8] notes that the composite
surface is not equivalent to the Doo-Sabin limit surface. Figure 3.9|on
the next page gives an example of the modelling capabilities of G!
surface splines.

Loop| [1994] shows that one Doo-Sabin refinement step suffices
when using three-sided patches ', at the cost of higher degrees (at most
quartic patches, of degree 4). Over regular regions of the mesh, a bi-
quadratic Bézier patch may be used in place of four quartic triangular
patches.

Peters|[1995b] gives an improved version of his original method,
which reduces the number of patches by a factor four and uses less

“Both [Peters) [1994] and [Farin} 2002a] subscript e as e;;, which seems to be an
error.
This is because no perturbation is needed.
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complicated formulas. This method also needs just one mesh refine-
ment step, made possible by using a mix of four-sided patches and
three-sided patches. Optimally, bi-quadratic four-sided patches are
used where the mesh is regular and cubic three-sided patches are
used where the mesh is irregular. The resulting surface is G! and lies
within the local convex hull. Upon user request, the surface spline
may also be built up exclusively of three-sided patches or four-sided
patches, but in the latter case a deficiency in tangent plane continuity
may arise and the convex hull property does not hold for all blend
ratios.

Figure 3.9: Surface splines: an example. (Source: Peters, www.cise.ufl.edu/
research/Surflab/surf_spl/)

As we have seen, three-sided patches are non-standard and rarely
supported in established cap/cam systems. Therefore, a third vari-
ant is given in [1995a]], which improves continuity and shape
properties when the user chooses to model entirely with four-sided
patches. Also the convex hull property is guaranteed in nearly all
cases. In this variant, patches are bi-quartic (of degree 4 x 4).

As an aside, we can mention that(Gonzalez-Ochoal [1997] demon-
strates that surface splines are suitable for interactive modelling. A
multi-resolution approach is implemented in the localised-hierarchy
surface splines proposed in [Gonzalez-Ochoa and Peters}[1999] to rep-
resent level of details without fragmentation. [Eck and Hoppe] [1996]
demonstrate the use of surface splines for surface reconstruction based
on scattered point data, obtained from laser range scanners.
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3.2.2 Curvature Continuous Surface Splines

So far, only tangentially continuous surface splines have been dis-
cussed. Obtaining higher orders of continuity is more difficult. Since
Catmull-Clark subdivision is G> wherever the control polyhedron
is regular, it may be worthwhile to try and transfer the technique
discussed so far to the Catmull-Clark subdivision scheme. Indeed,
Peters| [2000] shows how this can be done. This method uses just
one Catmull-Clark subdivision step, by which the mesh cells are all
quadrilateral. These cells correspond with one bi-cubic NURBs patch
each, which join C? wherever the control polyhedron is regular. Here
the composed surface is equivalent to the Catmull-Clark limit surface.
At the extraordinary points the surface may be only G!, but with finite
curvature, which is better than the Catmull-Clark limit surface.

In the quest of completely G? surface splines, we note that Peters
[2002b] explains

“if we are not concerned about the degree, it is straight-
forward to generate G* free-form surface splines for any
k.//

We are however concerned about the degree, because higher polyno-
mial degrees can cause numerical errors®, require more storage and
most importantly, they increase the cost of computations, say of in-
tersections. What we also shy away from is to solve global constraint
systems.

It seems that G? surface splines cannot be constructed without hav-
ing to do atleast some constraint solving. Peters|[1996] uses subdivision
to reduce the number of unknowns, and the remaining local constraint
system is left to a computer algebra system (cas) to be solved. The re-
sulting surface spline consists of 8 quartic or octic (degree 4 or 8)
three-sided patches for every edge in the control polyhedron. Alter-
natively, the surface can be represented with quadrilateral patches
exclusively, which are then bi-sextic (degree 6 X 6), or with a mix of
bi-quartic and bi-cubic (degrees 4 x 4 and 3 X 3) quadrilateral patches
where the mesh is regular, and octic three-sided patches elsewhere.

Gregory and Zhou| [1999] prove that C* surface splines can be
constructed from bi-quintic patches. However, |Peters| [2002al 2003]
reports shape deficiencies caused by the use of quadratic boundary
curves.

“Due to the high powers in splines of high degrees, the effect of round-off er-
rors, caused by the limited precision in which computers can handle real numbers, is
magnified [Press ef al., 1992} Section 1.3]. In unlucky cases, these defects can become
visual.
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A completely different approach is introduced by |Grimm and
Hughes| [1995], who use the theory of manifolds to construct sur-
faces of arbitrary topology with guaranteed continuity of any degree
(G¥). Instead of matching up patches by their edges, they let surface
pieces overlap substantially. The composed surface is compared with
an atlas of charts or maps; when navigating, there is another map you
can switch to before travelling off your current map. Thus there are no
discontinuities in parameterisation across surface pieces, which is ad-
vantageous for texture mapping and the definition of smooth paths on
the surface. The efficiency is improved by Cotrina Navau and Pla Gar-
cial [2000], by reducing the number of charts. The construction of the
manifold is computationally intensive, but it needs only be rebuilt
after changes in the topology of the control polyhedron, so that the
effects of control point manipulation are quickly incorporated. How-
ever, in the G? case, the degree of the patches is already 9 X 9 or higher
[Peters|, 20024, )2003].

Inspired by the use of maps, Peters|[2002a] manages to reduce the
degree of patches considerably, at least algebraically [Peters|,2002b]]. In
this case, the control polyhedron is subdivided by one Catmull-Clark
refinement step. Using a re-parameterisation to a triangular map that
is trimmed to four sides, G? surface splines are constructed consisting
of bi-cubic patches (degree 3 X 3) and some strips of patches with
degree 3 x 5. The method can be generalised to G* surface splines.
One critique of this approach is that the alignment of iso-parametric
lines is distorted when the valence of irregular nodes in the refined
mesh becomes large [Peters| 2003]. It is envisioned that to hybridise
these techniques with the ones in [Gregory and Zhou, [1999]] will be
a promising approach, in terms of low degree and lack of algorithm-
induced shape deficiencies.

3.3 Chapter Summary and Look Ahead

In this chapter we have seen two different approaches for the defini-
tion of surfaces that approximate arbitrarily connected points. Sub-
division surfaces are popular in the entertainment industry, but not
very well suited for engineering applications. The representation is
unsupported by standards for the exchange of model data and suffers
from shape deficiencies or limited geometric continuity.

The other approach is based on the assembly of parametric surface
patches, some of which are supported by standards for the exchange
of model data. They are a better match for engineering applications,
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with respect to rapid evaluation and compatibility with established
algorithms and concepts such as constructive solid geometry (csc).
However, G* surfaces still require considerable computational efforts
because of high polynomial orders and constraint solving.

As we have seen, there is active development to improve the situa-
tion for both approaches. Progressions herein deserve to be monitored.

The next chapter will take a similar look on the competing para-
digm of surface construction by interpolation of arbitrarily intersect-
ing curves.
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CHAPTER

Interpolation of
Arbitrarily Intersecting
Curves

The methods for the construction of surfaces with arbitrary topology
that were discussed in the previous chapter, are based on approxima-
tion of control points. They are attempts to generalise the standard
surface method of NURrBs to surfaces of arbitrary topology, and can
thereby be called the leading paradigm.

Although approximating algorithms arguably produce more pleas-
ing surfaces than interpolating algorithms [Peters| 1995a]], control
point manipulation is not the natural way for surface stylists to in-
teract with their design. This is confirmed by the fact that software
producers start making interfaces to surface manipulation based on
curves, as indicated on page

This chapter however, is about a different paradigm that is based
on curves all along. The design of a sculpted shape, regardless of its
application, usually starts with a few characteristic pencil strokes on a
piece of paper. As the design progresses, more of these ‘feature curves’
are added to define higher detail or to remove ambiguity. A trained
brain can interpret the resulting ‘wire-frame” sketch as the represen-
tation of a surface or a solid. But although wire-frame modelling has
been supported in systems for cap from the very beginning, to turn a
wire-frame model into a complete surface model is not a trivial task.
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A first step towards such a surface model is of course the possi-
bility to ‘fill in” the curve-bounded cells of the wire-frame with sur-
face patches. The transfinite interpolants such as Coons patches and
variants [Farin, [2002a, chapter 22] were obviously designed with this
application in mind, but although these patches stem from the advent
of cacp, it has taken long before they were successfully used to model
surfaces with arbitrary topology.

This chapter describes the history and background of the technol-
ogy on which the experiments of Chapter|6|on page[01]are based, and
therefore we will evaluate contributions in a little more detail than we
did in the previous chapter.

4.1 Interpolation of Cubic Bézier Curves

Let us take the same point of departure as we did in the discussion
of surface splines in Section with the publication by [Chiyokura
and Kimura| [1983]]. For details the reader is referred to that prior
discussion. Of relevance here is that although they do support the
modelling of solids with a G! boundary and arbitrary topology, they
put strict requirements on the curves defining the wire-frame; each
curve must be a cubic Bézier curve and extend over one edge of one
mesh cell in the wire-frame, no longer and no shorter. This makes it
relatively easy to obtain tangent continuity across patch boundaries,
but it makes it harder for the designer to create fair feature curves.

4.2 Interpolation of Continuous Curves

Jensen et al|[1991] come with a break-through on the computation
of cross-boundary derivative data, by which curves may be arbitrar-
ily defined and extend to any length over the surface. They describe
the internals of a geometric modeller developed by Evans & Suther-
land Computer Corporation (E&S), called the Conceptual Design and
Rendering System (cprs)*. As this system is meant to be a tool for
computer-aided conceptual design (cacp), it provides an algorithm
to fit a cubic interpolating spline curve with quadratic end conditions
(i-e., being C?') to a sketched curve. The sketched curve is obtained

*The cprs was acquired by Parametric Technology Corporation (prc) in 1995, and
involved E&S employees joined prc. It is unclear whether prc incorporated the curve
interpolation technology into its own product ProlENGINEER, or whether they in fact just
bought expertise.

fOn the subject of geometric vs. parametric continuity, the authors mention the
following important point:
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by sampling the cursor position as the designer draws the shape in
two orthographic windows, and is thus piecewise linear. Curves that
collectively are to define a smooth surface are allowed to have ‘tails’
that extend outside the surface boundary, and any number of curves
may meet at a common point.

It appears thatJensen et al|support two types of surface patches: a
triangular and a rectangular patch. By constructing multiple patches
on the same network of curves, surfaces with non-regular topology
can be modelled, although the curve network cannot be completely
arbitrary.

The triangular surface patch is bounded by three intersecting
curves that are interpolated by a triangular Coons-type interpolant,
more precisely, the C! approach by Nielson (for this and other trian-
gular Coons patches, see [Farin| [2002a, chapter 22.9]). The triangular
surface cannot have internal curves.

The rectangular surface patch, bounded by four intersecting curves,
can have internal curves but they must subdivide it into quadrilateral
cells, i.e., the internal topology must be regular. This set is then inter-
polated by a spline-blended Gordon surface, modified to adhere to
cross-boundary derivative information. The surface is also compatibil-
ity corrected with regard to corner twists. A Gordon surface imposes
parameterisation constraints on the curves: a curve that intersects a
number of other curves, must do so in a way that the parameter val-
ues for these curves at the intersection points are all equal. These
constraints are in this system unlikely to be satisfied, firstly because
‘feature curves’ must be allowed to be placed freely, and secondly,
curves may extend outside the surface to participate in other parts
of the model. The authors adopt a re-parameterisation method for
the curves, such that the constraints can be met without modifying
the shape. The resulting quadrilateral surface is C? internally, and G!
across its boundary.

[...] which is not widely recognised is that when transfinite surfaces are
applied to curves which have geometric, but not parametric, continuity
to some level, the surface does not inherit that level of continuity. For
example, a Coons patch constructed from curves that are G', but only C°,
will in general be both G® and C°.

See also the definition of C? in the Glossary on page
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4.2.1 Method Outline

When enough curves are sketched to form a wire-frame representa-
tion, surface patches can be generated which smoothly interpolate the
given curve data. This involves the following steps:

1.

A set of curves is selected, in between which the surface is to
interpolate: three boundary curves for a three-sided surface,
or four boundary curves with optional internal curves for a
four-sided surface, according to the previously mentioned con-
straints. As we understand, this is the designer’s responsibility.

Data incompatibilities are resolved. Curves that are supposed
to intersect, but do not, are made to. The authors are unclear
whether this step is performed automatically or with manual
intervention.

A topological data structure is built automatically, inspired by
the B-rep; see Figure |4.1| on the next page. The use of B-reps is
common in solid modelling, but vital as well for this method of
surface modelling. Data directly related to the surface consists
of references to the curves in the selection, and for each of the
curves, references to the intersection points that mark the start
and end of the curve section that is of interest to the surface.
For each curve in the selection, an ordered list of intersection
points is maintained. And for each intersection point, a record
is maintained of incident curves and surfaces.

If a Gordon surface is being constructed, a re-parameterisation
of the curves is computed to satisfy its parameterisation con-
straints.

With the use of the topological information established in step
above, cross-boundary derivative information is computed. This
information has to be presented in the re-parameterised form,
and the authors find it necessary to produce this via a vector-
valued spline function that produces normalised vectors in the
tangent plane that are orthogonal to the boundary curve. This
orthonormal vector and the normalised tangent vector along
the curve are scaled, and their vector sum yields the necessary
derivative information. The scaling factors are defined by two
individual scalar-valued spline functions, with the property that
they produce a cross-boundary derivative vector that is equal to
the tangent vector along the crossing curve at the intersection
point, disregarding the sign. For details see [Jensen ef al.|[1991].
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6. With there-parameterised curves and the cross-boundary deriva-
tive information, an interpolating surface can be generated.

Wire-frame B-rep

(geometry) (topology) é
L

Figure 4.1: An exploded view of how a B-rep can be used to support a wire-
frame model, for the construction of a surface with arbitrary topology. On the
right side the topologic elements of node, edge and face are shown, i.e., a com-
mon B-rep. Dashed arrows indicate references from the topologic elements to
their geometric representations, which are derived from a wire-frame repre-
sentation, displayed on the left. Partial tangent ribbons are also shown, used
for constructing the surface representation of faces. Note that each curve in
the wire-frame is shadowed by a string of edges in the B-rep. Mesh cells with
more than four sides, as displayed here, were not supported in the implemen-
tation by |Jensen et al.|[1991], but were made possible in later implementations
by Michelsen| [1995] (see Section and |[Koelman|[1999] (see Section.

The surface patches so constructed, collectively interpolate the
wire-frame. The resulting surface is C*> where possible and G! else-
where, or just positionally continuous (G°) where knuckles are in-
tended.

A blind spot in this article concerns step [2|on the preceding page,
which we would have liked to know more about. In a realistic design,
curves are likely to have a large number of points where they are
supposed to intersect with other curves. In general, it will be by chance
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if two such curves really do intersect. To resolve all incompatibilities
in a curve network is a difficult task, whether it is done automatically
or by hand, and likely to be iterative in nature. It will often require
shape modifications, which has consequences for the smoothness of
the curves in particular and for the aesthetics of the design as a whole.

4.3 An Application to Conceptual Design

Van Dijk| [1994] describes the conception and implementation of a
similar design tool, called Fast Shape Designer (¢sp), at the Faculty
of Industrial Design Engineering, Delft University of Technology. His
research aims exclusively at providing computer support for the con-
ceptual design phase of an industrial design task, i.e., cacp. This is
fundamentally difficult, because the user should be able to quickly
sketch his ideas, upon which the system should present back the
rendering of a 3D model, which may then spark new ideas in the
designer. A prerequisite for idea generation to take place is that this
cycle can be iterated through quickly enough, and without too much
technical attention from the designer, such that his creative mind can
work without interruption or distraction.

The effort displayed by |[van Dijk suggests that he is of the opinion
that the Conceptual Design and Rendering System (cprs), discussed
in the previous section, does not support idea generation well enough,
but he mentions successful use of that system for concept evaluation.
Similarly to cprs, the rsp provides a curve sketching interface. But
instead of drawing projections of the space curve in two orthogonal
views, the curve is sketched in perspective directly on a freely posi-
tioned plane. The algorithm allows adaptive sketching, in which the
shape of the curve is altered by additional strokes. This of course only
produces plane curves. When true space curves are needed, the author
proposes to sketch on a curved surface, but we note that this does not
provide the same level of freedom in sketching, and this two-stage
procedure cannot be quick enough to support idea generation that
involves space curves.

To display shaded images of the evolving model in real-time, the
Fsp applies hardware accelerated rendering with the Open Inventor
toolkit, which builds on the graphics language OpenGL, both devel-
oped by Silicon Graphics Incorporated (scr). This toolkit has only
direct support for sculpted surfaces in the NUrBs format®, which has

It would likely have been possible to display non-Nnurss as well, using lower
level elements. But that would put a significant extra burden on the programmer, and
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led to the requirement that the rsp surfaces must be, or be convertible
to, rectangular NURss surfaces. Part of the design philosophy for the
FsD was that the user would be offered to sketch design curves (i.e.,
feature curves) and that the modelling technique would be direct. A
direct modelling technique allows manipulation of surfaces directly,
versus indirect techniques by which a change of shape is effected by
manipulating control points that lay in the neighbourhood of the sur-
face. Therefore straight application of the NUrss scheme was ruled
out, and transfinite interpolation was adopted.

Being a system for conceptual design, it seems that the rsp is meant
to produce surfaces with a minimum of defining curves. Thus the
interior area of transfinite patches, for which per definition no shape
control handles exist, can be quite large. Practice has shown that the
shapes that are produced by the system can differ from what the
designer expected. Therefore, [van Dijk| [1994] offers the designer a
choice between three different patch types, all of them G! across their
boundaries, that produce different internal shapes®. They all have
roots in Coons’ transfinite patch, and algorithms exist to convert them
to (a set of) NURBs patches. But a requirement of these algorithms are
that the type of curves which the patches are defined on, are semi-
uniform cubic B-splines.

In order to model with arbitrary topology, at least a three-sided
patch has to be provided. Although there are no obvious technical hin-
ders in extending the applied techniques to three-sided interpolants,
visualising them with hardware acceleration is another matter. Again
because Open Inventor has built-in support for rectangular NURBs
patches, it was decided to represent a three-sided patch with a degen-
erate four-sided patch, by inserting an extra corner half-way one of its
boundary curves. This can be repeated to produce a two-sided patch
and even a one-sided patch. Not all the transfinite patch types behave
satisfactorily when they are degenerated though, and the OpenGL
rendering only succeeds courtesy a discretisation into small triangu-
lar facets at the lowest level. See also Section on degenerate
patches.

would possibly lead to slower execution because more has to be done in software. In
addition, sticking with standard NURBs gives better prospects for data exchange with
other systems.

“We note the following. Because of van Dijk’s dislike of indirect surface schemes, he
loses control of the internal shape. A lot of effort is put in regaining that loss by offering
multiple transfinite interpolation schemes, and even inventing new ones. But the kind
of control this results in, cannot be called direct, and is considerably more restrictive
than control point manipulation.
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To produce a feature curve of the required type, the sketch data is
fitted with a uniform cubic B-spline by means of a basic least squares
method. The number of control points of the curve is 15 by default,
but can be adjusted interactively by the user, who thus determines the
closeness of the fit and the fairness of the curve.

Sketched curves can be assembled into a curve network for inter-
polation, which involves the construction of a B-rep data structure.
This is initiated by the user, who indicates which curves are sup-
posed to intersect each other. Automatically, a link object is generated
for each (supposed) intersection, which serves as a vertex in the data
structure. Contrary to[Jensen ef al.|[1991],|van Dijk|[1994] is clear about
what is done when curves that are meant to intersect each other, do
not. Using data from the link object, curves can be snapped on to each
other, to make them intersect each other precisely. Like with the cprs,
making a large network consistent in this way can be a task with no
end — which is why the rsp accepts inconsistent networks just as well.
When design curves do not intersect each other, adjacent surfaces will
deviate from them at their corners, at the cost of geometric continuity.

This seems like a good design decision for a cacp system. Paper
sketches, which support ideation well, are fast but imprecise. A com-
puter system that is to replace paper sketching, should accept the same
imprecise input and make the best of it, rather than produce correct
models and slow down the user by requesting high precision input.
The difference is only that inconsistency is so much more obvious in
computer renderings than in artist renderings. Designers will have to
develop a tolerance against these defects, to not let it distract them,
and continue with the creative process.

An interpolating patch is constructed by selecting three or four
design curves and pressing a button. This causes edge objects to be
created along the design curves, in between the link objects. An edge
object owns two NURss curves, defined in global coordinates. One of
them traces the design curve in between the parameter values con-
tained in the two link objects, but possibly deviates from it at the
ends if the link object corresponds to a crossing and not an exact
intersection. This NURBs curve defines one of the boundaries of the
interpolating patch. The other NURrBs curve is positioned right next to
it, and their difference defines the tangent vector across the bound-
ary. Its control points are derived from tangent ribbons along the
design curves. These were constructed in the form of vector valued
cubic Bézier curves, successively converted to B-spline curves by re-
parameterisation and multiple knot insertion, to match them with the
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design curves®. The NURBs curves on opposite sides of the patch are
given equal knot vectors and an equal number of control points by
knot insertion.

With this information, an interpolating patch can be generated. A
corresponding patch object is created, which takes on the function of a
face element in the B-rep data structure. This patch object contains the
NURBs surfaces to which the patch is converted, so that they can be sent
to the graphics library for visualisation, or be exported to standard
data formats.

4.4 An Application to Ship Hull Design

The use of transfinite surfaces that interpolate an arbitrary network
of curves is not only advantageous in conceptual design. This is il-
lustrated in the PhD thesis by Michelsen| [1995], who describes an
application to ship hull design. His work is implemented as a set
of Fortran-77 archives for the program package I-ship, developed at
the Department of Ocean Engineering of the Technical University of
Denmark®.
Michelsen|envisions the following sequence of operations:

1. Preliminary shape design with a set of unconnected curves, e.g.,
representing intersection curves in parallel planes, like the sta-
tion curves in a lines plan.

2. Definition of connecting curves in other planes, like the water
lines in a lines plan, while fairing the existing set of curves.

3. Establishment of topology information. There is an attempt to
automate this step, but manual inspection is necessary, followed
by manual correction in ambiguous cases.

4. Building a patch-work by filling in the mesh cells with transfinite
surfaces.

“It seems that this is simpler than the approach of [Jensen et al.|[1991], probably
because it does not need to be as general since the curves are known to be B-splines
instead of completely arbitrary.

Michelsen| was dictated in his choice of programming language by interfacing
with the pre-existing I-ship system. It was not a happy choice, as he reportedly had
difficulties implementing efficient data structures in that language.
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4.4.1 Curves

Michelsen does not go as far as to implement a sketching interface —
after all, the focus is not on idea generation but rather on modelling pre-
cision — but he is also of the opinion that approximating splines like
the B-spline variants are not intuitive enough for non-mathematicians
to work with. He chooses a cubic interpolating spline, so curves can
be manipulated with “control” points on the curve, here called offset
points. These splines are equivalent to the collection of short cubic
Bézier curves, here called curve segments, one between each pair of
successive offset points. The location of the free Bézier control points
(the ones that determine the tangents at the ends, known as anchors
in the graphic world) is determined to produce (by default) an overall
G? curve by solving a linear system of equations*. In addition, sev-
eral kinds of tangent constraints (including knuckles) can be specified
at each individual offset point. It is for example possible to have a
master/slave relation between the tangents of the two segments of a
curve that meet at a common offset point, in which the tangent of one
segment automatically takes on the value of the tangent of the other
segment.

Whether an interpolating spline is indeed more intuitive to work
with than an approximating spline, is subject to debate. As noted by
Jensen ef al.|[1991], the choice of the number and placement of offset
points is critical: a curve with few offset points can bulge-out unexpect-
edly when it is manipulated, and a curve with many offset points is
hard to fair. Other disadvantages in comparison to the B-spline is that
control is global, i.e., manipulation of a single offset point changes the
entire curve, and there is danger of oscillation, which makes it hard to
model straight sections in a curve. The bulging and oscillation can be
reduced by changing the way in which the curve is parameterised, but
this also makes the curve affine variable' and, as noted by Michelsen
[1995], there is not one parameterisation that suits all situations.

“Note that although the B-spline curve is approximative, direct manipulation of
B-spline curves is perfectly possible, as shown by |Fowler and Bartels| [1993] (also dis-
cussed in [Farin, [2002a} section 9.3]). In fact, this method is even more direct than the
interpolating spline, as one is free to “grab” the curve anywhere along it, not just at an
offset point. In addition, the linear system of equations that is to be solved for direct
manipulation of B-splines is generally smaller than for the interpolating spline, since
the number of control points that need to be moved is equal to only the degree of
the curve+1. This implementation might have been better off with a common B-spline
curve definition.

fwhich means that the system of equations must be solved again after any affine
transformation of the offset points.
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As an additional aid against oscillations and excessive bulging,
Michelsen|allows curves to be split into shorter sub-curves. Each sub-
curve is represented by an individual interpolating spline, with a
G! (or less) connection to its neighbours. This effectively allows a
discontinuity of curvature at the joint between sub-curves.

For display, the Bézier segments are efficiently discretised by adap-
tive subdivision using de Casteljau’s algorithm, which reduces the
number of curve evaluations in regions of low curvature, while pro-
ducing high detail in regions of high curvature.

One important advantage of using interpolating splines for wire-
frame modelling is that intersections between curves are absolutely
accurate. Offset points are stored directly, and two intersecting curves
share the same offset point at their intersection. Thus even round-off
errors are non-existent at the intersection.

4.4.2 Data Structure

Michelsen| chooses Baumgart’s “winged edge” data structure to im-
plement a B-rep, essential for the creation of the patch-work surface.
The existence of sub-curves requires a simple additional data struc-
ture that administers the relations between offset points, sub-curves
and curves.

4.4.3 Cross-Boundary Derivatives

As usual, cross-boundary derivative information is needed in order
to obtain a G! connection across patch boundaries. For this, tangent
ribbons are constructed in a way similar to the approach of [Jensen
et al|[1991], discussed in step 5l on page[52]

4.4.4 Surfaces

This is the first implementation in this series that supports wire-frame
cells with more than four sides. These cells are filled with an n-sided
transfinite patch defined by |Gregory| [1983]. A patch of this kind is
composed of a blend between n interpolants that simultaneously
match two adjacent edges for each corner of the patch. The blending
functions, defined on barycentric coordinates, suppress the contribu-
tion of interpolants as the opposite side of the polygonal boundary
is approached. This n-sided patch formulation applies to n > 4, but
formulations for n = 4 and n = 3 are similar. Explicit formulations
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for n < 3 are not provided in this implementation, 2-sided cells are
chosen to be filled with a degenerate 3-sided surface.

Surfaces constructed with these patches are C*> within patch bound-
aries, and G! across patchboundaries. AsMichelseninotes in his thesis,
whether tangent plane continuity is sufficient in all design situations,
is an open question. But since the boundary curves themselves are C?,
the discontinuity of the curvature across the boundary is limited and
can be decreased by adding more curves, such that patches become
smaller. Thus “almost curvature continuity” can be achieved, or eG2.
The approach of Jensen et al|[1991], discussed in Section 4.2} performs
even better in this regard, as regular quadrilateral regions of the net-
work are truly C?, independent of their size, by the use of Gordon
surfaces.

Support for n-sided patches removes constraints on the regularity
of the wire-frame, which is of great value. The price is incompatibility
with standards for loss-less data exchange with other cap systems.

