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1 | Introduction

Voting is as old as society. The simplest and probably one of the earliest methods of
voting is done by a “show of hands” which means raising one’s hand if one agrees with
the proposition put forth. Nowadays voting is usually associated with the election of
governments, election of boards or similar elections.

Electronic voting has been a topic of great discussion the last couple of decades, and more
and more elections are being converted from conventional methods to the electronic ones.
There are several reasons for moving from conventional to electronic voting. One is the
economic point of view – it is easy to see that making the election process electronic
could cut down costs and save time. Another point of view is to achieve a higher voter
turnout – one hopes that when voting is made more convenient considerably more voters
will turn out.

When we are moving from conventional voting to electronic voting, we are trying to mimic
conventional voting. This is important to make electronic voting understandable and
trustworthy for both voters and authorities. But different countries implement elections
in different ways. Electronic voting must take many different, and sometimes mutual
excluding, considerations into account. Some of these considerations might not be an
issue some years from now. When voters and authorities are used to electronic elections
there might be new and completely revolutionary ways to put electronic voting into
practice. But until this might happen, we will need to mimic conventional voting.

Money and convenience do not cover every aspect of the voting process. The most
important requirement for a voting process is that the election result reflects the opinion
of the authenticated voters. Amongst others, conventional voting has been designed to
prevent vote coercion, and depending on the choice of how to cast a vote, several security
issues arise. Two of the possibilities for the vote casting process are either voting from a
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mobil platform (as a personal computer or a mobil phone) or voting electronically from
a polling place. These two different approaches have very different impact when it comes
to vote coercions. So when looking at the security of electronic voting it is possible to
divide security issues into at least to categories: The security of the cryptographic voting
protocol and the security of the practical implementation.

The scope of this thesis is to study a set of cryptographic voting protocols, where the
only difference between them is the number of candidates one can vote for. To be able
to do this we will need some knowledge of public key cryptography, both of the actual
encryption schemes and on how we can analyze their security. In particular we need
to study Paillier’s cryptosystem [24] and a generalized version of this cryptosystem by
Damård, Jurik and Nielsen [7]. The latter will be the base for the voting protocols. The
practical implementation of the voting protocols is out of scope for this thesis. We will
assume that the practical issues are solved adequately, and when a practical problem
occurs which has direct relevans for our protocol, we will let a bulletin board solve it.

The outline of the thesis is as follows: In Chapter 2 we introduce the mathematics which
will be needed for the rest of the thesis. It will require only a basic prior understanding
of algebra and number theory. In Chapter 3 public key cryptography is introduced, and
we describe some of the classic cryptosystems. In Chapter 4 we discuss the security
of cryptosystems and give a formal definition of semantical security which will be of
great interest for the next chapters. In Chapter 5 we introduce Paillier’s cryptosystem
and prove the security of it, and in Chapter 6 we introduce a generalization of it by
Damgård, Jurik and Nielsen. This cryptosystem will be the base for Chapter 7, where
we introduce electronic voting. We then describe the voting protocols and introduce the
concepts of zero knowledge, non-interactive zero knowledge and threshold decryption,
before we end the chapter with security analyzes of the voting protocols. In Chapter
8 we conclude the thesis with an informal discussion on how a particular security issue
could be addressed, namely the trust we are giving the dealer.



2 | Preliminaries and notation

We will start by looking at some basic results from algebra and number theory which will
be used throughout this thesis. They are all well-known, so for the most of them we will
not include proofs here. The interested reader can find the proofs in any undergraduate
textbook in algebra and number theory.

2.1 Primes and Composites

We will start with a short introduction of primes, as they are essential to every cryp-
tosystem discussed within this thesis.

Definition 2.1. Let a, b be integers with 0 < b ≤ a. Then ∃ unique k and t with
0 ≤ r < b such that

a = kb+ t,

where k is called the quotient and t is called the residue. If t = 0 we say that b divides
a and denote it by b | a.

Definition 2.2. We divide the natural numbers into three categories:

• 1 is the only number with exactly one divisor, namely 1 itself.

• Primes are integers p > 1 with exactly two natural number divisors, namely 1 and
p itself.

• Composites are integers n > 1 which are not primes, i.e. have more than one prime
divisor.
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Proposition 2.3 (Fundamental theorem of arithmetic).
Every positive integer n can be expressed as a unique product of primes. That is:

n =

t∏
i=1

pkii ,

for some positive integers j, ki, where pi are primes with p1 < · · · < pt.

Definition 2.4. The greatest common divisor of two integers a and b with ab 6= 0,
denoted gcd(a, b), is defined to be the largest positive integer which divides both a and
b. We say that a and b are relatively prime, or coprime, if gcd(a, b) = 1.

Definition 2.5. The least common multiple of two integers a and b with ab 6= 0, denoted
lcm(a, b), is defined to be the smallest positive integer which is divisible by both a and b.

Proposition 2.6.
Let a, b be integers. Then

ab = gcd(a, b) lcm(a, b). (2.1)

Proposition 2.7 (Extended Euclidean algorithm).
Let a and b be positive integers. Then the equation

ax+ by = gcd(a, b)

always has a solution in integers x and y.

2.2 Groups

Definition 2.8. A group G is an algebraic structure consisting of a set G and a binary
operation which satisfy closure, associativity, identity and invertibility. We can also list
the following for a group G:

• G is called an abelian group if the binary operation is commutative.

• The order of G is the number of elements in G, and is denoted |G|.

• The order of an element a ∈ G, is the smallest positive integer k such that
ak = identity. If such a k exists, we say that a has finite order, if not we say
that a has infinite order.
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• G is cyclic if it contains an element g ∈ G which generate the entire group. That
is, G = {gk}. In this case, g is called a generator of G and we write 〈g〉 = G.

• The order k of a finite cyclic group is the order of its generator, and we write
|〈g〉| = |G| = k.

We will now look at some properties for groups.

Proposition 2.9.

• Every group of prime order is cyclic.

• Every cyclic group is abelian.

• Let G be a finite group and let a ∈ G. Then |〈a〉| divides |G|.

We will continue defining subgroups.

Definition 2.10. Let G be a group and H ⊆ G. If H is closed under the group
operation, and is itself a group with the induced group operation, then H is a subgroup
of G.

Proposition 2.11 (Lagrange’s theorem).
Let H be a subgroup of a finite group G. Then |H| divides |G|.

All the groups we will be studying in this thesis are abelian. We will then have the
following important structure:

Definition 2.12. Let H be a subgroup of an abelian group G. Then G
/
H is the factor

group defined by
G
/
H = {aH | a ∈ G} ,

under the binary operation
(aH)(bH) = (ab)H.

At last we will take a look at mappings with some particular properties.

Definition 2.13. Let G and G′ be two groups with binary operations ∗ and ∗′ respec-
tively. Let µ : G→ G′, and consider the following two properties:

• For all a, b ∈ G
µ(a ∗ b) = µ(a) ∗′ µ(b).
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• The mapping µ is bijective.

If the the first condition holds, we have a group homomorphism between G and G′. If
both conditions hold, we have a group isomorphism, denoted G ' G′.

2.3 Congruences

Definition 2.14. Let a, b, n be integers with n 6= 0. Then

a ≡ b (mod n)

iff a = b+ kn for some integer k. We call this a congruence, and say that a is congruent
b modulo n.

The congruence relation is an equivalence relation, and thus partitions the integers into
disjoint equivalence classes, such that two integers are congruent modulo n if and only if
they lie in the same class.

Definition 2.15. The residue class of a modulo n, denoted 〈a〉, is defined by

〈a〉 = {b ∈ Z | a ≡ b (mod n)} = a+ nZ = a+ 〈n〉.

The integers modulo n is the set of all residue classes modulo n given by

Zn = {0 + 〈n〉, 1 + 〈n〉, . . . , (n− i) + 〈n〉},

where the group operations addition and multiplication are inherited from Z and where
{0, 1, . . . , (n− 1)} are called the residues modn. When n 6= 0, then |Zn| = n.

It is possible to think of Zn as the set of residues classes of Z modulo n, or the set of
residues modulo n. Without loss of generality, we will denote an element in Zn both as
a or a+ 〈n〉, depending on the context.

It is easy to see that Zn is an abelian group under addition, but it is not a group under
multiplication.

Proposition 2.16.
Let a and n be integers. Then for some integer b,

ab ≡ 1 (mod n) ⇐⇒ gcd(a, n) = 1.
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If such an integer b exists, it is unique, and we say that b is the multiplicative inverse of
a modulo n.

Since every residue a mod n with gcd(a, n) = 1 has an inverse, they form the following
abelian group under multiplication, called the multiplicative group of integers modulo n:

Z∗n = {a ∈ Zn | gcd(a, n) = 1}.

We will now have a look at the group Zp, where p is a prime. As above, this is a group
under addition. But since p is prime, then gcd(a, p) = 1 ∀ a ∈ Zp, and hence it is also a
group under multiplication. A set that is a group under both addition and multiplication
is called a field.

We will end this section with the Chinese remainder theorem. It is a result about
congruences in number theory and can be generalized to abstract algebra. We will
include a proof, and then let the generalization follow as a corollary.

Proposition 2.17 (Chinese remainder theorem).
Let n1, n2, . . . , nt be positive integers such that for all i, j with i 6= j, we have that

gcd(ni, nj) = 1, and let n =
t∏
i=1

ni. Then the system of linear congruences,

a ≡ b1 (mod n1)

a ≡ b2 (mod n2)

. . .

a ≡ bt (mod nt)

has a simultaneous solution which is unique modulo n. This is called the Chinese remain-
der theorem, abbreviated CRT.

Proof. We will first construct a solution a and then show that it is unique. So let ñj = n
nj

for 1 ≤ j ≤ t. That is,
ñj = n1n2 · · ·nj−1nj+1 · · ·nt.

Since gcd(ni, nj) = 1 for each i 6= j, we get gcd(ñj , nj) = 1. From Proposition 2.16 we
then have that the equation ñjx ≡ 1 (mod nj) has a unique solution modulo nj . We
will call this solution aj . This leads to the following two equations:

ñiai ≡

1 (mod nj) for i = j,

0 (mod nj) for i 6= j.
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We now have the solution a to our system of linear congruences as follows:

a = b1ñ1a1 + · · ·+ btñtat,

and from the arguments above we know that a satisfies all the congruences. That is,

a ≡ bjñjaj ≡ bj (mod nj).

We know have to show that a is unique modulo n. So suppose a′ is another solution
to the linear system. Since aj is the unique solution for each congruence separately, we
have that for each 1 ≤ j ≤ t,

a′ ≡ a (mod nj)

m

a′ − a ≡ 0 (mod nj)

m

nj | a′ − a.

Since each of the moduli are pairwise relatively prime, this leads to

t∏
i=1

ni | (a′ − a)

m

a′ ≡ a (mod n).

The next corollary follows directly from CRT by the two mappings

µ : Zn −→ Zn1 × · · · × Znt
x mod n 7−→ (x mod n1, x mod n2, · · · , x mod nt),

and

µ∗ : Z∗n −→ Z∗n1
× · · · × Z∗nt

x mod n 7−→ (x mod n1, x mod n2, · · · , x mod nt).

It is easy to show by CRT that both the mappings are isomorphisms.
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Corollary 2.17.1. Let n1, . . . , nt be positive integers such that for all i, j with i 6= j,

gcd(ni, nj) = 1, and let n =
t∏
i=1

ni. Then

Zn ' Zn1 × · · · × Znt , and

Z∗n ' Z∗n1
× · · · × Z∗nt .

2.4 Fermat, Euler and Carmichael

This section provides some important definitions and results for this thesis, and all of
them will be followed by proofs. We will start with Euler’s phi function.

Definition 2.18. Euler’s phi function, also known as Euler’s totient function, is a
function ϕ(n) that assigns to n the number of integers between 1 and n that are relatively
prime to n. That is,

ϕ(n) = |Z∗n|.

Proposition 2.19. Let p be a prime. Then

ϕ(p) = p− 1.

Proof. The natural numbers less then a prime p are all relatively prime to p.

Proposition 2.20. Let ñ, n be positive integers such that gcd(ñ, n) = 1. Then we have

ϕ(ñn) = ϕ(ñ)ϕ(n).

Proof. This follows from CRT by Z∗ñn ' Z∗ñ × Z∗n.

Proposition 2.21. Let pk be a prime power. Then

ϕ(pk) = pk
(

1− 1

p

)
= pk−1(p− 1).

Proof. We have that

ϕ(pk) =
∣∣∣{a ∣∣∣ 1 ≤ a < pk ∧ gcd(pk, a) = 1

}∣∣∣ .
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Since gcd(pk, pi) = pi for 0 ≤ i ≤ k, we get gcd(pk, a) 6= 1⇔ a = tp where 1 ≤ t ≤ pk−1,
since pk−1p = pk. There are pk−1 such numbers. This leads to the following:

ϕ(pk) = pk − pk−1 = pk
(

1− 1

p

)
= pk−1(p− 1).

Proposition 2.22. Let n = pe11 p
e2
2 · · · p

ek
k be the unique prime factorization of n, with

p1 < · · · < pk. Then

ϕ(n) = ϕ (pe11 )ϕ (pe22 ) · · ·ϕ
(
pekk
)

= n
k∏
i=1

(
1− 1

p i

)
.

Proof. Since gcd(pi, pj) = 1 for all 1 ≤ i, j ≤ k with i 6= j, we get

ϕ(n) = ϕ(pe11 ) · · ·ϕ(pekk ) = pe11

(
1− 1

p1

)
· · · pekk

(
1− 1

pk

)
= n

k∏
i=1

(
1− 1

p i

)
.

Proposition 2.23 (Euler’s theorem).
If a, n ∈ Z with gcd(a, n) = 1, then

aϕ(n) ≡ 1 (mod n).

Proof. We have gcd(a, n) = 1 when a ∈ Z∗n. From proposition 2.9 we then have t =

|〈a〉| | |Z∗n| which means that ∃ k ∈ Z such that kt = |Z∗n| = ϕ(n). Then

aϕ(n) ≡ akt mod n ≡ 1k mod n ≡ 1 mod n.

If we let n be a prime in Euler’s theorem, we get Fermat’s little theorem (stated below).
This might seem strange, but Fermat published this theorem in 1640 whereas Euler in
1736 was the first to publish a proof of the theorem. Euler himself found a generalization
of Fermat’s theorem in the same year, which is Euler’s theorem above.

Corollary 2.23.1 (Fermat’s little theorem). If a ∈ Z and p is a prime such that
gcd(a, p) = 1, then

ap−1 ≡ 1 (mod p).
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Proposition 2.24. Let p, q be primes, n = pq and a, k integers with 0 ≤ a < n. We
then have

a(akϕ(n)) ≡ a (mod n).

Proof. Since a < n and n = pq have three possible cases:
gcd(a, n) = 1: From Euler’s theorem we have aϕ(n) ≡ 1 (mod n), so

a(akϕ(n)) ≡ a(1k) ≡ a (mod n).
gcd(a, n) = p: 1. gcd(a, p) = p, so by triviality a ≡ 0 (mod p) and

a(akϕ(n)) ≡ 0 (mod p) which leads to a(akϕ(n)) ≡ a

(mod p).
2. gcd(a, q) = 1 so by Euler we get aϕ(q) ≡ 1 (mod q)

which leads to a(akϕ(n)) = a(akϕ(p)ϕ(q)) ≡ a(1kϕ(p)) ≡
a (mod q).
1.+2.: We have a(akϕ(n)) ≡ a (mod p) and
a(akϕ(n)) ≡ a (mod q), so by CRT we get a(akϕ(n)) ≡
a (mod n).

gcd(a, n) = q: We can make the same argument as above, only switch-
ing p and q.

We will now take a look at Carmichael’s function.

Definition 2.25. The Carmichael function is the smallest positive integer λ(n) such
that

aλ(n) ≡ 1 (mod n),

for all integers a with gcd(a, n) = 1.

While Euler’s phi function defines the order of the multiplicative group of integers,
Carmichael’s function defines maximum order of the elements in the group. If the mul-
tiplicative group is cyclic, then there will be an element which generates the group and
hence has maximum order. In this case Euler’s phi function and Carmichael’s function
will have the same value. In the case where no element generates the multiplicative group,
and since the order of an element divides the group order, the value of Carmichael’s func-
tion will be less then Euler’s phi function.

Proposition 2.26. Let p be a prime. Then

λ(p) = ϕ(p) = (p− 1).
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Proof. Follows from Zp being a cyclic group and the discussion above.

Proposition 2.27. Let ñ, n be integers with gcd(ñ, n) = 1. Then

λ(ñn) = lcm(λ(ñ), λ(n)).

In particular, if p, q are two distinct odd primes and n = pq, then

λ(n) = lcm(λ(p), λ(q)) = lcm(p− 1, q − 1).

Proof. From CRT we know that for a ∈ Z∗ñn we have

ak ≡ 1 (mod ñn) ⇐⇒ ak ≡ 1 (mod ñ) ∧ ak ≡ 1 (mod n).

So k must be a multiple of λ(ñ) and λ(n), and the smallest such is lcm(λ(ñ), λ(n)). The
second part follows from the first part.

Proposition 2.28. Let p, q be two distinct odd primes, let n = pq and let 1 ≤ s be an
integer. Then For each a ∈ Z∗ns+1 we have

aλ(n) ≡ 1 (mod n)

an
sλ(n) ≡ 1 (mod ns+1).

Proof. The first part follows from the second part by letting s = 0, so we only need to
prove the second part. So let a ∈ Z∗ns+1 . We then get

an
sλ(n) ≡

(
aϕ(p

s+1)
)qs λ(n)

λ(p) ≡ 1 (mod ps+1), and

an
sλ(n) ≡

(
aϕ(q

s+1)
)ps λ(n)

λ(q) ≡ 1 (mod qs+1),

and since gcd(ps+1, qs+1) = 1 we can combine them by CRT to get

an
sλ(n) ≡ 1 (mod ns+1).

2.5 Notation

The notation for the rest of this thesis is stated in Figure 2.1. Notice that when p, q are
large and randomly chosen, n will be admissible except with negligible probability. If
p, q is of equal length, this will be guaranteed.
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• p, q will denote two distinct large primes.

• n is a composite such that n = pq.

• n is called admissible if n = pq and gcd(n, ϕ(n)) = 1 .

• Zn is the additive group of integers modulo n.

• Z∗n is the multiplicative group of integers modulo n.

• ϕ(n) is Euler’s phi function.

• λ(n) is Carmichael’s function.

Figure 2.1: The notation for the rest of this thesis.
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The most basic problem in cryptography is the following: Alice wants to send a secret
message to Bob. But an eavesdropper, Eve, wants to know the secret message, see Figure
3.1. Eve can intercept the message Alice and Bob send to each other and can also tamper
with it. Alice and Bob want to be assure that Eve do not tamper with the message. They
both want integrity. And Alice does not want Eve to eavesdrop on her messages to Bob.
She wants confidentiality [14].

To solve this problem we can lock the message using some sort of a key, and then open
it again using the same or another key. If we lock and open the message with the same
key, it is called symmetric cryptography, since the keys are symmetric. If we use two
different keys, it is called public key cryptography, because we have one public key to lock
the message and one private key to open it. Let us illustrate this with an example.

Alice wants to send a secret message to Bob, and the only way they can communicate
is via postal mail. Unfortunately, the postman Eve is reading the mail Alice sends. So
Alice needs to find a way to send messages to Bob without Eve, or anybody else, being
able to read them. Of course she could put the message in a locked box, and give one key
to Bob while keeping the other to herself, see Figure 3.2. This would be a symmetric key
situation. The problem is that Alice and Bob can not meet to share keys, as they live
too far apart. So they come up with the following solution: Bob buys a padlock and a
matching key, sends the unlocked padlock to Alice and keeps the key himself, see Figure
3.3a. Now Alice can lock the message inside the box simply by locking the padlock. Then
she can mail the locked box to Bob, knowing that Eve can not read the message as she
has no way of opening the padlock, and when Bob receives the locked box, he can open
it with his private key, see Figure 3.3b. This is a public key situation, and we can think
of the padlock as the public key and Bob’s key as the private key.
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Figure 3.1: Alice wants to send a secret message to Bob, but Eve is eavesdropping.

Figure 3.2: A figurative example of symmetric cryptography.
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(a) The open padlock is Bob’s public key.

(b) Bob can open the locked message with his private key.

Figure 3.3: A figurative example of public key cryptotography.
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To draw some parallells to the language we use in cryptography, the locking process is
called encrypting a message, while the unlocking process is called decrypting a message.
The public key is also called the encryption key, and the private key is also called the
decryption key . The parallell to the padlock is what we call a trapdoor one-way function.
This is a function which is feasible (easy) to compute, but infeasible (hard) to inverse,
unless you have some secret information called the trapdoor. The terms “feasible” and
“infeasible” will be precisely defined in Section 4.2, but for now we can think of “feasible”
as “sufficiently easy”, and “infeasible” as “sufficiently hard”. For an encryption scheme to
have any sense at all, somebody must be able to decrypt the encrypted message. It is here
the trapdoor comes into play. The trapdoor is some piece of information which makes
the one-way function feasible to inverse, usually the decryption key. Or, not completely.
We do not need the complete inversion, we only need access to the message. See Figure
3.4 for an illustration of public key encryption.

The example above is very limited and do not describe public key cryptography com-
pletely. As an example, all but one of the cryptosystems we will be studying in this
thesis have a homomorphic property which will be defined below. And this property
compromises the integrity. We will discuss this in further details in Section ??.

The great breakthrough for public key cryptography came in 1976 with Diffie and Hell-
man’s seminal article “New Directions in Cryptography” [8], and the first sentence of the
article is on the point: “We stand today on the brink of a revolution in cryptography”.
The revolution they talked about, was a method to establish a shared value by using a
trapdoor one-way function. This method is described in the Diffie-Hellmann protocol,
see Section 3.1.

Another prominent breakthrough at about the same time as Diffie and Hellman, was the
RSA cryptosystem introduced by Rivest, Shamir and Adleman in 1977 [27]. Although
other had similar ideas as Diffie-Hellman and RSA already from the early 1970’s, cryp-
tography was often considered classified information, and so many of these publications
were not declassified until late 1990’s. RSA is related to the second part of the example
above: It is based on a one-way trapdoor function, and uses a public encryption key to
encrypt a message and then a private decryption key to open it. We will study RSA in
Section 3.3.

We have used Alice, Bob and Eve to denote the communicating parties and the attacker.
This is common practice in cryptography, at least at a basic level when we are trying to
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Figure 3.4: An illustration of public key encryption.

describe the concepts. But it is important to keep in mind that the parties are usually not
humans. We could just as well be describing a communication being carried out between
two autonomous machines. In fact, the need of machine-to-machine communication was
one of the starting points of public key cryptography [1].

3.1 Diffie-Hellman Protocol

As mentioned above, Diffie-Hellmann is a cryptographic protocol for establishing a shared
secret. A cryptographic protocol can be thought of as a conversation between some
parties, in this case Alice and Bob. The shared secret can be a symmetric key.

The protocol utilizes a classic example of a one-way function, namely discrete exponen-
tiations versus discrete logarithms [14].

Definition 3.1. The discrete logarithm of x to the base g, is the smallest integer a 6= 0

such that
x = ga.
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Figure 3.5: An illustration of Diffie-Hellman protocol, based on a similar illustration in
[14].

We write
logg x = a.

The discrete logarithm problem in a cyclic group G is to find the discrete logarithm of x
to the base g, when x has been chosen uniformly at random from the group.

So the feasible computations is x = ga, and the infeasible computation is loggx = a.
Notice that g in this section is not to be confused with g in Chapter 5. To get an idea of
what is happening, consider the value gab as their final shared secret. They can establish
this as follows (see Figure 3.5 for an illustration):

1. Alice chooses a uniformly at random, computes ga and sends the value to Bob.

2. Bob chooses b uniformly at random, computes gb and sends the value to Alice.

3. Now Alice can compute (gb)a and Bob can compute (ga)b, and they both share a
secret.

The reason for this being a secret, is that Eve only sees ga and gb. But for computing
gab she needs either a or b. Computing one of these from ga or gb, as they are chosen
uniformly at random, would be the same as breaking the discrete logarithm problem,
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Diffie-Hellman protocol

Common input: A finite cyclic group G, the order of the group n and a generator g.

