
Dashboard for Quality of Experience
Studies of WebRTC Based Video
Communication

Marianne Rie Melhoos

Master of Science in Communication Technology

Supervisor: Poul Einar Heegaard, ITEM
Co-supervisor: Doreid Ammar, ITEM

Katrien De Moor, ITEM

Department of Telematics

Submission date: June 2016

Norwegian University of Science and Technology

Title: Dashboard for Quality of Experience Studies of WebRTC
Based Video Communication

Student: Marianne Rie Melhoos

Problem description:

Internet video applications and services are taking up an ever increasing share
of the Consumer Internet traffic. Their success and use are strongly influenced by
the quality they provide and the experiences they make possible for users. At the
same time, however, the delivered quality and the experience for the user of video
applications and services may be very negatively influenced by technical constraints
(e.g., limited bandwidth) and parameters (e.g., packet loss, delay, etc.).

In this project, the focus is on users’ experiences with Web Real-Time Communi-
cation (WebRTC)-based video communication services, such as appear.in or Google
hangouts. The main objective is to develop a web interface tool that illustrates, in a
graphical and interactive way, the most relevant factors that impact the quality of
WebRTC-based video communication, with a primary focus on the performance of
the network(s) over which the conversation is transmitted.

The main tasks include:

• Briefly overview the most relevant Quality of Service (QoS) and Quality of
Experience (QoE) factors in the context of WebRTC-based real-time video
communication.

• Development of a web interface allowing to illustrate the most relevant factors
that impact the performance of WebRTC-based real-time video communication.

Responsible professor: Poul Heegaard
Supervisor: Doreid Ammar, Katrien De Moor

Abstract

WebRTC-based applications and services have become more and
more popular over the last years. These types of applications support
Real-Time Communication (RTC) with audio, video and sometimes also
data sharing. WebRTC-based applications are trouble-free, require no
installation, and are in-browser applications. A participant can connect
and access these types of applications through a wide range of devices
and can communicate with others in real-time, and exchange information
instantly or with negligible delay.

Even though the performance of WebRTC-based applications and
services are continuously improving, these applications and services face
some challenges. For example, in a WebRTC-based conversation, there
are a number of technical constraints (e.g. limited bandwidth) and
parameters (e.g. packet loss, delay, etc.) that may cause an end-user to
experience various negative quality deteriorations (e.g. video freezes, bad
or no audio, etc.). As WebRTC-based applications and services are up
and coming, it is important to address such issues.

To provide the best possible Quality of Experience (QoE), this requires
lab studies and also large-scale ongoing lab studies in order to obtain
a deep understanding of the various technical and non-technical factors
that may have an influence on the QoE [44]. Due to the high number of
session-related parameters, these studies will provide a significant amount
of data, all of which will need to be analyzed. Therefore in order to
proceed further analysis, an analyzing tool is crucially needed.

To meet this need to provide an analyzing tool which is able to analyze
large amounts data, this master thesis will present the implementation of a
web interface, the WebRTC-dashboard. The WebRTC-dashboard utilizes
session-related data from analyzing platforms in order to analyze n-party
WebRTC-based video conversations. The WebRTC-dashboard supports
to combine network statistics, subjective user feedback from different
analytic platforms, and video recordings with the ability to replay them
as they were in real-time. This WebRTC-dashboard also allows end-users
to interact and customize an analysis for his/hers purpose, which opens
the possibility to identify new correlations between various impacting
factors.

This master thesis highlights the great potential the WebRTC-dashboard
has and what it can accomplish. In the context of future development,
this thesis will also discuss what challenges that have occurred during
the development process, and how these challenges can be handled.

Sammendrag

I løpet av de siste årene har applikasjoner og tjenester som baserer
seg på sanntidskommunikasjons over web, også kjent som WebRTC, blitt
meget populære. Disse applikasjonene tilbyr kommunikasjon i sanntid ved
bruk av både lyd og bilde, og i enkelte tilfeller også fildeling. Applikasjoner
som er basert på WebRTC er tilgjengelig direkte i nettleseren, og kjent for
å være enkle og installasjonsfrie. Disse applikasjonene kan enkelt benyttes
ved hjelp av nettleseren i en rekke forskjellige enheter, og informasjon
kan deles nærmest umiddelbart (eventuelt med en ubetydelig forsinkelse)
med andre enheter.

Selv om WebRTC-teknologien er i kontinuerlig utvikling, står den
fremdeles foran en rekke utfordringer. Ta for eksempel en ordinær samtale
som benytter WebRTC, hvor kvaliteten på samtalen fra sluttbrukernes
perspektiv kan bli redusert av pakketap, forsinkelser og begrenset bånd-
bredde. Siden WebRTC-teknologien virkelig er i vinden for tiden og flere
tjenester blomstrer opp, er det viktig at disse problemene blir adressert
for å heve brukeropplevelsen for sluttbrukerne.

For å kunne levere en WebRTC-tjeneste av høyest mulig kvalitet, er det
viktig å besitte god innsikt i hvordan de tekniske og ikke-tekniske faktorene
påvirker brukeropplevelsen. Disse faktorene må, for øvrig, observeres og
analyseres gjennom forskning. I en vanlig WebRTC-samtale generes store
mengder rådata. For at denne dataen skal kunne analyseres og brukes i
videre forskning, er det avgjørende å ha et analyseverktøy som effektivt
kan behandle, analysere og presentere rådataen på en informerende måte.

Denne masteroppgaven presenterer et web-basert grensesnitt, også
kalt et WebRTC-dashboard, som benytter rådata fra WebRTC-samtaler
mellom n deltakere til å analysere tjenestens brukeropplevelse. Dashbordet
som blir presentert gjennom denne avhandlingen muliggjør det å spille av
tidligere samtaler som om de skulle være avspilt i sanntid. Dette blir gjort
ved å kombinerer nettverksstatistikk, tilbakemeldinger fra sluttbrukere
som blir hentet via to forskjellige analytiske plattformer og videoopptak
av samtaler. I tillegg kan sluttbrukeren av tjenesten tilpasse analysen
til eget formål gjennom en rekke innstillinger. Dette kan identifisere
tidligere ukjente korrelasjoner mellom tekniske og ikke-tekniske faktorer
som påvirker brukeropplevelsen.

Videre vil denne avhandlingen kaste lys over potensialet ved et slikt
WebRTC-dashbord, og hva et slikt verktøy kan utrette for leverandører av
WebRTC-tjenester. Masteroppgaven diskuterer også de ulike utfordringene
som har oppstått under utviklingen av verktøyet, hvordan disse har blitt
håndtert og hva slags begrensninger verktøyet har.

Preface

This master thesis is an original and independent work by Marianne
Rie Melhoos. The thesis is the final contribution to the Master’s degree
in Communication Technology at the Norwegian University of Science
and Technology (NTNU).

The primary goal of this master thesis is to develop a web interface,
which illustrates the most relevant factors that impact the performance
of WebRTC-based video communication. In addition, an objective of this
master thesis is to provide a brief overview of the most relevant Quality
of Service (QoS) and QoE factors in the context of WebRTC-based video
communication.

I want to thank my supervising professor at Department of Telematics
(ITEM), Poul Einar Heegaard, for providing guidance during the prepa-
ration of this master thesis, and to Doreid Ammar for providing with
useful guidance, information regarding WebRTC and appear.in, as well
as for showing interest in this master thesis. I would also like to express
my gratitude to Katrien De Moor for giving me feedback in respect to
the WebRTC-dashboard.

Also, I would like to extend my gratitude to Arthur Melhoos, my
father, for both giving feedback and reading through this master thesis.

Lastly, to the wonderful people I have been sharing an office with
during the last year, thank you for listening.

Contents

List of Figures xi

List of Tables xiii

List of Acronyms xv

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 3
1.3 Scope . 3
1.4 Methodology . 3

1.4.1 Development . 3
1.4.2 Literature Study . 4

1.5 Outline . 4

2 Theoretical Background 5
2.1 WebRTC . 5

2.1.1 WebRTC API . 6
2.1.2 appear.in . 6
2.1.3 Google Hangouts . 7
2.1.4 Firefox Hello . 7

2.2 Challenges with WebRTC Applications 7
2.3 Definition of QoS and QoE . 8

2.3.1 Quality of Service . 8
2.3.2 Quality of Experience . 9

2.4 Factors Influencing QoE . 10
2.4.1 QoS Parameters . 11
2.4.2 User . 11
2.4.3 Context . 12

2.5 Related Work . 12

3 Overview of the WebRTC-Dashboard 15
3.1 WebRTC-Dashboard . 15

vii

3.2 Software Requirements Specification 16
3.2.1 Functional Requirements . 16
3.2.2 Non-Functional Requirements 17
3.2.3 External Interfaces . 17
3.2.4 Performance . 17
3.2.5 Attributes . 17
3.2.6 Design . 18

3.3 Data Retrieval . 18
3.3.1 Google Chrome’s WebRTC Internal Interface 18
3.3.2 getstats.io . 22
3.3.3 Audio and Video Recording 26

4 Development of the WebRTC-Dashboard 27
4.1 Implementation . 27

4.1.1 System Architecture . 27
4.1.2 Testing . 29
4.1.3 Technologies . 29
4.1.4 Challenges and Decision Making During Implementation Process 35
4.1.5 Code Implementation . 42

4.2 Advantages of the WebRTC-Dashboard 43
4.2.1 Replaying Charts and Videos 43
4.2.2 Combine Chrome and getstats.io Statistics 43
4.2.3 Customized Chrome and getstats.io Statistics 45
4.2.4 Flexibility Features . 46

5 Description of the WebRTC-Dashboard 51
5.1 Functionalities . 51

5.1.1 Conversation Handler Panel 51
5.1.2 Quality of Experience Panel 55
5.1.3 Video Panel . 58
5.1.4 Quality of Service Panel . 59
5.1.5 Media Player Panel . 63
5.1.6 Additional Functionalities . 65

5.2 Limitations . 67
5.2.1 Limited Number of Sample Points in Chrome Statistics . . . 68
5.2.2 Chrome Statistics Sampling Time 68
5.2.3 Getstats JSON Format may Change 68
5.2.4 GUI Limitations . 69

6 Conclusion and Future work 71
6.1 Conclusion . 71
6.2 Future Work . 72

6.2.1 Better Synchronization of Video Recordings, Slider, and Charts 72
6.2.2 Admin Access . 73
6.2.3 Support for Other WebRTC-Based Applications 74
6.2.4 Testing . 74
6.2.5 Search Function in QoS Panel 74
6.2.6 Support Dual Y-axis . 74
6.2.7 Store the Charts . 75

References 77

Appendices
A Software Requirements Specification 81

A.1 Functional Requirements . 81
A.1.1 System . 81
A.1.2 Conversation Handler Panel 82
A.1.3 QoE Panel . 82
A.1.4 Media Player Panel . 83
A.1.5 QoS Panel . 83
A.1.6 Video Panel . 84
A.1.7 Navigation bar . 84

A.2 Non-Functional Requirements . 85

B Statistics 87
B.1 Google Chrome’s WebRTC Internal Interface Statistics 87
B.2 getstats.io Statistics . 91

B.2.1 Network Statistics . 91
B.2.2 Participant Statistics . 91

B.3 getstats.io Subjective User Feedback Form 92

List of Figures

3.1 Screenshot of the Google Chrome’s WebRTC internal interface. 19
3.2 Illustration of a two-party video conversation with four tracks. 20
3.3 Screenshot of the getstats.io. 23
3.4 Screenshot of feedback window in appear.in. 25
3.5 Screenshot of user feedback form in appear.in test server. 25

4.1 Illustration of Model View Controller (MVC) architecture. 28
4.2 Illustration of the system architecture of the WebRTC-dashboard. . . . 29
4.3 Illustration of a three-party video conversation. 35
4.4 Illustration of a two-party video conversation with two Chrome statistics

files. 36
4.5 Illustration of a three-party video conversation with three Chrome statis-

tics files. 37
4.6 Illustration of a three-party video conversation with two Chrome statistics

files. 38
4.7 Illustration of how often getstats.io and Chrome’s WebRTC internal

interface retrieves data samples. 39
4.8 Illustration of the slider in Media Player Panel [39]. 41
4.9 Screenshot of the WebRTC-dashboard while replaying video and chart

plotting PacketsLostRatio [39]. 44
4.10 Illustration of how the no shift checkbox impacts chart plotting using the

same statstics [39]. 48
4.11 Illustration of how the sample interval size impacts chart plotting the

same statstics (bitsSentPerSecond and bitsReceivedPerSecond) [39]. . . . 49

5.1 Screenshot of the WebRTC-dashboard [39]. 52
5.2 Screenshot of the Conversation Handler Panel [39]. 53
5.3 Screenshot of the Conversation Handler Panel’s additional settings [39]. 54
5.4 Illustration of how the chart size is depending on how many charts are

lined up in the same row [39]. 55
5.6 Screenshot of the Submit button [38]. 55
5.5 Illustration of two chart with two difference X-tick location [39]. 56

xi

5.7 Screenshot of the QoE Panel [39]. 58
5.8 Screenshot of the Video Panel [39]. 59
5.9 Screenshot of the Add chart button [39]. 60
5.10 Screenshot of the section in which the end-user can modify the content of

the charts on the QoS Panel [39]. 61
5.11 Illustration of charts that plot the PacketsLostRatio (Equation 4.2 and

4.5) retrieved from Chrome statistics file and getstats.io statistics file [39]. 62
5.12 Illustration of a chart that plots the PacketsLostRatio (Equation 4.2 and

4.5) retrieved from Chrome statistics and getstats.io statistics files, and
included the tooltip with legends information [39]. 63

5.13 Screenshot of the Media Player Panel [39]. 64
5.14 Screenshot of the add-form in the Admin Modal [39]. 66
5.15 Screenshot of the saving button with feedback [39]. 66
5.16 Screenshot of the remove-form in the Admin Modal [39]. 67

List of Tables

3.1 Google Chrome’s WebRTC internal interface statistics included in the
WebRTC-dashboard. 21

3.2 getstats.io network statistics included in the WebRTC-dashboard. . . . 24
3.3 getstats.io user statistics are included in the WebRTC-dashboard. . . . 24

A.1 Functional requirements for the System. 81
A.2 Functional requirements for the Conversation Handler Panel. 82
A.3 Functional requirements for the QoE Panel. 82
A.4 Functional requirements for the Multimedia Panel. 83
A.5 Functional requirements for the QoS Panel. 83
A.6 Functional requirements for the Video Panel. 84
A.7 Functional requirements for the Navigation bar. 84
A.8 Non-functional requirements. 85

B.1 Complete list of statistics supported by Google Chrome’s WebRTC internal
interface. 87

B.2 Complete list of network statistics supported by getstats.io. 91
B.3 Complete list of participant statistics supported by getstats.io. 91
B.4 Complete list of subjective user feedback supported by getstats.io. . . . 92

xiii

List of Acronyms

API Application Programming Interface.

Bash Bourne-Again Shell.

CAPTCHA Completely Automated Public Turing test to tell Computers and
Humans Apart.

CPU Central Processing Unit.

CSS Cascading Style Sheets.

D3 Data-Driven Documents.

GNU GNU’s not Unix.

GUI Graphical User Interface.

HTML HyperText Markup Language.

HTTP Hypertext Transfer Protocol.

ID Identification.

IEEE Institute of Electrical and Electronics Engineers.

IETF Internet Engineering Task Force.

ITEM Department of Telematics.

ITU International Telecommunication Union.

JS JavaScript.

JSON JavaScript Object Notation.

KBAC Knowledge-Based Admission Control.

xv

mp4 mpeg 4.

MVC Model View Controller.

NPM Node Package Manager.

NTNU Norwegian University of Science and Technology.

OS Operating System.

P2P Peer-to-Peer.

PC Personal Computer.

PHP PHP: Hypertext Preprocessor.

PLI Picture Loss Indication.

QoE Quality of Experience.

QoS Quality of Service.

RTC Real-Time Communication.

Sass Syntactically Awesome Stylesheets.

SMS Short Message Service.

SQL Structured Query Language.

SRS Software Requirements Specification.

TFS Team Foundation Server.

txt text.

UI User Interface.

URL Uniform Resource Locator.

VoIP Voice over IP.

W3C World Wide Web Consortium.

WebRTC Web Real-Time Communication.

WWW World Wide Web.

Chapter1Introduction

1.1 Motivation

Applications and services enabling Real-Time Communication (RTC) have gained
wide popularity over the last years. Some of the known synchronous, video- and
audio-mediated services today are Skype [31], Facebook Messenger’s video calling
feature [22], and FaceTime [30]. They support RTC with audio and video sharing, and
Skype and Facebook Messenger’s video calling feature also support data sharing. One
person can view and communicate with another person in real time, and exchange
information instantly or with negligible delay. Some applications also support group
conversations, where up to ten persons can communicate at the same time [31]. On
the other hand, these services and applications require plug-ins, log in, or a particular
device (for example FaceTime requires a device running OS X) to be able to access
these applications and services.

Compared to Skype, FaceTime, and other similar services, the Web Real-Time
Communication (WebRTC)-based applications are trouble-free, require no installa-
tion, and are in-browser applications. Google Hangouts [15] and appear.in [5] are
examples of WebRTC-based applications. The WebRTC provides the possibility for
the WebRTC-based applications to utilize its service without requesting their users
to create user accounts, login or remember passwords. For example, appear.in does
not require any user login. However, Google Hangouts does. One can simply connect
and access the application through a wide range of devices, such as smartphones,
tablets, and laptops. These devices must use a web browser that supports WebRTC
(e.g. Google Chrome, Mozilla Firefox, and Opera) or a dedicated application. Also,
WebRTC communication includes an open sourced Application Programming In-
terface (API) that enables developers to implement their RTC-based application in
their web browser [36].

1

2 1. INTRODUCTION

Even though the performance of WebRTC-based applications and services are
continuously improving, these applications and services face some challenges. Both
appear.in and Google Hangouts allow users to use various types of devices and
be in different environments when participating in multi-party video conversations.
Consequently, a participant may perceive the conversation differently than other
participants [45]. For example, two out of three individuals may have ideal conditions
for a positive and pleasurable QoE, yet still, their actual overall QoE might not be
as good because one of the participants is suffering from a weak mobile network.
Additionally, during a real-time video- and audio-mediated conversation there are
several technical constraints (e.g. limited bandwidth) and parameters (e.g. packet
loss, delay, etc.) that may cause the user to experience various negative quality
deteriorations (e.g. video freezes, bad or no audio, etc.).

As WebRTC is evolving as a new supporting technology, it is important to address
these challenges. From a developer’s point of view, it is important to address these
facts in order to prevent users from getting displeased and stop using their services
and switching to another competitor. To prevent users from getting frustrated and to
provide the best possible QoE requires a deep understanding of the various technical
and non-technical factors that may have an influence on the QoE [44].

To face these challenges, lab studies, and large-scale ongoing lab studies are
required. With numerous technical and non-technical parameters to choose from,
these studies will provide a significant amount of data, all of which needs to be
analyzed. Currently, there exist analytic platforms that are able to retrieve data (QoS,
QoE, and non-technical parameters) from WebRTC-based applications, measuring
them, and organizing them. However, since the data collected from analytic platforms
usually are in JavaScript Object Notation (JSON) format, it is difficult to regain any
information from the data in plain text. Therefore to enable further analysis and to
identify the factors impacting the QoE, an analyzing tool is crucially needed.

