@NTNU

Norwegian University of
Science and Technology

Software Defined Networking for
FUSIION (Integrated Hybrid Optical)
Networks]

Weldmicheal Berhanu Hailu

Master of Telematics - Communication Networks and Networked Services
Submission date: June 2016

Supervisor: Steinar Bjgrnstad, ITEM

Co-supervisor: Raimena Veisllari, Transpacket

Norwegian University of Science and Technology
Department of Telematics

Title: Software Defined Networking for FUSION
(Integrated Hybrid Optical) Networks
Student: Weldmicheal Berhanu Hailu

Problem description:

Software Defined Networking (SDN) is a new networking paradigm that separates
the network control plane from the packet forwarding plane. A logically centralized
controller that has a global network view is responsible for all the control decisions
and it communicates with the network-wide distributed forwarding elements via
standardized interfaces. In this context, Netconf Configuration Protocol (NETCONF)
has been proposed as a southbound protocol that supports programmability of network
functions and protocols in an SDN network. An SDN controller is a server that has
a global view of the network and runs control applications.

Integrated hybrid optical networks (IHON) are networks that integrate both
packet and circuit switching in the same network nodes on the same links. Fusion
H1 node is an Ethernet switch from Transpacket Company which is built based
on NETCONF protocol implementing the THON principles as its core functionality.
The communication between the controller and the nodes is carried through the
NETCONF protocol. While SDN for packet-switching is being widely researched and
deployed (e.g. Google, Huawei, Cisco etc.), circuit-switching in the optical domain
is still under review and extension. The goal of the project is to enable an SDN
controlled integrated hybrid optical network. The work includes choosing compatible
SDN controller and establishing connection with the H1 nodes via NETCONF
protocol. As a result, perform a set of NETCONF operations on the nodes from the
controller.

Responsible professor: Steinar Bjgrnstad, ITEM, NTNU

Supervisor: Raimena Veisllari, Transpacket

Abstract

Nowadays large transmission capacity is offered through deployment
of optical fiber. At the same time, new design approaches have emerged,
like the Integrated Hybrid Optical Network (IHON) architecture which
combines the advantages of both circuit and packet switching while di-
minishing their disadvantages. ITHON offers both guaranteed Quality
of Service (QoS) and efficient utilization of the transmission capacity.
Transpacket is a startup company that has developed Fusion H1, a proto-
type node based on ITHON principles which uses Ethernet for data plane
while employing Yet Another Next Generation (YANG) data modeling
language and Network Configuration Protocol (NETCONF) protocol
for control plane. In traditional networks, control and data planes are
coupled within the network hardware which leads to expensive network
management and administration. In order to lower costs and increase
the network flexibility in provisioning new services and adapting to the
emerging range of applications, an Software Defined Network (SDN) is
believed to be the promising solution. SDN dissociates the control from
the underlying network devices, and centralizes the intelligence and state
of the network at the controller to allow network automation.

In this thesis work is demonstrated for the first time an SDN controlled
integrated hybrid optical network through emulation and also experiment
with Fusion H1 nodes in the Uninett lab. Furthermore, this report
covers brief background to ITHON in general and Fusion H1 nodes in
particular. Additionally, an SDN platform, and evaluation of NETCONF
and OpenFlow (OF) southbound protocols is included. We also discuss
both the emulation testbed and lab experiment.

OpenDaylight (ODL) platform is chosen as the testbed to emulate
NETCONF-based SDN framework for IHON. We described the core
procedures to simulate the IHON nodes, and establish successful commu-
nication with the chosen SDN testbed. First, we developed YANG model
for the configuration of IHON nodes. As a result, configuration, man-
agement and monitoring of the network is achieved using the controller.
Moreover, the same ODL testbed which is installed in a stationary server
at the Telematics department is used to experiment with the H1 network
at Uninett labs. As a result, we succeeded to connect each node with
the testbed platform, and retrieved their configuration. Lastly, possible
future work is presented as a continuation of this thesis.

Acknowledgement

My thesis has been challenging, but I have enjoyed every moment of
my journey: It is the most fruitful period of my academic work. As SDN
controlled IHON is a newly emerging network paradigm, I have been
energetic and stimulated in my work. I forward my special thanks to my
professor, Steinar Bjgrnstad, for his support throughout the thesis period
which boosted my determination. Moreover, my supervisor, Raimena
Veisllari, has played unceasing role in achieving my goals. Her guidance
is priceless, and her encouragement in times of difficulties helped me to
march forward. By combining my work with their efforts together with
the excellent facilities of NTNU specifically the Telematics department
and Uninett, I have accomplished my thesis objective. Lastly, I would
like to thank for all Telematics community, my friends, and my family
for their daily cooperation and encouragements.

List of Figures
List of Tables
List of Algorithms

1 Introduction
1.1 Motivation

1.2 Objective and Methodology
1.3 Project Structure

2 Integrated Hybrid Optical Network (IHON)
2.1 Classes of Hybrid networks
2.2 Ethernet Streaming in Fusion H1 nodes

3 Software Defined Networking (SDN)
3.1 SDN Architecture and Working Principles
3.2 Network Configuration Protocol (NETCONF)
3.2.1 NETCONF Layering Model
3.2.2 Running NETCONF over SSH Session
3.2.3 NETCONF Datastores
3.2.4 Capability Exchange
3.2.5 Remote Procedure Call (RPC) Model
3.2.6 NETCONF Protocol Operations
3.3 YANG Modeling Language

4 OpenDaylight Platform
4.1 Introduction to ODL
42 WhyODL.............
4.3 ODL Architecture

4.3.1 ODL Controller
4.3.2 MD-SAL Basics

44 RESTCONF

Contents

ix

xi

4.4.1 Supported Operations,
442 RESTCONF Tools

5 SDN framework for IHON

5.1 Evaluating NETCONF- and OF-based SDN for IHON nodes
5.2 SDN/NETCONF setup for IHON
5.2.1 IHON nodes that Support NETCONF monitoring
5.2.2 THON nodes that do not support NETCONF monitoring, but
list YANG models
5.2.3 THON nodes that neither support NETCONF monitoring nor
list YANG models

SDN and Emulated THON Testbed Results

6.1 SDN framework for IHON
6.1.1 Stepl: Simulating IHON nodes with Netconf Testtool
6.1.2 Step2: Developing YANG Schema for ITHON Nodes
6.1.3 Step3: Starting the IHON Nodes
6.1.4 Step4: Connecting the IHON Nodes with ODL controller

6.2 Management of IHON Nodes with the ODL Controller

SDN and Fusion Experiment Results

7.1 HI Network Diagram Setup
7.2 Deploying ODL platform for the H1 network
7.3 Management of Hl Nodes

Conclusion and Future Work
8.1 Conclusion
82 Future Work

References

Appendices

A OpenDayLight Installation and Running

B THON node YANG Schema and Configuration

B.1 THON YANG Schema
B.2 NodeA Configuration
B.3 NodeB Configuration,
B.4 NodeC Configuration
B.5 Retrieved Configuration of NodeA
B.6 Retrieved Configuration of NodeB
B.7 Retrieved Configuration of NodeC

37
37
38
39

41

41

43
43
45
47
50
53
55

61
61
61
64

67
67
68

69

73

75
(0]
7
79
82
84
86
89

C Creating Netconf-connector 93

C.1 Creating New Netconf-connector 93
C.2 Updating netconf-connector 95
C.3 Capability of Netconf Testtool 96
D Capabilities of Emulated THON Nodes 99
D.1 NodeA Capabilities 99
D.2 NodeB Capabilities oo 100
D.3 NodeC Capabilities 101
D.4 Operational data 0oL 102
E Configuration of H1 nodes at Uninett 105
E.1 N1 Capability 105
E.2 N1 Configuration 111
E.3 N2 Configuration 116

E.4 N3 Configuration L oo 121

2.1

3.1

3.2

3.3

4.1
4.2

5.1

List of Figures

Fusion H1 node is composed of ten 1GE client interfaces and two 10
GE line interfaces. The transmission illustrated in this figure is only
unidirectional (left-to-right direction). Moreover, the 10GE interfaces
transports either single Guarented Service Transport (GST) stream or
carries five 1GE GST streams. On the other hand, the 1GEs are used for
local add/drop. GST gap detector measures the exact free time gap which
allows the Statistical Multiplexing (SM) packet scheduler to select and

insert a suitable SM packet from the queues. Figure taken from [VBB13].

Conceptual NETCONF logical layers, and mapping of a sample NET-
CONTF operation to each layer, adopted from [EBS11].

NETCONTF session, showing client and server transaction model. After
establishing connection, both peers exchange their capabilities using hello
messages. After exchanging their capabilities, the client sends requests to
the server as a Remote Procedure Call (RPC) models. The server, then,
responses for each request. Lastly, the server initiates session closing, and
the server sends confirmation and terminates the session.

Datastores of NETCONF protocol: a) <running>: Edits are saved in
Non-Volatile (NV)-storage automatically, b) <startup>: Edits are saved
manually, and ¢) <candidate>: Edits are saved automatically, adopted
from [Cen].

Architecture of Beryllium ODL platform, taken from [ODL16].
Simplified diagram of ODL platform with two sample applications, adopted

from [ODL16]. e

SDN framework based on NETCONF protocol. The control plane consists
of an SDN controller with built-in NETCONF client, and manges the
ITHON nodes in the data plane via NETCONF southbound plug-in. . . .

11

13

15

29

30

39

ix

6.1

6.2

6.3

6.4

6.5

6.6

6.7

7.1

7.2

7.3

7.4

7.5

SDN setup based on NETCONF protocol with three IHON nodes in
the data plane. Only unidirectional (left-to-right) Ethernet streams are
considered. Red and blue correspond to SM and GST streams, respectively.
THON nodes are first connected to the ODL controller (indicated as flow
1). Flow 2 indicates management of the nodes from the controller.

Establishing NETCONF session between client and server. In this case,
the client is the ODL controller while the server is the IHON node.
After establishing connection, both peers exchange their capabilities using
hello messages. Afterwards, NETCONF operations are executed as RPC
models, and the sessions is closed from the controller.
Network connection of the IHON nodes in the data plane. Each node
transports GST and SM streams from different connections which are
depicted as blue and red, respectively. Moreover, only left-to-right flow is
considered. L
Log output for the simulated THON nodes from the Beryllium karaf

distribution which shows successful starting of the nodes at specific ports.

Log output from the Beryllium which indicates successful initialization of
netconf-connector for NodeA.
Log output from the Beryllium which indicates successful initialization of
netconf-connector for NodeB.
Log output from the Beryllium which indicates successful initialization of
netconf-connector for NodeC.

Network setup diagram at Uninett with three H1 nodes and Spirent SPT-
2000 packet generator. GST traffic are depicted in green while SM in red,
and their corresponding paths are depicted at the right bottom side. . .
Log output from the Beryllium controller which shows successful starting
of netconf-connector for N1, N2, and N3.
Captured traffic with Wireshark between the controller and N1 node
which shows the connection establishment, and data delivering with the
PSH and ACK flags. The IP address of the N1 node is changed for
Security issues. oL e
Captured traffic between the controller and N1 node; it specifically shows
the closing of the ongoing session using FIN, and ACK flags.
Flow graph between ODL controller and N1 node

44

46

48

53

%)

56

56

62

65

3.1

4.1

4.2

6.1

6.2

6.3

7.1

7.2

List of Tables

NETCONTF operations along with their descriptions, adopted from [EBS11].

ODL releases [ODLe]: Hydrogen, Helium, Lithium, Beryllium, and Boron
along with their features. oo oL
Basic RESTCONTF operations together with their formats and purposes,
adopted from [ODLb].

Connections in the network given by Virtual Local Area Network (VLAN)
source and destination addresses. oL
Configuration plan for IHON nodes in the SDN setup. Each node’s
interface transports either SM or GST Ethernet stream. Moreover, each
indicates that

interface transports either single or multiple VLANSs.
the interface is free. oo oo
Internet Protocol (IP) address and port number of the IHON nodes in
the SDN setup

Connection set up of N1, N2, and N3; illustrates the stream types and
VLANsineachnode..
IP address and port number for the H1 nodes in the network setup. The
Ip address, username, and password of the H1 nodes are changed for
SECUTIty TEASONS. . . . v v v v v v v e e e e e e e

24

28

34

49

50

54

63

Xi

3.1
3.2
3.3
3.4
3.5

3.6
3.7
3.8
3.9
3.10
3.11

5.1
5.2

6.1
6.2
6.3

List of Algorithms

Capability format, adopted from [Cen]
An example of server capabilities, adopted from [EBS11].
An example of client capabilities, adopted from [EBS11].
Sample method invoking in <rpc>, adopted from [EBS11].
Sample method invoking in <rpc> and <rpc-reply> format, adopted
from [EBS11].
Sample <rpc-error> format, adopted from [EBS11].

Sample <ok> element in <rpc-reply> message, adopted from [EBS11].

Sample <get-config> operation, adopted from [EBS11].
Sample <edit-config> operation, adopted from [EBS11].
YANG schema, e.g, interface schema of a router
NETCONF Extensible Markup Language (XML) representation for
the YANG given in Source code 3.10.
Creating Netconf-connector fornode
Modification of netconf-connector configuration for a node that does
not list its YANG models nor supports netconf monitoring [Com16c].
YANG schema of IHON node interface
YANG schema for listing the VLANs within IHON node
Default configuration data of IHON nodes (an empty data container)

20
20
20
22
23
25

26
40

42
51
52
57

xiii

Introduction

1.1 Motivation

Nowadays, fiber deployment in networks is dynamically growing which implies that the
transmission capacity is increasing to a level beyond the electronic switch processing
capacity [GKB106]. To overcome the switching bottlenecks and slow processing
capacity of electronics, much research have been carried out to introduce fast and
efficient switching solutions with fiber switching technologies [BNO105], such as
wavelength, and all-optical switching. Wavelength switching has slow adaptation for
bursty traffic. As a result, it is less applicable since the bulk capacity of the fiber is
underutilized with this switching technique. Even though all-optical switching is not
practically deployed yet, it is believed to optimize the utilization while maintaining
the advantages of switching in the optic domain and avoiding electronics [GKB™T06].
So, researchers come up with a new adaptive solution by combining the advantages
of both optical circuit and packet switching while minimizing their disadvantages.
This solution is called hybrid optical architecture [GKBT06], and offers efficient
performance and reduces the overall cost [GKBT06]. An Integrated Hybrid Optical
Network (IHON) is a hybrid type of architecture which completely integrates both
packet and circuit switched traffic, and transmits them simultaneously in a single
wavelength. The circuit switched traffic (known as Guaranteed Service Transport
(GST) stream) is assigned an exclusive lightpath, thus has an absolute priority. On
the other hand, the packet switched traffic (known as Statistically Multiplexed (SM)
stream) has best effort priority. Even though the lightpath is exclusively assigned for
the GST traffic, the transmission capacity is not always fully utilized. By inserting
SM traffic in the left over gaps between GST traffic with effective management, the
THON enhances the utilization of transmission capacity while offering guaranteed
Quality of Service (QoS) for the absolute priority traffic.

Moreover, the evolution of networking technology is slow compared with other
technologies of communication systems, e.g. application layer systems [JMD14]. Mul-
tiple set of vendors manufacture different set of routers and switches in accordance

2 1. INTRODUCTION

with their own designs to operate in a closed and proprietary manner. As a result,
networking innovation was hindered, and did not evolve as expected. Hence, integra-
tion of new hardware technologies and services with the existing networks increases
both Operational Expense (OPEX) and Capital Expense (CAPEX). Since control
and data planes are tightly coupled in the architecture of the networks hardware,
management and administration is very expensive in traditional networks. Hence,
such network scenario is known as "inside the box" paradigm. To overcome these
limitation, various industrial and network research communities cooperated to modify
the traditional network and bring solutions.

Among others, Software Defined Networking (SDN) is the most popular scenario
aimed to reshape the programmable network proposals and control-data plane separa-
tions projects [FRZ14]. It focuses on bringing the network "out of the box" paradigm.
SDN objective is to separate the control and data plane thereby centralizing the
intelligence of the network and its state at the controller. As a result, the network ele-
ments in the underlying infrastructure are abstracted from the applications [ONF13b].
Moreover, SDN employs standardized Application Programming Interfaces (APIs)
(for example, OF [ONF13a] and NETCONF [EBS11]) as northbound and southbound
interfaces. While the northbound interface is used to connect applications with the
controller, the southbound interface is used to connect network devices in the data
plane with the controller. So, network devices in the data plane perform forwarding
based on the rules from the controller. Additional advantage of SDN is that it
supervises network resources and transmission of data across heterogeneous domains.
Hence, SDN solves the interoperability problems of network devices from different
vendors [JMD14].

Network devices in the underlying network infrastructure communicate with
the SDN controller via southbound interfaces to allow fast and intelligent network
performance. Fusion H1 prototype nodes are Ethernet switches from Transpacket
company designed based on the THON principles to optimize the utilization of
transmission capacity while offering absolute QoS [Fus13]. They are built based on
NETCONF protocol and YANG data modeling language [VSBR14]. Management
and supervision of traffic flows in the Fusion networks is, so far, NETCONF-based
Network Management System (NMS) and Simple Network Management Protocol
(SNMP) [VBB15]. As a result, we are motivated to experiment SDN controlled THON
focusing on Fusion nodes to replace the existing NMS scenario and to leverage all
the benefits of an SDN controlled network and the THON itself.

SDN has gained special attention by many industrial and academic institutions,
thus multiple set of commercial and open SDN platforms [JMD14] have been proposed.
OpenDayLight (ODL) platform is the testbed that we have chosen for our project; it
is an open source SDN project aimed to realize centralized, programmatic control

1.2. OBJECTIVE AND METHODOLOGY 3

and monitoring of network devices [ODLe]. No work has been done to experiment
ODL platform for IHON. Thus, we are inspired to evaluate NETCONF-based SDN
for THON in general and Fusion H1 nodes in specific with this testbed. Achieving
SDN controlled THON offers mainly two advantages. First, employing IHON in the
data plane enables differentiated QoS for packet networks and absolute QoS for
the circuit networks while optimizing the utilization of the transmission capacity.
Second, implementing SDN allows flexibility and network programmability, and
interoperability with other network domains and devices.

1.2 Objective and Methodology

SDN implementation in today’s network is gaining acceptance as it simplifies the net-
working management and reduce associated OPEX and CAPEX costs. Even though
SDN is highly researched for packet switching technology, it is still undergoing exten-
sion for circuit switching in the optical domain. For example, [DPM™10], [CNRF*13],
and [DPMO09], are SDN framework proposals for hybrid optical networks using OF
as a southbound protocol. On the other hand, Fusion nodes are a special type of
hybrid that uses the same physical wavelength for both circuit switched traffic and
packet switched traffic in an interleaved manner. Additionally, the available IHON
prototype node, Fusion H1 is designed based on on NETCONF which is the main
southbound protocols for communicating with the SDN controller. This facilitates
the possibility of an SDN framework based on NETCONF for THON in general and
Fusion H1 in specific.

This thesis work is a continuation of this author’s specialization project [Ber15],
and the objective is to implement SDN framework for integrated hybrid optical
network focusing on Fusion networks. In the specialization project, it was evaluated
that NETCONF protocol is better than OpenFlow (OF) with respect to complexity
and cost to realize SDN for IHON networks because of the flexibility of the YANG
schema to model all features without needing to extend the protocol itself, as would
be the case with OF. Since multiple set of SDN platforms are widely available, our
primary goal is to select compatible SDN controller for building our testbed, and
enable programmability of the network functions and protocols with the selected
testbed.

We have preferred ODL platform as the working testbed to implement SDN for
THON network. The reasons behind this choice are discussed in detail in Chapter 4.
Since H1 nodes are NETCONF based devices, NETCONF testtool which is an open
source NETCONF/YANG simulator is used to simulate the THON nodes. As a result,
we proposed SDN network setup with the simulation tool in the data plane, and
ODL platform in the control plane. In order to allow management and monitoring
of the node configurations with ODL, postman plug-in is used in the application

4 1. INTRODUCTION

layer. Postman allows us to send Hyper Text Transfer Protocol (HTTP) requests to
the controller using RESTCONF northbound plug-in [Brol5]. RESTCONTF is like a
REST protocol that runs over HT'TP used to access YANG based data by applying
NETCONF datastores [Wat15]. The controller in return translates the requests
and forwards to the nodes in the data plane using Netconf southbound protocol.
Moreover, a network of three H1 nodes in the Uninett lab is used for experimenting
SDN deployment with ODL. The objective is to successfully connect and configure
the network through the SDN controller which is setup remotely in the offices at the
ITEM department, NTNU.

1.3 Project Structure

The document is organized as follows: Chapter 2 describes the key characteristics
and functionality of what ITHON is, emphasizing on scheduling techniques and packet
forwarding schemes in H1 prototype nodes. The SDN architecture is next described
in Chapter 3; it includes a brief background for NETCONF protocol, NETCONF
client-server communication procedures, and associated NETCONF operations. The
chosen SDN controller platform for this project, the ODL architecture, is further
described in Chapter 4. In addition, it includes the description of the other testbed
components: RESTCONF protocol and associated operations together with testing
tools. The results of the theoretical studies of this project are given in Chapter 5
which provides the SDN framework for controlling ITHON. The framework illustrates
an SDN setup for IHON in general with the necessary steps to establish NETCONF
based communication with the controller. Chapter 6 provides the results for the
emulation of NETCONF-based SDN with ODL platform for IHON. Furthermore,
Chapter 7 discusses the experimental results of ODL implementation for H1 network
at Uninett labs. Finally, Chapter 8 gives the conclusion for our thesis work and
possible future work.

Integrated Hybrid Optical Network
(IHON)

In recent years, the deployment of fiber technology offers bulk transmission capacity,
but the utilization is inefficient with the existing switching technologies. As a result,
new proposals such as the hybrid architectures, specifically the IHON has emerged
which combines the advantages of both circuit and packet switching techniques while
diminishing their disadvantages. THON offers guaranteed QoS and optimizes the
utilization of the transmission capacity [GKBT06]. In Section 2.1, we will present the
different categories of hybrid architectures focusing on the Fusion H1 node. Moreover,
Section 2.2 describes the forwarding schemes of Guaranteed Service Transport (GST)
and Statistically Multiplexed (SM) Ethernet streams in H1 network.

2.1 Classes of Hybrid networks

Hybrid networks combine both packet and circuit switching technologies. Accordingly,
there are three categories of hybrid networks based on the integration and interac-
tion depth of the switching technologies: parallel, client-server, and integrated, i.e.
THON [GKB*06]. While parallel and client-server architectures perform switching
in distinct optical network resources, e.g. wavelengths, the ITHON completely inte-
grates both circuit and packets switching and transmits them in a shared wavelength
simultaneously in an interleaved manner without affecting the QoS of the circuit
switching class. These categories of hybrid networks are briefly discussed in Section
2.2 of [Berl5].

Researchers have proposed different solutions based on the THON principles;
Optical packet-switched migration-capable networks with service Guarantees (Op-
MiGua) [BNHO03] and Fusion solutions [Fus12] are the two common types of ITHON.
As described in Section 2.3 of [Berl5], the core objective of these scenarios is to
maximize the utilization of the transmission capacity by inserting packet switched
traffic in the time gaps between circuit switched traffic. While the circuit traffic
(known as GST traffic) has absolute priority, the packet traffic (known as SM traffic)

5

6 2. INTEGRATED HYBRID OPTICAL NETWORK (IHON)

has best effort (BE) priority. A GST gap detector is employed in THON to precisely
detect the time gaps between GST streams. SM packet scheduler, then, inserts
suitable SM packets that fit with the gaps thereby avoiding preemption of SM flows.
As a result, the utilization of the transmission capacity is optimized while offering
guaranteed QoS for GST flows [LTG90].

The main distinctions between OpMiGua and Fusion solution are basically the
mechanism used to distinguish between GST and SM flows, and the forwarding
schemes within the network. OpMiGua splits the incoming flow in to GST and SM
flows using either frequency shift keying (FSK) or fast optical switching techniques
at the input node, and forwards them to the circuit and packet switch, respectively.
By delaying the GST flows using Fiber Delay Line (FDL), suitable SM packets are
inserted in the gaps. Both flows are, then, combined at the output to be forwarded
to the next node [BNHO03]. Section 2.3.1 of [Berl5] provides a brief description for
OpMiGua.

On the other hand, Fusion solution, specifically the H1 node [Fusl3], allows
Ethernet based transport system over optical medium for both GST and SM flows
which assigns distinct Virtual Local Area Network label (VLAN-ID) tags at the input
edge node to distinguish between the two flows. Then, the intermediate nodes forward
them depending only the added tags. At the destination, the edge node strips off the
added tag and delivers the original stream to the corresponding receiver. H1 consists
of two trunk interfaces each 10GE that used for transport of GST transparently via
the Ethernet lines, and ten access interfaces each of 1GE for aggregating either SM
or GST sub-wavelengths to improve the utilization of the channel.

2.2 Ethernet Streaming in Fusion H1 nodes

Although the GST traffic occupies an end-to-end lightpath, there is still unused
capacity which lowers the utilization. So, H1 node provides a solution to detect the
free time gaps, and insert there suitable packets to optimize the utilization without
touching the dedicated services. Figure 2.1 illustrates the gap filling mechanism in H1
nodes. By correctly tagging the incoming flows at the input node, GST flows arriving
at the input interface are forwarded to the output trunk-interface with absolute
priority. On the other hand, SM flows are first processed, buffered, and transmitted
only if free time gaps are detected, otherwise wait in the queue (buffer) for latter
forwarding until an available fitting time-gap.