1. Alice → Bob:

(a) Chooses a number a uniformly at random from the set {0, 1, . . . , n− 1}.

(b) Computes x = ga mod n.

(c) Sends x to Bob.

2. Bob → Alice:

(a) Chooses a number b uniformly at random from the set {0, 1, . . . , n− 1}.

(b) Computes y = gb mod n.

(c) Computes zB = xb mod n.

(d) Sends y to Alice.

3. Alice: Computes zA = ya mod n.

Figure 3.6: The Diffie-Hellman protocol.

which is thought to be an infeasible computation. We will discuss this in further details
in Chapter 4.

We will now formalize the Diffie-Hellman protocol, see Figure 3.6 [14].

For cryptographic protocols we, amongst other requirements, consider completeness.
Completeness means that the result of the protocol has to be consistent. For Diffie-
Hellman it is trivial to show completeness. It is enough noticing that

zA ≡ ya ≡ (gb)a ≡ (ga)b ≡ xb ≡ zB (mod n),

so Alice and Bob have established a shared secret.

Even though Diffie-Hellman is only a protocol, it is possible to make a cryptosystem
based on Diffie-Hellman. This cryptosystem is called ElGamal and will be defined in
Section ??.

We must mention one more thing concerning Diffie-Hellman protocol. The group to be
used has to be chosen wisely. Alice and Bob want to spend as little effort as possible
to establish the shared secret, both with respect to computation and communication.
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Figure 3.7: An illustration of a public key encryption scheme.

Computing the group elements should be reasonably fast, and group elements should
have a reasonably compact representation. And solving the discrete logarithm prob-
lem must be an infeasible computation. In particular we have to take into notion the
Pohlig-Hellman algorithm, which is an algorithm for computing discrete logarithms in
multiplicative groups, whose orders factors completely into small prime numbers. For
further details see [14].

3.2 Public Key Encryption Schemes

We will now formalize what we mean when we are talking about a public key cryptosys-
tem, or equivalently, a public key encryption scheme, see Figure 3.7 for an illustration.

Definition 3.2. An algorithm is a set of step-by-step rules which takes an input and
then produce an output according to these rules.

Definition 3.3. A public key encryption scheme consists of the three algorithms K, E
and D defined by [14]:

• The key generation algorithm E takes no input and outputs an encryption key ek
and a decryption key dk. To each encryption key ek there is an associated set of
messages, also called plaintexts.

• The encryption algorithm E takes as input an encryption key ek and a message m
in the set of plaintexts, and outputs a ciphertext c.
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• The decryption algorithm D takes as input a decryption key dk and a ciphertext
c and outputs either a message m or the special symbol ⊥ indicating decryption
failure.

Definition 3.4. A public key encryption scheme is correct if for any key pair (ek, dk)

output by K and any message m in the set of plaintexts,

D (dk, E(ek,m)) = m, (3.1)

and this computation is solvable in probabilistic polynomial time.

Probabilistic polynomial time will be defined in Section 4.2, but for now we can say
that 3.1 must be a feasible computation. There is a very good reason for this: For the
cryptosystem to have any practical implementation it has to be sufficiently easy to both
encrypt messages and decrypt ciphertexts. For the cryptosystems we will study in this
thesis, it goes without saying that the 3.1 is solvable in probabilistic polynomial time.

We will study the security of public key cryptosystems in Chapter 4, but for now we can
just notice that at least it has to be an infeasible computation to decrypt a ciphertext
without knowing the private decryption key.

We are now ready to leave the world of Alice, Bob and Eve, and will not bother defin-
ing the parties in our cryptosystem anymore. It is enough knowing that someone or
something encrypts messages and decrypts ciphertexts, and against the system there are
adversaries.

3.3 RSA

We will start by giving a formal description of a cryptosystem called Textbook RSA, see
Figure 3.8 [14].

It is easy to see that

D (dk, E(ek,m)) = D (dk,me mod n) = (me)d mod n = med mod λ(n) = m.

We can divide cryptosystems into two cathegories:
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Textbook RSA
Textbook RSA is given by (K, E ,D) as follows:

Key generation algorithm K:

(1) Choose two large primes p, q.

(2) Compute n = pq.

(3) Compute λ(n) = lcm(p− 1, q − 1).

(4) Choose e and find d such that ed ≡ 1 (mod λ(n)).

Output: ek = (n, e) and dk = (n, d).

Encryption algorithm E:

Input: ek = (n, e) and m ∈ Zn.

1. Compute c = me mod n.

Output: c ∈ Zn.

Decryption algorithm D:

Input: dk = (n, d) and c ∈ Zn.

1. Compute m = cd mod n.

Output: m ∈ Zn.

Figure 3.8: A formal description of textbook RSA.
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Deterministic cryptosystems are cryptosystems in which the encryption algorithm
uses an injective mapping m 7→ c to encrypt messages. RSA as first introduced
by Rivest, Shamir and Adleman in 1977 [27], was a deterministic cryptosystem.
This cryptosystem is what we now call Textbook RSA, and it is easy to see that
f(m, e) = me is an injective mapping.

Probabilistic cryptosystems was introduced by Goldwasser and Micali in 1984 [18].
These cryptosystems use some kind of random padding in the encryption algorithm,
so that the mapping m 7→ c is not injective. About every public key cryptosystem
is probabilistic, as this is a crucial requirement for the security of the system. This
will be further discussed in Section 4.6.

There are several ways to turn Textbook RSA into a probabilistic encryption scheme.
One of the methods is to make a random padding of the message by adding some random
bits to the message. Another method is to combine RSA with a symmetric cryptosystem,
as is also done with Diffie-Hellman protocol to get ElGamal cryptosystem defined below.
We will not discuss this further here, but refer the interested reader to [14].

There are several other security issues to take into account when it comes to RSA One
of them is the choice of p, q. We will not discuss the security issues of RSA in further
details here, but refer the interested reader to [14].

3.4 Homomorphic Encryption

A cryptosystem is said to be homomorphic if it has the following property:

Definition 3.5. Let E be an encryption algorithm and let ⊗ and ⊕ be the group
operations in the corresponding group of ciphertexts and plaintexts respectively. If

E(m)⊗ E(m′) = E(m⊕m′),

for all distinct m,m′ in the set of plaintexts, we say that ED has a homomorphic property.

Textbook RSA is obviously a homomorphic cryptosystem since

E(ek,m)E(ek,m′) = mem′e = (mm′)e = E(ek,mm′).
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Pailler’s cryptosystem and the generalized version by Damgård, Jurik and Nielsen which
we will study in Chapter 5 and 6 both have a homomorphic property. This property will
be crucial for the application to electronic voting in Chapter 7.

3.5 ElGamal

ElGamal cryptosystem was introduced in 1985 by ElGamal [9]. It is based on the Diffie-
Hellman protocol and a very simple symmetric cryptosystem called Shift cipher. We will
not go into the theory of symmetric cryptosystems here, so for Shift cipher we will just
say that for a symmetric key z we encrypt a message m by

Esym(z,m) = mz = w,

and decrypt it by
Dsym(z, w) = mz−1 = m.

To establish the key z, we do the following steps based on Diffie-Hellman:

1. The key generation establishes ek = ga = y and dk = a.

2. The encryption algorithm esablishes x = gb and symmetric key z = yb.

3. The decryption algorithm esablishes symmetric key z = xa.

ElGamal is formalized in Figure 3.9 [14]. Notice that also in this section, g is not to be
confused with g in Chapter 5.

ElGamal is obviously correct since:

z = yb = gab = xa,

and
D (dk, E(ek,m)) = D (dk,mz) = mzz−1,

where z−1 exists since G is cyclic.

There are several other security issues to take into account when it comes to ElGamal.
One of them is the choice of the group G. We will not discuss the security issues of
ElGamal in further details here, but refer the interested reader to [14].
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ElGamal encryption scheme
ElGamal encryption scheme is given by (K, E ,D) as follows:

Key generation algorithm K:

(1) Choose a finite cyclic group G with order n, and a generator g.

(2) Choose uniformly at random a ∈ Zn.

(3) Compute y = ga mod n.

Output: ek = (n, y) and dk = (n, a).

Encryption algorithm E:

Input: ek = (n, y) and m ∈ G.

1. Choose uniformly at random random b ∈ Zn.

2. Compute x = gb mod n.

3. Compute z = yb mod n.

4. Encrypt Esym(z,m) = mz mod n = w.

Output: c = (x,w).

Decryption algorithm D:

Input: dk = (n, a) and c = (x,w).

1. Compute z = xa mod n.

2. Decrypts Dsym(z, w) = mz−1 mod n = m.

Output: m ∈ Zn.

Figure 3.9: A formal description of ElGamal.
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3.6 Hash Functions

Briefly, a hash function is a function h which takes inputs of some length and compress
them into shorter, fix-length outputs. Hash-functions have been around for a long time,
but one of their first use in cryptography were in protocols for signing messages. In this
thesis we will use it in a similar construction, namely to prove that parties of the voting
protocols in Chapter 7 follow the protocols properly.

In an ideal world, we would like the hash functions to be one-way and injective. Obviously
a hash function can not be injective as the domain is larger then the range. And hash
functions are not one-way in the classic sense. So we need a more appropriate definition
of the properties we want our hash functions to possess.

Definition 3.6. Let h : S → T be a function. We then have the following [14]:

I A preimage of t ∈ T is an element s ∈ S such that h(s) = t.

II A second preimage for s1 ∈ S is an element s2 ∈ S such that s1 6= s2 while
h(s1) = h(s2).

III A collision for h is a pair of distinct elements s1, s2 ∈ S such that h(s1) = h(s2).

We say that h is one-way if it is an infeasible computation to find a preimage for t ∈ T
and a second preimage for a random s ∈ S (I and II). And we say that a h is collision
resistant If it is an infeasible computation to find collisions for h and to find a second
preimage for a random s ∈ S (II and III). If you can find second preimages, you can also
find collisions. So it follows that if finding a collision is an infeasible computation, the
hash function will be collision resistant and it will behave like an injective function [14].

We sometimes also want our hash functions to be “random-looking”, but non of the above
concerns this property. We will return to this question in Section 4.4.1.
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Auguste Kerckhoffs stated an important principle in the 19th century. It is called Ker-
ckhoffs’ principle [10]:

“The security of the encryption scheme must depend only on the secrecy of the key, and
not on the security of the algorithm”.

What he meant was that every cryptosystem should be secure even if it is public. There
are several very good reasons for this principle, and we will state two of them here, in
simplified terms. A cryptosystem can have millions or more users, and it takes only one
dishonest user to leak a secret. It is easy to change the keys of a cryptosystem, but
much more difficult to change the whole system. It might also be reasonable to have
cryptosystems publicly available, because then there will be more people to test and
analyze them.

In 1945, Claude Elwood Shannon wrote a seminal article called “A Mathematical The-
ory of Cryptography” [30]. In this article he reformulated Kerckhoffs’ principle as: “The
enemy knows the system”, and went on asking: “How secure is a system against cryptanal-
ysis when the enemy has unlimited time and manpower available (...)?” . He continued
by defining perfect secrecy, which was later denoted information-theoretical security, as
oppose to computational-theoretical security which we will discuss in Section 4.6. Perfect
secrecy is a property of not being able to get any information about the plaintext given
the ciphertext, except possibly the length of the message, even if the adversary has un-
limited computational power. But the real world do not offer unlimited time, manpower
or computational power, as we will discuss in Section 4.2, and perfect secrecy has some
great limitations which makes it very unpractical in most real world settings.

We will make one more notion before we continue. When discussing the security of a
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cryptosystem we can use many levels of formality. If we use the theory of computational
complexity and statistics, we can formalize almost every discussion. But it is also possible
to make security discussions in a more informal way. In the rest of this thesis we will
make informal discussions and explore concepts rather than going into details. We will use
terms like feasible, infeasible, tractable and intractable, all of them which will be explained
in this chapter. We will discuss what it means for a cryptosystem or a cryptographic
protocol to be secure, and draw lines to the security discussions in the next chapters. As
we discuss this informally, there will not be citations for every statement, but the theory
can be found in numerous books and articles, amongst them [14], [10], [23] and [21].

4.1 Security Proofs

There is a fundamental difference between proving a statement in mathematics and
“proving” a statement in a non-axiomatic system as the real world. In mathematics we
start with a set of axioms, and then form a deductive argument which we call a proof.
When the starting point is not axiomatic, we can not prove anything in the rigorous
meaning of the word, but only form inductive arguments based on evidence.

Modern cryptography is a combination of abstract algebra, number theory, probability
theory and computational complexity theory, applied to computer science. We develop
cryptosystems for actual security situations in the real world, and we would like them
to be secure from any threat of both today and the future. But the threats depend on
unpredictable variables such as the capacity of the human mind, the capacity of computer
systems and probably other variables we know nothing about yet. And our adversaries
are intelligent, clever, malicious and devious - they will try to do things no one has ever
thought of before.

It is not difficult to understand that it is impossible to take into account all possible se-
curity threats. So as in the other branches of applied mathematics, we solve this problem
by making models. We build our systems from smaller instances, often named primi-
tives. For each of this instances we define exactly what we are trying to achieve, and
from which types of attacks the instance is secure, including assumptions on the compu-
tational power of the adversary (see Section 4.2). In this manner we can build a system
which fulfill our requirements, and if a new threat should appear we can immediately
find out which part of the system that might be broken.
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(a) Proofs in mathematics
(b) Proofs in cryptography

Figure 4.1: The use of assumptions in security proofs in cryptography.
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When we define from which types of attacks the instance is secure, we also need to
know what we mean by being secure. The security proofs in cryptography are formed in
the same deductive manner as ordinary mathematical proofs, but there is an important
difference between them: In our models we include computational hardness assumptions,
i.e. assumptions on the existence of trapdoor one-way functions, see Figure 4.1. These
hardness assumptions are not proven. Instead they started out as conjectures, and after
years of studying them we now often think of them as assumptions.

There are several ways of thinking about security and forming the actual models and
proofs. One of them is the one we will use in this thesis. In simplified terms it is based
on the idea that if we are not able to distinguish two things, then we do not know anything
about them. This idea applied to cryptosystems under a particular attack model called
chosen-plaintext attacks, is often thought of as the computational-theoretical analoge to
Shannon’s perfect secrecy. It is based on the adversary’s ability to tell which message a
given ciphertexts belongs to under given circumstances. We often do this by simulating a
game between an adversary and a challenger, and then analyze the outcome of the game.
If the adversary is not able to distinguish, then we have security against chosen plaintext
attacks. We will discuss this further in Section 4.6, and see examples of such games in
Chapter 5 and 6. When we apply the indistinguishability idea to cryptographic protocols,
instead of simulating a game, we can simulate a run of the protocol. This simulation
might require more facilities, such as for example a random oracle, see Section 4.4.1.
If the adversary can not tell the difference between a real run of the protocol and a
simulated run, then we conclude that the protocol is secure in the model made of the
given facilities. We will see many examples of such simulations in Chapter 7.

We are now ready to define many of the terms we need in the rest of this thesis.

4.2 Time and efficiency

As we mentioned in the beginning of this chapter, Shannon talked about adversaries
with infinite computational power. This is the information-theoretical approach. But
information-theoretical secure cryptosystems are not very practical. So for the modern
cryptosystems we are discussing in this thesis, computational power is the fundament.
Because infinite computational power does not exist: There will probably always be
limitations. So instead we are making a complexity-theoretical approach.
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The limitations we are talking about leads us to a discussion on time. Suppose we have
access to all the computational power in the world of today, and suppose we have two
algorithms I and J that run using this computational power. If algorithm I needs
one minute to fininsh, and algorithm J needs thousands of years to finish, it is obvious
that algorithm J is not very interesting to us, neither when it comes to encryption,
decryption nor adversaries. But to do this reasoning we made an assumption on all the
computational power in the world of today. This is not a very precise or scalable term.
What about the running times with less computational power? And what about the
running times required in ten years, when the computational power has increased? We
need a more precise way to define the time complexity of an algorithm.

The answer can be found in the branch of computational complexity theory. Here we
define the time complexity of an algorithm as the number of instructions, or steps, a
machine need to execute during the running time of the algorithm. The machine we talk
about here is a Turing machine named after the english mathematician and computer
scientist Alan Turing. We will not go into the details of the Turing machine here, but
only state that it is an abstract machine that manipulates symbols on a strip of tape
according to a table of rules, like a computer in its simplest form. We refer the interested
reader to [34].

There are several ways to calculate the time complexity, but in cryptography we use an
asymptotical approach since the size of the inputs (n and c) are very large, and since it
can be difficult to derive the exact running times (and the exact running times is not
important in this discussion). This asymptotical approach is denoted by big O notation,
O, and it characterizes functions according to their growth rates. If an algorithm needs
for example 8n5 + 7n3 + 4n2 steps, it has a time complexity of O(n5).

If the time complexity of an algorithm can be described by O(nk) for some positive
constant k, we say that the algorithm is of polynomial time. In modern cryptography (at
least for the systems we are discussing in this thesis), we are only interested in algorithm
with polynomial running time.

At this stage it is important to mention that we are not giving the complete picture
here. We are only trying to grasp the concept of time complexity, and are not looking
into the details. For example, some polynomial time algorithms can run way too slow to
be useful in a cryptographic context, depending on the constant k. But we will not go
into this here. One thing to worry about though, is that in cryptography it is essential
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to know the average-case time complexity. There are many problems which do not have
polynomial running time on worst-case, but though have polynomial running time on
average-case.

We can sort algorithms into three categories, where two of them are the categories “de-
terministic” and “non-deterministic”. A deterministic algorithm, abbreviated DA, is an
algorithm that follows the same execution path each time it is invoked with the same
input. Everything we have discussed so far in this section concerns deterministic algo-
rithms. A non-deterministic algorithm, abbreviated NDA, is an algorithm that makes
decisions at certain points in the execution. So its execution path may differ each time
it is invoked with the same input. The real difficult part of understanding the concept of
NDA, is the algorithm’s decisions. How does a NDA make its choice? We can think of the
NDA as the “luckiest possible guesser”. It always picks a transition that eventually leads
to an accepting state, if this exists (we must imagine that the algorithm can “magically”
make the choices that leads to success) [26]. It is worth mentioning that NDAs are not
real algorithms. They are abstract constructions we use to try understanding the time
complexity of algorithms.

We are now ready to define out first two complexity classes. As mentioned above, O
represents a way to characterizes functions according to their growth rates, and a com-
plexity class is a set of decision problems with related time complexity. We will start by
defining the two complexity classes P and NP[28] :

Definition 4.1. The complexity class P is the set of all decision problems which can
be solved by a deterministic polynomial time algorithm.

Definition 4.2. The complexity class NP is the set of all decision problems for which
the answer can be verified in polynomial time, which is the same as the set of all decision
problems which can be solved by a non-deterministic polynomial time algorithm (this
is so because if a solution exists, the non-deterministic polynomial time algorithm will
always find it).

One of the great unresolved question in computer science, is about the relation between
P and NP: Is P = NP? This problem has been open since the beginning of 1970, and it
is believed by most theorist that P 6= NP [13]. One can think of public key cryptography
as being founded on the assumption that the intractable problems which we know lies in
NP, does not also lie in P. But this does not give the complete picture. Our only real
requirement is that it takes significantly more time to break the cryptosystem than to
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use it.

Above we made a notion concerning worst case complexity versus average case complexity.
We will look into this now. First of all; our intractable problems are not that hard. Or,
at least they are not at all the hardest problems to solve of all decision problems. We
assume they are not possible to solve in polynomial time. But we have several complexity
classes with problems harder and much harder than our intractable problems. Amongst
them, there are complexity class called NP-complete, which consist of the the decision-
problems that are both in NP and NP-hard (which are the decision problems that are
at least as hard as the hardest problems in NP). We know that the intractable problems
we are discussing in this thesis are not even in NP-complete. And we also know about
problems which are in NP-complete, and thereby harder to solve, which we could have
used. Amongst them there are some problems called the knapsack problems (for details
see [33]. But so far the knapsack problems have always turned out to be average cases,
and average-case time complexity for these problems are polynomial time. And so far,
no one has been able to exploit the worst-case-complexity of them.

Let us continue the discussion on worst case versus average case time complexity. If this
was of no concern, we could have stopped this section by stating that the problem of
computing our one-way functions lies in P and the problem of computing inverses lies in
NP. But this would be a crucial mistake as the average case of computing inverses could
be polynomial as the above example, and hence it would be easy to decrypt the ciphers.
The solution to this problem comes with random self-reducibility in Section 4.3.

But there is also another issue to be solved. Our encryption schemes are probabilistic,
which means that the encryption algorithm gets as input a random integer. Also the key
generation algorithm need efficient algorithms for tasks such as prime number generation,
so also these algorithms are probabilistic.

Probabilistic algorithms, PAs, are similar to DAs, except that they have decision points
during their run, and on decision point they chooses the successor path uniformly at
random from the possible ones. Informally we can say that the algorithm is allowed to
toss coins during the execution. We can think of them as DAs which takes the coin
tosses as input. As it turns out, tossing coins is a very powerful attribute. PAs run in
probabilistic polynomial time, abbreviated ppt. The polynomial time bound is the same
as for polynomial time DAs, but the PAs are usually much faster. It is worth mentioning
that when it is possible to make PAs decide on the uniform distribution, is is also possible
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to make PAs decide on other distributions. PAs give rise to another complexity class:

Definition 4.3. The complexity class BPP is the set of all decision problems which
can be solved by a probabilistic polynomial time algorithm. (Actually, BPP stands for
bounded-error probabilistic polynomial time, and an algorithm in BPP has an error
probability of less than or equal to 1

3 . For details see [28].)

It is obvious that the set of all DAs running in polynomial time is included in the set of
PAs, so P ⊆ BPP. We are now ready to define some efficiency terms.

Definition 4.4.

• A computation which lies in BPP is called a feasible or easy computation. A
problem which can be solved with a feasible computation is called tractable.

• A computation which do not lie in BPP is called an infeasible or hard computation.
A problem which on average case can be solved by nothing faster than an infeasible
computation is called intractable.

The algorithms constituting a cryptographic scheme are thus all understood to be ppt
algorithms. The adversaries are also viewed as ppt algorithms. Hence it does not suffice
to show that the security of a cryptographic scheme is guaranteed if the underlying
problem is not in P: we need problems that are not in BPP, and we need that they are
not in BPP on average.

There are several other complexity classes which we will not look into here. The interested
reader can find more information in textbooks on computational complexity theory. We
will now move forward and look into how we can decide to which complexity class a
problem belong.

4.3 Reductions

When facing a computational decision problem we have to be able to decide which com-
plexity class it belongs to. To do this, we can use reductions [23]:

Definition 4.5. Let P1 and P2 be two decision problems, and let A2 be an algorithm
that solves P2. P1 is said to be polynomial (time) reducible to P2, written P1 ≤ P2, if
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there exists an algorithm A1 that solves P1 which uses A2 as a subroutine, and where
A1 runs in polynomial time if A2 does.

If P1 ≤ P2 we can informally say that P2 is at least as difficult as P1, or equivalently,
P1 is no harder than P2. To see this we can think of A1 with the subroutine A2 as one
of many solutions to P1, and that there can possible be other more efficient solutions to
P1. But if P2 has a more efficient solution, P1 has automatically a more efficient solution
with P2’s algorithm as a subroutine.

Definition 4.6. Let P1 and P2 be two decision problems. If P1 ≤ P2 and P2 ≤ P1

we say that P1 and P2 are computationally equivalent, and hence belong to the same
complexity class.

We will also discuss another kind of reduction, namely the random self-reductions. We
can imagine a problem as a pile of instances, a pile of solutions and a correspondence
between them. The idea is that we have an algorithm which solves the problem for a
subset of the instances, and we want to use it to solve all instances. A random self-
reduction takes an instance of a problem and make a new random instance, and supply
a kind of instruction which link the solution to both the new and the old instance, such
that if you find a solution to the new instance, you can easy find a solution to the old
one. Then it is possible to solve every instance of the problem. Get an instance, make
it into another instance and try to solve it. If the new instance ended up amongst the
instances solvable by the algorithm we win, else we loose. So the algorithm has to be
able to solve the problem for sufficient many instances, such that the probability of the
new instances belonging to the solvable ones are sufficiently large.

Definition 4.7. Suppose x is a variable of a problem P . P is random self-reducible
over x if we can show that solving P for a random instance of x implies that we can solve
P for any given instances of x with equal probability.