In order to meet the need of creating an analyzing tool, this master thesis will
present the implementation of a web interface. The web interface illustrates, in a
graphical and interactive way, the most relevant factors that impact the performance
of WebRTC-based communication. This web interface, also referred to as the
WebRTC-dashboard, helps to give a deeper insight into finding a correlation between
the technical and non-technical factors that influence the QoE. Also, this WebRTC-
dashboard includes video and audio recordings to highlight video freezes, audio loss,
etc., as well as subjective user feedback. Finally, this web interface supports statistics
for not only two-party conversations but for n-party conversations. Accordingly, this
allows for a better understanding of how one individual can affect the overall QoE in
a multi-party conversation, which has not been studied to a great extent to date.

1.2. OBJECTIVES 3

1.2 Objectives

The project description has two primary objectives for this master thesis:
• Briefly, give an overview of the most relevant QoS and QoE factors in the
context of WebRTC-based real-time video communication.

• Development of a web interface that illustrates the most relevant factors that
impact the performance of WebRTC-based real-time video communication.

1.3 Scope

Since there exist multiple WebRTC-based applications, this master thesis narrows
its scope down to one WebRTC-based application. This master thesis focuses on
implementing a WebRTC-dashboard which focuses on analyzing session-related data
generated from the WebRTC-based application appear.in. Even though, this scope
is limited, for future implementation, the web interface should be able to support to
analyze session-related data from other WebRTC-based applications.

1.4 Methodology

The methodology used to meet this master thesis’ objectives is divided into two
processes: development and literature study. These processes are described in the
following two sections.

1.4.1 Development

The development process covers implementation of the web interface and comprises
the main part of this master thesis, and is divided into four parts.

• System definitions: First, the system definitions were defined at the beginning
of the development process. The system definitions cover the division of the
system architecture, technologies to be used, and the Software Requirements
Specification (SRS).

• Implementation: Second, the implementation process covers the actual devel-
opment of the web interface. The implementation is the main part of the
development process, and also the most time consuming of all parts.

• Testing: Third, simultaneously along with the implementation, testing was
conducted. Testing was used to ensure that the web interface satisfies both
functional and non-functional requirements.

• Feedback: Fourth, likewise the testing part, along the implementation process
the feedback was received from both the responsible professor and supervisors.

4 1. INTRODUCTION

The feedback had a significant influence on the Graphical User Interface (GUI),
functionalities, and how to improve the web interface.

1.4.2 Literature Study

A literature study has been conducted to research the topics in the project description
and to decide the appropriate technologies for the WebRTC-dashboard. The literature
study includes studying WebRTC, the most relevant QoS and QoE factors in the
context of the WebRTC-based video communication, and the technologies that suit
the purpose of the web interface.

1.5 Outline

This master thesis is divided into six chapters, the topics of each chapter are as
follows:

• Chapter 1, Introduction: The introduction chapter introduces the motivation
and objectives for this master thesis as well as the scope and methodology.

• Chapter 2, Theoretical Background: The theoretical background chapter
gives a brief introduction to WebRTC, the definition and influencing factors
affecting the QoE and QoS, the challenges with WebRTC applications, and the
related work.

• Chapter 3, Overview of the WebRTC-dashboard: The overview of WebRTC-
dashboard chapter presents a brief introduction to the WebRTC-dashboard,
followed by the WebRTC-dashboard’s Software Requirements Specification
(SRS), and the analytic platforms the WebRTC-dashboard uses to retrieve
WebRTC-based session-related data.

• Chapter 4, Development of the WebRTC-dashboard: The development of
the WebRTC-dashboard chapter includes how the WebRTC-dashboard is im-
plemented. It contains system architecture, testing, technologies, and the
challenges that occurred during the implementation process, and how they
were handled.

• Chapter 5, Description of the WebRTC-dashboard: The description of the
WebRTC-dashboard chapter gives a description of the functionalities and limi-
tations of the WebRTC-dashboard.

• Chapter 6, Conclusion and Future work: Conclusion and future work chap-
ter include the conclusion and future work in respect to the WebRTC-dashboard.
Future work covers suggestions on how to remedy some of the WebRTC-
dashboard’s limitations and some nice-to-have features.

Chapter2Theoretical Background

This chapter presents the relevant theory evaluated in the literature study, and gives
the background information needed for this master thesis. This chapter includes a
brief introduction of the WebRTC, current challenges with WebRTC applications,
definitions of QoS and QoE, factors which influence QoE, and related work.

2.1 WebRTC

WebRTC is a free, open source framework defined by the World Wide Web Con-
sortium (W3C)1 that enables direct browser-to-browser (Peer-to-Peer (P2P)) RTC
[36]. WebRTC-based applications and services do not require any additional soft-
ware installations (such as plug-ins) and are in-browser applications. Examples
of WebRTC-based applications are appear.in (will be presented in Section 2.1.2),
Google Hangouts (will be presented in Section 2.1.3), and Telefónica’s Hello (will be
presented in Section 2.1.4). Since the WebRTC-based applications and services use
the browser as its platform, these services are easily accessed.

Besides WebRTC, there is no other free, high quality, complete solution that
can enable RTC [36]. Until the launch of WebRTC, RTC technology had only been
available to large established companies which could afford the expensive licensing fees
[40]. On the account of that WebRTC is not a finished standard as yet, only Google
Chrome, Mozilla Firefox and most recently Opera are the only web browsers that
have fully enabled the WebRTC standard. Other Operating System (OS)-provided
browsers (Internet Explorer and Safari) have noticeably not implemented WebRTC
yet. Considering this fact, the Internet Engineering Task Force (IETF)2 and the
WebRTC Working Group3 are currently working on a WebRTC standard which is
expected to become widespread as soon as their work is completed [38].

1The World Wide Web Consortium (W3C) is the main international standards organization for
the World Wide Web (WWW).

2Internet Engineering Task Force (IETF) develops and promotes voluntary Internet standards.
3The WebRTC Working Group defines client-side APIs to enable RTC in web browsers.

5

6 2. THEORETICAL BACKGROUND

2.1.1 WebRTC API

WebRTC’s framework allows developers to implement their WebRTC-based applica-
tions through simple APIs. These APIs include the fundamental components needed
to build a high-quality RTC-based web application. These fundamental components
provide audio, video, and non-media data packets performance statistics that are
transmitted over peer-connections in WebRTC services [46]. A WebRTC framework
contains three APIs which are needed to fully establish a RTC connection [37]. Each
of these APIs is responsible for creating, continuing and closing the RTC process,
and are summarized as follows:

• GetUserData API: The GetUserData API is responsible for accessing the
user’s microphones and video cameras, capturing audio and video data and
transferring data through the peer-connections [37].

• PeerConnections API: The PeerConnections API is responsible for creating
P2P connections to transmit and receive audio, video, and non-media data
from one browser to another [37]. These PeerConnections hold MediaStreams,
which are responsible for sending media (audio, video, and screen sharing)
content. Each MediaStream contains two tracks, one for sending and one for
receiving [46].

• DataChannel API: The DataChannel API is in charge of sending non-media
data (such as text chat, file transfer, etc.) through the peer-connections [37].

2.1.2 appear.in

appear.in is a WebRTC-based free browser-to-browser service. It does not require
any user registrations or software installation (such as add-ons to your web browser).
Since WebRTC is not standardized as yet, appear.in is only accessible on certain web
browser versions that support WebRTC (e.g. Google Chrome, Mozilla Firefox, and
Opera).

appear.in supports service to a multi-party conversation up to eight participants,
through a Uniform Resource Locator (URL), which appear.in utilizes to create a
virtual room. Additional functionalities supported by appear.in are text messaging,
mute, camera off and on, adjustment of the size of the video screen, and lock and
leave the virtual room.

Even though there are several other WebRTC-based applications and services,
such as Google Hangouts, Hello, webEx [35], and AnyMeeting [4], this master thesis
focuses on analyzing session-related data generated from appear.in conversations.
The reason for this is that appear.in provides an additional custom statistic interface
called getstats.io, which is presented later in Section 3.3.2.

2.2. CHALLENGES WITH WEBRTC APPLICATIONS 7

2.1.3 Google Hangouts

Google Hangouts is a WebRTC-based application, which is a RTC platform devel-
oped by Google. Google Hangouts supports a multi-party conversation up to ten
participants and includes instant messaging, video, Short Message Service (SMS),
and Voice over IP (VoIP) features. Even though it is free, it requires a Google
account to access all the features (such as text messaging) [15].

2.1.4 Firefox Hello

Hello is Mozilla Firefox’s WebRTC solution, and this service is developed in collabora-
tion with Telefónica4. Similar to, appear.in, Hello does not require user registrations
or additional software downloads. It provides substantially the same features as
appear.in, however, Hello is only accessible through the Mozilla Firefox web browser.

2.2 Challenges with WebRTC Applications

appear.in, Google Hangouts and Hello are a few of many WebRTC-based applications.
These and other WebRTC-based applications offer a broad range of video chat and
conferencing services. Applications and services enabling audio- and video-mediated
RTC have become more favored over the past years [45]. Even though the performance
of these services and applications are continuously improving, it remains challenging
to satisfy the end-user’s QoE demands, at all times, and in all circumstances. This
section discusses some of the challenges WebRTC-based applications and services are
currently facing.

First of all, multi-party WebRTC conversations usually take place with a certain
amount of technical asymmetry. For each of the participants, the technical conditions
may vary (e.g. different device, network, connection, etc.). These conditions can
have a great impact of the overall QoE, which means that if at least one party has
a weak network link, it will affect the overall QoE of all the others included in the
same conversation [45].

Second, there is always some inherent and unavoidable delay in WebRTC-based
applications and services. When audio- and video-mediated data is sent from a
sender to a receiver, it first must be recorded, prepared, encoded for transmission,
transmitted over a network, decoded by the receiving device, and finally presented to
the receiver [60]. During each of these steps, additional delay and technical artifacts
can appear. These artifacts may impact the final QoE, such as audio and video
quality, and synchronization between the parties [45].

4Telefónica is a Spanish broadband and telecommunications provider [32].

8 2. THEORETICAL BACKGROUND

Third, WebRTC allows developers to create their WebRTC-based service or
application via WebRTC API described in Section 2.1.1. If one desires to build a
social-awareness system, which satisfies the end-users, then one of the challenges is
to obtain a thorough understanding of which factors that impact the QoE and how
to measure them [54].

Last and finally, in order to evaluate the QoE in WebRTC-based applications
and services one must identify the factors that impact the QoE. There are several
factors known to affect the QoE, such as QoS parameters, the user, the system, and
the context of the conversation. All of these factors will be discussed in Section 2.4.
Since there exists numerous QoS parameters (packet loss, delay, etc.), subjective
factors (self-reported feedback from the end-user), and objective factors (based on
externally observable feedback), it is a challenge to identify the factors that impact
the QoE in WebRTC-based applications and services. Also, not all of the factors are
easily measured [61].

To address the issues presented in the previous sections, this master thesis reviews
the implementation of a web interface that helps to identify a correlation between
QoE and other factors (QoS parameters, user, and context). Additionally, this web
interface will present these factors in a graphical and interactive way to give the user a
thorough understanding of the different factors. However, it is important to highlight
that this web interface does not solve the problem of improving the QoE in WebRTC-
based applications and services, but on the other hand contributes to obtaining a
deeper insight in finding the correlation between technical and non-technical factors
influencing QoE.

2.3 Definition of QoS and QoE

There are several different perspectives of how to measure and define QoS and QoE.
The following section will present various perspectives for evaluating QoS and QoE
related to WebRTC.

2.3.1 Quality of Service

Typically, QoS is measured by evaluating the performance of the service itself. To
measure the performance of a service is done by looking at the delivery network
capacity and resource availability [57]. The performance of a service is how good the
quality of the service has when the service at its best and how often the service fails.
There are several definitions of QoS, but the definition as stated by International
Telecommunication Union (ITU)5 is as follows:

5International Telecommunication Union (ITU) is a specialized agency of the United Nations
that is responsible for issues that concern information and communication technologies.

2.3. DEFINITION OF QOS AND QOE 9

Quality of Service (QoS): "Totality of characteristics of a telecommunications service
that bear on its ability to satisfy stated and implied needs of the user of the service"
[55].

The definition stated by ITU relates to satisfying the needs of the user of the
service, which only refers to the users using the system, and not the system itself.
However, another definition stated by [52] refers to satisfying the different entities
within the system, in addition to the users. In the definition stated by [52], it is
important to note that the service is not necessarily a physical interface, and the
user is not necessarily an end-user of the service. For example, a transport protocol
is the user of the service provided by a network protocol [52].

Quality of Service (QoS): "Degree of compliance of a service to the agreement that
exists between the user and the provider of this service" [52].

In a computer network perspective, QoS relies on multiple network statistics, such
as bandwidth, jitter, latency (required in real-time services), and loss characteristics
[29]. Most services that are network connected use several sets of mechanisms to
ensure QoS, such as: controlling the network resources to ensure that the services
focus on the most significant traffic for the service’s purpose [29].

While QoS weighs the actual service delivered, QoE measures the user-perspective
experience of the service. Instead of measuring network statistics, QoE measures
the users’ preferences of the service. This kind of measurement tells how to create a
service that the users’ appreciate and as such increase the chances that the user will
continue to use the service.

When evaluating QoE, one notices that QoS is closely related. QoE heavily
depends on the technical aspect of service performance, and if QoS requirements are
not fulfilled (e.g., minimum packet loss), then the probability of satisfying the QoE
is small [57]. It is, therefore, relevant to take QoS into account when evaluating QoE
of a system.

2.3.2 Quality of Experience

Compared to QoS, Quality of Experience (QoE) takes other parameters into account
when measuring the performance of the system. QoE incorporates the conceivable
influence of non-technical attributes such as user characteristics and context of the
user [49]. Moreover, QoE is subjective and individual, which means that even though
the QoS is the same, a user may not have the same QoE as other users. Currently,
the most well-known definition of QoE as defined by the ITU, and is as follows:

10 2. THEORETICAL BACKGROUND

Quality of Experience (QoE): "The overall acceptability of an application or service,
as perceived subjectively by the end-user" [55].

The definition stated by ITU has, however, put QoS in a subjective perspective.
According to this, the concept of the ’overall acceptability’ for measuring QoE may
be unclear [58]. Consequently, a new and more accurate definition was proposed by
Qualinet6 [28], which takes human-related factors into account:

"Quality of Experience (QoE) is the degree of delight or annoyance of the user of an
application or service. It results from the fulfillment of his or her expectations on
the utility and/or enjoyment of the application or service in the light of the user’s
personality and current state." [28].

In addition to system specific and context-related factors, Qualinet suggests a
definition that takes the emotional state of the end-user into account when evaluating
the QoE. It entails that the goal of QoE is no longer only about satisfying the
expectations of the end-user related to the utility of an application or service [51], but
also includes how the end-user feels, and how his/hers experiences with the service
involve and stimulate people emotionally [59]. Compared with ITU’s definition, the
last definition highlights possible influencing human-related factors.

QoE is strictly subjective when referring it to the end user’s feelings, expectations,
personal relations, and motivations, etc. These are complicated and challenging to
measure. Recent literature has, therefore, focused on what parameters influence
the quality of the users’ QoE when using WebRTC services [45, 54, 56, 61]. In the
following section, these parameters will be presented and discussed.

2.4 Factors Influencing QoE

As mentioned in the previous paragraph, it is complex and challenging to measure QoE.
There is no distinct, defined method to measure QoE especially when using the new
definition from Qualinet [28]. Qualinet has, however, acknowledged that "creativity
(Content), technology (Deliver and Interaction), market/finance (Business models),
and users (Usages)" [28] factors influence QoE. Qualined defines an influencing factor
as follows:

Influencing factor: "Any characteristic of a user, system, service, application, or
context whose actual state or setting may have influence on the Quality of Experience
for the user." [28].

6Qualinet is a European Network of Excellence of Quality of Experience (QoE) in Multimedia
Systems and Services.

2.4. FACTORS INFLUENCING QOE 11

It is important to highlight, that there are not only QoS parameters that influence
the QoE in respect to WebRTC. QoE is also influenced by several other parameters,
such as user, and context-related factors. These influencing factors of QoE are
presented below.

2.4.1 QoS Parameters

QoS parameters are identified as one of the factors influencing QoE. In the context of
WebRTC, recent literature has focused on three factors within QoS that impact QoE,
namely network conditions, application-level aspects, and type of hardware [45, 54].

Network conditions cover the quality of the network. For example, if the device
used for participating a WebRTC-based service is connected to a wired or wireless
network. Usually, a device connected to a wireless network has a higher probability of
being disconnected from a conversation than a device connected to a wired network
[61].

Application-level aspects include network parameters such as packetsloss, delay,
jitter, bandwidth, etc. These parameters can have a great impact on the QoE.
According to [47], synchronization between the audio and video is highly prioritized.
It is better to delay the audio to ensure the synchronization, but only in the event,
the end-to-end delay is below 600ms. If the end-to-end delay is greater than 800ms,
it is considered unacceptable [54].

The type of hardware can have a great impact of if ever the user can participate
in the WebRTC-based application or not. WebRTC-based services and applications
require a significant amount of processing power [61], and if the connected device
does not satisfy the processing requirements, then the end-user will not be able to
connect to the service.

2.4.2 User

It is important to distinguish between a person and the role this person takes in a
video conversation. On the personal level, it is important to consider the person’s
prior experience with the video conversation system, and what the person is expecting.
While, on the role level, one must also take into account what kind of role the person
has when participating in a video conversation [54]. For example, given some negative
QoS parameter influencing factors (e.g. delay), a person with the role as a moderator
of a conversation might not have the same experience as the other not-moderator
participants during the same conversation.

Also, the purpose of the video conversation can cause the participants to experience
a different QoE. A video conversation employed in a business context has higher

12 2. THEORETICAL BACKGROUND

end-user expectations, then a conversation in a private context. For the most video
conversation in a business context, the participants have a goal for the conversations,
while for private conversations the primary objective is to experience a sense of
presence or social connection [61].

2.4.3 Context

The context is established by the interplay between the user and the current situation
[54], and can have an influence on the communication. It is important to address
factors such as activities (lecture, discussion, free-play, etc.), the settings (home,
school, etc.), and environment (light, noise, the number of people, etc.) of the
conversation when evaluating the context of a WebRTC conversation. In the context
of WebRTC, it is understandable that parameters such as background noise, and bad
lighting can influence the QoE negatively.

2.5 Related Work

The WebRTC-dashboard focuses on finding correlations between the technical and
non-technical factors that influence the end-users’ QoE. Other similar solutions are
Chrome’s WebRTC internal interface, getstats.io and Knowledge-Based Admission
Control (KBAC) [43]. Both Chrome’s WebRTC internal interface and getstats.io
supports to fully visualize the session-related statistics in real-time and downloads
them to perform post-processing analysis, while KBAC is a dashboard, which focuses
on admission control [43]. These solutions, however, do not support the same
flexibility as the WebRTC-dashboard.

Research regarding the QoE in a multi-party WebRTC-based conversation has
gained popularity the in recent years. Due to the multitude of potential influencing
factors (QoS parameters, user, and context), the evaluation of quality and users’ QoE
in the context of the multi-party WebRTC-based conversation is challenging [44, 45].

Several studies have already been conducted to identify the influencing factors of
the QoE in the context of a WebRTC-based conversation. One of them is [45], and
this study investigates session-related performance statistics from a WebRTC-based
application called appar.in and explores how they may relate to users’ QoE. It also
highlights the limitations of Google Chrome’s WebRTC internal tool and focuses on
identifying the factors that cause QoE killers (for example video freezes).