Unlike OpMiGua which employs FDL to detect the gaps between GST flows,
Fusion H1 node applies an electronic delay, a fixed time window, to precisely measure
the gap. Then, a packet scheduler scans the queues for a suitable SM packet that
fits with the detected gap and inserts it without affecting the GST flow. As a result,

2.2. ETHERNET STREAMING IN FUSION H1 NODES 7

1 Gb/s Ethernet Interfaces (1GE)

SM Output 1-x Sub-lambda GST (max 5) SM Input 1-x

Qlj Q Qs Q) @ Qs
y_¥___ ¥

SM DMUX GST awere GST gap SM packet
\GST aggregator/

(SM drop) [_L_ .-_l detector | | scheduler

|— MUX/DMUX SM add
T
El—n I 1 : | = | Delay & = Lmax/
> Capacity
10GE GST mnput (10 Gb/s) 10GE GST output

Figure 2.1: Fusion H1 node is composed of ten 1GE client interfaces and two 10
GE line interfaces. The transmission illustrated in this figure is only unidirectional
(left-to-right direction). Moreover, the 10GE interfaces transports either single GST
stream or carries five 1GE GST streams. On the other hand, the 1GEs are used for
local add/drop. GST gap detector measures the exact free time gap which allows
the SM packet scheduler to select and insert a suitable SM packet from the queues.
Figure taken from [VBB13].

packet delay variation of GST packet is avoided in Fusion H1 nodes unlike the
electronic scheduling algorithm, while not pre-empting SM packets either [VBB13].
A very brief discussion about the forwarding scheme and scheduling techniques of
the HI nodes is given in Section 2.4 of [Berl5].

In conclusion, IHON is a promising hybrid architecture which combines the
advantages of both circuit and packet switched traffic while diminishing their disad-
vantages thereby optimizing the capacity utilization and achieving guaranteed QoS
for the absolute priority traffic. In the next chapter, we will discuss SDN platform,
NETCONF southbound protocol and associated operations.

Software Defined Networking
(SDN)

This chapter presents SDN and the southbound protocol to communicate with
the network nodes (data plane), the NETCONF protocol. Section 3.1 describes
about SDN roots and its architecture while Section 3.2 gives a brief background
to NETCONF protocol. In Section 3.2.1, we provide the layering architecture of
NETCONF. After that, we present NETCONF-based client-server communication
using Secure Shell (SSH) session. We also include an overview of NETCONF
datastores, capability exchanges, and set of NETCONF operations. Finally, we
discuss YANG data modeling language which is needed to model the nodes (abstract
them) and present the information to the controller to be able to operate/control
the data plane in Section 3.3.

3.1 SDN Architecture and Working Principles

SDN is a recently evolving networking technology which decouples the control and
data plane which are integrated in a vertical architecture in traditional network equip-
ment. As a result, it enables programmability of both network functions and protocols
using a centralized controller which hosts network operating system [CNRF113].
The purpose of the logical controller is to abstract the switching technology and
transport system in the underlying infrastructure, and build and present a logical
map of the complete network to applications and services that run on top it. Network
operators are, therefore, able to manipulate logical map of the network and create
virtual networks. Since the control and data planes are separated, the logically cen-
tralized control plane supports supervision of multiple and heterogeneous transport
technologies from various domains.

Furthermore, SDN has three main layers: application, control, and infrastructure
layers [ONF13b]. Application layer is a collection of end-user applications that run
on top of the controller for specific function, for example, provisioning end-to-end
connectivity /services, traffic engineering, load balancing, etc. Control plane, on the

9

10 3. SOFTWARE DEFINED NETWORKING (SDN)

other hand, consists of SDN controllers which manage the underlying network devices
in the data plane through standardized southbound APIs. It also provides, north-
bound interfaces to communicate with the applications. Lastly, Infrastructure layer
is the data plane which includes Network Elements (NEs) that perform forwarding
and switching of packets based on the instructions from the controller.

Multiple network vendors have focused their research on the southbound interface,
for example, [JMD14] and [CNRF*13] to allow SDN realization with a central-
ized controller over heterogeneous network devices, thus avoid the interoperability
problems. To mention a few, OF and NETCONF protocols, are examples of the
southbound interfaces. OF protocol [ONF13a], is the most researched protocol for
packet switched networks [GDST10]. On the other hand, NETCONF is mostly
applicable for NMS [SWJR"94] [HGRGO6].

In this project, the objective is to apply NETCONF protocol as a southbound
interface in realization of SDN for Fusion nodes. Hence, we will discuss NETCONF
protocol and associated operations in the section below.

3.2 Network Configuration Protocol (NETCONF)

The Network Configuration Protocol (NETCONF) is a protocol used for installing,
manipulating, and deleting of network devices configuration [EBS11]. Both configu-
ration data and protocol messages are based on XML encoding data. In NETCONF,
the functionality of the management protocol and native functionality of the device
are mirrors of each other. As a result, implementation costs are greatly reduced.

3.2.1 NETCONF Layering Model

NETCONTF is logically divided in to four layers [EBS11], secure transport, messages,
operations, and content layers as illustrated in Figure 3.1.

1. Secure Transport layer: is a medium used client-server communication, and
can be any transport protocol that satisfies a set of requirements. Below are
listed the requirements that the underling transport protocol should satisfy in
order to fulfill the NETCONF functionality.

— Connected-Oriented Operation: The connection in NETCONF is main-
tained throughout the communications of the peers, i.e. NETCONF is
a connection-oriented protocol. Thus, the connection is always reliable,
long-lived, and delivers ordered data. Moreover, when connection termi-
nates, the resources being requested from server must be automatically
released which allows easier failure recovery and robust system.

— Conlfidentiality, Integrity, and Authentication: Confidentiality, Integrity,
and Authentication (CIA), are the main security features that NETCONF

3.2. NETWORK CONFIGURATION PROTOCOL (NETCONF) 11

h
Layers 1 NETCONF ’1‘ Example
Content Configuration Notification <rpc message-id="1"
data s xmins="urn:ietf:params:xmlkns:netconf:
l l base:1.0">
i <get> <edit-configs
Operations <get-config> Je]
l l <config>
content...
e </config>
Messages <IpC> <notification>
| ‘ ‘ </edit-config>
Secure SSH ey
\L‘ ‘L

Figure 3.1: Conceptual NETCONF logical layers, and mapping of a sample
NETCONTF operation to each layer, adopted from [EBS11].

expects from the transport protocol. In addition, NETCONF must allow
the reply to be protected. Based on the underlying protocol, connection
between peers can be encrypted either using SSH [YL06d] or Transport
Layer Security (TLS) [DROS].

— Mandatory Transport Protocol: Since NETCONF is transport indepen-
dent protocol, mapping of various transport protocols is possible. Similarly,
multiple set of session layers can be mapped to the session-layer of NET-
CONF protocol. Hence, implementation of NETCONF protocol must
support mapping of SSH transport protocol which allows a user or an
application to execute NETCONF from a secure shell session.

2. Messages Layer: RPCs and notifications are encoded using easy and transport-
independent framing techniques in this layer.

3. Operation Layer: Base protocol operations supported by NETCONF are
defined in operation layer, and invoked in the form of RPC methods including
XML-encoded parameters, e.g. edit-config, get, get-config, etc.

4. Content Layer: This layer contains both notification and configuration data.
Moreover, content layer is well formed in XML.

The YANG data modeling language is used to define protocol operations and
NETCONF data models which mainly includes the content and operation layers of the
NETCONTF layers [MB10]. As a result, the hierarchical organization of NETCONF
operations, configuration and state data, notifications, and RPCs are modeled using
YANG as a tree. Each node in the tree has a name, and either a value or child nodes.
A detailed discussion of YANG is given in Section 3.3.

12 3. SOFTWARE DEFINED NETWORKING (SDN)

3.2.2 Running NETCONF over SSH Session

SSH protocol is a mechanism to provide secure network services mainly secure remote
login over an insecure network. SSH protocol has three main components [YL06d].
1. Transport Layer Protocol [SSH-TRANS]: This component is responsible for pro-
viding confidentiality, Integrity, and authentication of a server over Transmission
Control Protocol (TCP)/IP connection with perfect forward secrecy [YLO6c].
2. User Authentication Protocol [SSH-USERAUTH]: Provides authentication of
the user in the client-side to the server [YLOG6a].
3. Connection Protocol [SSH-CONNECT]: Multiple set of logical channels are
multiplexed in to an encrypted tunnel using the connection protocol [YLO6b].
NETCONTF is implemented in SSH session using the SSH connection protocol
over SSH transport protocol [WG06]. As a result, an application or a user can
execute NETCONF operations from a secure shell session. Applying the existing
SSH protocol allows to reduce the key management operational costs. Furthermore,
a single transport layer carries more than one logical channel. The two ends of the
SSH transport connection are called client and server; the server is a network device,
e.g. the H1 node, whereas the client can be either a script or an application running
as a network manager, e.g. the SDN controller. NETCONF uses RPC-based scenario
to enable client and server communications. The client-server communication is
depicted in Figure 3.2.

The connection is first established from the client with SSH transport proto-
col [YLO6a]. Afterwards, both peers exchange an integrity and encryption keys
to authenticate each other. In order to authenticate the user, the client invokes
"SSH-USERAUTH" service. Following successful authentication of the user, the
client invokes "SSH-CONNECT" to establish SSH session. Using the established
SSH session, the client invokes "netconf" to run NETCONF as an SSH subsystem.
By doing this, the script will ignore shell prompts and extraneous information, like
system messages at shell start-up. NETCONF servers are set to access the "netconf"
SSH subsystem after the SSH session is established. As a result, network devices
and firewalls easily identify and filter NETCONF traffic. In order to invoke the
NETCONF as an SSH subsystem over a specific port, the user (or application) uses
the command [YLO06a]: [user@client[$ ssh -s server -p <port-number> netconf, where
-s option enables the "netconf" command to be invoked as SSH subsystem.

After the establishment of NETCONF session, the server forwards a <hello>
message in an XML format that contains its capabilities. Referring to the received
capability, the user parses it to determine the server’s NETCONF capabilities.
Similarly, the client sends its capabilities to the server within a <hello> message.
In reality, however, both peers send the <hello> messages immediately after the
NETCONTF subsystem is initiated, may be simultaneously [YLO06a].

3.2. NETWORK CONFIGURATION PROTOCOL (NETCONF) 13

Establish Connection
SSH Transport Connection

Capability Exchange
<hello>

Client Server
NETCONF operation

<rpc> <rpc-reply>

End session
<close-session=/<kill-session=

Figure 3.2: NETCONF session, showing client and server transaction model. After
establishing connection, both peers exchange their capabilities using hello messages.
After exchanging their capabilities, the client sends requests to the server as a RPC
models. The server, then, responses for each request. Lastly, the server initiates
session closing, and the server sends confirmation and terminates the session.

By this time, NETCONF protocol session is established, thus the client side acts
as a manager while the server side becomes an agent. Hence, the manager executes
NETCONF operation by sending XML documents which contain <rpc> request to
the server. The agent in turn responses back for each <rpc> request with full XML
documents that are contained in <rpc-reply> messages.

To end the NETCONF session, the client executes either <close-session> or
<kill-session> operation. Since the agent processes RPC messages in a sequential
order, all RPC messages received after <close-session> are ignored. Having received
this message, the agent responds with <ok> message, and closes the SSH session
channel immediately [YLO6a].

A network system contains multiple network devices connected to a single client.
Since NETCONF is able to establish multiple sessions [EBS11], parallel NETCONF
sessions are created between a single client and multiple devices. As a result, multiple
remote devices are easily managed through a single client. In the following sections
we will briefly discuss the basic concepts regarding NETCONF datastores, capability
exchanges, and RPC which help to accomplish client-server transaction.

14 3. SOFTWARE DEFINED NETWORKING (SDN)

3.2.3 NETCONF Datastores

A running system is composed of state and configuration data [EBS11]. Configuration
data is a well defined writable data which essentially brings the system to its
current state from its initial default state. On the other hand, data other than the
configuration data which exists in the system is called state data. For example,
statistics and read-only data are state data. As a result, the NETCONF protocol not
only differentiates configuration data from state data but it also provides distinct
operations to access each data separately. Moreover, at least one configuration
datastore is available that handles configuration operations. A configuration datastore
is a full set of configuration data that transforms a device to the desired operational
level from initial default level. Neither state data nor executive commands can
not exist in the configuration datastore. Overall, there are three types of standard
configuration datastores [EBS11].

1. Running configuration datastore: It contains the whole set of configuration
which is currently running on the device. There is only one running configuration
datastore in a device, and it must be always active which is illustrated in
Figure 3.3 part a. NETCONF protocol operations use the <running> element
to access the running configuration datastore. If a device supports additional
configuration datastores, it advertises in its capabilities to the client. Both
<candidate> and <startup> are the two types of configuration data stores
that a device can advertise.

2. Candidate configuration datastore: A device which supports a candidate datas-
tore expresses its capability as :candidate during capability exchange. Candidate
is a storage with complete configuration data set where we can manipulate and
create configuration data. It is possible to modify, add, delete the data so as to
build the required configuration data. As a result, running configuration of the
device is set to the current value of the candidate configuration via <commit>
operation as depicted in part c of Figure 3.3.

3. Startup configuration datastore: As its name indicates, startup configuration
is implemented at the next reboot, and is advertised as :startup capability.
Since operations in the running configuration are not immediately copied to
the startup configuration, an explicit copy operation, i.e. <copy-config>, is
executed to update the contents. This is illustrated in part b of Figure 3.3.

Therefore, a device can support all the three datastores. However, the running
datastore may or may not be directly writable (this capability is expressed as :writable-
running which is described in the following section, Section 3.2.4). If device does not
advertise this capability, editing and copying of configuration data are executed in the

3.2. NETWORK CONFIGURATION PROTOCOL (NETCONF) 15

<edit-config> .)
<co py-oonﬁg> I:> <runni ng> Automatic NV-save

a)

<copy-config>

<edit-config> =l crunNI ng>]t <startup> wmanua Nv-save

<copy-configs>

b)

<commit>
<edit-configz—="s <candidate |:> <running> Automatic NV-save

<copy-configs
c)

Figure 3.3: Datastores of NETCONF protocol: a) <running>: Edits are saved in
NV-storage automatically, b) <startup>: Edits are saved manually, and ¢) <candi-
date>: Edits are saved automatically, adopted from [Cen)].

candidate datastore. Both the IHON nodes used in our emulation and the H1 nodes
from Uninett lab, support :candidate capability as illustrated in Appendix C.3 and
Appendix E.1, respectively. Hence, we execute NETCONF operations, e.g. editing
and retrieving their configurations using the candidate datastore which is briefly
discussed in Chapter 6 and Chapter 7.

3.2.4 Capability Exchange

Capability defines the functionality supported above the base NETCONF specifica-
tions, and is specified using Uniform Resource Identifier (URI) [Cen]. During the
initial capability exchange, both server and client advertise their capabilities. As
a result, each peer is considers the capabilities that it supports otherwise ignore if
received from unknown source. Source code 3.1 shows the capability format [EBS11].
In this case, name is the capability name. Whenever we want to reference capabilities
in emails or discussions, we use shorthand :{name}, or we concatenate the version as
:{name}:{version} when the capability is found in multiple versions.

Source code 3.1 Capability format, adopted from [Cen]

urn:ietf:params:netconf:capability:{name}:1.x

16 3. SOFTWARE DEFINED NETWORKING (SDN)

Both client and server send a <hello> message that contains their capabilities
when the NETCONTF session is opened. It is required that each peer must forward
minimally the base NETCONF capability, "urn:ietf:params:netconf:base:1.1" [EBS11].
Moreover, both peers must have common protocol version, and should compare
the URIs of the protocol version capability. When the URI contains any encoded
parameters at its end section, the base part is only used. If there is no common
protocol version, the peers must terminate the session. If multiple version URIs
occur, the peers must use the most recent (i.e. the highest numbered) protocol
version. [EBS11]

When a server sends the <hello> message, it must add a <session-id> element
which identifies the NETCONF session. On the contrary, the client does not add
a <session-id> element when it sends <hello> element. Moreover, a server must
end the NETCONF session if it receives <hello> message along with <session-id>
element. The client, however, terminates the session if it does not found a <sesson-id>
element within the <hello> message of the server. Below are listed the NETCONF
base capabilities [EBS11].

1. Writable-Running Capability: The :writable-running indicates the <running>
configuration datastore can be written directly. If the target datastore is
<running> configuration, both <edit-config>> and <copy-config> operations
are supported in the device. This specific capability has the following format:

urn:ietf:params:netconf:capability:writable-running:1:0

2. Candidate Configuration capability: The :candidate implies that the candidate
configuration data exists in the device, and it is supported. The :candidate
capability is expressed and identified as follows:

urn:ietf:params:netconf:capability:candidate:1.0

3. Confirmed commit Capability: The :confirmed-commit:1.1 capability is used
to indicate that <cancel-commit> operation is supported in the server. Addi-
tionally, the parameters in <commit> operation, such as <confirmed> and
<confirm-timeout> are also supported. The :confirmed-commit:1.1 capability
is available as long as the :candidate capability is supported, and is expressed
as follows:

urn:ietf:params:netconf:capabiilty:confirmed-commit: 1.1
4. Rollback-on-Error Capability: The :rollback-on-error capability implies that
whenever an error is encountered, the server will rollback to the previous state.

In other words, when performing <edit-config>> operation, the <error-option>
parameter has "rollback-on-error" value which has the following format:

urn:ietf:params:netconf:capability:rollback-on-errror:1.0

3.2. NETWORK CONFIGURATION PROTOCOL (NETCONF) 17

5. Validate Capability: Validation is checking the syntactic and semantic errors
of a complete configuration before implementing it to the server. The :walidate
capability indicates that the <validate> protocol operation is supported, and is
used to check for syntax errors. The following string identifies the :validate:1.1
capability:

urn:ietf:params:netconf:capability:validate: 1.1

6. Distinct Startup Capability: In this scenario the startup and running configu-
ration datastores are separated in the server. As soon as the device boots, it
is loaded with the startup configuration. However, the startup configuration
will not get automatic copy of the running configuration operations. Thus, it
is explicitly copied using the <copy-config>> operation. the :startup capability
has the following format:

urn:ietf:params:netconf:capability:startup:1.0

7. Uniform Resource Locator (URL) Capability: When the :url capability is
advertised, the <target> and <source> parameters of the NETCONF peer
will accept <url> element. URL arguments which indicate all the supported
URL schemes, are used to identify :url capability which is identified as follows:

urn:ietf:params:netconf:capability:url:1.09scheme={name,... }

The "scheme" argument is mandatory for the :url capability, which con-
tains the list of schemes supported by the NETCONF peer separated by a
comma as shown in the example below:

urn:ietf:params:netconf:capability:url:1.0?scheme=nhttp, ftp,file

8. XML Path (XPath) Capability: The :zpath capability implies that the <filter>
element uses XPath expressions. The root node of the XPath expression in the
data model contain children probably with any number of element nodes. The
following string identifies the :zpath capability:

urn:ietf:params:netconf:capability:xpath:1.0

Source code 3.2, and 3.3, are sample NETCONF capabilities of server and client,
respectively. As can be seen, both peers advertise the base NETCONF capability.

Furthermore, in our emulation, the simulation tool supports :candidate and :base
capabilities as shown in Appendix C.3, and the supported NETCONF operations are
discussed in Section 6.1.1. On the other hand, for the lab experiment, we use Fusion
H1 nodes from Uninett lab. The H1 nodes support extra capabilities in addition to
those supported by the simulation tool; for example, :confirmed-commit, :validate,
and others as illustrated in Appendix E.1. Consequently, the H1 nodes support more
NETCONF operations as compared with the simulation tool.

18 3. SOFTWARE DEFINED NETWORKING (SDN)

Source code 3.2 An example of server capabilities, adopted from [EBS11].

<?xml version="1.0" encoding="UTF-8"7>
<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<capabilities>
<capability>
urn:ietf:params:netconf:base:1.1
</capability>
<capability>
urn:ietf:params:ns:netconf:capability:startup:1.0
</capability>
</capabilities>
<session-id>4</session-id>
</hello>
11>11>

Source code 3.3 An example of client capabilities, adopted from [EBS11].

<?7xml version="1.0" encoding="UTF-8"7>
<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<capabilities>
<capability>
urn:ietf:params:netconf:base:1.1
</capability>
</capabilities>
</hello>
11>11>

3.2.5 Remote Procedure Call (RPC) Model

NETCONTF protocol applies RPC paradigm in client-server communication [EBS11].
Before the client sends an RPC to a server via a secure and connection-oriented
session, it first encodes the RPC using XML. The response from the server is also
encoded in XML. In order for both client and server to understand the syntax
constraints during the transaction, all the contents of request and reply are described
in XML schema. In RPC, the NETCONF requests and responses are framed using
transport-protocol independent mechanism; the client uses <rpc> to frame the
requests while the server uses <rpc-reply> elements to frame the responses. The
basic RPC elements are <rpc>, <rpc-reply>, <rpc-error>, and <ok> [EBS11], and
we will briefly discuss each element below.

3.2. NETWORK CONFIGURATION PROTOCOL (NETCONF) 19

<rpc> Element

When a client sends NETCONF request to the server, the request is enclosed using
<rpc> element which is identified by "message-id" attribute [EBS11]. This attribute
is a mandatory field, and encodes an increasing integer in a monotonic way. Moreover,
the RPC contains a name and parameters which are all encoded as values of the
<rpc> element. Source code 3.4 illustrates, an interface configuration invoked two
parameters, <port> and <ip-address>.

Source code 3.4 Sample method invoking in <rpc>, adopted from [EBS11].

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<interface-method
xmlns="http://example.net/interfaces/interface/1.0">
<port>80</port>
<ip-address>127.17.0.2</ip-address>
</interface-method>
</rpc>

<rpc-reply> Element

When <rpc> message request is sent, the response is <rpc-reply>, and has mandatory
and equal "message-id" attribute as the request [EBS11]. If the <rpc> element
contains other additional attributes, the server must return them unmodified within
the <rpc-reply> element. Moreover, the <rpc-reply> element contains child elements
that represent the response data. For example, Source code 3.5 illustrates a <get>
method invoked in the <rpc> element which includes "interface-type" attribute.
Hence, we can see that the "interface-type" attribute and the requested content are
returned in the <rpc-reply> element.

<rpc-error> Element

If an error is encountered while processing the <rpc> request, the <rpc-reply>
includes an <rpc-error> element to indicate the failure [EBS11]. Even though more
than one errors could occur in the <rpc> request processing, the server only detects
or reports a single <rpc-error> element. Moreover, the server does not follow specific
procedure for checking error conditions that occur during processing, rather it must
response <rpc-error> for any occurrence of error conditions. Source code 3.6 shows
the reply from a server with <rpc-error> element.

20 3. SOFTWARE DEFINED NETWORKING (SDN)

Source code 3.5 Sample method invoking in <rpc> and <rpc-reply> format,
adopted from [EBS11].

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:ex="http://sample.net/interfaces/1.0"
ex:interface-type="eth">
<get/>
</rpc>

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:ex="http://sample.net/interfaces/1.0"
ex:interface-type="eth">
<data>
<!-- all contents... -->
</data>
</rpc-reply>

Source code 3.6 Sample <rpc-error> format, adopted from [EBS11].

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<rpc-error>
<!-- error contents... -->
</rpc-error>
</rpc-reply>

<ok> Element

If the <rpc> request is successful (i.e. without warnings or errors), and the operation
responds no data, then <ok> element is replied in the <rpc-reply> messages [EBS11].
Source code 3.7 shows the <rpc-reply> with <ok> element.

Source code 3.7 Sample <ok> element in <rpc-reply> message, adopted
from [EBS11].

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>

3.2. NETWORK CONFIGURATION PROTOCOL (NETCONF) 21

3.2.6 NETCONF Protocol Operations

Using NETCONF operations, the client can manage the network device configurations
and its information state. Although the device can advertise multiple set of operations
during capability exchange, the base protocol operations are mainly configuring,
retrieving, copying, and deleting of the configuration datastores [EBS11].

<get-config>

<get-config> is an important NETCONF operation used both in our emulation
and experiment. Since configuration and state data are separated in NETCONF
protocol, they are accessed using base operations either separately or together. The
<get-config> is used to access configuration datastore, and retrieves all or part of
it. When the request is successful, the sever sends <data> element containing the
results for the query within the <rpc-reply> message. Source code 3.8 illustrates
<get-config> operation to retrieve the all interfaces. The <get-config> has the
following parameters [EBS11]:

— source: Indicates the configuration datastore to be queried, such as <running/>.

— filter: If only specific section is needed to be retrieved, filter element is used.
Otherwise, the response contains all the configuration data. The syntax filter
within the <filter> element is represented using the "type" attribute, though it
is optional.

<edit-config>

The target configuration datastore can be loaded with a specific configuration using
the <edit-config> operation. The target configuration datastore is created unless
it previously existed. Moreover, the <config>> parameter can be replaced by <url>
element if :url capability is supported by a NETCONF peer [EBS11].

Like the <get-config> operation, the <edit-config> is an important operation
that we implemented in our testbed to edit the configurations of simulated THON
nodes and H1 nodes at Uninett lab. As oppose to <copy-config> which replaces
the target configuration, the <edit-config> operation simply modifies the target
configuration depending on the requested operations and the data from the source.
As a result, the target configuration datastore is edited with the new config elements.
Source code 3.9 shows adding a new interface to the node.

In addition to the above operations, NETCONF has other operations which are
summarized in Table 3.1.

22 3. SOFTWARE DEFINED NETWORKING (SDN)

Source code 3.8 Sample <get-config> operation, adopted from [EBS11].

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<get-config>
<source>
<running/>
</source>
<filter type='"subtree">
<top xmlns="http://sample.com/schema/1.2/config">
<interfaces/>
</top>
</filter>
</get-config>
</rpc>

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<top xmlns="http://sample.com/schema/1.2/config">
<interfaces>
<interface>
<name>Ethernet0/1</name>
<ip-address>127.12.13.1</ip-address>
<prefix>24</prefix>
</interface>
<!-- additional <interface> elements appear here... -->
</interfaces>
</top>
</data>
</rpc-reply>

3.3 YANG Modeling Language

The NETCONF protocol (mainly configuration and state data, RPC, notifications)
is modeled using YANG data modeling language. Moreover, All the data within the
client-server transaction is defined using YANG [MB10]. Data models are structured
into modules and submodules, where a module can import data nodes from other
modules. As a result, YANG allows to augment the module hierarchy. A data is
modeled using four types of nodes: container, list, leaf-list, and leaf nodes. These
nodes have their own YANG syntax and can be converted in to equivalent NETCONF
XML format. Like other programming languages, YANG also has built-in types.
Furthermore, YANG allows users to define their own types derived from the built-in

3.3. YANG MODELING LANGUAGE 23

Source code 3.9 Sample <edit-config> operation, adopted from [EBS11].

