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Preface 

This master thesis is carried out at Department of Production and Quality 
Engineering, NTNU and is cooperated with the company Statoil. The thesis is a part of 
education plan in the Master Program RAMS (Reliability, Availability, Maintainability 
and Safety) Engineering. It is performed during the spring semester of 2014. The 
topic was put forward in January 2014 by Professor Jørn Vatn. It is extended from the 
specialization project “Life extension and maintenance optimization in the oil and gas 
industry”.  
 

The report is written for readers with some background of maintenance engineering 
and statistical theory. It is also assumed that the reader has a number of knowledge 
regarding signal processing techniques. Besides, several technical terms are less 
familiar to readers, hence it is recommended to view technical background in the 
appendix and consult relevant professional books. Mathematical details could not be 
interpreted in the thesis due to limits on the page. 
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Summary and Conclusions 

This thesis is of service to realize residual useful life assessment. Everything in the 
world deteriorates over time. To know the residual useful life of a piece of equipment 
contributes to optimal decision-making on its usage time and discards. The rewarding 
also lies in reduced maintenance cost.  
 

For the application of industry process, a novel approach is proposed to define the 
term residual useful life, making efforts to satisfy diverse criterion on evaluation of 
equipment usefulness. In current research findings the definition of residual useful 
life varies. For maintenance purposes, residual useful life is explained by using 
diagnostics and prognostics, which are critical elements in condition based 
maintenance. In the domain of reliability, residual useful life is interpreted with 
probability theory, where mean residual life and conditional survival probability are 
frequently utilized. 
 

Rotating equipment is concentrated in which state-of-the-art models and methods 
for residual useful life assessment are investigated in this thesis. Residual useful life 
assessment techniques are dependent on deterministic, probabilistic and combined 
models in representing deterioration behaviors on various types of equipment. Apart 
from statistical theory, vibration signals, lubrication oil condition and acoustic noise 
signals are principal elements for the assessment. A stereotyped residual useful life 
assessment procedure consists of two interdependent stages, off-line deterioration 
model learning and on-line prognostic model training. In the best of circumstances, 
the sufficient raw data for the assessment are acquired through run-to-failure tests.  
 

The targeted systems for case study are AC generators and gas turbines served for oil 
and gas production in Kristin field. Statistical techniques are employed to process and 
analyze notification data of generators. The regression analysis shows an 
unimportant relationship between notification date and failure impact. Statistical 
trend tests do not verify the existence of any monotonic rate of occurrence of 
failures on AC generators. Vibration data analysis of the gas turbine does not provide 
monotonic information where residual useful life assessment models could be 
applied for. The notifications are not demonstrating a systematic pattern. Failures of 
AC generators and gas turbines are tend to be random. Challenges and 
recommendations are pointed out for Statoil to execute residual useful life 
assessment based on current situations. Lubrication oil condition monitoring is 
strongly recommended in this aspect. 
 

Procedures to realize maintenance optimization are demonstrated as a theoretical 
case study. Markov state model with inspection and block replacement policy are 
employed to construct cost models on maintenance optimization. With assumed cost 
elements, an optimal maintenance program is proposed. The analytic process is 
practically valuable to verify whether the regular inspection is the optimum 
maintenance strategy.  
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 Abbreviation 
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BRP Block replacement policy 

CBM Condition based maintenance  
CWT Continuous wavelet transform 

DFT Discrete Fourier Transform 
DWT Discrete wavelet transform 
FFT Fast Fourier Transform 

HPP Homogeneous Poisson process 
MTTF Mean time to failure 

NCS Norwegian Continental Shelf 
NHPP Nonhomogeneous Poisson process 
OREDA Offshore Reliability Data 

O&G Oil and gas 
PCA  Principal Component Analysis 
PHM Prognostics and health monitoring 

PI Statoil condition monitoring system 
RUL Residual (Remaining) useful life 

R&D Research and development 
RP Renewal process 
RMS Root mean square 

ROCOF  Rate of occurrence of failures 
SAP Statoil Computer-aided Maintenance Management System 

SVR Support vectors regression 
STFT Short-time Fourier Transform 
TCI Technical condition indicator 

WPT Wavelet packet transform 
WT Wavelet transform 
 
 Notation 

 
T  Lifetime random variable, time to failure of a component or system

t  A specific point in time irrespective of global time and local time 
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f  Frequency composition of a time-series signal

υ  Scale parameter in the wavelet function

ω  Translation parameter in the wavelet function

τ  Maintenance interval/Inspection interval

l  Maintenance limit

( )Eλ τ  Effective failure rate

( , )rr lτ  Renewal rate 

uT  Residual(Remaining) useful life, nonnegative random variable 

 MT  Static mean life

AT  Actual used life

 CT  Current time 

FT  The time where a critical failure occurs

LT  The time where the equipment reaches the threshold value 

( )C τ  Total cost per unit time

( )x t  Time series signal 

( )tψ  Wavelet function 

( )X f  Fourier transform of a time-series signal 

( )F t  Cumulative distribution function (Cdf) of a lifetime random variable 

( )f t  Probability distribution function (Pdf) of a lifetime random variable 

( )R t  Reliability function 

( )RUL t  Residual (remaining) useful life as a function of time 

( )MRUL t  Mean residual (remaining) useful life as a function of time 

( )z t  Failure rate function 

( )tμ  Mean residual useful life 

( )S t  Degradation level or state 

( ) ( ) /d t S t t=  Degradation rate 

( ) ( )x z t xλ = +  RUL failure rate function 
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Chapter 1 Introduction 

This chapter demonstrates the background, problem description, objectives, 
limitations, approach and the structure of the report for the thesis.  

1.1 Background 

The oil and gas operators on the Norwegian Continental Shelf (NCS) are facing 
considerable challenges as facilities are entering the tail-end production phase. 
Several oil and gas (O&G) facilities were built in the 70’s and 80’s, with a design 
lifetime typically of 20-30 years, and are now approaching or have reached their 
design lifetime, see figure 1 (Ersdal et al., 2008). This challenge also applies to 
operators worldwide due to 30% of more than 6,700 operating platforms have been 
in operation for more than 20 years (Nabavian et al 2010). With the application of 
new advanced technology, the recovery factors have been gradually increased over 
many years, for example from 20 to 50%. The recovery of the oil and gas resources 
offshore Norway contributes to approximately 25% of Norway’s GNP, 35% of the 
state income, 20% of all investments and 50% of the export value (Ersdal et al. , 
2010). The improvements in extraction technologies as well as high energy prices 
have led to opportunities for extending the operation beyond the intended lifetime.  
 

 
Figure 1 Age distribution of existing installations on the NCS (Ersdal et al., 2008) 

 

The effectiveness of O&G industrial performance is determined by the reliability, 
availability and safety of a system. To ensure that an installation is able to provide 
sufficient performance on various criteria such as production regularity, safety and 
maintenance cost it is required to know the technical condition of its parts, 
components and systems. The residual useful life (RUL) assessment attracts strong 
interests in industry since it has critical impacts on planning of maintenance activities; 
spare parts management, functional performance assurance as well as profits 
obtained from the installation. RUL assessment is also considered to be a critical 
aspect of aging and life extension management.  

1.2 Problem Description 

A main challenge when extending the life of an ageing infrastructure or system is to 
achieve a longer period of economic benefit while ensuring that safety and integrity 
are maintained. Key factors to consider are the physical deterioration, operation, and 
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maintenance of the system, although less obvious factors may also have an 
important impact on safety, such as the obsolescence of equipment and changes in 
the organization. Operating beyond the original design lifetime is known as life 
extension (LE). Ageing is related to deterioration and may pose a serious risk to the 
safety of the infrastructure, the personnel, and the environment as the equipment 
becomes less reliable, obsolete or no longer fit for service, reducing the reliability of 
safety systems.  
 

The gained knowledge of RUL assessment would lead to the development of 
cost-effective and lifetime-optimized operation of an installation. The use of technical 
condition indicators may be one starting point to assess residual useful life (RUL) for 
these parts, components and systems. For this thesis work, it follows a research and 
development (R&D) project sponsored by Statoil and executed by SINTEF/NTNU. The 
contribution from the master thesis as part of the R&D project is shown in chapter 5.  

1.3 Objectives 

The scope of the master thesis will concentrate on methods, models and approaches 
to realize RUL assessment. The following objectives will be achieved through the 
thesis work: 
1. Review the literature regarding various use of the term residual useful life as a 

basis for giving an explicit definition to be used through the work. 
2. Identify two to three classes of critical equipment types as a basis for case studies. 

Such classes could be rotating equipment, static equipment and safety systems. 
3. For each of the identified classes the literature shall be revived with respect to 

which deterministic, probabilistic and combined models are proposed to link 
technical condition indicators and other degradation measures to residual useful 
life (RUL). 

4. Select one or two cases where models, methods and real condition data could be 
applied in the aging and life extension management. 

5. The case studies shall demonstrate how the maintenance program will affect the 
technical condition on the equipment, and how to balance maintenance effort 
with other measures such as upgrading projects, renewal and modification. 

1.4 Limitations 

The thesis is subject to available methods, models and approaches of dealing with 
ageing facilities and RUL assessment presented in the literature review and extended 
work on account of the time limit and complexity. Another limitation lies in available 
technical and maintenance data supported by Statoil within limited time. Practical 
RUL assessment is relied on sufficient data and proper prognostics models. Within 
this thesis, the relatively small amount and few types of real condition data is a major 
limitation, leading to marginally application of various RUL assessment techniques 
and RUL estimation models. 

1.5 Approach 

The main approach of this thesis is based on literature review and discussions with 
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expertise in the project team ‘Kristin Regularity’. The first objective is performed by 
reviewing the research work that gives the term residual useful life survival. It also 
contains an extensive review of RUL assessment techniques up to now, by the use of 
database Engineering Village and Science Direct. Objective two follows the R&D 
project. The SINTEF project team outlines the production-critical equipment that is 
analyzed in the thesis. The third objective is achieved by a revived literature review. 
Objective four considers a specific case study and applies real condition data that is 
supported by Statoil. The fifth purpose is accomplished by a further work considering 
an establishment of maintenance program based on the result of RUL assessment.  

1.6 Structure of the Report 

The thesis mainly consists of three parts. The first part, chapter 2 and 3, is centered 
on presenting explicit understanding and interpretation of the term RUL. Challenges 
within RUL assessment are indicated. A terminology study is deduced stating from 
lifetime, following useful life and residual useful life. The definition and presentation 
of RUL are based on two main aspects, engineering perspective and statistical 
perspective. Chapter 2 also gives an introduction on technical condition indicators 
(TCI). Relevant academic work within TCI research is reviewed. A state-of-the-art 
review on RUL assessment methodology is included. Chapter 3 compares RUL 
definitions survived in existing literatures and proposes a new approach to interpret 
the term.  
 

Part two, chapter 4, identifies critical equipment and revives literature view on 
relative deterministic, probabilistic and combined models linking degradation 
measures to RUL assessment. RE is the targeted system. A depth methodological 
review with RE focused is presented in view of previous literatures in chapter 2. 
Recent academic contributions within RUL assessment of rotating equipment are 
investigated and summarized.  
 

The third part performs case studies. Chapter 5 carries out statistical analysis and 
applies real condition data in the ageing and life extension management. The SAP 
(Statoil Computer-aided Maintenance Management System) data of AC generators 
and gas turbines are processed and analyzed, in order to catch their failure 
tendencies. Chapter 6 proposes the case study on maintenance optimization. 
Degradation models suitable for a piece of presumed mechanical equipment are 
constructed where concentrates on deterioration state modelling. Cost models are 
established based on two distinct maintenance policies.  
 

Chapter 7 gives the summary and conclusion of this thesis. Recommendations for 
further work are presented in the end.   
 
 

The preliminary study report and progress report of this thesis are not included in 
keeping with requirements of the responsible supervisor, Professor Jørn Vatn. 
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Chapter2 Literature Review 

To acknowledge the full scope of RUL assessment, it is required to give a clear 
definition of the term residual useful life. Chapter 2 reviews the literature with 
respect to various use of the term RUL and gives a distinct definition of RUL used in 
the thesis. It first starts with an overview of industrial practice on RUL assessment, 
addressing its practical significance, its role in this thesis and a number of challenges 
within such field. At the end of this chapter, several explanations used to describe 
RUL are examined and compared, aiming to rationalize the term residual useful life. 
The end of this chapter gives an introduction on technical condition indicator. 

2.1 Overview of Applications on RUL Assessment 

RUL assessment or estimation has received the industry’s great interests recently 
with environmental, economic and operational purposes. It is regarded as a useful 
tool in decision-making, specifying current state of the installation and predicting the 
future remaining life, to decide whether the remaining life of equipment is sufficient 
for a second life. Great efforts on RUL assessment have been performed in a variety 
of fields. 
 

As far as I know, the earliest research within RUL assessment is carried out by Watson 
and Wells (1961), where the work uses mean residual life to study burn-in. In modern 
industry, RUL assessments are becoming mandatory for economic consideration and 
assurance of RAMS (Reliability, Availability, Maintainability and Safety) requirements. 
The aerospace industry predicts the RUL of aircraft critical systems in advance so that 
effective corrective maintenance can be implemented in time and thereby assures 
flight safety (Chen et al., 2011). The motivation for RUL assessment in nuclear 
industry derives from the demand to avoid loss of revenue on condition that 
unexpected equipment failures will hamper power production of the plant 
(Shumaker, 2011). In railway domain, RUL assessment is primarily performed as 
fatigue life evaluation which is addressed in aging management as well as safe 
transport (Yasniy et al., 2013). The other applications of RUL prediction lie in finance, 
medicine and weather forecast etc. (Son et al., 2013).  
 

RUL assessment additionally plays a significant role in managing product reuse and 
recycle. The industries, especially manufacturing and energy domains, are facing a 
great deal of pressures both from authorities and the public to reduce their industrial 
wastes. An effective and widely-used strategy is to avoid discarding products and 
facilities prematurely, which reduces the energy consumption to process raw 
materials and components. The associated concern will be how to ensure the 
reliability of used parts without compromising their desired performance. RUL 
assessment is able to deal with such challenges through estimating the reuse 
potential of used parts and facilities (Mazhar et al., 2007; Si et al., 2010). 
 

As various areas, the oil and gas industry also requires RUL assessment to be 
performed on parts, components and systems in order to ensure production 
regularity, achieve lifetime optimized operation and hereby gain considerable profits. 
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Particularly for offshore industry in the North Sea Norway, the easy oil and gas has 
been recovered by the large, nevertheless, continuing production is anticipated 
owing to improved extraction technologies and respectable energy prices. This 
requires extending the lifetime of production and process facilities since most of 
them are approaching their design life (Hudson, 2010). Relating to the safety concern 
in offshore O&G industry, catastrophic failures should be avoided during both normal 
production and extend-lifetime phase, knowing the RUL facilitate system operators to 
implement timely maintenance actions for this case.  
 

