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Preface

This master thesis is carried out at Department of Production and Quality
Engineering, NTNU and is cooperated with the company Statoil. The thesis is a part of
education plan in the Master Program RAMS (Reliability, Availability, Maintainability
and Safety) Engineering. It is performed during the spring semester of 2014. The
topic was put forward in January 2014 by Professor Jgrn Vatn. It is extended from the
specialization project “Life extension and maintenance optimization in the oil and gas
industry”.

The report is written for readers with some background of maintenance engineering
and statistical theory. It is also assumed that the reader has a number of knowledge
regarding signal processing techniques. Besides, several technical terms are less
familiar to readers, hence it is recommended to view technical background in the
appendix and consult relevant professional books. Mathematical details could not be
interpreted in the thesis due to limits on the page.

Trondheim, 2014-06-10

Bin Lu
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Summary and Conclusions

This thesis is of service to realize residual useful life assessment. Everything in the
world deteriorates over time. To know the residual useful life of a piece of equipment
contributes to optimal decision-making on its usage time and discards. The rewarding
also lies in reduced maintenance cost.

For the application of industry process, a novel approach is proposed to define the
term residual useful life, making efforts to satisfy diverse criterion on evaluation of
equipment usefulness. In current research findings the definition of residual useful
life varies. For maintenance purposes, residual useful life is explained by using
diagnostics and prognostics, which are critical elements in condition based
maintenance. In the domain of reliability, residual useful life is interpreted with
probability theory, where mean residual life and conditional survival probability are
frequently utilized.

Rotating equipment is concentrated in which state-of-the-art models and methods
for residual useful life assessment are investigated in this thesis. Residual useful life
assessment techniques are dependent on deterministic, probabilistic and combined
models in representing deterioration behaviors on various types of equipment. Apart
from statistical theory, vibration signals, lubrication oil condition and acoustic noise
signals are principal elements for the assessment. A stereotyped residual useful life
assessment procedure consists of two interdependent stages, off-line deterioration
model learning and on-line prognostic model training. In the best of circumstances,
the sufficient raw data for the assessment are acquired through run-to-failure tests.

The targeted systems for case study are AC generators and gas turbines served for oil
and gas production in Kristin field. Statistical techniques are employed to process and
analyze notification data of generators. The regression analysis shows an
unimportant relationship between notification date and failure impact. Statistical
trend tests do not verify the existence of any monotonic rate of occurrence of
failures on AC generators. Vibration data analysis of the gas turbine does not provide
monotonic information where residual useful life assessment models could be
applied for. The notifications are not demonstrating a systematic pattern. Failures of
AC generators and gas turbines are tend to be random. Challenges and
recommendations are pointed out for Statoil to execute residual useful life
assessment based on current situations. Lubrication oil condition monitoring is
strongly recommended in this aspect.

Procedures to realize maintenance optimization are demonstrated as a theoretical
case study. Markov state model with inspection and block replacement policy are
employed to construct cost models on maintenance optimization. With assumed cost
elements, an optimal maintenance program is proposed. The analytic process is
practically valuable to verify whether the regular inspection is the optimum
maintenance strategy.
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A specific point in time irrespective of global time and local time
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Chapter 1 Introduction

This chapter demonstrates the background, problem description, objectives,
limitations, approach and the structure of the report for the thesis.

1.1 Background

The oil and gas operators on the Norwegian Continental Shelf (NCS) are facing
considerable challenges as facilities are entering the tail-end production phase.
Several oil and gas (O&G) facilities were built in the 70’s and 80’s, with a design
lifetime typically of 20-30 years, and are now approaching or have reached their
design lifetime, see figure 1 (Ersdal et al., 2008). This challenge also applies to
operators worldwide due to 30% of more than 6,700 operating platforms have been
in operation for more than 20 years (Nabavian et al 2010). With the application of
new advanced technology, the recovery factors have been gradually increased over
many years, for example from 20 to 50%. The recovery of the oil and gas resources
offshore Norway contributes to approximately 25% of Norway’s GNP, 35% of the
state income, 20% of all investments and 50% of the export value (Ersdal et al. ,
2010). The improvements in extraction technologies as well as high energy prices
have led to opportunities for extending the operation beyond the intended lifetime.

Number of installed facilities

s o
I

) 1 1
L ol o HRNL B0 o dNHA
1972 1977 1882 1987 1892 1697

YEAR

Figure 1 Age distribution of existing installations on the NCS (Ersdal et al., 2008)

The effectiveness of O&G industrial performance is determined by the reliability,
availability and safety of a system. To ensure that an installation is able to provide
sufficient performance on various criteria such as production regularity, safety and
maintenance cost it is required to know the technical condition of its parts,
components and systems. The residual useful life (RUL) assessment attracts strong
interests in industry since it has critical impacts on planning of maintenance activities;
spare parts management, functional performance assurance as well as profits
obtained from the installation. RUL assessment is also considered to be a critical
aspect of aging and life extension management.

1.2 Problem Description

A main challenge when extending the life of an ageing infrastructure or system is to
achieve a longer period of economic benefit while ensuring that safety and integrity
are maintained. Key factors to consider are the physical deterioration, operation, and
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maintenance of the system, although less obvious factors may also have an
important impact on safety, such as the obsolescence of equipment and changes in
the organization. Operating beyond the original design lifetime is known as life
extension (LE). Ageing is related to deterioration and may pose a serious risk to the
safety of the infrastructure, the personnel, and the environment as the equipment
becomes less reliable, obsolete or no longer fit for service, reducing the reliability of
safety systems.

The gained knowledge of RUL assessment would lead to the development of
cost-effective and lifetime-optimized operation of an installation. The use of technical
condition indicators may be one starting point to assess residual useful life (RUL) for
these parts, components and systems. For this thesis work, it follows a research and
development (R&D) project sponsored by Statoil and executed by SINTEF/NTNU. The
contribution from the master thesis as part of the R&D project is shown in chapter 5.

1.3 Objectives

The scope of the master thesis will concentrate on methods, models and approaches
to realize RUL assessment. The following objectives will be achieved through the
thesis work:

1. Review the literature regarding various use of the term residual useful life as a
basis for giving an explicit definition to be used through the work.

2. ldentify two to three classes of critical equipment types as a basis for case studies.
Such classes could be rotating equipment, static equipment and safety systems.

3. For each of the identified classes the literature shall be revived with respect to
which deterministic, probabilistic and combined models are proposed to link
technical condition indicators and other degradation measures to residual useful
life (RUL).

4. Select one or two cases where models, methods and real condition data could be
applied in the aging and life extension management.

5. The case studies shall demonstrate how the maintenance program will affect the
technical condition on the equipment, and how to balance maintenance effort
with other measures such as upgrading projects, renewal and modification.

1.4 Limitations

The thesis is subject to available methods, models and approaches of dealing with
ageing facilities and RUL assessment presented in the literature review and extended
work on account of the time limit and complexity. Another limitation lies in available
technical and maintenance data supported by Statoil within limited time. Practical
RUL assessment is relied on sufficient data and proper prognostics models. Within
this thesis, the relatively small amount and few types of real condition data is a major
limitation, leading to marginally application of various RUL assessment techniques
and RUL estimation models.

1.5 Approach

The main approach of this thesis is based on literature review and discussions with



expertise in the project team ‘Kristin Regularity’. The first objective is performed by
reviewing the research work that gives the term residual useful life survival. It also
contains an extensive review of RUL assessment techniques up to now, by the use of
database Engineering Village and Science Direct. Objective two follows the R&D
project. The SINTEF project team outlines the production-critical equipment that is
analyzed in the thesis. The third objective is achieved by a revived literature review.
Objective four considers a specific case study and applies real condition data that is
supported by Statoil. The fifth purpose is accomplished by a further work considering
an establishment of maintenance program based on the result of RUL assessment.

1.6 Structure of the Report

The thesis mainly consists of three parts. The first part, chapter 2 and 3, is centered
on presenting explicit understanding and interpretation of the term RUL. Challenges
within RUL assessment are indicated. A terminology study is deduced stating from
lifetime, following useful life and residual useful life. The definition and presentation
of RUL are based on two main aspects, engineering perspective and statistical
perspective. Chapter 2 also gives an introduction on technical condition indicators
(TCI). Relevant academic work within TCI research is reviewed. A state-of-the-art
review on RUL assessment methodology is included. Chapter 3 compares RUL
definitions survived in existing literatures and proposes a new approach to interpret
the term.

Part two, chapter 4, identifies critical equipment and revives literature view on
relative deterministic, probabilistic and combined models linking degradation
measures to RUL assessment. RE is the targeted system. A depth methodological
review with RE focused is presented in view of previous literatures in chapter 2.
Recent academic contributions within RUL assessment of rotating equipment are
investigated and summarized.

The third part performs case studies. Chapter 5 carries out statistical analysis and
applies real condition data in the ageing and life extension management. The SAP
(Statoil Computer-aided Maintenance Management System) data of AC generators
and gas turbines are processed and analyzed, in order to catch their failure
tendencies. Chapter 6 proposes the case study on maintenance optimization.
Degradation models suitable for a piece of presumed mechanical equipment are
constructed where concentrates on deterioration state modelling. Cost models are
established based on two distinct maintenance policies.

Chapter 7 gives the summary and conclusion of this thesis. Recommendations for
further work are presented in the end.

The preliminary study report and progress report of this thesis are not included in
keeping with requirements of the responsible supervisor, Professor Jgrn Vatn.



Chapter2 Literature Review

To acknowledge the full scope of RUL assessment, it is required to give a clear
definition of the term residual useful life. Chapter 2 reviews the literature with
respect to various use of the term RUL and gives a distinct definition of RUL used in
the thesis. It first starts with an overview of industrial practice on RUL assessment,
addressing its practical significance, its role in this thesis and a number of challenges
within such field. At the end of this chapter, several explanations used to describe
RUL are examined and compared, aiming to rationalize the term residual useful life.
The end of this chapter gives an introduction on technical condition indicator.

2.1 Overview of Applications on RUL Assessment

RUL assessment or estimation has received the industry’s great interests recently
with environmental, economic and operational purposes. It is regarded as a useful
tool in decision-making, specifying current state of the installation and predicting the
future remaining life, to decide whether the remaining life of equipment is sufficient
for a second life. Great efforts on RUL assessment have been performed in a variety
of fields.

As far as | know, the earliest research within RUL assessment is carried out by Watson
and Wells (1961), where the work uses mean residual life to study burn-in. In modern
industry, RUL assessments are becoming mandatory for economic consideration and
assurance of RAMS (Reliability, Availability, Maintainability and Safety) requirements.
The aerospace industry predicts the RUL of aircraft critical systems in advance so that
effective corrective maintenance can be implemented in time and thereby assures
flight safety (Chen et al.,, 2011). The motivation for RUL assessment in nuclear
industry derives from the demand to avoid loss of revenue on condition that
unexpected equipment failures will hamper power production of the plant
(Shumaker, 2011). In railway domain, RUL assessment is primarily performed as
fatigue life evaluation which is addressed in aging management as well as safe
transport (Yasniy et al., 2013). The other applications of RUL prediction lie in finance,
medicine and weather forecast etc. (Son et al., 2013).

RUL assessment additionally plays a significant role in managing product reuse and
recycle. The industries, especially manufacturing and energy domains, are facing a
great deal of pressures both from authorities and the public to reduce their industrial
wastes. An effective and widely-used strategy is to avoid discarding products and
facilities prematurely, which reduces the energy consumption to process raw
materials and components. The associated concern will be how to ensure the
reliability of used parts without compromising their desired performance. RUL
assessment is able to deal with such challenges through estimating the reuse
potential of used parts and facilities (Mazhar et al., 2007; Si et al., 2010).

As various areas, the oil and gas industry also requires RUL assessment to be
performed on parts, components and systems in order to ensure production
regularity, achieve lifetime optimized operation and hereby gain considerable profits.

4



Particularly for offshore industry in the North Sea Norway, the easy oil and gas has
been recovered by the large, nevertheless, continuing production is anticipated
owing to improved extraction technologies and respectable energy prices. This
requires extending the lifetime of production and process facilities since most of
them are approaching their design life (Hudson, 2010). Relating to the safety concern
in offshore O&G industry, catastrophic failures should be avoided during both normal
production and extend-lifetime phase, knowing the RUL facilitate system operators to
implement timely maintenance actions for this case.

In this thesis work, the role of RUL assessment is highlighted as a tool to plan
necessary maintenance optimally and further eliminate unnecessary maintenance
work in aging and life extension management. The practice of RUL assessment is
expected to bring benefits to the O&G industry comprising reduced downtime and
maintenance cost, optimal management of spare parts together with improved
equipment availability.

2.2 Challenges of RUL Assessment

Although extensive work have been done in RUL assessment, it is still difficult to
accurately predict the residual useful life under complex operating environments and
dynamic loads, particularly with multiple failure modes considered. Operating RUL is
dependent on the real conditions of use. The stochasticity, as one of the main
characteristics in the system operation, leads to many difficulties and uncertainties in
assessing the RUL of equipment, both for deterministic approaches based on failure
mechanisms and probabilistic approaches utilizing statistical techniques. As Jin et al.
(2013) indicated, uncertainty management is the most challenging aspect of residual
life performance prediction.

For complex or large-scale engineering systemes, it is typically either cost-expensive or
time-consuming to obtain the physical failure mechanisms ahead to capture the
physics of failure. The specific failure mechanism knowledge is often hard to gather
without interrupting operation. Each engineered system may require creating an
entirely new algorithm and model to assess the RUL. The RUL assessment based on
failure mechanisms hence has limited ability to transfer from one component to
other types of components. Practically deterministic approaches have been realized
their inadequacies in tackling the stochastic nature of deterioration process in RUL
assessment. On the other hand, the probabilistic approach to assess RUL needs a
large quantity of data as well as specialized analysis techniques to process such data.
The accuracy is dependent on the quantity and quality of the data and statistical
learning techniques. The uncertainties within such approach require rather complex
probabilistic tools to handle, particularly taking into account the real operational
mode (Si et al., 2013; Maio et al., 2012). To sum up, the recent research in RUL
assessment mainly intends to find out solutions for the following questions, which
also denote the challenges within RUL assessment:

1. How to develop practical models to describe the residual useful life on various
types of equipment concerning the integration of real world dynamical
situations?



2. For two main approaches to assess RUL of a piece of specific equipment,
utilization of deterministic models based on failure mechanism and probabilistic
models dependent on distribution of failure records. Which one is promising?

3. Refer to deterministic models, what kind of knowledge is required to adopt such
models to assess RUL and correspondingly how to validate their usefulness?

4. Refer to probabilistic models, what kind of data is required to feed these models
and how to evaluate the credibility of such models?

5. For industrial application, it may be interested in: How to integrate results of such
assessment to the decision-making process? Further, one is perhaps interested in
knowing how to standardize or simplify the procedure for RUL assessment?

2.3 Terminology

The result of terminology study on RUL and TCl is shown in this section. A deep and
comprehensive understanding of RUL cannot be achieved without a clear cognition
of the term lifetime and useful life. The procedure to explain RUL in this section is
conducted sequentially starting from the term “lifetime”, followed by “useful life”
and ending up with “residual useful life”.

2.3.1 Lifetime

The research of lifetime is extremely widespread through studying length of life of
organisms, electronics, structures, materials and devices etc. Normally, it is measured
in hours, cycles or in other unit (Finkelstein, 2008). The lifetime in the thesis refers to
the time period from the activation time of an item till its end point of service. The
lifetime is generally treated as a positive random variable 7, characterizing by its
distribution function F(¢) . Researchers are interested in knowing the mean life7,, in
practice, which is obtained by analyzing time-to-failure data of the same type of
components under same conditions. For example, the mean life 7,, =7IT(8+1)/ 5]

is obtained with using Weibull distribution to model the failure event data of an item
(Mazhar et al., 2007). The RUL assessment essentially needs to describe the lifetime
in the whole remaining interval of time.

Chakravorti et al. (2013) conceptualized the lifetime of equipment in three ways:
physical lifetime, technical lifetime and economic lifetime. Physical Lifetime links to
the state where the equipment cannot be used any more in its normal operating
state. Technical Lifetime corresponds to the state where the equipment has to be
replaced owing to technical reasons even if it can perform its functions physically.
Economic Lifetime refers to the situation where the capital value of a piece of
equipment depreciates annually.

The technical lifetime links to the case that maintenance of the equipment is
exceedingly difficult due to unavailability of spare parts. The economic lifetime
relates to the case that operating and maintenance costs may increase over time
because of aging and are even beyond the depreciated value of the equipment,
indicating the replacement of the equipment is cost-effective (Chakravorti et al.,
2013). For a piece of equipment, its technical life or economic life can go to the end



even though its physical life left is sufficient to perform the desired performance. The
term of life in RUL assessment in this thesis therefore varies to different conditions of
the equipment and technical or economic factors that affects the residual useful life
of the equipment.

2.3.2 Useful Life

There are a number of definitions with respect to the term useful life.
“InvestorWords.com” defines the useful life as “the length of time that a depreciable
asset is expected to be usable”, while “Accounting Coach” demonstrates the useful
life as “the period of time that will be economically feasible to use an asset.” In
“Businessdictionary.com”, the useful life is defined as “the period during which an
asset or property is expected to be usable for the purpose it was acquired”. For an
industrial system, its useful life is the operating time in which it can perform required
functions within the specified performance limits. The useful life perhaps terminates
upon a failure or by a determination that the system is no more useful. Figure 2
shows the timeline of the useful life of a system concerning its potential for life
extension. At time {,, the decision regarding life extension has to be taken. The
system’s predicted useful life is ,.To ensure that the system will not terminate
before ¢,, either opportunistic repairs/replacements are required to be planned till
t, orall the crucial replacements are required to be done at #,(Vaidya and Rausand,
2009).
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Figure 2 Timeline of the useful life of a system (Vaidya and Rausand, 2009)
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With various definitions, it is evident to see that the key word in the term is “usefu
and is difficult to get its uniform definition. Various criterion may be taken to assess
whether an asset or equipment is useful or not, for example, depreciation, economic
returns and physical condition. To acquire useful life criterion for industrial systems,
Vaidya and Rausand (2009) give suggestions to combine expertise from the field of
design, manufacturing, safety and system, material degradation, structural integrity,
finance and human factors. The research work specifically addresses several criteria
to answer if a subsea system will be “useful”: (1) predefined functional requirements,
(2) availability, (3) safety and regulatory requirements, (4) environmental
requirements, (5) maintenance cost and (6) overall profit margins (Vaidya and
Rausand, 2011).

In the bath-tub curve, the useful life is a period of time where an item performs its
required functions stably in the normal operating state, typically referring to the
normal life period. However, a specific facility perhaps discards even though it is in its
normal life period, which is due to undesirable uptime or unavailability of spare parts
support. It is more necessary and realistic to consider the value of profits to define
the useful life in reality. The useful life in this thesis consequently signifies the period



in which a piece of equipment performs its required functions stably meanwhile
brings desirable benefits to the owner.