When it comes to the reductions in this thesis they are very simple, and so it is obvious
that the probability distribution going from a random instance of a variable to any other
instance of that variable is uniform.

We have the following proposition which connect random self-reducible problems to other
complexity problems:
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Proposition 4.8.
Any random self-reducible problem that is infeasible to compute on the worst case is also
infeasible to compute on the average case.

Proof. Suppose a computational problem is random self-reducible and is infeasible to
compute on the worst case. Suppose the problem is feasible to compute on the average.
Then there cannot be any infeasible instances at all, since any such instance can be
computed by transforming it to a uniformly random instance due to the random self-
reducibility. And this is a contradiction.

4.4 Security Models

We will use two models in this thesis, the standard model and the oracle model. The
standard model is the most basic model. When we are proving security without defining
any model, we are usually in the standard model.

4.4.1 The Random Oracle Model

Let us start by defining a random orcale.

Definition 4.9. A random oracle is a black box containing a random function:

H : {0, 1}∗ → {0, 1}t

such that when the oracle is queried on an input value x, it will return the output value
H(x).

If the same query is asked twice, identical answers are obtained since H is a function.
{0, 1}∗ means that the domain values can be infinite.

There are several ways to think of such a random function, but one way is to think of
it as a table which initially is empty. Every time the oracle gets a query x, it will first
check wether x = xi for some pair (xi, yi) in the tablet. If yes, then yi is returned. If no,
then a uniform string y ∈ {0, 1}t is chosen, the pair (x, y) is stored in the table and the
value y is returned, see Figure 4.2.
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Figure 4.2: A visualization of a random oracle being queried on the value x.
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So our problem is as follows: There are many functions which have properties that are
similar to those of random oracles. But we have no way to model them. As an example
we know that hash functions can be both one-way and collision resistant, but non of
these properties tells us anything about wether they are random-looking or not.

The solution is the random oracle model, introduced by Bellare and Rogaway in 1993 [3].
The random oracle model is an idealized model where we assume that the hash functions
are random oracles. All parties, both honest and adversaries, have access to this random
oracle. Queries to the oracle are assumed to be private, so that if some party queries the
oracle on x, then no one else learns x, or even learns that this party queried the oracle
at all [28].

It is important to notice that this model is a heuristic. No one claims that a random
oracle exists. If we prove a protocol secure in the random oracle model, it does not
implicate that the same protocol instantiated with an actual hash function is secure. In
fact, there are schemes that can be proven secure in the random oracle model but are
insecure no matter how the random oracle is instantiated. These schemes are though
contrived. And there has never been a successful attack on real schemes proven secure
in the random oracle model, as long as the oracle was instantiated properly [21]. So the
evidences speak for this heuristic.

4.5 Adversarial model

The best available measure of security (with a few exceptions as the one-time pad), is the
complexity of the best (currently) known attacks. The idea is as follows: to be able to
prove security of a cryptosystem, we have to know from what threats we are proving the
security. This is usually done by defining an adversarial model, also called an attacker
model. In this model we limit the attacks that may be executed, by defining what kind
of access the adversary has to the system. We can then use this limitation to prove the
security against those specific attacks. There are many possible attacks we know about,
and there are probably plenty more we do not know anything about. We will list the most
common here, but as we will see in the end, it is only one of them that are of particular
interest in this thesis. The selection of these adversarial models comes from [10]. We will
once again introduce Alice who is sending messages to Bob, and the eavesdropper Eve:
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The ciphertext-only model is the situation in which Alice are encrypting her data,
and all Eve get to see is the ciphertext. Trying to decrypt a message if Eve only
knows the ciphertext is called a ciphertext-only attack, and is what most people
mean when talking about breaking a cryptosystem. Included in this model is the
brute force attack, where every possible key is tried until the correct one is found.

The known-plaintext model is the situation where Eve knows both a plaintext and
its ciphertext. This can easily happen in a e-mail system. Eve might know that
every e-mail starts with a “Hi”, or “I’m away on holiday”. Responding on such a
e-mail can generate the ciphertext. Trying to decrypt a message in this model is
called a known-plaintext attack.

The chosen-plaintext model is the situation where Eve can choose any number of
plaintext and get the corresponding cipertexts. There are both a offline and a online
version of a chosen-plaintext attack, but the most powerful is the online attack
where Eve is trying to decrypt a message by choosing new plaintext depending
on the ciphertexts she has already received. The chosen-plaintext attack will be
abbreviated CPA.

The chosen-ciphertext model is the situation where Eve can choose both plaintext
and ciphertext values. That is, for every plaintext she choose, she get the corre-
sponding ciphertext, and for every ciphertext she choose, she gets the correspond-
ing. Trying to decrypt a message in this model is called a chosen-ciphertext attack,
and will be abbreviated CCA.

In the ciphertext-only model, the security relies on the decryption being an intractable
problem. It is the most basic and obvious claim: We will always have to show that the
function used by the encryption algorithm is trapdoor one-way, hence the encryption
schemes are are secure in the ciphertext-only model see Section 4.1. When it comes
to the brute force attack, every encryption scheme is vulnerable to this attack except
the information-theoretically secure ones defined in the beginning of this chapter. But
it is not any real threat: it is based on an infeasible calculation of exponential time
complexity: If the decryption key has t bits, there are 2t possible keys to try, so the time
complexity of a brute-force attack is on worst case O(2t) and on average case O(2t−1).

The known-plaintext model is contained in the chosen-plaintext model. This model is
relevant for the semantic security of the system, and will be discussed in Section 4.6.
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The chosen-ciphertext model is another story, as it turns out that many public key cryp-
tosystem is vulnerable to CCA. In particular, all of the cryptosystems we are discussing
in this thesis are in this category. This comes from the homomorphic property of the
cryptosystems (defined in Section ??). This is easy to see: When we operate in this
model, Eve can get the decryption of any ciphertext, except the one she is trying to
attack. So suppose she is trying to attack the cipher c to get the message m. She can
now ask the decryption for a ciphertext c′ to get the corresponding m′. Then, she can
form another ciphertext as cc′ and get the decryption of this which is m+m′ because of
the homomorphic property. It is then easy to caluculate m.

We will mention here that we can differentiate between adaptive and non-adaptive at-
tacks. An similar idea can be found in Section 7.6, but there we talk about adaptive
adveraries versus static adversaries. The idea is as follows: In an adaptive attack, the
adversary can choose to use her power both before and after a challenge ciphertext is
given, whereas in a non-adaptive attack, this can only be done before. When it comes
to CPA in public key cryptography, we can not differentiate between adaptive and non-
adaptive attacks, as all of them are adaptive because of the public key (see Section 4.6).
But for CPA in symmetric cryptography, which we are not studying in this thesis, it has
an impact.

In all the attacks we have been studying so far, we have been worried about the con-
fidentiality for Alice and Bob. But we also want them to have integrity. The integrity
of homomorphic cryptosystem can be destroyed by something called malleability. It is
defined as even if somebody do not know the decryption of a ciphertext, it is still possible
to create new ciphertexts that decrypt to the same or related messages [14]. So all the
encryption schemes we are studying in this thesis are malleable due to the homomorphic
property.

When an adversary attack a cryptosystem by altering a ciphertext in the above manner,
it is called a man-in-the-middel attack. This is an attack where the adversary, which
we often name Mallory, secretly intercepts and relays messages between two parties who
believe they are communicating directly with each other. It is an example of an active
attack (changes the information in some way), whereas the other attacks we have been
discussing here are examples of passive attacks (does neither affect the information nor
disrupt the communication channel). Man-in-the-middel attack can also compromise
the confidentiality. We will show how by giving an example: Suppose Alice wants to
communicate with Bob, and Bob sends his public key to Alice. The man-in-the-middel
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attack can then begin by Mallory intercepting this communication. She keeps the key
for herself, and sends a forged message to Alice that give the impression of coming from
Bob. Instead this is Mallory’s public key. Alice, believing this public key to be Bob’s,
encrypts her message with Mallory’s key and sends the encrypted message back to Bob.
Mallory again intercepts, decrypts the ciphertext using her private key, possibly alters it
if she wants, and re-encrypts it using the public key Bob originally sent to Alice. When
Bob receives the newly encrypted message, he believes it came from Alice.

Both the chosen-ciphertext attacks and the man-in-the-middel attacks can be encoun-
tered for, or they may be of no concern in the environment in which the public key
encryption scheme is to be used, but subject is out of scope for this thesis.

4.6 Semantic Security

A public key cryptosystem has to be secure in the chosen-plaintext model, if it is supposed
to offer any security at all. This is so because the encryption key is public, so if the
adversary wants to encrypt some messages of her choosing, she can just do it. So in
the rest of this thesis, if nothing else is said, we are situated in the chosen-plaintext
adversarial model, and the standard security model.

The ideal encryption scheme would be one that for every ciphertext, the probability of
finding the corresponding message only given the public key, should be negligible.

Definition 4.10. A function f from the natural numbers to the non-negative real
numbers is negligible if for every positive polynomial pol there is a T such that for all
integers t > T it holds that f(t) < 1

pol(t) , [21].

As we talked about in the beginning of this chapter, it is not possible to use such ideal
encryption schemes in practice. Instead we need another definition of security in the
chosen-plaintext model. The answer to this is the notion of semantic security.

Semantic security is the computational complexity analogue to Shannon’s concept of
information-theoretical security, and it is often called complexity-theoretical security.
What we want to show is that given the ciphertext of a certain message m, and maybe
also the length of the message, we cannot determine any partial information of the mes-
sage with probability non-negligibly higher than all other ppts that only have access to
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the length of the message (and not the ciphertext). This is the same as saying that
knowledge of the ciphertext (and maybe the length) of some unknown message does not
reveal any additional information on the message that can be feasibly extracted. The
notion of semantic security intuitively says that a ppt adversary cannot effectively dis-
tinguish between the encryption of two messages of his choosing. In [32], Victor Shoup
formalize this as a game between an adversary and a challenger:

Definition 4.11. A public key cryptosystem defined by (K, E ,D) is indistinguishability
under chosen plaintext attack, abbreviated IND-CPA if the outcome of the following game
between a challenger and a ppt bounded adversary satisfies the probability requirements
defined below:

1. The challenger generate a pair of keys (ek, dk) by running K.

2. The adversary (who knows dk and can perform any ppt bounded number of oper-
ations) chooses two distinct messages m0 and m1 from the possible plaintexts, and
gives them to the challenger.

3. The challenger selects a bit b ∈ {0, 1}, computes c = E(dk,mb) and gives c to the
adversary.

4. The adversary (still able to perform any ppt bounded number of operations) output
the value b′ for which she thinks the message m′b is the decryption of c.

The advantage of the adversary, defined as P (b = b′)− 1
2 , is negligible.

Definition 4.12. We define a public key cryptosystem to be semantically secure if it
satisfies the IND-CPA requirement. In this case, we assume that the cryptosystem is
secure in the chosen-ciphertext model.

It is important to notice that an encryption algorithm that are not probabilistic, will not
be secure in this model. It is enough noticing that in this case, the adversary can just
compute the ciphertext of m0 and m1, and by this be able to choose which message the
ciphertext c belongs to with probability one.

The IND-CPA proves in this thesis are very simple, so it goes without saying that the
advantage of the adversary is negligible.

There is also a similar concept which is known to be equivalent to IND-CPA.

Definition 4.13. A public key cryptosystem defined by (K, E ,D) is real-or-random
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secure, abbreviated RoR if the outcome of the following game between a challenger and
a ppt bounded adversary satisfies the probability requirements defined below:

1. The challenger generates a pair of keys (ek, dk) by running K.

2. The adversary (who knows dk and can perform any ppt bounded number of oper-
ations chooses a message m0 and gives it to the challenger.

3. The challenger chooses a random message m1, a bit b ∈ {0, 1}, computes c =

E(dk,mb) and gives c to the adversary.

4. The adversary outputs the value b = 0 if she thinks the messagem′b is the decryption
ofm0 and the value b = 1 if she thinks the messagem′b is the decryption of a random
message.

The advantage of the adversary, defined as P (b = b′)− 1
2 , is negligible.

Proposition 4.14.
For a public key cryptosystem, IND-CPA ⇔ RoR.

Proof. We will now show an example of how we can use games to prove a statement.

⇒: This is the same as proving that if we have an adversary, AROR with non-negligible
advantage in the RoR game, then we can create an adversary AIND with non-
negligible advantage in the IND-CPA game. We do as follows:

1. AROR start a RoR game by choosing a message m0.

(a) We start a IND-CPA game by choosing two messages m̃0 = m0 and m̃1

and send it to the challenger.

(b) The challenger selects a bit b ∈ {0, 1}, computes c = E(dk,mb) and
outputs c.

(c) We send c to AROR.

2. AROR decides if c is an encryption of m0 or a random message.

(a) If AROR says m0, we say m0.

(b) If AROR says random message, we say m1.

If AROR win, we win. So if AROR has an non-negligible advantage then we have a
non-negligible advantage.

⇒: We will not prove this here, but refer the interested reader to [15]
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5 | Paillier’s Cryptosystem

In 1999 Pascal Paillier published the article “Public-Key Cryptosystems Based on Com-
posite Degree Residuosity Classes”, where he introduced a new cryptosystem [24]. It
is based on the problem of computing n’th residuosity classes, which is thought to be
an intractable problem. The security of the cryptosystem relies on an assumption on
the hardness of distinguishing n’th residues from non n’th residues. This assumption
is related to the hardness of factoring, though it is not known to be equivalent. As it
turns out, this encryption scheme is of particularly interest because it possesses some
nice homomorphic properties, which will be crucial for the applications in Chapter 7.

In this chapter we will describe Paillier’s cryptosystem and analyze the security of it.
This will be the foundation for the next chapter, where we present a generalization of
Pailliers cryptosystem introduced in 2010 by Damgård, Jurik and Nielsen [7].

5.1 Paillier’s Cryptosystem

Paillier utilizes the multiplicative group Z∗n2 , given by

Z∗n2 =
{

1 ≤ i ≤ n
∣∣ gcd(n2, i) = 1

}
,

where n admissible (i.e. the usual product of two large primes p, q such that gcd(n, ϕ(n)) =

1). The function of the encryption algorithm is closely related to n’th residues, and is
given by

γg : Zn × Z∗n −→ Z∗n2

(m, r) 7−→ gmrn (mod n2). (5.1)
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This function is believed to be one-way, as we will see in Section 5.4. The trapdoor of
this function is the factorization of n as will be shown in Section 5.3.

Paillier states that if the order of g is a nonzero multiple of n in Z∗n2 , then γg is bijective
and L(gλ(n) mod n2) has an multiplicative inverse in Z∗n (as will be shown below in
Section 5.1.1), where L denotes the function

L : Sn → Zn

u 7→ u− 1

n
,

where Sn is the multiplicative subgroup of Z∗n2 given by

Sn =
{
u < n2

∣∣ u ≡ 1 (mod n)
}
.

In Figure 5.1 we formalize Paillier’s probabilistic encryption scheme PAg, given by
(KP, EPg,DPg). The choice of g in step (4) of KP will be discussed in further details
below.

5.1.1 Paillier’s g

The description of Paillier’s cryptosystem above is identical to the description in [24].
Paillier let g be a general element in Z∗n2 with order kn where 1 ≤ k ≤ λ(n), and stated
that this is equivalent to L(gλ(n) mod n2) being invertible (as needed for the decryption
algorithm). Paillier also showed that the semantic security is independent of the choice
of g. Later, in 2010, Damgård, Jurik and Nielsen made a particular choice of g, namely
the simplest possible letting g = (n+ 1) [7]. We will continue this thesis with the same
choice of g as Damgård-Jurik, but first we will look a bit closer into Paillier’s g. We will
begin by stating a proposition:

Proposition 5.1. For any integer a ≥ 0, we have

(n+ 1)a = 1 + an mod n2,

and the order of (n+ 1) in Z∗n2 is n.

Proof. For the first part of the proposition, we can use the binominal expansion to get

(n + 1)a =

a∑
i=0

(
a

i

)
ni. On the right-hand side, all terms with i ≥ 2 becomes 0 mod n2,
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Paillier’s encryption scheme
Paillier’s probabilistic encryption scheme PAg is given by (KP, EPg,DPg) as follows:

Key generation algorithm KP:

(1) Choose two large primes p, q, with gcd(pq, ϕ(pq)) = 1.

(2) Compute n = pq.

(3) Compute d = λ(n).

(4) Choose g ∈ Z∗n2 s.t. the order of g in Z∗n2 is an nonzero multiple of n .

Output: ek = (n, g) and dk = d.

Encryption algorithm EPg:

Input: ek = (n, g) and m ∈ Zn.

1. Choose random r ∈ Z∗n.

2. Compute c = γg(m, r) = gmrn mod n2.

Output: c ∈ Z∗n2 .

Decryption algorithm DPg:

Input: dk = d and c ∈ Z∗n2 .

1. Compute m =
L(cλ(n) mod n2)

L(gλ(n) mod n2)
mod n.

Output: m ∈ Zn.

Figure 5.1: Paillier’s probabilistic encryption scheme, PAg, with general g.
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so (n + 1)a = 1 + an mod n2. The second part is a consequence of the first part of the
proposition, since a = n is the smallest nonzero a such that 1 + an = 1 mod n2.

When (n+1) has order n in Z∗n2 , (n+1)x will also have order n except when gcd(x, n) 6= 1.
In this case the order will be n

gcd(x,n) . This will be the case when x is a nonzero multiple
of p or q. From Carmichael’s Theorem, we know that rλ(n)n = 1 mod n2, so the order
of rn in Z∗n2 will be an integer k such that 1 ≤ k ≤ λ(n). We then get the following
description of Paillier’s g:

g = (n+ 1)xrn, (5.2)

for r ∈ Z∗n and x ∈ Zn with x relatively prime to n (in Section 5.2, Proposition 5.2, we
will see that in fact (n+ 1)xrn ∈ Z∗n2).

To show the equivalence between this choice of g and L(gλ(n) mod n2) being invertible,
Paillier defined a class function similar to the function fClass which will be defined by
(6.2.2) in Section 5.2. The class function of an element z ∈ Z∗n2 with respect to g, is the
element m such that z = gmrn mod n2. He proved that L(gλ(n) mod n2) was the same as
λ(n) multiplied by the class function of g with respect to (n+1). He then needed to show
that the class function of g with respect to (n+1) was invertible. He did this by showing
an equality given below, but it suffices to see that when g is specified with respect to
(n+ 1), the class function is the x from (5.2), and this x is invertible iff gcd(x, n) = 1 as
stated.

To see that the security of PAg is independent of g, we will use a general result involving
two different g’s, namely g1 and g2 given by:

g1 = (n+ 1)x1rn1

g2 = (n+ 1)x2rn2 .

If we now want to specify g1 with respect to g2, and g2 with respect to g1, we get:

g1 = ((n+ 1)x2rn2 )
x1
x2 r̃1

n

g2 = ((n+ 1)x1rn2 )
x2
x1 r̃2

n.

So the class functions of g1 with respect to g2 is x1
x2
, which exist because gcd(x2, n) = 1

from the definition of g2. The same goes for g2 with respect to g1. We also notice
that these two class functions are multiplicative inverses of each other. So it is easy to
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change one into the other, and this shows that the security of PAg, which is equivalent
to calculating the class function (see Section 5.4), is random self-reducible over g.

To make the discussion easier, we will in the rest of this thesis let g = (n + 1). We will
then redefine the function from (5.1) as:

γ : Zn × Z∗n −→ Z∗n2

(m, r) 7−→ (n+ 1)m (mod n2). (5.3)

We will also have a redefined version of Paillier’s probabilistic encryption scheme PA
given by (KP, EP,DP), as seen in Figure 5.2. Notice that the decryption algorithm DP is
also made easier by this choice of g, as we do not need the function L.

Paillier’s probabilistic encryption scheme, PA
Paillier’s probabilistic encryption scheme PAg is given by (KP, EP,DP) as follows:

Key generation algorithm KP:

(1) Choose two large primes p, q, with gcd(pq, ϕ(pq)) = 1.

(2) Compute n = pq.

(3) Compute d = λ(n).

Output: ek = n and dk = d.

Encryption algorithm EP:

Input: ek = n and m ∈ Zn.

1. Choose random r ∈ Z∗n.

2. Compute c = γ(m, r) = (n+ 1)mrn mod n2.

Output: c ∈ Z∗n2 .

Decryption algorithm DP:

Input: dk = d and c ∈ Z∗n2 .

1. Compute m =
cd mod n2 − 1

nd
mod n.

Output: m ∈ Zn.

Figure 5.2: Paillier’s probabilistic encryption scheme, PA, with g = (n+ 1).

The further details on the encryption algorithm EP and the decryption algorithm DP will
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be given in Section 5.2 and 5.3 respectively. In Section 5.3 we will also prove the required
equality

DP(dk, EP(ek,m)) = m.

5.2 Pailliers encryption algorithm

Paillier’s cryptosystem utilize the function γ which gets as input a message m and a
randomized integer r. In this way, each particular message m can be encrypted into |Z∗n|
different ciphertexts (as will be proven below), where the probability of each ciphertext
is uniformly distributed, i.e. each of the |Z∗n| ciphertexts is equally likely to appear.

We will now take a closer look at the set Z∗n2 , and we start by proving that γ, defined
by (6.1), defines an important isomorphism which includes an important homomorphic
property.

5.2.1 The isomophism γ

Proposition 5.2. γ is a bijection.

Proof. Since the two sets Zn × Z∗n and Z∗n2 have the same cardinality,

|Z∗n2 | = ϕ(n2) = p(p− 1)q(q − 1) = nϕ(n) = |Zn||Z∗n| = |Zn × Z∗n|,

it is only necessary to show that γ is injective, that is, for m1,m2 ∈ Zn and r1, r2 ∈ Z∗n,

γ(m1, r1) = γ(m2, r2) in Z∗n2 =⇒ m1 = m2 in Zn ∧ r1 = r2 in Z∗n.

So we begin with
(n+ 1)m1rn1 ≡ (n+ 1)m2rn2 (mod n2).

Since r1 ∈ Z∗n ⇒ r1 ∈ Z∗n2 , r1 has an multiplicative inverse and we get

(n+ 1)m2−m1

(
r2
r1

)n
≡ 1 (mod n2) (5.4)

(n+ 1)(m2−m1)λ(n)

(
r2
r1

)nλ(n)
≡ 1 (mod n2) (5.5)

(n+ 1)(m2−m1)λ(n) ≡ 1 (mod n2) (5.6)
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Note that (5.5) implies (5.6) because of Carmichael’s Theorem. Since the order of (n+1)

is n due to Proposition (5.1), we then get

(m2 −m1)λ(n) ≡ 0 (mod n) (5.7)

m2 −m1 ≡ 0 (mod n) (5.8)

m2 ≡ m1 (mod n) (5.9)

where (5.7) is equivalent to (5.8) since gcd(n, λ(n)) = 1. When substituting (5.9) into
(5.4) we get (

r2
r1

)n
≡ 1 (mod n2)

rn2 ≡ rn1 (mod n2) (5.10)

r2 ≡ r1 (mod n2) (5.11)

r2 ≡ r1 (mod n).,

where (5.10) implies (5.11) because gcd(λ(n), n) = 1 and hence n has a multiplicative
inverse modulo λ(n).

Proposition 5.3. γ defines an isomorphism from Zn × Z∗n to Z∗n2.

Proof. We already know that γ is a bijection, so we only need to show the homomorphic
property

γ(m1 +m2, r1r2) = γ(m1, r1)γ(m2, r2),

for m1,m2 ∈ Zn and r1, r2 ∈ Z∗n, and with left-hand side taking place in modulo n2 and
right-hand side taking place in modulo n. So we have

γ(m1 +m2 mod n, r1r2 mod n) ≡ (n+ 1)m1+m2 mod n(r1r2 mod n)n (mod n2).

We know that (n+ 1) has order n in Z∗n2 , so

(n+ 1)m1+m2 mod n = (n+ 1)m1+m2 mod n2.

We also know that r1r2 mod n ≡ r1r2 + kn for some integer k, so by the binomial
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expansion we get

(r1r2 mod n)n ≡ (r1r2 + kn)n

≡
n∑
i=0

(
n

i

)
(r1r2)

n−i(kn)i

≡ (r1r2)
n + n(r1r2)

n−1(kn)

≡ (r1r2)
n (mod n2).