In this thesis work, the role of RUL assessment is highlighted as a tool to plan 
necessary maintenance optimally and further eliminate unnecessary maintenance 
work in aging and life extension management. The practice of RUL assessment is 
expected to bring benefits to the O&G industry comprising reduced downtime and 
maintenance cost, optimal management of spare parts together with improved 
equipment availability. 

2.2 Challenges of RUL Assessment 

Although extensive work have been done in RUL assessment, it is still difficult to 
accurately predict the residual useful life under complex operating environments and 
dynamic loads, particularly with multiple failure modes considered. Operating RUL is 
dependent on the real conditions of use. The stochasticity, as one of the main 
characteristics in the system operation, leads to many difficulties and uncertainties in 
assessing the RUL of equipment, both for deterministic approaches based on failure 
mechanisms and probabilistic approaches utilizing statistical techniques. As Jin et al. 
(2013) indicated, uncertainty management is the most challenging aspect of residual 
life performance prediction.  
 

For complex or large-scale engineering systems, it is typically either cost-expensive or 
time-consuming to obtain the physical failure mechanisms ahead to capture the 
physics of failure. The specific failure mechanism knowledge is often hard to gather 
without interrupting operation. Each engineered system may require creating an 
entirely new algorithm and model to assess the RUL. The RUL assessment based on 
failure mechanisms hence has limited ability to transfer from one component to 
other types of components. Practically deterministic approaches have been realized 
their inadequacies in tackling the stochastic nature of deterioration process in RUL 
assessment. On the other hand, the probabilistic approach to assess RUL needs a 
large quantity of data as well as specialized analysis techniques to process such data. 
The accuracy is dependent on the quantity and quality of the data and statistical 
learning techniques. The uncertainties within such approach require rather complex 
probabilistic tools to handle, particularly taking into account the real operational 
mode (Si et al., 2013; Maio et al., 2012). To sum up, the recent research in RUL 
assessment mainly intends to find out solutions for the following questions, which 
also denote the challenges within RUL assessment: 
 

1. How to develop practical models to describe the residual useful life on various 
types of equipment concerning the integration of real world dynamical 
situations?  
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2. For two main approaches to assess RUL of a piece of specific equipment, 
utilization of deterministic models based on failure mechanism and probabilistic 
models dependent on distribution of failure records. Which one is promising? 

3. Refer to deterministic models, what kind of knowledge is required to adopt such 
models to assess RUL and correspondingly how to validate their usefulness? 

4. Refer to probabilistic models, what kind of data is required to feed these models 
and how to evaluate the credibility of such models? 

5. For industrial application, it may be interested in: How to integrate results of such 
assessment to the decision-making process? Further, one is perhaps interested in 
knowing how to standardize or simplify the procedure for RUL assessment? 

2.3 Terminology  

The result of terminology study on RUL and TCI is shown in this section. A deep and 
comprehensive understanding of RUL cannot be achieved without a clear cognition 
of the term lifetime and useful life. The procedure to explain RUL in this section is 
conducted sequentially starting from the term “lifetime”, followed by “useful life” 
and ending up with “residual useful life”. 

2.3.1 Lifetime 

The research of lifetime is extremely widespread through studying length of life of 
organisms, electronics, structures, materials and devices etc. Normally, it is measured 
in hours, cycles or in other unit (Finkelstein, 2008). The lifetime in the thesis refers to 
the time period from the activation time of an item till its end point of service. The 
lifetime is generally treated as a positive random variable T , characterizing by its 
distribution function ( )F t . Researchers are interested in knowing the mean life MT  in 
practice, which is obtained by analyzing time-to-failure data of the same type of 
components under same conditions. For example, the mean life [( 1) / ]MT η β β= Γ +  
is obtained with using Weibull distribution to model the failure event data of an item 
(Mazhar et al., 2007). The RUL assessment essentially needs to describe the lifetime 
in the whole remaining interval of time.  
 

Chakravorti et al. (2013) conceptualized the lifetime of equipment in three ways: 
physical lifetime, technical lifetime and economic lifetime. Physical Lifetime links to 
the state where the equipment cannot be used any more in its normal operating 
state. Technical Lifetime corresponds to the state where the equipment has to be 
replaced owing to technical reasons even if it can perform its functions physically. 
Economic Lifetime refers to the situation where the capital value of a piece of 
equipment depreciates annually.  
 

The technical lifetime links to the case that maintenance of the equipment is 
exceedingly difficult due to unavailability of spare parts. The economic lifetime 
relates to the case that operating and maintenance costs may increase over time 
because of aging and are even beyond the depreciated value of the equipment, 
indicating the replacement of the equipment is cost-effective (Chakravorti et al., 
2013). For a piece of equipment, its technical life or economic life can go to the end 
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even though its physical life left is sufficient to perform the desired performance. The 
term of life in RUL assessment in this thesis therefore varies to different conditions of 
the equipment and technical or economic factors that affects the residual useful life 
of the equipment.  

2.3.2 Useful Life 

There are a number of definitions with respect to the term useful life. 
“InvestorWords.com” defines the useful life as “the length of time that a depreciable 
asset is expected to be usable”, while “Accounting Coach” demonstrates the useful 
life as “the period of time that will be economically feasible to use an asset.” In 
“Businessdictionary.com”, the useful life is defined as “the period during which an 
asset or property is expected to be usable for the purpose it was acquired”. For an 
industrial system, its useful life is the operating time in which it can perform required 
functions within the specified performance limits. The useful life perhaps terminates 
upon a failure or by a determination that the system is no more useful. Figure 2 
shows the timeline of the useful life of a system concerning its potential for life 
extension. At time 0t , the decision regarding life extension has to be taken. The 

system’s predicted useful life is 2t .To ensure that the system will not terminate 

before 2t , either opportunistic repairs/replacements are required to be planned till 

2t  or all the crucial replacements are required to be done at 0t (Vaidya and Rausand, 
2009). 

 
Figure 2 Timeline of the useful life of a system (Vaidya and Rausand, 2009) 

 

With various definitions, it is evident to see that the key word in the term is “useful” 
and is difficult to get its uniform definition. Various criterion may be taken to assess 
whether an asset or equipment is useful or not, for example, depreciation, economic 
returns and physical condition. To acquire useful life criterion for industrial systems, 
Vaidya and Rausand (2009) give suggestions to combine expertise from the field of 
design, manufacturing, safety and system, material degradation, structural integrity, 
finance and human factors. The research work specifically addresses several criteria 
to answer if a subsea system will be “useful”: (1) predefined functional requirements, 
(2) availability, (3) safety and regulatory requirements, (4) environmental 
requirements, (5) maintenance cost and (6) overall profit margins (Vaidya and 
Rausand, 2011).  
 

In the bath-tub curve, the useful life is a period of time where an item performs its 
required functions stably in the normal operating state, typically referring to the 
normal life period. However, a specific facility perhaps discards even though it is in its 
normal life period, which is due to undesirable uptime or unavailability of spare parts 
support. It is more necessary and realistic to consider the value of profits to define 
the useful life in reality. The useful life in this thesis consequently signifies the period 
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in which a piece of equipment performs its required functions stably meanwhile 
brings desirable benefits to the owner.   

2.3.3 Residual Useful Life 

The term of residual useful life is widely-used both theoretically and practicably in 
operational research, statistics literature, reliability assessment, maintenance 
optimization and various engineering fields, sometimes named remaining useful life 
and the acronym RUL is used. Engineers and statisticians give different explanations 
on this term. From the engineering point of view, RUL is closely associated with 
physics of an item and failure modes of the equipment. With statistical thinking, the 
analysis of RUL is established upon probabilistic models and further work in adopting 
this sort of model to describe residual useful life. In this thesis, the former view 
corresponds to deterministic models for RUL assessment while the latter view is 
denoted as probabilistic models. It is expected that the determination of RUL will not 
be particularly restricted to a specific date and time. 

2.3.3.1 Define RUL from engineering perspective 

There is no uniform concept survived in the literature review to define RUL in 
engineering area. The meaning of RUL depends on various context and conditions 
used in research and study. For instance, Chakravorti et al. (2013) indicated that RUL 
of transformers is expressed as the service years left to lose the mechanical strength 
of solid insulation under operational conditions. Yet for carbon filters, its RUL is 
described as breakthrough times affected by adsorption rate, carbon properties, 
airflow rate etc. (Mason et al., 2014). Hudson (2010) demonstrates the remnant life 
of an asset during its life-extended phase, as shown in figure 3. Therein a remnant 
life assessment is regarded as an estimation of the remaining life by calculating or 
quantifying the effect of the deterioration mechanisms in comparison with the 
original design. Failure modes play a significant role in understanding RUL for 
engineers. It is common to link residual useful life in materials engineering to fatigue 
life, crack propagation rate and corrosion rate, etc. In mechanical engineering, RUL 
refers to wear rate. Apart from calendar time, the number of cycles/revolutions is 
also used in expressing RUL, especially for rotating machinery (Ahmadzadeh & 
Lundberg, 2013a).  

 
Figure 3 

 
 
 
 

Industrial and maintenance engineers are constantly making efforts to anticipate the 
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failure manifestation and act proactively in order to maximize the equipment’s 
performance and profits. Recently the modern industry has put considerable 
attention on implementation of condition based maintenance (CBM), which 
effectively utilizes knowledge of failure modes to predict RUL of the equipment. CBM 
is a decision-making strategy to diagnose impending failures, reduce the uncertainty 
of maintenance activities and foretell the remaining operational life (Peng et al., 
2010). It is defined as “predictive maintenance performed as governed by condition 
monitoring programs” (ISO 13372:2012). Practically condition monitoring data, such 
as vibration data and oil analysis data, are collected and processed to decide future 
equipment health condition and further to predict its RUL (Tian et al., 2011). The 
reliability and maintenance cost are main criterion frequently adopted by 
maintenance engineers to schedule maintenance work in reality. Figure 4 shows the 
relationship between RUL and such two criterions. RUL denotes as time to failure. 
When it reaches zero, the system will break down, correspondingly, the maintenance 
cost increases significantly and the reliability of the system decreases. It needs to be 
emphasized that knowledge on the failure propagation process and failure 
mechanisms are important in an effective CBM program (Peng et al., 2010). In the 
view of maintenance engineering, the understanding of RUL is closely related with 
diagnostics and prognostics which are two significant aspects of CBM.  

 
Figure 4 

 
 

Diagnostics is defined as “examination of symptoms and syndromes to determine the 
nature of faults or failures (kind, situation, extent)” by ISO 13372:2012. Its main task 
is to detect, isolate and identify faults when abnormity occurs. It shows whether the 
monitored system indicates something wrong, locates the faulty item and determines 
the nature of the fault. Although diagnostics do not address direct information on 
RUL assessment, it provides the operator reports on whether a specific failure is 
present or not, particularly when failure prediction of prognostics fails and a failure 
occurs RUL estimation is more likely a prior event analysis in analogy to prognostics 
but not a posterior event analysis as diagnostics (Jardine et al., 2006)..  
 

In comparison with diagnostics, the term prognostic is used more frequently in 
relation with RUL. RUL estimation is regarded as one of the most critical components 
in prognostics and health management (PHM) (Si et al., 2013). The objective of 
prognostics is to predict the RUL (Ahmadzadeh and Lundberg, 2013a). ISO 
13372:2012 defines prognostics as “analysis of the symptoms of faults to predict 
future condition and residual life within design parameters”. Similarly, ISO 
13381-1:2004 defines prognosis as a “technical process resulting in determination of 
remaining useful life”. IEEE Reliability Society gives a relative definition combining 
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PHM as “a system engineering discipline focusing on detection, prediction and 
management of the health and status of complex engineered systems” (Ma, 2009). 
Farrar and Lieven (2006) describe damage prognosis as “the estimate of an 
engineered system’s remaining useful life”. 
 

Prognostics are usually effective for faults and failure modes with known, age-related, 
or progressive deterioration characteristics (ISO 13381-1:2004). It uses automated 
methods to detect, diagnose, and analyze the degradation of physical system 
performance, calculating the acceptable remaining life before the occurrence of 
unacceptable degraded performance (Peng et al., 2010). Predicting the residual 
useful life of an item is a main concern of prognostics, as Jardine et al. (2006) pointed 
out, the most widely used prognosis is to predict the time left before the occurrence 
of a failure given the current machine condition and past operation profile. Therein 
the time left before failure observation usually refers as RUL.  
 

The end of this section reviews how an engineer gives response when he is asked 
about RUL. In the engineer’s opinion, RUL is the operating time left on equipment 
before it is down for required major maintenance. Some RUL is dependent on Vendor 
recommendations, some are based on experience, and the others are counted on 
deterministic analyses. The majority of them are dependent on experience. In the 
operation, remaining life and risk of failure are both useful to be predicted. A number 
of maintenance actions are based on RUL while others are relied on current 
condition. The engineer stressed that RUL turns out to be critical when failure modes 
are known or predictable within scheduling maintenance. In the event of 
unpredictable failures and randomly changing conditions, the RUL becomes 
meaningless in planning maintenance (Banjevic, 2009). 

2.3.3.2 Define RUL from statistical perspective: 

Compared to engineers, researchers in the field of statistics, operation and reliability 
analysis generally talk about life models, economic models and replacement policies 
(Ahmadzadeh & Lundberg, 2013a). The residual useful life of a component or system 
is typically demonstrated as the length from the current time to the end of its useful 
life, expressed as a nonnegative random variable uT . A simple and concise way to 

acquire uT  is through achieving the period between the static mean life MT  and 

the dynamic actual used life AT  (Mazhar et al., 2007). According to Rausand & 
Høyland (2004), Finkelstein (2008), Nystad (2008), Banjevic (2009) and Ahmadzadeh 
& Lundberg (2013a), the following part of this section is deduced to define residual 
useful life for non-repairable and repairable items separately in the perspective of a 
reliability analyst or a statistician. This part is carried out in a general way and not 
refers to a specified industrial system. The end of this section further gives an 
application case, which demonstrates RUL of an industrial system from statistical 
perspective, namely RUL in a subsea context. 
 

RUL for non-repairable items  
 

Non-repairable items are generally discarded by the first failure. For an item of age t , 
consider the nonnegative lifetime random variable T , representing random time to 
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failure of this unit. Let ( ) Pr( ), 0R t T t t= > ≥ , be its reliability function. T  is assumed 
to be absolutely continuous for simplicity. Its existing probability density function 
(Pdf) is denoted as ( )f t  and its cumulative distribution function (Cdf) as ( )F t :  

0
Pr( ) 1 Pr( ) 1 ( ) ( ) , 0,

( )
0, 0.

t
T t T t R t f u du t

F t
t

≤ = − > = − = ≥
=

>
 

0 0

( ) ( ) Pr( )( ) ( ) lim lim
t t

d F t t F t t T t tf t F t
dt t t→ →

+ − < ≤ += = =  

( )F t  denotes the probability that the item fails within the time interval (0, ]t  and 
a maintenance action is required to be performed. The failure rate function ( )z t  of 
the item is obtained: 

0 0

Pr( ) ( ) ( ) 1 ( )( ) lim lim
( ) ( )t t

t T t t T t F t t F t f tz t
t t R t R t→ →

< ≤ + > + −= = =  

Extending from the statement above, the residual useful life ( ) uRUL t T T t= = −  
(whenT t> ), is used to describe the remaining time to failure beyond the age t , see 
figure 5. Let ( ) ( ) ( ), 0u u uR x P T x P T t x T t x= > = − > > ≥  be its reliability 

function, 
( )( ) ( )
( )

u

u

f xx z t x
R x

λ = = +  be RUL failure rate function, 

( )( ) ( ) ( )
( )u u
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+= = +  be RUL probability density function and 

( ) 1 ( ) 1 ( ) 1 ( )u u u uF x R x P T x P T t x T t= − = − > = − − > >  be RUL cumulative 
distribution function. Further, mean residual useful life (MRUL) is defined as

0 0
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∞
∞

= − ≥ = = = , where ( )R x t  is the 

conditional survival function of an item that has survived till the age t .  

