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Abstract

This thesis considers methods and models for postprocessing ensemble
forecasts of wind. Based on Bayesian model averaging (BMA), several dif-
ferent extensions are proposed and tested. Firstly, historical observations
of wind speed are included in the model as forecasts, both as a climatology
and as an ensemble. Secondly, an extension to the BMA in which thin plate
regression splines over both forecast wind speed and forecast wind direction
are used in the modelling of the expectation of the predictive probability
density functions (PDFs) is tested. Each method is assessed mainly using
the continuous rank probability score (CRPS), but certain aspects of the
forecasts, such as their performance for stronger winds, are assessed using
the Brier score and the quantile score. We identify a shortcoming of the
BMA involving bias in the forecasting of stronger winds, and an amend-
ment to the method is proposed. This extension is shown to produce better
forecasts and goes a long way towards solving the problem with bias in the
forecasts of stronger wind.
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Sammendrag

Denne masteroppgaven undersøker metoder og modeller for postproses-
sering av ensemblevarsler for vind. Den tar utgangspunkt i Bayesian model
averaging (BMA), men flere ulike utvidelser av metoden blir foreslått og
testet. Først blir gamle observasjoner av vindhastighet inkludert i model-
len, både i form av en klimatologi og som et ensemble. Deretter testes en
forlengelse av BMA der thin plate regression splines over både varslet vind-
hastighet og varslet vindretning brukes i modelleringen av forventningen
til sannsynlighetsvarselet. Hver metode evalueres hovedsakelig ved bruk av
continuous rank probability score (CRPS), men visse aspekter, som deres
evne til å varsle sterk vind, evalueres også ved bruk av Brier score og kvan-
tilscore. Vi identifiserer et problem med BMA som har å gjøre med bias
ved varsling av sterkere vind, og foreslår en endring i metoden. Det vises at
denne endringen fører til bedre varsler og langt på vei løser problemet med
bias ved varslingen av sterkere vind.
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1. Introduction

Knowing what weather we can expect to see hours, days or weeks into the
future is always helpful in making informed decisions. Sometimes, this can
mean knowing whether or not to bring an umbrella, what jacket to wear,
or what type of ski wax to use. But for some this type of information is of
greater importance, such as in civil protection, aviation, farming, construc-
tion work or professional sports where an unexpected change in the weather
conditions can have massive consequences. Fog can cause the cancellation
of a biathlon, freezing rain has been known to shut down entire cities and
oil rigs are occasionally evacuated if particularly strong winds are expected.

If, for example you were an oil rig engineer and your job involved hanging
o� the side of an oil rig by a rope, and for safety reasons you were not allowed
to do your job if wind speeds exceeded 13 m/s (BBC, 2005). If the weather
forecast told you it would be 12 m/s tomorrow, would you go to work?

These are some examples of why it is essential that weather forecasts
are precise and reliable. Traditionally, weather forecasting has been done in
a deterministic way, deterministic meaning that everything that happens is
viewed as the inevitable result of preceding events. Deterministic forecasting
models are largely based on mathematical representations of the dynamics
and physics of the atmosphere, and can often produce su�cient forecasts of
the weather up to 2 weeks into the future (Kalnay, 2003).

However, a number of factors can result in forecast busts, whereby what
is forecast bears little relation to what is observed. Sometimes we don’t have
complete knowledge of the initial conditions, or of the physical relationships
we wish to model. And even when we do, numerical or human error can
cause small inaccuracies that completely change the resulting forecast.

This is why probabilistic forecasting has in recent years grown increas-
ingly popular. A probabilistic forecast gives an indication of the uncertainty
of the future weather. If rather than saying that it will rain tomorrow, we
say that there is an 80 % chance of rain tomorrow, we have accounted for
the possibility that this might not happen, even though we believe quite
strongly that it will.
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CHAPTER 1. INTRODUCTION

The Norwegian website for weather forecasting yr.no1, incorporates prob-
ability in their long term forecasts for cloud cover, temperature, precipita-
tion and wind. Figure 1.1a shows how they use colored labels to indicate
degrees of certainty. A legend below forecasts relays the degree of certainty
associated with each label, green meaning rather certain, yellow meaning
somewhat certain and red meaning uncertain. For those interested, the web-
site also explains that forecasts labeled as green are usually correct at least
70 % of the time; yellow forecasts will consistently be correct somewhere
between 50 % and 70 % of the time; while the forecasts labeled as red are
normally correct less than 50 % of the time (Yr NRK, 2013).

Figure 1.1b illustrates a di�erent way of including uncertainty in the
forecasts, with forecast intervals spanning 50 % and 80 % probability. There
are many alternative ways of presenting probabilistic forecasts to a public
that might not have any experience with probability or statistics. However,
it remains a challenge and an area of ongoing research to find the best meth-
ods of communicating probabilistic forecasts in a concise and informative
way.

There are many ways to compute probabilistic forecasts. One approach
is to use ensembles. An ensemble consists of a number of members – unique
forecasts created either by means of di�erent models or with the same model
using slightly di�erent initial conditions (Kalnay, 2003). The models them-
selves are usually deterministic, but the resulting ensemble forecasts can
be viewed as representative of an underlying probability density function,
although postprocessing is often necessary, as the raw ensemble forecasts
can be both biased and over- or underdispersed (Feldmann, 2012).

Bias in an ensemble means that it on average over- or underforecasts a
particular parameter or parameters. If the tendency is to overforecast this
is called a positive bias and underforecasting implies a negative bias. Dis-
persion has to do with the spread of the forecasts. If the observed quantity
frequently lies outside the range of the ensemble forecasts this is a sign of
underdispersion.

The work done by Leith (1974) is considered the start of ensembles as we
know them, although they didn’t gain much attention until the 1990s, when
the European Centre for Medium-Range Weather Forecasts (ECMWF) and
the National Centers for Environmental Prediction started developing their
own ensemble forecasting systems. The most basic forms of post-processing
of ensemble forecasts include adding or multiplying by a constant to remove
a systematic bias, and performing linear regression.

1
A joint service by the Norwegian Meteorological Institute (MET) and the Norwegian

Broadcasting Corporation (NRK).
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(a) Probability indicated by color coding. Forecasts labeled as green are “Rather
certain”, those in yellow are “Somewhat certain” and the red ones are “Uncertain”.

(b) Probability indicated by 50 % and 80 % forecast intervals around the forecasts.

Figure 1.1: Screenshots of long term forecasts for Oslo from yr.no issued
on 17th June 2016, for the period 18th-25th June 2016, illustrating how a
probabilistic forecast might be presented to the public.
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CHAPTER 1. INTRODUCTION

Many years of research in this field have given us much more sophisti-
cated methods, like ensemble model output statistics (EMOS) as described
by, amongst others Thorarinsdottir and Gneiting (2010) and Baran and
Lerch (2015a), Bayesian model averaging, developed by Raftery et al. (2005)
and non-homogeneous regression (Gneiting et al., 2005) and (Thorarinsdot-
tir and Johnson, 2012).

In this thesis I evaluate and propose postprocessing techniques for en-
semble forecasts of wind speed and direction, based on Bayesian model
averaging. The forecasts come from ECMWF. ECMWF is an international
meteorological organization founded in 1975 and based in Reading, Eng-
land. Norway is one of its 21 European member states. Validating wind
speed observations were provided by the Norwegian Meteorological Institute
(MET).

The rest of this thesis is organized as follows: Chapter 2 gives an in-
troduction to forecasting, the postprocessing methods considered and pro-
posed, and the means of evaluation used to assess the forecasts. In Chapter 3
the data used in the study are presented and explored. Chapter 4 gives a
closer look at how the methods introduced in Chapter 2 are applied to the
data. Assessment of the di�erent methods and other findings are presented
in Chapter 5. Chapter 6 ends the thesis with a discussion of the results
obtained and possible future work.

4



2. Background

This chapter contains a brief introduction to the most important properties
of probabilistic forecasts and to Bayesian model averaging. Two graphical
tools that are useful in evaluating forecasts, namely the verification rank
histogram and the pit histogram are presented, as well as three of the most
commonly used scoring rules: the continuous ranked probability score, the
quantile score and the Brier score. The concept of skill scores is also intro-
duced.

2.1 Forecasts and probability
The most commonly used type of weather forecast is based on Numerical
Weather Prediction (NWP). In NWP observations of the current state of the
atmosphere are fed into computers, which in turn use mathematical models
to forecast the future weather (NOAA-NCEI , U.S. Dept. of Commerce). In
order to get good forecasts it is crucial that the observations that make up
the initial conditions for the models are correct.

Errors in the initial conditions lead to errors in the forecasts, and tiny
errors are impossible to avoid. The forecasts are therefore never perfect,
and the discrepancies between forecasts and observations tend to become
larger as the time from when the forecasts are initialized to the time for
which they apply increases (Wilks, 2006).

This brings us to the concept of lead time. A lead time is exactly this,
the interval between the moment at which the forecast is created and the
time for which it applies. It is generally easier to make specific forecasts
for shorter lead times (what will the temperature be in 2 hours, and will it
be raining?) than for longer lead times (what will the temperature be at 4
o’clock 10 days from now, and will it be raining?).