We then get as desired,

γ(m1 +m2 mod n, r1r2 mod n) ≡ (n+ 1)m1+m2(r1r2)
n

≡ (n+ 1)m1(r1)
n(n+ 1)m2(r2)

n

≡ γ(m1, r1)γ(m2, r2) (mod n2).

We see that that the group operations for m ∈ Zn and c ∈ Z∗n2 are not the same: the
product of two ciphertext will decrypt to the sum of their plaintexts. In comparison,
the product of two RSA ciphertexts decrypt to the product of their plaintext. Hence
Paillier’s probabilistic encryption scheme, PA, is additively homomorphic whereas RSA
is multiplicatively homomorphic. This property of PA, or actually the corresponding
property of the generalization of PA which will be described in Section 6.2, will be
essential for the voting schemes in Chapter 7.

5.2.2 N’th Residues

As mentioned in Section 5.1, n’th residues are closely related to Paillier’s encryption
function. In fact, the security of Paillier’s cryptosystem relies on the intractability of
distinguishing n’th residues from non n’th residues.

We will begin by defining two new sets, MPA and RPA, in the following way:

MPA = {(n+ 1)m | m ∈ Zn}

RPA = {rn | r ∈ Z∗n} .

Proposition 5.4. MPA and RPA are subgroups of Z∗n2.

Proof.
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• Closed under multiplication:

(n+ 1)m1 , (n+ 1)m2 ∈MPA ⇒ (n+ 1)m1(n+ 1)m2 = (n+ 1)m1+m2 ∈MPA.

rn1 , r
n
2 ∈ RPA ⇒ rn1 r

n
2 = (r1r2)

n ∈ RPA.

• Identity elements are included:

(n+ 1)0 = 1 ∈MPA.

1n = 1 ∈ RPA.

• Inverses are included:

(n+ 1)m ∈MPA ⇒ ((n+ 1)m)−1 = (n+ 1)−m ∈MPA.

rn ∈ RPA ⇒
(
r−1
)n ∈MPA.

Proposition 5.5. MPA ' Zn and RPA ' Zn∗.

Proof. We define the following functions

µ1 : Zn →MPA

m 7−→ (n+ 1)m mod n

and

µ2 : Z∗n → RPA

r 7−→ rn mod n.

The homomorphic properties follow directly from proposition 5.3, and surjectivity follows
by the definition of MPA and RPA, so we only need to prove that the functions are
injective.

(n+ 1)m1 = (n+ 1)m2 (mod n) ⇒ m1 = m2 (mod n),

because |Zn| = n.

rn1 = rn2 (mod n) ⇒ (rn1 )λ (n) = (rn2 )λ (n) (mod n) ⇒ r1 = r2 (mod n),

due to Carmichael’s Theorem.
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We will now look at the n’th residues and their characteristics.

Definition 5.6. A number c is said to be a n’th residue modulo n2 if there exists a
number z ∈ Z∗n2 such that

c = zn mod n2.

The set of n’th residues will be denoted by RPA, that is

RPA =
{
c
∣∣ ∃ z ∈ Z∗n2 with c = zn mod n2

}
.

The problem of deciding n’th residuosity, that is, distinguishing n’th residues from non
n’th residues, will be denoted by DCR[n].

Let us look at the set RPA. We know that r ∈ Z∗n ⇒ r ∈ Z∗n2 , so obviously RPA ⊆ RPA.
We will now prove the following:

Proposition 5.7. RPA = RPA.

Proof. Let

ψ1 : Z∗n2 −→ Z∗n2

z 7−→ zn mod n2.

An element z ∈ Z∗n2 has the representation (n+ 1)mrn for some m ∈ Zn, r ∈ Z∗n, so

ψ1(z
n) = ((n+ 1)mrn)n = rn

2
mod n2,

because (n+ 1) has order n in Z∗n2 . The image of ψ1 is the set RPA, that is

ψ1[Z∗n2 ] =
{
rn

2
∣∣∣ r ∈ Z∗n} = RPA.

We now define a function

ψ2 : RPA −→ RPA

rn
2

mod n2 7−→ rn
2b = rn mod n

rn
2

mod n2 7−→rn mod n,

where b is an integer with nb = 1 (mod ϕ(n)), which exists since gcd(n, ϕ(n)) = 1.
From the previous discussion, ψ2 is clearly a bijective homomorphim. Since RPA ={
rn

2
∣∣∣ r ∈ Z∗n} contains all n’th residues and RPA ' RPA, it follows that RPA = RPA.
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MPA and RPA give rise to two factor groups, namely

M̄PA = Z∗n2

/
RPA = {(n+ 1)mRPA | m ∈ Zn}

with elements M̄PAi = {(n+ 1)mirn | r ∈ Z∗n}, for 1 ≤ i ≤ n (see Figure 5.3a), and

R̄PA = Z∗n2

/
MPA = {MPAr

n | r ∈ Z∗n} ,

with elements R̄PAi = {(n+ 1)mrni | m ∈ Zn}, for 1 ≤ i ≤ ϕ(n) (see Figure 5.3b).

Let us look at the function ψ1. It is clear that each element in RPA is independent of m.
That is, each n’th residue has n roots, and the set of roots of rni is the set R̄PAi .

Let us now look at set M̄PA. As mentioned in the beginning of this section, each message
m can be encrypted into ϕ(n) different ciphertext. The set of all possible encryptions of
the message mi is the set M̄PAi , with mi = 0 being the set of n’th residues. The factor
group M̄PA gives rise to two functions, which we can combine as follows:

fClass: Z∗n2

f1−−→ M̄PA
f2−−→ Zn

(n+ 1)mrn 7−→ (n+ 1)mRPA 7−→ m.

Definition 5.8. The n’th Residuosity Class Problem, denoted Class[n], is the problem
of computing fClass(c) for a given c ∈ Z∗n2 .

5.3 The Decryption Algorithm DP

As mentioned in Section 5.1, the decryption algorithm with g = (n+ 1) is easier than in
Paillier’s original system (for details on the original system see [24]).

We know from Proposition 5.1 that

(n+ 1)a = 1 + an mod n2.

Combining this with Carmichael’s Theorem we get:
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(a) The factor group Z∗
n2

/
RPA , where

each element M̄PAi
consist of all possi-

ble encryption of the message mi.

(b) The factor group Z∗
n2

/
MPA , where

each element R̄PAi consist of the en-
cryption of all messages under the ran-
dom variable ri.

Figure 5.3: Dividing Z∗n2 into two different factor groups.
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c = (n+ 1)mrn

cλ(n) ≡ (n+ 1)mλ(n)rnλ(n)

≡ (n+ 1)mλ(n)

≡ 1 +mnλ(n) (mod n2)

⇒ cλ(n) − 1

n
≡ mλ(n) (mod n).

From Section 5.1 we have the decryption key d = λ(n), and so we get the decryption m
of c by:

(cd mod n2)− 1

n
d−1 mod n = m.

So the trapdoor is knowing the factorization of n to compute d = λ(n), and with this
information the problem of decrypting m from c becomes tractable. We then get

DP(dk, EP(ek,m)) = DP(dk, c) = m,

as required.

5.4 The Security of PA

We will first look at the problem DCR[n], which is the problem of deciding n’th residu-
osity defined in Section 5.2.

Proposition 5.9. DCR[n] is random self-reducible over c ∈ Z∗n2.

Proof. Let c ∈ Z∗n2 be a particular ciphertext. We have to show that if we can solve
DCR[n] for a random c̃ ∈ Z∗n2 , then we can also solve DCR[n] for any c ∈ Z∗n2 . So let

c = (n+ 1)mrn.

We can transform c into a random instance c̃ simply by randomly choosing m̃ ∈ Zn and
r̃ ∈ Z∗n such that

c̃ ≡ c(n+ 1)m̃r̃n ≡ (n+ 1)m+m̃(rr̃)n (mod n2).
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Suppose we can solve DCR[n] for c̃, that is, we know whether m + m̃ ≡ 0 (mod n) or
m+ m̃ 6≡ 0 (mod n). Since n = pq where p, q are very large primes, the probability that
m ≡ m̃ (mod n) is negligible. This leads to the following:

m+ m̃ ≡ 0 (mod n) ⇒ m = 0

m+ m̃ 6≡ 0 (mod n) ⇒ m 6= 0.

From the discussion in the previous sections, we know that c 7→ c(n+1)m̃r̃n is a bijection
from Z∗n2 to Z∗n2 (since m has an additive inverse in Zn and r has as multiplicative inverse
in Z∗n), which means that our random instances will cover all of Z∗n2 .

Since DCR[n] is random self-reducible, we know that the problem is either uniformly
intractable or uniformly polynomial. The problem DCR[n] is a well-studied mathematical
problem, and it is believed to be computationally hard, i.e. it is intractable. This leads
to the following assumption.

Assumption 1: Decisional Composite Residuosity Assumption, DCRA. There
exists no polynomial time distinguisher for n’th residues modulo n2, that is, DCR[n]

is intractable.

We will continue by proving the computational hierarchy of the problems related to
Pailler’s encryption scheme. We start by looking at the problem Class[n]. From Section
5.1.1 we know that Class[n] is random self-reducible over g.

Proposition 5.10. Class[n] is random self-reducible over c ∈ Z∗n2.

Proof. Let c ∈ Z∗n2 be a particular ciphertext. We have to show that if we can solve
Class[n] for a random c̃ ∈ Z∗n2 , then we can also solve Class[n] for any c ∈ Z∗n2 . So let

c = (n+ 1)mrn.

We can transform c into a random instance c̃ simply by randomly choosing m̃ ∈ Zn and
r̃ ∈ Z∗n such that

c̃ = c(n+ 1)m̃r̃n = (n+ 1)m+m̃(rr̃)n.

Suppose we can solve Class[n] for c̃. Then we can solve Class[n] for c simply by computing
fClass(c̃)−m̃. Following the proof of Proposition 5.9, we know that our random instances
will cover all of Z∗n2 .
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The computational hierarchy of the problems is as follows:

Proposition 5.11. DCR[n] ≤ Class[n] ≤ Fact[n].

Proof. What this proposition says, is that if you can solve Fact[n], then you can solve
Class[n], and if you can solve Class[n], then you can solve DCR[n].
DCR[n] ≤ Class[n]: Suppose we have an algorithm A that solves Class[n]. That is, A
computes the function fClass. When we get an element c from DCR[n], we can then
use A to compute fClass(c). If the answer is 0, then we have an n’th residue, and if the
answer is 6= 0 we have a not.
Class[n] ≤ Fact[n]: This follows directly from Section 5.1.1 and 5.3 (and is the base for
our decryption algorithm).

This leads to our second assumption:

Assumption 2: Computational Composite Residuosity Assumption, CCRA.
There exists no probabilistic polynomial time algorithm solving fClass, that is, CCRA
is intractable.

Theorem 5.12. Paillier’s encryption scheme, as defined in Section 5.1, is one-way if
and only if CCRA holds.

Proof. From the discussion in Section ??, solving Class[n] is equivalent to inverting γ.

Theorem 5.13. Paillier’s encryption scheme PA, as defined in Section 5.1, is seman-
tically secure if and only if DCRA holds.

Proof. We will use the IND-CPA game to show semantic security here.

⇐: This is the same as proving that if PA is not secure, then DCRA do not hold. So
we have an adversary A1 against PA. We can then create an adversary against
DCR[n] as follows:

1. A1 start a IND-CPA game in PA by choosing two messages m0,m1 ∈ Zn.

2. The challenger chooses b ∈ {0, 1} and outputs c = (n+ 1)mbrn mod n2.

(a) We choose an instance x of DCR[n], and want to find out if x is a
n’th residue or not.
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(b) We compute c′ = cx.

(c) We sen c′ or A1.

3. A1 decides if c′ is an encryption of m0 or m1 and answers b′ ∈ 0, 1.

(a) If b′ = b we say n’th residue.

(b) If b′ 6= b we say not n’th residue.

We then get two cases:

• x is a n’th residue: Then c′ is an encryption of either m0 or m1, and so A1

has an non-negligible advantage, which means that it has a probability non-
negligible more then 1/2 to choose the right one. When A1 win, we win, and
so we have a probability non-negligible higher than 1/2 to find n’th residues.

• x is a non n’th residue: Then x is an encryption of some random message
and hence c′ is an encryption of something random. Now A1 choose with zero
advantage, which means that it has only probability 1/2 to choose the right
one. So when A1 win, we loose, and this happens with probability 1/2.

This means that we more often choose right when x is a n’th residue, than wrong
when x is a non n’th residue, so we are able to solve DCR[n] with probability
non-negligible more than 1/2, and so we break the DCRA assumption.

⇒: This is the same as proving that if DCRA do not hold, then PA is not semantically
secure. So we now have an adversary ADCR which solves DCR[n] with probability
more then 1/2. We can then create an adversary A1 against PA as follows:

1. ADCR takes as input an instance x of DCR[n] and then outputs n’th residue
or non n’th residue.

(a) We choose two messagesm0 = 0 andm1 = ∗, where ∗ is a random element
in Zn.

(b) We send m0,m1 to the challenger.

(c) The challenger chooses b ∈ {0, 1} and outputs c = (n+ 1)mbrn mod n2.

(d) We send x = c to the oracle.

2. If the oracle outputs n’th residue, then we say b′ = 0.

3. If the oracle outputs non n’th residue, then we say b′ = 1.

When the oracle wins we win, and since the oracle has a probability of winning
which is non-negligible more than 1/2, A1 has an non-negligible advantage of choos-
ing right.
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6 | A Generalization of Paillier’s

Cryptosystem

We will now introduce a generalization of Paillier’s cryptosystem, described by Damgård,
Jurik and Nielsen in [7], namely the Damgård-Jurik-Nielsen cryptosystem which we will
abbreviate DJNs. Paillier uses multiplication modulo n2, whereas Damgård-Jurik-Nielsen
use multiplications modulo ns+1 for any s ≥ 1. It is worth noticing that DJN1, that is
s = 1, is the same as Paillier’s cryptosystem.

6.1 Damgård-Jurik-Nielsen cryptosystem

As already mentioned, the Damgård-Jurik-Nielsen cryptosystem uses multiplications
modulo ns+1 for any s ≥ 1. The corresponding multiplicative group is described by

Z∗ns+1 =
{

1 ≤ i ≤ ns+1
∣∣ gcd(ns+1, i) = 1

}
,

where n is admissible.

As in the previous chapter, we will simplify the system by letting g = (n+ 1). As for PA
(PAg with g = (n+ 1)), the public key can consist of only the modulus n. We then get
the function related to the encryption algorithm of DJNs as follows:

ξs : Zns × Z∗n −→ Z∗ns+1 (6.1)

(m, r) 7−→ (n+ 1)mrn
s

(mod ns+1). (6.2)

In the same manner as in the previous chapter, we will show that the function is feasible
to compute but infeasible to reverse, unless we have a trapdoor, which then makes the
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function feasible to reverse. The trapdoor is once again the factorization of n, from which
we can compute λ(n).

We will continue by formalizing the Damgård-Jurik-Nielsen probabilistic encryption
scheme, DJNs (see Figure 6.1). The figure needs some comments. If we first look at
the key generation algorithm, (1) has a security parameter t. We will use this when we
apply the system to electronic voting in Chapter 7. (2) is straightforward since we know
both p and q, while (3) needs some more discussion. It is not difficult to compute d, as
we can apply the Chinese Remainder Theorem. But this differs from the choice of d in
Paillier’s original scheme since he used d = λ(n) which is the smallest possible value. The
reason we need other choices than λ(n) will be revealed when we come to a threshold
decryption scheme in Section 7.6. The encryption algorithm is straightforward, but we
will do the calculations of (1) in the decryption algorithm:

cd =
(
(n+ 1)mrn

s)d
mod ns+1 = (n+ 1)md mod nsrn

sd mod λ(n) = (n+ 1)md mod ns.

In (3) we know that the multiplicative inverse of d exists because

d ∈ Z∗n ⇒ d ∈ Zns∗ ⇒ d has a multiplicative inverse in Zns .

We will discuss the details on the encryption algorithm ED and the decryption algorithm
DD in Section 6.2 and 6.3 respectively. In Section 6.3 we will also prove the required
equality

DD(dk, ED(ek,m)) = m.

Before we end this section, we will prove a proposition corresponding to Proposition 5.1
of Section 5.1

Proposition 6.1. For any admissible n and s < p, q, the element (n+ 1) has order ns

in Z∗ns+1.

Proof. For any integer a ≥ 0, let us look at the integer (n+ 1)a.

(n+ 1)a =
a∑
i=0

(
a

i

)
ni

= 1 +
a∑
i=1

(
a

i

)
ni.
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Damgård-Jurik-Nielsen’s encryption scheme
Damgård-Jurik-Nielsen’s probabilistic encryption scheme DJNs is given by (KD, ED,DD)

as follows:

Key generation algorithm KD:

(1) Choose admissible n = pq of length t bits.

(2) Compute λ(n).

(3) Choose d such that d mod n ∈ Z∗n and d = 0 mod λ(n).

Output: ek = n and dk = d.

Encryption algorithm ED:

Input: ek = n and m ∈ Zns .

(1) Choose random r ∈ Z∗n.

(2) Compute c = ξs(m, r) = (n+ 1)mrn
s

mod ns+1.

Output: c ∈ Z∗ns+1 .

Decryption algorithm DD:

Input: dk = d and c ∈ Z∗ns+1 .

(1) Compute cd = (n+ 1)md mod ns = (n+ 1)m
′ .

(2) Use algorithm from Figure ?? to extract m′.

(3) Compute m =
m′

d
mod ns

Output: m ∈ Zns .

Figure 6.1: Damgård-Jurik-Nielsen’s probabilistic encryption scheme, DJNs, with g =

(n+ 1).
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We then get

(n+ 1)a ≡ 1 (mod ns+1)

m
a∑
i=1

(
a

i

)
ni ≡ 0 (mod ns+1)

m
a∑
i=1

(
a

i

)
ni−1 ≡ 0 ≡ kns (mod ns), (6.3)

for some integer k. Equation (6.3) is clearly satisfied if a = ns, so it follows that the
order of (n+1) is a divisor of ns. The order then has to be the smallest number b = plqm,
where l,m ≤ s, such that

b∑
i=1

(
b

i

)
ni−1 = 0 (mod ns). (6.4)

Let us now assume that b < ns, and without loss of generality we can assume that l < s

(if l = s then m < s and we can follow the same argument as below). Let us now look
at a term

(
b
i

)
ni−1 in (6.4). We claim that each such term is divisible by b: If i > s this is

trivial. If i ≤ s, it follows from the fact that s < p, q leads to p, q not being prime factors

of i!, and hence b must divide
(
b
i

)
. We know from (6.4) that ns must divide

b∑
i=1

(
b

i

)
ni−1,

and so clearly p must divide
b∑
i=1

(
b

i

)
ni−1/b. The first term in this sum is 1, and all

the other terms are divisible by p, and so
b∑
i=1

(
b

i

)
ni−1/b = 1 (mod p) which leads to a

contradiction. So b ≮ ns and ns is the order of (n+ 1) in Z∗ns+1 .

6.2 The Encryption Algorithm ED

As for Paillier’s original cryptosystem, the randomized integer r leads to being a prob-
abilistic encrytion scheme (see Section 4. We will continue to follow the lines from the
previous chapter, and take a closer look at the function ξs and the set Z∗ns+1 .
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6.2.1 The isomophism γ

Proposition 6.2. ξs is a bijection.

Proof. Like in the previous chapter, the two sets Zns × Z∗n and Z∗ns+1 have the same
cardinality,

|Z∗ns+1 | = ϕ(ns+1) = pn(p− 1)qn(q − 1) = nsϕ(n) = |Zns ||Z∗n| = |Zns × Z∗n|,

due to Theorem ??, so we need to show that ξs is injective, that is, for m1,m2 ∈ Zns
and r1, r2 ∈ Z∗n,

ξs(m1, r1) = ξs(m2, r2) in Z∗ns+1 =⇒ m1 = m2 in Zns ∧ r1 = r2 in Z∗n.

With the same arguments as in the previous chapter, we get:

(n+ 1)m1rn
s

1 ≡ (n+ 1)m2rn
s

2 (mod ns+1)

(n+ 1)(m2−m1)λ(n) ≡ 1 (mod ns+1)

(m2 −m1)λ(n) ≡ 0 (mod ns)

m2 −m1 ≡ 0 (mod ns)

m2 ≡m1 (mod ns),

and substitution then gives: (
r2
r1

)ns
≡ 1 (mod ns+1)

rn
s

2 ≡ rn
s

1 (mod ns+1)

r2 ≡ r1 (mod ns+1)

r2 ≡ r1 (mod n).

Proposition 6.3. ξs defines an isomorphism from Zns × Z∗n to Z∗ns+1.

Proof. As in the previous chapter we only need to show the homomorphic property

ξs(m1 +m2, r1r2) = ξs(m1, r1)ξs(m2, r2),

for m1,m2 ∈ Zns and r1, r2 ∈ Z∗n, with left-hand side taking place in modulo ns+1 this
time, and right-hand side taking place in modulo ns for the messages and n for the
random numbers. We then get:

ξs(m1 +m2 mod ns, r1r2 mod n) ≡ (n+ 1)m1+m2 mod ns(r1r2 mod n)n
s

(mod ns+1).
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By Proposition 6.1 we know that (n+ 1) has order ns in Z∗ns+1 , so

(n+ 1)m1+m2 mod ns = (n+ 1)m1+m2 mod ns+1.

We continue with

(r1r2 mod n)n
s ≡ (r1r2 + kn)n

s

≡
ns∑
i=0

(
ns

i

)
(r1r2)

ns−i(kn)i

≡ (r1r2)
ns + ns(r1r2)

ns−1(kn)

≡ (r1r2)
ns (mod ns+1),

and get as desired:

ξs(m1 +m2 mod ns, r1r2 mod n) ≡ (n+ 1)m1+m2(r1r2)
ns

≡ (n+ 1)m1(r1)
ns(n+ 1)m2(r2)

ns

≡ ξs(m1, r1)ξs(m2, r2) (mod ns+1).

So the product of ciphertexts will decrypt to the sum of the messages. This will be a
crucial property for the voting protocols in the next chapter.

6.2.2 The structure of Z∗ns+1

As in Section 5.2.2, we can define two subgroups of Z∗ns+1 , namely:

MD = {(n+ 1)m | m ∈ Zns}

RD =
{
rn

s ∣∣ r ∈ Z∗n} .
The proofs of this fact follows the exact same arguments as of the proof of Proposition
5.4 in Section 5.2.2. We can also follow the same arguments to show that MD ' Zns and
RD ' Z∗n.

We can then make the correspondently two factor groups, namely M̄D and R̄D, defined
by:

MD = Z∗ns+1

/
RD = {(n+ 1)mRD | m ∈ Zns}

with elements M̄Di =
{

(n+ 1)mirn
s ∣∣ r ∈ Z∗n}, for 1 ≤ i ≤ ns, and

R̄D = Z∗ns+1

/
RD =

{
MDr

ns
∣∣ r ∈ Z∗n} ,
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with elements R̄Di =
{

(n+ 1)mrn
s

i

∣∣ m ∈ Zns}, for 1 ≤ i ≤ ϕ(n).

We then get, as before:
The set of roots of rnsi in Z∗ns+1 is the set R̄Di , and all possible encryptions of the message
mi under the encryption algorithm ED is the set M̄Di . The factor group M̄D gives rise
to two functions, which we can combine as follows:

fClasss : Z∗ns+1

fs1−−−→ M̄D
fs2−−−→ Zns

(n+ 1)mrn
s 7−→ (n+ 1)mRD 7−→ m.

Definition 6.4. The problem Classs[n], is the problem of computing fClasss(c) for a
given c ∈ Z∗ns+1 .

It is worth noticing that each m ∈ Zns can be written uniquely in n-adic notation as an
s-tuple:

(ms,ms−1, . . . ,m1) ∈ Zn × Zn × · · · × Zn,

with m =
s∑
i=1

min
i−1.

We then get

m ∈ Zns ≡ m1 (mod n) = m1 ∈ Zn.

So starting with m ∈ Zns it is easy to find the corresponding m1 ∈ Zn, but the other way
around is not so easy. On the other hand, if we start with a message m ∈ Zn, we have:

m ∈ Zn ⇒ m ∈ Zns .