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<edit-config>
<target>
<running/>
</target>
<config>
<top xmlns="http://sample.com/schema/1.2/config">
<interface>
<name>Ethernet0/2</name>
<ip-address>127.12.13.2</ip-address>
<prefix>24</prefix>
</interface>
</top>
</config>
</edit-config>
</rpc>

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>

types. A brief description of the YANG data modeling language is briefly discussed
in Section 3.3.2 of [Berl5].

A sample YANG module is given in source code 3.10 which represents an interface
configuration of a router. Since the router can have more than one interface, we
use the list node in order to list all the interfaces of the router. Moreover, the
specification of each interface is defined using leaf node which includes its name, type,
and address. The equivalent NETCONF XML representation for this particular
YANG schema with sample interface configurations is depicted in source code 3.11.

In this chapter we briefly discussed SDN, NETCONF protocol, and YANG. We
have seen that, implementing SDN in today’s network allows programmable and cost
effective management of heterogeneous networks. Furthermore, we presented the
NETCONF datastores and its basic operations. Dividing NETCONF in to logical
layers allows easier client-server interaction. Moreover, we have seen that client and
server establish secure connection, and exchange their capabilities before executing
NETCONF operations. As YANG is used to model NETCONF configuration of
THON, we have also covered the basic concepts. In the following chapter, we will

24 3. SOFTWARE DEFINED NETWORKING (SDN)

Table 3.1: NETCONF operations along with their descriptions, adopted
from [EBS11].
NETCONF Description
Operation
<copy- Configuration is copied from source to target configuration datas-
config> tore.
<delete- Delete a configuration datastore identified by the target parameter
config> with the exception of <running> datastore.
<lock> Used to lock the target configuration datastore.
<unlock> The configuration datastore is unlocked.
<get> Uses filter option in order to select a specific running configuration
and/or state information of the device.
<close- Closes ongoing session in a graceful manner.
session>
<kill- Forceful kiling of the session session.
session>
<commit> When device advertises candidate capability, candidate configura-
tion datastore is committed to running configuration.
<discard- Candidate configuration is restored back to running configuration
changes> datastore.
<validate> Used to validate a source configuration datastore contents.
<create- A notification stream is subscribed by specifying the start and
subscription> | stop times, and a filter

discuss the background to ODL testbed, its implementation and associated tools

used to execute operations.

3.3. YANG MODELING LANGUAGE 25

Source code 3.10 YANG schema, e.g, interface schema of a router
module router {

yang-version 1;

namespace '"urn:ntnu:router";

prefix router;

description "router interface configuration";

revision "2016-06-06" {
description "Initial version.";
}
container router {
list interfaces{//contains a definition for a port
key "given-name";/*the port name is set as
a unique identifier of the portx*/
leaf given-namef{
type string;
}
leaf-list typed{
type string;
}
list address { //defines the ip address for the interface
key "ip-address"; //set ip address as a key
leaf ip-address {
type yang:ip-address;

}

leaf net-mask{//set the subnet mask
type int32;

}

26 3. SOFTWARE DEFINED NETWORKING (SDN)

Source code 3.11 NETCONF XML representation for the YANG given in Source
code 3.10.

<router xmlns="urn:ntnu:router">

<router>
<interfaces>
<given-name>FastEthernet0/0</given-name>
<type>atm</type>
<address>
<ip-address>192.168.208.1</ip-address>
<net-mask>24</net-mask>
</address>
</interfaces>

<!--other interface configurations-->

</router>
</router>

OpenDaylight Platform

This chapter presents the testbed that we have built and implemented (extended)
SDN for the IHON. In Section 4.1, we provide a brief background to the chosen ODL
platform focusing on its role to achieve the SDN goals. Section 4.2 gives the core
reasons for choosing ODL platform over other SDN platforms while Section 4.3 covers
the layering architecture of the ODL platform including the controller and Model
Driven (MD)-Service Abstraction Layer (SAL) data storage. Moreover, Section 4.4
describes RESTCONF protocol and basic operations along with the testing tools.

4.1 Introduction to ODL

SDN separates the control and data planes, thus all network functions and protocols
are programmable [JMD14]. A central controller abstracts the data plane, and
network devices in the data plane perform forwarding based on the instructions from
the controller. Multiple network vendors are providing SDN controllers in order to
accomplish the SDN objectives [ODLe|. Even though some controllers like NOX?,
are commercial versions, many open source controllers are readily available and still
going developments (for example, POX?, Beacon®, and ODL).

The ODL project which is an open-source facilitates the SDN adoption and
Network Functions Virtualization (NFV) [ODLe]. Irrespective of the differences
between vendor environments, ODL offers network services across heterogeneous
network devices. In order to provide such services, ODL employs microservices
architecture which enables users to successfully control protocols, applications, and
plug-ins, and create connections between providers and customers. Large community
is involved in the ODL development, and new versions are released every six months
as summarized in Table 4.1.

Thttp://www.noxrepo.org/nox/about-nox/
2http://www.noxrepo.org,/pox/about-pox/
3https://openflow.stanford.edu/display/Beacon/Home

27

28 4. OPENDAYLIGHT PLATFORM

Table 4.1: ODL releases [ODLe]: Hydrogen, Helium, Lithium, Beryllium, and
Boron along with their features.

Version Release year | Features

Hydrogen Feb 2014 Contains open code controller, protocol plug-ins
and virtualizations capability

Helium Nov 2014 Applies karaf and model-driven network manage-
ment for more appropriate network environment

Lithium Jun 2015 Clustering is introduced, and new network proto-
cols are supported via additional plug-ins

Beryllium Feb 2016 Provides clustering and high availability, data
handling is improved, transport messaging, large
scale of network management, network models
are highly abstracted, and new Graphical User
Interface (GUI).

Boron Not released | under review
yet

The architecture of most networks is designed to support the workloads and
requirements of the existing demand. With the implementation of SDN, however, the
existing network can be optimized to fit today’s needs, as well as adapt to changing
requirements. Since SDN can be implemented in different ways, ODL provides a
common platform which is possible to be configured in variety of ways so as to address
a range of network challenges. By integrating open source, open API, and open
standards, ODL delivers an SDN scenario which allows programmable, intelligence,
and adaptable network [ODLd]. The steps for installing and running ODL platform
is given in Appendix A.

4.2 Why ODL

Compared to traditional SDN platforms, ODL based SDN has the following basic
features [ODLal.

— ODL project is an opensource where huge developing community is participating
and support its implementations, such as Cisco, Ericsson, and at&t*.

— ODL has microservices architecture. During installation of the ODL controller,
a user activates a particular service or protocol depending on the application
requirements; this is referred to as a micro-service. For example, NETCONF
feature is installed to allow Netconf-based network devices, like IHON to connect
with the ODL through NETCONF southbound plug-in.

4https://www.opendaylight.org/membership

4.3. ODL ARCHITECTURE 29

* OPEN 4th Release “Beryllium”
duction-Ready Open SDN Platform

Base Network Functions | { Enhanced Network Services) Network Abstractions
(Policy/Intent)

=== DO vesgnttangon (I
TR | - . e serr oty ¢ e
- 1]

=
l_l_ l_l_ o]

Figure 4.1: Architecture of Beryllium ODL platform, taken from [ODL16].

— In addition to NETCONF, ODL supports other network protocols such as OF,
Border Gateway Protocol (BGP), SNMP, and more.

— Allows for development of new functionality including network services and
protocols.

4.3 ODL Architecture

ODL is a modular platform where most modules reuse common interfaces and
services [ODLd]. By using the model-driven service abstraction of the ODL, users are
able to develop applications which run over multivendor hardware and southbound
protocols. As a result, functionality of the platform bundles is leveraged, and each
bundle uses java interfaces to export relevant services. Additional functions and
services are added via internal plug-ins. For example, the topology and statistics of
the network are gathered using dynamic plug-ins.

The architecture of the ODL platform for the most current release, i.e. the Beryl-
lium version, is depicted in Figure 4.1; it shows a very detailed internal architecture
of the platform. A simplified view is illustrated in Figure 4.2. Overall, ODL is three
layered architecture [ODL16]:

1. Network Applications and Orchestrations: This layer is composed of various
applications which are responsible for computing network traffic engineering,
mainly controlling and monitoring of the controller. Furthermore, it contains
solutions which use virtualization services.

2. Controller: The abstraction of SDN is implemented in the central layer, i.e. the
controller layer. Additionally, network applications use various modules located
in the controller layer to retrieve information regarding the network status. The

30 4. OPENDAYLIGHT PLATFORM

RESTcon

JVM

Figure 4.2: Simplified diagram of ODL platform with two sample applications,
adopted from [ODL16].

controller further contains plug-ins which allow communications with various
network protocols like, NETCONF, BGP, and OF. Different applications can
be developed using the APIs from the controller layer.

3. Data plane: Either virtual or physical interfaces constitutes to the data plane
layer. Using the implemented protocols, the network elements can be pro-
grammed through the controller. Since ODL implements a service abstraction
layer, heterogeneous network elements are supported with the ODL platform.

4.3.1 ODL Controller

ODL controller by itself is a Java Virtual Machine (JVM) software, thus any hardware
or operating system that supports Java can be used to run the controller [Com16¢].
More specifically, ODL is java-based, and model-driven controller. It uses YANG
for modeling applications and different aspects of the system. Since SDN scenario
is implemented in the controller, the following listed tools are necessary for the
controller [Com16c¢]:

— Maven: Maven is a tool for project management, thus ODL make use of Maven
to allow build automation. By using of this tool, developers are able to control
the necessary plug-ins and the application dependencies.

4.3. ODL ARCHITECTURE 31

— Open Service Gateway Interface (OSGI): JAR packages and bundles are loaded
dynamically using the OSGI tool which is mainly the back-end of the ODL
controller. To exchange information, OSGI lets bundles bind together.

— JAVA interfaces: Specific bundles require event listeners, formal patterns, and
specifications in order to apply call-back functions for events. All these tasks
are realized using Java interfaces.

— REST APIs: Are APIs that used as northbound interface to allow communica-
tion between the controller and applications such as static routing, topology
manager, and so on.

— Karaf: Karaf runs on top of OSGI which simplifies package operations and
application installations.

— YANG. All applications, notifications, and remote procedure calls manipulate
configuration and state data which are modeled using YANG data modeling
language.

Applications contain algorithms and business logic. The applications that run
over the controller use northbound APIs to communicate with the controller. Among
others, OSGI and representational state transfer (REST) (web-based) [FT02], are
the two APIs supported in the northbound. If the controller and the applications
have the same address, OSGI framework is used as a northbound API. On the other
hand, when the controller run either in another system than used by application or
has different address space, then REST API is used; this is a bidirectional API.

On the other hand, the controller is responsible for running the algorithms,
collecting network intelligence, and finally forwarding the rules over the whole network
through southbound protocols (for example, OF1.0/1.3, BGP, NETCONF) [Com16¢].
All the southbound plug-ins are dynamically linked to the SAL. As a result, the
services corresponding to the modules are exposed through the SAL. The SAL to
handles an incoming service regardless of the southbound protocol. Hence, investment
cost is reduced even if new protocols evolve through time [Com16c].

Furthermore, ODL enables data and applications to be accessed externally via
the following model-driven protocols [Com16al:

— NETCONF: NETCONF allows clients to invoke RPCs that are modeled based
on YANG, retrieve notifications, and manipulate data which is modeled using
YANG.

— RESTCONTF: Is a protocol based on HTTP that enables manipulating of data
which is modeled using YANG through REST-like APIs. It uses either XML
or JavaScript Object Notation (JSON)? to retrieve RPCs.

Shttp://json.org/

32 4. OPENDAYLIGHT PLATFORM

4.3.2 MD-SAL Basics

When NETCONTF is used as a southbound plug-in to connect with remote NETCONF
based devices (in our case, IHON nodes in general and H1 nodes in specific), the
datastores, RPCs, and notifications of these devices are exposed as MD-SAL mount
points. As a result, application and remote users can successfully interact with
such kind of devices through RESTCONTF protocol. The MD-SAL is an extensible
message-bus which stores data and perform messaging depending on the interface
models and data declared by application developers. The tasks of MD-SAL are
summarized as follows [Com16al:

— Contains definitions for data model building blocks, concepts, messaging pat-
terns, and common-layer. Additionally, the communication framework between
applications and inter-applications is supplied by MD-SAL.

— Provides common framework such as XML, and JSON for different payload
formats and user-defined transport, and payload adaptation and serialization.

Depending on the YANG models supplied from a developer, the MD-SAL applies
Basic concepts to provide definitions for message patterns, services and behavior.
Basic concepts are basically building blocks for which applications use. Below are
listed the common Basic concepts [Com16al:

— Data Tree: Used to represent and model all state-related data, and any element

or subtree is accessible. There are two classes of data Trees:

1. Configuration Data Tree: Is the network or system intended state which
is advertised by consumers.

2. Operational Data Tree: Unlike the configuration data tree, operational
data tree is the system’s reported state and is populated by providers
through MD-SAL. This is used by applications as a feedback loop to check
the system/network status.

— Instance Identifier: Within a data tree the nodes and subtrees are uniquely
identified using an instance identifier. It also gives exact information for
distinguishing and accessing node/subtree from existing data trees.

— Notification: A transient event which is an asynchronous type of message.
Moreover, subscribers can consume notification and manipulate it.

— RPC: A request-reply message sequence which is also asynchronous type;
consumer initiates a request, forward it to the provider, and responds with
reply message. Moreover, RPC is used to define the input and output of
MD-SAL.

MD-SAL transactions are provided by MD-SAL data broker in order to access
conceptual data trees which represent both operational and configuration state. The
state of modeled data is given as a data tree which represents the state of the
applications, controller, and network/system [Com16a].

4.4. RESTCONF 33

4.4 RESTCONF

Using standard techniques (for example, RESTCONF'), web applications can access
the operational and configuration data, notifications, and data-model operations
of a device in the network [ODLb]. RESTCONTF is a northbound protocol which
allows communication between applications (or remote users) and SDN controller
(in our case, ODL) as depicted in Figure 4.2. Moreover, RESTCONF is REST-like
protocol that runs over HT'TP to access YANG based data by applying NETCONF
datastores [Wat15].

As discussed in 3.2.3, configuration datastores are defined using NETCONF
protocol. In addition, NETCONF provides basic operations (i.e. retrieve, create,
delete, and update operations) so as to access the datastores. On the other hand,
YANG language provides the semantics and syntax definitions for operational data,
datastore content, event notifications, and finally protocol operations. As a result,
RESTCONF implements HTTP to connect with the controller, and the controller
translates the requests to manage the NETCONF datastores. In order to accomplish
this, the "Content-Type" field in the HTTP header is used to set the request (input)
media type whereas the "Accept" field is used to set the response (output) media
type [Wat15].

In ODL, the sal-rest-connector feature contains an implementation for REST-
CONF, and is installed in the karaf distribution [ODLb]. karaf debug can be used to
start RESTCONF in debug mode. By doing so, remote debugging can be performed
by connecting to port 5005. Depending on the ODL controller version, RESTCONF
listen on different ports. In Beryllium version, RESTCONF listens HT'TP requests
on port 8181.

4.4.1 Supported Operations

RESTCONTF supports GET, PUT, OPTIONS, DELETE, and POST operations [ODLb]
which are described in Table 4.2. Every request URI for the restconf calls has to
start with prefix /restconf.

The RESTCONF URI (endpoint paths) implements instance identifier which is
represented as <identifier>. The <identifier> should fulfill the following require-
ments [ODLD]:

— It must begin with <moduleName>:<nodeName>; in this case <moduleName>
and <nodeName> are YANG module and top level node names, respectively.

— <nodeName> indicates a data node. The data node can be either container or
list yang type. When the data node is a list, the key names of the list must
be inserted after the node name, for example, <nodeName>/<Keyl Value>/
<Key2Value>.

34 4. OPENDAYLIGHT PLATFORM

— <moduleName>:<nodeName> is also used to solve for ambiguity.

It is possible that a node can reside after a mount point, and the URI format is
<identifier> /yang-ext:mount/<identifier>> [ODLb]. While the path to a mount point
is given in the first <identifier>, the last <identifier> indicates the path of the node
located behind the mount point. Moreover, we use <identifier>/yang-ext:mount
when the URI ends in the mount point.

Table 4.2: Basic RESTCONF operations together with their
formats and purposes, adopted from [ODLD].

HTTP op- | URI link Description
eration
OPTIONS | /restconf
— gives the XML definition of resources
along with the necessary media types of
both request and response in Web Appli-
cation Description Language (WADL).
GET /restconf/config
/<identifier> — Retrieves a data node value within the
Config datastore.
— Data node is identified using the <iden-
tifier>.
GET /restconf/operational
/<identifier> — Accesses the data node value from the
Operational datastore.
— <identifier> indicates the data node to
be retrieved.
PUT /restcont/config
/<identifier> — Data in the config datastore is either
created or updated.
— Success status is then returned.
POST /restconf/config
— Unless the data is available, it will be
created.

4.4. RESTCONF 35

POST /restcont/config
/<identifier> — If config datastore does not contain the
data, it will be created and success status
is returned.
Data root element has either namespace
(XML type of data) or module name
(JSON type of data).
POST /restconf/operations
/<moduleName>: Used to invoke RPC.
<rpcName> <moduleName> and <rpcName> repre-
sent the module and RPC names in the
module, respectively.
The name "input" must be assigned to
the data root element forwarded to RPC.
Either status code or data with "output’
root element is returned as a response.
DELETE | /restconf/config
/<identifier> Data node which is available in the Con-
fig datastore is removed, and status of
success will be returned
<identifier> distinguishes the data not
to be removed.
GET /restconf/streams
Provides the list of existing event notifi-
cation streams.
GET /restconf/streams
/stream Receives notifications by subscribing to
/<stream_ name> the stream_ name.

4.4.2 RESTCONF Tools

RESTCONF requests are sent from the applications running on top of the controller
using RESTCONTF tools such as ¢cURL utility [Ste] and Chrome Postman plug-
in [Brol5]: in our case, we will use Postman plug-in.

36 4. OPENDAYLIGHT PLATFORM

Chrome Postman plug-in

Postman is an HTTP client used for testing web services. Moreover, Postman allows
to test, document, and develop APIs which enables users to easily and quickly
put simple to complex HTTP requests. By installing the postman plug-in, the
request is sent to the URL: http://<controller-ip>:8181/URI Then, we execute the
RESTCONTF request based on the following steps [Brol5]:
1. By locating the authorization tab, we select the Basic Auth type, and put
admin as username and password.
2. Selecting the required headers: Since the input and output for restconf requests
are both XML type, we select the following type of headers:
— Accept: application/xml value.
— Content-type: application/xml.
3. Choosing the Rest method; GET, POST, PUT, or DELETE operation.
4. Finally, we put the configuration file in an XML format, and send it to the
specified URL.
Postman plug-in is more user interactive, and it allows to save restconf requests
for latter use, and it is easier to modify requests.

To sum up, in this chapter we discussed the ODL platform testbed, its architecture,
and basic features. Additionally, we presented RESTCONF protocol and supported
operations that allow an application to manage the configuration and operational
data of remote netconf devices. To accomplish this, we have presented RESTCONF
tools focusing on the postman plug-in to execute restconf operations. In the next
chapter, we will apply the concepts that we developed so far, and propose an SDN
framework for THON.

SDN framework for IHON

This chapter presents SDN framework for IHON in general and Fusion nodes in
particular. In Section 5.1, we evaluate NETCONF and OF protocol as a southbound
protocol to realize SDN for IHON nodes. Following the evaluation, we discuss the
SDN framework for ITHON nodes with the ODL platform in Section 5.2. After
that, the classifications of IHON nodes depending on their support for NETCONF
monitoring, and realizing SDN for all types of nodes are discussed in Section 5.2.1,
Section 5.2.2, and Section 5.2.3.

5.1 Evaluating NETCONF- and OF-based SDN for IHON
nodes

The objective of the project is to enable SDN for IHON focusing on Fusion H1 nodes.
Either OF or NETCONF protocol can be implemented as a southbound interface to
realize SDN for IHON nodes.

When OF is used as a southbound interface to realize SDN for IHON nodes, the
nodes should allow OF based communication with the controller. First, an OF agent
which detects OF protocol should be added in every node as OF protocol operates
with OF capable switches [GDST10]. Thus, with the help of the agent, the IHON
nodes can understand OF rules, and perform forwarding based on the rules from the
controller.

Second, THON nodes completely integrate both GST and SM flows. The OF
specification [ONF13a] which defines rules only for packet flows should be extended
to support the circuit flows (i.e. the GST flows) as well [Dasl0]. As a result, OF
protocol requires further extension to support complete realization of SDN for THON
nodes [CNRF13]. In OF-based SDN framework, flowtables are first created in each
node, then an incoming flow is matched against the flowtables. After matching,
the switch takes action on the flow based on the rules from the controller. Since
THON nodes integrate both GST and SM flows, the number of flowtables in a node

37

38 5. SDN FRAMEWORK FOR IHON

grow radically as have been discussed in Section 4.2 of [Berl5]. Hence, matching an
arriving flow against a large number of flowtable increases cost and complexity.

On the other hand, NETCONF is more easier to implement SDN for THON nodes.
Fusion H1 nodes, the IHON prototypes from Transpacket are already available with
NETCONF, so we have chosen NETCONF as a southbound plug-in. Therefore,
NETCONF-based SDN for IHON is better with respect to cost and complexity as
compared with OF-based SDN framework. The evaluation of OF- and NETCONF-
based SDN for THON nodes is briefly presented in Section 4.3 of [Berl5].

5.2 SDN/NETCONTF setup for IHON

Based on the evaluation, we employ NETCONTF as a southbound interface in designing
SDN framework for IHON nodes. Figure 5.1 illustrates an SDN layout consisting of the
three main SDN layers: application, control, and infrastructure layers. Application
layer is a collection of end-user applications while the control plane consists of SDN
controller. On the other hand, the infrastructure layer or data plane is composed
of the underlying network devices, in this case, the IHON nodes. Since NETCONF
protocol is used as a southbound plug-in to connect the controller with the nodes,
the controller should have NETCONF capability; this is indicated as NETCONF
client within the controller.

In our case, the chosen testbed, i.e. the ODL controller supports multiple plug-
ins both as a southbound and northbound protocols. Among others, NETCONF
protocol is one of the common protocols that the ODL uses as a southbound plug-
in to connect with remote netconf devices. Hence, ODL supports NETCONF
client capability. Moreover, NETCONF enables the controller to discover the node
datastores (i.e. configuration, operational, or both), notifications, and RPCs as
MD-SAL mount points. Consequently, Applications and remote users interact with
ODL controller via RESTCONF protocol, and access the remote nodes as MD-SAL
mount points [Com16¢| [Burl5.

The NETCONF southbound plug-in in ODL is commonly known as netconf-
connector. It is based on YANG modeling language, and is fully model driven
plug-in. Moreover, any YANG modeled type of data, notifications, and RPCs that
are implemented in the nodes are allowed as well [Com16c]. In order to enable the
NETCONF southbound in the ODL, we install the netconf-connector feature with
the following command [Burl5]:

opendaylight-user@root>feature:install odl-netconf-connector-all

The default ODL configuration includes a controller-config which is a single
instance of the netconf-connector. Using RESTCONF request, new netconf-connector

5.2. SDN/NETCONF SETUP FOR IHON 39

Application End-user Applications

N " Northbound

Conirol
NETCONF

NETCONF

p N
FusionNode1 FusionNode2 == == FusionNodeN

Figure 5.1: SDN framework based on NETCONF protocol. The control plane
consists of an SDN controller with built-in NETCONF client, and manges the ITHON
nodes in the data plane via NETCONF southbound plug-in.

SDN Controller ‘

Data Plane

is created for every additional node to allow connection with the ODL controller. If
the nodes support netconf monitoring, thus the netconf-connector can download and
list the YANG schema used by the nodes [Burl5]. In order to allow communication,
the netconf connector should know all or part of the schema of the IHON nodes. Even
though the nodes use YANG schema internally, they may or may not support netconf
monitoring. By sideloading the YANG schema of the THON nodes into the YANG
model cache of the ODL, the netconf-connector can communicate with the nodes
which do not even support netconf monitoring. Overall we have three situations:

5.2.1 IHON nodes that Support NETCONF monitoring

While the ODL controller is running, a new netconf-connector should be created to
connect each node with the controller. In our case, we have N nodes in the data plane
as depicted in Figure 5.1, so we create N number of netconf-connectors corresponding
to each node. First, we should install netconf-connector feature in the ODL karaf
distribution which enables automatic configuration and activation of the loopback
NETCONF mountpoint.

Following this, the netconf-connector for each node is configured by sending POST
request via RESTCONF with the following parameters [Com16¢]:

40 5. SDN FRAMEWORK FOR IHON

Operation: POST,
URL:http: //localhost: 8181/ restconf/ config/network-topology:
network-topology/ topology/ topology-netconf/node/ controller-config/
yang-ext:mount/ config:modules,
Headers:

o Accept: application/XML,

o Content-Type: application/XML,
Body: Given in Appendix C.1; part of the code which contains the node
parameters is shown in source code 5.1 for explanation purpose. As we can
see from the code, a new netconf-connector is created by specifying the node
name, [P address, port number, username, and password of the node. The
device-name is assigned by the user, and serves as unique name identifier for
the node. Moreover, device_ port is the port number on which the node is to be
connected with the controller. We also need to replace the device_IP_ address,
username, and password with the actual values of the node.