4.4.5 Practical Experiences

Michelsen(s thesis offers a full supply of examples, and experiences
with this modelling method are well documented. The system seems
to perform generally well, but it is worth noting that not every con-
sistent and fair wire-frame will result in a satisfactory surface model.
For details the reader should refer toMichelsen|[1995, section 6.3], but
in short the following problems can be expected:

e The aesthetic quality of patches degrades with high variance in
the boundary data, such as interior corner angles, edge lengths,
or derivative information.

o Wire-frame cells with fewer than three sides can occur in prac-
tice, for which surfaces are ill described.

e When patch corners appear inside the convex body, the sur-
face will extend outside its boundary, a situation that is surely
unwanted.

e When curves intersect at small angles, the surface normal at that
point becomes unstable. Thus the surface is sensitive to small
changes in these curves.

These problems can be resolved by changing the wire-frame. This is
not a fortunate solution for ship hull design applications, as naval
architects are used to work with planar curves embedded in standard
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intersecting planes, i.e., the curves of a traditional lines plan. An extra
space curve here and there is annoying at the least and might be
confusing. The real problem though, is that the model needs to be
inspected in detail to identify defects of this kind, after which fixes
need to be devised manually.

It is also noted that some situations, like the connection of the hull
of amodern yacht with its keel, would gain from practices known from
csa, like boolean combinations of individual wire-frames, and the
definition of surface features such as edge blends and chamfers. The
use of Euler operators is recommended for future work, to maintain
a consistent topology during changes in the wire-frame.

We conclude that the system has much potential, but a wide com-
mercial application seems to be lacking; probably due to the academic
setting in which I-ship is developed, maintained and supported.

4.5 Integrated Fairing: The H-rep Concept

A Dutch company by the name of sarc has commercial success with
its system for ship hull design called Fairway. Fairway supports both
ab initio design of new hulls, digitalisation of existing lines plans and
even digitalisation of full-scale ship hulls by means of photogramme-
try. Its conception and implementation is described in the PhD thesis
by Koelman|/[1999]. He denotes the underlying technology as “hybrid
model for ship hull representation (H-rep)”, to indicate the mergence
of wire-frame modelling with solid modelling. Its hybrid nature is
clearly visible in Figure 4.1) on page 53l Overviews of the H-rep are
also published in|Koelman et al.{[2001] and |[Koelman| [2003].

Instead of asking the user to work through a sequence of steps in
order to generate a surface with arbitrary topology, |Koelman| gives
the user a flying start: every new project starts with a model of the
starboard side of a minimal initial ship hull, based on specified main
dimensions. This initial shape is defined by a contour line (in the
XZ-plane at y = 0, which is the plane of symmetry), a station curve
(embedded in a vertical transverse plane) at half the ships length
and deck-line (a space curve). This set of curves is enough for the
definition of a complete solid model, and although parts of it can be
made invisible (such as the centre plane and the deck), the model
always stays a valid solid, by the application of Euler operators — as
suggested earlier by Michelsen| [1995]. Thus the B-rep data structure
serves both the administration of transfinite surfaces and the integrity
of the solid.
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An important advantage of using a complete initial model and
the application of Euler operators, is that users are never bothered
with patches or curve selections. They are given the impression of
working with a wire-frame model, very much in the tradition of lines
plan draughting, with the power of solid modelling. Another valuable
improvement is the addition of a combined curve fairing and fitting
algorithm. Thus, in an iterative working procedure, the curves in the
wire-frame can be made consistent with each other (i.e., curves that
should intersect can be made to intersect, at least up to a given accu-
racy) while giving the hull an overall fairness of production quality”.

4.5.1 Method Outline

The Fairway system offers an alpha-numerical interface and a graph-
ical interface. The graphical interface consists of one or more projec-
tions of the wire-frame model, in which curves can be manipulated
one at a time. Surface patches are not visualised, in fact they are not
even computed until strictly necessary. The complete hull surface can
be visualised in a separate rendering mode", but this mode does not
support shape manipulation.

Starting with the initial hull, one first brings the existing curves
to ones likings, by control point manipulation. If the resulting hull
is rendered at this stage, the surface shape will likely not be to ones
satisfaction at larger distances from the defining lines. The solution is
to add more lines by which the shape can be manipulated, effectively
subdividing the patches. This can be formulated as projecting a curve
onto the hull, or as intersecting the shape with a plane. Most of the
time, the wanted curve is one of the standard lines plan curves, like
station curve (embedded in a vertical transverse plane), buttock (em-
bedded in a vertical longitudinal plane), water line (embedded in a
horizontal plane) or diagonal (embedded in an oblique longitudinal
plane), such that only type and offset need to be specified.

While adjusting a curve, it might happen that it is pulled away
from the intersection points that it had with other curves, effectively
rendering the wire-frame inconsistent as a surface or solid representa-
tion. There is no mechanism that prevents this, or otherwise keeps the
surface sound. If this happens, the other curves mustbe faired through
this curve, something that is the responsibility of the designer, but in
which the fairing/fitting algorithm is of valuable help. Since curves

“See pagefor a description of the process of fairing.
Computer rendering is done by discretisation of the patches and low-level calls
into the OpenGL library.
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can only be manipulated one at a time, this process is iterative in
nature.

This is the way in which changes are made in a design, and it
helps when as little curves as possible are present, so the number of
curves that are affected by a possible inconsistent region is small. This
methodology is completely analogous to traditional manual lines plan
draughting, by which ship hulls have been designed for centuries.

When enough curves are present to give the hull its desired shape,
and the surface is fair and consistent, the surface itself is finished.
Curves that are necessary for computer aided manufacturing can be
projected onto the hull, like the profiles of frames, girders and bulk-
heads, as well as butts and seams of the shell plating.

4.5.2 Curves

The curves used in |Koelman's implementation are all NURBS curves,
because of their ability to represent exact conic sections. The type of
curve is specified by the user, with the choice of straight line, circular,
parabolic, elliptic, hyperbolic and general 3D B-spline curve.

Though the weight factors of the individual control points can
be used as shape modifiers of the rational curve, they are less intu-
itive to work with than just to move control points around. The extra
freedom can even be confusing to designers. Therefore it was in this
implementation decided, to hide the weight factor from the user in al-
most all cases. The only weight factor that can be specified by the user,
belongs to the middle control point of a quadratic NURBs curve with
three control points, by which an elliptic arc (w < 1, Figure[d.2(b)) or a
hyperbolic arc (w > 1, Figure[#.2(c)) can be produced. When a circular
arc is requested, which is a special case of an elliptic arc, the appropri-
ate weight factor is computed automatically. When a parabolic arc is
requested, all weight factors are kept at 1 (Figure £.2(a)). The weight
factors of all other control points of these and all other curves are
permanently fixed at 1.

The degree of the curve is also hidden from the user, and automat-
ically kept as low as possible, to maintain a high level of local control".
Straight line segments are of first degree. Conics are of second degree.
Free-form curves are given degree three to five, depending on the
constraints put on their end-points.

“Recall that basis functions have a support over knot intervals that is proportional
to their degree (actually, their support is equal to their order) so control points that
correspond to basis functions with a large support, control a large portion of the curve.
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(a) All control points have w = 1, (b) The middle control point has
meaning that their homogeneous w < 1, positioning it in front of
coordinates fall in the projection the projection plane in homoge-
plane, which essentially produces neous coordinates. Consequently,
a non-rational curve; in this case a the higher-dimensional curve is
parabolic arc. also in front of the projection plane.

When this curve is projected per-
spectively, it produces an elliptic
arc.

(c) The middle control point has
w > 1, positioning it behind
the projection plane in homoge-
neous coordinates, and with it the
higher-dimensional curve. When
projected, this curve produces a hy-
perbolic arc.

Figure 4.2: The influence of setting weights of non-uniform rational B-
spline (NUrBs) curves, illustrated on the construction of 2D conic sections,
after [Nowacki et al.,[1995]. An n-dimensional NURBs curve is constructed by
the perspective projection of an n + 1 dimensional B-spline curve. If the NURBS
control points are defined by coordinates (x, y) and weight factor w, then the
higher dimensional B-spline control points are defined as (wx, wy, w), the so-
called homogeneous coordinates of (x,y). The term rational stems from the
fact that the projection (x, y) is produced by the ratio (wx, wy)/w.
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Like Michelsen! [1995], Koelman| allows the curves in the wire-
frame to be partitioned into curve sections; only he calls the sections
just curves and the collection of sections a poly-curve. But [Michelsen
had to offer this as a fix to counter oscillation in his interpolating
splines, and oscillation is not an issue when using NUrss curves. In
this implementation, poly-curves play a functional role: each part of
the poly-curve can be assigned an individual curve type, as discussed
on page In a similar fashion to Michelsen| [1995], constraints on
the tangent and curvature at the end-points of the curve sections can
be specified by the user, or inherited from the adjacent section in the
poly-curve in a mastet/slave relationship. In this implementation, mas-
ter/slave relations are extended to include unconnected curves, so one
curve can be defined as the offset of a master curve, or any combina-
tion of its length, breadth and height coordinates made dependent on
these values of a master curve. An example of where this is valuable is
to make the height of the deck where it crosses the plane of symmetry
dependent on the height of the deck at the side, based on a constant
transverse deck radius [SARC, 2004].

Although the invention of poly-curves may not be a dramatic
achievement scientifically, it is of great practical value to the designer.
Not so much in the field of computer animation, where the focus is
mostly on the freedom in topology — after all, a model of a dinosaur
needs to look like one, it does not need to be a cast of a real one— but it
is important all the more in engineering fields like naval architecture,
where precision and correctness are just as important as topology.
Now the sections of curves that lie inside flat regions of the hull (like
the FoS and FoB) can be made a straight line by definition®. Likewise,
the bilge can be defined circular, and water-lines in the bow region
can be defined parabolic. The length, place and shape of these curve
sections may change, e.g., because of a change in an adjacent section,
but their types remain fixed.

Thus, the type of certain shape features in the surface can be fixed
during shape manipulation. We note that this property is not surpris-
ing to someone accustomed to another modelling methodology that is
very common nowadays, and is called feature based design using csc.
There, models are constructed by successively applying different fea-
turest to a model, like boolean combinations, edge blends, chamfers,

*As a comparison, in some other modelling systems, flat regions in the surface can
only be achieved by carefully placing a substantial number of control points in the same
plane. Deviations from that plane can occur through errors in the manual input, and
can go easily unnoticed in the coarse images on a computer monitor.

*These operations are recorded in a csc tree or history tree, by which the model can
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taper angles etcetera, so features naturally play a centric role. Then
again, csc is not particularly well suited to the design of sculpted
shapes, and has great difficulties with sculpted shapes with arbitrary
topology. So, the poly-curves of Koelman| bring advantages of these
two completely different methodologies slightly closer together.

4.5.3 Data Structure

Koelman|extends the B-rep data structure in a similar way as|Michelsen
[1995], to support poly-lines. But instead of using the winged edge
data structure to implement a B-rep, he uses the half-edge data struc-
ture®, which has a smaller memory foot print and smaller overhead.

4.54 Cross-Boundary Derivatives

Tangent ribbons are constructed on demand, after Jensen et al.|[1991].
For details please see the thesis [Koelman) [1999].

4.5.5 Surfaces

Four sided wire-frame cells are filled with common Coons patches,
with Gregory’s correction to counter corner twist incompatibility. For
n sided cells with nn > 4, a boolean sum of 1 corner patches [Gregory)
1983] is used, just as Michelsen| [1995] did. The same patch is used if
n = 3.If n = 2, one edge is split to simulate a three sided cell.

A central functionality in this implementation is the interpolation
of new curves, and the projection of space curves onto the hull. In ef-
fect, this is the problem of intersecting the surface patches with planar
and ruled surfaces. Theoretically, this is a complex problem for two
reasons. Firstly, the intersection line can consist of multiple elements
that can be open or closed loops, possibly with cusps. Singularities can
also occur. And secondly, an exact representation of the intersection

be regenerated from scratch. The order of operations may be changed inside the tree
(as far as dependencies tolerate) and one can roll-back (and forth) different parts of the
tree to insert operations back in time, or change parameters and dimensions in existing
features.

“For the half-edge data structure one is usually referred to the standard work of
Mantyld| [1988]. It can be shown that this structure is equivalent to a data structure
developed by Fjeldaas|[1985]], which was meant as a relief of the administrative burden
of Baumgart’s winged edge structure. A modern implementation of |Fjeldaas| structure
that I produced, turned out to be practically the same as a modern half-edge imple-
mentation, like the Half-edge Data Structure Template Library [Bronnimannj 2001].

The only significant difference is that Mantyld| evaluates a pointer where |Fjeldaas
evaluates a boolean.
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line(s) will have an unmanageable high degree. As a reference: the
intersection of two bi-cubic Bézier patches is a space curve of degree
324 [Manocha and Canny, 1991]].

The approach taken here is approximative, by calculating a man-
ageable number of intersection points per patch , and fitting a NURBs
curve through them by means of the integrated fairing/fitting algo-
rithm. In practice, this leads to satisfactory results. This may seem
crude to surface experts, but it is important to note that most impor-
tant information for cam is in the curves, at least for hulls that will be
build in steel, aluminium, or wood. In addition, in a production-ready
model, the curve network is so dense that the information covered by
the patches has little to add. So the purpose that the patches serve is
primarily to hint the shape of newly added curves, and secondarily
for rendering and physical model manufacturing.

4.5.6 Fairing

The ability to fit crossing curves to each other such that they intersect,
is essential in bringing the model to a description of a sound solid.
Curve fairing, of course, is essential for the construction of produc-
tion quality surfaces, in which unwanted inflections and variations in
curvature are removed. Both fitting and fairing are combined in an
algorithm that is due to|Dierckx|[1993].

The curve is fitted to a collection of data points, which consists
of patch intersection points as described above, and/or the nearest
points on crossing curves. Each of these points can be assigned a
weight factor, by which the mean deviation is to be distributed*. The
maximum tolerable mean deviation can be specified by the user: if it
is 0, the curve is a true fit. The larger the tolerated deviation, the better
the fairing and the lesser the fit.

Given a small initial number of control points, the algorithm finds
the NUrss curve that firstly has a minimised square of the jumps in
the second order derivatives (which is a measure of (un)fairness),
and secondly fits the data points best according to the weight factors.
If this curve still deviates more from the data points than the user-
specified tolerance, one knot is inserted (a control point added) and
the optimisation repeated. This process is iterated until the fit is within
the tolerance, which results in a fair curve with minimal number of
control points.

*This weight factor is not to be confused with the weight factor of control points of
NURBS CUI'VES.
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4.5.7 Continuity Considerations

Whether or not tangent plane continuity, as offered by the applied
patch types, is sufficient in all design situations, was left an open
question in Section Of course, in a finished model, the curve
mesh is rather dense, and €G? is well achieved. In addition, as noted
earlier, curves are almost all that is needed for production, and curves
have no continuity deficiencies.

Nevertheless, [Koelman| [1999]] reports on a practical experiment,
to get a better understanding of the importance of cross-boundary
curvature continuity. Earlier versions of Fairway were fitted with an
automated procedure to recognise sets of rectangular patches in a
regular formation. These sets were then interpolated by an extended
Gordon surface, in the spirit of Jensen et al.|[1991], to produce larger
regions that were G? across boundaries. The experiment was to refrain
from the extended analysis needed for Gordon surfaces, and to fill the
respective cells with common Coons patches. The only noticeable
difference was an increase in speed. Conclusion: tangent continuity
across patch boundaries is sufficient.

This is not surprising, as the main purpose of patches in this imple-
mentation is to hint the shape of newly added curves. The intersection
points, on which this hinting is based, are sampled too far apart to re-
flect the difference of whether there is curvature continuity across the
patch boundary or not. The difference in their position is microscopic,
and the new curve that is faired through the points is G* regardless.

4.6 Limitations

The discussed systems for curve interpolation share an important
limitation. As the design progresses and more curves are added to
the model, more of its shape gets rigidly defined. The more curves
are present, the smaller the surface patches, and the more local shape
manipulations get. Since only one curve can be manipulated at a time,
and since this manipulation can damage the consistency and fairness
of the model, this has serious implications for the modifiability of the
model. Even if the desired variation is small in magnitude but covers
more than just a few curves, only two expensive alternatives exist:
either throw away part of the work already done, or make a mayor
investment in curve fairing. In practice, there is a limit on the surface
area that can be afforded to be manipulated.

Let us look at a practical example to illustrate the implications of
this limitation on the quality of designs. Naval architects designing
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ship hulls need to worry about a wide range of aspects in which their
design must perform as required. Some of them can be predicted
analytically, but for others they only have empiric formulae and their
experience to rely on. Their educated guesses cannot be verified until
in a late stage of the design, some of them by means of model tests
or simulation with computational fluid dynamics (cep). If the results
of these tests are unsatisfactory, one has to go back and pay for the
mistakes. But testing more varieties just to see if the results can be even
better, e.g., with different shapes of the bulbous bow, a less profound
shoulder or a different inflow to the propeller, is not affordable in
most cases. There is time nor money, even with the tests themselves
getting better, computing machinery running faster and hardware
costs decreasing.

4.7 Chapter Summary and Look Ahead

In this chapter the state of the art was presented, in modelling shapes
with arbitrary topology based on the interpolation of curves, including
the preceding innovations that inspired it.

The important observation is that the interpolation paradigm has
the following limitation, which it shares with the approximation pa-
radigm in a comparable form (see Section[2.2.3). Shape manipulation
that affects a larger area of the model is practically only possible in
early stages of the design, and shape manipulation in later stages is
about local details. Thus, one could say that modelling with these
systems is a one-dimensional process, because the design can only
evolve in one direction. If it is the wrong direction, it may be best to
(almost) start over.

A method that by-passes this problem is called for, so that it will
be possible to warp from one shape variation to the other, by which
— in our way of speaking — the design process will become multi-
dimensional. This is the subject of the next chapter, Chapter 5 which
reviews methods for global shape manipulation. As we will see, most
of these methods are directed at the approximation paradigm. That
is why Chapter [f focuses on the interpolation paradigm and how
said limitation can be addressed in the implementation of Koelman|
specifically.
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CHAPTER

Global Shape
Manipulation

This chapter seeks an answer in literature to the problems that were
described in Section and Section In short, the objective is
to make changes in global shape properties of a design, without ad-
versely affecting surface quality and other features. These are changes
for which a change in a single element of the shape defining data
(control point or curve) is not sufficient or even counterproductive.
What we need is a method to change a collection of data, without de-
stroying continuity, consistency and qualitative relations, within the
collection itself, as well as between the collection and data that is not
changed. In general, this involves each data element in the collection
to be changed, moved or shifted by individual values, in a single
operation.

One term that is often encountered regarding proposed methods
is deformation, which makes sense in the field of computer animation,
from which many of the methods originate. Computer animation is
important in the entertainment industry. In the application of geomet-
ric design however, the term is somewhat misplaced, as it would be
natural to understand deformation as a degradation of surface quality
or distortion of the design, not as an improvement. More appropri-
ate would probably have been formation or variation. Another term
is sculpting, which is more fortunate, and usually pertains to shape
manipulation by means of virtual tools or haptic interfaces.
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Earlier reviews are given by (Gibson and Mirtich! [1997], who sur-
vey deformable modelling in computer graphics with an emphasis
on finite element models, and Montagnat et al.| [2001], who focus on
deforming a surface towards an existing data set.

5.1 Free-Form Deformation

Bézier| introduced the idea of globally deforming a shape through
an R” — RR" mapping implemented as a free-form n-variate spline
[Bézier, (1978]. Sederberg and Parry|[1986] popularised this concept in
the graphics literature for the case where n = 3 to deform geometric
objects, and introduced the term free-form deformation (¥rp). free-
form deformation is a form of “spatial deformation” (another form
of spatial deformation is presented in Section [5.4). Simply put, the
process can be imagined as defining a 3D shape inside a block of jelly.
Then, by flexing the jelly, the shape inside is deformed with it. But
FFD is more powerful than the jelly analogy, because the embedding
space is infinitely flexible, does not care about volume preservation
or suffer from gravity.

The control polygon of the embedding space is now a 3D lattice,
which is parallelepipedical in its simplest form. The process of de-
forming a shape consists of the following steps:

1. Cartesian coordinates of the model are mapped to coordinates in
the parametric space of the embedding tri-variate spline volume,
or hyper patch.

2. Theshape of the embedding volume is changed by manipulation
of the control points in the lattice.

3. The spline volume is evaluated at the parametric coordinates
determined in step [1| to give new Cartesian coordinates of the
deformed model.

Naturally, the model does not need to be embedded completely in the
volume, although it will only be able to deform for the parts that are.

5.1.1 Arbitrarily Shaped Lattices

The kind of deformations that parallelepipedical lattices allow are lim-
ited, which inspired |Coquillart|[1990] to deform the lattice also prior
to step[TJabove. She proposes to assemble several tri-cubic Bézier vol-
umes by constraining some of the external control points of adjacent
volumes to each other, and also to allow them to be degenerate. Em-
bedding volumes can even be created from surfaces in the same way
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as surfaces are defined from curves (loft, sweep, extrusion etc.). Thus
a wide variety in the shape of embedding volumes is possible, and
in the structure of the (possibly) composite lattice, and thereby in the
possible deformations.

With parallelepipedical lattices, step|I|on the preceding page con-
sists of a straight forward linear mapping. The trade-off imposed by
Coquillart(s approach is that no such mapping exists, and calculating
the volume parameters that correspond to the Cartesian coordinates
requires numerical iteration.

MacCracken and Joy] [1996] propose to define arbitrarily shaped
embedding volumes by means of recursive subdivision [Catmull and
Clark|[1978] as discussed in Section[3.1.1} generalised to volumes. This
does away with the constraints on lattice control points that|Coquil-
lart| needs for geometric continuity. Instead of turning to numerical
methods to establish the correspondence between Cartesian coordi-
nates and positions in the deformable volume, it turns out that the
subdivision procedure itself can be used for this task. Nevertheless,
the process is costly compared to a linear mapping, which means that
the number of object points that can be deformed interactively may
be too small for the application at hand.

5.1.2 Direct Manipulation

For larger lattices, it can be difficult to see how the lattice control
points are ordered. The lattice tends to clutter the screen and obscure
the object being deformed, and some control points may be hidden
within the object. Also, the bewildering degrees of freedom can make
it hard to determine how the lattice must be manipulated to obtain
a particular deformation in the model. Direct manipulation has been
proposed as a solution to this problem, in which an intended defor-
mation is indicated on the embedded model, which is then translated
to shifts in the control points of the lattice.

Hsu et al.|[1992] show how the lattice alteration can be calculated,
based on an indicated shift of one or more object points. The system is
usually under-determined, as there may be many deformations that
contain the indicated shifts; but an over-determined system occurs
when the lattice is too coarse to obtain the indicated deformation.
They use a least-squares approach which performs well in both the
under- and over-determined cases.

Terzopoulos and Qin| [1994] section 7.7] suggest a different ap-
proach, of embedding the model in a tri-variate NURBs volume that
is extended with physical properties; the so-called dynamic NURBs
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(p-NurBs) described in Section This volume will deform in ac-
cordance with applied forces, which may act on any point within the
volume.

Gain/[2000, chapter 4] extends the direct manipulation principle to
include control of the tangent plane, twist and scaling in addition the
position of an object point. As a further improvement of the usability
of rp, Gain|[2000, chapter 6] proposes to control the lattice by means of
curve manipulation, through a process of curve sampling or functional
composition and degree reduction. Given a source curve contained in
the deformation volume, the idea is to compute how its lattice should
be deformed so that the curve approximates the shape of a given target
curve.

5.1.3 Impact on Model Representation

One thing that is often said about free-form deformation is that the
method is independent of the representation of the model that is
being deformed. Although that is true, it does not mean that the
representation is not of concern. Especially in animation, where rrp
is frequently used, polygonal model representations are popular. The
reason is that the data density of polygonal models is usually high
in comparison to the density of control points in the lattice, so the
tri-variate spline volume is sampled dense enough to transfer the
smoothness in the deformation to the model — in the general case.

Butitis not unusual that regions with little curvature in the original
model, where polygons may be larger, have a much higher curvature
after the deformation, and actually need a lot more smaller polygons
in order to give a smooth appearance. Therefore, refinement of the
polygon mesh may be necessary prior to deformation. The reverse can
also be true, leading to polygon saturation in the deformed model.
Gain| [2000] gives methods for mesh refinement and decimation to
address both these issues.

When the model is represented with spline curves and surfaces,
as is the case in most engineering applications, data density is a lot
thinner. At first one may think that it suffices to deform the con-
trol polygons and nets of the curves and surfaces in the model. But
although that will give a deformation, it is not the deformation de-
scribed by the embedding volume. In particular, this practice does
not preserve continuity conditions that were present in the model.

One solution is to keep both the original model and the deformed
lattice, and evaluate both the original representation and the defor-
mation for every model point that is needed. Besides the extra toll in
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size and evaluation time, this is not friendly towards repeated appli-
cation of the procedure. But the biggest problem is that all algorithms
for rendering, intersection calculations, derivatives, fairness interro-
gation, and so forth, must be adapted to evaluate multiple nested
structures. And they need to take into account the sampling aspect
indicated above.

A more realistic approach is to embed the curve and surface defini-
tions in the volume definition by tri-variate composition [Bézier, 1978;
Gain 2000]. The problem there is that this increases the polynomial
degree beyond every practical value; if a curve of degree p is embed-
ded in a tri-variate spline of degree I X m X n, tri-variate composition
yields a curve of degree p(I + m + n). Bézier| [1978] reports degrees
of 75 to 150. Using tri-variate B-splines for the embedding volume
can bring down that number significantly, but not within the com-
fort range. Higher degrees give rise to ill-conditioning and increased
computation burden [Gain) 2000]. In addition, unless all needed de-
formations can be performed with the same lattice, the increase in
degree makes the process unfit to be applied repeatedly. It may be
possible to reduce the degree after the deformation, but that is an
approximative procedure which introduces a deviation, and explicit
care must be taken that continuity is not affected.

Tri-variate composition can also be used on polygonal represen-
tations, as [Feng et al.| [1998] propose, as an alternative to mesh re-
finement. Their method takes a polygonal model as input and yields
a curved model described by triangular Bézier patches as output —
which eliminates the sample problem of polygonal models under rrp.

5.2 Hierarchical Refinement

Hierarchical B-spline refinement [Forsey and Bartels|1988] was briefly
demonstrated before, on page 31| This principle builds on the under-
standing that knot refinement, which increases the number of control
points in a curve or surface, is an exact operation. That is, the surface is
identical before and after the refinement. As we know, ordinary refine-
ment of a surface introduces complete rows and columns of control
points, which can be a problem, as discussed in Section With
hierarchical refinement, the original surface definition is kept, and the
refined surface is only used for the quadrilateral region where the re-
finement was intentional. This smaller patch with finer control is used
in place of the original surface where they overlap, and elsewhere, the
original surface is used. In order to conserve consistency between the
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original surface and the refined surface, only internal control points
of the refined patch may be moved.

The control points of the refined surface are expressed relative to
the positions and surface normals of points on the original surface,
corresponding to the surface parameters at which the basis functions
of these control points have their maximum. This way, manipulations
on the underlying surface carry over to the refined surface in a global
sense.