Moreover, [44] investigates performance statistics in order to detect potential
QoE issues. It utilizes a multi-method approach to gain more insight in the relevant
influencing factors and investigates the relationship between performance-related pa-
rameters and users’ QoE. This is achieved by identifying the most relevant influencing

2.5. RELATED WORK 13

factors (both technical and non-technical), how the influencing factors influence the
users’ QoE and the corresponding user behavior, and understanding the relationship
between them.

Another study, [61] investigated the QoE issues in the context of using mobile
devices in multi-party WebRTC-based conversations. It considered different series of
interactive, three-party WebRTC-based conversation with various smartphones and
laptops. This research’s results indicated that the end-users that used smartphones
have lower expectations than the end-users using laptops. The author also highlighted
that the many smartphones may not be able to meet the high Central Processing
Unit (CPU) requirements needed to ensure a smooth QoE.

Lastly, a study which is necessary to mention is [46]. This study focuses on
highlighting the limitations of the Google Chrome WebRTC internal tool, and how to
overcome these issues. Even though Chrome statistics consist of multiple constraints,
[46] believes that these statistics can be used QoE studies in respect to WebRTC
services.

Chapter3Overview of the
WebRTC-Dashboard

This chapter presents an overview of the WebRTC-dashboard. The overview of
the WebRTC-dashboard chapter will first give a brief introduction to the WebRTC-
dashboard, followed by the WebRTC-dashboard’s Software Requirements Specifica-
tion (SRS). After this, the next sections cover the platforms the WebRTC-dashboard
uses to retrieve WebRTC-based session-related data.

3.1 WebRTC-Dashboard

WebRTC-dashboard is a web interface, and its purpose is to analyze WebRTC-
based real-time conversations. To do so, the WebRTC-dashboard includes network
parameters, device information, audio and video recordings, and user feedbacks.
The WebRTC-dashboard gathers data from mainly two analytic platforms. These
platforms are Google Chrome’s WebRTC internal interface (presented further in
Section 3.3.1) and getstats.io (presented further in Section 3.3.2), and they gathers
session-related data from WebRTC-based conversation through the WebRTC API.

This aside, the WebRTC-dashboard’s goal is to provide the end-user with a deeper
understanding of what kind of technical- and non-technical factors can influence the
QoE in a graphical and interactive way. The WebRTC-dashboard consists of six
parts which are briefly presented below.

• Conversation Handler Panel: The Conversation Handler Panel is responsible
for handling WebRTC-based conversations. It allows end-users to choose and
manage the settings of a conversation, and customize how the conversation’s
data will be presented in the QoS Panel.

• Quality of Experience (QoE) Panel: The QoE Panel is responsible for pre-
senting subjective user feedbacks, and device information. The device informa-
tion contains the information about the device the participants used during
the WebRTC-based conversation for a selected WebRTC-based conversation.

15

16 3. OVERVIEW OF THE WEBRTC-DASHBOARD

• Media Player Panel: The Media Player Panel, is responsible for play, pause,
stop and drag (slider) actions. These actions are used to manage the generated
charts and attached videos for a selected WebRTC-based conversation.

• Video Panel: The Video Panel is responsible for showing the attached videos,
and editing settings in respect to these videos. These settings are mute, adjust
the size of the videos, and hide.

• Quality of Service (QoS) Panel: The QoS Panel is responsible for the actions
of adding, removing, and plotting charts. These actions allow end-users to
generate charts, remove charts, and plot charts using statistics by choice.

• Navigation bar: The Navigation bar includes two modals. First, the Help
modal is a guide of how to use the WebRTC-dashboard. Second, the Admin
modal supports and allows an end-user to add and remove WebRTC-based
conversation to/from the WebRTC-dashboard.

3.2 Software Requirements Specification

Software Requirements Specification (SRS) is a complete description of what the
software system is expected to perform, and as well as what it is not expected to do
[48]. This specification follows the Institute of Electrical and Electronics Engineers
(IEEE)’s SRS standard [50].

3.2.1 Functional Requirements

Functional requirements describe the functionalities that the software system is
expected to perform [48]. One of the main functional requirements of the WebRTC-
dashboard is that the system (the WebRTC-dashboard) shall support and analyze
an n-party WebRTC-based conversations (requirement Identification (ID) 1.1 from
Appendix A.1).

As mentioned previously in Section 3.1, the WebRTC-dashboard consists of six
parts. Each part is responsible for different functionalities of the WebRTC-dashboard.
The functional requirements for each part are summarized in Appendix A.1. An
example for a functional requirement is, the end-user shall be able to select a
WebRTC-based conversation he/she wishes to analyze on the Conversation Handler
Panel (requirement ID 2.1 from Appendix A.1.2).

As the WebRTC-dashboard was highly dependent on the feedback from the
supervisor and responsible professor during the preparation of this master thesis,
the functionalities of the WebRTC-dashboard were added and implemented in the
development process. For that reason, not all the functional requirements were
defined from the beginning but added to the implementation process. However, all

3.2. SOFTWARE REQUIREMENTS SPECIFICATION 17

the functional requirements are listed in Appendix A.1 and are fully implemented in
the WebRTC-dashboard.

3.2.2 Non-Functional Requirements

Non-functional requirements describe all the remaining requirements which are not
included in the functional requirements [48] i.e. they include everything else than
what the system is expected to perform. Two non-functional requirements are for
example: the system (the WebRTC-dashboard) shall be supported by Google Chrome
web browser (requirement ID 8.1 from Appendix A.2) and the text in the system
should be written in English (requirement ID 8.3 from Appendix A.2).

3.2.3 External Interfaces

The WebRTC-dashboard is a web interface developed mainly in JavaScript (JS)
and is accessible through the web browser. Since not all web browsers support the
fifth version of HyperText Markup Language (HTML) video tag or the video format
mpeg 4 (mp4), the WebRTC-dashboard is only tested on the desktop web browser
Google Chrome. Also, the design of the WebRTC-dashboard is reserved for Personal
Computers (PCs) and Macintoshes, consequently the WebRTC-dashboard is not
tested on tablets and smartphones.

3.2.4 Performance

Almost every functionality that the WebRTC-dashboard supports is handled instantly.
However, there are two exceptions, and both of them are located in the Admin modal.
First, the function to add a new WebRTC-based conversation to the WebRTC-
dashboard. This process requires the WebRTC-dashboard to load files from client
to server (the loading time depends on the size of the files), then to run the script
to retrieve the content of the files, and finally, to build and reload the WebRTC-
dashboard. Second, the function to remove WebRTC-based conversations. This
operation is a less time-consuming process than to add conversations. When the
WebRTC-dashboard removes a conversation, it must first remove the files, build it,
and finally reload the WebRTC-dashboard.

3.2.5 Attributes

One of the significant issues when considering maintainability is that getstats.io does
not have a standardized JSON format as yet. Therefore, if getstats.io changes the
JSON format, the WebRTC-dashboard needs to be updated in order to support the
statistics gathered from getstats.io.

18 3. OVERVIEW OF THE WEBRTC-DASHBOARD

Since the WebRTC-dashboard does not require a user login, the security of the
WebRTC-dashboard has not been prioritized during the implementation process.
Even if security has not been prioritized, the task runner Gulp (presented in Section
4.1.3) is used to minify the JS files located on the server, so that they are not longer
readable for the human eye.

3.2.6 Design

The WebRTC-dashboard is designed using HTML5 (presented in paragraph HTML5
in Section 4.1.3) and Cascading Style Sheets (CSS) (presented in paragraph CSS in
Section 4.1.3). The design of WebRTC-dashboard was defined in co-operation with
the supervisor.

3.3 Data Retrieval

As previously mentioned in Section 3.1 the purpose of the WebRTC-dashboard is to
give the end-user a deeper understanding of what kind of technical- and non-technical
factors that can influence the QoE. In order to do so, the WebRTC-dashboard
uses network parameters, device information, audio and vide recordings, and user
feedbacks from three different platforms. These platforms are presented in the
following sections.

3.3.1 Google Chrome’s WebRTC Internal Interface

Initially, Google Chrome’s WebRTC internal interface1 was developed for WebRTC
application developers to debug, and to understand the features and functions of
their WebRTC service. It supports the function to fully visualize the session-related
Chrome statistics (illustrated in Figure 3.1) and to download them to perform post-
processing analysis. Recently this interface has been used to obtain a deeper insight
into the QoE aspects of WebRTC services [45], and is therefore included in the
WebRTC-dashboard.

To use the Google Chrome’s WebRTC internal interface properly, each participant
must open the interface before starting the conversation, and not close the browser
window before the session has ended. Also, it is important that the WebRTC-based
conversation takes place using the same web browser (Google Chrome) as the interface.
Each participant can locally visualize the Chrome statistics in real-time and retrieve
them from the interface whenever and how many times he/she wishes to do during
the conversation. However, due to analytic reasons, it is recommended that all the
participants in the conversation retrieve the Chrome statistics synchronously at the
end of the conversation.

1Address: chrome://webrtc-interals

3.3. DATA RETRIEVAL 19

Figure 3.1: Screenshot of the Google Chrome’s WebRTC internal interface.
(chrome://webrtc-internal)

20 3. OVERVIEW OF THE WEBRTC-DASHBOARD

Each collected Chrome statistic contains all the PeerConnection objects defined
in W3C API, plus some additional Google-specific statistics, which are organized
in JSON format. In a two-party conversation, each participant’s Chrome statistics
file contains one Data channel, which contains two MediaStreams, one for video and
one for audio. Each MediaStream contains two tracks, one for sending and one for
receiving, and each of them is identified by a unique SSRC ID. The SSRC ID links
the two parties in a PeerConnection [46]. See Figure 3.2 for an illustration.

Figure 3.2: Illustration of a two-party video conversation with four tracks.

The Chrome statistics contain a significant amount of session-related statistics
(an overview of all the statistics are listed in Appendix B.1). However, not all of
them are applicable for the purpose of the WebRTC-dashboard and are therefore
not included. The most relevant session-related statistics that are included in the
WebRTC-dashboard and are found in Table 3.1.

Google Chrome’s WebRTC Internal Interface’s Limitations

Unfortunately, the Google Chrome’s WebRTC internal interface suffers from some
limitations [46]. These limitations presented in the following and cover both the
design limitations of the Google Chrome’s WebRTC internal interface as well as
Chrome statistics limitations.

• Manual download of statistics: Google Chrome’s WebRTC internal interface
supports the function to fully visualize the Chrome statistics in real-time and
to download the statistics to perform post-processing analysis [46]. However,
Google Chrome’s WebRTC internal interface requires the end-user to download
the Chrome statistics file immediately after a session (before closing the browser
window or depart from the WebRTC-based application), or the statistics will
be lost.

• Remember to download statistics: At the end of the session, each partic-
ipant in a conversation must remember to download the Chrome statistics,
which is not always easy to remember. Currently, Google Chrome’s WebRTC
internal interface does not support to download these statistics automatically

3.3. DATA RETRIEVAL 21

Table 3.1: Google Chrome’s WebRTC internal interface statistics included in the
WebRTC-dashboard.

Media Source Covered parameters
Audio send audioInputLevel, bitsSentPerSecond, bytesSent, googEchoCancella-

tionEchoDelayMedian, googEchoCancellationEchoDelayStdDev, googE-
choCancellationQualityMin, googEchoCancellationReturnLoss, googE-
choCancellationReturnLossEnhancement, googJitterReceived, googRtt,
packetsLost, packetsSent, and packetsSentPerSecond.

Audio receive audioOutputLevel, bitsReceivedPerSecond, bytesReceived, googAcceler-
ateRate, googCaptureStartNtpTimeMs, googCurrentDelayMs, googDe-
codingCNG, googDecodingCTSG, googDecodingNormal, googDecoding-
PLC, googDecodingPLCCNG, googExpandRate, googJitterBufferMs,
googJitterReceived, googPreemptiveExpandRate, googPreferredJitter-
BufferMs, googSecondaryDecodedRate, googSpeechExpandRate, pack-
etsLost, packetsReceived, and packetsReceivedPerSecond.

Video send bitsSentPerSecond, bytesSent, googAdaptationChanges, googAvgEn-
codeMs, googEncodeUsagePercent, googFirsReceived, googFrame-
HeightInput, googFrameHeightSent, googFrameRateInput, googFram-
eRateSent, googFrameWidthInput, googFrameWidthSent, googNack-
sReceived, googPlisReceived, googRtt, packetsLost, packetsSent, and
packetsSentPerSecond,

Video receive bitsReceivedPerSecond, bytesReceived, googDecodeMs, googFirsSent,
googFrameHeightReceived, googFrameRateDecoded, googFrameRate-
Output, googFrameRateReceived, googFrameWidthReceived, goog-
MaxDecodeMs, googMinPlayoutDelayMs, googNacksSent, googPlis-
Sent, googRenderDelayMs, googTargetDelayMs, packetsLost, packet-
sReceived, and packetsReceivedPerSecond.

Band-
width

both googAvailableSendBandwidth, googAvailableReceiveBandwidth,
googActualEncBitrate, googTargetEncBitrate, googTargetEncBi-
trateCorrected, googTransmitBitrate, googRetransmitBitrate,
googBucketDelay, packetsSent, packetsSentPerSecond, packetsDiscarde-
dOnSend, googRtt, bytesSent, bytesReceived, bitsSentPerSecond, and
bitsReceivedPerSecond.

22 3. OVERVIEW OF THE WEBRTC-DASHBOARD

after a session has ended. Moreover, since, the Chrome statistics will be lost
after the conversation, there is no way of reconstructing these statistics.

• A limited number of sample points: Google Chrome’s WebRTC internal in-
terface collects data samples each second. If the WebRTC-based conversation
lasts longer than 1000 seconds, only data samples from the last 1000 seconds
are recorded i.e. data samples older than 1000 seconds are lost [46].

• Undocumented Chrome statistics extensions: It is a challenge to analyze
the downloaded statistics because the WebRTC statistics are undocumented.
This causes some uncertainty in respect to their reliability when analyzing the
attributes [46] of Chrome statistics.

• Imprecise sampling time: The Chrome statistics are collected at each of the
participant’s web browsers, which means that to be able to analyze the con-
versation, the statistics from all browsers must be recorded, downloaded and
manually combined and synchronized [45]. This implies that the Chrome
statistics are recorded at the same time, which means that all of the devices
participating in the conversation have synchronized clocks [46].

• Web browser dependent: Google Chrome’s WebRTC internal interface is only
available through Google Chrome web browser. For example, Telefónica’s Hello,
which is only accessible through Mozilla Firefox, cannot access the Google
Chrome’s WebRTC internal interface.

• Fixed sampling time: Chrome’s WebRTC internal interface uses fixed sam-
pling time of one second. This means that Chrome’s WebRTC internal interface
gathers session-related data every second; this setting cannot be modified.

Even though, Google Chrome WebRTC internal interface suffers from multiple
limitations, according to [45, 46] the Chrome statistics are still useful, as long as
these limitations are known and handled carefully. For instance, Chrome statistics
may have valuable information in respect to finding the origins of performance issues
in WebRTC-based conversations. Knowing these limitations can also help to get a
better understanding of how technical factors and the end-users’ QoE may correlate
with each other [45].

3.3.2 getstats.io

appear.in recently launched a customized WebRTC analytic interface called get-
stats.io2, which provides session-related statistics. Like Google Chrome’s WebRTC
internal interface, getstats.io supports the function to visualize the session-related

2 Address: https://getstats.io

3.3. DATA RETRIEVAL 23

Figure 3.3: Screenshot of the getstats.io.
(https://getstats.io)

statistics (illustrated in Figure 3.3) and to download them at any time (also after
the conversation has ended). Compared to Google Chrome’s WebRTC internal
interface, getstats.io supports the function to collect all session-related statistics from
all the participants and combine them into one single JSON file. Consequently, this
removes the hassle of combining and synchronizes the session-related data files after
a conversation.

Compared to Chrome statistics, getstats.io statistics files includes in addition to
network related statistics, device-related statistics, such as browser and platform
information (see the complete list of statistics supported by getstats.io in Appendix

24 3. OVERVIEW OF THE WEBRTC-DASHBOARD

B.2). By viewing both network- and user statistics the end-user can obtain a better
understanding of how these statistics can correlate with each other. For example,
the network capacity (throughput) may be different from a participant connected to
a wired network, compared to a participant connected to a wireless network.

Table 3.2: getstats.io network statistics included in the WebRTC-dashboard.

Media Bound Covered parameters
Audio Inbound BitsReceivedPrSecond, BytesReceived, Jitter, PacketsLost, and

PacketsReceived.
Audio Outbound BitsSentPrSecond, BytesSent, PacketsSent, RoundTripTime, En-

codeCPUUsage, CPULimitedResolution, and BandwidthLimite-
dResolution.

Video Inbound BitsReceivedPrSecond, BytesReceived, Jitter, PacketsLost, and
PacketsReceived.

Video Outbound BitsSentPrSecond, BytesSent, PacketsSent, and RoundTripTime.

Since both getstats.io and Google Chrome’s WebRTC internal interface use the
W3C API to retrieve session-related statistics form WebRTC-based conversation,
they include many of the same statistics. However, they differ in how often the
data samples are collected. getstats.io collects one sample per ten seconds, while
Google Chrome WebRTC internal interface retrieves one sample per second. The
WebRTC-dashboard includes most of the statistics covered by getstats.io. and are
listed in Table 3.2 and 3.3.

Table 3.3: getstats.io user statistics are included in the WebRTC-dashboard.

Parameter
UserID
Browser
BrowserVersion
BrowserEngine
BrowserEngineVersion
OS
Platform
Mobile

3.3. DATA RETRIEVAL 25

Figure 3.4: Screenshot of feedback window in appear.in.
(https://appear.in)

Furthermore, getstats.io includes subjective user feedback. At the end of an
appear.in session, the user is asked to rate the conversation with either thumb up, or
thumbs down (see Figure 3.4). This rating is stored in the appropriate JSON file at
getstats.io. However, to receive more detailed user feedback, an extended WebRTC
study of appear.in has been conducted at NTNU. Instead of a thumbs up and thumbs
down option, this research added questionnaires to retrieve more information from
the end-users. These questionnaires are only accessible when the NTNU’s appear.in
test server3 is used. This research uses the statistics files stored at getstats.io to
find the corresponding WebRTC conversation to include the questionnaires. It is
important to highlight that these answers are stored at NTNU’s servers, and not at
Telenor4.

Even though these questionaries’ include a number of questions, only three of
them are included in the WebRTC-dashboard; these questions are shown in Figure
3.5. This is because the remaining questions can change and may not always be
proper to include.

Figure 3.5: Screenshot of user feedback form in appear.in test server.
(https://appear.item.ntnu.no).

3Address: https://appear.item.ntnu.no
4Telenor is Norwegian multinational telecommunications company, and owns appear.in.

26 3. OVERVIEW OF THE WEBRTC-DASHBOARD

getstats.io’s Limitations

Similar to Google Chrome’s WebRTC internal interface, getstats.io also suffers from
some limitations. These limitations are presented below.

• Limited number of statistics are visualized: As illustrated in Figure 3.3,
getstats.io supports the function to visualize session-related statistics. However,
getstats.io can only visualize a limited number of the statistics, and does not
support any end-user customization to show other statistics.

• Inconsistent naming: getstats.io uses different naming labels on the visualized
statistics than are found in the JSON file. The same statistic can have two
different labels. For example, the statistic RoundTripTime in the JSON file is
referred to as latency in getstas.io.