Source code 5.1 Creating Netconf-connector for node

1 <module xmlns="urn:opendaylight:params:xml:ns:yang:

2

w

10
11

controller:config">

<type xmlns: prefix="urn:opendaylight:params:xml:ns:yang:
controller :md: sal:connector:netconf">prefix:sal—
netconf—connector </type>

<name>device —name</name>

<address xmlns="urn:opendaylight:params:xml:ns:yang:
controller :md: sal:connector:netconf">
device_IP__address</address>

<port xmlns="urn:opendaylight:params:xml:ns:yang:
controller :md: sal:connector:netconf">
device_port_number</port>

<username xmlns="urn:opendaylight:params:xml:ns:yang:
controller :md: sal:connector:netconf">username</
username>

<password xmlns="urn:opendaylight:params:xml:ns:yang:
controller :md: sal:connector:netconf">password</
password>

<!——Remaining part of the code——I!>

</module>

Once the netconf-connector is correctly created, it is stored in the configuration
datastore of the ODL controller. After the creation of the new netconf-connector, a
useful metadata is written into the MD-SAL datastore in a subtree of the network-

http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules
http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules
http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules

5.2. SDN/NETCONF SETUP FOR IHON 41

topology. The metadata contains information such as node capabilities and connection
status.

Moreover, the netconf-connector can be reconfigured if any of the node parameters
are changed while the controller is running. This is achieved by executing PUT
operation with the whole configuration along with the updated parameters. For
example, if username or password is changed, we send PUT request with the payload
given in Appendix C.2.

5.2.2 IHON nodes that do not support NETCONF monitoring,
but list YANG models

THON nodes can list their YANG models during capability exchange in the HELLO
message, but may not support ietf-netconf-monitoring capability. If these type
of nodes are possibly using only the 2010-09-24 revision of ietf-inet-types YANG
model, the reported HELLO message consists of: wrn:ietf:params:xml:ns:yang:
ietf-inet-types ?module=ietf-inet-typesé&revision=2010-09-24 [Coml6ec]. To enable
communication between the ODL controller and such nodes, the YANG schema of
the nodes is placed in the cache/schema folder in the ODL karaf distribution, and it
must be named as ietf-inet-types@2010-09-24.yang since this is the required cache
format name.

5.2.3 TIHON nodes that neither support NETCONF monitoring
nor list YANG models

Unlike the IHON nodes which list their YANG models, in this case the nodes
do not have ietf-inet-types capability in the HELLO message. Since such type of
nodes do not advertise their YANG schema, the user is responsible for configuring a
netconf-connector for them.

Moreover, the netconf-connector has yang-module-capabilities as an optional
configuration attribute. This attribute contains a set of "YANG module based"
capabilities [Com16¢]. If the HELLO message of the node has "yang-module-based"
capabilities, these capabilities can be overridden by setting the configuration attribute.
As a result, the netconf-connector configuration given in Appendix C.1 is modified
by appending the XML given in source code 5.2 after the username and password
configuration elements. Afterwards, the YANG schema of the node is placed in the
cache folder of the karaf distribution.

In conclusion, if the ITHON nodes are modeled using YANG schema, they can be
connected successfully to the SDN controller even if they do not support netconf
monitoring by modifying the netconf-connector and storing their schema in the ODL
karaf distribution.

urn:ietf:params:xml:ns:yang:ietf-inet-types?module=ietf-inet-types&revision=2010-09-24
urn:ietf:params:xml:ns:yang:ietf-inet-types?module=ietf-inet-types&revision=2010-09-24

42 5. SDN FRAMEWORK FOR IHON

Source code 5.2 Modification of netconf-connector configuration for a node that
does not list its YANG models nor supports netconf monitoring [Com16¢].

1 <yang—module—capabilities xmlns="urn:opendaylight:params:
xml:ns:yang: controller :md: sal:connector:netconf">

2 <capability xmlns="urn:opendaylight:params:xml:ns:yang:
controller :md: sal:connector:netconf">
3 urn:ietf:params:xml:ns:yang:ietf —inet—types?module=

ietf —inet —types& revision=2010-09—-24
4 </capability >
5 </yang—module—capabilities>

To generalize, in this chapter we evaluated that the NETCONF protocol is more
suitable than OF protocol to implement SDN for ITHON in general and Fusion nodes
in specific. As a result, we proposed a NETCONF-based SDN framework, and
illustrated how to create a new netconf-connector for every node to allow connection
with the ODL controller. After establishing successful communication, the controller
manages the nodes via the southbound protocol. In the next chapter, we will discuss
the emulation results of SDN controlled IHON nodes with the ODL testbed.

SDN and Emulated IHON Testbed
Results

THON nodes are built based on NETCONF Protocol and YANG modeling lan-
guage [VBB15]. Hence, IHON nodes use NETCONF as a southbound protocol to
connect with the ODL controller, i.e. the Beryllium version. In Section 6.1 we
discuss NETCONF-based SDN testbed for ITHON network consisting of three nodes
with different set of connections with different priorities. Section 6.1.1 presents
about Netconf testtool and simulating the IHON nodes. In Section 6.1.2, we briefly
discuss about YANG schema that represents the configuration of typical IHON node.
While Section 6.1.3 describes running and starting of the simulated IHON nodes,
Section 6.1.4 illustrates how to connect the nodes with the SDN controller by creating

netconf-connector to each node. Finally, Section 6.2 describes management of the
THON nodes with the ODL testbed.

6.1 SDN framework for IHON

The framework of SDN for IHON nodes based on the NETCONF protocol, and
illustrated in Figure 6.1, consists of three nodes (i.e NodeA, NodeB, and NodeC) in
the data plane. The application layer on the other hand, consists a postman plug-in
which communicates with the SDN controller via RESTCONEF. The control plane is
composed of the ODL platform. Moreover, the control plane provides a consolidated
control functionality to configure, manage, and monitor the network forwarding
behavior through NETCONF protocol. RESTCONTF is a northbound protocol used
to interface the application, i.e. postman plug-in, with the ODL controller whereas
NETCONTF is a southbound protocol which allows communication between the nodes
in the data plane and the ODL controller in the control plane.

In our case, the control plane is realized with the Beryllium controller to supervise
the configuration and forwarding behavior of the three nodes in the data plane.
As we have discussed in Section 5.2, the ODL controller supports NETCONF
protocol as a southbound plug-in; we named it as "NETCONF client" only for

43

44 6. SDN AND EMULATED IHON TESTBED RESULTS

Ethernet Streams
Flows: a) SM streams
1: Connect nodes NodeA to NodeB: AB SM
2: Manage nodes with the controller NodeA to NodeC: AC SM
MNodeB to NodeC: BC SM
b) GST streams

MNodeA to NodeB: AB GST
NodeA to NodeC: AC GST

Figure 6.1: SDN setup based on NETCONF protocol with three IHON nodes in
the data plane. Only unidirectional (left-to-right) Ethernet streams are considered.
Red and blue correspond to SM and GST streams, respectively. IHON nodes are first
connected to the ODL controller (indicated as flow 1). Flow 2 indicates management
of the nodes from the controller.

6.1. SDN FRAMEWORK FOR IHON 45

readability purpose. Otherwise, it is the netconf-connector feature that should be
installed in the Beryllium karaf distribution (using the "odl-netconf-connector-all"
command) to support NETCONF based communication with the nodes. Moreover,
the RESTCONTF protocol is activated by installing "odl-restconf” feature in the
karaf distribution. As a result, end-to-end orchestration and control is, thus, easily
accomplished using the Beryllium testbed.

In Section 3.2.2, we have briefly discussed the steps to enable NETCONF over
SSH session. In this SDN setup, the NETCONF session between the ODL controller
and the three simulated nodes is established in similar fashion. To achieve this, SSH
is first activated by installing the "odl-netconf-connector-ssh" feature in the ODL
controller karaf distribution. Therefore, the communication between the controller
and a single ITHON node is depicted in Figure 6.2. While the client in the diagram
corresponds to the ODL controller, the server represents an IHON node. Before
exchanging their capabilities, both peers perform key exchange, and establish netconf
session by invoking the netconf as a subsystem. Having clear awareness of each others
capabilities, the application running on top of the controller use restconf protocol
to interface with the SDN controller so that the user can send the commands from
the controller to the IHON nodes through Netconf. Finally the controller closes the
session after finishing execution.

In the the following sections, we discuss the core procedures to realize SDN
controlled IHON through emulation. We present management of the IHON through
the ODL testbed, i.e. Beryllium controller.

6.1.1 Stepl: Simulating IHON nodes with Netconf Testtool

Netconf testtool is a tool that allows to simulate one or more NETCONF de-
vices [ODLc]. Testtool is the most convenient application used to test large set of
devices. Moreover, testtool generates configuration files for the ODL controller. Since
THON nodes are built based on NETCONF protocol and YANG modeling language,
each node in the SDN setup is simulated with the netconf testtool. As a result, the
Beryllium controller is able to connect and manage the configuration of the simulated
nodes.

Simulating THON with the testtool allows us to execute the following set of
NETCONTF operations remotely from the controller [ODLc]:

— get-schema: Yang schema that are loaded from user specific directory are
returned using the get-schema operation.

— edit-config: Allows to edit the configuration of the nodes, and saves the xml
derived from input in a local variable which can be then easily accessed by

46 6. SDN AND EMULATED IHON TESTBED RESULTS

Application/ Client Server
. User A A
SSH-TRANS]
1&E key

After establishing SSH transport
I&E ke connection, Client and Server
\‘ exchange Integrity and Incryption
B Ly keys (I&E keys)
UTH]
[SSH-USEFlA

User is successfully
A il R R i il = P Authenticated
[SSH-CONNECT]

SSH pession
< < SSH session established
———_neteonf |
\a User invokes NETCONF as a Subsytem
el e i T T — » NETCONF session established
-
<hello>
Client and Server exchange
 their capabilities
<hello>
B A R e P Y

ATPG're >
[Execute NETCONF operations

1 in RPC format

I

I -
- s e m .- —-—-—-—- -————- =

<close-sessi
slon>/
<Kill-essjgr= Exit NETCONF Subsystem

and
End SSH session
<ok>

D e e Rt

Figure 6.2: Establishing NETCONF session between client and server. In this
case, the client is the ODL controller while the server is the IHON node. After
establishing connection, both peers exchange their capabilities using hello messages.
Afterwards, NETCONF operations are executed as RPC models, and the sessions is
closed from the controller.

6.1. SDN FRAMEWORK FOR IHON 47

get-config and get-rpc. Moreover, edit-config operation replaces the already
existing configuration.

— commit: Although commit operation does not practically commit the data, it
returns OK.

— get-config: Retrieves the local configuration in xml format which is stored by
edit-config.

— get: like the get-config operation, get returns xml configuration file stored
by edit-config. However, it also includes netconf-state subtree and supports
filtering.

— (un)lock: Used to unlock or lock the configuration of the nodes, and returns
OK.

— create-subscription: Any existing netconf notifications are provided to the
client once this operations is initiated. However, neither stream recognition
nor filtering is supported by this operation.

In order to simulate the IHON nodes, we first build the netconf testtool based on
the following steps:

1. Netconf repository is pulled using: git clone https:// git.opendaylight.orq/ gerrit/
netconf,

2. We changed our working directory to netconf/netconf/tools/netconf-testtool/
folder to access the netconf testtool.

3. Finally, we use mvn clean install command to build the testtool.

By this time, the testtool is ready, and we have to design, implement and load the
YANG schema of the THON nodes; the YANG schema is described in the following
section.

6.1.2 Step2: Developing YANG Schema for IHON Nodes

THON node has two 10Gb/s (10GE) line interfaces, and ten 1GE client interfaces.
The line interfaces are also called trunk-interfaces which implies that they aggregate
and transport a group of VLANs. Similarly, the client interfaces are known as
access-interfaces since each interface can transport a single VLAN. Furthermore, the
access-interfaces transport either SM stream or GST sub-wavelengths to improve
the channel utilization. A detailed network connection of the ITHON nodes in the
data plane for the SDN setup is illustrated in Figure 6.3; it shows the network
connections by VLAN in each node with their corresponding interfaces. Moreover,
only left-to-right Ethernet streams are assumed in this scenario. Taking a specific
VLAN, the one in the left side is considered as a source while the VLAN at the right
side with the same name but in different site implies its destination (for example,
Vlanl in siteX is a source whereas Vlanl in siteY is its destination). Furthermore, all
ge(i.e. ge[0-9]) interfaces are access interfaces. Moreover, blue indicates GST while
red implies SM Ethernet streams.

https://git.opendaylight.org/gerrit/netconf
https://git.opendaylight.org/gerrit/netconf

48 6. SDN AND EMULATED IHON TESTBED RESULTS

NodeB
ged ged

Fusion Node Interfaces Ethernet Streams

Ten 1GE, ge[0-9] a) SM streams

Two 10GE, Xe[0-1] NodeA to NodeB: Vian 4
Blue: Guaranteed Service Transport (GST) NodeA to NodeC: Vian 1
Red: Statistically Multiplexed (SM) NodeB to NodeC: Vian 8

b) GST streams
MNodeA to NodeB: Vlan 2
MNodeA to NodeC: Vlan 3

Figure 6.3: Network connection of the IHON nodes in the data plane. Each node
transports GST and SM streams from different connections which are depicted as
blue and red, respectively. Moreover, only left-to-right flow is considered.

The Ethernet streams from the different VLANs are forwarded out their destination
based on VLAN ID. The THON node appends VLAN ID to an incoming Ethernet
stream, i.e. either GST or SM stream. VLAN ID identifies the priority of the stream,
port, VLAN, and destination node. Hence, a node which receives the Ethernet
stream first checks the corresponding VLAN ID. If the destination lies within the
node, the node strips off the VLAN ID and forwards the stream to the corresponding
output port. Otherwise, the node passes the Ethernet stream to the next node. The
forwarding techniques of Ethernet streams in IHON;, is briefly discussed in Section
4.1 of [Berl15].

NodeA is composed of four different VLANSs (i.e. Vlanl, Vlan2, Vlan3, and Vlan4)
from different sites each connected via four different interfaces. Vlanl and Vlan4 are
SM streams. Vlanl is connected via Xe0 access interface; its source is SiteX, and is
delivered to SiteY through Xe0 of NodeC. Similarly, Vlan4 which originates from
SiteJ is connected via ge9, and is delivered to SiteK via ge9 interface of NodeB. On
the other hand, Vlan2 and Vlan3 which are connected via ge0, and gel of NodeA,
respectively, are both GST streams. They are forwarded to siteN via ge0 of NodeB,

6.1. SDN FRAMEWORK FOR IHON 49

Table 6.1: Connections in the network given by VLAN source and destination
addresses.

Path

VLAN Source Destination
Node | Port | Node | Port
Vlanl | NodeA | XeO | NodeC | Xe0
Vlan2 | NodeA | ge0 | NodeB | ge0
Vlan3 | NodeA | gel | NodeC | gel
Vland | NodeA | ge9 | NodeB | ge9
Vlan8 | NodeB | ge8 | NodeC | ge8

and SiteQ via gel of NodeC, respectively. Finally, Vlan8 which is an SM stream
from siteA is connected via ge8 of NodeB, and is delivered towards SiteB through
ge8 of NodeC. All the VLANSs in the SDN setup are summarized in Table 6.1 with
their corresponding source and destination addresses.

Furthermore, the Xe0 interface of both NodeA and NodeC transport only a single
VLAN (i.e. Vlanl). On the other hand, Xel of NodeA transports Vlanl, Vlan2,
Vlan3, and Vland4 from SiteX, SiteM, SiteP, and SiteJ, respectively. Similarly, Xe0
of NodeB receives all the VLANSs from Xel of NodeA. On the other hand, Xel of
NodeB aggregates Vlanl, Vlan3, and Vlan8 and transports them to NodeC. Xel of
NodeC receives Vlanl, Vlan3, and Vlan8 from NodeB. Lastly, NodeC dispatches the
streams to their respective destinations. All VLANs along with the corresponding
interfaces of the IHON nodes are summarized in Table 6.2.

Therefore, we developed a YANG schema which is given in Appendix B.1 to model
the typical configuration of IHON nodes. As we can see from the schema, each node
is required to have an assigned name. In our case, NodeA, NodeB, and NodeC are
the given names based on the SDN setup. Since each node contains ten 1GE, and two
10GE interfaces, we provide a list node to define the interfaces that are connected
to the VLANSs in each node based on the SDN setup, for example, ge0, gel, ge9,
and xe0 of NodeA. The interface definition of the IHON node from Appendix B.1 is
illustrated in Source code 6.1. FEach interface in the node is identified by its unique
name, so we set the name as a key element in the list. Furthermore, the interface
is either trunk-interface or access-interface. Trunk interface transports a group of
VLANSs while the access interface transports single VLAN which is either GST or
SM type of Ethernet stream. Hence, we provide two options to allow selection of
the interface type along with the carried VLANs and type of Ethernet stream. This
is achieved using the Ethernet-switching choice type definition. Additionally, we
provide VLAN container definition to include all the group of VLANSs in a node

50 6. SDN AND EMULATED IHON TESTBED RESULTS

Table 6.2: Configuration plan for IHON nodes in the SDN setup. Each node’s
interface transports either SM or GST Ethernet stream. Moreover, each interface
transports either single or multiple VLANSs. "-" indicates that the interface is free.

Interfaces
Node gel gel ge8 ge9 Xe0 Xel
GST GST SM SM SM access- | Trunk Type
interface of Eth-
except in ernet
NodeB which Stream
is Trunk
NodeA | Vlan2 | Vlan3 - Vlan4 | Vlanl Vlanl +
Vlan2 + | VLAN
Vlan3 +
Vland
NodeB | Vlan2 - Vlan8 | Vlan4 | Vlanl + | Vlanl +
Vlan2 + | Vlan3 +
Vlan3 + | Vlan&
Vlan4
NodeC - Vlan3 | Vlan8 - Vlanl Vlanl +
Vlan3 +
Vlan8

along with their unique identification number; it is shown in Source code 6.2.

In order to sideload the YANG schema of the THON node to the simulation
testtool, the schema is saved as filename@YYYY-MM-DD.yang since this is the
required naming format. The YYYY-MM-DD implies the revision number of the
proposed YANG schema. The file is then stored in the working directory so that
netconf testtool can access the schema when it runs. In our case, the schema is saved
as thonnode@2016-04-15.yang in ihon-schemas/ directory.

6.1.3 Step3: Starting the IHON Nodes

After building the netconf testtool, and developed the YANG schema of the IHON
node, we run and start the testtool. As a result, the testtool can successfully simulate
the nodes with the proposed YANG schema.

First, we dive to netconf/netconf/tools/netconf-testtool/target directory. We
checked that an executable file for the testtool is created, and it implies that the test-
tool is successfully built. Afterwards, the three simulated nodes are started from this
directory with the following command: java -Xmxl1G -XX:MaxPermSize=256M -jar
netconf-testtool-1.1.0-SNAPSHO T-ezxecutable.jar —device-count 8 —distribution-folder

6.1. SDN FRAMEWORK FOR THON

51

Source code 6.1 YANG schema of IHON node interface

list interface {
key name;
leaf name{
type string;
}
leaf describe {
type string;
3
leaf type {
type string;
}
leaf mtu {
type uint32;
}
choice ethernet-switching {
case access-interface {
container access-interface {
list vlan {
key vlan-name;
leaf vlan-name {
type string;
}
leaf priority {
type enumeration {
enum gst;
enum sm;

}
}
case trunk-interface {
container trunk-interface {
container vlans {
list vlan {
key vlan-name;
leaf vlan-name {
type string;
}

52 6. SDN AND EMULATED IHON TESTBED RESULTS

Source code 6.2 YANG schema for listing the VLANs within THON node
container vlans {
description "Defines a group of VLANs in a Node";
list vlan {
key id;
leaf id {
type uint32;

X

leaf name {
type string;

X

/distribution-karaf-0.4.0-Beryllium/ —debug true —schemas-dir ~ /ihon-schemas/. In
this case, the executable jar file is the netconf testtool which actually simulates
the THON nodes. Moreover, device-count 3 indicates that three nodes depicted
in the SDN setup are to be simulated with the netconf testtool. Moreover, the
testtool fetches the YANG schema of the IHON nodes from the specified directory(i.e.
/ihon-schemas/). Furthermore, the testtool is directed to the Beryllium distribution;
the distribution-folder parameter enables the testtool to modify the controller by
adding the netconf-connector configurations. This allows to automatically connect
the simulated THON nodes to the Beryllium controller. As a result, the user does not
require to send configuration for each simulated node through restconf every time
the nodes start.

Second, by starting the Beryllium distribution, we installed both odl-netconf-
connector-ssh and odl-restconf features. The ssh feature enables SSH communication
between the emulated nodes and the controller while the restconf feature allows to
send restconf requests from applications running on top of the controller. When
netconf uses SSH protocol, the netconf testtool requires large resources [ODLc|. As
a result, it is necessary to reserve memory for the testtool. This is accomplished
by specifying the memory size of the testtool. In our case, the command -Xmz1G
-XX:MazxPermSize=256M implies 256Mb of memory is reserved for the testtool.

After successful starting of the simulated nodes, the restconf status is checked using
the URI: hitp://localhost: 8181/ restconf/ operational/ opendaylight-inventory:nodes/ .
As a result, the restconf is active, and only the loopback connection which is the
default controller-config is running. Moreover, the testtool runs with default values
for all parameters, and the log output is depicted in Figure 6.4.

As we can see from the log output given in Figure 6.4, the three simulated nodes

http://localhost:8181/restconf/operational/opendaylight-inventory:nodes/

6.1. SDN FRAMEWORK FOR IHON 53

.571 [main] DEBUG o.
1 DEBUG o.
DEBUG o

1 DEBUG 0.
1 DEBUG o
ain] DEBUG

DEBUG
DEBUG 0.0.n.t.too
INFO o0.0.n.t.too

INFO o0.0.n .tool.Main - Config files generated in /home/ubunt tribution-karaf|
sendaylight/karaf

Figure 6.4: Log output for the simulated IHON nodes from the Beryllium karaf
distribution which shows successful starting of the nodes at specific ports.

run in three different ports: the first node at 18730 (this is the default starting port),
second node at 17831, and the third node at 18732. Additionally, the testtool uses
ietf-netconf-monitoring, ietf-inet-types, and ietf-yang-types YANG models by default
which implies that the testtool supports NETCONF monitoring and advertises
ietf-inet-types capability during HELLO message exchange. These YANG models
are immediately added by the ODL controller to the working directory (i.e. the
thon-schema directory). We also verified this by accessing the MD-SAL datastore of
the Beryllium controller using the URL: http://localhost:8181/restconf/ operational/
network-topology:network-topology/ (for example, the capabilities of simulated NodeA
are given in Appendix D.2). As a result, each simulated nodes supports netconf
monitoring which indicates that the SDN controller easily manges and monitors the
node configurations.

Moreover, we verified that the simulated nodes are up and running with SSH tool.
From the command line, we use the following command to connect with NodeA:
ssh admin@localhost -p 17830 -s netconf. After authenticating the simulated node
(in this case, any password is acceptable), the node returns its capabilities in the
HELLO message in XML format followed by netconf end of message (]]>]]>) which
is shown in Appendix C.3. As we can see from the HELLO message, the simulated
node supports netconf monitoring and advertises its ietf-inet-type capability.

By default, the Beryllium karaf distribution is not automatically connected to the
simulated nodes. In order to connect the nodes with the controller, we have to create
netconf-connector for every node as described in the following section.

6.1.4 Step4: Connecting the IHON Nodes with ODL controller

Once the netconf testtool runs successfully, a netconf connector is created (indicated
as flow 1 in the SDN setup depicted in Figure 6.1) corresponding to each node. This
allows to connect the simulated nodes with the controller through Netconf protocol.
Since we have started three simulated nodes on three different ports, we created three

http://localhost:8181/restconf/operational/network-topology:network-topology/
http://localhost:8181/restconf/operational/network-topology:network-topology/

54 6. SDN AND EMULATED IHON TESTBED RESULTS

Table 6.3: IP address and port number of the IHON nodes in the SDN setup

device-name | Port | IP address | Username and Password
NodeA 17830 | 127.0.0.1
NodeB 17831 | 127.0.0.2 admin
NodeC 17832 | 127.0.0.3

netconf-connectors corresponding to each node with their respective IP addresses
and port numbers. Based on the given SDN network setup, the device names are
NodeA, NodeB, and NodeC, and their corresponding IP addresses and port numbers
are illustrated in Table 6.3. Moreover, admin is used as both username and password
for all nodes. Having defined the parameters for the nodes, three netconf-connectors
corresponding to the three IHON nodes are created one after the other by sending
POST request through postman plug-in as follows:

— Method: POST,

— URL: http://localhost: 8181/ restconf/ config/ opendaylight-inventory:nodes/
node/ controller-config/ yang- ext:mount/ config:modules,

— Headers: Accept:application/xml, and Content-Type:application/xml,

— Body: Using source code C.1, we created three different payloads corresponding
to NodeA, NodeB, and NodeC. As we have explained in Section 5.2.1, the device-
name, device_IP_ address, device_ port_number, username, and password in
the source code are substituted with the corresponding parameters of the nodes
as given in Table 6.3.

Hence, we initiated three netconf-connectors for NodeA, NodeB, and NodeC
by executing POST request using their respective body. Consequently, issuing
log:display in the Beryllium karaf distribution returns successful initialization of
netconf-connectors for the three nodes, i.e. NodeA, NodeB, and NodeC; The
screenshots taken from the log output are depicted in Figure 6.5, Figure 6.6,
and Figure 6.7, respectively. We also verified this via restconf with the URL:
http://localhost:8181 / restconf/ operational/ opendaylight-inventory:nodes/. As a re-
sult, NodeA, NodeB, and NodeC are added to the restconf which are illustrated
in Appendix D.1, Appendix D.2, and Appendix D.3, respectively. As we can
see from the result, each node advertises ietf-netconf-monitoring, ietf-yang-types,
ietf-inet-types, and thonnode (i.e. the developed YANG schema which is explained in
Section 6.1.2) as their capabilities. This implies that each simulated node is internally
modeled with the ithonnode YANG schema, and supports NETCONF monitoring.