For extremely long lead times it becomes impossible to make specific
forecasts based on mathematical models, and the safest thing is to use cli-
matology as a forecast. A climatology is essentially what is “normal”, or
the “average” weather over a certain period. The length of this period must

5



CHAPTER 2. BACKGROUND

be chosen in a way that makes sense according to the context in which the
climatology is to be used.

While the climatology tends to be the best forecast when lead times are
long, the best forecast for extremely short lead times can often be a persis-
tence forecast. A persistence forecast is simply using the current weather
as the forecast. The idea is that no big changes are expected to occur in
the immediate future. Neither the climatology nor the persistence forecast
is based on mathematical models, but rather on observations.

The forecasts considered in this thesis are probabilistic, but what is the
di�erence between a deterministic and a probabilistic forecast? Where de-
terministic forecasts tell us exactly what the weather will be like in the
future, a probabilistic forecast gives us either a single probability or a prob-
ability density function (PDF) related to the event we are forecasting. The
probability or PDF p

l

s,t

(y) is assigned to the event y occurring at site s

at time t, with lead time l, i.e. l hours in advance. In postprocessing of
ensembles, p

l

s,t

(y) is a function of the ensemble forecasts, f

l,i

s,t

, i = 1, · · · , M

where M is the number of ensemble members.

2.2 Bayesian Model Averaging (BMA)
The application of Bayesian model averaging to ensemble forecasts was pro-
posed by Raftery et al. (2005) and is a method used to generate calibrated
and sharp predictive probability density functions (PDFs) from ensemble
forecasts.

A PDF being calibrated means that there is statistical consistency be-
tween the predictive distributions and the validating observations (Baran
and Lerch, 2015b) or in other words that it is reasonable to believe that the
validating observations could have been drawn from the predictive PDFs
(Gneiting, 2014). Raw ensemble forecasts often su�er from bias and under-
dispersion, making them uncalibrated.

Sharpness is a measure of the concentration of the PDF (Gneiting, 2014),
and is independent on the validating observations. The sharper the predic-
tive distribution, the higher is the certainty with which we can forecast, as
long as the distribution is calibrated.

BMA aims to estimate the predictive probability density function of the
weather quantity Y based on an ensemble forecast f

1

, ..., f

M

, where f

m

is
the forecast of ensemble member m.

We assume that each forecast f

m

corresponds to a component PDF
g

m

(y|f
m

; ◊

m

), where ◊

m

are parameters to be estimated. Further, we express
the predictive PDF of the weather quantity Y as the sum of the component

6



2.2. BAYESIAN MODEL AVERAGING (BMA)

PDFs associated with each ensemble member,

p(y|f
1

, ..., f

M

; ◊

1

, ..., ◊

M

) =
Mÿ

m=1

w

m

g

m

(y|f
m

; ◊

m

). (2.1)

Here w

m

are weights based on the predictive performance of forecast f

m

,
with

q
w

m

= 1. If some of the ensemble members are exchangeable, they
are given equal weight, and a single set of corresponding parameters. This
is usually the case when the only di�erence between one ensemble member
and the next is a small, random perturbation of the initial conditions in the
model.

So how is the distribution of the component PDFs chosen? There is no
single correct answer to this question. The choice is based on the physical
properties of the quantity Y and on the data at hand. Raftery et al. (2005)
studied surface temperatures, and proposed the use of normal distributions
for this type of data. For precipitation, Sloughter et al. (2007) showed that
a mixture of a discrete component at zero and a gamma distribution could
be used. For wind speed, a strictly positive quantity, various distributions
have been applied. Previously many have favored the Weibull distribution,
as discussed by Tuller and Brett (1984), but in connection with BMA, the
gamma distribution has more commonly been used, e.g. by Sloughter et al.
(2010).

As this thesis considers wind speed, i.e. a quantity that can not take
negative values, a gamma distribution will be assumed for all predictive
PDFs. The PDF of the gamma distribution with shape parameter – and
scale parameter — is

g(y) = 1
—

–�(–)y

–≠1 exp(≠y/—) (2.2)

when y is non-negative and g(y) = 0 otherwise. Here �(–) is the gamma
function evaluated in –. Conditioning on the forecasts we get the following
expression for the component PDFs

g

m

(y|f
m

) = 1
—

–m
m

�(–
m

)y

–m≠1 exp(≠y/—

m

) (2.3)

where –

m

and —

m

are parameters that need to be estimated. The gamma
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Figure 2.1: Forecast values divided into bins, and means and standard devi-
ations for gamma distribution fits to the observed wind speeds, conditional
on the forecast being within a certain bin, as done by Sloughter et al. (2010).

distribution has mean µ = –— and variance ‡

2 = –—

2. Assuming a linear
relationship between the ensemble forecasts and the observations, the mean
and standard deviation of each component distribution can be expressed as

µ

m

= b

0m

+ b

1m

f

m

(2.4)
‡

m

= c

0m

+ c

1m

f

m

(2.5)

and –

m

and —

m

are easily calculated. Following the method of Sloughter
et al. (2010), the assumption of linearity is examined by dividing the forecast
values into bins and plotting forecast values, represented by the midpoint of
each bin against the mean and standard deviation for a gamma distribution
fit to the observed wind speeds, conditional on the forecast being within
that bin. These plots are presented in Figure 2.1. The assumption seems to
hold for the mean. For the standard deviation, however, it is perhaps a little
less convincing, but the assumption does not seem completely unreasonable.

The common way to estimate b

0m

and b

1m

is through linear regres-
sion. To facilitate estimation the parameters c

0m

and c

1m

are taken to be
the same for all ensemble members, and are replaced by c

0

and c

1

. These
parameters and the weights w are estimated through a variant of the expec-
tation–maximization (EM) algorithm. Further details about the method,
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2.3. THIN PLATE REGRESSION SPLINES

and examples of its use can be found in (Sloughter et al., 2010) and (Fraley
et al., 2010).

2.3 Thin plate regression splines
In the standard BMA discussed in the previous section, the expectation is
modelled as a linear function of forecast speed. In this thesis, an extension
to BMA is proposed in which two-dimensional thin plate regression splines,
are used to model the potentially more complex relationship between the
observed wind speed and forecast wind speed and direction. Therefore, a
short introduction to thin plate splines and thin plate regression splines is
given in this Section.

2.3.1 Thin plate splines
Wood (2003) has shown that the thin plate regression spline is by certain
definitions optimal. Thin plate regression splines are based on thin plate
splines, a concept introduced by Duchon (1977). They can be thought of as
the two-dimensional analogue of the cubic spline in one dimension (Belongie,
2000).

The name “thin plate spline” refers to the spline’s likeness to a thin metal
sheet, which can be bent but also has a certain rigidity. In the mathematical
sense, this rigidity corresponds to a tuning parameter that controls the
smoothness of the spline.

Say you want to estimate a smooth function g(x) from observations of
response variable y

i

and vectors of covariates x
i

, (i = 1, ..., n), such that

y

i

= g(x
i

) + ‘

i

(2.6)

where every vector x
i

is of length d (d Æ n) and ‘

i

is a random error
term. The thin plate spline smoothing estimate f̂ of g is the function that
minimises the penalized least squares function

||y ≠ f ||2 + ⁄J

md

(f) (2.7)

where y is the vector of y

i

, f = (f(x
1

), f(x
2

), ..., f(x
n

))T and || · || is the
Euclidean norm. The penalty function J

md

(f) measures the “wiggliness” of
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f . Here m is the order of di�erentiation and can be any integer satisfying
2m > d, although it is often chosen such that 2m > d + 1, as this gives
results that are more “visually smooth”.

The smoothing parameter ⁄ œ [0, Œ) controls the tradeo� between good-
ness of fit and smoothness of f . The wiggliness penalty is defined for any
number d of predictor variables and order of di�erentiation satisfying the
condition 2m > d as

J

md

=
⁄

· · ·
⁄

Ÿd

ÿ

‹1+···+‹d=m

m!
‹

1

! · · · ‹

d

!

A
ˆ

m

f

ˆx

‹1
1

· · · ˆx

‹d
d

B
2

dx

1

· · · dx

d

. (2.8)

In 2 dimensions using second derivatives (i.e. d = 2 and m = 2), which
will be used in this thesis, Equation (2.8) becomes

J

22

=
⁄ ⁄ A

ˆ

2

f

ˆx

2

1

B
2

+ 2
A

ˆ

2

f

ˆx

1

ˆx

2

B
2

+
A

ˆ

2

f

ˆx

2

2

B
2

dx

1

dx

2

. (2.9)

It can be shown that the function f̂(x) minimizing (2.7) can be expressed
in the form

f̂(x) =
nÿ

i=1

”

i

÷

md

(||x ≠ x
i

||) +
Mÿ

j=1

–

j

„

j

(x), (2.10)

where ” and – are unknown parameter vectors that need to be estimated.
The vector ” is also subject to the constraint TÕ” = 0 where T

ij

= „

j

(x
i

).
The functions „

j

are unpenalized, linearly independent polynomials of de-
gree less than m. In total there are M =

!
m+d≠1

d

"
of these functions. The

„

j

span the space of functions for which J

md

is zero, meaning the functions
that are considered “completely smooth”.