• Undocumented computations: Due to the lack of a clear definition of how
some of the parameters are computed, it is challenging to verify the statistics
visualized in getstats.io. For example, it is a challenge to determine which
network parameters (BitsSentPerSecond, BitsReceivedPerSecond, ByteSent,
ByteReceived and Round Trip Time) getstats.io has used to compute through-
put.

• Fixed sampling time: getstats.io uses fixed sampling time of ten seconds, this
means that getstats.io collects session-related data every ten seconds and this
sampling time cannot be modified.

3.3.3 Audio and Video Recording

Audio and video recording have been included in the WebRTC-dashboard to detect
negative video and audio quality deteriorations (such as video freezes, bad or no
audio, etc.). These quality deteriorations are easily detected in audio and video
recordings. The WebRTC-dashboard supports the function to replay the audio and
video together with the session-related statistics gathered from the other analytic
platforms. This increases the probability of finding correlations between these quality
deteriorations and session-related statistics.

However, to obtain the full potential of video and audio recordings, it is important
that the videos are synchronized before uploading them into the WebRTC-dashboard,
i.e. the video and audio must start at the beginning of the WebRTC conversation. It
is the end-users’ responsibility to trim the video such that it starts at the same time
as the data samples in the statistics files.

Chapter4Development of the
WebRTC-Dashboard

This chapter presents the development of the WebRTC-dashboard. First, this chapter
will present the implementation of the WebRTC-dashboard, and then the advantages
of the WebRTC-dashboard.

4.1 Implementation

This section will present the implementation process of the WebRTC-dashboard.
First, this section will cover the system architecture, then testing, followed by the
technologies used to implement the WebRTC-dashboard. Furthermore, the challenges
that have been experienced during the development process will be covered, and
finally code implementation.

4.1.1 System Architecture

The system architecture is one of the first and also one of the most important
decisions that is made when developing a software system. In this case, Model View
Controller (MVC), was the chosen system architecture, due to the technologies that
were chosen for the WebRTC-dashboard. MVC is a software architectural pattern to
implement web applications, and gives full control over HTML, CSS, and JavaScript
(JS) [23]. Furthermore, MVC consists of three components; a model, a view, and a
controller, which are described in the following and illustrated in Figure 4.1.

• Model: A model is a place where the application’s data objects are stored. The
model has no knowledge of the operations of either the controller or the view
[23]. When an application’s data needs to be changed, the controller sends
a notification to the model to update the data. Alternatively, if the model
changes, it sends a notification to the controller. For example, when an end-user
manually removes a WebRTC-based conversation from the server, the model
must inform the controller.

27

28 4. DEVELOPMENT OF THE WEBRTC-DASHBOARD

• View: A view is what the end-user is presented and how the user interacts
with the web application. The view handles user actions and inputs [23]. For
example, when the end-user initiates the action of removing a WebRTC-based
conversation from the WebRTC-dashboard, then the view notifies the controller,
and the controller tells the view what to do.

• Controller: A controller connects the model and the view together. The con-
troller contains the logic behind the web application, and it can control both
model and the view [23]. For example, if the end-user triggers to remove a We-
bRTC-based conversation, the view informs the controller of the action, which
will result in the controller directing the model to remove the conversation.

Figure 4.1: Illustration of MVC architecture.

Since the purpose of the WebRTC-dashboard is to perform analysis of statistics
that have already been generated, there is no need for the WebRTC-dashboard
to modify these statistics after they are uploaded into the WebRTC-dashboard.
Therefore, the WebRTC-dashboard does not support a proper database (further
explanation is found in Paragraph No Database in Section 4.1.3), but uses text (txt),
mp4, and JSON files to retrieve data. Figure 4.2 illustrates the system architecture
of the WebRTC-dashboard. Even though the WebRTC-dashboard does not support
a proper database, it is important to highlight that the WebRTC-dashboard can
retrieve data from the model and that the controller will notify the model each time
the end-users wish to remove or add a WebRTC-based conversation(s).

4.1. IMPLEMENTATION 29

Figure 4.2: Illustration of the system architecture of the WebRTC-dashboard.

4.1.2 Testing

During the implementation process, testing was conducted. In order to test the
functional requirements (presented in Section 3.2.1), console logging and simple
unit tests were implemented along with the implementation process. Non-functional
requirements were also tested, for example, testing the WebRTC-dashboard in the
required web browser (Google Chrome). However, due to limited time, only a limited
number of the functional and non-functional requirements were tested.

4.1.3 Technologies

One of the many challenges when developing a software project is to identify the
technologies that that best suit the purpose of the project. This section will present
the technologies used to develop the WebRTC-dashboard and why they were chosen.

30 4. DEVELOPMENT OF THE WEBRTC-DASHBOARD

JavaScript

JavaScript (JS) is a lightweight, object-oriented language, and is best known as
the language used to build web pages. When developing a software project, it is
important to consider the response time of the elements included in the project.
One of the greatest advantages of using JS is that JS runs client-side. Running
client-side means that all the computations and logic are done at the end-users web
browser [20]. As a consequence, JS is perfect for e.g. validation forms, showing/hiding
elements dynamically, animation etc. However, JS is not recommended for computing
security-sensitive data, for example, handling passwords and applying Completely
Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA)
verifications.

PHP: Hypertext Preprocessor (PHP) is another programming language used
to create web pages. Compared to JS, PHP is strictly server-sided. Hence, when
accessing a .PHP file, a client must send a request to the server, after receiving the
request the server must send its content back to the client in order for the end-users
to view the content [27]. Consequently, this can cause delays and longer response
time.

Since the WebRTC-dashboard’s elements (video, charts, etc.) require a fast
response time and does not require a login or CAPTCHA verifications, the WebRTC-
dashboard use of JS. JS is perfect for the purpose of developing the WebRTC-
dashboard. Compared to PHP, JS allows the WebRTC-dashboard to be a highly
responsive web interface with dynamic functionalities, without having to wait for the
server to react and reply back to the client.

HTML5

JS, CSS, and HyperText Markup Language (HTML) are all cornerstone technologies
when creating web pages, mobile- and web applications [53]. HTML is the standard
markup language which is used to structure and markup content on the WWW. In
2014, W3C published a fifth generation of HTML, HTML5. HTML5 is an improved
markup language with support for the latest multimedia and other optional attributes
[34], and is the current standard of HTML. Since the WebRTC-dashboard requires
audio and video recordings, HTML5 is utilized.

CSS

Cascading Style Sheets (CSS) is one of the core languages of the WWW, and has
been standardized by W3C specification. Compared to JS, CSS is not a programming
language, but a style sheet language used to define the presentation of a document
written in HTML or another markup languages [11].

4.1. IMPLEMENTATION 31

There exists several other style sheet languages (extensions of CSS), like Syn-
tactically Awesome Stylesheets (Sass) [12] and less1. Sass was considered when
deciding the style sheet language to be used for the WebRTC-dashboard. As the
name implies, Sass is an upgraded version of CSS and allows more advanced features
such as variables and nested rules inside the CSS files [12]. After evaluating both
Sass and CSS, it was found that there was no need for the advanced features Sass
offered for the WebRTC-dashboard. Sass is completely compatible with all versions
of CSS [12] and, if necessary, Sass can be included in future implementations.

Git

During development, it is important to be able to store and save the code somewhere
safe if something unfortunate should happen. There are several places where code
can be stored and saved, for example, on an external hard drive or in a drop box2.
However, when it comes to software projects, Git is the most suggested option. Git
is a version control for software development and supports distributed, non-linear
workflows [1]. With Git, a user can save (commit), store (push) the code onto the
Git server, and later retrieve (pull) the code and continue the development.

Team Foundation Server (TFS) is another version control used for software
projects which were also considered. TFS supports many of the same functionalities
as Git. However, from experience TFS does not allow to commit (save) code without
pushing (storing) it. This may cause Git merge conflicts when several developers are
working on the same file. However, since there was only one developer implementing
the WebRTC-dashboard, it did not matter which version control was chosen. In this
case, personal favoritism did decide, and Git was chosen for the WebRTC-dashboard.

Bash

Bourne-Again Shell (Bash) is the command language interpreter for the GNU’s not
Unix (GNU) OS and is the default shell on Linux and OS X [7]. Its main purpose is
to allow interaction with the computer’s OS [42]. Generally, Bash runs commands
from a text window (shell), but also supports reading commands from files, which
are called scripts. Some of the commands that Bash supports are filename globbing
(wildcard matching), piping, variables and iteration through files [7].

Since getstats.io does not have a standardized JSON format yet, the JSON
structure can change. Therefore the WebRTC-dashboard uses Bash scripts to extract
data from the JSON file, and then store the data into txt files, these files are later
used by the WebRTC-dashboard to retrieve data. Consequently, from a maintenance

1http://lesscss.org/
2https://www.dropbox.com/

32 4. DEVELOPMENT OF THE WEBRTC-DASHBOARD

perspective, if the structure of the JSON file should change, the only file that needs
to be modified is the Bash script extracting data from the getstats.io statistics files.

No Database

As already mentioned in Section 4.1.1, the WebRTC-dashboard does not support
a proper database. Even though, a database for a web application is highly rec-
ommended and important, the WebRTC-dashboard utilizes JSON, txt, and mp4
files to retrieve data. This is because there has already been done some work (Bash
scripts) in order to retrieve data, and this is the main reason the WebRTC-dashboard
uses files as a "database" and not a proper database (such as MyStructured Query
Language (SQL)3).

Other Essential Technologies

Angular.js JS is excellent at defining functionalities and HTML is an excellent
template language for static documents, but how to fill the gap between them? If
information should change over time, how should this be updated? Angular.js solves
the mismatch between dynamic applications and static documents by including a
powerful library with a collection of functions that support communication between
HTML and JS [3].

Angular.js is an open sourced structural framework for dynamic web applications
[3] and supports data binding between HTML and JS. Briefly explained, Angular.js
works by first by locating the Angular.js-specified attributes (double curly braces)
in the HTML document and binds the input or output that is represented by JS
variables.

Alternatives to Angular.js are jQuery4 and React5. Both jQuery and React could
been used for the WebRTC-dashboard, but because of personal experience, Angular.js
was the most confortable choice. In retro-spect after seeing these technologies, React
may be a better choice considering the framework size and performance. React
requires less lines of code to accomplish the same function as Angular.js. For this
master thesis, there was not enough time to research and learn a new data-binding
tool from scratch, therefore, Angular.js was selected.

Node.js JS runs client side, but what about the server side? Node.js is an open
source command line tool for developing server-side web applications [24]. It is
designed to easily create fast and scalable network applications, as it is capable
of handling thousands of simultaneous connections with a high throughput [25].

3https://www.mysql.com/
4https://jquery.com/
5https://facebook.github.io/react/

4.1. IMPLEMENTATION 33

In traditional web platforms, Hypertext Transfer Protocol (HTTP) requests and
responses are treated as separate streams, while Node.js enables the requests to be
sent in parallel, which empower the application to process files faster [41]. To sum
up, the WebRTC-dashboard uses Node.js to obtain better performance.

NPM There is no point of working on a problem that someone already has solved.
Node Package Manager (NPM) makes it easy for JS developers to share their code
that solves a particular problem and enables other developers to reuse the code in
their own projects [26]. Both Gulp (presented in Paragraph Gulp in Section 4.1.3)
and Paragraph Chart.js in Chart.js (presented in Section 4.1.3) are NPM projects
that other developers have made and shared with others. In addition, for future
development, NPM is an easy way to update NPM projects (also known as NPM
packages) in the event some of them release a new version.

Gulp Gulp is a task runner [18]. Although it may go without saying, a task runner
runs tasks. A task runner applies self-defined tasks on files in a software project.
Usually software projects consist of many files, such as images, videos, text files, etc.
Sometimes it is not necessary for all these files to be located on the server, or be
readable for the human eye (due to security issues). In these cases, the task runner
is put to good use! There are several tasks a task runner can perform, but the most
basic tasks are moving, copying, cleaning, and minifying. Minifying a file means that
it compresses the file into fewer kilobytes, such that the compressed version may
no longer be readable for humans in its minified state, but the content remains the
same. Web browsers will not have a problem reading the minified file and with fewer
kilobytes the uploading time will be shorter.

Another task runner, which is better known than Gulp, is Grunt. Grunt is a
Node.js-based task runner [16], while Gulp only uses node.js [19]. There are no
significant differences between Gulp and Grunt, they both are able to perform the
same tasks. Yet, a small difference separates these two, which is that Gulp requires
less code lines when performing the same task. In addition, Gulp is known for having
less configuration than Grunt [17], and as this was the first time I had experience
with task runners, Gulp was selected for the WebRTC-dashboard.

Chart.js When developing a WebRTC-dashboard that will present a considerable
amount of data, it is important that the data be presented in a good and readable
format. Charts are far better for displaying data visually than for example tables.
On the other hand, charts may be difficult to create and implement. One solution is
to include open source projects that create charts. There are many such libraries,

34 4. DEVELOPMENT OF THE WEBRTC-DASHBOARD

but in this case only three of them were considered: Data-Driven Documents (D3)6,
Highchart7, and Chart.js8.

All of them support good-looking charts, however they support different levels
of functionalities. When considering customization, D3 stands out. D3 supports
complexity and flexibility of different types of charts (line-, bar-, pie chart etc.)
but this also power the number of settings and configurations [13]. Highcharts and
chart.js are considered much alike, the only difference between them is that Highcharts
supports a higher chart veracity [21], while Chart.js’s a more light weighted and
responsive [9]. Considering the purpose of the WebRTC-dashboard and what it
requires (light weighted charts and only line-charts), Chart.js seems to be the best
alternative.

In addition, a new version of Chart.js, version 2 was published 9.april.2016 [10].
Even though the new version included several features that would be nice-to-have in
the WebRTC-dashboard, like double Y-axis, chart titles, etc., there was no time to
implement these features in this master thesis. Unfortunately, these features must
be included in future work.

Bootstrap Bootstrap is the most popular HTML, CSS, JS framework that makes
front-end web development faster and easier [8]. It contains both HTML- and
CSS based design templates for such as: buttons, tables, navigation, etc., and also
optional JS extension for future functionalities. Instead of defining CSS for buttons,
dropdowns, panels, etc. yourself, developers can easily import the Bootstrap library
for free and save time. For this reason, the WebRTC-dashboard uses Bootstrap
framework’s elements, such as radio buttons, checkboxes, dropdowns, input fields,
etc.

Angular Material One element which is desperately needed for the WebRTC-
dashboard and missing from Bootstrap is the slider found in the Media Player
Panel. Luckily, Angular Material is like Bootstrap, a User Interface (UI) component
framework which includes a well tested slider. Complementary to this Angular
Material is specified for developers using Angular.js [2].

Font Awesome To enhance the usability of a web application, it is wise to add
icons. Print, save, "hamburger"-menu, are just a few of many actions associated with
an icon. However, the WebRTC-dashboard does not include actions as print and
save, but, play, stop, and pause are covered. Font Awesome is a font and icon toolkit

6https://d3js.org/
7http://www.highcharts.com/
8http://www.chartjs.org/

4.1. IMPLEMENTATION 35

that enables developers to apply "awesome" fonts and icons into their project [14]. To
improve the usability of the WebRTC-dashboard, Font Awesome has been included.

Trello During development, it is critical to organize work. The WebRTC-dashboard
includes several functionalities, and while developing the WebRTC-dashboard it is
important always to know what has been done, what needs testing and, of course,
what is still missing. To address these issues, Trello has been used. Trello is a
web-based project management interface [33] with a design that reminds one of a
scrum board.

4.1.4 Challenges and Decision Making During Implementation
Process

At the beginning of the development process, it is almost impossible to identify all the
challenges that will present themselves during the implementation process. Therefore,
in this section, the master thesis will present the most significant challenges that
appeared during the implementation of the WebRTC-dashboard and what decisions
that were made to handle these challenges.

Chrome Statistics are Collected Correctly

The WebRTC-dashboard only supports Chrome statistics files that contain the correct
JSON format, that is, the Chrome statistics file must contain the correct number
of Data channels. The number of Data channels is dependent upon the number
of participants participating in the WebRTC-based conversation. For a n-party
WebRTC-based conversation, each participant’s Chrome statistics file should include
n − 1 number of Data channels. For example, assuming a three-party conversation,
the Chrome statistics file for each participant should include two Data channels.
Assuming Chrome statistics file for participant A, this file should include two Data
channels, one for connecting participant A and participant B, and a second Data
channel connecting participant A and participant C. See Figure 4.3 for an illustration
of a three-party conversation.

Figure 4.3: Illustration of a three-party video conversation.

36 4. DEVELOPMENT OF THE WEBRTC-DASHBOARD

However, when a participant changes the video quality or refreshes the browser
window during an appear.in conversation, appear.in is developed to close all the
currently connected Data channels to that particular participant and then creates
new ones. It is important to highlight that this is only the case when utilizing
appear.in, and not, for example, Google Hangouts. For example, assuming a three-
party appear.in video conversation between participant A, B, and C. Each participant
is connected to two Data channels (one for each participant, excluding themselves). If
participant A adjusts his video quality, all the Data channels connected to participant
A are closed, and new Data channels are opened. This means that the Chrome
statistics file for participant A contains four Data channels (two closed, two created).
However, for the other two participants’ (B and C) Chrome statistics files, contain
three Data channels. This is because the previous Data channel connected to
participant A is closed and a new one is created, while the Data channel connecting
participant B and C remains intact.

In order to compute the number of participants participating in the WebRTC-
based conversation, the WebRTC-dashboard uses the number of Data channels.
However, due the fact that the number of Data channels can vary dependent on the
participants behavior, the WebRTC-dashboard uses the number of Data channels
only when there are no other options available. That is if Chrome statistics is the
only available data source for the WebRTC-based conversation that is selected to
analyze.

The Number of Chrome Statistics Files are Collected Correctly

As presented previously in Section 3.3.1, each participant must remember to download
the Chrome statistics file. Each Chrome statistics file contains n − 1 Data channels
for a n-party conversation. Each Data channel contains two MediaStreams, one for
video and one for audio. Each MediaStream consists of two tracks, one for sending
and one for receiving, and each track is identified by a unique SSRC ID. SSRC ID
links the two parties in a PeerConnection [46]. Figure 4.4 illustrates a two-party
WebRTC-based video conversation.

Figure 4.4: Illustration of a two-party video conversation with two Chrome statistics
files.

4.1. IMPLEMENTATION 37

When n is greater than two in a n-party video conversation, a potential challenge
arises. In order to identify the PeerConnections between the participating parties,
the WebRTC-dashboard must know which track is connected to who. To do so, the
WebRTC-dashboard requires that all of the Chrome statistics files for a WebRTC-
based video conversation are collected. Figure 4.5 illustrates how the SSRC IDs
connects three participants together in a three-party video conversation. For example,
if Chrome statistics files from both participant 2 (P2) and participant 3 (P3) is
missing, then it is impossible for the WebRTC-dashboard to idntify which participant
is receiving, for example, audio data on track ID SSRC 1.

Figure 4.5: Illustration of a three-party video conversation with three Chrome
statistics files.

One of Google Chrome’s WebRTC internal interface limitations is that it does not
support downloading Chrome statistics automatically after a session (presented in
Section 3.3.1). Consequently, it can be easy for the end-user to forget to download the
Chrome statistics at the end of the session. Therefore, in order to meet this challenge,
the WebRTC-dashboard has implemented a mechanism to handle WebRTC-based
conversations that have been collected n − 1 Chrome statistics files. As long as only
one Chrome statistics file is missing, the WebRTC-dashboard can assume who the
last participant is. Figure 4.6 illustrates how the WebRTC-dashboard assumes who
is the last participant.