By executing GET request, we also checked the operational data of the simu-
lated nodes. At this level, the operational data for all three nodes is the same
because we have not configured any of the nodes yet. For example, the opera-
tional data of NodeA is shown in Appendix D.4 after sending GET request to the

http://localhost:8181/restconf/config/opendaylight-inventory:nodes/node/controller-config/yang-ext:mount/config:modules
http://localhost:8181/restconf/config/opendaylight-inventory:nodes/node/controller-config/yang-ext:mount/config:modules
http://localhost:8181/restconf/operational/opendaylight-inventory:nodes/

6.2. MANAGEMENT OF IHON NODES WITH THE ODL CONTROLLER 55

Figure 6.5: Log output from the Beryllium which indicates successful initialization
of netconf-connector for NodeA.

following URL: http://localhost:8181/restconf/ operational/ opendaylight-inventory:
nodes/node/ NodeA / yang-ext:mount/. From the output, we verified that each node
supports netconf monitoring and uses the ihonnode YANG schema.

6.2 Management of IHON Nodes with the ODL Controller

After connecting the simulated ITHON nodes, the ODL controller supervises their
configuration and forwarding scheme (which is indicated as flow 2 in the SDN setup).
By accessing the config datastore of the simulated nodes, we executed operations on
the nodes from the controller through Netconf and restconf from the user application
(the controller interface to the user). In our case, postman plug-in is employed to
send restconf requests. Both controller and restconf assume that YANG schema, is
used to represent the configuration data of the simulated nodes.

Having started the three simulated nodes, and created corresponding netconf-
connectors, we use restconf request to communicate with the ODL controller. Then,
the controller translates the commands sent from the restconf to Netconf and com-
municates with the nodes. In order to realize the SDN setup, the three nodes are
configured according to the configuration plans given in Table 6.1 and Table 6.2. So,
the configuration of each node includes list of interfaces, group of VLANSs, and type
of Ethernet streams. All the applicable interfaces in the nodes are listed including
their assigned name, type of interface (i.e. access or trunk), and the stream type

http://localhost:8181/restconf/operational/opendaylight-inventory:nodes/node/NodeA/yang-ext:mount/
http://localhost:8181/restconf/operational/opendaylight-inventory:nodes/node/NodeA/yang-ext:mount/

56 6. SDN AND EMULATED IHON TESTBED RESULTS

Figure 6.6: Log output from the Beryllium which indicates successful initialization
of netconf-connector for NodeB.

Figure 6.7: Log output from the Beryllium which indicates successful initialization
of netconf-connector for NodeC.

6.2. MANAGEMENT OF IHON NODES WITH THE ODL CONTROLLER 57

they carry along with the VLAN name.

In the following sections we discuss the configuration of the three nodes according
to the developed YANG schema, i.e. the ihonnode YANG. By converting to its
equivalent XML format, the configuration of every node is executed using postman
by sending restconf requests to the controller. Then, the controller translates the
commands and use Netconf southbound to configure the nodes.

Source code 6.3 Default configuration data of IHON nodes (an empty data con-
tainer)

<data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
</data>

NodeA Configuration

To begin with, we executed GET request to: hitp://localhost:8181/restconf/ config/
opendaylight-inventory:nodes/node/ NodeA / yang-ext:mount/ to view the node con-
figuration. As a result, we checked that the config datastore of NodeA is merely an
empty data container because configuration data is not yet sent to the node which
is illustrated in Source code 6.3. Configuration of the node is then achieved with
edit-config request which is executed by sending the following POST request using
postman plug-in:

— URL: http://localhost: 8181/ restconf/ config/ opendaylight-inventory:nodes/

node/ NodeA /yang-ext:mount,

— Headers:

Accept: application/xml,
Content-Type: application/xml

— Body: Given in Appendix B.2; it is the xml schema of NodeA configuration

based on the configuration plan of the SDN setup.

After executing the POST request, 200 OK messages is returned with empty
data which indicates that NodeA is successfully configured. GET request is, then,
executed to: http://localhost:8181/ restconf/ config/ opendaylight-inventory:nodes/
node/ NodeA /yang-ext:mount/ to retrieve the configuration data. From the response,
we get the configuration of the NodeA as shown in Appendix B.5 which implies that
the restconf operation successfully pushed the configuration from the ODL controller
to the configuration datastore of the node.

NodeB Configuration

Before sending the configuration, we checked that the config data container for
NodeB is empty using GET request to: http://localhost:8181/ restconf/ config/

http://localhost:8181/restconf/config/opendaylight-inventory:nodes/node/NodeA/yang-ext:mount/
http://localhost:8181/restconf/config/opendaylight-inventory:nodes/node/NodeA/yang-ext:mount/
http://localhost:8181/restconf/config/opendaylight-inventory:nodes/node/NodeA/yang-ext:mount
http://localhost:8181/restconf/config/opendaylight-inventory:nodes/node/NodeA/yang-ext:mount
http://localhost:8181/restconf/config/opendaylight-inventory:nodes/node/NodeA/yang-ext:mount/
http://localhost:8181/restconf/config/opendaylight-inventory:nodes/node/NodeA/yang-ext:mount/
http://localhost:8181/restconf/config/opendaylight-inventory:nodes/node/NodeB/yang-ext:mount/
http://localhost:8181/restconf/config/opendaylight-inventory:nodes/node/NodeB/yang-ext:mount/
http://localhost:8181/restconf/config/opendaylight-inventory:nodes/node/NodeB/yang-ext:mount/

58 6. SDN AND EMULATED IHON TESTBED RESULTS

opendaylight-inventory:nodes/node/ NodeB/ yang-ext:mount/. Like NodeA, the ini-
tial configuration for NodeB is given in Source code 6.3. Like NodeA, we executed
POST request to edit the configuration of NodeB as follows:

— URL: hitp://localhost:8181 /restconf/ config/ opendaylight-inventory:nodes/
node/ NodeB/yang-ext:mount,

— Headers:

Accept: application/xml,
Content-Type: application/xml
— Body: Shown in Appendix B.3 which is the configuration of NodeB.

Like NodeA, the 200 OK is returned once the POST request for NodeB is executed;
this implies that the configuration of NodeB is edited successfully. By executing
GET request to http://localhost:8181/restconf/ config/ opendaylight-inventory:nodes/
node/ NodeB/ yang-ext:mount/, we accessed NodeB’s configuration data as illustrated
in Appendix B.6.

NodeC Configuration

Like both NodeA and NodeB, we follow the same procedure to achieve successful
configuration. First we made sure that its config data container is empty as illustrated
in Source code 6.3 by executing GET request to: http://localhost:8181/ restconf/
config/ opendaylight-inventory:nodes/node/nodeC/ yang-ext:mount/. After that, we
execute POST request to send its configuration as follows:

— URL: http://localhost: 8181/ restconf/ config/ opendaylight-inventory:nodes/
node/ NodeC/ yang-ext:mount,

— Headers:
Accept: application/xml,
Content-Type: application/xml

— Body: Illustrated in Appendix B.4 which is the configuration of NodeC.

After sending the configuration with postman, the 200 OK is returned which
indicates that NodeC is configured successfully. Afterwards, we execute GET re-
quest to: http://localhost:8181/ restconf/ config/ opendaylight-inventory:nodes/node/
NodeC/yang-ext:mount/, and we retrieved its configuration data which is given in
Appendix B.7.

To sum up, we have emulated SDN for IHON nodes. ODL platform is a suitable
testbed to realize SDN for IHON nodes based on NETCONF southbound protocol.
Using the netconf simulation testtool, we proposed SDN framework consisting of
three ITHON nodes which transport Ethernet streams from different number of nodes,
with different connections and different priorities, i.e. both GST and SM connections
between each node pair. The netconf testtool supports netconf monitoring, and
netconf operations are executed in a secured manner. In order to accomplish this, we
installed SSH feature in the Beryllium karaf distribution, then each node is connected

http://localhost:8181/restconf/config/opendaylight-inventory:nodes/node/NodeB/yang-ext:mount/
http://localhost:8181/restconf/config/opendaylight-inventory:nodes/node/NodeB/yang-ext:mount/
http://localhost:8181/restconf/config/opendaylight-inventory:nodes/node/NodeB/yang-ext:mount/
http://localhost:8181/restconf/config/opendaylight-inventory:nodes/node/NodeB/yang-ext:mount
http://localhost:8181/restconf/config/opendaylight-inventory:nodes/node/NodeB/yang-ext:mount
http://localhost:8181/restconf/config/opendaylight-inventory:nodes/node/NodeB/yang-ext:mount/
http://localhost:8181/restconf/config/opendaylight-inventory:nodes/node/NodeB/yang-ext:mount/
http://localhost:8181/restconf/config/opendaylight-inventory:nodes/node/nodeC/yang-ext:mount/
http://localhost:8181/restconf/config/opendaylight-inventory:nodes/node/nodeC/yang-ext:mount/
http://localhost:8181/restconf/config/opendaylight-inventory:nodes/node/NodeC/yang-ext:mount
http://localhost:8181/restconf/config/opendaylight-inventory:nodes/node/NodeC/yang-ext:mount
http://localhost:8181/restconf/config/opendaylight-inventory:nodes/node/NodeC/yang-ext:mount/
http://localhost:8181/restconf/config/opendaylight-inventory:nodes/node/NodeC/yang-ext:mount/

6.2. MANAGEMENT OF IHON NODES WITH THE ODL CONTROLLER 59

to the controller using netconf-connector. After developing YANG schema for THON
node, we loaded it to the simulation nodes. When all nodes are connected successfully,
the user (network operator) controls the nodes through the SDN controller. Therefore,
the control plane passes the configurations of all nodes in the network remotely which
overcomes the manual configuration of each node separately. In the next chapter, we
will discuss an SDN experiment conducted at Uninett labs with the prototype Fusion
H1 nodes from Transpacket and the ODL controller installed at the stationary server
at the department of Telematics.

SDIN and Fusion Experiment
Results

This chapter presents the results for SDN experiment conducted with H1 network
at Uninett labs. In Section 7.1, we describe the Fusion H1 network setup together
with the forwarding of Ethernet streams in the network. Section 7.2 illustrates the
implementation of ODL platform for the H1 network including the basic procedures to
connect each node with the controller. Lastly, Section 7.3 describes the management
of nodes with the ODL controller.

7.1 H1 Network Diagram Setup

As illustrated in Figure 7.1, the network setup at Uninett consists of three H1 nodes
(the node names are N1, N2, and N3, and their corresponding IP addresses are shown
in Table 7.2), and a Spirent traffic generator/analyser (SPT-2000). For security
reasons the IP addresses of the H1 nodes have been replaced with 192.168.209./24.
Moreover, GST and SM Ethernet streams are represented with green and red,
respectively. N1 transports three GST streams each of 1Gbps, and a single SM
stream of size 10Gbps all generated by the traffic generator. On the other hand, N2
drops one of the GST streams it received from N1 through its 1GE interface, but
inserts additional two GST and a single SM streams to be forwarded to N3. In N3,
all the streams received from N1 and N2 are delivered back to the SPT-2000 through
their corresponding interfaces. Moreover, all VLANSs in the network are assigned the
same names as the interfaces of the nodes to which they are connected; for example,
the interface geO of N1 corresponds to VLAN ge0 from the traffic generator. In
this case, geb and ge8 correspond to the same VLAN. All the VLANs and Ethernet
streams in the network setup are summarized in Table 7.1.

7.2 Deploying ODL platform for the H1 network

As described in the previous chapters of this thesis, we used the same SDN controller
platform testbed, i.e. the ODL controller, specifically the Beryllium version to

61

62 7. SDN AND FUSION EXPERIMENT RESULTS

N1
192.168.209.1

UNINETT labs

spod 39| juands

192.168.209.2
Guranteed Service
Transport (GST) — green
Statistically Multiplxed
(SM) — red

GST 1Gb/s Ethernet
streams

N1-N3: ge0 and gel
N1-N2:ge4d

N2-N3 : ge2 and ge3

Spirent SPT-2000

SM 10Gb/s Ethernet
stream

N1-N3:xe0

N3 SM 1Gb/s Ethernet stream

N2 — N3 :ge5—-ge8
192.168.209.3 ge>—ee

Figure 7.1: Network setup diagram at Uninett with three H1 nodes and Spirent
SPT-2000 packet generator. GST traffic are depicted in green while SM in red, and
their corresponding paths are depicted at the right bottom side.

manage the configuration of the H1 nodes at Uninett labs. The Beryllium controller
is installed at stationary server at the department of Telematics. The H1 nodes are
built based on NETCONF protocol and YANG data modeling language. As a result,
NETCONF protocol is used as a southbound plug-in to connect the H1 nodes with
the ODL testbed. In order to achieve management of the network remotely with the

Beryllium platform, we installed the NETCONF feature, i.e. netconf-connector in
the Beryllium distribution.

As we have discussed in Section 5.2.1, a new netconf-connector is created for each
node to enable communication with the controller. To accomplish this, we installed
the netconf-connector and restconf features in the karaf distribution as given in
Appendix A. Next, we created three netconf-connectors corresponding to the three

H1 nodes at the Uninett labs by executing POST request using postman plug-in
with the following parameters:

7.2. DEPLOYING ODL PLATFORM FOR THE H1 NETWORK

63

Table 7.1: Connection set up of N1, N2, and N3; illustrates the stream types and
VLANS in each node.
Interfaces
Node | ge0 gel ge2 ged ged | geb | ge8 | Xel Xel
GST | GST | GST | GST | GST | SM | SM | SM Trunk | Type
access- of Eth-
interface ernet
(except Stream
in N2;
it is
Trunk)
N1 gel gel - - ged - - xe0 ge0 +
gel + | VLAN
ged +
xe0
N2 - - ge2 ge3 ged | ged - ge0 + | ge0 +
gel gel +
ge2 +
ged +
ged +
xe0
N3 gel gel ge2 ge3 - - ge8 | xel ge0 +
gel +
ge2 +
ged +
ge8 +
xel
Table 7.2: IP address and port number for the H1 nodes in the network setup.

The Ip address, username, and password of the H1 nodes are changed for security

reasons.

device-name

IP address

Port

Username and
Password

N1

192.168.209.1

N2

192.168.209.2

N3

192.168.209.3

830

admin

64 7. SDN AND FUSION EXPERIMENT RESULTS

— Operation: POST,

— URL:
http://localhost:8181/ restconf/ config/ network-topology:network-topology/
topology/ topology-netconf/node/ controller-config/ yang-ext:mount/ config:
modules,

— Headers:

o Accept: application/XML,
o Content-Type: application/XML,

— Body: Depicted in Appendix C.1. In order to create netconf-connector for
N1, N2, and N3, we replaced the device_name, device_IP_ address, de-
vice_ port_ number, username, and password in the source code with the
corresponding parameters of the nodes as given in Table 7.2.

Hence, the three netconf-connectors are created by executing POST request us-
ing postman with their corresponding body. After creating the netconf-connectors,
we verified that each node is successfully connected to the ODL controller using
log:display command in the karaf distribution; the log output is illustrated in Fig-
ure 7.2. Moreover, we checked this by executing GET request to: http://localhost:
8181/ restconf/ operational / network-topology:network-topology/. For example, Ap-
pendix E.1 shows the output for N1. Additionally, N2 and N3 return similar outputs.
So, the capabilities of the H1 nodes are stored in the MD-SAL datastore. Moreover,
we can see that the node includes ietf-inet-types, and ietf-yang-types capabilities,
thus the H1 node supports NETCONF monitoring and advertises ietf-inet-types
capability during HELLO message exchange. Besides, the H1 node has additional
capabilities that provide full functionality of the IHON principles as discussed in
Chapter 2.

7.3 Management of H1 Nodes

Deploying the ODL controller for the H1 network enables us to manage the configu-
ration and forwarding schemes of the nodes. After starting the netconf-connector for
each node, we can manipulate (i.e. read, write, update, and delete) the configuration
of the nodes from the controller. The YANG schema of the H1 nodes is proprietary,
and we get privilege to access the internal schema of the node in the XML schema
representing the configuration. As a result, we can retrieve the schema, modify it
to relate the wanted configuration and push it back to the nodes. This way we can
fully configure the H1 nodes in the network.

First, we execute GET request to: http://localhost:8181/ restconf/ config/
opendaylight-inventory:nodes/node/ Ni/yang-ext:mount/ where Ni indicates the
node name, in this case, N1, N2, or N3. So, replacing Ni by the either of the nodes
returns the complete configuration of the corresponding node. The retrieved XML
configurations of N1, N2, and N3 are illustrated in Appendix E.2, Appendix E.3,

http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules
http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules
http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules
 http://localhost:8181/restconf/operational/network-topology:network-topology/
 http://localhost:8181/restconf/operational/network-topology:network-topology/
http://localhost:8181/restconf/config/opendaylight-inventory:nodes/node/Ni/yang-ext:mount/
http://localhost:8181/restconf/config/opendaylight-inventory:nodes/node/Ni/yang-ext:mount/

7.3. MANAGEMENT OF H1 NODES 65

Figure 7.2: Log output from the Beryllium controller which shows successful
starting of netconf-connector for N1, N2, and N3.

No. Time Source Destination Protocol Length Info
490 18.257695542 129.241.200.54 192.168.209.1 TCP 74 45495 - 830 [SYN] Seq=0 Win=20200 Len=0 MSS=1460 SACK PERM=1 TSval=111072227 TSecr=0 WS=128
491 18.258475150 192.168.209.1 129.241.209.54 TCP 74 830 ~ 45495 [SYN, ACK] Seq=0 Ack=1 Win=5792 Len=0 MS5=146 SACK_PERM=1 TSval=126195127 TSecr=111972227 WS=4
492 18.258521337 129.241.209.54 192.168.209.1 TCP 66 45495 - 830 [ACK] Seq=1 Ack=1 Win=29312 Len=8 TSval=111972227 TSecr=126195127
493 18.260921920 129.241.209.54 192.168.209.1 TCP 92 45495 - 830 [PSH, ACK] Seq=1 Ack=1 Win=29312 Len=26 TSval=111972228 TSecr=126195127
494 18261629448 192.168.209.1 129.241.209.54 TP 66 830 ~ 45495 [ACK] Seq=1 Ack=27 Win=5792 Len=@ TSval-126195128 TSecr=111972228
495 18.261670528 129.241.200.54 192.168.209.1 TP 770 45495 - 830 [PSH, ACK] Seq=27 Ack=1 Win=29312 Len=704 TSval=111972228 TSecr=126195128
496 18.262595330 192.168.209.1 129.241.209.54 TP 66 830 ~ 45495 [ACK] Seq=1 Ack=731 Win=7280 Len=0 TSval=126195128 TSecr=111972228
497 18.330670894 158.38.152.164 129.241,209.54 TP 87 830 -~ 45495 [PSH, ACK] Seq=1 Ack=731 Win=7208 Len=21 TSval=126195145 TSecr=111972228
498 18.330725727 192.168.209.1 192.168.209.1 Tcp 66 45495 ~ 830 [ACK] Seq=731 Ack=22 Win=29312 Len= TSval=111972245 TSecr=126195145

Figure 7.3: Captured traffic with Wireshark between the controller and N1 node
which shows the connection establishment, and data delivering with the PSH and
ACK flags. The IP address of the N1 node is changed for security issues.

No. Time Source Destination Protocol Length Info
1947 69.459990979 192.168.209.1 129.241.269.54 Tcp 358 830 - 44878 [PSH, ACK] Seq=1 Ack=341 Win=0440 Len=202 TSval=126207927 TSecr=111985027
1948 69.460060324 129.241.209.54 192.168.209.1 TCP 66 44878 -+ 830 [ACK] Seq=341 Ack=293 Win=1444 Len=0 TSval=111985628 TSecr=126207927
3174 119.313252625 129.241.200.54 192.168.209.1 TCP 118 45495 - 830 [PSH, ACK] Seq=3187 Ack=32514 Win=180992 Len=52 TSval-111997491 TSecr=126203182
3175 110.316912137 192.168.209.1 129.241.269.54 TCP 170 830 - 45495 [PSH, ACK] Seq=32514 Ack=3239 Win=14240 Len=104 TSval-126226392 TSecr=111007491
3176 119.316976475 129.241.200.54 192.168.209.1 TCP 66 45495 -+ 830 [ACK] Seq=3239 Ack=32618 Win=100992 Len=0 TSval=111097402 TSecr=126220302
3177 119.317746638 120.241.200.54 192.168.209.1 TCP 66 45495 - 830 [FIN, ACK] Seq=3230 Ack=32618 Win=108992 Len= TSval=111997492 TSecr=126220392
3178 119.319581379 192.168.209.1 129.241.269.54 TCP 66 830 45495 [FIN, ACK] Seq=32618 Ack=3240 Win=14246 Len=0 TSval-126220392 TSecr=111097492
3179 119.319638230 129.241,209.54 192.168.209.1 e 66 4545 - 830 [ACK] Seq=3240 Ack=32619 Win=109992 Len=0 TSval=111997493 TSecr=126220392

Figure 7.4: Captured traffic between the controller and N1 node; it specifically
shows the closing of the ongoing session using FIN, and ACK flags.

and Appendix E.4, respectively. Hence, we confirmed that the configuration of the
nodes which is obtained by executing the GET request exactly matches with the
configuration plan illustrated in Table 7.1.

Moreover, we captured the traffic low between the controller and the nodes
using wireshark. For example, the screenshots depicted in Figure 7.3 and Figure 7.4

66 7. SDN AND FUSION EXPERIMENT RESULTS

N1 (129.168.209.1)

Controller (129.241.209.54) Port (830)
oy |
[SYN] !
Controller sets up
TCP connection with [SYN, ACK]
TCP three-way handshake
[ACK] >
[PSH, ACK] -
Controller PUSHs data
to the node [ACK]

i bl Sl Rtk sl Bl Sl ol mllie el il b

Node PUSHs data to [PSH, ACK]
the Controller
[ACK]
i
1
I
[FIN, ACK] X
»y
]
1)
Controller closes :
connection with 1
FIN, AC
three-way handshake { K :
[ACK] >
]

Figure 7.5: Flow graph between ODL controller and N1 node

illustrate the message flows between the controller and N1. The actual IP address of
N1 is replaced manually by private IP address for security reasons. The corresponding
flow graph is illustrated in Figure 7.5. We can see that the controller first initiates a
TCP connection over an Internet Protocol based network using three-way handshake
(SYN-SYN-ACK). As a result, a TCP session is established between the controller
and the H1 node. When either of the entities needs to send data to the other peer,
it applies the PUSH (PSH) [Dou06] flag, thus the TCP stack at the receiver side
pushes the received data without buffering it directly to the receiving application.
Finally, the controller closes the connection by sending a FIN (final) flag to the node.
The node receives the termination request, and it immediately closes the session.

In conclusion, implementing SDN with ODL platform for the Fusion H1 network
setup at Uninett accomplishes the decoupling of the control and data plane scenario.
Moreover, network functions, configurations, and protocols are made programmable
with the controller. Applications that run over the controller get abstracted map
of the underlying network topology, and manipulate the logical map. In the next
chapter, we will present the conclusion and possible future work to our thesis.

Conclusion and Future Work

8.1 Conclusion

In this thesis work for the first time was proposed and demonstrated through
emulation and experiments an SDN controlled Integrated Hybrid Optical Network.
The emulation is carried out to achieve NETCONF-based SDN realization for IHON
network with ODL platform testbed. We proposed an SDN setup consisting of three
THON nodes each carrying different types of streams with different QoS from various
connections. Based on the working principles of the THON nodes, we developed
a YANG schema that represents the configuration of a typical IHON node. Each
node is simulated with a netconf testtool, and the YANG schema is loaded to the
simulation tool. Upon installation of the required features in the ODL distribution,
we successfully established NETCONF based communication between the simulated
nodes and the controller. As a result, the separation of control and data plane is
achieved with the ODL testbed using the NETCONF southbound protocol. From
application running on the controller, we accessed the nodes and manipulated the
configuration, thus the logical connectivity, of the network with multiple services.

Furthermore, we conducted SDN experiment for H1 network at Uninett labs. The
same ODL testbed which is installed in a server in the Telematics department is
used to implement SDN/NETCONTF for the H1 network. With the ODL controller,
we have established successful communication with each node and retrieved their
configuration. Having the right privilege, the network connection can be expanded,
and complete network management and node configuration can be accomplished
from the controller. Hence, the GST and SM flows from different VLANSs can be
measured. As a result, we can verify efficient utilization of the transmission capacity
and guaranteed QoS in SDN controlled H1 network.

We have explained the theoretical background to IHON nodes in general and
H1 prototype nodes in particular. THON optimizes capacity utilization and offers
guaranteed QoS by combining the advantages of both packet and circuit switched

67

68 8. CONCLUSION AND FUTURE WORK

traffic while diminishing their disadvantages. Moreover, we have seen that SDN
allows programmability of network functions and protocols with a logically centralized
controller. As a result, SDN reduces costs and improves network flexibility in
provisioning new services and avoids interoperability problems between heterogeneous
domains. Besides, we have explained NETCONF as a southbound plug-in to realize
SDN for THON in general and H1 node in specific. We have discussed NETCONF
client-server communication over SSH session and executing operation remotely.
Finally, we evaluated that ODL platform is a suitable testbed to accomplish SDN
for THON, specifically for Fusion H1 network.

8.2 Future Work

This section discusses some additional points to consider in future works as a
continuation of this work.

For the emulation, we apply netconf testtool to simulate the IHON node config-
urations. The YANG schema that we developed represents basic configuration of
H1 nodes; it requires further extension to define the complete functionality of the
Fusion nodes according to the IHON principles. For example, the definitions for GST
and SM streams can be described more in detail, and the forwarding scheme in the
THON nodes which is based on Q-in-Q IEEE 802.1ad [Fusl3] can be modeled using
YANG schema. Moreover, the network can be expanded by adding Ethernet streams,
i.e. GST and/or SM from different connections. The above listed extensions and
other additional definitions are, then, modeled using YANG schema. As a result,
configuration, management, and monitoring of the network is achieved using the
ODL testbed.