The remaining basis function used in (2.10), ÷

md

, is a function of the
Euclidean distance r between any two x and x

i

, and is defined as

÷

md

(r) =

Y
___]

___[

(≠1)

m+1+d/2

2

2m≠1
fi

d/2
(m≠1)!(m≠d/2)!

r

2m≠d log(r) d even,

�(d/2≠m)

2

2m
fi

d/2
(m≠1)!

r

2m≠d

d odd.

(2.11)
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2.3. THIN PLATE REGRESSION SPLINES

Defining a penalty matrix E such that E

ij

© ÷

md

(||x
i

≠ x
j

||), the mini-
mization problem can be rewritten as

minimise ||y ≠ E” ≠ T–||2 + ⁄”ÕE” subject to TÕ” = 0 (2.12)

with respect to ” and –.

2.3.2 Thin plate regression splines
The thin plate spline is in many ways optimal, the only problem is that it
comes with a high computational cost, as the number of unknown parame-
ters is the same as the number of unique predictor combinations. This is the
problem thin plate regression splines seek to solve. The computational cost
of fitting thin plate splines with n parameters is O(n3). This can be drasti-
cally reduced by replacing the matrix E above with an eigen approximation,
E

k

of rank k (k > M).
This is done by first decomposing E into E = UDUÕ, where D is a

diagonal matrix of the eigenvalues of E, arranged so that they are weakly
decreasing in absolute value, in other words, |D

i,i

| Ø |D
i+1,i+1

|, and the
columns of U are the corresponding eigenvectors.

The eigen approximation E
k

can now be written as E
k

= U
k

D
k

UÕ
k

,
where D

k

denotes the top left k ◊ k submatrix of D, and U
k

is made up
by columns of the eigenvectors corresponding to the eigenvalues in D

k

, i.e.
the first k columns of U.

By writing ” = U
k

”, ” is restricted to the column space of U
k

and
Equation (2.12) turns into

minimise ||y ≠ U
k

D
k

”
k

≠ T–||2 + ⁄”Õ
k

D
k

”
k

subject to TÕU
k

”
k

= 0
(2.13)

with respect to ”
k

and – (Wood, 2006). By using E
k

instead of E the
dimension is reduced from n ◊ n to n ◊ k.

This introduction to thin plate splines and thin plate regression splines is
based largely on (Wood, 2003), (Wood, 2006) and (SAS Institute Inc., 2015).
For a fuller, more in-depth explanation of thin plate regression splines, which
would lie outside the scope of this thesis, the reader is encouraged to consult
either of the aforementioned articles, or (Wahba, 1990).

Methods for solving the minimization problem of Equation (2.13) will
not be shown in this thesis, but if the reader is interested they can be found

11
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Figure 2.2: An example of a thin plate spline (blue line) and a thin plate
regression spline (orange, dashed line) fitted to data.

in (Wood, 2006), where it is eventually shown that the computational cost
of fitting a thin plate regression spline can be reduced to O(n2

k).
Figure 2.2 is an illustration of what it can look like when thin plate

splines and thin plate regression splines are fitted to data. The data in this
example were generated from

y

i

= 1
500(4x

4

i

≠ 36x

3

i

+ x

2

i

) + ‘

i

(2.14)

where x

i

= 0, 0.2, ..., 7.8, 8 and ‘

i

≥ N(0, 0.2). The di�erence between the
thin plate spline and the thin plate regression spline, which is much more
computationally e�cient, is hardly noticeable.

2.4 Validation

2.4.1 Verification Rank Histogram
The verification rank histogram, or Talagrand diagram (Talagrand et al.,
1997), is a tool used to assess the calibration of an ensemble forecast. It
is made by first recording the rank of every observation relative to its cor-
responding forecasts, i.e. if the observation has a value that is lower than

12
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every forecast, the observation has rank 1, if it is greater than 1 of the fore-
casts it has rank 2, and so on, so that if it is greater than all M forecasts,
it has rank M + 1. This collection of ranks is then plotted in a histogram.

If the forecasts are representative of the true PDF of Y , the rank of
observation y

m

has a discrete uniform distribution, which corresponds to
a histogram that is almost completely flat. Figure 2.3 shows a verification
rank histogram in which the ensemble is calibrated, as well as histograms
illustrating two of the most common problems in ensemble forecasting: bias
and underdispersion.

Verification Rank Histogram
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Figure 2.3: Three examples of verification rank histograms that are (a) cali-
brated, (b) biased towards underestimation (c) underdispersed, meaning that
the observation is too often outside of the ensemble range.

2.4.2 PIT Histogram

The PIT histogram, or probability integral transform histogram, is also
used to assess the calibration of forecasts. In many ways it is similar to
the verification rank histogram. However, the PIT histogram is calculated
based on continuous probability functions and not single value forecasts like
those of the raw ensemble. It is essentially a histogram of the fitted CDF
of each forecast evaluated in its validating observation.

Figure 2.4 is the PIT histogram equivalent of Figure 2.3, showing PIT
histograms of forecasts that are calibrated, biased and underdispersed.

Like the verification rank histogram, the optimal PIT histogram is one
that is flat. It is however possible to achieve flat PIT histograms with
uncalibrated forecasts, as shown by Hamill (2000). A flat PIT histogram
is therefore necessary but not su�cient in showing that the forecasts are
calibrated.
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Probability Integral Transform
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Figure 2.4: Three examples of PIT histograms from forecasts that are (a)
calibrated, (b) biased towards overestimation (c) underdispersed.

2.4.3 CRPS

Using the notation of Grimit et al. (2007), the continuous rank probability
score, or CRPS, is defined as

CRPS(F, x) =
⁄ Œ

≠Œ
(F (y) ≠ {y Ø x})2

dy (2.15)

where F is the cumulative distribution function of the forecast associated
with the validating observation x. The CRPS measures the di�erence be-
tween the CDF of the forecast and that of the observation, which takes the
form of a step function. This is illustrated in Figure 2.5 by the shaded region
between the two CDFs. The score is negatively oriented, i.e. the lower a
score, the better, with 0 being the very best. The CRPS is expressed in the
same unit as the observed variable (Grimit et al., 2007). For deterministic
forecasts it reduces to the mean absolute error.

Clearly a forecast PDF is rewarded for sharpness, as the shape of its CDF
is closer to that of the step function if it is sharp. It is also evident that
a forecast is punished for being uncalibrated, as this increases the distance
between the two graphs.

It has been shown that the CRPS is equivalent to the integral of the
quantile score (QS) over all probability levels, or of the Brier score (BS)
over all thresholds (e.g. by Gneiting and Ranjan (2011)). Both of these
scoring rules will be introduced in the following subsections.
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Figure 2.5: An example of the fitted CDF of a forecast (dashed curve) and
a the CDF of the corresponding observed wind speed (step function).

2.4.4 Quantile Score

The quantile score is a scoring rule used to evaluate quantile forecasts, fore-
casts of quantiles of a predictive probability distribution. Quantile forecasts
can be used for forecast intervals, e.g. a 90 % probability of observing a
value between q

0.05

and q

0.95

, or for giving some sort of upper or lower limits,
e.g. 95 % chance of a value of observing a value lower than q

0.95

.

Given N observations y

n

and quantile forecasts q

·,n

for the · -quantile,
· œ [0, 1], the average quantile score (QS) is defined (e.g. (Bentzien and
Friederichs, 2014b)) as
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QS = 1
N

Nÿ

n=1

fl

·

(y
n

≠ q

·,n

), (2.16)

where fl

·

is the check loss function defined as

fl

·

(v) =
I

· |v| if v Ø 0,

(1 ≠ ·)|v| if v < 0.

(2.17)

In other words, the absolute value of the di�erence between the observa-
tion and the quantile forecast is multiplied either by · or by 1≠· depending
on the sign of the di�erence, thus over-forecasting and under-forcasting is
penalized asymmetrically. The perfect QS is a QS of 0 (Bouallègue et al.,
2015). For a more thorough explanation of the quantile score, see the afore-
mentioned references or Bentzien and Friederichs (2014a).

2.4.5 Brier Score
The Brier score is a measure of the forecast error in probability space, and
is defined as

BS = 1
N

Nÿ

n=1

(y
n

≠ p

n

)2 (2.18)

where N is the total number of observations, y

n

is the value of the n’th
observation and p

n

is the predicted probability associated with that obser-
vation (Wilks, 2006, p. 284). The BS can be used with categorical quantities
or with continuous quantities by looking at them as binary with respect to
some threshold.

A BS of 0 indicates a perfect model, and a BS of 1 means that the model
is wrong 100 % of the time. These are the extreme cases. In general, the
BS should be as close to 0 as possible.

2.4.6 Skill Scores
In some cases, when looking at a score in isolation, it can be hard to judge
whether it is “good” or “bad”. For instance, the best CRPS one can achieve
is 0, but what is a bad CRPS? What is the value above which we classify
CRPS as bad?
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With such a score it is much more informative to look at it in comparison
to something else. This is the purpose of the skill scores. A skill score is
usually defined in the following way, as by Wilson and Nurmi (2011):

skill score = score for the forecast – score for the standard forecast
perfect score – score for the standard forecast .

