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Abstract

As the Internet was initially invented without any security concerns, a
way of secure communication over an untrusted network was nowhere to
be found. After years of research, the TLS protocol became this Internet
standard for secure end-to-end communication. Today, version 1.2 of TLS
is the standard for web security, and the protocol provides authentication
and ensures confidentiality and integrity.

However, as TLSv1.2 is the most common form of implementing web
application security, new attacks are being discovered continuously in the
attempt of breaking the protocol. One of these attacks is the truncation
attack discovered by Smyth and Pironti in 2013 [35]. This attack was
focused around truncating TLS connections between a user and a web
application server. By exploiting application logic flaws found in a
selection of web applications, Smyth and Pironti were able to cast votes
on behalf of honest voters in an online voting system, take full control of
Hotmail accounts, and gain temporary control of Google accounts.

Now, three years later, these attacks have been recreated in this report. By
reviewing the sign-out procedures for these applications and reproducing
the attacks, it appeared that the application logic flaw still exists in the
online voting system, but the truncation attack is only possible when a
user is using certain setups. Particularly, it appears that only certain
web browsers allow this sort of attack.

Due to poor handling of TLS termination modes, many modern web
browsers are still susceptible to truncation attacks, and it remains up to
the individual web developer to thwart these types of attacks by avoiding
application logic flaws that can be exploited.





Sammendrag

Da Internett først ble oppfunnet var ikke sikkerhet en bekymring. En måte
å sikre kommunikasjon over et nettverk var verken oppfunnet eller påtenkt.
Etter år med forskning ble TLS-protokollen en Internett-standard for å
sikre ende-til-ende kommunikasjon. I dag er versjon 1.2 av TLS protokollen
standarden for web sikkerhet, og protokollen tilbyr autentisering samtidig
som den sikrer konfidensialitet og integritet.

Siden TLSv1.2 er den mest vanlige formen for implementering av ap-
plikasjonssikkerhet over Internett, blir nye angrep stadig oppdaget i et
forsøk på å knekke protokollen. Et av disse angrepene er et avkuttingsan-
grep som ble oppdaget av Smyth og Pironti i 2013 [35]. Dette angrepet
fokuserte på å kutte av TLS-tilkoblinger mellom en bruker og en web-
applikasjonsserver. Ved å utnytte logiske feil som finnes i et utvalg av
web-applikasjoner, var Smyth og Pironti i stand til å avgi stemmer på
vegne av andre velgere i et online stemmegivning system, ta full kontroll
over Hotmail-kontoer, og få midlertidig kontroll over Google-kontoer.

Nå, tre år senere, er disse angrepene blitt gjenskapt i denne rapporten.
Ved å analysere avloggingsprosedyrene for hver av disse applikasjonene,
og ved å forsøke å gjenskape angrepene, viste det seg at logiske feil fortsatt
eksisterer i det elektroniske valgsystemet, men angrepet er imidlertidig
bare mulig når en bruker bruker visse oppsett. Faktisk ser det ut til at
bare enkelte nettlesere tillater denne typen angrep.

På grunn av dårlig håndtering av TLS’ terminerings moduser, er mange
moderne nettlesere fortsatt sårbare for avkuttingsangrep, og det forblir
opp til den enkelte webutvikleren å hindre denne type angrep ved å unngå
anvendelse av logiske feil som kan utnyttes.
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Chapter1Introduction

Computer security revolves around the protection of computing systems used all
around the world. Protection, in this case, can include protection against intruders
like hackers or other adversaries, but the essence of computer security is described by
three key objectives: Confidentiality, Integrity, and Availability [36]. Together, these
three objectives form a triad, as illustrated in Figure 1.1, and their descriptions are
defined as follows.

Figure 1.1: The Security Requirements Triad

◦ Confidentiality: By providing data confidentiality it is assured that infor-
mation intended as confidential or private is not disclosed to users or other
individuals that are not authorized to access this information. Also assured is
the control an individual has over own privacy information and to whom this
information may be available. Failure to provide these features will lead to a
loss of confidentiality.

◦ Integrity: Data integrity ensures that the altering of information will only
occur in an authorized manner. By also assuring that a system’s function
performs its intended task without any manipulation of the system that is

1



2 1. INTRODUCTION

unauthorized, system integrity is assured. Any loss of or altering of information
that is unauthorized will be classified as a loss of integrity.

◦ Availability: An authorized user or individual should not be denied the use
of a system or service. Disruption or loss of access will indicate a loss of
availability.

The Internet is a public communication network, and when web applications are
executed over it, they mainly rely on Hypertext Transfer Protocol Secure (HTTPS)
to be secure. To ensure confidentiality and integrity of a web application, HTTPS
uses regular Hypertext Transfer Protocol (HTTP) over the TLS protocol. When a
client and a server are to communicate within a web application, it is the task of
HTTPS to protect this communication. Application logic does, however, also play a
major part when determining the security of an application. While the TLS protocol
provides secure communication, the protocol does not offer any protection against
flaws in application logic. Also, TLS allows several client-server connections to be
authenticated by the same session, but the protocol only provides data integrity
for one of these connections at a time. This means that when a web application
uses multiple TLS connections to, for instance, load content in parallel, the TLS
protocol does not guarantee the ordering of the messages sent in these connections.
In the case of particularly sensitive operations (like when dealing with authentication
credentials), logic in web applications must be extra protective when using parallel
connections. This report describes how truncation attacks can be used against such
flaws to violate integrity.

1.1 Motivation

The TLS protocol is very complex and has been extensively researched in terms of
discovering attacks against it. However, attacks aimed at compromising the session
termination of the TLS protocol has not been explored extensively. Particularly,
these attacks aim towards violating the beliefs a user has of a successful session
termination by truncating connections between a server and a user. In 2013 such
attacks were described by Smyth and Pironti [35], and this report aims to further
explore the effectiveness of these truncation attacks by first finding out if they still
are valid.

1.2 Problem and Scope

The scope of this report is to firstly provide background information about TLS
and truncation attacks. The report will then provide a practical investigation of the
effects of truncation attacks on TLS. Due to logic flaws, certain web applications are
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reported to be vulnerable to truncation attacks, and this report seeks to validate
these reports by recreating previously successful attacks against the latest versions
of these web applications.

The report explores the effect of truncation attacks against the same type of
web applications on different web browsers, rather that the initially intended goal
of exploring the possibility of adapting the truncation attacks against TLS to other
security protocols like Datagram Transport Layer Security (DTLS) and Secure Shell
(SSH). This adjustment is made in the light of results that suggested that different
web browsers have different handling of the TLS protocol.

1.3 Methodology

When first starting working on this master thesis it was important to understand
how the TLS works and how the protocol is vulnerable to certain attacks. To obtain
this understanding, the TLS protocol and papers discussing different attacks were
analyzed in depth.

Next, the truncation attacks discovered by Smyth and Pironti in 2013 [35] were
analyzed and recreated in order to discover whether or not these attacks are still
valid. The results from the recreation of these attacks were then analyzed.

From the analysis conducted, the results indicated that different web browsers act
differently when communication is handled by the TLS protocol. The aforementioned
attacks were then recreated several times on different browsers in order to uncover if
they are vulnerable to truncation attacks or not.

Finally, in an attempt to describe a way of avoiding truncation attacks from a
web developer’s standpoint, a web application was created with the goal of pointing
out how a simple application can be changed from vulnerable to secure with just a
couple of adjustments.

1.4 Outline

The chapters in this report are organized as follows:

◦ Chapter 2 is an overview of both the history of the Internet and the TLS
protocol. The chapter also provides the reader with theoretical background
information needed to understand the features of TLS and the preliminaries of
the attacks described in this report.

◦ Chapter 3 is a detailed description of the most important features of TLS.
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◦ Chapter 4 introduces the different attacks relevant to this report. Among
the attacks mentioned, special focus has been given to the different variants of
truncation attacks against TLS.

◦ Chapter 5 contains a detailed practical investigation of the truncation attacks
discovered by Smyth and Pironti in 2013 [35]. Furthermore, this chapter
describes the attempts of recreating these attacks.

◦ Chapter 6 investigates further the results of the previous chapter by discovering
to which degree modern web browsers are secure against truncation attacks.
This chapter also includes a description of a generic method to avoid truncation
attacks in a web application.

◦ Chapter 7 concludes the report and discusses the results.



Chapter2Background

This chapter gives an overview of both the history of the Internet and the TLS
protocol. The chapter also introduces the reader to the theoretical background
information needed to understand the features of TLS and the preliminaries of the
attacks described in this report.

2.1 History

The Internet started out as a research project called Advanced Research Projects
Agency Network (ARPANET) which was initiated in the 1960s during the Cold War
[24]. As this time period was a prime time for research it was originally intended as
a means of sharing information between the United States Department of Defense,
the United States military and universities. The 1970s introduced services such as
electronic mail, and a commercialisation of ARPANET followed in the 1980s. The
World Wide Web (WWW) as we know it was later introduced in the 1990s. At this
time, the Internet was implemented with little to no security.

After the commercialisation of ARPANET and the introduction of the World Wide
Web, Netscape Communication started working on employing secure communication
over the existing network. In 1994 the first security protocol was created and given
the name Secure Sockets Layer (SSL). This protocol, despite never being officially
released, made a lot of headway. Version 2 of SSL was released officially a year later
in 1995. As this version was proven to have many weaknesses [12], as later described
in Section 4.2, a third version was released in 1996 with the goal of fixing weaknesses.

While the SSL protocol increased in popularity, other companies were attempting
to create their own security solutions in order to compete with Netscape. The task
of defining a standard protocol was given to the Internet Engineering Task Force
(IETF) [1]. The goal of IETF is to be a open community dedicated to developing
standards towards their goal of making the Internet work. Request for Comments
(RFC) documents are the official channel used by IETF to publish Internet standards.

5



6 2. BACKGROUND

The first Internet security standard published by IETF was TLSv1.0 (RFC 2246
[15]). As TLSv1.0 was heavily based on SSLv3 it was ready for release already in
1999 as shown in the timeline in Figure 2.1.

Figure 2.1: History of network security protocols

RFC 4346 [17] was released seven years later and defined as version 1.1 of TLS
as it was based on TLSv1.0. The difference between these two versions is mainly
the successor’s support for new cryptographic algorithms and countermeasures for
previously discovered attacks. In 2008, RFC 5246 [16] defined TLSv1.2 and it is
this version that is currently employed in most web applications. As TLSv1.2 is the
version focused on in this report, it is explained in detail in Chapter 3. Also included
in the timeline in Figure 2.1 is TLSv1.3 which is a pending draft [27].

2.2 Cryptography

Cryptography are the techniques studied and implemented with the goal of ensuring
secrecy and authenticity of information. A basic understanding of cryptography
is important in order to understand how TLS and network security works. The
area of cryptographic algorithms is large and it is commonly defined as three main
areas of study: symmetric encryption, asymmetric encryption and cryptographic hash
functions [36]. For the sake of network security relevant for this report, the next
sections will introduce symmetric and asymmetric cryptography.