Moreover, OpenDaylight User Interface (DLUX) [Com16b] [Com16c] can be used
to view the network topology of both emulation and lab experiment, and test appli-
cation development. DLUX and associated features are installed using the command:
feature:install odl-dluz-core-all odl-12switch-switch-ui in the Beryllium karaf distri-
bution. The odl-dlux-core-all installs the DLUX, and the topology application is
activated immediately. On the other hand, odl-I2switch-switch-ui allows to view the
topology details. Other applications like node, yang User interface (yang UI) can also
be enabled to view the list of nodes, and yang development, respectively [Com16b].
The DLUX is then accessed using the login URL: hitp:// <karaf-ip>:8181/index.html,
in our case localhost is used as karaf-ip . As a result, the statistics for GST and SM
streams between the nodes can be recorded, and measurement on the performance of
the SDN controlled framework for the emulated THON can be achieved.

http://<karaf-ip>:8181/index.html

[Berl5]

[BNHO3]

[BNOT05]

[Brol5]

[Burl5]

[Cen]

[CNRF*13]

[Com16a]

[Com16b]

[Com16¢]

References

Weldmicheal Berhanu. Software defined networking for fusion (integrated hybrid
optical) networks. Specialization project report (TTM4501), NTNU, 2015.

S Bjornstad, M Nord, and DR Hjelme. Qos differentiation and header/pay-
load separation in optical packet switching using polarisation multiplexing. In
Proceedings of ECOC 2003, pages 28-29, 2003.

Steinar Bjornstad, Martin Nord, Torodd Olsen, D Hjelme, and NORVALD Stol.
Burst, packet and hybrid switching in the optical core network. TELEKTRONIKK,
101(2):148, 2005.

Brocade sdn controller user guide. http://www.brocade.com/content/
dam/common/documents/content-types/user-guide/SDN-Controller-2.1.
0-User-Guide.pdf, Nov 2015.

Alagalah (Keith Burns). Southbound (netconf-connector). https:
//github.com/opendaylight /docs/blob/master /manuals/user-guide/src/main/
asciidoc/controller /netconf/odl-netconf-southbound-user.adoc, July 2015.

Netconf Central. Network configuration protocol. http://www.netconfcentral.
org/netconf_docs.

M Channegowda, R Nejabati, M Rashidi Fard, S Peng, N Amaya, G Zervas,
D Simeonidou, R Vilalta, R Casellas, R Martinez, et al. Experimental demonstra-
tion of an openflow based software-defined optical network employing packet, fixed
and flexible dwdm grid technologies on an international multi-domain testbed.
Optics express, 21(5):5487-5498, 2013.

OpenDaylight Community. Opendaylight developer guide. https://drive.google.
com/file/d/0B_ rLr6so6DZ8cXRJczlJISVBzOEO/view, Feb 2016.

OpenDaylight Community. Opendaylight installation guide. https://drive.google.
com/file/d/0B_ rLr6so6DZ8S0ZRaDIIQ091V0k/view, Feb 2016.

OpenDaylight Community. Opendaylight user guide. https://drive.google.com/
file/d/0B_ rLr6so6DZ8RVJyWXpVcEdhdVE/view, Feb 2016.

69

http://www.brocade.com/content/dam/common/documents/content-types/user-guide/SDN-Controller-2.1.0-User-Guide.pdf
http://www.brocade.com/content/dam/common/documents/content-types/user-guide/SDN-Controller-2.1.0-User-Guide.pdf
http://www.brocade.com/content/dam/common/documents/content-types/user-guide/SDN-Controller-2.1.0-User-Guide.pdf
https://github.com/opendaylight/docs/blob/master/manuals/user-guide/src/main/asciidoc/controller/netconf/odl-netconf-southbound-user.adoc
https://github.com/opendaylight/docs/blob/master/manuals/user-guide/src/main/asciidoc/controller/netconf/odl-netconf-southbound-user.adoc
https://github.com/opendaylight/docs/blob/master/manuals/user-guide/src/main/asciidoc/controller/netconf/odl-netconf-southbound-user.adoc
http://www.netconfcentral.org/netconf_docs
http://www.netconfcentral.org/netconf_docs
https://drive.google.com/file/d/0B_rLr6so6DZ8cXRJczlJSVBzOE0/view
https://drive.google.com/file/d/0B_rLr6so6DZ8cXRJczlJSVBzOE0/view
https://drive.google.com/file/d/0B_rLr6so6DZ8S0ZRaDlIQ091V0k/view
https://drive.google.com/file/d/0B_rLr6so6DZ8S0ZRaDlIQ091V0k/view
https://drive.google.com/file/d/0B_rLr6so6DZ8RVJyWXpVcEdhdVE/view
https://drive.google.com/file/d/0B_rLr6so6DZ8RVJyWXpVcEdhdVE/view

70 REFERENCES

[Das10]

[Dou06]

[DPM09)

[DPM*10]

[DROS]

[EBS11]

[FRZ14]

[FT02]

[Fus12]

[Fus13]

[GDS*10]

[GKB*06]

[HGRGO6]

[JMD14]

Saurav Das. Extensions to the openflow protocol in support of circuit switching.
Addendum to OpenFlow protocol specification (vl. 0)—Circuit Switch Addendum
v0, 3, 2010.

Comer Douglas. Internetworking with tcp/ip: Principles, protocols, and architec-
ture. fourth edtion, 1, 2006.

S. Das, G. Parulkar, and N. McKeown. Unifying packet and circuit switched
networks. In GLOBECOM Workshops, 2009 IEEE, pages 1-6, Nov 2009.

S. Das, G. Parulkar, N. McKeown, P. Singh, D. Getachew, and L. Ong. Packet
and circuit network convergence with openflow. In Optical Fiber Communication
(OFC), collocated National Fiber Optic Engineers Conference, 2010 Conference
on (OFC/NFOEC), pages 1-3, March 2010.

Tim Dierks and Eric Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.2, August 2008.

Rob Enns, Martin Bjorklund, and Juergen Schoenwaelder. Netconf configuration
protocol. Network, 2011.

Nick Feamster, Jennifer Rexford, and Ellen Zegura. The road to sdn: an intellec-
tual history of programmable networks. ACM SIGCOMM Computer Communi-
cation Review, 44(2):87-98, 2014.

Roy T Fielding and Richard N Taylor. Principled design of the modern web
architecture. ACM Transactions on Internet Technology (TOIT), 2(2):115-150,
2002.

Fusion networking explained: Bringing true circuit and packet properties to the
packet network. White paper, July 2012.

Transpacket hl; a fusion networking add-drop muxponder. White paper, Apr
2013.

Vinesh R Gudla, Saurav Das, Anujit Shastri, Guru Parulkar, Nick McKeown,
Leonid Kazovsky, and Shinji Yamashita. Experimental demonstration of openflow
control of packet and circuit switches. In Optical Fiber Communication Conference,
page OTuG2. Optical Society of America, 2010.

Christoph M Gauger, Paul J Kuhn, Erik Van Breusegem, Mario Pickavet, and
Piet Demeester. Hybrid optical network architectures: bringing packets and
circuits together. Communications Magazine, IEEE, 44(8):36—42, 2006.

Taqi Hasan, Elango Gannesan, Allen B Rochkind, and Sagar Golla. Network
management system, July 25 2006. US Patent 7,082,464.

Y. Jarraya, T. Madi, and M. Debbabi. A survey and a layered taxonomy
of software-defined networking. Communications Surveys Tutorials, IEEE,
16(4):1955-1980, Fourthquarter 2014.

[LTGI0]

IMB10]
[ODLa]
[ODLb]
[ODLc]

[ODLd]
[ODLe]

[ODL16]

[ONF13a]

[ONF13b)]

[Ste]

[SWIR*94]

[VBB13]

[VBB15]

[VSBR14]

[Wat15]

REFERENCES 71

Aurel A Lazar, Adam Temple, and Rafael Gidron. An architecture for integrated
networks that guarantees quality of service. International Journal of Digital &
Analog Communication Systems, 3(2):229-238, 1990.

Ed. M. Bjorklund. YANG - A Data Modeling Language for the Network Configu-
ration Protocol(NETCONF). RFC 6020, RFC Editor, October 2010.

Getting started with opendaylight. https://docs.google.com/document/d/
12086Nc4IbHvBC_ZGE_ tHIOIWYd75Lk2HzfcV4YxhWTg/pub.

Opendaylight controller:md-sal:restconf. https://wiki.opendaylight.org/view/
OpenDaylight_ Controller:MD-SAL:Restconf.

Opendaylight controller:netconf:testtool. https://wiki.opendaylight.org/view/
OpenDaylight_ Controller:Netconf: Testtool.

Opendaylight platform. https://www.opendaylight.org/.

What are sdn controllers (or sdn controllers platforms). https://www.sdxcentral.
com/resources/sdn/sdn-controllers/.

Odl beryllium (be) - the fourth release of opendaylight. https://www.opendaylight.
org/odlbe, Feb 2016.

Openflow switch specification, version 1.4.0 (wire protocol 0x05). Open Networking
Foundation, Oct 2013.

Software-defined networking: The new norm for networks. White paper, Apr
2013.

Daniel Stenberg. Manual — curl usage explained. https://curl.haxx.se/docs/
manual.html.

Jerry W Sprecher, Donald J Winters Jr, Amirali S Rajwany, Michael W Dodson,
Gene R Penning, Darryl F Harrington, and Simon Chou. Network management
system, February 8 1994. US Patent 5,285,494.

R. Veisllari, S. Bjornstad, and K. Bozorgebrahimi. Integrated packet /circuit hybrid
network field trial with production traffic [invited]. Optical Communications and
Networking, IEEE/OSA Journal of, 5(10):A257-A266, Oct 2013.

Raimena Veisllari, Steinar Bjornstad, and Kurosh Bozorgebrahimi. Load bal-
ancing in sdn enabled integrated packet/circuit networks, first experimental
demonstrations. 2015.

Raimena Veisllari, Norvald Stol, Steinar Bjornstad, and Carla Raffaelli. Scalability
analysis of sdn-controlled optical ring man with hybrid traffic. pages 3283-3288,
2014.

K Watsen. Network working group a. bierman internet-draft yumaworks intended
status: Standards track m. bjorklund expires: December 6, 2015 tail-f systems.
June 2015.

https://docs.google.com/document/d/12O86Nc4IbHvBC_ZGE_tHl0IWYd75Lk2HzfcV4YxhWTg/pub
https://docs.google.com/document/d/12O86Nc4IbHvBC_ZGE_tHl0IWYd75Lk2HzfcV4YxhWTg/pub
https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Restconf
https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Restconf
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Netconf:Testtool
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Netconf:Testtool
https://www.opendaylight.org/
https://www.sdxcentral.com/resources/sdn/sdn-controllers/
https://www.sdxcentral.com/resources/sdn/sdn-controllers/
https://www.opendaylight.org/odlbe
https://www.opendaylight.org/odlbe
https://curl.haxx.se/docs/manual.html
https://curl.haxx.se/docs/manual.html

72 REFERENCES

[WG06] M. Wasserman and T. Goddard. Using the NETCONF Configuration Protocol
over Secure SHell (SSH). RFC 4742 (Proposed Standard), December 2006.

[YLOGa] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Authentication Protocol.
RFC 4252 (Proposed Standard), January 2006.

[YLOGD] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Connection Protocol. RFC
4254 (Proposed Standard), January 2006.

[YLO6¢] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Transport Layer Protocol.
RFC 4253 (Proposed Standard), January 2006.

[YLO6d] Tatu Ylonen and Chris Lonvick. The Secure Shell (SSH) Protocol Architecture.
Technical Report 4251, RFC Editor, Fremont, CA, USA, January 2006.

OpenDayLight Installation and
Running

For running an ODL controller, a JVM is required, and any operating system which
supports Java can be used to run the controller. To successfully run ODL, the
following systems are needed [Com16b]:

— Multi-core processor with at least 8 GB of RAM,

— Java 7 JDK, and

— Linux operating system is more recommended.

Depending on the operating system, the Java JDK can be installed using different
commands. In Ubuntu, for example, we use the following command [Com16b]:

> sudo apt-get install openjdk-7-jdk

In order to emulate SDN for THON and carry out the experiment at Uninett
labs, we imported pre-built all-in-one VM used for SDN development which is a
64-bit ubuntu 14.04 image in to Oracle VM VirtualBox. Our working machine is
Linux distribution, and the VirtualBox version is VBoxGuestAdditions-4.2.18 (this
is checked using the command: Is /opt/). Hence, we downloaded the 64-bit OVA of
the SDN VM (SDN__tutorial _VM__64bit.oval) file and imported to the VirtualBox.
By allocating the recommended memory (8GB), and setting the network adapter
in NAT mode, we boot the VM: the username and password for this VM are both
"ubuntu'".

The current ODL version, i.e. Beryllium (distribution-karaf-0.4.0-Beryllium/) is
downloaded from OpenDaylight software download page?. Since karaf distribution
has no any installed features by default, additional features are added depending on
the implementation requirements. Furthermore, it is not recommended to enable all
features at the same time for reasons of compatibility [Com16b].

Once the Beryllium distribution is downloaded, we follow the below listed proce-

Thttp://sdnhub.org/tutorials /sdn-tutorial-vm/
2http://www.opendaylight.org/software/downloads

73

74 A. OPENDAYLIGHT INSTALLATION AND RUNNING

dures so as to run the karaf distribution [Com16b]. The Karaf distribution simplifies
package operations and application installations, for example, user can install features,
display log outputs, etc.
1. Ungzip the distribution zip file.
$ Is distribution-karaf-0.4.0-Beryllium.zip
$ unzip distribution-karaf-0.4.0-Beryllium.zip
2. Change working directory to the distribution directory.
$ cd distribution-karaf-0.4.0-Beryllium
3. Run the karaf
$./bin/karaf.
An ODL user can install features whenever required using the following com-
mand [Com16b]:

> feature:install <feature-name>

Moreover, Multiple features can be installed with the command:

> feature:install <featurel-name> <feature2-name> ... <featureN-name>
A complete list of the karaf feature, are found using the following command:
> feature:list

Moreover, the installed features are listed using the following command:

> feature:list -i

In our case, we have installed the following features in the karaf distribution:

1. odl-netconf-connector-all: Activates the NETCONF southbound plug-in to
allow remote connection with NETCONF based devices, i.e. the emulated
IHON nodes and Fusion H1 nodes at Uninett labs.

2. odl-restconf-all: Enables RESTCONF features which allows to create, update,
delete, retrieve the configuration of the remote nodes as HT'TP requests.

3. odl-netconf-connector-ssh: Allows secured communication between the nodes
(i.e., both emulated IHON and H1 nodes) and the ODL controller using the
SSH protocol.

IHON node YANG Schema and
Configuration

B.1 THON YANG Schema

1 module ihonnode {

2 yang—version 1;

3 namespace "urn:opendaylight:ihonnode";
4 prefix "ihonnode";

5 organization "NINU-Telematics";

6 contact "michock.mit@gmail.com";

7
8
9

description "Node configuration";

10

11 revision "2016—04—15" {

12 description "Initial version.";

13 }

14 container ihonnode {

15 leaf node—mame {

16 description "node name';

17 type string;

18 }

19 container interfaces {

20 description '"Contains all interfaces of HI
nodes two Xe and ten ge interfaces";

21 list interface {

22 key name;

23 leaf name{

24 type string;

25 }

26 leaf describe {

27 type string;

(0]

76 B.IHON NODE YANG SCHEMA AND CONFIGURATION

28
29
30
31
32
33
34
35
36

37
38
39

40
41
42
43
44
45
46
47
48
49
50
o1
92
93
54
%)
o6
o7
o8
99
60
61
62
63
64
65

leaf type {

type string;

leaf mtu {

type uint32;

choice ethernet—switching {

description "defines access or trunk
type of interface';
case access—interface {
container access—interface {
description "Identifies the
vlan connected to the
interface";
list vlan {
key vlan—mame;
leaf vlan-name {
type string;
}
leaf priority {
type enumeration {
enum gst;
enum sm;

}
}

case trunk—interface {
container trunk—interface {
container vlans {
list vlan {
key vlan-—mame;
leaf vlan—mame {
type string;

}

66
67
68
69
70

71
72
73
74
(0]
76
7
78
79
80
81
82
83

B.2. NODEA CONFIGURATION 77

}
¥
}
container vlans {
description "Defines a group of VLANs in a
Node ";
list vlan {
key id;
leaf id {
type uint32;
}
leaf name {
type string;
}
}
}
}
}

B.2 NodeA Configuration

1
2
3
4
)
6

10
11
12
13
14
15

<ihonnode xmlns="urn:opendaylight:ihonnode">
<node—name>NodeA</node—name>
<interfaces>
<interface>
<name>ge0 </name>
<describe>connection to Vlan2</
describe>
<type>ianaift :ethernetCsmacd </
type>
<access—interface>
<vlan-—name>Vlan2</vlan—
name>
<priority >gst</priority>
</access—interface >
</interface>
<interface>
<name>gel </name>
<describe>connection to Vlan3</
describe>

78

16

17
18

19
20
21
22
23
24

25

26
27

28
29
30
31
32
33

34

35
36

37
38
39
40
41
42

43

44
45

B. IHON NODE YANG SCHEMA AND CONFIGURATION

<type>ianaift :ethernetCsmacd </
type>
<access—interface >
<vlan—name>Vlan3</vlan—
name>
<priority >gst</priority>
</access—interface >
</interface>
<interface>
<name>ge9 </name>
<describe>connection to Vland</
describe >
<type>ianaift :ethernetCsmacd</
type>
<access—interface>
<vlan—name>Vlan4 </vlan—
name>
<priority >sm</priority >
</access—interface>
</interface>
<interface>
<name>xe(</name>
<describe>connection to Vlanl</
describe>
<type>ianaift :ethernetCsmacd</
type>
<access—interface>
<vlan-—name>Vlanl</vlan—
name>
<priority >sm</priority >
</access—interface >
</interface>
<interface>
<name>xel </name>
<describe>connection to xe0 of

NodeB</describe >
<type>ianaift :ethernetCsmacd</
type>

<trunk—interface>
<vlans>

46

47

48

49

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

B.3. NODEB CONFIGURATION 79

<vlan-name>Vlanl</vlan—
name>
<vlan-—name>Vlan2</vlan—
name>
<vlan-—name>Vlan3</vlan—
name>
<vlan—name>Vlan4</vlan—
name>
</vlans>
</trunk—interface >
<mtu>9700</mtu>
</interface>
</interfaces >
<vlans>
<vlan>
<id>1</id>
<name>Vlanl </name>
</vlan>
<vlan>
<id >2</id>
<name>Vlan2</name>
</vlan>
<vlan>
<id>3</id>
<name>Vlan3</name>
</vlan>
<vlan>
<id >4</id>
<name>Vlan4 </name>
</vlan>
</vlans>

73 </ihonnode>

B.3 NodeB Configuration

1 <ihonnode xmlns="urn:opendaylight:ihonnode">

2

S O = W

<node—name>NodeB</node—name>
<interfaces>
<interface>
<name>ge(</name>
<describe>connection to Vlan2</
describe >

80

10
11
12
13
14
15

16

17
18

19
20
21
22
23
24

25

26
27

28
29
30
31
32
33

34

35
36

B. IHON NODE YANG SCHEMA AND CONFIGURATION

<type>ianaift :ethernetCsmacd </
type>
<access—interface >
<vlan—name>Vlan2</vlan—
name>
<priority >gst</priority>
</access—interface >
</interface>
<interface>
<name>ge8 </name>
<describe>connection to Vlan8</
describe >
<type>ianaift :ethernetCsmacd</
type>
<access—interface>
<vlan—name>Vlan8</vlan—
name>
<priority >sm</priority >
</access—interface>
</interface>
<interface>
<name>ge9 </name>
<describe>connection to Vland</
describe>
<type>ianaift :ethernetCsmacd</
type>
<access—interface>
<vlan-—name>Vland </vlan—
name>
<priority >sm</priority >
</access—interface >
</interface>
<interface>
<name>xe(</name>
<describe>connection to xel of
NodeA</describe >
<type>ianaift :ethernetCsmacd</
type>
<trunk—interface >
<vlans>

37

38

39

40

41
42
43
44
45
46
47

48

49
50
o1

52

53

54
95
56
57
58
59
60
61
62
63
64
65
66
67
68

B.3. NODEB CONFIGURATION

<vlan-name>Vlanl</vlan—
name>
<vlan-—name>Vlan2</vlan—
name>
<vlan-—name>Vlan3</vlan—
name>
<vlan—name>Vlan4</vlan—
name>
</vlans>
</trunk—interface >
<mtu>9700< /mtu>
</interface>
<interface>
<name>xel </name>
<describe>connection to xel of

NodeC</describe >
<type>ianaift :ethernetCsmacd </
type>
<trunk—interface >
<vlans>
<vlan—name>Vlanl</vlan—
name>
<vlan-—name>Vlan3</vlan—
name>
<vlan-—name>Vlan8</vlan—
name>
</vlans>
</trunk—interface >
<mtu>9700</mtu>

</interface>
</interfaces >
<vlans>
<vlan>
<id>1</id>
<name>Vlanl </name>
</vlan>
<vlan>
<id>2</id>
<name>Vlan2</name>
</vlan>
<vlan>

81

82 B.IHON NODE YANG SCHEMA AND CONFIGURATION

69
70
71

</vlan>

72 <vlan>

73
74
(0]

</vlan>

76 <vlan>

77

78

79

80 </vlans>
81 </ihonnode>

B.4 NodeC Configuration

</vlan>

<id>3</id>
<name>Vlan3 </name>

<id>4</id>
<name>Vlan4 </name>

<id>8</id>
<name>Vlan8</name>

1 <ihonnode xmlns="urn:opendaylight:ihonnode">

2 <node—name>NodeC</node—name>

3 <interfaces>

4 <interface>

5 <name>gel </name>

6 <describe>connection to Vlan3</
describe>

7 <type>ianaift :ethernetCsmacd</
type>

8 <access—interface >

9 <vlan-—name>Vlan3</vlan—

name>

10 <priority >gst </priority >

11 </access—interface >

12 </interface>

13 <interface>

14 <name>ge8 </name>

15 <describe>connection to Vlan8</
describe>

16 <type>ianaift :ethernetCsmacd </
type>

17 <access—interface>

18 <vlan—name>Vlan8</vlan—

name>
19 <priority >sm</priority >
20 </access—interface >

21
22
23
24

25

26
27

28
29
30
31
32
33

34

35
36
37

38

39

40
41
42
43
44
45
46
47
48
49
50
51
52
53

B.4. NODEC CONFIGURATION

</interface>
<interface>
<name>xe(</name>
<describe>connection to Vlanl</
describe>
<type>ianaift :ethernetCsmacd </
type>
<access—interface >
<vlan—name>Vlanl</vlan—
name>
<priority >sm</priority >
</access—interface >
</interface>
<interface>
<name>xel </name>
<describe>connection to xel of

NodeB</describe >
<type>ianaift:ethernetCsmacd</
type>
<trunk—interface>
<vlans>
<vlan-—name>Vlanl</vlan—
name>
<vlan—name>Vlan3</vlan—
name>
<vlan—name>Vlan8</vlan—
name>
</vlans>
</trunk—interface >
<mtu>9700< /mtu>

</interface>
</interfaces >

<vlans>

<vlan>
<id>1</id>
<name>Vlanl</name>

</vlan>

<vlan>
<id>3</id>
<name>Vlan3</name>

</vlan>

84 B.IHON NODE YANG SCHEMA AND CONFIGURATION

54
%)
o6
57
58

<vlan>
<id>8</id>
<name>Vlan8</name>
</vlan>
</vlans>

59 </ihonnode>

B.5 Retrieved Configuration of NodeA

1 <data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" >

2

~N O Ot s W

10

11
12
13
14
15
16

17

18
19

20
21
22
23
24

<ihonnode xmlns="urn:opendaylight:ihonnode" xmlns:a="
urn:ietf:params:xml:ns:netconf:base:1.0" a:
operation="replace">
<node—name>nodeA </node—name>
<interfaces>
<interface>
<name>ge0 </name>
<describe>connection to Vlan2</
describe >
<type>ianaift :ethernetCsmacd </
type>
<access—interface>
<vlan—name>Vlan2</vlan—
name>
<priority >gst</priority >
</access—interface >
</interface>
<interface>
<name>gel </name>
<describe>connection to Vlan3</
describe >
<type>ianaift :ethernetCsmacd</
type>
<access—interface>
<vlan—name>Vlan3</vlan—
name>
<priority >gst </priority >
</access—interface >
</interface>
<interface>
<name>ge9 </name>

25

26

27
28

29
30
31
32
33
34

35

36
37

38
39
40
41
42
43

44

45

46

47

48

49

50

51

52
53

B.5. RETRIEVED CONFIGURATION OF NODEA

<describe>connection to Vland</
describe >
<type>ianaift:ethernetCsmacd</
type>
<access—interface >
<vlan—name>Vlan4</vlan—
name>
<priority >sm</priority >
</access—interface>
</interface >
<interface>
<name>xe(</name>
<describe>connection to Vlanl</
describe >
<type>ianaift :ethernetCsmacd </
type>
<access—interface>
<vlan—name>Vlanl</vlan—
name>
<priority >sm</priority >
</access—interface >
</interface >
<interface>
<name>xel </name>
<describe>connection to xe0 of
NodeB</describe >
<type>ianaift :ethernetCsmacd</
type>
<trunk—interface >
<vlans>
<vlan—name>Vlanl
</vlan-—name>
<vlan—name>Vlan2
</vlan—name>
<vlan—name>Vlan3
</vlan-—name>
<vlan—name>Vlan4
</vlan—name>
</vlans>
</trunk—interface >
<mtu>9700< /mtu>