(2.19)

Here “the forecast” is the forecast which we want to evaluate, and “the
standard forecast” is some reference forecast, like a climatology or an op-
erational forecast. Specifically, the continuous rank probability skill score
(CRPSS), which has a perfect score of 0, can be written as

CRPSS = 1 ≠ CRPS

forecast

CRPS

ref

, (2.20)

where the bars signify averages. The Brier skill score (BSS) can be written
as

BSS = 1 ≠ BS

forecast

BS

ref

, (2.21)

and the quantile skill score (QSS) as

QSS = 1 ≠ QS

forecast

QS

ref

, (2.22)

as both the BS and the QS have a perfect score of 0. The skill scores have
a range from ≠Œ to 1, with 1 being the skill score of the perfect forecast.
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3. Data and exploratory analysis

This chapter gives a brief presentation of the data used in the thesis and
where it comes from. It explores trends in observations and the quality of
ensemble forecasts.

3.1 Data
This thesis considers forecasts of wind speed and direction at 204 locations
in Norway from the 51 members of the ECMWF ENS ensemble, and mea-
surements of maximum 10-minute average wind speed the last hour.

The data set containing the observations covers the period between 1st

January 2006 and 31th December 2015. Ensemble forecasts were made avail-
able for the period from 24th November 2013 to 22th January 2016. All in
all this results in a set of observations and corresponding forecasts for the
period between 24th November 2013 and 31th December 2015, i.e. a little
more than 2 years of data. All of the forecasts considered in this thesis were
generated at 00 UTC with lead times from 0 to 114 hours at intervals of 6h.

The 51 members of the ECMWF ensemble can be considered exchange-
able, although one member, the control member, is slightly more reliable as
it has not been perturbed, i.e. it “utilises the most accurate estimate of the
current conditions and the currently best description of the model physics”
(ECMWF, 2016). The remaining 50 members are created with initial con-
ditions perturbed around the intitial conditions of the control member in
pairwise symmetrical perturbations.

Wind direction is given in degrees between 0¶ and 360¶, and indicates
the direction the wind is coming from, with

0¶ = 360¶ = north (N), 90¶ = east (E), 180¶ = south (S), 270¶ = west (W),

and so on. A visual representation of this is found in Figure 3.1, which is
taken from Pidwirny (1999).

Figure 3.2 shows all the observation sites for which forecasts are avail-
able. The site in red is Ytterøyane fyr, located in Sogn og Fjordane at
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CHAPTER 3. DATA AND EXPLORATORY ANALYSIS

Figure 3.1: A wind compass showing how di�erent angles correspond to
di�erent wind directions.

61¶34Õ18ÕÕN 4¶40Õ54ÕÕE. This site will be given special attention as it is rep-
resentative of many areas with similar weather conditions on the west coast
of Norway. As observations from some sites are either lacking or unreliable,
only sites with more than 500 observations (circled in dark blue in Figure
3.2), will be used in this thesis.

Lead time Correlation
6 h 0.729

72 h 0.639
114 h 0.535

Table 3.1: Correlation between the ensemble forecasts and their validating
observations for lead times l = 6, 72, 114.

As for the forecasts, only 3 lead times will be considered: 6, 72 and 114
h. As previously mentioned, it tends to be easier to make specific forecasts
for shorter lead times, while growing uncertainty makes forecasting more
di�cult for longer lead times. The correlations presented in Table 3.1,
between the ensemble forecasts for di�erent lead times and their validating
observations, reflect this fact. In fact the correlation seems to decrease
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Figure 3.2: The location of the sites from which we have observations and
corresponding forecasts.

linearly with lead time. This is why one short lead time and one long have
been selected to be studied in this thesis. One moderately long lead time
has also been chosen, as forecasts a few days into the future are often those
of the greatest interest. It is also interesting to see for which lead times
postprocessing of the ensemble forecasts has the greatest e�ect.

As all the forecasts considered in this thesis were initialized at 00 UTC,
each lead time corresponds to one specific hour of the day; l = 6 h corre-
sponds to 6 a.m., l = 72 h corresponds to 12 a.m. and l = 114 h corresponds
to 6 p.m. UTC.
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CHAPTER 3. DATA AND EXPLORATORY ANALYSIS

3.2 Exploratory analysis
Table 3.2 shows the minimum and maximum forecast and observed wind
speed as well as the mean CRPS of the ensemble at each of the three lead
times over all 204 sites. Observed wind speeds are recorded to an accuracy
of 0.1 m/s. Somewhat surprisingly the forecasts with lead time l = 72 h
have the lowest CRPS. This is also the lead time with the lowest maximum
observed wind speed, which might indicate that the ensemble is less accurate
when it comes to forecasting stronger winds.

Forecast Observed
Lead time Min. Max. Min. Max. Ensemble CRPS

6 h 0.001 26.461 0.0 38.1 1.822
72 h 0.002 30.350 0.0 37.4 1.769

114 h 0.002 30.024 0.1 43.5 1.907

Table 3.2: Lowest and highest wind speed forecast by the ensemble at lead
times l = 6, 72, 114, lowest and highest wind speed observed and CRPS of
the ensemble forecasts. All 204 sites are used.

Figure 3.3 shows the average and maximum observed and forecast wind
speed between 24th November 2013 and 31th December 2015 at each obser-
vation site, and there are some clear patterns. Along the coast and in areas
with higher altitude the wind tends to be stronger than in the lowlands. In
fact, the highest average observed wind speed is more than 7 times as high
as the lowest. The forecast wind speeds are also generally lower than those
observed, especially in mountain areas in the west, away from the coast.

The discrepancy between observed and forecast wind speeds can also be
seen in Figure 3.4 which shows 30 observations plotted alongside empirical
quantiles of the l = 72 h ensemble forecasts. The observations almost always
lie outside the ensemble range, and this seems to be especially true for the
observations greater than 15 m/s.

The tendency to underforecast is confirmed by Figure 3.5, which shows
rank histograms of the raw ensemble forecasts for all sites at lead times 6,
72 and 114 h. Clearly the forecasts su�er from a strong negative bias, as the
observations are very often larger than every single ensemble member. They
are also underdispersed and need some kind of calibration. For longer lead
times the forecasts are naturally less accurate which accounts for a higher
degree of dispersion and a lower bias.

As for the direction forecasts, no validating observations are available,
making it hard to assess the quality of the forecasts. It is however possible
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Average observed wind speed
(Bin size: 1.216 m/s)

1.28 m/s 11 m/s

Maximum observed wind speed
(Bin size: 3.944 m/s)

5.84 m/s 37.4 m/s

Average forecast wind speed
(Bin size: 1.216 m/s)

1.28 m/s 11 m/s

Maximum forecast wind speed
(Bin size: 3.944 m/s)

5.84 m/s 37.4 m/s

Avg. observed − avg. forecast wind speed
(Bin size: 1.417 m/s)

−2.55 m/s 8.78 m/s

Max. observed − max. forecast wind speed
(Bin size: 4.44 m/s)

−7.69 m/s 27.8 m/s

Figure 3.3: The average and maximum wind speed observed and forecast at
each site with lead time 72 h.
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Figure 3.4: Median and 50 % (dark grey), 80 % (medium grey) and 90 %
(light grey) forecast intervals for the raw ensemble forecasts with lead time
l = 72 h, and validating observations as points.

to look for patterns and trends. Figure 3.6 shows 4 wind rose diagrams1,
diagrams where observed wind speeds are binned according to forecast wind
direction and plotted as so-called paddles. The thin lines near the center
represent low wind speeds and thicker paddles represent higher wind speeds.
The length of each paddle illustrates the proportion of the observations that
fall within that bin. The wind directions (N,S,E,W) indicate what direction
the wind comes from.

The diagrams in Figure 3.6 were made using the forecast wind directions
of the control member of the ensemble with lead time l = 72 h, and observed
wind speed. Three of the sites for which the diagrams were made are sites
where high wind speeds are frequently observed, namely Ytterøyane fyr,
Røldalsfjellet – Elvershei and Hasvik – Sluskfjellet. The last site, Oslo –
Blindern was included for comparison because this is a site where particu-
larly high wind speeds are never observed. The maximum observed wind
speed at each site is 25.2 m/s, 37.4 m/s, 34.3 m/s and 11.4 m/s respectively.

At all four sites wind is much more frequently forecast coming from cer-
tain directions. At Ytterøyane fyr, meridional winds (winds from the north
or from the south) are overrepresented, and at Røldalsfjellet – Elvershei it

1
Created using the windRose function in the R package openair.
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(a) Lead time 6 h.
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(c) Lead time 114 h.

Figure 3.5: Rank histogram for all sites, for lead times 6, 72 and 114 hours.
The histograms indicate bias and underdispersion.

is zonal winds (winds from the west or from the east) that dominate. At
both of these sites there is a clear prevailing wind direction. This is likely
to be related to the location and the topography of the sites, i.e. the model
terrain and proximity to features such as mountains, fields, rivers and lakes
or the ocean.