2.2.1 Asymmetric Cryptography

Asymmetric Cryptography, or Public Key Cryptography, describes encryption systems
where secret keys are not shared between entities. Public key cryptography operates
with key pairs consisting of one private key and one public key. In this key pair, the
main feature is that when one key is used to encrypt a message into a ciphertext, the
other key is the only key able to decrypt the message into plaintext.

Consider the illustration in Figure 2.2 where Alice wishes to send a secret message
to Bob over a network link that is not secure. In this case, Bob has sent his public
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Figure 2.2: Encryption with Public Key cryptography

key to Alice, and with it, Alice encrypts the desired message. The secret message can
now be transmitted to Bob as a ciphertext, and Bob will be able to decrypt it with
his private key. Several different cryptosystems use asymmetric key techniques as a
source of security, among these are the RSA encryption algorithm [29], the Diffie-
Hellman Key Exchange (DHE) protocol [18] and the Digital Signature Algorithm
(DSA) [20]. Asymmetric key algorithms are also commonly used in a selection of
other protocols like Pretty Good Privacy (PGP) [21], SSH [37], and TLS [16].

2.2.2 Symmetric Cryptography

Symmetric key cryptography describes a selection of encryption methods that uses
the same cryptographic key for both encryption and decryption. Compared to the
public key cryptography example illustrated in Figure 2.2, Figure 2.3 shows that
the key used in an asymmetric encryption algorithm is defined as a shared secret
between Alice and Bob.

The main disadvantage of asymmetric cryptography is that when Alice knows
the shared secret and encrypts her message with it, Bob must know the same shared
secret in order to decrypt the ciphertext. Encryption by the use of the symmetric
key techniques typically use either a stream cipher like Rivest Cipher 4 (RC4) [30],
or a block cipher like the Advanced Encryption Standard (AES) [7]. Symmetric
ciphers can also be used to guarantee that a message has not been tampered with
during encryption. By using a Message Authentication Code (MAC) [11] generated
by symmetric cipher like Cipher Block Chaining (CBC)-MAC, message integrity can
be ensured.
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Figure 2.3: Encryption with Asymmetric cryptography

2.3 OSI Reference Model

The Open Systems Interconnection (OSI) Reference Model is a model created by
the International Organization for Standardization (ISO) to apply a standardized
architecture for communication in a computing system [38, 26]. This stacked ar-
chitecture model has seven different layers: Application Layer, Presentation Layer,
Session Layer, Transport Layer, Network Layer, Data Link Layer, and the Physical
Layer. By providing a standardized layered architecture, as described by Figure 2.4,
the goal of the OSI model was to achieve interoperability of different communication
systems using standard protocols.

The lowest layer in the OSI model is the physical layer. This layer’s task is to
focus on transmitting and receiving a raw bit stream over a physical medium like
cables and optical fiber. Layer number two in this model is the data link layer which
task is to transfer data frames between two nodes on the physical medium. The data
link layer also provides error-free transfers by the use of the Logical Link Control
(LLC) protocol and the Media Access Control (MAC) sublayer. Layer number three
in the OSI model is the network layer which controls the routing and switching
operations of the subnet by the use of the Internet Protocol (IP). Layer number
four is the transport layer which makes sure that messages are delivered in the
correct sequence and without errors. A selection of transmission protocols used by
the transport layer exist, but most commonly used are the Transmission Control
Protocol (TCP) and User Datagram Protocol (UDP) protocols. The session layer is
layer number five in the OSI model and its purpose is to provide services to establish
sessions between entities in the presentation layer. The presentation layer is like a
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Figure 2.4: The seven layers of the OSI architecture

translator for the network as data is formatted so that it can be represented in the
final layer. Layer number seven is the application layer which is also the final layer.
In this layer all processed information is displayed to users. This display is typically
achieved by the use of the HTTP or the File Transfer Protocol (FTP) protocols.

Figure 2.5: Five-layer Internet protocol stack
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Derived from the OSI model is the Five-layer Internet protocol stack shown in
Figure 2.5 [23]. A layer in these architectures serves the layer above it and is being
served by the layer below it. As shown in the two figures, the Internet protocol stack
is a simplified version of the OSI model, and Figure 3.1 in the next chapter shows
how the TLS protocol fits between the application and the transport layer. Another
security solution may be applied in the network layer in the form of the Internet
Protocol Security (IPsec) protocol suite [22].

2.4 HTTP

HTTP is a generic, stateless application protocol first introduced in 1996 as HTTP/1.0
and later released as HTTP/1.1 in 1999 as RFC 2616 [19]. HTTP is implemented in
a client program and a server program and these two programs communicate with
each other by exchanging HTTP messages. Over the World Wide Web, HTTP is
the main form of data communication and the protocol defines the structure of the
messages communicated. A HTTP message can consist of a request from a client to
a server or a response from a server to a client:

HTTP-message = Request | Response ;HTTP/1.1 messages

2.4.1 HTTP Messages

As previously implied, HTTP is structured as a protocol based on requests and
responses. In Figure 2.6 it is illustrated that a client may send a HTTP request to a
server and the server will reply with a HTTP response.

Figure 2.6: Behaviour of HTTP requests and responses

HTTP Request A HTTP request message is a message from a client to a server
that indicates the action to be made on the resource identified by the protocol. In this
case, a resource is typically a file or an executable implemented on the server (like a
sign-out method). Defined in the specification for HTTP/1.1 are eight methods each
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of which identifies the action to be made. These methods, as well as their description
are listed below.

◦ OPTIONS: For a given Uniform Resource Locator (URL), the OPTIONS method
returns the HTTP methods that the server supports. Not typically called by
requesting a common resource, but rather a “*”.

◦ GET: When a Request-Uniform Resource Identifier (URI) is identified, the GET
method returns the entity information from it. This entity can typically be a
simple web page.

◦ HEAD: The HEAD method is almost identical to the GET method above. The
difference is, that when the server sends a response, the message-body should
not be returned, only the message-headers.

◦ POST: The POST method requests that the server accepts the entity enclosed
in the request message. This method is typically used when submitting a web
form (like registering a user to a web site or casting a vote).

◦ PUT: An enclosed entity is requested to be stored under the supplied URI by
the use of the PUT method.

◦ DELETE: A specified resource can be deleted by the use of the DELETE method.

◦ TRACE: When calling the TRACE method, a client will be able to see what the
other end of the request is seeing. To achieve this, the method invokes a remote
loop-back of the request message.

◦ CONNECT: HTTP uses the CONNECT method exclusively for proxies with the
ability to switch to being a tunnel dynamically (i.e. SSL Tunneling).

HTTP Response A HTTP response message is the response a server sends after
receiving and interpreting a HTTP request from a client. A server’s response will
contain a status code with an associated text indicating the meaning of that particular
status code. All the different status codes supported by HTTP can be found in
Appendix A. This report deals mostly with the 200 - OK status code indicating that
an action has been successfully received and the 302 - Found status code indicating
that a redirect has to happen before completing the request.

2.4.2 HTTP Secure

As observed in the address bar in web browsers, a secure connection is indicated with
the “https” protocol identifier. HTTPS is, essentially, the HTTP protocol described
above when used over TLS [28]. The secure HTTPS traffic will be distinguished from
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the insecure HTTP traffic by the use of a different port. From this, using HTTP
over TLS should be as simple as using HTTP over TCP.

2.5 Network Analysis

Throughout the course of this type of research, a lot of network traffic need to
be recorded and analyzed. This report refers to basic network analysis techniques
when explaining how certain types of information have been obtained. The following
sections will provide a brief description of these techniques.

2.5.1 Wireshark

Wireshark is a tool used to analyze network protocols by capturing packets over a
network and displaying the packet data in detail [6]. The tool is free, open source, and
is available on most platforms and what differentiates Wireshark from other network
packet analyzers is its graphical front-end. The uses for Wireshark are many as it can
be used for troubleshooting network problems, debugging protocol implementations,
learning details of network protocols, and examining security problems.

Wireshark is able to capture all packets traversing a network, but it is the
tool’s ability to Filter packets on defined criteria that makes it very useful when
information needed in this report is obtained. For the purposes of examining packets
encrypted with the TLS protocol later in this report, a ssl filter can be applied to
a Wireshark capture and the tool will obey by only displaying packets using the
SSL/TLS protocol. In addition to this protocol filter, the ip.src filter can be used
to only display outgoing traffic. By using these two filters, TLS traffic sent from the
Virtual Machine (VM) in Section 5.2 could be analyzed with ease by reviewing the
displayed packets that pass through these filters.

2.5.2 iptables

iptables is a Linux administration tool used for filtering network packets and Network
Address Translation (NAT) [2]. It is controlled as a command line program and
allows system administrators to configure tables provided by the firewall in the Linux
kernel. By using iptables, a system administrator is allowed to define tables and
populate them with chains of rules describing how to handle network packets. A rule
in iptables specifies what to do with a packet that matches this particular rule by
jumping to a “target”. iptables allows four different targets: ACCEPT, REJECT, LOG
and DROP.

In this report iptables is mainly used as a way of dropping certain packets (like
sign-out requests) sent and received over the network. As an example of how iptables
is used to do this, the command below can be observed.
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iptables -A OUTPUT -m length --length <<size of packets in bytes>>
-j DROP

The iptables program will interpret the command above in the following way. The
-A flag will inform iptables that the incoming rule is to be appended to the current
rule chain. OUTPUT indicates that the new rule only applies to outgoing traffic. Next
is the -m packet matching module. This module is followed by a module name and
in this case it indicates that the rule should match depending on the length of the
packets captured. –length followed by a chosen number indicating the packet size
further specifies more precisely which packets that will match the new rule. Finally,
the -j flag specifies which target iptables should jump to if the new rule receives a
match. In cases where certain packets are to be blocked from the network the DROP
target is used, and with it, iptables will ignore the packet and stop processing the
rules in the current chain.

2.6 Truncation

This report explores, in depth, the variation of truncation attacks against TLS that
can be attempted in order to exploit certain logic flaws in web applications and
web browsers. To provide the reader with a more general understanding of how
these attacks work, this section aims to give a brief introduction to the meaning of
truncation in the field of computer science.

By definition, truncation involves limiting the number of digits on the right side
of a decimal point. However, when talking about truncation of a message or a
HTTP request, truncation means specifically leaving out the last part of the message
or request. As a typical example of how truncation is often done automatically in
computers and applications, consider a field in a registration form that only allows 128
characters. If a user types in a message larger than the 128 allocated characters, an
application will typically ignore the last part of this message and take the remaining
128 characters as valid input. This report will look into various attacks where the
principle of truncation can be used to drop parts of messages or dropping entire
messages altogether when an adversary has full control over a network.





Chapter3Transport Layer Security

TLS is a protocol that provides secure communication over the Internet. Secure
communication in this case means that the protocol allows a client and a server to
communicate without the interference from a third party as it is designed to prevent
message tampering or forgery as well as eavesdropping. This chapter, in its entirety,
is based on the protocol documentation for TLSv1.2 as specified by RFC 5246 [16].

While providing privacy and data integrity between two communicating appli-
cations remains the primary goal of the TLS protocol, RFC 5246 describes TLS as
a protocol with four goals. These protocol goals are described below as defined in
RFC 5246 [16, Section 2]:

1. Cryptographic security: Two parties will be able to establish a secure connection
by using TLS.

2. Interoperability: Without knowing each others code, two independent pro-
grammers should still be able to implement applications with TLS and still
successfully negotiate cryptographic parameters.