This will come useful later on.

6.3 The Decrypton Algorithm DD

The first part of DD is decribed in Section 6.1 as:

cd =
(
(n+ 1)mrn

s)d
mod ns+1 = (n+ 1)md mod nsrn

sd mod λ(n) = (n+ 1)md mod ns .
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After making this computation, we need a way to extract m′ = md mod ns, before we
end the algorithm with:

m =
m′

d
mod ns.

To extract m′, we can use Proposition 6.1 with m′ = a to get

cd = (n+ 1)m
′

= 1 +

m′∑
i=1

(
m′

i

)
ni

⇓

cd − 1

n
=

m′∑
i=1

(
m′

i

)
ni−1

≡
s∑
i=1

(
m′

i

)
ni−1 (mod ns),

because i > m′ ⇒
(
m′

i

)
= 0, and i > s⇒ ni−1 ≡ 0 (mod ns).

We will continue extracting m′ from this number by induction on

m′j = m′ mod nj

=
cd − 1

n
mod nj+1 −

j∑
i=2

(
m′j
i

)
ni−1 mod nj ,

for 1 ≤ j ≤ s. We observe that

mj = m′ mod nj

= m′ mod nj−1 + knj−1

= m′j−1 + knj−1,

for some integer k.

The first induction step is easy because j = 1⇒
j∑
i=2

(
m′j
i

)
ni−1 mod nj = 0:

m′1 = m′ mod n

=
cd − 1

n
mod n2.
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For the j’th induction step, we already know the value m′j−1. If we look at a term in
j∑
i=2

(
m′j
i

)
ni−1 mod nj , we see that for 2 ≤ i ≤ j

(
m′j
i

)
ni−1 mod nj ≡

(
m′j−1 + knj−1

i

)
ni−1 (mod nj)

=

(
m′j−1
i

)
ni−1 mod nj ,

because the contribution from knj−1 vanish modulo nj after multiplication by n. From
this we get the j’th induction step:

m′j =
cd − 1

n
mod nj+1 −

j∑
i=2

(
m′j
i

)
ni−1 mod nj

=
cd − 1

n
mod nj+1 −

j∑
i=2

(
m′j−1
i

)
ni−1 mod nj .

We can gather this induction in Algorithm 1.

Algorithm 1 Algorithm to extract m′ from (n+ 1)m
′ by induction.

m′ ← 0;
for j := 1 to s do . The induction steps for 1 ≤ j ≤ s.

t1 ← cd−1
n mod nj+1;

t2 ← m′

for i := 2 to j do . Computing
j∑
i=2

(
m′j−1
i

)
ni−1 mod nj .

m′ ← m′ − 1;
t2 ← t2 ·m′ mod nj ;
t1 ← t1 − t2·ni−1

i! mod nj ;

m′ = t1;

return m′ . Now we have m′ from (n+ 1)m
′

So it is clear that knowing the trapdoor d makes it possible to decrypt c in polynomial
time. It is also possible to find ξs(c)−1, that is, both decrypting c and finding the random
variable r. For details on finding r, see [7]. The only thing remaining now is to state the
following:

DD(dk, ED(ek,m)) = DD(d, c) = m.
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6.4 The Security of DJNs

As in the previous chapter, we have to show that the function ξs is one-way and that
DJNs is semantically secure. We will do this by showing that ξs is one-way if γ of PA
is one-way, and show that the semantic security is equivalent to DCRA (Assumption 1),
as is also the case for PA.

Proposition 6.5. Classs[n] is random self-reducible over c ∈ Z∗ns+1.

Proof. Let c ∈ Z∗ns+1 be a particular ciphertext. We have to show that if we can solve
Classs[n] for a random c̃ ∈ Z∗ns+1 , then we can also solve Classs[n] for any c ∈ Z∗ns+1 . So
let

c = (n+ 1)mrn
s
.

We can transform c into a random instance c̃ simply by randomly choosing m̃ ∈ Zns and
r̃ ∈ Z∗n such that

c̃ = c(n+ 1)m̃r̃n
s

= (n+ 1)m+m̃(rr̃)n
s
.

Suppose we can solve Classs[n] for c̃. Then we can solve Classs[n] for c simply by
computing fClasss(c̃) − m̃. Following the proof of Proposition 5.9, we know that our
random instances will cover all of Z∗n2 .

Following the lines of Section 5.1.1, we can show that Classs[n] is also random self-reducible
over g ∈ Z∗ns+1 . For details, we refere to [7].

Theorem 6.6. If for some integer j > 0 the scheme DJNj is one-way, then DJNs is
one-way for any integer s > j. Especially, DJNs is one-way for any s if Paillier’s original
scheme DJN1 is one-way.

Proof. The second part of the proposition follows from the first with j = 1, so it is
enough to show that if DJNj is one-way then DJNs is one-way, with s > j. We will
prove this by contradiction, so we assume that DJNj is one-way and DJNs is not, that
is, there is an algorithm A which can compute fClasss(c) for sufficient many c ∈ Z∗ns+1

. So let cj be a ciphertext in Z∗
nj+1 . We know that cj ∈ Z∗nj+1 ⇒ c ∈ Z∗ns+1 , so let cj

now be a ciphertext in Z∗ns+1 . We can randomize cj as described above, several times if
necessary, until we find a randomized version of cj which can be decrypted by A. We
can then get the decryption m of cj modulo ns, and by calculating m mod nj we get the
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decryption of cj in Z∗
nj+1 , which contradicts our assumption (for further details see the

proof of Theorem 6.7).

Theorem 6.7. For any integer s > 0, the cryptosystem DJNs is semantically secure if
and only if DCRA is true.

Proof. We will use the RoR game to show semantic security here. Notice that DCRA is
true ⇔ PA is semantically secure, so we need to show that for all s > 0,

DJNs is semantically secure ⇔ DJN1 is semantically secure.

⇒: This is the same as proving that if DJN1 is not semantically secure, then DJNs is
not semantically secure. So assume that we have an adversary A1 against DJN1.
We will now create an adversary against DJNs as follows:

1. A1 start a RoR game in DJN1 by choosing a message m̃ from Zn.

2. A1 send m̃ to us.

(a) We transform the message m̃ ∈ Zn to a message m ∈ Zns by choosing
a m ≡ m̃ (mod ns), i.e m(m̃, ∗, ∗, . . . , ∗), where ∗ ∈ Zn is a random
element.

(b) We play the RoR game in with a challenger in DJNs to get a ciphertext
c ∈ Z∗ns+1 .

(c) We transform the ciphertext c ∈ Z∗ns+1 to a ciphertext c̃ ∈ Z∗n2 by reducing
in modulo n2, i.e. c̃ = c mod n2.

(d) We send c̃ ∈ Z∗n2 to A1.

3. A1 gets c̃ as response to the message m̃.

4. A1 no decides if c̃ is an encryption of m̃ or a random message with non-
negligible advantage. Then

(a) If A1 says c̃ is an encryption of m̃, then we say m.

(b) If A1 says c̃ is an encryption of random message, then we say random
message.

Now, if c is an encryption of m, then c̃ is an encryption of m̃. If c is an encryption
of random message, then c̃ is an encryption of a random message. Since A1 has
an advantage, then also we gets an advantage and in this way we have created an
adversary against DJNs.
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⇐: We will not go into all the technical details here but rather sketch the concept, and
refer the reader to [7] for details.
We have an adversary against DJNs, lets call her As. That is, As can choose a
message m ∈ Zns , output it, then get a ciphertext c ∈ Z∗ns+1 which is either a
ciphertext of m or a random message m̃, and with more than negligible probability
guess the right answer. That is, the advantage of As is non-negligible. We now
want to create an adversary against DJN1. Without loss of generality, we can
assume that s is even. We will now start by making an adversary against DJNs/2
and then use this to sketch the proof of how to get an adversary against DJN1. (If
s is odd, we will start by making an adversary against DJN(s+1)/2 or DJN(s−1)/2.)
So we have the following:

1. As start a RoR game in DJNs by choosing a message m from Zns .

2. As send m to us.

(a) We transform the message m ∈ Zns to a message m̃ ∈ Zns/2 .

(b) We play the RoR game in with a challenger in DJNs/2 to get a ciphertext
c̃ ∈ Z∗

n(s/2)+1 .

(c) We transform the ciphertext c̃ ∈ Z∗
n(s/2)+1 to a ciphertext c ∈ Z∗ns+1 .

(d) We send c ∈ Z∗ns+1 to As.

3. As gets c as response to the message m.

4. As no decide if c is an encryption ofm or a random message with non-negligible
advantage.

What we want is to turn the non-negligible advantage of As into a non-negligible
advantage for us in the RoR game in DJNs/2. Two problems arises:

1. How should we transform the message m ∈ Zns to a message m̃ ∈ Zns/2?

2. How should we transform the ciphertext c̃ ∈ Z∗
n(s/2)+1 to a ciphertext c ∈

Z∗ns+1?

Let (m1, . . . ,ms) be the n-adic representation of m. We do not know how As is
able to tell if a ciphertext is the encryption of m or random element, but imagine
she is able to decrypt the ciphertext and then look at some of the positions in the
n− adic representation of the decryption, minimum one of the positions. She can
then compare these positions to the corresponding positions in (m1, . . . ,ms), and
decides weather the ciphertext is a encryption of m or a random element. Our
problem then becomes: When we transform the message m ∈ Zns to a message
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m̃ ∈ Zns/2 we will loose some parts of it, i.e. some of the positions in the n-adic
representation. How do we ensure that we do not loose the positions As needs?
Since m̃ ∈ Zns/2 have s

2 positions in the n-adic representation, so we can divide
(m1, . . . ,ms) in two parts:

(m1, . . . ,ms/2) ∧ (ms/2+1, . . . ,ms).

Let us assume that the positions As needs is either in the first part or in the second
part1. Let ∗ ∈ Zn be a random element, and let Enc(m1, . . . ,ms) be one instance
of the distribution obtained by encryption (m1, . . . ,ms). Les us now look at the
three encryptions:

Enc(m1, . . . ,ms/2,ms/2+1, . . . ,ms). (6.5)

Enc(m1, . . . ,ms/2, ∗ , . . . , ∗). (6.6)

Enc( ∗ , . . . , ∗ , ∗ , . . . , ∗). (6.7)

Since As has a non-negligible advantage of choosing between 6.5 and 6.7, we then
get two cases:

1. The positions As needs is in the first half of the n− adic representation of m.
Then As can choose between 6.6 and 6.7 with non-negligible advantage.

2. The positions As needs is in the second half of the n− adic representation of
m. Then As can choose between 6.5 and 6.6 with non-negligible advantage.

In case 1:
When we get m = (m1, . . . ,ms), we let m mod ns/2 = (m1, . . . ,ms/2). We output
this and in return we get a ciphertext c̃ ∈ Z∗

n(s/2)+1 . We then have

c̃ = Enc(m1, . . . ,ms/2) ∨ c̃ = Enc(∗, . . . , ∗).

We then make a random encryption c′ = Enc(0, . . . , 0, ∗, . . . , ∗), and get:

c̃c′ = Enc(m1, . . . ,ms/2, ∗, . . . , ∗) ∨ c̃c′ = Enc(∗, . . . , ∗, ∗, . . . , ∗),

where the first part corresponds to c̃ being an encryption of m̃ and the second part
corresponds to c̃ being an encryption of a random message in Zns/2 . Since As has an

1If the positions are in both parts, then it is straightforward to just choose one of them, get a challenge
ciphertext c̃ ∈ Zns/2 , transform it to a ciphertext c ∈ Z∗ns+1 by adding random elements to the s

2
positions

in the message part, as can be easily done by the homomorphic property of DJNs, and then let As tell
us if c is an encryption of m or a random message in Zns , which again will tell us if c̃ is an encryption
of m̃ or a random message in Zns/2 .
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non-negligible advantage of choosing between these, we now have a non-negligible
advantage of choosing between c̃ = Enc(m1, . . . ,ms/2) or c̃ = Enc(∗, . . . , ∗).

In case 2:
When we get m = (m1, . . . ,ms), we let m mod ns/2 = (ms/2+1, . . . ,ms). We
output this and in return we get a ciphertext c̃ ∈ Z∗

n(s/2)+1 . We then have

c̃ = Enc(ms/2+1, . . . ,ms) ∨ c̃ = Enc(∗, . . . , ∗).

Since we are now looking at the second halv of the n-adic representation ofm ∈ Zns ,
when going from the representation in Zns/2 to a representation in Zns , we need to
"move” the values ns/2 positions to the right. We can do this by computing c̃ns/2 .
We then get

c̃n
s/2

= Enc(0, . . . , 0,ms/2+1, . . . ,ms) ∨ c̃n
s/2

= Enc(0, . . . , 0, ∗, . . . , ∗).

We then make a random encryption c′ = Enc(m1, . . . ,ms/2, 0, . . . , 0), and get:

c̃n
s/2
c′ = Enc(m1, . . . ,ms/2,ms/2+1, . . . ,ms)

∨ c̃ns/2c′ = Enc(m1, . . . ,ms/2, ∗, . . . , ∗),

where the first part corresponds to c̃ being an encryption of m̃ and the second part
corresponds to c̃ being an encryption of a random message in Zns/2 . Since As has an
non-negligible advantage of choosing between these, we now have a non-negligible
advantage of choosing between c̃ = Enc(ms/2+1, . . . ,ms) and c̃ = Enc(∗, . . . , ∗).

Combining these two cases gives us an adversary with non-negligible advantage
against DJNs/2.

To get an adversary against DJN1, we notice that when we transform the message
m ∈ Zns to a message m̃ ∈ Zn, we can only keep one of the positions. So let us
assume that As only use one of the positions to choose between Enc(m1, . . . ,ms)

and Enc(∗, . . . , ∗) (as all other possibilities will follow trivially from this).We can
then start on first position and make the partition

(m1) ∧ (m2, . . . ,ms).

From the discussion above, we know that As can choose with non-negligible ad-
vantage between either

1. Enc(m1,m2, . . . ,ms)

Enc(m1, ∗ , . . . , ∗ )

or
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2. Enc(m1, ∗ , . . . , ∗ )

Enc( ∗ , ∗ . . . , ∗ ).

In the second case, we know that As need the position m1 to get a non-negligible
advantage, and so we must let m = m1 mod n and then create the ciphertexts
Enc(m1,m2, . . . ,ms) or Enc(m1, ∗ , . . . , ∗ ) as above.
In the first case, we don’t know which of the m2, . . . ,ms that is the crucial position,
so we have to make a new partition

(m1,m2) ∧ (m3, . . . ,ms),

which generates two new cases:

1. Enc(m1,m2,m3, . . . ,ms)

Enc(m1,m2 ∗ , . . . , ∗ )

or

2. Enc(m1,m2 ∗ , . . . , ∗ )

Enc( ∗ , ∗ . . . , ∗ ).

In the second case of these new cases, we know that As need the position m2 to
get a non-negligible advantage, and so we must let m = m2 mod n.
For the first case we once again must make two new cases.
The hierarchy of cases is illustrated in Figure 6.2. We can get an adversary against
DJN1 by combining all the cases. For a more elegant and generalized version of
this proof, see the subgroup membership problem discussed by Gjøsteen in [16].
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Figure 6.2: Creating an adversary against DJN1 from an adversary against DJNs.



7 | An application to electronic

voting

We will now look at an application of Damgård-Jurik-Nielsen cryptosystem, DJNs, to
electronic voting. This application is one of several kinds of electronic voting, namely
homomorphic encryption-based electronic voting, and we will use the homomorphic prop-
erty of DJNs to build our voting protocols. We will start with some very simple protocols
where we assume that both the voters and the authorities are honest but curious, and
then continue by taking more and more security aspects, represented by malicious behav-
ior, into account. In the end we will end up with the electronic voting protocol described
in [7].

We will begin with some general notion about electronic voting.

7.1 Electronic Voting

In the literature there are many different definitions on both what an electronic voting
protocol should accomplish, and on how the security of them should be analyzed. We
will base this section on [20], [22] and [28].

Conventional voting is usually what we call paper ballot or Australian ballot. It was
adopted in the late 19th century, and is regarded as the gold standard of voting [4]. Since
the 19th century it has evolved in many different ways which vary from one country to
the next, but they all have a common baseline consisting of a set-up phase (or preparation
phase), a voting phase and a counting phase (or tallying phase). If we want to describe
the voting process completely, there are many details we need to include. Instead we will
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only include the most essential steps:

Set-up We need a register of valid voters, a polling station, the actual paper ballots,
containers for the ballots (usually some kind of an envelope to provide secrecy of
the ballot, and a ballot box that gather all the casted ballots) and trusted personell
to prepare the polling station including sealing the boxes.

Voting phase First the voter is identified and authenticated, then she receives an en-
velope and enters a booth alone (this is mandatory if she wants it or not). She
needs to get access to all the possible paper ballots and put the chosen ballot in
the envelope in secrecy. This can be done in many different ways, but one way is to
have a sufficient number of each ballot inside the booth so that she just picks the
one she wants, and so that it is not possible to see which one she has taken without
starting to count the ones that are left. She end her voting phase by casting the
envelope in the ballot box.

Counting phase The sealed ballot boxes are counted and unsealed. Then all the en-
velopes are counted before the envelopes are removed. The paper ballots are exam-
ined and registered, and invalid ballots are annulled. The hole process is supervised
by trusted (and also possible mistrusting) individuals. As an additional measure
to preserve integrity one can check the total number of authenticated voters and
match it to the total number of envelopes and total numbers of votes (including
the annulled ones).

The reason for this voting process is that we want the election result to reflect the opinion
of the authenticated voters. In the literature this is described with several requirements,
some of them in contradiction to others. We will not take into account all the require-
ments in this chapter, but instead limit ourselves to the discussions in [20], [22] and
[28].

Let us first look at the ideal world where both the voters and the trusted personell are
honest. Then we need the following two requirements:

Completeness: The result of the election has to be consistent with the votes cast.

’Privacy’: During the election, nobody will gain any information about any singel vote
or subset of votes except their own private inputs and the final voting result.
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Unfortunately, there is dishonesty in the world. Inputs can be leaked and outputs can
be wrong. The security of an election protocol should however be similar to what can
be achieved in the ideal world. So we will need some more requirements, including a
rewriting of the privacy requirement:

Privacy: Only the final result is made public. No additional information about the
votes will leak (except possible each voter’s own private inputs).

Universal Verifiability: After the election, the result can be verified by anyone.

Robustness: Even if some voters and/or some of the entities running the election cheat,
this will not effect the result. (The part of this requirement concerning the cheating
voters is sometimes referd to as soundness.)

There are other requirements as well. One example is the coercion-free requirement,
which means that no voter can later prove her vote. But universal verifiability means
that each voter should be able to verify that their vote is correctly implemented, which
in our case means that the voter will need knowledge of the random varible r from the
encryption process. Knowing this varible, it is easy to prove the vote. So our system will
not be coercion-free. Another example is the eligibility requirement, which means that
only authorized parties should be able to vote. This is not difficult to implement, but we
will solve it here by just stating that the bulletin board (defined below) will solve this
problem. There is also a requirement called unreusability, which means that no voters
should be able to vote more than the allowed times (usually one). We will assume that
the bulletin board solves also this problem. In many actual elections it should be able
to cast an empty vote, also called a NOTA (None of the Above). We will not take this
into account in our systems, but we will make a notion about it in Section 7.2.3.

We will now look at the participants in our electronic voting systems, which will be
the voters and the authorities. They can communicate with each other through public
channels. A digital bulletin board serves as the place to post votes, proofs and results,
as well as to authorize voters. We can define the following variables that will be used in
out voting systems:

Voters: The strict upper bound of voters will be denoted by W , which means that the
number of voters will be strictly less than W . An authorized voter do not need to
participate in the voting. The voter i will be denoted by Wi. The totalt casted
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votes are denoted v. We suppose that each voter can secretly store some amount
of data in a secure place inaccessible to anyone except herself.

Authorities: The total number of authorities will be denoted by A, and Ai represent
authority i. The minimum number of honest authorities will be denoted by H, and
we assume that the honest authorities will do their prescribed work correctly and
honestly.

Voting options: The voting options will be called the candidates, and in accordance
with the above, the total number of candidates will be denoted by L. Candidate i
will be denoted Li. The total votes on candidate i will be denotet vi. If there are
only two candidates, we will call it a yes/no election, where 1 is “yes” and 0 is “no”.

When it comes to the actual voting process, it will be the same three phases as above:

Set-up In this phase we define our participants and how to cast votes. This phase will
also contain the key generation algorithm from our voting schemes in use.

Voting phase Each voter will be choosing between the L pre-decided number of can-
didates. The votes can be placed at a polling station or through internet, and the
bulletin board will ensure that the eligibility and unreusability requirements holds.
When the voter has chosen her candidate, the vote will be encrypted and posted
on the bulletin board, possibly together with a proof of correctness.

Counting phase The authorities will collect all the encrypted votes, multiply them
and decrypt the product to get the sum of the votes. This is possible due to the
homomorphic property of DJNs. It is important that the decryption process is
guaranteed to be executed in such a way that no singel vote, or proper subset
of votes, will be revealed. The result, possibly together with the product of the
encrypted votes and proofs of correctness, will be posted on the bulletin board.

7.2 Electronic voting protocols in the semi-honest model

So we have three parties: the voters, the authorities and the (possible) adversaries. We
will refer to the voters and the authorities as the entities of the protocol. Thereby we
will have two distinct security issues, one is from the entities within the protocol and
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another one is from the adversaries outside the protocol (but who possibly can interfere
with the protocol). We will start with our simplest form of electronic voting protocols.
They are based on the following assumption:

Assumption 3: The voters and the authorities are honest but curious.

When both the voters and the authorities are honest but curious, we call this a semi-
honest model. And since they are curious, we call them passively corrupt. This is opposed
to actively corrupt entities, which we get when we add dishonesty represented by mali-
cious or cheating behavior [28].

The honest model, where both voters and authorities are honest, will be our "ideal-
world". When we add curiosity, as in this section, or dishonesty, as in the next sections,
our goal is always to achieve the same level of security as in the honest model.

Since the voters and authorities are curious in this model, the voters can not just post
votes on the bulletin board and hope that their privacy will remain intact. Instead,
the voters must encrypt the votes before publishing it. Since both the voters and the
authorities are honest, we can assumes that they will follow the voting protocols properly
and that non of them will cheat. So we only need to worry about curiosity and adversaries.
For curiosity, we will see that the protocols in this section do not satisfy privacy. For
adversaries, we will see that the security of the protocols only depend on the security of
the underlying cryptosystem which in our case is DJNs.

We will now describe three voting protocols in the semi-honest model. The first one is a
yes/no-election, where there is only two possible choices (candidates) to choose between.
The second is a 1-out-of-L-election, where the voter can choose up to one out of L possible
candidates. The third protocol is a K-out-of-L-election, where the voter can choose K
out of L possible candidates.

7.2.1 Yes/no-election

We start with a protocol for the yes/no-election. The electronic voting protocol is de-
scribed in Figure 7.1.

The security of the voting protocol in Figure 7.1 relies on the security of DJNs and
Assumption 3. So we only need to discuss completeness and the version of privacy for
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Voting protocol: Yes/no-election in the semi-honest model

Set-up Let W be the strict upper bound of voters, and let L = 2. A vote by voter Wi

for “no” is represented by mi = 0 and a vote for “yes” is represented by mi = 1.
The authorities will be represented by A. Use the encryption scheme DJNs, with
ED and DD as described by Figure 6.1 in Section 6.1.

1. A chooses admissible n = pq.

2. A chooses d such that d mod n ∈ Z∗n and d = 0 mod λ(n).

Voting phase Each Wi casts a vote mi of 0 or 1 as follows:

1. Choose random ri ∈ Z∗n.

2. Choose mi = 0 or mi = 1.

3. Compute ci = ED(n,mi, ri).

4. Post ci on the bulletin board.

Counting phase

1. A computes c =

v∏
i=1

ci.

2. A computes DD(d, c) = m =
v∑
i=1

mi.

3. A posts the voting result m and the ciphertext c on the bulletin board.

Figure 7.1: A yes/no voting protocol with honest but curious voters and authorities.
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honest but curious voters and authorities. No one except each voter themselves knows
the random ri, so the privacy requirement is fulfilled except for the curious authorities.
They can easily decrypt each ci to find each and every vote, and maybe, adding factors
as time and identification, they will be able to connect some of the votes to its owner.
This privacy issue concerns all the voting protocols in this section, and a solution will be
discussed in Section 7.6.