The third diagram in Figure 3.6, for Hasvik – Sluskfjellet, is a bit special,
as it is westerly and southeasterly winds that dominate. In the fourth
diagram, for Oslo – Blindern, there is a more even distribution of directions,
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Figure 3.6: Wind rose diagrams for wind direction forecasts of the control
member of the ensemble with l = 72 h and observations of wind speed for
sites Ytterøyane fyr, Røldalsfjellet – Elvershei, Hasvik – Sluskfjellet and
Oslo – Blindern. Data from 24th November 2013 to 31st December 2015.

although stronger winds are rarely observed when zonal wind is forecast, and
very low wind speeds are rarely observed when wind from the northeast is
forecast.
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If the forecasts are representative of the reality, one thing is certain:
the relationship between wind speed and direction is tremendously di�erent
from one site to the next.
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4. Method and models

4.1 BMA model for wind forecasts

The basic BMA approach as described in Section 2.2 simply uses every
member of the ECMWF ensemble with equal weight. The model, following
Equation (2.1), can be written as

p(y|f
0

, ..., f

50

; ◊) =
50ÿ

m=0

wg(y|f
m

; ◊) (4.1)

where f

0

is the control member and f

1

, ..., f

50

are the other ensemble mem-
bers. Hereafter this model is referred to as BASICBMA.

4.2 The control member

As previously mentioned in Section 3.1, it is possible to think of all 51
members of the ensemble as exchangeable, but as the control member has
the optimal initial conditions it might also be a good idea to treat it as
separate from the other members. Figure 4.1 shows the mean absolute
error (MAE) of each ensemble member with respect to observed wind for
di�erent lead times. For all lead times the first member, which is the control
member, has the smallest MAE. For longer lead times it is markedly smaller
than the rest.

Is this di�erence big enough to solicit separate modelling of the bias and
a di�erent weight? To investigate this, two simple models are tested, one in
which all ensemble members are treated as exchangeable (BASICBMA) and
one in which the expectation of the control member is modelled separately.
The latter is hereafter referred to as CMSBMA. In both cases lead time
l = 72, and the site Ytterøyane fyr is used.
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Figure 4.1: Mean absolute error each ensemble member in the ensemble
with respect to observed wind speed. The horizontal line is the MAE of the
control member.

4.3 Climatology and historical observations

As mentioned in Chapter 3, making specific forecasts gets harder for increas-
ing lead times, and if we go far enough into the future it becomes impossible.
For these lead times the best forecast tends to be the climatology.

In order to examine whether inclusion of a climatology might help the
forecasts all observations from between 1st January 2006 and 23rd November
2013 are used to calculate a climatology. A climatology is constructed for
day d by averaging over all observations from within d±30 days (regardless
of year). This means for example that for d = 3rd March, the assigned
climatology is the average of all observations between 2nd February and 2nd

April of 2006, 2007, · · · , 2013.
As an experiment historical observations are included as a second en-

semble, such that the observations from hour h on day d of 2006, 2007, · · · ,
2012 are used as a 7 member ensemble forecast for hour h of day d of 2014
and 2015.

Two BMA approaches will be tested: one in which a climatology is used
as a single member ensemble (Equation (4.2)), and one in which historical
observations are used as a 7 member ensemble in addition to the 51 member
ECMWF ensemble (Equation (4.6)). Using the following abbreviations: cm
= the control member of the ECMWF ensemble, ens = other members of
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the ECMWF ensemble, cl = climatology, and ho = historical observation,
the first model can be written as

p(y|f cm

, f

ens

1

, ..., f

ens

50
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where ◊ = (–, —)T and the component PDF for the control member
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(and similarly for g
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cl) where –
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cm are found from their
relationship with µ
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cm, which are given by
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where b
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0

and b
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, c

0

and c

1

, are estimated in accordance with the method
described in Section 2.2. This model is hereafter referred to as CLIMBMA.
Analogously, the second model becomes
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(4.6)

which is hereafter referred to as OBSBMA.
The models are fitted to data from Ytterøyane fyr. Figure 4.2 shows ob-

servations, the fitted climatology and historical observations for lead time
114 h. As a tendency to underforecast for strong winds has already been dis-
cussed, the climatology cannot be expected to improve forecasts for shorter
lead times. It is rather for longer lead times this might have a positive e�ect.
The historical observations however might help increase the spread of the
forecasts for all lead times.
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Figure 4.2: Observations, climatology and historical observations for lead
time 114 at Ytterøyane fyr between 25th November 2013 and 31st December
2015.

4.4 BMA with wind direction in expectation
In addition to forecasts of wind speed the ECMWF ensemble forecasts wind
direction. In an attempt to make use of these data, thin plate regression
splines are used to bring forecast wind direction into the modelling of the
expectation of the predictive PDFs in the BMA. Thus, the expression for
the expectation of component PDF m becomes

µ

m

= s(f
m

, d

m

), (4.7)

where f

m

and d

m

are the forecast wind speed and wind direction respectively
of ensemble member m, and s is a smooth based on thin plate regression
splines, as defined in Section 2.3. Wind direction is a circular quantity,
meaning that direction 0¶ = 360¶. Ideally, the fitted spline should also be
the same for these values. Unfortunately, this is not something the thin
plate regression splines can easily handle. Therefore, for the fitting of the
splines, the observations corresponding to direction forecasts between 0¶ and
90¶, and between 270¶ and 360¶ were copied and given the same forecast
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wind direction, only in [360¶
, 450¶] and [≠90¶

, 0¶], in order to make up for
this shortcoming.

The estimation of ‡, as defined in Section 2.2, is unchanged. A gamma
distribution is still used for the predictive PDFs, and the relationship be-
tween µ and the distribution remains the same. Keeping the notation from
the previous section and denoting direction by d, the full model now becomes
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(4.8)

where g

cm and g

ens are found from Equation (2.3), and the only thing that
has changed is the modelling of µ

cm and µ

ens. This model is hereafter
referred to as DIRBMA.

4.5 Training and test scheme
Before we can make predictions we must select the data to which the model
shall be fitted. There are many ways to do this, but with BMA it is common
to use a sliding window training scheme where the treatment of the forecast
for any given day comes from a model based on the k last days. This,
however, requires recomputation of the model every day, something one
might want to avoid, if possible.

To see whether or not it is necessary to fit a new model every day, and
determine the number of training days to use, 5 di�erent training schemes
are tested on the last 375 days of the data at site Ytterøyane fyr with lead
time 72 h. First a training period of 30 days is used, with models fitted daily
and weekly. Then a training period of 60 days is used, again with models
fitted daily and weekly. Finally one model is fitted in which 376 days are
used for training and this same model is used for the entire test period.

4.6 Software
For all the programming executed in connection with this thesis the pro-
gramming language R was used. As BMA is a commonly used postprocess-
ing technique in weather forecasting, there are several very good R packages
dedicated to it, such as ensembleBMA by Fraley et al. (2015). However, as
this thesis discusses certain modifications to the method, the preexisting
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packages could not be used, and functions for fitting, forecasting and as-
sessing the probability forecasts of BMAs had to be written. The function
for fitting a BMA is enclosed in Appendix A. In the modified method where
the modelling of the expectation was done with thin plate regression splines,
the function gam from the R package mgcv was used.
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5. Results

5.1 Training scheme

Figure 5.1 shows PIT histograms for the di�erent training schemes intro-
duced in Section 4.5 using the BASICBMA model described in Section 4.1.
The number of days used in the evaluation is 375. This is a considerable
number, but it would still be unwise to infer too much from these plots
alone. However, it looks like there is no striking advantage to fitting a new
model every day compared to once a week. It also seems like increasing
the number of training days might have a positive e�ect. Out of the five
schemes, the last one, where 376 training days and only one model is used,
looks like it might be the one that is the most calibrated.

The PIT histogram is a useful, but far from perfect tool, and prob-
lems with the model can go undetected, as previously mentioned in sub-
section 2.4.2. In Figure 5.2 the forecasts have been divided into 4 groups
according to their median, from the lowest to the highest, and a PIT his-
togram is plotted for each group in each model. This is done in order to
examine the behaviour of the model in extreme events. The skewness exhib-
ited by many of the plots will be discussed in Section 5.2. All that will be
mentioned here is that none of the models stand out as being much better
than the others.

For a more tangible, quantitative comparison, the CRPSS for each case
relative to the raw ensemble is shown in Table 5.1, as well as BSS at thresh-
olds 5 m/s and 20 m/s. What is perhaps the most striking is the fact that
only one of the models has a positive CRPSS. It seems clear that the di�er-
ence between daily and weekly models is small and that what really matters
is the number of training days.

Because results are shown to be as good as or better than those of the
other training schemes, the scheme that fits the model just once using 376
training days will be used throughout the rest of the thesis.
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CHAPTER 5. RESULTS

BMA model fitted Training days CRPSS BSS, 5 m/s BSS, 20 m/s
daily 30 -0.041 -0.094 -0.086

weekly 30 -0.044 -0.000 -0.029
daily 60 -0.014 -0.071 -0.036

weekly 60 -0.021 0.002 -0.026
once 376 0.053 0.000 0.000

Table 5.1: CRPSS and BSS of the BMA models compared to the raw en-
semble, evaluated on a period of 375 days using various training schemes.