3. Extensibility: By providing a framework that accepts new public keys and
encryption methods, TLS accomplishes two new sub-goals: the need for a new
protocol is prevented and the need for a new security library is avoided.

4. Relative efficiency: The TLS protocol includes an optional session caching
scheme with the goal of reducing the number of connections established from
scratch. This scheme is included because public key operations and other
cryptographic operations tend to be highly Central Processing Unit (CPU)
intensive. In addition to this, TLS is implemented to avoid unnecessary network
activity.

To achieve these goals, the TLS protocol is composed of two layers: the Record
Protocol and the Handshake Protocol. Figure 3.1 describes the manner in which the

15
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TLS protocol’s layers operates between the application layer and transport layer as
they are described by the OSI model in Section 2.3.

Figure 3.1: Layering of the TLS subprotocols in the OSI model

The TLS protocol comes with one very particular advantage in that it doesn’t
require the application protocol running on top of it to be of any particular kind.
As an example, both the HTTP and the FTP protocols may lay on top of the TLS
protocol without any problems. Security can be added to each of these protocols by
using the TLS standard. This standard does not, however, specify how said security
should be added. It is the job of a protocol designer to make the correct choices
when implementing security.

3.1 TLS Record Protocol

Figure 3.1 show the TLS Record Protocol on top of the transport protocol TCP. The
TLS Record Protocol applies two basic properties to achieve TLS’ goal of connection
security:

◦ Private connection: Even though the Record protocol can be used without
encryption, data is in most cases encrypted by using symmetric cryptography
(See Section 2.2.2).

◦ Reliable connection: By using a keyed MAC, a message integrity check is
included in the message transport. This MAC is computed by some secure
hash function like one of the Secure Hash Algorithm (SHA) variations.
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From an application layer protocol, like the HTTP, data is received by the Record
Protocol and transmitted to the transport layer (TCP). Before data is transmitted to
TCP, the Record Protocol applies its basic properties to ensure connection encryption
and reliability.

3.1.1 Connection States

TLS operates with Connection States. Such a state describes the operating envi-
ronment of the TLS Record Protocol. The connection states specify a compression
algorithm, an encryption algorithm and a MAC algorithm. In theory, there exist
four different connection states: current read and write states, and pending read and
write states. When a record is processed (as described in the section 3.1.2), it is done
under the two current states. The pending states are set by the TLS Handshake
Protocols described in section 3.2.

3.1.2 TLS Record Layer Process

The first step of the Record Layers process is to fragment blocks of information
received into TLSPlaintext records of 214 bytes or less in length. All of these records
are then compressed by using the compression algorithm specified in the current
session state (see section 3.1.1). If a compression algorithm is not defined, it is defined
as CompressionMethod.null by default as one compression algorithm must always
be active. The compression of a TLSPlaintext structure into a TLSCommpressed
structure may not increase the total content length by more than 1024 bytes. If a
larger fragment of TLSCompressed than 214 bytes if found during decrompression, a
fatal decrompression error is reported by the Record layer.

The next step in the Record Layer process is translating the TLSCompressed
structure into TLSCiphertext. This is done by using encryption and MAC functions.
A record’s MAC counteracts the possibly missing, extra or repeated messages by
including a sequence number, and the whole encryption process can be reversed by a
decryption function.

The record is now almost ready to be transmitted to an underlying protocol.
Finally, this process appends a Record Protocol header to the TLSCiphertext record.
Included in this header are the protocol version, content type and the total length
of the TLSCiphertext. These fields describe which SSL/TLS version employed, the
protocol delivering data to the Record Protocol and the size of the data fragment,
accordingly. The understanding of the process described in this section is simplified
by Figure 3.2.
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Figure 3.2: TLS Record Layer process

3.2 TLS Handshaking Protocols

The TLS Handshaking Protocols describes three subprotocols (management protocols)
used by TLS to allow the agreement of security details between peers. Among other
things, these subprotocols allow peers to authenticate themselves and report errors
to each other. When negotiated, these security details forms the security parameters
used by the TLS Record Layer when protecting application data. A list of these
session items and their description can be found in Appendix B.1. The following
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sections describe these three subprotocols.

3.2.1 Change Cipher Spec Protocol

The first subprotocol is the Change Cipher Spec Protocol. This protocol includes a
single byte message of value “1” that exists with the purpose of signaling changes in
ciphering strategies.

struct {
enum { change_cipher_spec(1), (255) } type;
} ChangeSipherSec;

If a change in such strategies is imminent, the receiving party is notified by the
aforementioned message, for both the server and the client. When the message is
received, the receiver instructs the record layer to replace the read current state with
the read pending state. In the same way the sender copies the write pending state
into the write current state (See Section 3.1.1).

3.2.2 Alert Protocol

The second subprotocol is the Alert Protocol that concerns alert type messages
supported by the TLS Record Layer. These messages consist of a description and a
severity assessment of the occurring alert. An alert can either be of warning or of
fatal severity. In the case of a fatal level alert message, an immediate termination
of the TLS connection will occur. Other TLS connections residing under the same
session may still continue in this case under the assumption that the session identifier
is invalidated to prevent the creation of new connections under the failed session.
Appendix B.2 lists all possible error messages and codes recognized by the TLS record
layer [16, §7.2.1]. These messages are, like all other messages in TLS, encrypted and
compressed according to the rules set by the current connection state.

Closure Alerts

To avoid the truncation attacks described in Section 4.2 in the next chapter, the
client and the server sharing a TLS connection have to both acknowledge the closing
of a connection. This acknowledgement may be initiated by either the client or the
server, and is done by the use of the close_notify message found in Appendix B.2.

A close_notify message notifies either a client or a server that no other messages
will be sent by the party initiating the close_notify message on their shared TLS
connection. The receiver of a close_notify message must immediately respond with
their own close_notify message forcing the connection between the two parties to
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close at once. Any pending writes on the connection is ignored, and beyond this
point all data received over the connection is ignored.

3.2.3 Handshake Protocol

Perhaps the most complex part of the TLS protocol is the Handshake Protocol. Its
responsibility is to allow authentication of a server and a client, as well as negotiating
an encryption algorithm and cryptographic keys before application data is exchanged.

The TLS Handshake Protocol applies three basic properties to the TLS goal of
connection security:

◦ The identity of each peer can be authenticated by using asymmetric cryptogra-
phy (See Section 2.2.1).

◦ Secure negotiation of a shared secret: when a shared secret for a connection
is negotiated between two parties it cannot be obtained even by an attacker
attempting eavesdropping by placing himself in the middle of an authenticated
connection.

◦ Reliable negotiation: an attacker trying to modify the negotiation communica-
tion between two parties will be detected.

The session states described in Section 3.1.1 and their cryptographic parameters
are produced by the TLS Handshake Protocol. A TLS Handshake process is initiated
when a client and a server start their communication. This process is described
below.

Establishing a Secure Session by Using TLS

When a Handshake process is initiated between two parties, there are several steps
involved. All of these steps form a message flow between the two parties including
only the handshake messages shown in Appendix B.3 [16, §7.4]. This message flow is
described in Figure 3.3 where “*” denotes optional messages. Also included in the
message flow in Figure 3.3 are Change Cipher Spec protocol messages, as they play
an important role in the TLS handshake.
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Figure 3.3: Message flow for a full TLS handshake

The following steps explain the TLS Handshake further:

1. The first necessary step of the handshake is that the client is required to
send a ClientHello message. This message includes a random value associated
with the client (ClientHello.random), as well as a list of the client’s supported
compression algorithms.

2. The response given by the server must be a ServerHello message. If this it not
the case, a fatal error will occur. This message is sent on the premise that a
set of algorithms are agreed upon, and it includes the server’s random value
(ServerHello.random).
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3. At this point the server may send additional messages to the client. The first
of these messages is the server’s Certificate message. This message is sent if
the server is to be authenticated, and it includes the server’s certificate. This
certificate must, unless explicitly specified otherwise, be of type X.509v3 [14].
Another applying rule to the server’s certificate is that it must be compatible
with the agreed upon key exchange algorithm.

4. If a server sends a Certificate message to the client, a ServerKeyExchange
message may also immediately be sent. Such a message may only be sent if
the previous message contains insufficient data to allow the client to exchange
a premaster secret. This case is only caused by certain key exchange methods.

5. When a server has been authenticated by its certificate, it may send a Cer-
tificateRequest message prompting the client to provide his certificate. The
CertificateRequest message is sent immediately after either the Certificate or
ServerKeyExchange message, and depends on the selected cipher suite.

6. After the optional messages have been sent, or not sent, by the server, it will
send a ServerHelloDone message. This message indicates an end to the phase
of the handshake that includes hello associated messages. From the server’s
point of view, a waiting period follows as the client’s response is imminent.

7. The first part of the client’s response depends on whether or not optional
messages has been sent by the server. If a CertificateRequest message has been
received by the client, he must first respond with a Certificate message. A
client’s certificate is subject to the same rules as that of a server.

8. Contrary to the optional ServerKeyExchange message which may be sent by
the server, the client must always send a ClientKeyExchange message. If no
client certificate is requested by the server, this is the first message a client
must send upon receiving a ServerHelloDone message. A public key algorithm
was agreed upon during the “hello” phase of the handshake, and it is based on
this algorithm the ClientKeyExchange message gets its content. The content of
this message sets the premaster secret, which is derived from the client’s own
public key parameters. This premaster secret may also be encrypted with the
public key provided by the server’s certificate.

9. When a client certificate is sent to the server during this handshake, it may
be a certificate with signing ability. If this is the case, a CertificateVerify mes-
sage must immediately follow the ClientKeyExchange message. This message
provides explicit verification of the client sending the certificate.

10. The client’s pending session state is now copied into its current session state by
the use of a ChangeCipherSpec message, and the client sends a final Finished
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message. The purpose of the Finished message is to provide verification of a
successful negotiation of the new algorithms, keys and secrets.

11. In the same way as the client before, the server now responds with ChangeCi-
pherSpec message and copies its pending session state into its current session
state. Immediately after, the server sends a Finished message with same
purpose as the client’s Finished message.

3.2.4 Cryptographic Computations

Only one more step remains in order for a protected connection to be fully established.
To establish this connection, the TLS Record Protocol requires the client and server’s
random values, specification of a suite of algorithms (cipher_suite) and finally a
master secret. All of the necessary algorithms and the cipher_suite are selected
during the Client and Server Hello messages as well as the random values. The
master secret now needs to be calculated.

When a key exchange method is used to create a pre master secret, it is the
same algorithm that converts the pre master secret into the master secret. When
this conversion takes place, the pre master secret is deleted from memory. TLS
uses a Pseudorandom Function (PRF) to calculate the master_secret from the
pre_master_secret and the client and server’s random values as described below.

master_secret = PRF(pre_master_secret, "master secret",
ClientHello.random + ServerHello.random)
[0..47];

A master secret used in TLS will always be 48 bytes in length, and when all this is
done, the client and the server may begin to communicate data over the application
layer. All Application Data between the server and the client is now sent over a
newly established secure channel as denoted by the dotted line in Figure 3.3.
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As the Transport Layer Security protocol is by far the most common source of
application security today, it has been extensively researched in order to uncover
design flaws [31]. This chapter aims to introduce some of the different attacks aimed
towards breaking TLS.