 
Figure 5 

 
 

RUL for repairable items 
 

Repairable items are able to perform the desired functions after the implementation 
of proper maintenance actions. They are typically not discarded by the first failure. 
The end service time for them may be determined by high maintenance cost or 
unavailability of maintenance support.  
 

Consider a repairable item that is put into operation at time 0t = . 1S  denotes the 
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time of first required maintenance action. It is assumed that the repair action is 
perfect which is able to bring the failed item back to the functioning state. It is 
further assumed that the repair time is neglected. A sequence of required 
maintenance action times 1 2, ...S S  will be obtained. Let iT  be the interoccurrence 
time for 1, 2...i = and ( )N t  be the integer number of maintenance actions in the time 
interval (0, t]. iS  refers to the global time while iT  indicates the local time, hence 

1 2 ...i iS T T T= + + + . { ( ), 0}N t t ≥  is called a counting process. It can be represented 

by the sequence of maintenance action times 1 2, ...S S  or by the sequence of 

interoccorrence times 1 2, ...T T . The most popular stochastic point processes used to 
model repairable systems are homogeneous Poisson process (HPP), renewal process 
(RP), and nonhomogeneous Poisson process (NHPP). The RUL corresponds to the 
period between an arbitrary point in time t  (a specific point in time irrespective of 
global time and local time) and the time to next required maintenance action. For 
instance, if we stand at time 't  and intend to know the RUL of the item, its RUL can 

be described as '
3S t− , see figure 6. 

 
Figure 6 

 
 

RUL in a subsea context 
 

The research work to define RUL within a subsea context is performed by Vaidya and 
Rausand (2009; 2011) from a statistical view. The technical health, future operating 
conditions and future environmental conditions are decided as main factors 
influencing RUL of a subsea system: (1) 1TH  denotes the technical health of the 

system at time 1t , see figure 7. It corresponds to the knowledge (K) about the 

equipment up to time 1t . The survivor function 1 1( , ( ), )R t t TH t K  expresses the 

relation between the technical health and the reliability of the equipment. (2) 1( )O t  
describes expected operational conditions and planned interventions that are 
predicted at time 1t , estimating the operating condition that would prevail from 1t  
till the end life of the item. The estimation relies on the experience and expert 
judgment. (3) 1( )E t  expresses the expected environmental conditions that may 

prevail after time 1t . uT  is used to measure the time from 1t  until the system is no 

longer useful. The distribution of uT  relies on the technical health 1TH  at time 1t , 
the expected operational conditions ( )O t and the expected environmental 
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conditions ( )E t . The probability distribution function of uT  at 1t  is achieved to be 

1 1 1 1( ) Pr[ , ( ), ( )]u uF t t T t TH O t E t= ≤ .  

 
Figure 7 

 

2.3.4 Technical Condition Indicator 

Technical condition can be viewed as a static value. It affects the residual useful life of 
a component or system, particularly for cases when operators change the operating 
conditions of equipment (Thorstensen, 2007). A simple example could be: the 
residual useful life of an engine shaft may increase or decrease in case the external 
stresses are reducing or increasing. Through the literature review, the main 
contribution to use technical condition indicator for estimating RUL lies in 
Thorstensen (2007), Nystad (2008) and Vaiyad & Rausand (2009, 2011).  
 

The technical condition of an item at time t  in Vaiyad & Rausand (2009, 2011)’s 
research is defined as the status or perform ability of the item as measured by a set 
of indicators at, or immediately before time t . A number of indicators either 
continuously measurable or discrete are needed to tell the status of the item, such as 
vibration, oil level, speed etc. The technical condition of an item at time t  is 
denoted as 1 2( ) ( ( ), ( ),... ( ))kx t x t x t x t= with k  different indicators measured. It is 
regarded as a measurement (sensor readings) and no assessment is contained.  
 

In the Thorstensen (2007) and Nystad (2008)’s research, technical condition indicator 
refers to technical condition index. It is a measure developed in the EUREKA project 
“Ageing Management (1996-1999) (www.eureka.be)”, as part of the Norwegian 
Research Council founded program PROSMAT 2000. The purpose of this project is to 
develop a new and reliable variable, technical condition index, which is only affected 
by the change of the system’s technical integrity. The following definition is used: 
 

The Technical Condition Index, denoted TCI, is defined as the degree of degradation 
relative to the design condition. It may take values between a maximum and a 
minimum value, where the maximum value describes the design condition and the 
minimum value describes the state of total degradation. 
 

Early alerts will be available in case problems are developing by using TCIs and the 
organization can take necessary actions. Compared to traditional indicators, for 
instance, regularity, accident statistics and environmental emissions, TCI has a high 
sensitivity with respect to technical condition. The evaluation of technical condition 
is related to five principal contexts: safety, environment, availability, man-hours and 
costs (Nystad, 2008).  
 

Thorstensen (2007) presents a model developed to examine and obtain optimal 
solutions when it is possible to classify the present technical condition of the items 
and predict the residual life. The thesis work uses a Markov model to describe the 
deterioration process, where the sequential decision problem is modelled as a 
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discrete time Semi-Markov Decision Process. An offshore gas turbine is worked on as 
a cases study. Nystad (2008)’s research utilizes aggregated TCI paths to estimate the 
RUL of natural gas export compressors. The technical condition determination 
methods are derived from the TeCoMan software. TeCoMan possessed by Marintek 
is a program developed to calculate the TCI as well as other types of KPI’s. It is 
supported with a range of different aggregation methods and functions to transfer 
measurement readings to a unified indicator (TeCoMan Wiki).  
 

As reviewed from Nystad (2008)’s project work, the RUL assessment only uses 
reliability as the single criteria to evaluate the usefulness of the equipment, which 
may not be so appealing on condition that maintenance cost, spare parts availability 
etc. are considered in reality. Integrating information obtained from RUL estimation 
to decision-making in maintenance planning is the most important aspect which 
gives the assessment process meaningful. The lack of incorporating maintenance 
issues in RUL assessment may weaken the producing practical significance. Another 
limitation is related to the real condition data required to feed TeCoMan program 
and reliability models. The uncertainty management in the RUL assessment is not 
performed in the research, which reduces the accuracy of the estimation. The 
assumption of perfect inspection in Thorstensen (2007)’s thesis is quite limited in 
reality. 

2.4 State-of-the-art Review on RUL Assessment 
Methodology 

RUL assessment comprises two aspects. One is related to RUL estimation, namely 
systematic use of information to predict or calculate RUL, depending on specific 
contexts, either to achieve a numerical value or the probability of surviving a 
particular period of time, or simply a classification of degradation states. The other is 
to describe the process of judging the tolerability, the goodness etc. of the results 
from RUL estimation/analysis. The former finds the ‘values’ of RUL and the latter 
compare it with relevant requirements, such as RAMS requirements (Lecture note: 
TPK5170). RUL estimation is the core part of assessment procedure. The sequential 
comparison of estimation results with requirements generally appeals for an 
establishment of maintenance program for a piece of equipment in case its 
estimated RUL does not fulfill the expectation.  
 

This section summarizes and compares current RUL estimation methods used both in 
the theoretical and practical work. The deterministic models based on physics of 
failure and probabilistic models relied on statistical techniques are two separate 
approaches to carry out RUL estimation, where the hybrid of such two methods also 
survive in the research. The review watches the probabilistic model closely in view of 
that no specific equipment is focused and no background information from the 
industry is provided.  
 

Table B. 1 (page 54) summarizes the state-of-the-art review on various RUL 
estimation methodologies presented by different authors. The review is performed 
through using the database ‘Engineering Village’ and limited to the accessibility to 
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full texts. Most relevant and recent papers are recorded while non-relevant and 
outdated papers are neglected. The literature investigation shows that prognostic 
models are widely-adopted to perform RUL estimation through using given condition 
and health monitoring information (Ahmadzadeh & Lundberg, 2013a; Son et al., 
2013; Si et al., 2012). Figure 8 demonstrates the taxonomy of different approaches 
for RUL estimation. The techniques can be broadly classified as physics-based, 
experimental, data-driven and hybrid approaches, where experience based approach 
is not addressed. The comparison of these methods is presented in table B. 2 (page 
59).  
 

Physics based methodology typically builds theoretical models to demonstrate the 
physics of the system and relative failure modes, for instance, fatigue crack growth, 
corrosion and wear. Experimental based methodology uses experiments to collect 
essential raw data to achieve a better understanding of the life time of components. 
The studies include, for example, energy engineering, engineering materials and 
chemical processing. Even though scientists and researchers in such fields do not use 
the terminology RUL, actually the experiments are designed for this purpose. Differ 
from the two methods above, the data-driven methodology does not require specific 
knowledge about products, but depends on the utilization of condition monitoring 
data to estimate RUL, where generally expects a large quantity of data to be available. 
Hybrid methodology indicates using two or more prediction methods in conjunction 
to improve the accuracy of RUL estimation (Ahmadzadeh & Lundberg, 2013a; Son et 
al., 2013; Si et al., 2012).  
 

In this thesis, physics based methodology refers to the utilization of deterministic 
models for RUL estimation. The data driven methodology corresponds to the 
adoption of probabilistic models for this purpose. The hybrid approach uses several 
different methods to estimate RUL. Experiment-based approach is not addressed 
since it closely relates to specific engineering domains and requires experiments. 

 
Figure 8 
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Chapter 3 A Novel Approach to Define RUL 

Chapter 3 gives a novel approach to define RUL. The term has various definitions 
with different interpretation aspects based on review work. As a key measure of 
using RUL to realize maintenance optimization, the new way to define RUL considers 
maintenance issues as main target. Practically evaluating the usefulness of 
equipment may become complex and difficult. Many efforts are required and 
expected.  

3.1 Comparison of Various RUL Definitions 

The engineering perspective to define RUL is based on knowledge of engineering 
principles, physics of failure and underlying failure mechanisms. In this domain, 
engineers are required to possess professional knowledge on various deterioration 
mechanisms, for instance fatigue, corrosion, embrittlement, erosion and mechanical 
wear. The level of expert comprehension decides the accuracy of RUL estimation. 
Generally there is a number of failure mechanisms associated with one specified 
failure mode. The dominant failure mechanism takes the leading part in assessing 
RUL of equipment. It is therefore not necessary to analyze all failure mechanisms but 
competing ones to identify the dominant failure mechanism that limits the length of 
RUL (Vaidya and Rausand, 2011).  
 

A useful tool to identify the different failure modes in a hierarchical structure is 
Failure Modes, Effects & Criticality Analysis (Rausand and Høyland, 2004). In 
industrial and maintenance engineering, RUL assessment needs to consider 
monitored condition monitoring information, operational, performance, 
environmental information and degradation signals. Bespoke condition monitoring 
equipment are required to be installed to provide such information, such as vibration, 
oil condition, temperature, humidity, pressure, speed, loading etc. (Si et al., 2011). 
 

The statistical view to define RUL only considers a component or system’s physical 
condition without counting on any physics or engineering principle. Its fundamental 
issue is to find the probability density function (PDF) of the RUL. Estimating the RUL 
is then realized by evaluating the conditional lifetime distribution given that a system 
has survived up to a specified time, for instance T t T t− > , where T  signifies the 
lifetime. The obtained RUL distributions generally depend on the life characteristics 
of a population of identical systems and available lifetime data (Si et al., 2013). The 
available statistical data determines the accuracy and authenticity of RUL assessment. 
This point of view to define RUL properly applies to the situation where the relative 
reliability function can be obtained, for example, in case the degradation life of an 
item is described as a Weibull distribution, then the corresponding Pdf and Cdf is 
known, further ( )MRUL t  can be obtained.  
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Through the literature review, it is hard to arrive that whether the engineering 
thinking to define RUL is more accurate or the statistical perspective to describe RUL 
is more appropriate. Both of them have their own characteristics. The engineering 
view requires professional knowledge on material degradation, equipment operation 
etc. Generally speaking, knowing the dominant reason why the equipment fails 
obviously contributes to better understanding its RUL survival length (Vaidya and 
Rausand, 2011). The statistical view requires lifetime data to express the RUL. Si et al. 
(2013) pointed out that such data are in short supply in reality or even non-existent 
at all for systems that are costly or time-consuming to collect. An exact and 
closed-form of the RUL distribution is perhaps only available for some special cases. 
The real situation in defining RUL is normally restricted to the knowledge of 
equipment possessed by operators and available data that can be used to feed RUL 
estimation models. A hybrid approach to treat RUL assessment both dependent on 
engineering thinking and statistical techniques is expected to be more realistic and 
make up their own shortages.  
 

The literature review indicates that the most fundamental challenge to define RUL in 
industry still lies in which criterion is used to answer whether one component or 
system is “useful” or not. The criterion differs to various duty holders and operating 
environments. A starting point to define RUL should demonstrate how the term 
“useful” means to the operator and what level of performance is anticipated on the 
equipment. In case various criteria exist, the optimal ones can be decided through 
utilizing multi-objective optimization methods.  

3.2 A new idea to define RUL  

Considering multiple criteria used to evaluate the usefulness of equipment 
 

Differ from the conventional illustrations of RUL in the field of engineering and 
statistics, a new way to demonstrate the RUL refers to the remaining time period of a 
piece of equipment in where realize its anticipated performance and is able to bring 
desirable profits to the owner. The criteria used to evaluate whether the 
performance is desired or not, meanwhile to decide the threshold value shown in 
figure 9, may vary due to different operation surroundings and various duty holders.  
 

Table 1 

Criteria used to evaluate the performance of equipment 
Output quality Output quantity 
Reliability Availability 
Maintainability Safety/Risk 
Overall equipment effectiveness Logistics 
Inventory of spare parts Personnel management 
Environmental impact Technical support 
Deprecation cost Operation cost 
Maintenance costs(discounted) Maintenance quality 

 

Table 1 gives a generic list of criteria for this concern. The owner can define the 
required criterion to determine the point of time where the residual useful life ends, 
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namely the time reaching the limit of threshold value. The RUL is then more likely an 
economical quantity, taking various criterions into account. Compared with 
traditional probabilistic approach to assess RUL through using reliability as unique 
criterion, the utilization of various criteria for RUL assessment will make it more 
widespread and practically appealing. 