Proposition 7.1. The voting protocol of Figure 7.1 is complete.

Proof. This follows from the decryption algorithm of DJNs and the following equation:

v∏
i=1

ci =
v∏
i=1

(
(n+ 1)mirn

s

i mod ns+1
)

= (n+ 1)

∑v
i=1mi mod ns

(
v∏
i=1

ri mod n

)ns

= (n+ 1)

∑v
i=1mi

rn
s
,

where the last equality follows from the fact that for all practical purposes, n > W . It

follows that m =

v∑
i=1

mi represents the votes for “yes” and v−m represents the votes for

“no”.

7.2.2 1-out-of-L-election

We will continue with a voting protocol were there are L possible candidates to vote for,
and each voter can select only one of the candidates. It is based on the same assumption
as in the previous section, where both entities are assumed to be honest but curious. The
electronic voting protocol is described in Figure 7.2.

As in Section 7.2.1, the security of the voting protocol in Figure 7.1 relies on the security
of DJNs and Assumption 3. The privacy has the same concerns as in the previous section,
and will be further discussed in Section 7.6. So we only need to look at completeness.

Proposition 7.2. The voting protocol of Figure 7.2 is complete.
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Voting protocol: 1-out-of-L-election in the semi-honest model

Set-up LetW be the strict upper bound of voters, and let L be the number of candidates.
A vote for candidate number j ∈ {0, . . . , L− 1} is represented by the number W j .
The total votes for candidates (0, . . . , L − 1) will be denoted by (v0, . . . , vL−1)

respectively. The authorities will be represented by A. Use the encryptions scheme
DJNs, with ED andDD as described by Figure 6.1 in Section 6.1, with s ≥ L lognW .

1. A chooses admissible n = pq.

2. A chooses d such that d mod n ∈ Z∗n and d = 0 mod λ(n).

Voting phase Each voter i casts a vote ji as follows:

1. Choose random ri ∈ Z∗n.

2. Choose ji ∈ {0, . . . , L− 1}.

3. Compute ci = ED(n,W ji , ri).

4. Post ci on the bulletin board.

Counting phase

1. A computes c =

v∏
i=1

ci.

2. A computes DD(d, c) = m =
L−1∑
j=0

vjW
j .

3. Posts (v0, . . . , vL − 1) and c on the bulletin board.

Figure 7.2: A 1-out-of-L voting protocol with honest but curious voters and authorities.
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Proof. We need to take a closer look at the decryption process:

c =
v∏
i=1

ci

=
v∏
i=1

ED(n,W ji , ri)

=
v∏
i=1

(
(n+ 1)W

ji rn
s

i mod ns+1
)

= (n+ 1)

∑v
i=1W

ji mod n
(

v∏
i=1

ri mod ns

)ns+1

= (n+ 1)

∑v
i=1W

ji

rn
s+1
,

where the last two equations follows from the homomorphic property of DJNs and the
fact that

s ≥ L lognW ⇔ ns ≥WL

When decrypted we get:

DD(d, c) =

v∑
i=1

W ji = m.

Since m < WL, it can be represented uniquely in (W )-adic notation as

m =
L−1∑
j=0

vjW
j ,

where each vj is an integer with vj < W . So each number vj represent the totalt votes
on candidate j.

7.2.3 K-out-of-L-election

We will continue with a voting protocol were there are L possible candidates to vote for,
and each voter can select up to K of the candidates. It is very similar to the 1-out-of-L
and is based on the same assumption about honest but curious entities. We will include
K − 1 dummy candidates which will get possible votes which are not placed on a real
candidate, for example if a voter only wishes to vote for 1 candidate instead of all the
possible K candidates. The electronic voting protocol is described in Figure 7.3. Notice
that vi =

∑K
k=1W

jik =
∑K

k=1W
jik mod ns.
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Voting protocol: K-out-of-L-election in the semi-honest model

Set-up Let W be the strict upper bound of voters, let L be the number of candidates
and let K be the number of candidates each voter can vote for. We will add K − 1

dummy candidates to collect votes which are not placed on a real candidate. A vote
for candidate number j ∈ {0, . . . , . . . , L+K−2} is represented by the number W j .
The total votes for candidates (0, . . . , L+K−2) will be denoted by (v0, . . . , vL+K−2)

respectively. The authorities will be represented by A. Use the encryptions scheme
DJNs, with ED and DD as described by Figure 6.1, with s ≥ (L+K − 2) lognW .

1. A chooses admissible n = pq.

2. A chooses d such that d mod n ∈ Z∗n and d = 0 mod λ(n).

Voting phase Each voter i casts the vote vi as follows:

1. Choose random ri ∈ Z∗n.

2. Choose (ji1 , ji2 , . . . , jiK ) from {0, . . . , L+K − 2}.

3. Compute vi =

K∑
k=1

W jik .

4. Compute ci = ED(n, vi, ri).

5. Post ci on the bulletin board.

Counting phase

1. A computes c =

v∏
i=1

ci.

2. A computes DD(d, c) = m =
L−1∑
j=0

vjW
j .

3. Posts (v0, . . . , vL − 1) and c on the bulletin board.

Figure 7.3: A K-out-of-L voting protocol with honest but curious voters and authorities.
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When we implement the system, the interface will probably be such that the voter do not
see the dummy candidates. Instead the values jik ∈ {L, . . . , L+K−2} will be chosen by
the system when the candidate do not wish to vote for any more candidates. It is also
possible to add only one dummy candidate which will take all the dummy votes.

Since this voting protocol is very similar to the 1-out-of-L voting protocol, we will only
show completeness of the protocol.

Proposition 7.3. The voting protocol of Figure 7.3 is complete.

Proof. From Section 7.2.2 we know that

c = (n+ 1)

∑v
i=1 vi rn

s+1
,

and when decrypted we get:

DD(d, c) =
v∑
i=1

vi =
v∑
i=1

K∑
k=1

W jik = m.

Since m < WL+K−1 (since each voter can only vote for each candidate once), it can ble
represented uniquely in (L+K − 2)-adic notation as

m =
L+K−2∑
j=0

vjW
j ,

where each vj is an integer with vj < W . So each number vj represent the totalt votes
on candidate j.

Adding dummy candidates is also a solution to one of the problems in Section 7.1, namely
the possibility to cast an empty vote (NOTA). We can just add one dummy candidate
which will then represent the empty vote. In the case of a K-out-of-L-election, we will
then first add the K − 1 dummy candidates and then one extra where all the NOTAs
will be placed.

If we want the voters to vote for exactly K candidates, this can simply be solved by just
removing the dummy candidates and not leaving that as an option. We could also add
only one dummy candidate for NOTAs, but this is to be decided by the criteria of the
election.
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Voting protocol: K-out-of-L-election in the semi-honest model (modified)

Set-up Let W be the strict upper bound of voters, let L be the number of candidates
and let K be the number of candidates each voter can vote for. We will add K − 1

dummy candidates to collect votes which are not placed on a real candidate. A
vote for candidate number j ∈ {0, . . . , L, . . . , L + K − 2} is represented by the
number W j . The total votes for candidates (0, . . . , L+K − 2) will be denoted by
(v0, . . . , vL+K−2) respectively. The authorities will be represented by A. Use the
encryptions scheme DJNs, with ED and DD as described by Figure 6.1 in Section
6.1, with s ≥ (L+K − 2) lognW .

1. A chooses admissible n = pq.

2. A chooses d such that d mod n ∈ Z∗n and d = 0 mod λ(n).

Voting phase Each voter i casts the votes jik as follows:

1. For k ∈ {1, . . . ,K}:
(a) Choose random rik ∈ Z∗n.

(b) Choose jik from {0, . . . , L+K − 2}.

(c) Compute cik = ED(n,W jik , rik).

2. Post ci1 , . . . , ciK on the bulletin board.

Counting phase

1. A computes c =
v∏
i=1

K∏
k=1

cik .

2. A computes DD(d, c) = m =
L−1∑
j=0

vjW
j .

3. Posts (v0, . . . , vL − 1) and c on the bulletin board.

Figure 7.4: A K-out-of-L voting protocol with honest but curious voters and authorities,
modified version.
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When we now continue this chapter, we will need to make a modification in the voting
protocol of Figure 7.3. We will start to add cheating and malicious behavior, and suggest
ways to solve these issues. To do this we will use zero-knowledge proofs which will
be described in the next section. In this K-out-of-L voting protocol we will need one
encryption for each of the votes each voter cast. This adjusted voting protocol is described
in Figure 7.4. Note that even though there is a small change in the voting phase and
counting phase, the correctness and security discussions we made above are exactly the
same for the modified protocol. For the rest of this thesis, when talking about the
K-out-of-L voting protocol in the semi-honest model, we are referring to this modified
protocol.

7.3 Zero-Knowledge

So far we have made the assumption that both the voters and the authorities are honest
but curious. In real life this is not necessarily true, so to build an electronic voting system
that has any possible usage in real life, we have to take dishonesty into account.

When the electronic voting system is based on homomorphic encryption, as in our case,
there is an extensive use of proofs of knowledge. Each voter has to prove that her
ciphertext actually is the encryption of a vote for one of the possible candidates. And
the authorities have to prove that they have followed the protocol properly. Suppose this
was not the case and that a dishonest voter voted the number 10 in our yes/no voting
scheme. It is easy to see that this would interrupt the whole voting process and in the
end yield a false result. So proofs of knowledge is helping to make the system fulfill the
robustness requirement.

An interactive proof protocol is a form of conversation between a prover, P , and a
verifier, V , where they exchange multiple messages. P claim knowledge of a secret, and
P ’s objective is to convince V about the truth of this claim. V either accepts or rejects
the proof. An interactive proof is said to be a proof of knowledge if it has the following
two properties [23]:

Definition 7.4. Completeness: If P is honest (i.e. the claim is true), then the hon-
est V (that is, one following the protocol properly) should accept the proof with
probability one 1.

1The definition in [23] uses the word overwhelming probability, and states: “(i.e. the verifier accepts
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Definition 7.5. Soundness: If P is cheating (i.e.the claim is false) then the honest
V should only have a negligible probability of actually accepting the proof. If the
honest V accepts the proof by the cheating P with non-negligible probability, then
there exists a polynomial-time algorithm A which can extract P ’s secret or some
equivalent with probability one 1 (which then again means that P knows the secret
and is not cheating).

It is easy to prove knowledge of a secret by revealing the secret to the verifier. But to fulfill
our privacy requirements in our electronic voting systems, we need the individual votes
to remain secret. To solve this problem we need a zero-knowledge proof protocol. Zero-
knowledge, denoted ZK, means that the verifier does not learn anything as a result of the
proving process, except the validity of the claim. So a zero-knowledge proof protocol has
an additional property to the two properties above, namely the zero-knowledge property:

Definition 7.6. Zero-knowledge, ZK: If P is honest (i.e. the claim is true), no
possibly cheating V learns anything other than this fact.

To show that an interactive proof protocol has ZK, one can show that there exists a
polynomial-time simulator S which can simulate the whole transcript given only the claim
to be proved, and no access to P , and that this transcript has the exact same probability
distribution as actual transcripts between P and V . From Section ?? we know that this
is the same as saying that real and simulated transcripts are indistinguishable [23]. We
will in the rest of this chapter let S be a polynomial-time simulator.

It is important to mention that ZK does not guarantee that a protocol is secure. Similarly,
soundness does not guarantee the security either. Neither property has much value unless
the underlying problem faced by an adversary is computationally hard.

Ordinary ZK protocols are often unpractical for various reasons. As an example it can be
very difficult to show ordinary soundness. But this discussion on ordinary ZK protocols
is out of scope for this thesis. It is however possible to make some restrictions, which
will lead us to a special type of protocols, namely the Σ-protocols.

the prover’s claim). The definition of overwhelming depends on the application, but generally implies
that the probability of failure is not of practical significance.” Other literature states that the probability
should be one, and for simplicity and without loss of significance we will use the word one here.



7.3. Zero-Knowledge 95

7.3.1 Σ-protocols

First we have to define what we want to prove. We will use the following problem as an
example: Suppose P claims that c is the encryption of m, but V is skeptical. P then
wants to prove that c is the encryption of m given by c = (n+1)mrn

s
mod ns+1, without

revealing r.

In a Σ-protocol there is first some common input x for P and V , usually an instance
of some computational problem. In our case this is c, n and s. P has some secret
information, the private input, called a witness w for x. In our case, if P actually
knows the secret, w = r. P now wants to prove her claim, which is a binary relation R
between x and w, without revealing w. In our case this is proving the binary relation
c = (n + 1)mrn

s , without revealing r. P and V will now continue with the following
three-moves conversation:

1. P → V : commitment a.

2. V → P : challenge, a random t-bit number e.

3. P → V : response z.

In the end V decides to accept or reject the claim based on x and the conversation
(a, e, z). We will define Σ-protocols below, but first we will look at some properties.

We will start by assuming that V is honest. There is then two restrictions we can make
to the zero-knowledge property, which gives us two new properties. The first one is called
honest-verifier zero-knowledge, denoted HVZK, and makes the restriction of the verifier
being honest. The second one is called special honest-verifier zero-knowledge, denoted
SHVZK, and is related to the Σ-protocols.

Definition 7.7. Honest-verifier zero-knowledge, HVZK: There exists S which on
input x generates a conversation (a, e, z) which has same probability distribution
as the real conversations between honest P and honest V on input x [6].

Definition 7.8. Special honest-verifier zero-knowledge, SHVZK : There exists
S which on input x and e outputs an accepting conversation of the form (a, e, z).
This conversation must have the same probability distribution as conversations
between honest P and honest V on input x, and where V ’s challenge is e. [6].

Note that ordinary ZK only gets the claim as input and has no other interaction with
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the P . Σ-protocols are not ZK, only SHVZK as we will se below.

We can also make a restriction on the soundness property, which gives us a property
called special soundness. Also this is related to Σ-protocols.

Definition 7.9. Special soundness: From any x and any pair of accepting conver-
sation (a, e, z) and (a, ẽ, z̃), where e 6= ẽ, computing w is feasible.

We will now define the Σ-protocol.

Definition 7.10. A Σ-protocol is a protocol of the same three-moves form as above,
and which has the three properties completeness, special soundness and SHVZK.

Theorem 7.11. A Σ-protocol with challenge length t, is a proof of knowledge with knowl-
edge error 2−t.

Proof. The proof is out of scope in this thesis, but we refer the interested reader to
[6].

7.3.2 The Fiat-Shamir Heuristic

But why do we need Σ-protocols as they are not ZK 2? The answer is to be find in Fiat
and Shamir’s seminal article “How To Prove Yourself: Practical Solutions to Identification
and Signature Problems” from 1986 (published in 1987) [11]. In this article they show
that the verifier’s part can be replaced by a random function, and thus the scheme can
be made non-interactive. This is often called the Fiat-Shamir heuristic.

So assume that we have access to a random oracle which initially chooses a random
function H with the following parameters:

H : {0, 1}l → {0, 1}t,

where l is the length of the binary representation of a, and t is the length of the binary
representation of the challenge. We can then outline the idea as follows [6]:

2There are also other answers to this question. One of these is transforming Σ-protocols into a proper
ZK-protocol using commitment schemes. We will not go into this here, but refer the interested reader
to [19]
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1. P → random orcale: a (an l-bit number).

2. random oracle → P : e = H(a) (a t-bit number).

3. P : computes z and then outputs (a, z).

Any verifier can now call the oracle with a as input to get e and then check the answer
z as above.

One important requirement for being able to use Fiat-Shamir heuristic, is that the Σ-
protocol has to be public coin, as opposed to private coin. The constructions of public
coin protocols was introduced in 1985 by Babai in an proving game called Arthur-Merlin
game (Arthur is a king, and Merlin is a supernatural intellectual in whom the king do
not trust, so Merlin has to convince him) [2]. The term “public” refers to a specific coin
tossing situation, which is the equivalence of choosing the random challenges in our Σ-
protocol. Babai made a proving system where this coin tossing was public, as opposed
to the private coin protocols defined the same year by Goldwasser, Micali and Rachopp
[17], were the coin tossing can be done in private. The Σ-protocol is public coin as the
random challenge is public and do not depend on the commitment a.

As we have discussed in Section 3.6, the random functions we need does not exist. But
we can move to the random oracle model where we assume that hash functions are
random oracles, as we know from Section 4.4.1. In the original paper from Fiat and
Shamir, they did not include a proof of security. But in 1996, David Pointcheval and
Jacques Stern proved the Fiat-Shamir heuristic is secure against ciphertext-only attacks
and chosen-plaintext attacks in this random oracle model. We will not go into the details
of this proof here, but refer the interested reader to [25].

So we are now in the random oracle model, and have a hash function which we assume is
a random oracle H as described above. We can than turn a Σ-protocol into the following
one-move proof:

1. P : computes (a,H(a), z) and outputs (a, z).

Any verifier can now calculate H(a) and then check z as above3.

3In practice we also include all the public values as inputs to the hash function. When this is done,
we prevent that the same proof can be reused in another setting. We will include the public values in
the sections to come.
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In [6], Damgård states that the above proof is a ZK-proof. The reason behind this is
that the random oracle can be view as a honest verifier. We will briefly look into the
discussion he makes, and refer the interested reader to [6] for details:

• Completeness: Follows from the discussion above (the random oracle just replaces
V ’s part in the protocol, and after, any verifier can then call the oracle to compute
H(a) and check z).

• Soundness: P has no information about e before he has sent a. So the only dif-
ference here is that P is free to call the oracle as many times as she wants in the
hope of getting some challenge she can answer. But if the number of challenges are
exponentially large, this is not a feasible strategy (as P is ppt bounded).

• ZK: The random oracle forces V to be honest, because the e’s are always randomly
and independent chosen. So it is enough to show that the proof is HVZK, and by
this Σ-protocols are automatically ZK in the random oracle model. More formally,
we define ZK in this model by the following: we allow S to decide what the oracle
response should be as long as they have the same distribution as in real life. So
then one can just choose e at random and run S to get (a, e, z), and define the
oracle’s response on input a to be z, and output a, z.

The definition of ZK as above, is also referred to as non-interactive ZK, abbreviated
NIZK.

In the following, we will denote the proofs described above by non-interactive ZK proofs,
abbreviated NIZK proofs. We are now ready to look at the actual Σ-protocols and
NIZK-proofs we will use in the electronic voting protocols.

7.4 Σ-protocols and NIZK Proofs

We will now look at five actual Σ-protocols and their corresponding NIZK-proofs. The
first protocol will be used to prove the example in Section 7.3.1, the second protocol
will be used to prove a vote in the yes/no voting protocol and the third will be used
to prove votes in the 1-out-of-L and K-out-of-L voting protocols. The fourth protocol
will be used in the K-out-of-L voting protocol to prove that the votes from a voter
are pairwise distinct, and the last protocol will be related to the threshold decryption
protocol in Section 7.6. We will first define a Σ-protocol and then its corresponding
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NIZK-proof. We will then prove the Σ-protocol and from the previous section we know
that the NIZK-proof follows directly in the random oracle model.

All the Σ-protocols and NIZK-proofs will have a security parameter t, which will be
the lengt of the challenge, where 2t will be less than the smallest of p, q. When we are
invoking the encryption algorithm ED, we will omit the value n in the input. This is
done to enhance the readability, and we assume ED is invoked also on n.

7.4.1 Encryption of 0

Suppose P wants to prove that a ciphertext c is the encryption of a message m without
revealing some secret information. That is, P wants to prove the knowledge of r̃ in
c = (n + 1)mr̃n

s without revealing the actual value. This is the same as proving that
x = c(n+ 1)−m mod ns+1 is an encryption of 0, or equivalently that it is an ns’th power.
The witness for this relation will be w = r̃.The Σ-protocol is described in Figure 7.5 and
the corresponding NIZK-proof in Figure 7.6.

In the verifying phase, V has to check that x, a, z are all relatively prime to n. If this is
not the case, then eiter one or more of them is 0, or non of them is 0 but one or more
of them is a multiplum of p or q . In the former case, if as an example a is 0, then r is
necessarily 0 and hence z is 0. Then ED(0, z) ≡ axe (mod ns+1) = 0 and it is possible
for P to get an accepting conversation without knowing w. in the latter case, somebody
has to know the factoring of n, as finding numbers not relatively prime to n simply by
guessing is only possible with negligible probability. And this somebody might be trying
to trick the conversation. In both cases, the relatively prime requirement is to ensure
that all the values are in the groups they need to be. If not, it might be possible to make
an accepting proof without knowing w. This discussion goes for all the Σ-protocols in
this section, and will not be repeated for each protocol.

Proposition 7.12. The protocol of Figure 7.5 is a Σ-protocol.

Proof. Completeness: We have to show that if P knows the secret then the honest V
will accept, that is, the equation in the verifying fase must hold.

ED(0, z) ≡ ED(0, rwe) ≡ ED(0, r)ED(0, w)e ≡ axe (mod ns+1).

Special soundness: Suppose (a, e, z) and (a, ẽ, z̃) are two accepting conversations with
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e 6= ẽ. We then get:

ED(0, z) ≡ axe (mod ns+1) ∧ ED(0, z̃) ≡ axẽ (mod ns+1)

⇒ ED(0,
z

z̃
mod n) = xe−ẽ mod ns+1.

By the assumption on 2t we know that gcd((e− ẽ), n) = 1 and so there exist α, β
such that αns + β(e − ẽ) = 1 and which can be calculated in polynomial time.
Now, let x̃ = x mod n and w̃ = x̃α

(
z
z̃

)β
mod n. We now want to show that w̃ is

P ’s secret, that is, w = w̃. First we will notice that:

ED(0, x̃) = ED(0, x mod n) = xn
s
.

We then get:

ED(0, w̃) = ED
(

0, x̃α
(z
z̃

)β)
= ED(0, x̃)αED

(
0,
z

z̃

)β
= xαn

s
xβ(e−ẽ) = x mod ns+1.

So we see that x = ED(0, w̃) and so w̃ = w.

SHVZK: The input for the simulator S is x ∈ Z∗ns+1 , n, s and a challenge e. We can
then choose a random z ∈ Z∗n and then let

a = ED(0, z)x−e mod ns+1,

to get an accepting conversation (a, e, z). This has the same probability distribu-
tion as conversations between P and V . This is so because in a real conversation
P chooses uniformly at random r and computes a and z. In the simulated conver-
sation, S chooses uniformly at random z and computes a. We have only switched
the random variable from r to z, and since they both are chosen from the same
group (modulo n and relatively prime to n) the probability distributions of real
and simulated conversations are the same.

7.4.2 1-out-of-2 Is the Encryption of 0

Suppose there is a yes/no-election and a voter wants to prove that she voted for one
of the two candidates without revealing which candidate it was. That is, P wants to
prove that a ciphertext c is the encryption of either m1 or m2. If this is true, then either
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Σ-protocol: Encryption of 0

Common input: x ∈ Z∗ns+1 , n and s.

Private input for P : w ∈ Z∗n such that x = ED(0, w).

1. P → V : P chooses random r ∈ Z∗n and sends a = ED(0, r) to V .

2. V → P : V chooses at random a t-bit number e and sends it to P .

3. P → V : P sends z = rwe mod n to V .

Verifing phase : V checks that x, a, z are relatively prime to n and accepts if and only
if ED(0, z) ≡ axe (mod ns+1).

Figure 7.5: Σ-protocol for x being the encryption of 0.

NIZK: Encryption of 0

1. P : computes (a,H(a, x1, n, s), z) and outputs (a, z).

Any verifier can now calculate H(a, x1, n, s) and check z as above.

Figure 7.6: The NIZK-proof of the encryption of 0.

x1 = c(n+1)−m1 or x2 = c(n+1)−m2 is the encryption of 0, as we know from the previous
section. What also follows from the previous section, from the proof of Theorem 7.14, is
that we have a simulator S which can simulate conversations with same probability as
real conversations. We can use S to simulate a conversation for the one of x1, x2 which
is not the encryption of 0. Without loss of generality we can assume that the prover
knows w for x1 = c(n+1)−m1 , such that x1 = ED(0, w). The simulator S then calculates
the second commitment as a2 = ED(0, z2)x

−e2
2 . The Σ-protocol is described in Figure

7.7 and the corresponding NIZK-proof in Figure 7.8. Step 3.1. is important because if
e1 = ẽ, V would be able to find out for which of the relations P knows a witness.