2.3.3 Residual Useful Life

The term of residual useful life is widely-used both theoretically and practicably in
operational research, statistics literature, reliability assessment, maintenance
optimization and various engineering fields, sometimes named remaining useful life
and the acronym RUL is used. Engineers and statisticians give different explanations
on this term. From the engineering point of view, RUL is closely associated with
physics of an item and failure modes of the equipment. With statistical thinking, the
analysis of RUL is established upon probabilistic models and further work in adopting
this sort of model to describe residual useful life. In this thesis, the former view
corresponds to deterministic models for RUL assessment while the latter view is
denoted as probabilistic models. It is expected that the determination of RUL will not
be particularly restricted to a specific date and time.

2.3.3.1 Define RUL from engineering perspective

There is no uniform concept survived in the literature review to define RUL in
engineering area. The meaning of RUL depends on various context and conditions
used in research and study. For instance, Chakravorti et al. (2013) indicated that RUL
of transformers is expressed as the service years left to lose the mechanical strength
of solid insulation under operational conditions. Yet for carbon filters, its RUL is
described as breakthrough times affected by adsorption rate, carbon properties,
airflow rate etc. (Mason et al., 2014). Hudson (2010) demonstrates the remnant life
of an asset during its life-extended phase, as shown in figure 3. Therein a remnant
life assessment is regarded as an estimation of the remaining life by calculating or
quantifying the effect of the deterioration mechanisms in comparison with the
original design. Failure modes play a significant role in understanding RUL for
engineers. It is common to link residual useful life in materials engineering to fatigue
life, crack propagation rate and corrosion rate, etc. In mechanical engineering, RUL
refers to wear rate. Apart from calendar time, the number of cycles/revolutions is
also used in expressing RUL, especially for rotating machinery (Ahmadzadeh &
Lundberg, 2013a).
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Figure 3 The asset life cycle (Hudson, 2010)

Industrial and maintenance engineers are constantly making efforts to anticipate the



failure manifestation and act proactively in order to maximize the equipment’s
performance and profits. Recently the modern industry has put considerable
attention on implementation of condition based maintenance (CBM), which
effectively utilizes knowledge of failure modes to predict RUL of the equipment. CBM
is a decision-making strategy to diagnose impending failures, reduce the uncertainty
of maintenance activities and foretell the remaining operational life (Peng et al.,
2010). It is defined as “predictive maintenance performed as governed by condition
monitoring programs” (ISO 13372:2012). Practically condition monitoring data, such
as vibration data and oil analysis data, are collected and processed to decide future
equipment health condition and further to predict its RUL (Tian et al., 2011). The
reliability and maintenance cost are main criterion frequently adopted by
maintenance engineers to schedule maintenance work in reality. Figure 4 shows the
relationship between RUL and such two criterions. RUL denotes as time to failure.
When it reaches zero, the system will break down, correspondingly, the maintenance
cost increases significantly and the reliability of the system decreases. It needs to be
emphasized that knowledge on the failure propagation process and failure
mechanisms are important in an effective CBM program (Peng et al., 2010). In the
view of maintenance engineering, the understanding of RUL is closely related with
diagnostics and prognostics which are two significant aspects of CBM.

Best time to do
maintenance

= =g 30 15
Time to Failure \I

Figure 4 Relationship between RUL and maintenance cost & reliability (Peng et al., 2010)

Diagnostics is defined as “examination of symptoms and syndromes to determine the
nature of faults or failures (kind, situation, extent)” by ISO 13372:2012. Its main task
is to detect, isolate and identify faults when abnormity occurs. It shows whether the
monitored system indicates something wrong, locates the faulty item and determines
the nature of the fault. Although diagnostics do not address direct information on
RUL assessment, it provides the operator reports on whether a specific failure is
present or not, particularly when failure prediction of prognostics fails and a failure
occurs RUL estimation is more likely a prior event analysis in analogy to prognostics
but not a posterior event analysis as diagnostics (Jardine et al., 2006)..

In comparison with diagnostics, the term prognostic is used more frequently in
relation with RUL. RUL estimation is regarded as one of the most critical components
in prognostics and health management (PHM) (Si et al., 2013). The objective of
prognostics is to predict the RUL (Ahmadzadeh and Lundberg, 2013a). ISO
13372:2012 defines prognostics as “analysis of the symptoms of faults to predict
future condition and residual life within design parameters”. Similarly, SO
13381-1:2004 defines prognosis as a “technical process resulting in determination of
remaining useful life”. IEEE Reliability Society gives a relative definition combining
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PHM as “a system engineering discipline focusing on detection, prediction and
management of the health and status of complex engineered systems” (Ma, 2009).
Farrar and Lieven (2006) describe damage prognosis as “the estimate of an
engineered system’s remaining useful life”.

Prognostics are usually effective for faults and failure modes with known, age-related,
or progressive deterioration characteristics (ISO 13381-1:2004). It uses automated
methods to detect, diagnose, and analyze the degradation of physical system
performance, calculating the acceptable remaining life before the occurrence of
unacceptable degraded performance (Peng et al., 2010). Predicting the residual
useful life of an item is a main concern of prognostics, as Jardine et al. (2006) pointed
out, the most widely used prognosis is to predict the time left before the occurrence
of a failure given the current machine condition and past operation profile. Therein
the time left before failure observation usually refers as RUL.

The end of this section reviews how an engineer gives response when he is asked
about RUL. In the engineer’s opinion, RUL is the operating time left on equipment
before it is down for required major maintenance. Some RUL is dependent on Vendor
recommendations, some are based on experience, and the others are counted on
deterministic analyses. The majority of them are dependent on experience. In the
operation, remaining life and risk of failure are both useful to be predicted. A number
of maintenance actions are based on RUL while others are relied on current
condition. The engineer stressed that RUL turns out to be critical when failure modes
are known or predictable within scheduling maintenance. In the event of
unpredictable failures and randomly changing conditions, the RUL becomes
meaningless in planning maintenance (Banjevic, 2009).

2.3.3.2 Define RUL from statistical perspective:

Compared to engineers, researchers in the field of statistics, operation and reliability
analysis generally talk about life models, economic models and replacement policies
(Ahmadzadeh & Lundberg, 2013a). The residual useful life of a component or system
is typically demonstrated as the length from the current time to the end of its useful
life, expressed as a nonnegative random variable 7. A simple and concise way to

acquire 1 is through achieving the period between the static mean life 7,, and

the dynamic actual used life7, (Mazhar et al.,, 2007). According to Rausand &

Hgyland (2004), Finkelstein (2008), Nystad (2008), Banjevic (2009) and Ahmadzadeh
& Lundberg (2013a), the following part of this section is deduced to define residual
useful life for non-repairable and repairable items separately in the perspective of a
reliability analyst or a statistician. This part is carried out in a general way and not
refers to a specified industrial system. The end of this section further gives an
application case, which demonstrates RUL of an industrial system from statistical
perspective, namely RUL in a subsea context.

RUL for non-repairable items

Non-repairable items are generally discarded by the first failure. For an item of age ¢,
consider the nonnegative lifetime random variable T, representing random time to
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failure of this unit. Let R(¢#) = Pr(T > ¢),t = 0, be its reliability function. 7 is assumed

to be absolutely continuous for simplicity. Its existing probability density function
(Pdf) is denoted as  f(z) and its cumulative distribution function (Cdf) as F(¢) :

szlMTSOﬂ—HG>0:FRm:ﬂﬂwWJZQ
0, t>0.
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F(t) denotes the probability that the item fails within the time interval (0,7] and
a maintenance action is required to be performed. The failure rate function z(¢) of

the item is obtained:
dﬂzmnma<TSrm4T>0=hmF0+Myfﬁ)1 _f0

at—=0 at 10 at R() R(t)
Extending from the statement above, the residual useful life RUL(t)=T, =T —t
(whenT >t), is used to describe the remaining time to failure beyond the age ¢, see
figure5.let R (x)=P (T, >x)=P(T—t> x|T >t), x20 beitsreliability

function, A(x) =M =z(t+x) be RUL failure rate function,
R, (x)
X f(t+x) . . .
f.(x)= W =z(t+x)R, (x) be RUL probability density function and

F,(x)=1-R, (x)=1=P(T,>x)=1-P(T —1>x|T > 1) be RUL cumulative
distribution function. Further, mean residual useful life (MRUL) is defined as
w(t)=E(T—|T20)= j "R (x)dx = j ‘R (x|t)dx = r .
o " 0 R(t)
conditional survival function of an item that has survived till the age .
z(1)

, where R(x|t) isthe
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Figure 5 RUL for non-repairable items

RUL for repairable items

Repairable items are able to perform the desired functions after the implementation
of proper maintenance actions. They are typically not discarded by the first failure.
The end service time for them may be determined by high maintenance cost or
unavailability of maintenance support.

Consider a repairable item that is put into operation at time 7=0. §, denotes the
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time of first required maintenance action. It is assumed that the repair action is
perfect which is able to bring the failed item back to the functioning state. It is
further assumed that the repair time is neglected. A sequence of required
maintenance action times §,,S,... will be obtained. Let 7, be the interoccurrence

time fori =1,2...and N(¢) be the integer number of maintenance actions in the time
interval (0, t]. S; refers to the global time while 7, indicates the local time, hence
S, =T +T,+..+T,. {N(#),t=0} is called a counting process. It can be represented
by the sequence of maintenance action times S§,,S,... or by the sequence of
interoccorrence times 7,7,.... The most popular stochastic point processes used to

model repairable systems are homogeneous Poisson process (HPP), renewal process
(RP), and nonhomogeneous Poisson process (NHPP). The RUL corresponds to the
period between an arbitrary point in time ¢ (a specific point in time irrespective of
global time and local time) and the time to next required maintenance action. For
instance, if we stand at time ¢ and intend to know the RUL of the item, its RUL can

be described as S, -7 , see figure 6.
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Figure 6 RUL for repairable items (adapted from Nystad, 2008)

RUL in a subsea context

The research work to define RUL within a subsea context is performed by Vaidya and
Rausand (2009; 2011) from a statistical view. The technical health, future operating
conditions and future environmental conditions are decided as main factors
influencing RUL of a subsea system: (1) TH, denotes the technical health of the

system at time ¢, see figure 7. It corresponds to the knowledge (K) about the
t,TH(t,),K) expresses the
relation between the technical health and the reliability of the equipment. (2) O(z))

equipment up to time ¢. The survivor function R(t

describes expected operational conditions and planned interventions that are
predicted at time ¢, estimating the operating condition that would prevail from ¢
till the end life of the item. The estimation relies on the experience and expert
judgment. (3) E(f,) expresses the expected environmental conditions that may
prevail after time ¢. T is used to measure the time from ¢ until the system is no

longer useful. The distribution of T

u

relies on the technical health TH, attime ¢,

the expected operational conditions O(¢) and the expected environmental
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conditions E(¢) . The probability distribution function of 7, at f is achieved to be
F,(t|t,) =Pr[T, <t|TH,,0(t), E(1,)].
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Figure 7 Timeline for remaining useful life (Vaidya and Rausand, 2011)

2.3.4 Technical Condition Indicator

Technical condition can be viewed as a static value. It affects the residual useful life of
a component or system, particularly for cases when operators change the operating
conditions of equipment (Thorstensen, 2007). A simple example could be: the
residual useful life of an engine shaft may increase or decrease in case the external
stresses are reducing or increasing. Through the literature review, the main
contribution to use technical condition indicator for estimating RUL lies in
Thorstensen (2007), Nystad (2008) and Vaiyad & Rausand (2009, 2011).

The technical condition of an item at time ¢ in Vaiyad & Rausand (2009, 2011)’s
research is defined as the status or perform ability of the item as measured by a set
of indicators at, or immediately before time 7. A number of indicators either
continuously measurable or discrete are needed to tell the status of the item, such as
vibration, oil level, speed etc. The technical condition of an item at time ¢ is
denoted as x(t) = (x,(2),x,(?),...x,(¥)) with k different indicators measured. It is

regarded as a measurement (sensor readings) and no assessment is contained.

In the Thorstensen (2007) and Nystad (2008)’s research, technical condition indicator
refers to technical condition index. It is a measure developed in the EUREKA project
“Ageing Management (1996-1999) (www.eureka.be)”, as part of the Norwegian
Research Council founded program PROSMAT 2000. The purpose of this project is to
develop a new and reliable variable, technical condition index, which is only affected
by the change of the system’s technical integrity. The following definition is used:

The Technical Condition Index, denoted TCl, is defined as the degree of degradation
relative to the design condition. It may take values between a maximum and a
minimum value, where the maximum value describes the design condition and the
minimum value describes the state of total degradation.

Early alerts will be available in case problems are developing by using TCls and the
organization can take necessary actions. Compared to traditional indicators, for
instance, regularity, accident statistics and environmental emissions, TCI has a high
sensitivity with respect to technical condition. The evaluation of technical condition
is related to five principal contexts: safety, environment, availability, man-hours and
costs (Nystad, 2008).

Thorstensen (2007) presents a model developed to examine and obtain optimal
solutions when it is possible to classify the present technical condition of the items
and predict the residual life. The thesis work uses a Markov model to describe the
deterioration process, where the sequential decision problem is modelled as a
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discrete time Semi-Markov Decision Process. An offshore gas turbine is worked on as
a cases study. Nystad (2008)’s research utilizes aggregated TCl paths to estimate the
RUL of natural gas export compressors. The technical condition determination
methods are derived from the TeCoMan software. TeCoMan possessed by Marintek
is a program developed to calculate the TCl as well as other types of KPI’s. It is
supported with a range of different aggregation methods and functions to transfer
measurement readings to a unified indicator (TeCoMan Wiki).

As reviewed from Nystad (2008)’s project work, the RUL assessment only uses
reliability as the single criteria to evaluate the usefulness of the equipment, which
may not be so appealing on condition that maintenance cost, spare parts availability
etc. are considered in reality. Integrating information obtained from RUL estimation
to decision-making in maintenance planning is the most important aspect which
gives the assessment process meaningful. The lack of incorporating maintenance
issues in RUL assessment may weaken the producing practical significance. Another
limitation is related to the real condition data required to feed TeCoMan program
and reliability models. The uncertainty management in the RUL assessment is not
performed in the research, which reduces the accuracy of the estimation. The
assumption of perfect inspection in Thorstensen (2007)’s thesis is quite limited in
reality.

2.4 State-of-the-art Review on RUL Assessment
Methodology

RUL assessment comprises two aspects. One is related to RUL estimation, namely
systematic use of information to predict or calculate RUL, depending on specific
contexts, either to achieve a numerical value or the probability of surviving a
particular period of time, or simply a classification of degradation states. The other is
to describe the process of judging the tolerability, the goodness etc. of the results
from RUL estimation/analysis. The former finds the ‘values’ of RUL and the latter
compare it with relevant requirements, such as RAMS requirements (Lecture note:
TPK5170). RUL estimation is the core part of assessment procedure. The sequential
comparison of estimation results with requirements generally appeals for an
establishment of maintenance program for a piece of equipment in case its
estimated RUL does not fulfill the expectation.

This section summarizes and compares current RUL estimation methods used both in
the theoretical and practical work. The deterministic models based on physics of
failure and probabilistic models relied on statistical techniques are two separate
approaches to carry out RUL estimation, where the hybrid of such two methods also
survive in the research. The review watches the probabilistic model closely in view of
that no specific equipment is focused and no background information from the
industry is provided.

Table B. 1 (page 54) summarizes the state-of-the-art review on various RUL
estimation methodologies presented by different authors. The review is performed
through using the database ‘Engineering Village’ and limited to the accessibility to
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full texts. Most relevant and recent papers are recorded while non-relevant and
outdated papers are neglected. The literature investigation shows that prognostic
models are widely-adopted to perform RUL estimation through using given condition
and health monitoring information (Ahmadzadeh & Lundberg, 2013a; Son et al.,
2013; Si et al., 2012). Figure 8 demonstrates the taxonomy of different approaches
for RUL estimation. The techniques can be broadly classified as physics-based,
experimental, data-driven and hybrid approaches, where experience based approach
is not addressed. The comparison of these methods is presented in table B. 2 (page
59).

Physics based methodology typically builds theoretical models to demonstrate the
physics of the system and relative failure modes, for instance, fatigue crack growth,
corrosion and wear. Experimental based methodology uses experiments to collect
essential raw data to achieve a better understanding of the life time of components.
The studies include, for example, energy engineering, engineering materials and
chemical processing. Even though scientists and researchers in such fields do not use
the terminology RUL, actually the experiments are designed for this purpose. Differ
from the two methods above, the data-driven methodology does not require specific
knowledge about products, but depends on the utilization of condition monitoring
data to estimate RUL, where generally expects a large quantity of data to be available.
Hybrid methodology indicates using two or more prediction methods in conjunction
to improve the accuracy of RUL estimation (Ahmadzadeh & Lundberg, 2013a; Son et
al., 2013; Si et al., 2012).

In this thesis, physics based methodology refers to the utilization of deterministic
models for RUL estimation. The data driven methodology corresponds to the
adoption of probabilistic models for this purpose. The hybrid approach uses several
different methods to estimate RUL. Experiment-based approach is not addressed

since it closely relates to specific engineering domains and requires experiments.
R
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Figure 8 Taxonomy of approaches to estimate RUL (Ahmadzadeh & Lundberg, 2013a)



Chapter 3 A Novel Approach to Define RUL

Chapter 3 gives a novel approach to define RUL. The term has various definitions
with different interpretation aspects based on review work. As a key measure of
using RUL to realize maintenance optimization, the new way to define RUL considers
maintenance issues as main target. Practically evaluating the usefulness of
equipment may become complex and difficult. Many efforts are required and
expected.

3.1 Comparison of Various RUL Definitions

The engineering perspective to define RUL is based on knowledge of engineering
principles, physics of failure and underlying failure mechanisms. In this domain,
engineers are required to possess professional knowledge on various deterioration
mechanisms, for instance fatigue, corrosion, embrittlement, erosion and mechanical
wear. The level of expert comprehension decides the accuracy of RUL estimation.
Generally there is a number of failure mechanisms associated with one specified
failure mode. The dominant failure mechanism takes the leading part in assessing
RUL of equipment. It is therefore not necessary to analyze all failure mechanisms but
competing ones to identify the dominant failure mechanism that limits the length of
RUL (Vaidya and Rausand, 2011).

A useful tool to identify the different failure modes in a hierarchical structure is
Failure Modes, Effects & Criticality Analysis (Rausand and Hgyland, 2004). In
industrial and maintenance engineering, RUL assessment needs to consider
monitored condition  monitoring information, operational, performance,
environmental information and degradation signals. Bespoke condition monitoring
equipment are required to be installed to provide such information, such as vibration,
oil condition, temperature, humidity, pressure, speed, loading etc. (Si et al., 2011).