Refinement may be repeated in a hierarchical manner, and the
surface representations at different levels of detail can be stored in
a tree structure. Composite surfaces of this kind have a highly com-
plicated structure of control points. As the user cannot be expected
to make sense of the maze of the control graph, Forsey and Bartels
[1988] propose a simplified form of direct manipulation. Every control
point corresponds to a point on the surface over which it has maximal
influence, which is positioned by the parameter values for which its
basis function has a maximum. A change in such a surface point can
be converted to a change in the one corresponding control point. So
the user is given to pick any such surface point at the level in the hier-
archy that corresponds to the intended domain of the manipulation,
and drag it to change the shape of the model accordingly.

5.2.1 Localised Hierarchy Surface Splines

By building on the tensor-product B-spline basis, the above method in-
herits the limitation, regarding the modelling with arbitrary topology,
of not addressing the problem of smoothly joining more or less than
four patches at a patch corner. This led |(Gonzalez-Ochoa and Peters
[1999] to apply the hierarchical refinement idea to C' surface splines
[Peters, (1995b|, which do address the matter of arbitrary topology,
as discussed on page 43| Their system of localised hierarchy surface
splines (LeSS) allows connecting arbitrary sub-meshes by which a
change of genus can be accomplished. This gives complete freedom
of modelling in a topological sense, like the ability to create bridges
and punch holes.

Whereas models using hierarchical B-spline refinement [Forsey
and Bartels, 1988] are defined as surface patches offset from ancestor
patches, in LeSS, finer-level patches replace coarser-level patches. So
the evaluation of the spline patches does not require traversal of the
hierarchy and is numerically stable.

Refinement happens at the mesh, as a partial Doo-Sabin-like sub-
division. The nodes of the refined mesh fragment are expressed as
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offsets of coarser-level nodes, which forms the mechanism by which
surface details follow editing on coarser levels. The surface itself is rep-
resented by small cubic triangular Bézier patches. Optionally, four of
these patches can be converted into one linearly trimmed (diamond-
shape) bi-cubic NurBs patch. Even though surface patches are not
overlaid as in [Forsey and Bartels| [198§], all levels of refinement in
the mesh remain present and active, so the structure of control points
becomes just as complex. Therefore, LeSS also supports direct manip-
ulation.

5.3 Superposition

When modelling with plasticine and confronted with the task of
adding a bulb to some sculpted model, one approach is to form the
bulb separately and stick it to the model. It would be natural to in-
vestigate an analogy to this in cacp, which can be formulated as
superimposing a displacement function on a curve or surface.

This is the approach taken by [shidal [1997], with the motivation
to provide direct manipulation of the global shape of curves and sur-
faces. His method is developed on curves, but does not extend quite so
well to surfaces. Given some constraints, such as a prescribed shift of
a point on the curve, some fixed points and some prescribed tangents,
a displacement function is constructed by means of a general B-spline
interpolation method. The parameterisation of the displacement func-
tion is compatible with the original curve, so that superposition into
anew curve consists of the following steps:

1. Adjust the degree of the original curve and the displacement
function to the higher of the two degrees, by degree elevation.

2. Calculate the union of the knot vectors and represent the curves
over the unified knot vector, by knot insertion.

3. Add the resulting control points of the original curve and the
displacement function, by vector summation.

As a consequence, the result may end up with a non-uniform knot
vector and additional control points. This is unfortunate, as repeated
application of this procedure will pollute the curve with superfluous
data.

For surfaces, constraints can be given in the form of points or
curves. The limitation is that these points and curves must line up
with the control point grid and iso-parametric lines respectively. This
requirement may only be an inconvenience as long as we are dealing
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with a single surface patch or a regular checkerboard arrangement of
patches. However, when dealing with models with arbitrary topology,
this requirement cannot be met and |Ishida(s approach cannot be used
for global shape manipulation.

5.4 Decay Functions

A polygonal mesh is a low level geometric representation, to which
higher level representations such as parametric surfaces are frequently
converted for fast computer rendering. Apart from rrp, discussed in
Section 5.} other methods exist to manipulate these polygonal repre-
sentations directly. As the data density in a polygonal representation
is high, the need for global modification quickly becomes apparent.

Our first reference dates back to (1977, when [Parent| published a
description of an animation system implemented on a PDP-11. Par-
ent| [1977]] allows pulling on one point in the mesh and proposes an
interpolation routine that pulls neighbouring points proportionally.
The neighbouring is based on the mesh connectivity, namely the adja-
cency counted by the number of edges which must be traversed from
the point in question to the point that is actively being pulled at. This
involves only integer arithmetics, which was probably an important
performance question at the time.

The proposed scaling of point movements is based on a simple
polynomial formulation of integer order k € Z. Let n be a specified
maximum adjacency count, beyond which points are unaffected by
the pull, and let i be the adjacency count for the point for which a
pull needs to be computed. When d is the movement of the point
that is actively being pulled at, then the movement of adjacent points
d; = fd, where the decay function f is defined as

1- ( : )k fork>0

n+l

f={1--L fork=0 (5.1)

(1 - ﬁ)_k fork < 0.

The shape of this function, plotted in Figure is linear whenever
k € {1,0,-1}, semi concave when k > 1 and semi convex when k < —1.

The same approach is taken by |Allan et al|[1989]. Having the
advantage of better hardware, they propose to take the Euclidean
distance as the input of the decay function, for a more intuitive defor-
mation. With this, the method becomes a spatial deformation method
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and can operate on any model representation, like the rrp. Allan et al.
[1989] also give the option of expanding and contracting an object, by
moving points in individual directions calculated as the average of
the normals to their incident faces.

fA

0 7 1 i/n

Figure 5.1: Decay functions defined by|Parent|[1977], see on the preceding
page, displayed for -7 < k < 7, as well as k = +64, which they propose as a
maximum.

Obviously, Allan et al.| have great fun proposing various decay
functions. They give the choice between

1. a constant value of 1.0 — which probably makes more sense
than taking the power of a polynomial as high as you can, as
Parent|does above,

2. alinear function, producing a cone, like k = 0 in Figure

3. a quadratic function, producing a cusp, like k = —2 in Figure[5.1}

4. a bell-shaped function, produced by a cosine over the interval
[0, 7], see Figure[5.2on the following page,

5. a wave effect, produced by a sinusoid, and

6. noise, produced by a randomising function.

Bill [1994] combines the decay function approach with adaptive mesh
refinement and smoothing to build a system for sculpting polygonal
models with virtual tools.

The next contribution is by |Borrel and Rappoport [1994], who
use a B-spline basis function as the decay function®. Actually, they

*According to a reference in [Marsan et al.,2001], this was proposed already in 1991
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themselves do not refer to the works presented in this subsection
so far, and see their work as a continuation of the research on rrp.
Their objective is to formulate an efficient directly manipulated spatial
deformation, and in the process they loose the hyper patch and the
lattice altogether. As a consequence, their approach may be argued
to have more in common with the approaches centred around decay
functions, although the borders begin to fade.

Previously, the cosine was the only proposed decay function that
results in a smooth deformation. It is interesting to note that there
is one particular basis function that resembles the cosine rather well,
and when written in power form (f = 1 + d*(2d — 3)) evaluates five
to six times faster than the cosine (f = 1 + cos(dn)), according to the
relative costs for floating point operations as given by [Gain| 2000]".
Figure[5.2]below shows these two functions in one plot.

A

0 1 d

Figure 5.2: Comparison between a cosine over half its interval (f = 1+cos(dn),
dashed) and B-spline basis function (f = 1 + d*(2d — 3), grey).

An advantage of B-spline basis functions is that their shape can
be varied by changing their knot vector, as in Figure[6.9on page
However, the general basis functions involve a division, by which
they loose their edge in efficiency to the cosine.

One additional variation on decay functions is suggested, namely
to keep the function value at unity for some time, before starting

by Paul J. Stewart in his PhD thesis Direct Shape Control of Free-Form Curves and Surfaces
with Generalized Basis Functions (The University of Michigan, Ann Arbor). However,
this could not be checked due to unavailability.

*Addition, subtraction: 1.0; multiplication: 1.614; division: 16.068; square root:
31.094; sine, cosine: 26.687; measured on an sc1 Octane 195 MHz R10000.



Decay Functions

the smooth decay towards zero. This has the effect of offsetting the
space in a particular region, while providing a smooth transition to
the undeformed space.

Borrel and Rappoport|/describe their deformation approach as fol-
lows:

“The user defines a set of constraint points, giving a de-
sired displacement and radius of influence for each. Each
constraint point determines a local B-spline basis function
centred at the constraint point, falling to zero for points
beyond the radius. The displacement of a point is a blend
of these basis functions, obtained by a linear combination
that insures that all constraints are satisfied.” [Borrel and
Rappoport, 1994]

Care is taken to satisfy all constraints simultaneously and exactly,
for which a system of equations needs to be solved. This happens as
follows. When fields of influence are disjoint (Figure[5.3(a)|on the next
page), constraints do not interact and points are only displaced based
on their distance to a single constraint point and its displacement”.
When fields of influence partly overlap but their constraint points are
still separated further apart than the size of their radii (Figure [5.3(b)),
points in the overlapping region are displaced by the vector sum of
the displacements obtained as if each constraint was acting alone.
But if the field of influence of one constraint point includes an other
(Figure 5.3()), just taking the vector sum as before would overshoot
the constraint displacement of the contained constraint point. In this
case, the solution of the system of equations will have produced a
different displacement vector for the contained constraint point, one
that compensates for the influence of the neighbouring constraint, by
which all constraint displacements are met.

This procedure can lead to unexpected results. When two con-
straint points are placed closely together, with their fields of influence
almost coinciding (Figure but with constraint displacement
vectors that point in completely different directions, the solution of the
constraint system may produce displacement vectors that are much
longer than the original constraints. This will produce a spatial defor-

“For the sake of consistency with|Borrel and Rappoportfs text, we will stick with the
term “displacement” for the moment. It is not the preferred term in this thesis, because
like “deformation” it suggests a degradation in quality. In some other texts, the verb
“to move” is used, which is not any better because there is no motion involved; the
change in position is instantaneous. In later chapters I will use the term “shift” instead
of these other terms, to denote a change in position.
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mation that is not well behaved in which displacement vectors can
vary violently, a phenomenon called space tearing.

LOP OO

(e)

Figure 5.3: Interference between fields of influence.

When two constraint points coincide exactly, the system of equa-
tionsis over-determined. Thisis actually allowed, and the least squares
solution to the system may be computed by means of a pseudo-
inverse. Naturally, the result will not meet the conflicting constraints,
but they will be optimally approximated. The authors find that dupli-
cated constraints with different radii of influence (Figure can
be used to reduce space tearing.

Lazarus et al.|[1994] propose axial deformations for modelling and
animation, in which object points follow changes in a curve defined on
or near the object. For this, the shortest distance of an object point to the
curve is considered, and its position relative to an orthogonal frame
defined at the closest point on the curve. A minimum and maximum
range of influence is defined along the curve. Object points outside
the maximum range are unaffected. Points inside the minimum range
are displaced according to their position in the frame that has been
transformed by a change in the curve, which may include rotation.
The frame is positioned on the curve at the same curve parameter
value as before. For points in between the minimum and maximum
range, the displacement is weighted.

Singh and Fiume| [1998] improve the interface of axial deforma-
tions by replacing the coordinate frame with explicit control over
scaling, rotation and translation of data points. They have special in-
terestin the interaction between several deforming curves (which they
call a wires), and propose to prevent superposition of deformation by
averaging the influence of the deformations that are locally active.
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They also propose domain curves to demarcate the deformation for
anisotropic directional control of the deformation, and they give a
heuristic by which the domain curve can be used to control the extent
of the deforming area on one “side” of the wire, relative to the surface.
This however involves computing one more shortest distance, which
is an expensive operation for curves. Singh and Fiume|[1998] use a C!
polynomial decay function, plotted in Figure[5.4/below.

A

0 1 d

Figure 5.4: C' decay function proposed by [Singh and Fiume| [1998] (f =
{@-1210<d<1,f=0|1<d).

Basis functions are also used by |Marsan et al.{[2001], who focus on
surface feature design. Their contribution is in the input of the basis
function; instead of taking the Euclidean distance between points
(which they call “radial parameterisation”) or the topological distance
of a polygonal mesh, they propose a parameterisation modelled after
heat flow in a plate, which they call Dirichlet parameterisation. This
involves solving a two-dimensional Laplace equation, or potential
equation, which they do numerically, using the finite element method
(FEm). There will be more on rem in Section [5.5.1]on the next page.

Marsan ef al.|[2001] allow the domain of the feature to be marked
on the surface by a closed periodic NURBs curve. One or more influ-
ence centres, at which the surface feature will have a maximum, are
marked inside the domain, as points, open curves, or closed curves.
Then the surface, together with the markings, is mapped on to a plane,
e.g. by parallel projection, and the domain is meshed into triangular
elements. A linear system of equations is set up, consisting of a con-
duction matrix for the element nodes, boundary conditions and the
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unknown parameter values that will be the input for the basis func-
tion. The system is solved for these parameter values by means of basic
linear algebra, and the values are then mapped back onto the surface,
where a basis function produces a scaling factor for a displacement
vector as usual. In-between the nodes of the finite elements, displace-
ment is obtained by linear interpolation.

The advantage of this approach is the freedom and the control
in the definition of the domain of the feature, which may be non-
convex, and the shape and number of influence centres. However, the
examples presented by Marsan et al.|[2001] all use very fine meshes,
and one may wonder whether the use of the topological distance to
influence borders and centres would not yield acceptable results as
well. This involves an exhaustive graph search, but it still may perform
faster than doing a full blown finite element analysis (Fea).

5.5 Deformation Based on Physics

So far we have seen purely geometric methods for global shape manip-
ulation (although the heat transfer analogy from above was inspired
by physics, it is still a geometric deformation method). In an attempt
to achieve a more intuitive method and realistic sculpting function-
ality, it has been tried to simulate the behaviour of real materials by
integrating structural analysis according to the laws of physics.

5.5.1 Finite Element Method

In general, the finite element method (rem) is a method for solving an
equation by approximating continuous quantities as a set of quantities
(“finite elements”) at discrete points (“nodes”). Because finite element
methods can be adapted to problems of great complexity and unusual
geometry, they are an extremely powerful tool in the solution of im-
portant problems in heat transfer, fluid mechanics and mechanical
systems, which are intractable using analytical methods.

The application of reEm to shape manipulation is mainly inspired
by its use in mechanical engineering, where it is primarily applied
for checking the stresses in the material of a given structure under
a given load. An rea of this kind results in the stresses in the ele-
ments and displacements of the nodes — the former follows from
the latter. In mechanical engineering, the deformation is typically of
small magnitude and usually regarded as by-product of the analysis.
When applied to shape manipulation however, the only interest is in
deformation, i.e., the change in the position of the nodes.
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It goes beyond the scope of this thesis to go into any depth re-
garding the mathematics of reEm. Besides a survey of the application
of the method to deformable modelling, (Gibson and Mirtich! [[1997]]
give a good introduction to FEMm, as well as references to more detailed
coverage.

One of the important things to remember from a mechanical engi-
neering course on reM is that the method assumes small deformations.
In deformable modelling, that assumption is not going to hold. If one
is after physical correctness, an expensive re-evaluation of the force
vectors and mass and stiffness matrices is required as the object de-
forms, at sufficiently short time intervals so the assumption of small
deformations is valid. Therefore, the method is not a natural fit for
interactive global shape manipulation, and applications are sparse.

Celniker and Gossard| [1991] describe special purpose elements
for smooth curve and surface modelling. They propose a three-step
algorithm for the design of free-form shapes. Firstly, curves are set up
where the surface is going to have a tangential discontinuity, such as at
edges and along creases. The object is then skinned with a deformable
surface, consisting of triangular surface elements that minimise both
curvature and surface area. The result is comparable with the mem-
branes that span the openings in a physical wire-frame that has been
dipped in a soap solution. In the third step, these surfaces (and the
curves) can be deformed by applying external forces such as point
loads and distributed pressure. The smooth surface elements connect
C!, and are able to describe shapes with arbitrary topology. The shape
can be constrained with prescribed position and surface normal at a
point on the surface, or along a curve, be it an edge or internal within
the surface.

Mandal et al.|[2000] present a unified approach to represent the
smooth limit surface of subdivision surface schemes, using a collection
of a single type of finite elements. The method allows direct surface
manipulation by means of the application of synthesised forces, is
however computationally expensive.

McDonnell and Qin/ [2001}, 2004] apply rem to subdivision solids,
the generalisation of subdivision surfaces to solids that MacCracken
and Joy| [1996] proposed for rrp lattices of arbitrary topology. For
complex models, the rEm-based method does not perform in real
time. Alternatively, accuracy is traded for efficiency [McDonnell ef al |
2001; McDonnell and Qin) 2002] by simplifying the dynamic model
to a mass-spring lattice. The result is an interactive haptics-based de-
formable modelling technique [see also McDonnell, 2003].

To alleviate the computational burden of an a4, in order to obtain
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interactive responsiveness in rEmM-based shape modelling, |Kang and
Kak| [1996] propose to do the analysis at two resolutions. Initially, a
coarse volumetric analysis is performed to calculate gross deforma-
tions at a set of points in the object. The result is then used as the
boundary condition for a more detailed analysis of the object surface
using plate elements. Again, accuracy and physical correctness are
thus traded for efficiency.

Other applications of rFeM focus mainly on the simulation of human
tissue, for applications where high realism is a requirement such as in
surgical simulation and for animation in the entertainment industry.

5.5.2 Low Degree of Freedom Models

Gibson and Mirtich![1997] review several low degree of freedom mod-
els. As opposed to the rem approach, these models sacrifice physical
generality for speed. Among these, minimal energy surfaces are the
most interesting to us, since they add physical behaviour to tradi-
tional geometric modelling primitives, particularly parametric surface
patches.

Celniker and Welch| [1992] present deformable B-spline tensor
product surfaces with linear constraints. Their method preserves a set
of geometric constraints, such as interpolated points and curves and
prescribed surface normals, while interactively sculpting a free-form
B-spline surface by means of virtual forces. The surface seeks a fair
shape by minimising an appropriate global energy function, based on
resistance to stretching and bending. Thus the surface area and surface
curvature are minimised. [Welch and Witkin| [1992] extended this to
trimmed hierarchical B-splines [Forsey and Bartels| [1988], discussed
on page 31} to reduce the error bound. This results in surfaces that
appear infinitely malleable, by defining points and curves that the
surface interpolates. |[Zheng and Zhang| [2002] use linear constraints
[Celniker and Welch}|{1992] on models of arbitrary topology, using the
non-quadrilateral patches introduced by [Zheng and Ball [1997], as
discussed on page

The extension from deformable B-splines to NURsss is provided
by [lerzopoulos and Qin| [1994], resulting in so-called dynamic NURBs
(p-NURss) [see also |Qin and Terzopoulos)| [1996]. Continuous func-
tions distribute mass, stiffness and damping throughout the NURBs
surface. The dynamic behaviour of these surfaces results from the nu-
merical integration of a set of non-linear differential equations that
automatically yield the control points and weights in response to ap-
plied forces and constraints. To derive these equations, Lagrangian
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mechanics and a “finite element”-like discretisation is employed. The
D-NURBSs surfaces are evaluated at small time increments, providing vi-
sual feedback of the evolving state of the dynamic model. The method
transfers to triangular p-NURrss surfaces [Qin and Terzopoulos) [1997],
which facilitate the modelling of arbitrary topology, as well as to hi-
erarchical p-NUrss surfaces |[Zhang and Qin| [2001]], which facilitate
modelling at several levels of detail.

The existence of weights makes the incorporation of dynamics in
NURBS geometry substantially more challenging than doing the same
in B-spline geometry. Since the NURBs rational basis functions are func-
tionally dependent on the weights, p-NurBs dynamics are generally
non-linear, and the mass, damping and stiffness matrices must be re-
computed at each simulation time step. Ironically, |lerzopoulos and
Qin| [1994] report that the weights tend to move toward zero (reduc-
ing the influence of the corresponding control point accordingly) due
to the minimisation of surface energy. We note that weight editing is
rarely applied as a shape parameter by designers; weights are usually
computed only to represent conic sections accurately. Therefore one
might question the value of including these degrees of freedom in
a framework for deformable surfaces, especially because this makes
the analysis an order of magnitude more costly [ITerzopoulos and
Qin} [1994]. By making the weights constant, the surface reduces to a
dynamic B-spline.

Guan et al.|[1997] apply physics-based deformable curves and sur-
faces to the construction of n-sided surfaces, smooth surface joining
and surface fairing.

5.5.3 Spring-Force Models

Dachille IX et al.|[2001] describe a haptics-based interface to dynamic
sculpting of a single B-spline patch, with force-feedback. They derive
a mechanical model by a discretisation of the patch into a grid at a
user-defined resolution. In-between the grid points, spring forces are
defined, and mass, damping and stiffness properties can be “painted”
on the surface by spray-box analogy. Constraints can be defined on
position, tangent and curvature. The dynamic system is solved by
means of the finite difference method.

Thingvold and Cohen| [1990] propose to use elasto-plastic mass-
spring-hinge models on the B-spline control points for interactive
design and animation.

Léon and Trompette [1995] achieve a very efficient system by con-
sidering the static equilibrium of a force-spring system over the control
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polyhedron of a B-spline surface. Given the initial state of the control
polyhedron of a B-spline surface patch, spring elements are defined
between the control points, with a connectivity that mirrors the topol-
ogy of the control polyhedron. These elements are of equal rest length
and are assigned a certain spring constant (the authors consider the
ratio between the element length and the internal tension directly,
which they call “force density”). External forces are defined, acting
on unconstrained B-spline control points, such that the static equilib-
rium between the forces on the control points and the tension in the
spring elements resembles the initial state of the control polyhedron.
The computation of the external forces involves a straight forward
solution of a linear system of equations.

Given this initial equilibrium, the surface can be stretched, inflated,
tweaked, etc., by changing external forces and/or spring constants.
For this the computation is reversed, solving for the control point
positions that correspond to the new static equilibrium of the changed
mechanical system.

Boundary conditions, i.e., the specification of free and constrained
control points, can be specified either directly, or indirectly by indicat-
ing an area on the surface and considering control points that control
the shape in that area. The authors report interactive modelling per-
formance for up to seven or eight hundred free control points on a
common work station. In contrast to dynamic systemes, this is a static
method (mass, damping, acceleration and velocity are unconsidered)
so the change in shape is instantaneous. Before the designer arrives
at the intended shape, several alternative load cases may have to be
considered.

Whereas [Welch and Witkin| [1992] integrate an energy functional
over a deformable surface to make it interpolate points and curves,
Guillet and Léon| [1998] have the same objective but use the sim-
pler mechanical approach of [Léon and Trompette| [1995]. They allow
the surface area under consideration to consist of several connected
B-spline surface patches, and G! patch transitions are preserved by
constraining relative positions of control points. The method enables
a composite surface adapt to interpolate a given point and tangent
plane, and allows large-scale deformations.

5.6 Chapter Summary and Look Ahead

With the conclusion of this chapter, we have provided us with an
overview of the solutions proposed in the literature, to reduce the
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degrees of freedom for the process of forming the shape of surfaces.
In general, the proposals either apply to polygonal discretisations
or to parametric surfaces. In other words, there is a bias towards
the approximation paradigm. Some consider only one single surface
patch, others are capable of handling assemblies of a large number of
patches. Some invent a non-standard surface patch, others can readily
be superimposed on industry standard surface representations.

We recognise that the interpolation paradigm is under-represented
in the context of shape variation (or deformation), and it is the focus
of the following chapter to correct that.
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CHAPTER

Manipulation of Shapes
in H-rep

In this chapter we will address the problem that a high density of
data in the surface representation limits the freedom of the designer
to apply larger-area changes in the shape. Although this phenomenon
exists in the approximation paradigm (Section page27) as well
as in the interpolation paradigm (Section page [68), the problem
is more severe in the latter because the surface representation may be
invalidated as a consequence. Our focus is therefore on the interpo-
lation paradigm, in particular on the first two research questions as
posed in Section[1.2.T}

The H-rep concept is heading the evolution of the interpolation pa-
radigm, and consequently we will focus our discussion onKoelman(s
implementation. Courtesy collaboration with sarc in the Netherlands,
proofs of concepts could be implemented in their commercial system
for ship hull shape design, called Fairway [Koelman), 2004], allowing
for experiments and testing of the proposed method. This has been
a time-consuming process due to the size and complexity of the pro-
gramme [Koelman, |{1999].

Excerpts of this chapter appeared in Ship Technology Research
[Veelo}2004al], which is a scientific journal with a review policy (reprinted
in Appendix [B). In addition, presentations were given at two inter-
national conferences, namely the 3™ International EuroConference on
Computer Applications and Information Technology in the Maritime
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Industries, or COMPIT'04 [Veelo| 2004b], and the 8" International
Design Conference, or DESIGN 2004 [[Veelo) 2004c].

6.1 Problem Statement

The problem is, given a certain region on the surface that interpolates
a network of curves, to manipulate all curves in that region simulta-
neously, in a way that does not destroy the consistency of the network
and does not introduce unwanted geometric discontinuities.

6.1.1 Manipulation of Control Points

Initially, one might reason that the surface is defined by the curves in
the network, and that the curves are defined by their control points,
and thus to manipulate the surface one is to manipulate the control
points.

But the control points of the individual curves in the network lay
in a thick cloud around it, and the position of each control point inside
that cloud has been carefully determined in order to make the curves
intersect each other. There is no rule that describes their correlation,
they are just suspended in air in a delicate balance that was built up
in small incremental steps. How this cloud can be transformed in one
operation without breaking that balance is not well understood.

6.1.2 Manipulation of Data Points

As concluded in the previous section, instant generation of a surface
variation by manipulation of curve control points will be problematic.
A better handle on the surface is needed.

We note that the control points of the curves were determined au-
tomatically by the fitting/fairing algorithm described in Section [4.5.6}
based on data points. Curves that, according to the topological infor-
mation, intersect each other’, share a data point. These data points
are persistent, as they are used by the fitting/fairing algorithm to re-
store network consistency when a curve was pulled away from the
curves that it is supposed to intersect. As a consequence, data points
are distributed over the entire surface.

If we take a fair and consistent H-rep as point of departure, then
intersecting curves correlate through their shared data point. And

“If the network is consistent as a surface representation, curves intersect in practice;
i.e., topologically as well as geometrically. If the network is (temporarily) inconsistent,
they may cross.
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curves can be regenerated from the data points from which they orig-
inated, courtesy the fitting/fairing algorithm. So with data points we
have a direct handle on the surface, and by manipulating them we
can manipulate the surface.

This is true as long as the number of data points on a curve is suffi-
cient to hint the shape of the curve. This may become a problem when
a curve is intensively manipulated in a terse network, probably by
adding control points, without successively adding new intersecting
curves by which extra data points are generated on the curve under
consideration. One could try to refine the curve fairing/fitting algo-
rithm to let it maintain existing surface features, such as the number
of inflections. But apart from the theoretical challenges, there are prac-
tical ones: how can a fairing algorithm differentiate between wanted
and unwanted inflections? Even the term inflection becomes less ob-
jective, as curves that were planar before, are likely to be pulled from
their plane of definition and become space curves. They turn from
two-dimensional (2D) curves into 3D curves, which makes it much
harder to describe their features.

To rule out that surface features vanish after applying a surface
variation, the following heuristic can help: check if the number of
data points on a curve is somewhat in relation to the number of control
points, and if they are sufficiently spaced. If they are not, additional
data points can be inserted, to better hint the shape of the curve.
This can be done completely automatic and invisible to the user, at
negligible cost.

We can therefore rephrase the problem statement as

Given a set of points on the surface of a consistent H-rep
model, shift a contiguous selection of them in a way
that when the surface is updated to interpolate these
new positions, this does not damage surface details or
fairness.