Proposition 7.13. The protocol of Figure 7.7 is a Σ-protocol.

Proof. Completeness: We have to show that if P knows the secret then the honest V
will accept, that is, the equation in the verifying fase must hold.

1. It is obvious that ẽ = e1 + e2 mod 2t.

2. ED(0, z1) ≡ ED(0, r1w
e1) ≡ ED(0, r1)ED(0, w)e1 ≡ a1xe11 (mod ns+1).
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3. As stated in the beginning of this section, a2 = ED(0, z2)x
−e2
2 and this is

equivalent to ED(0, z2) ≡ a2xe22 .

Special soundness: Suppose (a1, a2, e1, e2, z1, z2) and (a1, a2, ẽ1, ẽ2, z̃1, z̃2) are two ac-
cepting conversations with either e1 6= ẽ1 or e2 6= ẽ2. To extract witness we follow
the lines of the special soundness proof in the previous section. We then get:

ED(0, z1) ≡ a1xe11 (mod ns+1) ∧ ED(0, z̃1) ≡ a1xẽ11 (mod ns+1)

⇒ ED(0,
z1
z̃1

mod n) = xe1−ẽ11 mod ns+1.

By the assumption on 2t we know that gcd((e1 − ẽ1), n) = 1 and so we can find
α, β in polynomial time such that αns + β(e1 − ẽ1) = 1. Now, let x̃1 = x1 mod n

and w̃ = x̃1
α
(
z1
z̃1

)β
mod n. We now want to show that w̃ is P ’s secret, that is,

w = w̃. First we will notice that:

ED(0, x̃1) = ED(0, x1 mod n) = xn
s

1 .

We then get:

ED(0, w̃) = ED

(
0, x̃1

α

(
z1
z̃1

)β)
= ED(0, x̃1)

αED
(

0,
z1
z̃1

)β
= xαn

s

1 x
β(e1−ẽ1)
1 = x1 mod ns+1.

So we see that x1 = ED(0, w̃) and so w̃ = w.

We know that ei − ẽi = 0 for one of i = 1∨ i = 2, so if the above did not extract a
witness, then we can extract a witness w′ for the relation

x2 = ED(0, w′),

in the exact same way as above.

SHVZK: We have already used S to simulate (x2, e2, z2), so this simulation is obvious.
For the simulation of a conversation on x1, we do exactly as in the previous section:
We invoke S by x1 ∈ Z∗ns+1 , n, s and a challenge e1 = ẽ − e2. The simulator can
then choose a random z1 ∈ Z∗n and let

a1 = ED(0, z1)x
−e1
1 mod ns+1,

to get an accepting conversation (a1, e1, z1). We unite these to get an accepting
conversation (a1, a2, e1, e2, z1, z2), and from the discussion in the previous section
we know that simulated conversations have the same probability distribution as
real conversations between P and V .
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Σ-protocol: 1-out-of-2

Common input: x1, x2 ∈ Z∗ns+1 , n and s.

Private input for P : w ∈ Z∗n such that x1 = ED(0, w).

1. P → V :

1.1. P chooses random r1 ∈ Z∗n.

1.2. P chooses random t-bit challenge e2.

1.3. P invokes S on input n, x2, e2 to get a conversation (a2, e2, z2).

1.4. P sends a1 = ED(0, r1) and a2 to V .

2. V → P : V chooses random t-bit number ẽ and sends it to P .

3. P → V :

3.1. P computes e1 = ẽ− e2 mod 2t.

3.2. P computes z1 = r1w
e1 mod n.

3.3. P sends e1, e2, z1, z2 to V .

Verifing phase : V checks that x1, x2, a1, a2, z1, z2 all are relatively prime to n and
that:

1. ẽ = e1 + e2 mod 2t

2. ED(0, z1) ≡ a1xe11 (mod ns+1)

3. ED(0, z2) ≡ a2xe22 (mod ns+1).

Figure 7.7: Σ-protocol for 1-out-of-2 is the encryption of 0.

NIZK: 1-out-of-2

1. P : computes (a1, a2,H(x1, x2, a1, a2, n, s), z1, z2) and outputs (a1, a2, z1, z2).

Any verifier can now calculate H(x1, x2, a1, a2, n, s) and check z1, z2 as above.

Figure 7.8: The NIZK-proof of 1-out-of-2 is the encryption of 0.
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7.4.3 1-out-of-L Is the Encryption of 0

We will now look at an election with L candidates where a voter wants to prove that
an encryption c is a vote for one of the candidates. We will follow the lines from the
previous subsection, and so P wants to prove that a ciphertext c is the encryption of one
of m1,m2, . . . ,mL (when we apply this to the voting protocols in the next sections, we
will let mj+1 = W j , where W is the strict upper bound of voters). From the previous
subsections we know that this is the same as showing that one of

x1 = c(n+ 1)−m1

x2 = c(n+ 1)−m2

...

xL = c(n+ 1)−mL

is an encryption of 0. Without loss of generality we can assume that P knows w for
x1 = c(n + 1)−m1 , such that x1 = ED(0, w). We will then let S simulate the L − 1

conversations for x2, . . . , xL, as we did for one conversation in the previous subsection.
The Σ-protocol is described in Figure 7.9 and the corresponding NIZK-proof in Figure
7.10.

Proposition 7.14. The protocol of Figure 7.9 is a Σ-protocol.

Proof. We will not prove this here, as the proof is almost identical to the proof of Theorem
7.13.
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Σ-protocol: 1-out-of-L

Common input: x1, . . . , xL ∈ Z∗ns+1 , n and s.

Private input for P : w ∈ Z∗n such that x1 = ED(0, w).

1. P → V :

(a) P chooses random r1 ∈ Z∗n.

(b) For each i ∈ {2, . . . , L}:
i. P chooses random t-bit challenges ei.

ii. P invokes S on input n, xi, ei to get a conversation (ai, ei, zi).

(c) P sends a1 = ED(0, r1), a2, . . . , aL to V .

2. V → P : V chooses random t-bit number ẽ and sends it to P .

3. P → V :

(a) P computes e1 = ẽ−
(∑L

i=2 ei

)
mod 2t.

(b) P computes z1 = r1w
e1 mod n.

(c) P sends e1, . . . , eL, z1, . . . , zL to V .

Verifing phase : V checks that x1, . . . , xL, a1, . . . , aL, z1, . . . zL all are relatively prime
to n and that:

1. ẽ =
(∑L

i=1 ei

)
mod 2t.

2. ED(0, zi) ≡ aixeii (mod ns+1) for each i ∈ {2, . . . , L}.

Figure 7.9: Σ-protocol for 1-out-of-L is the encryption of 0.

NIZK: 1-out-of-L

1. P : computes (a1, . . . , aL,H(x1, . . . , xL, a2, . . . , aL, n, s), z1, . . . , zL) and outputs
(a1, . . . , aL, z1, . . . , zL).

Any verifier can now calculate H(x1, . . . , xL, a2, . . . , aL, n, s) and check z1, . . . , zL as
above.

Figure 7.10: The NIZK-proof of 1-out-of-L is the encryption of 0.
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7.4.4 The relation ab = c mod ns between plaintexts

In a K-out-of-L-election we might want to ensure that no one has voted on the same
candidate several times. We will explain how we can solve this in Section ??, but to
do this we need to be able to prove in ZK that the product of two plaintext equals
another plaintext, that is, for plaintexts a, b, c ∈ Zns , ab = c mod ns. We will now study
a protocol which does exactly this. First we will make some comments on notation. To
not confuse the commitments with the a in ab = c, we will denote the commitments by
ã1 and ã2. We also have the following:

xa = ED(a, ra)

xab = ED(ab, rab) (rab is the random variable of the encryption of ab).

xba = ED(ab, rba) (normal exponentiation of xa in b).

xaxb = ED(a+ b, rarb) (normal multiplication of ciphertexts).

The Σ-protocol is described in Figure 7.11 and the corresponding NIZK-proof in Figure
7.12

Proposition 7.15. The protocol of Figure 7.11 is a Σ-protocol.

Proof. Completeness: We have to show that if P knows the secret then the honest
V will accept, that is, the equations in the verifying fase must hold. We start by
noticing that V knows the common input xa, xb, xz, the commitments ã1, ã2, the
challenge e and the responses z1, z2, z3. Hence she can compute

xeaã1 ∧ xz1b (ã2x
e
c)
−1 ∧ ED(z1, z2) ∧ ED(0, z3),

and check the equations of the verifying phase. We can then notice that the plain-
text part of

xz1b (ã2x
e
c)
−1 = xz1b (xdbx

e
c)
−1

equals:

z1b− (db+ ec) ≡ (ea+ d)b− (db+ ec) ≡ eab+ db− db− ec ≡ eab− ec (mod ns).

It is easy to see that this equals 0 iff ab ≡ c (mod ns).

Special soundness: Suppose (ã1, ã2, e, z1, z2, z3) and (ã1, ã2, ẽ, z̃1, z̃2, z̃3) are two ac-
cepting conversations with e 6= ẽ. We know that an encryption uniquely determine
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the plaintext, and since the conversations are accepting we get:

z1b− db− ec ≡ 0 ≡ z̃1b− db− ẽc (mod ns)

⇒(z1 − z̃1)b ≡ (e− ẽ)c (mod ns)

⇒(ea+ d− (ẽa+ d))b ≡ (e− ẽ)c (mod ns)

⇒(e− ẽ)ab ≡ (e− ẽ)c (mod ns).

Again, the restriction on 2t gives us gcd((e − ẽ), n) = 1, and hence (e − ẽ) is
invertible in Zns . We then get

ab = c mod ns.

SHVZK: The input for the simulator S is the common input and a challenge e. We
can then choose a random z1 ∈ Znsz2, z3 ∈ Z∗n and then let

ã1 = ED(z1, z2) (xea)
−1 .

ã2 = xz1b (xecED(0, z3))
−1 .

Since z1 ∈ Zns , z2, z3 ∈ Z∗n are chosen independently and uniformly at random from
their groups, they have the same probability distribution as d ∈ Zns , rd, rbd ∈ Z∗n
which are also chosen uniformly at random from the same groups respectively. So
as before we are only switching the variables of the conversation from d, rd, rbd to
z1, z2, z3. This leads to (ã1, ã2, e, z1, z2, z3) having the same probability distribution
as real conversations between P and V .
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Σ-protocol: ab = c mod ns

Common input: xa, xb, xc ∈ Z∗ns+1 , n and s.

Private input for P : The witnesses will be denoted by a, b, c ∈ Zns and ra, rb, rc ∈ Z∗n
such that ab = c mod ns and xa = ED(a, ra), xb = ED(b, rb) and xc = ED(c, rc).

1. P → V :

(a) P chooses random values d ∈ Zns , rd, rbd ∈ Z∗n.

(b) P computes ã1 = xd = ED(d, rd).

(c) P computes ã2 = xbd = ED(db, rdb).

(d) P sends the commitments ã1 and ã2 to V .

2. V → P : V chooses random t-bit number e and sends it to P .

3. P → V :

(a) P opens the encryption

xeaã1 = xeaxd = ED(ea+ d mod ns, reard mod n) = ED(z1, z2)

by sending z1, z2 to V .

(b) P opens the encryption

xz1b (ã2x
e
c)
−1 = xz1b (xdbx

e
c)
−1 = ED(0, rz1b (rdbr

e
c)
−1 mod n) = ED(0, z3)

by sending z3 to V .

Verifing phase : V checks that xd, xbd, z1, z2, z3 are all relatively prime to n and that:

1. ED(z1, z2) ≡ xeaã1 (mod ns+1).

2. ED(0, z3) ≡ xz1b (ã2x
e
c)
−1 (mod ns+1).

Figure 7.11: Σ-protocol for proving the relation ab = c mod ns between plaintexts.
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NIZK: ab = c mod ns

1. P : computes (a1, a2,H(xa, xb, xc, a1, a2, n, s), z1, z2, z3)

and outputs (a1, a2, z1, z2, z3).

Any verifier can now calculate H(xa, xb, xc, a1, a2, n, s) and check z1, z2, z3 as above.

Figure 7.12: The NIZK-proof of the relation ab = c mod ns between plaintexts.
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7.4.5 Equality of Discrete Logs

We want to prove the equality of two logs. That is, given

x1 = yu1 ∧ x2 = yu2 ,

we want to prove that

logy1(x1) = u = logy2(x2).

Our witness for this relation is

w = u.

We will use this proof in the threshold decryption protocol in Section 7.6. The Σ-protocol
is described in Figure 7.13 and the corresponding NIZK-proof in Figure 7.14. Since none
of P and V know ϕ(n), they can not calculate z = r + ew mod ñns in step 3 as they
should have when used in the threshold decryption protocol. To encounter this problem,
we let ew be small enough to not have any crucial impact on the size of z, by letting w
be at most (s+ 1)k bits, while r is (s+ 2)k + t bits.

Proposition 7.16. The protocol of Figure 7.13 is a Σ-protocol.

Proof. Completeness: We have to show that if P knows the secret then the honest V
will accept, that is, the equations in the verifying fase must hold. For i ∈ {1, 2}:

yzi ≡ yr+ewi ≡ yri (ywi )e ≡ aixei (mod ns+1).

Special soundness: Suppose (a1, a2, e, z) and (a1, a2, ẽ, z̃) are two accepting conversa-
tions with e 6= ẽ. We then get for i ∈ {1, 2}:

yzi ≡ axei (mod ns+1) ∧ yz̃i ≡ axẽi (mod ns+1)

⇒ yz−z̃i ≡ xe−ẽi (mod ns+1)

⇒ logyi(xi) ≡
z − z̃
e− ẽ

The multiplicative inverse of e− ẽ exists because of the restriction of 2t which leads
to gcd(e, n) = 1, and since they both are of same size, and the group order is
pqns/4 (as will be expalained in Section 7.6).
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SHVZK: The input for the simulator S is x1, x2, y1, y2 ∈ Qns+1 , n, s and a challenge e.
We can now produce a valid conversation by selecting random integer z of same size

as r, and for i ∈ {1, 2} compute ai =
yzi
xei

. We then get the conversation (a1, a2, e, z)

which has the same probability distribution as conversations between P and V .
This is so because in a real conversation P chooses uniformly at random r and
computes a and z. In the simulated conversation, S chooses uniformly at random
z and computes a. We have only switched the random variable from r to z, and
since they both have the same probability distribution (uniformly at random and of
same bit size), the probability distributions of real and the simulated conversations
are the same.

Σ-protocol: Equality of discrete logs

Common input: x1, x2, y1, y2 ∈ Qns+1 and n, s (Qns+1 is defined in Section 7.6).

Private input for P : w such that w = logy1(x1) = logy2(x2). The length of w is at
most (s+ 1)k, where k is the length of n.

Proving phase:

1. P → V :

1.1. P chooses a random number r of length (s + 2)k + t bits where t is the
security parameter.

1.2. P computes ai = yri mod ns+1 for i ∈ {1, 2} and sends (a1, a2) to V .

2. V → P : V chooses at random a t-bit number e and sends it to P .

3. P → V : P computes z = r + ew and sends z to V .

Verifing phase: V checks that yzi ≡ axei (mod ns+1) for i ∈ {1, 2}.

Figure 7.13: Σ-protocol for equality of discrete logs.
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NIZK: Equality of discrete logs

1. P : computes ((a1, a2),H(a1, a2, x1, x2, y1, y2, n, s), z) and outputs ((a1, a2), z).

Any verifier can now calculate H(a1, a2, x1, x2, y1, y2, n, s) and check z as above.

Figure 7.14: The NIZK-proof of equality of discrete logs
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7.5 Cheating Voters and Honest but Curious Authorities

We will now implement some of the NIZK-proofs to our voting protocols. The assumption
is as follows:

Assumption 4: The voters are possibly cheating and the authorities are honest but cu-
rious.

Since there might be cheating voters, we want to force them to follow the protocol. This
can be done by including NIZK proofs to each vote, to assure that each vote casted is
a proper vote. When voter i calls for the hash-function, she also include a user identity
id(Wi) in the input. This is done in order to prevent vote duplication. How to create and
store these user identities, and how they are connected to the unreusability requirement
defined in Section 7.1, is out of scope for this thesis. We will just assume that each user
has a unique user identity id(Wi) which is known both for the user herself and for the
authorities in the counting phase.

We will now discuss how to implement the NIZK-proofs to our voting protocols, and
in Section 7.7 we will discuss the security of them. For the yes/no-election we will
write the protocol properly. For the other two voting protocols we will use the notation
ProofWi

(statement), where the term statement denotes what the voter wants to prove,
and ProofWi

(statement) denotes the output when the voter has created the stated NIZK-
proof.

7.5.1 Yes/no-election

Again, this is our most basic protocol. In this protocol we will simply add the “1-out-of-2
is the encryption of 0” NIZK-proof described by Figure 7.8 in Section 7.4.2, to each vote
casted. This will ensure that the ciphertext is either an encryption of 0 or of 1. The
protocol is described in Figure 7.15.

It is easy to see that c =

v∏
i=1

ci for all valid votes mi.
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Voting protocol: Yes/no-election with cheating voter and semi-honest
authority

Set-up Let W be the strict upper bound of voters, and let L = 2. A vote by voter Wi

for “no” is represented by mi = 0 and a vote for “yes” is represented by mi = 1.
The authorities will be represented by A. Use the encryptions scheme DJNs, with
ED and DD as described by Figure 6.1 in Section 6.1.

1. A chooses admissible n = pq.

2. A chooses d such that d mod n ∈ Z∗n and d = 0 mod λ(n).

Voting phase Each Wi casts a vote mi of 0 or 1 as follows:

1. Choose random ri ∈ Z∗n.

2. Choose mi = 0 or mi = 1.

3. Compute ci = ED(n,mi, ri).

4. Compute
(
a1, a2,H

(
x1, x2, a1, a2, n, s, id(Wi)

)
, z1, z2

)
based on the “1-out-

of-2 is the encryption of 0” NIZK-proof from Figure 7.8 in Section 7.4.2, with
x1 = ci, x2 = ci(n+ 1)−1 and w = ri .

5. Post ci and (a1, a2, z1, z2) on the bulletin board.

Counting phase

1. For each 1 ≤ i < W A do:

1.1. If ci 6= ∅ then continue, else stop and set i = i+ 1.

1.2. Compute H
(
x1, x2, a1, a2, n, s, id(Wi)

)
.

1.3. Verify z1, z2 according to the “1-out-of-2 is the encryption of 0” NIZK-
proof. If true then continue, else stop and set i = i+ 1.

1.4. Compute c = cci.
Output: c.

2. A computes m =

v∑
i=1

mi = DD(d, c).

3. A posts the voting result m and the ciphertext c on the bulletin board.

Figure 7.15: A yes/no voting protocol for cheating voters and honest but curious author-
ities.
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7.5.2 1-out-of-L-election

This voting protocol is very similar to the previous, except that we will use the “1-out-
of-L is the encryption of 0” NIZK-proof described by Figure 7.10 in Section 7.4.3. The
protocol is described in Figure 7.16.
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Voting protocol: 1-out-of-L-election with cheating voter and semi-honest
authority

Set-up LetW be the strict upper bound of voters, and let L be the number of candidates.
A vote for candidate number j ∈ {0, . . . , L− 1} is represented by the number W j .
The total votes for candidates (0, . . . , L − 1) will be denoted by (v0, . . . , vL−1)

respectively. The authorities will be represented by A. Use the encryptions scheme
DJNs, with ED andDD as described by Figure 6.1 in Section 6.1, with s ≥ L lognW .

1. A chooses admissible n = pq.

2. A chooses d such that d mod n ∈ Z∗n and d = 0 mod λ(n).

Voting phase Each voter i casts a vote ji as follows:

1. Choose random ri ∈ Z∗n.

2. Choose ji ∈ {0, . . . , L− 1}.

3. Compute ci = ED(n,W ji , ri).

4. Use “1-out-of-L is the encryption of 0” NIZK-proof from Figure 7.10, Section
7.4.3, to create

ProofWi

((
ci(n+ 1)−W

0 ∨ · · · ∨ ci(n+ 1)−W
L−1)

is an encryption of 0

)
.

Post ci and ProofWi
on the bulletin board.

Counting phase

1. For each 1 ≤ i < W A checks ci and ProofWi
and if approved then i is added

to the set I.

2. A computes c =
∏
i∈I

ci where I is the set of approved votes.

3. A computes DD(d, c) = m =
L−1∑
j=0

vjW
j .

4. A posts (v0, . . . , vL − 1) and c on the bulletin board.

Figure 7.16: A 1-out-of-L voting protocol for cheating voters and honest but curious
authorities.
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7.5.3 K-out-of-L-election

This voting protocol is very similar to the previous one, except that each voter can vote
for several candidates. But for each of the candidates she votes for, she computes the
encryption cik = ED(n,W jik , rik). By including the “1-out-of-L is the encryption of 0”
NIZK-proof described by Figure 7.10 in Section 7.4.3 to each vote, we are assured that
each of this encryptions is a proper vote.

In addition to prove that each vote is a proper one, each voter also has to prove that she
did not vote for the same candidate several times. This can be solved by noticing the
following:

1. If all the votes are different, then W jik −W jit 6= 0 for each pair of votes jik 6= jit .

2. If so, then
(
W jik −W jit

) (
W jik −W jit

)−1
= 1.

3. So we have two plaintexts which multiplied equals one, and we can use the NIZK-
proof of the relation ab = c mod ns between plaintexts from Section 7.4.4 to prove
it.

Now let cik , cit be the corresponding encryptions of W jik 6= W jit . Each voter can then
do as follows with every pair of their votes:

1. Compute (cik)(cit)
−1 which is an encryption of

(
W jik −W jit

)
.

2. Compute ED
(
n,
(
W jik −W jit

)−1) and ED(n, 1).

3. Use the NIZK-proof of the relation ab = c mod ns between plaintexts, described
by Figure 7.12 in Section 7.4.4, to prove that the plaintext of (cik)(cit)

−1 and
ED(n,

(
W jik −W jit

)−1
) multiplies to the plaintext of ED(n, 1). The input for the

NIZK-proof will be

Common input:

• xa = (cik)(cit)
−1.

• xb = ED
(
n,
(
W jik −W jit

)−1).
• xc = ED(n, 1).

Private input:

• a = W jik −W jit .

• b =
(
W jik −W jit

)−1.
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• c = 1.

• ra, rb, rc are the corresponding random variables.

There is a slight difference between the ordinary ab = c mod ns NIZK-proof, and what we
need exactly. The ordinary proof just shows the relation, but we want to be assured that
the plaintext of exactly (cik)(cit)

−1, multiplied by something known for the prover, equals
exactly one, not just an unknown plaintext. Anyone can compute (cik)(cit)

−1, so this is
easily taken care of. But for them to equal exactly one, we need to add something more.
One idea could be to compute a reference value ED(n, 1) in the set-up phase. But then
the random variable of this encryption would have to be public (as the prover needs this
value in the NIZK-proof). And this compromise this random variable being a private
input for the prover. Another way to solve this is to let the prover choose a random
variable and compute ED(n, 1). She can then create a NIZK-proof of the encryption of 0

described by Figure 7.6 in Section 7.6, to prove that ED(n, 1)(n+ 1)−1 is the encryption
of 0 and hence ED(n, 1) is the encryption of 1.

The voting protocol is described in Figure 7.17-7.18. Notice that the decision of which
of the votes that are accepted depends on the requirements of the election. One case is
that all the votes from one voter has to be accepted or else non of them will be accepted.
Another case can be that each vote is accepted independently from wether other votes
are accepted or not.
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Voting protocol: K-out-of-L-election with cheating voter and semi-honest
authority

Set-up Let W be the strict upper bound of voters, let L be the number of candidates
and let K be the number of candidates each voter can vote for. We will add K − 1

dummy candidates to collect votes which are not placed on a real candidate. A
vote for candidate number j ∈ {0, . . . , L, . . . , L + K − 2} is represented by the
number W j . The total votes for candidates (0, . . . , L+K − 2) will be denoted by
(v0, . . . , vL+K−2) respectively. The authorities will be represented by A. Use the
encryptions scheme DJNs, with ED and DD as described by Figure 6.1 in Section
6.1, with s ≥ (L+K − 2) lognW .