The statistical view to define RUL only considers a component or system’s physical
condition without counting on any physics or engineering principle. Its fundamental
issue is to find the probability density function (PDF) of the RUL. Estimating the RUL
is then realized by evaluating the conditional lifetime distribution given that a system
has survived up to a specified time, for instance T—t|T >, where T signifies the

lifetime. The obtained RUL distributions generally depend on the life characteristics
of a population of identical systems and available lifetime data (Si et al., 2013). The
available statistical data determines the accuracy and authenticity of RUL assessment.
This point of view to define RUL properly applies to the situation where the relative
reliability function can be obtained, for example, in case the degradation life of an
item is described as a Weibull distribution, then the corresponding Pdf and Cdf is
known, further MRUL(t) can be obtained.

16
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Through the literature review, it is hard to arrive that whether the engineering
thinking to define RUL is more accurate or the statistical perspective to describe RUL
is more appropriate. Both of them have their own characteristics. The engineering
view requires professional knowledge on material degradation, equipment operation
etc. Generally speaking, knowing the dominant reason why the equipment fails
obviously contributes to better understanding its RUL survival length (Vaidya and
Rausand, 2011). The statistical view requires lifetime data to express the RUL. Si et al.
(2013) pointed out that such data are in short supply in reality or even non-existent
at all for systems that are costly or time-consuming to collect. An exact and
closed-form of the RUL distribution is perhaps only available for some special cases.
The real situation in defining RUL is normally restricted to the knowledge of
equipment possessed by operators and available data that can be used to feed RUL
estimation models. A hybrid approach to treat RUL assessment both dependent on
engineering thinking and statistical techniques is expected to be more realistic and
make up their own shortages.

The literature review indicates that the most fundamental challenge to define RUL in
industry still lies in which criterion is used to answer whether one component or
system is “useful” or not. The criterion differs to various duty holders and operating
environments. A starting point to define RUL should demonstrate how the term
“useful” means to the operator and what level of performance is anticipated on the
equipment. In case various criteria exist, the optimal ones can be decided through
utilizing multi-objective optimization methods.

3.2 A new idea to define RUL

Considering multiple criteria used to evaluate the usefulness of equipment

Differ from the conventional illustrations of RUL in the field of engineering and
statistics, a new way to demonstrate the RUL refers to the remaining time period of a
piece of equipment in where realize its anticipated performance and is able to bring
desirable profits to the owner. The criteria used to evaluate whether the
performance is desired or not, meanwhile to decide the threshold value shown in
figure 9, may vary due to different operation surroundings and various duty holders.

Table 1 A generic list of criteria to evaluate the performance of equipment (Adriaan et al.,

2010)

Criteria used to evaluate the performance of equipment
Output quality Output quantity
Reliability Availability
Maintainability Safety/Risk
Overall equipment effectiveness Logistics
Inventory of spare parts Personnel management
Environmental impact Technical support
Deprecation cost Operation cost
Maintenance costs(discounted) Maintenance quality

Table 1 gives a generic list of criteria for this concern. The owner can define the
required criterion to determine the point of time where the residual useful life ends,
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namely the time reaching the limit of threshold value. The RUL is then more likely an
economical quantity, taking various criterions into account. Compared with
traditional probabilistic approach to assess RUL through using reliability as unique
criterion, the utilization of various criteria for RUL assessment will make it more
widespread and practically appealing.
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Figure 9 A new way to determine RUL

As shown in figure 9, the threshold value may be derived from one of the criterion
listed in table 1, or a vector of several ones. A better practice of setting this value can
be achieved by considering engineering experience, the analysis of past data and the
recommended standards. The date 7, for the equipment to reach the threshold

value is assumed to be prior to the time 7, where critical failure occurs, otherwise

such thinking is meaningful less. RUL is then determined by the period between the
current time 7. and the time in which the equipment reaches the limit value,

namely RUL=T7, —T... Correspondingly, the residual useful life is equal to 7, —T.

The degradation progression curve is required to be established prior to
determination of RUL. S(¢) denotes the degradation level or state. Degradation
rate is then equal tod(¢) =aS(t)/at. The assessment of degradation rate requires
degradation models as well as data of measured historical degradation rate and
influencing factors.

The critical failure indicates a failure where brings huge damage to the equipment, or
even personnel injury and disasters. A direct and convenient way to determine the
critical failure time is through lifetime modeling. The second method to decide the
critical failure could be through using deterministic models based on failure
mechanisms. With proper treatment, the external triggering events, such as shock,
are also able to be included in this illustration.

In case reliability is selected as the single criteria, the traditional statistical way to
define RUL is sufficient for the assessment process. With this view, RUL assessment
equals to residual lifetime assessment. On condition that other criterions are
considered, for instance, safety and operation cost, it needs novel approaches,
perhaps relevant economic models, to integrate such input parameters to the RUL
assessment procedure.



Chapter 4 RUL Assessment on Rotating

Equipment

Chapter 4 starts to perform RUL assessments for critical type of equipment. The
determination of critical equipment follows the project “Kristin Regularity”. Kristin is
located in the southwestern part of the Norwegian Sea, 16 km south west of the
Asgard field. It has been developed with twelve production wells in four subsea
templates tied back to a semi-submersible platform. Kristin produces about 10
million cubic meters of gas per day. Production capacity is 125,000 barrels of
condensate and more than 18 million cubic meters of rich gas (www.statoil.com).

The analysis of data derived from SAP indicates that the gas export system
contributes the largest to production loss, and the maintenance cost of main power
systems is the highest. Based on study and discussion with expertise in the project
team, the rotating equipment is determined as the first type of critical equipment for
RUL assessment. This chapter starts with the study of major failure causes of rotating
equipment, following a state-of-the-art overview of most-relevant RUL assessment
methods.

In view of supported background information and already acquired maintenance
data from Statoil, RUL assessment will mainly takes reliability as criteria to evaluate
the usefulness of concerned equipment, meaning that the length of RUL ends at the
point of time when a critical failure occurs. In other words, the majority of RUL
assessment work equals to prediction of residual lifetime for specific equipment. The
novel definition of RUL given in chapter 3 requires various types of data for relevant
assessment work, for instance operation cost and depreciation cost, consequently
the innovative approach to estimate RUL is not able to be developed due to lack of
required data.

4.1 Rotating Equipment and Major Failure Causes

Rotating equipment are equipment that moves liquids, solids or gases through a
system of drivers, driven components, transmission devices and auxiliary equipment,
which is used to add Kinetic energy to a process. It is mainly classified as four types
on the basis of different functions (Forsthoffer, 2005), see table 2.

Table 2 Major types of rotating equipment (Forsthoffer, 2005)

Driven Drivers-prime Transmission devices | Auxiliary equipment
equipment movers

*Compressors *Steam turbines *Gears *Lube and seal systems
*Pumps *Gas turbines *Clutches *Buffer gas systems
*Extruders *Motors *Couplings *Cooling systems
*Mixers *Engines

*Fans
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Like other types of equipment, rotating equipment does not fail without a cause. A
comprehensive understanding of major failure causes of rotating equipment
contributes to better forecasting machinery failures as well as predicting the RUL.
Certainly, there are a number of factors required to be considered in RUL assessment
for rotating machinery, for instance, original design, manufacturing tolerance,
assembly, working environment, load nature and maintenance work. Particularly
taking the design philosophy into consideration, the interaction between applied
forces on rotating equipment under normal condition will lead to a stable operation
with minimum noise and vibration. The loss of equilibrium force as a result leads to
further fault enhancement (Da Costa et al.,, 2010). Noise and vibration signals
therefore provide distinct measurements on degradation status of rotating
equipment.

As a specialist providing rotating machinery consulting service to the O&G industry
over 40 years, Forsthoffer (2005) points out that the root cause of rotating machinery
failure lies in the supporting auxiliary system. A persistent inspection of auxiliary
equipment condition, such as temperature and lubrication oil level, is recommended
even during component replacement. OREDA handbook (2009) gives a list on failure
modes of gas turbines operating in the North Sea: abnormal instrument reading,
breakdown, external leakage-fuel, external leakage-utility medium, erratic output,
fail to start on demand, high output, internal leakage, low output, noise, overheating,
parameter deviation, minor in-service problems, structural deficiency, fail to stop on
demand, spurious stop and vibration. Therein noise and vibration is specially focused
in the thesis, intending to relate such failure modes to RUL estimation. Other failure
modes, for instance leakage and output issues, are not addressed due to inadequate
techniques for relating them to RUL estimation.

4.2 State-of-the-art Methodological Review on RUL
Assessment of Rotating Equipment

The existing methods to estimate RUL of rotating equipment can be grouped into
three main categories: (1) Reliability approaches-event data based estimation; (2)
Prognostics approaches-condition monitoring data based estimation; and (3) Hybrid
approaches-estimation based on both event and condition monitoring data (Heng et
al., 2009; Gebraeel et al., 2009; Sikorska et al., 2013). An overview of utilizing various
methods to estimate the RUL of rotating machinery can draw on relevant articles
listed in table B. 1 (page 54), article number: 4, 6, 10, 15, 17, 18, 22, 24, 30, 33, 35, 36,
43, 44, 45 and 47. The review shows that recent RUL assessment research is mainly
rotating-machinery-concerned, taking bearings for instance. Provided sufficient
information and data, both physics based and data-driven RUL estimation methods
are able to achieve the desired assessment purpose.

Generally, reliability approaches to estimate RUL are dependent on the distribution
of failure event records of a population of identical units. Machine reliability is
modelled through using parametric failure models, for instance Exponential, Weibull
and Lognormal, where a number of them are elaborated in most reliability-focused
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books, like Rausand and Hgyland (2004). This type of estimation is greatly useful to
manufacturers since high volumes of units are available to be taken as analysis
sample, but is less valuable to end users, for instance, mean-time-to-failure of a
whole population cannot attract interests of a maintenance engineer yet the ongoing
reliability information of a specific component or system does (Heng et al., 2009;
Gebraeel et al., 2009; Sikorska et al., 2013). This approach does not consider multiple
types of failure modes as well as dynamics of operating conditions and environments,
which limits its application in RUL assessment on rotating equipment working in
Kristin field.

Compared to reliability methods, prognostics approach and hybrid approaches is
much more promising in estimating RUL of rotating machinery (Heng et al., 2009;
Gebraeel et al., 2009; Sikorska et al., 2013). The defects caused by imbalance,
misalignment, bearing faults and lubrication faults all lead to variation of rotation of
the equipment. Therein the vibration inspection is widely adopted as diagnosis
methods to describe the deterioration process of rotating machinery (Goto et al.,
2008). An example could be predicting the RUL of rotating machinery through
sampling the acoustic signal over its lifetime. Scanlon et al. (2013) argues that the
acoustic noise signal contains sufficient information to effectively predict the RUL of
rotating equipment, illustrating by a case study where the used rotating machine has
several moving parts, including two rotating element bearings.

The following section demonstrates how to link vibration, noise signal and lubrication
oil condition to RUL estimation, with focus on vibration. The purpose is to
demonstrate most recent research work in this area and establish a solid foundation
for further determination of proper method utilized in case study considering real
condition data.

4.2.1 Vibration Signal Analysis for RUL Assessment

There has been an increasing strong interest to indicate the health of rotating
equipment through the analysis of vibration signature, normally frequencies and
magnitudes (Atoui et al., 2013). The vibration signal is not a direct source of
information and its effectiveness in RUL assessment depends on available signal
processing techniques.

Fourier Transform

The Fourier Transform is a traditional approach for vibration signal analysis,
particularly with the consideration of stationary signals. It exposes the frequency
feature of a time series x(#) through transforming it from the time domain into the

frequency domain, hence generating the spectrum X (f)that includes the entire
signal’s fundamental and its harmonics (Al-Badour et al., 2011). One of its definition

is given by Gao and Yan (2011): X(f)zf x(t)e'dt , where x(t) is the

time-series signal and f denotes the frequency composition. Afterwards, the
Fourier Transform is extended to the fast Fourier transform (FFT)-based order
analysis (OA) technique, discrete Fourier Transform (DFT) and short time Fourier
Transform (STFT) in the particular field of vibrations and machinery health
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monitoring, allowing for an effective tracking of speed-driven harmonics of rotating
equipment. Although FFT is widely used in signal processing, whereas it has no ability
to demonstrate the time dependency of the spectrum of analyzed signal, which limits
its application in dealing with non-stationary signals. It is recommended to employ
FFT to process stationary signals (Al-Badour et al., 2011).

Wavelet Transform

Wavelet transform (WT) is an effective tool to process non-stationary signals and
extract the signal’s time domain (Loutas et al., 2013). Al-Badour et al. (2011) point
out that the utilization of wavelet transform is able to present a local signal analysis
or zoom on concerned time intervals whereas keep the spectral information intact.
This tool is particularly significant for applications on damage (crack) or fault
detections.

Mathematically, a wavelet is a square integral function w(¢) which satisfies

- W
J: %df <o, where W(f) isthe Fourier transform (i.e. frequency domain) of

the wavelet function y(¢) (time domain). Its continuous version, the continuous
I = « =@

wavelet transform (CWT), is defined as wt(v,w)=TJ x(t)y (——)dt, where
v v

v () is the complex conjugate of the scaled (parameter ») and translated
(parameter @) wavelet functiony(:). The practical signal processing normally
employs the discrete wavelet transform (DWF), since performing the CWT will lead to
the problem of redundant information. The DWF can be achieved by discretizing the
scale parameter v and translation parameter @, until get the satisfied signal
mapping. Another major wavelet transform is wavelet packet transform (WPT). It is
an attractive tool to detect and differentiate transient elements with high-frequency

) (0) =2 h(kul (21— k)
features. The wavelet packet is defined as ¢ ith

W)=Y g ).

n=0,1,2,..andk =0,1,...,m, where u”(¢) is the scaling functiong(¢) and u'”(¢)
is the base wavelet functiony/(¢). The superscript () signifies the jth level
wavelet packet basis. There will be 2/ wavelet packet bases at the jth level
(Al-Badour et al., 2011; Gao and Yan, 2011).

Loutas et al. (2013) perform the latest RUL assessment work through using wavelet
transform technique combined with data-driven probabilistic & -Support Vectors
Regression (SVR) (Article No. 46 in table B.1, page 54). The gradual degradation of
rolling bearings is considered and their features are extracted from the acceleration
waveforms. Several run-to-failure experiments in bearings under various loading
conditions are carried out with two vibration sensors mounted on the bearings for
the monitoring of degradation phenomena. The threshold value is decided as a
failure criterion in the test, namely an indicator of critical fault, and the RUL therefore
ends in case the critical fault occurs. The tests are stopped when the vibration root
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mean square (RMS) acceleration hit the threshold. Both FFT and WPT are employed
to acquire the most monotonic behavior during the test, which is chosen as inputs to
the SVR model (Appendix A Technical Background). The established probabilistic SVR
model is used to predict the RUL of rolling element bearings.

Goto et al. (2012) execute another RUL assessment work based on vibration signal
analysis (Article No. 37 in table B. 1, page 54Table B. 1). The RUL evaluation is verified
by actual data collected from rotating equipment in thermal power plants. The
velocity and acceleration of vibration are state variables to indicate the deterioration
of rotating equipment, refers to as the deterioration management values, meaning
that if the deterioration management value is beyond a threshold value, a repair or
replacement is required. RUL in this research therefore ends when the deterioration
management value reaches the threshold value. Special acceleration sensors are
used to map the amplitude of vibration acceleration and velocity for rotating
equipment. Figure 10 shows the conceptual diagram of RUL estimation based on the
prediction of the deterioration management value. The deterioration management
value for velocity is y,(¢,)=c,t, +c,, and for accelerationis y,(z )=c,exp(c,t,),

where f is the n th measurement of time and c¢,,c,,c, and ¢, are

parameters of the model. The model parameters are estimated through using the
exponentially weighted recursive least squares approach. y(¢,.,),m=1,..,1

denotes the predicted deterioration management value, where ¢, is the current
time. y(t,,) is calculated by y,(t,,)=d,(@,)+c, )., —y().m=1..1] for

velocity  and Y, =d,(t)+c,(,)exp(c, (t)t,.,)— v, )m=1,.,1 for
acceleration.
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Figure 10 Concept diagram of residual useful life prediction (Goto and Kenta, 2012)

) attime ¢ _ s calculated

n+m

The predicted deterioration management value (¢

n+m

by using the deterioration model. The standard deviation of the prediction errors
e(t,.,)=y(t,,)—d(t,,) of the deterioration management values are used to

evaluate the confidence interval of the predicted value, where d,(¢ is the

n+m)
e(t

n+m

actual deterioration management value at time ¢ ) are assumed to be

n+m*

independently ~and identically  distributed as  N(0,07(t,,))  where

o;(t,ﬁm):\/l1 _/fn > Py ) —d ()Y si=v,a, m=1,..,]. Then the residual
- k=1
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useful life m" of the rotating equipment is evaluated by

m*:arg{m(r:rllizr}.‘l{yi(tn+m)+rO'i(tn+m)>ﬂi,i:v,a}}. In case the upper value of the

confidence interval y,(¢,.,)+ro(t,,).i=v,a is beyond a threshold value A, it

n+m

appeals for maintenance intervention, where A can be prior determined by expert

1

judgment.

4.2.2 Lubrication oil analysis for RUL Assessment

Lubrication oil analysis plays a critical role in detecting gas turbine failures as well as
in condition-based maintenance. The availability of a functioning turbine is mainly
dependent on the protective performance of the lubrication oil for its transmission
parts (Zhu et al, 2013). Poley (2012) claims that condition monitoring of lubrication
oil delivers roughly 10 times earlier warnings for machine failures compared to
vibration based monitoring techniques. Zhu et al. (2013) carry out the recent
research work within this domain (Article No. 6 in table B. 1, page 54). Particle filter
technique is utilized to estimate the RUL of the lubrication oil depending on the
viscosity or dielectric constant sensor observations. An [-step ahead estimator is
established to give a long term prediction of the state pdf p(x,,[Z,) of oil

condition, for /=1,...,T—k, where T is time of failure. An unbiased /-step ahead
k+1 k+1-1

estimator is p(xk+1|Zk)=J....J'Hp(xj|x/.71)p(xk|Zk)H dx;, where the state x_,
J=k+1 J=k

denotes the particle contamination level at current time k. RUL is the object’s

remaining usable time before it needs maintenance or fails. For instance, let 2,

represents a pre-specified threshold value for the state of oil condition, the object’s
RUL at time k is computed as RUL, = (k+1)—k =1 given x is beyond 2, .

With the determination of 4

thr.

of x. >4, whichis Pr(RUL<I|Z,)=Pr(X,, 24,

t=k+l

the estimation of RUL</ is equal to the estimation
Z,)(Zhuetal., 2013).