4.1 Summarizing Known Attacks on TLS

When developers implement application security, the TLS protocol remains the
supplier of this security. Several attacks on TLS have been discovered over the last
years, and many of them have proven to be of serious threat. Although this section is
not intended as a very detailed list of some of the many attacks made in an attempt
to break TLS, it is meant to be an introduction to the many issues associated with
TLS before looking further into attacking the termination process of the protocol.
Below the reader will find a list of some of the other well-known attacks against TLS
as described by RFC 7457 [31].

◦ SSL Stripping: describes a selection of attacks aimed towards modifying
unencrypted protocols that requests the use of TLS. These modifications are
made with the goal of removing the use of SSL/TLS.

◦ BEAST: the Browser Exploit Against SSL/TLS (BEAST) attack is an attack
that successfully proved the possibility of decrypting HTTP cookies when
HTTP was running over TLSv.1.0.

◦ Padding Oracle Attacks: is a selection of attacks that relies on the way
TLS adds a MAC before encryption. Among others, this selection of attacks
include:

◦ Lucky Thirteen Attack
◦ POODLE Attack

25
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◦ Attacks on the RC4 encryption algorithm: describes several attacks
attempting to exploit cryptographic weaknesses in the RC4 algorithm.

◦ Compression Attacks: is the common name given as a description to attacks
that focus on the data compression in TLS. These attacks include:

◦ CRIME Attack
◦ TIME Attack
◦ BREACH Attack

◦ Renegotiation Attack: describes an attack on the mechanism that handles
session renegotiation in TLS.

◦ Triple Handshake Attack: is an attack focused around enabling an attacker
to cause shared keying material between two TLS connections.

◦ Denial of Service: is an attack aimed towards exhausting computing or
network resources by for example sending a massive amount of requests towards
these resources.

This selection of attacks have been around for a varied amount of time. From the
perspective of the authors of RFC 7457, the attacks on TLS are only getting more
and more complex. However, many of these attacks have already been addressed,
and several more will be, pending the publication of TLSv1.3 [27]. TLSv1.3 is still a
working progress draft, and it is, therefore, the responsibility of a web application
designer to be aware of which necessary steps that need to be taken to counteract
many of these attacks.

4.2 Truncation Attack

When a TLS connection is being torn down, a truncation attack can be attempted.
Historically, the truncation attack started by exploiting a design flaw in version 2 of
the SSL protocol. SSLv2 allowed either side of a connection to send a TCP FIN flag,
initiating a termination of the session [12]. In a truncation attack against SSLv2, an
attacker can, by forging a TCP FIN, make it appear as though a message is received
shorter than intended by the sender. As an example of this, imagine an application
using SSLv2 and that fragments data records into blocks. Suppose further that this
application handles wire transfers and that a user wishes to initiate a wire transfer
to Charlie’s angels. Wire transfers in this application come in the form of a HTTP
request, and may look like the following.
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POST /wire_transfer.php HTTP/1.1
Host: mybank.com
Content-Type: application/x-www-form-urlencoded
Content-Length: 40

amount=1000%recipient=Charlie%25_Angels

Let us now say that TLS fragments this request in the following way: “POST [...]
recipient=Charlie” and “%27s_Angels”. In this case, an attacker drops the last
fragment of the message by forging a TCP FIN and thereby closes the underlying
TCP connection. By forging a TCP FIN after the first fragment has been received,
the receiver (or server) will now only receive the part of the recipient field that says
Charlie. The result of this is that the wire transfer will end up there rather than
with the intended Charlie’s Angels [35].

This example application ignores both the connection termination status and
the Content-Length field, meaning that the application accepts all payload shorter
than the specified length [35]. This type of attack works on this application because
it does not include in its implementation any way for the receiver to know what
message size to expect, and thus the receiver believes that the message received is
the correct one.

To counteract this obvious design flaw, the design of SSLv3/TLSv1 introduced an
alert message called close_notify (see Section 3.2.2). This close_notify message
makes all the difference in the example above. When the user sends his message, the
receiver will wait for a close_notify message to indicate that the message is finished.
If the last part of the message is then deleted by an adversary, the close_notify will
not arrive either. From this, the receiver recognizes that the message is incomplete.

4.2.1 Termination Modes

When defining the guarantees of TLS security it is done with respect to two termina-
tion modes. The two of termination modes in TLS are graceful connection closure
and fatal closure. A graceful closure occurs in the event of a successful end to a
connection, and with it, TLS guarantees that all messages are received as sent. A
fatal closure occurs when something goes wrong when ending a connection, and
with it, TLS only guarantees that a prefix of all messages is received as sent. As
described in Section 3.1.2, TLS allows fragmentation of messages. In a similar way as
with messages, TLS guarantees the delivery of all fragments in order upon graceful
closure, and a prefix of all fragments upon fatal closure. Ignoring these termination
modes has been the case for most web browsers in the past [35, 13], and there are
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still many web browsers which do not distinguish between these two termination
modes resulting in them being vulnerable to truncation attacks.

Chapter 5 describes several cases where web browsers inability to distinguish
between these modes may lead to serious consequences. However, while the afore-
mentioned example focused on truncating TLS fragments, the attacks in Chapter 5
focus on truncating entire messages.

4.2.2 The Cookie Cutter Attack

Truncating TLS messages and fragments, as described in Section 4.2, is not the only
way truncation attacks may affect users. Still exploiting many browsers’ lack of
distinction between TLS termination modes, a new type of truncation attack was
presented in 2014, called the Cookie Cutter attack [13]. While the truncation attack
described above is focused on the termination procedure of SSL/TLS connections,
the cookie cutter attack can be applied when a login form is posted by truncating
headers of HTTP messages.

HTTP Cookies are small pieces of data stored in a user’s web browser while
browsing different websites [10]. These cookies are sent from the website a user is
visiting, and their goal is to store information about the user. Such information may
include stateful information (i.e. shopping carts etc.) and browsing activity as well
as previously entered usernames and passwords related to the user. When a server
wishes to send cookies to a user, it is done by using a Set-Cookie HTTP response
header. After this header, a secure flag can be appended in order to protect the
cookie’s confidentiality [10]. Note that this flag is appended after the cookie has
been set, making it possible to truncate. By truncating this flag and redirecting the
user to an unencrypted URL, an attacker can recover the information stored in the
cookie.

Let’s review an example web application located at https://x.com/ which uses
a login form at https://x.com/login?go=P to set a session cookie and to further
redirect the user to https://x.com/P. The response header from this login form will
then look something like the following.

HTTP/1.1 302 Redirect
Location: https://x.com/P
Set-Cookie: SID=[AuthenticationToken]; secure
Content-Length: 0

After a successful login to a web application, a redirection often occurs. In the
response header after such a redirection, a Location field is included, which again
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includes parameters taken from the request sent. These parameters often describe
the page a user accessed before trying to log in, and they can often be controlled by
an attacker if he controls the network. An attacker who controls the network, can,
by using different techniques, control the TLS fragmentation explained in Section
3.1.2. These techniques involve triggering a request with a selected path and injecting
data to this request’s Cookie header. In the header above, an attacker can choose a
value for P that causes the fragment to end just before the “;” character. By now
truncating the second fragment, the cookie will be stored without its intended secure
flag, making it available for an attacker to review [13].

As mentioned on several occasions in this chapter, these attacks are possible due
to web browser’s poor handling of TLS termination modes. Concretely, the web
browsers Chrome, Opera, and Safari all accepted incomplete HTTP headers when
the Cookie Cutter attack was discovered. Bhargavan et.al. [13] summarized the
possible truncations in modern browsers. Due to the increased likeliness that mobile
versions of browsers connect to untrusted networks, they received more focus as
Table 4.1 suggests.

Browser In-Header
truncation

Content-Length
ignored

Missing last chunked
fragment ignored

Android 4.2.2 Browser X X X

Android Chrome 27 X X X

Android Chrome 28 7 7 X

Android Firefox 24 7 X X

Safari Mobile 7.0.2 X X X

Opera Classic 12.1 X X X

Internet Explorer 10 7 X X

Table 4.1: Successful TLS truncations in mobile browsers [13]. Xindicates that the
truncation was successful, and 7 indicates that the truncation failed.

Table 4.1 show a selection of mobile browsers and their vulnerability to different
types of truncation. As indicated by Xin Table 4.1, a web browser is only susceptible
to the Cookie Cutter attack if In-Header truncation is allowed, the Content-Length
field is ignored, and if the browser ignores cases where the last TLS fragment is
Missing. The research done by Bhargavan et.al. allowed them to successfully launch
the Cookie Cutter attack against Google Accounts in 2014.
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In a paper published in 2013 by Ben Smyth and Alfredo Pironti [35], it was shown
that certain web application flaws could be exploited by performing truncation
attacks, as described in section 4.2, on TLS connections. The following chapter will
provide a practical investigation of how the authors were able to cast votes on behalf
of honest users in an electronic voting system (Helios), gain temporary access to
Google accounts as well as gain full access to Microsoft Live (Hotmail) accounts. As
the paper by Smyth and Pironti was published three years ago, changes may have
been made in the logic of these applications. Because of this, this chapter will also
include an assessment of the effects the same attacks have on the same applications
three years later.

5.1 Violating Beliefs

There exists no guarantee from TLS that an application is protected from logical
flaws. As stated in Chapter 3, it is the job of the designer to make the correct choices
when implementing application security. Furthermore, TLS does not guarantee the
ordering of messages in multiple connections within the same session. Only the
correct ordering of a single connection is ensured, and a web application normally
notifies a user of a server’s state by using some form of mechanism to provide the
user with either positive or negative feedback. While negative feedback typically
comes in the form of an error message, positive feedback provides the user with
information about a successful state change. A successful state change can be in the
form of a “You have been logged out” message, and providing a user with this type
of feedback at the wrong time can be described as a logical application flaw. Smyth
and Pironti noticed that these types of logical flaws were not uncommon, and by
focusing on web applications providing users with positive feedback before the actual
state change occurs, they were able to attack the sign-out procedures of real-world
web applications. During the course of the attacks described in this chapter a fair
amount of information is obtained by using some basic traffic analysis techniques.

31



32 5. TRUNCATING TLS CONNECTIONS

The reader is in these cases referred to Section 2.5 which provides an introduction to
these network analysis techniques.

5.2 Setup

The three attacks following this section are made possible when making a selection
of assumptions and using the setup described in this section. It is assumed during
the course of these attacks that an adversary has full control of the network and
that the web applications are able to achieve their objectives despite of this. An
adversary’s complete control of the network will allow reading, deleting and injecting
messages. An honest user is using a shared computer (i.e. public library computer)
which the adversary also has access to but cannot tamper with. The shared computer
was modeled as a VM running Ubuntu 10.04.4 Long Term Support (LTS) and the
network was modeled as the host computer controlled by an adversary. During the
recreation process of imitating the attacks described by Smyth and Pironti, the
shared computer was modeled as another VM running Ubuntu 14.04.3 LTS with the
newest version of Firefox, and the network was modeled as before. This LTS Ubuntu
version comes with five years of security and maintenance updates [4]. During the
course of recreating the attacks described by Smyth and Pironti, experiments were
made using a selection of other setups. These experiments are explained further in
Chapter 6.