1. A chooses admissible n = pq.

2. A chooses d such that d mod n ∈ Z∗n and d = 0 mod λ(n).

Voting phase Each voter i casts the votes jik as follows:

1. For k ∈ {1, . . . ,K}:
(a) Choose random rik ∈ Z∗n.

(b) Choose jik from {0, . . . , L+K − 2}.

(c) Compute cik = ED(n,W jik , rik).

(d) Use “1-out-of-L is the encryption of 0” NIZK-proof from Figure 7.10 in
Section 7.4.3, to create

ProofWi,k

((
cik(n+1)−W

0∨· · ·∨cik(n+1)−W
L+K−2)

is an encryption of 0
)
.

2. For each (K − 1)! pair of votes jik 6= jit , k, t ∈ {1, . . . ,K}, use “the relation
ab = c mod ns between plaintexts” NIZK-proof from Figure 7.12 in Section
7.4.4, to create

ProofWi,kt

(
ab = c where a, b, c is defined above

)
,

and “the encryption of 0” NIZK-proof from Figure 7.6 in Section 7.6, to create

ProofWi,1

(
ED(n, 1)(n+ 1)−1 is an encryption of 0

)
.

3. Post cik ,ProofWi,k,ProofWi,kt,ProofWi,1 for 1 ≤ k, t ≤ K on the bulletin board.

Figure 7.17: A K-out-of-L voting protocol for cheating voters and honest but curious
authorities (part 1 of 2).



120 Chapter 7. An application to electronic voting

Counting phase

1. For each 1 ≤ i < W A checks cik and the proofs, and validates them. If cik is
an accepted vote, then ik is added to the set I.

2. A computes c =
K∏
ik∈I

cik .

3. A computes DD(d, c) = m =
L−1∑
j=0

vjW
j .

4. Posts (v0, . . . , vL − 1) and c on the bulletin board.

Figure 7.18: A K-out-of-L voting protocol for cheating voters and honest but curious
authorities (part 2 of 2).
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7.6 Threshold decryption

In many real-life situations we might not believe that any given person can be trusted,
and we will now look at what might happen if the authorities are cheating. We have
trusted them to respect the privacy of voters, and we have trusted them to make a correct
decryption of the voting result. But surely malicious behavior amongst the authorities
can occur. When it does, it may have great impact on the election.

One way to solve this is by simply adding the NIZK-proof from Figure 7.6 in Section
(encryption of 0) . This can be done because knowing the ciphertext c, the message m
and the private key d, it is possible to extract the random variable r, as is done in [7].
This r can serve as a witness w for the relation c(n+ 1)−m as usual.

But this will not solve our entire problem, at least not the privacy issues. We will therefor
look at another way of solving these trust issues. Because, even though we might not
believe that any given person can be trusted, even not a big fraction of all people,
it is yet reasonable to assume that the majority of people are trustworthy. Similarly,
we may doubt that a given server can be trusted, but we hope that the majority of
servers are working properly. Based on this assumption, we can solve the problem by
distributing trust amongst several entities (authorities). One method to do this is called
threshold decryption, and in very simplified terms it can be explained as follows: We
give each authority a share of the private key (set-up phase). They each authority
raise the ciphertext to their share of the decryption key to get their ciphertext share
(share decryption) and in the end the ciphertext shares are combined using Lagrange
interpolation (share combining). See Figure 7.19 to see a very simplified model. We
will also use the NIZK-proof from Section 7.4.5 (equality of discrete logs) to force the
authorities to follow the threshold decryption protocol.

As always we have to define which model we are working in. Our model in this section
is the standard modell together with the the following assumption:

Assumption 5: The dealer (as defined below) and a minimum of H out of A authorities
are honest.

To use the NIZK-proofs we need the random oracle model, but when needed this will be
stated.

So let us begin. We need a way to share a secret, in this case the private key, amongst
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Figure 7.19: A model of a very simplified threshold cryptosystem.
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all the A authorities in such a way that it can be reconstructed if at least H of the
authorities are honest. To do this we can use Shamir’s (H,A)-threshold scheme which
he introduced in his two-page article “How to Share a Secret” in 1979 [29]. The scheme
is based on the following well-known fact: Two points in the plain define a line, three
points define a parabola, and generally, a polynomial of degree deg will be defined by
deg + 1 number of points. To get an idea of how this concept works, we will give an
example of a (2, 4)-threshold scheme, which means that at least 2 of the 4 authorities
are honest. The polynomial will then be a straight line, that is, a polynomial of degree
1. The secret to be shared amongst the authorities is the value d.

We will need an algebraic field to make these arguments, because we need multiplicative
inverses. Since we have not discussed fields in this thesis we will just state that a field is a
set which forms an abelian group under addition, and where all the nonzero elements form
an abelian group under multiplication. For more on this subject, we refer to a textbook
of basic abstract algebra such as [12]. Two examples of fields are the real numbers R and
the finite set of integers Z∗p, where p is a prime as usual. To make the following example
very intuitive we will use R, and then move to Zp in the further discussion.

So, we have 4 authorities where at least 2 of them are honest, a secret d ∈ R and we want
to make a polynomial of degree 1 in the plane R2. We will now use a trusted instance,
called a dealer, which will have access to the secret d and distribute the shares. We then
do as follows:

1. The dealer draws a random line in R2 through the point (0, d) (see Figure 7.20a).

2. The dealer chooses four points on the line (xi, di), 1 ≤ i ≤ 4, and distribute one
point to each authority Ai (see Figure 7.20b).

3. Since each pair of points uniquely determine the line, each pair of honest authorities
will now be able to reconstruct the line. By computing the line in x = 0 they will
know the secret d.

4. Each authority Ai will alone not get any information about d: For each d̃ ∈ F ,
there is a line that goes through (xi, di) and (0, d̃) (see Figure 7.20c). Each of these
lines are equally likely to appear when guessing a line through (xi, di).

We will now look at the theorem, and the proof of it, which will be crucial for our
threshold decryption protocol [5]:

Theorem 7.17. Let F be a finite field and let D be a set of indices with |D| = H.
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x

y

(0, d)

(a) Random polynomial f(x)

with f(0) = d.

x

y

(0, d)

(x1, d1)

(x2, d2)

(x3, d3)

(x4, d4)

(b) Authority Ai gets share di
of the secret d.

x

y

(x3, d3)

(0, d̃)

(0, d̃)

(0, d̃)

(0, d̃)

(0, d̃)

(c) Each authority Ai has no
information about f(x).

Figure 7.20: The concept of a (2, 4)-threshold scheme.

Suppose we are given a collection of H points (xi, di), i ∈ D, in the plane F 2, where
the xi’s are all different. Then there is a unique polynomial f(x) ∈ F [X] (the set of all
polynomials in F 2) of degree smaller than H, that passes through these H points. That
is, f(xi) = di ∀ i ∈ D.

Proof. We need to prove both existence and uniqueness, and we will begin with the
former by constructing f(x) using a version of Lagrange Interpolation. For each i ∈ D
we define the polynomial

fD,i(x) =
∏

j∈D\{i}

x− xj
xi − xj

.

We observe the following:

1. Each fD,i(x) has degree exactly H − 1.

2. fD,i(xj) =

1 if j = i, and

0 if j 6= i .

It follows from 2 that difD,i(xi) = di = f(xi) for each i ∈ D and so

f(x) =
∑
i∈D

difD,i(x).

It is worth noting that f(x) has degree at most H − 1 and that the degree actually can
be strictly smaller than H − 1.
We will now prove uniqueness. Suppose there is a polynomial f ′(x) ∈ F [x] of degree
smaller than H and where f(xi) = f ′(x) ∀ i ∈ D. Then the polynomial f(x) − f ′(x) ∈
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F [x] is a polynomial with at least H zeros while its degree is smaller than H. It is well
known that any polynomial in F [x] has at most as many zeroes as the degree of the
polynomial, unless it is the zero-polynomial. So f(x)− f ′(x) = 0, and f(x) = f ′(x).

In practice we do not do exactly as described above. Instead of choosing the points
(xi, di) freely, the dealer computes (i, f(i)), where f is the polynomial, and then deals
the share di = f(i) to each authority Ai. And since d = f(0), we will only be interested
in the value of f(x) in 0. So instead of reconstructing the polynomial completely, the H
authorities only reconstruct the value f(0) = d. This lead to the following equation:

d = f(0) =
∑
i∈D

diγ̃
D
0,i, (7.1)

where γ̃D0,i will be called the Lagrange coefficient of the interpolating polynomial and is
the function fD,i(x) from above, computed in x = 0 with xi = i ∀ i ∈ D. That is,

γ̃D0,i =
∏

j∈D\{i}

−j
i− j

.

But there is also another issue to look into. The threshold decryption system of Shamir
is not the exact one we will use to make a threshold protocol based on DJNs. Instead
we will make a similar one, introduced by Damgård, Jurik and Nielsen in [7]. And they
base their protocol on the one Victor Shoup introduced for RSA cryptosystems in the
article “Practical Threshold Signatures” in 2000 [31]. In his article, Shoup stated that he
had to ensure to do all group computations in the cyclic group Qn, defined as 4:

Qn =
{
c ∈ Z∗n

∣∣ c = z2 for z ∈ Z∗n
}
,

and the corresponding exponent arithmetic in the group orden ñ, which then is the group
Zñ. The integer ñ is defined to be ñ = p̃q̃, where p̃, q̃ are two large primes such that
p = 2p̃+ 1 and q = 2q̃ + 1, also called safe primes.

But the ciphertexts of DJNs do not belong to Z∗n, as the ciphertexts of RSA. Our
ciphertexts belongs to Z∗ns+1 , and we need a similar group as Qn only transformed to our

4The reason for this choice is out of scope for this thesis, but it probably has something to do with the
adversary being able to reconstruct a bit of the plaintext if we are working in Z∗n, maybe distinguishing
prime plaintexts from odd ones.
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system. This group is given by:

Qns+1 =
{
c ∈ Z∗ns+1

∣∣ c = z2 for z ∈ Z∗ns+1

}
with group order nsñ. So we will do group operations in Qns+1 and exponent operations
in Znsñ. But then the problem arises: To use Theorem 7.17 we need a field. And the
interpolation will be done in exponent arithmetic. But in Znsñ, not all nonzero elements
have multiplicative inverses. So let us look at the finite field Zp and see where it differs
from Znsñ. The only part is in the proof of the theorem, where we need to calculate the
multiplicative inverses (xi − xj)−1. Transformed to the interpolation we will use we will
need to calculate (i− j)−1, and we are not guaranteed that this number exists in Znsñ.
And if it exists, it is not possible to calculate it since no one knows λ(n) and hence not
the group order of Z∗nsñ. But we know that

∏
j∈D\{i}(i− j)−1 divides i!(H− i)!, which in

turn divides H!. So we can let γ = H!γ̃ mod nsñ which guarantee us that γ is an integer
in Znsñ. That is:

H!d = H!f(0) =
∑
i∈D

diγ̃
D
0,i mod nsñ, (7.2)

with
γD0,i = H!

∏
j∈D\{i}

−j
i− j

mod nsñ.

The previous discussion was related to combining the shares. We will now discuss the
prior part of the decryption protocol, namely the shared decryption process. Each au-
thority Ai has to raise the encrypted election result to their share of the secret. This
would be to compute ci = cdi . But we want to make sure that each ci is in Qns+1 . To to
this we exponentiate c2. This gives us ci = c2di . But we need even one more exponenti-
ation factor, because in the proof of this protocol we will need to interpolate once more.
And this leads us once again with the problem of not knowing the group order of Qns+1 .
We will solve this as follows:

ci = c2H!di .

To be sure that each of the H honest authorities have actually raised c to Hdi, we will
use the NIZK-proof from Section 7.4.5 to show equality of two discrete logs. The idea
is that we already in the key generation phase will calculate a verification key for each
authority, which will be a value veri = verH!di . This can be done long time prior to
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the actual election. When the election then has finished, each authority is computing
ci = c2H!di . We then get logc4(c2i ) = H!di = logv er(veri), and we can prove this in the
random oracle model with the NIZK-proof. The only thing we need to be assured of, is
that ver generates Qns+1 . To solve this, we choose ver at random from Qns+1 . Then ver
will generate Qns+1 with all but negligible probability-

Let us return for a minute to the share combining phase. We have no guarantee that
each authority raised c to the power of two 5. So to ensure we are working in Qns+1 , we
will raise the ci to the power of 2 in the share combining phase as well. That is,

c′ =
∏
i∈D

c2i γ
D
0,i.

We are now ready to formalize the threshold decryption protocol based on DJNs, and
this is done in Figure 7.21.

Theorem 7.18. The threshold protocol in Figure 7.21 is correct.

Proof. The soundness of the NIZK-proof ensures us that theH ci’s are correct values with
all but negligible probability. So will only check if the share decryption phase outputs m
as stated.

c′ =
∏
i∈D

c
2γD0,i
i =

∏
i∈D

(
c2H!di

)2(H!
∏
j∈D\{i}

−j
i−j

)
=
∏
i∈D

(
c4H!2

)(di∏j∈D\{i}
−j
i−j

)

= c4(H!)2d = (n+ 1)4(H!)2m mod ns+1,

where the last equality follows from

4(H!)2d ≡ 0 (mod n) ∧ 4(H!)2d ≡ 4(H!)2 (mod ns),

because of the choice of d. The rest follows directly.

Before we end this section, let us look at the choice of d. If we had chosen λ(n) as
done in Paillier’s original system PA, then an adversary could easily have broken the
system completely. It is enough noticing that 4(H!)2λ(n) 6≡ 4(H!)2 (mod ns), and so we
would get (n + 1)4(H!)2λ(n)m mod ns+1. Knowing the voting result would then lead to
knowledge of λ(n). Also notice that d in this protocol is a particular choice of the d in

5We are not only concerned of what each authority has done to c. There might as well be adversaries
which are interfering with the value ci.
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DJNs cryptosystem, as it is defined as d ∈ Z∗n there instead of d ≡ 1 (mod ns) as here.
But the latter requirement is essential to be able to compute m without the knowledge
of d, as the former requirement would yield (n+ 1)4(H!)2dm mod ns+1.

In the next section we will look at the security of the voting protocols in general, and in
particulare this threshold decryption protocol.
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Threshold decryption protocol

Set-up The set-up fase will be added to the set-up phase of the voting protocol in use,
so we will need all the values from the voting protocol as well. A dealer will execute
the set-up part of the protocol. Choose two primes p, q with the additional property
p̃ = p−1

2 and q̃ = q−1
2 (i.e. safe primes) which also gives us ñ = p̃q̃. We will let d be

such that d ≡ 0 (mod n) and d ≡ 1 (mod ns). We will let s be as required from
the voting protocol.

1. Make a polynomial f(x) =
H−1∑
i=0

bix
i mod nsn′, by picking bi as random values

from {0, · · · , ns(n′ − 1)} for 1 ≤ i ≤ H − 1 and b0 = d.

2. For each 1 ≤ i ≤ A, distribute di = f(i) to Ai.

3. Chose at random a public value ver which generates Qns+1 .

4. Fix a public verification key veri = verdi mod ns+1 for each Ai, 1 ≤ i ≤ A.

Output: ek = (n, s, g), dk = {di | 1 ≤ i ≤ A} and the set of verification keys
{veri | 1 ≤ i ≤ A}.

Voting phase We will import the voting phase from the voting protocol in use.

Share decryption From the voting protocol we get an encrypted voting result c. Each
Ai will now do as follows:

1. Compute ci = c2H!di .

2. Use “equality of discrete logs" NIZK-proof from Figure 7.14, Section 7.4.5, to
create

ProofAi
(
logver(veri) = logc4(c2i )

)
.

3. Post ci and ProofAi on the bulletin board.

Share combining

1. Check that there are H or more numbers of ci’s with correct NIZK-proof.

2. Take a subset S of the ci’s with correct proofs, such that |S| = H, and make
a set D of the indices.

3. Compute c′ =
∏
i∈D

c
2γD0,i
i = (n+ 1)4(H!)2m mod ns+1, where

γD0,i = H!
∏

j∈D\{i}

−j
i− j

.

4. Use Algorithm 1 from Section 6.3 on (n + 1)4(H!)2m to extract 4(H!)2m and
multiply this by

(
4(H!)2

)−1
mod ns to get m.

5. Transform m according to the voting protocol to a format which yields the
voting result.

6. Post the voting result on the bulletin board.

Figure 7.21: A threshold decryption protocol based on DJNs.
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7.7 Security

We get our complete voting protocols by starting with the threshold decryption protocol
and then add the voting protocols with cheating voters and honest but curious authorities
from Section 7.5. The threshold decryption protocol includes a description on how to do
this.

We will now look at the security of these voting protocols. The security is proved in
the random oracle model, but as we will see, we only need the random oracle model
for the NIZK-proofs. Except for this, the rest of the security proof is in the standard
model. This is important to notice, because we might could have used interactive or
non-interactive proofs that were secure in the standard model. If this was the case, then
also the threshold protocol would have been secure in the standard model.

7.7.1 A Basic Level of Security

There are several ways to analyze the security of a voting protocol. The most basic level
is as follows:

1. First we consider the protocols in the semi-honest model. In this model the voting
protocols are semantical secure because DJNs is semantical secure. We have to add
threshold decryption to fulfill the privacy requirement though, because the author-
ities are curious. But since they are honest, we can add the threshold decryption
protocol excluded the NIZK-proofs.

2. Next, we consider the model where the voters are cheating and the authorities
are honest but curious. We then include NIZK-proves to ensure that the voters are
sending encryption of valid votes. An adversary will only have negligible probability
to contribute with incorrect values because of the soundness of the NIZK−proofs.
In some sense we are forcing the voters to follow the protocol, and hence act as if
they were honest.

3. In the end we assume that also the authorities are dishonest. We want to protect
the encrypted election result from dishonest authorities as well, so we include NIZK-
proofs to the threshold protocol to ensure that the H honest authorities does not
contribute with an invalid share. Also here we are in some sense forcing the voters
to act as if they were honest.
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Conclusion: Since the protocols are secure in the semi-honest model and we are forcing
all the parties to act as if they were honest, then the voting protocols included the
NIZK-proofs must be secure in the cheating voters and cheating authorities model.

This argument does offer some level of security. And it is a very tempting idea to just
make a final conclusion based on it. But in cryptography such arguments can be very
dangerous. There might be technical details and subtleties which this argument does not
catch. And there might also be something about the protocol we do not immediately see,
but which makes these logical arguments invalid. If we rather make a simulation of the
protocol, and show that an adversary can not tell the difference between the simulated
run of the protocol and a real run of the protocol, then we can offer a much higher level
of security.

7.7.2 Security by Simulation

We will now make a simulation of the protocol, and we start with the threshold decryption
protocol.

Theorem 7.19. Assume that a static adversary corrupts H − 1 players from the begin-
ning, and assume that we know what the honest voters voted. Then the adversary’s view
of the threshold decryption protocol can be efficiently simulated such that the adversary
can not distinguish between the real run and a simulated run of the protocol.

Proof. The public value n is given. Let 1 ≤ u ≤ H represent the honest authorities, and
i1,≤ ii′ ≤ iH−1 with ii′ /∈ {1, . . . ,H} represent the cheating authorities. Since we know
the voting result m, we also know cd = (1 + n)m mod ns+1.

We start by choosing shares dii′ , . . . , diH−1 , for the cheating authorities. These shares is
chosen uniformly at random modulo ns+1, and they are indistinguishable from the real
values, since the real values are chosen modulo nsñ.

Since d is fixed by the choice of n, the points (o, d), (i1, di1), . . . , (iH−1, diH−1) completely
determines the polynomial f(x). Notice that f(ii′) = dii′ . But we do not know d, and
since it is an infeasible computation to extract d from cd = (1+n)m, we can not compute
f . And hence we cannot compute the share du for the honest authorities. But we know
the value cd, so for each authority u it is possible to interpolate f(x) in u to get du = f(u).
So instead of interpolating in 0 to get d as we do in the real threshold protocol, we will
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interpolate in u to get f(u). It is though not possible to get the value f(u) as we do not
know d, but we only need the value c2H!f and this is possible since we have the value cd.
This is done as follows:

From the discussion in the previous section, we know that

f(x) =
∑
i∈D

difD,i(x) =
∑
i∈D

di
∏

j∈D\{i}

x− xj
xi − xj

,

where f(xi) = di. If we let D = {0} ∪ {i1, . . . , iH−1}, and since f(ii′) = dii′ , we get

f(x) =
∑
i∈D

di
∏

j∈D\{i}

x− j
i− j

,

which yields
H!f(x) =

∑
i∈D

diγ
D
x,i.

We do not know f(0) = d, but we do know cd = (1 + n)m mod ns+1. So by this we can
calculate

cu = c2H!du = c
2H!

∑
i∈D di

∏
j∈D\{i}

u−j
i−j = c

∑
i∈D diγ

D
u,i2 =

∏
i∈D

cdiγ
D
u,i2.

This interpolation is the reason behind the H! in c2H!di from the threshold protocol.

We also need to find a random value ver ∈ Qns+1 and verification keys veri. We do
this by first choosing a random message m0 ∈ Zns and a random r ∈ Z∗n such that
ver = (n+ 1)m0r2n

s .

For the cheating authorities we then calculate veri′i = ver
di′
i . For the honest authorities

we calculate as above
veru =

∏
i∈D

verdiγ
D
u,i .

For the zero knowledge proofs, we must now move to the random oracle model. For each
authority i, we do the simulations of the NIZK-proof as follows:

As we know from Section 7.3.2, we can use the HVZK simulator S instead of the SHVZK
one. This means that we can choose the challenge at random. We let S decide what the
random oracle response should be on each input, as long as the values have the same
distribution as in real life.
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So now we just choose a random challenge e and then run S with c2i , veri, c
4, ver2, n, s

and e. S now producees a valid conversation by selecting a random integer z and compute

a1 =
(c4)z

(c2i )
e
and a2 =

(ver2)z

(ver2i )
e
. S now defines that on input a1, a2, c2i , veri, c

4, ver2, n, s

and z, the oracle’s response is e.

We will also sketch how to simulate the vote casting part of the voting protocols.

First we simulate the votes by choosing only random messages m̃i in Zns . We then forge
the NIZK-proofs using the random oracle as above (we are now back in the random oracle
model).

We take all the simulated encryptions of the votes, multiply them and get a ciphertext
which we are supposed to threshold-decrypt.

The problem now is that this ciphertext does not contain the correct election result. But
this does not matter, as we know what the decryption should be. So we can use the
interpolated values cu from above, where cu is the share from honest authority u, which
then will output the correct result.
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8 | Concluding Remarks

As we mentioned in the beginning of the previous chapter, there are several requirements
we have not fulfilled in the voting protocols. The eligibility requirement is partly solved
by the user identification tag we include in the NIZK-proofs, while the coersion-free
requirement is not solved. We would like to make a concluding remark on another
security issue, namely the dealer.

The dealer is given a lot of trust in the set-up phase of the threshold decryption protocol.
This does not have to be a problem, as the set-up phase can be done long time prior to the
election, and so the trust can be given to an instance with no attachments to the election.
As an example, we can imagine a government election where the set-up phase is done
by neutral parties outside the country. But as we mentioned in the introduction, we will
conclude this thesis by sketching an idea of how this could be solved with cryptographic
methods.

Threshold decryption is a particular instance of something called multiparty computa-
tion. The idea is that we can use techniques as Lagrange interpolation to jointly compute
functions.

In our case we will give an example of generating a prime. This can be done by multiparty
computation by first let the parties chooses an integer of a predefined size. Then each
party creates a polynom as in the set-up phase of the threshold decryption protocol, and
gives shares of their secret to each of the other parties. Now everybody have shares of
all the secrets. Each party can then add all the shares together, to form a new share.
The new shares can now be used to interpolate a polynom in a given value. But we will
not be interested in finding this value, as this would reveal the secret. Instead we will
interpolate directly when it is needed, for example in Fermat’s primality test [14].
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There is a problem with this methods in our case: If the parties were supposed to find
only a regular large prime, they would might have to test some thousands candidates.
But in the case of safe primes, they would have to test millions of candidates, and this
could take weeks and weeks. There are other solutions to this problem, as it is possible
to limit the amount of possible candidates. We will not go into this here, but leave it as
an open question for the interested reader to pursue.
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