The implementation of particle filter technique for RUL assessment requires a
physical model that relates the water contamination level and temperature to the
dielectric constant and kinematic viscosity.

4.2.3 Nosie Signal Analysis for RUL Assessment

Noise signal from rotating machinery contains essential information about the
internal process and is capable of providing valuable information for RUL assessment.
Kavanagh et al. (2008) argues that sound intensity and sound pressure that explains
the mechanism of noise generation contributes to distinguish the good from the bad
bearings with spectral analysis and statistical analysis. Scanlon & Bergin (2007) and
Kavanagh et al. (2008) employ the analysis of acoustic noise signal to predict the RUL
of rotating machines.

Scanlon et al. (2013) present the latest RUL prediction work using noise signal
analysis based on the prior research work within this domain. An advantage of using
noise signal for RUL prediction is its allowing for remote and non-contact monitoring
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of the machine in contrast with vibration analysis that requires a direct contact with
the equipment. The research proposed a novel approach which utilizes an
information theoretic method to feature subset selection of modulation spectra
features, namely a hybrid method combined MS (modulation spectral) plus
MS-MI(mutual information)-PCA(principal component analysis). Life tests of four
different rotating machines with the same type are conducted in the experiment to
record the acoustic data over the machine’s lifetime. The K-means clustering
algorithm is employed to determine the state of machine degradation. Its RUL
assessment result is a classification of degraded machines.

4.3 Summary and Discussion

In summary, RUL assessment based on vibration signal analysis, lubrication oil
analysis and noise signal analysis generally has two phases. The first stage, off-line
learning, is to learn and develop a behavior model from the condition monitoring
data. The second stage, on-line prognostic, will utilize the established model to get a
clear picture of the current condition of the equipment and to predict its future
health state, see figure 11. Most research work (e.g. Loutas et al, 2013; Wang and
Wang, 2012 and Tobon-Mejia et al., 2011) perform necessary experiments to derive
sufficient raw data to construct the proper degradation model given different types
of equipment and operating environments.

Off-line phase: Learning

4 - e

Feature extraction Model Model
learning library

|/
]

On-ine phase: Prognostic [

Q”‘ i elaction, ATy

Feature extraction Prognostic: RUL,
wPD confidence, ... J

Current bearing

Figure 11 General diagnostics and prognostics step (Tobon-Mejia et al., 2011)

The principle of signal processing during the first phase is virtually the same; either
FFT or WT is employed. FFT is sufficient for treatment of stationary signals where WT
is preferred in processing non-stationary signals. Behavior models developed during
the second stage have many branches, for instance, &£ -Support Vectors Regression
model (Loutas et al, 2013), continuous hidden Markov model (Wang and Wang, 2012)
and mixture of Gaussians hidden Markov models (Tobon-Mejia et al., 2011). The
selection or construction of degradation models vary to several factors apart from
the type of equipment, such as the knowledge in understanding degradation process,
the level of comprehension in mathematical models, the availability of acquired
monitoring data and the experiment techniques. Model transfer in industry should
be paid with special caution since operating surroundings and system boundaries
make a big effect on degradation behavior. Maintenance actions based on improper
degradation models are costly. For industrial application, it is therefore highly
recommended to develop appropriate models in view of principles lied in research
work.



Chapter 5 Case Study - Statistical Analysis

Chapter 5 performs the case study and applies methods and real condition data in
ageing and life extension management of critical equipment. In agreement with the
supervisor and project team ‘Kristin Regularity’, AC generators and gas turbines are
determined for further analysis. It is proposed to carry out RUL assessment based on
collected real condition data from Kristin field.

Kristin production field operates two AC generators and gas turbines. The SAP
records the notification of their health conditions, classified as ‘unwell’, ‘sick’ and
‘dead’. The PI system collects condition monitoring (vibration) data of gas turbines.
The desired data, for instance noise signals and lubrication oil condition, is not
obtained because of project constraints. No experiments are performed to train and
develop proper assessment model. Only a sampled monitoring data of gas turbine is
available. These objective conditions limit the realization of RUL assessment through
employing various techniques, for instance FFT and WT.

Being subjected to acquired event data, the feasible approaches to process existing
data lie in statistical techniques, and the procedure is implemented and
demonstrated in Minitab, a statistics package developed at the Pennsylvania State
University. We use alpha level 0.05, as common.

In the following, failure impact refers as failure state, digit 1 denotes an unwell event
(blue color), digit 2 means a sick event ( ) and digit 3 indicates a dead
event (red color).

5.1 Statistical Techniques

Statistical techniques are frequently employed in processing event data, to identify
the tendency of failures, for instance an increasing ROCOF. This section introduces a
fraction of them that are utilized in the case analysis from an application perspective.

5.1.1 Counting Process

Conventional types of counting process include HPP, Renewal Processes, NHPP and
imperfect repair processes. The following definitions are derived from Marvin and
Hgyland (2004).

5.1.1.1 Homogeneous Poisson Process

The counting process {N(¢),t=0}is said to be an HPP characterizing a rate
parameter 4, for A>0, if N(#f)=0, and the intercurrence times T7,7,... are

independent and exponentially distributed with parameter 4. The ROCOF (rate of
occurrence of failures) of the HPP is @(¢) = A for all# 2 0. The number of failures in
the interval (z,£+v] is Poisson distributed with mean Av,

26
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Pr(N(t+v)-N({)=n)= @e"" for all#>20,v>0. The mean number of failures
n:
within the time interval (¢,¢+v] isW({+v)-W({t)=E(N(t+v)—N())=Av.

5.1.1.2 Renewal Process

A renewal process is a counting process {N(¢),z=0} with intercurrence times
T,,T,... which are independent and identically distributed with distribution function
F.(t)=Pr(T,<t) fort=20,i=1,2,.... The renewal function W(¢) is the mean
number of renewals in the time interval (0,7], W (t) = E(N(¢)). The mean number of

renewals within the time interval (z,,z,] isW(t,)-W(t,) = J.tz w(t)dt.
4
5.1.1.3 Nonhomogeneous Poisson Process

A nonhomogeneous Poisson Process is a Poisson process with rate parameter w(t) .
The cumulative rate of the process is W (t) = J'Ota)(u)du. The number of failures in

the interval (0,7] is Poisson distributed Pr(N(t):n):Me‘W(” for
n:

n=0,12,....

Minitab presents the parametric analysis of repairable systems through using the
Power Law Process, one type of parametric NHPP models. In the power law model
the ROCOF of the NHPP is defined as w(¢) = 1Bt"~" for A>0,4>0 and t>0.A

repairable system modeled by Power-Law Process model is seen to be happy
(improving) if 0< <1, and sad (deteriorating) if £ >1. The model reduces to an
HPPif A=1.

5.1.1.4 Imperfect Repair Processes

When using a renewal process, the system is assumed to be ‘as good as new’ after
the repair action. The use of NHPP assumes that the system is ‘as bad as old’ after
the repair action. For those repairs between these two extremes, imperfect repair
models are required.

A large amount of models have been developed for modeling imperfect repair
processes. These models are mainly used to model repair actions that reduce ROCOF
and that reduce the age of the system. A large amount of models have been
developed for modeling imperfect repair processes. These models are mainly used to
model repair actions that reduce ROCOF and that reduce the age of the system.
Typical models are Brown and Proschan’s model, Failure rate reduction models, age
reduction models and trend renewal process.

5.1.2 Prediction Method-Regression Analysis

Regression analysis is a statistical tool for investigating relationships between
variables. This technique is used to ascertain the causal effect of one factor upon
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another, for instance, the effect of failure impact upon the notification date. Minitab
provides both linear and nonlinear regression analysis. A p -value less than 0.05

indicates the strong relationship between variables.

Linear Regression

In linear regression, let i index the observations on the data (x,y). The simple
linear model is y, =8, +Bx,+¢, i=L..,n. y, is a linear combination of the
parameters. x, is the independent variable. /S, and f, are two model

parameters (Wikipedia).
Nonlinear Regression

Minitab has various models for nonlinear regression analysis, for instance
exponential and Weibull. An example of exponential regression model is
y, = Be”™ . Minitab also provides the growth curve for each tested function

(Wikipedia).
5.1.3 Trend Test

5.1.3.1 Graphical Technique: Nelson-Aalen Plot

For a repairable system, given a number of failures and their failure times S, for
i=1,2,....Let N(¢) denotes the number of failures and by definition jumps (1 unit)
at the failure time S,. Draw a plot to map the jumping points (S,,N(S;)) for
i=1,2,.... The plot is called a Nelson-Aalen plot. For a sad system, the Nelson-Aalen

plot will be convex, as shown in figure 12. Correspondingly, the plot will tend to be
concave for a happy system. The system is steady if the Nelson-Aalen plot is
approximately linear (Marvin and Hgyland, 2004).
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Figure 12 Nelson-Aalen plot for a sad system (Marvin and Hgyland, 2004)

5.1.3.2 Statistical tests: Laplace Test, Military Handbook Test and Anderson-Darling
Test

The Nelson-Aalen plot is intuitive to examine the ROCOF of a system. Nevertheless
based on graphical methods, we still do not know whether or not the observed trend
is statistically significant. Minitab gives three tests concerning this issue: Laplace test,
MIL-Hdbk-189 test and Anderson-Darling (AD) test. The hypotheses for the trend
tests are same.

«Ho: No trend in data (homogeneous Poisson process)
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«Hi: Trend in data (honhomogeneous Poisson process)
«Reject Criteria: Reject Ho with p value larger than 0.05 with alpha level = 0.05.

We can arrive that there is some trend in the data if the null hypothesis is rejected.
The data should be modelled with a nonhomogeneous Poisson process, such as
Power-Law process. For the case that fails to reject the null hypothesis, the
conclusion is that there is no sufficient evidence to reject the homogeneous Poisson
process model. Even though the Power-Law model is appropriate, the homogeneous
Poisson process is a preferable choice (Minitab 17 Support).

Laplace Test

The test statistic for the situation where the system is observed until » failures

Lsg (s /2)

j=1"J

have occurred is U ==l

S, 1 J12(n—1)
times. The value of U is an indicator of increasing or decreasing ROCOF, with
U >0 forasadsystemand U <0 fora happy system (Marvin and Hgyland, 2004).

where §,,S,,... denote the failure

Military Handbook Test

The test statistic of MIL-Hdbk-189 (Military Handbook Test) for the system with »
observed failures is Z = 22:1 ln%. Low values of Z indicates a sad system.
Large values of Z corresponds to a happy system (Marvin and Hgyland, 2004).
Anderson-Darling Test

The test statistic of Anderson-Darlingis 4° =-n—S for n observed failure events,
2i

_1[ln(F(Yl.))+1n(1—F(YM_Z.))]. Y,,....Y, are ordered failure data.
n

where S = i
i=1

F is the cumulative distribution function of the specified distribution. AD-statistic
cannot reveal a sad or happy system but is employed to verify whether these data
follows HPP or not. The decision to reject or accept the null hypothesis is dependent
on comparing the p -value for the hypothesis test with the specified significance

level (Wikipedia).
5.2 Statistical Analysis on AC Generators

Assumptions: AC generator A and B are independent and identical. AC generators
and their spare parts are in same type and their operation surroundings are
comparable. The SAP data set is homogeneous.

5.2.1 AC Generator A

Table 3 shows the notification data of AC generator A. The data in year 2008 is not
available and for statistical analysis, we use the dataset recorded from date
2009/11/24 astime t=0 until 2013/11/24 in which the 12t notification is recorded
during a total time of 1461 days. S, denotes calendar time and T, denotes

interoccurrence time for j=1,2,....
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Table 3 SAP data AC generator A

Generator A Notif Crea Failure Impact  Failure State NO. of notificaitons Calendar time(Sj)  Interoccurence time(Tj)

Year 2009

Year 2010

Year 2011

Year 2012

Year 2013

2009/11/24
2009/12/2
2010/1/12
2010/4/19

2010/9/9
2011/6/29

2011/10/19
2012/1/12
2012/4/21

2012/10/20
2013/1/2

2013/11/24
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5.2.1.1 Failure Trend Investigation
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In section (a), it is assumed that maintenance intervention is available for each
notification event. The repair action will restore the system to a functioning state. We
do not make further assumptions concerning whether this state is ‘as good as new’
or ‘as bad as old’. Figure 13 indicates that generator A may enter into the dead state
following either an unwell state or a sick condition.
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Figure 13 Nelson-Aalen plot for AC generator A
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Figure 14 The sequence of failure impacts under ideal condition

Calendar time t

Ideally, the notification records an unwell event at first, then the sick state and ends
in the dead condition, see figure 14, if only considering the sequence of failure
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impact. Due to the limited number of notifications, this ideal trend cannot be verified.
The Nelson-Aalen plot tends to be concave, which indicates a happy system with a
decreasing ROCOF. A deep analysis is performed in the following.

Statistical trend tests are employed. Ho: there is no trend in data, homogeneous
Poisson process; Hi: trend in data, non-homogeneous Poisson process. Rejection
criteria: Reject Ho with p-value less than 0.05.

Parametric Growth Curve: Calendar time

Model: Fower-Law Frocess
Estimation Method: Maximum Likelihood

Parameter Estimates

Parametric Growth Curve: Calendar time

Model: Poisson Process
Eztimation Method: Maximum Likelihood

Farameter Estimate

Standard 95% Hormal CI Standard 95% Wormal CI
Parancter Estinate  Error  Lover  Upper .
Shape D.7l8EE1  0.200 0418995 123658 5;’1;1?'“““ Es}é'{‘a.}g SEYHE BQL?EE 211'{1’5%
Seale 45.0075 45579 5.60040 364419 : : : :

Trend Tests Trend Tests

MIL-Hdbl—189 Laplace’ s Andersen-Darling
Test Statistic 33,40 -1.26
P-Value 0.113 0.z09
IF 22

WIL-Hdbl—189 Laplace’ = Andersor-Tarling
124 Test Statistic 33,40 -1.26 124
0.554 P-Value 0.113 0.209 0.254
F 22

Figure 15 Statistical tests on notification trend, AC generator A

As shown in figure 15, the p-value of Military Handbook Test (MIL-Hdbk-189), Laplace
test and AD test is all larger than 0.05 and we do not have strong evidence to reject
Ho. The following arguments are provided:

(1) The decreasing ROCOF is not statistically significant and perhaps accidental.

(2) The assumption of identical systems or homogeneous data may not be realistic
and that produces a non-statistical-significant result for trend tests.

(3) On condition that we reject Hoand accept Hi with weak statistical significance,
the Power Law model proposed by Minitab indicates a happy system and presents
a decreasing ROCOF. This trend will only be realistic given that the repair team
improves the system with each maintenance action, not just brings the system to
a functioning state, and even better than ‘as good as new”’.

(4) On condition that we accept Ho following statistical tests, no notification trend is
verified. The interoccurrence times are independent and identically exponentially
distributed with A =0.0082 .

Two different situations are given regarding further analysis:
Situation A.a.1-Decreasing failure trend with weak statistical significance

In situation A.a.1, there is trend in notifications of failures, although with a weak
statistical significance. Either a NHPP or imperfect repair models could be utilized to
further analyze the data. The selection of models must be decided by a qualitative
analysis of the repair actions. Statoil SAP actually records details of each
maintenance action, for instance, type of replaced component and equipment
adjustment, and that is available for qualitative analysis of repair performance,
whereas not feasible in the thesis without permits to the SAP details. Based on the
available information and analyzable results, the negative Laplace test statistic -1.26
(figure 15) and shape parameter of Power-Law Process 0< £ =0.718581<1
indicate that AC generator A is a happy system under situation A.a.1.
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Situation A.a.2-No trend in notification of failures, HPP

In situation A.a.2, the failures follow a homogeneous Poission process with statistical
significance. Minitab gives a estimate value of MTBF as 121.75 days. We can get that
the ROCOF of the system is w(¢)=0.0082 for all #>0. The number of failures in
the interval (z,t+v] is Poisson distributed with mean 0.0082v

~(0.0082v)"
= —n' e

Pr(N(t+v)=N(t)=n) “00%82v for all¢ > 0,v> 0. The mean number of

failures in the time interval (t,t+v] is
W(t+v)—W(t)=E(N(t+v)—N(t))=0.0082v, particularly E(N(¢)) =0.0082¢. The
time of the nth failure S has a gamma distribution with parameters(n,0.0082)
0.0082
(n=1!

and its probability density functionis f; (1) = (0.0082¢)" e "% fort>0.

b) Regard dead events as failures

In situation (b), it is assumed that that maintenance intervention is not available for
unwell and sick events. The repair action is only performed in case the systemisin a
dead condition and will bring it back to a functioning state. Figure 16, the
Nelson-Aaelon plot still indicates that the system has a decreasing ROCOF. The p
-values presented in figure 17 are all larger than 0.05 and closely to 1.0, which means
that this decreasing ROCOF is quite occasional. Corresponding to A.a.1 and A.a.2,
situation A.b.1 and A.b.2 can be obtained. They will not be repeated since the result
is not statistically significant.
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Figure 16 Nelson-Aalen plot for dead events, AC generator A
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Figure 17 Trend tests on dead events, AC generator A
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5.2.1.2 Relationship between notification date and failure impact

This section investigates whether there is a relationship between notification date
(calendar time in days) and failure impact (failure state). Regression analysis is
performed in Minitab, shown in figure 18.

In the summary report of linear regression analysis, a linear model is proposed as
Y =1.434+0.001007.X to describe the relationship between Y and X, where Y
denotes the failure state and X denotes notification date (calendar time). A p

value larger than 0.05, 0.131, means that changes in Y are not associated with
changes in X. Conversely, a small p-value, less than 0.05, will indicate strong
relationship between the predictor X and the response Y.

Regression for Failure impact vs Calendar time
Y: Failure impact Summary Report
X: Calendar time

Fitted Line Plot for Linear Model

Is there a relationship between Y and X? Y = 1434 + 0001007 X
0 005 01 > 0.5 Bl ° o0 o L] [
Yes I No
P=0131 i
The relationship between Failure impact and Calendar time is E
not statistically significant (p > 0.05). @ 2 ¢
3
E
% of variation explained by the model
1 ee L] L] °
0% 100% 0 400 800 1200 1600
—— N Calendar time
Low T Immmmmm— High
R-sq = 21.34%

Comments
o PP —— "
i}:;le/;r?;stil:::‘v;r:;té?n Y The fitted equation for the linear model that describes
the relationship between Y and X is:
Y = 1434 + 0.001007 X
If the model fits the data well, this equation can be used
to predict Failure impact for a value of Calendar time, or
Correlation between Y and X find the settings for Calendar time that correspond to a
il 1 desired value or range of values for Failure impact.
Perfect Negative No correlation Perfect Positive
A statistically significant relationship does not imply that
_:045— TN

The correlation between Failure impact and Calendar time is
not statistically significant (p > 0.05).