Remains to select a method that is able to accomplish this.

6.2 Prospective Methods for Shape Variation

We will now systematically revisit relevant methods for global shape
manipulation that were discussed in Chapter 5, and select the one
with the best prospects to see if it can be applied to the interpolation
paradigm, and possibly developed further.
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6.2.1 Free-Form Deformation

free-form deformation (Section[5.1) of the data points on the surface is
a candidate. Because curves will be fitted anew through the updated
positions of data points, the method will not affect curve continuity
or degree, as otherwise discussed in Section [5.1.3] But the method
requires the administration of a lattice, and although direct manip-
ulation helps, it is not a very intuitive interface because the extent
and character of the deformation depends of the size and orientation
of the lattice. Arbitrarily shaped lattices may improve on the char-
acter of the deformation, but it adds an extra modelling burden on
the designer. For a computer programme where the user is shielded
for almost all mathematics behind the method, rrp is maybe not an
optimal solution.

6.2.2 Hierarchical Refinement

Hierarchical refinement (Section is a fix in the approximation
paradigm that does not transfer to the interpolation paradigm. Even
when applied to surface splines for modelling with arbitrary topology,
the value for global manipulation is questionable. Levels of hierarchy
need to be designed and there may well be manipulation require-
ments that were not foreseen in that design. It is mainly a feature for
animation.

6.2.3 Superposition

Although superposition (Section was developed on curves, the
method considers one curve only, and not a network of mutually
intersecting curves. The extension of the method to surfaces follows
the approximation paradigm.

6.2.4 Decay Functions

Having neighbouring data points move proportionally when one of
them is dragged to a new position, as accomplished with decay func-
tions (Section , does seem to meet our requirements, and there is
no lattice to be bothered with. This is a valuable candidate, and we
will look into this further in later sections.
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6.2.5 Deformation Based on Physics

There are three possible approaches to deform a set of data points
by means of physical analysis. The first is a full rea. This would
involve meshing techniques and the application of plate elements,
as stiffness against bending is essential for a deformation that has a
smooth character. If the network cells are large, it may not be sufficient
to define elements in between existing data points, and surface patches
may have to be meshed at a finer resolution to arrive at a high enough
accuracy. As an reA is generally costly, it may not be possible to achieve
interactive performance.

The second approach would be to incorporate physical properties
in the transfinitely interpolating patches, in the style of (Celniker and
Gossard|[1991]]; Celniker and Welch|[1992] and Terzopoulos and Qin
[1994]. Whether this is at all possible is not certain. In the approxi-
mation paradigm, patches can be considered very much in isolation
since they are controlled by an isolated set of control points. In the
interpolation paradigm, a patch is controlled by its bounding curves,
which may extend far beyond the patch. Each curve control point has
influence on at least two patches (one on either side) but quite possi-
bly more (if control points are spaced far apart in comparison to the
number of intersecting curves). The correlation between surfaces and
curve control points is thus anything but structured, and the problem
is hardly comparable with the situation of the approximation para-
digm.

In addition, the H-rep uses ordinary Coons patches as well as n-
sided interpolating patches [Koelman,|1999]. This further complicates
the matter. If a general formulation cannot be found, we would have to
consider the case for every value of n separately. Even so, the literature
only reports interactive modelling capability on rather small models.
The approach may not scale well to the number of patches typically
present in complete H-rep models.

The third approach may be to use a p-NURBs curve formulation
[Terzopoulos and Qin) [1994] for the curves in the network. Although
the curves would deform under the application of loads, there would
be nothing to make them maintain their mutual intersections. These
would have to be defined as constraints. However, these constraints
are moving targets as the intersection points themselves are free to
move (which is the objective) and may travel along the curve, i.e., are
not fixed to one curve parameter value. Due to the non-linearity of the
constraint problem and the number of intersections in a typical H-rep
model, this is not a prospective approach for an interactive solution.
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Spring-force formulations in between data points are not appli-
cable as they will not guarantee geometric continuity. The elements
will hinge on the constrained points, causing a sudden change in the
tangent.

6.2.6 Making a Selection

From the above discussion, we conclude that only rrp and an approach
based on decay functions do not pose obvious hindrances in their
application to the interpolation paradigm. Due to its simplicity, the
latter approach is selected as favourite candidate. In the following, we
will investigate the value of decay functions for the manipulation of
H-rep geometric models.

In the evaluation (Section[7.1)) of the method that we will develop,
we will compare its performance with the expected performance of
FFD. Although the mathematics behind rrp is not complicated and in
itself straight-forward to implement, the user interface of Fairway is
not designed to handle 3D control lattices. To implement support for
the interactive modelling with rrp in the graphical user interface (cur)
of Fairway is an undertaking so time consuming, that this was not
pursued within this study. However, with a good understanding of
spline theory [see e.g.Rogers and Adams),1990;|Foley et al.,|1990;|Zeid)
1991; Piegl and Tiller} 1997} |Farin), 2002b], the performance of rFp is
predictable, which will have to justify a hypothetical evaluation and
comparison with the method developed below.

6.3 Input to Decay Functions

As we have learned in Section there is more than one input that
we can compute decay values for. There is the topological distance,
based on the number of edges that must be traversed from one node
to another. This is a stepwise parameterisation and thus discrete. A
continuous parameterisation results from taking the Euclidean dis-
tance, i.e., the length of a straight line through 3D space between two
points. This does not consider the shape of the surface at all; for that,
one should measure the distance over the surface. We have also seen
the use of Dirichlet parameterisation that allows the specification of
complex surface areas for variation.

Due to its discontinuous nature, topological distance will not be
considered. The remaining types of input will be discussed subse-
quently in the following sections.
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6.4 Euclidean Distance Dependant Variation

In this section we will explore the possibilities of decay functions, and
start with an experiment considering the simplest possible case.

We will measure the proximity of data points as the Euclidean dis-
tance, i.e., in a straight line through space, disregarding the topology
of the surface. We will shift data points in a common direction, but
with an individual magnitude. We will make that magnitude depen-
dent on the distance through space from the data point in question
to a defined selection centre, and we will limit the variation to be
effective within a specified radius from that centre. Thus, the field
of influence of a shift operation can be seen as a sphere. We want the
magnitude of the shift to be at a certain specified maximum at the cen-
tre of this sphere, then decrease smoothly further out, and eventually
fade away at the boundary of the sphere. This decaying influence can
be achieved by scaling the magnitude with a factor that is a function
of the distance to the selection centre — a decay function.

The algorithm behind this experiment consists of the following
sequence of operations:

1. Select a data point on the surface to function as the selection
centre.

2. Compute the surface normal at that point, to function as the
direction in which data points are going to be shifted.

3. Collect all data points in the model in a random access container
with dynamic bounds®.

4. Sort all data points in this container according to their distance
to the selection centre.

5. Acquire input from the user regarding the extent of the selection
and the magnitude of the shift.

6. Starting with the data point closest to the centre of the selection,
compute a scaling factor for every data point, by means of the
decay function. Terminate when points fall outside the selection
sphere, i.e., when the scaling factor becomes 0.

7. Display the resulting shift per data point, as a preview of the
potential shape variation. Loop back to step [5| above until the
user signals acceptance.

8. Move data points accordingly.

9. Re-fit affected curves.

The iteration over steps [§ through [7] can be executed sufficiently
fast to support interactive operation. Interactive acquisition of the two

*This container was implemented for the occasion. See Appendixon page
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input parameters simultaneously is accomplished by binding them to
movements of the mouse. Horizontal movements extend or decrease
the selection area, vertical movements determine the magnitude of
the variation.

6.4.1 Preliminary Definitions

Let us declare s; to be the shift vector for a data point i, i.e., the dif-
ference between the position of that point after and before the shape
modification. Also, let d; ; be the distance through space between data
point i and the centre (or base) of a selection field j, as in Figure
below. At thebase, we will explicitly define a shift vector, the so called
typical shift vector, denoted by S;. The radius r; of the selection sphere,
or extent of the selection field, is also defined by the user. Outside
this sphere, the shape will not be varied. The shift vector s; can be
expressed as a scaling of S;, according to a decay function f;:

S; = f]S] (6.1)

We want the magnitude of the shift to be as specified at the selection
centre, then decay as a function of the distance d; ; relative to the radius
rj, to zero outside the sphere. Thus f(d; ;/r;) should return a value of
1whend;; = 0and 0 when d;; > r;. To simplify its definition, we may
normalise to r:

fdij/r)) = f(6) whereo =d;;/r;. (6.2)

Figure 6.1: Schematic illustration of the computation of shift vectors.
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Now f is defined on [0, o], with a top of 1 atd = 6 = 0. It should
start out horizontally for increasing d, then decrease smoothly and
flat out at 0 when d = r, i.e,, 0 = 1, where its support ends. In this
experiment, its definition was based on half a basis function of a cubic
periodic B-spline, which is G?, scaled and translated according to the
above requirements. Its definition, notated in power basis, is given in
equation and its plot in Figure[6.2]below.

66° — 662 +1 if 0<0<05

f) = —26°% + 65%— 60 +2 if 05<6<«1 (6.3)
0 if 1<6.
o)1
fdij/r))
1
0.5
0 0.5 19, di,]-/rj

Figure 6.2: The plot of the G* piecewise polynomial decay function from
equation above.

6.4.2 Test Case

We will now evaluate the method on a planar surface, so that the effect
of the operation can be easily observed. Figure [6.3| shows the initial
shape of the H-rep. After the middle data point has been selected for
the selection centre, bars dance out of the data points according to the
movements of the mouse. As illustrated in Figure [6.4] on page
they indicate the shift that the data points are about to make. At the
next press of the mouse button, the shape looks accordingly, as shown
in Figure[6.5|on page[102]and Figure[6.6/on page

As an additional evaluation of the produced shape, we can in-
tersect it with a vertical longitudinal plane. We expect the resulting
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Figure 6.3: Screen shot of the graphical user interface (cu1) of Fairway showing
the initial shape of the H-rep used in the test case. The upper left window
contains the view from the side, the lower left window the top view and the
upper right the front view. The lower right window displays an isometric
projection. The model is actually a narrow box, of which only half is shown,
just to provide a planar surface on which the effect of a surface variation
is best observed. The lines in the centre plane of the box are printed pink,
general vertical lines are blue and general horizontal lines red. The top of
the box is omitted. The data points existing in the model are plotted in the
iso-parametric projection. Note that their number is minimal: only at the
intersection between curves are data points present.
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intersection curve to be circular when viewed from the side, because
the initial shape was planar and we used a spherical selection field. In-
deed, that curve looks circular (Figure[6.7/on page[103), but a plot of its
curvature shows small deviations and even a discontinuity, whereas
a perfect circle has constant curvature.

=2 pIAS / Fairway : square100 X-123.0615 Y=80.2026
Visualiatie Netwerk Spine.

= Zijaanzicht. Hoek HS = -90.0  Hoek basis = 0.0 (E)B)X) iooraanzicht. 5 = 0.0

Punten Stroken Geomelrische Gebieden  Hydrostatica Experimenteel Fiessoids

[ Bovenaanzicht. Hoek HS = -90.0  Hoek basis = 90.0 -] P Hoek HS = 15.0 _ Hoek basis = -12.0

o
iR

Figure 6.4: Preview of the potential shift of data points for the test case. The
selection centre is indicated by a light blue square. Bars of the same colour
extend from the data points, indicating their potential shift. They vary in real
time according to the movements of the mouse.

These deviations must be expected in practice, because they are
inherent to the modelling methodology. Apart from round-off errors,
the following reasons can be given. Firstly, data points result from in-
tersection with curves and surfaces that were fitted to discrete values.
In between these, they represent a guess of finite quality, for which
the deviation in curvature may be taken as an indicative measure.
Secondly, the fitting/fairing algorithm supports non-rational curves
only, which cannot represent circles perfectly”. Extending the algo-

*Only rational curves can describe conic sections. A full circle for example can be
modelled with a quadratic NURBs curve with seven control points and specific weights.
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Figure 6.5: The shape of the H-rep from the test case after the operation is
complete. When observed closely, the curves in the lower left window can be
seen to have dropped slightly below their initial hight near their ends, which
may be regarded as an imperfection. Obviously, such is the fairest curve
through the given data points, as determined by the fitting/fairing algorithm;
if the shape is not satisfactory, it means that the number of data points is
insufficient (indeed, there could not be fewer in this example). One additional
data point near either end of the curves would probably be enough to prevent
this imperfection. Alternatively, we could have modelled the planar surface
of this example a little wider, or have chosen the extent of the variation a little
smaller.
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Figure 6.6: Rendering of the shape variation from the test case, including its
mirror image.

|- [D/x]

0 Hoek HS = 15.0  Hoek basis = -12.

/

Figure 6.7: The result from the test case, intersected with a vertical longitudinal
plane. The curvature of the resulting intersection curve is plotted (in green)
in the upper left window, together with its control points (grey). The lower
left window shows the curvature and the control points of a curve across the
centre of the selection.
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rithm to work in homogeneous coordinates might be possible, but
the complexity would increase by one degree and efficiency would
decrease accordingly. Even with such an extension it would be highly
unlikely that the algorithm produces pure circles and circular arcs
when they are theoretically applicable, and it may perform poorer in
general cases.

The discontinuity in curvature however, may have been prevented
by building more intelligence into the fitting/fairing algorithm, such
that it can detect closed loops. For this it would be advantageous to
extend the set of supported curve types with open curves, also known
as periodic curves. Both issues are beyond the scope of this research.

6.4.3 Test Evaluation

The method presented thus far is primitive, and a number of short-
comings can be identified. Consider these, roughly in decreasing order
of significance:

1. If the selection field crosses the plane of symmetry, there are no
constraints that prevent the hull from splitting apart.

2. Only bump-like deformations can be pulled from a surface, and
they all look alike. Especially if the selection field is not allowed
to cross the plane of symmetry, the extent of the bumps are
limited. Deformations of this kind are of little practical value to
the designer.

3. The variation is in uniform direction.

4. All data points within the selection field are shifted, disregard-
ing whether the selected regions of the network that they are
embedded in are connected or not.

In the following sections we will try to improve on each of them.

6.4.4 Constraints

For designs that are required to be symmetric, such as ship hulls, it is
advantageous to model only one half of the design and mirror it in the
plane of symmetry. That is the approach taken in the implementation
of Koelman) in which these experiments take place. The data points
that are positioned on the plane of symmetry must not be allowed to
shift away from that plane, otherwise the model will rupture. Clearly,
that would fail the primary design objective for a ship hull, which is
buoyancy. On the other hand, we want these data points to be free to
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move in the plane of symmetry. This special treatment must not in-
troduce large differences in the shift magnitude and direction of data
points on the centre plane and data points nearby. The transition be-
tween constrained and unconstrained data points must be continuous
and smooth.

This particular case can easily be accomplished implicitly by mir-
roring the selection field as well as the model. Where the extent crosses
the plane of symmetry, there will be two intersecting selection fields.
These produce two shift vectors for each data point, of which the vec-
tor product can be taken. For data points in the symmetry plane, the
components away from the symmetry plane are equal in length and
opposite, and thus cancel each other out. This is probably the most ef-
ficient and straight forward way to prevent the model from rupturing
over its centre plane.

Figure 6.8: Symmetry plane constraintimplemented by mirroring the selection
field as well as the model. Green vectors originate from the selection field
indicated by the green circles (extending up to the outer arc) and a typical
shift vector indicated by the fat green arrow. The red vectors originate from
the mirrored selection field indicated by red circles and a typical shift vector
indicated by the fat red arrow, which is the image of the green typical shift
vector. The shift vectors for the constrained variation, indicated by black
arrows, are produced by the vector sum of the green and the red vectors. This
figure was computer-generated with a decay function defined by equation

(6.3) on page[99}
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Constraints can also be defined more explicitly in a general way
by treating the x, y and z coordinates* individually, and letting the
magnitude of the shift for y coordinates decay faster, the closer points
are to the plane of symmetry. For this a deselection field can be defined,
emanating from the plane of symmetry, which scales down the effect
of the selection field for y coordinates near the centre plane.

A de-selection field, enumerated by k, must act opposite to a se-
lection field and thus its decay function gx(6), i.e. gx(d;x/7«), must start
out horizontally at 0 for 6 = 0, increase with increasing 6 and level off
atlwheno6 =1,eg., g(6) =1 - f(0):

—65° + 652 if 0<6<05
g®) =] 20°-66%+65-1 if 05<6<1 (6.4)
1 if  1<6

It may be that other features need protection as well. If, for exam-
ple, the silhouette of the deck line needs to be preserved throughout
a shape variation, one can define a de-selection field emanating from
that curve, acting on the z coordinate of shift vectors.

Generalising this, we can allow multiple selection and de-selection
fields to be defined for one shape variation setup, each of them ema-
nating from a geometric element that may be a point in space, a curve
or a surface’. Each field has an individual parameter r, which defines
the extent of the field. Both r and d are defined as closest distances to
the geometric element on which the field is based. Each selection field
j and de-selection field k may act on any subset of coordinates {x, y, z},
by defining their selection and de-selection functions as diagonal ma-
trices,

d;;
fin (-j) 0 0

)| V) o |
0 0 f](d—/)
ges() 0 0

s ()= 0 sul(5) O
0 0 ()

*x is the coordinate of length, usually measured from the rudder stock (shaft) or
the point of intersection between the stem and the construction waterline. y is the
coordinate of width, measured from the centre plane, and z is the coordinate of height,
measured from the base plane.

fThese curves and surfaces need not be straight and planar, although the complexity
of the shortest distance problem increases when they are not.
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respectively, and setting components to 0 that correspond to coordi-
nate components that should be unaffected by the selection. Finally,
each selection field j may have an individual typical shift vector S;.

Now, the shift vector s; of data point i can be defined as the vector
sum of all typical shift vectors S;, which have been multiplied with
their selection function f; and all de-selection functions g;:

5= z(n(gk “))6(%)s) ©5)

6.4.5 Selection Fields

The test case worked with a spherical selection field, which allowed
us to draw bumps and humps in surfaces over dense networks. The
resulting deformations may be useful in the entertainment industry,
but in design this ability is not of much value. In order to enhance the
shape of an existing design, one must be able to define the shape and
strength of the selection field in higher detail.

One option is to replace the selection sphere with an ellipsoid, to
make it better fit the elongated character of ship hulls. This would
increase the number of variables that the user is required to define
with two more radii and an orientation besides positioning. But an
ellipsoid might still be too primitive in many situations.

A more flexible solution is hinted to in the previous section, namely
that the selection field may be based on a curve or a surface. A curve
has probably more meaning than a surface in this regard. It may be
an existing curve from the network, or a special purpose space curve
in its vicinity, or one that is projected onto the surface. If the NURBs
algorithm is implemented in a generic way", one can easily vary the
extent 7 of the field along the curve (and optionally an extra scaling of
the typical shift vector S) by letting it blend control values for these
variables in addition to the control points of the curve. This greatly
enhances the freedom with which a selection field can be defined.

We are of course also free to choose a different decay function with
a different shape. As mentioned before, the decay function from the
test case, on page[99] was inspired by B-spline basis functions. We
recall that the shape of basis functions is controlled by knot distances
in the so-called knot vector. By analysis of the recursion formula of

*See generic programming (Gr) in the Glossary, and Section
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Cox-deBoor* for basis functions, it appears that in the cubic case the
fall-off of the decay function can be controlled by one knot value,
x € (0,1]. For this the decay function is redefined as follows

2 2 _ 3
K +1<<5(62 3)+0 F0<5<x
K
i) _ foy =1 617 6.7)
f\o) =@ = ifr<d<1 :
Y x—1
0 i£1<6

which is plotted for different values of x in Figure on the next
page. Note that for x = 0 the function does not depart horizontally
at d = 6 = 0. This is not illegal, but does not preserve smoothness
very well, which is why it was excluded from the range above. Of
course, the shape parameter x may be varied over the curve or surface
on which the selection field is based, as described on the previous
paragraph for the extent r. This will enhance the possibilities for the
designer to control how the shape of the model will be varied.

6.4.6 Variations in Non-Uniform Directions

So far we have shifted all data points in the same direction, only
varying the magnitude of the shift. This works well, but only for
certain types of variations. If the objective is to inflate a region of
relatively high curvature, this mode of operation may prove ineffec-
tive, as is illustrated for the two-dimensional case in Figure
on page An obvious alternative may be to shift every data point
in the direction of the local surface normal (Figure [6.10(b)). However,
that approach will prove to be problematic as soon as the selection

“The p-degree B-spline basis function N, corresponding to the ith control point as a
function of parameter ¢, is defined by the following recursion

; )1 ifu <t <uy
Nio() = { 0 otherwise
(6.6)
F—u; Ujrps1 — ¢
Nip(t) = —Nip-1(t) + ’ Niy1p-1(H

Uitp+1 — Uitl

where u; are the non-decreasing knot values. There are  + p + 1 knot values, contained
in the knot vector, and ug < t < ty4p.
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field covers a knuckle line, at which the surface normal is undefined
(Figure [6.10(c))".

In search of a working alternative, we may let us inspire by Sec-
tion which suggested that the extent of the selection field, the
magnitude of the shift and even the shape of the decay function can
be varied along the curve that defines a selection field. By adding the
shift direction to that set of variables, we may be able to realise a situa-
tion in which the designer explicitly defines the new shape of a feature
curve. Thus the result of the variation will be highly predictable, and
it will be possible to specify the way in which the surrounding surface
adapts to the changed feature curve, with a rich set of variables.

f(é),ﬂ
fdi;/r))
1

0.5

0 0.25 0.5 0.75 10,dy,/r,

Figure 6.9: Variable cubic decay functions as defined by on the preceding
page, using light grey when 0 < 6 < «, dark grey when x < 6 < 1 and black
when 1 < 6. The middle plot is produced with x = 0.5 and identical to the plot
in Figure[6.2)on page[99} The shape can be given more body with increasing «:
the two rightmost plots were produced with x = 0.75 and « = 1 respectively,
the latter of which is point-symmetric about (0.5,0.5). With decreasing x, the
curve becomes steeper (x = 0.25) until a cusp is formed at x = 0.

Let us denote the curve that defines the selection field by c(t), and
its explicitly defined shape after the variation operation by &(f). If ¢ is
efficiently described in terms of new positions of the control points of
c (Figure on page then these new positions can be attached
as meta data to the existing control points, in the same way as was

*The new position of the knuckle point is not related to the vector sum of the shift
vectors that exist immediately besides it.
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suggested for the other variables. Then we can also adopt f = t and
define the typical shift vector along the curve c as S(t) = ¢&(t) — c(f).
This has the advantage that a generic spline algorithm can compute
S simultaneously with all other variables, with a single evaluation of
the spline basis functions®.

(a) Variation with uniform
direction.

(b) Variation along the local
surface normal.

(c) At knuckles, the surface
normal is undefined.

Figure 6.10: The effect of shifting data points in a uniform direction (a)] versus
shifting data points in the normal direction[(b)} here in the 2D case. The latter
will have problems with cusps and knuckle lines|(c)| as the normal vector at
the cusp is undefined. These figures were computer-generated with a decay
function defined by equation on page and a selection field that is
indicated by the dashed circles, extending up to the outer arc.

“When implementing this method, one could save a few floating point multipli-
cations by storing the difference of the new and old control points, instead of their
new positions. With these, the spline algorithm would produce the typical shift vector
directly. But the presented form is more graphic, and soon we will discuss extensions,
following the same line of thought.
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Figure 6.11: Variation by explicit definition of new control point positions.
The designer has better control over the shape of the resulting variation, and
knuckles and cusps cause no problems. The typical shift vector is now defined
as a function of the curve parameter — namely the difference between the
new and the old curve — and is variable in both length and direction.

The effect is demonstrated in Figure on the following page.
An arbitrary curve was projected onto a plane. A selection field was
based on it, and the curve pulled in its entirety in normal direction.
The surface follows suit as expected.

6.4.7 Re-Design of Curves

At the expense of simplicity and a little efficiency, we may choose
to give the designer complete freedom in the definition of the shape
of the variation, by detaching the curves ¢ and ¢ from each other,
and giving the latter an independent definition. But, as we will see,
the thus far proposed definition of the typical shift vector S does not
handle the increase of freedom very well.

6.4.7.1 Curve Sections as the Basis of Selections

If the original curve is defined with more than a few control points,
part of the old and new curve may coincide, i.e., have identical ge-
ometry. But the parameterisation of the curves will likely be different,
causing the typical shift vector to be non-zero even in parts of the curve
that were not changed. This phenomenon is illustrated in Figure
on the next page.

To prevent this, we will only consider parameter values that pro-
duce a change in the geometry of the curve. In other words, say that
the curve parameters t and f range from [fpegin, fend] and [foegin, fend]
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Figure 6.12: Curve based variation.

Figure 6.13: Illustration of the effect that different curve parameterisations
have on the typical shift vector, when it is computed on the complete curve.
The new curve (thick plot) differs only from the old curve (thin plot) by
one extra control point. Thus they largely coincide. But they have different
parameterisations, which causes the typical shift vector (indicated by arrows)
to be non-zero even where the curve did not change. Both curves are ordinary
cubic B-splines.
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respectively, and that the curves ¢ and ¢ differ from each other for
t € [t,, ] and f € [f,,4]. For other parameter values they coincide
(although not necessarily for equal parameter values):

{e(t) | toegin < t < ta} = (&(F) | Foogin < < £}
{ct) | ta<t<ty}#{e) | E <F<iy
{o(t) |t < t < tena) = (€() | Fs < F < Ten

The selection field will then be defined exclusively on {c(t) | t, < t < t;}.

Consider the example of Figure on the facing page. Both the
old and the new curve are cubic B-splines with an ordinary semi-
uniform knot vector. These knot vectors are dissimilar due to the extra
control point in ¢, reflecting the dissimilar parameterisation: for nor-
malised parameters, ¢ has knot vector U = [0000 l 2 3 ‘—1 1111]
and ¢ has knot vector U = [0000% % % % %1 111]. Inordertode-
termine the parameter values for which ¢ does not coincide with ¢, we
need to know what parameter values are controlled by each individ-
ual control point, and consider the control points that were moved or
added. This translates into finding the support of the corresponding
basis functions, i.e, where they are non-zero*. This is best illustrated
by drawing out the knot vectors on the parameter axis (Figure[6.14]on
the following page) and marking the support of the basis functions N;
that correspond to the control points P;.

From Figure we see that P, = P; fori = 0,...,5, and the
difference starts with control point number 6. From Figure on the
next page we see that P; starts to control curve c at t = 2 (the lower
bound of the support of Ng), and likewise, P causes a change in ¢
beyond f = 2 = 1. Thus we have

e |o<t<?)=fed|o<i<l
fety | 2<t<f#{ed)| i<tz

and consequently the selection field should be defined on {c(t) | % <

t < 1}. For the computation of S, t and f must proportionally vary

over [%, 1] and [%, 1] respectively. Figure on the following page is
drawn accordingly.