Unfortunately, if more than one Chrome statistics file is missing from a n-party
conversation, where n is greater than two, it is impossible for the WebRTC-dashboard
to assume the PeerConnections. Therefore, the WebRTC-dashboard does not support

38 4. DEVELOPMENT OF THE WEBRTC-DASHBOARD

using the Chrome statistics files for post-analysis when more than one Chrome
statistics file is missing from the conversation.

Figure 4.6: Illustration of a three-party video conversation with two Chrome statistics
files.

Getstats JSON Format May Change

In the context of maintenance and future use of the WebRTC-dashboard, one of the
most significant challenges is that the getstats.io does not support a standardized
JSON format. This implies, that the getstats.io can change the JSON format at
any time (the last time getstats.io changed the JSON format was in January 2016
[6]), which can cause the WebRTC-dashboard to not further support getstats.io
statistics files. It is, therefore, important that the WebRTC-dashboard is not directly
dependent on the JSON format for getstats.io statistics files.

To provide easy maintenance, the WebRTC-dashboard uses Bash scripts (pre-
sented in paragraph Bash in Section 4.1.3) to extract data from the getstats.io
statistics files, and stores the data on to .txt files. Instead of directly retrieving
statistics from the getstats.io statistics file, the WebRTC-dashboard employs the .txt
files to retrieve data. If getstats.io should update and launch a new JSON format,
the only file that must be modified is the Bash script for extracting the data from the
getstats.io statistics files. Consequently, this gives flexibility, and easily maintenance
in case of changes to the JSON format should occur.

4.1. IMPLEMENTATION 39

Sampling Time of getstats.io Statistics and Chrome Statistics

In order to plot the statistics retrieved from both getstats.io and Google Chrome’s
WebRTC internal interface, the WebRTC-dashboard needs to have the correct time
stamp of each data sample. However, Chrome statistics does not include the time
stamps but instead includes the start time and end time of the WebRTC-based
conversation, and the data samples. Each Chrome statistics file includes several
parameters (such as PacketsLost, bytesSent, bytesReceived, etc.) and each of them
contains data samples. From this information, it is possible for the WebRTC-
dashboard to calculate the duration of the WebRTC-based conversation (in seconds)
and the number of data samples for each parameter. Assumptions based on knowledge
gained from research findings in [45, 46] and from real-time visualization of data on
Google Chrome’s WebRTC internal interface, one can assume that the sampling time
for Chrome statistics is equal to one sample per second. Therefore, this master thesis
assumes that Chrome statistics samples data at one second intervals. On the other
hand, getstats.io statistics files collect a time stamp for each data sample. However,
getstats.io retrieves data and time stamps at ten second intervals, not one second
intervals as in the case for Chrome WebRTC internal interface. See Figure 4.7 for an
illustration.

Figure 4.7: Illustration of how often getstats.io and Chrome’s WebRTC internal
interface retrieves data samples.

The charts included in the QoS Panel in the WebRTC-dashboard are developed
with help from Chart.js (described in Paragraph Chart.js in Section 4.1.3), and
since Chart.js requires that every plot included in the same chart should have the
same sampling time, an issue arises. For example, the statistics from getstats.io
and Google Chrome’s WebRTC internal interface do not have the same sampling
time. getstats.io statistics retrieves one data sample every ten seconds, and Chrome
statistics collects one data samples each second.

To satisfy the requirement of Chart.js and offer the possibility of comparing
statistics from both getstats.io and Chrome’s WebRTC internal interface in the same
chart, the WebRTC-dashboard supports a function to compute and convert the
sampling times to be the same. In order to achieve this, the WebRTC-dashboard
converts the sampling time of getstats.io statistics from one sample per ten seconds,

40 4. DEVELOPMENT OF THE WEBRTC-DASHBOARD

to one sample per second. This conversion is achieved by dividing each getstats.io
statistics data sample by 10. Even though this computation only gives an average,
this is one of the better solutions which satisfies both the requirements of Chart.js
and gives the end-user the possibility of editing the sampling time.

By comparison, another way of supporting these requirements is to convert the
Chrome statistics sampling time from one sample per second to one sample per ten
seconds. This solution would have been much easier and more correct. However, if
this were the case, then the WebRTC-dashboard would no longer allow the end-user
the possibility of editing the sampling time to a number less than ten, or a number
that is not divisible by ten.

In addition, there exists a flexibility feature in the Conversation Handler Panel in
the WebRTC-dashboard, called sample interval size. The sample interval size is a
term used for computing the average of a x number of data samples. For example,
assuming a Chrome statistics file with 1000 data samples and a sample interval size
x = 10. Then the WebRTC-dashboard will first compute the average of sample
number 1 - 10, then 11 - 20, and so on. On the other hand, if the WebRTC-dashboard
should use the sampling time one sample per ten seconds, the sample interval size
would always compute the average of sample number 1 - 100, 101 - 200, and so
on, when x = 10 (this is because each data sample is a summation of ten data
samples, and the sample interval size computes the average of x = 10 data samples,
which results in 10 ∗ 10 = 100). Therefore, in order to support as much flexibility as
possible, the WebRTC-dashboard converts the getstats.io statistics sample time from
one sample per ten seconds to one sample per second. Accordingly, the WebRTC-
dashboard supports the end-user to select whichever sample interval size, as long as
it is greater than zero.

Getstats.io statistics’ sample data is computed to an approximate value when it
is calculated from one sample per 10 seconds to one sample per second. In order to
obtain the most accurate plots, the end-user is recommended to select a sampling
time (sample interval size) that is divisible by 10. Since the getstats.io retrieves one
data samples every 10 seconds; this value is the most correct to use when performing
an analysis. If the end-user selects a sample interval size that is not divisible by 10,
it is important to note that this is an approximate calculation.

Uploading WebRTC-Based Conversation Statistics Files

In order to analyze WebRTC-based conversations, the WebRTC-dashboard must
support a method of uploading new statistics files. At the beginning of the implemen-
tation process, the developer had to upload manually statistics files on to the server,
which was an inconvenient and demanding way of uploading new data. During the
development process, Git, a version control software (presented in Paragraph Git in

4.1. IMPLEMENTATION 41

Section 4.1.3) was used to upload updated code on to the server, which was found as
an efficient procedure. However, when video files were included, these files were too
big for the free version of Git. Therefore, the developer had to transfer each video
file manually to the server with the scp9 command. Since this process was both time
consuming and an inconvenient process, finding a solution was highly prioritized.
Accordingly, it was necessary to implement the Admin Modal (presented in Section
5.1.6), this modal enables the WebRTC-dashboard to add new conversations to
analyze and remove old conversations.

Synchronization of Video, Charts and Slider

The slider found in Media Player Panel on the WebRTC-dashboard, contains multiple
steps. The number of data samples determines the number of steps. If the Chrome
statistics file contains 100 data samples, then the slider would contain 100 steps.
Since Google Chrome’s WebRTC internal interface retrieves one data sample per
second, one can assume that a Chrome statistics file that contains 100 data samples
is 100 seconds long. Each step represents a time stamp during a conversation. This
means the first step represents the first time stamp in the conversation, and likewise,
the last step represents the last time stamp.

However, the sample interval size can change the number of data samples that
need to be plotted on the charts. For example, assuming a Chrome statistics file
which is comprised of 100 data samples and a sample interval size x = 10, then since
100/10 = 10, the chart will consist of 10 data samples and not 100. Then the first
step would represent the time after 10 seconds, and the next step would represent
the time after 20 seconds, etc. This means the draggable element must wait ten
seconds before "jumping" from one step to the next one. See Figure 4.8 below which
illustrates this.

(a)

(b)

Figure 4.8: Illustration of the slider in Media Player Panel [39].

9scp is the command for copying files from one computer to another computer.

42 4. DEVELOPMENT OF THE WEBRTC-DASHBOARD

Each time the play button on the Media Player Panel is triggered, it starts a count
down from 10 seconds (this is the same value as the sample interval size). Every
time the countdown finishes, the draggable element on the slider "jumps" from one
step to the next step, and starts the countdown all over again. However, the issues
arise when the end-user triggers the pause button in the middle of a countdown. For
example, if the end-user triggers the pause button when the countdown has counted
down to 5 seconds, the countdown stops and gets nullified. When the end-user
triggers the play button again, the countdown has to start all over again from 10
seconds.

Even though this may not sound like a problem, the real issue arises when the
slider must be synchronized with the video, audio recordings, and chart(s). The
charts plot a data sample every time the draggable element on the slider "jumps" and
since the video and audio recordings are supported by HTML5 media functionalities,
the video and audio recordings will play, pause and stop each time the respective
buttons are triggered on the WebRTC-dashboard. In the case of pausing the slider,
video, and charts in the middle of a countdown, the video is not affected by the
seconds nullified in that action. For example, if the end-user triggers the pause
button when the countdown has counted down to 5 seconds, the video, slider and
charts pauses, and the countdown gets nullified. When the end-user triggers the play
button to continue, the video continues to play where it paused, while the chart and
slider start the countdown from 10 again. Consequently, the chart, slider, and videos
will be unsynchronized by (in this example) 5 seconds.

Fortunately, there are several ways of resolving this problem. One of the solutions
is that the developer can implement to store the number of seconds counted down
for each step in a variable, and then continue the countdown from there. A second
solution is to push the video back to the last step. Unfortunately, this problem
was discovered at a late stage during the implementation process, and therefore
not rectified in for the WebRTC-dashboard, but will be included in future work.
There exists, however, another method of fixing the synchronization in the currently
developed WebRTC-dashboard. To achieve synchronization, the end-user must drag
the draggable element along the slider; it does not matter which step the element is
dragged to, as long it is dragged at least one step. This action will push the video
back/forward to the current step of the draggable element and synchronize the charts,
video, and the slider.

4.1.5 Code Implementation

Although, it may appear relatively easy to implement a dashboard it takes a consid-
erable amount of time. The development of this WebRTC dashboard took an average
of approximately 40 hours a week during a 3 month period and consists of about

4.2. ADVANTAGES OF THE WEBRTC-DASHBOARD 43

4000 lines of JS code, Bash scripts, HTML, and CSS.

4.2 Advantages of the WebRTC-Dashboard

This section will present and highlight the additional features that the WebRTC-
dashboard supports. First, this section will present the replaying feature, followed
by the combination and customization of Chrome and getstats.io statistics features,
and finally the flexibility features.

4.2.1 Replaying Charts and Videos

One of the greatest advantages of the WebRTC-dashboard is that the WebRTC-
dashboard supports the replay function for video, audio and statistics recordings.
This feature is not supported by either getstats.io or Google Chrome’s WebRTC
internal interface. However, getstats.io supports the function to view recording
statistics both during and after a WebRTC-based session has ended, but it does not
support the function to replay the statistics. On the other hand, Google Chrome’s
WebRTC internal interface supports the function to view the statistics during the
session but does not support to view the statistics in the interface after a session has
ended.

The WebRTC-dashboard allows the end-users to replay video, audio and WebRTC-
based conversation statistics synchronized with each other. This feature enables the
end-users to perform post-processing analysis, and can easily identify a correlation
between network statistics and video quality deteriorations (such as video freezes,
bad or no audio, etc.). Figure 4.9 shows a video recording and a chart plotting of
PacketsLostRatio (Equation 4.1). As illustrated, the video recordings from participant
B to participant A show some negative quality deteriorations, which may be caused
by the increasing packet lost which is visible in the chart below the videos.

4.2.2 Combine Chrome and getstats.io Statistics

Another great advantage of the WebRTC-dashboard is that it can plot statistics from
both Chrome’s WebRTC internal interface and getstats.io into the same chart. This
function is not supported by either Google Chrome’s WebRTC internal interface or
getstats.io and gives the WebRTC-dashboard a unique advantage. This functionality
gives end-users the possibility to compare different session-related statistics from
different platforms. Since both Chrome’s WebRTC internal interface and getstats.io
use WebRTC API to retrieve data from WebRTC-based conversations, they both
should support the session-related parameters to have the same values. However,
because they support different sampling times and the fact that the WebRTC-

44 4. DEVELOPMENT OF THE WEBRTC-DASHBOARD

Figure 4.9: Screenshot of the WebRTC-dashboard while replaying video and chart
plotting PacketsLostRatio [39].

4.2. ADVANTAGES OF THE WEBRTC-DASHBOARD 45

dashboard computes approximate values for getstats.io, the plots of these session-
related statistics may not be completely the same (see example in Figure 5.11).

4.2.3 Customized Chrome and getstats.io Statistics

In addition to the session-related statistics included in both Chrome and getstats.io
statistics (presented in Table 3.1 and 3.2), the WebRTC-dashboard includes further
customized statistics. These customized statistics are included to give the end-
user a deeper understanding of the QoE in the context of WebRTC-based video
communication application and services.

Customized Chrome Statistics

Theses next paragraphs will present the customized Chrome statistics which are
included in the WebRTC-dashboard. These statistics are included in order to give
the end-user additional options of how to plot the network statistics. These plots
may be easier to understand and regain information from, than the ones that are
already supported by the Google Chrome’s WebRTC internal interface.

• PacketsLostRatio for sender: PacketLostRatio for sender is the number of
packets lost divided by a number of packets sent for each second. i is the
number of samples, and for i = 0, both packetsLosti−1 and packetsSenti−1
are equal 0. PacketsLostRatio for sender gives a better indication of how many
packets are lost at the sender at each second. Currently, the Google Chrome’s
WebRTC internal interface supports the function to plot the total number of
packets lost after i seconds, but not for each second.

packetsLosti − packetsLosti−1

packetsSenti − packetsSenti−1
(4.1)

• PacketsLostRatio for receiver: PacketsLostRatio for receiver is similar to
PacketLostRatio for the sender. The difference is that instead of dividing by
the number of packetsSent, PacketLostRatio for the receiver is dividing by
the number of PacketReceived. Likewise as above, i is the number of samples,
and for i = 0, both packetsLosti−1 and packetsReceivedi−1 are equal 0. As
for PacketsLostRatio for sender, the PacketLostRatio for receiver gives a better
way of seeing how many packets are lost at the receiver at each second.

packetsLosti − packetsLosti−1

packetsReceivedi − packetsReceivedi−1
(4.2)

• GoogPLIsReceivedNonCumulativ: GoogPLIsReceivedNonCumulativ is a non
cumulative version of googPLIsReceived found in the parameters for receiving

46 4. DEVELOPMENT OF THE WEBRTC-DASHBOARD

data for video. Equally as for previous statistics, i is the number of samples, and
for i = 0, googP lisReceivedi−1 is equal 0. GoogPLIsReceivedNonCumulativ
is included in order to give the end-user a better view of how many Picture
Loss Indications (PLIs) are received at each second. At the present Google
Chrome’s WebRTC internal interface, it only supports to plot the total number
of PLIs received after i seconds.

googP lisReceivedi − googP lisReceivedi−1 (4.3)

• GoogPLIsSentNonCumulativ: GoogPLIsSentNonCumulativ is a non cumula-
tive version of googPLIsSent found in the parameters for sending data for video.
Again, i is the number of samples, and for i = 0, googP lisSenti−1 is equal 0.
As similar to GoogPLIsReceivedNonCumulativ, GoogPLIsSentNonCumulativ is
added as one of the customized Chrome statistics because it gives the end-users
a better understanding of how many PLIs are sent at each second.

googP lisSenti − googP lisSenti−1 (4.4)

Customized getstats.io Statistics

The WebRTC-dashboard only includes one additional customized getstats.io statistic.
This statistic is computed in the same way as the PacketLostRatio for receiver
(Equation 4.2).

• PacketsLostRatio: PacketsLostRatio divides the number of packets lost by
a number of packets received for each second. As before in previous exam-
ples, i is the number of samples, and for i = 0, both PacketsLosti−1 and
PacketsReceivedi−1 are equal 0. This ratio is included in order to get a deeper
understanding of how many packets are lost at each second.

PacketsLosti − PacketsLosti−1

PacketsReceivedi − PacketsReceivedi−1
(4.5)

4.2.4 Flexibility Features

Flexibility features are features the WebRTC-dashboard uses in order to customize
analysis. With these features, the end-user can customize an analysis to adapt to its
purpose. These features are found in the Conversation Handler Panel’s additional
settings and are described below.

• Selecting the number of charts to be shown on each row: For various rea-
sons, an end-user may want to vary the number of charts that are shown on

4.2. ADVANTAGES OF THE WEBRTC-DASHBOARD 47

their screen. Currently, the WebRTC-dashboard supports between one to
four charts for each row. If the number is greater than 4 or less than 1, the
WebRTC-dashboard will not support it, and the default value (which is one)
or the last selected value overwrite the unaccepted value.

• Shift or no shift: As highlighted in one of the Chrome statistics limitations in
3.3.1 and also described in [46], when statistics are collected from multiple
parties, the internal clock at each of the participant’s machine may not be
synchronized. In this case, the data samples of each participant may not
start from the same time, and be shifted when they are plotted on the charts.
See Figure 4.10 for an example of this. To solve this problem, the WebRTC-
dashboard supports a no shift option. When this option is selected, the
WebRTC-dashboard does not consider the time when each data sample is
collected, but, however, assumes that they all start at the same time. The
WebRTC-dashboard finds the first time a data sample is collected and uses
this time as the start time for the conversation.
On the other hand, if a participant should join the conversation some time
after the other participants, and if the no shift option is selected, it will not be
able to detect this. When this option is checked, all the statistics from every
participant will be plotted at the first detected data sample time.

• Sample interval size: As already presented in Section 4.1.4, the sample interval
size is a term used for computing the average of a x number of samples. For
example: Assuming a Chrome statistics file including 100 samples, then sample
interval size of x = 10, computes first the average of sample number 1 - 10,
then 11 - 20, and so on. Accordingly, this will reduce the number of data
samples in the charts.
The sample interval size enables the end-user to customize the number of data
samples each chart should plot. Figure 4.11 illustrates two charts, including
the same network statistics, but the sample interval size differs. As shown,
Figure 4.11a has a much smoother plot than the chart illustrated in Figure
4.11b. However, in Figure 4.11b, one can easily detect peaks, which can be
used to detect quality deteriorations.

48 4. DEVELOPMENT OF THE WEBRTC-DASHBOARD

(a) No shift checkbox is not checked.

(b) No shift checkbox is checked.

Figure 4.10: Illustration of how the no shift checkbox impacts chart plotting using
the same statstics [39].

4.2. ADVANTAGES OF THE WEBRTC-DASHBOARD 49

(a) Illustrates a chart, and the setting for the sample interval size is equal to 30 seconds.

(b) Illustrates a chart, and the setting for the sample interval size is equal to 1 second.

Figure 4.11: Illustration of how the sample interval size impacts chart plotting the
same statstics (bitsSentPerSecond and bitsReceivedPerSecond) [39].

Chapter5Description of the
WebRTC-Dashboard

This chapter covers a description of the WebRTC-dashboard, which is available at
the URL http://appear01.item.ntnu.no:3000/. As previously described in Section
3.1, the WebRTC-dashboard is divided into six parts, and each part is responsible
for different functionalities. This chapter covers a description of each part of the
WebRTC-dashboard and the associated functionalities. At the end of this chapter,
the thesis discusses the WebRTC-dashboard’s limitations and how they may be
solved.