Figure 18 Linear regression analysis summary report, AC generator A

Further, the nonlinear regression analysis is performed with various examined
expectation function, such as exponential, power and logistic. Due to few data items,
lack of fit test cannot be carried out in Minitab. The test is used to verify whether the
examined model fits the data. With unavailability of giving such a test, results from
nonlinear regression analysis are not reliable. The test details are not copied here
due to page limitation.

5.2.2 AC Generator B

The same analysis procedure is used to investigate SAP data of AC generator B.

5.2.2.1 Failure Trend Investigation
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Table 4 SAP data, AC generator B

Generator B Notif Crea Failure Impact Failure State No. of notifications Calendar time(Sj) Interoccurence time(Tj)

2009/12/13 U 1 1 266 266
Year 2009  2009/12/19 D 3 2 272 6
Year 2010
2011/3/23 D 3 4 731 114
Year 2011
Year 2012
2013/2/12 D 3 7 1423 394
2013/7/23 D 3 9 1584 116
Year 2013

a) Regard notifications as failures

Presented by figure 19, it is still difficult to conclude that the system enters into an
unwell, sick and dead state in a sequence. The Nelson-Aalen plot tends to be convex
but not in a consecutive way. AC generator B tends to be a sad system. A deep
analysis is given in the following.
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Figure 19 Nelson-Aalen plot for notifications AC generator B
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Figure 20 Statistical tests on notification trend

Statistical tests are performed. Ho: there is no trend in data, homogeneous Poisson
process; Hi: trend in data, non-homogeneous Poisson process. Rejection criteria:
Reject Ho with p-value less than 0.05. As seen in figure 20, the p-value of Military
Handbook Test (MIL-Hdbk-189), Laplace test and AD test is all larger than 0.05 and
we do not have strong evidence to reject Ho. The following arguments are provided:

(1) The increasing ROCOF is not statistically significant but accidental.
(2) The assumption of identical systems or homogeneous data may not be realistic
and that produces a non-statistical-significant result for trend tests.
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(3) On condition that we reject Hoand accept Hi with weak statistical significance,
the Power Law model proposed by Minitab indicates a sad system and presents
an increasing ROCOF. This shows that the repair team takes the opposite
maintenance strategy on AC generator B compared to system A.

(4) On condition that we accept Ho following statistical tests, no notification trend is
verified. The interoccurrence times are independent and identically exponentially
distributed with A =0.0062 .

We have two different situations regarding further analysis:
Situation B.a.1-Increasing failure trend with weak statistical insignificance

In situation B.a.l, there is trend in notifications of failures, although with a weak
statistical significance. Based on the available information and analyzable results, the
positive Laplace test statistic 0.73 (figure 20) and shape parameter of Power-Law
Process [ =1.51033>1 indicate that AC generator A is a sad system under
situation B.a.1. The ROCOF of the NHPP is w(r) = 352x1.51¢'°"™" =532¢°".

Situation B.a.2-No trend in notification of failures, HPP

In situation B.a.2, the failures follow a homogeneous Poission process with statistical
significance. Minitab gives an estimate value of MTBF as 161.6 days. We can get that
the ROCOF of the system is w(¢) =0.0062 for all #>0. The number of failures in
the interval (z,+v] is Poisson distributed with mean 0.0062v |,

_ (0.0062v)"
B n! ¢

Pr(N(t+v)=N(t)=n) “00062vfor all¢ > 0,v > 0. The mean number of

failures in the time interval (t,t+v] is
W(t+v)-W(t)=E(N(t+v)—N(t))=0.0062v, particularly E(N(z)) =0.0062¢. The
time of the nth failure §, has a gamma distribution with parameters(n,0.0062)
0.0062

( l)'(0.0062t)"‘1e'°'°°(’2' fort>0.
n—1)!

and its probability density functionis  f; (1) =

b) Regard dead events as failures

Figure 21, the Nelson-Aalen plot still indicates that the system has an increasing
ROCOF (concave plot). The p-values presented in figure 22 are all larger than 0.05
and closely to 1.0, which means that this increasing ROCOF is quite occasional.
Corresponding to B.a.1 and B.a.2, situation B.b.1 and B.b.2 can be obtained. They will
not be repeated since the result is not statistically significant.
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Figure 21 Nelson-Aalen plot for dead events, AC generator B
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Parametric Growth Curve: C1
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Figure 22 Trend tests on dead events, AC generator B

5.2.2.2 Relationship between notification date and failure impact

This section investigates whether there is a relationship between notification time
(calendar time in days) and failure impact (failure state) for AC generator B.
Regression analysis is performed in Minitab, shown in figure 23.

Regression for Failure State vs Calendar time

Y: Failure State
X: Calendar time

Is there a relationship between Y and X?

0 005 01 > 05
Yes I No
P = 0495

The relationship between Failure State and Calendar time is
not statistically significant (p > 0.05).

% of variation explained by the model
0% 100%

Low | T . High
R-sq = 6.01%
6.01% of the variation in Failure State can be explained by the
regression model.

Correlation between Y and X

E 0 1
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The correlation between Failure State and Calendar time is not
statistically significant (p > 0.05).

Summary Report

Fitted Line Plot for Linear Model
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~
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Comments

The fitted equation for the linear model that describes
the relationship between Y and X is:

Y =1.983 + 0.000319 X
If the model fits the data well, this equation can be used
to predict Failure State for a value of Calendar time, or
find the settings for Calendar time that correspond to a
desired value or range of values for Failure State.

A statistically significant relationship does not imply that
X causes Y.

Figure 23 Linear regression analysis summary report, AC generator B

Figure 23 presents the summary report of linear regression analysis. A linear model is
proposed as Y =1.983+0.000319.X to describe the relationship between Y and
X, where Y denotes the failure state and X denotes notification date (calendar
time). A large p-value, 0.495, means that changes in Y are not associated with
changes in X. Conversely, a small p-value, less than 0.05, will indicate strong
relationship between the predictor X and the response?Y.

Further, the nonlinear regression analysis is performed with various examined
expectation function, for instance exponential, power and logistic. Due to few data
items, lack of fit test cannot be carried out in Minitab. The test is used to verify



37

whether the examined model fits the data. With unavailability of giving such a test,
the results from nonlinear regression analysis are not reliable. The test result is not
copied here due to page limitation.

5.2.3 Discussions on Analyzed Results

Table 5 Results of statistical analysis on AC generators

Consider statistical AC Generator A AC Generator B
significance
Regard all notifications Yes HPP HPP
as failures
No Decreasing Increasing ROCOF
ROCOF

Regard dead events as Yes HPP HPP
failures No Increasing ROCOF | Increasing ROCOF
Relationship between Yes No relationship No relationship
notification date and
failure impact

From statistical analysis of SAP data on AC generator A and B, we catch distinct
results, see table 5. The notifications do not reveal a systematic pattern. Leaving out
statistical significance, it arrives that AC generator A has a decreasing ROCOF while B
has an increasing one in case all notification events are treated as failures. This
supposes that Statoil operates two different types of generators nevertheless they
are same in reality. Another possibility is that the repair team takes the opposite
maintenance strategy for two generators. If we only treat dead events as failures,
both systems show the increasing ROCOF as with most machinery. We can treat this
finding as tendency estimate and it is infeasible to affirm its validity with a highly
weak statistical significance.

5.3 Vibration Trend Analysis on Gas Turbine

For gas turbines, same assumptions as for AC generators are employed. Several
sensors are installed on the gas turbines for monitoring their operation condition,
such as pressure, compression and vibration. Vibration signals of gas turbine B are
treated in the following analysis. SAP is used to track the date where an unsatisfied
condition occurs. Subsequently, time series plots are employed to look into whether
or not the unsatisfied day’s monitoring data has a monotonic trend, where can be
used as input for RUL assessment (section 4.2.1, page 21).

5.3.1 Gas turbine B

Table 6 shows the SAP data of gas turbine B. The regularity on the sequence of failure
impact from this table cannot be found. The analysis of gas turbine B then
concentrates on its vibration data. The sensor KRI.80VT6418A/Y/PRIM that monitors
displacement of this turbine is utilized for the following analysis.
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Table 6 SAP data, gas turbine B

Gas Turbine B Notif Crea Failure Impact Failure State No. of notificaitons Calendar time (Sj) Interoccurrence time (Tj)

2009/6/3 u 1 0 0 0
2009/6/9 u 1 1 6 6
2009/11/4 u 1 3 154 146
Year 2009 2009/12/30 D 3 4 210 56
2010/4/14 u 1 5 315 105
2010/6/29 u 1 7 391 2
Year 2010 2010/10/28 u 1 8 512 121
2011/9/8 u 1 10 827 164
2011/10/1 u 1 11 850 23
Year 2011 2011/12/14 u 1 12 924 74
2012/3/1 u 1 13 1002 78
2012/4/25 u 1 14 1057 55
2012/7/6 u 1 15 1129 72
2012/10/2 u 1 16 1217 88
2012/12/6 u 1 17 1282 65
Year 2012
2013/4/2 u 1 20 1399 33
2013/7/11 u 1 22 1499 49
Year 2013 2013/7/13 D 3 23 1501 2

First, vibration signals on unsatisfied days are analyzed. Figure 24, 25, 26 and 27
present relative signal trends in year 2010, 2011, 2012 and 2013 separately. The
lateral axis is the time horizon from 0:00 to 23:00 within an unsatisfied day. The
vertical axis denotes the monitoring displacement of gas turbine B. The situations
where gas turbine stops running the whole day are removed for the sake of
investigating signal trends. From these figures, we see that the highest displacement
is close to 40(25/04/12) while the lowest value is 0(28/03/11). Table 7 summarizes
the signal trend. It arrives that no uniform monotonic tendency is detected.
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Time Series Plot of KRL.80VT6418A/Y/PRIM
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Figure 25 Vibration signal trend on unsatisfied days in year 2011
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Figure 26 Vibration signal trend on unsatisfied days in year 2012
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Figure 27 Vibration signal trend on unsatisfied days in year 2013
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Table 7 Summary of vibration signal trend

Date of Failure Impact Signal trend
notification

09/06/10 Unwell Increasing

28/10/10 Unwell Increasing—>Decreasing
28/03/11 Sick Increasing—>Decreasing—>Increasing—>Decreasing
08/09/11 Unwell Increasing—>Decreasing
01/10/11 Unwell Decreasing

14/12/11 Unwell Increasing—>Decreasing
25/04/12 Unwell Decreasing->Increasing
02/10/12 Unwell Decreasing—>»Increasing
06/12/12 Unwell Increasing—>Decreasing
20/12/12 Unwell Increasing—>Decreasing
28/02/13 Sick Increasing—>Decreasing
02/04/13 Unwell Increasing

23/05/13 Sick Decreasing

11/07/13 Unwell Increasing—>Decreasing

Following the first investigation, this part reviews how the signal changes over time,
and for clear rendering of images, we use a period of two weeks (blue color) prior to
an ‘unsatisfied’ days (red color). To improve analysis efficiency, graphs with unclear
signal trends are not presented. Figure 28 records the ones where explicitly reveals
vibration signal tendency.

The plot 2009/12/30 indicates that the monitored displacement increases on the
notification date compared to prior two weeks. This value shown in 2013/5/23 and
2013/7/13 goes down to zero on the notification day. 2011/3/28 and 2012/12/20
present a sudden increasing of displacement and a decreasing in a rapid sequence.
The displacement on the notification day 2013/2/28 remains a similar level
compared to the control period.

Since vibration signals do not illustrate monotonic tendency on unsatisfied days, it is
unfeasible to correlate condition monitoring data to the time of failure. All known for
sure is that a great contrast between peak values and valley values normally indicates
an unsatisfied operating condition. A rapid decrease or increase of monitoring
displacement could cause severe damage to gas turbines and that should be handled
within manageable proportions. At which level the displacement shows a failure
requires special knowledge on vibration of gas turbines, and equipment supplier may
provide the threshold value.

Statoil practically operates a control room where monitors various parameters on
technical condition of specific types of equipment. Equipment specialists set limits
for these indicators, including displacement of gas turbines. Two alerts are kept for
operation control. The higher limit value, second alarm, indicates a failure event
where needs immediate maintenance intervention.
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Figure 28 Vibration signals variation tendency

5.3.2 Use of Overall Vibration Data for RUL Assessment

Vibration monitoring is a fundamental element in diagnostics of rotating machinery
within CBM. The thesis barely gets a sampled vibration data of gas turbines.
Monotonic signal trend cannot be achieved. The analysis of sampled vibration data
contributes to comprehensive understanding of turbine failures. It is appropriate for
tracking the signal tendency in the notification day or during a specific period but
cannot be of service to precise RUL assessment.

As discussed in section 4.3 (page 25) the establishment of degradation model
requires large amount of raw data therein run-to-failure tests are desirable but is not
realistic for the production-critical equipment. Experiments are performed to extract
and capture monotonic behavior of vibration signals. Model training solely relying on
imperfect data cannot gather our reliance.

5.4 Recommendations for Statoil on RUL Assessment

Based on discussions in section 5.2.3 (page37) and 5.3.2 (page41), it comes to the
conclusion that the quality of data derived from SAP and Pl is not sufficient to
generate uniform and strong conclusions concerning ROCOF and monotonic signal
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tendency. Failures of AC generators and gas turbines are randomly changing and
unpredictable with feasible techniques. In addition, no strong relationships between
notification date and failure impact are revealed.

To some extent, improving the quality of notification records is not more challenging
than analyzing the data. A number of factors may have negative effects on the quality
of SAP, for instance delayed reports, editing errors and missing data caused by
technical problems. Table 8 illustrates current situations, challenges and
corresponding suggestions to better achieve RUL assessment for Statoil. Green ones
are assumed to be easy for implementation. ones perhaps have some
difficulties to be realized. Red ones are the most difficult issues to be handled.

Table 8 Challenges for Statoil on RUL assessment and relative recommendations
Current Situation and Challenge | Recommendation

Specific issues

Unwell, sick and dead event occurs
randomly. Cannot get its reasonable
sequence.

Improve the quality of SAP reports. Improve
notification quality. Reexamine the nature of
failure classification; maybe utilize more
classification states.

Two comparable generators have
opposite  ROCOF. Cannot get a
uniform failure tendency.

Check the difference in operating conditions for
the two generators, such as stress and
temperature. Investigate whether their spare
parts are same or different.

Health condition of the equipment is
unclear after each repair.

Vibration signals of gas turbine do not
indicate any strong monotonic trend.
Cannot use it as input for RUL
estimation models.

Link Pl to SAP. Collect and analyze vibration data
for every time the monitoring value hits the first
alarm and second alarm separately and give
each of these situations a failure classification.
Carry out specific run-to-failure tests to collect
sufficient raw data where tracks the most
monotonic trend for RUL assessment.

Cannot acquire data on lubrication oil
condition and acoustic noise signals.
Relevant estimation models are
inapplicable.

Install bespoke monitoring equipment to collect
such data. Lubrication oil condition monitoring is
highly recommended (see section 4.2.2, page 24)

General issues

Little condition monitoring data with
limited types of monitoring
parameters.

Equipment experts are necessary to set valuable
monitoring parameters for concerned systems.
Use effective and reliable sensors to collect
required large amounts of monitor data.

Matching theoretical RUL assessment
models with various types of
equipment.

Test research models for concerned system.
Adjust model parameters. Perform necessary
experiments.




Chapter 6 Case Study - Maintenance

Optimization

This chapter performs case study on maintenance optimization. The objective of this
chapter is to link case studies to imagined current maintenance practice and future
improved maintenance strategies. It is proposed to demonstrate potential savings
through adopting more advanced methods using existing data in a better manner.

6.1 Introduction

As investigated in chapter 5, the thesis does not have sufficient data to develop
degradation models for both AC generators and gas turbines. Statistical analysis on
AC generators does not demonstrate any tendency on ROCOF. Deterioration models
have difficulties to describe random failures without any regularity. It is unfeasible to
correlate condition monitoring data of gas turbines to the time of failure. Traditional
condition monitoring methods, for example, WT and FFT, cannot be demonstrated.
The data analysis hence cannot give satisfactory results for further work on
maintenance optimization. In this context, the case study conducted in this chapter is
of principle where real condition data is not applied.

6.2 Degradation Models

The classification regime as previously shown in section 5.2.1.1 (page 30) is utilized.
Figure 29 shows the assumed degradation process with ideal sequence of unsatisfied
states. In this figure, Y(¢) is a performance variable to measure degradation
processes. It describes the state of the system at time ¢. The first decision variable in
the maintenance strategy based on this process is the inspection interval. The second
one is the maintenance limit Y(s), which is decided by time to a sick event 7.

Without any maintenance intervention, the system deteriorates into the dead state
characterizing Y(d) as failure limit.

Failure Limit Y(d) Failure

Degradation Process Y(t)

Tu Ts To Time t

Figure 29 Assumed degradation process
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In the case study, the following assumptions are used:
(1) The presumed equipment is a piece of mechanical equipment. The time to a

(2)

(3)

dead event is Weibull distributed with an ageing parameter a=2.6.
1, is referred as the time to an unwell state. 7, is the time to a sick event.

T, denotes the time to a dead condition. The sum T7,+7,+7, has same
expected value and standard deviation as for 7;. The mean time to the dead
event MTTF, is assumed to be 100 days.

It is assumed that the transition is chronologically from unwell to sick, and
then dead without stepping back at any time.

6.3 Cost Model - Maintenance Optimization

This section constructs cost models for two situations with distinct maintenance
strategies. As deduced in section 6.2: the first one does not perform regular
inspections while the second one dose. Table 9 lists important elements to build the
cost model and relevant assumed values.

Table 9 Cost elements with assumed values

Cost Model Elements Assumed Value

Mean time to failure without maintenance MTTF;,,=100 (days)

Ageing parameter, alpha o=2.6

The (unavailability) cost per system failure C,,=4000 (1000NOK)
The cost of preventive maintenance C,,, =550 (1000NOK)
The cost of corrective maintenance C_,, =800 (1000NOK)
The cost per inspection C, =5 (1000NOK)

The cost of renewing the system at state / C,-=500 (1000NOK)

These values are proposed dependent on the following arguments:
(1) C,,, iscloseto C,.. C,, in maintenance policy (a) is the cost of replacing

()

a unit or performing a complete overhaul preventively. It is similar to C,

the renewal cost in (b). Even though replacing a ‘sick’ unit is costly than an
‘unwell’ one, C,. on different states should be expected in the same order
of magnitude with C,,,. This is due to the consideration that (i) preventive
maintenance and renewal actions can all be planned in advance, for instance,
plan for shutdown, make spare parts available and bring personnel for
maintenance work; and (ii) both activities bring the item to a “as good as new”
condition.

C,,, is higherthan C,, and C,.. C,, isthe corrective maintenance cost
where cannot be planned and unexpected. The unit is perhaps in a state with
severe damages. A repair is more demanding in this case.