85

86 B.IHON NODE YANG SCHEMA AND CONFIGURATION

54 </interface>

55 </interfaces >

56 <vlans>

57 <vlan>

58 <id>1</id>

59 <name>Vlanl </name>
60 </vlan>

61 <vlan>

62 <id>2</id>

63 <name>Vlan2</name>
64 </vlan>

65 <vlan>

66 <id>3</id>

67 <name>Vlan3 </name>
68 </vlan>

69 <vlan>

70 <id>4</id>

71 <name>Vlan4 </name>
72 </vlan>

73 </vlans>

74 </ihonnode>

75 </data>

B.6 Retrieved Configuration of NodeB

1 <data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" >
2 <ihonnode xmlns="urn:opendaylight:ihonnode" xmlns:a=
urn:ietf:params:xml:ns:netconf:base:1.0" a:

operation="replace">

3 <node—name>nodeB</node—name>

4 <interfaces>

) <interface>

6 <name>ge0 </name>

7 <describe>connection to Vlan2</
describe>

8 <type>ianaift :ethernetCsmacd </
type>

9 <access—interface >

10 <vlan—name>Vlan2</vlan—

name>
11 <priority >gst </priority >

12 </access—interface >

13
14
15
16

17

18
19

20
21
22
23
24
25

26

27
28

29
30
31
32
33
34

35

36

37

38

39

40

41

B.6. RETRIEVED CONFIGURATION OF NODEB 87

</interface>
<interface>
<name>ge8 </name>
<describe>connection to Vlan8</
describe >
<type>ianaift :ethernetCsmacd </
type>
<access—interface >
<vlan—name>Vlan8</vlan—
name>
<priority >sm</priority >
</access—interface >
</interface>
<interface>
<name>ge9 </name>
<describe>connection to Vland</
describe>
<type>ianaift:ethernetCsmacd</
type>
<access—interface>
<vlan—name>Vlan4</vlan—
name>
<priority >sm</priority >
</access—interface>
</interface>
<interface>
<name>xe(</name>
<describe>connection to xel of
NodeA</describe >
<type>ianaift :ethernetCsmacd </
type>
<trunk—interface>
<vlans>
<vlan—nmame>Vlanl
</vlan—name>
<vlan—name>Vlan2
</vlan-—name>
<vlan—name>Vlan3
</vlan—name>
<vlan—name>Vlan4
</vlan-—name>

88 B. IHON NODE YANG SCHEMA AND CONFIGURATION

42
43
44
45
46
47

48

49
50
o1

92

53

o4
%)
56
o7
98
99
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
(0]
76
7

</trunk—interface >
<mtu>9700< /mtu>
</interface>
<interface>
<name>xel </name>
<describe>connection to xel of
Nodec</describe >
<type>ianaift :ethernetCsmacd</
type>
<trunk—interface >
<vlans>
<vlan—name>Vlanl
</vlan-—name>
<vlan—mame>Vlan3
</vlan—name>
<vlan—name>Vlan8
</vlan-—name>
</vlans>
</trunk—interface >
<mtu>9700< /mtu>
</interface>

</interfaces >

<vlans>

<vlan>
<id>1</id>
<name>Vlanl </name>
</vlan>
<vlan>
<id>2</id>
<name>Vlan2</name>
</vlan>
<vlan>
<id >3</id>
<name>Vlan3</name>
</vlan>
<vlan>
<id>4</id>
<name>Vlan4 </name>
</vlan>
<vlan>
<id>8</id>

B.7. RETRIEVED CONFIGURATION OF NODEC 89

78 <name>Vlan8 </name>
79 </vlan>

80 </vlans>

81 </ihonnode>

82 </data>

B.7 Retrieved Configuration of NodeC

1 <data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

2 <ihonnode xmlns="urn:opendaylight:ihonnode" xmlns:a="
urn:ietf:params:xml:ns:netconf:base:1.0" a:
operation="replace">

3 <node—name>nodeC</node—name>

4 <interfaces>

5 <interface>

6 <name>gel </name>

7 <describe>connection to Vlan3</
describe>

8 <type>ianaift :ethernetCsmacd</
type>

9 <access—interface >

10 <vlan-—name>Vlan3</vlan—

name>

11 <priority >gst</priority>

12 </access—interface >

13 </interface>

14 <interface>

15 <name>ge8 < /name>

16 <describe>connection to Vlan8</
describe>

17 <type>ianaift :ethernetCsmacd </
type>

18 <access—interface>

19 <vlan—name>Vlan8</vlan—

name>

20 <priority >sm</priority >

21 </access—interface >

22 </interface>

23 <interface>

24 <name>xe(</name>

25 <describe>connection to Vlanl</

describe>

90 B.IHON NODE YANG SCHEMA AND CONFIGURATION

26 <type>ianaift :ethernetCsmacd</
type>
27 <access—interface >
28 <vlan—name>Vlanl</vlan—
name>
29 <priority >sm</priority >
30 </access—interface >
31 </interface>
32 <interface>
33 <name>xel </name>
34 <describe>connection to xel of
NodeB</describe >
35 <type>ianaift :ethernetCsmacd</
type>
36 <trunk—interface>
37 <vlans>
38 <vlan—name>Vlanl</vlan—
name>
39 <vlan—name>Vlan3</vlan—
name>
40 <vlan—name>Vlan8</vlan—
name>
41 </vlans>
42 </trunk—interface>
43 <mtu>9700< /mtu>
44 </interface>
45 </interfaces >
46 <vlans>
47 <vlan>
43 <id>1</id>
49 <name>Vlanl </name>
50 </vlan>
ol <vlan>
52 <id>3</id>
53 <name>Vlan3</name>
54 </vlan>
%) <vlan>
56 <id>8</id>
57 <name>Vlan8 </name>
58 </vlan>

59 </vlans>

B.7. RETRIEVED CONFIGURATION OF NODEC 91

60 </ihonnode>
61 </data>

Creating Netconf-connector

C.1 Creating New Netconf-connector

In order to connect a netconf device with ODL controller, a new netconf-connector
is spawned with the following source code [ODLc].

1 <module xmlns="urn:opendaylight:params:xml:ns:yang:
controller:config">

2 <type xmlns: prefix="urn:opendaylight:params:xml:ns:yang
:controller :md: sal:connector:netconf'">prefix:sal—
netconf—connector </type>

3 <name>device —name</name>

4 <address xmlns="urn:opendaylight:params:xml:ns:yang:
controller :md: sal: connector: netconf">
device IP_address</address>

5 <port xmlns="urn:opendaylight:params:xml:ns:yang:
controller :md: sal:connector:netconf">
device__port_number</port>

6 <username xmlns="urn:opendaylight:params:xml:ns:yang:
controller :md: sal:connector:netconf'>username</
username>

7 <password xmlns="urn:opendaylight:params:xml:ns:yang:
controller :md: sal:connector:netconf">password</
password>

8 <tcp—only xmlns="urn:opendaylight:params:xml:ns:yang:
controller :md: sal:connector: netconf">false </tcp—only
>

9 <event—executor xmlns="urn:opendaylight:params:xml:ns:

yvang:controller :md: sal:connector:netconf">
10 <type xmlns: prefix="urn:opendaylight:params:xml:ns:
yvang: controller :netty">prefix:netty—event—executor

93

94 C. CREATING NETCONF-CONNECTOR

11
12
13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32
33

</type>
<name>global —event—executor </name>
</event—executor>
<binding—registry xmlns="urn:opendaylight:params:xml:ns
:yang:controller :md: sal:connector:netconf">
<type xmlns: prefix="urn:opendaylight:params:xml:ns:
yang:controller :md: sal:binding">prefix:binding—
broker—osgi—registry </type>
<name>binding—osgi—broker </name>
</binding—registry >
<dom—registry xmlns="urn:opendaylight:params:xml:ns:
yang:controller :md: sal:connector:netconf">
<type xmlns: prefix="urn:opendaylight:params:xml:ns:
yang:controller :md: sal :dom">prefix :dom—broker—osgi
—registry </type>
<name>dom—broker </name>
</dom—registry >
<client —dispatcher xmlns="urn:opendaylight:params:xml:
ns:yang:controller :md: sal:connector:netconf">
<type xmlns: prefix="urn:opendaylight:params:xml:ns:
yvang:controller:config:netconf">prefix:netconf—
client —dispatcher </type>
<name>global —netconf—dispatcher </name>
</client —dispatcher>
<processing —executor xmlns="urn:opendaylight:params:xml
:ns:yang:controller :md: sal:connector:netconf">
<type xmlns: prefix="urn:opendaylight:params:xml:ns:
yang: controller:threadpool">prefix:threadpool </
type>
<name>global —netconf—processing —executor </name>
</processing —executor>
<keepalive —executor xmlns="urn:opendaylight:params:xml:
ns:yang:controller :md: sal:connector:netconf">
<type xmlns: prefix="urn:opendaylight:params:xml:ns:
yang:controller:threadpool">prefix:scheduled—
threadpool </type>
<name>global —netconf—ssh—scheduled —executor </name>
</keepalive —executor>

</module>

C.2. UPDATING NETCONF-CONNECTOR 95

C.2 Updating netconf-connector

While the controller is running, the netconf-connector can be reconfigured with new
parameters, for example, username, and password [ODLc].

1 <module xmlns="urn:opendaylight:params:xml:ns:yang:

10
11

12

13

14

15

16

17
18

controller:config">
<type xmlns: prefix="urn:opendaylight:params:xml:ns:yang
:controller :md: sal : connector :netconf">prefix:sal—
netconf—connector </type>
<name>device —name</name>
<username xmlns="urn:opendaylight:params:xml:ns:yang:
controller :md: sal:connector:netconf">new—username</
username>
<password xmlns="urn:opendaylight:params:xml:ns:yang:
controller :md: sal:connector: netconf">new—password</
password>
<tcp—only xmlns="urn:opendaylight:params:xml:ns:yang:
controller :md: sal:connector:netconf'>false </tcp—only
>
<event—executor xmlns="urn:opendaylight:params:xml:ns:
yang:controller :md: sal:connector:netconf">
<type xmlns: prefix="urn:opendaylight:params:xml:ns:
yvang: controller :netty">prefix :netty—event—executor
</type>
<name>global —event—executor </name>
</event—executor>
<binding—registry xmlns="urn:opendaylight:params:xml:ns
:yang:controller :md: sal:connector:netconf">
<type xmlns: prefix="urn:opendaylight:params:xml:ns:
yvang: controller :md: sal:binding">prefix:binding—
broker—osgi—registry </type>
<name>binding—osgi—broker </name>
</binding—registry >
<dom—registry xmlns="urn:opendaylight:params:xml:ns:
yvang:controller :md: sal:connector:netconf">
<type xmlns: prefix="urn:opendaylight:params:xml:ns:
vang: controller :md: sal :dom">prefix :dom—broker—osgi
—registry </type>
<name>dom—broker </name>
</dom—registry >

96 C. CREATING NETCONF-CONNECTOR

19

20

21

22

23

24

25

26

27

28

29

30
31

<client —dispatcher xmlns="urn:opendaylight:params:xml:
ns:yang:controller :md:sal:connector:netconf">
<type xmlns:prefix="urn:opendaylight:params:xml:ns:
yang: controller:config:netconf">prefix:netconf—
client —dispatcher </type>
<name>global—netconf—dispatcher </name>
</client —dispatcher>
<processing —executor xmlns="urn:opendaylight:params:xml
:ns:yang:controller :md: sal:connector:netconf">
<type xmlns: prefix="urn:opendaylight:params:xml:ns:
yang: controller:threadpool">prefix:threadpool </
type>
<name>global—netconf—processing —executor </name>
</processing —executor>
<keepalive—executor xmlns="urn:opendaylight:params:xml:
ns:yang:controller :md: sal:connector:netconf">
<type xmlns: prefix="urn:opendaylight:params:xml:ns:
yang: controller:threadpool">prefix:scheduled—
threadpool </type>
<name>global —netconf—ssh—scheduled —executor </name>
</keepalive —executor>
</module>

C.3 Capability of Netconf Testtool

1

<?xml version="1.0" encoding="UTF-8" standalone="no

">
<hello xmlns="urn:ietf:params:xml:ns:netconf:base
:1.0" >

<capabilities >

<capability >urn:ietf:params:xml:ns:yang:ietf—yang—
types?module=ietf —yang—types& revision
=2010—09—24</capability >

<capability >urn:ietf:params:xml:ns:yang:ietf —netconf—
monitoring?module=ietf —netconf—monitoringéamp;
revision=2010—10—04</capability >

<capability>urn:ietf:params:xml:ns:yang:ietf —netconf—
monitoring—extension?module=ietf —netconf—
monitoring—extension& revision=2013-12—-10</
capability >

<capability >urn:ietf:params:netconf: capability:exi
:1.0</capability >

10

11

12
13
14
15

C.3. CAPABILITY OF NETCONF TESTTOOL

<capability >urn:ietf:params:netconf: capability:
candidate:1.0</capability >

<capability >urn:ietf:params:xml:ns:yang:ietf—inet—
types?module=ietf—inet —types&revision
=2010—09—24</capability >

<capability >urn:ietf:params:netconf:base:1.1</
capability >

<capability >urn:ietf:params:netconf:base:1.0</
capability >

</capabilities >

<session —id >3</session —id>

</hello>

11>11>

97

Capabilities of Emulated IHON
Nodes

D.1 NodeA Capabilities

<node—id >NodeA</node—id>
<port xmlns="urn:opendaylight:netconf—node—topology
'>17830</port>
<connection—status xmlns="urn:opendaylight:netconf—
node—topology">connected </connection—status>
<available—capabilities xmlns="urn:opendaylight:
netconf—node—topology">
<available—capability >urn:ietf:params:netconf:
base:1.1</available—capability >
<available—capability >(urn:ietf:params:xml:ns:
yvang:ietf—netconf—monitoring?revision
=2010—-10—-04)ietf —netconf—monitoring </available
—capability >
<available —capability >urn:ietf:params:netconf:
base:1.0</available —capability >
<available—capability >urn:ietf:params:netconf:
capability:exi:1.0</available—capability >
<available—capability >(urn:opendaylight: router?
revision=2016—-04—15)ihonnode</available —
capability >
<available —capability >(urn: ietf:params:xml:ns:
yvang:ietf—inet—types?revision=2010—09-24)ietf—
inet—types</available —capability >
<available—capability >urn:ietf:params:netconf:
capability:candidate:1.0</available —capability
>
<available—capability >(urn: ietf:params:xml:ns:
yvang:ietf —netconf—monitoring—extension?

99

100 D. CAPABILITIES OF EMULATED IHON NODES

revision=2013—-12—10)ietf —netconf—monitoring—
extension </available—capability >
<available—capability >(urn: ietf:params:xml:ns:

yang:ietf—yang—types?revision=2010—09-24)ietf—

yang—types</available—capability >
</available—capabilities >
<unavailable—capabilities xmlns="urn:opendaylight:

netconf—node—topology"></unavailable—capabilities >

<host xmlns="urn:opendaylight:netconf—node—topology
'>127.0.0.1</host>
</node>

D.2 NodeB Capabilities

<node>
<node—id >NodeB</node—id >
<port xmlns="urn:opendaylight:netconf—node—topology
'>17831</port>
<connection—status xmlns="urn:opendaylight:netconf—
node—topology">connected </connection—status>
<available—capabilities xmlns="urn:opendaylight:
netconf—node—topology">
<available—capability >urn:ietf:params:netconf:
base:1.1</available —capability >
<available —capability >(urn:ietf:params:xml:ns:
yang:ietf —netconf—monitoring?revision
=2010—10—-04)ietf —netconf—monitoring </available
—capability >
<available—capability >urn:ietf:params: netconf:
base:1.0</available—capability >
<available—capability >urn:ietf:params: netconf:
capability :exi:1.0</available—capability >
<available —capability >(urn:opendaylight:router?
revision=2016—04—15)ihonnode</available —
capability >
<available—capability >(urn: ietf:params:xml:ns:

yang:ietf—inet—types?revision=2010—09-24)ietf—

inet—types</available—capability >
<available—capability >urn:ietf:params: netconf:

capability :candidate:1.0</available —capability

>

D.3. NODEC CAPABILITIES 101

<available —capability >(urn: ietf:params:xml:ns:
yvang:ietf —netconf—monitoring—extension?
revision=2013—-12—-10)ietf —netconf—monitoring—
extension</available—capability >
<available—capability >(urn:ietf:params:xml:ns:
yvang:ietf—yang—types?revision=2010—09-24)ietf—
yang—types</available —capability >
</available —capabilities >
<unavailable—capabilities xmlns="urn:opendaylight:
netconf—node—topology"></unavailable—capabilities >
<host xmlns="urn:opendaylight:netconf—node—topology
">127.0.0.2</host>
</node>

D.3 NodeC Capabilities

<node>
<node—id >NodeC</node—id >
<port xmlns="urn:opendaylight:netconf—node—topology
'>17832</port>
<connection—status xmlns="urn:opendaylight:netconf—
node—topology">connected </connection—status>
<available—capabilities xmlns="urn:opendaylight:
netconf—node—topology">
<available—capability >urn:ietf:params: netconf:
base:1.1</available—capability >
<available—capability >(urn:ietf:params:xml:ns:
yvang:ietf —netconf—monitoring?revision
=2010—10—-04)ietf —netconf—monitoring </available
—capability >
<available—capability >urn:ietf:params:netconf:
base:1.0</available—capability >
<available—capability >urn:ietf:params:netconf:
capability:exi:1.0</available—capability >
<available —capability >(urn:opendaylight : router?
revision=2016—04—15)ihonnode</available —
capability >
<available—capability >(urn:ietf:params:xml:ns:
yang:ietf—inet—types?revision=2010—09—-24)ietf —
inet—types</available —capability >
<available—capability >urn:ietf:params:netconf:
capability:candidate:1.0</available—capability

102 D. CAPABILITIES OF EMULATED IHON NODES

>
<available—capability >(urn: ietf:params:xml:ns:
yvang:ietf —netconf—monitoring—extension?
revision=2013—-12—-10)ietf —netconf—monitoring—
extension </available—capability >
<available —capability >(urn: ietf:params:xml:ns:
yvang:ietf —yang—types?revision=2010—09-24)ietf—
yang—types</available—capability >
</available—capabilities >
<unavailable—capabilities xmlns="urn:opendaylight:
netconf—node—topology"></unavailable—capabilities >
<host xmlns="urn:opendaylight:netconf—node—topology
">127.0.0.3</host>
</node>

D.4 Operational data

<data>
<netconf—state xmlns="urn:ietf:params:xml:ns:yang:
ietf —metconf—monitoring">
<sessions ></sessions>
<schemas>
<schema>
<identifier >ietf —yang—types</identifier >
<version >2010—09—24</version>
<format>yang</format>
<location >NETCONF</location >
<namespace>urn: ietf :params:xml:ns:yang:
ietf —yang—types </namespace>
</schema>
<schema>
<identifier >ietf —netconf—monitoring </
identifier >
<version >2010—10—04</version>
<format>yang</format>
<location >NETCONF</location >
<namespace>urn:ietf:params:xml:ns:yang:
ietf —netconf—monitoring </namespace>
</schema>
<schema>
<identifier >ietf —netconf—monitoring—
extension</identifier >

D.4. OPERATIONAL DATA 103

<version >2013—12—10</version >
<format>yang</format>
<location >NETCONF</location >
<namespace>urn: ietf:params:xml:ns:yang:
ietf —netconf—monitoring—extension </
namespace>
</schema>
<schema>
<identifier >ihonnode</identifier >
<version >2016—04—15</version>
<format>yang</format>
<location >NETCONF</location >
<namespace>urn: opendaylight : ithonnode</
namespace>
</schema>
<schema>
<identifier >ietf—inet—types</identifier >
<version >2010—09—24</version>
<format>yang</format>
<location >NETCONF</location >
<namespace>urn: ietf :params:xml:ns:yang:
ietf —inet —types</namespace>
</schema>
</schemas>

</netconf—state>

</data>

Configuration of H1 nodes at

Uninett

E.1 N1 Capability

1 <node>
2
3

10

11

12
13
14

<node—id >N1</node—id>
<port xmlns="urn:opendaylight:netconf—node—
topology">830</port>
<unavailable—capabilities xmlns="urn:
opendaylight : netconf—node—topology">
<unavailable—capability >
<capability >(http://netconfcentral.
org/ns/yuma—system?revision
=2014—11-27)yuma—system </
capability >
<failure —reason>unable—to—resolve </
failure —reason>
</unavailable—capability >
<unavailable—capability >
<capability >(urn:ietf:params:xml:ns:
yang:ietf —netconf—with—defaults?
revision=2011-06—01)ietf —netconf—
with—defaults </capability >
<failure —reason>unable—to—resolve </
failure —reason>
</unavailable—capability >
<unavailable—capability >
<capability >(urn:ietf:params:xml:ns:
netmod: notification?revision
=2008—-07—14)nc—notifications </
capability >

105

106 E. CONFIGURATION OF H1 NODES AT UNINETT

15 <failure —reason>unable—to—resolve </
failure —reason>

16 </unavailable—capability >

17 <unavailable—capability >

18 <capability >(http://netconfcentral.

org/ns/yuma—time—filter ?revision
=2011-08-13)yuma—time—filter </
capability >

19 <failure —reason>unable—to—resolve </
failure —reason>

20 </unavailable—capability >

21 <unavailable—capability >

22 <capability >(urn:ietf:params:xml:ns:

netconf: notification:1.07 revision
=2008—-07—14)notifications </
capability >

23 <failure —reason>unable—to—resolve </
failure —reason>

24 </unavailable—capability >

25 <unavailable—capability >

26 <capability >(urn:ietf:params:xml:ns:

yang:ietf —netconf—monitoring?
revision=2010—-10—04)ietf —netconf—
monitoring</capability >

27 <failure —reason>unable—to—resolve </
failure —reason>

28 </unavailable—capability >

29 </unavailable—capabilities >

30 <connection—status xmlns="urn:opendaylight:

netconf—node—topology">connected </
connection—status>

31 <available—capabilities xmlns="urn:
opendaylight :netconf—node—topology">
32 <available—capability >(http://transpacket

.com/ns/hadml—interfaces —ethernet—
switching?revision=2014—12-16)
interfaces —ethernet —switching </
available—capability >

33 <available—capability >(http://transpacket
.com/ns/hadml—interfaces —inet ?revision
=2014—07—16)interfaces —inet </available

34

35

36

37

38

39

40

41

42

43

44

45

E.1. N1 CAPABILITY 107

—capability >

<available —capability >(http://transpacket
.com/ns/interfaces —hadml?revision
=2014—07—15)interfaces —hadml</
available —capability >

<available —capability >(urn:ietf:params:
xml:ns:yang:ietf —system?revision
=2014—-08—-06)ietf —system</available —
capability >

<available—capability >urn:ietf:params:
netconf: capability :confirmed—commit
:1.1</available—capability >

<available—capability >urn:ietf:params:
netconf: capability:confirmed—commit
:1.0</available —capability >

<available —capability >urn:ietf:params:
netconf: capability:validate:1.1</
available—capability >

<available —capability >urn:ietf:params:
netconf:capability:validate:1.0</
available—capability >

<available—capability >urn:ietf:params:
netconf: capability:candidate:1.0</
available—capability >

<available—capability >(urn:ietf:params:
xml:ns:yang:iana—crypt—hash?revision
=2014—04—04)iana—crypt—hash</available
—capability >

<available—capability >(http://
netconfcentral.org/ns/yuma—proc?
revision=2012—10—10)yuma—proc </
available—capability >

<available—capability >(http://transpacket
.com/ns/rmon?revision=2012—11-01)rmon
</available —capability >

<available—capability >(urn:ietf:params:
xml:ns:yang:ietf —yang—types?revision
=2013-07—15)ietf —yang—types </available
—capability >

<available —capability >(http://transpacket
.com/ns/protocols?revision=2013—-10—14)

108 E. CONFIGURATION OF H1 NODES AT UNINETT

46

47

48

49

50

ol

52

93

o4

%)

56

o7

protocols </available—capability >

<available —capability >urn:ietf:params:
netconf:base:1.1</available—capability
>

<available—capability >urn:ietf :params:
netconf:base:1.0</available—capability
>

<available —capability >(http://transpacket
.com/ns/ntp?revision=2014-02—-27)ntp</
available—capability >

<available —capability >(urn:ietf:params:
xml:ns:yang:smiv2:SNMPv2-TC?revision
=1999—-04—01)SNMPv2-TC</available —
capability >

<available—capability >(http://transpacket
.com/ns/routes?revision=2012—11-01)
routes</available —capability >

<available —capability >urn:ietf:params:
netconf:capability:interleave:1.0</
available—capability >

<available —capability >(http://transpacket
.com/ns/hwmodel?revision=2012-11-01)
hwmodel</available —capability >

<available—capability >(http://transpacket
.com/ns/transpacket—system?revision
=2014—11-27)transpacket —system </
available —capability >

<available—capability >(http://
netconfcentral.org/ns/yuma—arp?
revision=2012—01-13)yuma—arp </
available —capability >

<available—capability >(http://
netconfcentral .org/ns/yuma—app—common?
revision=2012—08—16)yuma—app—common</
available—capability >

<available —capability >urn:ietf:params:
netconf:capability:xpath:1.0</
available—capability >

<available—capability >(urn:ietf:params:
xml:ns:yang:yang—smi?revision

=2008—-03—20)yang—smi</available —

58

59

60

61

62

63

64

65

66

67

68

69

E.1. N1 CAPABILITY 109

capability >

<available—capability >urn:ietf:params:
netconf: capability:rollback—on—error
:1.0</available—capability >

<available—capability >(http://
netconfcentral.org/ns/yuma—mysession?
revision=2010—05—10)yuma—mysession </
available—capability >

<available—capability >(http://transpacket
.com/ns/syslog?revision=2012—-11-01)
syslog </available —capability >

<available—capability >(http://transpacket
.com/ns/hadml—vlans?revision
=2012—11-05)vlans </available —
capability >

<available —capability >(http://transpacket
.com/ns/hadm?revision=2013—11-08)hadm
</available—capability >

<available—capability >(urn:ietf:params:
xml:ns:netconf:partial—lock:1.07
revision=2009—-10—-19)ietf —netconf—
partial —lock</available —capability >

<available—capability >(http://transpacket
.com/ns/http?revision=2014—09—-09)http
</available —capability >

<available —capability >urn:ietf:params:
netconf: capability:notification:1.0</
available—capability >

<available—capability >(http://transpacket
.com/ns/hadml—interfaces —mtu?revision
=2014—07—16)interfaces —mtu</available —
capability >

<available—capability >(http://transpacket
.com/ns/oids?revision=2012—11-01)oids
</available —capability >

<available—capability >(http://
netconfcentral .org/ns/yuma—types?
revision=2012—06—01)yuma—types </
available—capability >