5.2 Bias in forecasts of strong wind

Figure 5.3 shows observations from 11th January 2015 to 11th March 2015
as points with median and 50 %, 80 % and 90 % forecast intervals for the
raw ensemble forecasts and a fitted BASICBMA. It is easy to see that the
use of BMA leads to an increase in the dispersion of the ensemble, meaning
that the model is better able to forecast those observations that are outside
the range of the raw ensemble, such as, for example, between the 12th and
the 14th of February 2015. Whether it also reduces the bias is harder to see
with the naked eye, though the root mean square error of the median of the
raw ensemble for this period is 3.73 and for the BASICBMA it is 3.61.

Figure 5.4 shows PIT histograms of the BASICBMA forecasts at Yt-
terøyane fyr with lead time l = 72 hours. The data are divided according
to the sample quartiles of the medians of the predictive pdfs. Here the top
left plot is a PIT histogram where only the forecasts whose median is in the
lowest 25 % are included. In the top right plot forecasts with median in the
25 % to 50 % quartile are used. The bottom left plot shows the 50 % to
75 % quartile and the bottom right plot is a PIT histogram of the forecasts
whose median is in the top 25 %.

In the interquartile range, panels (b) and (c) of Figure 5.4, no discernible
bias is observed. However, in the cases of low and high forecast wind speeds,
panels (a) and (d) of Figure 5.4 respectively, clear biases are observed. For
low forecast wind speeds, the observed wind speeds are mostly lower, and
for high forecast wind speeds the observed wind speeds tend to be even more
“extreme”. A simple t-test confirms that these trends are indeed significant
at a 0.1 % significance level.

To examine whether this might be the case regardless of lead time, ana-
logue plots were created for lead times 6 hours and 114 hours, displayed in
Figures B.1 and B.2, which can be found in Appendix B. In Figure B.1,
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Figure 5.4: PIT histograms conditioning on the median of the BASICBMA
predictive PDFs. Lead time l = 72 and site Ytterøyane fyr was used.

40



5.3. EXCHANGEABILITY

which shows l = 6 h, none of the plots clearly display any of the trends
found in Figure 5.4. However, in Figure B.2, illustrating the forecasts at
l = 114 h, these trends are present, especially for strong winds, suggesting
that these may be particularly hard to predict far in advance.

So far only Ytterøyane fyr has been considered. To determine whether
the problem is a common one or merely due to a really unfortunate choice
of site, a number of additional sites were tested. As the problem is tied
to the forecasting of strong winds, the sites that were examined were sites
where strong winds are regularly observed. The findings, presented as PIT
histograms for models fitted at the various sites with lead time 72 h, which
can be found in Appendix C, were inconsistent, but several of them display
the same tendency toward a bias in the forecasts of strong winds as the one
seen in the plots for Ytterøyane fyr.

5.3 Exchangeability
In Table 5.2, di�erent scoring rules are applied to models with all members
and all but the control member of the ensemble respectively considered
exchangeable, i.e. BASICBMA and CMSBMA. The skill scores (BSS and
CRPSS) are calculated with the raw ensemble forecast as reference. The QS
is included to assess the performance of the models for the higher quantiles,
as this is where forecasting seems to be more challenging. The CMSBMA
model is better for all scores. This suggests that the control member might
in fact be di�erent enough to solicit separate modelling of the expectation.

CRPSS BSS 5 m/s BSS 20 m/s QS 0.9 QS 0.95
BASICBMA 0.053 0.005 0.001 0.539 0.333

CMSBMA 0.054 0.006 0.002 0.539 0.327

Table 5.2: Scoring rules applied to models BASICBMA and CMSBMA.
BSS is calculated with thresholds at 5 m/s and 20 m/s. BSS and CRPSS
are relative to raw ensemble forecasts.

The weights for each model which are, as previously mentioned in Sec-
tion 2.2, based on predictive performance, are shown in Table 5.3. For the
model with all members treated as exchangeable, the weights are equal,
1/M = 0.0196 for all members.

The model in which the control member is treated separately has two
fitted weights, one for the control member and one for every exchangeable
member. The fact that the weight assigned to the control member by the
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Ensemble member weights
Model Control member Other members
BASICBMA 0.0196 0.0196
CMSBMA 0.0549 0.0189

Table 5.3: Weights of models with all 51 ensemble members considered ex-
changeable and with the control member treated as di�erent

EM algorithm is considerably larger than that assigned to the exchangeable
members supports the notion that the control member should be treated
separately from the perturbed members.

5.4 Climatology and historical observations
Table 5.4 shows di�erent skill scores applied to two models, CLIMBMA
and OBSBMA (defined in Section 4.3). The scores show the improvement
relative to the CMSBMA model in which neither climatology or historical
observations have been used.

Lead time Model CRPSS BSS 5 BSS 20 QSS 0.90 QSS 0.95
6 h CLIMBMA 0.003 0.003 0.011 0.003 -0.009
6 h OBSBMA -0.000 0.000 0.000 -0.000 -0.000

72 h CLIMBMA 0.001 0.000 -0.000 0.000 -0.000
72 h OBSBMA 0.000 0.000 -0.000 -0.000 -0.000

114 h CLIMBMA -0.000 0.000 0.000 0.000 0.000
114 h OBSBMA -0.000 0.000 0.000 0.000 0.000

Table 5.4: CRPSS, BSS and QSS of models CLIMBMA and OBSBMA
relative to CMSBMA, for lead times l = 6, 72, 114 h.

As the uncertainty of the ensemble forecasts increases for longer lead
times, one might expect to see an improvement, especially for these lead
times, when introducing a climatology. However, the results presented in
Table 5.4 show that the e�ect both of adding the climatology and of adding
an ensemble of historical observations to the probabilistic models is astound-
ingly underwhelming. To further emphasize the lack of influence given to
these added variables, the weight assigned to each ensemble member in each
model for lead time 114 is shown in Table 5.5.

Clearly, even with lead times as long as 114 hours, the ensemble fore-
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Member Weight Member Weight
Control member 0.395 Control member 0.395

Regular members 0.012 Regular members 0.012
Climatology 4.159 ◊ 10≠38 Historical observations 8.966 ◊ 10≠53

Table 5.5: Weights assigned to each ensemble member in a model where
climatology was added as a separate one-member ensemble, and a model
where historical observations were added as a separate 7 member ensemble.

casts are still more informative than a climatology or a sample of historical
observations. Consequently, neither of these ideas will be considered any
further in this thesis.

5.5 Wind direction
A model where thin plate regression splines have been used to incorporate
forecast wind direction, DIRBMA, specified in Section 4.4, is fitted to fore-
casts with lead time l = 72 h and observations from Ytterøyane fyr.
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Figure 5.5: The thin plate regression splines fitted in the DIRBMA model
for lead time l = 72 h at Ytterøyane fyr.

Figure 5.5 shows how the splines have been fitted to the forecasts in the
DIRBMA model. The panel to the left shows the splines fitted to the control
member forecasts, and the panel to the right is for the remaining members.
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The smooths in both plots are approximately linear in forecast wind speed
but non-linear in forecast wind direction, suggesting that the relationship
between forecast wind speed and observed wind speed is slightly di�erent
for di�erent forecast wind directions.

Figure 5.6 shows PIT histograms for this model akin to those in Figure
5.4 for CMSBMA. Hints of the trends observed in those plots can also be
seen in Figure 5.6, but to a much lesser degree. This suggests that the use of
forecast wind direction in the model has led to at least some improvement
in the forecasts. To further investigate this, a comparison of scores for
the model with the direction dependent expectation and one without are
presented in Table 5.6.

CRPSS BSS 5 m/s BSS 20 m/s QS 0.9 QS 0.95
CMSBMA 0.054 0.006 0.002 0.539 0.327
DIRBMA 0.145 0.146 0.091 0.497 0.305

Table 5.6: CMSBMA and DIRBMA fitted to observations from Ytterøyane
fyr and forecasts with lead time 72 h. The BSS is calculated for the two
thresholds of 5 m/s and 20 m/s, and the QS is calculated for the 0.9 and
the 0.95 quantile. The CRPSS and BSS are relative to the raw ensemble.

Firstly, the almost 3 fold increase in the CRPSS suggests that the wind
direction dependent model, DIRBMA, performs better overall than the
CMSBMA. The increase in the Brier skill scores for both thresholds suggests
that the model’s ability to forecast both low and high wind speeds is greatly
improved by taking into account wind direction. The quantile score for the
0.9 and 0.95 quantiles also support the conclusions drawn from Figure 5.6,
that the bias in the forecasts for higher wind speeds is weaker than in the
CMSBMA.

In order to find out if this method is generally better than CMSBMA,
similar models are fitted for all 204 sites and lead times l = 6, 72 and 114 h.
Figure 5.7 shows a box-and-whisker plot1 of the CRPSS of these models, as
well as the CMSBMA models, both relative to the raw ensemble forecasts.

In the box-and-whisker plots the thick line is the median, the bottom and
top of the box are the first and third quartiles, and the whiskers extend to the
most extreme data point which is no more than 1.5 times the interquartile
range from the box. The circles are outliers, i.e. data points outside the
range of the whiskers.

Clearly the use of BMA in general leads to forecasts that, measured
1
Created using the boxplot function in the graphics package in R.
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Figure 5.6: PIT histograms conditioning on the median of the predictive
PDFs from a model where forecast wind direction has been used in the mod-
elling of the expectation. Lead time l = 72 and site Ytterøyane fyr was
used.
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in CRPS, perform much better than the raw ensemble forecasts. This is
not surprising as the method removes bias and increases dispersion. The
improvement seems to be especially large for shorter lead times.