*As a direct consequence of the Cox-deBoor recursion formula, on page
basis functions of order k (degree k — 1) are non-zero over k contiguous knot spacings.
More precisely, Nf,‘(t) > 0 for u; < t < uj and Nf(t) = 0 elsewhere. A cubic curve is
denoted by k = 4.
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knot multiplicity: 4 1 1 1 1 4
t: (I) i é é :_1 1I
5 5 5 5
L N, —
L I\’1 ]
L N2 |
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L N4 |
L I\]5 |
L |
O Ny —!
knot multiplicity: 4 1 1 1 1 1 4
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Figure 6.14: Knot values and the support of basis functions drawn out for the
curves c (upper) and ¢ (lower) from Figure[6.13|on page [T12}

T .
Ps, Ps Py, Py

Figure 6.15: The typical shift vector for an explicit variation, defined exclu-
sively on the subsection of the curve that actually changes geometry. Shifts
in other parts of the curve are thus prevented. The curves displayed here are

identical to the ones in Figure on page
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6.4.7.2 Arc Length Parameterisation

There is another aspect that can have unwanted effects on the typical
shift vector as it is defined so far. Choosing to vary t and  proportion-
ally, works well only if the parameterisations of ¢ and ¢ are similar. If
there are large differences in their parameterisations, the typical shift
vector will skew back and forth along the curves, which can cause
unwanted effects in resulting shape. Dissimilar parameterisations are
caused by un-proportional variations of control point spacings and
un-proportional variations of knot spacings in the knot vectors. Fig-
ure[6.16(a)|on the next page gives an example of this: the curves have
equal knot vectors, but the control points of ¢ are positioned close to
the curve ends, while ¢ has two control points near the middle of the
curve. For a better definition of the typical shift vector, we need to
make their parameterisations similar.

The spacings of control points can be made compatible by insert-
ing extra control points in both control polygons. This can be done
without changing the geometry of the curve by a process called knot
insertion [Piegl and Tiller, (1997, section 5.2]*. But, as its name indicates,
this also inserts a knot into the knot vector (making it non-uniform)
which compensates the effect of adding the control point. In fact, knot
insertion does not change the parameterisation of a curve.

A working solution would be to evaluate the curves not at pro-
portional parameter values, but at proportional arc lengths, as in Fig-
ure[6.16(b)]on the following page. Arc length (the physical length of a
curve or curve section) is a curve property independent of the param-
eterisation. For a formal definition we need a mapping m that maps ¢
tot

~

m:t—t

such that for a certain parameter value t;, m(t;) produces f; (shame-

lessly reusing subscripts i and j from a different context) such that
the arc lengths of the curve sections on either side of these parameter
values are proportional:

[lewidr fldi
ty T s R
J. leide J i

(6.8)

“Inserting several knots is possible by repeated knot insertion, or all at once by
a process called knot refinement [Piegl and Tiller, [1997, section 5.3] which is more
efficient.
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in which the arc length of a curve is defined as the integral of the
length of the first derivative of that curve with respect to the curve
parameter [Boehm) 2002]".

Now we are able to define the typical shift vector S as the difference
between relating positions on the two curves according to arc length,
expressed as a function of the curve parameter #:

S(t) = e(m(t)) — c(t). (6.9)

(a) Ordinary parameterisation. (b) Arc length parameterisation.

Figure 6.16: Ordinary parameterisation versus arc length parameterisation.
The typical shift vector S defined on two cubic B-spline curves with equal
knot vectors but dissimilar control point spacings.

Direct evaluation of m(f) is not efficient though, for two reasons.
Firstly, the integrals in on the page before must be computed nu-
merically, for which the complete curve sections must be evaluated.
And secondly, for each evaluation of m(t) an optimisation problem
must be solved, as we are searching for the value f; that produces
the correct ratio in the right hand side of (6.8). For our application,
the accuracy of the arc length computation is not as important as the
smoothness of m(t). For an interactive system, one should first con-
sider whether arc length parameterisation is at all worthwhile, by com-
paring internal knot spacings and control point distances and looking
for large discrepancies. If so, the function m may be approximated by
evaluating m(t) at distinct values of ¢;, and fitting a polynomial, say

*Referring to physics makes the definition of arc length easy to comprehend. Let
the position of a moving particle be defined as a function of time, e.g., c(f). The first
derivative with respect to t of that function, which is the vector ¢(t), indicates the
direction of movement of the particle, and its velocity is given by the length of that
vector, |¢(t)|. The distance that the particle travels, i.e., the arc length of its path c, is of
course equal to the velocity integrated over time, f le()ldt.
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1hi(t), through the resulting function values. In this case, the integrals
on the left hand side of need only be computed once if they are
split up into smaller sections of At = t;,1 —t;, and using combinations
of these in the ratio. The computation of the integrals on the right hand
side of can also be made more efficient by reusing the answer
from the previous run. Application of a Newton-Cotes formula such
as Simpson’s rule may further help increasing the efficiency of solving
the integrals.

There is just one more issue that needs to be addressed. In |Koel-
man(s implementation, ¢ may actually be a poly-curve, i.e., it may be
assembled of several individual curve sections that are connected by
specific master/slave relations. In such cases, we must also define ¢ to
be a poly-curve, with a topology that is identical to the topology of
¢. Thus, knuckle points and other discontinuities that exist in ¢, also
exist in ¢. Then, if the corresponding curve sections need arc length
parameterisation, individual maps 1 need to be computed for each
such section in the poly-curve.

6.4.7.3 The Combination, an Example

Figure on the following page shows the effect of the measures
described above. This example concerns the re-design of the stem
curve of a conventional bow that is being transformed into a bulbous
bow.

6.4.8 Unconnected Selections

The fourth shortcoming listed on page mentions the unfortunate
fact that all data points that fall within the selection field are shifted,
regardless whether they form a connected region or not. As an exam-
ple, consider the two sides of a wing or propeller blade. A selection
field that is meant to vary only one side, will likely also select a dis-
connected “island” of data points on the other side of the wing or
blade.

The robust solution would be to measure distances between points
on the model over its surface instead of through space, (which is the
subject of Section[6.5), but measuring in straight lines is so much more
efficient. Because Euclidean distance dependent variations seem to
work in most cases, let us briefly consider what can be done to counter
the described situation — which luckily appears rather rarely.

The pragmatic approach would be to let the user identify these
pockets of unwanted selections, and provide tools by which they can
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) e(m(t;))
Figure 6.17: When considering arc lengths and unchanged sections makes
sense. Upper left: original stem curve c(t) and re-designed stem curve &(f).
Middle: straight-forward definition of typical shift vector S(t) = &(f) — c(t).
Data points are shifted even where geometry is not changed, and their spacing
becomes unbalanced. Lower right: considering arc lengths over sections of
changed geometry, S(t) = ¢(m(t)) — c(t), gives a much cleaner result.
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simply be de-selected. One can think of a (de)selection sphere that de-
selects every data point within it, or a plane that de-selects everything
that falls in front or behind it.

An automatic approach can be realized by putting the topologic
information from the network to good use, combined with elements
from graph theory to de-select data points in isolated sets. Let us
define the root of a selection as the data point at which a selection field
is centred, or the data point that is closest to the geometric element on
which a selection field is based. Then we redefine a data point to be
selected if and only if

1. the data point is positioned within the selection field, and

a) the data point is the selection root, or

b) the data point is part of the boundary of a network cell*
that borders to other selected data points.

In other words, to be selected, data points must not only be covered
by the selection field, they must also be connected through network
cells that have one or more selected data points in their boundary. This
prunes away isolated flocks of data points that are separated from the
main pack (containing the selection root) by more than one network
cell.

Because of the computational cost of this analysis, it is not suited
for interactive use. It would probably fit best as an optional step
in between the preview stage and the actual application of the sur-
face variation. Figure on the next page proposes an algorithm in
pseudo code that implements the above rules.

6.4.9 Finishing Up

Once the fitting/fairing algorithm has re-interpolated the curves over
the shifted data points, the H-rep has become a consistent and smooth
modification from the original, by which we have succeeded in our ob-
jective. However, if the original primarily consisted of planar curves,
such as is customary in the design of ship hulls, these may no longer
be planar after the modification.

Planar curves can be restored by intersecting the modified model
with the planes in which the curves were originally defined, and
adding the intersection curves to the model. These new curves take
over the definition of the modified shape, by which the old curves
become redundant and may be removed.

*A network cell is also known as a face in B-rep terminology.
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Let A be an empty set, capable of containing node references.
Mark all nodes and faces in the B-rep as unconsidered.
Mark the root node as considered and add it to A.
While A is not empty {
Compute s; for anodei € A.
If |s;] > 0, then {
For all faces j that are adjacent to node i and
that are still unconsidered {
Mark j as considered.
For all nodes k that are adjacent to j and
that are still unconsidered {
Mark k as considered and add it to A.
}
}
Shift node i.
}

Remove i from A.

}

Figure 6.18: Pseudo-code of an algorithm that only shifts contiguous sets of
data points.

6.5 Surface-Distance Dependant Variation

When the first experiment on Euclidean distance dependent variations
was designed, see Section it was meant as a preparation for
the more difficult matter of surface-distance dependent variations.
Surface-distance dependent variations, in which the shortest distance
between points on the surface is computed over the surface instead of
in a straight line through space, were expected to be more robust and
more intuitive. This idea came from an early brain-storm session in
which it was imagined to heat up an area on the hull surface, being
made of amaterial with temperature-dependent flexibility, after which
the area could be deformed.

Much unexpected, Euclidean distance dependent variations have
in the mean time evolved to an effective and efficient tool for geometric
design — as will be evaluated in the section hereafter. It does not
score bad on the intuitive scale either, if that would be ones concern.
Regarding the heat-and-deform analogy mentioned above, it is easy
to think of the shape as a solid and not a surface that is being heated
up.

Apart from the fact that time constraints in this study do not allow
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implementing and testing of a surface-distance dependent variation
method, there is reason to expect that such an effort would not be
fruitful; mainly due to high computational cost and requirements on
precision to warrant surface fairness.

6.5.1 Geodesics

The shortest distance between two points on a curved surface is the
length of a geodesic. A geodesic is a locally length-minimising curve.
Equivalently, it is a path that a particle which is not accelerating would
follow [Weisstein and Rowland) 2004]. In general, there may be many
geodesics between two points, not all of which attain the shortest
possible length.

For example, take two non-antipodal points on a sphere. These
points are on a great circle. One arc of the great circle is the shortest
path between the points, the other arc is not. Both arcs are geodesics.

Figure 6.19: Three (approximate) geodesics between two points on the surface.

Another example is given in Figure above, showing that dif-
ferent geodesics can exist quite close together. The points under con-
sideration are marked by black dots. The fat gray curve connecting
them is a geodesic, but its length is not the shortest distance between
the curves. Two shorter geodesics exist, approximated by the fat red
curves. In this case the elevation is symmetric and the red geodesics
have the same length. This is a simple case, variants of which may
very well occur in a ship hull design. So, for a robust implementation,
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for the computation of any one distance we need to know all geodesics
between the two measuring points, and take the shortest one.

We will not go all the way, but just to give an impression of the
complexity we would be dealing with, let us see what can be said
about geodesics analytically, after Weisstein and Rowland|[2004]. To
keep things simple, we are considering geodesics on a single quadri-
lateral patch, for which the coordinates are defined parametrically by
x = x(u,v), y = y(u,v) and z = z(u,v). A geodesic can be found by
minimising the arc length

L= fds = f‘/de + dy? + dz2. (6.10)

For this we turn to calculus of variations, a branch of mathematics
which seeks to find the path, curve, surface, etc., for which a given
function has a stationary value (which, in physical problems, is usu-
ally a minimum or maximum). Mathematically, this involves finding
stationary values of integrals of the form

I= f f(a,b,b')da, (6.11)

where b’ = 2. [ has an extremum only if the Euler-Lagrange differen-

tial equation is satisfied, i.e., if

= 0. (6.12)

7l

Our aim is to recognise (6.11) above in (6.10) and then formulate
the corresponding Euler-Lagrange differential equation. Solving that
differential equation would give us the geodesics.

In (6.10) above, note that

ox ox
dx = 5du+ %dv, SO
ox\ oJx ox ox\
2 _[9% 2 oxox [oX 2
dx _(8u) du +28u8v+(av) dv
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and similarly for dy? and dz2. Substitution gives

L= ) G + ()

dxdx | I | 9z 9z
+ 2[(%1 dv + u Jv + i v dudov

1

2 2 2 2
(@) (G + (@) ) 63
To simplify the notation, define
2
po () L (%Y (2
~\ou ou u

_Odxodx dydy 9zoz
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_[ox > (ay\* (az\
“(%) *(%) *(a—v) ‘

and (6.13) above becomes

L= ‘f\/Pdu2 + 2Qdudv + Rdv?.

Bringing du? outside the root and writing v’ for £ gives

z\f}ﬂ3+2th+Rdew

Now L can be recognised as being an integral of the form (6.11) on
=4 = & = 3 More to the point,

the facing page, with da = du, b’ = 9 = &
a=uand b =v, and

f = VP+2Qu + Rv2.
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Taking the derivatives,

of . (0P _9Q . 4R
_:_P 2 ’ R 12\—5 - 2_ 4 - 72
30 5(P+2Q0" + v)zav+ &Uv+&vv

2 r9Q 2 0.

_ 8—1;4-2'0%4‘02% and

2+4/P +2Qu’ + Rv’?
af 1 ’ 2\—1 ’
3 = 5(P +2Q0" + Rv"")"2(2Q + 2Rv’)

Q+Rv
VP +2Q0 +Ro?’

so the Euler-Lagrange differential equation (6.12) on page then
gives

aP r9Q 72 dR ,
%4-20%4"02% d Q+RU -0 (614)

2\P+20v +Ro?  du\ \JP+2Qv + Rv?)

If you can solve this differential equation, you have the geodesics of
one quadrilateral patch. Remains to find a similar differential equation
for n-sided patches where 1 # 4, find a framework to concatenate the
shortest geodesics over adjacent patches and find the appropriate
patch boundary crossings, and to find an efficient method for solving
the differential equations — which will likely be a numerical method.
But, we will not go there in this thesis.

6.5.2 Concerns for Surface Fairness

Consider Figure on page once more, but imagine this time
that one of the two points in that figure, say point B, is duplicated
into By and B,. Then offset the two copies slightly from the original
position of B, in opposite directions — B; to the left and B; to the right
when seen from A. Now the shortest geodesic between A and B; will
be very different from the shortest geodesic between A and B,, even
if By and B, only differ by the smallest fraction. One will look like the
red geodesic that passes behind the elevation, the other like the one in
front in Figure This example is symmetric in AB. In the general
case however, the two geodesics may be of very different shape and
length.

Because distances may be measured over very different paths even
for measurements that are almost the same, truncation errors caused
by the numerical computation of the geodesics can cause an error
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in the computed distances |AB1| and |AB,| that is large in relation to
the distance |B1B,|. This error propagates via the shift vectors to the
new position of B and By, labelled B; and B,. Because B, and B, are
still closely spaced with respect to the parameter values of the curve
that is going to be fitted through them, the error may be amplified in
the curve to a visible magnitude. This phenomenon is illustrated in

Figure below.

By B,

Figure 6.20: How a small error in the shift vector can show up as a large error
in fairness of the resulting shape.

6.5.3 Computational Complexity

So far we have only considered the distance between two points on
the surface. For a curve-based variation, however, shortest distance
between a point and a curve. Therefore we need not only do a global
search for the shortest geodesic, but we need to do that while we are
searching for the point on the curve to measure from that will give the
shortest distance — which is in itself a global search with respect to the
curve. This pushes the computational complexity to a higher order,
and the constants are solid. The time needed for the computations to
complete would likely be far longer than the time users are willing to
wait.

We can conclude that the efforts of implementing a surface-distance
dependent shape variation are too high and the prospects too dim to
be considered any longer in this thesis, especially since we have a
working and much simpler method, the Euclidean distance depen-
dent variation.
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6.6 Dirichlet Parameterisation

As discussed on page (83} [Marsan et al.|[2001] accomplish interesting
results by pursuing the heat transfer analogy further, by means of what
they call Dirichlet parameterisation. However, they find it necessary
to work on a 2D mapping of the surface, which may be problematic
for some variations. Also, their method solves the Laplace equation
numerically by means of rFEm, which involves a discretisation. This
may introduce small discontinuities and a numerical error, which
gives rise for concerns for surface fairness as discussed in Section
6.5.2

6.7 Chapter Summary and Look Ahead

In the above chapter a solution was developed that answers research
questions 1 and 2 (see Section [1.2.T). The principle of shifting points
by means of B-spline decay functions was shown to be applicable to
H-rep models, and extendible to the degree that an H-rep surface can
be made to adapt, over a variable area in a variable way, to changes in
its defining curves. The concept of de-selection functions was intro-
duced to constrain particular point sets from shifting in one or more
main directions.

The presented method is purely geometric. Distances are measured
in Euclidean space, which gives good interactive response. Other pa-
rameterisations were considered, but discarded because of lower pre-
dicted efficiency and/or effectiveness. The contribution is an improve-
ment to the state of the art in the paradigm of surface representation
by interpolation of arbitrarily intersecting curves.

In the next chapter, we will evaluate the method with respect to
its practical value and the degree of its innovation. Recommendations
for an industrial-strength implementation will also be made.



CHAPTER

Evaluation

In this chapter we will reflect on the method that was developed in
the previous chapter. We will start with an evaluation of the value and
limitations of the method with respect to practical design situations.
Then, we will consider the relevance and novelty of the contribution.
Recommendations follow, for an industrial-strength implementation
of the proposed method*. Conclusively, we will step back for a wider
view, and compare the improved state of the art in the interpolation
paradigm with the approximation paradigm once again, answering
the third and last research question that was posed in Section[1.2.1}

7.1 Practical Value

Theses on new design methodology and new computer methods of-
ten include a user base evaluation, in which a group of external in-
dividuals of varying professionalism use and test the method. Their
actions are monitored and their feedback is documented, and the re-
sult is meant to be a measure of the value of the contribution. For
such a study to be meaningful, the computer programme has to be of
fairly high quality. Humans are easily distracted and likely irritated by
small issues that are irrelevant to the method, like a programme crash,
an awkward user interface, long waiting times due to a suboptimal
implementation, lacking conveniences such as “undo”, incomplete
interactive control and lacking support for specific situations. The

*Aspects of programming methodology are discussed in Appendix
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currently available implementation of the method serves only proof
of concept, and has all the above deficiencies. A user base evaluation
at this stage would mainly have produced a lot of noise, and it might
be impossible to draw any meaningful conclusion.

A better option is to do the evaluation ourselves, and try to be as
complete and objective as possible. In the following, four specific cases
will be presented in which the shape of an example H-rep hull model
will be varied. In some situations this involved making adjustments
to the computer code, to accommodate configurations that otherwise
would have been possible through an advanced user interface. In each
case, we will reflect on the result by considering how an application
of rrp would have performed, and how the same variation can be
produced by traditional H-rep modelling. This should give a clear
impression of the practical value of the proposed method.

7.1.1 Narrowing the Fore Ship

Figure [7.1| on the facing page illustrates the effect of a point based
variation, which has a spherical field of influence. The original shape
is visible as a red wire-frame overlay. The field was based on a data
point on the surface at half height, about  of the ships length from
the front. The extent of the field was large, reaching almost up to the
stern, leaving about } of the ships length unaffected. The direction
of the typical shift vector was transverse and inward. There was a
constraining de-selection field set up, emanating from the centre plane
with an extent reaching up to % of the ships breadth, to prevent the
hull from deforming into its own mirror image.

Because the direction of the typical shift vector was in the plane of
both water lines and frames, only the buttock lines were drawn out of
their defining planes. For this they were inserted anew.

7.1.1.1 Comments

There are some things that can be said about the quality of the varia-
tion. There is one shape deficiency just below the aft end of the knuckle
line, where three curves intersect in (almost) the same point. This is an
artifact inherent to the current H-rep implementation as is discussed
further on page

Another artifact can be seen in front of the very foremost frame.
An unwanted inflection in the surface is visible, which is not a cause
of the surface variation but of a local scarcity of defining curves. This
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Figure 7.1: Point based variation. The original shape is displayed as a red
wire-frame overlay. The varied hull, globally manipulated to become slightly
narrower in the front, is displayed in green with a blue wire-frame. Details of
shape deficiencies are enlarged.
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can be prevented by a more relaxed mode of surface interpolation or
by adding an extra water line in that region.

The shown variation can be criticised for the shape near the stem
curve. It seems that the old geometry shines through too much, caus-
ing an extra inflection under the knuckle line towards the stem curve.
Here the de-selection function has preserved not only the position
of points near the centre plane but also (as a consequence) the angle
at which the port and starboard shell plating meet at the stem. Be-
cause the bow has become narrower, the angle should have become
smaller as well, if the variation would have been correct. Probably the
problem could have been reduced by decreasing the extent of the de-
selection field. An even better approach would have been to not base
the de-selection field on the centre plane but on the stem curve and
base line itself, with the shape of the decay function varying along it
by means of the k variable. By giving it a cusp (x = 0) below the water
line down to the base line, a proper shape variation can be expected.
Unfortunately, time constraints have not allowed implementation of
curve based de-selection fields, so this statement cannot be verified.

7.1.1.2 Alternatives

This is the kind of shape variation that could be very well accom-
plished with free-form deformation (rFp) as well, especially when
direct manipulation of the ¥rp lattice [Hsu et al.|[1992] is used. But rrp
would still need the definition of a lattice, and it could not have beaten
the efficiency of point based shape variation with a decay function.
The demonstrated operation was very fast and interactive; there were
no waiting times for the designer. The whole variation was a question
of 1-2-3:

1. Point and click to mark the centre of the selection field.

2. Move the mouse to dynamically set the extent and the magni-
tude of the variation, while watching the preview of the shift.

3. click to finalise the variation, which happens instantly.

A shape variation of this kind without any means of global ma-
nipulation, using only prior existing functionality in Fairway, is very
hard. One would start with removing as many curves as possible, to
reduce the number of curve intersections. It is important to remove
only curves that are redundant for the shape definition, otherwise the
shape looses detail in this process. There is no functionality in Fairway
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to help determine whether a curve is redundant or not*. Then one
would start changing curves one at a time, probably deleting control
points to reduce the degrees of freedom and to better be able to attain
curve fairness. At this point, network consistency will probably be
lost. In the editing of each curve, one must attempt to apply a similar
change as applied to other curves. Then starts an iterative process
of restoring network consistency, consisting of snapping data points
back onto curves, setting weights on data points for the fairing algo-
rithm, adjusting curves to each other, checking intersection tolerances
and evaluating curve fairness. One may have to visit each curve sev-
eral times. At the end of this work, curves that were removed may be
re-inserted.

7.1.2 Construction of a Bulbous Bow

Point based variations are useful for subtle variations over very large
areas, of the kind that was demonstrated above. They are not suited
for many other variations, if they are to be constructive. For those, we
have to turn to curve based variations.

Curve based variations allow us to completely re-design any curve
in the H-rep curve network, without needing to worry about network
consistency. This is illustrated in Figure [7.2] on pages and
where a bulbous bow is constructed in three successive curve based
variations. Figure[7.2(a)|shows the initial shape. For the first variation,
a selection field is based on the stem curve, which is formed into the
contour of a bulb below the construction water line. The typical shift
vector is defined as the difference between the old and the new stem
curve, just as in Figure on page so that the hull shape is
stretched to match the new stem curve (Figure[7.2(b)). To give the bulb
body, we want to pull at half height of the bulb. Because the nearest
water line is just above half height, a special purpose curve is inserted
for the occasion, on which the second variation is based (Figure.
The shape near the bottom of the bulb still can use some work, because
some frames in this region have an extra inflection. This is worked
out by dragging the lowest water line a bit wider (Figure[7.2(d)). The
shape of the curves are looking good at this point, only the surface has
a dent at the top of the bulb. This is because of large local changes in
curvature without enough curves to guide the surface. By inserting a
few extra curves and manipulating them (no shape variations needed)

the dent can be polished away (Figure[7.3(e)).

*The feeling is comparable with to renovate an apartment and you want to remove
most of the walls, but you do not know which walls are load bearing. ..
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(a) Initial shape. (b) Stem curve re-designed.

(c) Middle water line drawn out. (d) Lower water line adjusted.

Figure 7.2: The construction of a bulbous bow by means of curve based shape
variations. The original shape is blended in as a white wire-frame.
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(e) Extra curves remedy data scarcity.

Figure 7.2: (Continued.)

This example demonstrates that with the proposed method, the
number of curves and curve intersections in an H-rep model are really
no hindrance anymore to make radical design changes. As a designer,
you are free to change your mind any time you like.

7.1.2.1 Alternatives

This kind of re-design would have been very hard with rrp. Any
bulb produced by means of rrp would probably have a coincidental
shape, there is by no means the precise control over the shape of the
individual curves that we have used here.

With traditional methods, the situation is much more manageable
than the global variation from the example before. One would proba-
bly remove the inner buttock line and remove the parts of the curves
that are now white in Figure above. For this, one would split
frames and water lines at a suitable place. In hindsight it is easily
determined where to split curves, but without a given bulb shape it
may involve more guessing. Now the stem curve can be re-designed
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as above. Then one would extend each curve, one by one, to its orig-
inal length and simultaneously manipulating it to its proper shape,
probably starting with the lower two water lines. In this process, the
shape of the resulting bulb will not be immediately apparent, and
intermediate OpenGL renderings may be necessary to guide curve
manipulations.

7.1.3 Change of the Aft Keel

Shape variations based on curves are also suitable for changes in larger
parts of the design, as Figure[7.3|below illustrates. This variation was
based on the rear half of the keel line. The objective of such a change
could be to shift the length centre of buoyancy forward, or to improve
the inflow to the propeller.

Figure7.3: The aft body, adjusted by a single variation based on a manipulation
of the keel line. The original shape is shown as a red wire-frame, the varied
shape shaded in green and a dark blue wire-frame.

In this case, we wanted to preserve as much of the character of the
shape in transverse direction, for which the selection field was made
transversely uniform. This was accomplished by considering the 2D
distance between points, taking only length and height coordinates
into account. This is analogous to projecting the points on the centre
plane before calculating their distance.
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7.1.3.1 Alternatives

This is a variation that could have been accomplished with rrp. By pro-
jecting points as described above, the deformation could essentially be
performed in 2D, reducing the number of degrees of freedom. Curve
based directly manipulated rrp [Gain, [2000] could have been used to
re-shape the keel line, although not at the level of precision of our ap-
proach. Gain|[2000] claims that curve-based directly manipulated rrp
is one or two orders of magnitude more efficient than methods that are
based on the shortest distance between points and a curve, depending
on the method used (functional composition and degree reduction, or
curve sampling and ordinary direct manipulation [Hsu et al., [1992]).
Still, rrp does need the definition of a lattice, and the level of detail in
the variation is governed by the density of the control points in the
lattice.

To apply this change by traditional H-rep modelling would be
very costly. As usual, one would remove large numbers of curves,
adjust the keel line and adapt remaining curves one by one to restore
the network consistency. A correct shape and surface fairness in this
region would largely have to be built up from the ground.

7.1.4 Increase of Curvature in the Bilge

To drag the bilge of our example model outward so its curvature
increases, requires a bit preparation. The straight-forward approach
of basing a selection field on a frame at half the ships length, then
designing a new bilge shape, and give an extent of the selection field
so large that it covers about the full length of the hull, will not produce
the result that we are after. Because the frame is defined in a vertical
transverse frame, the extent of the selection field will propagate in a
horizontal direction. However, the bilge (which for the occasion can be
defined as the area where frames have the highest curvature) travels
upward in the aft ship. This is best seen in Figure [7.3| on the facing
page. So the selection field will not cover the bilge correctly.

Better is to project a new curve on the hull, that tracks the bilge
along the length of the ship, and to base a shape variation on that curve.
This is the approach taken in the variation displayed in Figure[7.4/on
the next page. The curve on which the variation was based can be
seen in red, just below the second water-line in the fore-ship (it does
not extent to the very front) while it moves up above the third water-
line in the aft ship. To vary the shape, this curve was pulled outward
slightly, approximately in the direction of the viewer.
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Figure 7.4: The curvature in the bilge has been increased by a variation based
on a curve that was projected on the hull for the occasion. The original shape
does shimmer through as a white wire-frame.