 
Figure 9 

 

As shown in figure 9, the threshold value may be derived from one of the criterion 
listed in table 1, or a vector of several ones. A better practice of setting this value can 
be achieved by considering engineering experience, the analysis of past data and the 
recommended standards. The date LT  for the equipment to reach the threshold 

value is assumed to be prior to the time FT  where critical failure occurs, otherwise 
such thinking is meaningful less. RUL is then determined by the period between the 
current time CT  and the time in which the equipment reaches the limit value, 

namely RUL= L CT T− . Correspondingly, the residual useful life is equal to F CT T− .  
 

The degradation progression curve is required to be established prior to 
determination of RUL. ( )S t  denotes the degradation level or state. Degradation 
rate is then equal to ( ) ( ) /d t S t t= . The assessment of degradation rate requires 
degradation models as well as data of measured historical degradation rate and 
influencing factors.  
 

The critical failure indicates a failure where brings huge damage to the equipment, or 
even personnel injury and disasters. A direct and convenient way to determine the 
critical failure time is through lifetime modeling. The second method to decide the 
critical failure could be through using deterministic models based on failure 
mechanisms. With proper treatment, the external triggering events, such as shock, 
are also able to be included in this illustration.  
 

In case reliability is selected as the single criteria, the traditional statistical way to 
define RUL is sufficient for the assessment process. With this view, RUL assessment 
equals to residual lifetime assessment. On condition that other criterions are 
considered, for instance, safety and operation cost, it needs novel approaches, 
perhaps relevant economic models, to integrate such input parameters to the RUL 
assessment procedure. 
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Chapter 4 RUL Assessment on Rotating 

Equipment 

Chapter 4 starts to perform RUL assessments for critical type of equipment. The 
determination of critical equipment follows the project “Kristin Regularity”. Kristin is 
located in the southwestern part of the Norwegian Sea, 16 km south west of the 
Åsgard field. It has been developed with twelve production wells in four subsea 
templates tied back to a semi-submersible platform. Kristin produces about 10 
million cubic meters of gas per day. Production capacity is 125,000 barrels of 
condensate and more than 18 million cubic meters of rich gas (www.statoil.com).  
 

The analysis of data derived from SAP indicates that the gas export system 
contributes the largest to production loss, and the maintenance cost of main power 
systems is the highest. Based on study and discussion with expertise in the project 
team, the rotating equipment is determined as the first type of critical equipment for 
RUL assessment. This chapter starts with the study of major failure causes of rotating 
equipment, following a state-of-the-art overview of most-relevant RUL assessment 
methods.  
 

In view of supported background information and already acquired maintenance 
data from Statoil, RUL assessment will mainly takes reliability as criteria to evaluate 
the usefulness of concerned equipment, meaning that the length of RUL ends at the 
point of time when a critical failure occurs. In other words, the majority of RUL 
assessment work equals to prediction of residual lifetime for specific equipment. The 
novel definition of RUL given in chapter 3 requires various types of data for relevant 
assessment work, for instance operation cost and depreciation cost, consequently 
the innovative approach to estimate RUL is not able to be developed due to lack of 
required data. 

4.1 Rotating Equipment and Major Failure Causes 

Rotating equipment are equipment that moves liquids, solids or gases through a 
system of drivers, driven components, transmission devices and auxiliary equipment, 
which is used to add Kinetic energy to a process. It is mainly classified as four types 
on the basis of different functions (Forsthoffer, 2005), see table 2.  
 
 

Table 2 
Driven 
equipment 

Drivers-prime 
movers 

Transmission devices Auxiliary equipment 

Compressors Steam turbines Gears Lube and seal systems 
Pumps Gas turbines Clutches Buffer gas systems 
Extruders Motors Couplings Cooling systems 
Mixers Engines   
Fans    
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Like other types of equipment, rotating equipment does not fail without a cause. A 
comprehensive understanding of major failure causes of rotating equipment 
contributes to better forecasting machinery failures as well as predicting the RUL. 
Certainly, there are a number of factors required to be considered in RUL assessment 
for rotating machinery, for instance, original design, manufacturing tolerance, 
assembly, working environment, load nature and maintenance work. Particularly 
taking the design philosophy into consideration, the interaction between applied 
forces on rotating equipment under normal condition will lead to a stable operation 
with minimum noise and vibration. The loss of equilibrium force as a result leads to 
further fault enhancement (Da Costa et al., 2010). Noise and vibration signals 
therefore provide distinct measurements on degradation status of rotating 
equipment.  
 

As a specialist providing rotating machinery consulting service to the O&G industry 
over 40 years, Forsthoffer (2005) points out that the root cause of rotating machinery 
failure lies in the supporting auxiliary system. A persistent inspection of auxiliary 
equipment condition, such as temperature and lubrication oil level, is recommended 
even during component replacement. OREDA handbook (2009) gives a list on failure 
modes of gas turbines operating in the North Sea: abnormal instrument reading, 
breakdown, external leakage-fuel, external leakage-utility medium, erratic output, 
fail to start on demand, high output, internal leakage, low output, noise, overheating, 
parameter deviation, minor in-service problems, structural deficiency, fail to stop on 
demand, spurious stop and vibration. Therein noise and vibration is specially focused 
in the thesis, intending to relate such failure modes to RUL estimation. Other failure 
modes, for instance leakage and output issues, are not addressed due to inadequate 
techniques for relating them to RUL estimation. 

4.2 State-of-the-art Methodological Review on RUL 
Assessment of Rotating Equipment 

The existing methods to estimate RUL of rotating equipment can be grouped into 
three main categories: (1) Reliability approaches-event data based estimation; (2) 
Prognostics approaches-condition monitoring data based estimation; and (3) Hybrid 
approaches-estimation based on both event and condition monitoring data (Heng et 
al., 2009; Gebraeel et al., 2009; Sikorska et al., 2013). An overview of utilizing various 
methods to estimate the RUL of rotating machinery can draw on relevant articles 
listed in table B. 1 (page 54), article number: 4, 6, 10, 15, 17, 18, 22, 24, 30, 33, 35, 36, 
43, 44, 45 and 47. The review shows that recent RUL assessment research is mainly 
rotating-machinery-concerned, taking bearings for instance. Provided sufficient 
information and data, both physics based and data-driven RUL estimation methods 
are able to achieve the desired assessment purpose.  
 

Generally, reliability approaches to estimate RUL are dependent on the distribution 
of failure event records of a population of identical units. Machine reliability is 
modelled through using parametric failure models, for instance Exponential, Weibull 
and Lognormal, where a number of them are elaborated in most reliability-focused 
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books, like Rausand and Høyland (2004). This type of estimation is greatly useful to 
manufacturers since high volumes of units are available to be taken as analysis 
sample, but is less valuable to end users, for instance, mean-time-to-failure of a 
whole population cannot attract interests of a maintenance engineer yet the ongoing 
reliability information of a specific component or system does (Heng et al., 2009; 
Gebraeel et al., 2009; Sikorska et al., 2013). This approach does not consider multiple 
types of failure modes as well as dynamics of operating conditions and environments, 
which limits its application in RUL assessment on rotating equipment working in 
Kristin field. 
 

Compared to reliability methods, prognostics approach and hybrid approaches is 
much more promising in estimating RUL of rotating machinery (Heng et al., 2009; 
Gebraeel et al., 2009; Sikorska et al., 2013). The defects caused by imbalance, 
misalignment, bearing faults and lubrication faults all lead to variation of rotation of 
the equipment. Therein the vibration inspection is widely adopted as diagnosis 
methods to describe the deterioration process of rotating machinery (Goto et al., 
2008). An example could be predicting the RUL of rotating machinery through 
sampling the acoustic signal over its lifetime. Scanlon et al. (2013) argues that the 
acoustic noise signal contains sufficient information to effectively predict the RUL of 
rotating equipment, illustrating by a case study where the used rotating machine has 
several moving parts, including two rotating element bearings.  
 

The following section demonstrates how to link vibration, noise signal and lubrication 
oil condition to RUL estimation, with focus on vibration. The purpose is to 
demonstrate most recent research work in this area and establish a solid foundation 
for further determination of proper method utilized in case study considering real 
condition data. 

4.2.1 Vibration Signal Analysis for RUL Assessment 

There has been an increasing strong interest to indicate the health of rotating 
equipment through the analysis of vibration signature, normally frequencies and 
magnitudes (Atoui et al., 2013). The vibration signal is not a direct source of 
information and its effectiveness in RUL assessment depends on available signal 
processing techniques.  
 

Fourier Transform 
 

The Fourier Transform is a traditional approach for vibration signal analysis, 
particularly with the consideration of stationary signals. It exposes the frequency 
feature of a time series ( )x t  through transforming it from the time domain into the 
frequency domain, hence generating the spectrum ( )X f that includes the entire 
signal’s fundamental and its harmonics (Al-Badour et al., 2011). One of its definition 

is given by Gao and Yan (2011): 2( ) ( ) i ftX f x t e dtπ∞ −

−∞
= , where ( )x t  is the 

time-series signal and f  denotes the frequency composition. Afterwards, the 
Fourier Transform is extended to the fast Fourier transform (FFT)-based order 
analysis (OA) technique, discrete Fourier Transform (DFT) and short time Fourier 
Transform (STFT) in the particular field of vibrations and machinery health 
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monitoring, allowing for an effective tracking of speed-driven harmonics of rotating 
equipment. Although FFT is widely used in signal processing, whereas it has no ability 
to demonstrate the time dependency of the spectrum of analyzed signal, which limits 
its application in dealing with non-stationary signals. It is recommended to employ 
FFT to process stationary signals (Al-Badour et al., 2011).  
 

Wavelet Transform 
 

Wavelet transform (WT) is an effective tool to process non-stationary signals and 
extract the signal’s time domain (Loutas et al., 2013). AI-Badour et al. (2011) point 
out that the utilization of wavelet transform is able to present a local signal analysis 
or zoom on concerned time intervals whereas keep the spectral information intact. 
This tool is particularly significant for applications on damage (crack) or fault 
detections.  
 

Mathematically, a wavelet is a square integral function ( )tψ  which satisfies
2( )

( )
f
df

f
∞

−∞

Ψ
< ∞ , where ( )fΨ  is the Fourier transform (i.e. frequency domain) of 

the wavelet function ( )tψ  (time domain). Its continuous version, the continuous 

wavelet transform (CWT), is defined as *1( , ) ( ) ( )twt x t dtωυ ω ψ
υυ

∞

−∞

−= , where 

*( )ψ ⋅  is the complex conjugate of the scaled (parameter υ ) and translated 
(parameter ω ) wavelet function ( )ψ ⋅ . The practical signal processing normally 
employs the discrete wavelet transform (DWF), since performing the CWT will lead to 
the problem of redundant information. The DWF can be achieved by discretizing the 
scale parameter υ  and translation parameter ω , until get the satisfied signal 
mapping. Another major wavelet transform is wavelet packet transform (WPT). It is 
an attractive tool to detect and differentiate transient elements with high-frequency 

features. The wavelet packet is defined as 

( ) ( )
2

( ) ( )
2 1

( ) 2 ( ) (2 )

( ) 2 ( ) (2 ).

j j
n n

k

j j
n n

k

u t h k u t k

u t g k u t k+

= −

= −
 with 

0,1, 2,...n = and 0,1,...,k m= , where (0)
0 ( )u t  is the scaling function ( )tφ  and (0)

1 ( )u t  
is the base wavelet function ( )tψ . The superscript ( )j  signifies the j th level 
wavelet packet basis. There will be 2 j  wavelet packet bases at the j th level 
(Al-Badour et al., 2011; Gao and Yan, 2011).  
 

Loutas et al. (2013) perform the latest RUL assessment work through using wavelet 
transform technique combined with data-driven probabilistic ε -Support Vectors 
Regression (SVR) (Article No. 46 in table B.1, page 54). The gradual degradation of 
rolling bearings is considered and their features are extracted from the acceleration 
waveforms. Several run-to-failure experiments in bearings under various loading 
conditions are carried out with two vibration sensors mounted on the bearings for 
the monitoring of degradation phenomena. The threshold value is decided as a 
failure criterion in the test, namely an indicator of critical fault, and the RUL therefore 
ends in case the critical fault occurs. The tests are stopped when the vibration root 
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mean square (RMS) acceleration hit the threshold. Both FFT and WPT are employed 
to acquire the most monotonic behavior during the test, which is chosen as inputs to 
the SVR model (Appendix A Technical Background). The established probabilistic SVR 
model is used to predict the RUL of rolling element bearings. 
 

Goto et al. (2012) execute another RUL assessment work based on vibration signal 
analysis (Article No. 37 in table B. 1, page 54Table B. 1). The RUL evaluation is verified 
by actual data collected from rotating equipment in thermal power plants. The 
velocity and acceleration of vibration are state variables to indicate the deterioration 
of rotating equipment, refers to as the deterioration management values, meaning 
that if the deterioration management value is beyond a threshold value, a repair or 
replacement is required. RUL in this research therefore ends when the deterioration 
management value reaches the threshold value. Special acceleration sensors are 
used to map the amplitude of vibration acceleration and velocity for rotating 
equipment. Figure 10 shows the conceptual diagram of RUL estimation based on the 
prediction of the deterioration management value. The deterioration management 
value for velocity is 1 2( )v n v n vy t c t c= +  and for acceleration is 2 1( ) exp( )a n a a ny t c c t= , 

where nt  is the n th measurement of time and 1 2 1, ,v v ac c c  and 2ac  are 
parameters of the model. The model parameters are estimated through using the 
exponentially weighted recursive least squares approach. ( ), 1,...,n my t m l+ =  

denotes the predicted deterioration management value, where nt  is the current 

time. ( )n my t +  is calculated by 1( ) ( ) ( ) ( ), 1,...,v n m v n v n n m v ny t d t c t t y t m l+ += + − =  for 

velocity and 2 1( ) ( ) ( )exp( ( ) ) ( ) 1,...,a n m a n a n a n n m a ny t d t c t c t t y t m l+ += + − =  for 
acceleration.  

 
Figure 10 

 

The predicted deterioration management value ( )i n my t +  at time n mt +  is calculated 
by using the deterioration model. The standard deviation of the prediction errors 

( ) ( ) ( )i n m i n m i n me t y t d t+ + += −  of the deterioration management values are used to 

evaluate the confidence interval of the predicted value, where  ( )i n md t +  is the 

actual deterioration management value at time n mt + . ( )n me t +  are assumed to be 

independently and identically distributed as 2(0, ( ))i n mN tσ +  where 

2

1

1( ) { ( ) ( )} , , ,
1

n
n k

i n m i k m i k mn
k

t y t d t i v aρσ ρ
ρ

−
+ + +

=

−= − =
−

 1,...,m l= . Then the residual 
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useful life *m  of the rotating equipment is evaluated by  
*

( 1,2,...,
arg{ min { ( ) ( ) , , }}i n m i n m im l

m y t r t i v aσ λ+ +=
= + > = . In case the upper value of the 

confidence interval ( ) ( ), ,i n m i n my t r t i v aσ+ ++ =  is beyond a threshold value iλ , it 

appeals for maintenance intervention, where iλ  can be prior determined by expert 
judgment.  