5.3 Helios Electronic Voting System

The Helios Electronic Voting System is an open source, end-to-end verifiable electronic
voting terminal created to provide an online version of secure ballot casting in elections
[8]. After an analysis of the authentication logic of the Helios release from 2012,
Smyth and Pironti discovered a flaw in the authentication logic. Upon casting a vote
in Helios, users are being automatically signed out. However, Smyth and Pironti
discovered that voters are given feedback saying that they have been signed out
before the actual log off request is made.

The trace shown in Listing 5.1 describes the procedure of requests made by a
browser when a user chooses to cast a vote. Request number one in this trace is
answered by a redirect by the server as the user confirms his vote. The redirect
from the first request is handled by the second, the server then responds with an
Hypertext Markup Language (HTML) payload containing a ballot receipt and a
notification message informing the user that a successful logout has occurred. The
third and final request described in Listing 5.1 is the actual sign-out request. This
request is also answered by a redirect from the Helios server. By being aware of this
authentication flaw, an adversary will be able to drop log off requests if the adversary
has, as described in Section 5.2, full control over the network.
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1 . POST https : // vote . h e l i o s v o t i n g . org / h e l i o s / e l e c t i o n s / id /
cast_conf irm
Response : 302 − Moved Temporari ly
Locat ion [ https : // vote . h e l i o s v o t i n g . org / h e l i o s / e l e c t i o n s /
id /cast_done ]

2 . GET https : // vote . h e l i o s v o t i n g . org / h e l i o s / e l e c t i o n s / id /
cast_done
Response : 200 − OK: HTML payload
. . .
<p><b>For your sa f e ty , we have logged you out .</b></p>
<if rame border=" 0 " , s r c=" /auth/ logout " frameborder=" 0 "
he ight=" 0 " width=" 0 ">
</iframe>
. . .

3 . GET https : // vote . h e l i o s v o t i n g . org /auth/ logout
Response : 302 − Moved Temporari ly
Locat ion [ https : // vote . h e l i o s v o t i n g . org / ]

Listing 5.1: Trace for voting/sign-out procedure in Helios [35]

5.3.1 The Attack

The actual attack made on the Helios voting system published in 2013, makes use of
the authentication flaw described above. In a video published 14 September 2012
[32], Ben Smyth demonstrates this attack as its goal is to truncate a voter’s sign-out
request, request number 3 in Listing 5.1, after the feedback of a successful logout
has been sent. In this case the server will never be notified of the pending logout
request, and the voting terminal and the server will still have an active session.

As mentioned in Section 4.2, TLS does not provide enough protection against this
kind of attacks. One TLS connection is independent from another, and the protocol
does not guarantee the ordering of messages between several connections within the
same session [35]. This means that when an adversary drops request number 3 in
the logout procedure, he would still be able to make a future connection with the
helios server. This will again give him the opportunity of casting votes on behalf of
honest users. The fact that all requests described in Listing 5.1 are encrypted using
TLS does not cause any major problems when carrying out this attack. The sign-out
request was, after some basic traffic analysis, recognized by Smyth and Pironti by
its fixed length of 701 bytes. By using iptables, a firewall could be setup at the host
and configured to drop all packets of this size. This is done by issuing the following
command in the host’s terminal window:
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iptables -A OUTPUT -m length --length 701 -j DROP

After the host’s firewall is configured with this command, all packets of length
701 are dropped when arriving from the VM (or voting terminal). Even though this
occurs without the voter noticing, the attack can be detected at a later stage given
that Helios is an end-to-end verifiable system meaning that voters can review their
own votes [8]. Helios does not, however, provide accountability in the event of such
attacks. The reasoning behind this, is that the honest voter cannot prove that an
adversary has been responsible for votes cast after a certain point in time.

Countermeasures With the discovery of this vulnerability in the Helios voting
system, a few countermeasures were suggested with the publishing of the results
from Section 5.3.1. An obvious patch for this logic flaw is to make sure the feedback
suggesting a successful logout does not appear before the actual sign-out request.
Another suggestion is to make all actions in Listing 5.1 atomic, meaning that all three
requests are made simultaneously. Also worth mentioning is that closing the browser
completely and or clearing the cache, cookies, and otherwise manually destroying
the session, will render the attack useless.

5.3.2 Recreating the Attack

Now, three years later, the trace of requests made by the browser when a voter casts
a vote is identical to the trace described in Listing 5.1. In fact, a capture made in
Firefox (see Figure 5.1) during a ballot casting 1 show the sign-out procedure as
identical to the one from three year ago.

Figure 5.1: Firefox capture of trace in Helios

After some network analysis it became apparent that request number 3 no longer
is 701 bytes in length. Instead the sign-out request now has a size of 551 bytes. This
is due to the fact that a different browser version is being used. By using iptables,
a firewall could be setup at the host and configured to drop all packets of this size.
This is done by issuing the following command in the host’s terminal window:

iptables -A OUTPUT -m length --length 551 -j DROP
1Capture made 28 April 2016
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Issuing this command will effectively drop the packet containing the sign-out
request, however this attack is no longer effective on the setup described in Section
5.2. As it turns out, the issue of web browsers ignoring the termination modes
described in Section 4.2.1 has been addressed. Firefox does now force the connection
to terminate when it notices that something happened to the request.

Given the scenario considered when conducting these types of attacks, it would
be interesting to see whether the results differ if the setup is more common. As
shown in Table 5.1, when all versions of Microsoft Windows are considered, it is by
far the most popular operating system to date. When considering the fact that most
computers that are shared (i.e. work computers, library computers etc.) are running
Windows with its default web browser Internet Explorer (IE) the attacks should be
recreated by using a VM running Windows rather than Ubuntu.

Table 5.1: Most widely used operating systems [3]

Windows Mac OS X Linux Other
78,9% 10,6% 5,5% 5,0%

From Microsoft’s own developer site, an already configured VM can be downloaded
and used for research purposes. In this next attack, the shared computer is modeled
as a VM running Windows 7 using IE11 (version 11 of Internet Explorer) as its
default browser. The network is again modeled as the host and controlled by an
adversary. After some network analysis, it turns out that the sign-out request used
by Helios when casting a vote is in this scenario is 569 bytes in length. As before, an
adversary configures the host’s iptables to drop packets of this size by issuing the
following command:

iptables -A OUTPUT -m length --length 569 -j DROP

By using this setup the user of the shared computer is not secure. By dropping
the sign-out request in this scenario, the session with Helios is never terminated.
An adversary can now simply refresh the Helios page and find a still active session
belonging to the honest user. The absence of distinction between the two termination
modes described in Section 4.2.1 turns out to be crucial for the attacks described by
Smyth and Pironti. IE11 lacks this distinction, meaning that truncation attacks on
TLS connections are still a threat to shared computers.
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5.4 Microsoft Services

During the analysis of several different web applications, Smyth and Pironti learned
that the Microsoft authentication logic has a flaw. Exploiting this flaw could give an
adversary full access to a user’s account. The trace in Listing 5.2 shows the most
significant details of a normal sign-out procedure as seen by a browser. This trace
also shows that, when a user is logged in on his Microsoft account, he is logged into
several Microsoft services, each of which stores some session information. When a user
chooses to sign out, it is not a centralized action. This means that the connection to
each Microsoft service is terminated separately. The procedure that is initiated when
a user signs off uses HTTP redirects and HTML pages with embedded Javascript
code. Javascript code, in this procedure, is loaded as shown in request 2 and 3 in
Listing 5.2.

1 . GET https : // l o g i n . l i v e . com/ logout . s r f ? ct=1364567198& rver
=6.1.6206.0& l c=1033&id=64855&ru=http\%2F\%2Fbay171 . mail .
l i v e . com\%2Fhandlers\%2FSignout .mvc\%3Fse rv i c e\%3DLive .
Mail&mkt=en−f r
Response : 200 − OK − HTML payload

2 . GET https : // s ecure . shared . l i v e . com/~Live . S i teContent . ID
/~17.0.11/~/~/~/~/ j s /Login_Core . j s
Response : 200 − OK.

3 . GET https : // s ecure . shared . l i v e . com/~Live . S i teContent . ID
/~17.0.11/~/~/~/~/ j s /Login_Alt . j s
Response : 200 − OK.

4 . GET https : // account . l i v e . com/ logout . aspx ? ct =1364567254
Response : 200 − OK

5 . GET https : // a c c oun t s e r v i c e s .msn . com/LogoutMSN . s r f ? ct
=1364567254
Response : 200 − OK

6 . GET http :// bay171 . mail . l i v e . com/ hand le r s / Signout .mvc?
s e r v i c e=Live . Mail&l c =1033
Response : 302 − Moved Temporarily ,
Locat ion [ http :// g . l i v e . com/9ep9nmso/so−EN−US]

7 . GET http :// g . l i v e . com/9ep9nmso/so−EN−US
Response : 301 − Moved Permanently ,
Locat ion [ https : // s i gnout . l i v e . com/ content /dam/imp/
su r f a c e s /mai l_signout /v7/mail /en−us . html ]

8 . GET https : // s ignout . l i v e . com/ content /dam/imp/ su r f a c e s /
mai l_signout /v7/mail /en−us . html
Response : 200 − OK

Listing 5.2: Trace of the sign-out procedure for Microsoft Live [35]
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Following this code, the user is signed out from account.live.com in step 4, accountser-
vices.msn.com in step 5 and mail.live.com in step 6. After every connection the user
has with Microsoft services have been terminated, the user is finally redirected to the
Microsoft Live homepage where he is presented with a message telling him “You’ve
been signed out”.

From studying this decentralized sign-out procedure, Smyth and Pirtonti found
that there was a flaw in the authentication logic which could be exploited in a very
specific way.

5.4.1 The Attack

The exploitation of this authentication flaw comes in the form of another truncation
attack. The idea behind this attack is as follows. A user first signs into his Hotmail
account by being sent to login.live.com where he authenticates. The user is then
redirected to a page where he can read his mail. Furthermore, as the user is
already signed in to Microsoft Live, he is automatically authenticated when he
visits account.live.com [34]. When the user is done, he sends a sign-out request
to Hotmail, and Microsoft’s authentication server responds by initiating a logout
procedure similar to the one described in Listing 5.2 where the goal is to terminate
the sessions with both Hotmail and account.live.com. While this is happening, an
adversary with full control over the network decides to drop the request terminating
the user’s session with account.live.com (request number 4 in Listing 5.2). Given the
fact that the sign-out requests 4-6 are independent from each other, the user will still
receive positive feedback indicating a successful logout. An illustration of this attack
is given in Figure 5.2 which indicates that the procedure proceeds as normal even
though one request has not been received. When the user then proceeds to leave the
computer, an adversary can use the same computer to access account.live.com and
all account information from the previous user will be available.