7.1.4.1 Alternatives

This is a variation not easily accomplished with rrp. To address the
issue of the changing height of the bilge, one would probably have to
design an initial shape of the lattice that tracts the bilge nicely
[1990]. The consequence is that the mapping between Cartesian
coordinates and coordinates in the parametric space of the deforming
volume becomes non-linear, which involves a costly search for the
parameter values that correspond to the position of the data points.

In defining the deformation, it will not be obvious whether the
resulting shape is fair along the length of the ship. During the curve-
based shape variation of above, it was easy to check the fairness of the
changed curve by plotting its curvature during editing. If the curve on
which the variation is based is fair both before and after the editing,
the typical shift vector will vary smoothly, resulting automatically in
a fair shape variation.

Curve based directly manipulated rrp does allow to
check the curvature of the destination curve in a similar way, but
whether the concept of direct manipulation is readily transferable
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to lattices of arbitrary shape is not explicitly stated in the consulted
literature. In addition, because curve based directly manipulated rrp
is approximative, it may leave flaws in the fairness of the resulting
shape.

When left to the means of original H-rep modelling, this is the
kind of design change that one very much would try to avoid. Because
about half of the hull area is affected, a change like this would involve
very much re-designing, checking and re-fairing. Likely, a large part
of the shape definition would vanish in the process, and therefore it
is very well possible that the end result would differ in more than one
respect from the original shape.

At the same time, a change of this kind is interesting with respect to
internal space, displacement, static and dynamic stability, resistance,
behaviour in waves etc. For optimisation of any of these qualities it is
very valuable to be able to explore such variations on a design.

7.2 Limitations

The proposed method of shape variation by means of decay func-
tions is not a panacea. There are limitations and consequences of its
application.

7.2.1 Loss of Constraints
Fairway allows the specification of several kinds of shape constraints.

1. Specification of curve type, as discussed on page[63}
2. Prescribed end conditions of tangency and curvature.
3. Master/slave relations between curve sections, as discussed on

pagel[65}

4. “Developability” of the surface.

The presented method shifts all data points in the selection field ac-
cording to the decay function, disregarding the constraints that were
defined on the curves to which they belong. The shape of decay func-
tions is in general not compatible with these constraints. In addition,
the presented method pulls some or all curves out of their plane of def-
inition, by which all affected curves are converted into unconstrained
space curves. The planarity of the curves may be restored as discussed
in Section[6.4.9) but the constraints are lost and possibly violated with
respect to their original value.

Application of rrp would have the same consequence, as the con-
flict between these local shape constraints and global smooth shape
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manipulation is fundamental. To the author’s knowledge, parametric
design of hull shapes [Abt et al.| 2001] is the only method for varia-
tion that preserves these features. However, this allows only variation
of parameters that have been built into the design, such as bilge ra-
dius and specific angular and length measures, producing a particular
family of shapes.

Regarding master/slave relationships, when there are few curves
in the model, it may be possible to restore the constraints without
consequences for surface fairness. For example, if the knuckle line in
the bow of our example hull is defined as an offset to the deck line,
the curve can be disregarded during the variation and regenerated
afterwards by the rules of the master/slave relationship — unless the
curve is intersected by other curves, with which it would no longer be
compatible. A recommendation that keeps the number of curves low
is given later in Section[7.5.1]

The developability of a surface deserves special attention. It is
an important shape feature for low-cost production of shell plating.
A developable surface has curvature only in one direction, so steel
plates can simply be bent, without applying strain along the edges.
Conic surfaces are the only developable surfaces [SARC, 2004]. Here
the radius of the cone need not be constant, and the top of the cone
may move along a space curve. The top may even be infinitely far
away, by which the cone turns into a cylindroid.

Fairway supports construction of developable surfaces. The most
general way of doing this is by specifying two defining curves, which
must be knuckle lines, in between which the developable surface
spans. A property of this surface is that from any point on one of
the defining curves, there is always one linear path over the surface
leading up to the other defining curve. These paths are called rulings.

Shape variations assume that every data point in the model takes
partin the definition of the shape. For the case of developable surfaces,
only data points belonging to the defining curves take part in the def-
inition of the shape. So if there are other curves present in this surface,
such as frames or water-lines, a shape variation will result in an over-
determination of the shape, by which it will no longer be developable.
To correct this, internal curves in developable surfaces must be disre-
garded, and the developable surface must be regenerated (giving new
rulings) after the shape variation. Again, the general recommendation
that will be given in Section [7.5.1} includes this solution.
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7.2.2 Introduction of Discontinuity

Assuming the objective is to change the curvature underneath the
knuckle line in the bow of our example ship hull, one might be tempted
to base a selection field on a frame, somewhere half way along the
knuckle line. This strategy will give rather disappointing results, as
illustrated in Figure [7.5| below (the change is slightly over-done to
emphasise the effects).

Figure 7.5: Distortion caused by a change in tangent at the end point of the
curve on which the variation is based (bold red curve) while the end position
did not change. The original shape is printed in a red wire-frame overlay.

The reason is a first order discontinuity in the vector field of shift
vectors. This arises when the end point of the curve, on which the
selection field is based, is not changed, while the tangent at that point
is. So even if the field of influence is G? (by means of a G? decay
function), the vector field, which is the product between the decay
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function and the typical shift vector, is first order discontinuous if the
typical shift vector varies discontinuously in its first derivative. In this
case, the length of the typical shift vector goes to zero at an angle.

For a G? vector field, the typical shift vector should decrease to zero
in a smooth way, in the same way as the decay function, or the typical
shift vector should not be zero at all at the end point. In the latter case,
the vector field extends beyond the curve, and the decay function
takes care of a smooth decay of the vector field. This mechanism can
be seen in action in Figure on page

The first order discontinuity in the vector field appears in a plane
containing the end point, to which the tangent of the curve, on which
the variation is based, is normal. We would get the desired variation
if this plane contained the knuckle line. However, that is not the case.
Upon close inspection of Figure we can see that aft of the curve
on which the variation is based, frames start to change shape at some
distance from the knuckle line. In front of the base curve, there is
variation above the knuckle line. The bulging in the surface is caused
by the fairing algorithm, that attempts to fit smooth curves through
sequences of data points that are essentially not smooth.

To eliminate the bulging, one could connect the discontinuities
in the point sequences by a second knuckle line, if that is the design
intention. In the cases that it is not, users can be protected from making
this naive mistake by an intelligent user interface that does not allow
to change the tangent at curve ends unless the ends themselves are
moved as well.

Another situation that is capable of introducing discontinuities is
when the selection field self-intersects. Curve based selections are in
theory capable of self-intersection. What happens then is that two ad-
jacent data points can have their corresponding closest point on the
curve at completely different places. Likely, the typical shift vector will
be different at these places, causing the discontinuity. Self-intersection
happens when the extent of the selection field is locally greater than
the radius of curvature of the curve on which the selection is based, or
when otherwise two sections of the same curve come too close. Fortu-
nately, in our application, both these situations are very uncommon.

7.2.2.1 Alternatives

Application of rrp would suffer from the same limitation, unless the
lattice can be positioned in such a way that it borders exactly on the
knuckle line. With traditional H-rep modelling one would proceed in
the usual way, removing many curves, manipulate a few, and repair
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the damage. Again, the recommendation made in Section will
probably solve this particular case.

An alternative application of the method presented in this thesis,
with more advanced constraints, may produce a better result. For this
we would use a variation based on a point below the knuckle line.
We would base a de-selection field on the knuckle line itself, with
a decay function that has a cusp at the top (x = 0). Hopefully, this
would result in a desirable shape below the knuckle line. To prevent
the hull above the knuckle line from changing, we would in addition
need to constrain all data points that are positioned above the knuckle
line. Unfortunately, time did not allow implementing this particular
functionality, so this configuration could not be validated.

7.3 Relevance

The alert reader may have noticed that the examples that are used to
test and illustrate the proposed method, work on models with a high
density of curves. Most of these curves are not actually important for
the shape definition, they have only been interpolated for one or more
of the following reasons:

1. shape visualisation,

2. to obtain a sufficient accuracy in the computation of hydrostatic
data®, or

3. for production purposes, representing the profiles of structural
members or contours of shell plating.

In fact, the design of the shape has been carried out using far fewer
curves. So, if the design needs to be changed, why not temporarily
remove the curves that have not been modified since their creation
and go back to this coarser network to apply the change? The chance
that intersections with other curves are lost is much smaller then. And
if intersections do turn into crossings, their number may be small so
that they can be restored by hand without too much trouble.

Of course, this is a correct observation. The examples work on the
full collection of curves, as a demonstration that it is capable of pre-
serving intersections also in dense networks. Indeed, if we would only
consider curves that have been manipulated since their creation, the
responsiveness of curve based shape variations could be greatly in-
creased, because the number of data points that we have to compute

*Fairway bases the computation of hydrostatic data on the frames in the model, i.e.,
on vertical transverse intersection curves [SARC| [2004].
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shortest distances of would in general be several orders of magni-
tude smaller. So the above strategy is recommended, an the proposed
method can be used to effectively maintain the curve intersections
that remain.

At the time of this writing, Fairway does have rudimentary support
for the removal and re-insertion of curves at several pre-selected loca-
tions simultaneously [SARC,[2004]. But the selection has to be defined
by the user explicitly with an alpha-numerical user interface, and the
insertion or removal is performed without consideration of whether
curves already exist or not, and whether they have been manipulated
or not. Thus, this feature is capable of throwing away valuable work
unintentionally. As a protection, it is possible to “lock” individual
curves, but that has to be taken care of explicitly by the user. A better
approach is recommended in Section[7.5.1]

7.4 Novelty

As indicated in the introduction (page[l), one can try to be innovative,
but the chance that somebody else has had the same idea is very real,
and it happens all the time. In this section we will have a look at
what elements of the proposed method can be found in the literature,
and what elements seem to be new. We will also look at why some
established approaches were not adopted.

7.4.1 Decay Functions

The concept of decay functions is very old [Parent, (1977] and the use
of B-spline basis functions for this purpose has been proposed at least
a decade ago [Borrel and Rappoport,[1994], albeit in the context of rp.
The latter involves an upwards scaling of the function, so it has a top
at 1.0, and a re-interpretation of the knot vector. An explicit expression
of this function in power basis, as given in on page has not
been encountered in the consulted literature, and neither has the value
of being able to vary the shape of the decay function this way been
emphasised much.

The traditional application of decay functions is in sculpting of
polygonal models. The application to shape variation of models that
interpolate a network of curves is novel.
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7.4.2 Curve-Based Variations

Consideration of the shortest distance of points to a curve, and sub-
sequent manipulation of the curve, has been applied in axial defor-
mations [Lazarus et al.,[1994;|Singh and Fiume, [1998]. However, these
references use no special mapping between parameter values of the
original curve and the edited curve, i.e., the two parameters run com-
pletely in parallel. In our application, arc-length parameterisation was
found to be essential when re-designing curves in the H-rep. On the
other hand, the twisting and radial scaling that these references pro-
vide was considered to be of no practical value to our application.

As an alternative to varying the extent of the variation as a scalar
value along the curve, an implementation may consider the use of
domain curves [Singh and Fiume)} [1998]. Domain curves give direct
control over the extent and also allow a different extent on either
side of the curve. However, as the “side” of a 3D curve is not well
defined, this requires the use of a heuristic, and it is unclear how well
the heuristic that Singh and Fiume| [1998] give performs on highly
sculpted surfaces.

7.4.3 Interaction between Vector Fields

When more than one point-based variation is applied simultaneously,
and the base of one is covered by the field of influence of another,
Borrel and Rappoport| [1994] solve a small constraint system to make
the variation obey the typical shift vectors exactly. In this thesis, solv-
ing a constraint system is considered as unnecessary. Apart from the
fact that constraint solving can lead to space tearing (see page [82),
typical shift vectors can easily be changed interactively and the effect
shown in real-time to produce the desired shape variation. However,
a production-grade implementation of the method may include this
functionality as an option.

When using curve-based variations, it is more elaborate to change
the typical shift vectors of more than one selection field interactively.
The constraint problem is not that straight-forward anymore either.
An option is to average the influence of the fields, according to|Singh
and Fiume)| [1998]. However, in our application, the practical value
of a variation due to the editing of several (intersecting or otherwise
closely positioned) curves simultaneously is questionable, and has not
been implemented.

Interaction between vector fields in general, which in this thesis is
taken as the vector sum, has not actually been evaluated other than in
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Figure[6.8/on page

7.4.4 De-Selection Fields

The problem of constraining the model to the plane of symmetry,
when only half of it is being modelled, has not been encountered in
the surveyed literature. The application of de-selection fields for this
and other purposes seems to be a new invention.

7.5 Recommendations

The following is a collection of recommendations for a production-
grade implementation of the proposed method, as well as for a general
implementation of the H-rep concept as compared to the implemen-
tation presented by |[Koelman| [1999]. The increased complexity that
these recommendations impose on computer programming, is easier
to deal with when object-oriented programming (oor) is adopted. See
Section for a discussion.

7.5.1 Data Management

As animprovement to the management of curves as described on page
I would recommend a more robust and more efficient approach,
like the following. Upon creation of a new curve, the curve is not
immediately added to the H-rep data structure, but starts its life in
a collection of automatically updated curves. In other words, these
curves do not participate in the definition of the surface. The shape of
each curve in this collection is automatically re-computed, only when
at least one of the surface patches changes, on which the curve in
question is based.

When the user is about to select a curve to make changes to the
surface, curves that are already in the H-rep are preferred, in order
to not increase the amount of shape defining data unnecessarily. This
can be accomplished by promoting shape defining curves by special
highlighting. The user is still free to choose a different curve instead,
one that is not yet in the H-rep, by which that curve is automatically
moved from the collection to the H-rep, so that it starts taking part in
the shape definition of the surface.

An advanced application of this principle could even consider
only the parts of the curve that are manipulated. If, e.g., a water-
line is selected from the collection of unmodified curves, which is
subsequently manipulated for only a third of its length, it could be
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added to the H-rep data structure for just that length, only minimally
extended to make it start and end at intersecting curves.

7.5.1.1 Advantages

Apart from the positive effect on the freedom to make changes in the
design and on the responsiveness of the proposed curve-based vari-
ation operations, there are several other advantages of the above ap-
proach. To begin with, there are the already indicated positive effects
on the matter of master/slave relationships and developable surfaces.
In addition, this recommended way of data management will improve
curvature continuity, reduce the number of artifacts in the surface and
result in a smaller file size.

Curvature Continuity Since the transfinite surface patches remain
larger, larger areas of the surface are G*. After all, with every new
subdivision by an added curve in the H-rep, geometric continuity
across that curve is reduced to G'. However, the “almost curvature
continuity” (€G?) across patch boundaries, induced by the crossing
curves, will decrease as the patch boundaries become longer, and the
constraining intersections fewer and separated further apart. When
good €G? is needed for, e.g., manufacturing of a physical model, this
effect can be easily countered by adding all curves in the collection
to the H-rep. By still keeping the bookkeeping about whether curves
have been manipulated or not, this action can also be reversed.
Another measure is to construct G Gordon surfaces over quadri-
lateral patch compositions, for which an algorithm is presented by
Koelman|[1999]. Originally this was supported in Fairway, but support
has been removed because of little gain® and computational expenses
[Koelman),2002]. However, as the recommended approach would lead
to fewer and bigger patches, the expenses will be much lower than
previously, and the gain will be higher as it will convert most of the
patch connections from (decreased) eG? into true G* connections.

*The gain has been evaluated primarily with respect to the interpolation of new
curves. The difference between curvature continuity and discontinuity across patch
boundaries is in general only apparent close to the boundaries. Since curves are gen-
erated to interpolate a finite number of points on the surface, this only affects a small
number of these points in a marginal way. Of course, the curves themselves are G2 per
definition, and the differences are likely to be reduced courtesy the fairing algorithm. So
indeed, the gain of G? patch transitions can be neglected as far as curves are concerned.
However, when the focus is on the surface, e.g., in rendering photo-realistic images or
production of a physical model, curvature continuity becomes more important.
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Fewer Artifacts When more than two curves in the H-rep intersect
in (almost) the same point, shape artifacts can occur. These artifacts
appear as ripples or undulations in the surface and are caused by
un-proportionally spaced tangent data that the tangent ribbons inter-
polate smoothly, together with relatively large changes in these data
[SARC| 2004]. The same phenomenon exists for positional data, as
illustrated in Figure on page

Ripples can also appear in relatively flat regions of the surface, as
seen in Figure[7.T|on page[129] which suggests that this larger change
is caused by curves not passing exactly through the data points —
which is a compromise for curve fairness. This imprecision may be
microscopic in absolute sense, but if three curves intersect almost in
the same point, a microscopic triangle is created, so the tangent data
(at the corners of the triangle) is also spaced microscopically tight.
So, relative to the spacing of tangent data, this imprecision becomes
large enough to produce visible ripples. Currently, Fairway can be
instructed to generate tangent ribbons by linear interpolation, which
reduces the rippling at the cost of a little smoothness.

The recommended approach will reduce the number of these ar-
tifacts by leaving most of the curves out of the H-rep data structure.
Remaining artifacts can be handled by the approach proposed in Sec-
tion below.

Smaller File Size File size is probably seldom an issue, as the current
format is already economic compared to explicit surface methods.
Nevertheless, the above recommended approach will reduce the file
size even more, especially for production-ready designs, since for
curves that were never manipulated only their position needs to be
saved.

7.5.2 Elimination of Artifacts

What follows is a proposal to eliminate artifacts, as seen in Figure
on page by disregarding limited curve sections. Consider Fig-
ure[7.6{on the facing page, which shows a detail of a curve network.
A surface artifact can result from the dense spacing of tangent infor-
mation at the corners of the tiny triangle in the middle of the detail
(Figure left), together with an imprecision as explained above.
The density of tangent data can be reduced to an ordinary level,
eliminating the artifact, by locally disregarding one or more curves.
Thereby, tiny surface patches essentially vanish. This can be accom-
plished by splitting excess curves at nearby intersections on both sides
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of the problem area, and removing the offending curve section from
the H-rep data structure (Figure[7.6] right). On a higher level, the curve
can (and should) still be defined as one continuous curve.

Assuming that non-contributing curves have already been taken
out of the H-rep data structure, in accordance with the recommen-
dation made in Section it follows that disregarding any curve
section will affect the shape of the surface to some degree. However,
since the curves pass (almost) through the same point, the amount
by which they individually contribute to the definition of the local
shape is limited. It is reasonable to expect that the surface will only
be affected marginally by removing a section from the data structure.
Nearby curves will cover for its absence. And after all, we were not
happy with the shape in the first place.

Figure 7.6: When more than two curves intersect in almost the same point
(left), artifacts can be eliminated by disregarding limited curve sections (right).
The shaded areas indicate the possible extension of quadrilateral mesh cell
complexes over which Gordon surfaces can be constructed. Alternatively, a
Gordon surface may be constructed over the full height of the figure, in-
between the three vertical curves, covering the problem area.

There are of course several criteria that can be used to select the
curve or curves that are to be disregarded this way. Selecting the short-
est possible section will probably minimise the effect on the surface
shape. Other possibilities are to make a selection such that the remain-
ing curves are as orthogonal as possible, or such that the quadrilateral
area that can be covered by Gordon surfaces is maximal (shaded in

Figure[7.6).
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7.5.3 Aspects of Efficiency

Shape variations with selections based on points and planes are fast.
However, curve-based selections can be time consuming, because
computing the global closest distance of a point to a curve is expen-
sive. In the current proof-of-concept implementation, all data points
in the entire model are processed. Depending on the length and com-
plexity of the curve, the time needed for distance computations in the
examples of Figure [7.2] on page [132] took up to several minutes per
variation on a 1.5 GHz PC. Once the distances are computed, shift
vectors can be previewed interactively while the extent r and shape
parameter x are varied.

This performance can be improved. Firstly, it may be possible
to omit several iterations in the closest point finding algorithm per
data point, if the loop termination is not based on the accuracy of
the closest point, but on the accuracy of the resulting typical shift
vector. Secondly, the recommendation made in Section will cut
down greatly on the amount of data points to be considered. And
finally, the shape variations that are discussed here, rarely involve
every single data point in the model; in case it does, an ordinary affine
transformation probably performs better. So computing the distance
for all data points in the model is a waste of time. It would be much
better to consider data points on demand, based on the extent of the
selection. For this a graph search is required, similar in nature to the

algorithm presented in Figure on page

7.54 Open Interface

A non-standard surface representation hinders a large scale accep-
tance in industry due to the limited possibilities for the exchange of
surface models. Without a standard, the realisation of well supported
data exchange requires cooperation and good-will of a large number
of actors on the cap market. To stimulate support for this foreign sur-
face representation one could try to make it very easy and virtually
cost-less to create an interface for the evaluation of H-rep models.
For this, a public data file format is not sufficient, as evaluation of
the model will require the implementation of a considerable number
of algorithms, an effort that cannot be expected from many. A better
chance for acceptance is to release the algorithms as well. There is no
secret in this as the algorithms are documented in the literature, so
releasing in object code alone (which is machine readable only) serves
no particular purpose. In stead, the algorithms can be distributed as a
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library of source code (of which humans can make sense as well). This
makes integration into third party software easier, allows a higher
system efficiency because data conversion layers can be omitted and
creates good-will. It also relieves us from the need to support object
files for a high number of different computer architectures and oper-
ating systems. In addition, releasing source code requires much less
support, as third parties that are having trouble making the code work
can help themselves.

There is a misconception in the corporate world that releasing
source code is the same as giving away assets, from which money can
be made, to your competitors. By publishing code, one does not give
away ownership, and copyright still applies. What others are allowed
to do with the code depends on special exceptions to copyright as
stated in a license. Contrary to the customary software licenses that
accompany commercial software, which explicitly limit the freedom
of the user, our license would state freedoms that copyright would
otherwise prohibit, and therefore we need not worry about a user’s
acceptance of it. The Lesser General Public License (LcpL), as defined
by the Free Software Foundation, is a popular license that can serve
the proposed purpose [Free Software Foundation, 2000]]. This license
has the advantage that any optimisations, improvements, bug-fixes
and extensions that third parties apply to the code, flow back to the
owner of the code (and everybody else) by obligation. This principle
makes the software largely self-sustaining.

Currently, to make this policy work, it would require exemptions of
certain patent claims [Koelman), 2004]. To prevent abuse of intellectual
property, one could selectively license the patent for evaluation of
H-rep models but not for modification of the data structure. As a side
effect, a publicly available implementation of the algorithms increases
the marketability of complete patent licenses for a fee.

With this policy, what we may see in the future is support of the
H-rep concept in applications that “use” hull forms for further design
and analysis, such as the following.

e Hydrodynamical analysis by means of cFp, e.g., of sea loads and
motion in waves.

Structural design.

Structural analysis.

Piping etc.

General arrangements plan.

Machine room design and evaluation.

Other aspects of detailed design.

149



7. EvaLuaTiON

150

o Photo-realistic rendering of presentations.

These third party programs could use ordinary csc, which in-
volves trimming by curves to disregard portions of the surface, and
do not need to modify the H-rep data structure*. With respect to ship
hulls, this allows for example the design of a bow thruster tunnel, the
opening bow of a roll-on-roll-off passenger ferry, appendages such as
stabilisers, the rudder, propeller shaft struts, thrusters etc, as well as
smaller openings for intakes and outlets.

7.6 Two Paradigms Revisited

Consider once again two paradigms for the definition of surfaces
with arbitrary topology. On the one hand we have approximation of
arbitrarily connected points, and on the other hand interpolation of
arbitrarily intersecting curves.

With the possibility to change only one data element at a time
(control point or curve, depending on the paradigm), the definition of
the shape becomes more rigid with the amount of defining data. This is
alogical consequence, but it is much more severe for the interpolating
paradigm. For the approximation paradigm, the reduction in freedom
to do larger-area shape manipulation is linearly dependent on the
number of data elements: with every added control point there is one
more point that has to be positioned in harmony with the rest. For the
interpolating paradigm, this freedom reduces at a much higher rate,
relative to the number of defining curves in the model. In the worst
case, if there are n defining curves, then one extra curve can add n
new constraints in the form of curve intersections.

With the proposed method of curve-based variations, these con-
straints have essentially been eliminated for the interpolation para-
digm, as curves can be re-designed no matter how dense the curve
network is.

Thus, the interpolation paradigm has been brought on a competi-
tive level with the approximation paradigm, by which the paradigms
are better comparable. To be fair in this comparison, one should allow
point-based variations on the (arbitrary) control polyhedron of sur-
face splines or subdivision surfaces, which allow for larger-area shape
variations. In the following, we will compare the two paradigms from
an engineering point of view with respect to surface quality, practical

*Since recent times, Fairway supports boolean operations on H-rep models. How-
ever, its approach is different from csg, as it modifies the data structure, and no history
is preserved, i.e., there is no csc-tree.
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usability and complexity of the underlying method, with the proposed
method and recommendations taken into account.

7.6.1 Surface Quality

With respect to surface quality, we are interested in curvature con-
tinuity and in the absence of artifacts. Catmull-Clark subdivision
surfaces (Section are G? everywhere, except at extraordinary
points, where unbounded curvature can lead to visible shape defi-
ciencies. The conversion of Catmull-Clark surfaces to surface splines
(Section[3.2.2) improves on this, using standard bi-cubic NURBs patches
to form a surface that is G> where the control polyhedron is regular.
At extraordinary points, the surface is G!, with bounded curvature
and no artifacts. At the cost of constraint solving and higher order
polynomials, surface splines can produce completely G? (or even GF)
surfaces.

On the other hand, H-rep surfaces are G? only over regular quadri-
lateral regions of the curve network (when Gordon surfaces are ap-
plied),and G! across curves elsewhere. However, at intersection points,
the surface is G? because of the continuity in the curves. Artifacts can
still appear when tangent ribbons wobble to interpolate tangent data.
Usually, these can be corrected by adding curves to (or removing
curves from) the data structure, but it nevertheless requires careful
inspection.

In the current state of the art, we must conclude that the approxi-
mation paradigm is capable of achieving higher surface quality than
the interpolating paradigm. However, this is primarily due to surface
splines, which are not yet widely applied in industry.

7.6.2 Practical Usability

With respect to practical usability, we are interested in surface manip-
ulation and in the ability to describe a particular shape. At the time of
this study, there was no access to an implementation of the approxi-
mation paradigm for the design of surfaces of arbitrary topology, and
therefore a formal comparison of the usability of the two paradigms
was not possible. Nevertheless, we can discuss the differences at a
conceptual level.

One has to be careful in making statements about the differences in
surface manipulation between the two paradigms. At first sight, the
difference is fundamental, the prime reason to differentiate between
two paradigms at all: approximating surfaces are controlled by control
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points and interpolating surfaces are controlled by curves. Hence the
former are manipulated by control point manipulation and the latter
by curve manipulation. However, curves themselves are manipulated
by control point manipulation — or data point manipulation and
subsequent application of the fitting/fairing algorithm. Therefore one
might argue that surfaces are manipulated through points no matter
the paradigm, and that the curves in the interpolation paradigm serve
only as a level of abstraction.