4.2.2 Lubrication oil analysis for RUL Assessment 

Lubrication oil analysis plays a critical role in detecting gas turbine failures as well as 
in condition-based maintenance. The availability of a functioning turbine is mainly 
dependent on the protective performance of the lubrication oil for its transmission 
parts (Zhu et al, 2013). Poley (2012) claims that condition monitoring of lubrication 
oil delivers roughly 10 times earlier warnings for machine failures compared to 
vibration based monitoring techniques. Zhu et al. (2013) carry out the recent 
research work within this domain (Article No. 6 in table B. 1, page 54). Particle filter 
technique is utilized to estimate the RUL of the lubrication oil depending on the 
viscosity or dielectric constant sensor observations. An l -step ahead estimator is 
established to give a long term prediction of the state pdf ( )k l kp x Z+  of oil 
condition, for 1,...,l T k= − , where T  is time of failure. An unbiased l -step ahead 

estimator is 
1

1
1

( ) ... ( ) ( )
k l k l

k l k j j k k j
j k j k

p x Z p x x p x Z dx
+ + −

+ −
= + =

= ∏ ∏ , where the state t kx =  

denotes the particle contamination level at current time k . RUL is the object’s 
remaining usable time before it needs maintenance or fails. For instance, let .thrλ  
represents a pre-specified threshold value for the state of oil condition, the object’s 
RUL at time k  is computed as ( )kRUL k l k l= + − =  given t k lx = +  is beyond .thrλ . 
With the determination of .thrλ , the estimation of RUL l≤  is equal to the estimation 
of  .k l thrx λ+ ≥ , which is .Pr( ) Pr( )k k l thr kRUL l Z X Zλ+≤ = ≥ (Zhu et al., 2013).  
 

The implementation of particle filter technique for RUL assessment requires a 
physical model that relates the water contamination level and temperature to the 
dielectric constant and kinematic viscosity.  

4.2.3 Nosie Signal Analysis for RUL Assessment 

Noise signal from rotating machinery contains essential information about the 
internal process and is capable of providing valuable information for RUL assessment. 
Kavanagh et al. (2008) argues that sound intensity and sound pressure that explains 
the mechanism of noise generation contributes to distinguish the good from the bad 
bearings with spectral analysis and statistical analysis. Scanlon & Bergin (2007) and 
Kavanagh et al. (2008) employ the analysis of acoustic noise signal to predict the RUL 
of rotating machines.  
 

Scanlon et al. (2013) present the latest RUL prediction work using noise signal 
analysis based on the prior research work within this domain. An advantage of using 
noise signal for RUL prediction is its allowing for remote and non-contact monitoring 
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of the machine in contrast with vibration analysis that requires a direct contact with 
the equipment. The research proposed a novel approach which utilizes an 
information theoretic method to feature subset selection of modulation spectra 
features, namely a hybrid method combined MS (modulation spectral) plus 
MS-MI(mutual information)-PCA(principal component analysis). Life tests of four 
different rotating machines with the same type are conducted in the experiment to 
record the acoustic data over the machine’s lifetime. The K-means clustering 
algorithm is employed to determine the state of machine degradation. Its RUL 
assessment result is a classification of degraded machines. 

4.3 Summary and Discussion 

In summary, RUL assessment based on vibration signal analysis, lubrication oil 
analysis and noise signal analysis generally has two phases. The first stage, off-line 
learning, is to learn and develop a behavior model from the condition monitoring 
data. The second stage, on-line prognostic, will utilize the established model to get a 
clear picture of the current condition of the equipment and to predict its future 
health state, see figure 11. Most research work (e.g. Loutas et al, 2013; Wang and 
Wang, 2012 and Tobon-Mejia et al., 2011) perform necessary experiments to derive 
sufficient raw data to construct the proper degradation model given different types 
of equipment and operating environments.  

 
Figure 11  

 

The principle of signal processing during the first phase is virtually the same; either 
FFT or WT is employed. FFT is sufficient for treatment of stationary signals where WT 
is preferred in processing non-stationary signals. Behavior models developed during 
the second stage have many branches, for instance, ε -Support Vectors Regression 
model (Loutas et al, 2013), continuous hidden Markov model (Wang and Wang, 2012) 
and mixture of Gaussians hidden Markov models (Tobon-Mejia et al., 2011). The 
selection or construction of degradation models vary to several factors apart from 
the type of equipment, such as the knowledge in understanding degradation process, 
the level of comprehension in mathematical models, the availability of acquired 
monitoring data and the experiment techniques. Model transfer in industry should 
be paid with special caution since operating surroundings and system boundaries 
make a big effect on degradation behavior. Maintenance actions based on improper 
degradation models are costly. For industrial application, it is therefore highly 
recommended to develop appropriate models in view of principles lied in research 
work. 
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Chapter 5 Case Study - Statistical Analysis 

Chapter 5 performs the case study and applies methods and real condition data in 
ageing and life extension management of critical equipment. In agreement with the 
supervisor and project team ‘Kristin Regularity’, AC generators and gas turbines are 
determined for further analysis. It is proposed to carry out RUL assessment based on 
collected real condition data from Kristin field.  
 

Kristin production field operates two AC generators and gas turbines. The SAP 
records the notification of their health conditions, classified as ‘unwell’, ‘sick’ and 
‘dead’. The PI system collects condition monitoring (vibration) data of gas turbines. 
The desired data, for instance noise signals and lubrication oil condition, is not 
obtained because of project constraints. No experiments are performed to train and 
develop proper assessment model. Only a sampled monitoring data of gas turbine is 
available. These objective conditions limit the realization of RUL assessment through 
employing various techniques, for instance FFT and WT.  
 

Being subjected to acquired event data, the feasible approaches to process existing 
data lie in statistical techniques, and the procedure is implemented and 
demonstrated in Minitab, a statistics package developed at the Pennsylvania State 
University. We use alpha level 0.05, as common. 
 

In the following, failure impact refers as failure state, digit 1 denotes an unwell event 
(blue color), digit 2 means a sick event (orange color) and digit 3 indicates a dead 
event (red color).  

5.1 Statistical Techniques 

Statistical techniques are frequently employed in processing event data, to identify 
the tendency of failures, for instance an increasing ROCOF. This section introduces a 
fraction of them that are utilized in the case analysis from an application perspective. 

5.1.1 Counting Process 

Conventional types of counting process include HPP, Renewal Processes, NHPP and 
imperfect repair processes. The following definitions are derived from Marvin and 
Høyland (2004). 

5.1.1.1 Homogeneous Poisson Process 

The counting process { ( ), 0}N t t ≥ is said to be an HPP characterizing a rate 
parameter λ , for 0λ > , if ( ) 0N t = , and the intercurrence times 1 2, ...T T  are 
independent and exponentially distributed with parameter λ . The ROCOF (rate of 
occurrence of failures) of the HPP is ( )tω λ=  for all 0t ≥ . The number of failures in 
the interval ( , ]t t v+  is Poisson distributed with mean vλ , 
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( )Pr( ( ) ( ) )
!

n
vvN t v N t n e

n
λλ −+ − = =  for all 0, 0t v≥ > . The mean number of failures 

within the time interval ( , ]t t v+  is ( ) ( ) ( (t ) ( ))W t v W t E N v N t vλ+ − = + − = . 

5.1.1.2 Renewal Process 
 

A renewal process is a counting process { ( ), 0}N t t ≥  with intercurrence times 

1 2, ...T T  which are independent and identically distributed with distribution function 
( ) Pr( )T iF t T t= ≤  for 0t ≥ , 1, 2,...i = . The renewal function ( )W t  is the mean 

number of renewals in the time interval (0, ]t , ( ) ( ( ))W t E N t= . The mean number of 

renewals within the time interval 1 2( , ]t t  is 2

1
2 1( ) ( ) ( )

t

t
W t W t t dtω− = . 

5.1.1.3 Nonhomogeneous Poisson Process  
 

A nonhomogeneous Poisson Process is a Poisson process with rate parameter ( )tω . 

The cumulative rate of the process is 
0

( ) ( )
t

W t u duω= . The number of failures in 

the interval (0, ]t  is Poisson distributed ( )[ ( )]Pr( ( ) )
!

n
W tW tN t n e

n
−= =  for 

0,1, 2,...n = .  
 

Minitab presents the parametric analysis of repairable systems through using the 
Power Law Process, one type of parametric NHPP models. In the power law model 
the ROCOF of the NHPP is defined as 1( )t t βω λβ −=  for 0, 0λ β> >  and 0t ≥ . A 
repairable system modeled by Power-Law Process model is seen to be happy 
(improving) if 0 1β< < , and sad (deteriorating) if 1β > . The model reduces to an 
HPP if 1β = . 

5.1.1.4 Imperfect Repair Processes 

When using a renewal process, the system is assumed to be ‘as good as new’ after 
the repair action. The use of NHPP assumes that the system is ‘as bad as old’ after 
the repair action. For those repairs between these two extremes, imperfect repair 
models are required.  
 

A large amount of models have been developed for modeling imperfect repair 
processes. These models are mainly used to model repair actions that reduce ROCOF 
and that reduce the age of the system. A large amount of models have been 
developed for modeling imperfect repair processes. These models are mainly used to 
model repair actions that reduce ROCOF and that reduce the age of the system. 
Typical models are Brown and Proschan’s model, Failure rate reduction models, age 
reduction models and trend renewal process. 

5.1.2 Prediction Method-Regression Analysis 

Regression analysis is a statistical tool for investigating relationships between 
variables. This technique is used to ascertain the causal effect of one factor upon 
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another, for instance, the effect of failure impact upon the notification date. Minitab 
provides both linear and nonlinear regression analysis. A p -value less than 0.05 
indicates the strong relationship between variables. 
 

Linear Regression 
In linear regression, let i  index the observations on the data ( , )x y . The simple 
linear model is 0 1i i iy xβ β ε= + + , 1,...,i n= . iy  is a linear combination of the 
parameters. ix  is the independent variable. 0β  and 1β  are two model 
parameters (Wikipedia).  
 

Nonlinear Regression 
 

Minitab has various models for nonlinear regression analysis, for instance 
exponential and Weibull. An example of exponential regression model is 

2
1

ix
iy eββ= . Minitab also provides the growth curve for each tested function 

(Wikipedia).  

5.1.3 Trend Test 

5.1.3.1 Graphical Technique: Nelson-Aalen Plot 

For a repairable system, given a number of failures and their failure times iS  for 
1, 2,...i = . Let ( )N t  denotes the number of failures and by definition jumps (1 unit) 

at the failure time iS . Draw a plot to map the jumping points ( , ( ))i iS N S  for 
1, 2,...i = . The plot is called a Nelson-Aalen plot. For a sad system, the Nelson-Aalen 

plot will be convex, as shown in figure 12. Correspondingly, the plot will tend to be 
concave for a happy system. The system is steady if the Nelson-Aalen plot is 
approximately linear (Marvin and Høyland, 2004). 

 
Figure 12 Nelson-Aalen plot for a sad system (Marvin and Høyland, 2004) 

 

5.1.3.2 Statistical tests: Laplace Test, Military Handbook Test and Anderson-Darling 
Test  

The Nelson-Aalen plot is intuitive to examine the ROCOF of a system. Nevertheless 
based on graphical methods, we still do not know whether or not the observed trend 
is statistically significant. Minitab gives three tests concerning this issue: Laplace test, 
MIL-Hdbk-189 test and Anderson-Darling (AD) test. The hypotheses for the trend 
tests are same.  
 

H0: No trend in data (homogeneous Poisson process) 
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H1: Trend in data (nonhomogeneous Poisson process) 
Reject Criteria: Reject H0 with p  value larger than 0.05 with alpha level = 0.05. 

 

We can arrive that there is some trend in the data if the null hypothesis is rejected. 
The data should be modelled with a nonhomogeneous Poisson process, such as 
Power-Law process. For the case that fails to reject the null hypothesis, the 
conclusion is that there is no sufficient evidence to reject the homogeneous Poisson 
process model. Even though the Power-Law model is appropriate, the homogeneous 
Poisson process is a preferable choice (Minitab 17 Support).  
 

Laplace Test 
 

The test statistic for the situation where the system is observed until n  failures 

have occurred is 

1

1

1 ( / 2)
1

/ 12( 1)

n
j nj

n

S S
nU

S n

−

=
−

−=
−

 where 1 2, ,...S S denote the failure 

times. The value of U  is an indicator of increasing or decreasing ROCOF, with 
0U >  for a sad system and 0U <  for a happy system (Marvin and Høyland, 2004). 

 

Military Handbook Test 
 

The test statistic of MIL-Hdbk-189 (Military Handbook Test) for the system with n  

observed failures is 1

1
2 lnn n

i
i

SZ
S

−

=
= . Low values of Z  indicates a sad system. 

Large values of Z  corresponds to a happy system (Marvin and Høyland, 2004). 
 

Anderson-Darling Test 
 

The test statistic of Anderson-Darling is 2A n S= − −  for n  observed failure events, 

where 1
1

2 1[ln( ( )) ln(1 ( ))]
n

i n i
i

iS F Y F Y
n + −

=

−= + − . 1, .... nY Y  are ordered failure data. 

F  is the cumulative distribution function of the specified distribution. AD-statistic 
cannot reveal a sad or happy system but is employed to verify whether these data 
follows HPP or not. The decision to reject or accept the null hypothesis is dependent 
on comparing the p -value for the hypothesis test with the specified significance 
level (Wikipedia).  

5.2 Statistical Analysis on AC Generators 

Assumptions: AC generator A and B are independent and identical. AC generators 
and their spare parts are in same type and their operation surroundings are 
comparable. The SAP data set is homogeneous.  
5.2.1 AC Generator A 
 
Table 3 shows the notification data of AC generator A. The data in year 2008 is not 
available and for statistical analysis, we use the dataset recorded from date 
2009/11/24 as time 0t =  until 2013/11/24 in which the 12th notification is recorded 
during a total time of 1461 days. jS  denotes calendar time and jT  denotes 
interoccurrence time for 1, 2,...j = . 
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Table 3 SAP data AC generator A 

 

5.2.1.1 Failure Trend Investigation 

a) Regard all notifications as failures 
In section (a), it is assumed that maintenance intervention is available for each 
notification event. The repair action will restore the system to a functioning state. We 
do not make further assumptions concerning whether this state is ‘as good as new’ 
or ‘as bad as old’. Figure 13 indicates that generator A may enter into the dead state 
following either an unwell state or a sick condition.  