For the majority of sites the DIRBMA had an even greater positive ef-
fect. However, there are certain outliers. Most of these are sites where
observed wind speeds never exceed 15 m/s, and the vast majority of ob-
servations are lower than 5 m/s. This suggests that direction plays a more
important role when the range of observed wind speeds is larger. The rela-
tionship between direction and speed also varies a lot from site to site, as it
is closely connected to the topography of the area around the site.

Figure 5.8 shows the CRPSS of models for all sites and lead times plot-
ted on a map. The score is divided into categories and color coded such
that red points represent negative CRPSS and di�erent shades of blue rep-
resent di�erent levels of improvement, with darker blue indicating greater
improvement. A comparison of Figure 5.8 with Figure 3.3 suggests that the
sites with negative CRPSS correspond to those sites where the di�erence
between average forecast wind speed and average observed wind speed is
small.

The outliers seen in Figure 5.7 are also generally sites where the CRPS
of the raw ensemble forecasts is quite low. This seems reasonable as one
of the main problems with the ensemble is its tendency to forecast wind
speeds that are too low. That this is less of a problem when the bulk of the
observed wind speeds are lower than 5 m/s is not surprising.

Because the models’ ability to forecast “extreme” values is of particular
interest, Figures 5.9 and 5.10 show box-and-whisker plots of the Brier skill
score of the models relative to the raw ensemble forecasts for thresholds of
5 and 20 m/s respectively, and a box-and-whisker plot of the quantile score
for the 0.95-quantile is shown in Figure 5.11. In Figure 5.10 and Figure 5.11
the BSS and QS are only calculated for sites with more than 10 observations
greater than 20 m/s.

The exclusion of sites that rarely or never see wind speeds over 20 m/s
is done in order to avoid the situation where the ensemble gets a Brier score
of 0 because speeds greater than 20 m/s have been neither observed nor
forecast. In this situation the Brier score tells us nothing and results in
Brier skill scores of ≠Œ.

In general, the Brier skill scores show good results with both methods.
For a threshold of 5 m/s there is an improvement at most sites. There are
cases of great improvement, and again there are outliers where the use of
BMA has not had a positive e�ect. For a threshold of 20 m/s the largest
improvement happens for a lead time of 6 h. For lead times of 72 h and 114

46



5.5. WIND DIRECTION

●

●

●

●

●

●

●

●

●

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

CRPSS of BMA relative to raw ensemble

Lead time
006 h 006 h 072 h 072 h 114 h 114 h

CMSBMA
DIRBMA

Figure 5.7: Box-and-whisker plots of the CRPSS of probabilistic forecasts
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Figure 5.8: The CRPSS of probabilistic forecasts from CMSBMA and
DIRBMA relative to raw ensemble forecasts at di�erent sites for di�erent
lead times color coded and plotted on a map.
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Figure 5.9: Box-and-whisker plots of the Brier skill score of probabilistic
forecasts from CMSBMA and DIRBMA relative to raw ensemble forecasts
where a threshold of 5 m/s has been used. Each data point is the BSS of a
model for a specific site and lead time.
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Figure 5.10: Box-and-whisker plots of the Brier skill score of probabilistic
forecasts from CMSBMA and DIRBMA relative to raw ensemble forecasts
where a threshold of 20 m/s has been used. Each data point is the BSS
of a model for a specific site and lead time. Only sites with more than 10
observations of wind speeds greater than 20 m/s are used.
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h the use of BMA seems to have less of an e�ect, but still generally leads
to substantial improvements on the forecasts of strong wind.

Figure 5.11 shows the relative improvement in quantile score for the
0.95-quantile for DIRBMA compared to CMSBMA. Again there is an im-
provement at most sites, indicating that the use of forecast wind direction in
the estimation of the expectation has a positive e�ect on the upper quantiles
of the forecasts in most of the cases where CMSBMA might fall short.
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Figure 5.11: Box-and-whisker plots of the quantile skill score for the 0.95-
quantile of probabilistic forecasts modelled using the DIRBMA model relative
to probabilistic forecasts from the CMSBMA model. Each data point is the
QSS of a model for a specific site and lead time. Only sites with more than
10 observations of wind speeds greater than 20 m/s are used.
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6. Discussion and conclusion

In this thesis the postprocessing technique BMA has been applied to en-
semble forecasts of wind speed and direction in order to obtain calibrated
and sharp probabilistic forecasts for 375 days and 204 locations in Norway
with 3 di�erent lead times, l = 6, 72, 114.

The forecasts that were used came from the 51 member ECMWF en-
semble, the first member of which – called the control member – has initial
conditions that are the best estimate of the atmospheric state. The other
members are perturbed around it in attempt to model the atmospheric un-
certainty. This means that the control member, on average, produces better
forecasts than the perturbed members. For this reason tests were done in
which the control member was treated separately in the BMA. It was shown
that doing this, and treating the other members as exchangeable, achieved
better results than treating all 51 members as exchangeable.

Di�erent numbers of training days were tested, as well as di�erent fre-
quencies of model fitting, and a training period of 376 days was chosen, as
results revealed that a long training period was essential to fitting a good
model.

The use of BMA generally had a very positive e�ect and led to improve-
ment at most locations, and for all three lead times. However, a weakness
was identified for longer lead times when dividing the probabilistic forecasts
into groups according to forecast median. Although the models performed
well in general, they struggled with forecasting stronger winds.

Several ideas were tested in order to try to remedy this weakness. Firstly,
after applying the method to the 51 member ensemble, models were tested
where climatology and historical observations respectively were included
as separate ensembles. The inclusion of these data in the model had no
discernible e�ect.

Secondly, in addition to the standard BMA, a modified version was
used in which forecast wind direction was included in the modelling of the
expectation of the predictive PDFs by means of thin plate regression splines.
This method produced better models at most locations, and also to some
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degree amended the problem with forecasting high wind speeds.
At some locations the extended method had little or even a negative

e�ect on the forecasts. This seemed to be linked in part to the range of
wind speeds observed at these sites. That is, the sites where the method
had no positive e�ect tended to be sites where particularly strong winds are
rarely observed.

As no observations of wind direction were available, it is hard to tell if the
shortcomings in these models were due to faulty forecasts or perhaps a lack
of relationship between wind direction and wind speed for lower wind speeds.
The raw forecasts of wind speed were biased and underdispersed, but the
relationship between them and the observations was carefully examined and
found to be linear before the forecasts were used in the fitting of any model.
The relationship between the forecast wind direction and observed wind
speed was not examined as thoroughly as it could have been, and validating
observations might have provided additional insight into the quality of the
wind direction forecasts.

Modelling wind in Norway is challenging as the country has an extremely
varied and complex topography. Certain areas are dominated by high moun-
tains, with narrow fjords and valleys that strongly a�ect both the wind speed
and wind direction that are observed. These small scale features are not
well represented in the ECMWF ensemble, which has a spatial resolution
of approximately 32 km (Miller et al., 2010), meaning that within each 32
km grid square the topography is constant.

Figure 6.1 shows two topography maps of Norway. The one in Figure
6.1a has a spatial resolution of 100 m, while that in Figure 6.1b is the
model topography used in the ECMWF ensemble. Clearly the latter is
much coarser and does not does not include local topographical and coastal
variations visible in the former. The di�erence is particularly striking in the
west around the fjords and around the valleys stretching across the country.

Figure 3.3, in Section 3.2, showed that the sites that see the strongest
winds are located along the coast and in areas with mountains, in other
words, areas with complex topography. Furthermore, in Section 5.2, it was
shown the BASICBMA model exhibited a negative bias for especially strong
winds at many of these sites. This suggests that the model topography pre-
sented in Figure 6.1b is not su�ciently detailed, and that a higher resolution
is likely to lead to better results in general.

As it stands, when the model wind is in a specific direction, this may
be strongly correlated to high wind speeds in certain valleys (McNider and
Pielke, 1984). For example, westerly winds from the ocean that are well
forecast by the ECMWF ensemble can enter valleys that the ensemble,
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(a) Map showing the topography of Norway, with a 100 m res-
olution, taken from kartverket.no, the website of Norway’s na-
tional mapping agency.
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(b) Map showing the model topography of Norway used by the
ECMWF ensemble. (Approximately 32 km resolution.)

Figure 6.1: Topography maps of Norway in metres above sea level.
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because of its low resolution, does not detect, and be accelerated. While
this acceleration might not be well represented in the wind speed forecasts,
the inclusion of forecast wind direction in the BMA could have a huge e�ect
on the resulting forecasts.

In the case of Ytterøyane fyr, Figure 3.6 showed that the strongest winds
are from the south. This could be a result of topographic blocking from the
Norwegian mainland. Smith (1982) showed that when wind hits a mountain
barrier, it is deflected to the left (in the northern hemisphere) and accel-
erated. Along the coast of Norway, this means that west of a mountain
barrier, southerly winds will be observed. The ECMWF ensemble might be
able to model the deflection but is unlikely to be able to model the acceler-
ation, resulting in wind direction forecasts that are correct but wind speed
forecasts that underestimate the actual wind speed. Also in these cases the
inclusion of forecast wind direction in the BMA is likely to have a positive
e�ect.