But for usability, abstraction is important. A curve is much easier
given a particular shape than a surface. This is especially the case when
the curveis planar, so a complete dimension is abstracted away. Planar
curves also make conception of curvature along the curve straight-
forward, as curvature indicators can be plotted perpendicular to the
curve, in the plane of definition.

The ability to work with curves is even more important for ship
hull form definition. Hull forms are traditionally defined by lines
plans, consisting of planar curves of perpendicular intersections. Even
today, a shape is much better communicated between experts in the
form of a lines plan than in the form of a computer rendering. To
work in this traditional format allows traditional rules of thumb for
good shape to be applied. Also, existing lines plans can be accurately
digitised into H-rep models, which is a valuable feature for two rea-
sons. Firstly, it is common to base the design of a new vessel on a
comparable existing design. With the ability to digitise and import
lines plans, the lines plan becomes a platform-independent format for
shape definition, which means that there is a much larger set of hull
shapes to choose from than the limited set of hull shapes that has been
designed in-house on the platform that is currently in use. Secondly,
when vessels are enlarged or converted to serve a different purpose,
“sponsons” may have to be welded to the hull in order to obtain suffi-
cient stability. For the sponsons to fit the hull like a mould, the shape of
the existing hull must be available in digital form when the sponsons
are designed. This can easily be accomplished in the interpolation pa-
radigm as the shape can be extracted from the lines plan or even from
structural plans. The latter ensures that the stiffeners in the sponson
will match the stiffeners in the hull precisely. This advantage counts
for other appendages as well, such as a bulbous bow.

Accomplishing surface fairness in the interpolation paradigm is
accomplished through the fairing of curves. Although the fairness of
a curve is easily interpreted and improved, fairing a curve in isolation
does not result in a fair surface per se. Firstly, there are implications
for the curves that intersect the curve that is being faired. The fairness



Two Paradigms Revisited

of these curves may actually degrade as a consequence. And secondly,
even when the curves are fair and the network consistent, fairness of
the interpolating surface can only be guaranteed along the curves.
In between, shape deficiencies can occur, e.g., by un-proportionally
spaced tangent data such as in Figure on page

In the approximation paradigm, control points need not be lined
up as they are in the interpolating paradigm, where they define curves.
Since they can be positioned and ordered according to shape require-
ments exclusively, we can posit that surfaces following the approx-
imation paradigm in general can do with fewer control points than
surfaces that follow the interpolation paradigm. This means that fewer
control points need to be positioned in harmony to obtain a fair sur-
face. According to this postulate, achieving surface fairness is easier in
the approximation paradigm than it is in the interpolation paradigm;
provided that an effective method for surface curvature interrogation
is available, such as an interactive Zebra plot and colour renderings
of the curvature.

Although approximating curves, such as B-spline curves, are re-
garded by some as un-intuitive to work with, others firmly believe
that manipulation of the control polygon is the best way to obtain aes-
thetically pleasing curves. This belief is extended to surfaces as well,
as in the following quote.

“Not surprisingly, averaging [(the approximation para-
digm)] results in more pleasing surfaces than curve in-
terpolating algorithms [...], and one may wonder what
other than the tradition of Coons construction attributes
the curve mesh such preference when constructing a sur-
face.” [Peters, [1995a]

We may conclude our discussion that the interpolation paradigm
is better suited if an exact surface shape is required in a limited set
of well-defined planes, such as often is the case in engineering appli-
cations. On the other hand, when aesthetics are more important than
tolerances, the approximation paradigm provides a better modelling
interface.

7.6.3 Method Complexity

The abstraction into curves, however practical in one respect, is also a
simplification. This simplification has consequences so severe that it
is possible to take a PhD on the subject. In the hierarchy of geometric
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elements, curves are positioned on a lower level than surfaces. Curves
can easily be extracted from a surface, but the construction of a sur-
face from curves is fraught with ambiguity, inconsistency and limited
accuracy”. The H-rep concept has a high level of pragmatism, brought
forth by an engineering approach to geometry. The contribution in
this thesis is no exception. A state-of-the-art implementation of the
interpolation paradigm is a complex system with an extensive array
of features. Among these are construction of curves of various types,
surfaces of different definitions for different numbers of sides and con-
tinuity, a non-trivial data structure, fitting and fairing of curves, graph
traversing algorithms and a number of hacks and work-arounds to
counter limitations.

A much cleaner approach is taken in the approximation paradigm.
Subdivision surfaces are governed by a small set of simple rules, and
the theory of surface splines is firmly based in mathematics. Approx-
imating surfaces are precise, consistent and unambiguous— that is,
when considering the advances discussed in Chapter[3] not the current
state in the industry.

7.6.4 Conclusion

In short, the difference between the approximation paradigm and the
interpolation paradigm in the current state can be summarised as
follows.

Solutions for the modelling of shapes with arbitrary topology that
follow the approximation paradigm seek elegance in their approach to
the problem. They are mathematically sound and firmly based on
theoretical foundations. They are well suited to model aesthetically
pleasing shapes without strict geometrical requirements. Subdivision
surfaces are widely applied in the entertainment industry.

Solutions that follow the interpolation paradigm for the modelling
of shapes with arbitrary topology consist of an assembly of parts with
various functionality, that have been engineered to work together
as a complex system. The resulting machine is not pretty, but when
operated correctly, it works for the tasks that it was built for. The

“In the implementation of Koelman| [1999]], a network of intersecting curves is
accepted as consistent if curves intersect within a limited accuracy. By zooming in on
the intersection far enough, curve intersections can in general be identified as being
actually curve crossings. The accepted inaccuracy is user-definable and can be set below
production tolerances. The inaccuracy is a trade for easier curve fairing, but also a source
of surface artifacts as discussed before. Alternatively, the implementation of Michelsen!
[1995] features exact intersections by means of interpolating spline curves, which are
however more difficult to fair.
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shape can be controlled exactly in selected planes, a feature that is
desirable when designing plate constructions. The approach fits well
with the traditional method of ship hull form design, and currently
enjoys modest use in the maritime industry.

In one sentence, one could say that the elegance of approximation
lies more in its theory that in its practice, and that the elegance of
interpolation lies more in its practice than in its theory.

7.7 Chapter Summary

Point-based and curve-based variations have shown to be a versa-
tile tool to bring about a wide range of practical design variations
in free-form shapes of arbitrary topology. Curve-based variations in-
tegrate seamlessly with the curve-based surface manipulation of the
interpolation paradigm. This relieves the designer from the burden
of manually maintaining intersections of curves, which has been a
source of distraction in the creative process of design and a major
obstacle in the way of shape optimisation and reuse of prior designs.
The proposed method allows both radical design changes and the re-
design of specific form features, as well as more subtle variations that
may cover large parts of the model. We have made suggestions for an
effective implementation of the method and how the industry can be
stimulated to a wider acceptance of the interpolation paradigm.

155






CHAPTER

Summary and
Future Work

In the first chapters of this thesis we have taken a long look at the stan-
dard practice of how surfaces are represented in computers, and how
the shortcomings of this practice limit the designer in his freedom to
actually design 3D free-form shapes on the computer. We have also
identified two paradigms of surface representation. One paradigm,
which we have termed the approximation paradigm, defines surfaces
by averaging or blending discrete control points, by which the surface
smoothly approximates a polyhedron of which the control points are
the corners. Standard surface representations follow this paradigm.
The other paradigm, which we termed the interpolation paradigm, de-
fines surfaces by transfinitely interpolating between boundary curves,
by which the surface passes through the curves.

We are not the first to have complaints about the versatility of
standard surface patches, and a great many people have looked at the
problem. The problem, is two-fold. Firstly, standard patches, which
are quadrilateral, can only be mapped straight-forwardly to a small
set of geometric objects. The problematic shapes are said to have an
arbitrary topology, with which we mean that the mapping would
be non-regular or unstructured. The other problem is fundamental
and exists in both paradigms, but is amplified by the structure of
standard surface representations. This problem pertains to the phe-
nomenon that the “rigidity” of a design increases with the amount of
shape defining data. In other words, the shape defining data (points
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or curves, depending on the paradigm) is generally organised in a
certain balance, a harmony, and not only the absolute value (shape,
position) of the data is important but its relative value in relation
to the rest of the data as well. The “rigidity” results from the need
to maintain this harmony, which is jeopardised by manipulation of
single data elements.

In chapters [3|and [ we looked at a considerable number of refer-
ences that address the first problem within the approximation para-
digm and the interpolation paradigm respectively. We observed that
the rigidity problem is much more limiting in the interpolation para-
digm than in the approximation paradigm. In Chapter[5|we reviewed
methods that change not just a single data element but a complete sub-
set of the defining data in a harmonious way, which can help address
the rigidity problem.

In Chapter [6| we considered how solutions from the preceding
chapters could be combined to form a computer method for geometric
design that is free from the problems of arbitrary topology and rigidity.
As the interpolation paradigm has particular value for engineering
design, and because it suffered un-proportionally from the rigidity
problem (meaning that solving it would be most valuable), we selected
the H-rep concept to address the topology issue, being the technology
that is heading the developments in the interpolation paradigm.

Fortunately, the most important contribution of the H-rep concept
to the interpolation paradigm is the integration of a curve fitting and
fairing algorithm, with the side effect that the surface is not only
defined by curves, but by data points on the surface as well, from
which the curves can be derived. This means that the methods for
polygonal sculpting and spatial deformation from Chapter [5| can be
applied. Among these, the methods based on decay functions and
axial deformation have been the most valuable source of inspiration
in the development of a solution to the rigidity problems of the H-rep
concept.

The research process moved between hypothesis construction on
one side and testing and reflection on the other side in the reciprocal
fashion of reflection-in-action [Schon) 1983], each move motivating
the next. We started with simple point-based variations, continued
with constraints and de-selection functions, then variable decay func-
tions, curve-based variations, the disregarding of unchanged curve
parts, arc-length parameterisation, the culling of unconnected selec-
tions and finally the restoration of planar curves. We also found that
the Euclidean distance between geometric elements is a suitable in-
put to the decay functions. Computation of the Euclidean distance of
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data points does not require evaluation of the surface, which is an
advantage to the more advanced parameterisations that were briefly
considered. The latter were discarded as being too complicated, ex-
pensive, and because of an identified risk of deficiencies in the quality
of the resulting shape.

During the evaluation in Chapter [/, the product of our efforts
showed to be powerful enough to accomplish real world design
changes, and we can conclude that the rigidity problem of the in-
terpolation paradigm has been significantly reduced, if not defeated.
However, our approach does have implications for some of the fea-
tures in the H-rep implementation of Koelman| [1999], and it may
produce unexpected results when used naively. This was discussed
in Section Nevertheless, due to its improved condition, the inter-
polation paradigm is able to better compete with the approximation
paradigm, which has motivated a comparison between the two in
Section We concluded that the interpolation paradigm does not
produce the highest surface quality, and that implementations must
deal with high system complexity, and that nevertheless interpolation
is the preferred paradigm for many engineering design tasks due to
its curve-based modelling interface.

The contribution of this thesis can be summarised as an improve-
ment in the freedom of designers, by allowing them to change their
mind at any time. For the shipbuilding industry in particular, this
translates into the value that hull forms can be optimised further, and
where new designs are based on prior designs (a common practice in
shipbuilding), results can be achieved faster.

8.1 Future Work

There is room for future work. Besides an industry strength imple-
mentation of the presented method and recommendations, it may be
possible to extend the functionality of constraints. But the next big
step towards the optimal method for cagp might happen in the other
paradigm. A quick look at both these statements will conclude this
thesis.

8.1.1 Constraints

Up to now, only constraints were discussed that act on the position that
points had before the variation operation, i.e., the departure position.
An example is to constrain all points that are on the plane of symmetry

159



8. SuMmMARY AND FuTURE WORK

160

to that plane, while they are free to move in that plane. This particular
constraint does not prevent points with a departure position in the
vicinity of that plane from passing through it; although that would
be very unlikely for reasonable typical shift vectors. But in order to
rule this out, we should also constrain on the destination position —
which could be a future extension.

Constraining single points on the destination position is not dif-
ficult, but achieving a smooth transition in the shift of neighbouring
points is all the more. If we had that functionality, we could also
use it to guarantee that the design does not violate certain maximum
main dimensions, such as Panamax or a maximum draught. But the
problem of constraining points from moving through the centre plane
is different from constraining points to move beyond the maximum
breadth. Whereas constraining shape variations from violating the
maximum breadth or draught would be meaningful, because it would
result in a flat region which is common in merchandise ships (FoS and
FoB), it would not be meaningful to have a flat region of the shell in the
plane of symmetry, the centre plane. This illustrates the complexity of
the problem.

But, before investing resources into the development of this fea-
ture, one should consider the following. An automatically defined
transition between constrained and unconstrained points may be vis-
ibly artificial. As the transition between flat regions and curved re-
gions of the hull are prominent shape features both aesthetically and
hydrodynamically, most designers would rather want to design them
than to have them automatically generated.

8.1.2 Approximation Once Again

What the interpolation paradigm suffers from most at this point is
arguably its limited surface quality. The approximation paradigm
provides much better surface quality; in theory, approximation sup-
ports up to arbitrarily continuous (G¥) surfaces. For the ultimate free-
form modelling approach it may therefore be beneficial to investigate
whether a curve-based manipulation technique can be imposed on
G? surface splines [Peters| 2002a], or at least on patched or exactly
evaluated Catmull-Clark surfaces [Peters, [2000; Stam) 1998|]. To have
as many curve handles on the shape as there are typically curves in
the lines plan of a ship hull is utopian I fear, and unnecessary as well.
However, a small but sufficient number of feature curves to control
the surface may be doable. One possibility is to align a chain of con-
trol points in the control polygon with the curve, and either solve a
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constraint system, or the B-spline interpolating subdivision surfaces
of [Nasri|[1997] may serve as source of inspiration.

For global shape variation there is an array of possibilities. Besides
using decay functions to shift nearby control points and other spatial
deformations to deform the control polyhedron, there is the possi-
bility of multi-resolution modelling which has been shown to work
for G! surface splines [Gonzalez-Ochoa and Peters, 1999]. For defor-
mations based on physics, a static equilibrium analysis of a system
where the connections in the control polyhedron resemble structural
beams [Léon and Trompette| [1995] will provide a most interesting
experiment.
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APPENDIX

Computer Programming

This appendix contains a discussion on the practical side of imple-
menting an H-rep modelling system that incorporates the method that
was proposed in Chapter[6] including the recommendations made in
Section The discussion is largely motivated by my experiences of
working with the source code that was generously provided by sarc,
and using the programming language that it is written in. This text is
not to be seen as critisism of sarc or its working methods; the design
decisions for Fairway were sensible ones at the time they were made,
and whether or not it is wise to change language and programming
paradigm is not at all clear.

A1 Modern Software Engineering

Software is inherently complex [Booch, 1991, chapter 1]. Over time,
different programming paradigms have been developed, together
with programming languages in support of these paradigms, to man-
age ever higher levels of complexity. One of these paradigms is called
“structured programming”, which allows to build complex systems
using algorithms as their fundamental building blocks [Boochl [1991].
The commercial implementation of the H-rep concept that we are us-
ing as a reference, follows this paradigm of structured programming,
using the language of (Extended) Pascal.

Although Pascal has some particular advantages (e.g., symplicity,
strong typing, compilation speed), there is a limit to the complexity
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that structured programming supports. Since the focus is on algo-
rithms and not on data, the access to data and protection of its in-
tegrity can become a problem in larger projects. It requires a very high
level of awareness of the programmer about the state and nature of
data throughout the program. This has implications for quality, main-
tainability, extendibility, the cooperation between software engineers
in a team and the ability of newcomers to work with the code.

The following discusses newer programming paradigms, and con-
sequences of adopting them.

A.11 The Object Model

A newer programming paradigm, referred to as object-oriented pro-
gramming (oop) or, in more general terms, the object model, intro-
duces several new elements that build upon earlier models. The ob-
ject model allows the abstraction of data into objects and classes of
objects, and generally enables us to handle systems of higher com-
plexity. Booch![1991] gives the following definition of oop:

Object-oriented programming is a method of implementation
in which programs are organized as cooperative collections of
objects, each of which represents an instance of some class, and
whose classes are all members of a hierarchy of classes united via
inheritance relationships. [Boochl (1991}, p. 36]

A clarification of the difference between objects and classes may
be in place. In general, a class forms the definition of the structure of
some data and how that data can be manipulated. Most classes can
be instantiated into “tangible” objects which can be stored, moved,
passed around, done things to or otherwise used. Objects from the
same class share the same functionality, and differ only in the value
of their data.

To give a complete and detailed description of the mechanisms,
by which the object model enables us to manage a higher level of
complexity, is beyond the scope of this text. There are numerous ex-
cellent sources in the literature [e.g.,[Booch|[1991}|Coad and Yourdon,
1991] and on the Internet”. In short, the essence of objects is that they
are manipulated through an interface, whilst their implementation
(including data) is shielded off from the rest of the system. This has
several advantages, such as

“www.pegasus.rutgers.edu/ elford/class/oo.html, www.objectfaq.com, or
ootips.org.


www.pegasus.rutgers.edu/~elford/class/oo.html
www.objectfaq.com
ootips.org
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1. Classes of objects can be designed, implemented and tested in
isolation. They are also maintained and extended in isolation.

2. Objects can maintain their data in a consistent state.

3. Objects are used through a clean interface, and knowledge about
its implementation is not needed.

The process of partitioning the problem space this way is called “ab-
straction” or “indirection”, and the hiding of implementation and pro-
tection of data is called “encapsulation”. Other principles of the object
model are “inheritance” and “poly-morphism”. Inheritance means
that classes can inherit working functionality and properties from
other classes. This also improves “code re-use”, meaning that things
need to be implemented only once. Poly-morphism is the concept that
operators and procedures can handle data of various types, leading
to consistent interfaces and expressions.

Apart from its ability to break down complexity, the object model
can lead to a better preservation of investments.

“[TThe use of the object model produces systems that are
built upon stable intermediate forms, and thus are more
resilient to change. This also means that such systems can
be allowed to evolve over time, rather than be abandoned
or completely redesigned in response to the first major
change in requirements.” [Booch, 1991, p. 71]

A.1.2 Generic Programming

There is news on the algorithm front as well, with the concept of Gp.
Generic programming makes it possible to define procedures (e.g.,
swapping the values in two variables), concepts (e.g., equality) and
container classes (e.g., dynamic arrays) that work on data of yet un-
known type. Using this functionality, it is possible to write generic
algorithms (e.g., for sorting data). Given a template of a generic con-
cept, a compiler that supports Gp is able to autonomously implement
a specialisation of the concept for any given data type.

Generic programming is probably most frequently used through
the application of concepts from third party libraries, such as the G+
standard template library (stL). Interestingly, it may be the container
templates for which the stL is best known, and container templates
help with the administration of collections of data. Fortunately, the
concepts of cp and oor do coexist very well, and their combination
provides an even better means to master system complexity.
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A.1.3 Application

Booch| [1991) section 2.3] gives 32 fields of application that typically
have the complexity to benefit from oop, and cap is among them. It
is my opinion that an implementation of the H-rep concept would
be most successful by means of the combination of oor and cp, and
adoption of the proposed method for shape variation and the above
recommendations would have been easiest in such an implementa-
tion.

The compiler that is currently in use to compile Fairway supports
elements of oop, so a smooth transition from structured programming
to object-oriented programming is in theory possible. However, this
support is due to a non-standard language extension, which would
mean that the future of Fairway would be coupled to the future of that
particular compiler. In addition, support of oor in that compiler is
still immature, as evidenced by compiler crashes, and Gp is not sup-
ported. Appendix on page further illustrates that the current
language and compiler are not ideal for programming according to
these modern paradigms.

A.14 Cost

This leaves the option of re-implementing the system in a different lan-
guage. Currently, the C++ programming language [Stroustrup, 1997
is the best language for high performance oor due to its maturity,
run-time performance and the availability of third party libraries.
However, a naive application of the language can be disastrous, and
thorough training is essential. The general expressiveness of the lan-
guage comes at a performance cost, and when applied to algebraic
expressions, this can lead to poor numerical performance — unless
highly advanced expression templates are used [Veldhuizen), [1998].
The books of Meyers| [1998) [1996,|2001] are recommended sources for
serious Cr+ programmers, featuring a total of 135 rules for effective
use of the language and the str. This implies that C++ can easily be
used ineffectively. [Wilson| [2004] also identifies imperfections of the
language, enough to write a 400+ page book about them.

In a few years time, the D programming language [Bright, 2002
may be a better alternative. At the time of this writing, version 1.0
of the D language specification is due shortly, featuring interesting
and valuable improvements with respect to C++ and other languages.
Amongst other things, it brings compilation time back to the level
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of Pascal. However, it will take time before third party libraries are
abundant.

While learning a new language and implementing a cap system
anew requires high investments already, it will not be enough. As
Booch puts it,

[...] if we try to use languages such as G+ [...] as if they
were only traditional, algorithmically oriented languages,
we not only miss the power available to us, but we usually
end up worse off than if we had used an older language
such as C or Pascal. Give a power drill to a carpenter who
knows nothing about electricity, and he would use it as
a hammer. He will end up bending quite a few nails and
smashing several fingers, for a power drill makes a lousy
hammer. [Booch} (1991} p. 33]

The power that is spoken of above is not the power of the oor
language as such, but of the object model as a whole, covering the full
spectre of analysis, design, implementation, testing, and maintenance.
Of these, object-oriented design (oop) may be the most important
aspect regarding the success of an application of the object model.
Design following the object model is defined as follows.

Object-oriented design is a method of [software] design encom-
passing the process of object-oriented decomposition and a no-
tation for depicting both logical and physical as well as static
and dynamic models of the system under design. [Booch, 1991,
p. 37]

In other words, it is in design where the complexity of the prob-
lem is decomposed into an effective assembly of manageable sub-
problems. Booch|[1991,, figure 7-3] recommends to assign about three
times as many resources to design as to coding. Analogously, thor-
ough training in oop may be a couple of times more important than
training in oop, at least in the long run. An “object-oriented program-
ming language is not “just another programming language” that can
be learned in a three-day course or by reading a book. It takes time
to develop the proper mind-set for object-oriented design, and this
new way of thinking must be embraced by both developers and their
managers alike” [Booch,|1991), p. 218].

There are a hand-full of other renowned sources on oop besides
the one referred to in this section. All of them propose a graphical
notation to describe the structure of a design, but the notations differ.
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More recently, a uniform notation has been standardised as the unified
modelling language (umLr) [Fowler, 2003, see also www.uml.org].

Currently, application of the H-rep concept in industry is rather
modest. Although a conversion to the object model comes at a high
cost, I expect that the object model has to be adopted at some time,
if the H-rep concept is to have a prosperous future in the industry.
Parties that are interested in contributing in this, should be aware of
patent issues [Koelman), 2004].

A.2 Container Class

This container, implementing an array whose bounds expand on de-
mand, was specially implemented to investigate and illustrate the
shortcomings of Pascal, the programming language in which Fair-
way is written. Standard Extended Pascal does not support containers
other than static arrays.

A static array would have sufficed for the experiments conducted
in this work; we then would have allocated an amount of memory that
exceeds the requirements for most situations, but too little for some.
But, personally I consider the waste of resources and the limitation on
capacity unacceptable for an implementation for commercial use —
which is the objective if the method shows to be successful.

With the use of non-standard support for oor of the compiler
in use, a self-scaling array was successfully implemented after the
model of the C++ stL; although not nearly as efficient. Unlike Ct+,
there is no support for generic programming (Gp) in Pascal, so this
container can only hold data of the type for which it was designed.
For programming tasks like these, I would recommend a language
that supports oor and cp, like G++ or D; but of course container classes
are already standard inventory in the libraries of these languages. We
note that the container could also have been implemented as a linked
list, but it would have had a higher overhead and sorting would have
been slower.

The following example shows a possible use, wherein the container
is filled with three items using . append, then sorted. With .get (i) the
i element is retrieved.

BEGIN

{The container:}
nodes : DynamicRandomAccessContainer;


www.uml.org

Container Class

{A handle:}
current node : rich.node.ptr;

{Some things to put in:}

a, b, ¢ : vertexptr; {Some vertex pointers.}
normal : vector_type; {Some vector.}
discard : shortreal; {A bitbucket.}

nodes := DynamicRandomAccessContainer.Create;
current_node”.node := a;

current node”.d := 1.42;

current_node”.S := normal;

{In Pascal, you can not call a function as if it were a procedure, discard its return
value.}

discard := nodes.append( current node );
current_node”.node := b;

current node”.d := 0.717;

current node”.S := normal;

discard := nodes.append( current node );
current_node”.node := c;

current node”.d := 3.14;

current_node”.S := normal;

discard := nodes.append( current node );

nodes.sort;

FOR i := 0 to nodes.size-1 DO BEGIN
{Do something with nodes.get(i).}
END
END

A.2.1 Class Interface

MODULE dynarray interface;

{Copyright 2002 Bastiaan Veelo

This file may not be used for purposes that are not related to the PhD research of
Bastiaan Veelo without his prior written consent.

Bastiaan.N.Veelo@ntnu.no}

{dynarray is an OO array with dynamic bounds.

Although Object Oriented Programming (OOP) has just reached Pascal (outside the
standard that is), it does not allow Generic Programming. A generic implementation
of this container would have been favourable, then it could have been used to contain
any type of data without changing the implementation.

At this moment, the implementation is tailored to contain records consisting of a
vertex.ptr, a shortreal (distance value, used as the key by the sorting algorithm)
and additional data used by the Deformer class (see bnv_deform.pas). When in the
future different types of data need to be contained, the data record can be turned into
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a schema and the class implementation extended to handle every differentiation of the
schema. Any closer to the Standard Template Library you will not get with Pascal; if its
not enough, convert to C++.}

EXPORT
dynarray =
(
DynamicRandomAccessContainer,
rich node_type,
rich node_ptr

IMPORT
fairway;
vector;

TYPE
rich node_type =
RECORD
{vertex belonging to some halfedge:}
node : vertex_ptr VALUE nil;
{distance to some other vertex; sort key:}
d : shortreal VALUE 3.4E+38;
{which is approximately the maximum value.}
{Typical shift vector S for this halfedge, and latest scaling factor with which it
was drawn, i.e. S[dim_gewicht]:}
S,
new_pos : vector_type;
END;
richnode_ptr = “rich_node_type;

container(capacity:integer) = ARRAY[0..capacity] OF rich.node_ptr;
container ptr = “container;

CONST
{Minimum size of the container. Setting this value too low makes it grow more often,
which is expensive.}
initial_capacity = 64;

TYPE
Internal DRAC =
CLASS (Root)

s : integer VALUE 0; {size}
Cc : container_ptr;
CONSTRUCTOR Create; override;
DESTRUCTOR Destroy; override;
{Indexes start at 0.}
FUNCTION get( index : integer ) : rich node_ptr;
{Returns the index of the appended item:}
FUNCTION append( content : richnodeptr ) : integer;
{Returns the number of items in the container:}
FUNCTION size : integer;
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{Returns the current capacity:}
FUNCTION capacity : integer;
{This discards the contents of the container, and thus invalidates any references
to it:}
PROCEDURE reset;
PROCEDURE sort;
{===Private methods:===}
FUNCTION partition(low, high : integer) : integer;
PROCEDURE quicksort(low, high : integer);
{Current implementation copies every element when growing:}
PROCEDURE grow;
END;

{VIEW OF is a hack to hide the private members of Internal DRAC.}
DynamicRandomAccessContainer =
VIEW OF Internal DRAC (Root)
Create,Destroy,get,append,size,capacity,reset,sort
END;

END. {MODULE dynarray}

A.2.2 Class Implementation

MODULE dynarray implementation;

{Copyright 2002 Bastiaan Veelo

This file may not be used for purposes that are not related to the PhD research of Basti-
aan Veelo without his prior written consent.