 
Figure 13 Nelson-Aalen plot for AC generator A 

 
Figure 14 The sequence of failure impacts under ideal condition 

 

Ideally, the notification records an unwell event at first, then the sick state and ends 
in the dead condition, see figure 14, if only considering the sequence of failure 

Generator A Notif Crea Failure Impact Failure State NO. of notificaitons Calendar time(Sj) Interoccurence time(Tj)
2009/11/24 U 1 0 0 0
2009/12/2 U 1 1 8 8
2010/1/12 U 1 2 49 41
2010/4/19 D 3 3 146 97
2010/9/9 U 1 4 289 143
2011/6/29 U 1 5 582 293
2011/9/12 S 2 6 657 75

2011/10/19 D 3 7 694 37
2012/1/12 D 3 8 779 85
2012/4/21 D 3 9 879 100

2012/10/20 D 3 10 1061 182
2013/1/2 U 1 11 1135 74

2013/11/24 D 3 12 1461 326Year 2013
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impact. Due to the limited number of notifications, this ideal trend cannot be verified. 
The Nelson-Aalen plot tends to be concave, which indicates a happy system with a 
decreasing ROCOF. A deep analysis is performed in the following. 
 

Statistical trend tests are employed. H0: there is no trend in data, homogeneous 
Poisson process; H1: trend in data, non-homogeneous Poisson process. Rejection 
criteria: Reject H0 with p-value less than 0.05. 

 
Figure 15 Statistical tests on notification trend, AC generator A 

 

As shown in figure 15, the p-value of Military Handbook Test (MIL-Hdbk-189), Laplace 
test and AD test is all larger than 0.05 and we do not have strong evidence to reject 
H0. The following arguments are provided: 
 

(1) The decreasing ROCOF is not statistically significant and perhaps accidental. 
(2) The assumption of identical systems or homogeneous data may not be realistic 

and that produces a non-statistical-significant result for trend tests. 
(3) On condition that we reject H0 and accept H1 with weak statistical significance, 

the Power Law model proposed by Minitab indicates a happy system and presents 
a decreasing ROCOF. This trend will only be realistic given that the repair team 
improves the system with each maintenance action, not just brings the system to 
a functioning state, and even better than ‘as good as new’.  

(4) On condition that we accept H0 following statistical tests, no notification trend is 
verified. The interoccurrence times are independent and identically exponentially 
distributed with 0.0082λ = . 

 

Two different situations are given regarding further analysis:  
 

Situation A.a.1-Decreasing failure trend with weak statistical significance 
 

In situation A.a.1, there is trend in notifications of failures, although with a weak 
statistical significance. Either a NHPP or imperfect repair models could be utilized to 
further analyze the data. The selection of models must be decided by a qualitative 
analysis of the repair actions. Statoil SAP actually records details of each 
maintenance action, for instance, type of replaced component and equipment 
adjustment, and that is available for qualitative analysis of repair performance, 
whereas not feasible in the thesis without permits to the SAP details. Based on the 
available information and analyzable results, the negative Laplace test statistic -1.26 
(figure 15) and shape parameter of Power-Law Process 0 0.718581 1β< = <  
indicate that AC generator A is a happy system under situation A.a.1.  
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Situation A.a.2-No trend in notification of failures, HPP 
 

In situation A.a.2, the failures follow a homogeneous Poission process with statistical 
significance. Minitab gives a estimate value of MTBF as 121.75 days. We can get that 
the ROCOF of the system is ( ) 0.0082w t =  for all 0t ≥ . The number of failures in 
the interval ( , ]t t v+  is Poisson distributed with mean 0.0082v , 

0.0082(0.0082 )Pr( ( ) ( ) )
!

n
vvN t v N t n e

n
−+ − = = for all 0, 0t v≥ > . The mean number of 

failures in the time interval ( , ]t t v+  is
( ) ( ) ( ( ) ( )) 0.0082W t v W t E N t v N t v+ − = + − = , particularly ( ( )) 0.0082E N t t= . The 

time of the n th failure nS has a gamma distribution with parameters ( , 0.0082)n  

and its probability density function is 1 0.00820.0082( ) (0.0082 )
( 1)!n

n t
Sf t t e

n
− −=

−
 for 0t ≥ . 

b) Regard dead events as failures 
In situation (b), it is assumed that that maintenance intervention is not available for 
unwell and sick events. The repair action is only performed in case the system is in a 
dead condition and will bring it back to a functioning state. Figure 16, the 
Nelson-Aaelon plot still indicates that the system has a decreasing ROCOF. The p
-values presented in figure 17 are all larger than 0.05 and closely to 1.0, which means 
that this decreasing ROCOF is quite occasional. Corresponding to A.a.1 and A.a.2, 
situation A.b.1 and A.b.2 can be obtained. They will not be repeated since the result 
is not statistically significant. 

 
Figure 16 Nelson-Aalen plot for dead events, AC generator A 

 
Figure 17 Trend tests on dead events, AC generator A 
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5.2.1.2 Relationship between notification date and failure impact 

This section investigates whether there is a relationship between notification date 
(calendar time in days) and failure impact (failure state). Regression analysis is 
performed in Minitab, shown in figure 18.  
 

In the summary report of linear regression analysis, a linear model is proposed as 
1.434 0.001007Y X= +  to describe the relationship between Y  and X , where Y  

denotes the failure state and X  denotes notification date (calendar time). A p
value larger than 0.05, 0.131, means that changes in Y  are not associated with 
changes in X . Conversely, a small p-value, less than 0.05, will indicate strong 
relationship between the predictor X  and the response Y . 
 

 
Figure 18 Linear regression analysis summary report, AC generator A 

 

Further, the nonlinear regression analysis is performed with various examined 
expectation function, such as exponential, power and logistic. Due to few data items, 
lack of fit test cannot be carried out in Minitab. The test is used to verify whether the 
examined model fits the data. With unavailability of giving such a test, results from 
nonlinear regression analysis are not reliable. The test details are not copied here 
due to page limitation. 

5.2.2 AC Generator B 

The same analysis procedure is used to investigate SAP data of AC generator B.  

5.2.2.1 Failure Trend Investigation 
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Table 4 SAP data, AC generator B

 
 

a) Regard notifications as failures 
 

Presented by figure 19, it is still difficult to conclude that the system enters into an 
unwell, sick and dead state in a sequence. The Nelson-Aalen plot tends to be convex 
but not in a consecutive way. AC generator B tends to be a sad system. A deep 
analysis is given in the following. 

 
Figure 19 Nelson-Aalen plot for notifications AC generator B 

 
Figure 20 Statistical tests on notification trend 

 

Statistical tests are performed. H0: there is no trend in data, homogeneous Poisson 
process; H1: trend in data, non-homogeneous Poisson process. Rejection criteria: 
Reject H0 with p-value less than 0.05. As seen in figure 20, the p-value of Military 
Handbook Test (MIL-Hdbk-189), Laplace test and AD test is all larger than 0.05 and 
we do not have strong evidence to reject H0. The following arguments are provided: 
 

(1) The increasing ROCOF is not statistically significant but accidental.  
(2) The assumption of identical systems or homogeneous data may not be realistic 

and that produces a non-statistical-significant result for trend tests. 

Generator B Notif Crea Failure Impact Failure State No. of notifications Calendar time(Sj) Interoccurence time(Tj)
2009/3/22 S 2 0 0 0

2009/12/13 U 1 1 266 266
2009/12/19 D 3 2 272 6

Year 2010 2010/11/29 S 2 3 617 345
2011/3/23 D 3 4 731 114
2011/9/9 S 2 5 901 170

Year 2012 2012/1/15 S 2 6 1029 128
2013/2/12 D 3 7 1423 394
2013/3/29 S 2 8 1468 45
2013/7/23 D 3 9 1584 116
2013/8/24 S 2 10 1616 32
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Year 2013
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(3) On condition that we reject H0 and accept H1 with weak statistical significance, 
the Power Law model proposed by Minitab indicates a sad system and presents 
an increasing ROCOF. This shows that the repair team takes the opposite 
maintenance strategy on AC generator B compared to system A. 

(4) On condition that we accept H0 following statistical tests, no notification trend is 
verified. The interoccurrence times are independent and identically exponentially 
distributed with 0.0062λ = . 
 

We have two different situations regarding further analysis:  
Situation B.a.1-Increasing failure trend with weak statistical insignificance 
 

In situation B.a.1, there is trend in notifications of failures, although with a weak 
statistical significance. Based on the available information and analyzable results, the 
positive Laplace test statistic 0.73 (figure 20) and shape parameter of Power-Law 
Process 1.51033 1β = >  indicate that AC generator A is a sad system under 
situation B.a.1. The ROCOF of the NHPP is 1.51 1 0.51( ) 352 1.51 532w t t t−= × = .  
Situation B.a.2-No trend in notification of failures, HPP 
 

In situation B.a.2, the failures follow a homogeneous Poission process with statistical 
significance. Minitab gives an estimate value of MTBF as 161.6 days. We can get that 
the ROCOF of the system is ( ) 0.0062w t =  for all 0t ≥ . The number of failures in 
the interval ( , ]t t v+  is Poisson distributed with mean 0.0062v , 

0.0062(0.0062 )Pr( ( ) ( ) )
!

n
vvN t v N t n e

n
−+ − = = for all 0, 0t v≥ > . The mean number of 

failures in the time interval ( , ]t t v+  is
( ) ( ) ( ( ) ( )) 0.0062W t v W t E N t v N t v+ − = + − = , particularly ( ( )) 0.0062E N t t= . The 

time of the n th failure nS has a gamma distribution with parameters ( , 0.0062)n  

and its probability density function is 1 0.00620.0062( ) (0.0062 )
( 1)!n

n t
Sf t t e

n
− −=

−
 for 0t ≥ . 

b) Regard dead events as failures 
Figure 21, the Nelson-Aalen plot still indicates that the system has an increasing 
ROCOF (concave plot). The p-values presented in figure 22 are all larger than 0.05 
and closely to 1.0, which means that this increasing ROCOF is quite occasional. 
Corresponding to B.a.1 and B.a.2, situation B.b.1 and B.b.2 can be obtained. They will 
not be repeated since the result is not statistically significant. 
 

 
Figure 21 Nelson-Aalen plot for dead events, AC generator B 
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Figure 22 Trend tests on dead events, AC generator B 

5.2.2.2 Relationship between notification date and failure impact 

This section investigates whether there is a relationship between notification time 
(calendar time in days) and failure impact (failure state) for AC generator B. 
Regression analysis is performed in Minitab, shown in figure 23. 

 
Figure 23 Linear regression analysis summary report, AC generator B 

 
 

Figure 23 presents the summary report of linear regression analysis. A linear model is 
proposed as 1.983 0.000319Y X= +  to describe the relationship between Y  and 
X , where Y  denotes the failure state and X  denotes notification date (calendar 

time). A large p-value, 0.495, means that changes in Y  are not associated with 
changes in X . Conversely, a small p-value, less than 0.05, will indicate strong 
relationship between the predictor X  and the responseY . 
 

Further, the nonlinear regression analysis is performed with various examined 
expectation function, for instance exponential, power and logistic. Due to few data 
items, lack of fit test cannot be carried out in Minitab. The test is used to verify 
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whether the examined model fits the data. With unavailability of giving such a test, 
the results from nonlinear regression analysis are not reliable. The test result is not 
copied here due to page limitation. 

5.2.3 Discussions on Analyzed Results 

Table 5 Results of statistical analysis on AC generators 
 Consider statistical 

significance 
AC Generator A AC Generator B 

Regard all notifications 
as failures 

Yes HPP HPP 

No Decreasing 
ROCOF 

Increasing ROCOF

Regard dead events as 
failures 

Yes HPP HPP 

No Increasing ROCOF Increasing ROCOF

Relationship between 
notification date and 
failure impact 

Yes No relationship No relationship 

 
 

From statistical analysis of SAP data on AC generator A and B, we catch distinct 
results, see table 5. The notifications do not reveal a systematic pattern. Leaving out 
statistical significance, it arrives that AC generator A has a decreasing ROCOF while B 
has an increasing one in case all notification events are treated as failures. This 
supposes that Statoil operates two different types of generators nevertheless they 
are same in reality. Another possibility is that the repair team takes the opposite 
maintenance strategy for two generators. If we only treat dead events as failures, 
both systems show the increasing ROCOF as with most machinery. We can treat this 
finding as tendency estimate and it is infeasible to affirm its validity with a highly 
weak statistical significance.  

5.3 Vibration Trend Analysis on Gas Turbine 

For gas turbines, same assumptions as for AC generators are employed. Several 
sensors are installed on the gas turbines for monitoring their operation condition, 
such as pressure, compression and vibration. Vibration signals of gas turbine B are 
treated in the following analysis. SAP is used to track the date where an unsatisfied 
condition occurs. Subsequently, time series plots are employed to look into whether 
or not the unsatisfied day’s monitoring data has a monotonic trend, where can be 
used as input for RUL assessment (section 4.2.1, page 21).   

5.3.1 Gas turbine B 

Table 6 shows the SAP data of gas turbine B. The regularity on the sequence of failure 
impact from this table cannot be found. The analysis of gas turbine B then 
concentrates on its vibration data. The sensor KRI.80VT6418A/Y/PRIM that monitors 
displacement of this turbine is utilized for the following analysis. 
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Table 6 SAP data, gas turbine B 

 
 

First, vibration signals on unsatisfied days are analyzed. Figure 24, 25, 26 and 27 
present relative signal trends in year 2010, 2011, 2012 and 2013 separately. The 
lateral axis is the time horizon from 0:00 to 23:00 within an unsatisfied day. The 
vertical axis denotes the monitoring displacement of gas turbine B. The situations 
where gas turbine stops running the whole day are removed for the sake of 
investigating signal trends. From these figures, we see that the highest displacement 
is close to 40(25/04/12) while the lowest value is 0(28/03/11). Table 7 summarizes 
the signal trend. It arrives that no uniform monotonic tendency is detected.  

 
Figure 24 Vibration signal trend on unsatisfied days in year 2010  

 

Gas Turbine B Notif Crea Failure Impact Failure State No. of notificaitons Calendar time (Sj) Interoccurrence time (Tj)
2009/6/3 U 1 0 0 0
2009/6/9 U 1 1 6 6

2009/6/11 S 2 2 8 2
2009/11/4 U 1 3 154 146

2009/12/30 D 3 4 210 56
2010/4/14 U 1 5 315 105
2010/6/27 S 2 6 389 74
2010/6/29 U 1 7 391 2

2010/10/28 U 1 8 512 121
2011/3/28 S 2 9 663 151
2011/9/8 U 1 10 827 164

2011/10/1 U 1 11 850 23
2011/12/14 U 1 12 924 74

2012/3/1 U 1 13 1002 78
2012/4/25 U 1 14 1057 55
2012/7/6 U 1 15 1129 72

2012/10/2 U 1 16 1217 88
2012/12/6 U 1 17 1282 65

2012/12/20 S 2 18 1296 14
2013/2/28 S 2 19 1366 70
2013/4/2 U 1 20 1399 33

2013/5/23 S 2 21 1450 51
2013/7/11 U 1 22 1499 49
2013/7/13 D 3 23 1501 2

Year 2012

Year 2013

Year 2009

Year 2010

Year 2011
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Figure 25 Vibration signal trend on unsatisfied days in year 2011  

 

 
Figure 26 Vibration signal trend on unsatisfied days in year 2012  

 

 
Figure 27 Vibration signal trend on unsatisfied days in year 2013 
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Table 7 Summary of vibration signal trend 
Date of 
notification 

Failure Impact Signal trend 

09/06/10  Unwell Increasing 
28/10/10 Unwell Increasing Decreasing 
28/03/11 Sick  Increasing Decreasing Increasing Decreasing
08/09/11 Unwell Increasing Decreasing 
01/10/11 Unwell Decreasing 
14/12/11 Unwell Increasing Decreasing 
25/04/12 Unwell Decreasing Increasing 
02/10/12 Unwell Decreasing Increasing 
06/12/12 Unwell Increasing Decreasing 
20/12/12 Unwell Increasing Decreasing 
28/02/13 Sick Increasing Decreasing 
02/04/13 Unwell Increasing 
23/05/13 Sick Decreasing 
11/07/13 Unwell Increasing Decreasing 

  

Following the first investigation, this part reviews how the signal changes over time, 
and for clear rendering of images, we use a period of two weeks (blue color) prior to 
an ‘unsatisfied’ days (red color). To improve analysis efficiency, graphs with unclear 
signal trends are not presented. Figure 28 records the ones where explicitly reveals 
vibration signal tendency.  
 