C, is the highest. C, is the unavailability cost related with the system
failure. It is extremely costly in the O&G industry since the production is
completely lost during the unexpected repair. C, =5C,,, is utilized.
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(4) C, is the lowest since condition monitoring techniques could be used for

inspection and that average cost is rather low.
Cost Model with No Inspection — Based on BRP

First consider a traditional maintenance strategy where no inspection is carried out.
The block replacement policy (BRP) best fits the case taking into account the
presence of minimal or imperfect repair. Let 7 denotes the preventive maintenance
interval. 4,(7) denotes the effective failure rate.

Total cost per unit time: C(7)=C,,, / 7+(Cpy, +C, )X A (7)

The excel spreadsheet “BRPSImple.xls” given by course PK8207 is employed to get
the result of 7 and C(7), see the result copy shown in figure 30. The preventive

maintenance interval is 41 days with a total cost per unit time approximately 22
(1000NOK). The standard deviation in the time to failure = coefficient of variancex
MTTEF,,,=0.41314*100=41.314 and its variance is 1706.85, where the coefficient of

variance is found by the same excel spreadsheet.
Parameter Value
MTTF
alpha
PM-Cost
CM-Cost
SystCost
tau
ig(r)
PM
CcM
System
Total cost
tau™
Coefficient of variance

Figure 30 Result of cost per unit time without inspection

Cost Model with Inspection — Based on Markov State Model

The second maintenance strategy is considered to be improved and executed with
inspections. With a finite number of states, Markov state model with inspections is
utilized to demonstrate this policy.
Total cost per unit time: C(7,/)=C, / t+(C,, +C,) )X A (T,1)+ Cp. X11(7,1)

The excel spreadsheet “MaintOp.xIsm” given by course PK8207 is employed to get
the result of A,(7,/), (z,l) and C(7), see the result copy shown in figure 31. The
system is supposed to start in a perfect state and jumps to a higher state (y, toy,,)
with a time independent intensity 4 where i=0,1,2. 7 under this policy refers as
inspection interval. Let V'=A4,/4, to model the assumed the increasing ROCOF. The

factor V' is used to describe how much faster failure progression is just before
failure in contrast with the initial (perfect) state. Let / to be the maintenance limit,
where the system is replaced with a new one if the state at an inspection is greater
or equal than the limit state. Practically there is a probability g to assess the

performance of inspection. For simplicity, ¢ is assumed to be 0. Let A.(z,])
denotes the effective failure rate and rr(z,/) signifies the renewal rate where their
values are derived in an excel sheet.
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In order to achieve the “correct” MTTF,, and its variance, the number of state r

and factor V' are varied. It is found that the variance of T1+ T>+ T3 is close to the
variance in the time to failure in BRP when r is set to be 7 and V is 4. The
standard variance is coefficient of variance x MTTF,,= 0.41467x100=41.467 and

the variance is 1719.51, where the coefficient of variance is derived by the same
excel spreadsheet. Further the maintenance limit is considered to be 5. The previous
“unwell-sick-dead” is not used since such situation generates a large variance
compared to the one in BRP.

Parameter Value Parameter Value
MTTF 100 4g(z,1) 0.00061
Tau 5 rr(r,1) 0.01124
v 4 Total Cost 9.53355
r 7 Cofficient of Variance [ROEE LY
I 5

q 0

CM-Cost 800

SystCost 4,000

Renew-Cost 500

Inspection-Cost 5

Figure 31 Result of cost per unit time with inspection
Maintenance Program

Table 10 presents the result comparison on two cost models. Maintenance strategy
with inspections has the lower value and therefore is the cost-optimal alternative.

Table 10 Result comparison

Maintenance Strategy Total cost per unit time
Without inspection Approximately 22 (1000NOK)
With inspection Approximately 10 (1000NOK)

The maintenance program is recommended to be built dependent on Markov state
model with inspections. Its inspection interval is 5 days. The improved strategy with
inspections contributes to nearly 50% cost savings.

6.4 Result Discussion

Seven states are considered to stick the Markov state model. These states can be
determined by setting a specific monitoring value for each of them, for instance
velocity and acceleration of rotating machinery. The lowest value indicates the best
condition while the highest denotes the dead state. Equipment specialists are
required to set these critical values. The inspection interval of 5 days is not realistic
on condition that condition monitoring methods are employed. It is a challenge for
the Markov state model to demonstrate this process with a finite number of states.

Since the procedures to establish the optimal maintenance program are dependent
on assumed deterioration models and cost values, in practice, the program will vary
on condition that distinct degradation models are applied as well as real costs are
considered. It is expected that the maintenance strategy with inspections is the
optimum since the inspection cost is rather low, particularly with applied condition
monitoring techniques.



Chapter 7 Summary and Recommendations

for Further Work

Chapter 7 summarizes the thesis and discusses some recommendations for future
work.

7.1 Summary and Conclusions

In overall, it is concluded that the main objectives of this thesis have been realized. A
brief summary of achievements is presented below related to each objective.

Objective 1 - Review the literature regarding various use of the term residual useful
life as a basis for giving an explicit definition to be used through the work.

The various use of the term RUL is investigated and summarized in chapter 2, where
a comprehensive literature review on RUL assessment is performed. Challenges
within RUL assessment are indicated, followed by a terminology study to interpret
RUL in different aspects. In maintenance engineering, the RUL links to diagnostics
and prognostics. The purpose is to use automated methods to analyze the
equipment degradation and calculate the acceptable remaining life before the critical
failure; therein condition monitoring techniques and appropriate monitoring data
processing methods are significant. The statistical perspective to describe RUL has
two cases, one for repairable items, and the other for non-repairable items.
Reliability models as well as statistical theory are critical elements in explaining RUL
from this view. The state-of-the-art RUL assessment methods are presented in table
B. 1 (pageTable B. 1 Summary of various RUL estimation methods 54).

An explicit definition of RUL is determined by measures applied to evaluate the
usefulness of concerned equipment. Chapter 3 proposes a new approach to define
RUL based upon this principle. Table 1 (page 17) provides a preliminary solution for
evaluation of equipment usefulness. Figure 9 (page 18) shows a conceptual diagram
applicable for RUL assessment.

Objective 2 - Identify two to three classes of critical equipment types as a basis for
case studies. Such classes could be rotating equipment, static equipment and safety
systems.

Rotating equipment has been chosen as the first type of production-critical
equipment at the Kristin field for the pilot investigation as the results of discussions
in the R&D project executed by SINTEF/NTNU. Electrical equipment also attracts the
interests of Statoil, but was not handled in the thesis work due to project constraint
and time limitation.

Objective 3 - For each of the identified classes the literature shall be revived with
respect to which deterministic, probabilistic and combined models are proposed to

link technical condition indicators and other degradation measures to RUL.
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Deterministic, probabilistic and combined models that link degradation behavior to
RUL are referred as RUL assessment methodologies. Chapter 4 carries out revived
literature investigation on such methods with rotating equipment concentrated.
Major failure causes are first reviewed. Analyzing vibration signals, lubrication oil
condition and acoustic noise signals contribute to rotating machinery failure
detection and RUL prediction.

Two phases are required to assess the RUL of rotating equipment. The first stage is to
establish degradation model dependent on run-to-failure data. Signal processing
techniques, for instance WT and FFT, are used to obtain the most monotonic
degradation behavior during the run-to-failure tests. The time to failure can be
determined by the point of time when the RMS hit the threshold value where could
be set by equipment specialists. The second stage is to predict future health
condition of the equipment based on established behavior models. Degradation
behavior models have many branches developed through various experiments, for
example & -Support Vectors Regression model continuous, hidden Markov model
and Gaussians hidden Markov models.

Objective 4 - Select one or two cases where models, methods and real condition
data could be applied in the aging and life extension management.

Reaching an agreement with the supervisor and R&D project team, AC generators
and gas turbines are targets for the case studies. Chapter 5 performs statistical
analysis on SAP data of AC generators and vibration signal trend analysis on gas
turbine B. The analytical methods are limited by the data type we get which is
notification event data and sampled vibration data.

For AC generators, the analysis does not reveal any statistically significant ROCOF.
The notifications are not demonstrating a systematic pattern. Without statistical
significance, an extraordinary finding is that AC generator A has a decreasing ROCOF
while AC generator B has an increasing one, whereas in reality they are in same type
with identical maintenance strategy. The analysis principles are well demonstrated
even though the result is not statistically significant.

The analysis of vibration signals of gas turbine B does not achieve any monotonic
tendency. Some notification days record the increasing trend. A number of them
show the decreasing trend. The others do not present any proneness. No strong and
monotonic trend is obtained in signal change based on the sampled vibration data.
This restricts the application of RUL assessment models proposed in chapter 4.

The quality of SAP and PI data is not sufficient to achieve any crucial results for RUL
assessment. The main weakness in the current data is that specific systematic pattern
within notifications cannot be derived. More efforts on improving reporting quality
and assuring data completeness are expected as discussed in section 5.4 (page 41).

Objective 5 - The case studies shall demonstrate how the maintenance program
will affect the technical condition on the equipment, and how to balance
maintenance effort with other measures such as upgrading projects, renewal and
modification.
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In agreement with the supervisor, objective 5 is performed where limits to a
theoretical case study through utilizing assumed deterioration models and cost
values.

As summarized in objective 4, it is concluded that the data in case study is not
sufficient for implementation of objective 5. Maintenance program is efficient for
equipment with clear failure pattern. In particular, maintenance program is
established in view of proper degradation modelling. With such considerations,
chapter 6 carries out a case study on maintenance optimization following necessary
assumptions. Block replacement policy and Markov state models with inspections are
employed to construct cost models to optimize maintenance. The result of the
principle case study shows that maintenance strategy executing inspections is the
optimum. It is expected that the industry can draw on these valuable theoretical
investigations as of contributions for optimal maintenance planning.

Statoil do have several upgrading projects, renewal and modification actions where
are recorded. Nevertheless these notes are not open for the thesis and were not
pursued.

7.2 Limitations of Approach

The approach of the thesis is subject to literature review and supervision. The
literature review is limited by accessible resources with full text through NTNU library.
RUL assessment is a relatively new research field where illustrates theories and
experimental models as a majority. Most study papers are developed by carrying out
specific laboratory tests and subsequent model trainings. With no experiments and
no possibility to train any model, RUL assessment within the thesis is obviously more
theoretical. Applications of assessment techniques require suitable data whereas the
project team provides only event data and sampled monitoring data. The results of
data analysis are not satisfactory where advanced assessment methods cannot be
employed.

Several meetings with SINTEF project team and Statoil experts provide background
information and sampled maintenance data of AC generators and gas turbines. The
deadline of thesis is three months prior to the project ‘Kristin Regularity’. This limits
the prospect of retrieving more valuable information and data from Statoil.

7.3 Recommendations for Further Work

The thesis is performed with a limitation of restricted period of time as well as
limited approaches discussed in section 7.2. It is recommended to further develop
and improve the thesis work. A number of suggestions are given below.

Link to theoretical work (from academic perspective)

The new way to define RUL presented in chapter 3 is considered as a start for the
industry to develop RUL assessment as a tool to optimize maintenance in ageing and
life extension management. Further work in developing measurements for
equipment evaluation is necessary and anticipated, for example, expand and apply
Table 1 (page 17) with practical cases. The positive effects in using RUL assessment
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for optimal repair cannot be generated without clear criterion for evaluation of
equipment usefulness. More efforts are required in such domain.

The conceptual diagram of RUL illustrated in figure 9 (pagel8) only considers one
failure mechanism, fatigue, as an example. In reality equipment degradation are
generally caused by several failure mechanisms. It is a challenging task to establish a
realistic degradation process curve. For a specific piece of critical equipment,
performing ageing tests to solve this challenge is believed to be an important step
forward. The future work is advised to develop suitable methods to process test data
as well as specific RUL estimation models.

Link to case study (from industrial perspective)

As previously demonstrated in section 5.4 (page 41), more efforts on RUL assessment
of rotating equipment are expected in the future.

What Statoil have done:

The application of SAP and PI system provides a solid foundation for future RUL
assessment as well as optimal maintenance planning. The failure classification is
regarded as a start to identify available equipment states where Markov state model
could be utilized. Condition monitoring of vibration on rotating equipment facilitate
the early detection of failures.

Recommendations:

The failures are classified as three types: unwell, sick and dead. In reality such
classification can be further developed to consider more states, in which fits the
Markov state model in a better manner (section 6.4, page 46).

Lubrication oil condition is strongly recommended to be monitored for
production-critical rotating machinery since this technique delivers roughly 10 times
earlier warnings for machine failures compared to vibration based monitoring
techniques (section 4.2.2, page 24). Noise signals can also be collected for RUL
prediction and it allows for remote and non-contact monitoring of the machine in
contrast with vibration analysis that requires a direct contact with the equipment
(section 4.2.3, page 24).

The application of single processing techniques on acquiring mot monotonic
degradation behavior is dependent on sufficient raw data collected from
run-to-failure experiments (section 4.2.1, page 21). Deterioration models can be
further trained and tested based on experiments in the coming performance (section
4.3, page 25). Provided with valid deterioration models and true maintenance costs,
the optimal maintenance strategy could be determined as well as feasible
maintenance programs.

The case study only considers rotating equipment. Electrical equipment is also crucial
for safe and efficient oil and gas production. The following work could make some
contributions in this aspect.



Appendix A Technical Background

This appendix gives a short and brief introduction of technical terminology
demonstrated in the thesis where is probably not well known to readers. The relative
sources that can provide an in-depth understanding of these terms, techniques and
models are also indicated at the end of each part.

A.1 Empirical Mode Decomposition (Source: Wikipedia)

The empirical mode decomposition (EMD) method is the essential part of the
Hilbert-Huang transform. A complicated data set can be decomposed into a finite and
small number of components through using the EMD method. The EMD method
reduces given data into a collection of intrinsic mode functions (IMF) where the
Hilbert spectral analysis could be applied then.

The Hilbert-Huang analysis is a method to examine the IMF’s instantaneous
frequency data as functions of time which shows sharp identification of embedded
structures. Its final result is an energy-frequency-time distribution, named as the
Hilbert spectrum. More information about the EMD and Hilbert transform can be
found: Alexander D. Poularikas. 2010. Transforms and Applications Handbook, Third
Edition. CRC Press.

A.2 Paris Law Model (Source: Wikipedia)

Paris law is also designated as Paris-Erdogan law. It correlates the stress intensity
factor to sub-critical crack growth within a fatigue stress regime. The basic formula is
j—;=CAK”', where « is the crack length, N is the number of load cycles, C
and m are material constants, AK is the range of the stress intensity factor. It is
extensively used to predict life for fatigue cracks. More information about Paris
model can be found: Xiong, J. J. and Shenoi, R. A. 2011. Fatigue and fracture
reliability engineering. Springer, 22 Jan 2011. ISBN 978-0-85729-218-6.

A.3 Grey System Theory (Source: Kayacan et al., 2010)

Grey models are developed to predict the future value of a time series. It is only
dependent on a set of most recent data relying on the window size of the predictor.
Two assumptions are within this theory. One is that all data values are assumed to be
positive in this model. The second is that the sampling frequency of the time series is
fixed. The main task of grey system theory is to extract realistic governing laws of the
system with given data. A general grey model is GM (n,m), where n is the order
of the difference equation and m is the number of variables. More information
about grey system theory can be found: Liu, S. F.,, J. Forrest and Y. Lin. 2011. Grey
systems, theory and applications. Springer. ISBN 978-3-642-16157-5.
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A.4 Diffusion Process (Source: Wikipedia)

A diffusion process is to solve a stochastic differential equation. Its mathematical
definition is given as “a Markov process with continuous sample paths for which the
Kolmogorov forward equation is the Fokker-Planck equation”. Examples of diffusion
processes are Brownian motion, reflected Brownian motion and Ornstein-Uhlenbeck
processes. Si et al. (2012) indicate that diffusion processes are capable of describing
random degradation among stochastic process-based models; therein Brownian
motion with a linear drift becomes popular to model degradation recently. More
information about diffusion process and its applications can be found: Fuchs, C. 2013.
Inference for diffusion processes. Springer. ISBN 978-3-642-25969-2.

A.5 Nonlinear autoregressive exogenous model (Source:
Wikipedia)

A nonlinear autoregressive exogenous model is a nonlinear autoregressive model
with exogenous inputs in time series modeling. The model links the current value of a
time series to past values of the same time series and current and past values of the
exogenous series. It can be demonstrated as

V= F (Vs Vias Vigsees sty U, o5, 5,..)+ €. ¥ istheinterested variable which
we intend to predict and u is the variable determined externally. Here & s the
error term (or noise). The function F can be a neural network, a wavelet transform,
etc. More information about this model can be found: Nelles, O. 2001. Nonlinear
system identification. Springer. ISBN 978-3-662-04323-3.

A.6 Artificial Neural Network (Source: Wikipedia)

Artificial neural networks are computational models that are able of machine
learning and pattern recognition. The networks are commonly demonstrated as
systems of interconnected ‘neurons’ which computes values from inputs by feeding
information through the network. This method is used to solve tasks that are difficult
to find solutions using ordinary rule-based programming. More information can be
found: B. Yegnanarayana. 2009. Artificial neural networks. PHI Learning Pvt. Ltd., 14.
Jan. 2009.

A7 Levenberg-Marquardt Algorithm (Source:
Wikipedia)

The Levenberg-Marquardt algorithm is also designated as the damped least-squares
method. It is used to solve problems facing non-linear least squares. This algorithm is

known as a popular approach to solve generic curve-fitting problems. For instance,
given a set of m empirical datum pairs of independent and dependent variables,

m 2
(x,,v,), the sum of the squares of the deviations S(ﬂ)=2[y,. —f(x,0)] will be

i=1
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minimal if the parameters S of the model curve f(x,f) is optimized. The other
application of Levenberg-Marquardt algorithm lies in solving nonlinear inverse
problems. More information about this theory and its implementation can be found:
Naveen, M., S. Jayaraman, V. Ramanath and S. Chaudhuri. 2010. Modified Levenberg
Marquardt Algorithm for Inverse Problems. Lecture notes in computer science volume
6457, pp 623-632.

A.8 :-Support Vector Regression (Source: Loutas et al,,
2013)

The concept of ‘support vector machines’ is introduced by Vapnik(1995) for solving
classification and regression problems. Given a set of # observations, generally, each
of them lies in an M-dimensional space, x, e RY ,i=1,...,n. For each observation

vector, a required mapping is presented. It is further assumed that a set of target
values y,€ R contains the vector of mappings. The objective of regression is to find

f
a transformation ', which fulfills Xy, = Yyx1 in the best way. The support vector
context gives a good answer to this problem:
Given a parameterization f(x)=w'x+bh , find w that minimizes
min (1 , 1<
—w'w+C=Y max(|y, - f(x,)|-£,0);. €-SVR comes from the second term
w |2 n

of the function, which is an & -intensive cost function. Details concerning the
application of support vector regression can be found in the book Christmann and
Steinwart, 2008. Support Vector Machines. Information Science and Statistics.
Springer, ISBN:978-0-387-77241-7.