The truncation attack on Microsoft services is demonstrated in a video published
16 August 2013 [34]. This demonstration follows the same setup described in Section
5.2, and the network is configured to drop packets by using the following command
at the host:

iptables -A OUTPUT -m length --length 474:506 -j DROP

In advance of issuing this command, basic traffic analysis techniques were used
by Smyth and Pironti to find that the request terminating a user’s session with
account.live.com (request 4 in Listing 5.2) is between 474 and 506 bytes in length.
After truncating a user’s TLS connection, the video demonstrates how an adversary
can take full control of his account by accessing account.live.com as the user. When
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Figure 5.2: Illustration of the attack against Microsoft Live

logged in, the adversary will be able to add a recovery email to the honest user’s
account without having to reauthenticate. The adversary can then initiate a reset of
the current account password and allow a new password to be sent to the recently
added recovery email (belonging to the adversary). From this point on, the adversary
has full control over the account.

Countermeasures Along with the published results from this attack, Smyth and
Pironti also suggested some countermeasures to avoid this attack. Like with the
countermeasure suggested for the attack on the Helios voting system (see Section
5.3.1), manually closing the browser completely and or clearing the cache, cookies,
and otherwise destroying the session, will render the attack useless. Another, more
complicated countermeasure, is for the Microsoft authentication server to handle
the sign-out procedure centrally as well as requiring reauthentication when adding
account information. The final countermeasure suggested by Smyth and Pironti
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was to modify the entire sign-out procedure shown in Listing 5.2. This modification
entails handling the sign-out procedure as a chain of HTTP redirects over TLS. By
employing this solution, a HTML page including Javascript is never returned, and if
one request is dropped, the next one will not be initiated which again will lead to a
browser crash or an error message. Listing 5.3 describes such a solution.

1 . GET https : // l o g i n . l i v e . com/<<signout>>
Response : 302 − Moved Temporari ly
Locat ion [ https : // account . l i v e . com/<<signout >>]

2 . GET https : // account . l i v e . com/<<signout>>
Response : 302 − Moved Temporari ly
Locat ion [ https : // a c coun t s e r v i c e s .msn . com/<<signout >>]

3 . GET https : // a c c oun t s e r v i c e s .msn . com/<<signout>>
Response : 302 − Moved Temporari ly
Locat ion [ https : // mail . l i v e . com/<<signout >>]

4 . GET https : // mail . l i v e . com/<<signout>>
Response : 302 − Moved Temporari ly
Locat ion [ https : // s i gnout . l i v e . com ]

Listing 5.3: Countermeasure for the sign-out procedure in Microsoft Live [35]

5.4.2 Recreating the Attack

Three years after the publication of the attack, the sign-out procedure for Microsoft
accounts is made very different. As Figure 5.3 suggest, the countermeasures have
now been taken into consideration 2. The first detail worth mentioning is that
account.live.com and mail.live.com now both reside under outlook.live.com suggesting
a more centralized design. Also indicated by this capture is the fact that each session
is terminated as a chain of HTTP redirect, as indicated by the 302 response code on
the left in Figure 5.3. Upon attempting to block any of these three sign-out requests,
the browser hangs — leaving the original attack from 2013 unsuccessful.

Figure 5.3: Firefox capture of the new sign-out procedure for Microsoft Live

2Capture made 12 May 2016
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Apart from the difference in the sign-out procedure, Microsoft has made another
adjustment to their services. As the attack was explained in Section 5.4.1, it relied
heavily on the adversary’s intention of adding a recovery email to the user’s account
in order to initiate a password reset. When attempting to add a recovery email to
an account today, the user is shown a message indicating that at least 30 days must
pass before the new security info is updated. This message appears as shown in
Figure 5.4, and should give the owner of the account plenty of time to discover any
malicious intentions of an adversary.

Figure 5.4: Microsoft services’ 30 day rule

5.5 Google Services

The final attack described in Smyth and Pironti’s paper from 2013 is one targeting
Google accounts. Like the two previous attacks described in this chapter, this attack
is possible due to a flaw in authentication logic. The trace in Listing 5.4 describes
the sign-out procedure from the browser’s point of view when a user makes a sign-out
request from Google services. Although the trace does not contain every single
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detail of the procedure, it can be observed that the first action is that the session
with accounts.google.com is terminated and that a redirect follows. This redirect
responds with an HTML page containing an image and some Javascript code with a
doRedirect() function. Notice how the Javascript code is executed after the image
has been loaded. The third request observed in Listing 5.4 is the browser asking the
Gmail server for the image in request number 2. Before responding with the requested
image the server terminates the user’s session with mail.google.com. Having already
loaded the doRedirect() function from request 2, the browser is now redirected as
observed in step 4 and 5, before request number 6 loads the home page of Google.

1 . GET https : // accounts . goog l e . com/Logout? cont inue=https : //
www. goog l e . com/webhp
Response : 302 − Moved Temporari ly
Locat ion [ http ://www. goog l e . com/ accounts /Logout2? i l o=1& i l s
=mail , s .FR&i l c=0&cont inue=https : //www. goog l e . com/webhp?zx
=1388193849]

2 . GET http ://www. goog l e . com/ accounts /Logout2 ? i l o=1& i l s=mail
, s .FR&i l c=0&cont inue=https : //www. goog l e . com/webhp?zx
=1388193849
Response : 200 − OK; HTML payload :

<body onload=" doRedirect ( ) ">
<s c r i p t type=" text / j a v a s c r i p t ">

func t i on doRedirect ( ) {
l o c a t i o n . r ep l a c e ( " http ://www. goog l e . f r / accounts /Logout2

? i l o=1& i l s=s .FR&i l c=1&cont inue=https : //www. goog l e . com/
webhp?zx=1076119961 " ) ;

}
</s c r i p t >
<img width=" 0 " he ight=" 0 " a l t=" Sign Out "

s r c=" https : // mail . goog l e . com/mail ? logout=img&zx
=−2531125006460954395 ">
</body>

3 . GET https : // mail . goog l e . com/mail ? logout=img&zx
=−2531125006460954395
Response : 200 − OK; a one p i x e l g i f .

4 . GET http ://www. goog l e . f r / accounts /Logout2 ? i l o=1& i l s=s .FR&
i l c=1&cont inue=https : //www. goog l e . com/webhp?zx=1076119961
Response : 200 − OK; HTML payload :
<body onload=" doRedirect ( ) ">
<s c r i p t type=" text / j a v a s c r i p t ">
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f unc t i on doRedirect ( ) {
l o c a t i o n . r ep l a c e ( " https : //www. goog l e . com/webhp " ) ;

}
</s c r i p t >
<img width=" 0 " he ight=" 0 " a l t=" Sign Out "

s r c=" https : // accounts . goog l e . f r / accounts /ClearSID?zx
=−1920517974 ">
</body>

5 . GET https : // accounts . goog l e . f r / accounts /ClearSID?zx
=−1920517974
Response : 200 − OK; a one p i x e l g i f .

6 . GET https : //www. goog l e . com/webhp
Response : 200 − OK

Listing 5.4: Trace of the sign-out procedure for Google services [35]

5.5.1 The Attack

The attack on Google services was demonstrated by a video published 16. August 2013
[33]. In this demonstration it was assumed that a user has at least two active sessions
with Google services (namely Gmail and Google Search) on a shared computer and
that an adversary, as before, controls the network. This attack works as follows. A
user is logged in to Gmail with an authenticated session and decides to visit Google
Search. Upon visiting Google Search, a new session is seamlessly authenticated by
Google. When done, the user makes a sign-out request which initiates the sign-
out procedure described above. This procedure is, however, not secure because an
adversary can prevent termination of the session the user has with Gmail. This
prevention can be achieved by rejecting request number 3 containing the image from
Gmail mentioned above. By truncation the TLS connection using a TCP reset, the
session will not be terminated as the image will be prevented from loading. The
browser will still think all content from the request is loaded and will continue to run
the doRedirect() function. However, the image sent out to terminate the session
has failed to do so, and despite an unsuccessful logout, the user has been given
positive feedback indicating a successful one.

In advance of the demonstrated attack, basic network analysis methods were
applied in order to find that request number 3 was between 1165 and 1195 bytes
in length [33]. Furthermore, the demonstration show that request number 3 can be
dropped by configuring iptables with the following command:

iptables -A OUTPUT -m length --length 1165:1195
-p tcp -j REJECT --reject-with tcp-reset
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When Google’s sign-out procedure reaches request number 3, it will be rejected.
Configuring the firewall to reject the said request with a TCP reset will cause the
browser to abort loading the image and proceed to execute the rest of the Javascript
code. When the user now chooses to leave the shared computer, an adversary can
simply refresh the Gmail page and a session will still be active.

Countermeasures The same type of countermeasures recommended as a solution
for the attack on Microsoft Live are recommended in order to avoid this type of
attack on Google services. Smyth and Pironti stress that an entirely centralized
authentication is needed in order to counteract this threat completely. Also in this
case could the sign-out procedure by handled as a chain of HTTP redirects as an
alternative. The last solution could be to add a onerror Javascript handler to all
images included in the returned HTML pages during the sign-out procedure. Such a
handler will return an error message when an image or gif fails to load and the user
will be shown this message as the sign-out procedure is halted.

5.5.2 Recreating the Attack

Like with the other attacks described in this section, the premise of this attack has
changed over the course of three years. After some research and network analysis, it
is apparent that even though the sign-out procedure used by Google services remains
the same, some of the requests look slightly different. For instance, the length of
request number 3 in Listing 5.4 is no longer between 1165 and 1195 in bytes. After
applying basic network analysis techniques now appear to be between 490 and 520
bytes in length. Like the approach three years ago, this request can be rejected using
a TCP reset by issuing the following command at the host:

iptables -A OUTPUT -m length --length 490:520
-p tcp -j REJECT --reject-with tcp-reset

It the same way as before, it can be observed from the capture in Figure 5.5 that the
“remotelogout?zx=«...»” request is being dropped (as indicated by the grey dot on
the left hand side) 3. Furthermore, the capture shows that the procedure carries on
despite the fact that the image download has been aborted. However, despite the
fact that the request terminating the user’s session with Gmail no longer arrives at
its destination, an adversary would still not be able to simply continue the session
with Gmail as before.

Figure 5.5 also shows that one other image is loaded after the image described
above. After some network analysis, it turns out that the ClearOSID image is

3Capture made 12 May 2016
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Figure 5.5: Firefox capture of trace in Google

also being loaded from the Javascript code in request number 2. When reviewing
the sign-out procedure during a log out from a Windows VM running IE11, these
two images appear to be between 1045 and 1085, and 923 and 953 bytes in length,
respectively. Believing that both of these images are used as a termination request
of the session with mail.google.com, they were rejected with a TCP reset by the use
of the following two commands:

iptables -A OUTPUT -m length --length 1045:1085
-p tcp -j REJECT --reject-with tcp-reset

iptables -A OUTPUT -m length --length 923:953
-p tcp -j REJECT --reject-with tcp-reset

Successfully rejecting these two requests resulted in a error page with the message
“This page can’t be displayed”. This page causes all active sessions with Google to
be terminated, leaving the attack ineffective. The truncation attack against Google
accounts as it was described by Smyth and Pironti was also ineffective on the different
setups described in Chapter 6. Based on these results, it would appear as though
Google has fixed the errors discovered in their authentication logic. Google does not,
however, appear to have provided any documentation explaining these adjustments.