Bastiaan.N.Veelo@ntnu.no}

{dynarray is an OO array with dynamic bounds.}

IMPORT
ywin;
d3_grap;

CONSTRUCTOR Internal DRAC.Create; override;
VAR x : Internal_DRAC;
BEGIN
INHERITED Create;
new(c,initial_capacity);
END;

DESTRUCTOR Internal DRAC.Destroy; override;
BEGIN

dispose(c);

INHERITED Destroy;
END;

FUNCTION Internal DRAC.get( index : integer ) : rich.node_ptr;
BEGIN
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IF( index >= s ) THEN
BEGIN
Y message(’Internal DRAC overflow’,
d3_real naar_string(index,1,0) +

>=’ +
d3_real naar_string(s,1,0));

get := nil;

END

ELSE

BEGIN
get := c"[index];

END;

END; {Internal DRAC.get }

FUNCTION Internal DRAC.append( content : richnodeptr ) : integer;

BEGIN
IF( s > c".capacity ) THEN grow;
c"[s] := content;
append := s;
s :=s + 1;

END; {Internal DRAC.append }

FUNCTION Internal DRAC.size : integer;
BEGIN

size := s;
END; {Internal_ DRAC.size }

FUNCTION Internal DRAC.capacity : integer;
BEGIN

capacity := ¢’ .capacity;
END; {Internal DRAC.capacity }

PROCEDURE Internal DRAC.reset;

var i : integer;

BEGIN
FOR i := 0 TO s-1 DO dispose(c”[i]);
s 1= 0;

END; {Internal_ DRAC.reset }

PROCEDURE Internal DRAC.sort;

BEGIN
{Sort the items in this container in ascending order. We use in-place quicksort (ref.
http://ciips.ee.uwa.edu.au/ morris/Year2/PLDS210/qsortla.html)} quicksort(
0, s-1);

END; {Internal DRAC.sort }

{According to the manual this one could have been nested in procedure sort, but that
crashes the compiler...}
FUNCTION Internal DRAC.partition(low, high : integer) : integer;
var p_pos, left, right : integer;
p-val : shortreal;
tmp : rich node_ptr;
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BEGIN
{set the pivot position to the median item of three samples:}
ppos := -1; {SECURITY CHECK}
{when high = low+1, then ((low+high) div 2) = low. So therefore we use <= when
comparing middle with low.}
IF (c"[low]".d < c"[high]".d) AND

(c"[low]".d <= c¢"[(low+high) div 2]".d) THEN
BEGIN
IF (c"[(low+high) div 2]".d < c"[high]".d) THEN
BEGIN
p-pos := (low+high) div 2;
END
ELSE
BEGIN
p-pos := high;
END;
END
ELSE IF (c"[high]".d < c"[low]".d) AND
(c"[high]".d <= c¢"[(low+high) div 2]".d) THEN
BEGIN
IF (c"[(low+high) div 2]7.d < c"[low]".d) THEN
BEGIN
p-pos := (low+high) div 2;
END
ELSE
BEGIN
p-pos := low;
END;
END
ELSE IF (c"[(low+thigh) div 2]".d <= c"[low]".d) END
(c"[(Qow+high) div 2]7.d < c"[high]".d) THEN
BEGIN
IF (c"[low]".d < c"[high]".d) THEN
BEGIN
p-pos := low;
END
ELSE
BEGIN
p-pos :
END;
END;
IF p_pos = -1 THEN p_pos := (low+high) div 2;
p-val := c"[p_pos]”.d;

high;

left := low;

right := high;

WHILE left < right DO
BEGIN

{ Move left while its key < pivot value }
WHILE (left < size) AND_THEN (c"[left]”.d <= p_val) DO
BEGIN

left := left + 1;
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END;
{ Move right while its key > pivot value }
WHILE c"[right]".d > p_val DO
BEGIN
right := right - 1;
IF right < ® THEN Y message(’Internal DRAC’,’underrun!!!’);
END;
IF left < right THEN BEGIN
{swap the items under left and right. One of them may be the pivot, so maintain
p-pos.}
tmp := c"[left];
c"[left] := c"[right];
c"[right] := tmp;
IF p_pos = left THEN p_pos := right
ELSE IF p_pos = right THEN p_pos := left;
END;
END;
{ right is final position for the pivot }
tmp := c”[p.pos];
c"[ppos] := c"[right];
c”[right] := tmp;
partition := right; {and of course p_pos:=right, but we don’t care any more}
END;

{According to the manual this one could have been nested in procedure sort, but that
crashes the compiler...}
PROCEDURE Internal DRAC.quicksort(low, high : integer);
var pivot : integer;
BEGIN
IF high > low THEN { Termination condition!}
BEGIN
pivot := self.partition( low, high );
quicksort( low, pivot-1 );
quicksort( pivot+l, high );
END;
END;

PROCEDURE Internal DRAC.grow;
VAR c_old : container_ptr;
i : integer;
BEGIN
c.old := c;
new(c, c.old”.capacity*2);
FOR i := 0 TO c_.old".capacity do c"[i] := c_old"[i];
dispose(c_old);
END; {Internal DRAC.grow }

END.



APPENDIX

Article in “Ship
Technology Research”

The article on the following pages has been published in the inter-
national scientific journal of Schiffstechnik/Ship Technology Research
[Veelo| 2004al].

177



B. ArticLE IN “SHIP TECHNOLOGY RESEARCH”

178

Shape Modification of Ship Hulls in H-rep

Bastiaan N. Veelo, Norwegian University of Science and Technology®

1 Introduction

The transfinite interpolation of an irregular network of curves is an effective modelling methodology
for the design of non-trivial free-form shapes. Recent literature refers to this methodology with the
term hybrid representation or H-rep, to indicate that it is based on the merger of wire-frame modelling
and solid modelling. In practice, the term H-rep also implies the integration of a curve fitting/fairing
algorithm, which is essential for the discussions in this article. Koelman (1999) gives a detailed
description of the conception of the H-rep concept, and of an implementation called ‘Fairway’, which
is a module in the ‘PIAS’ package and tailored to (but not limited to) the geometric design of ship
hulls. Introductions to the H-rep concept and its value for the maritime industry include Koelman et
al. (2001), Koelman (2003a,b), Veelo (2004).

In essence, Koelman’s implementation restores the traditional way of lines plan draughting in a
computer method. To the user, the system presents itself as a curve modeller. The surface generation,
which consists of filling the mesh cells of the curve network with transfinite surface patches, is com-
pletely hidden for the user. The patches may have an arbitrary number of sides and are tangent-plane
continuous across shared boundaries. Advantages of this modelling concept are the absence of topo-
logical restrictions on surface features, the independence of curves and their details, and tight control
over the exact shape of the composite surface.

Typically, when starting a design from scratch using this system, the designer starts with an initial
model defined by a centre line contour, a deck line and a mid-ship ordinate. These curves are computer-
generated, based on user-defined main dimensions. The shape of the surface patches is completely
derived from the shape of the curves, so the only means to control the shape of the model is through
manipulation of curves. Thus, the first step in the design process is to modify the existing curves
to their correct shape, by traditional control point manipulation. When the surface is visualised at
this stage, the designer will be probably not satisfied with the composite shape of surface patches.
The patches are still large and the defining curves are too far apart to describe every detail that is
envisioned for the design. The solution is to add more curves to the network, effectively subdividing
patches into smaller ones. New curves can be generated automatically by intersecting the model with
a user-defined plane, or by projecting a separate curve onto the surface. After addition of a new
curve, the shape of newly subdivided patches can be modified by manipulating the curve. With this
process, the shape of a sculpted model evolves from a coarse definition to a detailed definition, until
the designer is satisfied with the result.

There is a downside to this modelling methodology. As the design progresses and more curves are
added to the model, more of its shape is rigidly defined. The more curves present, the smaller the
surface patches, and the more local shape manipulations become. More curves also mean more curve
intersections. As a result, during curve manipulation, there is a higher risk that a curve is pulled away
from these intersections, rendering the network invalid as a surface description. Such inconsistencies
appear as gross surface defects. Currently, no mechanism is implemented that prevents this, or that
resolves the incompatibilities. Although it is possible to restore the intersections manually, by adjusting
all affected curves to the changes, this is a lengthy, iterative task.

Consequently, making design changes that affect larger surface areas of the model, is discouraged
at late design stages. Ome could say that designing sculpted shapes this way, in practice is a one-
dimensional process because the design has a preference to evolve only in one direction. This paper
proposes a simple and efficient method for shape manipulation of a dense curve network that is not
strictly local and does not destroy the consistency and the geometric continuity of the network. This
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makes it possible to migrate directly from one shape variation to the other, by which the design process
becomes, in our way of speaking, multi-dimensional.

2 Background

In the computer-aided design (CAD) of free-form or sculpted shapes, ‘Non-Uniform Rational B-
Spline’ (NURBS) surfaces enjoy great popularity. NURBS surface patches derive their geometry
from control points that they approximate. Whether their popularity is justified, is debatable. The
challenge of designing sculpted shapes boils down to two main problems: geometric continuity and
control.

A single NURBS surface patch without degenerate sides or corners fits only well to deformations
of the square, the cylinder and the torus — of which only the torus can describe the boundary of a
solid. All other geometries, thus including most subjects of design, are commonly denoted as having
arbitrary topology. For a composition of (non-degenerate) patches to describe shapes of arbitrary
topology, the patches must be allowed to be organised in an arbitrary manner, where the number of
patches that mutually connect with one of their corners is not always four. Maintaining geometric
continuity, i.e. a smooth composite surface, is especially difficult at these irregular points.

The problem of control is implied by the fact that NURBS surface patches approximate a regular
grid of control points. The problem becomes eminent, e.g. when more control points are needed locally
in order to define some local detail in a surface patch. Since extra control points can only be added in
complete rows or columns, they also appear in regions where they are not wanted, because they make
achieving surface fairness more difficult.

Transfinite surface patches, which derive their geometry from curves that they interpolate, do not
suffer from a control problem, as the patch does not care how its bounding curves are defined. For
adjacent transfinite patches to connect with tangent plane continuity, tangent information is required
along the curves, which is represented by so-called tangent ribbons. In order to model arbitrary
topology, the curve network must also be arbitrary, i.e. without regularity requirements. The only
requirement on curves is that they intersect and not cross each other (within some tolerance) and that
they start and end at other curves. Jensen et al. (1991) were the first to develop a technique for the
generation of tangent ribbons on such networks by using a boundary representation (B-rep), which
is a data structure used primarily in solid modelling. A B-rep data structure consists of topological
elements of type ‘node’, ‘edge’ and ‘face’. References exist in the data structure such that for each
element, its neighbouring elements can be determined. Jensen et al. applied their technique to
automotive styling. Van Dijk (1994) took this to conceptual industrial design and Michelsen (1995)
to naval architecture.

Although having developed an alternative to NURBS surface modelling without the associated
problems, it remained a challenge to keep the curve network simultaneously fair and consistent as a
surface representation. By integrating a curve fitting and fairing algorithm, Koelman (1999) was able
to improve that situation, and produced the described implementation for the geometric design of
ship hulls, at production quality. In addition, he removed the need for the user to worry about surface
patches, by following a suggestion of Michelsen (1995) to use the B-rep to its full potential as a solid
representation.

Fig.1 shows the hybrid nature of the H-rep. The nodes in the B-rep refer to intersection points in
the wire-frame for their geometry. The edges refer to the curve sections in-between the intersection
points and the faces refer to the n-sided patches that can be generated to fill the openings in the
wire-frame. Tangent ribbons are also partly indicated.
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Wire-frame B-rep

(geometry) (topology) /
el

Fig.1: The hybrid representation with references between topology and geometry

3 Related Research

The problem of the global shape of a model getting fixated by the definition of details is not specific
to the H-rep and its precedents. It also exists in systems that are based on approximation of control
points such as NURBS surfaces, although the consequences are not as dramatic as the surface defects
that can arise in an H-rep. If a surface region is to be modified for which a larger number of control
points need to be shifted, this must be done in a way that preserves the coherence between the control
points, so that both the global shape remains fair and the detailed surface features are not damaged.
This has been addressed by the integration of physics based properties, e.g. by Terzopoulos and Qin
(1994) and Leon and Trompette (1995), and hierarchical refinement, by Forsey and Bartels (1988).
These references do not explicitly consider arbitrary topology however. Gonzalez-Ochoa and Peters
(1999) proposed the hierarchical refinement principle for so-called surface splines, which approximate
an arbitrary mesh of control points and thus support models with arbitrary topology. Contrary to
plain NURBS surfaces, their contribution may be a viable alternative to the H-rep.

Free-form deformation (FFD), popularised by Sederberg and Parry (1986), is a technique to reshape
a geometric model indirectly by warping the space in which it is defined. FFD is independent of the
model definition, and thus competes with the method presented here.

4 Manipulation of Sets of Data Points

We will state our problem as follows: “Given a certain region on a surface that interpolates a
network of curves, manipulate all curves in that region simultaneously, in a way that does not destroy
the consistency of the network and does not introduce unwanted geometric discontinuities.”

This statement can be symplified after the following observation. The details behind the process
of adding a new curve consist of tracing a string of data points over the surface, as a sampling of the
intersection curve or the projected curve. Then the fitting/fairing algorithm is invoked to generate a
curve through these points, which is added to the model. During manipulation of curves (and thus the
surface) these data points can be made to move with the curve, so that they indeed remain positioned
on the surface. If we assume for the moment that all data points are persistent, meaning that they
remain in existence throughout the modelling process, then the complete model can be regenerated
from the data points and the B-rep alone, with the help of the fitting/fairing algorithm. Thus, we can
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reformulate the problem as: “Given a point set belonging to a consistent H-rep, shift a selection of
points to a new position, so that the distance and the direction of the shift of each individual point
varies smoothly over the set.”

We will now assert our assumption. Data points that are associated with intersections between
curves are persistent, because they represent the geometry of node elements in the B-rep. Currently,
other data points are not persistent, as they serve no purpose after the creation of a curve. Never-
theless, in a dense curve network, there will likely be enough intersections (and thus persistent data
points) to record the shape of the curves. A simple heuristic can verify this, e.g. by checking whether
the number and distribution of data points belonging to a curve stands in proportion to the num-
ber and distribution of control points of the curve. If the verification fails, extra data points can be
inserted at low computational cost.

4.1 Shift Vectors

Let us declare s; to be the ‘shift vector’ for a data point ¢, i.e. the difference between the position
of that point after and before the shape modification. We will define this shift vector as the vector
sum of the sample of one or more three-dimensional vector fields. A vector field is primarily defined
by a ‘selection field’ j of varying intensity, which is concentrated around a point, a curve or a surface,
which we will call the ‘base’ of the selection field, Fig.2. This base may be part of the model, or
be dedicated to support the selection field. The intensity f; of the field will be unity at its base,
decreasing smoothly with increasing distance d to the base, and level off to zero at a distance r; to
the base, which we will call the ‘extent’ of the selection field. If the base is singular, 7; is a constant;
but if the selection field is based on a curve (or surface), r; may be a function of the curve parameter
(or surface parameters). In a similar fashion, we will define a vector on the base, whose length and
direction may be a function of the base parameters. We will call this vector the ‘typical shift vector’
of the selection field, denoted by S;. For the vectors in the field to vary smoothly, it is important that
selection fields do not self-intersect.

Fig.2: Schematic presentation of how the shift (s;) of a point ¢ is derived from a selection field of
smoothly decaying intensity f; and a given shift (S;) at the selection base. In this case, the base is
singular and s; = f;(d;;/r;)S;.

In addition to a selection field, one or more ‘deselection fields’, enumerated by k, may take part
in the definition of a vector field. Deselection fields reverse the effect of the selection field. Their
definition is similar to the definition of selection fields, except that they lack a typical shift vector and
their intensity g is opposite to the intensity of selection fields: unity outside their extent, smoothly
decreasing in inverse proportion to the distance d to the base inside their extent, and levelling off to
zero at their base.

The vector field is then defined as the typical shift vector, evaluated on the closest point on the
base, multiplied by the selection field intensity and the deselection field intensities. Especially for
deselection fields it is interesting to have them act differently on the z, y and z coordinates of the
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vectors in the field, and thus we will redefine field intensities as diagonal matrix functions:

() 0
f; <h> = 0 fiy ((177) 0
i T (s
L 0 0 f].z ( Ti )
(1)
[ Gk (drk) 0
s(®) = |0 (%) o
| 0 0 k.= (dﬁf)

If we then say g, = 0 for a deselection field based on the plane y = 0, data points in that plane will
only shift in that plane and not away from it, regardless of the direction of the typical shift vector.
This is advantageous if the design is symmetrical around y = 0 and only one half of it is modelled.
Note that in this specific case, an alternative is to mirror the selection field in the symmetry plane.
Deselection fields however are capable of enforcing more general constraints.

The definition of the shift vector can now be formalised as

si=) (H (gk<di.k/rk>)f.f<d1:,_7/r;->sj> : )
J

k

where d; j denotes the shortest distance through space between data point i and the closest point on
the base of selection field j, and S; and f; are evaluated at that position on the base. Analogously,
d; . denotes the shortest distance through space between data point ¢ and the closest point on the
base of deselection field k, and gy, is evaluated at that position on the base. What remains is to find
suitable definitions for the selection functions f and g, and for the typical shift vector S.

4.2 Selection Functions

Any function that behaves as described will give useful results. For more control of the shape of
the resulting modification, one may want to vary the shape of the selection function over the base of
the selection, as a function of the base parameters. This is possible in the following definition of a
cubic piecewise polynomial, in which a parameter x € [0,1] defines how fast the function falls off.

K2+ k625 — 3) + 6°

5 if0<d<k
K
dij\ _ — _1)3 .
f(rT)’f(d)’ % ifr<o<1 ®)
0 if1<6

in which d has been substituted for d;;/r; for simplicity. This function, Fig.3, is derived from the
Cox-deBoor recursive definition of B-spline basis functions. The selection function of deselection fields
can simply be defined as g =1 — f.
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Fig.3: The selection function defined by Eq.(3): light grey for 0 < § < x, dark grey for £ < § < 1,
black for 1 < 4. Smaller values of x make the function fall off faster. Plotted are x = 1.0, which is
point-symmetric about (0.5,0.5), £ = 0.75, kK = 0.5, kK = 0.25 and k = 0.0. The latter has a cusp at
the base, which is not beneficial for surface fairness and therefore not of much interest to us.

4.3 Typical Shift Vector

A selection field with a singular base can very well be based on a data point on the surface. It will
be natural to take the surface normal at that point as the typical shift vector, scaled up or down if
necessary.

For selection fields that are based on a curve, a powerful modelling tool results if the typical shift
vector can be varied along the curve. Put simply, the shift vector can be defined as the difference
between the base curve, say c(t), and an other curve, say &(f). If c(t) is a curve on the surface prior
to the shape modification, then &(#) is exactly what the model will look like at this location, after the
modification. Thus, designers will be able to manipulate feature curves, or even completely redesign
them, while they will be able to control how the other curves (and thus the surface) in their vicinity
adapts to the changes with the parameters r and . In addition, they will be able to protect other
feature curves during the modification, by basing a deselection field on them.

To make this principle work as expected, it needs to be refined. As &(f) may be completely different
from c(t), their parameterisation may be different. In other words, when two particles are considered,
one travelling down each curve at proportional increments of ¢ and £, the variation in velocity of the
two particles may not be parallel. The effect on the typical shift vector will be that it changes direction
more often than necessary. We remedy this by evaluating the curves with respect to arc length. In
addition the designer may not want to change the complete curve, and ¢&(£) may partly coincide with
c(t). But due to the different lengths of c(t) and &(£), the typical shift vector may still have non-zero
length in these parts, which is not intended. To counter this, we must evaluate the curves only over
the curve sections that actually have different geometries.

Let the curves c(t) and &(f) differ from each other for ¢t € [to,t] and t € [, %4], With tpegin <
ta < tp < tena and tAbegin < i, < 1y < fenq. For other parameter values, the curves coincide, although
not necessarily for equal parameter values. The exact value of t,, t3, t. and f4 can be determined
by analysis of the control points and knot vectors of the curves. For a formal definition of the shift
vector, we need a mapping m: t — i. For a certain parameter value t;, m(t;) must produce a t} SO
that the arc lengths of the curve sections on either side of these parameter values are proportional:

i

S jewlde _ J;7 1é)at

Yy = i (4)
Jerlelae - lajé(i)lai
J
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in which the arc length of a curve is defined as the integral of the length of the first derivative of
that curve with respect to the curve parameter. Because m is inefficient to be evaluated directly,
one should first assess whether arc length evaluation is at all worthwhile, by comparing internal knot
spacings and control point distances of c(t) and &(f), looking for large discrepancies. If so, the map m
may be approximated by evaluating m(t) at distinct values of ¢;, and fitting a polynomial, say 7 (t),
through the mapped values fj.

Now we are able to define the typical shift vector S as the difference between corresponding positions
on the two curves according to arc length, expressed as a function of the curve parameter ¢:

S(t) = ¢(n(t)) — c(t) (5)

Fig.4 illustrates the necessity of going through the trouble of considering only curve sections of dis-
similar geometry and computing arc lengths.

c(t)

e(m(ti))

Fig.4: Upper left: original stem curve c(t) and re-designed stem curve &(). Middle: straight-forward
definition of typical shift vector S(t) = &() — c(t). Data points are shifted even where geometry is not
changed, and their spacing becomes unbalanced. Lower right: considering arc lengths over sections of
changed geometry, S(t) = ¢(m(t)) — c(t), gives a much cleaner result.

4.4 Unintended Selections

The proposed method for shape modification is simple, as we do not regard the surface of the model
at all, and only consider data points and their shortest distance to selection bases. The advantage is
speed. Shift vectors can be computed quickly enough to visualise them in real time, while the designer
manipulates the modification parameters. They give a sufficient indication of how the shape will be
modified once the parameters are accepted. Therefore, the presented method for shape modification
is highly interactive.

However, in some situations this approach can be too simple. For instance, when modifying an
area on the upper side of a thin wing. Because the data points on the lower side are close to the upper
side, they may be selected unintentionally. Even though this may be prevented by careful definition
of deselection fields, there is an alternative that can be automated, which involves putting the B-rep
to good use.
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Let us define the ‘root node’ of a selection field as the node that references the data point closest
to the base of the selection field. If there are several nodes that qualify, any one of these will do. The
algorithm in Fig.5 will only shift data points that form a contiguous selection that is rooted at the
base, and prune away isolated sets of selected data points that are separated from the main selection
by more than one surface patch.

Let A be an empty set, capable of containing node references
Mark all nodes and faces in the B-rep as unconsidered
Mark the root node as considered and add it to A
While A is not empty {
Compute s; for a node i € A
If |s;| > 0, then {
For all faces j that are adjacent to node ¢ and that are still unconsidered {
Mark j as considered
For all nodes k that are adjacent to j and that are still unconsidered {
Mark k as considered and add it to A
}

shift node 4

}

remove 4 from A

}

Fig.5: Pseudo-code of an algorithm that only shifts contiguous sets of data points.

5 Finishing Up

Once the fitting/fairing algorithm has re-interpolated the curves over the shifted data points, the
H-rep has become a consistent and smooth modification from the original, by which we have succeeded
in our objective. However, if the original primarily consisted of planar curves, such as is customary in
the design of ship hulls, these may no longer be planar after the modification.

Planar curves can be restored by intersecting the modified model with the planes in which the
curves were originally defined, and adding the intersection curves to the model. These new curves
take over the definition of the modified shape, by which the old curves become redundant and may
be removed.

6 Applications
6.1 Example of Shape Variation

Fig.6 shows how the fore ship of a frigate has been made slightly narrower. The selection base was
a point on the hull, and the shift was in transverse direction. The system has no difficulties with the
knuckle line that is present in this region. A critique on this particular shape variation may be that
the shell near the stem contains too much of the original shape, resulting in an extra inflection. This
is due to the shape of the deselection function that was chosen to constrain the shell to the plane of
symmetry, as the value of k in Eq.(1) was set to 1.0, Fig.3. A value of 0 would have been better in
this regard. Optimal would have been not to base the deselection field on the plane of symmetry, but
on the contour line itself. Then x could have been varied along it, 0 where the stem is sharp and
non-zero elsewhere.
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Fig.6: Modification of the hull of a frigate (shaded surface and light grey wire-frame) together with
the original shape (black wire-frame overlay).

a) b) <)
Fig.7: Three successive curve-based selections turn a plain bow (white wire-frame) into a bulbous
bow.
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6.2 Example of Bulb Design

Fig.7 shows shape variations resulting from a curve-based selection, illustrating that the method
provides a powerful modelling tool. It shows all three steps in the process of designing a bulb from
scratch. Starting off with the same model as in Fig.6, the first step was to re-design the stem curve,
Fig.7a. An auxiliary waterline was added ending in the fore-most position of the bulb, just below the
second ordinary waterline counted from below. On this line the second selection was based, giving
the bulb more body, Fig.7b. Finally, the lowest waterline was dragged slightly outward, to improve
the shape of the frames in the lower region, Fig.7c. The dent at the top of the bulb is due to scarce
geometric data. This was corrected with two extra frames and one extra waterline, Fig.8.

Fig.8: Extra defining data added to correct dent in upper part of bulb.

6.3 Performance

Shape variations with selections based on points and planes are fast. However, curve-based selec-
tions can be time consuming, because computing the global closest distance of a point to a curve is
expensive. In the current implementation, which is not for production and serves proof of concept
only, all data points in the entire model are processed. Depending on the length and complexity of the
curve, the time needed for distance computations in the examples of Fig.7 took up to several minutes
on a 1.5 GHz PC. Once the distances are computed, shift vectors can be previewed interactively while
r and K are varied.

This performance can be improved. Firstly, it may be possible to omit several iterations in the
closest point finding algorithm per data point, if the loop termination is not based on the accuracy
of the closest point, but on the accuracy of the resulting shift vector. Secondly, it may be possible
to disregard data points on curves that were never manipulated since they were added to the model.
These curves do not actually contribute to the definition of the shape, and serve only for surface
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visualisation, surface quality interrogation and/or manufacturing (e.g. frame contours and the butts
and seams of shell plating). In late stages of the design, there may be many of these curves. Unless
the resulting shape has so much detail that the extra curves actually contribute to the definition of
the new geometry, they can safely be deleted before the shape variation and restored afterwards. A
heuristic based on the typical shift vector can determine this possibility. Finally, the shape variations
that are discussed here rarely involve every single data point in the model; in case it does, an ordinary
affine transformation probably performs better. So computing the distance for all data points is a
waste of time. It would be much better to consider data points on demand, based on the extent of the
selection. For this a graph search is required, similar in nature to the algorithm discussed in Ch.4.4.

With the above in mind, it is advisable for an implementation of the H-rep concept that when new
curves are interpolated, their addition to the B-rep data structure be deferred until they are selected
by the designer for explicit manipulation, which is the point at which they start taking part in actual
shape definition. Curves that are not in the data structure should then be regenerated automatically
whenever any of their underlying patches change.

7 Conclusion

A simple method for the modification of a network of intersecting curves was presented, which
preserves the consistency of the network, the fairness of the surface and local surface features. Curves
may be redesigned explicitly, regardless of the detail in a design, with intuitive control over how
the surface in their vicinity adapts to the changes. This can be regarded as an advantage over the
competing method of free-form deformation (FFD).
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