A.9 Principal Component Analysis (Source: Wikipedia)

Principal component analysis (PCA), a statistical procedure, uses orthogonal
transformation to transfer a number of observations that are possibly correlated
variables into a set of linearly uncorrelated variables, named principal components.
Mathematically, PCA is an orthogonal linear transformation that converts the data to
a new coordinate system. The first principal component has the greatest variance by
some projection of the data. Correspondingly, the second coordinate has the second
greatest variance, and so forth. Further knowledge about PCA could be found: Jolliffe
I.T. Principal Component Analysis, Series: Springer Series in Statistics, 2nd ed., Springer,
NY, 2002, XXIX, 487 p. 28 illus. ISBN 978-0-387-95442-4



S

‘Sojewllsa >u___nm__w._ J0J JJomawel

(8) (5007) “|e 12 pAo

sjuauodwod 3jIqowoIny-

‘Suljapow Joineyaq a4n|ieq

(£) (z007) "2 32 Suepm

(o1e4 paezey jeuolniodoud)
o1ey piezeH

auIgJN} PUIp-

‘s|opow [eaisAyd uo
paseq |10 uoleIIIgN| PA1BUIWEIUOD
spiied ayy jo uonewnss Ny

(9) (€T07) "le 3@ NYZ

SOA|BA Jljewnaud-

'ssa20.4d AodJe A Suisn
uollelola1ap SulldPOIA "UOIBWIOUI
aujuo  Suisn  uonewnss  INY

(S) (€107) ‘e 38 UoLI0]

“Joe4D YHM Jeag ayi o 1Ny PIpaid

XOQJE?D- | IS0 YUM [9pOW JUBWId dNul4 (v) (cT0?) "|e 32 oeH
‘si91oweded [9pow
0 juswisnfpe  Suuspisuod 1Ny

9le|d- | 91ewISa 0} |opow me| sued 3uisn (€) (zT02) ‘|2 1° addo)

‘uoisodwodap apow [eauidwa

saul3us 13 Yesduly-

Suipnppur 1Ny d1pasd 01  |spow
paseqg-saisAyd  ansijigeqoad  8uisn

wasAs 9ALIP pa9) DND- | SuizAdjeue Aq  uonewnss 1Ny (2) (0107) "|e 12 Sueny
‘saljIAIe
ddueudUlRW ul saluleladun

(1) (€007) 19201yD

[9POINl [e21sAyd

uollew1ss JNY 40} ASojopoyrsw paseq saisAyd

SpOY1aW UOIBWIISA TNY SNolieA Jo Alewwns T *g a|qel

sa[qel g xipuaddy



‘wyyloge
Suruiesy jo 1psenbuely Suaquagar]
YHUM  YJOMISN  |B4NdN  pJemuoy
sduleag- | paa4 uo paseq uonewnss Ny (81) (0T0T) '|e 30 peweye\
uonewnss JNY 4o ASojopoyrsw usALIp-eleq
“1NY 31eWIISS 03 [9POW Snous3oxa
s3ulieag- | yum aAIssasdaloine seauljuou Suisn (£T) (€T07) '|e 13 OSoues
'ssadoud
uoiIsnylp paseq-}ylIp Jeaujjuou pue SojweuAq JeauljuoN
--- | @Andepe uo paseq uollewnsa Ny (91) (zTOC) "l 3D 1IS
1Ny 31pa.d 0}
X0QJean- | [9pow deds-a1els |ediweudp e 3uisn (stT) (2T0OTZ) "I 38 Uladsen
S9|IqowoINy- 'swa|qoJd Ayljigel|aJ Jo uoia1aq (r1) (Z10T) '|B 32 NOYZ
(auswdinba *s1030e) Sujpuan|jul jeuonesadQ
SUIUIN) - Hun djoel  olnelpAH- | fuonouny  Aljigeljas jeuoliipuo) (€1) (2TOT) "2 33 NEIPOYD
'sanss| 1ied aJeds
== | "INHd 8uisn y3noJyy uonewnss 1Ny (z1) (ZT0T) "lE 3@ @D
'sadid jo sawn (184 paezey [euoipiodold)
Juswaoe|das |ewndo Ajjeaiwouods a1eY plezeH
sadid Ja1e/\- | UO paseq NHd Suisn uonewiisa 1Ny (11) (0TOT) "B 35 UBMNS
‘INHd pue Asoayy
s3ulieag- | waisAs Aau3 uo paseq uondipald 1Ny (0T) (6002) ‘|E 39 RBIX
'sishjeue eiep Ayljigelay "aied
--- | pJezey (21UOJOUOW-UOU) DIUOIOUOIA (6) (£007) E3dND pue e1dno

SS




‘yoeoudde

Jossaudwod aueylaw mo-

'sanbiuyoa} salas-awiy
UM  paledosse  aulydew  J03ILDA
uoddns uo paseq uonewnss NY

(€2) (2T07) "|e 32 el

s3uleag-

‘|eusis asiou d13snode
JO SisAjeue pue aujyoew JOIIINA
1oddns uo paseq uonewnsa Ny

(z2) (£007) uidiag pue uojuedss

solioneg- | ueisaAeg e 3uisn JNY JO uonDIPaId (82) (£T0T) ‘|e 1® we||esoN

‘SyJomiau uejsaheg
[003 DND- | |edlweudAp uo paseq uoiewisa 1Ny (£2) (¢107) "2 32 EIf3IN-UOgOL J10MISN uelsaheg

'sa18a1ea1s
9JUBUSIUIBW JO UOISSNISIQ “JOMIdu

syesouly- | ueisaAeg e uo paseq uolewilsa JNY (92) (TT07) "|e 12 04194194
Ny
101paJd 01 aulydew J039A Hoddns

--- | uisn jo suonedjdde jo malnay (s2) (€T107) "|e 1o Sueyz
‘uolissaJgal
J0199A  uoddns  pue  anbiuyosy
uooNpal Suiddew 4n1esy

s3ulieag- | 21J312WOSI UO Paseq uolewIsa 1Ny (r2) (€T07) "|e 12 ynolpaxusg

aulyde|A 10199 Hoddng

$24N10NJ1S JeIDIIY-

"UoIIBINWIS SIUBWD|D
UL YHM PaUIqUIOD UOIIBWISS TNY
40} SYJOMIBU |ednau [eiyde Suisn

(t2) (€T07) "I 3 13lapUED

sJaul| [|lw SulpulD-

“INY 21eWNSd
01 >JOMiau [ednau [epuie Suisn

(02)
(9€T0T) 849gpUNT pue yspezpewyy

paq 1591 padue|equn J030Y-

‘Xapul uolyepelsap
douewlopad Mau e pue yJomiau
|ednau e uo paseq uondipasd 1NY

(6T) (TTOT) "|2 33 UBA

J4OMISN |ednaN

9s




sjuauodwod aoedsolay-

‘poyiaw Ayljiqel|a4 JopJo-3sily

asianul  Suisn  uonewnss Ny

(8€) (£T07) "I 3 UBWEJRIENUES

Jueld yjamod
|Jewuayl e ul awdinba 3unejoy-

‘poyiaw saJsenbs 1ses|
9AISIN22J paydiam Ajjennusuodxs ayi
8uisn Agq perewiiss ase sislswesed
|9pPON ‘|]apow uol1eJ01I3}P
e uo paseq uoneneAd Ny

(£€) (z10T) BAUSY pUE 010D

s8uleag-

‘s|apow ssado.4d
ue|ssneg U0 paseq UOKEWINSA TNY

(9€) (2T07) "|e 32 Bysoysog

[POIN [BI13S13RIS

uollewnss 1Ny 404 yoeoidde plugAH

s8uleag-

‘uonepesdap
yyeay auiyoew 9y}  ssasse
0} poylaw SisAjeue uolINQIIIUOD
pue |spow AOMJEN U3ppPlY 8uisn

(s€) (zT02) NA

saJnjonJisedjul-

*$59204d UOI1BJ01431DP Y3 }SEIDI0}
0} S|Ppow AoyJel\ uapply Buisn

(v€) (2T0T) "|e 19 1yseAeqoy

s8ulieag-

"S|9POIAl AOMJBIA USPPIH SUBISSNED JO
2JNIXIW UO paseq TNY JO uolewiisy

(€€) (TT07) "Ie 1 eils|N-uoqoL

's1010e4 3ulady

sdwnd o1 neJpAH- | ‘AONJBIA-IWDS  udpply  |eIuUdWZDS (z€) (1107) S8uad pue Suoq
‘9)ey pJezeH
sdwnd olneJpAH- | 'siooe) 3ulddy  AOdJBIN  USPPIH (1€) (1T0Z) 8uo(Q pue Suad

TNY =21ewilsa 01 ELH_LOM_m 2JUaJajul

(AO3JeIN 1WRS ‘AOYJBIA) USPPIH

s3ulieag- | ue pue AONJEN  udpply  3Buisn (0€) (0TOZ) Suey pue Sueyz
‘poyiaw
Sunepdn ueisaAeg e pue anbiuyoal NIOMISN ueisadeg
uoijoadl1ep  98ewep  paseq-anem

sjujof de| a8e|asn4-

que] uo paseq uoneWSY TNY

(62) (€T0T) "|2 32 Buad

1usuodwod/wa3sAs d1j10ads

$21d0} |eJouan

ERlVEIEIEN]

A3ojopoylaw uonewnss 1Ny

LS




s3uleag-

's|eusis uollelgia paoyuow
pue wJojsuel] Jalno4 Suisn sisAjeue
|eJ309ds uo paseq uolewis? INY

(8v)
(T007) omeqes-uldz pue nowsuoH

sdomiau
|[BJNBU YHUM WJIOjSues) J31ino4

'sayoeosdde ueisaheg
pue  3JOM]SU  |BJN3U  19|9ABM
dlweuAp uo paseq uoniewnsa NY

(Lv) (800¢) AsjAe pue |99e409D

yI0Mm1au
[BAN3U YHM }3[9ABM dlweuAq

s3uleag-

*UO0ISSa18aJ J0109A
1oddns-3 uo paseq uonewnss JNY

(9v) (€TOT) "2 39 seino

s8ulieag-

"S|I9poN
AOJYBIA USPPIH SUBISSNED 4O 3JNIXIW
ayy pue uonpisodwodag 13Yded
19]9ABA\ UO paseq uolewise INY

(s¥) (TT07) "Ie 18 eils|N-uoqol

X0QJesan-

'x0gJead jo 1Ny
9QIISOp 01} [9pOW AOMNJIB|A USPPIY
pue awayds 3ulyl 19dnem 3uisn

(vv) (0TOT) OBIN pue Suepm

[SPOIAl [E213S13E)S
Y3M SisAjeuy wojsued] 19|9Ae

sjuauodwod auidua uejoqun|-

‘swa1sAs aaualayul o180| Azzny
pue poyilaw uopipald |erusuodxa
Jeauljuou Uo paseq uoieWISS TNY

(ev) (€TOT) "8 19 oneqes-uiaz

SaUISUD |BJ1INBUOIBY-

"9943 uoisidap e Aq
pawoddns waisAs paseq-ajna Azzny
J119uad uo paseq uonewnss INY

(zv) (€T0Z) J01UN[ pue 1Iyseqys|

wialsAs USALIP 101BI9|920Y/-

‘yoeosdde paseq-Aiie|iwis

Azzny e 3uisn  uonewnss Ny

(tv) (0TOT) OlEIN pue 017

(019 swyp03|y
2139uL 21807 Azzn4) senbluyday
92ua31||91ul jeuoleIndwo)

suej 3u1|002 214199|3-

‘Ss|opow
paseg-eindo) pue swaisAs  xapul
yiyeay uo paseq uolewnnss Ny

(ob) (£107) "le 39 IX

1Ny 121paud

0} pasn sisouSoud  213sijIqeqOId

(6€) (€107) "2 32 UoLI0

[9POIAl [BINS1EIS

1usuodwod/wa3sAs d1j10ads

$21d0} |eJouan

ERlVEIEIEN]

A3ojopoylaw uonewnss 1Ny

89




‘ulewop 14 o1 pJey
‘elep [euoisuswip

ysiy yum Ajsood wJio49d
‘uozlioy uoldipald 1oys e aneH
‘sysedauoy adueyd

JO Sawil 9leinddeul O} pea| ued

‘swa|qoud 3uijeas Aq paonpau

aq 3w syuswiadxa
2yr jo doueodudis |yl
"Aj3s02 aJe sjuswiiadx3
"SUOI}PUOD

pauleJisuod ul Ajises
palen sia3owesed  |9pOIAN
[wn

"10949p
9yl [opow 03} pajedljdwod
pue 211seyd03ls 001 AjjewuoN

‘paJinbau
si suondwnsse  3uiAydwis
Jo uolleUIWEXD 9yl

‘uolleindwod 4oy anIsuadxy
‘Ajlenpiaipul Suijesado syun

'21e4nd0e 9Y1 ||e Pal}IISA 9q 0} papasu JOJ 9|gE1INS 10U ‘SHUN |B21IUIPI
9q 03 ejep jo yunowe a3.e| aJ4inbay ale s|apow |eanzaJoay JOJ $91eWI3SD ||eJan0 dAIZ AjuQ sagejuenpesig
‘Adeundoe

UOIJBWIISD 9SEaJdul  UOllew.o4ul
919|dwod 240w JOo uoneziin syl
‘siseq
pP331oNJISuod-|dm Y
‘Asea aJe sa1els auniny
J0 uolipaud pue uolejndjed syl
*ssa20.d

uoljepes3ap ayl Jo Suipueissapun
J919q e dney 0} 39V
‘si91oweded saisAyd a1ewiyss

pue awnsse 01 alinbas jou oQ

|eannaioay)

‘elep [eusawiiadxa ayy
uo juapuadap sisAjeue puasy
9yl wuopuad 01 d|gejleay

‘pauleiqo
99 ued s1591 Suness|Lde
ysnoiyr synsas  3|qelay

'sanbjuyoal

USALIP-BIEP  UYUM  }SBJIUOD
ul paJinbas s1 elep Jama4
‘sjapow

JOo  so1IsAyd  juaisisuod  sey
woalsAs ayl i 91eundoe Auap

sagejuenpy

sayoeoudde usalIp-eleq

sayoeoudde |eyuswiiadx3y

A3ojopoyisw paseq saisAyd

(e€T0T ‘S849qpun 13 yapezpewyy woJ) paziJewwns) Jusawssasse 1Ny 404 saydeosdde snoliea uosiaedwo) ¢ g 9|qel

65




Bibliography

Al-Badour, F., M. Sunar and L. Cheded. 2011. Vibration analysis of rotating machinery using
time-frequency analysis and wavelet techniques. Mechanical Systems and Signal Processing.
Volume 25, Issue 6, August 2011, Pages 2083-2101.

Adriaan, V. H., L. Pintelon and P. Muchiri. 2010. Maintenance optimization models and
criteria. International Journal of Sys. Ass. Eng. & Man. September 2010. Volume 1, Issue 3,
pp189-200.

Ahmadzadeh, F. and J. Lundberg. 2013a. Remaining useful estimation: Review. International
Journal of System Assurance Engineering and Management. DOI 10.1007/s13198-013-0195-0

Ahmadzadeh F. and J. Lundberg. 2013b. Remaining useful life prediction of grinding mill liners
using an artificial neural network. Miner Engineering. doi:10.1016/j.mineng.2013.05.026

Antonio, C., R. Sormani, G. Arosio, |. Giordani and F. Archetti. Assessing structural health of
helicopter  fuselage  panels  through artificial neural networks  hierarchies.
Source: International Journal of Reliability and Safety, v 7, n 3, p 216-234, 2013.

Atoui, I., H. Meradi, R. Boulkroune, R. Saidi and A. Grid. 2013. Fault detection and diagnosis
in rotating machinery by vibration monitoring using FFT and Wavelet techniques. Systems,
Signal Processing and their Applications (WoSSPA), 2013 8™ international workshop on.

Banjevic, D. 2009. Remaining useful life in theory and practice. Metrika. Volume 69, Issue 2-3,
pp 337-349. DOI 10.1007/s00184-008-0220-5

Benkedjouh, T., K. Medjaher, N. Zerhouni and S. Rechak. Remaining useful life estimation
based on nonlinear feature reduction and support vector regression. Source: Engineering
Applications of Artificial Intelligence, v 26, n 7, p 1751-60, Aug. 2013. Database: Inspec.

Boskoski, P., M. Gasperin and D. Petelin. 2012. Bearing fault prognostics based on signal
complexity and Gaussian process models. 2012 IEEE Conference on PHM, p 8.

Chakravorti, S., D. Dey and B. Chatterjee. 2013. Remaining life analysis. Recent Trends in the
Condition Monitoring of Transformers. Power Systems 2013, pp261-275.

Chen, X. Z., J. S. Yu, D. Y. Tang and Y. X. Wang. 2011. Remaining useful life prognostic
estimation for aircraft subsystems or components: a review. The Tenth International
Conference on Electronic Measurement & Instruments. ICEMI’2011.

Coppe, A.,M. J. Pais, R. T. Haftka and N. H. Kim.2012. Using a simple crack growth model in
predicting remaining useful life. Journal of Aircraft, v49, n6, p1965-73, Nov.-Dec.2012.

Da Costa, C., M. H. Mathias, P. Ramos and P. S. Girao. 2010. A new approach for real time
fault diagnosis in induction motors based on vibration measurement. Source: 2010 IEEE
International Instru. and Meas. Tech. Conference, 12MTC 2010 - Proceedings, p 1164-1168.

Dong, M. and Y. Peng. 2011. Equipment PHM using non-stationary segmental hidden
semi-Markov model. Robotics and Computer-Integrated Manufacturing. Volume 27, Issue 3,
June 2011, Pages 581-590.

Ersdal, G. & E. Hornlund, 2008. Assessment of offshore structures for life extension.
Proceedings of the ASME 27" International Conference on Offshore Mechanics and Arctic
Engineering

60



61

Ersdal, G. & P. O. Selnes, 2010. Life extension of ageing petroleum facilities offshore. SPE
International 127134

Farrar, C. R. and N. A. J. 2006. Damage prognosis: The future of structural health monitoring.
Philosophical Transactions of the Royal Society, 2006, 365, 623-632.

Ferreiro, S., A. Arnaiz, B. Sierra and I. Irigoien. 2011. A Bayesian network model integrated in
a prognostics and health management system for aircraft line maintenance.
Source: Proceedings of the Insti. of Mech. Eng., Part G: Journal of Aero. Eng. ,v 225, n 8, p
886-901, August 2011. Database: Compendex

Finkelstein, M. 2008. Failure rate and mean remaining lifetime. Failure Rate Modelling for
Reliability and Risk, Springer Series in Reliability Engineering 2008, pp 9-44.