The plot 2009/12/30 indicates that the monitored displacement increases on the 
notification date compared to prior two weeks. This value shown in 2013/5/23 and 
2013/7/13 goes down to zero on the notification day. 2011/3/28 and 2012/12/20 
present a sudden increasing of displacement and a decreasing in a rapid sequence. 
The displacement on the notification day 2013/2/28 remains a similar level 
compared to the control period.  
 

Since vibration signals do not illustrate monotonic tendency on unsatisfied days, it is 
unfeasible to correlate condition monitoring data to the time of failure. All known for 
sure is that a great contrast between peak values and valley values normally indicates 
an unsatisfied operating condition. A rapid decrease or increase of monitoring 
displacement could cause severe damage to gas turbines and that should be handled 
within manageable proportions. At which level the displacement shows a failure 
requires special knowledge on vibration of gas turbines, and equipment supplier may 
provide the threshold value. 
 

Statoil practically operates a control room where monitors various parameters on 
technical condition of specific types of equipment. Equipment specialists set limits 
for these indicators, including displacement of gas turbines. Two alerts are kept for 
operation control. The higher limit value, second alarm, indicates a failure event 
where needs immediate maintenance intervention.  
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Figure 28 Vibration signals variation tendency 

5.3.2 Use of Overall Vibration Data for RUL Assessment 

Vibration monitoring is a fundamental element in diagnostics of rotating machinery 
within CBM. The thesis barely gets a sampled vibration data of gas turbines. 
Monotonic signal trend cannot be achieved. The analysis of sampled vibration data 
contributes to comprehensive understanding of turbine failures. It is appropriate for 
tracking the signal tendency in the notification day or during a specific period but 
cannot be of service to precise RUL assessment. 
 

As discussed in section 4.3 (page 25) the establishment of degradation model 
requires large amount of raw data therein run-to-failure tests are desirable but is not 
realistic for the production-critical equipment. Experiments are performed to extract 
and capture monotonic behavior of vibration signals. Model training solely relying on 
imperfect data cannot gather our reliance.  

5.4 Recommendations for Statoil on RUL Assessment 

Based on discussions in section 5.2.3 (page37) and 5.3.2 (page41), it comes to the 
conclusion that the quality of data derived from SAP and PI is not sufficient to 
generate uniform and strong conclusions concerning ROCOF and monotonic signal 
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tendency. Failures of AC generators and gas turbines are randomly changing and 
unpredictable with feasible techniques. In addition, no strong relationships between 
notification date and failure impact are revealed.   
 

To some extent, improving the quality of notification records is not more challenging 
than analyzing the data. A number of factors may have negative effects on the quality 
of SAP, for instance delayed reports, editing errors and missing data caused by 
technical problems. Table 8 illustrates current situations, challenges and 
corresponding suggestions to better achieve RUL assessment for Statoil. Green ones 
are assumed to be easy for implementation. Orange ones perhaps have some 
difficulties to be realized. Red ones are the most difficult issues to be handled.  
 

Table 8 Challenges for Statoil on RUL assessment and relative recommendations 
Current Situation and Challenge Recommendation 
Specific issues 
Unwell, sick and dead event occurs 
randomly. Cannot get its reasonable 
sequence. 

Improve the quality of SAP reports. Improve 
notification quality. Reexamine the nature of 
failure classification; maybe utilize more 
classification states. Build a classification system 
with different criteria, for instance reliability and 
maintenance cost.  

Two comparable generators have 
opposite ROCOF. Cannot get a 
uniform failure tendency. 

Check the difference in operating conditions for 
the two generators, such as stress and 
temperature. Investigate whether their spare 
parts are same or different.   

Health condition of the equipment is 
unclear after each repair.  

Evaluate the system’s health condition for each 
completed maintenance intervention, for 
instance as good as new and as bad as old. 

Vibration signals of gas turbine do not 
indicate any strong monotonic trend. 
Cannot use it as input for RUL 
estimation models. 

Link PI to SAP. Collect and analyze vibration data 
for every time the monitoring value hits the first 
alarm and second alarm separately and give 
each of these situations a failure classification.  
Carry out specific run-to-failure tests to collect 
sufficient raw data where tracks the most 
monotonic trend for RUL assessment. 

Cannot acquire data on lubrication oil 
condition and acoustic noise signals. 
Relevant estimation models are 
inapplicable. 

Install bespoke monitoring equipment to collect 
such data. Lubrication oil condition monitoring is 
highly recommended (see section 4.2.2, page 24)

General issues 
Little condition monitoring data with 
limited types of monitoring 
parameters.  

Equipment experts are necessary to set valuable 
monitoring parameters for concerned systems. 
Use effective and reliable sensors to collect 
required large amounts of monitor data. 

Matching theoretical RUL assessment 
models with various types of 
equipment. 

Test research models for concerned system. 
Adjust model parameters. Perform necessary 
experiments. 
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Chapter 6 Case Study - Maintenance 

Optimization 

This chapter performs case study on maintenance optimization. The objective of this 
chapter is to link case studies to imagined current maintenance practice and future 
improved maintenance strategies. It is proposed to demonstrate potential savings 
through adopting more advanced methods using existing data in a better manner.   

6.1 Introduction  

As investigated in chapter 5, the thesis does not have sufficient data to develop 
degradation models for both AC generators and gas turbines. Statistical analysis on 
AC generators does not demonstrate any tendency on ROCOF. Deterioration models 
have difficulties to describe random failures without any regularity. It is unfeasible to 
correlate condition monitoring data of gas turbines to the time of failure. Traditional 
condition monitoring methods, for example, WT and FFT, cannot be demonstrated. 
The data analysis hence cannot give satisfactory results for further work on 
maintenance optimization. In this context, the case study conducted in this chapter is 
of principle where real condition data is not applied.     
 

6.2 Degradation Models  

The classification regime as previously shown in section 5.2.1.1 (page 30) is utilized.  
Figure 29 shows the assumed degradation process with ideal sequence of unsatisfied 
states. In this figure, ( )Y t  is a performance variable to measure degradation 
processes. It describes the state of the system at time t . The first decision variable in 
the maintenance strategy based on this process is the inspection interval. The second 
one is the maintenance limit ( )Y s , which is decided by time to a sick event sT . 
Without any maintenance intervention, the system deteriorates into the dead state 
characterizing ( )Y d  as failure limit.  

 
Figure 29 Assumed degradation process
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In the case study, the following assumptions are used: 

(1) The presumed equipment is a piece of mechanical equipment. The time to a 
dead event is Weibull distributed with an ageing parameter 2.6α = .   

(2) 1T  is referred as the time to an unwell state. 2T  is the time to a sick event. 

3T  denotes the time to a dead condition. The sum 1 2 3T T T+ +  has same 
expected value and standard deviation as for 3T . The mean time to the dead 
event 3MTTF  is assumed to be 100 days. 

(3) It is assumed that the transition is chronologically from unwell to sick, and 
then dead without stepping back at any time. 

6.3 Cost Model - Maintenance Optimization  

This section constructs cost models for two situations with distinct maintenance 
strategies. As deduced in section 6.2: the first one does not perform regular 
inspections while the second one dose. Table 9 lists important elements to build the 
cost model and relevant assumed values.  

Table 9 Cost elements with assumed values 
Cost Model Elements Assumed Value 

Mean time to failure without maintenance 
WOMTTF =100 (days) 

Ageing parameter, alpha α =2.6 
The (unavailability) cost per system failure 

UC =4000 (1000NOK) 
The cost of preventive maintenance 

PMC =550 (1000NOK) 
The cost of corrective maintenance 

CMC =800 (1000NOK) 
The cost per inspection 

IC =5 (1000NOK) 

The cost of renewing the system at state l  RCC =500 (1000NOK) 
 

These values are proposed dependent on the following arguments: 
(1) PMC  is close to RCC . PMC  in maintenance policy (a) is the cost of replacing 

a unit or performing a complete overhaul preventively. It is similar to RCC , 
the renewal cost in (b). Even though replacing a ‘sick’ unit is costly than an 
‘unwell’ one, RCC  on different states should be expected in the same order 
of magnitude with PMC . This is due to the consideration that (i) preventive 
maintenance and renewal actions can all be planned in advance, for instance, 
plan for shutdown, make spare parts available and bring personnel for 
maintenance work; and (ii) both activities bring the item to a “as good as new” 
condition.     

(2) CMC  is higher than PMC  and RCC . CMC  is the corrective maintenance cost 
where cannot be planned and unexpected. The unit is perhaps in a state with 
severe damages. A repair is more demanding in this case.  

(3) UC  is the highest. UC  is the unavailability cost related with the system 
failure. It is extremely costly in the O&G industry since the production is 
completely lost during the unexpected repair. 5U CMC C=  is utilized. 
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(4) IC  is the lowest since condition monitoring techniques could be used for 
inspection and that average cost is rather low. 

 

Cost Model with No Inspection – Based on BRP 
 

First consider a traditional maintenance strategy where no inspection is carried out. 
The block replacement policy (BRP) best fits the case taking into account the 
presence of minimal or imperfect repair. Let τ  denotes the preventive maintenance 
interval. ( )Eλ τ  denotes the effective failure rate.   

Total cost per unit time: ( ) / ( ) ( )PM CM U EC C C Cτ τ λ τ= + + ×  
 

The excel spreadsheet “BRPSImple.xls” given by course PK8207 is employed to get 
the result of τ  and ( )C τ , see the result copy shown in figure 30. The preventive 
maintenance interval is 41 days with a total cost per unit time approximately 22 
(1000NOK). The standard deviation in the time to failure = coefficient of variance×

WOMTTF =0.41314*100=41.314 and its variance is 1706.85, where the coefficient of 
variance is found by the same excel spreadsheet.   

  
Figure 30 Result of cost per unit time without inspection 

 

Cost Model with Inspection – Based on Markov State Model 
 

The second maintenance strategy is considered to be improved and executed with 
inspections. With a finite number of states, Markov state model with inspections is 
utilized to demonstrate this policy.  

Total cost per unit time: ( , ) / ( ) ( , ) ( , )I CM U E RCC l C C C l C rr lτ τ λ τ τ= + + × + ×  
 

The excel spreadsheet “MaintOp.xlsm” given by course PK8207 is employed to get 
the result of ( , )E lλ τ , ( , )rr lτ  and ( )C τ , see the result copy shown in figure 31. The 
system is supposed to start in a perfect state and jumps to a higher state ( iy  to 1iy + ) 
with a time independent intensity iλ  where 0,1,2i = . τ  under this policy refers as 
inspection interval. Let 2 0/V λ λ=  to model the assumed the increasing ROCOF. The 
factor V  is used to describe how much faster failure progression is just before 
failure in contrast with the initial (perfect) state. Let l  to be the maintenance limit, 
where the system is replaced with a new one if the state at an inspection is greater 
or equal than the limit state. Practically there is a probability q  to assess the 
performance of inspection. For simplicity, q  is assumed to be 0. Let ( , )E lλ τ  
denotes the effective failure rate and ( , )rr lτ  signifies the renewal rate where their 
values are derived in an excel sheet. 
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In order to achieve the “correct” WOMTTF  and its variance, the number of state r  
and factor V  are varied. It is found that the variance of T1 + T2 + T3 is close to the 
variance in the time to failure in BRP when r  is set to be 7 and V  is 4. The 
standard variance is coefficient of variance × WOMTTF = 0.41467 100× =41.467 and 
the variance is 1719.51, where the coefficient of variance is derived by the same 
excel spreadsheet. Further the maintenance limit is considered to be 5. The previous 
“unwell-sick-dead” is not used since such situation generates a large variance 
compared to the one in BRP. 

 
Figure 31 Result of cost per unit time with inspection 

 

Maintenance Program  
 

Table 10 presents the result comparison on two cost models. Maintenance strategy 
with inspections has the lower value and therefore is the cost-optimal alternative. 
  

Table 10 Result comparison 
Maintenance Strategy Total cost per unit time 
Without inspection Approximately 22 (1000NOK) 
With inspection Approximately 10 (1000NOK) 

 
 

The maintenance program is recommended to be built dependent on Markov state 
model with inspections. Its inspection interval is 5 days. The improved strategy with 
inspections contributes to nearly 50% cost savings.  

6.4 Result Discussion 

Seven states are considered to stick the Markov state model. These states can be 
determined by setting a specific monitoring value for each of them, for instance 
velocity and acceleration of rotating machinery. The lowest value indicates the best 
condition while the highest denotes the dead state. Equipment specialists are 
required to set these critical values. The inspection interval of 5 days is not realistic 
on condition that condition monitoring methods are employed. It is a challenge for 
the Markov state model to demonstrate this process with a finite number of states.  
 

Since the procedures to establish the optimal maintenance program are dependent 
on assumed deterioration models and cost values, in practice, the program will vary 
on condition that distinct degradation models are applied as well as real costs are 
considered. It is expected that the maintenance strategy with inspections is the 
optimum since the inspection cost is rather low, particularly with applied condition 
monitoring techniques.  
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Chapter 7 Summary and Recommendations 

for Further Work 

Chapter 7 summarizes the thesis and discusses some recommendations for future 
work.  

7.1 Summary and Conclusions 

In overall, it is concluded that the main objectives of this thesis have been realized. A 
brief summary of achievements is presented below related to each objective. 
 

Objective 1 - Review the literature regarding various use of the term residual useful 
life as a basis for giving an explicit definition to be used through the work. 
 

The various use of the term RUL is investigated and summarized in chapter 2, where 
a comprehensive literature review on RUL assessment is performed. Challenges 
within RUL assessment are indicated, followed by a terminology study to interpret 
RUL in different aspects. In maintenance engineering, the RUL links to diagnostics 
and prognostics. The purpose is to use automated methods to analyze the 
equipment degradation and calculate the acceptable remaining life before the critical 
failure; therein condition monitoring techniques and appropriate monitoring data 
processing methods are significant. The statistical perspective to describe RUL has 
two cases, one for repairable items, and the other for non-repairable items. 
Reliability models as well as statistical theory are critical elements in explaining RUL 
from this view. The state-of-the-art RUL assessment methods are presented in table 
B. 1 (pageTable B. 1 Summary of various RUL estimation methods 54). 
 