Conversely, in areas with unvaried topography, wind direction is unlikely
to be related to wind speed and thus including forecast wind direction in
the BMA will have less of an e�ect.

This being said, the main findings and conclusions of this master’s thesis
can be summarized as follows:

1. The control member should be considered unique and have its expec-
tation modelled separately from the remaining ensemble members.

2. The use of climatology and historical observations does not appear to
have any e�ect on forecast performance.

3. Forecast wind direction has been shown to be a good predictor for
wind speed, especially in cases of high observed wind speeds.

Since the use of wind direction in the BMA had an overall positive ef-
fect, possible future amendments to the method would therefore involve
examining the wind direction forecasts more closely before using them, and
studying how their relationship with wind speed changes for di�erent loca-
tions. Perhaps other spatial information pertaining to the individual sites,
such as altitude and land area fraction, might shed more light on this.

Another method that could be worth investigating would be cyclic splines,
i.e. splines that are specifically designed to handle cyclic variables. The
choice of thin plate regression splines for the modelling of the expectation
of the predictive PDFs of the BMA was by no means an obvious one, and
there is no reason why other types of spline should not also be tested.
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A further possibility that was considered, but not explored in this thesis
was a varying-coe�cient model (Hastie and Tibshirani, 1993) for the expec-
tation, with regression coe�cients varying with forecast wind direction.

To conclude, this thesis has shown how BMA can be a useful tool in
forecasting wind speed, and in particular that forecast wind direction can
be an important predictor. However, there are grounds for more research
into methods and predictors that might further improve the forecasts of
wind speed in Norway.
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Appendix A Function for fitting a BMA

fit.bma <- function (forecast , y, direction = NULL , varCoefs = c(1 ,1) ,

exchangeable = NULL , oneBias = F){

forecast <- as. matrix ( forecast )

M <- ncol( forecast )

n <- length (y)

# For observed winds == 0, add a small positive noise .

y[y == 0] <- rgamma (sum(y== 0) , .1)

if(!is.null( exchangeable ) & length ( exchangeable ) != M){

stop(" Length of exchangeable does not match

total number of members .")}

if(is.null( exchangeable )) exchangeable <- 1:M

uniqueX <- unique ( exchangeable )

nUniqueX <- length ( uniqueX )

w <- rep (1/M, M)

# ########## E s t i m a t e b i a s C o e f s ###########

# Standard method , no direction :

if(is.null( direction )){

cat(" Estimating bias coefficients .")

meth <- 1

biasCoefs <- matrix (NA , nrow = 2, ncol = nUniqueX )

mu <- matrix (NA , nrow = n, ncol = M)

it <- 0

for(ex in uniqueX ){

it <- it + 1

x <- as. vector (as. matrix ( forecast [, exchangeable == ex ]))

biasCoefs [,it] <- as. numeric (lm(rep(y,

sum( exchangeable == ex))

~ x)$coef)

if ( biasCoefs [1, it] <= 0) {

biasCoefs [1, it] <- min(y)

biasCoefs [2, it] <- sum (( rep(y, sum( exchangeable == ex)) -

min(y)) * x)/sum(x^2)

}

mu[, exchangeable == ex] <- biasCoefs [1,it] +

biasCoefs [2,it] *

forecast [, exchangeable == ex]

cat(".")

}

rm(it)

}

# If direction is provided :

if(!is.null( direction )){

require (mgcv)

cat(" Estimating expectation .")

if(nrow( forecast ) == nrow( direction ) &
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ncol( forecast ) == ncol( direction )){

meth <- 2

biasModels <- list ()

mu <- matrix (NA , nrow = n, ncol = M)

it <- 0

for(ex in uniqueX ){

it <- it + 1

dat <- data. frame (obs = rep(y, sum( exchangeable == ex)),

forec = as. vector (

as. matrix (

forecast [, exchangeable == ex ])),

direc = as. vector (

as. matrix (

direction [, exchangeable == ex ])))

# In order to get similar values for 0 and 360 degrees

# ( direction North ), some observations are copied and pasted

# such that the model is fitted for directions in [ -90 ,450]

augment <- function (u) {

ul <- u[u$ direc < 90, ]

ul$ direc <- ul$ direc + 360

uu <- u[u$ direc > 270 , ]

uu$ direc <- uu$ direc - 360

return ( rbind (u, ul , uu))

}

dat <- augment (dat)

biasModels [[ it ]] <- mgcv :: gam(obs ~ s(forec , direc ),

data=dat)

mu[, exchangeable == ex] <- fitted ( biasModels [[ it ]]) [1:

length (rep(y,

sum( exchangeable == ex)))]

cat(".")

}

rm(it)

}

}

# Both methods risk fitting negative values of mu

if(any(mu < 0)) mu[mu <0] <- runif (sum(mu <0) , max = .1)

cat(".done .\n")

# ########## E s t i m a t e v a r C o e f s ###########

cat(" Estimating variance coefficients ")

getParam <- function (mu , varCoefs , forecast ){

sigma <- varCoefs [1] + varCoefs [2]* forecast

shape <- as. matrix (mu ^2/ sigma ^2)

scale <- as. matrix ( sigma ^2/ mu)

return (list( shape = shape , scale = scale ))

}

tol <- sqrt (. Machine $ double .eps)

d <- 10

ll_new <- -Inf

param <- getParam (mu , varCoefs , forecast )
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shape <- param $ shape

scale <- param $ scale

# Iterative fitting of variance coefficients

count <- 0

while (d > tol){

count <- count + 1

## E-step

nevner <- rowSums (t(w*t( dgamma (y, shape = shape , scale = scale ))))

z <- t(w*t( dgamma (y, shape = shape , scale = scale )))/ nevner

## CM -1

w <- colMeans (z)

w <- sapply ( split (w, exchangeable ), mean)[ exchangeable ]

if(! count %% 50 | nUniqueX == 1){

## CM -2

loglik = function (v, y, forecast , mu)

{

stopifnot ( length (v) == 2)

sigma <- (v[1]) ^2 + (v[2]) ^2* forecast

shape <- mu ^2/ sigma ^2

scale <- as. matrix ( sigma ^2/ mu)

ll <- sum(z*log(t(w*t( dgamma (y, shape = shape ,

scale = scale , log = FALSE ))))

)

return (ll)

}

result = optim (sqrt( varCoefs ),

fn = loglik ,

method = if(meth == 2){"BFGS"},

control = list( fnscale = -1),

y = y,

forecast = forecast ,

mu = mu)

varCoefs <- result $par ^2

param <- getParam (mu , varCoefs , forecast )

shape <- param $ shape

scale <- param $ scale

# Update loglikelihood :

ll_new <- result $ value

d <- abs(ll_old -ll_new)/(1+ abs(ll_new))

ll_old <- ll_new

cat(".")

}

}

cat("done .\n")

if(meth == 1){

coefs <- list( biasCoefs = as. matrix ( biasCoefs ),
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varCoefs = as. matrix ( varCoefs ),

weights = w,

exchangeable = exchangeable ,

loglikelihood = ll_new ,

nIter = count ,

method = 1)

}

if(meth == 2){

coefs <- list( biasModels = biasModels ,

varCoefs = as. matrix ( varCoefs ),

weights = w,

exchangeable = exchangeable ,

loglikelihood = ll_new ,

nIter = count ,

method = 2)

}

return ( coefs )

}
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Appendix B PIT histograms for other lead times
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Figure B.1: PIT histograms conditioning on the median of the predictive
PDFs. Lead time l = 6 h and site Ytterøyane fyr was used.
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Figure B.2: PIT histograms conditioning on the median of the predictive
PDFs. Lead time l = 114 h and site Ytterøyane fyr was used.
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Appendix C PIT histograms for other sites

Juvasshøe
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Figure C.1: PIT histograms conditioning on the median of the predictive
PDFs. Lead time l = 72 h and site Juvvasshøe.
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Røldalsfjellet – Elvershei
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Figure C.2: PIT histograms conditioning on the median of the predictive
PDFs. Lead time l = 72 h and site Røldalsfjellet – Elvershei.
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Kråkenes
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Figure C.3: PIT histograms conditioning on the median of the predictive
PDFs. Lead time l = 72 h and site Kråkenes.

73



APPENDIX C. PIT HISTOGRAMS FOR OTHER SITES

Glomfjord – Tverrfjellet
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Figure C.4: PIT histograms conditioning on the median of the predictive
PDFs. Lead time l = 72 h and site Glomfjord – Tverrfjellet.
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Narvik – Fagernesfjellet
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Figure C.5: PIT histograms conditioning on the median of the predictive
PDFs. Lead time l = 72 h and site Narvik – Fagernesfjellet.
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Hasvik – Sluskfjellet
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Figure C.6: PIT histograms conditioning on the median of the predictive
PDFs. Lead time l = 72 h and site Hasvik – Sluskfjellet.
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Hammerfest lufthavn
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Figure C.7: PIT histograms conditioning on the median of the predictive
PDFs. Lead time l = 72 h and site Hammerfest lufthavn.
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