<available —capability >(urn:ietf:params:
xml:ns:yang:ietf —netconf—acm?revision

110 E. CONFIGURATION OF H1 NODES AT UNINETT

70

71

72

73

74

(0]

76

7

78

79

=2012—-02—-22)ietf —netconf—acm</
available—capability >

<available—capability >urn:ietf:params:
netconf:capability:partial—lock:1.0</
available—capability >

<available —capability >(http://
netconfcentral .org/ns/yuma—ncx?
revision=2012—01—13)yuma—ncx</
available—capability >

<available—capability >(urn:ietf:params:
xml:ns:yang:iana—if —type?revision
=2014—07—03)iana—if —type</available —
capability >

<available—capability >(http://transpacket
.com/ns/uboot?revision=2012—11-03)
uboot</available —capability >

<available —capability >(http://transpacket
.com/ns/snmp?revision=2012—11-01)snmp
</available—capability >

<available—capability >(http://transpacket
.com/ns/hadml—alarms?revision
=2014—-03—-21)alarms</available —
capability >

<available—capability >(http://transpacket
.com/ns/hadml—interfaces —loopback?
revision=2014—07—16)interfaces —
loopback </available —capability >

<available—capability >(http://transpacket
.com/ns/hadml—interfaces —traffic —
generator?revision=2014—07—16)
interfaces—traffic —generator </
available—capability >

<available —capability >(urn:ietf:params:
xml:ns:yang:ietf —interfaces?revision
=2014-05—-08)ietf —interfaces </available
—capability >

<available —capability >(http://transpacket
.com/ns/hadml—interfaces —optics—
diagnostics?revision=2014—-07-10)
interfaces —optics—diagnostics </
available —capability >

80

81

82

83

84

85

86

87
88

89

E.2. N1 CONFIGURATION 111

<available —capability >(http://transpacket
.com/ns/requests?revision=2012-11-01)
requests </available—capability >
<available—capability >(urn:ietf:params:
xml:ns:yang:ietf —inet—types?revision
=2013—-07—15)ietf—inet —types</available
—capability >
<available —capability >(http://transpacket
.com/ns/hadml—gst—slot —sync?revision
=2014—12—12)protocols—gst—slot —sync</
available—capability >
<available—capability >urn:ietf:params:
netconf: capability : with—defaults:1.07
basic—mode=explicit& also—supported
=trim ,report—all ,report—all —tagged </
available—capability >
<available—capability >urn:ietf:params:
netconf: capability : url:1.0?7scheme=file
</available —capability >
<available—capability >(http://transpacket
.com/ns/hadml—interfaces —policer?
revision=2014—06—24)interfaces —policer
</available—capability >
<available—capability >(http://transpacket
.com/ns/synchronization?revision
=2013—11—-21)synchronization </available
—capability >

</available—capabilities >
<host xmlns="urn:opendaylight:netconf—node—

topology">192.168.209.1</host>

E.2 N1 Configuration

1
2
3
4
5
6
7
8

<data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" >
<vlans xmlns="http://transpacket.com/ns/hadml—vlans"'>

<name>ge3 </name>
<id>13</id>

<name>ge4 </name>

112 E. CONFIGURATION OF H1 NODES AT UNINETT

10
11
12
13

14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

<id >14</id>
</vlan>
<vlan>
<name>gel </name>
<gst—slot —sync—index xmlns="http://
transpacket .com/ns/hadml—gst—slot —sync
'>1</gst—slot —sync—index>
<id>11</id>
</vlan>
<vlan>
<name>ge2 </name>
<id>12</id>
</vlan>
<vlan>
<name>ge(</name>
<gst—slot —sync—index xmlns="http://
transpacket .com/ns/hadml—gst —slot —sync
"'>0</gst—slot —sync—index>
<id >10</id>
</vlan>
<vlan>
<name>master </name>
<id >0</id>
</vlan>
<vlan>
<name>xe(</name>
<id >100</id>
</vlan>
<vlan>
<name>ge5 < /name>
<id>15</id>
</vlan>
</vlans>
<snmp xmlns="http://transpacket.com/ns/snmp">
<trap—groups>
<trap—group>
<name>transpacket </name>
</trap—group>
</trap—groups>
<communities>
<community>

46
47
48
49
50

o1

52
53
54

55
56
57
58

59
60
61
62

63
64
65
66

67
68
69
70

71
72
73
74

E.2. N1 CONFIGURATION 113

<name>transpacket </name>
</community>
</communities>
</snmp>
<nacm xmlns="urn:ietf:params:xml:ns:yang:ietf—netconf
—acm"></nacm>
<interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf—
interfaces"'>
<interface>
<name>ge3 </name>
<ethernet—switching xmlns="http://transpacket
.com/ns/hadml—interfaces —ethernet—
switching">
<access—interface >
<vlan>
<vlan—name>ge3 </vlan—name>
<priority xmlns="http://
transpacket .com/ns/hadml—gst—
slot —sync'">gst</priority >
</vlan>
</access—interface >
</ethernet—switching >
<type xmlns:x="urn:ietf:params:xml:ns:yang:
iana—if —type">x:ethernetCsmacd </type>
</interface >
<interface>
<name>ged </name>
<ethernet—switching xmlns="http://transpacket
.com/ns/hadml—interfaces —ethernet—
switching">
<access—interface >
<vlan>
<vlan-—name>ged </vlan—name>
<priority xmlns="http://
transpacket .com/ns/hadml—gst—
slot —sync'">gst</priority >
</vlan>
</access—interface>
</ethernet—switching>
<type xmlns:x="urn:ietf:params:xml:ns:yang:
iana—if —type">x:ethernetCsmacd </type>

114 E. CONFIGURATION OF H1 NODES AT UNINETT

(0]
76
7
78

79
80
81
82

83
84
85
86

87
88
89
90

91
92
93

94
95
96
97

98

99
100
101
102
103
104
105
106

</interface>
<interface>
<name>ge5 < /name>
<ethernet—switching xmlns="http://transpacket
.com/ns/hadml—interfaces —ethernet—
switching">
<access—interface>
<vlan>
<vlan—name>geb </vlan—name>
<priority xmlns="http://
transpacket .com/ns/hadml—gst —
slot —sync'>sm</priority >
</vlan>
</access—interface>
</ethernet —switching>
<type xmlns:x="urn:ietf:params:xml:ns:yang:
iana—if —type">x:ethernetCsmacd </type>
</interface >
<interface>
<name>me0< /name>
<inet xmlns="http://transpacket.com/ns/hadml—
interfaces —inet">
<address >192.168.209.1/24 </address>
</inet>
<type xmlns:x="urn:ietf:params:xml:ns:yang:
iana—if —type">x:ethernetCsmacd </type>
</interface >
<interface>
<name>xel </name>
<ethernet—switching xmlns="http://transpacket
.com/ns/hadml—interfaces —ethernet—
switching">
<trunk—interface>
<vlans>
<vlan>
<vlan—name>ge0 </vlan—name>
</vlan>
<vlan>
<vlan—name>xe0</vlan-—name>
</vlan>
<vlan>

E.2. N1 CONFIGURATION 115

107 <vlan-name>ge2 </vlan—name>

108 </vlan>

109 <vlan>

110 <vlan-—name>gel </vlan—name>

111 </vlan>

112 <vlan>

113 <vlan—name>ge4 </vlan —name>

114 </vlan>

115 <vlan>

116 <vlan—name>ge3 </vlan—name>

117 </vlan>

118 <vlan>

119 <vlan-—name>ge5</vlan—name>

120 </vlan>

121 </vlans>

122 </trunk—interface >

123 </ethernet—switching >

124 <type xmlns:x="urn:ietf:params:xml:ns:yang:
iana—if —type">x:ethernetCsmacd </type>

125 </interface >

126 <interface>

127 <name>xe(</name>

128 <ethernet—switching xmlns="http://transpacket

.com/ns/hadml—interfaces —ethernet—
switching">

129 <trunk—interface>

130 <vlans>

131 <vlan>

132 <vlan—name>ge0</vlan—name>

133 </vlan>

134 <vlan>

135 <vlan-—name>gel </vlan—name>

136 </vlan>

137 </vlans>

138 </trunk—interface >

139 </ethernet —switching>

140 <type xmlns:x="urn:ietf:params:xml:ns:yang:
iana—if —type">x:ethernetCsmacd </type>

141 </interface>

142 <interface>

143 <name>ge2 </name>

116 E. CONFIGURATION OF H1 NODES AT UNINETT

144

145
146
147
148

149
150
151
152

153
154
155
156
157

158
159
160
161

162

163
164
165
166

167
168

<ethernet—switching xmlns="http://transpacket
.com/ns/hadml—interfaces —ethernet—
switching">
<access—interface >
<vlan>
<vlan—name>ge2 </vlan —name>
<priority xmlns="http://
transpacket .com/ns/hadml—gst—
slot —sync'>gst</priority >
</vlan>
</access—interface >
</ethernet —switching >
<type xmlns:x="urn:ietf:params:xml:ns:yang:
iana—if —type">x:ethernetCsmacd </type>
</interface >
</interfaces>
<routes xmlns="http://transpacket.com/ns/routes">

<route>
<destination—prefix >0.0.0.0/0</destination —
prefix>
<next—hop>158.38.152.1 < /next—hop>
</route>
</routes>
<protocols xmlns="http://transpacket.com/ns/protocols
">

<gst—slot —sync xmlns="http://transpacket.com/ns/
hadml—gst—slot —sync">
<master—sync—vlan>master </master—sync—vlan>
</gst—slot —sync>
</protocols>
<arp xmlns="http://netconfcentral.org/ns/yuma—arp'></
arp>
<hadm xmlns="http://transpacket.com/ns/hadm"></hadm>

</data>

E.3 N2 Configuration

1
2
3
4
)

<data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" >

<vlans xmlns="http://transpacket.com/ns/hadml—vlans">
<vlan>
<name>ge3 </name>
<id >13</id>

© 0 3 O

10
11
12
13

14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

E.3. N2 CONFIGURATION

</vlan>
<vlan>
<name>ge4 </name>
<id>14</id>
</vlan>
<vlan>
<name>gel </name>
<gst—slot —sync—index xmlns="http://
transpacket .com/ns/hadml—gst—slot —sync
">1</gst—slot —sync—index>
<id>11</id>
</vlan>
<vlan>
<name>ge2 </name>
<id>12</id>
</vlan>
<vlan>
<name>ge0 </name>
<gst—slot —sync—index xmlns="http://
transpacket .com/ns/hadml—gst—slot —sync
">0</gst—slot —sync—index>
<id >10</id>
</vlan>
<vlan>
<name>master </name>
<id>0</id>
</vlan>
<vlan>
<name>xe(</name>
<id >100</id>
</vlan>
<vlan>
<name>geb < /name>
<id >15</id>
</vlan>

</vlans>
<snmp xmlns="http://transpacket.com/ns/snmp">

<trap—groups>
<trap-—group>
<name>transpacket </name>
</trap—group>

117

118 E. CONFIGURATION OF H1 NODES AT UNINETT

43
44
45
46
47
48
49
50

o1

52
93
54

%)
96
o7
58

99
60
61
62

63
64
65
66

67
68
69
70

71
72

</trap—groups>
<communities>
<community>
<name>transpacket </name>
</community>
</communities>
</snmp>
<nacm xmlns="urn:ietf:params:xml:ns:yang:ietf—netconf
—acm"></nacm>
<interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf—
interfaces">
<interface>
<name>ge3 </name>
<ethernet—switching xmlns="http://transpacket
.com/ns/hadml—interfaces —ethernet—
switching">
<access—interface>
<vlan>
<vlan—name>ge3 </vlan—name>
<priority xmlns="http://
transpacket .com/ns/hadml—gst —
slot —sync'">gst </priority >
</vlan>
</access—interface>
</ethernet—switching >
<type xmlns:x="urn:ietf:params:xml:ns:yang:
iana—if —type">x:ethernetCsmacd </type>
</interface >
<interface>
<name>ge4 </name>
<ethernet—switching xmlns="http://transpacket
.com/ns/hadml—interfaces —ethernet—
switching">
<access—interface >
<vlan>
<vlan-—name>ged </vlan—name>
<priority xmlns="http://
transpacket .com/ns/hadml—gst—
slot —sync'>gst</priority >
</vlan>
</access—interface>

73
74

(0]
76
7
78

79
80
81
82

83
84
85
86

87
88
89
90

91
92
93

94
95
96
97

98
99
100
101
102
103

E.3. N2 CONFIGURATION 119

</ethernet—switching>
<type xmlns:x="urn:ietf:params:xml:ns:yang:
iana—if —type">x:ethernetCsmacd </type>
</interface>
<interface>
<name>ge5 < /name>
<ethernet—switching xmlns="http://transpacket
.com/ns/hadml—interfaces —ethernet —
switching">
<access—interface >
<vlan>
<vlan-—name>ge5</vlan—name>
<priority xmlns="http://
transpacket .com/ns/hadml—gst—
slot —sync'">sm</priority >
</vlan>
</access—interface>
</ethernet—switching>
<type xmlns:x="urn:ietf:params:xml:ns:yang:
iana—if —type">x:ethernetCsmacd </type>
</interface>
<interface>
<name>me0< /name>
<inet xmlns="http://transpacket.com/ns/hadml—
interfaces —inet">
<address >192.168.209.2/24 </address>
</inet>
<type xmlns:x="urn:ietf:params:xml:ns:yang:
iana—if —type">x:ethernetCsmacd </type>
</interface >
<interface>
<name>xel </name>
<ethernet—switching xmlns="http://transpacket
.com/ns/hadml—interfaces —ethernet—
switching">
<trunk—interface >
<vlans>
<vlan>
<vlan—name>ge0</vlan—name>
</vlan>
<vlan>

120 E. CONFIGURATION OF H1 NODES AT UNINETT

104 <vlan—name>xe0</vlan—name>

105 </vlan>

106 <vlan>

107 <vlan—name>ge2 </vlan—name>

108 </vlan>

109 <vlan>

110 <vlan-name>gel </vlan—name>

111 </vlan>

112 <vlan>

113 <vlan—name>ged </vlan—name>

114 </vlan>

115 <vlan>

116 <vlan-—name>ge3 </vlan—name>

117 </vlan>

118 <vlan>

119 <vlan—name>ge5</vlan—name>

120 </vlan>

121 </vlans>

122 </trunk—interface>

123 </ethernet —switching>

124 <type xmlns:x="urn:ietf:params:xml:ns:yang:
iana—if —type">x:ethernetCsmacd </type>

125 </interface>

126 <interface>

127 <name>xe(</name>

128 <ethernet—switching xmlns="http://transpacket

.com/ns/hadml—interfaces —ethernet—
switching">

129 <trunk—interface>

130 <vlans>

131 <vlan>

132 <vlan-—name>ge0</vlan—name>
133 </vlan>

134 <vlan>

135 <vlan—name>gel </vlan—name>
136 </vlan>

137 </vlans>

138 </trunk—interface>

139 </ethernet —switching>

140 <type xmlns:x="urn:ietf:params:xml:ns:yang:

iana—if —type">x:ethernetCsmacd </type>

E.4. N3 CONFIGURATION 121

141 </interface>

142 <interface>

143 <name>ge2 < /name>

144 <ethernet—switching xmlns="http://transpacket

.com/ns/hadml—interfaces —ethernet—
switching">

145 <access—interface>

146 <vlan>

147 <vlan—name>ge2 </vlan—name>
148 <priority xmlns="http://

transpacket .com/ns/hadml—gst —
slot —sync">gst </priority >

149 </vlan>
150 </access—interface>
151 </ethernet—switching>
152 <type xmlns:x="urn:ietf:params:xml:ns:yang:
iana—if —type">x:ethernetCsmacd </type>
153 </interface>
154 </interfaces>
155 <routes xmlns="http://transpacket.com/ns/routes">
156 <route>
157 <destination—prefix >0.0.0.0/0</destination—
prefix>
158 <next—hop>158.38.152.1 < /next—hop>
159 </route>
160 </routes>
161 <protocols xmlns="http://transpacket.com/ns/protocols
">
162 <gst—slot —sync xmlns="http://transpacket.com/ns/
hadml—gst—slot —sync">
163 <master—sync—vlan>master </master—sync—vlan>
164 </gst—slot —sync>
165 </protocols>
166 <arp xmlns="http://netconfcentral.org/ns/yuma—arp"></
arp>
167 <hadm xmlns="http://transpacket .com/ns/hadm"></hadm>

168 </data>

E.4 N3 Configuration

1 <data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" >
2 <vlans xmlns="http://transpacket.com/ns/hadml—vlans">

122 E. CONFIGURATION OF H1 NODES AT UNINETT

© 00 J O Ut = W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

<vlan>
<name>ge3 </name>
<id >13</id>
</vlan>
<vlan>
<name>ge4 </name>
<id>14</id>
</vlan>
<vlan>
<name>gel </name>
<id>11</id>
</vlan>
<vlan>
<name>ge2 </name>
<id>12</id>
</vlan>
<vlan>
<name>ge(</name>
<id >10</id>
</vlan>
<vlan>
<name>master </name>
<id >0</id>
</vlan>
<vlan>
<name>xe(</name>
<id >100</id>
</vlan>
<vlan>
<name>ge8 < /name>
<id >15</id>
</vlan>

</vlans>
<snmp xmlns="http://transpacket.com/ns/snmp">

<trap—groups>
<trap—group>

<name>transpacket </name>

</trap—group>
</trap—groups>
<communities>

<community>

44
45
46
47
48

49

50
51
52

53
54
55

56
o7
58
59

60
61
62
63

64
65
66
67

68
69
70
71

72
73

E.4. N3 CONFIGURATION 123

<name>transpacket </name>
</community>
</communities>
</snmp>
<nacm xmlns="urn:ietf:params:xml:ns:yang:ietf—netconf
—acm"></nacm>
<interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf—
interfaces">
<interface>
<name>me0< /name>
<inet xmlns="http://transpacket.com/ns/hadml—
interfaces—inet">
<address >192.168.209.3/24 </address>
</inet>
<type xmlns:x="urn:ietf:params:xml:ns:yang:
iana—if —type">x:ethernetCsmacd </type>
</interface>
<interface>
<name>ge8 </name>
<ethernet—switching xmlns="http://transpacket
.com/ns/hadml—interfaces —ethernet—
switching">
<access—interface >
<vlan>
<vlan—name>ge8 </vlan—name>
<priority xmlns="http://
transpacket .com/ns/hadml—gst—
slot —sync'">sm</priority >
</vlan>
</access—interface >
</ethernet —switching >
<type xmlns:x="urn:ietf:params:xml:ns:yang:
iana—if —type">x:ethernetCsmacd </type>
</interface>
<interface>
<name>ge3 </name>
<ethernet—switching xmlns="http://transpacket
.com/ns/hadml—interfaces —ethernet—
switching">
<access—interface >
<vlan>

124 E. CONFIGURATION OF H1 NODES AT UNINETT

74
(0]

76
7
78
79

80
81
82
83

84
85
86
87

88
89
90
91

92
93
94
95

96
97
98
99

100
101
102

<vlan—name>ge3 </vlan—name>
<priority xmlns="http://
transpacket .com/ns/hadml—gst—
slot —sync'>gst</priority >
</vlan>
</access—interface >
</ethernet —switching >
<type xmlns:x="urn:ietf:params:xml:ns:yang:
iana—if —type">x:ethernetCsmacd </type>
</interface >
<interface>
<name>ge4 </name>
<ethernet—switching xmlns="http://transpacket
.com/ns/hadml—interfaces —ethernet—
switching">
<access—interface >
<vlan>
<vlan—name>ged </vlan—name>
<priority xmlns="http://
transpacket .com/ns/hadml—gst—
slot —sync'">gst </priority >
</vlan>
</access—interface>
</ethernet—switching>
<type xmlns:x="urn:ietf:params:xml:ns:yang:
iana—if —type">x:ethernetCsmacd </type>
</interface >
<interface>
<name>ge(</name>
<ethernet—switching xmlns="http://transpacket
.com/ns/hadml—interfaces —ethernet—
switching">
<access—interface >
<vlan>
<vlan—name>ge0 </vlan—name>
<priority xmlns="http://
transpacket .com/ns/hadml—gst—
slot —sync'>gst</priority >
</vlan>
</access—interface >
</ethernet —switching >

103

104
105
106
107

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

135
136
137
138

E.4. N3 CONFIGURATION 125

<type xmlns:x="urn:ietf:params:xml:ns:yang:
iana—if —type">x:ethernetCsmacd </type>
</interface >
<interface>
<name>xel </name>
<ethernet—switching xmlns="http://transpacket
.com/ns/hadml—interfaces —ethernet —
switching">
<trunk—interface>
<vlans>
<vlan>
<vlan—name>ge0 </vlan —name>
</vlan>
<vlan>
<vlan-—name>xe0</vlan—name>
</vlan>
<vlan>
<vlan-—name>ge2</vlan—name>
</vlan>
<vlan>
<vlan-name>gel </vlan—name>
</vlan>
<vlan>
<vlan—name>ge4 </vlan—name>
</vlan>
<vlan>
<vlan—name>ge3 </vlan—name>
</vlan>
<vlan>
<vlan—name>ge8 </vlan—name>
</vlan>
</vlans>
</trunk—interface>
</ethernet —switching>
<type xmlns:x="urn:ietf:params:xml:ns:yang:
iana—if —type">x:ethernetCsmacd </type>
</interface >
<interface>
<name>gel </name>
<ethernet—switching xmlns="http://transpacket
.com/ns/hadml—interfaces —ethernet—

126 E. CONFIGURATION OF H1 NODES AT UNINETT

139
140
141
142

143
144
145
146

147
148
149
150

151
152
153
154

155
156
157
158

159
160
161
162

163
164
165
166

switching">
<access—interface>
<vlan>
<vlan—name>gel </vlan—name>
<priority xmlns="http://
transpacket .com/ns/hadml—gst—
slot —sync">gst </priority >
</vlan>
</access—interface>
</ethernet—switching>
<type xmlns:x="urn:ietf:params:xml:ns:yang:
iana—if —type">x:ethernetCsmacd </type>
</interface >
<interface>
<name>xe(</name>
<ethernet—switching xmlns="http://transpacket
.com/ns/hadml—interfaces —ethernet—
switching">
<access—interface >
<vlan>
<vlan—name>xe0 </vlan—name>
<priority xmlns="http://
transpacket .com/ns/hadml—gst—
slot —sync'>sm</priority >
</vlan>
</access—interface >
</ethernet —switching >
<type xmlns:x="urn:ietf:params:xml:ns:yang:
iana—if —type">x:ethernetCsmacd </type>
</interface >
<interface>
<name>ge2 </name>
<ethernet—switching xmlns="http://transpacket
.com/ns/hadml—interfaces —ethernet—
switching">
<access—interface >
<vlan>
<vlan—name>ge2 </vlan—name>
<priority xmlns="http://
transpacket .com/ns/hadml—gst—
slot —sync'">gst </priority >

167
168
169
170

171
172
173
174
175

176
177
178
179

180

181
182
183
184

185
186

E.4. N3 CONFIGURATION 127

</vlan>
</access—interface>
</ethernet —switching >
<type xmlns:x="urn:ietf:params:xml:ns:yang:
iana—if —type">x:ethernetCsmacd </type>
</interface>
</interfaces >
<routes xmlns="http://transpacket.com/ns/routes">

<route>
<destination—prefix >0.0.0.0/0</destination—
prefix>
<next—hop>158.38.152.1 < /next—hop>
</route>
</routes>
<protocols xmlns="http://transpacket.com/ns/protocols
">

<gst—slot —sync xmlns="http://transpacket.com/ns/
hadml—gst—slot —sync">
<master—sync—vlan>master </master—sync—vlan>
</gst—slot —sync>
</protocols>
<arp xmlns="http://netconfcentral.org/ns/yuma—arp'></
arp>
<hadm xmlns="http://transpacket.com/ns/hadm"></hadm>
</data>

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation
	Objective and Methodology
	Project Structure

	Integrated Hybrid Optical Network (IHON)
	Classes of Hybrid networks
	Ethernet Streaming in Fusion H1 nodes

	Software Defined Networking (SDN)
	SDN Architecture and Working Principles
	Network Configuration Protocol (NETCONF)
	NETCONF Layering Model
	Running NETCONF over SSH Session
	NETCONF Datastores
	Capability Exchange
	Remote Procedure Call (RPC) Model
	NETCONF Protocol Operations

	YANG Modeling Language

	OpenDaylight Platform
	Introduction to ODL
	Why ODL
	ODL Architecture
	ODL Controller
	MD-SAL Basics

	RESTCONF
	Supported Operations
	RESTCONF Tools

	SDN framework for IHON
	Evaluating NETCONF- and OF-based SDN for IHON nodes
	SDN/NETCONF setup for IHON
	IHON nodes that Support NETCONF monitoring
	IHON nodes that do not support NETCONF monitoring, but list yang models
	IHON nodes that neither support NETCONF monitoring nor list yang models

	SDN and Emulated IHON Testbed Results
	SDN framework for IHON
	Step1: Simulating IHON nodes with Netconf Testtool
	Step2: Developing YANG Schema for ihon Nodes
	Step3: Starting the IHON Nodes
	Step4: Connecting the ihon Nodes with ODL controller

	Management of IHON Nodes with the ODL Controller

	SDN and Fusion Experiment Results
	H1 Network Diagram Setup
	Deploying ODL platform for the H1 network
	Management of H1 Nodes

	Conclusion and Future Work
	Conclusion
	Future Work

	References
	OpenDayLight Installation and Running
	IHON node YANG Schema and Configuration
	IHON yang Schema
	NodeA Configuration
	NodeB Configuration
	NodeC Configuration
	Retrieved Configuration of NodeA
	Retrieved Configuration of NodeB
	Retrieved Configuration of NodeC

	Creating Netconf-connector
	Creating New Netconf-connector
	Updating netconf-connector
	Capability of Netconf Testtool

	Capabilities of Emulated IHON Nodes
	NodeA Capabilities
	NodeB Capabilities
	NodeC Capabilities
	Operational data

	Configuration of H1 nodes at Uninett
	N1 Capability
	N1 Configuration
	N2 Configuration
	N3 Configuration