An explicit definition of RUL is determined by measures applied to evaluate the 
usefulness of concerned equipment. Chapter 3 proposes a new approach to define 
RUL based upon this principle. Table 1 (page 17) provides a preliminary solution for 
evaluation of equipment usefulness. Figure 9 (page 18) shows a conceptual diagram 
applicable for RUL assessment.  
 

Objective 2 - Identify two to three classes of critical equipment types as a basis for 
case studies. Such classes could be rotating equipment, static equipment and safety 
systems. 
 

Rotating equipment has been chosen as the first type of production-critical 
equipment at the Kristin field for the pilot investigation as the results of discussions 
in the R&D project executed by SINTEF/NTNU. Electrical equipment also attracts the 
interests of Statoil, but was not handled in the thesis work due to project constraint 
and time limitation.  
 

Objective 3 - For each of the identified classes the literature shall be revived with 
respect to which deterministic, probabilistic and combined models are proposed to 
link technical condition indicators and other degradation measures to RUL.
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Deterministic, probabilistic and combined models that link degradation behavior to 
RUL are referred as RUL assessment methodologies. Chapter 4 carries out revived 
literature investigation on such methods with rotating equipment concentrated. 
Major failure causes are first reviewed. Analyzing vibration signals, lubrication oil 
condition and acoustic noise signals contribute to rotating machinery failure 
detection and RUL prediction.  
 

Two phases are required to assess the RUL of rotating equipment. The first stage is to 
establish degradation model dependent on run-to-failure data. Signal processing 
techniques, for instance WT and FFT, are used to obtain the most monotonic 
degradation behavior during the run-to-failure tests. The time to failure can be 
determined by the point of time when the RMS hit the threshold value where could 
be set by equipment specialists. The second stage is to predict future health 
condition of the equipment based on established behavior models. Degradation 
behavior models have many branches developed through various experiments, for 
example ε -Support Vectors Regression model continuous, hidden Markov model 
and Gaussians hidden Markov models.  
 

Objective 4 - Select one or two cases where models, methods and real condition 
data could be applied in the aging and life extension management. 
 

Reaching an agreement with the supervisor and R&D project team, AC generators 
and gas turbines are targets for the case studies. Chapter 5 performs statistical 
analysis on SAP data of AC generators and vibration signal trend analysis on gas 
turbine B. The analytical methods are limited by the data type we get which is 
notification event data and sampled vibration data.  
 

For AC generators, the analysis does not reveal any statistically significant ROCOF. 
The notifications are not demonstrating a systematic pattern. Without statistical 
significance, an extraordinary finding is that AC generator A has a decreasing ROCOF 
while AC generator B has an increasing one, whereas in reality they are in same type 
with identical maintenance strategy. The analysis principles are well demonstrated 
even though the result is not statistically significant. 
 

The analysis of vibration signals of gas turbine B does not achieve any monotonic 
tendency. Some notification days record the increasing trend. A number of them 
show the decreasing trend. The others do not present any proneness. No strong and 
monotonic trend is obtained in signal change based on the sampled vibration data. 
This restricts the application of RUL assessment models proposed in chapter 4. 
 

The quality of SAP and PI data is not sufficient to achieve any crucial results for RUL 
assessment. The main weakness in the current data is that specific systematic pattern 
within notifications cannot be derived. More efforts on improving reporting quality 
and assuring data completeness are expected as discussed in section 5.4 (page 41).  
 

Objective 5 - The case studies shall demonstrate how the maintenance program 
will affect the technical condition on the equipment, and how to balance 
maintenance effort with other measures such as upgrading projects, renewal and 
modification. 
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In agreement with the supervisor, objective 5 is performed where limits to a 
theoretical case study through utilizing assumed deterioration models and cost 
values.  
 

As summarized in objective 4, it is concluded that the data in case study is not 
sufficient for implementation of objective 5. Maintenance program is efficient for 
equipment with clear failure pattern. In particular, maintenance program is 
established in view of proper degradation modelling. With such considerations, 
chapter 6 carries out a case study on maintenance optimization following necessary 
assumptions. Block replacement policy and Markov state models with inspections are 
employed to construct cost models to optimize maintenance. The result of the 
principle case study shows that maintenance strategy executing inspections is the 
optimum. It is expected that the industry can draw on these valuable theoretical 
investigations as of contributions for optimal maintenance planning.  
 

Statoil do have several upgrading projects, renewal and modification actions where 
are recorded. Nevertheless these notes are not open for the thesis and were not 
pursued.  

7.2 Limitations of Approach 

The approach of the thesis is subject to literature review and supervision. The 
literature review is limited by accessible resources with full text through NTNU library. 
RUL assessment is a relatively new research field where illustrates theories and 
experimental models as a majority. Most study papers are developed by carrying out 
specific laboratory tests and subsequent model trainings. With no experiments and 
no possibility to train any model, RUL assessment within the thesis is obviously more 
theoretical. Applications of assessment techniques require suitable data whereas the 
project team provides only event data and sampled monitoring data. The results of 
data analysis are not satisfactory where advanced assessment methods cannot be 
employed. 
 

Several meetings with SINTEF project team and Statoil experts provide background 
information and sampled maintenance data of AC generators and gas turbines. The 
deadline of thesis is three months prior to the project ‘Kristin Regularity’. This limits 
the prospect of retrieving more valuable information and data from Statoil.  

7.3 Recommendations for Further Work 

The thesis is performed with a limitation of restricted period of time as well as 
limited approaches discussed in section 7.2. It is recommended to further develop 
and improve the thesis work. A number of suggestions are given below. 
 

Link to theoretical work (from academic perspective) 
 

The new way to define RUL presented in chapter 3 is considered as a start for the 
industry to develop RUL assessment as a tool to optimize maintenance in ageing and 
life extension management. Further work in developing measurements for 
equipment evaluation is necessary and anticipated, for example, expand and apply 
Table 1 (page 17) with practical cases. The positive effects in using RUL assessment 
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for optimal repair cannot be generated without clear criterion for evaluation of 
equipment usefulness. More efforts are required in such domain.  
 

The conceptual diagram of RUL illustrated in figure 9 (page18) only considers one 
failure mechanism, fatigue, as an example. In reality equipment degradation are 
generally caused by several failure mechanisms. It is a challenging task to establish a 
realistic degradation process curve. For a specific piece of critical equipment, 
performing ageing tests to solve this challenge is believed to be an important step 
forward. The future work is advised to develop suitable methods to process test data 
as well as specific RUL estimation models.  
 

Link to case study (from industrial perspective) 
 

As previously demonstrated in section 5.4 (page 41), more efforts on RUL assessment 
of rotating equipment are expected in the future.  
 

What Statoil have done: 
 

The application of SAP and PI system provides a solid foundation for future RUL 
assessment as well as optimal maintenance planning. The failure classification is 
regarded as a start to identify available equipment states where Markov state model 
could be utilized. Condition monitoring of vibration on rotating equipment facilitate 
the early detection of failures.  
 

Recommendations: 
 

The failures are classified as three types: unwell, sick and dead. In reality such 
classification can be further developed to consider more states, in which fits the 
Markov state model in a better manner (section 6.4, page 46).   
 

Lubrication oil condition is strongly recommended to be monitored for 
production-critical rotating machinery since this technique delivers roughly 10 times 
earlier warnings for machine failures compared to vibration based monitoring 
techniques (section 4.2.2, page 24). Noise signals can also be collected for RUL 
prediction and it allows for remote and non-contact monitoring of the machine in 
contrast with vibration analysis that requires a direct contact with the equipment 
(section 4.2.3, page 24). 
 

The application of single processing techniques on acquiring mot monotonic 
degradation behavior is dependent on sufficient raw data collected from 
run-to-failure experiments (section 4.2.1, page 21). Deterioration models can be 
further trained and tested based on experiments in the coming performance (section 
4.3, page 25). Provided with valid deterioration models and true maintenance costs, 
the optimal maintenance strategy could be determined as well as feasible 
maintenance programs. 
 

The case study only considers rotating equipment. Electrical equipment is also crucial 
for safe and efficient oil and gas production. The following work could make some 
contributions in this aspect.
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Appendix A Technical Background 

This appendix gives a short and brief introduction of technical terminology 
demonstrated in the thesis where is probably not well known to readers. The relative 
sources that can provide an in-depth understanding of these terms, techniques and 
models are also indicated at the end of each part. 

A.1 Empirical Mode Decomposition (Source: Wikipedia) 

The empirical mode decomposition (EMD) method is the essential part of the 
Hilbert-Huang transform. A complicated data set can be decomposed into a finite and 
small number of components through using the EMD method. The EMD method 
reduces given data into a collection of intrinsic mode functions (IMF) where the 
Hilbert spectral analysis could be applied then.  
 

The Hilbert-Huang analysis is a method to examine the IMF’s instantaneous 
frequency data as functions of time which shows sharp identification of embedded 
structures. Its final result is an energy-frequency-time distribution, named as the 
Hilbert spectrum. More information about the EMD and Hilbert transform can be 
found: Alexander D. Poularikas. 2010. Transforms and Applications Handbook, Third 
Edition. CRC Press.  

A.2 Paris Law Model (Source: Wikipedia) 

Paris law is also designated as Paris-Erdogan law. It correlates the stress intensity 
factor to sub-critical crack growth within a fatigue stress regime. The basic formula is 

mda C K
dN

= Δ , where a  is the crack length, N  is the number of load cycles, C  

and m  are material constants, KΔ  is the range of the stress intensity factor. It is 
extensively used to predict life for fatigue cracks. More information about Paris 
model can be found: Xiong, J. J. and Shenoi, R. A. 2011. Fatigue and fracture 
reliability engineering. Springer, 22 Jan 2011. ISBN 978-0-85729-218-6.  

A.3 Grey System Theory (Source: Kayacan et al., 2010) 

Grey models are developed to predict the future value of a time series. It is only 
dependent on a set of most recent data relying on the window size of the predictor. 
Two assumptions are within this theory. One is that all data values are assumed to be 
positive in this model. The second is that the sampling frequency of the time series is 
fixed. The main task of grey system theory is to extract realistic governing laws of the 
system with given data. A general grey model is ( , )GM n m , where n  is the order 
of the difference equation and m  is the number of variables. More information 
about grey system theory can be found: Liu, S. F., J. Forrest and Y. Lin. 2011. Grey 
systems, theory and applications. Springer. ISBN 978-3-642-16157-5. 
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A.4 Diffusion Process (Source: Wikipedia) 

A diffusion process is to solve a stochastic differential equation. Its mathematical 
definition is given as “a Markov process with continuous sample paths for which the 
Kolmogorov forward equation is the Fokker-Planck equation”. Examples of diffusion 
processes are Brownian motion, reflected Brownian motion and Ornstein-Uhlenbeck 
processes. Si et al. (2012) indicate that diffusion processes are capable of describing 
random degradation among stochastic process-based models; therein Brownian 
motion with a linear drift becomes popular to model degradation recently. More 
information about diffusion process and its applications can be found: Fuchs, C. 2013. 
Inference for diffusion processes. Springer. ISBN 978-3-642-25969-2. 

A.5 Nonlinear autoregressive exogenous model (Source: 
Wikipedia) 

A nonlinear autoregressive exogenous model is a nonlinear autoregressive model 
with exogenous inputs in time series modeling. The model links the current value of a 
time series to past values of the same time series and current and past values of the 
exogenous series. It can be demonstrated as 

1 2 3 1 2 3( , , , ..., , , , , ...)t t t t t t t t ty F y y y u u u u ε− − − − − −= + . y  is the interested variable which 
we intend to predict and u  is the variable determined externally. Here ε  is the 
error term (or noise). The function F can be a neural network, a wavelet transform, 
etc. More information about this model can be found: Nelles, O. 2001. Nonlinear 
system identification. Springer. ISBN 978-3-662-04323-3. 

A.6 Artificial Neural Network (Source: Wikipedia) 

Artificial neural networks are computational models that are able of machine 
learning and pattern recognition. The networks are commonly demonstrated as 
systems of interconnected ‘neurons’ which computes values from inputs by feeding 
information through the network. This method is used to solve tasks that are difficult 
to find solutions using ordinary rule-based programming. More information can be 
found: B. Yegnanarayana. 2009. Artificial neural networks. PHI Learning Pvt. Ltd., 14. 
Jan. 2009. 

A.7 Levenberg-Marquardt Algorithm (Source: 
Wikipedia) 

The Levenberg-Marquardt algorithm is also designated as the damped least-squares 
method. It is used to solve problems facing non-linear least squares. This algorithm is 
known as a popular approach to solve generic curve-fitting problems. For instance, 
given a set of m  empirical datum pairs of independent and dependent variables,

( , )i ix y , the sum of the squares of the deviations 
2

1
( ) [ ( , )]

m

i i
i

S y f xβ β
=

= −  will be 
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minimal if the parameters β  of the model curve ( , )f x β  is optimized. The other 
application of Levenberg-Marquardt algorithm lies in solving nonlinear inverse 
problems. More information about this theory and its implementation can be found: 
Naveen, M., S. Jayaraman, V. Ramanath and S. Chaudhuri. 2010. Modified Levenberg 
Marquardt Algorithm for Inverse Problems. Lecture notes in computer science volume 
6457, pp 623-632. 

A.8 ε -Support Vector Regression (Source: Loutas et al., 
2013) 

The concept of ‘support vector machines’ is introduced by Vapnik(1995) for solving 
classification and regression problems. Given a set of n observations, generally, each 
of them lies in an M-dimensional space, M

ix R∈ , 1,...,i n= . For each observation 
vector, a required mapping is presented. It is further assumed that a set of target 
values iy R∈  contains the vector of mappings. The objective of regression is to find 

a transformation f , which fulfills  in the best way. The support vector 
context gives a good answer to this problem: 
Given a parameterization ( ) w xTf x b= + , find w  that minimizes

1

min 1 1w w+C max( (x ) , 0)
w 2

n
T

i i
i

y f
n

ε
=

− − . ε -SVR comes from the second term 

of the function, which is an ε -intensive cost function. Details concerning the 
application of support vector regression can be found in the book Christmann and 
Steinwart, 2008. Support Vector Machines. Information Science and Statistics. 
Springer, ISBN:978-0-387-77241-7. 

A.9 Principal Component Analysis (Source: Wikipedia) 

Principal component analysis (PCA), a statistical procedure, uses orthogonal 
transformation to transfer a number of observations that are possibly correlated 
variables into a set of linearly uncorrelated variables, named principal components. 
Mathematically, PCA is an orthogonal linear transformation that converts the data to 
a new coordinate system. The first principal component has the greatest variance by 
some projection of the data. Correspondingly, the second coordinate has the second 
greatest variance, and so forth. Further knowledge about PCA could be found: Jolliffe 
I.T. Principal Component Analysis, Series: Springer Series in Statistics, 2nd ed., Springer, 
NY, 2002, XXIX, 487 p. 28 illus. ISBN 978-0-387-95442-4 
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