Forsthoffer, W. E. B. 2005. Forsthoffer’s rotating equipment handbooks. ISBN:
978-1-85617-472-5. Copyright@2005 Elsevier Ltd. All rights reserved.
http://www.sciencedirect.com/science/book/9781856174725

Gasperin, M., D. Juricic and P. Boskoski. 2012. Prediction of the remaining useful life: an
integrated framework for model estimation and failure prognostics .Source: 2012 IEEE
Conference on Prognostics and Health Management, p 8 pp., 2012. Database: Inspec.

Ge, E. S., Q. M. Li and H. Li. 2012. Condition-based maintenance for multi-component systems
using proportional hazards model. 31st Chinese Control Conference (CCC 2012).
Proceedings, p 5418-22, 2012.

Gebraeel, N., A. Elwany and J. Pan. 2009. Residual life predictions in the absence of prior
degradation knowledge. Reliability, IEEE Transactions on (Volume 58, Issuel). March, 2009.

Gebraeel, N. Z. and M. A. Lawley. 2008. A neural network degradation model for computing
and updating residual life distributions. IEEE T Autom Sci Eng 5(1):154-163

Ghodrati, B., F. Ahmadzadeh, and U. Kumar. 2012. Remaining useful life estimation of mining
equipment: a case study. ISMPES Proceeding, New Delhi. 2012.

Ghiocel, D. M. 2003. Probabilistic approach to component condition assessment, remaining
life prediction and maintenance engineering. Source: SAE Technical Papers, 2003, 2003 SAE
World Congress

Goto, S., Y. Adachi, T. Furue, Y. Uchida, M. Sueyoshi, H. Hatazaki and M. Nakamura. 2008.
On-line deterioration prediction and residual life evaluation of rotating equipment based on
vibration measurement. SICE Annual Conference, August 20-22, 2008.

Goto, S. and T. Kenta. 2012. On-line residual life prediction including outlier elimination for
condition based maintenance. International Journal of Innovative Computing, Information
and Control Volume 8, Number 3(B), March, 2012.

Gupta, R. C. and R. D. Gupta. 2007. Proportional reversed hazard rate model and its
applications. Jour. of Stati. Pla. & Inf. Volume137, Issuell, Pages 3525-3536. November, 2007

Huang, B. Q., M. H. Xu, H. L. Gao, M. Zhao, X. X. Wu and J. M. Yan. 2010. CNC screw life
prediction based on DFNN performance model. Source: 2010 8th World Congress on
Intelligent Control and Automation (WCICA 2010), p 4554-9, 2010Database: Inspec

Hudson, B. G. 2010. Extending the life of an ageing offshore facility. Abu Dhabi International
Petroleum Exhibition & Conference, Abu Dhabi, UAE, 1-4 November 2010. SPE 138654.

Heng, A., S. Zhang, C. C. Andy and J. Mathew. 2009. Rotating machinery prognostics: state of
the art, challenges and opportunities. Mech. Sys. and Sign. Proce. Volume 23, Issue 3, April
2009, Pages 724-739.



62

Ishibashi, R. and C. L. N. Junior. 2013. GFRBS-PHM: A genetic fuzzy rule-based system for
PHM with improved interpretability. 2013 |IEEE Inter. Conf. on Progn. and Heal. Man.

ISO 13372:2012. Condition monitoring and diagnostics of machines-Vocabulary. Standard
published 10/01/2012 by International Organization for Standardization.

ISO 13381-1:2004. Condition monitoring and diagnostics of machines-Prognostics-Part 1:
General guidelines. International Organization for Standardization.

Jan, T. K. and B. H. Lindqvist. 1998. TTT-based tests for trend in repairable systems data. Reli.
Eng. & Sys. Saf. Volume 60, Issue 1, April 1998, Pages 13-28.

Jardine, A. K. S., L. Daming and D. Banjevik. 2006. A review on machinery diagnostics and
prognostics implementing condition-based maintenance. Mech. Sys. and Sig. Pro. 20 (2006)
1483-1510.

Jin G., D. E. Matthews and Z. B. Zhou. 2013. A Bayesian framework for on-line degradation
assessment and residua life prediction of secondary batteries in spacecraft. Reli. Eng. & Sys.
Saf. Volume 113, May 2013, Pages 7-20.

Kayacan, E., B. Ulutas and O. Kaynak. 2010. Grey system theory-based models in time series
prediction. Expert Systems with Applications. Volume 37, Issue 2, March 2010, Pages
1784-1789.

Kobayashi, K., K. Kaito and N. Lethanh. 2012. A statistical deterioration forecasting method
using hidden Markov model for infrastructure management. Transportation Research Part B:
Methodological, v 46, n 4, p 544-561, May 2012. Compendex

Lecture note: TPK 5170 RAMS assessment and optimization, autumn 2013. Norwegian
University of Science and Technology, Trondheim.

Lecture note: PK8207 Maintenance optimization, spring 2014. Norwegian University of
Science and Technology, Trondheim. http://frigg.ivt.ntnu.no/ross/elearning/PK8207/

Lloyd, G. M., T. hasselman and T. Paez. 2005. A proportional hazards neural network for
performing reliability estimates and risk prognostics for mobile systems subject to stochastic
covariates. Jour. of Eng. and Tech. Man. 97-106.

Lorton, A., M. Fouladirad and A. Grall. 2013. Computation of remaining useful life on a
physic-based model and impact of a prognosis on the maintenance process.Proceedings of
the Institution of Mech. Eng., Part O: Jour. of Ri. and Rel., v 227, n 4, p 439-449, August 2013

Loutas, T.H., D. Roulias and G. Geogoulas. 2013. Remaining Useful Life Estimation in Rolling
Bearings Utilizing Data-Driven Probabilistic E-Support Vectors Regression. |EEE Transactions
on Reliability, v 62, n 4, p 821-32, Dec. 2013. Inspec

Ma, Z. 2009. A new life system approach to the prognostic and health management (PHM)
with survival analysis, dynamic hybrid fault models, evolutionary game theory, and
three-layer survivability analysis. |EEE aerospace conference 2009 (2009)

Mahamad, A. K., S. Saon and T, Hiyama. 2010. Predicting remaining useful life of rotating
machinery based artificial neural network. Source: Computers and Mathematics with
Applications, v 60, n 4, p 1078-1087, August 2010. Compendex.

Mason A., O. Korostynska, S. Wylie and A. |. Al-Shamma’a. 2014. Non-destructive evaluation
of an activated carbon using microwaves to determine residual life. Carbon. Volume 67,
February 2014, Pages 1-9.

Maio, F. D., K. L. Tsui and E. Zio. 2013. Combining relevance vector machines and exponential
regression for bearing residual life estimation. Mech. Sys. and Sig. Pro. Volume 31, August



63

2012, Pages 405-427.

Mazhar, M. I., S. Kara, and H. Kaebernick. 2007. Remaining life estimation of used
components in consumer products: Life cycle data analysis by Weibull and artificial neural
networks. Journal of Oper. Man. Volume 25, Issue 6, November 2007, Pages 1184-1193.

McNaught K. R., and A. T. Zagorecki. 2011. Modelling techniques to support the adoption of
predictive maintenance. Comp. Eng. Ser. Sys. Decision Engineering 2011, pp 277-296.

Mosallam, A., K. Medjaher and N. Zerhouni. 2013. Bayesian approach for remaining useful
life prediction. Source: Che. Eng. Tran, v 33, p 139-144, 2013. Compendex

Nabavian, M. & A. Morshed, 2010. Extending life of fixed offshore installations by integrity
management: a structural overview. SPE International 138386.

Nystad, B. H. 2008. Technical condition indexes and remaining useful life of aggregated
systems. Doctoral dissertation. Norwegian University of Science and Technology, Trondheim,
Norway. ISBN: 978-82-471-1256-4

OREDA 2009. Offshore Reliability Data Handbook 5 Edition, Volume 1 — Topside Equipment.
Prepared by SINTEF Technology and Society and sold by DNV. 2009.

Peng, T. S., J. J. He, Y. M. Liu, A. Saxena, J. Celaya and K. Goebel. 2013. Fatigue damage
diagnosis and prognosis using bayesian updating. Collection of Technical Papers - 54th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 2013.

Peng Y., M. Dong and M. J. Zuo. 2010. Current status of machine prognostics in
condition-based maintenance: a review. The International Journal of Advanced
Manufacturing Technology. September 2010, Volume 50, Issue 1-4, pp 297-313.

Peng, Y. and M. Dong. 2011. A prognosis method using ageing-dependent hidden
semi-Markov model for equipment health prediction. Mechanical Systems and Signal
Processing. Volume 25, Issue 1, January 2011, Pages 237-252.

Poley, J., 2012. The metamorphosis of oil analysis. Mach. Fail. Prev. Tech. (MFPT) Conference,
C Section 1, Conference Proceedings, Dayton, Ohio, April 24 — 26, 2012.

Rausand, M. and A. Hgyland. 2004. System reliability theory: models, statistical methods, and
applications, 2" Edition. ISBN: 978-0-471-47133-2. January 2004.

Gao, R. X. and R. Q. Yan. 2011. Wavelets, theory and applications for manufacturing. Springer.
ISBN 978-1-4419-1545-0.

Sankararaman, S. and K. Goebel. 2013. Uncertainty quantification in remaining useful life of
aerospace components using state space models and inverse form. ASME Proceeding, Boston,
2013.

Santoso, G.B., T. Prahasto and A. Widodo. 2013. Prognosis of bearing damage performance
to industrial system using nonlinear autoregressive with exogenous (NARX). Source: 2013
International Conference on QiR (Quality in Research), p 60-3, 2013.

Scanlon, P., A. Lucent, D. F. Kavanagh and F. M. Boland. 2013. Residual life prediction of
rotating machines using acoustic noise signals. Instr. and mea, IEEE tran. on. Volume 62,
Issue 1.

Scanlon, P. and S. Bergin. 2007. Using support vector machines and acoustic noise signal for
degradation analysis of rotating machinery. Source: Artificial Intelligence Review, v 28,n 1, p
1-15, June 2007. Database: Inspec.

Shumaker, B. D. 2011. Prognostic Methods for Predicting Remaining Useful Life of Nuclear
Plant Equipment and Components. Department of Energy, USA, 2011/SBIR.



64

Si, X. S., W. B. Wang, Hu C. H. Hu, and D. H. Zhou. 2010. Remaining useful life estimation — A
review on the statistical data driven approaches. European Journal of Operational Research.
Volume 213, Issuel, 16 August 2011, Pages 1-14.

Si, X. S., W. B. Wang, C. H. Hu and D. H. Zhou. 2011. Remaining useful life estimation-A review
on statistical data driven approaches. European Journal of Operational Research. Volume
213, Issue 1, 16 August 2011, Pages 1-14.

Si, X. S., W. B. Wang, C. H. Hu, D. H. Zhou and M. G. Pecht. 2012. Remaining Useful Life
Estimation Based on a Nonlinear Diffusion Degradation Process. Source: IEEE Transactions on
Reliability, v 61, n 1, p 50-67, March 2012. Database: Inspec

Si, X. S.,, W. B. Wang, M. Y. Chen, C. H. Hu and D. H. Zhou. 2013. A degradation
path-dependent approach for remaining useful life estimation with an exact and closed-form
solution. European Journal of Oper. Res. Volume 226, Issue 1, 1 April 2013, Pages 53-66.

Sikorska, J. Z., M. Hodkiewicz and L. Ma. 2011. Prognostic modelling option for remaining
useful life estimation by industry. Mechanical Systems and Signal Processing. Volume 25,
Issue 5, July 2011, Pages 1803-1836.

Sloukia, F., M. El Aroussi, H. Medromi and M. Wahbi. 2013. Bearings prognostic using mixture
of Gaussians hidden Markov model and support vector machine. Source: 2013 ACS
International Conference on Computer Systems and Applications (AICCSA), p 4 pp., 2013

Son K.L., M. Fouladirad, A. Barros, E. Levrat & B. Lung. 2013. Remaining useful life estimation
based on stochastic deterioration models: a comparative study. Reliability Engineering &
System Safety, Volume 112, April 2013, Pages 165-175.

Steinebach, C. and T. A. Thorstensen. 2002. Aggregated monitoring of technical condition in
industrial systems. IFToMM Sixth International Conference on Rotor Dynamics, 2002.

Suwan, P., C. L. Choi, J. H. Kim and C. H. Bae. 2010. Evaluating the economic residual life of
water pipes using the proportional hazards model. Water Resources Management, v 24, n
12, p 3195-3217, 2010

Tian, Z. G., Ding Y. and Ding F. F. 2011. Maintenance optimization of wind turbine systems
based on intelligent prediction tools. Innovative Computing Methods and Their Applications
to Engineering Problems Studies in Computational Intelligence. Volume 357, 2011, pp 53-71.

Tobon-Mejia, D.A.; Medjaher, K.;Zerhouni, N. and Tripot, G.2011. Estimation of the
Remaining Useful Life by using Wavelet Packet Decomposition and HMMs. Source: 2011 IEEE
Aerospace Conference, p 10 pp., 2011. Database: Inspec

Tobon-Mejia, D.A., K. Medjaher and N. Zerhouni. 2012. CNC machine tool's wear diagnostic
and prognostic by using dynamic Bayesian networks. Source: Mechanical Systems and Signal
Processing, v 28, p 167-82, April 2012. Database: Inspec

TeCoMan Wiki. The documentation site of TeCoMan.
http://raga3.sintef.no/TeCoWiki/Wiki.jsp ?page=Main

Thorstensen, T. A. 2007. Lifetime profit modelling of ageing systems utilizing information
about technical condition. Doctor thesis. Trondheim, December 2007. Department of Marine
Technology, Norwegian University of Science and Technology.

Vapnik, V. 1995. The Nature of Statistical Learning Theory. Statistics for Engineering and
Information Science, Second edition. Springer—Verlag, 1995.

Vaidya, P. and M. Rausand. 2009. Life extension of machinery in the oil and gas industry. In
Proceedings of European Safety and Reliability Conference ESREL, Praha, 2009.



65

Vaidya, P. and M. Rausand. 2011. Remaining useful life, technical health, and life extension.
Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliabiltiy
2011 225:219 DOI: 10.1177/1748007810394557.

Wang, K. S., F. S. Hsu and P. P. Liu. 2002. Modeling the bathtub shape hazard rate function in
terms of reliability. Reliability Engineering and Systems Safety. Volume 75, Issue 3, March
2002, Pages 397-406.

Wang, D. and Q. Miao. 2010. On-line automatic early fault detection of rotating machinery.
Source: 2010 Prognostics and System Health Management Conference (PHM 2010),p 5
pp., 2010. Database: Inspec

Watson, G. S. and W. T. Wells. 1961. On the possibility of improving the mean useful life of
items by eliminating those with short lives. Technometrics 3:281-298.

Wang, M. and J. Wang. 2012. CHMM for tool condition monitoring and remaining useful life
prediction. The international Journal of Advanced Manufacturing Technology. March 2012,
Volume 59, Issue 5-8, pp 463-471.

Xi, Z. M., R. Jing, P. F. Wang and C. Hu. 2013. A copula-based sampling method for
data-driven prognostics and health management. Source: 2013 IEEE Conference on
Prognostics and Health Management (PHM), p 10 pp., 2013. Database: Inspec.

Xia, L. H., H. T. Liu, M. Zhao and H. D. Wang. 2009. Study on the remaining usage life
prediction of equipment and condition-based maintenance decisions. Eighth International
Conference on Machine Learning and Cybernetics (ICMLC), p 2708-12, 2009.

Yan, J. H., C. Z. Guo, X. Wang and D. B. Zhao. 2011. A Data-Driven Neural Network Approach
for Remaining Useful Life Prediction. Source: Key Engineering Materials, v 450, p 544-7, 2011.
Database: Inspec.

Yasniy, O., Y. Lapusta, Y. Pyndus, A. Sorochak & V. Yasniy. 2013. Assessment of lifetime of
railway axle. International Journal of Fatigue, Volume 50, May 2013, Pages 40-46.

Yu, J. B. 2012. Health Condition Monitoring of Machines Based on Hidden Markov Model and
Contribution Analysis. Source: IEEE Transactions on Instrumentation and Measurement, v 61,
n 8, p 2200-11, Aug. 2012. Database: Inspec

Zein-Sabatto, S., J. Bodruzzaman and M. Mikhail. 2013. Statistical approach to online
prognostics of turbine engine components. Source: Conference Proceedings - IEEE 2013, IEEE
SoutheastCon 2013: Moving America into the Future. Database: Compendex

Zhang, L. L., Z. L. Liu, D. S. Luo, J. Li, H. Z. Huang. 2013. Review of remaining useful life
prediction using support vector machine for engineering assets Source:2013 International
Conference on Quality, Reliability, Risk, Maintenance and Safety Engineering (QR2MSE), p
1793-9, 2013. Database: Inspec.

Zhou, C. W., R. B. Chinnam and A. Korostelev. Hazard rate models for early detection of
reliability problems using information from warranty databases and upstream supply chain.
International Journal of Production Economics. Volume 139, Issue 1, September 2012, Pages
180-195.

Zhu, J. D., J. Yoon, D. He, B. Qiu and E. Bechhoefer. 2013. Online condition monitoring and
remaining useful life prediction of particle contaminated lubrication oil. Source: 2013 IEEE
Conference on Prognostics and Health Management (PHM), p 14 pp., 2013

Zio, E. and D. M. Francesco. 2010. A data-driven fuzzy approach for predicting the remaining
useful life in dynamic failure scenarios of a nuclear system. Source: Reliability Engineering
and System Safety, v 95, n 1, p 49-57, January 2010. Database: Compendex



Curriculum Vitae

Personal Information

Name: Bin Lu

Gender: Male

Date of birth: 8, February 1989
Address: Herman Krags Vei 08-42
Nationality: Chinese

Email (1): binlv@stud.ntnu.no
Email (2): binlv89@gmail.com
Telephone: +47 45170655
Education

01.2012-06.2014 Master of Science — RAMS (Reliability, Availability, Maintainability
and Safety) Program
Norwegian University of Science and Technology (NTNU),
Trondheim, Norway

09.2007-07.2011 Bachelor of Engineering — Machine Design Manufacturing and
Automation
Harbin University of Science and Technology (HUST), Harbin, China

Language Skills

Chinese: Native Speaker
English: Proficient User
Norwegian: Basic Learner
Computer Skills

CARA Fault Tree Program:
MINITAB:

Matlab:
Autodesk CAD:
CATIA:

Microsoft Office:
GRIF:

Fault tree analysis

Software for statics, process improvement, Six sigma
and quality improvement

Language of technical computing

2D and 3D design engineering software

Solution for product design and innovation. Dassault

Systems S.A.

Office suite

System analysis software platform for determining the
essential indicators of dependability:

Reliability-Availability-Performance-Safety

66