5.1 Functionalities

This section will present the functionalities of the WebRTC-dashboard. Figure 5.1
illustrates the WebRTC-dashboard and its parts, which was presented briefly in
Section 3.1. In order to simplify the text, from now the term converstion encompasses
WebRTC-based video conversation, and the term end-user encompasses the end-user
interacting with the WebRTC-dashboard.

5.1.1 Conversation Handler Panel

As shown in Figure 5.1, the Conversation Handler Panel is located at the top of the
WebRTC-dashboard and is the first part of the WebRTC-dashboard the end-user
interacts with. The Conversation Handle Panel’s responsibility is to manage the
(WebRTC-based video) conversations.

Each conversation that is stored on the server is listed by conversation name (in
alphabetical order) in the Conversation Handle Panel. In order for the end-user to
start an analysis, he/she must select a conversation. To do so, the end-user must
click on the radio button next to the conversation name. As illustrated in Figure
5.2, after the end-user has selected a conversation, the Conversation Handle Panel
displays the accompanying statistics in respect to the selected conversation. These
statistics must also be selected individually in order to use them in an analysis.

51

52 5. DESCRIPTION OF THE WEBRTC-DASHBOARD

Figure 5.1: Screenshot of the WebRTC-dashboard [39].

5.1. FUNCTIONALITIES 53

Since there is no point of analyzing a conversation without statistics, the Conver-
sation Handle Panel requires that the end-user select at least one Chrome statistics
file or one getstats.io statistics file before proceeding with the analysis. Consequently,
the Conversation Handler Panel requires that every conversation contain at least
one Chrome statistics file or one getstats.io statistics file. In addition, as explained
in Section 4.1.4, the Conversation Handle Panel does not allow the end-user to
include Chrome statistics in the analysis if there are missing more than n − 1 Chrome
statistics files from a n-party conversation (where n > 2).

In addition to Chrome and getstats.io statistics files, the Conversation Handler
Panel also displays the accompanying video recordings files (if any). Figure 5.2
illustrates a conversation with included video recordings. Video recording files,
however, are not mandatory, and the Conversation Handler Panel does not require
the end-user to select any video recordings to continue processing the analysis.

Figure 5.2: Screenshot of the Conversation Handler Panel [39].

After the end-user has selected at least one Chrome statistics file or one get-
stats.io statistics file, the Conversation Handler Panel displays additional settings (as
illustrated in Figure 5.3). There are currently four additional settings supported in
the Conversation Handle Panel. Three of them are listed as flexibility features, which
were described in Section 4.2.4. The last additional setting is the x-tick location.
These four settings are briefly explained as follows:

• Computation of the sample interval size: As already described previously
in Section 4.1.4, and 4.2.4, the sample interval size computes the average of
x number of samples. In the WebRTC-dashboard, x is set to 10 by default,
but as long as it is greater than 0 and does not contain any decimals, the
WebRTC-dashboard allows the user to modify the number to whatever he/she
desires.

54 5. DESCRIPTION OF THE WEBRTC-DASHBOARD

Figure 5.3: Screenshot of the Conversation Handler Panel’s additional settings [39].

• Shift or no shift: Also described previously in Section 4.2.4, the WebRTC-
dashboard supports a No shift option. When collecting statistics from multiple
parties, the internal clock at each of the participant’s machines may not be
synchronized [46]. The No shift option is implemented in order to solve this
problem by plotting all the statistics from the first detected sampling time.

• Selecting the number of charts to be shown on each row: Is also one of
the flexibility features covered in the WebRTC-dashboard, and described in
Section 4.2.4. The WebRTC-dashboard supports the function that the end-
user can customize the number of charts to be visualized on each row. The
WebRTC-dashboard currently supports from 1 to 4 charts on each row. Figure
5.4 illustrates the difference between selecting three charts per row, as opposed
to two charts per row.

• X-tick location: X-tick location is how often the label along the x-axis should
appear. This setting is included in order to simplify and reduce the text along
the x-axis on charts. In the cases when the end-user selects multiple charts for
each row, the charts become smaller and more compact. Consequently, the
x-axis gets shorter in smaller charts, and this results in less space for the time
stamp labels.

To solve this issue, this setting allows the end-user to select an x-tick location
number, which determines how often the timestamp labels should appear along
the x-axis. For example, if the x-tick value y = 10, then the timestamp label
would appear at every 10 seconds. Figure 5.5 illustrates two charts with different
x-tick location values. Even though the timestamp labels in Figure 5.5a are
more readable then timestamp labels in Figure 5.5b, Figure 5.5b has a more
detailed x-axis.

Since the timestamp label only need to appear every x time the sample interval
size is computed, the Conversation Handler Panel requires that the end-user
chooses an acceptable x-tick location number. That is, x-tick location number

5.1. FUNCTIONALITIES 55

(a) Two charts per row.

(b) Three charts per row.

Figure 5.4: Illustration of how the chart size is depending on how many charts are
lined up in the same row [39].

y to be either equal or greater than x, and also fulfill y ∗ mod(x) = 0 in order
to be accepted.

Figure 5.6: Screenshot of
the Submit button [38].

To proceed with the analysis and to save the selected
statistics and settings, the end-user must click on the
Submit button (illustrated in Figure 5.6) on the bottom
of the Conversation Handler Panel. In case some of the
settings do not fulfill the requirements of the WebRTC-
dashboard, the Submit button will not be visible. Also,
should an end-user want at a later stage to edit the
selected statistics or settings, it is important that the
end-user remembers to click the Submit button to store the changes.

5.1.2 Quality of Experience Panel

The QoE Panel is located between Media Player Panel and Video Panel, as illustrated
in Figure 5.1. It is responsible for displaying subjective user feedback and information
about the devices the participants used during the conversation (illustrated in

56 5. DESCRIPTION OF THE WEBRTC-DASHBOARD

(a) Illustrates a chart with 60-tick location.

(b) Illustrates a chart with 10-tick location.

Figure 5.5: Illustration of two chart with two difference X-tick location [39].

5.1. FUNCTIONALITIES 57

Figure 5.7). Since getstats.io statistics files contain the subjective user feedback and
information about the devices, as long as the conversation selected in the Conversation
Handler Panel includes a getstats.io statistics file, the QoE Panel is able to show
this information. Which means the end-user does not need to select the getstats.io
statistic file in order for the QoE Panel to display its content.

In addition, the QoE Panel is able to visualize the number of participants in
a selected conversation. Although it may appear easy to compute the number of
participants in a conversation, due to the challenge described in Paragraph Chrome
Statistics are Collected Correctly in Section 4.1.4, this is not straight forward. The
QoE Panel must use the statistics files in order to compute this number. In the
case when the selected conversation includes both Chrome statistics and getstats.io
statistic files, the QoE Panel calculates the number of participants from the getstats.io
file (by using the Caller attribute). However, when only Chrome statistics files are
available, the QoE Panel uses the number of Data channels to compute the number
of participants, even though, this may be unreliable due to the challenge presented
in 4.1.4.

Included in the QoE Panel is an illustration of how the participants are connected
to each other. This illustration is included in order to give the end-user a better
understanding of how the PeerConnections are connected to each other. However,
the current QoE Panel only supports showing this illustration when either a two-
or three-party conversation is selected, Illustrative examples of two and three party
conversations are shown in figures 3.2 and 4.3 respectively.

Since there is no need to show the device information included in the QoE Panel
at all times, the QoE Panel supports a function to collapse and expand the device
information. In order to view/expand the device information, the end-user must click
on the participant’s ID, and likewise, click the participant’s ID again to hide/collapse
the device information.

Finally, as described in Section 3.3.2, NTNU have conducted a study in order to
retrieve more detailed user feedback from the participants in appear.in conversations.
These user feedbacks are included in QoE Panel. This feedback is illustrated using
a five star rating scale. The QoE Panel supports a questionnaire containing three
questions which is shown in Figure 3.5. The questions have five possible answers
from 5 (excellent) to 1 (bad), and accordingly an answer of 5 (excellent) corresponds
to 5 stars, and an answer of 1 (bad) is equal to one star.

58 5. DESCRIPTION OF THE WEBRTC-DASHBOARD

Figure 5.7: Screenshot of the QoE Panel [39].

5.1.3 Video Panel

One of the greatest advantages of the WebRTC-dashboard is that it supports to
include videos. As illustrated in Figure 5.1, the Video Panel is located below the
QoE Panel. The Video Panel is responsible for replaying videos and handling some
video settings. There are currently three video settings included in the Video Panel,
and they are: adjust the size of a video, mute a video, and hide a video.

The Video Panel includes these settings in order to have the flexibility to adapt
videos for the purpose of analysis. For example, when replaying multiple videos at
the same time, it can become difficult to distinguish which audio belongs to which
video. Also, if the purpose of the analysis is to analyze the video quality, and not the
audio quality, the mute videos option will come to good use. In addition, the Video
Panel supports to hide and show the video by clicking on the checkbox next to the
name of the video file. This allows the end-user to focus on only specific videos.

Depending on the number of videos selected from the Conversation Handler Panel,
the Video Panel limits the number of settings. When more than one video is selected,
the Video Panel supports settings such as mute all and resize all, as shown in Figure
5.8. On the other hand, when only one video is selected, these settings are not
included. However, when there is no video selected, the Video panel is hidden.

In order to fit all of the selected videos together onto the same screen window,
the end-user may adjust the size of each of the videos. Currently, the Video Panel
supports five different sizes, which are: xsmall, small, medium, large, and xlarge. The
video size determines how many videos that can appear on the same row. Because

5.1. FUNCTIONALITIES 59

Figure 5.8: Screenshot of the Video Panel [39].

most of the conversations in the WebRTC-dashboard are two-party conversations,
the current default size is medium.

5.1.4 Quality of Service Panel

In the context of functionalities, the QoS Panel is the most complicated part of
the WebRTC-dashboard. As illustrated in Figure 5.1, the QoS Panel is located at
the bottom of the WebRTC-dashboard. It is responsible for adding, removing, and
plotting charts with network statistics retrieved from Chrome’s WebRTC internal
interface and getstats.io. These actions are discussed in the following:

• Adding charts: It is simple to add a chart to the WebRTC-dashboard. To
add a new chart, the end-user must click on the Add chart button (which is
illustrated in Figure 5.9), which instructs the QoS Panel to create a new empty
chart. Every generated chart holds an ID, which is used to distinguish a chart

60 5. DESCRIPTION OF THE WEBRTC-DASHBOARD

from another when modifying them. When the end-user clicks on the Submit
button in Conversation Handler Panel, the chart ID resets to one, and each
time the end-user adds a chart to the QoS Panel, the ID increases with one.

Figure 5.9: Screenshot of the Add chart button [39].

• Modifying charts: In order to modify the content of a chart, the end-user must
first find the associated ID for that chart (the ID is located in the top left corner
of each chart). After the end-user has identified the ID, the end-user must
select the associated ID using the drop down button Select chart id illustrated
in the upper right corner of Figure 5.10. This action sets the chart with the
selected ID as the current editing chart, and its ID will show at the upper part
of the panel (as illustrated in Figure 5.10: Data manager for chart-id: 1).

Each time the end-user creates a new chart, the chart automatically becomes
the current editing chart. This means that the end-user does not need to select
the ID of the last created chart in order to modify the chart, this will be
automatically set by the QoS Panel itself.

Furthermore, to plot the charts, the end-user must navigate to the applicable
network statistics by expanding and collapsing the statistics titles (such as
ChromeStats, GetStats, From: X and To: Y as illustrated in Figure 5.10) and
then select the associated checkbox.

• Removing charts: It is also simple to remove a chart. To remove a chart, the
end-user must click on the × symbol at the upper right corner. However, when
the end-user removes the current editing chart some logic must be added in
order to prevent the end-user from editing a non-existing chart.

At times when the end-user removes the current editing chart, the QoS Panel
automatically changes the current editing chart. Depending on the number of
charts existing in the QoS Panel, and the number of the ID of the removed
chart, the QoS panel alternates between changing the current editing chart to
a chart with either a higher or lower chart ID.

In the cases when the QoS Panel includes of multiple charts, the QoS Panel
will always select the chart with the closest ID that is lower than the current
editing chart’s ID. For example, assuming that QoS Panel holds three charts
with respectfully IDs 1, 2, and 3, then, if the current editing chart is the chart
with ID equal to 2, and is removed, then the new current editing chart will be
the chart with ID 1.

5.1. FUNCTIONALITIES 61

Figure 5.10: Screenshot of the section in which the end-user can modify the content
of the charts on the QoS Panel [39].

62 5. DESCRIPTION OF THE WEBRTC-DASHBOARD

On the other hand, if the current editing chart should have the lowest ID, the
QoS Panel will select the chart with the closest ID that is higher than the
current editing chart’s ID. Using the same example as described above: if the
chart with an ID equal to 1 is removed, then the new current editing chart will
be chart with an ID equal to 2.

Finally, if the last chart is removed from the analysis, the QoS Panel automat-
ically hides the section where the end-user can edit the charts. It is hidden
until the end-user creates a new chart by clicking on the Add chart button.

The main purpose of the QoS Panel is to give the end-user flexibility to add,
remove, and modify charts, but equally important; to view the charts. Each chart
may have as many plots as the end-user wishes to, however, the chart.js (presented
in Section 4.1.3) which is used to generate the charts in the QoS Panel, uses seven
default colors to plot statistics. When more than seven plots are included in a chart,
chart.js random generates a color for each the additional plot, which means that
there is a possibility of two plots having the same color [9].

Figure 5.11: Illustration of charts that plot the PacketsLostRatio (Equation 4.2 and
4.5) retrieved from Chrome statistics file and getstats.io statistics file [39].

One of the greatest advantages of the QoS Panel is that it can plot statistics from
both Chrome statistics and getstats.io statistics files into the same chart. Figure
5.11 illustrates two plots, one of the PacketsLostRatio from Chrome statistics (grey),

5.1. FUNCTIONALITIES 63

and the other one of the PacketsLostRatio from getstats.io statistics file (blue). This
merging-feature is not supported in either Chrome’s WebRTC internal interface or
getstats.io, which is a great advantages for the WebRTC-dashboard.

One of the flexibility features described in 4.2.4, allows the end-user to select
the number of charts to be shown on each row. In addition to this, in order to save
space and fit as many charts onto the screen size as possible, the charts on the QoS
Panel hide the chart’s legends. Legends are the text that tells the end-user what the
chart is plotting. However, it is important to note that they are not removed, but
only hidden! In order to view the legends, the end-user must hold his/hers computer
mouse over the plots. As illustrate in Figure 5.12, when the end-user places his/hers
mouse over the plots, a tooltip appears. The tooltip includes the legend information.

Figure 5.12: Illustration of a chart that plots the PacketsLostRatio (Equation 4.2
and 4.5) retrieved from Chrome statistics and getstats.io statistics files, and included
the tooltip with legends information [39].

5.1.5 Media Player Panel

As illustrated in Figure 5.1, the Media Player Panel is located above QoE Panel. The
Media Player Panel is responsible for play, pause, stop and drag (slider) actions. These
actions enable the end-user replay, pause and stop the video and audio recordings,
and statistics in charts. The drag action is included in order for the end-user to

64 5. DESCRIPTION OF THE WEBRTC-DASHBOARD

"drag" to a specific time in the video and audio recording. These actions are described
in the following.

Figure 5.13: Screenshot of the Media Player Panel [39].

• Play: The play action is triggered when the end-user clicks on the Play button,
which is illustrated in Figure 5.13. When the Play button is triggered, the
video and audio recordings, and statistics in the generated charts start playing.
Even though there are no charts generated, the Media Player Panel can still
play video and audio recordings. This means that the Media Player Panel does
not require charts in order to replay video and audio recordings.

• Pause: The pause action is enabled when the end-user clicks on the Pause button,
which is illustrated in Figure 5.13. This action pauses the video and audio
recordings, and the statistics in the generated charts.

• Stop: The stop action is triggered when the end-user clicks on the Stop button,
which is also illustrated in Figure 5.13. When the Stop button is clicked, the
video and audio recordings stops and jumps back to the beginning of the
recording, while the statistics complete its plots.

• Drag: The drag action allows the end-user to drag a draggable element along the
slider, which is illustrated as the round blue element in Figure 5.13. The slider
represents the length of the video and audio recording, and by, for example,
dragging the draggable element to the middle of the slider, the video recordings
will "jump" to the middle of the conversation, and the statistics will plot halfway
of the plot. The draggable element can be dragged both back and forth along
the slider.
In addition, to achieve a better user interface, the end-user can use the arrow
keys on the keyboard to move the draggable element along the slider. The
two keys enabled is the right arrow and the left arrow. By pressing these
keys, the draggable element "jumps" along the slider in respect of the direction
of the key. To avoid user confusion, these keys are only activated when the
WebRTC-dashboard is playing or paused the video and audio recordings and
the statistics in the charts. Also, when one of these keys are triggered while
playing, it triggers the pause action, and will not continue to play until the
end-user clicks on the play button.

5.1. FUNCTIONALITIES 65

Another important fact worth mentioning is the case when the video and audio
recording durations are shorter than the duration of the conversation (statistics in
the charts). In this case, the Media Player Panel stops the video and audio recordings
at the end and continues to plot the statistics in the charts. Also, similarly, the
Video Panel and the Media Player Panel are hidden when there is no video selected
in the Conversation Handler Panel.

5.1.6 Additional Functionalities

During the development process, it was found that two more functionalities were
needed to be added to the WebRTC-dashboard in order to achieve a more satisfactory
result. Additional functionalities are functionalities that were not included in the
original plan of the WebRTC-dashboard, but due to solving important problems,
were included. Both of the additional functionalities are located on the navigation
bar (as illustrated at the upper right corner in Figure 5.1) and are called the Help
Modal, and Admin Modal, and are explained below.

Help Modal

The Help Modal is a user guide for how to use the WebRTC-dashboard. It includes
a short explanation of all the different parts of the WebRTC-dashboard and their
functionalities. The Help Modal tells the end-user how to use the WebRTC-dashboard
and to utilize its full potential.

Admin Modal

As presented in Paragraph Uploading WebRTC-Based Conversation Statistics Files
in Section 4.1.4, due to the inconvenient process of uploading WebRTC-based con-
versation statistics, having an Admin Modal was highly prioritized. The Admin
Modal supports both adding and removing conversations to and from the WebRTC-
dashboard. In order for the end-user to add a conversation, the end-user completes
an add-form. As illustrated in Figure 5.14, this add-form consists of a mandatory
text input field, and three optional uploading buttons, two for statistics files (Chrome
statistics, getstats.io statistics,) and one uploading button for video recordings. The
required text input field should include the name of the conversation. Even though
the format of the name is not required, it is recommended to have the format:
YYYY-MM-DD-name.

Currently, the Admin Modal only supports to upload Chrome statistics files,
getstats.io statistics files and video recordings files. In order for the Admin Modal to
accept the files, it is important that they have the right extension. Which are Chrome
statistics files and getstats.io statistics files must end with a .JSON extension, and
video recordings files must end with .mp4.

66 5. DESCRIPTION OF THE WEBRTC-DASHBOARD

Figure 5.14: Screenshot of the add-form in the Admin Modal [39].

In addition, the Admin Modal allows the end-user to upload multiple files within
the same uploading button. This means that the end-user can add multiple Chrome
statistics files and video recordings into the same upload. This is achieved by selecting
several files inside the end-user directory by clicking the files while holding the ctrl
key on the keyboard. However, since each conversation only has one associated
getstats.io statistics file, the Admin Modal only supports to upload one file in the
case for getstats.io statistics files.