5.6 Summary

This chapter provided a practical investigation of a selection of web applications
attacked by truncating their TLS connections, as described by Smyth and Pironti
in 2013 [35]. After reviewing the approach the authors had when producing these
attacks, attempts were made to check their validity three years after the initial
results were published. As the TLSv1.2 protocol remains the same, the results of the
recreated attacks depend on any changes in web application or web browser design.
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Neither one of the original attacks was successful when using the same setup as that
explained by Smith and Pironti. However, the truncation attack against the Helios
Voting system proved to still be effective against a selection of other web browsers
under an honest voter.

The findings made in this chapter will be further investigated, and the next chapter
will provide an analysis of the extent that different web browsers are susceptible to
truncation attacks as described in Section 5.3.2.





Chapter6Secure Termination In Web
Browsers

Upon the discovery made in Chapter 5 that truncation attacks on TLS connections
still work under certain conditions, it seemed apparent that the different web browsers
differ from each other in a major way when it comes to interpreting the TLS protocol.
Specifically, many modern web browsers seem to have poor handling of the termination
modes of TLS as described in Section 4.2.1. By replicating once more the truncation
attack against the authentication logic of the Helios Voting system, this chapter aims
to uncover to which degree modern web browsers are vulnerable to such truncation
attacks.

6.1 Handling TLS Termination Modes

Concerns about the poor handling of termination modes has been expressed on
several occasions [13, 35]. Section 3.2.2 describes the use of the close_notify alert
message, which has, since SSL3, been required in order to close a TLS connection.
When a session is terminated by the use of a close_notify, it will indicate that
a graceful closure has occurred, as described in Section 4.2.1. By distinguishing
between a graceful and a fatal closure, applications are in theory capable of preventing
truncation attacks and other Man In The Middle (MitM) attacks. By for instance
recognizing a fatal closure, a web browser would effectively disallow the continuing
of a connection. However, many applications and indeed many web browsers and
HTTP servers do not distinguish between these two types of closure. Whether this
is due to unawareness or if it is deliberate to increase compatibility is unclear, but in
any case, it leaves the software susceptible to truncation attacks.

When the Cookie Cutter attack was discovered and published in 2014 (See Section
4.2.2), the authors summarized possible truncations in modern mobile web browsers.
As shown in Table 4.1 the result of this summarization was that most mobile web
browsers were susceptible to at least one variation of truncation attacks. As these
results focused mainly on mobile browsers, the next section will focus on desktop
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browsers and validate the success of an attempted truncation attack on the Helios
Voting system, as it was described in Section 5.3.2.

6.2 Truncation in Web Browsers

A web browser is a software application intended to transfer information over the
World Wide Web. All information processed by a browser can be identified by a
URL/URI, and both modern mobile and desktop browsers are receiving an increasing
number of responsibilities when it comes to performing operations related to security
[25, 9]. Table 6.1 show the most popular desktop browsers in use, and this section
will determine to which degree these modern web browsers handle the termination
modes of TLS.

Table 6.1: Most widely used web browsers [5]

Google Chrome Internet Explorer Firefox Safari Opera
70,4% 5.8% 17,5% 3,7% 1.3%

6.2.1 Google Chrome

The first target in this practical investigation is the latest version (version 50 1) of
the most popular web browser, Google Chrome. The setup of this attack includes
a VM running Ubuntu 14.04 with the Chrome browser, and a Linux Mint machine
as the host modeling the network. As before, an adversary is assumed to control
the network and a user is about to cast a vote using the Helios Voting system. The
network analysis techniques described in Section 2.5 were used to determine that the
sign-out request (https://vote.heliosvoting.org/auth/logout/) from Section
5.3 had a size of 623 in bytes. Again, this request was dropped by configuring the
host’s iptables with the following command:

iptables -A OUTPUT -m length --length 623 -j DROP

After successfully casting a vote, the user proceeds to leave the computer believing
that he has been logged out. From monitoring the network traffic during the time
of the attack, no Encrypted Alerts, or close_notify alerts, can be observed. This
indicates that the fatal closure is ignored. As it turns out, Google Chrome does not
distinguish between the two termination modes of TLS, and by refreshing the Helios
home page, an adversary will be able to cast new votes on behalf of the honest user.

1 As of May 20, 2016
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6.2.2 Opera

When moving on to analyzing the latest version (version 37 1) of the Opera web
browser, the same setup as above was used. Once again, basic network analysis was
initiated to find that the sign-out request from the vote casting procedure had a size
of 645 bytes. The host’s iptables was then configured to drop all packets of this size:

iptables -A OUTPUT -m length --length 645 -j DROP

The truncation attack was once again successful, and the Opera does also seem to
handle TLS termination modes poorly.

6.2.3 Internet Explorer and Microsoft Edge

In Section 5.3.2 a truncation attack was successfully attempted on the Helios Voting
system. The premise of this success was the poor handling of TLS termination modes
of IE11. With the release of Microsoft’s newest operating system, Windows 10, in
2015 a new browser was released. This next truncation attack attempt will focus on
this browser, Microsoft Edge, as it is running on Windows 10. This time, the host’s
iptables was configured to drop all packets of size 574 bytes.

iptables -A OUTPUT -m length --length 574 -j DROP

With the command above, the sign-out request from Helios was successfully dropped
and the truncation attack was successful on Microsoft Edge as well.

6.2.4 Results

In the paper published in 2013 by Smyth and Pironti [35], the setup described in
Section 5.2 was used and the user was using a Firefox browser. Although it was
not specified which version of Firefox that was used, it is safe to assume, based
on Firefox’s own release notes, that the version number was close to number 20 at
this time. As previously stated, the attacks attempted by Smyth and Pironti were
successful due to Firefox’s poor handling of termination modes.

In an attempt to replicate these attacks when using newer versions of the Firefox
browser, dropping the sign-out request from Helios did not prevent the user’s con-
nection from being terminated. From capturing network traffic over TLS during the
vote casting procedure it can be observed that Encrypted Alerts are sent by both the
server and the client. These encrypted alerts are indeed the close_notify alerts
described in Section 3.2.2 and by recognizing these fatal alerts the client and the
server terminate their TLS connection. After the connection is terminated, a new
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TLS handshake (as described in Section 3.2) is initiated and the user’s login is forgot-
ten. The success of the truncation attacks against the Helios Voting system, Google
Services and Microsoft Hotmail crucially rely on the lack of distinction between the
termination modes of TLS. When a fatal closure is generated during an attack, it
has to be ignored by the browser in order for these attacks to work. As described
by Table 6.2 and the sections above, a large selection of modern browsers actually
ignores this fatal closure. In this table, Xindicates that a truncation attack was
successful against the Helios Voting system on that particular version of the web
browser, and 7 indicates that the attack was unsuccessful.

Browser TLS termination
modes ignored

Firefox 46 7

Firefox 38 7

Internet Explorer 11 X

Microsoft Edge X

Google Chrome 50 X

Opera 37 X

Table 6.2: Web browsers susceptible to truncation attacks. Xindicates that the
truncation attack was successful, and 7 indicates that the attack failed.

During the course of this practical investigation, attempts have been made in
order to uncover to which degree web browser developers are aware of these flaws.
It would appear as though ignoring these termination modes is a trade-off made in
order to improve compatibility. Prevention of truncation attacks against application
flaws in sign-out procedures, such as those described in Chapter 5, does, because of
these results, solely rely on the web designer implementing these applications. The
next section will provide a suggestion as to how an application with authentication
logic similar to Helios can be modified in order to thwart these types of attacks.

6.3 Secure Termination in a Web Application

Upon the realization that most web browsers still ignore the termination modes of
TLS, web application designers and developers need to be aware of the complications
that may come from authentication logic flaws. The documentation for TLSv1.2
(RFC5246 [16]) is not intended as a detailed step-by-step description of how to
implement application security with the TLS protocol. Nor does the protocol
guarantee security when an application is implemented poorly.

A web application does not, however, need to be vulnerable to truncation attacks.
To provide an example of both an insecure and a secure sign-out procedure, a simple
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web application is created and described in the next section. This application is
written in Django which is a web framework for the Python programming language.
This framework is both free and open source and it is designed to be a fast and reliable
way of writing web applications. Django is chosen for the application described in
the sections below because it is the same framework used by the developers of the
Helios Voting system.

6.3.1 Insecure Web Application

Consider a simple Django application with a sign-out procedure based on the Helios
Voting system. The main features of this application is that a user can log in using
a personal password and send a form containing trivial information to the server.
Upon posting this send_done form, the user receives a HTML page informing him
that the form has been sent and that the application state has been changed (the
user has been logged out). The procedure for sending a form in this application is
illustrated by Listing 6.1 and Figure 6.1. From the trace in the listing below, it can
be observed that the sign-out request is loaded from a <iframe> tag in the HTML
page returned as a response to request number 2.

1 . POST /send_done/
Response : 302 − Found
Locat ion [ / send_confirm / ]

2 . GET /send_confirm/
Response : 200 OK − HTML payload
. . .
<p><b>For your s a f e t y I ’ ve logged you out !</b></p>
<if rame width=" 0 " he ight=" 0 " border=" 0 " frameborder=" 0 "
s r c=" / accounts / logout / "></iframe>
. . .

3 . GET / accounts / logout /
Response : 302 − Found
Locat ion [ / ]

Listing 6.1: Trace of send form procedure

An <iframe> tag in HTML indicates that another document is intended to be
embedded in the HTML page when it is loaded. By embedding the source for the
logout procedure, /accounts/logout/, a user is intended to be signed out when the
<iframe> is processed in the HTML code. Processing the <iframe> in request number
2 in Listing 6.1 will create a third request that asks for the logout procedure to be
initiated. Figure 6.1 illustrates a simplified representation of the trace in Listing 6.1
and from it, one can observe how the three requests occur sequentially. The sequence
of HTTP requests and responses illustrated in Figure 6.1 uncovers an application
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logic flaw in that the GET /send_confirm/ request is responded by a 200 OK and
a HTML page indicating a successful logout before the GET /accounts/logout/
sign-out request is made.

Figure 6.1: Send form procedure

As the authentication logic in this application is very much based on the Helios
Voting system, it contains the same flaw and is susceptible to truncation attacks in
the same way. By using the same techniques as those described in Section 5.3, an
adversary can simply drop the sign-out request and thus prevent a successful logout.

6.3.2 Secure Web Application

Now imagine that a web developer is aware of the possibilities of truncation attacks
compromising the application described above. The main flaw in the authentication
logic from Listing 6.1 is that the user receives positive feedback of a successful logout
before the sign-out request is made. Since this particular web application is written
in Python with Django as a framework, HTTP requests can easily be created by
using a sequence of HttpRedirects. By using such a redirect rather than the iframe
tag from the example above to navigate the user through the sign-out procedure,
a truncation attack can fairly easily be thwarted. In the trace in Listing 6.2 and
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the sequence diagram in Figure 6.2 a suggestion to a new authentication logic is
described.