Figure 5.15: Screenshot of the saving button with feedback [39].

5.2. LIMITATIONS 67

As soon as the Save button is triggered, the Admin Modal starts to transfer the
files from the client to the server. If the files are large, which most video recordings
files are, this transfer can take some time. In order to minimize waiting time and
irritation, the Admin Modal gives the end-user feedback of how far in the uploading
process it has come. See Figure 5.15 for illustration.

The second functionality the Admin Modal supports is to remove the conversation
from the WebRTC-dashboard. To remove a conversation, the end-user must select
the conversation(s) he/she wishes to remove, which is done by selecting the checkbox
next the conversation name. In order to complete the removal, the end-user must
click on the Save button. Figure 5.16 illustrates the how the remove-form in the
Admin Modal.

Figure 5.16: Screenshot of the remove-form in the Admin Modal [39].

5.2 Limitations

In this section, the limitations of the WebRTC-dashboard will be presented. Because
the WebRTC-dashboard depends on retrieving network statistics from both getstats.io
and Google Chrome’s WebRTC internal interface, the WebRTC-dashboard also suffers
from the same limitations which these interfaces have, which will be covered in this
section. Furthermore, this section will also cover the GUI limitations of the WebRTC-
dashboard.

68 5. DESCRIPTION OF THE WEBRTC-DASHBOARD

5.2.1 Limited Number of Sample Points in Chrome Statistics

One of the Google Chrome’s WebRTC internal interface limitations is that it only
stores the last 1000 data samples. As highlighted in Section 3.3.1, if the conversation
last longer than 1000 seconds, only the last 1000 data samples are recorded. However,
getstats.io does not suffer from the same limitation. When the end-user plots a chart
with statistics retrieved from both platforms, the lost data samples from Google
Chrome’s WebRTC internal interface are added as zero in the charts.

5.2.2 Chrome Statistics Sampling Time

Previously presented in Section 3.3.1 and described in [46], Chrome statistics files
are collected per browser, which implies that the internal clock at each machine may
not be synchronized with the other participant’s machines. In order to perform an
analysis for a multi-party conversation, it requires that these clocks are synchronized.
However, this is not always the case, and when the statistics are plotted in the charts,
they look shifted. As illustrated in Figure 4.10 and explained in Section 4.2.4, the
WebRTC-dashboard supports a No shift option to handle these cases.

5.2.3 Getstats JSON Format may Change

As presented previously in Section 4.1.4, the getstats.io does not support a standard-
ized JSON format, which implies that the format can change. If the getstats.io JSON
format changes drastically, the WebRTC-dashboard will not be able to support to re-
trieve data from getstats.io statistics files. It is impossible for the WebRTC-dashboard
to predict the future JSON format. Until getstats.io launches a standardization of
their JSON file, this will be a limitation of the WebRTC-dashboard.

However, WebRTC-dashboard supports to minimize the problem when format
changes occur, by implementing a Bash script for retrieving getstats.io statistics. As
highlighted in Section 4.1.4, the WebRTC-dashboard is not directly dependent on
the JSON format of getstats.io statistics files. Instead, it uses a Bash script in order
to retrieve the information and store the data into .txt files. These .txt files are used
by the WebRTC-dashboard.

If the WebRTC-dashboard had been directly dependent on the JSON format of
getstats.io, there would be much more work and many more files to modify in the
case of a getstats.io JSON file update. The current WebRTC-dashboard only requires
the Bash script to be modified each time getstats.io updates its JSON format, which
means that the one maintaining the WebRTC-dashboard only needs to know how to
write a script in Bash. Even though, the WebRTC-dashboard still requires the Bash
script to be modified each time getstats.io updates its JSON format, using Bash

5.2. LIMITATIONS 69

script was one of the best available solutions when facing this limitation, and was,
therefore, selected for this WebRTC-dashboard.

5.2.4 GUI Limitations

GUI limitations are included in this section in order to highlight the limitations of
the UI of the WebRTC-dashboard. In addition, this section will also cover how the
WebRTC-dashboard is trying to meet these limitations.

View Charts and Video Within the Size of the Screen

In the context of conducting an analysis using the WebRTC-dashboard, it is important
that the end-user can see both the charts (in the QoS Panel) and the video recordings
(in the Video Panel) within the size of the screen. In order to achieve this, the
WebRTC-dashboard hides all the unnecessary elements from view, while the video
recordings are playing and the statistics in the charts are plotting, such as; the option
for the user to modify the video recordings and the content of the charts. Although,
the size of the end-user’s computer screen has the greatest impact on how many charts
and video recordings that can be seen at the same time, the WebRTC-dashboard is
trying to solve that by including settings that allow end-user to customize the size of
their charts and videos.

Limited Screen Size

Generally, when considering a dashboard, one may think that all the elements
of a dashboard should be visualized at all times, like a dashboard inside a car.
However, as illustrated in Figure 5.1, the WebRTC-dashboard is a vertical dashboard,
which means that all the included parts are stacked on top of each other vertically.
Consequently, the user must scroll up and down the WebRTC-dashboard in order to
retrieve the wanted information. In order to help solve this problem, the WebRTC-
dashboard supports a functionality to hide and view the different parts of the
WebRTC-dashboard by collapsing and expanding them, which gives the end-user the
ability to customize the space of the WebRTC-dashboard.

Chapter6Conclusion and Future work

In this chapter, a conclusion of this master thesis will be presented. The conclusion
will present a summary of the WebRTC-dashboard and highlight what it has been
accomplished. This is followed by a section introducing the future work associated
with the WebRTC-dashboard. The future work will include suggestions on how to
remedy some of the WebRTC-dashboard’s limitations and some nice-to-have features.

6.1 Conclusion

As WebRTC continues to evolve with new supporting technologies, such as appear.in,
Google Hangouts, and multiple other similar applications, it becomes necessary to
identify the factors which impact the QoE when utilizing these applications. This
master thesis has presented the implementation of a WebRTC-dashboard. The
WebRTC-dashboard utilizes session-related data from analyzing platforms in order
to analyze n-party WebRTC-based video conversations. In addition, the WebRTC-
dashboard can replay session-related data to find correlations between technical and
non-technical factors and can identify the factors which impact the QoE. Furthermore,
the WebRTC-dashboard allow the end-users to interact and customize the analysis
for his/hers purpose.

One of the greatest advantages of the WebRTC-dashboard over the other analytic
interfaces is that it supports to combine network parameters, subjective user feed-
back from different analytic platforms (getstas.io and Chrome’s WebRTC internal
interface), and video recordings and replay them. Due to the numerous network
parameters found in Chrome statistics and getstats.io statistics files, and additional
data, it has become necessary to obtain an analyzing tool to analyze all the parame-
ters in an efficient way. The WebRTC-dashboard supports an easy and efficient way
of analyzing statistics and opens the possibility to identify new correlations between
impacting parameters.

71

72 6. CONCLUSION AND FUTURE WORK

To prevent users from getting unsatisfied with a WebRTC-based service, it is
important to gain an in-depth understanding of the numerous technical and non-
technical factors that may influence the QoE. Without an analyzing tool, such as
the WebRTC-dashboard, gaining this knowledge is almost impossible. Even though
both Google Chrome’s WebRTC internal interface and getstats.io supports their
dashboards with visual representations of their data, the WebRTC-dashboard is
still needed. This is because the WebRTC-dashboard solves problems that neither
getstats.io and Google Chrome’s WebRTC internal interface does. For example, the
WebRTC-dashboard solves one of the problems described in [46], Imprecise sampling
time, by supporting the No shift option. In addition the WebRTC-dashboard supports
to replay video and audio recordings together with network statistics and supports
the end-user to customize its analysis with flexibility features. Also because JSON
files contain numerous of lines of data, it is impossible for analysts to process all the
samples without an efficient tool. Even though it is possible to plot all the parameters
with help from other plotting tools, due to the high number of parameters, this
cannot be done in an efficient way. Because of this, there has been a real need for an
analyzing tool, such as the WebRTC-dashboard.

This master thesis has tried to highlight the great potential the WebRTC-
dashboard has and what it can accomplish. It has clarified and discussed what
challenges that may be encountered when developing such a solution, and how to
handle these challenges. Even though the WebRTC-dashboard includes many excel-
lent functionalities that help solve many limitations, from a realistic point of view,
since the WebRTC-dashboard was developed during a limited period, it only contains
the most significant and necessary functionalities. With more time and research, the
WebRTC-dashboard could have contained more functionalities, such as the function-
alities that are described in Future Work (Section 6.2). In the future, hopefully, the
developer who continues to work on the WebRTC-dashboard or implements a similar
analyzing tool from scratch can learn from the challenges and limitations this master
thesis has presented.

6.2 Future Work

This section covers suggestions on how to remedy some of the WebRTC-dashboard’s
limitations and some nice-to-have features. Due to prioritizing and time limitations,
these implementations were not included into the current WebRTC-dashboard.

6.2.1 Better Synchronization of Video Recordings, Slider, and
Charts

An issue arises when trying to synchronize the video recordings, charts, and slider
together. This is because video recordings are not handled in the same way as the

6.2. FUTURE WORK 73

slider and the charts. Video recordings are supported by HTML5 media functionalities,
which plays, stops, and pauses the video recordings each time the respectful buttons
are triggered. On the other hand, each time the defined countdown period is finished,
the chart plots a new data sample, and the draggable element “jumps” one step
along the slider. The countdown starts each time the end-user triggers play and gets
nullified when the end-user clicks pause, stops or drags the draggable element. As
previously described in Section 4.1.4, this can cause the synchronization to be out of
sync between the video recordings, slider, and charts.

Even though the slider and charts will be synchronized, the problem is to figure
out how to synchronize the video recordings to the charts and the slider. Section
4.1.4 has already suggested two solutions, which are to store the number of seconds
counted down for each "jump" in a variable, or push back the video recordings back
to the last step. Both of these implementations are possible to accomplish, but
from an implementation perspective, the second solution may be the easiest one to
implement. Each time the end-user triggers the play-button it sends the step value as
a parameter and pushes the video back to the step. However, this solution may cause
the video recordings to be less smooth than when implementing the first solution.

6.2.2 Admin Access

In order to limit the access in respect to who can add and remove conversations in the
WebRTC-dashboard, an admin access is required. This means that the people who
have admin privileges are the only persons that can modify the number of conversa-
tions included in the WebRTC-dashboard. Also, this prevents the issue of someone
who is "not welcome" to change the WebRTC-dashboard without "permission". Even
though the URL to the WebRTC-dashboard is intricate than most URLs, one never
knows when this can happen. Accordingly, an admin access features could solve this
issue and may be appreciated.

To achieve the admin access functionality, the WebRTC-dashboard must imple-
ment a type of login process, such as an admin login page with a password. To
accomplish a secure login page, the WebRTC-dashboard must require security settings
and these security settings must be handled carefully and correctly. Whoever has
the right password can access the admin privileges. One solution would have been to
implement the WebRTC-dashboard with Django1. Django is a web platform, which
includes a built-in admin functionality, however, this should have been included at
the beginning of the implementing process of the WebRTC-dashboard.

1Address: https://www.djangoproject.com/

74 6. CONCLUSION AND FUTURE WORK

6.2.3 Support for Other WebRTC-Based Applications

In order to support more flexibility, the WebRTC-dashboard be able to support to
utilize session-related data from other analytic platforms. In the beginning of this
thesis, a WebRTC-based application, Hello was presented in Section 2.1.4. Hello
is Mozilla Firefox’s WebRTC solution, which means that it is only accessible when
using Mozilla Firefox web browser. For the WebRTC-dashboard to support and
analyze conversations performed on Hello, it is dependent upon that there is an
analytic platform it can retrieve data from.

However, similarly Google Chrome, the web browser Opera supports a WebRTC
internal platform2. If the WebRTC-dashboard implements to support session-related
data retrieved from Opera’s WebRTC internal interface, it can analyze WebRTC-
based conversation that has been processed in Opera web browser.

6.2.4 Testing

As already presented in Section 4.1.2, testing was conducted during the implementa-
tion process. However, due to limited time, only a limited number of the functional
requirements were tested. As a consequence, to ensure the reliability of all the
functional requirements, more testing should be preformed. Since the Video Panel
and Admin Modal was the last included functionalities, these require additional
testing.

6.2.5 Search Function in QoS Panel

Due to the great number of network parameters covered by Chrome statistics and
getstats.io statistics files, a nice-to-have feature is a search function in the QoS Panel.
In the case when the end-user does not know exactly where to locate the network
parameters he/she wants to plot, a search function can come in quite handy. Using
a search function, the end-user can easily search for the network parameters, as
he/she wants without knowing where to find them. Also, a search function would
also minimize the number of clicks the end-user must perform to find the wanted
parameters, which enables better UI. Since the WebRTC-dashboard already utilize
Bootstrap (presented in Section 4.1.3), the WebRTC-dashboard can use Bootstraps
search function [8].

6.2.6 Support Dual Y-axis

Another nice-to-have feature would be dual Y-axis charts. Dual Y-axis charts are
used to identify quickly and to validate the relationship between two variables with
different magnitudes and scales of measurement. Since there are network parameters

2Address: opera://webrtc-internals

6.2. FUTURE WORK 75

that operate on different scales, they are difficult to measure against each other in
the same chart. However, since the QoS Panel supports a function that the end-user
can plot as many network statistics into the same chart as he/she wants, it may be a
challenge to identify which statistics should depend on which Y-axis.

Chart.js, which is used to generate the charts in the QoS Panel, launched a second
version April 9th 2016 [9]. Until its release, Chart.js did not support dual Y-axis.
Since dual Y-axis is now supported by Chart.js, the WebRTC-dashboard can easily
include this feature in the future. However, there remains the problem of how to
determine which network statistic should belong to which Y-axis.

6.2.7 Store the Charts

When performing an analysis, the end-user most likely writes at least one report based
on what was found (or not found) in the analysis. Most likely, a report also consists
of figures to explain the findings. Since the purpose of the WebRTC-dashboard
is to use it for analysis, the WebRTC-dashboard should include a way of storing
the information the WebRTC-dashboard is presenting, such as charts. Currently,
there are no such functionalities, and the user must manually screenshot each of the
relevant charts (and other interesting findings), give it a proper name and store the
information for use in a report. For the future version of the WebRTC-dashboard, a
storing functionality may be desirable.

References

[1] (2016). About. https://git-scm.com/about. [Online; accessed 16-April-2016].

[2] (2016a). Angular material. https://material.angularjs.org. [Online; accessed
18-April-2016].

[3] (2016b). Angularjs. https://angularjs.org/. [Online; accessed 15-April-2016].

[4] (2016). Anymeeting enables you to host webinars or meetings, easily and
affordably. https://www.anymeeting.com/. [Online; accessed 23-April-2016].

[5] (2016). Appear.in - create a room and invite up to 8 friends. https://appear.in/.
[Online; accessed 11-April-2016].

[6] (2016). Based on conversation with responssible professor, and supervisor.

[7] (2016). Bash reference manual. https://www.gnu.org/software/bash/manual/
bashref.html. [Online; accessed 26-April-2016].

[8] (2016). Bootstrap is the most popular html, css, and js framework for developing
responsive, mobile first projects on the web. http://getbootstrap.com/. [Online;
accessed 16-April-2016].

[9] (2016a). Chart.js - simple, clean and engaging charts for designers and developers.
http://www.chartjs.org/. [Online; accessed 16-April-2016].

[10] (2016b). Chart.js - version 2.0.0. https://github.com/nnnick/Chart.js/releases.
[Online; accessed 16-April-2016].

[11] (2016). Css developer guide. https://developer.mozilla.org/en-US/docs/Web/
Guide/CSS. [Online; accessed 16-April-2016].

[12] (2016). Css with superpowers. http://sass-lang.com/. [Online; accessed 16-
April-2016].

[13] (2016). Data-driven documents. https://d3js.org/. [Online; accessed 16-April-
2016].

[14] (2016). Font awesome - the iconic font and css toolkit. https://fortawesome.
github.io/Font-Awesome/. [Online; accessed 17-April-2016].

77

https://git-scm.com/about
https://material.angularjs.org
https://angularjs.org/
https://www.anymeeting.com/
https://appear.in/
https://www.gnu.org/software/bash/manual/bashref.html
https://www.gnu.org/software/bash/manual/bashref.html
http://getbootstrap.com/
http://www.chartjs.org/
https://github.com/nnnick/Chart.js/releases
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS
http://sass-lang.com/
https://d3js.org/
https://fortawesome.github.io/Font-Awesome/
https://fortawesome.github.io/Font-Awesome/

78 REFERENCES

[15] (2016). Google hangouts. https://hangouts.google.com/. [Online; accessed
11-April-2016].

[16] (2016). Grunt- the javascript task runner. http://gruntjs.com/. [Online;
accessed 16-April-2016].

[17] (2016a). Gulp vs grunt. why one? why the other? https://medium.
com/@preslavrachev/gulp-vs-grunt-why-one-why-the-other-f5d3b398edc4#
.pk45hlscy. [Online; accessed 16-April-2016].

[18] (2016b). Gulp.js. http://gulpjs.com/. [Online; accessed 15-April-2016].

[19] (2016). An introduction to gulp.js. http://www.sitepoint.com/
introduction-gulp-js/. [Online; accessed 16-April-2016].

[20] (2016). Javascript. https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Guide/Introduction. [Online; accessed 15-April-2016].

[21] (2016). Make your data come alive - highcharts makes it easy for developers
to set up interactive charts in their web pages. http://www.highcharts.com/.
[Online; accessed 16-April-2016].

[22] (2016). Messenger. https://www.messenger.com. [Online; accessed 11-April-
2016].

[23] (2016). Mvc architecture. https://developer.chrome.com/apps/app_
frameworks. [Online; accessed 07-May-2016].

[24] (2016a). node.js. https://nodejs.org/en/. [Online; accessed 15-April-2016].

[25] (2016b). Node.js - introduction. http://www.tutorialspoint.com/nodejs/
nodejs_introduction.htm. [Online; accessed 18-April-2016].

[26] (2016). npm - build amazing things. https://www.npmjs.com/. [Online;
accessed 18-April-2016].

[27] (2016). php.net. http://php.net/. [Online; accessed 15-April-2016].

[28] (2016). Qualinet. https://www.qualinet.eu. [Online; accessed 25-April-2016].

[29] (2016). Quality of service networking. http://docwiki.cisco.com/wiki/Quality_
of_Service_Networking. [Online; accessed 24-April-2016].

[30] (2016). Say hello to facetime. http://www.apple.com/no/mac/facetime/.
[Online; accessed 11-April-2016].

[31] (2016). Skype. http://www.skype.com/. [Online; accessed 11-April-2016].

[32] (2016). Telefonica - in brief. https://www.telefonica.com/en/web/about_
telefonica/in-brief. [Online; accessed 26-April-2016].

[33] (2016). Trello. https://trello.com/. [Online; accessed 19-April-2016].

https://hangouts.google.com/
http://gruntjs.com/
https://medium.com/@preslavrachev/gulp-vs-grunt-why-one-why-the-other-f5d3b398edc4#.pk45hlscy
https://medium.com/@preslavrachev/gulp-vs-grunt-why-one-why-the-other-f5d3b398edc4#.pk45hlscy
https://medium.com/@preslavrachev/gulp-vs-grunt-why-one-why-the-other-f5d3b398edc4#.pk45hlscy
http://gulpjs.com/
http://www.sitepoint.com/introduction-gulp-js/
http://www.sitepoint.com/introduction-gulp-js/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Introduction
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Introduction
http://www.highcharts.com/
https://www.messenger.com
https://developer.chrome.com/apps/app_frameworks
https://developer.chrome.com/apps/app_frameworks
https://nodejs.org/en/
http://www.tutorialspoint.com/nodejs/nodejs_introduction.htm
http://www.tutorialspoint.com/nodejs/nodejs_introduction.htm
https://www.npmjs.com/
http://php.net/
https://www.qualinet.eu
http://docwiki.cisco.com/wiki/Quality_of_Service_Networking
http://docwiki.cisco.com/wiki/Quality_of_Service_Networking
http://www.apple.com/no/mac/facetime/
http://www.skype.com/
https://www.telefonica.com/en/web/about_telefonica/in-brief
https://www.telefonica.com/en/web/about_telefonica/in-brief
https://trello.com/

REFERENCES 79

[34] (2016). W3c. https://www.w3.org/. [Online; accessed 16-April-2016].

[35] (2016a). Webex - work where you are. https://www.webex.com/. [Online;
accessed 23-April-2016].

[36] (2016b). Webrtc. https://webrtc.org/. [Online; accessed 11-April-2016].

[37] (2016). Webrtc. https://developer.mozilla.org/en-US/docs/Web/Guide/API/
WebRTC. [Online; accessed 23-April-2016].

[38] (2016c). Webrtc 1.0: Real-time communication between browsers. https:
//www.w3.org/TR/webrtc/. [Online; accessed 23-April-2016].

[39] (2016d, may). WebRTC-Dashboard. Address: appear01.item.ntnu.no:3000.

[40] (2016). Webrtc faqs. https://tokbox.com/about-webrtc. [Online; accessed
23-April-2016].

[41] (2016c). Why the hell would i use node.js? https://www.toptal.com/nodejs/
why-the-hell-would-i-use-node-js. [Online; accessed 18-April-2016].

[42] Albing, C., J. Vossen, and C. Newham (2007). bash Cookbook: Solutions and
Examples for bash Users. " O’Reilly Media, Inc.".

[43] Ammar, D., J. Brochet, T. Begin, I. Guerin-Lassous, and L. Noirie
(2012, October). Knowledge-Based Admission Control: A Real-Time
Performance Analysis. In 37th IEEE Conference on Local Computer
Networks (LCN 2012), Clearwater (Florida), United States. Demo -
http://www.ieeelcn.org/prior/LCN37/lcn37demos/LCNDemos12_Ammar.pdf.

[44] Ammar, D., K. De Moor, and P. Heegaard (2016). Quality of experience -
assessment of webrtc based video communication. ERCIM News 2016(105) (2016).

[45] Ammar, D., K. De Moor, M. Xie, and P. Heegaard (2016). Video qoe killer and
performance statistics in webrtc-based video communication. in 2016 IEEE Sixth
International Conference on Communications and Electronics (ICCE), Jul. 2016.

[46] Ammar, D., P. Heegaard, M. Xie, K. De Moor, and M. Fiedler (2016). Revealing
the dark side of webrtc statistics collected by google chrome. Quality of Multimedia
Experience (QoMEX), 2016 Eighth International Conference on, Lisbon.

[47] Berndtsson, G., M. Folkesson, and V. Kulyk (2012). Subjective quality assess-
ment of video conferences and telemeetings. In Packet Video Workshop (PV),
2012 19th International, pp. 25–30. IEEE.

[48] Bourque, P., R. E. Fairley, et al. (2014). Guide to the software engineering
body of knowledge (SWEBOK (R)): Version 3.0. IEEE Computer Society Press.

[49] Brunnström, K., S. A. Beker, K. De Moor, A. Dooms, S. Egger, M.-N. Garcia,
T. Hossfeld, S. Jumisko-Pyykkö, C. Keimel, M.-C. Larabi, et al. (2013). Qualinet
white paper on definitions of quality of experience.

https://www.w3.org/
https://www.webex.com/
https://webrtc.org/
https://developer.mozilla.org/en-US/docs/Web/Guide/API/WebRTC
https://developer.mozilla.org/en-US/docs/Web/Guide/API/WebRTC
https://www.w3.org/TR/webrtc/
https://www.w3.org/TR/webrtc/
https://tokbox.com/about-webrtc
https://www.toptal.com/nodejs/why-the-hell-would-i-use-node-js
https://www.toptal.com/nodejs/why-the-hell-would-i-use-node-js

80 REFERENCES

[50] Committee, I. C. S. S. E. S. and I.-S. S. Board (1998). Ieee recommended
practice for software requirements specifications. Institute of Electrical and
Electronics Engineers.

[51] De Moor, K., F. Mazza, I. Hupont, M. R. Quintero, T. Mäki, and M. Varela
(2014). Chamber qoe: a multi-instrumental approach to explore affective aspects
in relation to quality of experience. In IS&T/SPIE Electronic Imaging, pp.
90140U–90140U. International Society for Optics and Photonics.

[52] Emstad, P. J., P. E. Heegaard, B. E. Helvik, and L. Paquereau (2011). Depend-
ability and performance in information and communication systems.

[53] Flanagan, D. (2011). JavaScript - The definitive guide.

[54] Gunkel, S., M. Schmitt, P. Cesar, and P. Hughes (2013). A qoe testbed for
socially-aware video-mediated group communication.

[55] Gunkel, S. N., M. Schmitt, and P. Cesar (2008, September). Series e: Overall
network operation, telephone service, service operation and human factors - quality
of telecommunication services: concepts, models,objectives and dependability
planning – terms anddefinitions related to the quality of telecommunication
services.

[56] Gunkel, S. N., M. Schmitt, and P. Cesar (2015, May). A qoe study of different
stream and layout configurations in video conferencing under limited network
conditions.

[57] Khirman, S. and P. Henriksen (2002). Relationship between quality-of-service
and quality-of-experience for public internet service.

[58] Le Callet, P., S. Möller, A. Perkis, et al. (2012). Qualinet white paper on
definitions of quality of experience. European Network on Quality of Experience
in Multimedia Systems and Services (COST Action IC 1003).

[59] McCarthy, J. and P. Wright (2004). Technology as experience. interac-
tions 11 (5), 42–43.

[60] Schmitt, M., S. Gunkel, P. Cesar, and D. Bulterman (2014). Asymmetric
delay in video-mediated group discussions. In Quality of Multimedia Experience
(QoMEX), 2014 Sixth International Workshop on, pp. 19–24. IEEE.

[61] Vučić, D. and L. Skorin-Kapov (2015). The impact of mobile device factors
on qoe for multi-party video conferencing via webrtc. In 13th International
Conference on Telecommunications.

AppendixASoftware Requirements
Specification

A.1 Functional Requirements

A.1.1 System

Table A.1: Functional requirements for the System.

Req. ID Requirement Description Priority
1.1 The system shall support to analyze n-party We-

bRTC-based conversations
High

1.2 The system shall be able to use the data retrieved
from getstats.io

High

1.3 The system shall be able to use the data retrieved
from Chrome’s WebRTC internal interface

High

1.4 The system shall support an easy way of handling if
the getstats.io JSON format should change

High

81

82 A. SOFTWARE REQUIREMENTS SPECIFICATION

A.1.2 Conversation Handler Panel

Table A.2: Functional requirements for the Conversation Handler Panel.

Req. ID Requirement Description Priority
2.1 The end-user shall be able to select WebRTC-based

conversation he/she wants to analyze
High

2.2 The end-user shall be able to select the statistics
he/she wants to include into the analyze

High

2.3 The end-user shall be able to select x seconds to
compute sample interval size

High

2.4 The user shall be able to select no shifting for chart High
2.5 The end-user shall be able to select z number of charts

to show for each row
Medium

2.6 The end-user shall be able to select X-tick location Medium
2.7 The X-tick location y must be either equal ot greather

than x, and fulfill y ∗ mod(x) = 0
Medium

2.8 The x seconds to compute the sample interval size
must be greather than 0

Medium

2.9 The z number of charts to show for each row bus be
either euqual or between one and four

Medium

A.1.3 QoE Panel

Table A.3: Functional requirements for the QoE Panel.

Req. ID Requirement Description Priority
3.1 The end-user shall be able to view the feedback from

participant
High

3.2 The end-user shall be able to view the information
about the participants device

High

3.3 The end-user shall be able to see additional browser
information

Medium

3.4 The end-user shall be able to see star-rating when
NTNU’s appear.in test server is used

Medium

A.1. FUNCTIONAL REQUIREMENTS 83

A.1.4 Media Player Panel

Table A.4: Functional requirements for the Multimedia Panel.

Req. ID Requirement Description Priority
4.1 The end-user shall be able to click play button High
4.2 The end-user shall be able to click pause button High
4.3 The end-user shall be able to click stop button High
4.4 The end-user shall be able to drag a slider back and

forth
High

4.5 The end-user shall only access multimedia panel if
video is included

Medium

4.6 The end-user shall be able to use arrow keys on the
keyboard to move the slider forth and back

Low

A.1.5 QoS Panel

Table A.5: Functional requirements for the QoS Panel.

Req. ID Requirement Description Priority
5.1 The end-user shall be able to add charts High
5.2 The end-user shall be able to close charts High
5.3 The end-user shall be able to plot chart with data High
5.4 The end-user shall be able to select data from the

statistics chosen in conversation handler
High

5.5 The end-user shall not be able to modify a non-
existing chart

High

84 A. SOFTWARE REQUIREMENTS SPECIFICATION

A.1.6 Video Panel

Table A.6: Functional requirements for the Video Panel.

Req. ID Requirement Description Priority
6.1 The end-user shall be able to show selected videos High
6.2 The end-user shall be able to mute all videos Medium
6.3 The end-user shall be able to hide videos Medium
6.4 The end-user shall be able to resize all the videos to

the same size
Medium

6.5 The end-user shall be able to mute one video at the
time

Medium

6.6 The end-user shall be able to resize one video at the
time

Medium

A.1.7 Navigation bar

Table A.7: Functional requirements for the Navigation bar.

Req. ID Requirement Description Priority
7.1 The end-user shall be able to see admin modal High
7.2 The end-user shall be able to remove old conversations High
7.3 The end-user shall be able to add new conversation

to analyze
Medium

7.4 The end-user shall be able to see help modal Medium
7.5 The end-user shall be given feedback of how far in

the uploading process it has come
Medium

A.2. NON-FUNCTIONAL REQUIREMENTS 85

A.2 Non-Functional Requirements

Table A.8: Non-functional requirements.

Req. ID Requirement Description Priority
8.1 The system shall be supported by desktop Google

Chrome web browser
High

8.2 The system shall give the end-user a deeper under-
standing of what kind of technical- and non-technical
factors can influence QoE in a graphical and interac-
tive way

High

8.3 The text in the system should be written in English High
8.4 The system shall support PC and Macintoshes High
8.5 The text in the system should be understandable Medium
8.6 The system shall have a good design, so that the user

can easily interact with the web interface
Medium

AppendixBStatistics
B.1 Google Chrome’s WebRTC Internal Interface Statistics

Table B.1: Complete list of statistics supported by Google Chrome’s WebRTC
internal interface.

Parameter Value Media Source
audioInputLevel Integer audio send
audioOutputLevel Integer audio receive
bitsReceivedPerSecond Integer audio, video receive
bitsSentPerSecond Integer audio, video send
bytesReceived Integer audio, video receive
bytesSent Integer audio, video send
candidateType String bandwidth
dtlsCipher String audio
googAccelerateRate Integer audio receive
googActiveConnection Integer audio
googActualEncBitrate Integer bandwidth

for video
googAdaptationChanges Integer video send
googAvailableReceiveBandwidth Integer bandwidth

for video
googAvailableSendBandwidth Integer bandwidth

for video
googAvgEncodeMs Integer video send

87

88 B. STATISTICS

googBandwidthLimitedResolution Boolean video send
googBucketDelay Integer bandwidth

for video
googCaptureStartNtpTimeMs Integer audio, video receive
googChannelId String bandwidth
googCodecName String audio, video receive, send
googComponent Integer audio, send, receive
googCpuLimitedResolution Boolean video send
googCurrentDelayMs Integer audio, video receive
googDecodeMs Integer video receive
googDecodingCNG Integer audio receive
googDecodingCTN Integer audio receive
googDecodingCTSG Integer audio receive
googDecodingNormal Integer audio receive
googDecodingPLC Integer audio receive
googDecodingPLCCNG Integer audio receive
googDerBase64 String
googEchoCancellation-
EchoDelayMedian

Integer audio send

googEchoCancellation-
EchoDelayStdDev

Integer audio send

googEchoCancellation-
ReturnLoss

Integer audio send

googEchoCancellation-
ReturnLossEnhancement

Integer audio send

googEchoCancellation-
QualityMin

Integer audio send

googEncodeUsagePercent Integer video send
googExpandRate Integer audio receive
googFingerprint String
googFingerprintAlgorithm String
googFirsReceived Integer video send
googFirsSent Integer video receive

B.1. GOOGLE CHROME’S WEBRTC INTERNAL INTERFACE STATISTICS 89

googFrameHeightInput Integer video send
googFrameHeightReceived Integer video receive
googFrameHeightSent Integer video send
googFrameRateDecoded Integer video receive
googFrameRateInput Integer video send
googFrameRateOutput Integer video receive
googFrameRateReceived Integer video receive
googFrameRateSent Integer video send
googFrameWidthInput Integer video send
googFrameWidthReceived Integer video receive
googFrameWidthSent Integer video send
googInitiator Boolean
googJitterBufferMs Integer audio, video receive
googJitterReceived Integer audio send , receive
googLocalAddress String bandwidth
googLocalCandidateType String bandwidth
googMaxDecodeMs Integer video receive
googMinPlayoutDelayMs Integer video receive
googNacksReceived Integer video send
googNacksSent Integer video receive
googPlisReceived Integer video send
googPlisSent Integer video receive
googPreemptiveExpandRate Integer audio receive
googPreferredJitterBufferMs Integer audio receive
googReadable Integer bandwidth
googRemoteAddress Integer bandwidth
googRemoteCandidateType String bandwidth
googRenderDelayMs Integer video receive
googRetransmitBitrate Integer bandwidth

for video

90 B. STATISTICS

googRtt Integer audio, video send
googSecondaryDecodedRate Integer audio receive
googSpeechExpandRate Integer audio receive
googTargetEncBitrate Integer bandwidth

for video
googTargetEncBitrateCorrected Integer bandwidth

for video
googTargetDelayMs Integer video receive
googTrackId String audio, video send , receive
googTransmitBitrate Integer bandwidth

for video
googTransportType String bandwidth
googTypingNoiseState Boolean audio send
googViewLimitedResolution Boolean video send
googWritable Boolean bandwidth
ipAddress Integer
localCandidateId String bandwidth
localCertificateId String audio, send, receive
networkType String
packetsDiscardedOnSend Integer bandwidth
packetsLost Integer audio, video send, receive
packetsReceived Integer audio, video receiver
packetsReceivedPerSecond Integer audio, video receiver
packetsSent Integer audio, video send
packetsSentPerSecond Integer audio, video send
priority Integer
remoteCandidateId String bandwidth
remoteCertificateId String audio
selectedCandidatePairId String audio
srtpCipher String audio
ssrc Integer audio, video receive, send
transport String
transportId String audio, video receive, send

B.2. GETSTATS.IO STATISTICS 91

B.2 getstats.io Statistics

B.2.1 Network Statistics

Table B.2: Complete list of network statistics supported by getstats.io.

Parameter Value Media Bound
BytesSent Integer Video, audio Outbond
PacketsSent Integer Video, audio Outbond
RoundTripTime Integer Video, audio Outbond
EncodeCPUUsage Integer Video, audio Outbond
CPULimitedResolution Boolean Video Outbond
BandwidthLimitedResolution Boolean Video Outbond
BytesReceived Integer Video, audio Inbound
PacketsReceived Integer Video, audio Inbound
PacketsLost Integer Video, audio Inbound
Jitter Integer Video, audio Inbound

B.2.2 Participant Statistics

Table B.3: Complete list of participant statistics supported by getstats.io.

Parameter Value
ID String
UserID String
UserName String
Browser String
BrowserVersion String
BrowserEngine String
BrowserEngineVersion String
OS String
Platform String
Mobile Boolean

92 B. STATISTICS

B.3 getstats.io Subjective User Feedback Form

Table B.4: Complete list of subjective user feedback supported by getstats.io.

Question Alternatives
How would you rate the overall audio-
visual quality of the session (the overall
combined audio and vido quality)?

5(Excellent), 4(Good), 3(Fair), 2(Poor),
1(Bad)

How would you rate the video quality
of the session?

5(Excellent), 4(Good), 3(Fair), 2(Poor),
1(Bad)

How would you rate the audio quality
of the session?

5(Excellent), 4(Good), 3(Fair), 2(Poor),
1(Bad)

Which quality-related issues have you
experienced during the session?

Audio problems: bad audio or no audio
at all.
Video problems: bad video or no video
at all.
Bad synchronization between audio and
video.
Not applicable (never experienced any
problem.
Other, please specify (text box).

Did you considered quitting the session
because of quality-related issues?

Yes/No

Did you perceive any reduction in your
ability to interact with the other party
(parties) during the session?

Yes/No

If yes, specify the problem if you could: (text box)

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Objectives
	Scope
	Methodology
	Development
	Literature Study

	Outline

	Theoretical Background
	WebRTC
	WebRTC API
	appear.in
	Google Hangouts
	Firefox Hello

	Challenges with WebRTC Applications
	Definition of QoS and QoE
	Quality of Service
	Quality of Experience

	Factors Influencing QoE
	QoS Parameters
	User
	Context

	Related Work

	Overview of the WebRTC-Dashboard
	WebRTC-Dashboard
	Software Requirements Specification
	Functional Requirements
	Non-Functional Requirements
	External Interfaces
	Performance
	Attributes
	Design

	Data Retrieval
	Google Chrome's WebRTC Internal Interface
	getstats.io
	Audio and Video Recording

	Development of the WebRTC-Dashboard
	Implementation
	System Architecture
	Testing
	Technologies
	Challenges and Decision Making During Implementation Process
	Code Implementation

	Advantages of the WebRTC-Dashboard
	Replaying Charts and Videos
	Combine Chrome and getstats.io Statistics
	Customized Chrome and getstats.io Statistics
	Flexibility Features

	Description of the WebRTC-Dashboard
	Functionalities
	Conversation Handler Panel
	Quality of Experience Panel
	Video Panel
	Quality of Service Panel
	Media Player Panel
	Additional Functionalities

	Limitations
	Limited Number of Sample Points in Chrome Statistics
	Chrome Statistics Sampling Time
	Getstats JSON Format may Change
	GUI Limitations

	Conclusion and Future work
	Conclusion
	Future Work
	Better Synchronization of Video Recordings, Slider, and Charts
	Admin Access
	Support for Other WebRTC-Based Applications
	Testing
	Search Function in QoS Panel
	Support Dual Y-axis
	Store the Charts

	References
	Software Requirements Specification
	Functional Requirements
	System
	Conversation Handler Panel
	QoE Panel
	Media Player Panel
	QoS Panel
	Video Panel
	Navigation bar

	Non-Functional Requirements

	Statistics
	Google Chrome's WebRTC Internal Interface Statistics
	getstats.io Statistics
	Network Statistics
	Participant Statistics

	getstats.io Subjective User Feedback Form