1 . POST /send_done/
Response : 302 − Found
Locat ion [ / send_confirm / ]

2 . GET /send_confirm/
Response : 302 Found
Locat ion [ / accounts / logout / ]

3 . GET /accounts / logout /
Response : 302 − Found
Locat ion [ / ]

4 . GET /
Response 200 OK − HTML payload
. . .
s e l f . messages . s u c c e s s ( "You ’ ve been logged out . Come back
soon ! " )
. . .

Listing 6.2: Suggestion for new trace of send form procedure

Observed by the trace in Listing 6.2, the feedback indicating a successful logout
comes after the actual sign-out request has been made in form of a self.message
provided by the Django framework. This is not the only way of providing positive
feedback in Django but it will suffice for this particular demonstration. The main
difference, however, between these two implementations is the way request number 2
is handled.

In this case, the GET /send_confirm/ request does not initiate a sign-out request
by embedding the logout source in an <iframe>. Instead, the Django application
is configured to, after a given number of operations is done, issue a HttpRedirect
which redirects the user to the /accounts/logout/ location. This application design
eliminates the possibility of the positive feedback indicating a successful being loaded
before the sign-out request. By studying Figure 6.2 as a simplified illustration of the
HTTP requests and responses in Listing 6.2 the suggestion to a secure form sending
sequence can be more easily described.
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Figure 6.2: Suggestion to secure send form procedure

From comparing the two figures (6.1 and 6.2) it can be observed that the response
of request number 2 is 200 OK and 302 Found, respectively. As described in Section
2.4.1 and Appendix A, a HTTP 302 status code indicates that a HTTP redirect will
occur. In the case of this new send form procedure, an adversary dropping request
number 2 will also prevent the intended redirect. By preventing the HTTP redirect
the entire sign-out procedure in Listing 6.2 will be halted and feedback indicating
a successful logout will never be received by the user. When this is the case, the
user should eventually suspect that an error has occurred during the form posting
procedure.

6.3.3 Secure Termination in a Web Application using TLS

Although the application created for the purposes of suggesting defenses against
truncation attacks, it is not specified to be implemented with TLS security. The idea
behind the truncation attacks described in Chapter 5 is that the only information an
adversary needs is the size of the encrypted sign-out request. This type of information
can be fairly easily found by using the basic network analysis techniques described
in Section 2.5.
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6.4 Summary

A truncation attack as it is described in this report is a fairly simple attack. The
security implications of such an attack, however, can be serious depending on the
purpose of the broken application. In the Django application described in this
Chapter, trivial information is sent to the server by the POST /send_done/ request,
but this information could have just as well been of the more sensitive sort. It
appears as though the understanding of the security guarantees provided by TLS
is poor, and that web browser developers are either unaware of, or ignores, the
security implications of such attacks. Regardless of this, the results from the practical
investigation performed in this chapter prove that the danger of truncation attacks
are still very much real, but can be fairly easily avoided.





Chapter7Discussion & Conclusion

7.1 Discussion

The simplicity of the truncation attacks described in this report is what makes them
a serious threat. To attempt, for instance, an attack against the Helios Voting system,
all an adversary needs is knowledge of how the vote casting procedure of Helios works
and some basic knowledge of network analysis techniques. This is also the case for
other web applications, such as for Microsoft services and Google services in 2013
[35].

When the paper discussing the truncation attacks against Helios, Microsoft, and
Google was published, the vulnerabilities found were reported to their respective
developers. From the results of the practical investigation made during the course of
this report, we have learned that the developers of the Helios Voting system have not
been able to fix the logic flaw in their application. Microsoft, however, has changed
their sign-out procedure drastically since application vulnerabilities were reported to
them. Whether or not these changes are due to the findings reported by Smyth and
Pironti is unclear, but, as discussed in Section 5.4.2, Microsoft services is no longer
vulnerable to truncation attacks against their sign-out procedure. The findings were
also disclosed to Google when these attacks were discovered. While Google has made
adjustments in their sign-out procedure to avoid these attacks, they reported back an
assessment of the actual threat such attacks pose to their services when the results
were initially reported to them. Google stated that they thought it was technically
impossible to the properly defend users that use a shared computer [35].

Google has a point in that the premises of these attacks are highly specific.
In the scenario described where these attacks are successful, an adversary has to
have full control over the network and the user has to be using a shared computer.
Furthermore, the adversary has to be able to access the shared computer after the
user has left the computer. In addition to the claims that the scenario is too specific
to be taken too seriously, Google pointed out that the attack could be thwarted by
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the deletion of cookies and browser history and by closing the browser. This is also
true, but it will place an unnecessary burden on the user.

7.2 Conclusion

When the Internet was created in the 1960s, security was not a concern. Over the
years, however, as the Internet was made public, research was conducted in order to
find a standardized protocol to provide secure communication over the open network.
Today the most prominent protocol for network security is TLSv1.2. The TLS
protocol is a cryptographic protocol used for web browsing, email, and many other
services using the Internet. The TLS protocol has been around for decades and it is
still a part of most people’s everyday lives.

This thesis sought to explore the validity of truncation attacks against web
applications using TLS by first recreating three attacks discovered by Smyth and
Pironti [35] in 2013. These three attacks described the possibility of deceiving users
into thinking a protocol session has been properly terminated by dropping sign-out
requests. Due to flaws in application logic, Smyth and Pironti were able to cast
votes on behalf of honest voters in the Helios voting system, obtain full control of
Hotmail accounts and temporary control of Gmail accounts. In order to understand
the recreation process of these attacks, background information on how and why
these attacks work has been included in this report. Also included in this report is a
detailed description of how the TLS protocol works.

In the process of recreating these attacks, the results indicated that a selection
of popular web browsers handle the TLS termination modes differently. While this
thesis initially sought to investigate to which extent it is possible to employ the
Smyth and Pironti truncation attacks on security protocols other than TLS, the
findings during the course of this research steered this report towards focusing on
employing them in a variety of modern web browsers.

As a truncation attack was successfully attempted on the Helios Voting system
in Chapter 5, this attack was replicated on a selection of modern browsers. By
employing the different network analysis techniques mentioned on several occasions
in this report, enough information was gathered and the attacks were made possible.
As it turned out, the attack against the Helios Voting system was successful on the
latest version of most of the web browsers tested in this report. The success of these
attacks relies on poor handling of TLS termination modes in web browsers. As far
as the author knows, this weakness has only been brought up with the publication
of the paper introducing the truncation attack against TLS connections [35] and
the Cookie Cutter attack [13]. While different browsers have been pointed out to
have this flaw, the results of a practical investigation of modern desktop browsers’
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handling of TLS termination modes have not been provided.

As the truncation attacks described in this report also rely on existing flaws
in application logic, the responsibility on preventing them falls on web designers
and developers. When realizing that most of these web browsers are incapable of
preventing certain types of truncation attacks, the breadth of this report was widened
to include a suggestion for a generic method to avoid truncation attacks from a web
developer’s point of view. This generic method is unique for this report in the sense
that it shows how easily a very simple web application can be both insecure and
secure against truncation attacks with just a couple of adjustments. All that is needed
is a basic understanding of how TLS and truncation attacks on TLS connections
work.

7.3 Future Work

TLS is a protocol that is under continuous development. With regards to future
work, it would be interesting to investigate if the truncation attacks on TLSv1.2
described in this report would still be valid when the new version of TLS (TLSv1.3
[27]) is used for application security. TLSv1.3, however, is a pending draft, but a
world wide deployment would probably occur by the end of 2016.

By recreating the attacks on the different browsers described in Section 6.2 when
new versions of the most popular browsers are released, one can find out if poor
handling of TLS termination modes persists. Furthermore, it would be interesting to
investigate if the truncation attacks could be adapted and applied to other security
protocols like DTLS and SSH.
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AppendixAHTTP Status Codes

Informational

100 -- Continue
101 -- Switching Protocols

Success

200 -- OK
201 -- Created
202 -- Accepted
203 -- Non-Authoritative Information
204 -- No Content
205 -- Reset Content
206 -- Partial Content

Redirection

300 -- Multiple Choices
301 -- Moved Permanently
302 -- Found
303 -- See Other
304 -- Not Modified
305 -- Use Proxy
307 -- Temporary Redirect
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Client Error

400 -- Bad Request
401 -- Unauthorized
402 -- Payment Required
403 -- Forbidden
404 -- Not Found
405 -- Method Not Allowed
406 -- Not Acceptable
407 -- Proxy Authentication Required
408 -- Request Time-out
409 -- Conflict
410 -- Gone
411 -- Length Required
412 -- Precondition Failed
413 -- Request Entity Too Large
414 -- Request-URI Too Large
415 -- Unsupported Media Type
416 -- Requested range not satisfiable
417 -- Expectation Failed

Server Error

500 -- Internal Server Error
501 -- Not Implemented
502 -- Bad Gateway
503 -- Service Unavailable
504 -- Gateway Time-out
505 -- HTTP Version not supported



AppendixBTLS Protocol Data

B.1 Items Included in a TLS Session

session identifier:
Chosen by the server in order to identify an active session.
Comes in form of an arbitrary byte sequence, and can also
identify a resumable session state.

peer certificate:
May be null. If not, it will be a X509v3 certificate of the peer.

compression method:
Specifies which algorithm that will be used to compress data before
encryption.

cipher spec:
Identifies the PRF that is being used to generate keys as well
as the encryption and MAC algorithms.

master secret:
The server and the client share a 48-byte master secret.

is resumable:
If a session is allowed to initiate new connection, a flag
will indicate this.

B.2 TLS Alert Messages

enum { warning(1), fatal(2), (255) } AlertLevel;
enum {
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close_notify(0),
unexpected_message(10),
bad_record_mac(20),
decryption_failed_RESERVED(21),
record_overflow(22),
decompression_failure(30),
handshake_failure(40),
no_certificate_RESERVED(41),
bad_certificate(42),
unsupported_certificate(43),
certificate_revoked(44),
certificate_expired(45),
certificate_unknown(46),
illegal_parameter(47),
unknown_ca(48),
access_denied(49),
decode_error(50),
decrypt_error(51),
export_restriction_RESERVED(60),
protocol_version(70),
insufficient_security(71),
internal_error(80),
user_canceled(90),
no_renegotiation(100),
unsupported_extension(110),
(255)

} AlertDescription;

struct {
AlertLevel level;
AlertDescription description;

} Alert;

B.3 TLS Handshake Messages

enum {
hello_request(0), client_hello(1), server_hello(2),
certificate(11), server_key_exchange (12),
certificate_request(13), server_hello_done(14),
certificate_verify(15), client_key_exchange(16),
finished(20), (255)
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} HandshakeType;

struct {
HandshakeType msg_type; /* handshake type */
uint24 length; /* bytes in message */
select (HandshakeType) {

case hello_request: HelloRequest;
case client_hello: ClientHello;
case server_hello: ServerHello;
case certificate: Certificate;
case server_key_exchange: ServerKeyExchange;
case certificate_request: CertificateRequest;
case server_hello_done: ServerHelloDone;
case certificate_verify: CertificateVerify;
case client_key_exchange: ClientKeyExchange;
case finished: Finished;

} body;
} Handshake;
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